Science.gov

Sample records for 2-dimensional electrophoresis 2-de

  1. Two-dimensional Gel Electrophoresis (2DE)

    NASA Astrophysics Data System (ADS)

    Kłodzińska, Ewa; Buszewski, Bogusław

    The chemical compounds, which are present in the environment, increasingly cause bad effects on health. The most serious effects are tumors and various mutations at the cellular level. Such compounds, from the analytical point of view, can serve the function of biomarkers, constituting measurable changes in the organism's cells and biochemical processes occurring therein. The challenge of the twenty-first century is therefore searching for effective and reliable methods of identification of biomarkers as well as understanding bodily functions, which occur in living organisms at the molecular level. The irreplaceable tool for these examinations is proteomics, which includes both quality and quantity analysis of proteins composition, and also makes it possible to learn their functions and expressions. The success of proteomics examinations lies in the usage of innovative analytical techniques, such as electromigration technique, two-dimensional electrophoresis in polyacrylamide gel (2D PAGE), liquid chromatography, together with high resolution mass spectrometry and bio-informatical data analysis. Proteomics joins together a number of techniques used for analysis of hundreds or thousands of proteins. Its main task is not the examination of proteins inside the particular tissue but searching for the differences in the proteins' profile between bad and healthy tissues. These differences can tell us a lot regarding the cause of the sickness as well as its consequences. For instance, using the proteomics analysis it is possible to find relatively fast new biomarkers of tumor diseases, which in the future will be used for both screening and foreseeing the course of illness. In this chapter we focus on two-dimensional electrophoresis because as it seems, it may be of enormous importance when searching for biomarkers of cancer diseases.

  2. Investigation of endogenous soybean food allergens by using a 2-dimensional gel electrophoresis approach.

    PubMed

    Rouquié, David; Capt, Annabelle; Eby, William H; Sekar, Vaithilingam; Hérouet-Guicheney, Corinne

    2010-12-01

    As part of the safety assessment of genetically modified (GM) soybean, 2-dimensional gel electrophoresis analyses were performed with the isoxaflutole and glyphosate tolerant soybean FG72, its non-GM near-isogenic counterpart (Jack) and three commercial non-GM soybean lines. The objective was to compare the known endogenous human food allergens in seeds in the five different soybean lines in order to evaluate any potential unintended effect(s) of the genetic modification. In total, 37 protein spots representing five well known soybean food allergen groups were quantified in each genotype. Qualitatively, all the allergenic proteins were detected in the different genetic backgrounds. Quantitatively, among 37 protein spots, the levels of accumulation of three allergens were slightly lower in the GM soybean than in the non-GM counterparts. Specifically, while the levels of two of these three allergens fell within the normal range of variation observed in the four non-GM varieties, the level of the third allergen was slightly below the normal range. Overall, there was no significant increase in the level of allergens in FG72 soybean seeds. Therefore, the FG72 soybean can be considered as safe as its non-GM counterpart with regards to endogenous allergenicity. Additional research is needed to evaluate the biological variability in the levels of endogenous soybean allergens and the correlation between level of allergens and allergenic potential in order to improve the interpretation of these data in the safety assessment of GM soybean context.

  3. Effect of bile salts stress on protein synthesis of Lactobacillus casei Zhang revealed by 2-dimensional gel electrophoresis.

    PubMed

    Wu, R; Sun, Z; Wu, J; Meng, H; Zhang, H

    2010-08-01

    Lactobacillus casei Zhang, isolated from koumiss in Inner Mongolia of China, is known from previous findings to be tolerant to bile salts. Bile salts secreted by mammals act as a natural antibacterial barrier and may serve as a component of innate immunity, as they have limited antagonistic effect against resident microflora. In this work, we compared the growth and protein expression patterns of L. casei Zhang with and without bile salts. Twenty-six proteins were found to be differentially expressed using 2-dimensional gel electrophoresis. Peptide mass fingerprinting was used to identify these proteins. Further verification by using real-time, quantitative reverse transcription-PCR and bioinformatics analysis showed that the implicated pathways are involved with a complex physiological response under bile salts stress, particularly including cell protection (DnaK and GroEL), modifications in cell membranes (NagA, GalU, and PyrD), and key components of central metabolism (PFK, PGM, CysK, LuxS, PepC, and EF-Tu). These results provide insight on the protein expression pattern of L. casei under bile salts stress and offer a new perspective for the molecular mechanisms involved in stress tolerance and adaptation of bacteria. PMID:20655455

  4. Identification and comparative proteomic study of quail and duck egg white protein using 2-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry analysis.

    PubMed

    Hu, S; Qiu, N; Liu, Y; Zhao, H; Gao, D; Song, R; Ma, M

    2016-05-01

    A proteomic study of egg white proteins from 2 major poultry species, namely quail (Coturnix coturnix) and duck (Anas platyrhynchos), was performed with comparison to those of chicken (Gallus gallus) through 2-dimensional polyacrylamide gel electrophoresis (2-DE) analysis. By using matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF MS/MS), 29 protein spots representing 10 different kinds of proteins as well as 17 protein spots designating 9 proteins were successfully identified in quail and duck egg white, respectively. This report suggested a closer relationship between quail and chicken egg white proteome patterns, whereas the duck egg white protein distribution on the 2-DE map was more distinct. In duck egg white, some well-known major proteins, such as ovomucoid, clusterin, extracellular fatty acid-binding protein precursor (ex-FABP), and prostaglandin D2 synthase (PG D2 synthase), were not detected, while two major protein spots identified as "deleted in malignant brain tumors 1" protein (DMBT1) and vitellogenin-2 were found specific to duck in the corresponding range on the 2-DE gel map. These interspecies diversities may be associated with the egg white protein functions in cell defense or regulating/supporting the embryonic development to adapt to the inhabiting environment or reproduction demand during long-term evolution. The findings of this work will give insight into the advantages involved in the application on egg white proteins from various egg sources, which may present novel beneficial properties in the food industry or related to human health.

  5. Identification and comparative proteomic study of quail and duck egg white protein using 2-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry analysis

    PubMed Central

    Hu, Shan; Qiu, Ning; Liu, Yaping; Zhao, Hongyan; Gao, Dan; Song, Rui; Ma, Meihu

    2016-01-01

    A proteomic study of egg white proteins from 2 major poultry species, namely quail (Coturnix coturnix) and duck (Anas platyrhynchos), was performed with comparison to those of chicken (Gallus gallus) through 2-dimensional polyacrylamide gel electrophoresis (2-DE) analysis. By using matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF MS/MS), 29 protein spots representing 10 different kinds of proteins as well as 17 protein spots designating 9 proteins were successfully identified in quail and duck egg white, respectively. This report suggested a closer relationship between quail and chicken egg white proteome patterns, whereas the duck egg white protein distribution on the 2-DE map was more distinct. In duck egg white, some well-known major proteins, such as ovomucoid, clusterin, extracellular fatty acid-binding protein precursor (ex-FABP), and prostaglandin D2 synthase (PG D2 synthase), were not detected, while two major protein spots identified as “deleted in malignant brain tumors 1” protein (DMBT1) and vitellogenin-2 were found specific to duck in the corresponding range on the 2-DE gel map. These interspecies diversities may be associated with the egg white protein functions in cell defense or regulating/supporting the embryonic development to adapt to the inhabiting environment or reproduction demand during long-term evolution. The findings of this work will give insight into the advantages involved in the application on egg white proteins from various egg sources, which may present novel beneficial properties in the food industry or related to human health. PMID:26957635

  6. A comparative proteomic study of plasma in feline pancreatitis and pancreatic carcinoma using 2-dimensional gel electrophoresis to identify diagnostic biomarkers: A pilot study

    PubMed Central

    Meachem, Melissa D.; Snead, Elisabeth R.; Kidney, Beverly A.; Jackson, Marion L.; Dickinson, Ryan; Larson, Victoria; Simko, Elemir

    2015-01-01

    While pancreatitis is now recognized as a common ailment in cats, the diagnosis remains challenging due to discordant results and suboptimal sensitivity of ultrasound and specific feline pancreatic lipase (Spec fPL) assay. Pancreatitis also shares similar clinical features with pancreatic carcinoma, a rare but aggressive disease with a grave prognosis. The objective of this pilot study was to compare the plasma proteomes of normal healthy cats (n = 6), cats with pancreatitis (n = 6), and cats with pancreatic carcinoma (n = 6) in order to identify potential new biomarkers of feline pancreatic disease. After plasma protein separation by 2-dimensional gel electrophoresis, protein spots were detected by Coomassie Brilliant Blue G-250 staining and identified by mass spectrometry. Alpha-1-acid glycoprotein (AGP), apolipoprotein-A1 (Apo-A1), and apolipoprotein-A1 precursor (Pre Apo-A1) appeared to be differentially expressed, which suggests the presence of a systemic acute-phase response and alteration of lipid metabolism in cats with pancreatic disease. Future studies involving greater case numbers are needed in order to assess the utility of these proteins as potential biomarkers. More sensitive proteomic techniques may also be helpful in detecting significant but low-abundance proteins. PMID:26130850

  7. Diagonal two-dimensional electrophoresis (D-2DE): a new approach to study the effect of osmotic stress induced by polyethylene glycol in durum wheat (Triticum durum Desf.).

    PubMed

    Kacem, N S; Mauro, S; Muhovski, Y; Delporte, F; Renaut, J; Djekoun, A; Watillon, B

    2016-09-01

    Acclimatization to stress is associated with profound changes in proteome composition. The use of plant cell and tissue culture offers a means to investigate the physiological and biochemical processes involved in the adaptation to osmotic stress. We employed a new proteomic approach to further understand the response of calli to dehydration induced by polyethylene glycol (PEG6000). Calli of three durum wheat genotypes Djenah Khetifa, Oued Zenati and Waha were treated with two concentrations of polyethylene glycol to mimic osmotic stress. Changes in protein relative abundance were analyzed using a new electrophoretic approach named diagonal two-dimensional electrophoresis (D-2DE), combined with mass spectrometry. Total proteins were extracted from 30-day-old calli from three durum wheat genotypes that showed contrasting levels of drought stress tolerance in the field. The combination of one-dimensional electrophoresis and D-2DE gave a specific imprint of the protein extracts under osmotic stress, as well as characterizing and identifying individual target proteins. Of the variously expressed proteins, three were selected (globulin, GAPDH and peroxidase) and further analyzed using qRT-PCR at the transcriptome level in order to compare the results with the proteomic data. Western blot analysis was used to further validate the differences in relative abundance pattern. The proteins identified through this technique provide new insights as to how calli respond to osmotic stress. Our method of study provides an original and relevant approach of analyzing the osmotic-responsive mechanisms at the cellular level of durum wheat with agronomic perspectives.

  8. Exposures of Sus scrofa to a TASER(®) conducted electrical weapon: no effects on 2-dimensional gel electrophoresis patterns of plasma proteins.

    PubMed

    Jauchem, James R; Cerna, Cesario Z; Lim, Tiffany Y; Seaman, Ronald L

    2014-12-01

    In an earlier study, we found significant changes in red-blood-cell, leukocyte, and platelet counts, and in red-blood-cell membrane proteins, following exposures of anesthetized pigs to a conducted electrical weapon. In the current study, we examined potential changes in plasma proteins [analyzed via two-dimensional gel electrophoresis (2-DGE)] following two 30 s exposures of anesthetized pigs (Sus scrofa) to a TASER (®) C2 conducted electrical weapon. Patterns of proteins, separated by 2-DGE, were consistent and reproducible between animals and between times of sampling. We determined that the blood plasma collection, handling, storage, and processing techniques we used are suitable for swine blood. There were no statistically significant changes in plasma proteins following the conducted-electrical-weapon exposures. Overall gel patterns of fibrinogen were similar to results of other studies of both pigs and humans (in control settings, not exposed to conducted electrical weapons). The lack of significant changes in plasma proteins may be added to the body of evidence regarding relative safety of TASER C2 device exposures.

  9. Diagonal two-dimensional electrophoresis (D-2DE): a new approach to study the effect of osmotic stress induced by polyethylene glycol in durum wheat (Triticum durum Desf.).

    PubMed

    Kacem, N S; Mauro, S; Muhovski, Y; Delporte, F; Renaut, J; Djekoun, A; Watillon, B

    2016-09-01

    Acclimatization to stress is associated with profound changes in proteome composition. The use of plant cell and tissue culture offers a means to investigate the physiological and biochemical processes involved in the adaptation to osmotic stress. We employed a new proteomic approach to further understand the response of calli to dehydration induced by polyethylene glycol (PEG6000). Calli of three durum wheat genotypes Djenah Khetifa, Oued Zenati and Waha were treated with two concentrations of polyethylene glycol to mimic osmotic stress. Changes in protein relative abundance were analyzed using a new electrophoretic approach named diagonal two-dimensional electrophoresis (D-2DE), combined with mass spectrometry. Total proteins were extracted from 30-day-old calli from three durum wheat genotypes that showed contrasting levels of drought stress tolerance in the field. The combination of one-dimensional electrophoresis and D-2DE gave a specific imprint of the protein extracts under osmotic stress, as well as characterizing and identifying individual target proteins. Of the variously expressed proteins, three were selected (globulin, GAPDH and peroxidase) and further analyzed using qRT-PCR at the transcriptome level in order to compare the results with the proteomic data. Western blot analysis was used to further validate the differences in relative abundance pattern. The proteins identified through this technique provide new insights as to how calli respond to osmotic stress. Our method of study provides an original and relevant approach of analyzing the osmotic-responsive mechanisms at the cellular level of durum wheat with agronomic perspectives. PMID:27317377

  10. Optimal protein extraction methods from diverse sample types for protein profiling by using Two-Dimensional Electrophoresis (2DE).

    PubMed

    Tan, A A; Azman, S N; Abdul Rani, N R; Kua, B C; Sasidharan, S; Kiew, L V; Othman, N; Noordin, R; Chen, Y

    2011-12-01

    There is a great diversity of protein samples types and origins, therefore the optimal procedure for each sample type must be determined empirically. In order to obtain a reproducible and complete sample presentation which view as many proteins as possible on the desired 2DE gel, it is critical to perform additional sample preparation steps to improve the quality of the final results, yet without selectively losing the proteins. To address this, we developed a general method that is suitable for diverse sample types based on phenolchloroform extraction method (represented by TRI reagent). This method was found to yield good results when used to analyze human breast cancer cell line (MCF-7), Vibrio cholerae, Cryptocaryon irritans cyst and liver abscess fat tissue. These types represent cell line, bacteria, parasite cyst and pus respectively. For each type of samples, several attempts were made to methodically compare protein isolation methods using TRI-reagent Kit, EasyBlue Kit, PRO-PREP™ Protein Extraction Solution and lysis buffer. The most useful protocol allows the extraction and separation of a wide diversity of protein samples that is reproducible among repeated experiments. Our results demonstrated that the modified TRI-reagent Kit had the highest protein yield as well as the greatest number of total proteins spots count for all type of samples. Distinctive differences in spot patterns were also observed in the 2DE gel of different extraction methods used for each type of sample. PMID:22433892

  11. Optimizing Human Bile Preparation for Two-Dimensional Gel Electrophoresis

    PubMed Central

    Cheng, Hao-Tsai; Sung, Chang-Mu; Pai, Betty Chien-Jung; Liu, Nai-Jen; Chen, Carl PC

    2016-01-01

    Aims. Bile is an important body fluid which assists in the digestion of fat and excretion of endogenous and exogenous compounds. In the present study, an improved sample preparation for human bile was established. Methods and Material. The method involved acetone precipitation followed by protein extraction using commercially available 2D Clean-Up kit. The effectiveness was evaluated by 2-dimensional electrophoresis (2DE) profiling quality, including number of protein spots and spot distribution. Results. The total protein of bile fluid in benign biliary disorders was 0.797 ± 0.465 μg/μL. The sample preparation method using acetone precipitation first followed by 2D Clean-Up kit protein extraction resulted in better quality of 2DE gel images in terms of resolution as compared with other sample preparation methods. Using this protocol, we obtained approximately 558 protein spots on the gel images and with better protein spots presentation of haptoglobin, serum albumin, serotransferrin, and transthyretin. Conclusions. Protein samples of bile prepared using acetone precipitation followed by 2D Clean-Up kit exhibited high protein resolution and significant protein profile. This optimized protein preparation protocol can effectively concentrate bile proteins, remove abundant proteins and debris, and yield clear presentation of nonabundant proteins and its isoforms on 2-dimensional electrophoresis gel images. PMID:26966686

  12. High resolution quantitative proteomics of HeLa cells protein species using stable isotope labeling with amino acids in cell culture(SILAC), two-dimensional gel electrophoresis(2DE) and nano-liquid chromatograpohy coupled to an LTQ-OrbitrapMass spectrometer.

    PubMed

    Thiede, Bernd; Koehler, Christian J; Strozynski, Margarita; Treumann, Achim; Stein, Robert; Zimny-Arndt, Ursula; Schmid, Monika; Jungblut, Peter R

    2013-02-01

    The proteomics field has shifted over recent years from two-dimensional gel electrophoresis (2-DE)-based approaches to SDS-PAGE or gel-free workflows because of the tremendous developments in isotopic labeling techniques, nano-liquid chromatography, and high-resolution mass spectrometry. However, 2-DE still offers the highest resolution in protein separation. Therefore, we combined stable isotope labeling with amino acids in cell culture of controls and apoptotic HeLa cells with 2-DE and the subsequent analysis of tryptic peptides via nano-liquid chromatography coupled to an LTQ-Orbitrap mass spectrometer to obtain quantitative data using the methods with the highest resolving power on all levels of the proteomics workflow. More than 1,200 proteins with more than 2,700 protein species were identified and quantified from 816 Coomassie Brilliant Blue G-250 stained 2-DE spots. About half of the proteins were identified and quantified only in single 2-DE spots. The majority of spots revealed one to five proteins; however, in one 2-DE spot, up to 23 proteins were identified. Only half of the 2-DE spots represented a dominant protein with more than 90% of the whole protein amount. Consequently, quantification based on staining intensities in 2-DE gels would in approximately half of the spots be imprecise, and minor components could not be quantified. These problems are circumvented by quantification using stable isotope labeling with amino acids in cell culture. Despite challenges, as shown in detail for lamin A/C and vimentin, the quantitative changes of protein species can be detected. The combination of 2-DE with high-resolution nano-liquid chromatography-mass spectrometry allowed us to identify proteomic changes in apoptotic cells that would be unobservable using any of the other previously employed proteomic workflows.

  13. High Resolution Quantitative Proteomics of HeLa Cells Protein Species Using Stable Isotope Labeling with Amino Acids in Cell Culture(SILAC), Two-Dimensional Gel Electrophoresis(2DE) and Nano-Liquid Chromatograpohy Coupled to an LTQ-OrbitrapMass Spectrometer*

    PubMed Central

    Thiede, Bernd; Koehler, Christian J.; Strozynski, Margarita; Treumann, Achim; Stein, Robert; Zimny-Arndt, Ursula; Schmid, Monika; Jungblut, Peter R.

    2013-01-01

    The proteomics field has shifted over recent years from two-dimensional gel electrophoresis (2-DE)-based approaches to SDS-PAGE or gel-free workflows because of the tremendous developments in isotopic labeling techniques, nano-liquid chromatography, and high-resolution mass spectrometry. However, 2-DE still offers the highest resolution in protein separation. Therefore, we combined stable isotope labeling with amino acids in cell culture of controls and apoptotic HeLa cells with 2-DE and the subsequent analysis of tryptic peptides via nano-liquid chromatography coupled to an LTQ-Orbitrap mass spectrometer to obtain quantitative data using the methods with the highest resolving power on all levels of the proteomics workflow. More than 1,200 proteins with more than 2,700 protein species were identified and quantified from 816 Coomassie Brilliant Blue G-250 stained 2-DE spots. About half of the proteins were identified and quantified only in single 2-DE spots. The majority of spots revealed one to five proteins; however, in one 2-DE spot, up to 23 proteins were identified. Only half of the 2-DE spots represented a dominant protein with more than 90% of the whole protein amount. Consequently, quantification based on staining intensities in 2-DE gels would in approximately half of the spots be imprecise, and minor components could not be quantified. These problems are circumvented by quantification using stable isotope labeling with amino acids in cell culture. Despite challenges, as shown in detail for lamin A/C and vimentin, the quantitative changes of protein species can be detected. The combination of 2-DE with high-resolution nano-liquid chromatography-mass spectrometry allowed us to identify proteomic changes in apoptotic cells that would be unobservable using any of the other previously employed proteomic workflows. PMID:23033477

  14. Electrophoresis technology

    NASA Technical Reports Server (NTRS)

    Snyder, R. S.

    1985-01-01

    A new high resolution apparatus designed for space was built as a laboratory prototype. Using a moving wall with a low zeta potential coating, the major sources of flow distortion for an electrophoretic sample stream are removed. Highly resolved fractions, however, will only be produced in space because of the sensitivity of this chamber to buoyancy-induced convection in the laboratory. The second and third flights of the McDonnell Douglas Astronautics Corporation continuous flow electrophoresis system carried samples developed at MSFC intended to evaluate the broad capabilities of free flow electrophoresis in a reduced gravity environment. Biological model materials, hemoglobin and polystyrene latex microspheres, were selected because of their past use as electrophoresis standards and as visible markers for fluid flow due to electroosmosis, spacecraft acceleration or other factors. The dependence of the separation resolution on the properties of the sample and its suspension solution was assessed.

  15. From a 2DE-Gel Spot to Protein Function: Lesson Learned From HS1 in Chronic Lymphocytic Leukemia

    PubMed Central

    Apollonio, Benedetta; Bertilaccio, Maria Teresa Sabrina; Restuccia, Umberto; Ranghetti, Pamela; Barbaglio, Federica; Ghia, Paolo; Caligaris-Cappio, Federico; Scielzo, Cristina

    2014-01-01

    The identification of molecules involved in tumor initiation and progression is fundamental for understanding disease’s biology and, as a consequence, for the clinical management of patients. In the present work we will describe an optimized proteomic approach for the identification of molecules involved in the progression of Chronic Lymphocytic Leukemia (CLL). In detail, leukemic cell lysates are resolved by 2-dimensional Electrophoresis (2DE) and visualized as “spots” on the 2DE gels. Comparative analysis of proteomic maps allows the identification of differentially expressed proteins (in terms of abundance and post-translational modifications) that are picked, isolated and identified by Mass Spectrometry (MS). The biological function of the identified candidates can be tested by different assays (i.e. migration, adhesion and F-actin polymerization), that we have optimized for primary leukemic cells. PMID:25350848

  16. Simulating Electrophoresis.

    ERIC Educational Resources Information Center

    Moertel, Cheryl; Frutiger, Bruce

    1996-01-01

    Describes a DNA fingerprinting simulation that uses vegetable food coloring and plastic food containers instead of DNA and expensive gel electrophoresis chambers. Allows students to decipher unknown combinations of dyes in a method similar to that used to decipher samples of DNA in DNA fingerprint techniques. (JRH)

  17. Electrophoresis. [in microgravity environment

    NASA Technical Reports Server (NTRS)

    Bier, M.

    1977-01-01

    Ground-based techniques for electrophoresis take account of the need either to circumvent the effects of gravity to prevent convection, or to use gravity for fluid stabilization through artificial density gradients. The microgravity environments of orbiting spacecraft provides a new alternative for electrophoresis by avoiding the need for either of these two approaches. The paper presents some theoretical considerations concerning electrophoresis, examines certain experimental techniques (zone and high density gel electrophoresis, isoelectric focusing and isotachophoresis), and examines the electrophoresis of living cells.

  18. Kidney cell electrophoresis

    NASA Technical Reports Server (NTRS)

    Todd, P.

    1980-01-01

    The following aspects of kidney cell electrophoresis are discussed: (1) the development and testing of electrophoresis solutions; (2) optimization of freezing and thawing; (3) procedures for evaluation of separated kidney cells; and (4) electrophoretic mobility characterization of kidney cells.

  19. Kidney cell electrophoresis

    NASA Technical Reports Server (NTRS)

    Todd, P.

    1979-01-01

    A kidney cell electrophoresis technique is described in four parts: (1) the development and testing of electrophoresis solutions; (2) optimization of freezing and thawing; (3) procedures for evaluation of separated kidney cells; and (4) electrophoretic mobility characteristics of kidney cells.

  20. An Economical Electrophoresis Apparatus

    ERIC Educational Resources Information Center

    Andrews, I. M.

    1975-01-01

    Describes the production of an electrophoresis apparatus from commonly discarded articles. Outlines paper and gel electrophoresis and its application to the separation of amino acids and intestinal enzymes. (GS)

  1. Kidney cell electrophoresis

    NASA Technical Reports Server (NTRS)

    Todd, P. W.

    1985-01-01

    Tasks were undertaken in support of two objectives. They are: (1) to carry out electrophoresis experiments on cells in microgravity; and (2) assess the feasibility of using purified kidney cells from embryonic kidney cultures as a source of important cell products. Investigations were carried out in the following areas: (1) ground based electrophoresis technology; (2) cell culture technology; (3) electrophoresis of cells; (4) urokinase assay research; (5) zero-g electrophoresis; and (6) flow cytometry.

  2. Supported Molecular Matrix Electrophoresis.

    PubMed

    Matsuno, Yu-Ki; Kameyama, Akihiko

    2015-01-01

    Mucins are difficult to separate using conventional gel electrophoresis methods such as SDS-PAGE and agarose gel electrophoresis, owing to their large size and heterogeneity. On the other hand, cellulose acetate membrane electrophoresis can separate these molecules, but is not compatible with glycan analysis. Here, we describe a novel membrane electrophoresis technique, termed "supported molecular matrix electrophoresis" (SMME), in which a porous polyvinylidene difluoride (PVDF) membrane filter is used to achieve separation. This description includes the separation, visualization, and glycan analysis of mucins with the SMME technique. PMID:26139278

  3. Kidney Cell Electrophoresis

    NASA Technical Reports Server (NTRS)

    Todd, P.

    1985-01-01

    Materials and procedures for microgravity electrophoresis of living human embryonic kidney cells were evaluated, ground support in the form of analytical cell electrophoresis and flow cytometry was provided and cells returned from space flight were analyzed. Preflight culture media, electrophoresis buffer, fraction collection media, temperature profiles, and urokinase assay procedures were tested prior to flight. Electrophoretic mobility distributions of aliquots of the cell population to be fractionated in flight were obtained. The protocol established and utilized is given.

  4. Automatic multiple applicator electrophoresis

    NASA Technical Reports Server (NTRS)

    Grunbaum, B. W.

    1977-01-01

    Easy-to-use, economical device permits electrophoresis on all known supporting media. System includes automatic multiple-sample applicator, sample holder, and electrophoresis apparatus. System has potential applicability to fields of taxonomy, immunology, and genetics. Apparatus is also used for electrofocusing.

  5. Electrophoresis of biological materials

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The selection of biological products was studied for electrophoresis in space. Free flow electrophoresis, isoelectric focusing, and isotachophoresis are described. The candidates discussed include: immunoglobulins and gamma globulins; isolated islet of langerhans from pancreas; bone marrow; tumor cells; kidney cells, cryoprecipitate; and column separated cultures.

  6. Improved Electrophoresis Cell

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S.

    1982-01-01

    Several proposed modifications are expected to improve performance of a continous-flow electrophoresis cell. Changes would allow better control of buffer flow and would increase resolution by suppressing thermal gradients. Improved electrophoresis device would have high resolution and be easy to operate. Improvements would allow better flow control and heat dissipation.

  7. Electrophoresis for biological production

    NASA Technical Reports Server (NTRS)

    Mccreight, L. R.

    1977-01-01

    Preparative electrophoresis may provide a unique method for meeting ever more stringent purity requirements. Prolonged near zero gravity in space may permit the operation of preparative electrophoresis equipment with 100 times greater throughput than is currently available. Some experiments with influenza Virus Antigen, Erythropoietin and Antihemophaliac Factor, along with process and economic projections, are briefly reviewed.

  8. (1+2)-dimensional strongly nonlocal solitons

    SciTech Connect

    Ouyang Shigen; Guo Qi

    2007-11-15

    Approximate solutions of (1+2)-dimensional strongly nonlocal solitons (SNSs) are presented. It is shown that the power of a SNS in a nematic liquid crystal is in direct proportion to the second power of the degree of nonlocality, the power of a SNS in a nonlocal medium with a logarithmic nonlocal response is in inverse proportion to the second power of its beamwidth, and the power of a SNS in a nonlocal medium with an sth-power decay nonlocal response is in direct proportion to the (s+2)th power of the degree of nonlocality.

  9. Simulation of Two Dimensional Electrophoresis and Tandem Mass Spectrometry for Teaching Proteomics

    ERIC Educational Resources Information Center

    Fisher, Amanda; Sekera, Emily; Payne, Jill; Craig, Paul

    2012-01-01

    In proteomics, complex mixtures of proteins are separated (usually by chromatography or electrophoresis) and identified by mass spectrometry. We have created 2DE Tandem MS, a computer program designed for use in the biochemistry, proteomics, or bioinformatics classroom. It contains two simulations--2D electrophoresis and tandem mass spectrometry.…

  10. Preparative electrophoresis experiment design

    NASA Technical Reports Server (NTRS)

    Thiehler, A.

    1972-01-01

    A multifaceted study supporting the NASA programs to develop a space electrophoresis capability has been conducted. The study involved principally the technique of continuous free electrophoresis. It comprised a critical review of the art, study of new techniques for enhancing resolution and stability, and construction and initial testing of a high resolution cell. The effort resulted in a significant advance in free electrophoresis technique. It has provided also a much improved base for developments exploiting the added advantages of a zero-gravity environment.

  11. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1996-01-01

    We present preliminary results of our implementation of a novel electrophoresis separation technique: Binary Oscillatory Cross flow Electrophoresis (BOCE). The technique utilizes the interaction of two driving forces, an oscillatory electric field and an oscillatory shear flow, to create an active binary filter for the separation of charged species. Analytical and numerical studies have indicated that this technique is capable of separating proteins with electrophoretic mobilities differing by less than 10%. With an experimental device containing a separation chamber 20 cm long, 5 cm wide, and 1 mm thick, an order of magnitude increase in throughput over commercially available electrophoresis devices is theoretically possible.

  12. Serum globulin electrophoresis

    MedlinePlus

    ... may indicate: Acute infection Bone marrow cancer called multiple myeloma Chronic inflammatory disease (for example, rheumatoid arthritis and ... test Hemoglobin Hyperimmunization Immunoelectrophoresis - ... electrophoresis - serum Rheumatoid arthritis Systemic lupus erythematosus ...

  13. Electrophoresis operations in space

    NASA Technical Reports Server (NTRS)

    Richman, D. W.

    1982-01-01

    Application of electrophoresis in space processing is described. Spaceborne experiments in areas such as biological products and FDA approved drugs are discussed. These experiments will be carried on shuttle payloads.

  14. Recent advances in preparative electrophoresis

    NASA Technical Reports Server (NTRS)

    Mosher, Richard A.; Thormann, Wolfgang; Egen, Ned B.; Couasnon, Pascal; Sammons, David W.

    1987-01-01

    Various approaches for preparative electrophoresis, and three new instruments for preparative electrophoresis are discussed. Consideration is given to isoelectric focusing, isotachophoresis, and zone electrophoresis, three gel-based electrophoresis methods. The design, functions, and performance of the Elphor VaP 21 device of Hannig (1982), the shear-stabilized BIOSTREAM separator of Thompson (1983), and the recycling isoelectric focusing device are described.

  15. Structural changes in plasma circulating fibrinogen after moderate beer consumption as determined by electrophoresis and spectroscopy.

    PubMed

    Gorinstein, Shela; Caspi, Abraham; Goshev, Ivan; Aksu, Sevil; Salnikow, Johann; Scheler, Christian; Delgado-Licon, Efren; Rosen, Anda; Weisz, Moshe; Libman, Imanuel; Trakhtenberg, Simon

    2003-01-29

    The effects of short-term moderate beer consumption (MBC) on plasma circulating fibrinogen (PCF) in patients suffering from coronary atherosclerosis were investigated by use of 2-dimensional electrophoresis (2-DE), circular dichroism (CD), and Fourier transform infrared spectroscopy (FT-IR). Forty-eight volunteers after coronary bypass surgery were divided into experimental (EG) and control (CG) groups, each of 24. Patients of the EG group consumed 330 mL of beer/day (about 20 g of alcohol) for 30 consecutive days, and CG volunteers drank mineral water instead of beer. Blood samples were collected before and after the experiment. In 21 out of 24 patients after beer consumption the plasma circulating fibrinogen was compromised: changes in its secondary structure were found. These changes were expressed in relatively low electrophoretic mobility and charge heterogeneity, decrease in alpha-helix and increase in beta-sheet, and in slight shift of amide I and II bands. Our findings indicate that one of the positive benefits of moderate beer consumption is to diminish the production of fibrinogen and its stability, which reduces the potential risk exerted by this protein. Thus, in most of beer-consuming patients some qualitative structural changes in plasma circulating fibrinogen were detected. PMID:12537464

  16. Electrophoresis in space.

    PubMed

    Bauer, J; Hymer, W C; Morrison, D R; Kobayashi, H; Seaman, G V; Weber, G

    1999-01-01

    Programs for free flow electrophoresis in microgravity over the past 25 years are reviewed. Several studies accomplished during 20 spaceflight missions have demonstrated that sample throughput is significantly higher in microgravity than on the ground. Some studies have shown that resolution is also increased. However, many cell separation trials have fallen victim to difficulties associated with experimenting in the microgravity environment such as microbial contamination, air bubbles in electrophoresis chambers, and inadequate facilities for maintaining cells before and after separation. Recent studies suggest that the charge density of cells at their surface may also be modified in microgravity. If this result is confirmed, a further cellular mechanism of "sensing" the low gravity environment will have been found. Several free fluid electrophoresis devices are now available. Most have been tried at least once in microgravity. Newer units not yet tested in spaceflight have been designed to accommodate problems associated with space processing. The USCEPS device and the Japanese FFEU device are specifically designed for sterile operations, whereas the Octopus device is designed to reduce electroosmotic and electrohydrodynamic effects, which become dominant and detrimental in microgravity. Some of these devices will also separate proteins by zone electrophoresis, isotachophoresis, or isoelectric focusing in a single unit. Separation experiments with standard test particles are useful and necessary for testing and optimizing new space hardware. A cohesive free fluid electrophoresis program in the future will obviously require (1) flight opportunities and funding, (2) identification of suitable cellular and macromolecular candidate samples, and (3) provision of a proper interface of electrophoresis processing equipment with biotechnological facilities--equipment like bioreactors and protein crystal growth chambers. The authors feel that such capabilities will lead to

  17. DNA ELECTROPHORESIS AT SURFACES

    SciTech Connect

    RAFAILOVICH, MIRIAM; SOKOLOV, JONATHAN; GERSAPPE, DILIP

    2003-09-01

    During this year we performed two major projects: I. We developed a detailed theoretical model which complements our experiments on surface DNA electrophoresis. We found that it was possible to enhance the separation of DNA chains by imposing a chemical nanoscale pattern on the surface. This approach utilized the surface interaction effect of the DNA chains with the substrate and is a refinement to our previous method in which DNA chains were separated on homogeneous flat surfaces. By introducing the nano-patterns on the surface, the conformational changes of DNA chains of different lengths can be amplified, which results in the different friction strengths with the substrate surface. Our results also show that, when compared to the DNA electrophoresis performed on homogeneous flat surfaces, nanopatterned surfaces offer a larger window in choosing different surface interactions to achieve separation. II. In collaboration with a large international manufacturer of skin care products we also embarked on a project involving photo toxicity of titanium dioxide nanoparticles, which are a key ingredient in sunscreen and cosmetic lotions. The results clearly implicated the nanoparticles in catalyzing damage to chromosomal DNA. We then used this knowledge to develop a polymer/anti-oxidant coating which prevented the photocatalytic reaction on DNA while still retaining the UV absorptive properties of the nanoparticles. The standard gel electrophoresis was not sufficient in determining the extent of the DNA damage. The conclusions of this study were based predominantly on analysis obtained with the surface electrophoresis method.

  18. Analysis of electrophoresis performance

    NASA Technical Reports Server (NTRS)

    Roberts, G. O.

    1984-01-01

    The SAMPLE computer code models electrophoresis separation in a wide range of conditions. Results are included for steady three dimensional continuous flow electrophoresis (CFE), time dependent gel and acetate film experiments in one or two dimensions and isoelectric focusing in one dimension. The code evolves N two dimensional radical concentration distributions in time, or distance down a CFE chamber. For each time or distance increment, there are six stages, successively obtaining the pH distribution, the corresponding degrees of ionization for each radical, the conductivity, the electric field and current distribution, and the flux components in each direction for each separate radical. The final stage is to update the radical concentrations. The model formulation for ion motion in an electric field ignores activity effects, and is valid only for low concentrations; for larger concentrations the conductivity is, therefore, also invalid.

  19. Happy bicentennial, electrophoresis!

    PubMed

    Righetti, Pier Giorgio

    2009-12-01

    A short survey of electrophoresis and a celebration of its bicentennial, with some remarkable mementos and a list of books that shaped the field. Where one also learns of a secret production plant with a huge-scale electrophoretic apparatus for skimming of latex from Hevea brasiliensis and keeping the wheels of the Ally Army running during World War II. And of cyber (mammoth) 2D gels of 1.5 x 1 m in size accommodating >12,000 spots. PMID:19938305

  20. Capillary zone electrophoresis

    SciTech Connect

    Jorgenson, J.W.; Lukacs, K.D.

    1983-10-21

    Zone electrophoresis in capillaries is a technique complementary to electrophoresis in supporting media, and each approach has its own particular advantages. Efficient heat transfer from small-diameter capillaries permits use of unusually high voltages, resulting in both high resolution and rapid analysis. Capillaries also seem well suited for automation. Our present electromigration injection technique is relatively straightforward and should be simple to automate. Capillaries are reusable, which is an advantage over gels. On-line electronic detection permits good quantification, further enhancing possibilities for fully automatic operation. The greatest obstacle to further development and utilization of capillaries is the requirement of extremely sensitive detectors, and more types of detectors with higher sensitivity are greatly needed. A better understanding of capillary surface modification will also be important, both for improved capillary surface deactivation and for better control over electroosmotic flow. Capillaries should provide an ideal system in which to explore nonaqueous separation media. The prospects for nonaqueous media in electrophoresis are similar to those in electrochemistry, and capillaries should prove an excellent system in which to begin their study. 18 refs., 8 figs.

  1. Preparative electrophoresis for space

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.

    1987-01-01

    A premise of continuous flow electrophoresis is that removal of buoyancy-induced thermal convection caused by axial and lateral temperature gradients results in ideal performance of these instruments in space. Although these gravity dependent phenomena disturb the rectilinear flow in the separation chamber when high voltage gradients or thick chambers are used, distortion of the injected sample stream due to electrohydrodynamic effects cause major broadening of the separated bands. The electrophoresis separation process is simple, however flow local to the sample filament produced by the applied electric field have not been considered. These electrohydrodynamic flows distort the sample stream and limit the separation. Also, electroosmosis and viscous flow combine to further distort the process. A moving wall concept is being proposed for space which will eliminate and control the disturbances. The moving wall entrains the fluid to move as a rigid body and produces a constant residence time for all samples distributed across the chamber thickness. The moving wall electrophoresis chamber can only be operated in space because there is no viscous flow in the chamber to stabilize against thermal convection.

  2. Preparative electrophoresis for space

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.

    1988-01-01

    A premise of continuous flow electrophoresis is that removal of buoyance-induced thermal convection caused by axial and lateral temperature gradients results in ideal performance of these instruments in space. Although these gravity dependent phenomena disturb the rectilinear flow in the separation chamber when high voltage gradients or thick chamber are used, distortion of the injected sample stream due to electrodynamic effects cause major broadening of the separated bands. The electrophoresis separation process is simple, however flow local to the sample filament produced by the applied electric field were not considered. These electrohydrodynamic flows distort the sample stream and limit the separation. Also, electroosmosis and viscous flow combine to further distort the process. A moving wall concept is being proposed for space which will eliminate and control the disturbances. The moving wall entrains the fluid to move as a rigid body and produces a constant residence time for all samples distributed across the chamber thickness. The moving wall electrophoresis chamber can only be operated in space because there is no viscous flow in the chamber to stabilize against thermal convection.

  3. Electrophoresis experiments in microgravity

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.; Rhodes, Percy H.

    1991-01-01

    The use of the microgravity environment to separate and purify biological cells and proteins has been a major activity since the beginning of the NASA Microgravity Science and Applications program. Purified populations of cells are needed for research, transplantation and analysis of specific cell constituents. Protein purification is a necessary step in research areas such as genetic engineering where the new protein has to be separated from the variety of other proteins synthesized from the microorganism. Sufficient data are available from the results of past electrophoresis experiments in space to show that these experiments were designed with incomplete knowledge of the fluid dynamics of the process including electrohydrodynamics. However, electrophoresis is still an important separation tool in the laboratory and thermal convection does limit its performance. Thus, there is a justification for electrophoresis but the emphasis of future space experiments must be directed toward basic research with model experiments to understand the microgravity environment and fluid analysis to test the basic principles of the process.

  4. A comparative method for protein extraction and 2-D gel electrophoresis from different tissues of Cajanus cajan.

    PubMed

    Singh, Nisha; Jain, Neha; Kumar, Ram; Jain, Ajay; Singh, Nagendra K; Rai, Vandna

    2015-01-01

    Pigeonpea is an important legume crop with high protein content. However, it is often subjected to various abiotic and biotic stresses. Proteomics is a state-of-the-art technique used to analyze the protein profiling of a tissue for deciphering the molecular entities that could be manipulated for developing crops resistant to these stresses. In this context, developing a comprehensive proteome profile from different vegetative and reproductive tissues has become mandatory. Although several protein extraction protocols from different tissues of diverse plant species have been reported, there is no report for pigeonpea. Here, we report tissue-specific protein extraction protocols representing vegetative (young leaves), and reproductive (flowers and seeds) organs and their subsequent analysis on 2-dimensional gel electrophoresis. The study explicitly demonstrated that the efficacy of a particular protein extraction protocol is dependent on the different tissues, such as leaves, flowers and seeds that differ in their structure and metabolic constituents. For instance, phenol-based protocol showed an efficacy toward higher protein yield, better spot resolution and a minimal streaking on 2-DE gel for both leaves and flowers. Protein extraction from seeds was best achieved by employing phosphate-TCA-acetone protocol. PMID:26300903

  5. Fully automated two-dimensional electrophoresis system for high-throughput protein analysis.

    PubMed

    Hiratsuka, Atsunori; Yokoyama, Kenji

    2009-01-01

    A fully automated two-dimensional electrophoresis (2DE) system for rapid and reproducible protein analysis is described. 2DE that is a combination of isoelectric focusing (IEF) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is widely used for protein expression analysis. Here, all the operations are achieved in a shorter time and all the transferring procedures are performed automatically. The system completed the entire process within 1.5 h. A device configuration, operational procedure, and data analysis are described using this system.

  6. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Li, Q.; Lu, X.

    1998-04-21

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  7. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Chang, H.T.; Fung, E.N.; Li, Q.; Lu, X.

    1996-12-10

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  8. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Li, Qingbo; Lu, Xiandan

    1998-04-21

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  9. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.; Li, Qingbo; Lu, Xiandan

    1996-12-10

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  10. Apparatus for electrophoresis separation

    DOEpatents

    Anderson, Norman L.

    1978-01-01

    An apparatus is disclosed for simultaneously performing electrophoresis separations on a plurality of slab gels containing samples of protein, protein subunits or nucleic acids. A reservoir of buffer solution is divided into three compartments by two parallel partitions having vertical slots spaced along their length. A sheet of flexible, electrically insulative material is attached to each partition and is provided with vertical slits aligned with the slots. Slab-gel holders are received within the slots with the flexible material folded outwardly as flaps from the slits to overlay portions of the holder surfaces and thereby act as electrical and liquid seals. An elongated, spaghetti-like gel containing a sample of specimen that was previously separated by isoelectric focusing techniques is vertically positioned along a marginal edge portion of the slab gel. On application of an electrical potential between the two outer chambers of buffer solution, a second dimensional electrophoresis separation in accordance with molecular weight occurs as the specimen molecules migrate across the slab gel.

  11. Capillary Electrophoresis in Metabolomics.

    PubMed

    Maier, Tanja Verena; Schmitt-Kopplin, Philippe

    2016-01-01

    Metabolomics is an analytical toolbox to describe (all) low-molecular-weight compounds in a biological system, as cells, tissues, urine, and feces, as well as in serum and plasma. To analyze such complex biological samples, high requirements on the analytical technique are needed due to the high variation in compound physico-chemistry (cholesterol derivatives, amino acids, fatty acids as SCFA, MCFA, or LCFA, or pathway-related metabolites belonging to each individual organism) and concentration dynamic range. All main separation techniques (LC-MS, GC-MS) are applied in routine to metabolomics hyphenated or not to mass spectrometry, and capillary electrophoresis is a powerful high-resolving technique but still underused in this field of complex samples. Metabolomics can be performed in the non-targeted way to gain an overview on metabolite profiles in biological samples. Targeted metabolomics is applied to analyze quantitatively pre-selected metabolites. This chapter reviews the use of capillary electrophoresis in the field of metabolomics and exemplifies solutions in metabolite profiling and analysis in urine and plasma. PMID:27645748

  12. Current two-dimensional electrophoresis technology for proteomics.

    PubMed

    Görg, Angelika; Weiss, Walter; Dunn, Michael J

    2004-12-01

    Two-dimensional gel electrophoresis (2-DE) with immobilized pH gradients (IPGs) combined with protein identification by mass spectrometry (MS) is currently the workhorse for proteomics. In spite of promising alternative or complementary technologies (e.g. multidimensional protein identification technology, stable isotope labelling, protein or antibody arrays) that have emerged recently, 2-DE is currently the only technique that can be routinely applied for parallel quantitative expression profiling of large sets of complex protein mixtures such as whole cell lysates. 2-DE enables the separation of complex mixtures of proteins according to isoelectric point (pI), molecular mass (Mr), solubility, and relative abundance. Furthermore, it delivers a map of intact proteins, which reflects changes in protein expression level, isoforms or post-translational modifications. This is in contrast to liquid chromatography-tandem mass spectrometry based methods, which perform analysis on peptides, where Mr and pI information is lost, and where stable isotope labelling is required for quantitative analysis. Today's 2-DE technology with IPGs (Görg et al., Electrophoresis 2000, 21, 1037-1053), has overcome the former limitations of carrier ampholyte based 2-DE (O'Farrell, J. Biol. Chem. 1975, 250, 4007-4021) with respect to reproducibility, handling, resolution, and separation of very acidic and/or basic proteins. The development of IPGs between pH 2.5-12 has enabled the analysis of very alkaline proteins and the construction of the corresponding databases. Narrow-overlapping IPGs provide increased resolution (delta pI = 0.001) and, in combination with prefractionation methods, the detection of low abundance proteins. Depending on the gel size and pH gradient used, 2-DE can resolve more than 5000 proteins simultaneously (approximately 2000 proteins routinely), and detect and quantify < 1 ng of protein per spot. In this article we describe the current 2-DE/MS workflow including the

  13. Derivatization in Capillary Electrophoresis.

    PubMed

    Marina, M Luisa; Castro-Puyana, María

    2016-01-01

    Capillary electrophoresis is a well-established separation technique in analytical research laboratories worldwide. Its interesting advantages make CE an efficient and potent alternative to other chromatographic techniques. However, it is also recognized that its main drawback is the relatively poor sensitivity when using optical detection. One way to overcome this limitation is to perform a derivatization reaction which is intended to provide the analyte more suitable analytical characteristics enabling a high sensitive detection. Based on the analytical step where the CE derivatization takes place, it can be classified as precapillary (before separation), in-capillary (during separation), or postcapillary (after separation). This chapter describes the application of four different derivatization protocols (in-capillary and precapillary modes) to carry out the achiral and chiral analysis of different compounds in food and biological samples with three different detection modes (UV, LIF, and MS). PMID:27645730

  14. Electrophoresis experiment for space

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; Micale, F. J.

    1976-01-01

    The Apollo 16 electrophoresis experiment was analyzed, demonstrating that the separation of the two different-size monodisperse latexes did indeed take place, but that the separation was obscured by the pronounced electroosmotic flow of the liquid medium. The results of this experiment, however, were dramatic since it is impossible to carry out a similar separation on earth. It can be stated unequivocally from this experiment that any electrophoretic separation will be enhanced under microgravity conditions. The only question is the degree of this enhancement, which can be expected to vary from one experimental technique to another. The low-electroosmotic-mobility coating (Z6040-MC) developed under this program was found to be suitable for a free-fluid electrophoretic separation such as the experiment designed for the ASTP flight. The problem with this coating, however, is that its permanency is limited because of the slow desorption of the methylcellulose from the coated surface.

  15. Static continuous electrophoresis device

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H. (Inventor)

    1982-01-01

    An apparatus is disclosed for carrying out a moving wall type electrophoresis process for separation of cellular particles. The apparatus includes a water-tight housing containing an electrolytic buffer solution. A separation chamber in the housing is defined by spaced opposed moving walls and spaced opposed side walls. Substrate assemblies, which support the moving wall include vacuum ports for positively sealing the moving walls against the substrate walls. Several suction conduits communicate with the suction ports and are arranged in the form of valleys in a grid plate. The raised land portion of the grid plat supports the substrate walls against deformation inwardly under suction. A cooling chamber is carried on the back side of plate. The apparatus also has tensioner means including roller and adjustment screws for maintaining the belts in position and a drive arrangement including an electric motor with a gear affixed to its output shaft. Electrode assemblies are disposed to provide the required electric field.

  16. Kidney cell electrophoresis, continuing task

    NASA Technical Reports Server (NTRS)

    Todd, P. W.

    1985-01-01

    Materials and procedures for microgravity electrophoresis of living human embryonic kidney cells were evaluated to provide ground support in the form of analytical cell electrophoresis and flow cytometry. Preflight culture media, electrophoresis buffer, fraction collection media, temperature profiles, and urokinase assay procedures were tested prior to flight. Electrophoretic mobility distributions of aliquots of the cell population to be fractionated in flight were obtained. Cells were prepared in suspension prior to flight in electrophoresis buffer and 10% calf serum. Electrophoretic separation proceeded in electrophoresis buffer without serum in the Continuous Flow Electrophoretic Separator, and fractions were collected into sample bags containing culture medium and concentrated serum. Fractions that yielded enough progeny cells were analyzed for morphology and electrophoretic mobility distributions. It is noted that the lowest mobility fraction studied produced higher mobility progeny while the other fractions produced progeny cells with mobilities related to the fractions from which they were collected.

  17. Electrophoresis demonstration on Apollo 16

    NASA Technical Reports Server (NTRS)

    Snyder, R. S.

    1972-01-01

    Free fluid electrophoresis, a process used to separate particulate species according to surface charge, size, or shape was suggested as a promising technique to utilize the near zero gravity condition of space. Fluid electrophoresis on earth is disturbed by gravity-induced thermal convection and sedimentation. An apparatus was developed to demonstrate the principle and possible problems of electrophoresis on Apollo 14 and the separation boundary between red and blue dye was photographed in space. The basic operating elements of the Apollo 14 unit were used for a second flight demonstration on Apollo 16. Polystyrene latex particles of two different sizes were used to simulate the electrophoresis of large biological particles. The particle bands in space were extremely stable compared to ground operation because convection in the fluid was negligible. Electrophoresis of the polystyrene latex particle groups according to size was accomplished although electro-osmosis in the flight apparatus prevented the clear separation of two particle bands.

  18. Procedures for two-dimensional electrophoresis of proteins

    SciTech Connect

    Tollaksen, S.L.; Giometti, C.S.

    1996-10-01

    High-resolution two-dimensional gel electrophoresis (2DE) of proteins, using isoelectric focusing in the first dimension and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the second, was first described in 1975. In the 20 years since those publications, numerous modifications of the original method have evolved. The ISO-DALT system of 2DE is a high-throughput approach that has stood the test of time. The problem of casting many isoelectric focusing gels and SDS-PAGE slab gels (up to 20) in a reproducible manner has been solved by the use of the techniques and equipment described in this manual. The ISO-DALT system of two-dimensional gel electrophoresis originated in the late 1970s and has been modified many times to improve its high-resolution, high-throughput capabilities. This report provides the detailed procedures used with the current ISO-DALT system to prepare, run, stain, and photograph two-dimensional gels for protein analysis.

  19. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1997-01-01

    Electrophoresis has long been recognized as an effective analytic technique for the separation of proteins and other charged species, however attempts at scaling up to accommodate commercial volumes have met with limited success. In this report we describe a novel electrophoretic separation technique - Binary Oscillatory Crossflow Electrophoresis (BOCE). Numerical simulations indicate that the technique has the potential for preparative scale throughputs with high resolution, while simultaneously avoiding many problems common to conventional electrophoresis. The technique utilizes the interaction of an oscillatory electric field and a transverse oscillatory shear flow to create an active binary filter for the separation of charged protein species. An oscillatory electric field is applied across the narrow gap of a rectangular channel inducing a periodic motion of charged protein species. The amplitude of this motion depends on the dimensionless electrophoretic mobility, alpha = E(sub o)mu/(omega)d, where E(sub o) is the amplitude of the electric field oscillations, mu is the dimensional mobility, omega is the angular frequency of oscillation and d is the channel gap width. An oscillatory shear flow is induced along the length of the channel resulting in the separation of species with different mobilities. We present a model that predicts the oscillatory behavior of charged species and allows estimation of both the magnitude of the induced convective velocity and the effective diffusivity as a function of a in infinitely long channels. Numerical results indicate that in addition to the mobility dependence, the steady state behavior of solute species may be strongly affected by oscillating fluid into and out of the active electric field region at the ends of the cell. The effect is most pronounced using time dependent shear flows of the same frequency (cos((omega)t)) flow mode) as the electric field oscillations. Under such conditions, experiments indicate that

  20. Conformation-sensitive capillary electrophoresis.

    PubMed

    Ashton, Emma Jane

    2011-01-01

    Conformation-sensitive capillary electrophoresis (CSCE) is a rapid, high-throughput screening method that can be applied to any region of a genome for detection of sequence variants. Slab gel-based conformation-sensitive gel electrophoresis was first described by Ganguly et al., and the transfer from slab gels to capillaries for higher throughput was reported by Rozycka et al. CSCE is based on the principle that DNA homoduplexes and heteroduplexes migrate at different rates during electrophoresis under mildly denaturing conditions. Fragments showing an altered peak morphology compared to the wild type are then sequenced to determine the precise nature of the sequence variant detected.

  1. The ARM Best Estimate 2-dimensional Gridded Surface

    SciTech Connect

    Xie,Shaocheng; Qi, Tang

    2015-06-15

    The ARM Best Estimate 2-dimensional Gridded Surface (ARMBE2DGRID) data set merges together key surface measurements at the Southern Great Plains (SGP) sites and interpolates the data to a regular 2D grid to facilitate data application. Data from the original site locations can be found in the ARM Best Estimate Station-based Surface (ARMBESTNS) data set.

  2. DNA typing by capillary electrophoresis

    SciTech Connect

    Zhang, N.

    1997-10-08

    Capillary electrophoresis is becoming more and more important in nucleic acid analysis including DNA sequencing, typing and disease gene measurements. This work summarized the background of DNA typing. The recent development of capillary electrophoresis was also discussed. The second part of the thesis showed the principle of DNA typing based on using the allelic ladder as the absolute standard ladder in capillary electrophoresis system. Future work will be focused on demonstrating DNA typing on multiplex loci and examples of disease diagnosis in the on-line format of PCR-CE. Also capillary array electrophoresis system should allow high throughput, fast speed DNA typing. Only the introduction and conclusions for this report are available here. A reprint was removed for separate processing.

  3. Capillary Electrophoresis in Wine Science.

    PubMed

    Coelho, Christian; Bagala, Franck; Gougeon, Régis D; Schmitt-Kopplin, Philippe

    2016-01-01

    Capillary electrophoresis appeared to be a powerful and reliable technique to analyze the diversity of wine compounds. Wine presents a great variety of natural chemicals coming from the grape berry extraction and the fermentation processes. The first and more abundant after water, ethanol has been quantified in wines via capillary electrophoresis. Other families like organic acids, neutral and acid sugars, polyphenols, amines, thiols, vitamins, and soluble proteins are electrophoretically separated from the complex matrix.Here, we will focus on the different methodologies that have been employed to conduct properly capillary electrophoresis in wine analysis.Two examples informing on wine chemistry obtained by capillary electrophoresis will be detailed. They concern polyphenol analysis and protein profiling. The first category is a well-developed quantitative approach important for the quality and the antioxidant properties conferred to wine. The second aspect involves more research aspects dealing with microbiota infections in the vineyard or in the grape as well as enological practices. PMID:27645750

  4. Biomedical applications of capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Kartsova, L. A.; Bessonova, E. A.

    2015-08-01

    The review deals with modern analytical approaches used in capillary electrophoresis for solving medical and biological problems: search for biomarkers of various diseases and rapid diagnosis based on characteristic profiles of biologically active compounds by capillary electrophoresis with mass spectrometric detection; monitoring of the residual drugs in biological fluids for evaluating the efficiency of drug therapy; testing of the enantiomeric purity of pharmaceutical products; the use of novel materials as components of stationary and pseudo-stationary phases in capillary electrophoresis and capillary electrochromatography to increase the selectivity of separation of components of complex matrices; and identification of various on-line preconcentration techniques to reduce the detection limits of biologically active analytes. A topical trend in capillary electrophoresis required in clinical practice, viz., the design of microfluidic systems, is discussed. The bibliography includes 173 references.

  5. Electrophoresis for Under Five Dollars.

    ERIC Educational Resources Information Center

    Lumetta, Vincent J.; Doktycz, Mitchel J.

    1994-01-01

    Equipped with a little more than batteries, food-dye, and sieving media, teachers can demonstrate an essential process used in biochemical research. An activity is provided to aid in helping students to understand electrophoresis. (ZWH)

  6. Copolymers For Capillary Gel Electrophoresis

    DOEpatents

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  7. Stage-specific analysis of plasma protein profiles in ovarian cancer: Difference in-gel electrophoresis analysis of pooled clinical samples

    PubMed Central

    Bailey, Mark J.; Shield-Artin, Kristy L.; Oliva, Karen; Ayhan, Mustafa; Reisman, Simone; Rice, Gregory E.

    2013-01-01

    Introduction: Ovarian cancer is the leading cause of death from gynecological cancer. Non-specific symptoms early in disease and the lack of specific biomarkers hinder early diagnosis. Multi-marker blood screening tests have shown promise for improving identification of early stage disease; however, available tests lack sensitivity, and specificity. Materials and Methods: In this study, pooled deeply-depleted plasma from women with Stage 1, 2 or 3 ovarian cancer and healthy controls were used to compare the 2-dimensional gel electrophoresis (2-DE) protein profiles and identify potential novel markers of ovarian cancer progression. Results/Discussion: Stage-specific variation in biomarker expression was observed. For example, apolipoprotein A1 expression is relatively low in control and Stage 1, but shows a substantial increase in Stage 2 and 3, thus, potential of utility for disease confirmation rather than early detection. A better marker for early stage disease was tropomyosin 4 (TPM4). The expression of TPM4 increased by 2-fold in Stage 2 before returning to “normal” levels in Stage 3 disease. Multiple isoforms were also identified for some proteins and in some cases, displayed stage-specific expression. An interesting example was fibrinogen alpha, for which 8 isoforms were identified. Four displayed a moderate increase at Stage 1 and a substantial increase for Stages 2 and 3 while the other 4 showed only moderate increases. Conclusion: Herein is provided an improved summary of blood protein profiles for women with ovarian cancer stratified by stage. PMID:23858298

  8. Electrophoresis as a management tool

    USGS Publications Warehouse

    Morgan, R.P.; Chapman, J.A.; Noe, L.A.; Henny, C.J.

    1974-01-01

    The theme of this 1974 Northeast Fish and Wildlife Conference is 'A New Era'. Indeed, it is a new era for improved techniques to assist in management of our fish and wildlife resources for the maximum benefit of all. In some cases, the new techniques are primarily used in research.on fish and wildlife, and the results from the research are used to aid management and enforcement agencies in the decision-making process. One of the newer techniques that is being applied to problems in fisheries and wildlife is electrophoresis. In this paper, we review briefly the techniques of electrophoresis and illustrate research problems in wildlife and fisheries where the use of electrophoresis is now assisting or may potentially aid in management decisions.

  9. Fluid flow electrophoresis in space

    NASA Technical Reports Server (NTRS)

    Griffin, R. N.

    1975-01-01

    Four areas relating to free-flow electrophoresis in space were investigated. The first was the degree of improvement over earthbound operations that might be expected. The second area of investigation covered the problems in developing a flowing buffer electrophoresis apparatus. The third area of investigation was the problem of testing on the ground equipment designed for use in space. The fourth area of investigation was the improvement to be expected in space for purification of biologicals. The results of some ground-based experiments are described. Other studies included cooling requirements in space, fluid sealing techniques, and measurement of voltage drop across membranes.

  10. Bioprocessing: Prospects for space electrophoresis

    NASA Technical Reports Server (NTRS)

    Bier, M.

    1977-01-01

    The basic principles of electrophoresis are reviewed in light of its past contributions to biology and medicine. The near-zero gravity environment of orbiting spacecraft may present some unique advantages for a variety of processes, by abolishing the major source of convection in fluids. As the ground-based development of electrophoresis was heavily influenced by the need to circumvent the effects of gravity, this process should be a prime candidate for space operation. Nevertheless, while a space facility for electrophoresis may overcome the limitations imposed by gravity, it will not necessarily overcome all problems inherent in electrophoresis. These are, mainly, electroosmosis and the dissipation of the heat generated by the electric field. The NASA program has already led to excellent coatings to prevent electroosmosis, while the need for heat dissipation will continue to impose limits on the actual size of equipment. It is also not excluded that, once the dominant force of gravity is eliminated, disturbances in fluid stability may originate from weaker forces, such as surface tension.

  11. Image Pretreatment Tools II: Normalization Techniques for 2-DE and 2-D DIGE.

    PubMed

    Robotti, Elisa; Marengo, Emilio; Quasso, Fabio

    2016-01-01

    Gel electrophoresis is usually applied to identify different protein expression profiles in biological samples (e.g., control vs. pathological, control vs. treated). Information about the effect to be investigated (a pathology, a drug, a ripening effect, etc.) is however generally confounded with experimental variability that is quite large in 2-DE and may arise from small variations in the sample preparation, reagents, sample loading, electrophoretic conditions, staining and image acquisition. Obtaining valid quantitative estimates of protein abundances in each map, before the differential analysis, is therefore fundamental to provide robust candidate biomarkers. Normalization procedures are applied to reduce experimental noise and make the images comparable, improving the accuracy of differential analysis. Certainly, they may deeply influence the final results, and to this respect they have to be applied with care. Here, the most widespread normalization procedures are described both for what regards the applications to 2-DE and 2D Difference Gel-electrophoresis (2-D DIGE) maps.

  12. A tunable isoelectric focusing via moving reaction boundary for two-dimensional gel electrophoresis and proteomics.

    PubMed

    Guo, Chen-Gang; Shang, Zhi; Yan, Jian; Li, Si; Li, Guo-Qing; Liu, Rong-Zhong; Qing, Ying; Fan, Liu-Yin; Xiao, Hua; Cao, Cheng-Xi

    2015-05-01

    Routine native immobilized pH gradient isoelectric focusing (IPG-IEF) and two-dimensional gel electrophoresis (2DE) are still suffering from unfortunate reproducibility, poor resolution (caused by protein precipitation) and instability in characterization of intact protein isoforms and posttranslational modifications. Based on the concept of moving reaction boundary (MRB), we firstly proposed a tunable non-IPG-IEF system to address these issues. By choosing proper pairs of catholyte and anolyte, we could achieve desired cathodic and anodic migrating pH gradients in non-IPG-IEF system, effectively eliminating protein precipitation and uncertainty of quantitation existing in routine IEF and 2DE, and enhancing the resolution and sensitivity of IEF. Then, an adjustable 2DE system was developed by combining non-IPG-IEF with polyacrylamide gel electrophoresis (PAGE). The improved 2DE was evaluated by testing model proteins and colon cancer cell lysates. The experiments revealed that (i) a tunable pH gradient could be designed via MRB; (ii) up to 1.65 fold improvement of resolution was achieved via non-IPG-IEF; (iii) the sensitivity of developed techniques was increased up to 2.7 folds; and (iv) up to about 16.4% more protein spots could be observed via the adjustable 2DE as compared with routine one. The developed techniques might contribute to complex proteome research, especially for screening of biological marker and analysis of extreme acidic/alkaline proteins.

  13. Techniques For Focusing In Zone Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Twitty, Garland E.; Sammons, David W.

    1994-01-01

    In two techniques for focusing in zone electrophoresis, force of applied electrical field in each charged particle balanced by restoring force of electro-osmosis. Two techniques: velocity-gradient focusing (VGF), suitable for rectangular electrophoresis chambers; and field-gradient focusing (FGF), suitable for step-shaped electrophoresis chambers.

  14. Ratcheted electrophoresis of Brownian particles

    NASA Astrophysics Data System (ADS)

    Kowalik, Mikołaj; Bishop, Kyle J. M.

    2016-05-01

    The realization of nanoscale machines requires efficient methods by which to rectify unbiased perturbations to perform useful functions in the presence of significant thermal noise. The performance of such Brownian motors often depends sensitively on their operating conditions—in particular, on the relative rates of diffusive and deterministic motions. In this letter, we present a type of Brownian motor that uses contact charge electrophoresis of a colloidal particle within a ratcheted channel to achieve directed transport or perform useful work against an applied load. We analyze the stochastic dynamics of this model ratchet to show that it functions under any operating condition—even in the limit of strong thermal noise and in contrast to existing ratchets. The theoretical results presented here suggest that ratcheted electrophoresis could provide a basis for electrochemically powered, nanoscale machines capable of transport and actuation of nanoscale components.

  15. Capillary electrophoresis in food authenticity.

    PubMed

    Kvasnicka, Frantisek

    2005-06-01

    Food authenticity is a term which simply refers to whether the food purchased by the consumer matches its description. False description can occur in many forms, from the undeclared addition of water or other cheaper materials, or the wrong declaration of the amount of a particular ingredient in the product, to making false statements about the source of ingredients i.e., their geographic, plant, or animal origin. The aim of this review is to summarize applications of capillary electrophoresis in food authentication.

  16. Enhancing Centrifugal Separation With Electrophoresis

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1986-01-01

    Separation of biological cells by coil-planet centrifuge enhanced by electrophoresis. By itself, coil-planet centrifuge offers relatively gentle method of separating cells under low centrifugal force in physiological medium that keeps cells alive. With addition of voltage gradient to separation column of centrifuge, separation still gentle but faster and more complete. Since separation apparatus contains no rotary seal, probability of leakage, contamination, corrosion, and short circuits reduced.

  17. Capillary electrophoresis systems and methods

    SciTech Connect

    Dorairaj, Rathissh; Keynton, Robert S.; Roussel, Thomas J.; Crain, Mark M.; Jackson, Douglas J.; Walsh, Kevin M.; Naber, John F.; Baldwin, Richard P.; Franco, Danielle B.

    2011-08-02

    An embodiment of the invention is directed to a capillary electrophoresis apparatus comprising a plurality of separation micro-channels. A sample loading channel communicates with each of the plurality of separation channels. A driver circuit comprising a plurality of electrodes is configured to induce an electric field across each of the plurality of separation channels sufficient to cause analytes in the samples to migrate along each of the channels. The system further comprises a plurality of detectors configured to detect the analytes.

  18. Capillary Electrophoresis - Optical Detection Systems

    SciTech Connect

    Sepaniak, M. J.

    2001-08-06

    Molecular recognition systems are developed via molecular modeling and synthesis to enhance separation performance in capillary electrophoresis and optical detection methods for capillary electrophoresis. The underpinning theme of our work is the rational design and development of molecular recognition systems in chemical separations and analysis. There have been, however, some subtle and exciting shifts in our research paradigm during this period. Specifically, we have moved from mostly separations research to a good balance between separations and spectroscopic detection for separations. This shift is based on our perception that the pressing research challenges and needs in capillary electrophoresis and electrokinetic chromatography relate to the persistent detection and flow rate reproducibility limitations of these techniques (see page 1 of the accompanying Renewal Application for further discussion). In most of our work molecular recognition reagents are employed to provide selectivity and enhance performance. Also, an emerging trend is the use of these reagents with specially-prepared nano-scale materials. Although not part of our DOE BES-supported work, the modeling and synthesis of new receptors has indirectly supported the development of novel microcantilevers-based MEMS for the sensing of vapor and liquid phase analytes. This fortuitous overlap is briefly covered in this report. Several of the more significant publications that have resulted from our work are appended. To facilitate brevity we refer to these publications liberally in this progress report. Reference is also made to very recent work in the Background and Preliminary Studies Section of the Renewal Application.

  19. 2-DE proteomic analysis of HSP70 in mollusc Chamelea gallina.

    PubMed

    Jurgen, Foschi; Valerio, Matozzo; Roberto, Rosmini; Paolo, Serrazanetti Gian; Marta, Monari

    2011-02-01

    Bidimensional electrophoresis (2-DE) protocols were adapted on Chamelea gallina digestive glands studies by the analysis of Heat Shock Proteins (HSP) compared with monodimensional electrophoresis (1-DE) results. Because polycyclic aromatic hydrocarbons (PAH) act on HSPs, C. gallina specimens were exposed to 0.5 mg/L of benzo[a]pyrene (B[a]P) for 24 h, 7 and 12 days. Immunoblotting after 1-DE showed a single band of 70 kDa significantly induced after 7 days of B[a]P exposure. After 2-DE, eight major high-resolved spots between 17 and 98 kDa were revealed. Three spots fell within the range of 62-98 kDa and of 5-6 pI, parameters which could include HSP70. Two spots of 77 and 72 kDa, obtained after 2-DE immunoblotting, could correspond to constitutive HSC70 and to inducible HSP70 forms respectively. Changes observed in inducible and in constitutive forms might be related to an adaptation to stress and to a normal protein synthesis capability, respectively. Employment of 2-DE and relationship between HSP70 and HSC70 may be useful to clarify their role in molluscs subjected to stress events.

  20. Simulation of two dimensional electrophoresis and tandem mass spectrometry for teaching proteomics.

    PubMed

    Fisher, Amanda; Sekera, Emily; Payne, Jill; Craig, Paul

    2012-01-01

    In proteomics, complex mixtures of proteins are separated (usually by chromatography or electrophoresis) and identified by mass spectrometry. We have created 2DE Tandem MS, a computer program designed for use in the biochemistry, proteomics, or bioinformatics classroom. It contains two simulations-2D electrophoresis and tandem mass spectrometry. The two simulations are integrated together and are designed to teach the concept of proteome analysis of prokaryotic and eukaryotic organisms. 2DE-Tandem MS can be used as a freestanding simulation, or in conjunction with a wet lab, to introduce proteomics in the undergraduate classroom. 2DE Tandem MS is a free program available on Sourceforge at https://sourceforge.net/projects/jbf/. It was developed using Java Swing and functions in Mac OSX, Windows, and Linux, ensuring that every student sees a consistent and informative graphical user interface no matter the computer platform they choose. Java must be installed on the host computer to run 2DE Tandem MS. Example classroom exercises are provided in the Supporting Information.

  1. Mathematical models of continuous flow electrophoresis: Electrophoresis technology

    NASA Technical Reports Server (NTRS)

    Saville, Dudley A.

    1986-01-01

    Two aspects of continuous flow electrophoresis were studied: (1) the structure of the flow field in continuous flow devices; and (2) the electrokinetic properties of suspended particles relevant to electrophoretic separations. Mathematical models were developed to describe flow structure and stability, with particular emphasis on effects due to buoyancy. To describe the fractionation of an arbitrary particulate sample by continuous flow electrophoresis, a general mathematical model was constructed. In this model, chamber dimensions, field strength, buffer composition, and other design variables can be altered at will to study their effects on resolution and throughput. All these mathematical models were implemented on a digital computer and the codes are available for general use. Experimental and theoretical work with particulate samples probed how particle mobility is related to buffer composition. It was found that ions on the surface of small particles are mobile, contrary to the widely accepted view. This influences particle mobility and suspension conductivity. A novel technique was used to measure the mobility of particles in concentrated suspensions.

  2. A 2-dimensional model of the Venus ionosphere

    SciTech Connect

    McGary, J.E.

    1988-01-01

    The Pioneer Venus observations show a peak in the O{sub 2}{sup +} concentration at {approx}170 km altitude in the dayside ionosphere of Venus. In this thesis, the 2-dimensional MHD equations are solved in a self-consistent manner, as an extension to the 1-dimensional model by Cloutier et al. (1987), to present a global model of the Venus dayside ionosphere for solar zenith angles (SZA) {le} 60{degree}. The model describes, by calculating vertical profiles at different SZA, ion densities, magnetic field magnitudes, and ion velocities. The model shows that the O{sub 2}{sup +} peak, at {approx}170 km altitude, occurs throughout the dayside ionosphere as observed by the Orbiter Ion Mass Spectrometer (OIMS). The velocity field, which affects the ion distributions, is mainly tangential near the ionopause and radial for altitudes below 200 km. The downward flow accelerates, near 170 km altitude, due to collisional interactions with the neutral atmosphere, and removes the O{sub 2}{sup +} densities to lower altitudes, thus, producing the bump observed in the altitude profile.

  3. Pulsed neutron imaging using 2-dimensional position sensitive detectors

    NASA Astrophysics Data System (ADS)

    Kiyanagi, Y.; Kamiyama, T.; Kino, K.; Sato, H.; Sato, S.; Uno, S.

    2014-07-01

    2-dimensional position sensitive detectors are used for pulsed neutron imaging and at each pixel of the detector a time of flight spectrum is recorded. Therefore, a transmission spectrum through the object has wavelength dependent structure reflecting the neutron total cross section. For such measurements, the detectors are required to have ability to store neutron events as a function of the flight time as well as to have good spatial resolution. Furthermore, high counting rate is also required at the high intensity neutron sources like J-PARC neutron source in Japan. We have developed several types of detectors with different characteristics; two counting type detectors for high counting rate with coarse spatial resolution and one camera type detector for high spatial resolution. One of counting type detectors is a pixel type. The highest counting rate is about 28 MHz. Better spatial resolution is obtained by a GEM detector. Effective area is 10 × 10 cm2, pixel size is 0.8 mm. The maximum counting rate is 3.65 MHz. To get higher spatial resolution we are now developing the camera type detector system using a neutron image intensifier, which have image integration function as a function of time of flight. We have succeeded to obtain time dependent images in this camera system. By using these detectors we performed transmission measurements for obtaining the crystallographic information and elemental distribution images.

  4. Enantiomer Separations by Capillary Electrophoresis.

    PubMed

    Scriba, Gerhard K E; Harnisch, Henrik; Zhu, Qingfu

    2016-01-01

    Capillary electrophoresis (CE) is a versatile and flexible technique for analytical enantioseparations. This is due to the large variety of chiral selectors as well as the different operation modes including electrokinetic chromatography, micellar electrokinetic chromatography, and microemulsion electrokinetic chromatography. The chiral selector, which is added to the background electrolyte, represents a pseudostationary phase with its own electrophoretic mobility allowing a variety of different separation protocols. The present chapter briefly addresses the basic fundamentals of CE enantioseparations as well as the most frequently applied chiral selectors and separation modes. The practical example illustrates the separation of the enantiomers of a positively charged analyte using native and charged cyclodextrin derivatives as chiral selectors. PMID:27645742

  5. Integrated multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Tan, Hongdong

    2002-05-14

    The present invention provides an integrated multiplexed capillary electrophoresis system for the analysis of sample analytes. The system integrates and automates multiple components, such as chromatographic columns and separation capillaries, and further provides a detector for the detection of analytes eluting from the separation capillaries. The system employs multiplexed freeze/thaw valves to manage fluid flow and sample movement. The system is computer controlled and is capable of processing samples through reaction, purification, denaturation, pre-concentration, injection, separation and detection in parallel fashion. Methods employing the system of the invention are also provided.

  6. Capillary electrophoresis in metallodrug development.

    PubMed

    Holtkamp, Hannah; Hartinger, Christian G

    2015-09-01

    Capillary electrophoresis (CE) is a separation method based on differential migration of analytes in electric fields. The compatibility with purely aqueous separation media makes it a versatile tool in metallodrug research. Many metallodrugs undergo ligand exchange reactions that can easily be followed with this method and the information gained can even be improved by coupling the CE to advanced detectors, such as mass spectrometers. This gives the method high potential to facilitate the development of metallodrugs, especially when combined with innovative method development and experimental design. PMID:26547417

  7. Continuous free-flow electrophoresis.

    PubMed

    Krivánková, L; Bocek, P

    1998-06-01

    This review evaluates the literature on continuous free flow electrophoresis, published during the last four years. Its aim is to serve not only experts in the field but also newcomers, and, therefore, it also briefly describes the principles of the method and the techniques used, referring to fundamental papers published earlier. The actual commercial instrumentation is briefly outlined. A substantial part of this review is devoted to the optimization of the performance of this method. Finally, diverse applications of fractionations of charged species in solution, ranging from small ions to biological particles and cells, are surveyed.

  8. Molecular phylogeny of the hominoid primates as indicated by two-dimensional protein electrophoresis

    SciTech Connect

    Goldman, D.; Giri, P.R.; O'Brien, J.O.

    1987-05-01

    A molecular phylogeny for the hominoid primates was constructed by using genetic distances from a survey of 383 radiolabeled fibroblast polypeptides resolved by two-dimensional electrophoresis (2DE). An internally consistent matrix of Nei genetic distances was generated on the basis of variants in electrophoretic position. The derived phylogenetic tree indicated a branching sequence, from oldest to most recent, of cercopithecoids (Macaca fascicularis), gibbon-siamang, orangutan, gorilla, and human-chimpanzee. A cladistic analysis of 240 electrophoretic characters that varied between ape species produced an identical tree. Genetic distance measures obtained by 2DE are largely consistent with those generated by other molecular procedures. In addition, the 2DE data set appears to resolve the human-chimpanzee-gorilla trichotomy in favor of a more recent association of chimpanzees and humans.

  9. Evaluation of several two-dimensional gel electrophoresis techniques in cardiac proteomics.

    PubMed

    Li, Zhao Bo; Flint, Paul W; Boluyt, Marvin O

    2005-09-01

    Two-dimensional gel electrophoresis (2-DE) is currently the best method for separating complex mixtures of proteins, and its use is gradually becoming more common in cardiac proteome analysis. A number of variations in basic 2-DE have emerged, but their usefulness in analyzing cardiac tissue has not been evaluated. The purpose of the present study was to systematically evaluate the capabilities and limitations of several 2-DE techniques for separating proteins from rat heart tissue. Immobilized pH gradient strips of various pH ranges, parameters of protein loading and staining, subcellular fractionation, and detection of phosphorylated proteins were studied. The results provide guidance for proteome analysis of cardiac and other tissues in terms of selection of the isoelectric point separating window for cardiac proteins, accurate quantitation of cardiac protein abundance, stabilization of technical variation, reduction of sample complexity, enrichment of low-abundant proteins, and detection of phosphorylated proteins.

  10. Ionic Liquids in Capillary Electrophoresis.

    PubMed

    Holzgrabe, Ulrike; Wahl, Joachim

    2016-01-01

    Recently, a great interest was drawn toward ionic liquids (ILs) in analytical separation techniques. ILs possess many properties making them excellent additives in capillary electrophoresis (CE) background electrolytes (BGE). The most important property is the charge of the dissolved ions in BGE enabling the cations to interact with deprotonated silanol groups on the capillary surface and thereby modifying the electroosmotic flow (EOF). Ionic and/or proton donor-acceptor interactions between analyte and IL are possible interactions facilitating new kinds of separation mechanisms in CE. Further advantages of ILs are the high conductivity, the environmentally friendliness, and the good solubility for organic and inorganic compounds. The most commonly used ILs in capillary electrophoresis are dialkylimidazolium-based ILs, whereas for enantioseparation a lot of innovative chiral cations and anions were investigated.ILs are reported to be additives to a normal CE background electrolyte or the sole electrolyte in CE, nonaqueous CE (NACE), micellar electrokinetic chromatography (MEKC), and in enantioseparation. An overview of applications and separation mechanisms reported in the literature is given here, in addition to the enantioseparation of pseudoephedrine using tetrabutylammonium chloride (TBAC) as IL additive to an ammonium formate buffer containing β-cyclodextrin (β-CD). PMID:27645735

  11. Capillary electrophoresis for drug analysis

    NASA Astrophysics Data System (ADS)

    Lurie, Ira S.

    1999-02-01

    Capillary electrophoresis (CE) is a high resolution separation technique which is amenable to a wide variety of solutes, including compounds which are thermally degradable, non-volatile and highly polar, and is therefore well suited for drug analysis. Techniques which have been used in our laboratory include electrokinetic chromatography (ECC), free zone electrophoresis (CZE) and capillary electrochromatography (CEC). ECC, which uses a charged run buffer additive which migrates counter to osmotic flow, is excellent for many applications, including, drug screening and analyses of heroin, cocaine and methamphetamine samples. ECC approaches include the use of micelles and charged cyclodextrins, which allow for the separation of complex mixtures. Simultaneous separation of acidic, neutral and basic solutes and the resolution of optical isomers and positional isomers are possible. CZE has been used for the analysis of small ions (cations and anions) in heroin exhibits. For the ECC and CZE experiments performed in our laboratory, uncoated capillaries were used. In contrast, CEC uses capillaries packed with high performance liquid chromatography stationary phases, and offers both high peak capacities and unique selectivities. Applications include the analysis of cannabinoids and drug screening. Although CE suffers from limited concentration sensitivity, it is still applicable to trace analysis of drug samples, especially when using injection techniques such as stacking, or detection schemes such as laser induced fluorescence and extended pathlength UV.

  12. Nonaqueous Capillary Electrophoresis Mass Spectrometry.

    PubMed

    Klampfl, Christian W; Himmelsbach, Markus

    2016-01-01

    The term nonaqueous capillary electrophoresis (NACE) commonly refers to capillary electrophoresis with purely nonaqueous background electrolytes (BGE). Main advantages of NACE are the possibility to analyze substances with very low solubility in aqueous media as well as separation selectivity that can be quite different in organic solvents (compared to water)-a property that can be employed for manipulation of separation selectivities. Mass spectrometry (MS) has become more and more popular as a detector in CE a fact that applies also for NACE. In the present chapter, the development of NACE-MS since 2004 is reviewed. Relevant parameters like composition of BGE and its influence on separation and detection in NACE as well as sheath liquid for NACE-MS are discussed. Finally, an overview of the papers published in the field of NACE-MS between 2004 and 2014 is given. Applications are grouped according to the field (analysis of natural products, biomedical analysis, food analysis, analysis of industrial products, and fundamental investigations). PMID:27645734

  13. Conducting Polymer Electrodes for Gel Electrophoresis

    PubMed Central

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D.

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation. PMID:24586761

  14. Two Dimensional Gel Electrophoresis-Based Plant Phosphoproteomics.

    PubMed

    Han, Chao; Yang, Pingfang

    2016-01-01

    Phosphorylation is one of the most important reversible protein modifications and is involved in regulating signal transduction, subcellular localization and enzyme activity of target proteins. Phosphorylation or dephosphorylation of proteins is directly reflected in changed ratios of phosphoprotein abundance and total protein abundance. Two-dimensional gel electrophoresis (2-DE)-based proteomics allow quantification of both total protein abundance by Coomassie Brilliant Blue (CBB) staining and phosphoprotein abundance by fluorescence-based staining. Pro-Q diamond phosphoprotein stain (Pro-Q DPS) can bind to the phosphate moiety of the phospho-amino acid directly, regardless of the nature of the phospho-amino acid. Phosphoproteins can thus be detected using proper excitation light, quantified using image analysis software and subsequently be subjected to analysis by mass spectrometry. Here, we describe a protein phosphorylation status analysis method combining both CBB and Pro-Q DPS staining based on 2-DE gel-based phosphoproteomics, which has been widely applied to plant phosphoproteomics studies.

  15. Liposome behavior in capillary electrophoresis.

    PubMed

    Roberts, M A; Locascio-Brown, L; Maccrehan, W A; Durst, R A

    1996-10-01

    The behavior of liposomes in capillary electrophoresis is studied for the purpose of developing a potential method for characterizing liposomes prepared for use in industrial and analytical applications. This study characterizes the electrophoretic behavior of liposomes under various conditions to provide information about electrophoretic mobility and liposome-capillary surface interactions. The results of this method are compared with the results obtained using traditional laser light-scattering methods to obtain size information about liposome preparations. Additionally, reactions of liposomes and the surfactant n-octyl-β-d-glucopyranoside are performed off-line in bulk solution experiments and on-line in the capillary. Automated delivery of lysis agents by multiple electrokinetic injections is demonstrated as a general method for inducing on-capillary reactions between liposomes and other reagents. Furthermore, some preliminary evidence on the use of liposomes as a hydrophobic partitioning medium for analytical separations is presented.

  16. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, Brian D.; Fought, Eric R.

    1987-01-01

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface.

  17. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, B.D.; Fought, E.R.

    1987-11-10

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface. 8 figs.

  18. Visualization of Ancient Frictional Heat by 2-Dimensional ESR Imaging

    NASA Astrophysics Data System (ADS)

    Fukuchi, T.

    2006-12-01

    Fault gouge in the immediate vicinity of a fault plane is often darkened and magnetized. This fact suggests that paramagnetic iron hydroxides (γ-FeOOH or Fe(OH)3) inside the fault gouge have changed into ferrimagnetic iron oxides, maghemite (γ-Fe2O3), by frictional heating [Fukuchi, 2003; Fukuchi et al., 2005]. Our results from both melting experiments and exhumed faults indicate that granitic rocks without iron hydroxides may be also magnetized by frictional heating due to the production of magnetite (Fe3O4) by thermal decomposition of constituent biotite. Thus ferrimagnetic minerals in fault rocks are available as indicators of ancient frictional heating events. Generally frictional heat generates within a few millimeters wide zone along a fault plane and its temperature suddenly changes in a 1mm unit. Hence continuous magnetic analysis of a fault zone is necessary for elucidating frictional heating events. I thus attempt to two-dimensionally detect ferrimagnetic minerals using the electron spin resonance (ESR) technique. In 2-Dimensional ESR imaging, microwaves leaking out of a 3mmφ pinhole bored on a cavity resonator are directly absorbed by a flat slab sample moving two-dimensionally with an X-Y stage. Though the detective sensitivity is much lower than that in ordinary ESR measurement, ferrimagnetic minerals show very strong ESR absorption due to exchange interaction, namely, ferrimagnetic resonance (FMR) absorption. Furthermore, the FMR signal intensity reflects the total number of spins in ferrimagnetic material and then is proportional to initial magnetic susceptibility. Hence we can carry out highly sensitive magnetic analysis by detecting FMR signals. As a result of 2D ESR imaging of pseudotachylyte layers distributed along the Nojima fault in Japan, high FMR signal intensity, that is, high frictional heat has been detected along a fault plane in the pseudotachylyte layers. At this stage the resolution of 2D ESR images is 0.5mm, however it is possible

  19. Getting the Most out of Electrophoresis Units

    ERIC Educational Resources Information Center

    Mulvihill, Charlotte

    2007-01-01

    At Oklahoma City Community College, they have developed gel electrophoresis activities that support active learning of many scientific concepts, including: pH, electrolysis, oxidation reduction, electrical currents, potentials, conductivity, molarity, gel electrophoresis, DNA and protein separation, and DNA fingerprinting. This article presents…

  20. Compensating for Electro-Osmosis in Electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.

    1987-01-01

    Simple mechanical adjustment eliminates transverse velocity component. New apparatus for moving-wall electrophoresis increases degree of collimation of chemical species in sample stream. Electrophoresis chamber set at slight angle in horizontal plane to adjust angle between solution flow and wall motion. Component of velocity created cancels electro-osmotic effect.

  1. Analytical biotechnology: Capillary electrophoresis and chromatography

    SciTech Connect

    Horvath, C.; Nikelly, J.G.

    1990-01-01

    The papers describe the separation, characterization, and equipment required for the electrophoresis or chromatography of cyclic nucleotides, pharmaceuticals, therapeutic proteins, recombinant DNA products, pheromones, peptides, and other biological materials. One paper, On-column radioisotope detection for capillary electrophoresis, has been indexed separately for inclusion on the data base.

  2. DNA Sequencing Using capillary Electrophoresis

    SciTech Connect

    Dr. Barry Karger

    2011-05-09

    The overall goal of this program was to develop capillary electrophoresis as the tool to be used to sequence for the first time the Human Genome. Our program was part of the Human Genome Project. In this work, we were highly successful and the replaceable polymer we developed, linear polyacrylamide, was used by the DOE sequencing lab in California to sequence a significant portion of the human genome using the MegaBase multiple capillary array electrophoresis instrument. In this final report, we summarize our efforts and success. We began our work by separating by capillary electrophoresis double strand oligonucleotides using cross-linked polyacrylamide gels in fused silica capillaries. This work showed the potential of the methodology. However, preparation of such cross-linked gel capillaries was difficult with poor reproducibility, and even more important, the columns were not very stable. We improved stability by using non-cross linked linear polyacrylamide. Here, the entangled linear chains could move when osmotic pressure (e.g. sample injection) was imposed on the polymer matrix. This relaxation of the polymer dissipated the stress in the column. Our next advance was to use significantly lower concentrations of the linear polyacrylamide that the polymer could be automatically blown out after each run and replaced with fresh linear polymer solution. In this way, a new column was available for each analytical run. Finally, while testing many linear polymers, we selected linear polyacrylamide as the best matrix as it was the most hydrophilic polymer available. Under our DOE program, we demonstrated initially the success of the linear polyacrylamide to separate double strand DNA. We note that the method is used even today to assay purity of double stranded DNA fragments. Our focus, of course, was on the separation of single stranded DNA for sequencing purposes. In one paper, we demonstrated the success of our approach in sequencing up to 500 bases. Other

  3. Two Electrophoresis Experiments for Freshmen in the Health Professions.

    ERIC Educational Resources Information Center

    Brabson, G. Dana; Waugh, David S.

    1986-01-01

    Describes procedures involved with paper electrophoresis separation of amino acids, gel electrophoresis separation of DNA, and design of an electrophoresis tank. Describes experiments using paper (amino acids) and gel (deoxyribonucleic acid fragments). Provides material lists, procedures, and discussion. (JM)

  4. Phenomenology of colloidal crystal electrophoresis

    NASA Astrophysics Data System (ADS)

    Medebach, Martin; Palberg, Thomas

    2003-08-01

    We studied the motion of polycrystalline solids comprising of charged sub-micron latex spheres suspended in deionized water. These were subjected to a low frequency alternating square wave electric field in an optical cell of rectangular cross section. Velocity profiles in X and Y direction were determined by Laser Doppler Velocimetry. The observed complex flow profiles are time dependent due to the combined effects of electro-osmosis, electrophoresis, crystal elasticity, and friction of the crystals at the cell wall. On small time scales elastic deformation occurs. On long time scales channel formation is observed. At intermediate times steady state profiles are dominated by a solid plug of polycrystalline material moving in the cell center. At large field strengths the plug shear melts. Mobilities in the shear molten state are on the order of (6.5±0.5) 10-8 m2 V-1 s-1 and connect continuously with those of the equilibrium fluid. The apparent mobility of the plug is much larger than of the fluid and like the mobility of the fluid decreases with increasing particle number density. We qualitatively attribute the accelerated motion of the plug to an incomplete exposure to the electro-osmotic flow profile.

  5. Nonlinear waves in capillary electrophoresis

    PubMed Central

    Ghosal, Sandip; Chen, Zhen

    2011-01-01

    Electrophoretic separation of a mixture of chemical species is a fundamental technique of great usefulness in biology, health care and forensics. In capillary electrophoresis the sample migrates in a microcapillary in the presence of a background electrolyte. When the ionic concentration of the sample is sufficiently high, the signal is known to exhibit features reminiscent of nonlinear waves including sharp concentration ‘shocks’. In this paper we consider a simplified model consisting of a single sample ion and a background electrolyte consisting of a single co-ion and a counterion in the absence of any processes that might change the ionization states of the constituents. If the ionic diffusivities are assumed to be the same for all constituents the concentration of sample ion is shown to obey a one dimensional advection diffusion equation with a concentration dependent advection velocity. If the analyte concentration is sufficiently low in a suitable non-dimensional sense, Burgers’ equation is recovered, and thus, the time dependent problem is exactly solvable with arbitrary initial conditions. In the case of small diffusivity either a leading edge or trailing edge shock is formed depending on the electrophoretic mobility of the sample ion relative to the background ions. Analytical formulas are presented for the shape, width and migration velocity of the sample peak and it is shown that axial dispersion at long times may be characterized by an effective diffusivity that is exactly calculated. These results are consistent with known observations from physical and numerical simulation experiments. PMID:20238181

  6. Electrophoresis of diffuse soft particles.

    PubMed

    Duval, Jérôme F L; Ohshima, Hiroyuki

    2006-04-11

    A theory is presented for the electrophoresis of diffuse soft particles in a steady dc electric field. The particles investigated consist of an uncharged impenetrable core and a charged diffuse polyelectrolytic shell, which is to some extent permeable to ions and solvent molecules. The diffuse character of the shell is defined by a gradual distribution of the density of polymer segments in the interspatial region separating the core from the bulk electrolyte solution. The hydrodynamic impact of the polymer chains on the electrophoretic motion of the particle is accounted for by a distribution of Stokes resistance centers. The numerical treatment of the electrostatics includes the possibility of partial dissociation of the hydrodynamically immobile ionogenic groups distributed throughout the shell as well as specific interaction between those sites with ions from the background electrolyte other than charge-determining ions. Electrophoretic mobilities are computed on the basis of an original numerical scheme allowing rigorous evaluation of the governing transport and electrostatic equations derived following the strategy reported by Ohshima, albeit within the restricted context of a discontinuous chain distribution. Attention is particularly paid to the influence of the type of distribution adopted on the electrophoretic mobility of the particle as a function of its size, charge, degree of permeability, and solution composition. The results are systematically compared with those obtained with a discontinuous representation of the interface. The theory constitutes a basis for interpreting electrophoretic mobilities of heterogeneous systems such as environmental or biological colloids or swollen/deswollen microgel particles.

  7. Atomic Force Controlled Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Lewis, Aaron; Yeshua, Talia; Palchan, Mila; Lovsky, Yulia; Taha, Hesham

    2010-03-01

    Lithography based on scanning probe microscopic techniques has considerable potential for accurate & localized deposition of material on the nanometer scale. Controlled deposition of metallic features with high purity and spatial accuracy is of great interest for circuit edit applications in the semiconductor industry, for plasmonics & nanophotonics and for basic research in surface enhanced Raman scattering & nanobiophysics. Within the context of metal deposition we will review the development of fountain pen nanochemistry and its most recent emulation Atomic Force Controlled Capillary Electrophoresis (ACCE). Using this latter development we will demonstrate achievement of unprecedented control of nanoparticle deposition using a three-electrode geometry. Three electrodes are attached: one on the outside of a metal coated glass probe, one on the inside of a hollow probe in a solution containing Au nanoparticles in the capillary, and a third on the surface where the writing takes place. The three electrodes provide electrical pulses for accurate control of deposition and retraction of the liquid from the surface overcoming the lack of control seen in both dip pen lithography & fountain pen nanochemistry when the tip contacts the surface. With this development, we demonstrate depositing a single 1.3 nm Au nanoparticle onto surfaces such as semiconductors.

  8. Comparison of non-electrophoresis grade with electrophoresis grade BIS in NIPAM polymer gel preparation

    PubMed Central

    Khodadadi, Roghayeh; Khajeali, Azim; Farajollahi, Ali Reza; Hajalioghli, Parisa; Raeisi, Noorallah

    2015-01-01

    Introduction:The main objective of this study was to investigate the possibility of replacing electrophoresis cross-linker with non-electrophoresis N, N′-methylenebisacrylamide (BIS) in N-isopropyl acrylamide (NIPAM) polymer gel and its possible effect on dose response. Methods: NIPAM polymer gel was prepared from non-electrophoresis grade BIS and the relaxation rate (R2) was measured by MR imaging after exposing the gel to gamma radiation from Co-60 source. To compare the response of this gel with the one that contains electrophoresis grade BIS, two sets of NIPAM gel were prepared using electrophoresis and non-electrophoresis BIS and irradiated to different gamma doses. Results: It was found that the dose–response of NIPAM gel made from the non-electrophoresis grade BIS is coincident with that of electrophoresis grade BIS. Conclusion:Taken all, it can be concluded that the non-electrophoresis grade BIS not only is a suitable alternative for the electrophoresis grade BIS but also reduces the cost of gel due to its lower price. PMID:26457250

  9. Maize MeJA-responsive proteins identified by high-resolution 2-DE PAGE.

    PubMed

    Zhang, Yuliang; Pennerman, Kayla K; Yang, Fengshan; Yin, Guohua

    2015-12-01

    Exogenous methyl jasmonate (MeJA) is well-known to induce plant defense mechanisms effective against a wide variety of insect and microbial pests. High-resolution 2-DE gel electrophoresis was used to discover changes in the leaf proteome of maize exposed to MeJA. We sequenced 62 MeJA-responsive proteins by tandem mass spectroscopy, and deposited the mass spectra and identities in the EMBL-EBI PRIDE repository under reference number PXD001793. An analysis and discussion of the identified proteins in relation to maize defense against Asian corn borer is published by Zhang et al. (2015) [1]. PMID:26509185

  10. High-performance capillary electrophoresis of histones

    SciTech Connect

    Gurley, L.R.; London, J.E.; Valdez, J.G.

    1991-01-01

    A high performance capillary electrophoresis (HPCE) system has been developed for the fractionation of histones. This system involves electroinjection of the sample and electrophoresis in a 0.1M phosphate buffer at pH 2.5 in a 50 {mu}m {times} 35 cm coated capillary. Electrophoresis was accomplished in 9 minutes separating a whole histone preparation into its components in the following order of decreasing mobility; (MHP) H3, H1 (major variant), H1 (minor variant), (LHP) H3, (MHP) H2A (major variant), (LHP) H2A, H4, H2B, (MHP) H2A (minor variant) where MHP is the more hydrophobic component and LHP is the less hydrophobic component. This order of separation is very different from that found in acid-urea polyacrylamide gel electrophoresis and in reversed-phase HPLC and, thus, brings the histone biochemist a new dimension for the qualitative analysis of histone samples. 27 refs., 8 figs.

  11. Capillary electrophoresis electrospray ionization mass spectrometry interface

    DOEpatents

    Smith, Richard D.; Severs, Joanne C.

    1999-01-01

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  12. Microfluidic flow counterbalanced capillary electrophoresis.

    PubMed

    Xia, Ling; Dutta, Debashis

    2013-04-01

    Flow counterbalanced capillary electrophoresis (FCCE) offers a powerful approach to realizing difficult charge based separations in compact microchip devices with application of relatively small electrical voltages. The need for dynamically controlling the pressure-gradient in the FCCE column however presents a significant challenge in implementing this technique on the microchip platform. In this article, we report the use of a simple on-chip pumping unit that allows precise introduction of a periodic pressure-driven backflow into a microfluidic separation channel enabling an FCCE analysis. The backflow in our device was produced by fabricating a shallow segment (0.5 μm deep) downstream of the analysis column (5 μm deep) and applying an electric field across it. A mismatch in the electroosmotic transport rate at the interface of this segment was shown to yield a pressure-gradient that could reverse the flow of the analyte bands without inverting the direction of the electric field. Although such a pressure-gradient also led to additional band broadening in the system, overall, the separation resolution of our device was observed to improve with an increasing number of back-and-forth sample passes through the analysis channel. For our current design, the corresponding improvement in the effective separation length was as much as 52% of the actual distance travelled by the chosen FITC-labeled amino acid samples. The reported device is well suited for further miniaturization of the FCCE method to the nanofluidic length scale which likely would improve its performance, and is easily integrable to other analytical procedures on the microchip platform for lab-on-a-chip applications. PMID:23420375

  13. Analysis of Small Ions with Capillary Electrophoresis.

    PubMed

    Aulakh, Jatinder Singh; Kaur, Ramandeep; Malik, Ashok Kumar

    2016-01-01

    Small inorganic ions are easily separated through capillary electrophoresis because they have a high charge-to-mass ratio and suffer little from some of the undesired phenomenon affecting higher molecular weight species like adsorption to the capillary wall, decomposition, and precipitation. This chapter is focused on the analysis of small ions other than metal ions using capillary electrophoresis. Methods are described for the determination of ions of nitrogen, phosphorus, sulfur, fluorine, chlorine, bromine, and iodine. PMID:27645739

  14. Affinity Electrophoresis Using Ligands Attached To Polymers

    NASA Technical Reports Server (NTRS)

    Van Alstine, James M.; Snyder, Robert S.; Harris, J. M.; Brooks, D. E.

    1990-01-01

    In new technique, reduction of electrophoretic mobilities by addition of polyethylene glycol to ligands increases electrophoretic separabilities. In immuno-affinity electrophoresis, modification of ligands extends specificity of electrophoretic separation to particles having surface electric-charge structures otherwise making them electrophoretically inseparable. Modification of antibodies by polyethylene glycol greatly reduces ability to aggregate while enhancing ability to affect electrophoretic mobilities of cells. In hydrophobic-affinity electrophoresis, addition of polyethylene glycol reduces tendency toward aggregation of cells or macromolecules.

  15. Free-Flow Open-Chamber Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Free-flow open-chamber electrophoresis variant of free-flow electrophoresis performed in chamber with open ends and in which velocity of electro-osmotic flow adjusted equal to and opposite mean electrophoretic velocity of sample. Particles having electrophoretic mobilities greater than mean mobility of sample particles move toward cathode, those with mobilities less move toward anode. Technique applied to separation of components of mixtures of biologically important substances. Sensitivity enhanced by use of tapered chamber.

  16. Sealing leaks in geomembrane liners using electrophoresis

    SciTech Connect

    Darilek, G.T.; Corapcioglu, M.Y.; Yeung, A.T.

    1996-06-01

    An innovative method was demonstrated to seal leaks in geomembrane liners by attracting clay particles to the leaks using electrophoresis. Electrophoresis is the movement of electrically charged particles suspended in a liquid by the action of an electric field. A direct-current voltage impressed across the liner causes electrical current to flow through the leaks. The current produces a strong electric field at leaks. When a clay slurry is dispersed into the liquid in the impoundment, electrophoresis attracts the clay particles to the leaks, thereby sealing them. The method can seal leaks in liquid impoundments without removing the liquid or locating or accessing the leaks. The laboratory and full-scale test results were remarkable in that electrophoresis sealed the leaks completely when a layer of geofabric was under the liner, and electrophoresis reduced the leakage rate through holes as large as 10 mm in diameter by a factor of 1,600 in the field test with gravel under the liner, and by a factor of 1,667 in the laboratory basin with geonet under the liner.

  17. Free flow cell electrophoresis using zwitterionic buffer

    NASA Technical Reports Server (NTRS)

    Rodkey, R. Scott

    1990-01-01

    Studies of a zwitterionic buffer formulated for cell electrophoresis were done using the McDonnell-Douglas Continuous Flow Electrophoresis System. Standard buffers were analyzed for their stability in the electrical field and the results showed that both buffers tested were inherently unstable. Further, titration studies showed that the standards buffers buffered poorly at the pH employed for electrophoresis. The zwitterionic buffer buffered well at its nominal pH and was shown to be stable in the electrical field. Comparative studies of the buffer with standard cell separation buffers using formalin fixed rabbit and goose red blood cells showed that the zwitterionic buffer gave better resolution of the fixed cells. Studies with viable hybridoma cells showed that buffer Q supported cell viability equal to Hank's Balanced Salt Solution and that hybridoma cells in different stages of the growth cycle demonstrated reproducible differences in electrophoretic mobility.

  18. Detection of telomerase activity using microchip electrophoresis.

    PubMed

    Karasawa, Koji; Arakawa, Hidetoshi

    2015-07-01

    Telomerase participates in malignant transformation or immortalization of cells and thus has attracted attention as an anticancer drug target and diagnostic tumor marker. The telomeric repeat amplification protocol (TRAP) and improved TRAP methods (TRAP-fluorescence, TRAP-hybridization, etc.) are widely used forms of this telomerase assay. However, these approaches generally employ acrylamide gel electrophoresis after amplification of telomeric repeats by polymerase chain reaction (PCR), making these TRAP methods time consuming and technically demanding. In this study we developed a novel telomerase assay using microchip electrophoresis for rapid and highly sensitive detection of telomerase activity in cancer cells. The mixed gel of 0.8% hydroxypropyl methylcellulose (HPMC) and 0.3% polyethylene oxide (PEO) with SYBR Gold (fluorescent reagent) was used for microchip electrophoresis. As a result, the product amplified by a telomerase-positive cell could be measured in one cell per assay and detected with high reproducibility (CV=0.67%) in the short time of 100s.

  19. Application of Microchip Electrophoresis for Clinical Tests

    NASA Astrophysics Data System (ADS)

    Yatsushiro, Shouki; Kataoka, Masatoshi

    Microchip electrophoresis has recently attracted much attention in the field of nuclear acid analysis due to its high efficiency, ease of operation, low consumption of samples and reagents, and relatively low costs. In addition, the analysis has expanded to an analytical field like not only the analysis of DNA but also the analysis of RNA, the protein, the sugar chain, and the cellular function, etc. In this report, we showed that high-performance monitoring systems for human blood glucose levels and α-amylase activity in human plasma using microchip electrophoresis.

  20. Undergraduate physics laboratory: Electrophoresis in chromatography paper

    NASA Astrophysics Data System (ADS)

    Hyde, Alexander; Batishchev, Oleg

    2015-12-01

    An experiment studying the physical principles of electrophoresis in liquids was developed for an undergraduate laboratory. We have improved upon the standard agarose gel electrophoresis experimental regime with a straightforward and cost-effective procedure, in which drops of widely available black food coloring were separated by electric field into their dye components on strips of chromatography paper soaked in a baking soda/water solution. Terminal velocities of seven student-safe dyes were measured as a function of the electric potential applied along the strips. The molecular mobility was introduced and calculated by analyzing data for a single dye. Sources of systematic and random errors were investigated.

  1. Two-dimensional electrophoresis analysis of proteins extracted from Alexandrium sp. LC3

    NASA Astrophysics Data System (ADS)

    Li, Hao; Miao, Jinlai; Cui, Fengxia; Li, Guangyou

    2007-10-01

    Two-dimensional electrophoresis(2-DE) of protein extracted and purified from Alexandrium sp. LC3 was conducted. In the SDS-PAGE study, the relative molecular weights of the proteins were mainly in the range of 14kDa-31kDa and 43kDa-66kDa, and more proteins were detected between 14kDa and 31kDa. With the improved protein preparation, the two-dimensional electrophoresis patterns indicated that the relative molecular weights of the proteins were between 14kDa and 100kDa, and most of them ranged from 14kDa to 31kDa. This was consistent with the result of the SDS-PAGE analysis. The isoelectric points were found to lie between 3.0 and 8.0, and most of them were in the range of 3.0 6.0. Better separation effect was acquired with pre-prepared immobilized gradient (IPG) strip (pH3 5.6), and about 320 protein spots could be visualized on the 2-DE map by staining. Within pH3 10 and pH3 5.6 strips, the protein samples of Alexandrium sp. LC3 could be separated well.

  2. Evaluating two-dimensional electrophoresis profiles of the protein phaseolin as markers of genetic differentiation and seed protein quality in common bean (Phaseolus vulgaris L.).

    PubMed

    López-Pedrouso, María; Bernal, Javier; Franco, Daniel; Zapata, Carlos

    2014-07-23

    High-resolution two-dimensional electrophoresis (2-DE) profiles of the protein phaseolin, the major seed storage protein of common bean, display great number of spots with differentially glycosylated and phosphorylated α- and β-type polypeptides. This work aims to test whether these complex profiles can be useful markers of genetic differentiation and seed protein quality in bean populations. The 2-DE phaseolin profile and the amino acid composition were examined in bean seeds from 18 domesticated and wild accessions belonging to the Mesoamerican and Andean gene pools. We found that proteomic distances based on 2-DE profiles were successful in identifying the accessions belonging to each gene pool and outliers distantly related. In addition, accessions identified as outliers from proteomic distances showed the highest levels of methionine content, an essential amino acid deficient in bean seeds. These findings suggest that 2-DE phaseolin profiles provide valuable information with potential of being used in common bean genetic improvement.

  3. Evaluating two-dimensional electrophoresis profiles of the protein phaseolin as markers of genetic differentiation and seed protein quality in common bean (Phaseolus vulgaris L.).

    PubMed

    López-Pedrouso, María; Bernal, Javier; Franco, Daniel; Zapata, Carlos

    2014-07-23

    High-resolution two-dimensional electrophoresis (2-DE) profiles of the protein phaseolin, the major seed storage protein of common bean, display great number of spots with differentially glycosylated and phosphorylated α- and β-type polypeptides. This work aims to test whether these complex profiles can be useful markers of genetic differentiation and seed protein quality in bean populations. The 2-DE phaseolin profile and the amino acid composition were examined in bean seeds from 18 domesticated and wild accessions belonging to the Mesoamerican and Andean gene pools. We found that proteomic distances based on 2-DE profiles were successful in identifying the accessions belonging to each gene pool and outliers distantly related. In addition, accessions identified as outliers from proteomic distances showed the highest levels of methionine content, an essential amino acid deficient in bean seeds. These findings suggest that 2-DE phaseolin profiles provide valuable information with potential of being used in common bean genetic improvement. PMID:24983510

  4. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    SciTech Connect

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  5. Role of gravity in preparative electrophoresis

    NASA Technical Reports Server (NTRS)

    Bier, M.

    1975-01-01

    The fundamental formulas of electrophoresis are derived microscopically and applied to the problem of isotachophoresis. A simple physical model of the isotachophoresis front is proposed. The front motion and structure are studied in the simplified case without convection, diffusion and non-electric external forces.

  6. A Simple Vertical Slab Gel Electrophoresis Apparatus.

    ERIC Educational Resources Information Center

    Carter, J. B.; And Others

    1983-01-01

    Describes an inexpensive, easily constructed, and safe vertical slab gel kit used routinely for sodium dodecyl sulphate-polyacrylamide gel electrophoresis research and student experiments. Five kits are run from a single transformer. Because toxic solutions are used, students are given plastic gloves and closely supervised during laboratory…

  7. Increasing Sensitivity In Continuous-Flow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Sensitivity of continuous-flow electrophoresis (CFE) chamber increased by introducing lateral gradients in concentration of buffer solution and thickness of chamber. Such gradients, with resulting enhanced separation, achieved in CFE chamber with wedge-shaped cross section and collateral flow. Enables improved separations of homogeneous components of mixtures of variety of biologically important substances.

  8. Using Gel Electrophoresis To Illustrate Protein Diversity and Isoelectric Point.

    ERIC Educational Resources Information Center

    Browning, Mark; Vanable, Joseph

    2002-01-01

    Demonstrates the differences in protein structures by focusing on isoelectric point with an experiment that is observable under certain pH levels in gel electrophoresis. Explains the electrophoresis procedure and reports results of the experiments. (YDS)

  9. Analysis of casein using two-dimensional electrophoresis, western blot, and computer imaging.

    PubMed

    Goldfarb, M F

    2001-01-01

    Casein from milk of 20 mothers, 8 weeks postpartum, was analyzed using 2-dimensional electrophoresis. The casein micelle under 2-D denaturing conditions gives approximately 15 major spots. Beta-Casein, kappa-casein, para-kappa-casein, and casein peptides can be tentatively identified by molecular size, isoelectric point, and spot shape characteristics. All spots are not present in all samples. Two spots thought to represent different phosphorylated forms of beta-casein were selected for area and density measurements by means of the NIH-Image program. The larger area at approximately 26 kDa, isoelectric point 5.3, consisted of 1 to 3 closely linked spots, perhaps reflecting phenotype. The smaller spot 24kDa, isoelectric point 5.4, was always a single unit. Visual scanning of gels suggests a wide range of casein concentration. Computer comparison will allow a statistical analysis.

  10. 21 CFR 862.2485 - Electrophoresis apparatus for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrophoresis apparatus for clinical use. 862... Instruments § 862.2485 Electrophoresis apparatus for clinical use. (a) Identification. An electrophoresis apparatus for clinical use is a device intended to separate molecules or particles, including...

  11. 21 CFR 862.2485 - Electrophoresis apparatus for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrophoresis apparatus for clinical use. 862... Instruments § 862.2485 Electrophoresis apparatus for clinical use. (a) Identification. An electrophoresis apparatus for clinical use is a device intended to separate molecules or particles, including...

  12. Consensus brain-derived protein, extraction protocol for the study of human and murine brain proteome using both 2D-DIGE and mini 2DE immunoblotting.

    PubMed

    Fernandez-Gomez, Francisco-Jose; Jumeau, Fanny; Derisbourg, Maxime; Burnouf, Sylvie; Tran, Hélène; Eddarkaoui, Sabiha; Obriot, Hélène; Dutoit-Lefevre, Virginie; Deramecourt, Vincent; Mitchell, Valérie; Lefranc, Didier; Hamdane, Malika; Blum, David; Buée, Luc; Buée-Scherrer, Valérie; Sergeant, Nicolas

    2014-01-01

    Two-dimensional gel electrophoresis (2DE) is a powerful tool to uncover proteome modifications potentially related to different physiological or pathological conditions. Basically, this technique is based on the separation of proteins according to their isoelectric point in a first step, and secondly according to their molecular weights by SDS polyacrylamide gel electrophoresis (SDS-PAGE). In this report an optimized sample preparation protocol for little amount of human post-mortem and mouse brain tissue is described. This method enables to perform both two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mini 2DE immunoblotting. The combination of these approaches allows one to not only find new proteins and/or protein modifications in their expression thanks to its compatibility with mass spectrometry detection, but also a new insight into markers validation. Thus, mini-2DE coupled to western blotting permits to identify and validate post-translational modifications, proteins catabolism and provides a qualitative comparison among different conditions and/or treatments. Herein, we provide a method to study components of protein aggregates found in AD and Lewy body dementia such as the amyloid-beta peptide and the alpha-synuclein. Our method can thus be adapted for the analysis of the proteome and insoluble proteins extract from human brain tissue and mice models too. In parallel, it may provide useful information for the study of molecular and cellular pathways involved in neurodegenerative diseases as well as potential novel biomarkers and therapeutic targets. PMID:24747743

  13. DNA electrophoresis in a nanofence array†

    PubMed Central

    Park, Sung-Gyu; Olson, Daniel W.

    2012-01-01

    We present the design and implementation of an oxidized silicon “nanofence array” for long DNA electrophoresis. The device consists of a periodic array of post-filled regions (the nanofences) alternating with empty channel regions. Even in this prototype version, the nanofence array provides the resolving power of a hexagonal nanopost array without requiring any direct-write nanopatterning steps such as electron-beam lithography. Through detailed single molecule investigations, we demonstrate that the origin of the resolving power of the nanofence array is not a reduction in band broadening, which might be expected from the theories for DNA electrophoresis in post arrays. Rather, the enhanced stretching of the hooked DNA by the uniform electric field between nanofences increases the efficiency of the collisions. PMID:22388662

  14. Theory of electrophoresis: fate of one equation.

    PubMed

    Gas, Bohuslav

    2009-06-01

    Electrophoresis utilizes a difference in movement of charged species in a separation channel or space for their spatial separation. A basic partial differential equation that results from the balance laws of continuous processes in separation sciences is the nonlinear conservation law or the continuity equation. Attempts at its analytical solution in electrophoresis go back to Kohlrausch's days. The present paper (i) reviews derivation of conservation functions from the conservation law as appeared chronologically, (ii) deals with theory of moving boundary equations and, mainly, (iii) presents the linear theory of eigenmobilities. It shows that a basic solution of the linearized continuity equations is a set of traveling waves. In particular cases the continuity equation can have a resonance solution that leads in practice to schizophrenic dispersion of peaks or a chaotic solution, which causes oscillation of electrolyte solutions.

  15. Iohexol in serum determined by capillary electrophoresis.

    PubMed

    Shihabi, Z K; Constantinescu, M S

    1992-10-01

    Iohexol, a nonionic compound used as a contrast medium for angiography and as a measure of the glomerular filtration rate, was quantified in serum by capillary electrophoresis. Comparable results were obtained for serum samples deproteinized with acetonitrile or analyzed directly after 50-fold dilution with borate buffer. Serum samples were electrophoresed for 2.6 min at 12 kV in a borate buffer with detection at 254 nm and with 3-isobutyl-1-methylxanthine as internal standard. Acetonitrile deproteinization gave a greater sensitivity than did sample dilution. Between-run CVs were between 4.7% and 6.7%, and within-run CVs were between 2.5 and 3.2%. Analytical recoveries were 95-105%. Results of the method compared well with those by high-performance liquid chromatography (slope 0.96, intercept 0.005 g/L). This method demonstrates the potential of capillary electrophoresis for rapid and simple quantification of small molecules.

  16. Electrokinetic Flow and Dispersion in Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Ghosal, Sandip

    2006-01-01

    Electrophoretic separation of a mixture of chemical species is a fundamental technique of great usefulness in biology, health care, and forensics. In capillary electrophoresis (which has evolved from its predecessor, slab-gel electrophoresis), the sample migrates through a single microcapillary instead of through the network of pores in a gel. A fundamental design problem is to minimize dispersion in the separation direction. Molecular diffusion is inevitable and sets a theoretical limit on the best separation that can be achieved. But in practice, there are a number of effects arising out of the interplay between fluid flow, chemistry, thermal effects, and electric fields that result in enhanced dispersion. This paper reviews the subject of fluid flow in such capillary microchannels and examines the various causes of enhanced dispersion that limit the efficiency of separation.

  17. Mathematical Models of Continuous Flow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.; Snyder, R. S.

    1985-01-01

    Development of high resolution continuous flow electrophoresis devices ultimately requires comprehensive understanding of the ways various phenomena and processes facilitate or hinder separation. A comprehensive model of the actual three dimensional flow, temperature and electric fields was developed to provide guidance in the design of electrophoresis chambers for specific tasks and means of interpreting test data on a given chamber. Part of the process of model development includes experimental and theoretical studies of hydrodynamic stability. This is necessary to understand the origin of mixing flows observed with wide gap gravitational effects. To insure that the model accurately reflects the flow field and particle motion requires extensive experimental work. Another part of the investigation is concerned with the behavior of concentrated sample suspensions with regard to sample stream stability particle-particle interactions which might affect separation in an electric field, especially at high field strengths. Mathematical models will be developed and tested to establish the roles of the various interactions.

  18. A new approach to electrophoresis in space

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.; Rhodes, Percy H.

    1990-01-01

    Previous electrophoresis experiments performed in space are reviewed. There is sufficient data available from the results of these experiments to show that they were designed with incomplete knowledge of the fluid dynamics of the process including electrohydrodynamics. Redesigning laboratory chambers and operating procedures developed on Earth for space without understanding both the advantages and disadvantages of the microgravity environment has yielded poor separations of both cells and proteins. However, electrophoreris is still an important separation tool in the laboratory and thermal convection does limit its performance. Thus, there is a justification for electrophoresis but the emphasis of future space experiments must be directed toward basic research with model experiments to understand the microgravity environment and fluid analysis to test the basic principles of the process.

  19. Numerical simulation of electrophoresis separation processes

    NASA Technical Reports Server (NTRS)

    Ganjoo, D. K.; Tezduyar, T. E.

    1986-01-01

    A new Petrov-Galerkin finite element formulation has been proposed for transient convection-diffusion problems. Most Petrov-Galerkin formulations take into account the spatial discretization, and the weighting functions so developed give satisfactory solutions for steady state problems. Though these schemes can be used for transient problems, there is scope for improvement. The schemes proposed here, which consider temporal as well as spatial discretization, provide improved solutions. Electrophoresis, which involves the motion of charged entities under the influence of an applied electric field, is governed by equations similiar to those encountered in fluid flow problems, i.e., transient convection-diffusion equations. Test problems are solved in electrophoresis and fluid flow. The results obtained are satisfactory. It is also expected that these schemes, suitably adapted, will improve the numerical solutions of the compressible Euler and the Navier-Stokes equations.

  20. Metal Ions Analysis with Capillary Zone Electrophoresis.

    PubMed

    Malik, Ashok Kumar; Aulakh, Jatinder Singh; Kaur, Varinder

    2016-01-01

    Capillary electrophoresis has recently attracted considerable attention as a promising analytical technique for metal ion separations. Significant advances that open new application areas for capillary electrophoresis in the analysis of metal species occurred based on various auxiliary separation principles. These are mainly due to complexation, ion pairing, solvation, and micellization interactions between metal analytes and electrolyte additives, which alter the separation selectivity in a broad range. Likewise, many separation studies for metal ions have been concentrated on the use of preelectrophoresis derivatization methodology. Approaches suitable for manipulation of selectivity for different metal species including metal cations, metal complexes, metal oxoanions, and organometallic compounds, are discussed, with special attention paid to the related electrophoretic system variables using illustrative examples. PMID:27645740

  1. Capillary Electrophoresis in Food and Foodomics.

    PubMed

    Ibáñez, Clara; Acunha, Tanize; Valdés, Alberto; García-Cañas, Virginia; Cifuentes, Alejandro; Simó, Carolina

    2016-01-01

    Quality and safety assessment as well as the evaluation of other nutritional and functional properties of foods imply the use of robust, efficient, sensitive, and cost-effective analytical methodologies. Among analytical technologies used in the fields of food analysis and foodomics, capillary electrophoresis (CE) has generated great interest for the analyses of a large number of compounds due to its high separation efficiency, extremely small sample and reagent requirements, and rapid analysis. The introductory section of this chapter provides an overview of the recent applications of capillary electrophoresis (CE) in food analysis and foodomics. Relevant reviews and research articles on these topics are tabulated including papers published in the period 2011-2014. In addition, to illustrate the great capabilities of CE in foodomics the chapter describes the main experimental points to be taken into consideration for a metabolomic study of the antiproliferative effect of carnosic acid (a natural diterpene found in rosemary) against HT-29 human colon cancer cells. PMID:27645749

  2. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figs.

  3. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  4. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figures.

  5. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  6. Capillary zone electrophoresis-mass spectrometer interface

    DOEpatents

    D'Silva, Arthur

    1996-08-06

    A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conducts is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer.

  7. Capillary zone electrophoresis-mass spectrometer interface

    DOEpatents

    D`Silva, A.

    1996-08-06

    A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conductors is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer. 1 fig.

  8. Method and apparatus for continuous electrophoresis

    DOEpatents

    Watson, Jack S.

    1992-01-01

    A method and apparatus for conducting continuous separation of substances by electrophoresis are disclosed. The process involves electrophoretic separation combined with couette flow in a thin volume defined by opposing surfaces. By alternating the polarity of the applied potential and producing reciprocating short rotations of at least one of the surfaces relative to the other, small increments of separation accumulate to cause substantial, useful segregation of electrophoretically separable components in a continuous flow system.

  9. A method and apparatus for continuous electrophoresis

    SciTech Connect

    Watson, J.S.

    1990-01-01

    A method and apparatus for conducting continuous separation of substances by electrophoresis are disclosed. The process involves electrophoretic separation combined with couette flow in a thin volume defined by opposing surfaces. By alternating the polarity of the applied potential and producing reciprocating short rotations of at least on of the surfaces relative to the other, small increments of separation accumulate to cause substantial, useful segregation of electrophoretically separable components in a continuous flow system.

  10. Commander prepares glass columns for electrophoresis experiment

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Commander Jack Lousma prepares on of the glass columns for the electrophoresis test in the middeck area of the Columbia. The experiment, deployed in an L-shaped mode in upper right corner, consists of the processing unit with glass columns in which the separation takes place; a camera (partially obscurred by Lousma's face) to document the process; and a cryogenic freezer to freeze and store the samples after separation.

  11. [The electrophoresis of biotinylated nucleic acids].

    PubMed

    Popa, L L; Pleşa, A; Repanovici, R; Popa, L M

    1992-01-01

    A simple and rapid method was worked out to evaluate the biotinylation level of the pBR322 and pSVK1H genetic cloning vectors, using gel electrophoresis. Avidin was used to slow down the migration of biotinylated DNA: the DNA migration speed diminished as the biotinylation level rose, due to DNA complexation. The highest level of biotinylation is characterized by the formation of a biotinylated nucleic acid-avidin complex with no electrophoretical mobility. PMID:1288639

  12. [2012 annual review of capillary electrophoresis technology].

    PubMed

    Qu, Feng; Zhao, Xinying; Wang, Yong

    2012-12-01

    This paper reviews the capillary electrophoresis (CE) in 2012. Four international and three national conferences are included and the important reports are introduced briefly. Literatures searched from ISI Web of Science ranged in 2012.1.1 - 2012.12.1 are classified and introduced based on the biology and medicine applications as well as the use of detectors and the important analytical chemical journals.

  13. Portable electrophoresis apparatus using minimum electrolyte

    NASA Technical Reports Server (NTRS)

    Stevens, M. R.; Vickers, J. M. (Inventor)

    1976-01-01

    An electrophoresis unit for use in conducting electrophoretic analysis of specimens is described. The unit includes a sealable container in which a substrate mounted specimen is suspended in an electrolytic vapor. A heating unit is employed to heat a supply of electrolyte to produce the vapor. The substrate is suspended within the container by being attached between a pair of clips which also serve as electrodes to which a direct current power source may be connected.

  14. Detection of telomerase activity using microchip electrophoresis.

    PubMed

    Karasawa, Koji; Arakawa, Hidetoshi

    2015-07-01

    Telomerase participates in malignant transformation or immortalization of cells and thus has attracted attention as an anticancer drug target and diagnostic tumor marker. The telomeric repeat amplification protocol (TRAP) and improved TRAP methods (TRAP-fluorescence, TRAP-hybridization, etc.) are widely used forms of this telomerase assay. However, these approaches generally employ acrylamide gel electrophoresis after amplification of telomeric repeats by polymerase chain reaction (PCR), making these TRAP methods time consuming and technically demanding. In this study we developed a novel telomerase assay using microchip electrophoresis for rapid and highly sensitive detection of telomerase activity in cancer cells. The mixed gel of 0.8% hydroxypropyl methylcellulose (HPMC) and 0.3% polyethylene oxide (PEO) with SYBR Gold (fluorescent reagent) was used for microchip electrophoresis. As a result, the product amplified by a telomerase-positive cell could be measured in one cell per assay and detected with high reproducibility (CV=0.67%) in the short time of 100s. PMID:25980765

  15. Possibility of Microchip Electrophoresis for Biological Application

    NASA Astrophysics Data System (ADS)

    Kataoka, Masatoshi; Kido, Jun-Ichi; Shinohara, Yasuo

    Microchip electrophoresis has recently attracted much attention in the field of nuclear acid analysis due to its high efficiency, ease of operation, low consumption of samples and reagents, and relatively low costs. Nucleic acid fragments are separated by capillary electrophoresis in a chip with microfabricated channels, with automated detection as well as on-line data evaluation. Microfabricated devices are forecast to be fundamental to the postgenome era, especially in the field of genetics and medicine. However, although there are many reports of the use of these instruments to evaluate standard DNA, DNA ladders, PCR products, and commercially available plasmid digests, little information is available their use with biological material. In this report, we showed the accuracy of sizing and quantification of endonuclease-digested plasmid DNA. We also showed the feasibility of on-microchip endonuclease treatment of plasmid DNA and sequential analysis as an additional application for DNA analysis. Furthermore, to evaluate the possibility of microchip electrophoresis for biological application, the results of the examination of blood sugar in human plasma and mitochondrial membrane potential were shown.

  16. Comparison of first dimension IPG and NEPHGE techniques in two-dimensional gel electrophoresis experiment with cytosolic unfolded protein response in Saccharomyces cerevisiae

    PubMed Central

    2013-01-01

    Background Two-dimensional gel electrophoresis (2DE) is one of the most popular methods in proteomics. Currently, most 2DE experiments are performed using immobilized pH gradient (IPG) in the first dimension; however, some laboratories still use carrier ampholytes-based isoelectric focusing technique. The aim of this study was to directly compare IPG-based and non-equilibrium pH gradient electrophoresis (NEPHGE)-based 2DE techniques by using the same samples and identical second dimension procedures. We have used commercially available Invitrogen ZOOM IPGRunner and WITAvision systems for IPG and NEPHGE, respectively. The effectiveness of IPG-based and NEPHGE-based 2DE methods was compared by analysing differential protein expression during cytosolic unfolded protein response (UPR-Cyto) in Saccharomyces cerevisiae. Results Protein loss during 2DE procedure was higher in IPG-based method, especially for basic (pI > 7) proteins. Overall reproducibility of spots was slightly better in NEPHGE-based method; however, there was a marked difference when evaluating basic and acidic protein spots. Using Coomassie staining, about half of detected basic protein spots were not reproducible by IPG-based 2DE, whereas NEPHGE-based method showed excellent reproducibility in the basic gel zone. The reproducibility of acidic proteins was similar in both methods. Absolute and relative volume variability of separate protein spots was comparable in both 2DE techniques. Regarding proteomic analysis of UPR-Cyto, the results exemplified parameters of general comparison of the methods. New highly basic protein Sis1p, overexpressed during UPR-Cyto stress, was identified by NEPHGE-based 2DE method, whereas IPG-based method showed unreliable results in the basic pI range and did not provide any new information on basic UPR-Cyto proteins. In the acidic range, the main UPR-Cyto proteins were detected and quantified by both methods. The drawback of NEPHGE-based 2DE method is its failure to

  17. Comparison of protein-extraction methods for gills of the shore crab, Carcinus maenas (L.), and application to 2DE.

    PubMed

    Panchout, François; Letendre, Julie; Bultelle, Florence; Denier, Xavier; Rocher, Béatrice; Chan, Philippe; Vaudry, David; Durand, Fabrice

    2013-12-01

    As it is well-established that protein extraction constitutes a crucial step for two-dimensional electrophoresis (2DE), this work was done as a prerequisite to further the study of alterations in the proteome in gills of the shore crab Carcinus maenas under contrasted environmental conditions. Because of the presence of a chitin layer, shore crab gills have an unusual structure. Consequently, they are considered as a hard tissue and represent a challenge for optimal protein extraction. In this study, we compared three published extraction procedures for subsequent applications to 2DE: the first one uses homogenization process, the second one included an additional TCA-acetone precipitation step, and finally, the third one associated grinding in liquid nitrogen (N2) and TCA-acetone precipitation. Extracted proteins were then resolved using 1DE and 2DE. Although interesting patterns were obtained using 1DE with the three methods, only the one involving grinding in liquid N2 and TCA-acetone precipitation led to proper resolution after 2DE, showing a good level of reproducibility at technical (85%) and biological (84%) levels. This last method is therefore proposed for analysis of gill proteomes in the shore crab. PMID:24294114

  18. 2-DE combined with two-layer feature selection accurately establishes the origin of oolong tea.

    PubMed

    Chien, Han-Ju; Chu, Yen-Wei; Chen, Chi-Wei; Juang, Yu-Min; Chien, Min-Wei; Liu, Chih-Wei; Wu, Chia-Chang; Tzen, Jason T C; Lai, Chien-Chen

    2016-11-15

    Taiwan is known for its high quality oolong tea. Because of high consumer demand, some tea manufactures mix lower quality leaves with genuine Taiwan oolong tea in order to increase profits. Robust scientific methods are, therefore, needed to verify the origin and quality of tea leaves. In this study, we investigated whether two-dimensional gel electrophoresis (2-DE) and nanoscale liquid chromatography/tandem mass spectroscopy (nano-LC/MS/MS) coupled with a two-layer feature selection mechanism comprising information gain attribute evaluation (IGAE) and support vector machine feature selection (SVM-FS) are useful in identifying characteristic proteins that can be used as markers of the original source of oolong tea. Samples in this study included oolong tea leaves from 23 different sources. We found that our method had an accuracy of 95.5% in correctly identifying the origin of the leaves. Overall, our method is a novel approach for determining the origin of oolong tea leaves.

  19. Electrophoresis: The Basics (by D. M. Hawcroft)

    NASA Astrophysics Data System (ADS)

    Voige, William H.

    1999-01-01

    D. M. Hawcroft. Oxford University Press: Oxford, 1997. 142 + xii pp. Index. ISBN 0-19-963563-3. $100.00. This concise monograph is one of a series on techniques in widespread use in biochemistry and cell and molecular biology. It seeks to present, in compact and readable form, the fundamentals of electrophoresis and does so very well. Both theory and practice are included, but emphasis is on the latter. Although the preface makes it clear that this book is intended for biologists, it also deserves a place in a truly complete chemistry library. The book is logically organized. Each of the nine chapters corresponds to either a step in an electrophoresis experiment (e.g., Chapter 7: Visualization of Separated Materials) or a major application (Chapter 4: The Electrophoresis of Native and Denatured Proteins). It is written as though the reader is getting ready to begin doing electrophoresis for the first time and needs a survey of the technique and its applications. A question that occurred to me repeatedly as I read through the book is: Exactly how did the author intend it to be used? One can view the book as either a text or a laboratory manual. As a resource that might be used as a supplementary text in a graduate or upper-division undergraduate course, it does an admirable job of presenting a thorough overview of modern electrophoresis. The figures and diagrams are exceptionally clear and present useful comparisons of results that can be obtained under a variety of conditions (e.g., the resolution of DNA fragments obtained with otherwise identical wedge and normal gels). Not all its explanations, however, are as cogent. It defines how the two portions of a discontinuous gel differ but fails to explain clearly how the porosity and pH differences result in the stacking effect, which is such a gel's primary advantage. Having it on hand as a laboratory manual would be much like having colleagues who are experts in all phases of electrophoresis to consult or to go to

  20. Gravitational Fields with 2-Dimensional Killing Leaves and the Gravitational Interaction of Light

    NASA Astrophysics Data System (ADS)

    Vilasi, Gaetano

    Gravitational fields invariant for a non Abelian Lie algebra generating a 2-dimensional distribution, are explicitly described. When the orthogonal distribution is integrable and the metric is not degenerate along the orbits, these solutions are parameterized either by solutions of a transcendental equation (the tortoise equation), or by solutions of Darboux equation. Metrics, corresponding to solutions of the tortoise equation, are characterized as those that admit a 3-dimensional Lie algebra of Killing fields with 2-dimensional leaves. It is shown that the remaining metrics represent nonlinear gravitational waves obeying to two nonlinearsuperposition laws. The energy and the polarization of this family of waves are explicitly evaluated; it is shown that they have spin-1 and their possible sources are also described. Old results by Tolman, Ehrenfest, Podolsky and Wheeler on the gravitational interaction of photons are naturally reinterpreted.

  1. [Applications of microchip electrophoresis and capillary electrophoresis for screening FLT3-ITD gene mutation in acute myeloid leukemia].

    PubMed

    Leng, Xin; Li, Ling-Di; Li, Jin-Lan; Huang, Xiao-Jun; Ruan, Guo-Rui

    2014-02-01

    The purpose of the present study was to compare the reliability of microchip electrophoresis and capillary electrophoresis for screening FLT3-ITD gene mutation in acute myeloid leukemia. The FLT3-ITD mutation in the genomic DNA samples from 214 untreated AML patients were separately detected by PCR-microchip electrophoresis and PCR-capillary electrophoresis, then the DNA direct sequencing analysis was carried out. The results from PCR-microchip electrophoresis showed that there were 151 FLT3-ITD mutation negative, 58 FLT3-ITD mutation positive (58/214, 27.1%) and 5 FLT3-ITD mutation doubtful positive (5/214, 2.3%), while the outcomes from PCR-capillary electrophoresis displayed that there were 147 FLT3-ITD mutation negative and 67 FLT3-ITD mutation positive (67/214, 31.3%) without doubtful positive. In the 67 FLT3-ITD mutation positive samples detected by using PCR-capillary electrophoresis, 4 samples were detected as the negative while 5 samples were measured as the doubtful positive by using PCR-microchip electrophoresis. The followed sequencing analysis demonstrated that the above 9 samples were all FLT3-ITD mutation positive, indicating that PCR-capillary electrophoresis was more accurate and sensitive in screening the FLT3-ITD mutation, although statistic analysis showed that there were no significant differences in the detected results between PCR-microchip electrophoresis and PCR-capillary electrophoresis groups (Pearson Chi-squared Test, P > 0.05). It is concluded that both PCR-microchip electrophoresis and PCR-capillary electrophoresis were convenient and fast for screening FLT3-ITD mutation, but the accuracy of PCR-microchip electrophoresis awaits further improvement.

  2. The fluid mechanics of continuous flow electrophoresis

    NASA Astrophysics Data System (ADS)

    Saville, D. A.

    1990-11-01

    The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.

  3. The fluid mechanics of continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.

    1990-01-01

    The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.

  4. Multiplexed Western Blotting Using Microchip Electrophoresis.

    PubMed

    Jin, Shi; Furtaw, Michael D; Chen, Huaxian; Lamb, Don T; Ferguson, Stephen A; Arvin, Natalie E; Dawod, Mohamed; Kennedy, Robert T

    2016-07-01

    Western blotting is a commonly used protein assay that combines the selectivity of electrophoretic separation and immunoassay. The technique is limited by long time, manual operation with mediocre reproducibility, and large sample consumption, typically 10-20 μg per assay. Western blots are also usually used to measure only one protein per assay with an additional housekeeping protein for normalization. Measurement of multiple proteins is possible; however, it requires stripping membranes of antibody and then reprobing with a second antibody. Miniaturized alternatives to Western blot based on microfluidic or capillary electrophoresis have been developed that enable higher-throughput, automation, and greater mass sensitivity. In one approach, proteins are separated by electrophoresis on a microchip that is dragged along a polyvinylidene fluoride membrane so that as proteins exit the chip they are captured on the membrane for immunoassay. In this work, we improve this method to allow multiplexed protein detection. Multiple injections made from the same sample can be deposited in separate tracks so that each is probed with a different antibody. To further enhance multiplexing capability, the electrophoresis channel dimensions were optimized for resolution while keeping separation and blotting times to less than 8 min. Using a 15 μm deep × 50 μm wide × 8.6 cm long channel, it is possible to achieve baseline resolution of proteins that differ by 5% in molecular weight, e.g., ERK1 (44 kDa) from ERK2 (42 kDa). This resolution allows similar proteins detected by cross-reactive antibodies in a single track. We demonstrate detection of 11 proteins from 9 injections from a single Jurkat cell lysate sample consisting of 400 ng of total protein using this procedure. Thus, multiplexed Western blots are possible without cumbersome stripping and reprobing steps. PMID:27270033

  5. 2-DE using hemi-fluorinated surfactants.

    PubMed

    Starita-Geribaldi, Mireille; Thebault, Pascal; Taffin de Givenchy, Elisabeth; Guittard, Frederic; Geribaldi, Serge

    2007-07-01

    The synthesis of hemi-fluorinated zwitterionic surfactants was realized and assessed for 2-DE, a powerful separation method for proteomic analysis. These new fluorinated amidosulfobetaine (FASB-p,m) were compared to their hydrocarbon counterparts amidosulfobetaine (ASB-n) characterized by a hydrophilic polar head, a hydrophobic and lipophilic tail, and an amido group as connector. The tail of these FASB surfactants was in part fluorinated resulting in the modulation of its lipophilicity (or oleophobicity). Their effect on the red blood cell (RBC) membrane showed a specific solubilization depending on the length of the hydrophobic part. A large number of polypeptide spots appeared in the 2-DE patterns by using FASB-p,m. The oleophobic character of these surfactants was confirmed by the fact that Band 3, a highly hydrophobic transmembrane protein, was not solubilized by these fluorinated structures. The corresponding pellet was very rich in Band 3 and could then be solubilized by using a strong detergent such as amidosulfobetaine with an alkyl tail containing 14 carbon atoms (ASB-14). Thus, these hemi-fluorinated surfactants appeared as powerful tools when used at the first step of a two-step solubilization strategy using a hydrocarbon homologous surfactant in the second step. PMID:17577887

  6. 2-DE using hemi-fluorinated surfactants.

    PubMed

    Starita-Geribaldi, Mireille; Thebault, Pascal; Taffin de Givenchy, Elisabeth; Guittard, Frederic; Geribaldi, Serge

    2007-07-01

    The synthesis of hemi-fluorinated zwitterionic surfactants was realized and assessed for 2-DE, a powerful separation method for proteomic analysis. These new fluorinated amidosulfobetaine (FASB-p,m) were compared to their hydrocarbon counterparts amidosulfobetaine (ASB-n) characterized by a hydrophilic polar head, a hydrophobic and lipophilic tail, and an amido group as connector. The tail of these FASB surfactants was in part fluorinated resulting in the modulation of its lipophilicity (or oleophobicity). Their effect on the red blood cell (RBC) membrane showed a specific solubilization depending on the length of the hydrophobic part. A large number of polypeptide spots appeared in the 2-DE patterns by using FASB-p,m. The oleophobic character of these surfactants was confirmed by the fact that Band 3, a highly hydrophobic transmembrane protein, was not solubilized by these fluorinated structures. The corresponding pellet was very rich in Band 3 and could then be solubilized by using a strong detergent such as amidosulfobetaine with an alkyl tail containing 14 carbon atoms (ASB-14). Thus, these hemi-fluorinated surfactants appeared as powerful tools when used at the first step of a two-step solubilization strategy using a hydrocarbon homologous surfactant in the second step.

  7. Capillary zone electrophoresis in pharmaceutical analysis.

    PubMed

    Fanali, S; Cristalli, M; Nardi, A; Ossicini, L; Shukla, S K

    1990-06-01

    The paper presents a brief characterization of capillary zone electrophoresis, a modern analytical separation method with high expediency for practical applications, especially in pharmaceutical analysis. Basic theoretical considerations are presented and discussed to explain the effects of the operational parameters upon the separation efficiency and resolution of species. Descriptions of simple instrumentation and of the analytical procedure itself are given. Experimental examples are given of the separation of mixtures of pharmaceutically important compounds and of the effects of operational parameters, especially pH of BGE and voltage applied. Lastly, the practical application of CZE for analysis of isoxsuprine in commercial preparations is shown.

  8. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, Joseph W.; Carrano, Anthony V.; Davidson, James C.; Koo, Jackson C.

    1998-01-01

    A hybrid slab-microchannel gel electrophoresis system. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate.

  9. Simul 5 - free dynamic simulator of electrophoresis.

    PubMed

    Hruska, Vlastimil; Jaros, Michal; Gas, Bohuslav

    2006-03-01

    We introduce the mathematical model of electromigration of electrolytes in free solution together with free software Simul, version 5, designed for simulation of electrophoresis. The mathematical model is based on principles of mass conservation, acid-base equilibria, and electroneutrality. It accounts for any number of multivalent electrolytes or ampholytes and yields a complete picture about dynamics of electromigration and diffusion in the separation channel. Additionally, the model accounts for the influence of ionic strength on ionic mobilities and electrolyte activities. The typical use of Simul is: inspection of system peaks (zones), stacking and preconcentrating analytes, resonance phenomena, and optimization of separation conditions, in either CZE, ITP, or IEF.

  10. Using capillary electrophoresis for failure analysis

    SciTech Connect

    Kelly, R.G.; Scully, H.S.; Stoner, G.E. . Center for Electrochemical Science and Engineering)

    1993-07-01

    Capillary electrophoresis (CE), an advanced solution analysis technique, can be used for failure analysis of corroded components. It has high sensitivity (concentrations as low as parts-per-trillion) and can detect quantitatively a large number of ionic species. CE determined the vapor-phase attack by organic acids, mainly acetic acid, on an electrical equipment enclosure. These acids most likely originated from the seasoning of the oak pallets used to transport the manufactured items, accumulating inside the shrink-wrap film used to bind packages to the pallet.

  11. Pulsed field gel electrophoresis for dairy propionibacteria.

    PubMed

    Chuat, Victoria; de Freitas, Rosangela; Dalmasso, Marion

    2015-01-01

    Pulsed field gel electrophoresis (PFGE) is a technique using alternating electric fields to migrate high molecular weight DNA fragments with a high resolution. This method consists of the digestion of bacterial chromosomal DNA with rare-cutting restriction enzymes and in applying an alternating electrical current between spatially distinct pairs of electrodes. DNA molecules migrate at different speeds according to the size of the fragments. Among other things, this technique is considered as the "gold standard" for genotyping, genetic fingerprinting, epidemiological studies, genome size estimation, and studying radiation-induced DNA damage and repair. This chapter describes a PFGE method that can be used to differentiate dairy propionibacteria. PMID:25862063

  12. Integrated chip-based capillary electrophoresis.

    PubMed

    Effenhauser, C S; Bruin, G J; Paulus, A

    1997-11-01

    Integrated capillary electrophoresis (ICE) is emerging as a new analytical tool allowing fast, automated, miniaturized and multiplexed assays, thus meeting the needs of the pharmaceutical industry in drug development. The current state-of-the-art of ICE is described with an emphasis on the choice of the support material (glass or polymeric materials), electrokinetic fluid handling, and injection and detection issues. Strategies and chip designs for pre- or post-column derivatization, DNA sequencing, on-line PCR analysis, on-chip enzymatic sample digestion, fraction isolation, and immunoassays are presented. The review concludes with a brief outlook.

  13. Electrohydrodynamic effects in continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S.; Roberts, G. O.; Baygents, J. C.

    1991-01-01

    We demonstrate experimentally and theoretically the importance of electrohydrodynamic (EHD) flows in continuous-flow electrophoresis (CFE) separations. These flows are associated with variations in the conductivity or dielectric constant, and are quadratic in the field strength. They appear to be the main cause of extraneous and undesired flows in CFE which have degraded separation performance and have until now not been explained. We discuss the importance of EHD flows relative to other effects. We also describe possible techniques for reducing the associated degradation of CFE separations.

  14. Microfabricated capillary array electrophoresis device and method

    DOEpatents

    Simpson, Peter C.; Mathies, Richard A.; Woolley, Adam T.

    2000-01-01

    A capillary array electrophoresis (CAE) micro-plate with an array of separation channels connected to an array of sample reservoirs on the plate. The sample reservoirs are organized into one or more sample injectors. One or more waste reservoirs are provided to collect wastes from reservoirs in each of the sample injectors. Additionally, a cathode reservoir is also multiplexed with one or more separation channels. To complete the electrical path, an anode reservoir which is common to some or all separation channels is also provided on the micro-plate. Moreover, the channel layout keeps the distance from the anode to each of the cathodes approximately constant.

  15. Microfabricated capillary array electrophoresis device and method

    DOEpatents

    Simpson, Peter C.; Mathies, Richard A.; Woolley, Adam T.

    2004-06-15

    A capillary array electrophoresis (CAE) micro-plate with an array of separation channels connected to an array of sample reservoirs on the plate. The sample reservoirs are organized into one or more sample injectors. One or more waste reservoirs are provided to collect wastes from reservoirs in each of the sample injectors. Additionally, a cathode reservoir is also multiplexed with one or more separation channels. To complete the electrical path, an anode reservoir which is common to some or all separation channels is also provided on the micro-plate. Moreover, the channel layout keeps the distance from the anode to each of the cathodes approximately constant.

  16. Recent advances in amino acid analysis by capillary electrophoresis.

    PubMed

    Poinsot, Véréna; Carpéné, Marie-Anne; Bouajila, Jalloul; Gavard, Pierre; Feurer, Bernard; Couderc, François

    2012-01-01

    This paper describes the most important articles that have been published on amino acid analysis using CE during the period from June 2009 to May 2011 and follows the format of the previous articles of Smith (Electrophoresis 1999, 20, 3078-3083), Prata et al. (Electrophoresis 2001, 22, 4129-4138) and Poinsot et al. (Electrophoresis 2003, 24, 4047-4062; Electrophoresis 2006, 27, 176-194; Electrophoresis 2008, 29, 207-223; Electrophoresis 2010, 31, 105-121). We present new developments in amino acid analysis with CE, which are reported describing the use of lasers or light emitting diodes for fluorescence detection, conductimetry electrochemiluminescence detectors, mass spectrometry applications, and lab-on-a-chip applications using CE. In addition, we describe articles concerning clinical studies and neurochemical applications of these techniques.

  17. Analysis of Protein Oligomerization by Electrophoresis.

    PubMed

    Cubillos-Rojas, Monica; Schneider, Taiane; Sánchez-Tena, Susana; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis

    2016-01-01

    A polypeptide chain can interact with other polypeptide chains and form stable and functional complexes called "oligomers." Frequently, biochemical analysis of these complexes is made difficult by their great size. Traditionally, size exclusion chromatography, immunoaffinity chromatography, or immunoprecipitation techniques have been used to isolate oligomers. Components of these oligomers are then further separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and identified by immunoblotting with specific antibodies. Although they are sensitive, these techniques are not easy to perform and reproduce. The use of Tris-acetate polyacrylamide gradient gel electrophoresis allows the simultaneous analysis of proteins in the mass range of 10-500 kDa. We have used this characteristic together with cross-linking reagents to analyze the oligomerization of endogenous proteins with a single electrophoretic gel. We demonstrate how the oligomerization of p53, the pyruvate kinase isoform M2, or the heat shock protein 27 can be studied with this system. We also show how this system is useful for studying the oligomerization of large proteins such as clathrin heavy chain or the tuberous sclerosis complex. Oligomerization analysis is dependent on the cross-linker used and its concentration. All of these features make this system a very helpful tool for the analysis of protein oligomerization. PMID:27613048

  18. Using capillary electrophoresis to characterize polymeric particles.

    PubMed

    Riley, Kathryn R; Liu, Sophia; Yu, Guo; Libby, Kara; Cubicciotti, Roger; Colyer, Christa L

    2016-09-01

    Capillary electrophoresis (CE) was used for the characterization of a variety of polymeric micron and sub-micron particles based on size, surface functionality, and binding properties. First, a robust capillary zone electrophoresis (CZE) method was developed for the baseline separation and quantitation of commercially available polystyrene particles with various surface modifications (including amino, carboxylate, and sulfate functional groups) and various sizes (0.2, 0.5, 1.0, and 3.0μm). The separation of DNA-templated polyacrylamide particles from untemplated particles (as used for the Ion Torrent Personal Genome Machine) was demonstrated. Finally, using the 29-base thrombin aptamer and thrombin protein as a model system, a study was undertaken to determine dissociation constants for the aptamer and protein in free solution and when the aptamer was conjugated to a particle, with the goal of better understanding how the use of solid substrates, like particles, affects selection and binding processes. Dissociation constants were determined and were found to be approximately 5-fold higher for the aptamer conjugated to a particle relative to that in free solution. PMID:27543386

  19. Gel Electrophoresis of Gold-DNA Nanoconjugates

    DOE PAGES

    Pellegrino, T.; Sperling, R. A.; Alivisatos, A. P.; Parak, W. J.

    2007-01-01

    Gold-DNA conjugates were investigated in detail by a comprehensive gel electrophoresis study based on 1200 gels. A controlled number of single-stranded DNA of different length was attached specifically via thiol-Au bonds to phosphine-stabilized colloidal gold nanoparticles. Alternatively, the surface of the gold particles was saturated with single stranded DNA of different length either specifically via thiol-Au bonds or by nonspecific adsorption. From the experimentally determined electrophoretic mobilities, estimates for the effective diameters of the gold-DNA conjugates were derived by applying two different data treatment approaches. The first method is based on making a calibration curve for the relation between effectivemore » diameters and mobilities with gold nanoparticles of known diameter. The second method is based on Ferguson analysis which uses gold nanoparticles of known diameter as reference database. Our study shows that effective diameters derived from gel electrophoresis measurements are affected with a high error bar as the determined values strongly depend on the method of evaluation, though relative changes in size upon binding of molecules can be detected with high precision. Furthermore, in this study, the specific attachment of DNA via gold-thiol bonds to Au nanoparticles is compared to nonspecific adsorption of DNA. Also, the maximum number of DNA molecules that can be bound per particle was determined.« less

  20. Micro-injector for capillary electrophoresis.

    PubMed

    Sáiz, Jorge; Koenka, Israel Joel; García-Ruiz, Carmen; Müller, Beat; Chwalek, Thomas; Hauser, Peter C

    2015-08-01

    A novel micro-injector for capillary electrophoresis for the handling of samples with volumes down to as little as 300 nL was designed and built in our laboratory for analyses in which the available volume is a limitation. The sample is placed into a small cavity located directly in front of the separation capillary, and the injection is then carried out automatically by controlled pressurization of the chamber with compressed air. The system also allows automated flushing of the injection chamber as well as of the capillary. In a trial with a capillary electrophoresis system with contactless conductivity detector, employing a capillary of 25 μm diameter, the results showed good stability of migration times and peak areas. To illustrate the technique, the fast separation of five inorganic cations (Na(+) , K(+) , NH4 (+) , Ca(2+) , and Mg(2+) ) was set up. This could be achieved in less than 3 min, with good limits of detection (10 μM) and linear ranges (between about 10 and 1000 μM). The system was demonstrated for the determination of the inorganic cations in porewater samples of a lake sediment core.

  1. Microfabricated polymer chip for capillary gel electrophoresis.

    PubMed

    Hong, J W; Hosokawa, K; Fujii, T; Seki, M; Endo, I

    2001-01-01

    A polymer (PDMS: poly(dimethylsiloxane)) microchip for capillary gel electrophoresis that can separate different sizes of DNA molecules in a small experimental scale is presented. This microchip can be easily produced by a simple PDMS molding method against a microfabricated master without the use of elaborate bonding processes. This PDMS microchip could be used as a single use device unlike conventional microchips made of glass, quartz or silicon. The capillary channel on the chip was partially filled with agarose gel that can enhance separation resolution of different sizes of DNA molecules and can shorten the channel length required for the separation of the sample compared to capillary electrophoresis in free-flow or polymer solution format. We discuss the optimal conditions for the gel preparation that could be used in the microchannel. DNA molecules were successfully driven by an electric field and separated to form bands in the range of 100 bp to 1 kbp in a 2.0% agarose-filled microchannel with 8 mm of effective separation length.

  2. Fractionation of mineral species by electrophoresis

    NASA Technical Reports Server (NTRS)

    Dunning, J. D.; Herren, B. J.; Tipps, R. W.; Snyder, R. S.

    1982-01-01

    The fractionation of fine-grained aggregates into their major components is a problem in many scientific areas including earth and planetary science. Electrophoresis, the transport of electrically charged particles, immersed in a suspension medium, by a direct current field (Bier, 1959), was employed in this study as a means of separating simulated lunar soil into its constituent minerals. In these tests, conducted in a static analytical cylindrical microelectrophoresis apparatus, samples of simulated lunar soil and samples of pure mineral constituents were placed in the chamber; the electrophoretic mobilities of the lunar soil and the individual mineral constituents were measured. In most of the suspension buffers employed separability was indicated, on the basis of differences in mobility, for all the constituent mineral species except ilmenite and pyroxene, which were not efficiently separable in any of the buffers. Although only a few suspension media were employed, the success of this initial study suggests that electrophoresis may be an important mineral fractionation option in fine-grained aggregate processing.

  3. Recent advances in microchip electrophoresis for amino acid analysis.

    PubMed

    Ou, Gaozhi; Feng, Xiaojun; Du, Wei; Liu, Xin; Liu, Bi-Feng

    2013-10-01

    With the maturation of microfluidic technologies, microchip electrophoresis has been widely employed for amino acid analysis owing to its advantages of low sample consumption, reduced analysis time, high throughput, and potential for integration and automation. In this article, we review the recent progress in amino acid analysis using microchip electrophoresis during the period from 2007 to 2012. Innovations in microchip materials, surface modification, sample introduction, microchip electrophoresis, and detection methods are documented, as well as nascent applications of amino acid analysis in single-cell analysis, microdialysis sampling, food analysis, and extraterrestrial exploration. Without doubt, more applications of microchip electrophoresis in amino acid analysis may be expected soon.

  4. Recent advances in microchip electrophoresis for amino acid analysis.

    PubMed

    Ou, Gaozhi; Feng, Xiaojun; Du, Wei; Liu, Xin; Liu, Bi-Feng

    2013-10-01

    With the maturation of microfluidic technologies, microchip electrophoresis has been widely employed for amino acid analysis owing to its advantages of low sample consumption, reduced analysis time, high throughput, and potential for integration and automation. In this article, we review the recent progress in amino acid analysis using microchip electrophoresis during the period from 2007 to 2012. Innovations in microchip materials, surface modification, sample introduction, microchip electrophoresis, and detection methods are documented, as well as nascent applications of amino acid analysis in single-cell analysis, microdialysis sampling, food analysis, and extraterrestrial exploration. Without doubt, more applications of microchip electrophoresis in amino acid analysis may be expected soon. PMID:23436170

  5. Local pixel value collection algorithm for spot segmentation in two-dimensional gel electrophoresis research.

    PubMed

    Peer, Peter; Corzo, Luis Galo

    2007-01-01

    Two-dimensional gel-electrophoresis (2-DE) images show the expression levels of several hundreds of proteins where each protein is represented as a blob-shaped spot of grey level values. The spot detection, that is, the segmentation process has to be efficient as it is the first step in the gel processing. Such extraction of information is a very complex task. In this paper, we propose a novel spot detector that is basically a morphology-based method with the use of a seeded region growing as a central paradigm and which relies on the spot correlation information. The method is tested on our synthetic as well as on real gels with human samples from SWISS-2DPAGE (two-dimensional polyacrylamide gel electrophoresis) database. A comparison of results is done with a method called pixel value collection (PVC). Since our algorithm efficiently uses local spot information, segments the spot by collecting pixel values and its affinity with PVC, we named it local pixel value collection (LPVC). The results show that LPVC achieves similar segmentation results as PVC, but is much faster than PVC.

  6. Local Pixel Value Collection Algorithm for Spot Segmentation in Two-Dimensional Gel Electrophoresis Research

    PubMed Central

    Peer, Peter; Corzo, Luis Galo

    2007-01-01

    Two-dimensional gel-electrophoresis (2-DE) images show the expression levels of several hundreds of proteins where each protein is represented as a blob-shaped spot of grey level values. The spot detection, that is, the segmentation process has to be efficient as it is the first step in the gel processing. Such extraction of information is a very complex task. In this paper, we propose a novel spot detector that is basically a morphology-based method with the use of a seeded region growing as a central paradigm and which relies on the spot correlation information. The method is tested on our synthetic as well as on real gels with human samples from SWISS-2DPAGE (two-dimensional polyacrylamide gel electrophoresis) database. A comparison of results is done with a method called pixel value collection (PVC). Since our algorithm efficiently uses local spot information, segments the spot by collecting pixel values and its affinity with PVC, we named it local pixel value collection (LPVC). The results show that LPVC achieves similar segmentation results as PVC, but is much faster than PVC. PMID:18274608

  7. Local pixel value collection algorithm for spot segmentation in two-dimensional gel electrophoresis research.

    PubMed

    Peer, Peter; Corzo, Luis Galo

    2007-01-01

    Two-dimensional gel-electrophoresis (2-DE) images show the expression levels of several hundreds of proteins where each protein is represented as a blob-shaped spot of grey level values. The spot detection, that is, the segmentation process has to be efficient as it is the first step in the gel processing. Such extraction of information is a very complex task. In this paper, we propose a novel spot detector that is basically a morphology-based method with the use of a seeded region growing as a central paradigm and which relies on the spot correlation information. The method is tested on our synthetic as well as on real gels with human samples from SWISS-2DPAGE (two-dimensional polyacrylamide gel electrophoresis) database. A comparison of results is done with a method called pixel value collection (PVC). Since our algorithm efficiently uses local spot information, segments the spot by collecting pixel values and its affinity with PVC, we named it local pixel value collection (LPVC). The results show that LPVC achieves similar segmentation results as PVC, but is much faster than PVC. PMID:18274608

  8. Dynamical analysis and simulation of a 2-dimensional disease model with convex incidence

    NASA Astrophysics Data System (ADS)

    Yu, Pei; Zhang, Wenjing; Wahl, Lindi M.

    2016-08-01

    In this paper, a previously developed 2-dimensional disease model is studied, which can be used for both epidemiologic modeling and in-host disease modeling. The main attention of this paper is focused on various dynamical behaviors of the system, including Hopf and generalized Hopf bifurcations which yield bistability and tristability, Bogdanov-Takens bifurcation, and homoclinic bifurcation. It is shown that the Bogdanov-Takens bifurcation and homoclinic bifurcation provide a new mechanism for generating disease recurrence, that is, cycles of remission and relapse such as the viral blips observed in HIV infection.

  9. From 2-D electrophoresis to proteomics.

    PubMed

    Klose, Joachim

    2009-06-01

    At first, a short history of the beginning of 2-DE is provided. Based on the present state of the art at the time I developed a 2-DE technique in 1975 that was able to resolve complex protein extracts from mouse tissues in hundreds of protein spots. My intention was to study proteins from a global point of view. Questions of interest were, how do proteins change during embryonic development, and what is the effect of induced mutations on the protein level. At that time protein chemistry was a matter of analyzing single proteins in detail. Therefore, my approach was frequently criticized as inappropriate because it would be impossible to identify and characterize the hundreds of proteins resolved. But soon it was realized that studying total proteins gives opportunities to answer many interesting questions. This led to a research field nowadays called "proteomics". Already in the beginning of the 1980s the idea to analyze the total human proteins had come up. By entering the post-genome era it became obvious that a human proteome project is needed in order to explain the human genome in terms of its functions. The problems in realizing such a project are considered. PMID:19517494

  10. Separation of Peptides by Capillary Electrophoresis.

    PubMed

    Scriba, Gerhard K E

    2016-01-01

    Peptides are an important class of analytes in chemistry, biochemistry, food chemistry, as well as medical and pharmaceutical sciences including biomarker analysis in peptidomics and proteomics. As a high-resolution technique, capillary electrophoresis (CE) is well suited for the analysis of polar compounds such as peptides. In addition, CE is orthogonal to high-performance liquid chromatography (HPLC) as both techniques are based on different physicochemical separation principles. For the successful development of peptide separations by CE, operational parameters including puffer pH, buffer concentration and buffer type, applied voltage, capillary dimensions, as well as background electrolyte additives such as detergents, ion-pairing reagents, cyclodextrins, (poly)amines, and soluble polymers have to be considered and optimized. PMID:27645745

  11. Automated DNA electrophoresis, hybridization and detection

    SciTech Connect

    Zapolski, E.J.; Gersten, D.M.; Golab, T.J.; Ledley, R.S.

    1986-05-01

    A fully automated, computer controlled system for nucleic acid hybridization analysis has been devised and constructed. In practice, DNA is digested with restriction endonuclease enzyme(s) and loaded into the system by pipette; /sup 32/P-labelled nucleic acid probe(s) is loaded into the nine hybridization chambers. Instructions for all the steps in the automated process are specified by answering questions that appear on the computer screen at the start of the experiment. Subsequent steps are performed automatically. The system performs horizontal electrophoresis in agarose gel, fixed the fragments to a solid phase matrix, denatures, neutralizes, prehybridizes, hybridizes, washes, dries and detects the radioactivity according to the specifications given by the operator. The results, printed out at the end, give the positions on the matrix to which radioactivity remains hybridized following stringent washing.

  12. Capillary Electrophoresis of Mono- and Oligosaccharides.

    PubMed

    Toppazzini, Mila; Coslovi, Anna; Rossi, Marco; Flamigni, Anna; Baiutti, Edi; Campa, Cristiana

    2016-01-01

    This chapter reports an overview of the recent advances in the analysis of mono- and oligosaccharides by capillary electrophoresis (CE); furthermore, relevant reviews and research articles recently published in the field are tabulated. Additionally, pretreatments and procedures applied to uncharged and acidic carbohydrates (i.e., monosaccharides and lower oligosaccharides carrying carboxylate, sulfate, or phosphate groups) are described.Representative examples of such procedures are reported in detail, upon describing robust methodologies for the study of (1) neutral oligosaccharides derivatized by reductive amination and by formation of glycosylamines; (2) sialic acid derivatized with 2-aminoacridone, released from human serum immunoglobulin G; (3) anomeric couples of neutral glycosides separated using borate-based buffers; (4) unsaturated, underivatized oligosaccharides from lyase-treated alginate. PMID:27645743

  13. Combined electrophoresis-electrospray interface and method

    DOEpatents

    Smith, Richard P.; Udseth, Harold R.; Olivares, Jose A.

    1989-01-01

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5-100 KVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., .+-.2-8 KVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit, or by conduction through a sheath electrode discharged in an annular sheath flow about the capillary exit.

  14. Combined electrophoresis-electrospray interface and method

    DOEpatents

    Smith, Richard D.; Udseth, Harold R.; Olivares, Jose A.

    1994-10-18

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5-100 KVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., .+-.2-8 KVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit, or by conduction through a sheath electrode discharged in an annular sheath flow about the capillary exit.

  15. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, J.W.; Carrano, A.V.; Davidson, J.C.; Koo, J.C.

    1998-05-05

    A hybrid slab-microchannel gel electrophoresis system is described. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate. 4 figs.

  16. Dating silk by capillary electrophoresis mass spectrometry.

    PubMed

    Moini, Mehdi; Klauenberg, Kathryn; Ballard, Mary

    2011-10-01

    A new capillary electrophoresis mass spectrometry (CE-MS) technique is introduced for age estimation of silk textiles based on amino acid racemization rates. With an L to D conversion half-life of ~2500 years for silk (B. mori) aspartic acid, the technique is capable of dating silk textiles ranging in age from several decades to a few-thousand-years-old. Analysis required only ~100 μg or less of silk fiber. Except for a 2 h acid hydrolysis at 110 °C, no other sample preparation is required. The CE-MS analysis takes ~20 min, consumes only nanoliters of the amino acid mixture, and provides both amino acid composition profiles and D/L ratios for ~11 amino acids.

  17. Novel absorption detection techniques for capillary electrophoresis

    SciTech Connect

    Xue, Y.

    1994-07-27

    Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the {mu}M level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.

  18. Applications of capillary electrophoresis in biotechnology.

    PubMed

    Lagu, A L

    1999-10-01

    Capillary electrophoresis (CE)-related techniques are increasingly being used as a matter of routine practice in the biotechnology discipline. Since recombinant DNA-derived proteins and the antisense oligonucleotides constitute a large portion of the applications of these techniques, they have been emphasized in this review. Analyses by CE of Escherichia coli-derived proteins and glycosylated proteins derived from mammalian cell cultures are summarized, as well as those of the carbohydrate chains that have been enzymatically removed from the protein. Applications of CE in the analysis of the antisense oligonucleotides for the determination of purity and the analytical studies on the metabolism of these modified oligonucleotides, by CE are reviewed. The literature mainly covers the period from 1996. PMID:10596822

  19. Combined electrophoresis-electrospray interface and method

    DOEpatents

    Smith, R.D.; Udseth, H.R.; Olivares, J.A.

    1994-10-18

    A system and method for analyzing molecular constituents of a composition sample include: forming a solution of the sample, separating the solution by capillary electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5--100 kVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g.,{+-}2--8 kVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit, or by conduction through a sheath electrode discharged in an annular sheath flow about the capillary exit. 21 figs.

  20. Antibody enhancement of free-flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Cohly, H. H. P.; Morrison, Dennis R.; Atassi, M. Zouhair

    1988-01-01

    Specific T cell clones and antibodies (ABs) were developed to study the efficiency of purifying closely associated T cells using Continuous Flow Electrophoresis System. Enhanced separation is accomplished by tagging cells first with ABs directed against the antigenic determinants on the cell surface and then with ABs against the Fc portion of the first AB. This second AB protrudes sufficiently beyond the cell membrane and glycocalyx to become the major overall cell surface potential determinant and thus causes a reduction of electrophoretic mobility. This project was divided into three phases. Phase one included development of specific T cell clones and separation of these specific clones. Phase two extends these principles to the separation of T cells from spleen cells and immunized lymph node cells. Phase three applies this double antibody technique to the separation of T cytotoxic cells from bone marrow.

  1. High resolution detection system of capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Li Qiang; Shi, Yan; Zheng, Hua; Lu, Zu Kang

    2007-12-01

    The capillary electrophoresis (CE) with laser induced fluorescence detection (LIFD) system was founded according to confocal theory. The 3-D adjustment of the exciting and collecting optical paths was realized. The photomultiplier tube (PMT) is used and the signals are processed by a software designed by ourselves. Under computer control, high voltage is applied to appropriate reservoirs and to inject and separate DNA samples respectively. Two fluorescent dyes Thiazole Orange (TO) and SYBR Green I were contrasted. With both of the dyes, high signals-to-noise images were obtained with the CE-LIFD system. The single-bases can be distinguished from the electrophoretogram and high resolution of DNA sample separation was obtained.

  2. Determination of enantiomeric excess by capillary electrophoresis.

    PubMed

    Blomberg, L G; Wan, H

    2000-06-01

    Capillary electrophoresis (CE) is becoming an established method for the determination of chiral trace impurities. This paper provides an overview of the state of the art of CE for such determinations. Detection limits of 0.1% impurity is widely accepted as a minimum requirement for chiral trace impurity determinations. This can be relatively easily achieved with CE. However, determination of lower concentrations requires careful optimization of the separation system. Four factors that are of particular significance for trace enantiomeric determinations: resolution, limit of detection, linear range and type of detection, are discussed. Further, the advantages and disadvantages of derivatization in this context are treated as well as the separation approach, ie., direct chiral separation or separation after the formation of diastereomers. It is concluded that the limit of impurity detection can be about 0.05% when UV detection is employed. Using laser-induced fluorescence detection, a quantitative determination at the 0.005% level is often possible.

  3. Flow structure in continuous flow electrophoresis chambers

    NASA Technical Reports Server (NTRS)

    Deiber, J. A.; Saville, D. A.

    1982-01-01

    There are at least two ways that hydrodynamic processes can limit continiuous flow electrophoresis. One arises from the sensitivity of the flow to small temerature gradients, especially at low flow rates and power levels. This sensitivity can be suppressed, at least in principle, by providing a carefully tailored, stabilizing temperature gradient in the cooling system that surrounds the flow channel. At higher power levels another limitation arises due to a restructuring of the main flow. This restructuring is caused by buoyancy, which is in turn affected by the electro-osmotic crossflow. Approximate solutions to appropriate partial differential equations have been computed by finite difference methods. One set of results is described here to illustrate the strong coupling between the structure of the main (axial) flow and the electro-osmotic flow.

  4. Combined electrophoresis-electrospray interface and method

    DOEpatents

    Smith, R.P.; Udseth, H.R.; Olivares, J.A.

    1989-12-05

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5--100 kVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., [+-]2--8 kVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit, or by conduction through a sheath electrode discharged in an annular sheath flow about the capillary exit. 21 figs.

  5. The PROTICdb database for 2-DE proteomics.

    PubMed

    Langella, Olivier; Zivy, Michel; Joets, Johann

    2007-01-01

    PROTICdb is a web-based database mainly designed to store and analyze plant proteome data obtained by 2D polyacrylamide gel electrophoresis (2D PAGE) and mass spectrometry (MS). The goals of PROTICdb are (1) to store, track, and query information related to proteomic experiments, i.e., from tissue sampling to protein identification and quantitative measurements; and (2) to integrate information from the user's own expertise and other sources into a knowledge base, used to support data interpretation (e.g., for the determination of allelic variants or products of posttranslational modifications). Data insertion into the relational database of PROTICdb is achieved either by uploading outputs from Mélanie, PDQuest, IM2d, ImageMaster(tm) 2D Platinum v5.0, Progenesis, Sequest, MS-Fit, and Mascot software, or by filling in web forms (experimental design and methods). 2D PAGE-annotated maps can be displayed, queried, and compared through the GelBrowser. Quantitative data can be easily exported in a tabulated format for statistical analyses with any third-party software. PROTICdb is based on the Oracle or the PostgreSQLDataBase Management System (DBMS) and is freely available upon request at http://cms.moulon.inra.fr/content/view/14/44/.

  6. A viscosity model of polyacrylamide gel electrophoresis.

    PubMed

    Bode, H J

    1979-08-01

    In current theories of polyacrylamide gel electrophoresis, the idea prevails that molecular sieving relies on different accessibility of volume fractions and of cross-sectional area fractions (denoted "pores") to different-sized ions due to the effect of "geometric exclusion". This correlates with the assumption that all elements of a polyacrylamide network occupy fixed and unchangeable positions thus forcing colliding macro-ions to diffuse laterally in order to find an "accessible pore" and to resume motion in direction of the electrical field. However, the alternative conception would be equally well justified, i.e. the assumption that polyacrylamide chains represent smooth obstacles cleared aside under the electrokinetic pressure of a macro-ion. This explanation would even be preferable with respect to the molecular sieving effects occurring in solutions of "liquid polyacrylamide". Yet no theory exists as to describe such effects in quantitative terms. In the present article, a parameter is defined and discussed, which can be estimated by experiment, and which seems to be apt to characterize local resistivity of polymer structures against dislocation and deformation: the "fractional specific resistance". Definition of this parameter is based on the model of a "viscosity-emulsion" composed of two interpenetrating liquid compartments which are characterized by different levels of hydrodynamic friction and the spatial dimensions of which are inferred from Ogston's theory. This concept of "localized viscosity" may also serve as a link between theories of molecular sieving and of "macroscopic viscosity" of flexible polymers. The data of Morris, formerly taken as verifications of the "rigid-pore" concept, are now interpreted in terms of four factors responsible for sizediscrimination: collision frequency, duration of single contacts, size-dependent frictional force, and the extent of cooperation among fibres, due to crosslinking and to simultanous contacts of several

  7. Two-dimensional electrophoresis of liver proteins: characterization of a drug-induced hepatomegaly in rats.

    PubMed

    Newsholme, S J; Maleeff, B F; Steiner, S; Anderson, N L; Schwartz, L W

    2000-06-01

    Two-dimensional electrophoresis (2-DE) of liver proteins was applied to further characterize an unusual drug-induced increase in hepatocellular rough endoplasmic reticulum (RER) in Sprague-Dawley rats given a substituted pyrimidine derivative. Absolute liver weights of drug-treated rats (9.9 +/- 0.4 g) increased above vehicle-treated controls (7.2 +/- 0.2 g) by 37%. Light microscopy revealed diffuse granular basophilia of the hepatocellular cytoplasm, uncharacteristic of hepatocytes and suggested cells rich in ribosomes, which was confirmed by electron microscopy. Immunostaining for cell proliferation, viz., 5-bromo-2'-deoxyuridine (BrdU) and proliferating cell nuclear antigen (PCNA), indicated marked hepatocellular proliferative activity. 2-DE of solubilized liver using an ISO-DALT gel system indicated significant (p<0.001) quantitative changes in at least 17 liver proteins (12 increased, 5 decreased) compared to controls. The protein with the largest increase was homologous to acute-phase reactant, contrapsin-like protein inhibitor-6. Other markedly upregulated proteins were methionine adenosyltransferase, a catalyst in methionine/ATP metabolism and mitochondrial HMG-CoA synthase, involved in cholesterol synthesis. The complementary strategies of 2-DE coupled either with database spot mapping or protein isolation and amino acid sequencing successfully identified a subset of proteins from xenobiotic-damaged rodent livers, the expression of which differed from controls. However, the current bioinformatics platform for rodent hepatic proteins and limited knowledge of specific protein functionality restricted application of this proteomics profile to further define a mechanistic basis for this unusual hepatotoxicity.

  8. A finger-shaped tactile sensor for fabric surfaces evaluation by 2-dimensional active sliding touch.

    PubMed

    Hu, Haihua; Han, Yezhen; Song, Aiguo; Chen, Shanguang; Wang, Chunhui; Wang, Zheng

    2014-01-01

    Sliding tactile perception is a basic function for human beings to determine the mechanical properties of object surfaces and recognize materials. Imitating this process, this paper proposes a novel finger-shaped tactile sensor based on a thin piezoelectric polyvinylidene fluoride (PVDF) film for surface texture measurement. A parallelogram mechanism is designed to ensure that the sensor applies a constant contact force perpendicular to the object surface, and a 2-dimensional movable mechanical structure is utilized to generate the relative motion at a certain speed between the sensor and the object surface. By controlling the 2-dimensional motion of the finger-shaped sensor along the object surface, small height/depth variation of surface texture changes the output charge of PVDF film then surface texture can be measured. In this paper, the finger-shaped tactile sensor is used to evaluate and classify five different kinds of linen. Fast Fourier Transformation (FFT) is utilized to get original attribute data of surface in the frequency domain, and principal component analysis (PCA) is used to compress the attribute data and extract feature information. Finally, low dimensional features are classified by Support Vector Machine (SVM). The experimental results show that this finger-shaped tactile sensor is effective and high accurate for discriminating the five textures.

  9. Determining the Best Sensing Coverage for 2-Dimensional Acoustic Target Tracking

    PubMed Central

    Pashazadeh, Saeid; Sharifi, Mohsen

    2009-01-01

    Distributed acoustic target tracking is an important application area of wireless sensor networks. In this paper we use algebraic geometry to formally model 2-dimensional acoustic target tracking and then prove its best degree of required sensing coverage. We present the necessary conditions for three sensing coverage to accurately compute the spatio-temporal information of a target object. Simulations show that 3-coverage accurately locates a target object only in 53% of cases. Using 4-coverage, we present two different methods that yield correct answers in almost all cases and have time and memory usage complexity of Θ(1). Analytic 4-coverage tracking is our first proposed method that solves a simultaneous equation system using the sensing information of four sensor nodes. Redundant answer fusion is our second proposed method that solves at least two sets of simultaneous equations of target tracking using the sensing information of two different sets of three sensor nodes, and fusing the results using a new customized formal majority voter. We prove that 4-coverage guarantees accurate 2-dimensional acoustic target tracking under ideal conditions. PMID:22412319

  10. A Finger-Shaped Tactile Sensor for Fabric Surfaces Evaluation by 2-Dimensional Active Sliding Touch

    PubMed Central

    Hu, Haihua; Han, Yezhen; Song, Aiguo; Chen, Shanguang; Wang, Chunhui; Wang, Zheng

    2014-01-01

    Sliding tactile perception is a basic function for human beings to determine the mechanical properties of object surfaces and recognize materials. Imitating this process, this paper proposes a novel finger-shaped tactile sensor based on a thin piezoelectric polyvinylidene fluoride (PVDF) film for surface texture measurement. A parallelogram mechanism is designed to ensure that the sensor applies a constant contact force perpendicular to the object surface, and a 2-dimensional movable mechanical structure is utilized to generate the relative motion at a certain speed between the sensor and the object surface. By controlling the 2-dimensional motion of the finger-shaped sensor along the object surface, small height/depth variation of surface texture changes the output charge of PVDF film then surface texture can be measured. In this paper, the finger-shaped tactile sensor is used to evaluate and classify five different kinds of linen. Fast Fourier Transformation (FFT) is utilized to get original attribute data of surface in the frequency domain, and principal component analysis (PCA) is used to compress the attribute data and extract feature information. Finally, low dimensional features are classified by Support Vector Machine (SVM). The experimental results show that this finger-shaped tactile sensor is effective and high accurate for discriminating the five textures. PMID:24618775

  11. Assessment of segmental myocardial viability using regional 2-dimensional strain echocardiography.

    PubMed

    Migrino, Raymond Q; Zhu, Xiaoguang; Pajewski, Nicholas; Brahmbhatt, Tejas; Hoffmann, Raymond; Zhao, Ming

    2007-04-01

    We determined whether 2-dimensional strain echocardiography can identify viable from infarcted myocardium in a rat ischemia-reperfusion model. A total of 16 male Sprague-Dawley rats underwent left anterior descending coronary artery occlusion for 12 or 30 minutes followed by 60-minute reperfusion. Short-axis 2-dimensional strain echocardiography was performed at the mid-ventricle 60 minutes post-reperfusion. Post-sacrifice, triphenyl tetrazolium chloride was infused to the coronary circulation. Regional end-systolic radial and circumferential strain, and time to peak strain, were measured using software in all 96 segments and correlated with areas of infarct in corresponding histologic slices. Segments with greater than 50% area of infarct had lower end-systolic radial and circumferential strain and longer time to peak strain versus areas with 50% or less strain or no infarct. Extent of infarct correlates with radial and circumferential strain. End-systolic radial strain less than 2% has 88% sensitivity and 95% specificity for detecting infarcted area greater than 50%. Two-dimensional strain echocardiography-derived strain is useful in distinguishing infarcted from viable myocardium.

  12. Determining the best sensing coverage for 2-dimensional acoustic target tracking.

    PubMed

    Pashazadeh, Saeid; Sharifi, Mohsen

    2009-01-01

    Distributed acoustic target tracking is an important application area of wireless sensor networks. In this paper we use algebraic geometry to formally model 2-dimensional acoustic target tracking and then prove its best degree of required sensing coverage. We present the necessary conditions for three sensing coverage to accurately compute the spatio-temporal information of a target object. Simulations show that 3-coverage accurately locates a target object only in 53% of cases. Using 4-coverage, we present two different methods that yield correct answers in almost all cases and have time and memory usage complexity of Θ(1). Analytic 4-coverage tracking is our first proposed method that solves a simultaneous equation system using the sensing information of four sensor nodes. Redundant answer fusion is our second proposed method that solves at least two sets of simultaneous equations of target tracking using the sensing information of two different sets of three sensor nodes, and fusing the results using a new customized formal majority voter. We prove that 4-coverage guarantees accurate 2-dimensional acoustic target tracking under ideal conditions.

  13. Crossover from 2-dimensional to 3-dimensional aggregations of clusters on square lattice substrates

    NASA Astrophysics Data System (ADS)

    Cheng, Yi; Zhu, Yu-Hong; Pan, Qi-Fa; Yang, Bo; Tao, Xiang-Ming; Ye, Gao-Xiang

    2015-11-01

    A Monte Carlo study on the crossover from 2-dimensional to 3-dimensional aggregations of clusters is presented. Based on the traditional cluster-cluster aggregation (CCA) simulation, a modified growth model is proposed. The clusters (including single particles and their aggregates) diffuse with diffusion step length l (1 ≤ l ≤ 7) and aggregate on a square lattice substrate. If the number of particles contained in a cluster is larger than a critical size sc, the particles at the edge of the cluster have a possibility to jump onto the upper layer, which results in the crossover from 2-dimensional to 3-dimensional aggregations. Our simulation results are in good agreement with the experimental findings. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374082 and 11074215), the Science Foundation of Zhejiang Province Department of Education, China (Grant No. Y201018280), the Fundamental Research Funds for Central Universities, China (Grant No. 2012QNA3010), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100101110005).

  14. A finger-shaped tactile sensor for fabric surfaces evaluation by 2-dimensional active sliding touch.

    PubMed

    Hu, Haihua; Han, Yezhen; Song, Aiguo; Chen, Shanguang; Wang, Chunhui; Wang, Zheng

    2014-01-01

    Sliding tactile perception is a basic function for human beings to determine the mechanical properties of object surfaces and recognize materials. Imitating this process, this paper proposes a novel finger-shaped tactile sensor based on a thin piezoelectric polyvinylidene fluoride (PVDF) film for surface texture measurement. A parallelogram mechanism is designed to ensure that the sensor applies a constant contact force perpendicular to the object surface, and a 2-dimensional movable mechanical structure is utilized to generate the relative motion at a certain speed between the sensor and the object surface. By controlling the 2-dimensional motion of the finger-shaped sensor along the object surface, small height/depth variation of surface texture changes the output charge of PVDF film then surface texture can be measured. In this paper, the finger-shaped tactile sensor is used to evaluate and classify five different kinds of linen. Fast Fourier Transformation (FFT) is utilized to get original attribute data of surface in the frequency domain, and principal component analysis (PCA) is used to compress the attribute data and extract feature information. Finally, low dimensional features are classified by Support Vector Machine (SVM). The experimental results show that this finger-shaped tactile sensor is effective and high accurate for discriminating the five textures. PMID:24618775

  15. Inexpensive and Safe DNA Gel Electrophoresis Using Household Materials

    ERIC Educational Resources Information Center

    Ens, S.; Olson, A. B.; Dudley, C.; Ross, N. D., III; Siddiqi, A. A.; Umoh, K. M.; Schneegurt, M. A.

    2012-01-01

    Gel electrophoresis is the single most important molecular biology technique and it is central to life sciences research, but it is often too expensive for the secondary science classroom or homeschoolers. A simple safe low-cost procedure is described here that uses household materials to construct and run DNA gel electrophoresis. Plastic…

  16. [Analysis of ribosomes by polyacrylamide gel electrophoresis (author's transl)].

    PubMed

    Ledoigt, G; Curgy, J J; Stevens, B J; André, J

    1975-10-01

    Ribosomal polymers, monomers and subunits from several eukaryotes and prokaryotes were isolated and analyzed by polyacrylamide gel electrophoresis. Extraction of RNA from ribosomal particles after their migration in a polyacrylamide gel, analyses by sedimentation in sucrose gradients and observations in the electron microscope were carried out in parallel. Attention was directed to the reproducibility, the precision and the limitations of the electrophoresis technique.

  17. Gel Electrophoresis on a Budget to Dye for

    ERIC Educational Resources Information Center

    Yu, Julie H.

    2010-01-01

    Gel electrophoresis is one of the most important tools used in molecular biology and has facilitated the entire field of genetic engineering by enabling the separation of nucleic acids and proteins. However, commercial electrophoresis kits can cost up to $800 for each setup, which is cost prohibitive for most classroom budgets. This article…

  18. 21 CFR 862.2485 - Electrophoresis apparatus for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrophoresis apparatus for clinical use. 862.2485 Section 862.2485 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Instruments § 862.2485 Electrophoresis apparatus for clinical use. (a) Identification. An...

  19. 21 CFR 862.2485 - Electrophoresis apparatus for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrophoresis apparatus for clinical use. 862.2485 Section 862.2485 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Instruments § 862.2485 Electrophoresis apparatus for clinical use. (a) Identification. An...

  20. Immobilized Metal Affinity Electrophoresis: A Novel Method of Capturing Phosphoproteins by Electrophoresis

    PubMed Central

    Lee, Bao-Shiang; Lasanthi, G.D.; Jayathilaka, P.; Huang, Jin-Sheng; Gupta, Shalini

    2008-01-01

    An immobilized metal affinity electrophoresis (IMAEP) method is described here. In this method, metal ions are immobilized in a native polyacrylamide gel to capture phosphoproteins. The capture of phosphoproteins by IMAEP is demonstrated with immobilized metals like iron, aluminum, manganese, or titanium. In the case studies, phosphoproteins α-casein, β-casein, and phosvitin are successfully extracted from a protein mixture by IMAEP. PMID:19137092

  1. Establishment of two-dimensional gel electrophoresis profiles of the human acute promyelocytic leukemia cell line NB4.

    PubMed

    He, Pengcheng; Liu, Yanfeng; Zhang, Mei; Wang, Xiaoning; Wang, Huaiyu; Xi, Jieying; Wei, Kaihua; Wang, Hongli; Zhao, Jing

    2012-09-01

    To explore optimum conditions for establishing a two‑dimensional gel electrophoresis (2-DE) map of the human acute promyelocytic leukemia (APL) cell line NB4 and to analyze its protein profiles, we extracted total proteins from NB4 cells using cell disruption, liquid nitrogen freeze-thawing and fracturing by ultrasound, and quantified the extracted protein samples using Bradford's method. 2-DE was applied to separate the proteins, which were silver-stained in the gel. Well‑separated protein spots were selected from the gel using the ImageMaster™ 2D Platinum analysis system. Moreover, the effects of various protein sample sizes (140, 160 and 180 µg) on the 2-DE maps of the NB4 cells were determined and compared. Matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF-MS), peptide mass fingerprinting (PMF) and database searching were used to identify the proteins. When the quantity of loading proteins was 160 µg, clear, well-resolved, reproducible 2-DE proteomic profiles of the NB4 cells were obtained. The average number of protein spots in 3 gels was 1160±51 with an average matching rate of 81%. A total of 10 proteins were identified by mass spectrometry and database queries, certain proteins were products of oncogenes and others were involved in cell cycle regulation and signal transduction. In summary, 2-DE profiles of the proteome of NB4 cells were established and certain proteins were identified by MALDI-TOF-MS and PMF which lay the foundation of further proteomic research of NB4 cells. These data should be useful for establishing a human APL proteome database. PMID:22736039

  2. A multifaceted analysis of viperid snake venoms by two-dimensional gel electrophoresis: an approach to understanding venom proteomics.

    PubMed

    Serrano, Solange M T; Shannon, John D; Wang, Deyu; Camargo, Antonio C M; Fox, Jay W

    2005-02-01

    The complexity of Viperid venoms has long been appreciated by investigators in the fields of toxinology and medicine. However, it is only recently that the depth of that complexity has become somewhat quantitatively and qualitatively appreciated. With the resurgence of two-dimensional gel electrophoresis (2-DE) and the advances in mass spectrometry virtually all venom components can be visualized and identified given sufficient effort and resources. Here we present the use of 2-DE for examining venom complexity as well as demonstrating interesting approaches to selectively delineate subpopulations of venom proteins based on particular characteristics of the proteins such as antibody cross-reactivity or enzymatic activities. 2-DE comparisons between venoms from different species of the same genus (Bothrops) of snake clearly demonstrated both the similarity as well as the apparent diversity among these venoms. Using liquid chromatography/tandem mass spectrometry we were able to identify regions of the two-dimensional gels from each venom in which certain classes of proteins were found. 2-DE was also used to compare venoms from Crotalus atrox and Bothrops jararaca. For these venoms a variety of staining/detection protocols was utilized to compare and contrast the venoms. Specifically, we used various stains to visualize subpopulations of the venom proteomes of these snakes, including Coomassie, Silver, Sypro Ruby and Pro-Q-Emerald. Using specific antibodies in Western blot analyses of 2-DE of the venoms we have examined subpopulations of proteins in these venoms including the serine proteinase proteome, the metalloproteinase proteome, and the phospholipases A2 proteome. A functional assessment of the gelatinolytic activity of these venoms was also performed by zymography. These approaches have given rise to a more thorough understanding of venom complexity and the toxins comprising these venoms and provide insights to investigators who wish to focus on these venom

  3. New algorithmic approaches to protein spot detection and pattern matching in two-dimensional electrophoresis gel databases.

    PubMed

    Pleissner, K P; Hoffmann, F; Kriegel, K; Wenk, C; Wegner, S; Sahlström, A; Oswald, H; Alt, H; Fleck, E

    1999-01-01

    Protein spot identification in two-dimensional electrophoresis gels can be supported by the comparison of gel images accessible in different World Wide Web two-dimensional electrophoresis (2-DE) gel protein databases. The comparison may be performed either by visual cross-matching between gel images or by automatic recognition of similar protein spot patterns. A prerequisite for the automatic point pattern matching approach is the detection of protein spots yielding the x(s),y(s) coordinates and integrated spot intensities i(s). For this purpose an algorithm is developed based on a combination of hierarchical watershed transformation and feature extraction methods. This approach reduces the strong over-segmentation of spot regions normally produced by watershed transformation. Measures for the ellipticity and curvature are determined as features of spot regions. The resulting spot lists containing x(s),y(s),i(s)-triplets are calculated for a source as well as for a target gel image accessible in 2-DE gel protein databases. After spot detection a matching procedure is applied. Both the matching of a local pattern vs. a full 2-DE gel image and the global matching between full images are discussed. Preset slope and length tolerances of pattern edges serve as matching criteria. The local matching algorithm relies on a data structure derived from the incremental Delaunay triangulation of a point set and a two-step hashing technique. For the incremental construction of triangles the spot intensities are considered in decreasing order. The algorithm needs neither landmarks nor an a priori image alignment. A graphical user interface for spot detection and gel matching is written in the Java programming language for the Internet. The software package called CAROL (http://gelmatching.inf.fu-berlin.de) is realized in a client-server architecture.

  4. Validation of STR typing by capillary electrophoresis.

    PubMed

    Moretti, T R; Baumstark, A L; Defenbaugh, D A; Keys, K M; Brown, A L; Budowle, B

    2001-05-01

    With the use of capillary electrophoresis (CE), high-resolution electrophoretic separation of short tandem repeat (STR) loci can be achieved in a semiautomated fashion. Laser-induced detection of fluorescently labeled PCR products and multicolor analysis enable the rapid generation of multilocus DNA profiles. In this study, conditions for typing PCR-amplified STR loci by capillary electrophoresis were investigated using the ABI Prism 310 Genetic Analyzer (Applied Biosystems). An internal size standard was used with each run to effectively normalize mobility differences among injections. Alleles were designated by comparison to allelic ladders that were run with each sample set. Multiple runs of allelic ladders and of amplified samples demonstrate that allele sizes were reproducible, with standard deviations typically less than 0.12 bases for fragments up to 317 bases in length (largest allele analyzed) separated in a 47 cm capillary. Therefore, 99.7% of all alleles that are the same length should fall within the measurement error window of +/- 0.36 bases. Microvariants of the tetranucleotide repeats were also accurately typed by the analytical software. Alleles differing in size by one base could be resolved in two-donor DNA mixtures in which the minor component comprised > or = 5% of the total DNA. Furthermore, the quantitative data format (i.e., peak amplitude) can in some instances assist in determining individual STR profiles in mixed samples. DNA samples from previously typed cases (typed for RFLP, AmpliType PM+DQA1, and/or D1S80) were amplified using AmpFlSTR Profiler Plus and COfiler and were evaluated using the ABI Prism 310. Most samples yielded typable results. Compared with previously determined results for other loci, there were no discrepancies as to the inclusion or exclusion of suspects or victims. CE thus provides efficient separation, resolution, sensitivity and precision, and the analytical software provides reliable genotyping of STR loci. The

  5. Evaluation of different protein extraction methods for banana (Musa spp.) root proteome analysis by two-dimensional electrophoresis.

    PubMed

    Vaganan, M Mayil; Sarumathi, S; Nandakumar, A; Ravi, I; Mustaffa, M M

    2015-02-01

    Four protocols viz., the trichloroacetic acid-acetone (TCA), phenol-ammonium acetate (PAA), phenol/SDS-ammonium acetate (PSA) and trisbase-acetone (TBA) were evaluated with modifications for protein extraction from banana (Grand Naine) roots, considered as recalcitrant tissues for proteomic analysis. The two-dimensional electrophoresis (2-DE) separated proteins were compared based on protein yield, number of resolved proteins, sum of spot quantity, average spot intensity and proteins resolved in 4-7 pI range. The PAA protocol yielded more proteins (0.89 mg/g of tissues) and protein spots (584) in 2-DE gel than TCA and other protocols. Also, the PAA protocol was superior in terms of sum of total spot quantity and average spot intensity than TCA and other protocols, suggesting phenol as extractant and ammonium acetate as precipitant of proteins were the most suitable for banana rooteomics analysis by 2-DE. In addition, 1:3 ratios of root tissue to extraction buffer and overnight protein precipitation were most efficient to obtain maximum protein yield.

  6. Triton X-114 cloud point extraction to subfractionate blood plasma proteins for two-dimensional gel electrophoresis.

    PubMed

    Jessen, Flemming; Wulff, Tune

    2015-09-15

    A simple and reproducible procedure for enrichment of a plasma protein subfraction suitable for two-dimensional polyacrylamide gel electrophoresis (2DE) was developed, using a Triton X-114-based cloud point extraction (CPE). Appropriate conditions for such a CPE procedure were found by SDS-PAGE to be a plasma protein concentration of about 10mg/ml in 3% (w/v) Triton X-114. 2DE of proteins obtained by CPE of 400 μl of human plasma revealed about 200 spots constituting a spot pattern very different from the pattern of total plasma. The CPE procedure only had a limited contribution to the technical variation. Identification of about 60 spots, representing only 22 proteins, revealed that several proteins in the obtained subfraction were present in more isoforms or modifications. Among these were apolipoproteins (A-1, D, E, L1, and M), haptoglobin-related protein, phosphatidylcholine-sterol acyltransferase, serum amyloid A, and serum paraoxonase/arylesterase 1, which are proteins of a hydrophobic nature, as in plasma they relate to lipoprotein particles. Thus, Triton X-114-based CPE is a simple plasma prefractionation tool, attractive for detailed 2DE studies of hydrophobic plasma proteins and their isoforms or modifications.

  7. Metabolomic analysis of methyl jasmonate treated Brassica rapa leaves by 2-dimensional NMR spectroscopy.

    PubMed

    Liang, Yun-Sa; Choi, Young Hae; Kim, Hye Kyong; Linthorst, Huub J M; Verpoorte, Robert

    2006-11-01

    The metabolomic analysis of Brassica rapa leaves treated with methyl jasmonate was performed using 2-dimensional J-resolved NMR spectroscopy combined with multivariate data analysis. The principal component analysis of the J-resolved NMR spectra showed discrimination between control and methyl jasmonate treated plants by principal components 1 and 2. While the level of glucose, sucrose and amino acids showed a decrease after methyl jasmonate treatment, hydroxycinnamates and glucosinolate were highly increased. Methyl jasmonate treatment resulted in a long-term accumulation of indole glucosinolate and indole-3-acetic acid, lasting up to 14 days after treatment. Malate conjugated hydroxycinnamates also exhibited an increase until 14 days after methyl jasmonate treatment, these compounds might play an important role in plant defence responses mediated by methyl jasmonate.

  8. Advanced Concepts for High-Power VCSELS and 2-Dimensional VCSEL Arrays

    SciTech Connect

    Allerman, A.A.; Choquette, Kent D.; Chow, W.W.; Geib, K.M.; Hadley, R.; Hou, H.Q.; Mar, A.

    1999-04-01

    We have developed high power vertical cavity surface emitting lasers (VCSELS) for multimode or single mode operation. We have characterized new cavity designs for individual lasers and 2-dimensional VCSEL arrays to maximize output power. Using broad area high power VCSELS under pulsed excitation, we have demonstrated the triggering of a photoconductive semiconductor switch (PCSS) with a VCSEL. We also have developed designs for high output power in a single mode. The first approach is to engineer the oxide aperture profile to influence the optical confinement and thus modal properties. A second approach focuses on "leaky-mode" concepts using lateral modification of the cavity resonance to provide the lateral refractive index difference. To this end, we have developed a regrowth process to fabricate single-mode VCSELS. The overall objective of this work was to develop high-power single-mode or multimode sources appropriate for many applications leveraging the many inherent advantages of VCSELS.

  9. The structural identification of a methyl analog of methaqualone via 2-dimensional NMR techniques.

    PubMed

    Angelos, S A; Lankin, D C; Meyers, J A; Raney, J K

    1993-03-01

    A submission to the Drug Enforcement Administration North Central Laboratory of a substance believed to be a structural analog of methaqualone hydrochloride precipitated an interest in being able to obtain a rapid and positive identification of such compounds. Both mass spectrometry and proton NMR spectroscopy (1-dimensional) provided evidence to suggest that the structural analog possessed a second methyl group in the molecule, relative to methaqualone, and that the methyl group was attached to the existing methyl-substituted phenyl ring. By application of proton 2-dimensional (2-D) NMR techniques, specifically the homonuclear shift correlation spectroscopy (COSY) and 2-D NOE (NOESY), the precise location of the methyl group in this unknown methaqualone analog was established and shown to have the structure 2.

  10. Determination of chemical concentration with a 2 dimensional CCD array in the Echelle grating spectrometer

    SciTech Connect

    Lewis, D.K.; Stevens, C.G.

    1994-11-15

    The Echelle grating spectrometer (EGS) uses a stepped Echelle grating, prisms and a folded light path to miniaturize an infrared spectrometer. Light enters the system through a slit and is spread out along Y by a prism. This light then strikes the grating and is diffracted out along X. This spreading results in a superposition of spectral orders since the grating has a high spectral range. These orders are then separated by again passing through a prism. The end result of a measurement is a 2 dimensional image which contains the folded spectrum of the region under investigation. The data lies in bands from top to bottom, for example, with wavenumber increments as small as 0.1 lying from left to right such that the right end of band N is the same as the left end of band N+1. This is the image which must be analyzed.

  11. Time-resolved spatial phase measurements with 2-dimensional spectral interferometry

    NASA Astrophysics Data System (ADS)

    Childress, Colby; Planchon, Thomas; Amir, Wafa; Squier, Jeff A.; Durfee, Charles G.

    2007-03-01

    We are using 2-dimensional spectral interferometry for sensitive measurements of spatial phase distortions. The reference pulse and the time-delayed probe pulse are coincident on an imaging spectrometer, yielding spectral and spatial phase information. This technique offers the potential of higher sensitivity than traditional spatial interferometry since there are many fringes of data for each spatial point. We illustrate this technique with measurements of the thermal lensing profile in a cryogenically cooled Ti:sapphire amplifier crystal that is pumped by tens of watts of power from four frequency-doubled Nd:YLF lasers running at 1 kHz. By adjusting the relative delay of the probe and reference pulses, we characterize the thermal transients during and after the pump pulses. We compare the measured transient thermal profiles with those calculated with a finite-element model.

  12. Highly Sensitive Immunoassay Based on Controlled Rehydration of Patterned Reagents in a 2-Dimensional Paper Network

    PubMed Central

    2015-01-01

    We have demonstrated a multistep 2-dimensional paper network immunoassay based on controlled rehydration of patterned, dried reagents. Previous work has shown that signal enhancement improves the limit of detection in 2-dimensional paper network assays, but until now, reagents have only been included as wet or dried in separate conjugate pads placed at the upstream end of the assay device. Wet reagents are not ideal for point-of-care because they must be refrigerated and typically limit automation and require more user steps. Conjugate pads allow drying but do not offer any control of the reagent distribution upon rehydration and can be a source of error when pads do not contact the assay membrane uniformly. Furthermore, each reagent is dried on a separate pad, increasing the fabrication complexity when implementing multistep assays that require several different reagents. Conversely, our novel method allows for consistent, controlled rehydration from patterned reagent storage depots directly within the paper membrane. In this assay demonstration, four separate reagents were patterned in different regions of the assay device: a gold-antibody conjugate used for antigen detection and three different signal enhancement components that must not be mixed until immediately before use. To show the viability of patterning and drying reagents directly onto a paper device for dry reagent storage and subsequent controlled release, we tested this device with the malaria antigen Plasmodium falciparum histidine-rich protein 2 (PfHRP2) as an example of target analyte. In this demonstration, the signal enhancement step increases the visible signal by roughly 3-fold and decreases the analytical limit of detection by 2.75-fold. PMID:24882058

  13. Fused quartz substrates for microchip electrophoresis

    SciTech Connect

    Jacobson, S.C.; Moore, A.W.; Ramsey, J.M.

    1995-07-01

    A fused quartz microchip is fabricated to perform capillary electrophoresis of metal ions complexed with 8-hydroxyquinoline-5-sulfonic acid (HQS). The channel manifold on the quartz substrate is fabricated using standard photolithographic, etching, and deposition techniques. By incorporating a direct bonding technique during the fabrication of the microchip, the substrate and cover plate can be fused together below the melting temperature for fused quartz. To enhance the resolution for the separation, the electroosmotic flow is minimized by covalently bonding polyacrylamide to the channel walls. A separation length of 16.5 mm and separation field strength of 870 V/cm enable separations to be performed in {<=}15 s. By increasing the concentration of HQS from 5 mM to 20 mM, the separation efficiency improves by approximately 3 times. The low background signal from the fused quartz substrate results in mass detection limits of 85, 61, and 134 amol and concentration detection limits of 46, 57, and 30 ppb for Zn, Cd, and Al, respectively. 30 refs., 6 figs., 2 tabs.

  14. Analysis of venlafaxine by capillary zone electrophoresis.

    PubMed

    Fanali, S; Cotichini, V; Porrà, R

    1997-01-01

    Capillary electrophoresis has been used for the separation of venlafaxine and two of its impurities deriving from the synthesis process. The electrophoretic experiments were performed using background electrolytes at different pHs in the 2.5-9.2 range in order to study the effective mobilities and resolution of the three examined compounds. The optimum experimental conditions for the baseline resolution of the three analytes was found at pH 6.5. Very good repeatability for both migration time and corrected peak areas was achieved. The calibration curve was studied for venlafaxine (concentration range 26-224 micrograms/mL), and the plot of the peak area ratio (sample/internal standard [IS]) versus venlafaxine concentration was linear with a correlation coefficient of 0.9991. The effect of different cyclodextrins (CDs), namely, gamma-cyclodextrin (gamma-CD), hydroxypropyl-beta-CD (HP-beta-CD), and alpha-cyclodextrin (alpha-CD), on effective mobility and enantiomeric resolution (R) of venlafaxine (Wy45030) and its impurities (imp1 and imp2) was studied at different pHs, and the best results were obtained at pH 9.2. Venlafaxine was baseline resolved in its enantiomers using gamma-CD or HP-beta-CD, while imp1 (Wy45494) was baseline resolved using alpha-CD.

  15. Injector-concentrator electrodes for microchannel electrophoresis

    DOEpatents

    Swierkowski, Stefan P.

    2003-05-06

    An input port geometry, with injector-concentrator electrodes, for planar microchannel array for electrophoresis. This input port geometry enables efficient extraction and injection of the DNA sample from a single input port. The geometry, which utilizes injector-concentrator electrodes, allows simultaneous concentration, in different channels, of the sample into a longitudinally narrow strip just before releasing it for a run with enhanced injection spatial resolution, and time resolution. Optional multiple electrodes, at a different bias than the concentrator electrodes, may be used to discriminate against sample impurity ions. Electrode passivation can be utilized to prevent electrolysis. An additional electrode in or on the input hole can better define the initial loading. The injector-concentrator electrodes are positioned so that they cross the drift channel in a narrow strip at the bond plane between the top and bottom plates of the instrument and are located close to the inlet hole. The optional sample purification electrodes are located at a greater distance from the input hole than the injector-concentrate electrodes.

  16. Robotics in biomedical chromatography and electrophoresis.

    PubMed

    Fouda, H G

    1989-08-11

    The ideal laboratory robot can be viewed as "an indefatigable assistant capable of working continuously for 24 h a day with constant efficiency". The development of a system approaching that promise requires considerable skill and time commitment, a thorough understanding of the capabilities and limitations of the robot and its specialized modules and an intimate knowledge of the functions to be automated. The robot need not emulate every manual step. Effective substitutes for difficult steps must be devised. The future of laboratory robots depends not only on technological advances in other fields, but also on the skill and creativity of chromatographers and other scientists. The robot has been applied to automate numerous biomedical chromatography and electrophoresis methods. The quality of its data can approach, and in some cases exceed, that of manual methods. Maintaining high data quality during continuous operation requires frequent maintenance and validation. Well designed robotic systems can yield substantial increase in the laboratory productivity without a corresponding increase in manpower. They can free skilled personnel from mundane tasks and can enhance the safety of the laboratory environment. The integration of robotics, chromatography systems and laboratory information management systems permits full automation and affords opportunities for unattended method development and for future incorporation of artificial intelligence techniques and the evolution of expert systems. Finally, humanoid attributes aside, robotic utilization in the laboratory should not be an end in itself. The robot is a useful tool that should be utilized only when it is prudent and cost-effective to do so.

  17. Integrated polymerase chain reaction/electrophoresis instrument

    DOEpatents

    Andresen, Brian D.

    2000-01-01

    A new approach and instrument for field identification of micro-organisms and DNA fragments using a small and disposable device containing integrated polymerase chain reaction (PCR) enzymatic reaction wells, attached capillary electrophoresis (CE) channels, detectors, and read-out all on/in a small hand-held package. The analysis instrument may be made inexpensively, for example, of plastic, and thus is disposable, which minimizes cross contamination and the potential for false positive identification between samples. In addition, it is designed for multiple users with individual applications. The integrated PCR/CE is manufactured by the PCR well and CE channels are "stamped" into plastic depressions where conductive coatings are made in the wells and ends of the CE microchannels to carry voltage and current to heat the PCR reaction mixtures and simultaneously draw DNA bands up the CE channels. Light is transmitted through the instrument at appropriate points and detects PCR bands and identifies DNA fragments by size (retention time) and quantifies each by the amount of light generated as each phototransistor positioned below each CE channel detects a passing band. The instrument is so compact that at least 100 PCR/CE reactions/analyses can be performed easily on one detection device.

  18. Capillary electrophoresis coupled to biosensor detection.

    PubMed

    Bossi, A; Piletsky, S A; Righetti, P G; Turner, A P

    2000-09-15

    The present review highlights some modern aspects of biosensor revelation, a detection method which has already found a large number of applications in healthcare, food industry and environmental analysis. First, the concept of bio-recognition, which is at the heart of biosensor technology, is discussed, with emphasis on host-guest-like recognition mechanisms. This detection device has been successfully coupled, in its first applications, to chromatographic columns, which allow a high resolution of complex mixtures of analytes prior to interaction with the biosensing unit. The properties of the transducing elements, which should generate a signal (e.g., electrochemical, thermal, acoustic, optical) of proper intensity and of relative fast rise, are additionally evaluated and discussed. The review then focuses on potential applications of biosensing units in capillary electrophoresis (CE) devices. CE appears to be an excellent separation methodology to be coupled to biosensor detection, since it is based on miniaturized electrophoretic chambers, fast analysis times, complete automation in sample handling and data treatment and requires extremely small sample volumes. Although only a few applications of CE-based biosensors have been described up to the present, it is anticipated that this hyphenated technique could have a considerable expansion in the coming years.

  19. Active airborne contamination control using electrophoresis

    SciTech Connect

    Veatch, B.D.

    1994-06-01

    In spite of our best efforts, radioactive airborne contamination continues to be a formidable problem at many of the Department of Energy (DOE) weapons complex sites. For workers that must enter areas with high levels of airborne contamination, personnel protective equipment (PPE) can become highly restrictive, greatly diminishing productivity. Rather than require even more restrictive PPE for personnel in some situations, the Rocky Flats Plant (RFP) is actively researching and developing methods to aggressively combat airborne contamination hazards using electrophoretic technology. With appropriate equipment, airborne particulates can be effectively removed and collected for disposal in one simple process. The equipment needed to implement electrophoresis is relatively inexpensive, highly reliable, and very compact. Once airborne contamination levels are reduced, less PPE is required and a significant cost savings may be realized through decreased waste and maximized productivity. Preliminary ``cold,`` or non-radioactive, testing results at the RFP have shown the technology to be effective on a reasonable scale, with several potential benefits and an abundance of applications.

  20. Fabricating PFPE Membranes for Capillary Electrophoresis

    NASA Technical Reports Server (NTRS)

    Lee, Michael C.; Willis, Peter A.; Greer, Frank; Rolland, Jason

    2009-01-01

    A process has been developed for fabricating perfluoropolyether (PFPE) membranes that contain microscopic holes of precise sizes at precise locations. The membranes are to be incorporated into laboratory-on-a-chip microfluidic devices to be used in performing capillary electrophoresis. The present process is a modified version of part of the process, described in the immediately preceding article, that includes a step in which a liquid PFPE layer is cured into solid (membrane) form by use of ultraviolet light. In the present process, one exploits the fact that by masking some locations to prevent exposure to ultraviolet light, one can prevent curing of the PFPE in those locations. The uncured PFPE can be washed away from those locations in the subsequent release and cleaning steps. Thus, holes are formed in the membrane in those locations. The most straightforward way to implement the modification is to use, during the ultraviolet-curing step, an ultraviolet photomask similar to the photomasks used in fabricating microelectronic devices. In lieu of such a photomask, one could use a mask made of any patternable ultraviolet-absorbing material (for example, an ink or a photoresist).

  1. Contactless conductivity detector for microchip capillary electrophoresis

    NASA Technical Reports Server (NTRS)

    Pumera, Martin; Wang, Joseph; Opekar, Frantisek; Jelinek, Ivan; Feldman, Jason; Lowe, Holger; Hardt, Steffen; Svehla, D. (Principal Investigator)

    2002-01-01

    A microfabricated electrophoresis chip with an integrated contactless conductivity detection system is described. The new contactless conductivity microchip detector is based on placing two planar sensing aluminum film electrodes on the outer side of a poly(methyl methacrylate) (PMMA) microchip (without contacting the solution) and measuring the impedance of the solution in the separation channel. The contactless route obviates problems (e.g., fouling, unwanted reactions) associated with the electrode-solution contact, offers isolation of the detection system from high separation fields, does not compromise the separation efficiency, and greatly simplifies the detector fabrication. Relevant experimental variables, such as the frequency and amplitude of the applied ac voltage or the separation voltage, were examined and optimized. The detector performance was illustrated by the separation of potassium, sodium, barium, and lithium cations and the chloride, sulfate, fluoride, acetate, and phosphate anions. The response was linear (over the 20 microM-7 mM range) and reproducible (RSD = 3.4-4.9%; n = 10), with detection limits of 2.8 and 6.4 microM (for potassium and chloride, respectively). The advantages associated with the contactless conductivity detection, along with the low cost of the integrated PMMA chip/detection system, should enhance the power and scope of microfluidic analytical devices.

  2. Impoundment liner repair by electrophoresis of clay

    SciTech Connect

    Yeung, A.T.; Corapcioglu, M.Y.; Stallard, W.M.; Chung, M.

    1997-10-01

    Electrophoresis of clay particles from dilute suspensions is an innovative technology to seal leaks in operating surface impoundments that does not require removal of impoundment contents, exposure of workers to contaminants, or prior knowledge of the leak locations. A suspension of clay particles is added to the impoundment liquid. A cathode (negative electrode) is placed inside and an anode (positive electrode) is placed outside the leaking impoundment. A direct current (DC) electric field is imposed externally across the geomembrane liner through the leaks. The clay particles migrate to the leaks under the influence of the imposed electric field to form a clay cake seal. The results of laboratory experiments to evaluate the use of a DC electric field to direct migration of clay particles into a leak and the hydraulic integrity of the resulting seal are presented in this paper. The effects of clay type, clay particle concentration in suspension, size of leak, and electric field strength on the migration of clay particles and process of cake formation are evaluated. The sealing effectiveness and internal structure of the resulting clay cakes are examined by hydraulic conductivity measurements and nuclear magnetic resonance imaging. Electrophoretic mobilities of bentonite particles in different chemical environments were also measured to evaluate the feasibility of the technology in practical situations.

  3. Differentiation of enantiomers by capillary electrophoresis.

    PubMed

    Scriba, Gerhard K E

    2013-01-01

    Capillary electrophoresis (CE) has matured to one of the major liquid phase enantiodifferentiation techniques since the first report in 1985. This can be primarily attributed to the flexibility as well as the various modes available including electrokinetic chromatography (EKC), micellar electrokinetic chromatography (MEKC), and microemulsion electrokinetic chromatography (MEEKC). In contrast to chromatographic techniques, the chiral selector is mobile in the background electrolyte. Furthermore, a large variety of chiral selectors are available that can be easily combined in the same separation system. In addition, the migration order of the enantiomers can be adjusted by a number of approaches. In CE enantiodifferentiations the separation principle is comparable to chromatography while the principle of the movement of the analytes in the capillary is based on electrophoretic phenomena. The present chapter will focus on mechanistic aspects of CE enantioseparations including enantiomer migration order and the current understanding of selector-selectand structures. Selected examples of the basic enantioseparation modes EKC, MEKC, and MEEKC will be discussed. PMID:23666080

  4. Extended length microchannels for high density high throughput electrophoresis systems

    DOEpatents

    Davidson, James C.; Balch, Joseph W.

    2000-01-01

    High throughput electrophoresis systems which provide extended well-to-read distances on smaller substrates, thus compacting the overall systems. The electrophoresis systems utilize a high density array of microchannels for electrophoresis analysis with extended read lengths. The microchannel geometry can be used individually or in conjunction to increase the effective length of a separation channel while minimally impacting the packing density of channels. One embodiment uses sinusoidal microchannels, while another embodiment uses plural microchannels interconnected by a via. The extended channel systems can be applied to virtually any type of channel confined chromatography.

  5. Free zone electrophoresis simulation of static column electrophoresis in microgravity on shuttle flight STS-3

    NASA Technical Reports Server (NTRS)

    Todd, P. W.; Hjerten, S.

    1985-01-01

    Experiments were designed to replicate, as closely as possible in 1-G, the conditions of the STS-3 red blood cell (RBC) experiments. Free zone electrophoresis was the method of choice, since it minimizes the role of gravity in cell migration. The physical conditions of the STS-3 experiments were used, and human and rabbit RBC's fixed by the same method were the test particles. The effects of cell concentration, electroosmotic mobility, and sample composition were tested in order to seek explanations for the STS-3 results and to provide data on cell concentration effects for future zero-G separation on the continuous-flow zero-G electrophoretics separator.

  6. Microchannel DNA Sequencing by End-Labelled Free Solution Electrophoresis

    SciTech Connect

    Barron, A.

    2005-09-29

    The further development of End-Labeled Free-Solution Electrophoresis will greatly simplify DNA separation and sequencing on microfluidic devices. The development and optimization of drag-tags is critical to the success of this research.

  7. Integration of amperometric sensors for microchip capillary electrophoresis application

    NASA Astrophysics Data System (ADS)

    Dicorato, F.; Moore, E.; Glennon, J.

    2011-08-01

    Capillary electrophoresis is a technique for the separation and analysis of chemical compounds. Techniques adopted from the microchip technology knowledge have led to recent developments of electrophoresis system with integration on microchip. Microchip Capillary Electrophoresis (μCE) systems offer a series of advantages as easy integration for Lab-on-a-chip applications, high performance, portability, speed, minimal solvent and sample requirements. A new technological challenge aims at the development of an economic modular microchip capillary electrophoresis systems using separable and independent units concerning the sensor. In this project we worked on the development of an interchangeable amperometric sensor in order to provide a solution to such electrode passivation and facilitating the use of tailored sensors for specific analyte detection besides. Fluidic chips have been machined from cyclic olefin polymer pallets (Zeonor®) using a micro-injection molding machine.

  8. Diced electrophoresis gel assay for screening enzymes with specified activities.

    PubMed

    Komatsu, Toru; Hanaoka, Kenjiro; Adibekian, Alexander; Yoshioka, Kentaro; Terai, Takuya; Ueno, Tasuku; Kawaguchi, Mitsuyasu; Cravatt, Benjamin F; Nagano, Tetsuo

    2013-04-24

    We have established the diced electrophoresis gel (DEG) assay as a proteome-wide screening tool to identify enzymes with activities of interest using turnover-based fluorescent substrates. The method utilizes the combination of native polyacrylamide gel electrophoresis (PAGE) with a multiwell-plate-based fluorometric assay to find protein spots with the specified activity. By developing fluorescent substrates that mimic the structure of neutrophil chemoattractants, we could identify enzymes involved in metabolic inactivation of the chemoattractants.

  9. Reversible gels for electrophoresis and isolation of DNA.

    PubMed

    Cole, K D

    1999-04-01

    Here, the application of the gel-forming carbohydrate polymer, gellan gum, for the electrophoresis and isolation of DNA is detailed. Gellan gun forms gels in the presence of divalent metal cations, and the gels can be converted back to a solution by the addition of a chelating agent such as EDTA. Also, gellan electrophoresis gels can be formed using diamines. These gels are reversible by increasing the pH, which results in the deprotonation of the diamine. Gellan electrophoresis gels were used for separations at concentrations as low as 0.03%. Native gellan electrophoresis gels have significant electroosmosis and were generally run overnight. A gellan electrophoresis gel (0.1%) showed good resolution of DNA from approximately 50-1 kbp. The addition of linear polymers, such as hydroxethyl cellulose, to the gellan gum before casting greatly reduced the electroosmosis. The additional polymer increased the resolution of low-molecular-weight DNA down to approximately 200 bp and allowed gels to be run in a few hours. DNA isolated from gellan electrophoresis gels could be cut by common restriction enzymes and ligated in the presence of the gellan gum. The presence of gellan gum did not significantly inhibit the transformation of competent E. coli cells by plasmid DNA.

  10. Muscle protein analysis by two-dimensional gel electrophoresis

    SciTech Connect

    Giometti, C.S.

    1982-01-01

    Two-dimensional electrophoresis of muscle proteins has provided valuable new information concerning the heterogeneity of some of the major contractile proteins, alterations in the protein population of developing muscle fibers during various stages of myogenesis, and protein aberrations that correlate with muscle diseases. As with all electrophoretic techniques, careful attention must be paid to the preparation of samples and the selection of reagents to be used for the protein separations. Two-dimensional electrophoresis is the obvious method of choice when analysis of protein mixtures is required. The routine clinical application of two-dimensional electrophoresis to analysis of muscle tissue remains to be demonstrated. However, methods of sample preparation for two-dimensional electrophoresis compatible with existing clinical procedures have been described, and the equipment for multiple analyses is available. As protein abnormalities related to human myopathy are detected through the use of two-dimensional electrophoresis as a research tool, useful clinical markers of specific myopathic processes will be found. The preliminary work on muscle protein analysis by two-dimensional electrophoresis described in this review has begun a new approach to the enigma of human muscle disease.

  11. Efficient method of protein extraction from Theobroma cacao L. roots for two-dimensional gel electrophoresis and mass spectrometry analyses.

    PubMed

    Bertolde, F Z; Almeida, A-A F; Silva, F A C; Oliveira, T M; Pirovani, C P

    2014-07-04

    Theobroma cacao is a woody and recalcitrant plant with a very high level of interfering compounds. Standard protocols for protein extraction were proposed for various types of samples, but the presence of interfering compounds in many samples prevented the isolation of proteins suitable for two-dimensional gel electrophoresis (2-DE). An efficient method to extract root proteins for 2-DE was established to overcome these problems. The main features of this protocol are: i) precipitation with trichloroacetic acid/acetone overnight to prepare the acetone dry powder (ADP), ii) several additional steps of sonication in the ADP preparation and extractions with dense sodium dodecyl sulfate and phenol, and iii) adding two stages of phenol extractions. Proteins were extracted from roots using this new protocol (Method B) and a protocol described in the literature for T. cacao leaves and meristems (Method A). Using these methods, we obtained a protein yield of about 0.7 and 2.5 mg per 1.0 g lyophilized root, and a total of 60 and 400 spots could be separated, respectively. Through Method B, it was possible to isolate high-quality protein and a high yield of roots from T. cacao for high-quality 2-DE gels. To demonstrate the quality of the extracted proteins from roots of T. cacao using Method B, several protein spots were cut from the 2-DE gels, analyzed by tandem mass spectrometry, and identified. Method B was further tested on Citrus roots, with a protein yield of about 2.7 mg per 1.0 g lyophilized root and 800 detected spots.

  12. Application of two-dimensional gel electrophoresis to interrogate alterations in the proteome of gentically modified crops. 3. Assessing unintended effects.

    PubMed

    Ruebelt, Martin C; Lipp, Markus; Reynolds, Tracey L; Schmuke, Jon J; Astwood, James D; DellaPenna, Dean; Engel, Karl-Heinz; Jany, Klaus-Dieter

    2006-03-22

    The current procedures to assess the safety of food and feed derived from modern biotechnology include the investigation of possible unintended effects. To improve the probability of detecting unintended effects, profiling techniques such as proteomics are currently tested as complementary analytical tools to the existing safety assessment. An optimized two-dimensional gel electrophoresis (2DE) method was used as a proteomics approach to investigate insertional and pleiotropic effects on the proteome due to genetic engineering. Twelve transgenic Arabidopsis thaliana lines were analyzed by 2DE, and their seed proteomes were compared to that of their parental line as well as to 12 Arabidopsis ecotype lines. The genetic modification of the Arabidopsis lines, using three different genes and three different promoters, did not cause unintended changes to the analyzed seed proteome. Differences in spot quantity between transgenic and nontransgenic lines fell in the range of values found in the 12 Arabidopsis ecotype lines or were related to the introduced gene.

  13. Electronic thermal conductivity of 2-dimensional circular-pore metallic nanoporous materials

    NASA Astrophysics Data System (ADS)

    Huang, Cong-Liang; Lin, Zi-Zhen; Luo, Dan-Chen; Huang, Zun

    2016-09-01

    The electronic thermal conductivity (ETC) of 2-dimensional circular-pore metallic nanoporous material (MNM) was studied here for its possible applications in thermal cloaks. A simulation method based on the free-electron-gas model was applied here without considering the quantum effects. For the MNM with circular nanopores, there is an appropriate nanopore size for thermal conductivity tuning, while a linear relationship exists for this size between the ETC and the porosity. The appropriate nanopore diameter size will be about one times that of the electron mean free path. The ETC difference along different directions would be less than 10%, which is valuable when estimating possible errors, because the nanoscale-material direction could not be controlled during its application. Like nanoparticles, the ETC increases with increasing pore size (diameter for nanoparticles) while the porosity was fixed, until the pore size reaches about four times that of electron mean free path, at which point the ETC plateaus. The specular coefficient on the surface will significantly impact the ETC, especially for a high-porosity MNM. The ETC can be decreased by 30% with a tuning specular coefficient.

  14. Role of surface defects on the formation of the 2-dimensional electron gas at polar interfaces

    NASA Astrophysics Data System (ADS)

    Artacho, Emilio; Aguado-Puente, Pablo

    2014-03-01

    The discovery of a 2-dimensional electron gas (2DEG) at the interface between two insulators, LaAlO3 and SrTiO3, has fuelled a great research activity on this and similar systems in the last years. The electronic reconstruction model, typically invoked to explain the formation of the 2DEG, while being intuitive and successful on predicting fundamental aspects of this phenomenon like the critical thickness of LaAlO3, fails to explain many other experimental observations. Oxygen vacancies, on the other hand, are known to dramatically affect the physical behaviour of this system, but their role at the atomic level is far from well understood. Here we perform ab initio simulations in order to assess whether the formation of oxygen vacancies at the surface of the polar material can account for various recent experimental results that defy the current theoretical understanding of these interfaces. We simulate SrTiO3/LaAlO3 slabs with various concentrations of surface oxygen vacancies and analyze the role of the defects on the formation of the metallic interface, their electrostatic coupling with the 2DEG and the interplay with the different instabilities of the materials involved. Financial support from Spanish MINECO under grant FIS2012-37549-C05-01. Computational resources provided by the Red Espñola de Supercomputación and DIPC.

  15. Surface Charge Measurement of SonoVue, Definity and Optison: A Comparison of Laser Doppler Electrophoresis and Micro-Electrophoresis.

    PubMed

    Ja'afar, Fairuzeta; Leow, Chee Hau; Garbin, Valeria; Sennoga, Charles A; Tang, Meng-Xing; Seddon, John M

    2015-11-01

    Microbubble (MB) contrast-enhanced ultrasonography is a promising tool for targeted molecular imaging. It is important to determine the MB surface charge accurately as it affects the MB interactions with cell membranes. In this article, we report the surface charge measurement of SonoVue, Definity and Optison. We compare the performance of the widely used laser Doppler electrophoresis with an in-house micro-electrophoresis system. By optically tracking MB electrophoretic velocity in a microchannel, we determined the zeta potentials of MB samples. Using micro-electrophoresis, we obtained zeta potential values for SonoVue, Definity and Optison of -28.3, -4.2 and -9.5 mV, with relative standard deviations of 5%, 48% and 8%, respectively. In comparison, laser Doppler electrophoresis gave -8.7, +0.7 and +15.8 mV with relative standard deviations of 330%, 29,000% and 130%, respectively. We found that the reliability of laser Doppler electrophoresis is compromised by MB buoyancy. Micro-electrophoresis determined zeta potential values with a 10-fold improvement in relative standard deviation.

  16. Toxoplasma gondii infection: analysis of serological response by 2-DE immunoblotting.

    PubMed

    Geissler, S; Sokolowska-Köhler, W; Bollmann, R; Jungblut, P R; Presber, W

    1999-08-15

    Toxoplasma gondii is known to cause a variety of diseases ranging from asymptomatic infections to serious conditions in immunocompromised hosts such as AIDS-patients or transplant recipients. In addition they may cause abortion or fetal abnormalities during pregnancy. Despite the clinical importance, diagnosis, treatment and prevention still remain unsatisfactory. Analysis of the parasitic cell determinants, recognized by specific humoral and cellular immune responses, may have important implications for diagnosis, therapy and vaccination strategies. Two-dimensional electrophoresis (2-DE) was used to resolve and compare protein patterns from Toxoplasma gondii strains RH and BK (mouse virulent strains). Comparison of silver-stained gels showed that 35.2% to 60.3% of the spots had the same position. In a second series of experiments, the reactivity of the spots with human sera was tested. Proteins were transferred to PVDF membranes and were detected with sera from different patient groups. Depending upon the immunoglobulin class (IgG, IgM, IgA or IgE) different epitope patterns were observed. Some of the spots seemed to be recognized in different stages of infection. Sera of two patients with similar serology and comparable stage of infection were compared in order to demonstrate an individual immune response. PMID:10459585

  17. Recent Developments in Instrumentation for Capillary Electrophoresis and Microchip-Capillary Electrophoresis

    PubMed Central

    Felhofer, Jessica L.; Blanes, Lucas; Garcia, Carlos D.

    2010-01-01

    Over the last years there has been an explosion in the number of developments and applications of capillary electrophoresis (CE) and microchip-CE. In part, this growth has been the direct consequence of recent developments in instrumentation associated with CE. This review, which is focused on contributions published in the last five years, is intended to complement the papers presented in this special issue dedicated to Instrumentation and to provide an overview on the general trend and some of the most remarkable developments published in the areas of high voltage power supplies, detectors, auxiliary components, and compact systems. It also includes few examples of alternative uses of and modifications to traditional CE instruments. PMID:20665910

  18. An alternative approach to deal with geometric uncertainties in computer analysis of two-dimensional electrophoresis gels.

    PubMed

    Kriegel, K; Seefeldt, I; Hoffmann, F; Schultz, C; Wenk, C; Regitz-Zagrosek, V; Oswald, H; Fleck, E

    2000-07-01

    With the growing importance of proteomics in biomedical and pharmaceutical sciences a need has emerged for computing tools that are capable of digitally visualizing and analyzing protein spot patterns within two-dimensional electrophoresis (2-DE) gel. Matching programs need to meet requirements such as interlaboratory comparison and the comparison of samples from different origins. For such research purposes, we have developed the CAROL system that implements new algorithms for spot detection and matching, which enable researchers to take a different approach to protein spot identification and comparison. The present short communication discusses how the system deals with uncertain geometric spot information that arises from streaks and complex spot regions and how this can be amplified for the matching procedure.

  19. Phase transfer of 1- and 2-dimensional Cd-based nanocrystals

    NASA Astrophysics Data System (ADS)

    Kodanek, Torben; Banbela, Hadeel M.; Naskar, Suraj; Adel, Patrick; Bigall, Nadja C.; Dorfs, Dirk

    2015-11-01

    In this work, luminescent CdSe@CdS dot-in-rod nanocrystals, CdSe@CdS/ZnS nanorods as well as CdSe-CdS core-crown nanoplatelets were transferred into aqueous phase via ligand exchange reactions. For this purpose, bifunctional thiol-based ligands were employed, namely mercaptoacetic acid (MAA), 3-mercaptopropionic acid (MPA), 11-mercaptoundecanoic acid (MUA) as well as 2-(dimethylamino)ethanthiol (DMAET). Systematic investigations by means of photoluminescence quantum yield measurements as well as photoluminescence decay measurements have shown that the luminescence properties of the transferred nanostructures are affected by hole traps (induced by the thiol ligands themselves) as well as by spatial insulation and passivation against the environment. The influence of the tips of the nanorods on the luminescence is, however, insignificant. Accordingly, different ligands yield optimum results for different nanoparticle samples, mainly depending on the inorganic passivation of the respective samples. In case of CdSe@CdS nanorods, the highest emission intensities have been obtained by using short-chain ligands for the transfer preserving more than 50% of the pristine quantum yield of the hydrophobic nanorods. As opposed to this, the best possible quantum efficiency for the CdSe@CdS/ZnS nanorods has been achieved via MUA. The gained knowledge could be applied to transfer for the first time 2-dimensional CdSe-CdS core-crown nanoplatelets into water while preserving significant photoluminescence (up to 12% quantum efficiency).In this work, luminescent CdSe@CdS dot-in-rod nanocrystals, CdSe@CdS/ZnS nanorods as well as CdSe-CdS core-crown nanoplatelets were transferred into aqueous phase via ligand exchange reactions. For this purpose, bifunctional thiol-based ligands were employed, namely mercaptoacetic acid (MAA), 3-mercaptopropionic acid (MPA), 11-mercaptoundecanoic acid (MUA) as well as 2-(dimethylamino)ethanthiol (DMAET). Systematic investigations by means of

  20. Amino acid composition, molecular weight distribution and gel electrophoresis of walnut (Juglans regia L.) proteins and protein fractionations.

    PubMed

    Mao, Xiaoying; Hua, Yufei; Chen, Guogang

    2014-01-27

    As a by-product of oil production, walnut proteins are considered as an additional source of plant protein for human food. To make full use of the protein resource, a comprehensive understanding of composition and characteristics of walnut proteins are required. Walnut proteins have been fractionated and characterized in this study. Amino acid composition, molecular weight distribution and gel electrophoresis of walnut proteins and protein fractionations were analyzed. The proteins were sequentially separated into four fractions according to their solubility. Glutelin was the main component of the protein extract. The content of glutelin, albumin, globulin and prolamin was about 72.06%, 7.54%, 15.67% and 4.73% respectively. Glutelin, albumin and globulin have a balanced content of essential amino acids, except for methionine, with respect to the FAO pattern recommended for adults. SDS-PAGE patterns of albumin, globulin and glutelin showed several polypeptides with molecular weights 14.4 to 66.2 kDa. The pattern of walnut proteins in two-dimension electrophoresis (2-DE) showed that the isoelectric point was mainly in the range of 4.8-6.8. The results of size exclusion chromatogram indicated molecular weight of the major components of walnut proteins were between 3.54 and 81.76 kDa.

  1. Analysis of active components of rhinoceros, water buffalo and yak horns using two-dimensional electrophoresis and ethnopharmacological evaluation.

    PubMed

    Liu, Rui; Duan, Jin-ao; Wang, Min; Shang, Erxin; Guo, Jianming; Tang, Yuping

    2011-02-01

    Cornu Rhinoceri Asiatici (rhinoceros horn, RH), Cornu Bubali (water buffalo horn, WBH), and Cornu Bovis grunniens (yak horn, YH) are traditional Chinese medicine (TCM), and have been used in China for thousands of years. In this study, ethnopharmacological experiments were used to evaluate and verify the traditional efficacies of horns. Area under curve (AUC) was used to quantify the pharmacological efficacy strength of three horns. Two-dimensional electrophoresis (2-DE) was used to analyze the protein components in horns, as a result, 14 common protein spots in rhinoceros horn, water buffalo horn, and yak horn electrophoresis gels were found by image analysis. Then linear regression analysis was used to establish the correlation between pharmacological efficacies and components in the horns, and five potential active components were selected from the 14 common protein spots. Finally, two protein spots from five were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). In this study, a simple method to construct correlation between components and efficacy strength was explored by linear regression analysis, which could be applied to screen potential active components of animal horns.

  2. Amino Acid Composition, Molecular Weight Distribution and Gel Electrophoresis of Walnut (Juglans regia L.) Proteins and Protein Fractionations

    PubMed Central

    Mao, Xiaoying; Hua, Yufei; Chen, Guogang

    2014-01-01

    As a by-product of oil production, walnut proteins are considered as an additional source of plant protein for human food. To make full use of the protein resource, a comprehensive understanding of composition and characteristics of walnut proteins are required. Walnut proteins have been fractionated and characterized in this study. Amino acid composition, molecular weight distribution and gel electrophoresis of walnut proteins and protein fractionations were analyzed. The proteins were sequentially separated into four fractions according to their solubility. Glutelin was the main component of the protein extract. The content of glutelin, albumin, globulin and prolamin was about 72.06%, 7.54%, 15.67% and 4.73% respectively. Glutelin, albumin and globulin have a balanced content of essential amino acids, except for methionine, with respect to the FAO pattern recommended for adults. SDS-PAGE patterns of albumin, globulin and glutelin showed several polypeptides with molecular weights 14.4 to 66.2 kDa. The pattern of walnut proteins in two-dimension electrophoresis (2-DE) showed that the isoelectric point was mainly in the range of 4.8–6.8. The results of size exclusion chromatogram indicated molecular weight of the major components of walnut proteins were between 3.54 and 81.76 kDa. PMID:24473146

  3. Synchrotron radiation for direct analysis of metalloproteins on electrophoresis gels.

    PubMed

    Ortega, Richard

    2009-03-01

    Metalloproteomics requires analytical techniques able to assess and quantify the inorganic species in metalloproteins. The most widely used methods are hyphenated techniques, based on the coupling of a high resolution chromatographic method with a high sensitivity method for metal analysis in solution. An alternative approach is the use of methods for solid sample analysis, combining metalloprotein separation by gel electrophoresis and direct analysis of the gels. Direct methods are based on beam analysis, such as lasers, ion beams or synchrotron radiation beams. The aim of this review article is to present the main features of synchrotron radiation based methods and their applications for metalloprotein analysis directly on electrophoresis gels. Synchrotron radiation X-ray fluorescence has been successfully employed for sensitive metal identification, and X-ray absorption spectroscopy for metal local structure speciation in proteins. Synchrotron based methods will be compared to ion beam and mass spectrometry for direct analysis of metalloproteins in electrophoresis gels.

  4. Enantiomeric resolution of multiple chiral centres racemates by capillary electrophoresis.

    PubMed

    Ali, Imran; Suhail, Mohd; Al-Othman, Zeid A; Alwarthan, Abdulrahman; Aboul-Enein, Hassan Y

    2016-05-01

    Enantiomeric resolution of multichiral centre racemates is an important area as some multichiral centre racemates are of great medicinal importance. However, enantioseparation of such types of racemates is a challenging task. Amongst many analytical techniques, capillary electrophoresis is a powerful technique and may be used to resolve such racemates. Only few papers are available describing enantiomeric resolution of such racemates. Therefore, efforts have been made to describe the enantiomeric resolution of multichiral centre racemates by capillary electrophoresis. This article discusses the importance of multichiral racemates, the need for capillary electrophoresis in enantiomeric resolution and chiral resolution of multichiral centre racemates using various chiral selectors. Further, attempts have been made to discuss the future challenges and prospects of enantiomeric resolution of multichiral racemates. The various chiral selectors used for the purpose are chiral crown ether, cyclodextrins, polysaccharides, macrocyclic glycopeptide antibiotics and ligand exchange.

  5. Analysis of Common Household Cleaner-Disinfectants by Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Gardner, William P.; Girard, James E.

    2000-10-01

    The use of capillary electrophoresis (CE) as an analytical technique in research, industrial, and commercial laboratories is growing rapidly. It is therefore very important to expose undergraduate instrumental analysis students to capillary electrophoresis. In this report we describe the CE analysis for benzalkonium compounds in common household cleaners and disinfectants. The surfactant nature of the benzalkonium compounds is the key consideration in performing the analysis, and modifications to the CE running buffer must be performed in order to successfully analyze the products. This experiment also illustrates the importance of (i) using peak areas corrected for variations in migration time to improve accuracy and (ii) using internal standards to improve the precision of capillary electrophoresis results.

  6. THERMAL DETECTION OF DNA AND PROTEINS DURING GEL ELECTROPHORESIS

    SciTech Connect

    R. JOHNSTON

    2000-08-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to try to detect unstained, untagged, unlabeled DNA bands in real-time during gel electrophoresis using simple thermal measurements. The technical and ES&H advantages to this approach could potentially be quite significant, especially given the extreme importance of gel electrophoresis to a wide variety of practical and research fields. The project was unable to demonstrate sufficient thermal sensitivity to detect DNA bands. It is clear that we still do not understand the gel electrophoresis phenomenon very well. The temperature control techniques developed during the course of this project have other useful applications.

  7. Nonlinear electrophoresis in the presence of dielectric decrement

    NASA Astrophysics Data System (ADS)

    Figliuzzi, B.; Chan, W. H. R.; Buie, C. R.; Moran, J. L.

    2016-08-01

    The nonlinear phenomena that occur in the electric double layer (EDL) that forms at charged surfaces strongly influence electrokinetic effects, including electro-osmosis and electrophoresis. In particular, saturation effects due to either dielectric decrement or ion crowding effects are of paramount importance. Dielectric decrement significantly influences the ionic concentration in the EDL at high ζ potential, leading to the formation of a condensed layer near the particle's surface. In this article, we present a model incorporating both steric effects due to the finite size of ions and dielectric decrement to describe the physics in the electric double layer. The model remains valid in both weakly and strongly nonlinear regimes, as long as the electric double layer remains in quasiequilibrium. We apply this model to the study of two archetypal problems in electrokinetics, namely the electrophoresis of particles with fixed surface charges and the electrophoresis of ideally polarizable particles.

  8. Analysis of protein therapeutics by capillary electrophoresis: applications and challenges.

    PubMed

    Ma, S

    2005-01-01

    Capillary electrophoresis (CE) has been increasingly used for the analysis of recombinant protein therapeutics in the biotechnology industry over the past several years. In this paper, an overview of the major applications implemented at Genentech Inc. is presented. The applications highlighted in this article are divided into the following three general areas: (i) CE as a replacement for slab gel electrophoresis, particularly capillary electrophoresis-sodium dodecylsulphate and capillary isoelectric focusing; (ii) CE to monitor protein charge heterogeneity as an orthogonal technique to the traditional on-exchange chromatographic methods; and (iii) CE for carbohydrate analysis, including both oligosaccharide and monosaccharide analysis. Overall, the advantages of these CE-based methodologies include automation, ease of quantification, rapid analysis time, enhanced resolution, and robustness when compared to the traditional methods. There are, however, still some challenges in applying CE for protein analysis, particularly in the area of characterization due to the miniaturization nature of CE.

  9. Nonlinear electrophoresis in the presence of dielectric decrement.

    PubMed

    Figliuzzi, B; Chan, W H R; Buie, C R; Moran, J L

    2016-08-01

    The nonlinear phenomena that occur in the electric double layer (EDL) that forms at charged surfaces strongly influence electrokinetic effects, including electro-osmosis and electrophoresis. In particular, saturation effects due to either dielectric decrement or ion crowding effects are of paramount importance. Dielectric decrement significantly influences the ionic concentration in the EDL at high ζ potential, leading to the formation of a condensed layer near the particle's surface. In this article, we present a model incorporating both steric effects due to the finite size of ions and dielectric decrement to describe the physics in the electric double layer. The model remains valid in both weakly and strongly nonlinear regimes, as long as the electric double layer remains in quasiequilibrium. We apply this model to the study of two archetypal problems in electrokinetics, namely the electrophoresis of particles with fixed surface charges and the electrophoresis of ideally polarizable particles. PMID:27627400

  10. Micro free-flow electrophoresis: theory and applications

    PubMed Central

    Turgeon, Ryan T.

    2009-01-01

    Free-flow electrophoresis (FFE) is a technique that performs an electrophoretic separation on a continuous stream of analyte as it flows through a planar flow channel. The electric field is applied perpendicularly to the flow to deflect analytes laterally according to their mobility as they flow through the separation channel. Miniaturization of FFE (μFFE) over the past 15 years has allowed analytical and preparative separation of small volume samples. Advances in chip design have improved separations by reducing interference from bubbles generated by electrolysis. Mechanisms of band broadening have been examined theoretically and experimentally to improve resolution in μFFE. Separations using various modes such as zone electrophoresis, isoelectric focusing, isotachophoresis, and field-step electrophoresis have been demonstrated. PMID:19290514

  11. Capillary array electrophoresis using laser-excited confocal fluorescence detection

    SciTech Connect

    Huang, X.C.; Quesada, M.A.; Mathies, R.A.

    1992-04-15

    Capillary electrophoresis (CE) has found widespread application in analytical and biomedical research, and the scope and sophistication of CE is still rapidly advancing. Gel-filled capillaries have been employed for the rapid separation and analysis of synthetic polynucleotides, DNA sequencing fragments, and DNA restriction fragments. Open-tube capillary electrophoresis has attained subattomole detection levels in amino acid separations 14 and proven its utility for the separation of proteins, viruses, and bacteria. Separation of the optical isomers of dansyl amino acids has also been successfully demonstrated. Micellar electrokinetic capillary chromatography, isoelectric focusing, and on-column derivatization can all be performed on CE columns, demonstrating the utility of capillary electrophoresis as an analytical and micropreparative tool. 29 refs., 6 figs., 1 tab.

  12. A quantitative method for blood lipoproteins using cellulose acetate electrophoresis

    PubMed Central

    Magnani, H. N.; Howard, A. N.

    1971-01-01

    A rapid, inexpensive, and quantitative method is described for obtaining the levels of plasma very low, low, and high density lipoproteins using cellulose acetate electrophoresis and lipid assays without prior separation by ultracentrifuge or other techniques. It involves separation of the lipoproteins by cellulose acetate electrophoresis, followed by their identification with the ozone-Schiff reaction. The total lipoprotein concentration is estimated from the total plasma phospholipid, and the percentage of each component obtained by densitometric analysis of the stained electrophoretograms, using reflected light. For samples with a raised level of very low density lipoprotein, plasma triglyceride analysis is also required. The results obtained by the cellulose acetate electrophoresis method are in good agreement with those by the analytical ultracentrifuge and the preparative ultracentrifuge with refractometry. The theoretical assumptions on which the method is based have been shown to be valid. Images PMID:4110791

  13. Comparative analysis of the tear protein expression in blepharitis patients using two-dimensional electrophoresis.

    PubMed

    Koo, Bon-Suk; Lee, Do-Yeon; Ha, Hyo-Shin; Kim, Jae-Chan; Kim, Chan-Wha

    2005-01-01

    Change in the expression of body fluid proteins is caused by many diseases or environmental disturbances. The changes in tear proteins are also associated with various pathological eye conditions. Especially, chronic blepharitis is one of the most common conditions seen in the ophthalmologist's office. However, there are no specific clinical diagnostic tests for blepharitis, and it is difficult to treat effectively. Therefore, the aim of this study was to screen prognostic or diagnostic marker tear proteins for blepharitis and investigate pathogenesis of this disease using proteomics techniques. The tear proteins expressed in patients suffering from blepharitis (patient, n=19) and healthy volunteers (control, n=27) were analyzed using the two-dimensional electrophoresis (2-DE) technique. The differentially expressed proteins in patients were identified with ESI-Q-TOF (electrospray-quadrupole-time-of-flight) mass spectrometry and confirmed with western blotting. Nine proteins in patient were down regulated about 50% compared to those of the control: serum albumin precursor, alpha-1 antitrypsin, lacritin precursor, lysozyme, Ig-kappa chain VIII, prolactin inducible protein (PIP/GCDFP-15), cystatin-SA III, pyruvate kinase, and an unnamed protein. The use of the two-dimensional eletrophoretic technique could give more insight into the disease-related protein expression changes in tear fluids. Our findings reveal that the composition of tear proteins in blepharitis patients is different from that of healthy subjects and may provide further insights into the pathogenesis of blepharitis.

  14. A dynamic two-dimensional polyacrylamide gel electrophoresis database: the mycobacterial proteome via Internet.

    PubMed

    Mollenkopf, H J; Jungblut, P R; Raupach, B; Mattow, J; Lamer, S; Zimny-Arndt, U; Schaible, U E; Kaufmann, S H

    1999-08-01

    Proteome analysis by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and mass spectrometry, in combination with protein chemical methods, is a powerful approach for the analysis of the protein composition of complex biological samples. Data organization is imperative for efficient handling of the vast amount of information generated. Thus we have constructed a 2-D PAGE database to store and compare protein patterns of cell-associated and culture-supernatant proteins of different mycobacterial strains. In accordance with the guidelines for federated 2-DE databases, we developed a program that generates a dynamic 2-D PAGE database for the World-Wide-Web to organise and publish, via the internet, our results from proteome analysis of different Mycobacterium tuberculosis as well as Mycobacterium bovis BCG strains. The uniform resource locator for the database is http://www.mpiib-berlin.mpg.de/2D-PAGE and can be read with a Java compatible browser. The interactive hypertext markup language documents displayed are generated dynamically in each individual session from a rational data file, a 2-D gel image file and a map file describing the protein spots as polygons. The program consists of common gateway interface scripts written in PERL, minimizing the administrative workload of the database. Furthermore, the database facilitates not only interactive use, but also worldwide active participation of other scientific groups with their own data, requiring only minimal computer hardware and knowledge of information technology.

  15. Automatic multiple-sample applicator and electrophoresis apparatus

    NASA Technical Reports Server (NTRS)

    Grunbaum, B. W. (Inventor)

    1977-01-01

    An apparatus for performing electrophoresis and a multiple-sample applicator is described. Electrophoresis is a physical process in which electrically charged molecules and colloidal particles, upon the application of a dc current, migrate along a gel or a membrane that is wetted with an electrolyte. A multiple-sample applicator is provided which coacts with a novel tank cover to permit an operator either to depress a single button, thus causing multiple samples to be deposited on the gel or on the membrane simultaneously, or to depress one or more sample applicators separately by means of a separate button for each applicator.

  16. Definition of performance specifications for automated Analytical Electrophoresis Facility (AAEF)

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1976-01-01

    In order to provide specifications for the automated Analytical Electrophoresis Facility (AAEF) that would satisfy the broadest variety of demands of a future user community, a survey was carried out of all those people who were identified as having published papers on cell electrophoresis in the past four years. A computer search was conducted of the relevant literature from which a list of 87 investigators was derived and defined as the user community for purposes of the mailing. A questionnaire was developed covering the areas of performance which required definition which was subsequently circulated to the user community. Based on the response to this survey performance specifications were assembled.

  17. Gel Electrophoresis of Gold-DNA Nano-Conjugates

    SciTech Connect

    Pellegrino, T.; Sperling, R.A.; Alivisatos, A.P.; Parak, W.J.

    2006-01-10

    Single stranded DNA of different lengths and different amounts was attached to colloidal phosphine stabilized Au nanoparticles. The resulting conjugates were investigated in detail by a gel electrophoresis study based on 1200 gels. We demonstrate how these experiments help to understand the binding of DNA to Au particles. In particular we compare specific attachment of DNA via gold-thiol bonds with nonspecific adsorption of DNA. The maximum number of DNA molecules that can be bound per particle was determined. We also compare several methods to used gel electrophoresis for investigating the effective diameter of DNA-Au conjugates, such as using a calibration curve of particles with known diameters and Ferguson plots.

  18. Separation of DNA by free flow electrophoresis in space.

    PubMed

    Kobayashi, H; Ishii, N

    2001-10-01

    Free flow electrophoresis of a nematode C. elegans DNA was carried out on the space shuttle flight in International Microgravity Laboratory No. 2 (IML-2)., 1994. We selected the C. elegans DNA as the sample of the space experiment for free flow electrophoresis separation. This worm is a useful animal for the study of development and behavior by genetic analysis, and is a good candidate for a complete DNA sequence analysis because the haploid genome size consists of approximately 100 Mb (megabase) distributed on the six chromosomes, only 1/30 of human genome size. (Recently, the entire genomic DNA (97 Mb) sequences of C. elegans have been completed at the last December, 1998, as the first organism of multicellular system. In addition, many of the genes in C. elegans have extensive similarity to their mammalian counterparts. It may be possible to use the technology of free flow electrophoresis to contribute to the DNA analysis of the eukaryote. In this mission we attempted to make real-time communication between the space shuttle and on the ground during the electrophoresis processing. Because the separation tendency of the sample in space was not predicted so perfectly, the requests to the crews of the space shuttle was needed for selecting the fractions to be separated. According to the three dimensional electropherogram (3DEP) figured out the electrophoresis behavior, we were able to recover those fractions and kept in the deep freezer until landing. This real-time monitoring of the electrophoresis was the first evidence during space electrophoresis experiments which was started at Apollo 14, 1974. Unfortunately, some troubles occurred by contamination of bubbles in space nevertheless the post flight analyses of the fractionated samples were succeeded. The DNAs estimated by the DNA probes were not isolated one but the migration tendencies were differ from each other. It was clear that certain parts of the process in this study are advanced; that is, the precise

  19. EOS production on the Space Station. [Electrophoresis Operations/Space

    NASA Technical Reports Server (NTRS)

    Runge, F. C.; Gleason, M.

    1986-01-01

    The paper discusses a conceptual integration of the equipment for EOS (Electrophoresis Operations/Space) on the Space Station in the early 1990s. Electrophoresis is a fluid-constituent separation technique which uses forces created by an electrical field. Aspects covered include EOS equipment and operations, and Space Station installations involving a pressurized module, a resupply module, utility provisions and umbilicals and crew involvement. Accommodation feasibility is generally established, and interfaces are defined. Space Station production of EOS-derived pharmaceuticals will constitute a significant increase in capability compared to precursor flights on the Shuttle in the 1980s.

  20. Separation of DNA by free flow electrophoresis in space.

    PubMed

    Kobayashi, H; Ishii, N

    2001-10-01

    Free flow electrophoresis of a nematode C. elegans DNA was carried out on the space shuttle flight in International Microgravity Laboratory No. 2 (IML-2)., 1994. We selected the C. elegans DNA as the sample of the space experiment for free flow electrophoresis separation. This worm is a useful animal for the study of development and behavior by genetic analysis, and is a good candidate for a complete DNA sequence analysis because the haploid genome size consists of approximately 100 Mb (megabase) distributed on the six chromosomes, only 1/30 of human genome size. (Recently, the entire genomic DNA (97 Mb) sequences of C. elegans have been completed at the last December, 1998, as the first organism of multicellular system. In addition, many of the genes in C. elegans have extensive similarity to their mammalian counterparts. It may be possible to use the technology of free flow electrophoresis to contribute to the DNA analysis of the eukaryote. In this mission we attempted to make real-time communication between the space shuttle and on the ground during the electrophoresis processing. Because the separation tendency of the sample in space was not predicted so perfectly, the requests to the crews of the space shuttle was needed for selecting the fractions to be separated. According to the three dimensional electropherogram (3DEP) figured out the electrophoresis behavior, we were able to recover those fractions and kept in the deep freezer until landing. This real-time monitoring of the electrophoresis was the first evidence during space electrophoresis experiments which was started at Apollo 14, 1974. Unfortunately, some troubles occurred by contamination of bubbles in space nevertheless the post flight analyses of the fractionated samples were succeeded. The DNAs estimated by the DNA probes were not isolated one but the migration tendencies were differ from each other. It was clear that certain parts of the process in this study are advanced; that is, the precise

  1. Analysis of inorganic species in environmental samples by capillary electrophoresis.

    PubMed

    Valsecchi, S M; Polesello, S

    1999-02-26

    The use of capillary electrophoresis for the determination of inorganic species in environmental samples is reviewed. Topics covered include the separation of inorganic anions, inorganic cations, transition metal cations and organometals in different environmental matrices, such as atmospheric deposition, atmospheric aerosols, gases, natural waters, waste waters, soil, sediment and marine biological samples. Cited literature is gathered according to the type of matrix, so that the focus is on the discussion of matrix effects rather than on the method development for a single class of compounds. For each matrix, surveyed methods are tabulated in order to assist the method selection. Innovative applications of capillary electrophoresis to advanced environmental research are also emphasised.

  2. GELBANK : A database of annotated two-dimensional gel electrophoresis patterns of biological systems with completed genomes.

    SciTech Connect

    Babnigg, G.; Giometti, C. S.; Biosciences Division

    2004-01-01

    GELBANK is a publicly available database of two-dimensional gel electrophoresis (2DE) gel patterns of proteomes from organisms with known genome information (available at and ftp://bioinformatics.anl.gov/gelbank/). Currently it includes 131 completed, mostly microbial proteomes available from the National Center for Biotechnology Information. A web interface allows the upload of 2D gel patterns and their annotation for registered users. The images are organized by species, tissue type, separation method, sample type and staining method. The database can be queried based on protein or 2DE-pattern attributes. A web interface allows registered users to assign molecular weight and pH gradient profiles to their own 2D gel patterns as well as to link protein identifications to a given spot on the pattern. The website presents all of the submitted 2D gel patterns where the end-user can dynamically display the images or parts of images along with molecular weight, pH profile information and linked protein identification. A collection of images can be selected for the creation of animations from which the user can select sub-regions of interest and unlimited 2D gel patterns for visualization. The website currently presents 233 identifications for 81 gel patterns for Homo sapiens, Methanococcus jannaschii, Pyro coccus furiosus, Shewanella oneidensis, Escherichia coli and Deinococcus radiodurans.

  3. Proteomic study of a model causative agent of harmful red tide, Prorocentrum triestinum I: Optimization of sample preparation methodologies for analyzing with two-dimensional electrophoresis.

    PubMed

    Chan, Leo Lai; Lo, Samuel Chun-Lap; Hodgkiss, Ivor John

    2002-09-01

    A comprehensive study to find the optimal sample preparation conditions for two-dimensional electrophoresis (2-DE) analysis of Prorocentrum triestinum, a model causative agent of harmful algal blooms (HABs) was carried out. The four major sample preparation steps for 2-DE: (a) cell disruption: i.e. sonication and homogenization with glass beads; (b) protein extraction : i.e. sequential and independent extraction procedures; (c) pre-electrophoretic treatment: these included (i) treatment with RNAase/DNAase or benzonase; (ii) ultracentrifugation to sediment large macromolecules such as DNA; (iii) desalting and concentration by ultrafiltration through a Microcon centrifugal filter device (MWCO: 3000 daltons); and (iv) desalting by a micro BioSpin chromatography column (MWCO: 6000 daltons); and (d) rehydration buffers, reducing agents and sample application in the first dimension isoelectric focussing were studied. Our results showed that sonication is easy to perform and resulted in a higher protein yield. Among the four extraction buffers, the urea containing buffers resulted in the extraction of the highest amount of protein while tris(hydroxymethyl)aminomethane buffers and trichloroacetic acid (TCA)/acetone precipitation allowed detection of a higher number of protein species (i.e. protein spots). Desalting by BioSpin and ultrafiltration have improved the 2-DE resolution of the water soluble fraction but have less effect on urea containing fractions. TCA/acetone precipitation was able to desalt all protein fractions independent of the extraction media, however extended exposure to this low pH medium has caused protein modification. Introduction of either DNase/RNase or benzonase treatment did not improve the discriminatory power of the 2-DE but this treatment did yield 2-DE with the clearest background. Proteolytic digestion was inhibited by addition of a protease inhibitor cocktail. Taken overall, a combination of sequential extraction and desalting by Bio

  4. Proteomic study of a model causative agent of harmful red tide, Prorocentrum triestinum I: Optimization of sample preparation methodologies for analyzing with two-dimensional electrophoresis.

    PubMed

    Chan, Leo Lai; Lo, Samuel Chun-Lap; Hodgkiss, Ivor John

    2002-09-01

    A comprehensive study to find the optimal sample preparation conditions for two-dimensional electrophoresis (2-DE) analysis of Prorocentrum triestinum, a model causative agent of harmful algal blooms (HABs) was carried out. The four major sample preparation steps for 2-DE: (a) cell disruption: i.e. sonication and homogenization with glass beads; (b) protein extraction : i.e. sequential and independent extraction procedures; (c) pre-electrophoretic treatment: these included (i) treatment with RNAase/DNAase or benzonase; (ii) ultracentrifugation to sediment large macromolecules such as DNA; (iii) desalting and concentration by ultrafiltration through a Microcon centrifugal filter device (MWCO: 3000 daltons); and (iv) desalting by a micro BioSpin chromatography column (MWCO: 6000 daltons); and (d) rehydration buffers, reducing agents and sample application in the first dimension isoelectric focussing were studied. Our results showed that sonication is easy to perform and resulted in a higher protein yield. Among the four extraction buffers, the urea containing buffers resulted in the extraction of the highest amount of protein while tris(hydroxymethyl)aminomethane buffers and trichloroacetic acid (TCA)/acetone precipitation allowed detection of a higher number of protein species (i.e. protein spots). Desalting by BioSpin and ultrafiltration have improved the 2-DE resolution of the water soluble fraction but have less effect on urea containing fractions. TCA/acetone precipitation was able to desalt all protein fractions independent of the extraction media, however extended exposure to this low pH medium has caused protein modification. Introduction of either DNase/RNase or benzonase treatment did not improve the discriminatory power of the 2-DE but this treatment did yield 2-DE with the clearest background. Proteolytic digestion was inhibited by addition of a protease inhibitor cocktail. Taken overall, a combination of sequential extraction and desalting by Bio

  5. An investigation of cutting mechanics in 2 dimensional ultrasonic vibration assisted milling toward chip thickness and chip formation

    NASA Astrophysics Data System (ADS)

    Rasidi, I. I.; Rafai, N. H.; Rahim, E. A.; Kamaruddin, S. A.; Ding, H.; Cheng, K.

    2015-12-01

    The purpose of this paper is to investigate the effects of 2 dimensional Ultrasonic Vibration Assisted Milling (UVAM) cutting mechanics, considering tool path trajectory and the effect on the chip thickness. The theoretical modelling of cutting mechanics is focused by considering the trajectory of the tool locus into the workpiece during the machining. The studies found the major advantages of VAM are come from the intermittent tool tip interaction phenomena between cutting tool and workpiece. The reduction of thinning chip thickness formations can be identifying advantages from vibration assisted milling in 2 dimensional. The finding will be discussing the comparison between conventional machining the potential of the advantages toward the chip thickness and chip formation in conclusion.

  6. Protein composition of wheat gluten polymer fractions determined by quantitative two-dimensional gel electrophoresis and tandem mass spectrometry

    PubMed Central

    2014-01-01

    Background Certain wheat gluten proteins form large protein polymers that are extractable in 0.5% SDS only after sonication. Although there is a strong relationship between the amounts of these polymers in the flour and bread-making quality, the protein components of these polymers have not been thoroughly investigated. Results Flour proteins from the US bread wheat Butte 86 were extracted in 0.5% SDS using a two-step procedure with and without sonication. Proteins were further separated by size exclusion chromatography (SEC) into monomeric and polymeric fractions and analyzed by quantitative two-dimensional gel electrophoresis (2-DE). When proteins in select 2-DE spots were identified by tandem mass spectrometry (MS/MS), overlapping spots from the different protein fractions often yielded different identifications. Most high-molecular-weight glutenin subunits (HMW-GS) and low-molecular-weight glutenin subunits (LMW-GS) partitioned into the polymer fractions, while most gliadins were found in the monomer fractions. The exceptions were alpha, gamma and omega gliadins containing odd numbers of cysteine residues. These proteins were detected in all fractions, but comprised the largest proportion of the SDS-extractable polymer fraction. Several types of non-gluten proteins also were found in the polymer fractions, including serpins, triticins and globulins. All three types were found in the largest proportions in the SDS-extractable polymer fraction. Conclusions This is the first study to report the accumulation of gliadins containing odd numbers of cysteine residues in the SDS-extractable glutenin polymer fraction, supporting the hypothesis that these gliadins serve as chain terminators of the polymer chains. These data make it possible to formulate hypotheses about how protein composition influences polymer size and structure and provide a foundation for future experiments aimed at determining how environment affects glutenin polymer distribution. In addition, the

  7. Differential metalloprotease content and activity of three Loxosceles spider venoms revealed using two-dimensional electrophoresis approaches.

    PubMed

    Trevisan-Silva, Dilza; Bednaski, Aline Viana; Gremski, Luiza Helena; Chaim, Olga Meiri; Veiga, Silvio Sanches; Senff-Ribeiro, Andrea

    2013-12-15

    Loxosceles bites have been associated with characteristic dermonecrotic lesions with gravitational spreading and systemic manifestations. Venom primarily comprises peptides and protein molecules (5-40 kDa) with multiple biological activities. Although poorly studied, metalloproteases have been identified in venoms of several Loxosceles species, presenting proteolytic effects on extracellular matrix components. The characterization of an Astacin-like protease (LALP) in Loxosceles intermedia venom was the first report of an Astacin family member as a component of animal venom. Recently, these proteases were described as a gene family in L. intermedia, Loxosceles laeta and Loxosceles gaucho. Herein, the whole venom complexity of these three Loxosceles species was analyzed using two-dimensional electrophoresis (2DE). Subproteomes of LALPs were explored through 2DE immunostaining using anti-LALP1 antibodies and 2DE gelatin zymogram. Proteins presented molecular masses ranging from 24 to 29 kDa and the majority of these molecules had basic or neutral isoelectric points (6.89-9.93). Likewise, the measurement of gelatinolytic effects of Loxosceles venom using fluorescein-gelatin showed that the three venoms have distinct proteolytic activities. The metalloprotease fibrinogenolytic activities were also evaluated. All venoms showed fibrinogenolytic activity with different proteolytic effects on Aα and Bβ chains of fibrinogen. The results reported herein suggest that the LALP family is larger than indicated in previously published data and that the complex profile of the gelatinolytic activity reflects their relevance in loxoscelism. Furthermore, our investigation implicates the brown spider venom as a source of Astacin-like proteases for use in loxoscelism studies, cell biology research and biotechnological applications.

  8. Goodness-of-fit tests for the additive risk model with (p > 2)-dimensional time-invariant covariates.

    PubMed

    Kim, J; Song, M S; Lee, S

    1998-01-01

    This paper presents methods for checking the goodness-of-fit of the additive risk model with p(> 2)-dimensional time-invariant covariates. The procedures are an extension of Kim and Lee (1996) who developed a test to assess the additive risk assumption for two-sample censored data. We apply the proposed tests to survival data from South Wales nikel refinery workers. Simulation studies are carried out to investigate the performance of the proposed tests for practical sample sizes. PMID:9880997

  9. Application of capillary electrophoresis in agricultural and soil chemistry research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a modern analytical technique, capillary electrophoresis (CE) has become an attractive method for characterizing molecules wit high structural complexity and a wide range of molecular weights. CE can be used to analyze many natural chemical components such as acids, biogenic amines, peptides, pro...

  10. An Inexpensive Device for Capillary Electrophoresis with Fluorescence Detection

    ERIC Educational Resources Information Center

    Anderson, Greg; Thompson, Jonathan E.; Shurrush, Khriesto

    2006-01-01

    We describe an inexpensive device for performing capillary electrophoresis (CE) separations with fluorescence detection. As a demonstration of the device's utility we have determined the mass of riboflavin in a commercially available dietary supplement. The device allows for separation of riboflavin in [asymptotically equivalent to] 100 s with a…

  11. Recent advances in amino acid analysis by capillary electrophoresis.

    PubMed

    Prata, C; Bonnafous, P; Fraysse, N; Treilhou, M; Poinsot, V; Couderc, F

    2001-11-01

    Amino acids are studied extensively using capillary electrophoresis. In this review we will report the different researchs which have been done in the literature since 1998. We will describe the developments of, detection methods, separations of enantiomers, the new medical applications, and amino acids in food and plants.

  12. CAPILLARY ELECTROPHORESIS IMMUNOASSAY FOR 2,4-DICHLOROPHENOXYACETIC ACID

    EPA Science Inventory

    A capillary electrophoresis (CE) immunoassay format for 2,4-dichlorophenoxyacetic acid (2,4-D) is demonstrated. A fluorescent labeled 2,4-D analog competes with the analyte of interest for a finite number of binding sites provided by anti-2,4-D monoclonal antibodies. CE then pr...

  13. Proteomic Profiling of Macrophages by 2D Electrophoresis

    PubMed Central

    Bouvet, Marion; Turkieh, Annie; Acosta-Martin, Adelina E.; Chwastyniak, Maggy; Beseme, Olivia; Amouyel, Philippe; Pinet, Florence

    2014-01-01

    The goal of the two-dimensional (2D) electrophoresis protocol described here is to show how to analyse the phenotype of human cultured macrophages. The key role of macrophages has been shown in various pathological disorders such as inflammatory, immunological, and infectious diseases. In this protocol, we use primary cultures of human monocyte-derived macrophages that can be differentiated into the M1 (pro-inflammatory) or the M2 (anti-inflammatory) phenotype. This in vitro model is reliable for studying the biological activities of M1 and M2 macrophages and also for a proteomic approach. Proteomic techniques are useful for comparing the phenotype and behaviour of M1 and M2 macrophages during host pathogenicity. 2D gel electrophoresis is a powerful proteomic technique for mapping large numbers of proteins or polypeptides simultaneously. We describe the protocol of 2D electrophoresis using fluorescent dyes, named 2D Differential Gel Electrophoresis (DIGE). The M1 and M2 macrophages proteins are labelled with cyanine dyes before separation by isoelectric focusing, according to their isoelectric point in the first dimension, and their molecular mass, in the second dimension. Separated protein or polypeptidic spots are then used to detect differences in protein or polypeptide expression levels. The proteomic approaches described here allows the investigation of the macrophage protein changes associated with various disorders like host pathogenicity or microbial toxins. PMID:25408153

  14. An aluminum heat sink and radiator for electrophoresis capillaries.

    PubMed

    Rapp, T L; Morris, M D

    1996-12-15

    An aluminum heat sink and radiator are used with forced air cooling of an electrophoresis capillary. Theoretical analyses of the operating limits and heat dissipation characteristics are presented. A system designed for power dissipation as high as 5 W is shown to dissipate heat efficiently and to operate without arcing at voltages higher than 30 kV.

  15. Gel Electrophoresis--The Easy Way for Students

    ERIC Educational Resources Information Center

    VanRooy, Wilhelmina; Sultana, Khalida

    2010-01-01

    This article describes a simple, inexpensive, easy to conduct gel-electrophoresis activity using food dyes. It is an alternative to the more expensive counterparts which require agarose gel, DNA samples, purchased chamber and Tris-borate-EDTA buffer. We suggest some learning activities for senior biology students along with comments on several…

  16. 21 CFR 862.2485 - Electrophoresis apparatus for clinical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrophoresis apparatus for clinical use. 862.2485 Section 862.2485 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... proteins, lipoproteins, enzymes, and hemoglobulins on the basis of their net charge in specified...

  17. Nanoparticle gel electrophoresis: bare charged spheres in polyelectrolyte hydrogels.

    PubMed

    Li, Fei; Hill, Reghan J

    2013-03-15

    Nanoparticle gel electrophoresis has recently emerged as an attractive means of separating and characterizing nanoparticles. Consequently, a theory that accounts for electroosmotic flow in the gel, and coupling of the nanoparticle and hydrogel electrostatics and hydrodynamics, is required, particularly for gels in which the mesh size is comparable to or smaller than the particle radii. Here, we present an electrokinetic model for charged, spherical colloidal particles undergoing electrophoresis in charged (polyelectrolyte) hydrogels: the gel-electrophoresis analogue of Henry's theory for electrophoresis in Newtonian electrolytes. We compare numerically exact solutions of the model with several independent asymptotic approximations, identifying regions in the parameter space where these approximations are accurate or break down. As previously assumed in the literature, Henry's formula, modified by the addition of a constant electroosmotic flow mobility, is accurate only for nanoparticles that are small compared to the hydrogel mesh size. We derived an exact analytical solution of the full model by judiciously modifying the theory of Allison et al. for uncharged gels, drawing on the superposition methodology of Doane et al. to account for hydrogel charge. This furnishes accurate and economical mobility predictions for the entire parameter space. The present model suggests that nanoparticle size separations (with diameters ≲40 nm) are optimal at low ionic strength, with a gel mesh size that is selected according to the particle charging mechanism. For weakly charged particles, optimal size separation is achieved when the Brinkman screening length is matched to the mean particle size. PMID:23153681

  18. Capillary electrophoresis application in metal speciation and complexation characterization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Capillary electrophoresis is amenable to the separation of metal ionic species and the characterization of metal-ligand interactions. This book chapter reviews and discusses three representative case studies in applications of CE technology in speciation and reactions of metal with organic molecules...

  19. Separation of rat pituitary secretory granules by continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Hayes, Daniel; Exton, Carrie; Salada, Thomas; Shellenberger, Kathy; Waddle, Jenny; Hymer, W. C.

    1990-01-01

    The separation of growth hormone-containing cytoplasmic secretory granules from the rat pituitary gland by continuous flow electrophoresis is described. The results are consistent with the hypothesis that granule subpopulations can be separated due to differences in surface charge; these, in turn, may be related to the oligomeric state of the hormone.

  20. How it all began: a personal history of gel electrophoresis.

    PubMed

    Smithies, Oliver

    2012-01-01

    Arne Tiselius' moving boundary electrophoresis method was still in general use in 1951 when this personal history begins, although zonal electrophoresis with a variety of supporting media (e.g., filter paper or starch grains) was beginning to replace it. This chapter is an account of 10 years of experiments carried out by the author during which molecular sieving gel electrophoresis was developed and common genetic variants of two proteins, haptoglobin and transferrin, were discovered in normal individuals. Most of the figures are images of pages from the author's laboratory notebooks, which are still available, so that some of the excitement of the time and the humorous moments are perhaps apparent. Alkaline gels, acidic gels with and without denaturants, vertical gels, two-dimensional gels, and gels with differences in starch concentration are presented. The subtle details that can be discerned in these various gels played an indispensable role in determining the nature of the change in the haptoglobin gene (Hp) that leads to the polymeric series characteristic of Hp ( 2 ) /Hp ( 2 ) homozygotes. Where possible, the names of scientific friends who made this saga of gel electrophoresis so memorable and enjoyable are gratefully included.

  1. Capillary electrophoresis for drug analysis in body fluids.

    PubMed

    Thormann, W; Zhang, C X; Schmutz, A

    1996-08-01

    Capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MECC) represent attractive methods for the determination of drugs and metabolites in body fluids. In CZE, minute (nanoliter) quantities of samples are applied to the beginning of a fused-silica capillary filled with buffer. On application of a high-voltage DC field, charged solutes begin to separate and are swept through the capillary by the combined action of electrophoresis and electroosmotic bulk flow and are on-column detected toward the capillary end. In MECC, the buffer contains charged micelles (e.g., dodecyl sulfate micelles) and both uncharged and charged solutes separate based on differential partitioning between the micelles and the surrounding buffer and, if charged, also by differential charge effects, including electrophoresis. Based on validated MECC drug assays developed in our laboratory, key aspects of measuring drug levels by MECC, including sample preparation, solute detection and identification, quantitation, reproducibility, and quality assurance are discussed. Drug levels determined by MECC are shown to be in good agreement with those obtained by nonisotopic immunoassays and/or high-performance liquid chromatography (HPLC). Using on-column multi-wavelength detection, this technology is also well suited for toxicological drug screening and confirmation and for the exploration of drug metabolism. Compared with HPLC and gas chromatography, capillary electrophoresis has distinct advantages, including automation, small sample size, minimal sample preparation, use of very small amounts of organic solvents and inexpensive chemicals, ease of buffer change and method development, and low cost of capillary columns. Electrokinetic capillary assays are complementary to the widely employed immunoassays. The state of the art and the pros and cons of capillary electrophoresis for the determination of drugs in body fluids are discussed with the goal of encouraging

  2. Protein electrophoresis, immunoelectrophoresis and immunofixation electrophoresis as predictors for high-risk phenotype in familial Waldenström macroglobulinemia.

    PubMed

    McMaster, Mary L; Csako, Gyorgy

    2008-03-01

    Protein electrophoresis is used for the detection, evaluation and follow-up of monoclonal gammopathy (MG) conditions such as Waldenström macroglobulinemia (WM). Immunofixation electrophoresis (IFE) is currently the most common method for isotyping of monoclonal gammopathy because of its superior sensitivity relative to immunoelectrophoresis (IEP). We designed a study to evaluate the clinicobiological relevance of small monoclonal bands detected by serum protein electrophoresis, IEP, and IFE. Serum protein electrophoresis, IEP, and IFE were used to evaluate possible monoclonal gammopathy in 46 members (29 relatives and 17 nonbloodline spouses) from 3 families with multiple cases of WM. IFE identified small monoclonal bands initially missed by IEP in 5 individuals (2 blood relatives, 3 spouses) among 46 study participants. All bands were IgM type. Twenty-three individuals, including the 2 blood relatives and 2 of 3 spouses with monoclonal gammopathy, were then followed for a median of 17 years (range, 13-25). The monoclonal gammopathy progressed in the 2 relatives but disappeared in the spouses, and new IgM MG developed in 2 additional relatives with a prior history of IgM polyclonal gammopathy. Small monoclonal bands detected by IFE in a familial context may be biologically meaningful, both as phenotypic biomarkers and possibly as predictors of high risk for WM. Polyclonal IgM may also be a marker of genetic susceptibility in WM families. Larger studies are needed to confirm these observations.

  3. Continuous-flow electrophoresis: Membrane-associated deviations of buffer pH and conductivity

    NASA Technical Reports Server (NTRS)

    Smolka, A. J. K.; Mcguire, J. K.

    1978-01-01

    The deviations in buffer pH and conductivity which occur near the electrode membranes in continuous-flow electrophoresis were studied in the Beckman charged particle electrophoresis system and the Hanning FF-5 preparative electrophoresis instrument. The nature of the membranes separating the electrode compartments from the electrophoresis chamber, the electric field strength, and the flow rate of electrophoresis buffer were all found to influence the formation of the pH and conductivity gradients. Variations in electrode buffer flow rate and the time of electrophoresis were less important. The results obtained supported the hypothesis that a combination of Donnan membrane effects and the differing ionic mobilities in the electrophoresis buffer was responsible for the formation of the gradients. The significance of the results for the design and stable operation of continuous-flow electrophoresis apparatus was discussed.

  4. An Optimized Trichloroacetic Acid/Acetone Precipitation Method for Two-Dimensional Gel Electrophoresis Analysis of Qinchuan Cattle Longissimus Dorsi Muscle Containing High Proportion of Marbling.

    PubMed

    Hao, Ruijie; Adoligbe, Camus; Jiang, Bijie; Zhao, Xianlin; Gui, Linsheng; Qu, Kaixing; Wu, Sen; Zan, Linsen

    2015-01-01

    Longissimus dorsi muscle (LD) proteomics provides a novel opportunity to reveal the molecular mechanism behind intramuscular fat deposition. Unfortunately, the vast amounts of lipids and nucleic acids in this tissue hampered LD proteomics analysis. Trichloroacetic acid (TCA)/acetone precipitation is a widely used method to remove contaminants from protein samples. However, the high speed centrifugation employed in this method produces hard precipitates, which restrict contaminant elimination and protein re-dissolution. To address the problem, the centrifugation precipitates were first grinded with a glass tissue grinder and then washed with 90% acetone (TCA/acetone-G-W) in the present study. According to our result, the treatment for solid precipitate facilitated non-protein contaminant removal and protein re-dissolution, ultimately improving two-dimensional gel electrophoresis (2-DE) analysis. Additionally, we also evaluated the effect of sample drying on 2-DE profile as well as protein yield. It was found that 30 min air-drying did not result in significant protein loss, but reduced horizontal streaking and smearing on 2-DE gel compared to 10 min. In summary, we developed an optimized TCA/acetone precipitation method for protein extraction of LD, in which the modifications improved the effectiveness of TCA/acetone method.

  5. Advancements to the theory of free solution electrophoresis of polyelectrolytes

    NASA Astrophysics Data System (ADS)

    McCormick, Laurette

    Capillary electrophoresis (CE) is the workhorse of countless analytical laboratories and is used routinely in various industries including pharmaceutical, forensic and clinical applications. Basically, CE is a method for separating charged molecular species in a buffer-filled capillary by the application of an electric field; the analytes move from one end of the capillary to the detector at the other end at speeds determined by their charge, size and shape. Generally, in free solution CE uniformly charged polyelectrolytes (such as DNA) are free-draining, meaning that their speed is independent of their size. Hence, until recently, a gel or other sieving medium has been necessary for the separation of polyelectrolytes; however, modifying uniformly charged polymers on the molecular level, via conjugation to uncharged polymers, allows for separation in free solution CE. In this thesis, advancements to the theory of free solution electrophoresis of polyelectrolytes, in particular, to the theories for two new free solution electrophoresis methods relying on conjugation, are presented. The first method, called End Labelled Free Solution Electrophoresis (ELFSE), can be used to sequence DNA, a negatively charged polymer in solution. Two different means of improving the resolution of ELFSE are predicted, one based on the molecular end effect, the other based on using a controlled electro-osmotic flow. In addition, a theory for the segregation of the DNA and label coils in ELFSE is presented. The second method is called Free Solution Conjugate Electrophoresis (FSCE); it allows for characterization of a sample of neutral polymers differing in length. The relevant theory, developed herein, elucidates how to accurately determine the molar mass distribution of the sample through FSCE measurements. In addition, supporting theories are developed that clarify the correct equation for the diffusion coefficient of molecules undergoing free solution electrophoresis, as well as

  6. Acupuncture Sample Injection for Microchip Capillary Electrophoresis and Electrokinetic Chromatography.

    PubMed

    Ha, Ji Won; Hahn, Jong Hoon

    2016-05-01

    A simple nanoliter-scale injection technique was developed for polydimethylsiloxane (PDMS) microfluidic devices to form the well-defined sample plugs in microfluidic channels. Sample injection was achieved by performing acupuncture on a channel with a needle and applying external pressure to a syringe. This technique allowed us to achieve reproducible injection of a 3-nL segment into a microchannel for PDMS microchip-based capillary electrophoresis (CE). Capillary zone electrophoresis (CZE) and capillary electrochromatography (CEC) with bead packing were successfully performed by applying a single potential in the most simplified straight channel. The advantages of this acupuncture injection over the electrokinetic injection in microchip CE include capability of minimizing sample loss and voltage control hardware, capability of serial injections of different sample solutions into a same microchannel, capability of injecting sample plugs into any position of a microchannel, independence on sample solutions during the loading step, and ease in making microchips due to the straight channel, etc. PMID:27056036

  7. Microchip capillary electrophoresis of nitrite and nitrate in cerebrospinal fluid.

    PubMed

    Masár, Marián; Bodor, Róbert; Troška, Peter

    2015-01-01

    Microchip capillary electrophoresis (MCE) is a relatively new analytical method requiring only small sample amounts, which is very favorable for the analysis of volume-limited biofluids. The practical use of MCE in bioanalysis is still restricted in terms of requirements for simplifying and/or concentrating sample pretreatment techniques. Here, we describe an MCE method for trace analysis of nitrite and nitrate, indicators of various neurological diseases, in cerebrospinal fluid (CSF). The complex CSF samples were simplified by solid-phase microextraction prior to an online combination of isotachophoresis with capillary zone electrophoresis performed on a microchip with coupled channels and a high-volume sample injection channel (9.9 μL). The method is suitable for rapid (total analysis time lasted 20 min), reproducible (0.6-2.4 % RSD for migration time), and sensitive (3-9 nM limits of detection) determinations of nitrite and nitrate in 15-50 times diluted CSF samples. PMID:25673480

  8. Free flow electrophoresis in space shuttle program (Biotex).

    PubMed

    Hannig, K; Bauer, J

    1989-01-01

    In the space shuttle program free flow electrophoresis will be applied for separation of proteins, biopolymers and cells. Proteins are to be separated according to the "Feldsprung-Gradienten" procedure by Prof. H. Wagner, University of Saarbruecken, biopolymers are to be separated by the isotachophoresis technique by Prof. Schmitz, University of Muenster and we intend to separate cells in order to increase the efficiency of recovery of hybrid cells after electrofusion performed under microgravity in collaboration with Prof. U. Zimmermann, University of Wuerzburg. There are supposed two ways for reaching this goal: 1) Enrichment of cells before electrofusion may enhance the probability that the cells of interest are immortalized. 2) Separation of cells after electrofusion may help to clone the hybrid cells of interest. Under microgravity, the combination of improved electrophoresis with higher electrofusion rates may provide new possibilities for immortalization of cells. This may be a new way to obtain cellular products, which are physiologically glycosylated.

  9. Bioanalytical Application of Amino Acid Detection by Capillary Electrophoresis.

    PubMed

    Fico, Daniela; Pennetta, Antonio; De Benedetto, Giuseppe E

    2016-01-01

    This chapter illustrates the usefulness of capillary electrophoresis (CE) for the analysis of amino acids, and both normal and chiral separations are covered. In order to provide a general description of the main results and challenges in the biomedical field, some relevant applications and reviews on CE of amino acids are tabulated. Furthermore, some detailed experimental procedures are shown, regarding the CE analysis of amino acids in body fluids, in microdialysate, and released upon hydrolysis of proteins. In particular, the protocols will deal with the following compounds: (1) underivatized aminoacids in blood; (2) γ-Aminobutyric acid, glutamate, and L-Aspartate derivatized with Naphthalene-2,3-dicarboxaldehyde; (3) hydrolysate from bovine serum albumine derivatized with phenylisothiocyanate. By examining these applications on real matrices, the capillary electrophoresis efficiency as tool for Amino Acid analysis can be ascertained. PMID:27645741

  10. Imaging Catalytic Surfaces by Multiplexed Capillary Electrophoresis With Absorption Detection

    SciTech Connect

    Michael Christodoulou

    2002-08-27

    A new technique for in situ imaging and screening heterogeneous catalysts by using multiplexed capillary electrophoresis with absorption detection was developed. By bundling the inlets of a large number of capillaries, an imaging probe can be created that can be used to sample products formed directly from a catalytic surface with high spatial resolution. In this work, they used surfaces made of platinum, iron or gold wires as model catalytic surfaces for imaging. Various shapes were recorded including squares and triangles. Model catalytic surfaces consisting of both iron and platinum wires in the shape of a cross were also imaged successfully. Each of the two wires produced a different electrochemical product that was separated by capillary electrophoresis. Based on the collected data they were able to distinguish the products from each wire in the reconstructed image.

  11. Rapid DNA sequencing by horizontal ultrathin gel electrophoresis.

    PubMed Central

    Brumley, R L; Smith, L M

    1991-01-01

    A horizontal polyacrylamide gel electrophoresis apparatus has been developed that decreases the time required to separate the DNA fragments produced in enzymatic sequencing reactions. The configuration of this apparatus and the use of circulating coolant directly under the glass plates result in heat exchange that is approximately nine times more efficient than passive thermal transfer methods commonly used. Bubble-free gels as thin as 25 microns can be routinely cast on this device. The application to these ultrathin gels of electric fields up to 250 volts/cm permits the rapid separation of multiple DNA sequencing reactions in parallel. When used in conjunction with 32P-based autoradiography, the DNA bands appear substantially sharper than those obtained in conventional electrophoresis. This increased sharpness permits shorter autoradiographic exposure times and longer sequence reads. Images PMID:1870968

  12. Electrophoresis of end-labeled DNA: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Lau, Henry W.; Archer, Lynden A.

    2010-03-01

    The dynamic behavior of end-labeled DNA during free-solution electrophoresis is investigated using a simple dumbbell model for the labeled DNA. We study the effect of the applied field, label size, and chain stiffness on DNA conformation and electrophoretic mobility. High applied fields are predicted to magnify the size-dependence of mobility and to yield a nonmonotonic dependence of electrophoretic mobility on applied field. The effectiveness of leveraging label size and DNA chain stiffness for improving resolution is also discussed in the context of DNA deformation. To evaluate the most salient model predictions, we use capillary electrophoresis experiments to characterize the size- and field-dependent mobility of dsDNA fragments (300 bp-2 kbp) end-functionalized with streptavidin. Our experimental results are found to be in generally good accord with expectations based on the dumb-bell model. We discuss implications of these findings for fast, size-based separation of DNA in free solution.

  13. Development of coatings to control electroosmosis in zero gravity electrophoresis

    NASA Technical Reports Server (NTRS)

    Krupnick, A. C.

    1974-01-01

    A major problem confronting the operation of free fluid electrophoresis in zero gravity is the control of electrokinetic phenomena and, in particular, electroosmosis. Due to the severity of counter flow as a result of electroosmosis, the electrical potential developed at the surface of shear must be maintained at near, or as close, to zero millivolts as possible. Based upon this investigation, it has been found that the amount of bound water or the degree of hydroxylation plays a major role in the control of this phenomenon. Based upon tests employing microcapillary electrophoresis, it has been found that gamma amino propyl trihydroxysilane produced a coating which provides the lowest potential (about 3.86 mV) at the surface of shear between the stationary and mobile layers.

  14. Effects of coating rectangular microscopic electrophoresis chamber with methylcellulose

    NASA Technical Reports Server (NTRS)

    Plank, L. D.

    1985-01-01

    One of the biggest problems in obtaining high accuracy in microscopic electrophoresis is the parabolic flow of liquid in the chamber due to electroosmotic backflow during application of the electric field. In chambers with glass walls the source of polarization leading to electroosmosis is the negative charge of the silicare and other ions that form the wall structure. It was found by Hjerten, who used a rotating 3.0 mm capillary tube for free zone electrophoresis, that precisely neutralizing this charge was extremely difficult, but if a neutral polymer matrix (formaldehyde fixed methylcellulose) was formed over the glass (quartz) wall the double layer was displaced and the viscosity at the shear plane increased so that electroosmotic flow could be eliminated. Experiments were designed to determine the reliability with which methylcellulose coating of the Zeiss Cytopherometer chamber reduced electroosmotic backflow and the effect of coating on the accuracy of cell electrophoretic mobility (EPN) determinations. Fixed rat erythrocytes (RBC) were used as test particles.

  15. Microchip capillary electrophoresis of nitrite and nitrate in cerebrospinal fluid.

    PubMed

    Masár, Marián; Bodor, Róbert; Troška, Peter

    2015-01-01

    Microchip capillary electrophoresis (MCE) is a relatively new analytical method requiring only small sample amounts, which is very favorable for the analysis of volume-limited biofluids. The practical use of MCE in bioanalysis is still restricted in terms of requirements for simplifying and/or concentrating sample pretreatment techniques. Here, we describe an MCE method for trace analysis of nitrite and nitrate, indicators of various neurological diseases, in cerebrospinal fluid (CSF). The complex CSF samples were simplified by solid-phase microextraction prior to an online combination of isotachophoresis with capillary zone electrophoresis performed on a microchip with coupled channels and a high-volume sample injection channel (9.9 μL). The method is suitable for rapid (total analysis time lasted 20 min), reproducible (0.6-2.4 % RSD for migration time), and sensitive (3-9 nM limits of detection) determinations of nitrite and nitrate in 15-50 times diluted CSF samples.

  16. A new electrode chamber for stable performance in capillary electrophoresis.

    PubMed

    Desiderio, C; Fanali, S; Bocek, P

    1999-03-01

    Prerequisite to running automated sequences of analyses in capillary electrophoresis is a stable performance of the system. The products of the electrode reaction with the running background electrolyte (BGE) may play an important role, since even the neutral products may be driven into the capillary by electroosmosis and may severely deteriorate the stability of the baseline. Here, a simple, inexpensive, and fast procedure is described for improving the stability of the performance of capillary electrophoresis using a modified vial serving as the electrode chamber for the running BGE. The modification is based on creating two separate rooms in the vial, one for the electrode and a second one for the capillary. These two rooms are connected by a cotton plug. When both rooms are filled with the running BGE, the electrolytic connection between the electrode and the capillary is ensured; however, the convective transport of the electrode reaction products into the capillary is practically eliminated.

  17. Determination of synthetic food dyes by capillary electrophoresis.

    PubMed

    Suzuki, S; Shirao, M; Aizawa, M; Nakazawa, H; Sasa, K; Sasagawa, H

    1994-10-01

    A method for the determination of synthetic tar dyes used as food additives using capillary electrophoresis with photodiode-array detection was investigated. The dyes Erythrosine (R-3), Phloxine (R-104), Rose Bengal (R-105), Acid Red (R-106), Amaranth (R-2), New Coccine (R-102) and Allura Red AC (R-40) were separated on a capillary column (50 cm x 75 microns I.D.) and identified from the absorbance spectra of each peak. The electrophoresis buffer used was a mixture of 25 mM sodium phosphate buffer and 25 mM sodium borate buffer (1:1) (pH 8.0) containing 10 mM sodium dodecyl sulfate (SDS). Substitution of beta-cyclodextrin for SDS in the electrolyte buffer was effective for the separation of R-2 and R-102. This modified method could be employed as an additional assay method for these two dyes.

  18. Classification of 2-dimensional array patterns: assembling many small neural networks is better than using a large one.

    PubMed

    Chen, Liang; Xue, Wei; Tokuda, Naoyuki

    2010-08-01

    In many pattern classification/recognition applications of artificial neural networks, an object to be classified is represented by a fixed sized 2-dimensional array of uniform type, which corresponds to the cells of a 2-dimensional grid of the same size. A general neural network structure, called an undistricted neural network, which takes all the elements in the array as inputs could be used for problems such as these. However, a districted neural network can be used to reduce the training complexity. A districted neural network usually consists of two levels of sub-neural networks. Each of the lower level neural networks, called a regional sub-neural network, takes the elements in a region of the array as its inputs and is expected to output a temporary class label, called an individual opinion, based on the partial information of the entire array. The higher level neural network, called an assembling sub-neural network, uses the outputs (opinions) of regional sub-neural networks as inputs, and by consensus derives the label decision for the object. Each of the sub-neural networks can be trained separately and thus the training is less expensive. The regional sub-neural networks can be trained and performed in parallel and independently, therefore a high speed can be achieved. We prove theoretically in this paper, using a simple model, that a districted neural network is actually more stable than an undistricted neural network in noisy environments. We conjecture that the result is valid for all neural networks. This theory is verified by experiments involving gender classification and human face recognition. We conclude that a districted neural network is highly recommended for neural network applications in recognition or classification of 2-dimensional array patterns in highly noisy environments.

  19. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    SciTech Connect

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  20. Lambda-carrageenan: a novel chiral selector for capillary electrophoresis.

    PubMed

    Beck, G M; Neau, S H

    1996-01-01

    Lambda-carrageenan, a linear high molecular weight sulfated polysaccharide, has been employed as a chiral selector in capillary electrophoresis for the separation of enantiomers of weakly basic pharmaceutical compounds. The racemic compounds that were enantioresolved included propranolol, pindolol, tryptophanol, laudanosine and laudanosoline. In addition, the diastereomeric pair of cinchonine and cinchonidine were also resolved. Method conditions such as buffer pH, electrolyte concentration, column temperature, and chiral selector concentration were found to be important for improvement of enantioselectivity.

  1. Electrohydrodynamics and other hydrodynamic phenomena in continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.

    1982-01-01

    The process known as continuous flow electrophoresis employs an electric field to separate the constituents of particulate samples suspended in a liquid. Complications arise because the electric field generates temperature gradients due to Joule heating and derives an electrohydrodynamic crossflow. Several aspects of the flow are discussed including entrance effects, hydrodynamic stability and a flow restructuring due to the combined effects of buoyancy and the crossflow.

  2. Microchip Capillary Electrophoresis with Electrochemical Detection for Monitoring Environmental Pollutants

    SciTech Connect

    Chen, Gang; Lin, Yuehe; Wang, Joseph

    2006-01-15

    This invited paper reviews recent advances and the key strategies in microchip capillary electrophoresis (CE) with electrochemical detection (ECD) for separating and detecting a variety of environmental pollutants. The subjects covered include the fabrication of microfluidic chips, sample pretreatments, ECD, typical applications of microchip CE with ECD in environmental analysis, and future prospects. It is expected that microchip CE-ECD will become a powerful tool in the environmental field and will lead to the creation of truly portable devices.

  3. The electrophoresis of transferrins in urea/polyacrylamide gels.

    PubMed Central

    Evans, R W; Williams, J

    1980-01-01

    The denaturation of transferrin by urea has been studied by (a) electrophoresis in polyacrylamide gels incorporating a urea gradient, (b) measurements of the loss of iron-binding capacity and (c) u.v. difference spectrometry. In human serum transferrin and hen ovotransferrin the N-terminal and C-terminal domains of the iron-free protein were found to denature at different urea concentrations. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 7. PMID:7213345

  4. GRAV2D: an interactive 2-1/2 dimensional gravity modeling program (user's guide and documentation for Rev. 1)

    SciTech Connect

    Nutter, C.

    1980-11-01

    GRAV2D is an interactive computer program used for modeling 2-1/2 dimensional gravity data. A forward algorithm is used to give the theoretical attraction of gravity intensity at a station due to a perturbing body given by the initial model. The resultant model can then be adjusted for a better fit by a combination of manual adjustment, one-dimensional automatic search, and Marquardt inversion. GRAV2D has an interactive data management system for data manipulation and display built around subroutines to do a forward problem, a one-dimensional direct search and an inversion. This is a user's guide and documentation for GRAV2D.

  5. Recent applications of microchip electrophoresis to biomedical analysis.

    PubMed

    Nuchtavorn, Nantana; Suntornsuk, Worapot; Lunte, Susan M; Suntornsuk, Leena

    2015-09-10

    Many separation methods have been developed for biomedical analysis, including chromatographic (e.g. high performance liquid chromatography (HPLC) and gas chromatography (GC)) and electrophoretic methods (e.g. gel electrophoresis and capillary electrophoresis (CE)). Among these techniques, CE provides advantages in terms of high separation efficiency, simplicity, low sample and solvent volume consumption, short analysis time and applicability to a wide range of biomedically important substances. Microchip electrophoresis (ME) is a miniaturized platform of CE and is now considered as a simpler and more convenient alternative, which has demonstrated potential in analytical chemistry. High-throughput, cost-effective and portable analysis systems can be developed using ME. The current review describes different separation modes and detectors that have been employed in ME to analyze various classes of biomedical analytes (e.g. pharmaceuticals and related substances, nucleic acids, amino acids, peptides, proteins, antibodies and antigens, carbohydrates, cells, cell components and lysates). Recent applications (during 2010-2014) in these areas are presented in tables and some significant findings are highlighted. PMID:25840947

  6. Human lymphocyte polymorphisms detected by quantitative two-dimensional electrophoresis

    SciTech Connect

    Goldman, D.; Merril, C.R.

    1983-09-01

    A survey of 186 soluble lymphocyte proteins for genetic polymorphism was carried out utilizing two-dimensional electrophoresis of /sup 14/C-labeled phytohemagglutinin (PHA)-stimulated human lymphocyte proteins. Nineteen of these proteins exhibited positional variation consistent with independent genetic polymorphism in a primary sample of 28 individuals. Each of these polymorphisms was characterized by quantitative gene-dosage dependence insofar as the heterozygous phenotype expressed approximately 50% of each allelic gene product as was seen in homozygotes. Patterns observed were also identical in monozygotic twins, replicate samples, and replicate gels. The three expected phenotypes (two homozygotes and a heterozygote) were observed in each of 10 of these polymorphisms while the remaining nine had one of the homozygous classes absent. The presence of the three phenotypes, the demonstration of gene-dosage dependence, and our own and previous pedigree analysis of certain of these polymorphisms supports the genetic basis of these variants. Based on this data, the frequency of polymorphic loci for man is: P . 19/186 . .102, and the average heterozygosity is .024. This estimate is approximately 1/3 to 1/2 the rate of polymorphism previously estimated for man in other studies using one-dimensional electrophoresis of isozyme loci. The newly described polymorphisms and others which should be detectable in larger protein surveys with two-dimensional electrophoresis hold promise as genetic markers of the human genome for use in gene mapping and pedigree analyses.

  7. Microfabricated capillary electrophoresis amino acid chirality analyzer for extraterrestrial exploration

    NASA Technical Reports Server (NTRS)

    Hutt, L. D.; Glavin, D. P.; Bada, J. L.; Mathies, R. A.

    1999-01-01

    Chiral separations of fluorescein isothiocyanate-labeled amino acids have been performed on a microfabricated capillary electrophoresis chip to explore the feasibility of using such devices to analyze for extinct or extant life signs in extraterrestrial environments. The test system consists of a folded electrophoresis channel (19.0 cm long x 150 microns wide x 20 microns deep) that was photolithographically fabricated in a 10-cm-diameter glass wafer sandwich, coupled to a laser-excited confocal fluorescence detection apparatus providing subattomole sensitivity. Using a sodium dodecyl sulfate/gamma-cyclodextrin pH 10.0 carbonate electrophoresis buffer and a separation voltage of 550 V/cm at 10 degrees C, baseline resolution was observed for Val, Ala, Glu, and Asp enantiomers and Gly in only 4 min. Enantiomeric ratios were determined for amino acids extracted from the Murchison meteorite, and these values closely matched values determined by HPLC. These results demonstrate the feasibility of using microfabricated lab-on-a-chip systems to analyze extraterrestrial samples for amino acids.

  8. Electrophoresis of Ion Containing Polymers in Microfluidic Applications

    NASA Astrophysics Data System (ADS)

    Chow, Andrea

    2004-03-01

    Microfluidic technology offers the benefits of miniaturization, integration, and automation that can lead to faster analysis with higher data quality and higher sample throughput. One of the first microfluidic systems commercialized is for biomolecular sizing using the principles of gel electrophoresis. In these chips, the microchannels are filled with a polymer solution at a concentration above the entanglement threshold. For DNA and RNA sizing, the procedures of sample injection, fluorescent dye staining of the analyte, electrophoretic separation by size, and optical detection of size fractions are integrated. These microchip analyses are similar to those performed in conventional capillary electrophoresis, except that the analysis times are usually an order of magnitude shorter. For protein sizing in sodium dodecyl sulphate (SDS) micelle solutions in which the proteins are denatured, an additional step of protein destaining is also integrated onto the chip, enabling an application that has no simple analog in conventional capillary electrophoresis. The scaling laws based on polymer physics considerations dictating the sizing mechanisms and separation efficiencies for these microfluidic applications will be discussed.

  9. [Determination of serum proteins by high performance capillary zone electrophoresis].

    PubMed

    Zhang, N; Tang, Y; Hao, D M; Zheng, L; Qiu, G B

    1999-11-01

    The separation method of serum proteins was established with an untreared 50 microns i.d. x 47 cm (40 cm to detector) capillary and detection of absorbance at 200 nm. Analysis was performed by pressure injectction 17.23 kPa.s and by applying 23 kV in the constant voltage mode. Serum samples were diluted 40-folds with assay buffer (12.5 mmol/L sodium borate, 1 mmol/L calcium lactate, 0.7 mmol/L magnesium sulfate, 1 mmol/L EDTA were mixed). A normal control serum protein was separated into 6 fractions. In pregnant serum, the alpha 0 was an additionally unknown fraction. Comparison of capillary electrophoresis with conventional cellulose acetate electrophoresis for analysis of serum proteins from normal control, pregnant women multiple myeloma and tonic rachitis patients indicates that capillary clectrophoresis is a new technique for the analysis of serum proteins because of its high efficiency, on-line data processing and automation. Capillary electrophoresis is the reliable technique for clinical diagnosis of serum protein abnormalities.

  10. Capillary zone electrophoresis-mass spectrometry of peptides and proteins

    SciTech Connect

    Loo, J.A.; Udseth, H.R.; Smith, R.D.

    1989-05-01

    Capillary zone electrophoresis (CZE) is attracting extensive attention as a fast, high resolution analytical and micro-preparative separations technique for systems of biological interest. In zone electrophoresis, a column is filled with a single electrolyte having a specific conductivity. The mixture of substances to be separated is applied as a narrow band to the head of a buffer filled column in a band whose width is much less than the length of the column and at a concentration too low to affect the buffer conductivity. An electric field is then applied across the length of the column and the individual substances migrate and separate according to their net electrophoretic velocities. Zone electrophoresis carried out in small diameter (<100 ..mu..m) fused silica capillaries is a relatively new approach to the high resolution separation of aqueous samples. Very small volume samples (picoliter range) with separation efficiencies on the order of 10/sup 6/ theoretical plates for amino acids have been achieved. The method can be further enhanced by the dynamic combination of detection sensitivity and selectivity offered by mass spectrometry (MS). The on-line marriage of mass spectrometry to CZE is accomplished by an atmospheric pressure electrospray ionization source interface. Our research efforts have demonstrated that proteins with MW's greater than 100 kDa can be analyzed using a conventional quadrupole mass spectrometer with an upper m/z limit of only 1700. 6 refs.

  11. Recent applications of microchip electrophoresis to biomedical analysis.

    PubMed

    Nuchtavorn, Nantana; Suntornsuk, Worapot; Lunte, Susan M; Suntornsuk, Leena

    2015-09-10

    Many separation methods have been developed for biomedical analysis, including chromatographic (e.g. high performance liquid chromatography (HPLC) and gas chromatography (GC)) and electrophoretic methods (e.g. gel electrophoresis and capillary electrophoresis (CE)). Among these techniques, CE provides advantages in terms of high separation efficiency, simplicity, low sample and solvent volume consumption, short analysis time and applicability to a wide range of biomedically important substances. Microchip electrophoresis (ME) is a miniaturized platform of CE and is now considered as a simpler and more convenient alternative, which has demonstrated potential in analytical chemistry. High-throughput, cost-effective and portable analysis systems can be developed using ME. The current review describes different separation modes and detectors that have been employed in ME to analyze various classes of biomedical analytes (e.g. pharmaceuticals and related substances, nucleic acids, amino acids, peptides, proteins, antibodies and antigens, carbohydrates, cells, cell components and lysates). Recent applications (during 2010-2014) in these areas are presented in tables and some significant findings are highlighted.

  12. Visualization of DNA molecules in time during electrophoresis

    NASA Technical Reports Server (NTRS)

    Lubega, Seth

    1991-01-01

    For several years individual DNA molecules have been observed and photographed during agarose gel electrophoresis. The DNA molecule is clearly the largest molecule known. Nevertheless, the largest molecule is still too small to be seen using a microscope. A technique developed by Morikawa and Yanagida has made it possible to visualize individual DNA molecules. When these long molecules are labeled with appropriate fluorescence dyes and observed under a fluorescence microscope, although it is not possible to directly visualize the local ultrastructure of the molecules, yet because they are long light emitting chains, their microscopic dynamical behavior can be observed. This visualization works in the same principle that enables one to observe a star through a telescope because it emits light against a dark background. The dynamics of individual DNA molecules migrating through agarose matrix during electrophoresis have been described by Smith et al. (1989), Schwartz and Koval (1989), and Bustamante et al. (1990). DNA molecules during agarose gel electrophoresis advance lengthwise thorough the gel in an extended configuration. They display an extension-contraction motion and tend to bunch up in their leading ends as the 'heads' find new pores through the gel. From time to time they get hooked on obstacles in the gel to form U-shaped configurations before they resume their linear configuration.

  13. Automated Lab-on-a-Chip Electrophoresis System

    NASA Technical Reports Server (NTRS)

    Willis, Peter A.; Mora, Maria; Greer, Harold F.; Fisher, Anita M.; Bryant, Sherrisse

    2012-01-01

    Capillary electrophoresis is an analytical technique that can be used to detect and quantify extremely small amounts of various biological molecules. In the search for biochemical traces of life on other planets, part of this search involves an examination of amino acids, which are the building blocks of life on Earth. The most sensitive method for detecting amino acids is the use of laser induced fluorescence. However, since amino acids do not, in general, fluoresce, they first must be reacted with a fluorescent dye label prior to analysis. After this process is completed, the liquid sample then must be transported into the electrophoresis system. If the system is to be reused multiple times, samples must be added and removed each time. In typical laboratories, this process is performed manually by skilled human operators using standard laboratory equipment. This level of human intervention is not possible if this technology is to be implemented on extraterrestrial targets. Microchip capillary electrophoresis (CE) combined with laser induced fluorescence detection (LIF) was selected as an extremely sensitive method to detect amino acids and other compounds that can be tagged with a fluorescent dye. It is highly desirable to package this technology into an integrated, autonomous, in situ instrument capable of performing CE-LIF on the surface of an extraterrestrial body. However, to be fully autonomous, the CE device must be able to perform a large number of sample preparation and analysis operations without the direct intervention of a human.

  14. Capillary electrophoresis of seed 2S albumins from Lupinus species.

    PubMed

    Salmanowicz, B P

    2000-10-13

    Two modes of capillary electrophoresis (CE)--free-solution capillary zone electrophoresis (CZE) and sodium dodecyl sulfate capillary electrophoresis (SDS-CE) using a non-gel sieving matrix--have been developed for comparative analysis of low-molecular-mass 2S albumin isoforms from lupins. The albumin fraction and 2S albumins were separated in uncoated fused-silica capillary by CZE with 0.02 M phosphate buffer, pH 7.3, containing the sodium salt of phytic acid. The use of phytic acid (0.025 M) as buffer modifier and ion-pairing agent improved migration reproducibility, peak shape and separation efficiency. The reduced 2S albumins were separated by SDS-CE using a high concentration (0.3-0.5 M) mixture of tris(hydroxymethyl)aminomethane and borate buffers in uncoated fused-silica capillary. Of the various polymers used as non-gel sieving matrix, SDS-CE with a 10% dextran solution was found to be suitable for separation of 2S albumin polypeptides with molecular masses of 4,000-7,000 and 8,000-11,000. The addition of glycerol or ethylene glycol to the SDS separating buffer improved the resolution of polypeptides. The examined Lupinus species showed species-specific CZE and SDS-CE migration profiles of the 2S albumins.

  15. Applications of space-electrophoresis in medicine. [for cellular separations in molecular biology

    NASA Technical Reports Server (NTRS)

    Bier, M.

    1976-01-01

    The nature of electrophoresis is reviewed and potential advances realizable in the field of biology and medicine from a space electrophoresis facility are examined. The ground-based applications of electrophoresis: (1) characterization of an ionized species; (2) determination of the quantitative composition of a complex mixture; and (3) isolation of the components of a mixture, separation achieved on the basis of the difference in transport rates is reviewed. The electrophoresis of living cells is considered, touching upon the following areas: the separation of T and B lymphocytes; the genetic influence on mouse lymphocyte mobilities; the abnormal production of specific and monoclonal immunoproteins; and the study of cancer. Schematic diagrams are presented of three types of electrophoresis apparatus: the column assembly for the static electrophoresis experiment on the Apollo-Soyuz mission, the continuous flow apparatus used in the same mission and a miniaturized electrophoresis apparatus.

  16. Differentiation of acute renal failure and chronic renal failure by 2-dimensional analysis of urinary dipeptidase versus serum creatinine.

    PubMed

    Lee, S H; Kang, B Y; We, J S; Park, S K; Park, H S

    1999-03-01

    The differential diagnosis of acute renal failure (ARF) and chronic renal failure (CRF) may be possible by measuring urinary dipeptidase (Udpase) activity and serum creatinine (Scr) concentration. When the mass test of 246 individuals was examined on a 2-dimensional plot of Udpase (y-axis) versus Scr (x-axis) with the data obtained from healthy volunteers (n = 189), ARF (n = 19) and CRF (n = 38) patients, the characteristic distribution of each group was obvious. It is summarized by the mean values of healthy volunteers (1.44 +/- 0.39 mg/dL, 1.19 (0.59 mU/mL), ARF (6.04 +/- 5.04 mg/dL, 0.12 +/- 0.08 mU/mL), and CRF patients (8.72 +/- 2.93 mg/dL, 0.81 +/- 0.44 mU/mL). The healthy volunteers are distributed along the y-axis and the ARF patients the x-axis, thus separating the two groups 90 degrees apart. The CRF patients are scattered away from both x-, and y-axis. This 2-dimensional approach is thought to be very useful for the differential diagnosis of ARF suggesting Udpase as a new member of the marker enzymes of renal disease.

  17. Calculations of van der Waals forces in 2-dimensionally anisotropic materials and its application to carbon black.

    PubMed

    Dagastine, Raymond R; Prieve, Dennis C; White, Lee R

    2002-05-01

    We present calculations of the van der Waals force for carbon black dispersions in both aqueous and nonaqueous media using Lifshitz theory. The microstructure and composition of carbon black are complex, but an initial approximation to the shell-like microstructure of carbon black allows the local interaction of carbon black particles to be approximated as oriented domains of graphite. The dielectric spectra for graphite, which has a 2-dimensional anisotropy due to its the layered microstructure, is required for the Lifshitz theory van der Waals force calculations. The anisotropic dielectric spectra of graphite (which behaves as a semiconductor) was constructed by modeling the conduction or free charge response separately from the polarization or bound charge response. The free charge response was modeled using the Drude model, while the dielectric spectra for the bound charge response was constructed from the spectroscopic data directly according to the Kramers-Kronig relation for the dielectric function, epsilon(omega). The expressions for calculating the fully retarded van der Waals force for half spaces with 2-dimensional dielectric anisotropy were derived as well as. The construction for the dielectric spectra of polystyrene from recent spectroscopic data from the literature according to the method outlined in (Dagastine, R. R., Prieve, D. C., and White, L. R., J. Colloid Interface Sci.231, 351 (2000)) is also presented.

  18. Recent progress in preparation and application of microfluidic chip electrophoresis

    NASA Astrophysics Data System (ADS)

    Cong, Hailin; Xu, Xiaodan; Yu, Bing; Yuan, Hua; Peng, Qiaohong; Tian, Chao

    2015-05-01

    Since its discovery in 1990, microfluidic chip electrophoresis (MCE) has allowed the development of applications with small size, fast analysis, low cost, high integration density and automatic level, which are easy to carry and have made commercialization efficient. MCE has been widely used in the areas of environmental protection, biochemistry, medicine and health, clinical testing, judicial expertise, food sanitation, pharmaceutical checking, drug testing, agrochemistry, biomedical engineering and life science. As one of the foremost fields in the research of capillary electrophoresis, MCE is the ultimate frontier to develop the miniaturized, integrated, automated all-in-one instruments needed in modern analytical chemistry. By adopting the advanced technologies of micro-machining, lasers and microelectronics, and the latest research achievements in analytical chemistry and biochemistry, the sampling, separation and detection systems of commonly used capillary electrophoresis are integrated with high densities onto glass, quartz, silicon or polymer wafers to form the MCE, which can finish the analysis of multi-step operations such as injection, enrichment, reaction, derivatization, separation, and collection of samples in a portable, efficient and super high speed manner. With reference to the different technological achievements in this area, the latest developments in MCE are reviewed in this article. The preparation mechanisms, surface modifications, and properties of different materials in MCE are compared, and the different sampling, separation and detection systems in MCE are summarized. The performance of MCE in analysis of fluorescent substance, metallic ion, sugar, medicine, nucleic acid, DNA, amino acid, polypeptide and protein is discussed, and the future direction of development is forecast.

  19. Nonlinear interactions in electrophoresis of ideally polarizable particles

    NASA Astrophysics Data System (ADS)

    Saintillan, David

    2008-06-01

    In the classical analysis of electrophoresis, particle motion is a consequence of the interfacial fluid slip that arises inside the ionic charge cloud (or Debye screening layer) surrounding the particle surface when an external field is applied. Under the assumptions of thin Debye layers, weak applied fields, and zero polarizability, it can be shown that the electrophoretic velocity of a collection of particles with identical zeta potential is the same as that of an isolated particle, unchanged by interactions [L. D. Reed and F. A. Morrison, "Hydrodynamic interaction in electrophoresis," J. Colloid Interface Sci. 54, 117 (1976)]. When some of these assumptions are relaxed, nonlinear effects may also arise and result in relative motions. First, the perturbation of the external field around the particles creates field gradients, which may result in nonzero dielectrophoretic forces due to Maxwell stresses in the fluid. In addition, if the particles are able to polarize, they can acquire a nonuniform surface charge, and the action of the field on the dipolar charge clouds surrounding them drives disturbance flows in the fluid, causing relative motions by induced-charge electrophoresis. These two nonlinear effects are analyzed in detail in the prototypical case of two equal-sized ideally polarizable spheres carrying no net charge, using accurate boundary-element simulations, along with asymptotic calculations by the method of twin multipole expansions and the method of reflections. It is found that both types of interactions result in significant relative motions and can be either attractive or repulsive depending on the configuration of the spheres.

  20. Evaluation of a multicapillary electrophoresis instrument for mitochondrial DNA typing.

    PubMed

    Stewart, John E B; Aagaard, Patricia J; Pokorak, Eric G; Polanskey, Deborah; Budowle, Bruce

    2003-05-01

    Laser-induced detection of fluorescent labeled PCR products and multi-wavelength detection (i.e., multicolor analysis) enables rapid generation of mtDNA sequencing profiles. Traditionally, polyacrylamide slab gels have been used as the electrophoretic medium for mtDNA sequencing in forensic analyses. Replacement of slab gel electrophoresis with capillary electrophoresis (CE) can facilitate automation of the analytical process. Automation and high throughput can be further enhanced by using multicapillary electrophoretic systems. The use of the ABI Prism 3100 Genetic Analyzer (ABI 3100, Applied Biosystems, Foster City, CA) as well as the ABI Prism 310 Genetic Analyzer (ABI 310, Applied Biosystems, Foster City, CA) were evaluated for mtDNA sequencing capabilities and compared with sequencing results obtained on the platform currently in use in the FBI Laboratory (the ABI Prism 377 DNA Sequencer, ABI 377, Applied Biosystems, Foster City, CA). Various studies were performed to assess the utility of the ABI 3100, as well as the ABI 310 for mtDNA sequencing. The tests included: comparisons of results obtained among the ABI 3100, the ABI 310 and the ABI 377 instruments; comparisons of results obtained within and between capillary arrays; evaluation of capillary length; evaluation of sample injection time; evaluation of the resolution of mixtures/heteroplasmic samples; and evaluation of the sensitivity of detection of a minor component with reduced template on the ABI 3100. In addition, other studies were performed to improve sample preparation; these included: comparison of template suppression reagent (TSR, Applied Biosystems, Foster City, CA) versus formamide; the use of Performa DTR Gel Filtration Cartridges (Edge BioSystems Inc., Gaithersburg, MD) versus Centri-Sep Spin Columns (Princeton Separations, Adelphia, NJ) for product purification after cycle sequencing; and sample stability after denaturation. The data support that valid and reliable results can be obtained

  1. Fingerprint analysis of Flos Carthami by capillary electrophoresis.

    PubMed

    Sun, Yi; Guo, Tao; Sui, Yin; Li, Famei

    2003-07-25

    Capillary electrophoresis (CE) was employed in fingerprint analysis of Flos Carthami. A standardized procedure was used to develop the CE fingerprint. An electrophoretic profile of genuine Flos Carthami from Fengqiu, He'nan, China, was first established as the characteristic fingerprint. This profile was then used to identify and assess the consistency of the herb. A study with a limited number of samples from nine sources showed a fair consistency in their CE fingerprints with that of the genuine sample. Flos Carthami was well distinguished from Stigma Croci, a possible substitute in traditional Chinese medicine, and Flos Hemerocallis, a commercial adulterant, by comparing the fingerprints of each herb. PMID:12860022

  2. Capillaries for use in a multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Chang, H.T.; Fung, E.N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  3. Identification of chiral drug isomers by capillary electrophoresis.

    PubMed

    Fanali, S

    1996-05-31

    Separation of optical isomers of compounds of pharmaceutical interest by capillary electrophoretic techniques is reviewed. The direct and indirect separation method, as well as the main resolution mechanisms and the parameters influencing the stereoselectivity are discussed considering capillary zone electrophoresis, micellar electrokinetic chromatography, isotachophoresis and electrochromatography. Several chiral selectors have been successfully used in CE for chiral separation, including cyclodextrins and their derivatives, modified crown-ethers, proteins, antibiotics, linear saccharides and chiral surfactants. Only applications in the pharmaceutical field with the most important experimental conditions are summarised in the Tables reported in this paper. The chiral analyses of drugs in real samples like biological fluids or pharmaceutical formulations are also reported.

  4. The fluid mechanics of continuous flow electrophoresis in perspective

    NASA Technical Reports Server (NTRS)

    Saville, D. A.

    1980-01-01

    Buoyancy alters the flow in continuous flow electrophoresis chambers through the mechanism of hydrodynamic instability and, when the instability is supressed by careful cooling of the chamber boundaries, by restructuring the axial flow. The expanded roles of buoyancy follow upon adapting the size of the chamber and the electric field so as to fractionate certain sorts of cell populations. Scale-up problems, hydrodynamic stability and the altered flow fields are discussed to show how phenomena overlooked in the design and operations of narrow-gap devices take on an overwhelming importance in wide-gap chambers

  5. DNA heterogeneity and phosphorylation unveiled by single-molecule electrophoresis

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Dunning, James E.; Huang, Albert P.-H.; Nyamwanda, Jacqueline A.; Branton, Daniel

    2004-09-01

    Broad-spectrum analysis of DNA and RNA samples is of increasing importance in the growing field of biotechnology. We show that nanopore measurements may be used to assess the purity, phosphorylation state, and chemical integrity of nucleic acid preparations. In contrast with gel electrophoresis and mass spectrometry, an unprecedented dynamic range of DNA sizes and concentrations can be evaluated in a single data acquisition process that spans minutes. Because the molecule information is quantized and digitally recorded with single-molecule resolution, the sensitivity of the system can be adjusted in real time to detect trace amounts of a particular DNA species.

  6. Capillaries for use in a multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  7. [Annual review of capillary electrophoresis technology in 2015].

    PubMed

    Wang, Xiaoqian; Zhao, Xinying; Liu, Pinduo; Wei, Qiang; Qu, Feng

    2016-02-01

    This paper reviews the capillary electrophoresis (CE) in 2015. The literatures searched from ISI Web of Science ranged in 2015. 1. 1-2015. 12. 31 are classified and introduced based on CE-MS method, methodology research, detection and enrichment, chiral separation and basic applications of CE. Six international and two national conferences are included and the important reports are introduced briefly. In the end, the standards of CE method for the analyses of monoclonal antibodies, water, wines and food approved in China and some other countries are listed. PMID:27382715

  8. Determination of benzylpenicillin in pharmaceuticals by capillary zone electrophoresis

    SciTech Connect

    Hoyt, A.M. Jr. ); Sepaniak, M.J. )

    1989-04-01

    A rapid and direct method is described for the determination of benzylpenicillin (penicillin G) in pharmaceutical preparations. The method involves very little sample preparation and total analysis time for duplicate results is less 30 minutes per sample. The method takes advantage of the speed and separating power of capillary zone electrophoresis (CZE). Detection of penicillin is by absorption at 228 nm. An internal standard is employed to reduce sample injection error. The method was applied successfully to both tablets and injectable preparations. 14 refs., 5 figs., 3 tabs.

  9. Density gradient electrophoresis of cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Giranda, V.; Todd, P. W.

    1985-01-01

    Ground based confirmation of the electrophoretic heterogeneity of human embryonic kidney cell cultures, the general characterization of their electrophoretic migration, and observations on the general properties of cultures derived from electrophoretic subpopulations were studied. Cell migration in a density gradient electrophoresis column and cell electrophoretic mobility was determined. The mobility and heterogeneity of cultured human embryonic kidney cells with those of fixed rat erythrocytes as model test particle was compared. Electrophoretically separated cell subpopulations with respect to size, viability, and culture characteristics were examined.

  10. PNEUMATIC MICROVALVE FOR ELECTROKINETIC SAMPLE PRECONCENTRATION AND CAPILLARY ELECTROPHORESIS INJECTION

    SciTech Connect

    Cong, Yongzheng; Rausch, Sarah J.; Geng, Tao; Jambovane, Sachin R.; Kelly, Ryan T.

    2014-10-27

    Here we show that a closed pneumatic microvalve on a PDMS chip can serve as a semipermeable membrane under an applied potential, enabling current to pass through while blocking the passage of charged analytes. Enrichment of both anionic and cationic species has been demonstrated, and concentration factors of ~70 have been achieved in just 8 s. Once analytes are concentrated, the valve is briefly opened and the sample is hydrodynamically injected onto an integrated microchip or capillary electrophoresis (CE) column. In contrast to existing preconcentration approaches, the membrane-based method described here enables both rapid analyte concentration as well as high resolution separations.

  11. Capillary electrophoresis-electrochemical detection microchip device and supporting circuits

    DOEpatents

    Jackson, Douglas J.; Roussel, Jr., Thomas J.; Crain, Mark M.; Baldwin, Richard P.; Keynton, Robert S.; Naber, John F.; Walsh, Kevin M.; Edelen, John. G.

    2008-03-18

    The present invention is a capillary electrophoresis device, comprising a substrate; a first channel in the substrate, and having a buffer arm and a detection arm; a second channel in the substrate intersecting the first channel, and having a sample arm and a waste arm; a buffer reservoir in fluid communication with the buffer arm; a waste reservoir in fluid communication with the waste arm; a sample reservoir in fluid communication with the sample arm; and a detection reservoir in fluid communication with the detection arm. The detection arm and the buffer arm are of substantially equal length.

  12. Determination of dissociation constants of flavonoids by capillary electrophoresis.

    PubMed

    Herrero-Martínez, José M; Sanmartin, Meritxell; Rosés, Martí; Bosch, Elisabeth; Ràfols, Clara

    2005-05-01

    Ionization constants of some flavanols (catechin and epicatechin) and flavonols (kaempherol, fisetin, morin, and quercetin) are determined by capillary zone electrophoresis (CZE). This technique allows the determination of pK(a) values until about 12. The pK(a) values obtained are compared with those calculated by the SPARC computational program. This program predicts the microscopic and macroscopic pK(a) values and the order of deprotonation of the different -OH groups. While for catechin and epicatechin the first ionizable OH group occurs in ring 1 and the second ionizable group in ring 2, in flavonols the first deprotonation occurs in ring 2 and the second in ring 1.

  13. Monitoring environmental pollutants by microchip capillary electrophoresis with electrochemical detection

    SciTech Connect

    Chen, Gang; Lin, Yuehe; Wang, Joseph

    2006-01-15

    This is a review article. During the past decade, significant progress in the development of miniaturized microfluidic systems has Occurred due to the numerous advantages of microchip analysis. This review focuses on recent advances and the key strategies in microchip capillary electrophoresis (CE) with electrochemical detection (ECD) for separating and detecting a variety of environmental pollutants. The subjects covered include the fabrication of microfluidic chips, ECD, typical applications of microchip CE with ECD in environmental analysis, and future prospects. It is expected that microchip CE-ECD will become a powerful tool in the environmental field and will lead to the creation of truly portable devices.

  14. Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors.

    PubMed

    Fanali, S

    2000-04-14

    This review surveys the separation of enantiomers by capillary electrophoresis using cyclodextrins as chiral selector. Cyclodextrins or their derivatives have been widely employed for the direct chiral resolution of a wide number of enantiomers, mainly of pharmaceutical interest, selected examples are reported in the tables. For method optimisation, several parameters influencing the enantioresolution, e.g., cyclodextrin type and concentration, buffer pH and composition, presence of organic solvents or complexing additives in the buffer were considered and discussed. Finally, selected applications to real samples such as pharmaceutical formulations, biological and medical samples are also discussed.

  15. Capillary electrophoresis: Biotechnology for separation of DNA and chromosomes

    NASA Technical Reports Server (NTRS)

    Williams, George O., Jr.

    1994-01-01

    Electrophoresis has been used for the separation of particles, ions, and molecules for a number of years. The technology for separation and detection of the results has many applications in the life sciences. One of the major goals of the scientific community is to separate DNA molecules and intact chromosomes based upon their different lengths or number of base pairs. This may be achieved by using some of the commercially available and widely used methods, but these processes require a considerable amount of time. The challenge is to achieve separation of intact chromosomes in a short time, preferably in a matter of minutes.

  16. Human muscle proteins: analysis by two-dimensional electrophoresis

    SciTech Connect

    Giometti, C.S.; Danon, M.J.; Anderson, N.G.

    1983-09-01

    Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.

  17. Two-dimensional gel electrophoresis data in support of leaf comparative proteomics of two citrus species differing in boron-tolerance.

    PubMed

    Sang, Wen; Huang, Zeng-Rong; Qi, Yi-Ping; Yang, Lin-Tong; Guo, Peng; Chen, Li-Song

    2015-09-01

    Here, we provide the data from a comparative proteomics approach used to investigate the response of boron (B)-tolerant 'Xuegan' (Citrus sinensis) and B-intolerant 'Sour pummelo' (Citrus grandis) leaves to B-toxicity. Using two-dimensional gel electrophoresis (2-DE) technique, we identified 50 and 45 protein species with a fold change of more than 1.5 and a P-value of less than 0.05 from B-toxic C. sinensis and C. grandis leaves. These B-toxicity-responsive protein species were mainly involved in carbohydrate and energy metabolism, antioxidation and detoxification, stress responses, coenzyme biosynthesis, protein and amino acid metabolism, signal transduction, cell transport, cytoskeleton, nucleotide metabolism, and cell cycle and DNA processing. A detailed analysis of this data may be obtained from Sang et al. (J. Proteomics 114 (2015))[1]. PMID:26217760

  18. A study of cell electrophoresis as a means of purifying growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Plank, Lindsay D.; Hymer, W. C.; Kunze, M. Elaine; Marks, Gary M.; Lanham, J. Wayne

    1983-01-01

    Growth hormone secreting cells of the rat anterior pituitary are heavily laden with granules of growth hormone and can be partialy purified on the basis of their resulting high density. Two methods of preparative cell electrophoresis were investigated as methods of enhancing the purification of growth hormone producing cells: density gradient electrophoresis and continuous flow electrophoresis. Both methods provided a two- to four-fold enrichment in growth hormone production per cell relative to that achieved by previous methods. Measurements of electrophoretic mobilities by two analytical methods, microscopic electrophoresis and laser-tracking electrophoresis, revealed very little distinction between unpurified anterior pituitary cell suspensions and somatotroph-enriched cell suspensions. Predictions calculated on the basis of analytical electrophoretic data are consistent with the hypothesis that sedimentation plays a significant role in both types of preparative electrophoresis and the electrophoretic mobility of the growth hormone secreting subpopulation of cells remains unknown.

  19. BioMEMS and Electrophoresis in 2006: Review of the 23rd Annual Meeting of the American Electrophoresis Society

    PubMed Central

    Minerick, Adrienne R.; Ugaz, Victor M.

    2007-01-01

    The 23rd Annual Meeting of the American Electrophoresis Society (AES) was held at the San Francisco Hilton in San Francisco, California on 12–17 November 2006. This year’s meeting featured a look toward the future, with an emphasis on theoretical and experimental advances in miniaturization of BioMEMS, electrokinetics, and proteomics technologies. A total of 13 sessions accommodating 71 presentations and 18 posters were held in conjunction with the Annual Meeting of the American Institute of Chemical Engineers (AIChE). This review and corresponding special issue of Biomicrofluidics provide a sampling of some of the exciting research presented at the conference. PMID:19693377

  20. A compact LED-based module for DNA capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Hurth, C.; Lenigk, R.; Zenhausern, F.

    2008-11-01

    A setup consisting of a bifurcated optical fiber made from high-transmission fused-silica cores with relatively high numerical apertures (NA=0.22), high-power cyan light-emitting diodes (LEDs) and Peltier cooling elements controlled by a proportional-integrative-derivative (PID) module is introduced to replace bulky, power- consuming lasers conventionally used in laser induced fluorescence (LIF) microchip capillary electrophoresis (μCE). The output fiber beam size, divergence, power distribution and power stability over time are documented. A modified epifluorescence microscope arrangement is used in conjunction with a compact fixed spectrometer aligned with a cooled charge-coupled device (CCD) camera for added sensitivity. Fluorescent dyes such as fluorescein, 6-carboxyfluorescein (6-FAM) and rhodamine B can be detected in cyclic olefin copolymer (COC) and glass microchannels at submicromolar levels. A single-stranded DNA oligonucleotide (10-mer) labeled with 6-FAM is also detected with reasonable signal-to-noise ratio when electrophoretically migrated at 100 V/cm. The compact LED excitation system presented herein will allow using capillary electrophoresis for DNA detection in compact mobile devices.

  1. Online comprehensive two-dimensional ion chromatography × capillary electrophoresis.

    PubMed

    Ranjbar, Leila; Gaudry, Adam J; Breadmore, Michael C; Shellie, Robert A

    2015-09-01

    A comprehensively coupled online two-dimensional ion chromatography-capillary electrophoresis (IC × CE) system for quantitative analysis of inorganic anions and organic acids in water is introduced. The system employs an in-house built sequential injection-capillary electrophoresis instrument and a nonfocusing modulation interface comprising a tee-piece and a six-port two-position injection valve that allows comprehensive sampling of the IC effluent. High field strength (+2 kV/cm) enables rapid second-dimension separations in which each peak eluted from the first-dimension separation column is analyzed at least three times in the second dimension. The IC × CE approach has been successfully used to resolve a suite of haloacetic acids, dalapon, and common inorganic anions. Two-dimensional peak capacity for IC × CE was 498 with a peak production rate of 9 peaks/min. Linear calibration curves were obtained for all analytes from 5 to 225 ng/mL (except dibromoacetic acid (10-225 ng/mL) and tribromoacetic acid (25-225 ng/mL)). The developed approach was used to analyze a spiked tap water sample, with good measured recoveries (69-119%).

  2. The velocity and recoil of DNA bands during gel electrophoresis

    NASA Astrophysics Data System (ADS)

    Keiner, Louis E.; Holzwarth, G.

    1992-09-01

    The velocity and recoil of bands of DNA containing 48.5 to 4800 kilobasepairs (kb) were measured during pulsed-field gel electrophoresis by a video imaging and analysis system. When a 10 V/cm electric field was first applied, the velocity showed an initial sharp peak after approximately 1 s whose amplitude depended on the molecular weight of the DNA and the rest time and polarity of the previous pulse. For example, G DNA (670 kb) exhibited an initial velocity peak of 13 μm/s. The velocity then oscillated through a shallow minimum and small maximum before reaching a 5.0 μm/s plateau. After the field was turned off, the bands moved backward (recoiled). The band position obeyed a stretched-exponential relation, x = x0 exp[ - (t/τ)β] with amplitude x0 equal to approximately 1/10th of the DNA contour length and β≊0.6; for S. pombe DNA, x0 was a remarkable 165 μm. Both the initial velocity spike and the recoil arise from the presence of a significant fraction of U-shaped molecules with low configurational entropy. The initial velocity spike is exploited in field-inversion gel electrophoresis to generate the ``antiresonance,'' which is the basis of size-dependent mobility. Recent computer simulations which include tube-length fluctuations and tube leakage are in excellent accord with the measured velocities.

  3. Use of capillary electrophoresis to study methylation patterns in DNA

    NASA Astrophysics Data System (ADS)

    Voss, Karl; Roos, Pieter; Zhang, Jian Z.; Dovichi, Norman J.

    1996-04-01

    A four-color multiple capillary DNA sequencer is used to determine the methylation pattern of double stranded DNA. The DNA sample is treated with bisulfite under conditions that convert cytosine to uracil. Methyl-cytosine is inert under these reaction conditions. After PCR amplification, the reaction products are subjected to a four-color fluorescent Sanger sequencing reaction. The sequence is then determined by use of capillary electrophoresis. Comparison of the sequence obtained after bisulfite treatment with the original sequence reveals that certain of the Cs in the original sequence are converted to Ts. This conversion occurs only if the original C was not methylated. Those Cs that are common to both sequences were methylated in the original sequence. Methylation patterns have been implicated in aging, developmental biology, and cancer; however, there has been no simple and rapid method for determining the methylation pattern in genomic DNA. The method described in this paper is quick, simple, and accurate, and demonstrates an exciting application of capillary electrophoresis DNA sequencing.

  4. Fluid flow in free flow electrophoresis chamber in microgravity

    NASA Astrophysics Data System (ADS)

    Bello, Michail S.; Polezhaev, V. I.

    1990-05-01

    The paper is devoted to the approximate analysis and computer simulations of the viscous incompressible fluid flow in the free-flow electrophoresis chamber, parameters of which are similar to those of the Hele-Shaw cell. The buoyancy effects are assumed to be negligible and do not affect the fluid flow. Such a case corresponds to either electrophoretic separation in microgravity environment or to the electrophoresis in a rather thin chamber. The investigation is based on the Navier-Stokes equations averaged over the transverse coordinate. The streamlines of the steady flow were calculated for various values of the parameter alpha and the relative size of the inlet opening s. The parameter alpha characterizes the ratio of the fluid friction forces against chamber walls to the inertia forces. Three different regimes of the steady flow in the chamber could occur: irrotational flow and jetlike flow with and without secondary flows. The dependence of the entrance region length on the parameters alpha and s was obtained.

  5. Development of coatings to control electroosmosis in zero gravity electrophoresis

    NASA Technical Reports Server (NTRS)

    Krupnick, A. C.

    1974-01-01

    A major problem confronting the operation of free fluid electrophoresis in zero gravity is the control of electrokinetic phenomena and, in particular, electroosmosis. Due to the severity of counter flow, as a result of electroosmosis, the electrical potential developed at the surface of shear must be maintained at near, or as close to, zero millivolts as possible. Based upon this investigation, it has been found that the amount of bound water or the degree of hydroxylation plays a major role in the control of this phenomena. Of necessity, factors, such as adhesion, biocompatibility, protein adsorption, and insolubility were considered in this investigation because of the long buffer-coating exposure times required by present space operations. Based upon tests employing microcapillary electrophoresis, it has been found that gamma amino propyl trihydroxysilane produced a coating which provides the lowest potential (minus 3.86 mv) at the surface of shear between the stationary and mobile layers. This coating has been soaked in both borate and saline buffers, up to three months, in a pH range of 6.5 to 10 without deleterious effects or a change in its ability to control electrokinetic effects.

  6. Droplet microfluidics for postcolumn reactions in capillary electrophoresis.

    PubMed

    Abdul Keyon, Aemi S; Guijt, Rosanne M; Bolch, Christopher J; Breadmore, Michael C

    2014-12-01

    A postcolumn reaction system based on droplet microfluidics was developed for capillary electrophoresis (CE). Analytes were separated using capillary zone electrophoresis (CZE) and electrophoretically transferred into droplets. The use of a micro cross for positioning a salt bridge-electrode opposite the separation capillary outlet is the key element for maintaining the electrical connection during electrophoretic separation. As the first of its kind, positioning the droplets in the electric field eliminated the need for electroosmotic flow (EOF) or hydrodynamic flow for droplet compartmentalization. Depending on the total flow rate of both aqueous and oil phases, droplets of water-in-oil could be formed having frequencies between 0.7 and 3.7 Hz with a size of approximately 14 nL per droplet. Compartmentalized in the droplets, analytes reacted with reagents already present in the droplets to facilitate detection. The periodate oxidation of paralytic shellfish toxins (PSTs) was demonstrated, overcoming the limitation of precolumn oxidation, which results in multiple and sometimes identical oxidation products formed from the different PSTs. Compartmentalization allows the oxidation products for each peak to be contained and to contribute to a single fluorescence signal, preserving the selectivity of CZE separation while gaining the sensitivity of fluorescence detection.

  7. Disposable polyester-toner electrophoresis microchips for DNA analysis.

    PubMed

    Duarte, Gabriela R M; Coltro, Wendell K T; Borba, Juliane C; Price, Carol W; Landers, James P; Carrilho, Emanuel

    2012-06-01

    Microchip electrophoresis has become a powerful tool for DNA separation, offering all of the advantages typically associated with miniaturized techniques: high speed, high resolution, ease of automation, and great versatility for both routine and research applications. Various substrate materials have been used to produce microchips for DNA separations, including conventional (glass, silicon, and quartz) and alternative (polymers) platforms. In this study, we perform DNA separation in a simple and low-cost polyester-toner (PeT)-based electrophoresis microchip. PeT devices were fabricated by a direct-printing process using a 600 dpi-resolution laser printer. DNA separations were performed on PeT chip with channels filled with polymer solutions (0.5% m/v hydroxyethylcellulose or hydroxypropylcellulose) at electric fields ranging from 100 to 300 V cm(-1). Separation of DNA fragments between 100 and 1000 bp, with good correlation of the size of DNA fragments and mobility, was achieved in this system. Although the mobility increased with increasing electric field, separations showed the same profile regardless of the electric field. The system provided good separation efficiency (215,000 plates per m for the 500 bp fragment) and the separation was completed in 4 min for 1000 bp fragment ladder. The cost of a given chip is approximately $0.15 and it takes less than 10 minutes to prepare a single device.

  8. Separation of Trivalent Actinides from Lanthanides Using a Capillary Electrophoresis

    SciTech Connect

    Mori, Tomotaka; Ishii, Yasuo; Hayashi, Kazunori; Suganuma, Hideo; Satoh, Isamu

    2007-07-01

    A separation of {sup 241}Am(III) from {sup 152,154}Eu(III) was carried out using a capillary electrophoresis technique in a mixed solvent (CH{sub 3}OH/H{sub 2}O) system containing thiocyanate ion. First, the formation constants ({beta}{sub n}) between thiocyanate ion and Eu(III) or Am(III) were investigated in the mixed solvent solutions by a back-extraction technique using bis (2-ethylhexyl) hydrogen phosphate-toluene. The mean charges calculated on the basis of the data of {beta}{sub n} for Eu(III) were comparatively higher than those for Am(III). Based on the differences between the mean charges of Eu(III) and Am(III), separations for Am(III)/Eu(III) by means of capillary electrophoresis technique were tried in the (H{sup +}, Na{sup +})(SCN{sup -}, ClO{sub 4}{sup -}) mixed solvent solutions. It was proved that Am(III) was completely separated from Eu(III). (authors)

  9. Molecular transport in collagenous tissues measured by gel electrophoresis.

    PubMed

    Hunckler, Michael D; Tilley, Jennifer M R; Roeder, Ryan K

    2015-11-26

    Molecular transport in tissues is important for drug delivery, nutrient supply, waste removal, cell signaling, and detecting tissue degeneration. Therefore, the objective of this study was to investigate gel electrophoresis as a simple method to measure molecular transport in collagenous tissues. The electrophoretic mobility of charged molecules in tissue samples was measured from relative differences in the velocity of a cationic dye passing through an agarose gel in the absence and presence of a tissue section embedded within the gel. Differences in electrophoretic mobility were measured for the transport of a molecule through different tissues and tissue anisotropy, or the transport of different sized molecules through the same tissue. Tissue samples included tendon and fibrocartilage from the proximal (tensile) and distal (compressive) regions of the bovine flexor tendon, respectively, and bovine articular cartilage. The measured electrophoretic mobility was greatest in the compressive region of the tendon (fibrocartilage), followed by the tensile region of tendon, and lowest in articular cartilage, reflecting differences in the composition and organization of the tissues. The anisotropy of tendon was measured by greater electrophoretic mobility parallel compared with perpendicular to the predominate collagen fiber orientation. Electrophoretic mobility also decreased with increased molecular size, as expected. Therefore, the results of this study suggest that gel electrophoresis may be a useful method to measure differences in molecular transport within various tissues, including the effects of tissue type, tissue anisotropy, and molecular size.

  10. Studies on proteinograms in dermatorphytes by disc electrophoresis. Part 2: Protein bands of keratinophilic fungi

    NASA Technical Reports Server (NTRS)

    Danev, P.; Balabanov, V.; Friedrich, E.

    1983-01-01

    Disc electrophoresis studies on keratinophili fungi demonstrated corresponding proteinograms in morphologically homogeneous strains of the same species, but different in different species of one and the same genus.

  11. Ink-native electrophoresis: an alternative to blue-native electrophoresis more suitable for in-gel detection of enzymatic activity.

    PubMed

    Kaneko, Keisuke; Sueyoshi, Noriyuki; Kameshita, Isamu; Ishida, Atsuhiko

    2013-09-15

    Blue-native electrophoresis (BNE) is a useful technique for analyzing protein complexes, but the Coomassie brilliant blue (CBB) dye used in BNE often hampers in-gel detection of enzymatic activity. Here we report an improved method, termed ink-native electrophoresis (INE), in which Pelikan 4001 fountain pen ink is used as a charge-shifting agent instead of CBB. INE is more suitable than BNE for in-gel detection of protein kinase activity after polyacrylamide gel electrophoresis (PAGE), and its performance in protein complex separation is comparable to that of conventional BNE. INE may provide a powerful tool to isolate and analyze various protein complexes. PMID:23747281

  12. Phytotoxin coronatine enhances heat tolerance via maintaining photosynthetic performance in wheat based on Electrophoresis and TOF-MS analysis

    PubMed Central

    Zhou, Yuyi; Zhang, Mingcai; Li, Jianmin; Li, Zhaohu; Tian, Xiaoli; Duan, Liusheng

    2015-01-01

    Coronatine (COR) is a phytotoxin produced by Pseudomonas syringae. Its structure is similar to Jasmonates, which play a number of diverse roles in plant defense. Both have the COI1 plant receptor, so coronatine can manipulate plant hormone signaling to access nutrients and counteract defense responses. In addition to the hormone system, coronatine affects plant nitrogenous metabolism and chloroplast ultrastructure. In this study, we first examined a typical nitrogen-losing phenotype, and used the polyacrylamide gel approach to demonstrate soluble total protein patterns in a time-course experiment under different temperature conditions. We then employed dimensional gel electrophoresis technology (2-DE) and MALDI-TOF-MS to sequester and identify the sensitive proteins. We found a total of 27 coronatine sensitive proteins, 22 of which were located in the chloroplast and 6 of which were directly involved in photosynthesis. Finally, we measured levels of chlorophyll and photosynthetic performance to reveal the phenotypic effect of these proteins. Taken together, these results demonstrated that coronatine enhanced heat tolerance by regulating nitrogenous metabolism and chloroplast ultrastructure to maintain photosynthetic performance and reduce yield loss under heat stress. PMID:26347991

  13. Differences in serum protein 2D gel electrophoresis patterns of Przewalski's (Mongolian wild horse) and thoroughbred horses.

    PubMed

    Barsuren, Enkhbolor; Namkhai, Bandi; Kong, Hong Sik

    2015-04-01

    The objective of this study was to assess differences in serum protein expression profiles of Przewalski's (Mongolian wild horse) and thoroughbred horses using proteome analysis. The serum proteins were separated by two-dimensional electrophoresis (2-DE) and five different gene products were identified. Proteins represented by the five spots were identified by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry (MS)/MS technology. The identities of all proteins were deduced based on their similarity to proteins in the human plasma protein database. Three proteins (a haptoglobin-2 alpha glycoprotein and two haptoglobin-2beta glycoproteins with different accession numbers) were downregulated in Przewalski's horse sera compared to thoroughbred horse sera. Moreover, two proteins (tetraspanin-18 and pM5) were upregulated in Przewalski's horses compared to thoroughbred horses. Haptoglobin-2 alpha and haptoglobin-2beta may serve as candidate molecules in future studies of inflammation, coagulation, immune modulation and pro-oxidant and antioxidant activity with consequential effects on the entire metabolism of the horse.

  14. Differentially regulated proteins in Prevotella intermedia after oxidative stress analyzed by 2D electrophoresis and mass spectrometry.

    PubMed

    Santos, Simone G; Diniz, Cláudio G; Silva, Vânia L; Lima, Francisca L; Andrade, Hélida M; Chapeaurouge, Donat A; Perales, Jonas; Serufo, José Carlos; Carvalho, Maria Auxiliadora R; Farias, Luiz M

    2012-02-01

    Prevotella intermedia is a rod-shaped, Gram-negative anaerobic bacterium found in human indigenous microbiota that plays an important role in opportunistic infections. The successful colonization depends on the ability of anaerobes to respond to oxidative stress (OS) in oxygenated tissues as well as to resist oxidative events from the host immune system until anaerobic conditions are present at the infection site. As knowledge of the mechanisms of protection against OS in Prevotella is limited, studies are needed to clarify aspects of molecular biology, physiology and ecology of this bacterium. The aim of this study was to access the proteins differentially regulated in P. intermedia after exposure to molecular oxygen by using two-dimensional gel electrophoresis (2DE) associated with the approach of MALDI-TOF/TOF Tandem Mass Spectrometry. The identity of the protein was evaluated by database search for homologous genomic sequences of P. intermedia strain 17 (TIGR). Twenty five out of 72 proteins found were identified as up-regulated (17) or down-regulated (9). These proteins were related to a variety of metabolic process, some of which could be associated to antioxidant and redox regulatory roles. Our data indicate that OS may stimulate an adaptive response in P. intermedia whose effect on its biology may be evidenced by the increase in aerotolerance and changes in protein abundance in the oxygen adapted cells. PMID:22193554

  15. Capillary zone electrophoresis and capillary electrophoresis-mass spectrometry for analyzing qualitative and quantitative variations in therapeutic albumin.

    PubMed

    Marie, Anne-Lise; Przybylski, Cédric; Gonnet, Florence; Daniel, Régis; Urbain, Rémi; Chevreux, Guillaume; Jorieux, Sylvie; Taverna, Myriam

    2013-10-24

    The present study describes a reproducible and quantitative capillary zone electrophoresis (CZE) method, which leads to the separation of nine forms (native, oxidized and glycated) of human serum albumin (HSA). In an attempt to identify the different species separated by this CZE method, the capillary electrophoresis was coupled to mass spectrometry using a sheath liquid interface, an optimized capillary coating and a suitable CE running buffer. CE-MS analyses confirmed the heterogeneity of albumin preparation and revealed new truncated and modified forms such as Advanced Glycation End products (AGEs). Assignment of the CZE peaks was carried out using specific antibodies, carboxypeptidase A or sample reduction before or during the CE separation. Thus, five HSA forms were unambiguously identified. Using this CZE method several albumin batches produced by slightly different fractionation ways could be discriminated. Furthermore, analyses of HSA preparations marketed by five pharmaceutical industries revealed that two therapeutic albumins, including that marketed by LFB, contained the highest proportion of native form and lower levels of oxidized forms. PMID:24120174

  16. Evaluation of two-dimensional electrophoresis and liquid chromatography – tandem mass spectrometry for tissue-specific protein profiling of laser-microdissected plant samples

    SciTech Connect

    Schad, Martina; Lipton, Mary S.; Giavalisco, Patrick; Smith, Richard D.; Kehr, Julia

    2005-07-14

    Laser microdissection (LM) allows the collection of homogeneous tissue- and cell specific plant samples. The employment of this technique with subsequent protein analysis has thus far not been reported for plant tissues, probably due to the difficulties associated with defining a reasonable cellular morphology and, in parallel, allowing efficient protein extraction from tissue samples. The relatively large sample amount needed for successful proteome analysis is an additional issue that complicates protein profiling on a tissue- or even cell-specific level. In contrast to transcript profiling that can be performed from very small sample amounts due to efficient amplification strategies, there is as yet no amplification procedure for proteins available. In the current study, we compared different tissue preparation techniques prior to LM/laser pressure catapulting (LMPC) with respect to their suitability for protein retrieval. Cryosectioning was identified as the best compromise between tissue morphology and effective protein extraction. After collection of vascular bundles from Arabidopsis thaliana stem tissue by LMPC, proteins were extracted and subjected to protein analysis, either by classical two-dimensional gel electrophoresis (2-DE), or by high-efficiency liquid chromatography (LC) in conjunction with tandem mass spectrometry (MS/MS). Our results demonstrate that both methods can be used with LMPC collected plant material. But because of the significantly lower sample amount required for LC-MS/MS than for 2-DE, the combination of LMPC and LC-MS/MS has a higher potential to promote comprehensive proteome analysis of specific plant tissues.

  17. Comparison of low molecular weight glutenin subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat

    PubMed Central

    2010-01-01

    Background Low-molecular-weight glutenin subunits (LMW-GS) play a crucial role in determining end-use quality of common wheat by influencing the viscoelastic properties of dough. Four different methods - sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel electrophoresis (2-DE, IEF × SDS-PAGE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and polymerase chain reaction (PCR), were used to characterize the LMW-GS composition in 103 cultivars from 12 countries. Results At the Glu-A3 locus, all seven alleles could be reliably identified by 2-DE and PCR. However, the alleles Glu-A3e and Glu-A3d could not be routinely distinguished from Glu-A3f and Glu-A3g, respectively, based on SDS-PAGE, and the allele Glu-A3a could not be differentiated from Glu-A3c by MALDI-TOF-MS. At the Glu-B3 locus, alleles Glu-B3a, Glu-B3b, Glu-B3c, Glu-B3g, Glu-B3h and Glu-B3j could be clearly identified by all four methods, whereas Glu-B3ab, Glu-B3ac, Glu-B3ad could only be identified by the 2-DE method. At the Glu-D3 locus, allelic identification was problematic for the electrophoresis based methods and PCR. MALDI-TOF-MS has the potential to reliably identify the Glu-D3 alleles. Conclusions PCR is the simplest, most accurate, lowest cost, and therefore recommended method for identification of Glu-A3 and Glu-B3 alleles in breeding programs. A combination of methods was required to identify certain alleles, and would be especially useful when characterizing new alleles. A standard set of 30 cultivars for use in future studies was chosen to represent all LMW-GS allelic variants in the collection. Among them, Chinese Spring, Opata 85, Seri 82 and Pavon 76 were recommended as a core set for use in SDS-PAGE gels. Glu-D3c and Glu-D3e are the same allele. Two new alleles, namely, Glu-D3m in cultivar Darius, and Glu-D3n in Fengmai 27, were identified by 2-DE. Utilization of the suggested standard cultivar set, seed of

  18. Modified electrokinetic sample injection method in chromatography and electrophoresis analysis

    DOEpatents

    Davidson, J. Courtney; Balch, Joseph W.

    2001-01-01

    A sample injection method for horizontal configured multiple chromatography or electrophoresis units, each containing a number of separation/analysis channels, that enables efficient introduction of analyte samples. This method for loading when taken in conjunction with horizontal microchannels allows much reduced sample volumes and a means of sample stacking to greatly reduce the concentration of the sample. This reduction in the amount of sample can lead to great cost savings in sample preparation, particularly in massively parallel applications such as DNA sequencing. The essence of this method is in preparation of the input of the separation channel, the physical sample introduction, and subsequent removal of excess material. By this method, sample volumes of 100 nanoliter to 2 microliters have been used successfully, compared to the typical 5 microliters of sample required by the prior separation/analysis method.

  19. Controlling enantioselectivity in chiral capillary electrophoresis with inclusion-complexation.

    PubMed

    Fanali, S

    1997-12-19

    The separation of chiral compounds is of key importance in different fields of application, e.g., pharmaceutical, industrial, forensic, biological, clinical etc. Capillary electrophoresis (CE) is a powerful analytical method applied in chiral analysis and inclusion-complexation is one of the most frequently used mechanism to improve the selectivity of the enantiomeric separation. Cyclodextrins and their derivatives or modified crown-ethers have been successfully applied in CE for the enantiomeric separation of a wide number of analytes. This review surveys the separation of enantiomers by CE when chiral selectors, forming inclusion-complexation, are used. The control of enantioselectivity can be done carefully by considering several experimental parameters such as chiral selector type and concentration, pH, ionic strength and concentration of the background electrolyte, electroosmotic flow, organic modifier etc. The review presents a list of the latest separation of enantiomers by CE where inclusion-complexation plays a key role in the stereoselective separation mechanism.

  20. Trivalent counterion condensation on DNA measured by pulse gel electrophoresis.

    PubMed

    Li, A Z; Qi, L J; Shih, H H; Marx, K A

    1996-03-01

    Pulse gel electrophoresis was used to measure the reduction of mobilities of lambda-DNA-Hind III fragments ranging from 23.130 to 2.027 kilobase pairs in Tris borate buffer solutions mixed with either hexammine cobalt(III), or spermidine3+ trivalent counterions that competed with Tris+ and Na+ for binding onto polyion DNA. The normalized titration curves of mobility were well fit by the two-variable counterion condensation theory. The agreement between measured charge fraction neutralized and counterion condensation prediction was good over a relatively wide range of trivalent cation concentrations at several solution conditions (pH, ionic strength). The effect of ionic strength, trivalent cation concentration, counterion structure, and DNA length on the binding were discussed based on the experimental measurements and the counterion condensation theory.

  1. Active colloids propelled by induced-charge electrophoresis

    NASA Astrophysics Data System (ADS)

    Han, Ming; Luijten, Erik

    Populations of motile organisms exhibit a variety of collective behaviors, ranging from bacterial colony formation to the flocking of birds. Current understanding of these active motions, which are typically far from equilibrium and based on the collective behavior of self-propelled entities, is far from complete. One approach is to reproduce these observations in systems of synthetic active colloids. However, one of the standard self-propulsion mechanisms, induced-charge electrophoresis (ICEP) of a dielectric Janus colloid remains not fully understood by itself, especially the strong dependence of the resultant particle motion on the frequency of the external field. Resolution of this outstanding problem requires detailed study of the time-resolved dielectric response of the colloid and the dynamics of the electric double layer. Through molecular dynamics simulations coupled with an efficient dielectric solver, we elucidate the underlying mechanism of the frequency dependence of ICEP and the polarization of a metallodielectric Janus colloid.

  2. Cyclodextrins in capillary electrophoresis: recent developments and new trends.

    PubMed

    Escuder-Gilabert, L; Martín-Biosca, Y; Medina-Hernández, M J; Sagrado, S

    2014-08-29

    Despite the fact that extensive research in the field of separations by capillary electrophoresis (CE) has been carried out and many reviews have been published in the last years, a specific review on the use and future potential of cyclodextrins (CDs) in CE is not available. This review focuses the attention in the CD-CE topic over the January 2013-February 2014 period (not covered by previous more general CE-reviews). Recent contributions (reviews and research articles) including practical uses (e.g. solute-CD binding constant estimation and further potentials; 19% of publications), developments and applications (mainly chiral and achiral analysis; 38 and 24% of publications, respectively) are summarized in nine comprehensive tables and are commented. Statistics and predictions related to the CD-CE publications are highlighted in order to infer the current and expected research interests. Finally, trends and initiatives on CD-CE attending to real needs or practical criteria are outlined.

  3. Microchip capillary electrophoresis based electroanalysis of triazine herbicides.

    PubMed

    Islam, Kamrul; Chand, Rohit; Han, Dawoon; Kim, Yong-Sang

    2015-01-01

    The number of pesticides used in agriculture is increasing steadily, leading to contamination of soil and drinking water. Herein, we present a microfluidic platform to detect the extent of contamination in soil samples. A microchip capillary electrophoresis system with in-channel electrodes was fabricated for label-free electroanalytical detection of triazine herbicides. The sample mixture contained three representative triazines: simazine, atrazine and ametryn. The electropherogram for each individual injection of simazine, atrazine and ametryn showed peaks at 58, 66 and 72 s whereas a mixture of them showed distinct peaks at 59, 67 and 71 s respectively. The technique as such may prove to be a useful qualitative and quantitative tool for the similar environmental pollutants.

  4. Semisynthetic chondroitins as chiral buffer additives in capillary electrophoresis.

    PubMed

    Gotti, R; Cavrini, V; Andrisano, V; Mascellani, G

    1999-06-11

    Chemically oversulfated galactosaminoglycans with potential as therapeutic agents (inhibitors of human leukocyte elastase) were tested as chiral selectors in capillary electrophoresis of basic racemates. The high anionic character of these compounds provides them with anodic mobility in acidic buffer; using uncoated capillaries, the enantioresolution of racemic basic drugs was obtained at pH 2.5. Dimethindene, chloroquine and chlorpheniramine were enantioresolved applying negative voltage (-15 kV) while the other analytes (propranolol, pindolol, tetrahydrozoline and cloperastine) exhibited catodic migration. The addition of organic solvents to the running buffer was evaluated in order to increase the resolution; methanol provides the best results and in general, baseline separation of the analytes was reached. The studied oversulfated mucopolysaccharide, shows the same ionic character of heparin but presents different stereochemistry and sites of sulfation. A comparison with heparin, used in the same acidic conditions, may underline the role of ionic, spatial and steric features of glycosaminoglycans in the enantiorecognition.

  5. Analysis and applications of nanoparticles in capillary electrophoresis.

    PubMed

    Ban, Eunmi; Yoo, Young Sook; Song, Eun Joo

    2015-08-15

    Nanoparticles (NPs) exhibit unique chemical and physical properties that depend on their size, shape, and environment. NPs are emerging as new tools and techniques in the analytical study of various materials and in the biological and biomedical fields, because of their unique properties. Therefore, the quantitative and qualitative characterization of NPs has gathered increasing interest. Additionally, the NPs are being used in rapidly developing techniques to provide highly sensitive and specific analysis of various materials. Capillary electrophoresis (CE) has been demonstrated as a useful analytical tool for the characterization of NPs and for the evaluation of biological and biomedical studies using NPs because of its simple sample preparation and efficient resolution of a diverse size range of compounds. This paper gives a short overview of the analysis and applications of NPs in CE systems, with an emphasis on biological and biomedical studies. PMID:25966374

  6. Recent developments in electrochemical detection for microchip capillary electrophoresis.

    PubMed

    Vandaveer, Walter R; Pasas-Farmer, Stephanie A; Fischer, David J; Frankenfeld, Celeste N; Lunte, Susan M

    2004-11-01

    Significant progress in the development of miniaturized microfluidic systems has occurred since their inception over a decade ago. This is primarily due to the numerous advantages of microchip analysis, including the ability to analyze minute samples, speed of analysis, reduced cost and waste, and portability. This review focuses on recent developments in integrating electrochemical (EC) detection with microchip capillary electrophoresis (CE). These detection modes include amperometry, conductimetry, and potentiometry. EC detection is ideal for use with microchip CE systems because it can be easily miniaturized with no diminution in analytical performance. Advances in microchip format, electrode material and design, decoupling of the detector from the separation field, and integration of sample preparation, separation, and detection on-chip are discussed. Microchip CEEC applications for enzyme/immunoassays, clinical and environmental assays, as well as the detection of neurotransmitters are also described.

  7. Separation of ions in acidic solution by capillary electrophoresis

    SciTech Connect

    Thornton, M.

    1997-10-08

    Capillary electrophoresis (CE) is an effective method for separating ionic species according to differences in their electrophoretic mobilities. CE separations of amino acids by direct detection are difficult due to their similar electrophoretic mobilities and low absorbances. However, native amino acids can be separated by CE as cations at a low pH by adding an alkanesulfonic acid to the electrolyte carrier which imparts selectivity to the system. Derivatization is unnecessary when direct UV detection is used at 185 nm. Simultaneous speciation of metal cations such as vanadium (IV) and vanadium (V) can easily be performed without complexation prior to analysis. An indirect UV detection scheme for acidic conditions was also developed using guanidine as the background carrier electrolyte (BCE) for the indirect detection of metal cations. Three chapters have been removed for separate processing. This report contains introductory material, references, and general conclusions. 80 refs.

  8. Separation of enantiomers by capillary electrophoresis using pentosan polysulfate.

    PubMed

    Wang, X; Lee, J T; Armstrong, D W

    1999-01-01

    Pentosan polysulfate, a semisynthetic polysaccharide, was employed as a chiral run buffer additive in capillary electrophoresis. Twenty-eight racemic analytes were resolved. The separations were successful only at low pH when the analytes were significantly protonated. This suggests that ionic interactions were the dominant associative interactions between the anionic pentosan polysulfate and the positively charged analytes. Compared to other linear, carbohydrate-based chiral selectors (i.e., chondroitin sulfates, heparin and dextran sulfate) pentosan polysulfate has some characteristics common of anionic polysaccharides; yet it has several differences in its structure and properties which account for its unusual enantioselectivity. The effects of pH, concentration of phosphate buffer, concentration of pentosan polysulfate and the type and concentration of organic modifier on the enantiomeric separations were investigated. The optimization of these separations were dependent on the nature of the analytes and could be achieved by the proper choice of experimental conditions.

  9. Separability of electrostatic and hydrodynamic forces in particle electrophoresis

    NASA Astrophysics Data System (ADS)

    Todd, Brian A.; Cohen, Joel A.

    2011-09-01

    By use of optical tweezers we explicitly measure the electrostatic and hydrodynamic forces that determine the electrophoretic mobility of a charged colloidal particle. We test the ansatz of O'Brien and White [J. Chem. Soc. Faraday IIJCFTBS0300-923810.1039/f29787401607 74, 1607 (1978)] that the electrostatically and hydrodynamically coupled electrophoresis problem is separable into two simpler problems: (1) a particle held fixed in an applied electric field with no flow field and (2) a particle held fixed in a flow field with no applied electric field. For a system in the Helmholtz-Smoluchowski and Debye-Hückel regimes, we find that the electrostatic and hydrodynamic forces measured independently accurately predict the electrophoretic mobility within our measurement precision of 7%; the O'Brien and White ansatz holds under the conditions of our experiment.

  10. [Determination of glutamic acid in biological material by capillary electrophoresis].

    PubMed

    Narezhnaya, E; Krukier, I; Avrutskaya, V; Degtyareva, A; Igumnova, E A

    2015-01-01

    The conditions for the identification and determination of Glutamic acid by capillary zone electrophoresis without their preliminary derivatization have been optimized. The effect of concentration of buffer electrolyte and pH on determination of Glutamic acid has been investigated. It is shown that the 5 Mm borate buffer concentration and a pH 9.15 are optimal. Quantitative determination of glutamic acid has been carried out using a linear dependence between the concentration of the analyte and the area of the peak. The accuracy and reproducibility of the determination are confirmed by the method "introduced - found". Glutamic acid has been determined in the placenta homogenate. The duration of analysis doesn't exceed 30 minutes. The results showed a decrease in the level of glutamic acid in cases of pregnancy complicated by placental insufficiency compared with the physiological, and this fact allows to consider the level of glutamic acid as a possible marker of complicated pregnancy.

  11. Graphitic carbon nitride embedded hydrogels for enhanced gel electrophoresis.

    PubMed

    Zarei, Mohammad; Ahmadzadeh, Hossein; Goharshadi, Elaheh K; Farzaneh, Ali

    2015-08-01

    Here, we show, for the first time, the use of graphitic carbon nitride (g-C3N4) nanosheets to improve the resolution and efficiency of protein separation in gel electrophoresis. By loading 0.04% (m/v) g-C3N4 nanosheets into the polyacrylamide gel at 25 °C, the thermal conductivity increased approximately 80% which resulted in 20% reduction in Joule heating and overall increase of separation efficiency. Also, polymerization of acrylamide occurred in the absence of tetramethylethylenediamine (TEMED) when the polyacrylamide gel contained g-C3N4 nanosheets. Hence, the g-C3N4 act simultaneously as a polymerization catalyst as well as heat sinks to lower Joule heating effect on band broadening. PMID:26320809

  12. [Application of capillary electrophoresis in analysis of intact mammalian cells].

    PubMed

    Zhang, Lu; Qu, Feng; Lou, Beilei

    2012-02-01

    Cell is the basic structural and functional unit of human body. The research of cells' structure, function and behavior is very important. Capillary electrophoresis (CE) is a powerful tool for the separation and analysis, the application of which in cell analysis has progressed significantly. In this paper, the developments of CE applied in the intact mammalian cell analysis are reviewed, which consist of cell population and single cell analysis. The erythrocyte, boar sperm, HeLa cells, SH-SY5Y cells, Caco-2 cells, K562 cells and rat cerebellar granule cells are involved in this review. The methods and conditions for the intact mammalian cell analysis are summarized. In addition, the problems caused by the breakage, aggregation, sedimentation, adsorption and electrophoretic heterogeneity of the cell in the intact mammalian cell analysis by CE are discussed, and the corresponding solutions are introduced. Also, the future research trends are presented. Forty nine papers in all are reviewed.

  13. Monolithic fabrication of nanofluidic artificial gel media for DNA electrophoresis

    NASA Astrophysics Data System (ADS)

    Turner, Stephen W.; Craighead, Harold G.

    1998-03-01

    A new technique for fabricating 2D artificial gels for DNA electrophoresis is presented. The technique differs from previous approaches in that the entire device is fabricated as a monolithic unit using exclusively planar processing techniques borrowed from semiconductor electronics fabrication. The height of the fluid gap between the dielectric floor and ceiling is determined by the thickness of a sacrificial layer which is removed by a wet chemical etch. This allows precise control and excellent uniformity of the gap over an entire silicon wafer. Gap control better than 5 nm has been demonstrated for floor-to-ceiling height for the fluid gap. The lateral resolution which can be attained is limited only by available lithographic techniques. In this work, 1 micrometers diameter pillars are defined with i-line photolithography. Fluid interconnects are established with a liquid meniscus to the hedge of the device.

  14. Electrophoresis of small particles and fluid globules in weak electrolytes

    NASA Technical Reports Server (NTRS)

    Baygents, J. C.; Saville, D. A.

    1991-01-01

    An examination is conducted of the influence of partial ionization on the electrophoresis of small particles and fluid globules, with a view to the nature of conditions under which dissociation-association (D-A) alters electrokinetics. It is found that, since D-A processes are important in cases where double-layer polarization and relaxation would otherwise prevail, the predicted effect on electrophoretic mobility is greatest for the drops and bubbles whose surfaces are fluid and convection within the interface is significant. While the computation scheme used applies only to situations where forcing-field magnitude is small, the results obtained indicate that D-A processes involving ionogenic solutes may be significant in apolar liquids where electrokinetic phenomena are driven by strong forcing fields.

  15. Theoretical and experimental separation dynamics in capillary zone electrophoresis

    NASA Technical Reports Server (NTRS)

    Thormann, Wolfgang; Michaud, Jon-Pierre; Mosher, Richard A.

    1986-01-01

    The mathematical model of Bier et al. (1983) is used in a computer aided analysis of the conditions in capillary zone electrophoresis (ZE) under which sample zones migrate noninteractively with the carrier electrolyte. The monitoring of sample zones with a capillary analyzer that features both on-line conductivity and UV detection at the end of the separation trough is discussed. Data from a ZE analysis of a 5-component mixture are presented, and it is noted that all five components can be monitored via their conductivity change if enough sample is present. It is suggested from the results that the concentration ratio of background buffer to sample should be a minimum of 100:1 to effectively apply the plate concept to ZE.

  16. Thermally reversible gels in electrophoresis. I - Matrix characterization

    NASA Technical Reports Server (NTRS)

    Righetti, Pier Giorgio; Snyder, Robert S.

    1988-01-01

    Two series of thermally reversible hydrogen-bonded gels have been characterized: (5 pct) PVA-(4 pct) PEG and (5 pct) PVA-(0.04 pct) borate gels. They both have extremely low melting points (16-17 C) and could be of potential interest for recovery of proteins after preparative electrophoresis. The PVA-borate gels can be exploited in the pH range 7-11 by progressively increasing the borate content in the pH interval 8 to 7 and concomitantly decreasing the borate levels in the pH zone 8 to 11. It is hypothesized that the low melting point of these gels is due to the fact that they are sparingly and sparsely hydrogen bonded along the PVA chain: on the average, 1 OH group out of 3 or 4 OH groups in the PVA polymer should be engaged in H-bond formation.

  17. Sample stream distortion modeled in continuous-flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.

    1979-01-01

    Buoyancy-induced disturbances in an electrophoresis-type chamber were investigated. Five tracer streams (latex) were used to visualize the flows while a nine-thermistor array sensed the temperature field. The internal heating to the chamber was provided by a 400 Hz electrical field. Cooling to the chamber was provided on the front and back faces and, in addition, on both chamber side walls. Disturbances to the symmetric base flow in the chamber occurred in the broad plane of the chamber and resulted from the formation of lateral and axial temperature gradients. The effect of these gradients was to retard or increase local flow velocities at different positions in the chamber cross section, which resulted in lateral secondary flows being induced in the broad plane of the chamber. As the adverse temperature gradients increased in magnitude, the critical Rayleigh number was approached and reverse (separated) flow became apparent, which, subsequently, led to the onset of time variant secondary flows.

  18. Electrohydrodynamic distortion of sample streams in continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.

    1989-01-01

    Continuous flow electrophoresis experiments were carried out, using an electrolyte and a sample both made of aqueous solutions of phosphate buffer (with polystyrene latex added for visibility), to investigate causes of the sample spreading in this procedure. It is shown theoretically that an electric field perpendicular to a circular filament of conducting fluid surrounded by a fluid of different conductivity produces an electrohydrodynamic flow, which distorts the filament into an ellipse. Experimental results were found to be fully consistent with theretical predictions. It was found that the rate of distortion of the sample stream into a ribbon was proportional to the square of the applied voltage gradient. Furthermore, the orientation of the ribbon depends on the ratios of dielectric constant and electrical conductivity between the buffer and the sample.

  19. Recent advances in affinity capillary electrophoresis for binding studies.

    PubMed

    Albishri, Hassan M; El Deeb, Sami; AlGarabli, Noura; AlAstal, Raghda; Alhazmi, Hassan A; Nachbar, Markus; El-Hady, Deia Abd; Wätzig, Hermann

    2014-01-01

    The present review covers recent advances and important applications of affinity capillary electrophoresis (ACE). It provides an overview about various ACE types, including ACE-MS, the multiple injection mode, the use of microchips and field-amplified sample injection-ACE. The most common scenarios of the studied affinity interactions are protein-drug, protein-metal ion, protein-protein, protein-DNA, protein-carbohydrate, carbohydrate-drug, peptide-peptide, DNA-drug and antigen-antibody. Approaches for the improvements of ACE in term of precision, rinsing protocols and sensitivity are discussed. The combined use of computer simulation programs to support data evaluation is presented. In conclusion, the performance of ACE is compared with other techniques such as equilibrium dialysis, parallel artificial membrane permeability assay, high-performance affinity chromatography as well as surface plasmon resonance, ultraviolet, circular dichroism, nuclear magnetic resonance, Fourier transform infrared, fluorescence, MS and isothermal titration calorimetry. PMID:25534793

  20. Analysis of Anions in Ambient Aerosols by Microchip Capillary Electrophoresis

    SciTech Connect

    Liu, Yan; MacDonald, David A.; Yu, Xiao-Ying; Hering, Susanne V.; Collett, Jeffrey L.; Henry, Charles S.

    2006-10-01

    We describe a microchip capillary electrophoresis method for the analysis of nitrate and sulfate in ambient aerosols. Investigating the chemical composition of ambient aerosol particles is essential for understanding their sources and effects. Significant progress has been made towards developing mass spectrometry-based instrumentation for rapid qualitative analysis of aerosols. Alternative methods for rapid quantification of selected high abundance compounds are needed to augment the capacity for widespread routine analysis. Such methods could provide much higher temporal and spatial resolution than can be achieved currently. Inorganic anions comprise a large percentage of particulate mass with nitrate and sulfate among the most abundant species. While ion chromatography has proven very useful for analyzing extracts of time-integrated ambient aerosol samples collected on filters and for semi-continuous, on-line particle composition measurements, there is a growing need for development of new compact, inexpensive approaches to routine on-line aerosol ion analysis for deployment in spatially dense, atmospheric measurement networks. Microchip capillary electrophoresis provides the necessary speed and portability to address this need. In this report, on-column contact conductivity detection is used with hydrodynamic injection to create a simple microchip instrument for analysis of nitrate and sulfate. On-column contact conductivity detection was achieved using a Pd decoupler placed upstream from the working electrodes. Microchips containing two Au or Pd working electrodes showed a good linear range (5-500 µM) and low limits-of-detection for sulfate and nitrate with Au providing the lowest detection limits (1 µM) for both ions. The completed microchip system was used to analyze ambient aerosol filter samples. Nitrate and sulfate concentrations measured by the microchip matched the concentrations measured by ion chromatography.

  1. Determining eight colorants in milk beverages by capillary electrophoresis.

    PubMed

    Huang, Hsi-Ya; Shih, Ying-Chieh; Chen, Yun-Chieh

    2002-06-14

    Milk beverages are popular because of their high nutritional value, and milk products that are enhanced with various fruit flavors are especially in high demand in Asia. Colorants are usually added to fruit flavored milk in order to increase its attraction and appearance, therefore, the detection and measurement of colorants in this type of beverage are relatively important for health issue reasons. Carminic acid, a natural colorant, along with tartrazine, Fast green FCF, Brilliant blue FCF, Allura Red AC, Indigo carmine, Sunset yellow FCF, and New coccine, which are seven different synthetic food colorants, are commonly used as food additives, therefore, this study would focus on the development of an analytical method for the detection of these common colorants in milk beverages. A high efficiency capillary electrophoresis separation method was finished by a pH 10.0 running buffer containing 7.0 mM beta-cyclodextrin, and the eight colorants were separated with baseline resolution within 9 min. In order to reduce the matrix interference resulting from the constituents of milk, a suitable polyamide column solid-phase extraction (SPE) was also investigated for milk sample pretreatment. The combination of the simple SPE pretreatment and the fast separation method of capillary electrophoresis, was able to determine successfully without matrix interference the content of these colorant additives in commercial milk beverages. The recoveries of the eight food colorants in milk beverages were better than 85% and the detection limits were also lower than 0.5 microg/ml by the developed method. PMID:12141558

  2. Monitoring Piscirickettsia salmonis by denaturant gel electrophoresis and competitive PCR.

    PubMed

    Heath, S; Pak, S; Marshall, S; Prager, E M; Orrego, C

    2000-05-25

    Reported strains of Piscirickettsia salmonis, a pathogen of salmonid fishes, were analyzed by amplifying part of the internal transcribed spacer (ITS) of the ribosomal RNA (rRNA) operon followed by denaturing gradient gel electrophoresis (DGGE) of the amplicons. All amplified fragments differing in sequence were distinguished by migration during DGGE. A simpler format, constant denaturant gel electrophoresis (CDGE), allowed the same diagnostic distinctions among strains. Sampling during 1997 and 1998 of salmonids from 5 different sites on and near Chiloé Island in southern Chile displaying piscirickettsiosis revealed only P. salmonis resembling LF-89, the type strain first isolated in 1989. These observations are encouraging for control strategies, which might otherwise be compromised by unpredictable shifts of P. salmonis types in salmon farms. A competitive PCR assay offered insight about the power of PCR for quantification and about specific tissue invasiveness by this intracellular pathogen. This approach revealed that the PCR could amplify approximately 1 to 10 P. salmonis genome equivalents against a background of > 99.9% salmonid DNA. It also raised the possibility that the salmonid brain is an important site for P. salmonis survival, with its bacterial load in 1 individual having been about 100 times the loads observed in liver and kidney. Pathogen detection by competitive PCR in a surface seawater sample from a netpen in use indicated a density of about 3000 to 4000 P. salmonis cells (or their DNA remnants) 1(-1). Such quantitative estimates should aid decisions about disease prevention and management as, for example, choice of netpen sites following fallow periods and certification of ova, which are known conduits of infection.

  3. Chiral Separation of Indapamide Enantiomers by Capillary Electrophoresis

    PubMed Central

    Tero-Vescan, Amelia; Hancu, Gabriel; Oroian, Mihaela; Cârje, Anca

    2014-01-01

    Purpose: Indapamide is probably the most frequently prescribed diuretic drug, generally being used for the treatment of hypertension. It contains a chiral center in its molecule; is marketed as a racemic mixture; but there are rather few studies regarding the pharmacokinetic and the pharmacological effect differences of the two enantiomers. Our aim was the development of a simple, rapid and precise analytical procedure for the chiral separation of indapamide enantiomers. Methods: In this study capillary zone electrophoresis was used for the enantiomeric separation of indapamide using a systematic screening approach involving different native and derivatized; neutral and charged cyclodextrines as chiral selectors. The effects of pH value and composition of the background electrolyte, capillary temperature, running voltage and injection parameters have been investigated. Results: After preliminary analysis a charged derivatized CD, sulfobuthyl ether- β-CD, proved to be the optimum chiral selector for the enantioseparation. Using a buffer solution containing 25 mM disodium hydrogenophosphate – 25 mM sodium didydrogenophosphate and 5 mM sulfobuthyl ether- β-CD as chiral selector at a pH - 7, a voltage of + 25 kV, temperature 15°C and UV detection at 242 nm, we succeeded in the separation of the two enantiomers in approximately 6 minutes, with a resolution of 4.30 and a separation factor of 1.08. Conclusion: Capillary zone electrophoresis using cyclodextrines as chiral selectors proved to be a suitable method for the enantioseparation of indapamide. Our method is rapid, specific, reliable, and cost-effective and can be proposed for laboratories performing indapamide routine analysis. PMID:24754011

  4. Capillary Electrophoresis-Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Michalke, Bernhard

    2016-01-01

    During the recent years, capillary electrophoresis (CE) has been fully established as a powerful tool in separation sciences as well as in element speciation. This road of success is based on the rapid analysis time, low sample requirements, high separation efficiency, and low operating costs of CE. Inductively coupled plasma mass spectrometry (ICP-MS) is known for superior detection and multielement capability. Consequently, the combination of both instruments is approved for analysis of complex sample types at low element concentrations which require high detection power. Also the diversity of potential applications brings CE-ICP-MS coupling into central focus of element speciation. The key to successful combination of ICP-MS as an (multi-)element selective detector for CE is the availability of a suitable and effective interface.Therefore, this chapter summarizes the most important and basic principles about coupling of capillary electrophoresis to ICP-MS. Specifically, the major requirements for interfacing are described and technical solutions are given. Such solutions include the closing of the electrical circuit from CE at the nebulization, the adoption of flow rates for efficient nebulization, the reduction of a suction flow through the capillary, caused by the nebulizer, and maintaining the high separation resolution from CE across the interface for ICP-MS detection. Additionally, detailed information is presented to determine and quantify the siphoning suction through the CE capillary by the nebulizer. Finally, two applications, namely, the manganese and selenium speciation in cerebrospinal fluid are shown as examples, providing the relevant operational parameter. PMID:27645737

  5. Carrier-number fluctuations in the 2-dimensional electron gas at the LaAlO3/SrTiO3 interface

    NASA Astrophysics Data System (ADS)

    Barone, C.; Romeo, F.; Pagano, S.; Di Gennaro, E.; Miletto Granozio, F.; Pallecchi, I.; Marrè, D.; Scotti di Uccio, U.

    2013-12-01

    The voltage-spectral density SV (f) of the 2-dimensional electron gas formed at the interface of LaAlO3/SrTiO3 has been thoroughly investigated. The low-frequency component has a clear 1/f behavior with a quadratic bias current dependence, attributed to resistance fluctuations. However, its temperature dependence is inconsistent with the classical Hooge model, based on carrier-mobility fluctuations. The experimental results are, instead, explained in terms of carrier-number fluctuations, due to an excitation-trapping mechanism of the 2-dimensional electron gas.

  6. Carrier-number fluctuations in the 2-dimensional electron gas at the LaAlO{sub 3}/SrTiO{sub 3} interface

    SciTech Connect

    Barone, C. Romeo, F.; Pagano, S.; Di Gennaro, E.; Miletto Granozio, F.; Scotti di Uccio, U.; Pallecchi, I.; Marrè, D.

    2013-12-02

    The voltage-spectral density S{sub V} (f) of the 2-dimensional electron gas formed at the interface of LaAlO{sub 3}/SrTiO{sub 3} has been thoroughly investigated. The low-frequency component has a clear 1/f behavior with a quadratic bias current dependence, attributed to resistance fluctuations. However, its temperature dependence is inconsistent with the classical Hooge model, based on carrier-mobility fluctuations. The experimental results are, instead, explained in terms of carrier-number fluctuations, due to an excitation-trapping mechanism of the 2-dimensional electron gas.

  7. Assessment of left ventricle function in patients with symptomatic and asymptomatic aortic stenosis by 2-dimensional speckle-tracking imaging

    PubMed Central

    Luszczak, Joanna; Olszowska, Maria; Drapisz, Sylwia; Plazak, Wojciech; Karch, Izabela; Komar, Monika; Goralczyk, Tadeusz; Podolec, Piotr

    2012-01-01

    Summary Background Global longitudinal peak strain (GLPS) quantifies left ventricle (LV) long-axis contractility. Early detection of LV systolic dysfunction is pivotal in diagnosis and treatment of patients with aortic stenosis (AS). This study was performed to assess LV longitudinal systolic function by GLPS derived from 2-dimensional speckle tracking imaging (2D-STI) in AS patients in comparison to standard echocardiographic parameters. Material/Methods Laboratory tests, standard echocardiography, tissue Doppler imaging (TDI) and 2D-STI examinations with GLPS calculation were performed in 49 consecutive patients with moderate to severe AS with LV ejection fraction ≥50% and 18 controls. Results While LVEF do not differentiate AS patients from controls, GLPS was significantly decreased in the AS group (−15.30±3.25% vs. −19.60±2.46% in controls, p<0.001). GLPS was significantly reduced in symptomatic AS patients as compared to the asymptomatic AS group [−15.5 (11.8–16.8) vs. −17.5 (14.7–18.9)%, p=0.02]. Conclusions In aortic stenosis patients, despite normal left ventricle ejection fraction, long-axis left ventricular function is impaired, which manifests in global longitudinal peak strain reduction. GLPS reveals that LV function impairment is more pronounced in symptomatic as compared to asymptomatic AS patients. Further studies are needed to determine the prognostic significance of early LV function impairment in aortic stenosis patients showed by GLPS. PMID:23197243

  8. Optimal Charging Profiles with Minimal Intercalation-Induced Stresses for Lithium-Ion Batteries Using Reformulated Pseudo 2-Dimensional Models

    SciTech Connect

    Suthar, B; Northrop, PWC; Braatz, RD; Subramanian, VR

    2014-07-30

    This paper illustrates the application of dynamic optimization in obtaining the optimal current profile for charging a lithium-ion battery by restricting the intercalation-induced stresses to a pre-determined limit estimated using a pseudo 2-dimensional (P2D). model. This paper focuses on the problem of maximizing the charge stored in a given time while restricting capacity fade due to intercalation-induced stresses. Conventional charging profiles for lithium-ion batteries (e.g., constant current followed by constant voltage or CC-CV) are not derived by considering capacity fade mechanisms, which are not only inefficient in terms of life-time usage of the batteries but are also slower by not taking into account the changing dynamics of the system. (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. All rights reserved.

  9. ProteomeGRID: towards a high-throughput proteomics pipeline through opportunistic cluster image computing for two-dimensional gel electrophoresis.

    PubMed

    Dowsey, Andrew W; Dunn, Michael J; Yang, Guang-Zhong

    2004-12-01

    The quest for high-throughput proteomics has revealed a number of critical issues. Whilst improved two-dimensional gel electrophoresis (2-DE) sample preparation, staining and imaging issues are being actively pursued by industry, reliable high-throughput spot matching and quantification remains a significant bottleneck in the bioinformatics pipeline, thus restricting the flow of data to mass spectrometry through robotic spot excision and protein digestion. To this end, it is important to establish a full multi-site Grid infrastructure for the processing, archival, standardisation and retrieval of proteomic data and metadata. Particular emphasis needs to be placed on large-scale image mining and statistical cross-validation for reliable, fully automated differential expression analysis, and the development of a statistical 2-DE object model and ontology that underpins the emerging HUPO PSI GPS (Human Proteome Organization Proteomics Standards Initiative General Proteomics Standards). The first step towards this goal is to overcome the computational and communications burden entailed by the image analysis of 2-DE gels with Grid enabled cluster computing. This paper presents the proTurbo framework as part of the ProteomeGRID, which utilises Condor cluster management combined with CORBA communications and JPEG-LS lossless image compression for task farming. A novel probabilistic eager scheduler has been developed to minimise make-span, where tasks are duplicated in response to the likelihood of the Condor machines' owners evicting them. A 60 gel experiment was pair-wise image registered (3540 tasks) on a 40 machine Linux cluster. Real-world performance and network overhead was gauged, and Poisson distributed worker evictions were simulated. Our results show a 4:1 lossless and 9:1 near lossless image compression ratio and so network overhead did not affect other users. With 40 workers a 32x speed-up was seen (80% resource efficiency), and the eager scheduler reduced the

  10. Application of two-dimensional gel electrophoresis to interrogate alterations in the proteome of genetically modified crops. 1. Assessing analytical validation.

    PubMed

    Ruebelt, Martin C; Leimgruber, Nancy K; Lipp, Markus; Reynolds, Tracey L; Nemeth, Margaret A; Astwood, James D; Engel, Karl-Heinz; Jany, Klaus-Dieter

    2006-03-22

    Current tools used to assess the safety of food and feed derived from modern biotechnology emphasize the investigation of possible unintended effects caused directly by the expression of transgenes or indirectly by pleiotropy. These tools include extensive multisite and multiyear agronomic evaluations, compositional analyses, animal nutrition, and classical toxicology evaluations. Because analytical technologies are rapidly developing, proteome analysis based on two-dimensional gel electrophoresis (2DE) was investigated as a complementary tool to the existing technologies. A 2DE method was established for the qualitative and quantitative analysis of the seed proteome of Arabidopsis thaliana with the following validation parameters examined: (1) source and scope of variation; (2) repeatability; (3) sensitivity; and (4) linearity of the method. The 2DE method resolves proteins with isoelectric points between 4 and 9 and molecular masses (MM) of 6-120 kDa and is sensitive enough to detect protein levels in the low nanogram range. The separation of the proteins was demonstrated to be very reliable with relative position variations of 1.7 and 1.1% for the pI and MM directions, respectively. The mean coefficient of variation of 254 matched spot qualities was found to be 24.8% for the gel-to-gel and 26% for the overall variability. A linear relationship (R2 > 0.9) between protein amount and spot volume was demonstrated over a 100-fold range for the majority of selected proteins. Therefore, this method could be used to interrogate proteome alterations such as a novel protein, fusion protein, or any other change that affects molecular mass, isoelectric point, and/or quantity of a protein.

  11. Potentials and Method Improvements of Capillary Zone Electrophoresis for Use in Spelt Breeding Programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Capillary zone electrophoresis (CZE) in acidic buffer systems is capable of separating cereal storage proteins based on similar separation principles as classical acidic polyacrylamide gel electrophoresis. However, it is faster, its resolution is distinctly higher and data evaluation is much simpler...

  12. Instrumental development of novel detection and separation methods for capillary electrophoresis

    SciTech Connect

    Garner, T.

    1993-07-01

    After a general introduction, this thesis is divided into 3 parts: indirect fluorescence detection of sugars separated by capillary zone electrophoresis with visible laser excitation, absorption detection in capillary electrophoresis by fluorescence energy transfer, and increased selectivity for electrochromatography by dynamic ion exchange.

  13. Design, development, test, and evaluation of an automated analytical electrophoresis apparatus

    NASA Technical Reports Server (NTRS)

    Bartels, P. A.; Bier, M.

    1977-01-01

    An Automated Analytical Electrophoresis Apparatus (AAEA) was designed, developed, assembled, and preliminarily tested. The AAEA was demonstrated to be a feasible apparatus for automatically acquiring, displaying, and storing (and eventually analyzing) electrophoresis mobility data from living blood cells. The apparatus and the operation of its major assemblies are described in detail.

  14. Gene analysis of multiple oral bacteria by the polymerase chain reaction coupled with capillary polymer electrophoresis.

    PubMed

    Liu, Chenchen; Yamaguchi, Yoshinori; Sekine, Shinichi; Ni, Yi; Li, Zhenqing; Zhu, Xifang; Dou, Xiaoming

    2016-03-01

    Capillary polymer electrophoresis is identified as a promising technology for the analysis of DNA from bacteria, virus and cell samples. In this paper, we propose an innovative capillary polymer electrophoresis protocol for the quantification of polymerase chain reaction products. The internal standard method was modified and applied to capillary polymer electrophoresis. The precision of our modified internal standard protocol was evaluated by measuring the relative standard deviation of intermediate capillary polymer electrophoresis experiments. Results showed that the relative standard deviation was reduced from 12.4-15.1 to 0.6-2.3%. Linear regression tests were also implemented to validate our protocol. The modified internal standard method showed good linearity and robust properties. Finally, the ease of our method was illustrated by analyzing a real clinical oral sample using a one-run capillary polymer electrophoresis experiment. PMID:26648455

  15. Simple method for three-dimensional representation of 2-DE spots using a spreadsheet program.

    PubMed

    Maurer, Martin H

    2004-01-01

    Quantitative protein expression analysis based on two-dimensional gel electrophoresis requires comparison of spot volumes. We describe an algorithm to visualize two-dimensional spot patterns in three dimensions using a spreadsheet program for surface plotting.

  16. The Application of Pulsed Field Gel Electrophoresis in Clinical Studies

    PubMed Central

    Parizad, Eskandar Gholami; Valizadeh, Azar

    2016-01-01

    Pulsed-field gel electrophoresis is a method applied in separating large segments of deoxyribonucleotide using an alternating and cross field. In a uniform magnetic field, components larger than 50kb pass a route through the gel and since the movement of DNA (Deoxyribonucleic acid) molecules are in a Zigzag form, separation of DNAs as bands carried out better via gel. PFGE in microbiology is a standard method which is used for typing of bacteria. It is also a very useful tool in epidemiological studies and gene mapping in microbes and mammalian cell, also motivated development of large-insert cloning system such as bacterial and yeast artifical chromosomes. In this method, close and similar species in terms of genetic patterns show alike profiles regarding DNA separation, and those ones which don’t have similarity or are less similar, reveal different separation profiles. So this feature can be used to determine the common species as the prevalence agent of a disease. PFGE can be utilized for monitoring and evaluating different micro-organisms in clinical samples and existing ones in soil and water. This method can also be a reliable and standard method in vaccine preparation. In recent decades, PFGE is highly regarded as a powerful tool in control, prevention and monitoring diseases in different populations. PMID:26894068

  17. Protonation enthalpies of metal oxides from high temperature electrophoresis.

    SciTech Connect

    Rodriguez-Santiago, V; Fedkin, Mark V; Lvov, Serguei N.

    2012-01-01

    Surface protonation reactions play an important role in the behavior of mineral and colloidal systems, specifically in hydrothermal aqueous environments. However, studies addressing the reactions at the solid/liquid interface at temperatures above 100 C are scarce. In this study, newly and previously obtained high temperature electrophoresis data (up to 260 C) - zeta potentials and isoelectric points - for metal oxides, including SiO{sub 2}, SnO{sub 2}, ZrO{sub 2}, TiO{sub 2}, and Fe{sub 3}O{sub 4}, were used in thermodynamic analysis to derive the standard enthalpies of their surface protonation. Two different approaches were used for calculating the protonation enthalpy: one is based on thermodynamic description of the 1-pKa model for surface protonation, and another one - on a combination of crystal chemistry and solvation theories which link the relative permittivity of the solid phase and the ratio of the Pauling bond strength and bond length to standard protonation enthalpy. From this analysis, two expressions relating the protonation enthalpy to the relative permittivity of the solid phase were obtained.

  18. Protonation enthalpies of metal oxides from high temperature electrophoresis

    SciTech Connect

    Rodriguez-Santiago, V; Fedkin, Mark V.; Lvov, Serguei N.

    2012-01-01

    Surface protonation reactions play an important role in the behavior of mineral and colloidal systems, specifically in hydrothermal aqueous environments. However, studies addressing the reactions at the solid/liquid interface at temperatures above 100 C are scarce. In this study, newly and previously obtained high temperature electrophoresis data (up to 260 C) zeta potentials and isoelectric points for metal oxides, including SiO2, SnO2, ZrO2, TiO2, and Fe3O4, were used in thermodynamic analysis to derive the standard enthalpies of their surface protonation. Two different approaches were used for calculating the protonation enthalpy: one is based on thermodynamic description of the 1-pKa model for surface protonation, and another one on a combination of crystal chemistry and solvation theories which link the relative permittivity of the solid phase and the ratio of the Pauling bond strength and bond length to standard protonation enthalpy. From this analysis, two expressions relating the protonation enthalpy to the relative permittivity of the solid phase were obtained.

  19. Kinetic methods in capillary electrophoresis and their applications

    NASA Astrophysics Data System (ADS)

    Berezovski, Maxim V.; Okhonin, Victor; Petrov, Alex; Krylov, Sergey N.

    2005-09-01

    In recent years, capillary electrophoresis (CE) has been one of rapidly growing analytical techniques to study affinity interactions. Quick analysis, high efficiency, high resolving power, low sample consumption, and wide range of possible analytes make CE an indispensable tool for studies of biomolecules and, in particular, studies of their interactions. In the article, we discuss kinetic methods in CE. The spectrum of proven applications of kinetic CE methods includes: (i) measuring equilibrium and rate constants of protein-ligand interaction from a single experiment, (ii) quantitative affinity analyses of proteins, (iii) measuring temperature in CE, (iv) studying thermochemistry of affinity interactions, and (v) kinetic selection of ligands from combinatorial libraries. We demonstrate that new kinetic CE method can serve as a "Swiss army knife" in the development and utilization of oligonucleotide aptamers. Uniquely, they can facilitate selection of smart aptamers - aptamers with pre-defined binding parameters. We believe that further development of kinetic CE methods will provide a variety of methodological schemes for high-throughput screening of combinatorial libraries for affinity probes and drug candidates using CE as a universal instrumental platform.

  20. Capillary electrophoresis separation of the desamino degradation products of oxytocin

    PubMed Central

    Creamer, Jessica S.; Krauss, Shannon T.; Lunte, Susan M.

    2014-01-01

    Oxytocin is an endogenous and therapeutic hormone necessary for maternal health. It is also the subject of fast growing research in the field of behavioral science. This article describes a rapid capillary electrophoresis method using UV detection at 214 nm for the determination of the deamidation products of oxytocin. Deamidation is the most common degradation pathway of peptides and proteins and can lead to reduced therapeutic efficiency of biopharmaceuticals. To achieve a separation of the seven structurally similar desamino peptides from oxytocin, 11 mM sulfobutyl ether β-cyclodextrin and 10% v/v MeOH were added to a background electrolyte of 50 mM phosphate buffer at pH 6.0. The assay is linear within ≤5-100 μM for all species with a total analysis time of 12 min. The method was then applied to monitor the heat-stress degradation of oxytocin at 70°C, where all seven desamino species were observed over a 96 h period. PMID:24166826

  1. Kohlrausch regulating function and other conservation laws in electrophoresis.

    PubMed

    Hruska, Vlastimil; Gas, Bohuslav

    2007-01-01

    The Kohlrausch regulating function (KRF) is a conservation law (conservation function), which is held in electrophoresis and which enables calculation of the so-called adjusted concentrations of constituents. The KRF is not the only conservation function and, depending on the complexity of the electrophoretic system, other conservation laws may be obeyed having a broader range of applicability. The conservation laws are tightly related to system eigenmobilities and system zones (system peaks). In principle, no system eigenmobility is exactly zero, but in most practical cases at least one system's eigenmobility is close to zero. The existence of the close-to-zero eigenmobility inherently points to the existence of a conservation function and a system zone which is stationary. The stationary system zone is called injection zone, stagnant zone, water peak, or solvent dip. Electrophoretic (electromigration) systems can be divided into two types: (i) conservation systems, in which the absolute value of at least one system eigenmobility is close to zero and where at least one conservation law is obeyed and (ii) nonconservation systems, where no system eigenmobility is close to zero and no conservation law is obeyed. The paper reviews work dealing with conservation functions in electromigration, derives some "historical" conservation functions in a new way, derives several conservation functions for systems of multivalent electrolytes, and discusses electrophoretic systems that have nonconservation behavior. In some typical instances, the conservation functions are simulated by means of a dynamic simulation tool and depicted graphically.

  2. System for loading slab-gel holders for electrophoresis separation

    DOEpatents

    Anderson, Norman G.; Anderson, Norman L.

    1979-01-01

    A slab-gel loading system includes a prismatic chamber for filling a plurality of slab-gel holders simultaneously. Each slab-gel holder comprises a pair of spaced apart plates defining an intermediate volume for gel containment. The holders are vertically positioned in the chamber with their major surfaces parallel to the chamber end walls. A liquid inlet is provided at the corner between the bottom and a side wall of the chamber for distributing a polymerizable monomer solution or a coagulable colloidal solution into each of the holders. The chamber is rotatably supported so that filling can begin with the corner having the liquid inlet directed downwardly such that the solution is gently funneled upwardly, without mixing, along the diverging side and bottom surfaces. As filling proceeds, the chamber is gradually rotated to position the bottom wall in a horizontal mode. The liquid filling means includes a plastic envelope with a septum dividing it into two compartments for intermixing two solutions of different density and thereby providing a liquid flow having a density gradient. The resulting gels have a density gradient between opposite edges for subsequent use in electrophoresis separations.

  3. Capillary electrophoresis of sialylated oligosaccharides in milk from different species.

    PubMed

    Monti, Lucia; Cattaneo, Tiziana Maria Piera; Orlandi, Mario; Curadi, Maria Claudia

    2015-08-28

    Oligosaccharides are relevant components of human milk, which have been quite well studied for their pre-biotic effect and their capacity in stimulating the immune system. Since oligosaccharides from milk of non-human mammals received so far less attention, the aim of this work was the application of capillary electrophoresis (CE) for the analysis of sialylated oligosaccharides in cow, goat and equine (mare and donkey) milk to possibly identify potential sources of oligosaccharides to use as health promoting ingredients in functional foods. Human milk was used as reference milk. A recent CE technique was applied to resolve and quantify 3-sialyllactose (3-SL), 6-sialyllactose (6-SL) and disialyl-lacto-N-tetraose (DSLNT). Analysis of non-human milk samples confirmed differences among species and individuals: DSLNT, which was the most abundant compound in human milk (455-805μg/mL) was missing in most of the samples. In most cases, 3-SL showed to be the most concentrated of the quantified analytes, with values ranging from 12 to 77μg/mL.

  4. Metabolomic profiling of anionic metabolites by capillary electrophoresis mass spectrometry.

    PubMed

    Soga, Tomoyoshi; Igarashi, Kaori; Ito, Chiharu; Mizobuchi, Katsuo; Zimmermann, Hans-Peter; Tomita, Masaru

    2009-08-01

    We describe a sheath flow capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS) method in the negative mode using a platinum electrospray ionization (ESI) spray needle, which allows the comprehensive analysis of anionic metabolites. The material of the spray needle had significant effect on the measurement of anions. A stainless steel spray needle was oxidized and corroded at the anodic electrode due to electrolysis. The precipitation of iron oxides (rust) plugged the capillary outlet, resulting in shortened capillary lifetime. Many anionic metabolites also formed complexes with the iron oxides or migrating nickel ion, which was also generated by electrolysis and moved toward the cathode (the capillary inlet). The metal-anion complex formation significantly reduced detection sensitivity of the anionic compounds. The use of a platinum ESI needle prevented both oxidation of the metals and needle corrosion. Sensitivity using the platinum needle increased from several- to 63-fold, with the largest improvements for anions exhibiting high metal chelating properties such as carboxylic acids, nucleotides, and coenzyme A compounds. The detection limits for most anions were between 0.03 and 0.87 micromol/L (0.8 and 24 fmol) at a signal-to-noise ratio of 3. This method is quantitative, sensitive, and robust, and its utility was demonstrated by the analysis of the metabolites in the central metabolic pathways extracted from mouse liver. PMID:19522513

  5. Analysis of results of ASTP experiment in electrophoresis

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; Micale, F. J.; Krumrine, P. H.

    1977-01-01

    The Apollo-Soyuz Test Project (ASTP) included an electrophoretic separation experiment of biological cells. The nature separation results of aldehyde-fixed rabbit, human and horse red blood cells, which were taken in the form of photographs taken at three-minute intervals, are the subject of this report. The electrophoretic separation was successful in that fractionation according to mobility did occur and was found in the sliced samples. Photographic evidence indicates that the low electroosmotic methylcellulose coating was successful in reducing the electroosmosis to a near zero value. Also, the flight film shows that the bands migrated down the column as theory would predict, producing two bands of high cell concentration separated and surrounded by regions of lower cell concentration. However, most likely some clumping of cells occurred to cause the trailing band to be larger than expected from theory. Overall, the experiment was a success in demonstrating a static electrophoresis separation under microgravity conditions with a resolution not possible on earth.

  6. Determination of thioglycolic acid in cosmetics by capillary electrophoresis.

    PubMed

    Xie, Na; Ding, Xiaojing; Wang, Xinyu; Wang, Ping; Zhao, Shan; Wang, Zhi

    2014-01-01

    A new and simple method for the accurate determination of thioglycolic acid (TGA) in cosmetics was developed using capillary electrophoresis (CE) with diode array detection at 236nm. The CE separation was performed on an uncoated fused silica capillary with a separation buffer solution containing 300mmolL(-1) tri-sodium phosphate and 0.5mmolL(-1) cetyltrimethylammonium bromide at a voltage of -5kV. Both the intra- and inter-day precisions of the method were 1.4%. The calibration curve between the corrected peak areas and the concentrations of the TGA was linear within the concentration range of 0.006-1.0mgmL(-1) with a correlation coefficient (r) of 0.9998. The limit of detection and limit of quantitation were 0.002mgmL(-1) (S/N=3) and 0.006mgmL(-1) (S/N=10), respectively. The average recoveries at the spiked levels of 0.125, 0.250 and 0.500mgmL(-1) were 96.9%, 102.3% and 94.0% with the relative standard derivations of 2.1%, 3.9% and 2.2%, respectively. The method was cross-validated by both high performance liquid chromatographic and ion chromatographic method. Eighty-five commercial depilatory creams and hair-treatment products were analyzed with satisfactory results.

  7. Capillary Zone Electrophoresis-Mass Spectrometry of Intact Proteins.

    PubMed

    Domínguez-Vega, Elena; Haselberg, Rob; Somsen, Govert W

    2016-01-01

    Capillary electrophoresis (CE) coupled with mass spectrometry (MS) has proven to be a powerful analytical tool for the characterization of intact proteins. It combines the high separation efficiency, short analysis time, and versatility of CE with the mass selectivity and sensitivity offered by MS detection. This chapter focuses on important practical considerations when applying CE-MS for the analysis of intact proteins. Technological aspects with respect to the use of CE-MS interfaces and application of noncovalent capillary coatings preventing protein adsorption are treated. Critical factors for successful protein analysis are discussed and four typical CE-MS systems are described demonstrating the characterization of different types of intact proteins by CE-MS. These methodologies comprise the use of sheath-liquid and sheathless CE-MS interfaces, and various types of noncovalent capillary coatings allowing efficient and reproducible protein separations. The discussion includes the analysis of lysozyme-drug conjugates and the therapeutic proteins human growth hormone, human interferon-β-1a, and human erythropoietin. PMID:27473479

  8. Amphiphilic silica nanoparticles as pseudostationary phase for capillary electrophoresis separation.

    PubMed

    Li, Hui; Ding, Guo-Sheng; Chen, Jie; Tang, An-Na

    2010-11-19

    Amphiphilic silica nanoparticles surface-functionalized by 3-aminopropyltriethoxysilane (APTES) and octyltriethoxylsilane (OTES) were successfully prepared and characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR) and thermogravimetry (TG) techniques. The potential use of these bifunctionalized nanoparticles as pseudostationary phases (PSPs) in capillary electrophoresis (CE) for the separation of charged and neutral compounds was evaluated in terms of their suitability. As expected, fast separation of representative aromatic acids was fulfilled with high separation efficiency, because they migrate in the same direction with the electroosmotic flow (EOF) under optimum experimental conditions. Using a buffer solution of 30mmol/L phosphate (pH 3.0) in the presence of 0.5mg/mL of the synthesized bifunctionalized nanoparticles, the investigated basic compounds were baseline-resolved with symmetrical peaks. Due to the existence of amino groups on the surface of nanoparticles, "silanol effect" that occurs between positively charged basic analytes and the silanols on the inner surface of capillary was greatly suppressed. Furthermore, the separation systems also exhibited reversed-phase (RP) behavior when neutral analytes were tested. PMID:20961550

  9. Stacking in a continuous sample flow interface in capillary electrophoresis.

    PubMed

    Gstoettenmayr, Daniel; Quirino, Joselito; Ivory, Cornelius F; Breadmore, Michael

    2015-08-21

    Using a tee connector in a commercial capillary electrophoresis instrument, the effect of field amplified sample injection from both flowing and static sample volumes was investigated. It is shown that under identical conditions (40min electrokinetic injection at 5kV from a sample volume of 295μL) the limit of detection using the continuous sample flow interface is 4 times lower than from a static vial. The relationship between different flow rates and injection voltages on the injected sample amount was also investigated using a 2D axisymmetric simulation (COMSOL 4.3b) and verified experimentally, confirming conditions under which there is near-quantitative injection of the sample target ions. Using electrokinetic injection at 30kV and a flow rate of 558nL/s the same enhancement from an even smaller volume of 184μL could be achieved in 5.5min than could be achieved from 295μL and a 40min injection. This sensitivity enhancement factor corresponded to four orders of magnitude improvement compared to a hydrodynamic injection. This is the first report showing that a continuous sample flow interface combined with stacking methods under conditions approaching quantitative injection from the entire sample volume has the potential to be more sensitive than a static system. PMID:26189205

  10. A capillary electrophoresis assay for recombinant Bacillus subtilis protoporphyrinogen oxidase.

    PubMed

    Tan, Ying; Sun, Lu; Xi, Zhen; Yang, Guang-Fu; Jiang, Dong-Qing; Yan, Xiu-Ping; Yang, Xing; Li, He-Yang

    2008-12-15

    Protoporphyrinogen oxidase (PPO) is a flavin adenine dinucleotide (FAD)-containing enzyme in the tetrapyrrole biosynthetic pathway that leads to the formation of both heme and chlorophylls, which has been identified as one of the most important action targets of commercial herbicides. The literature reports gave different PPO-catalytic kinetic parameters for the substrate protoporphyrinogen IX (K(m) of 0.1 to 10.4 miocroM) with different sources of PPO using fluorescent or HPLC methods. Herein we assayed the enzymatic activity of recombinant Bacillus subtilis PPO by using capillary electrophoresis (CE), a method with high separation efficiency, easy automation, and low sample consumption. The Michaelis constant and maximum reaction velocity were determined as 7.0+/-0.6 miocroM and 0.38+/-0.02 miocromol min(-1)miocrog(-1), respectively. The interaction between PPO and acifluorfen, a commercial PPO-inhibiting herbicide, was measured as the inhibition constant 186.9+/-9.3 miocroM EM, Cyrillic. The relationship between cofactor FAD and PPO activity can also be quantitatively studied by this CE method. The CE method used here should also be a convenient, reliable method for PPO study.

  11. Analytical characterization of wine and its precursors by capillary electrophoresis.

    PubMed

    Gomez, Federico J V; Monasterio, Romina P; Vargas, Verónica Carolina Soto; Silva, María F

    2012-08-01

    The accurate determination of marker chemical species in grape, musts, and wines presents a unique analytical challenge with high impact on diverse areas of knowledge such as health, plant physiology, and economy. Capillary electromigration techniques have emerged as a powerful tool, allowing the separation and identification of highly polar compounds that cannot be easily separated by traditional HPLC methods, providing complementary information and permitting the simultaneous analysis of analytes with different nature in a single run. The main advantage of CE over traditional methods for wine analysis is that in most cases samples require no treatment other than filtration. The purpose of this article is to present a revision on capillary electromigration methods applied to the analysis of wine and its precursors over the last decade. The current state of the art of the topic is evaluated, with special emphasis on the natural compounds that have allowed wine to be considered as a functional food. The most representative revised compounds are phenolic compounds, amino acids, proteins, elemental species, mycotoxins, and organic acids. Finally, a discussion on future trends of the role of capillary electrophoresis in the field of analytical characterization of wines for routine analysis, wine classification, as well as multidisciplinary aspects of the so-called "from soil to glass" chain is presented.

  12. Microchip Immunoaffinity Electrophoresis of Antibody-Thymidine Kinase 1 Complex

    PubMed Central

    Pagaduan, Jayson V.; Ramsden, Madison; O’Neill, Kim; Woolley, Adam T.

    2015-01-01

    Thymidine kinase-1 (TK1) is an important cancer biomarker whose serum levels are elevated in early cancer development. We developed a microchip electrophoresis immunoaffinity assay to measure recombinant purified TK1 (pTK1) using an antibody that binds to human TK1. We fabricated poly(methyl methacrylate) microfluidic devices to test the feasibility of detecting antibody (Ab)-pTK1 immune complexes as a step towards TK1 analysis in clinical serum samples. We were able to separate immune complexes from unbound antibodies using 0.5X phosphate buffer saline (pH 7.4) containing 0.01% Tween-20, with 1% w/v methylcellulose that acts as a dynamic surface coating and sieving matrix. Separation of the antibody and Ab-pTK1 complex was observed within a 5 mm effective separation length. This method of detecting pTK1 is easy to perform, requires only a 10 μL sample volume, and takes just 1 minute for separation. PMID:25486911

  13. Implementation of microchip electrophoresis instrumentation for future spaceflight missions.

    PubMed

    Willis, Peter A; Creamer, Jessica S; Mora, Maria F

    2015-09-01

    We present a comprehensive discussion of the role that microchip electrophoresis (ME) instrumentation could play in future NASA missions of exploration, as well as the current barriers that must be overcome to make this type of chemical investigation possible. We describe how ME would be able to fill fundamental gaps in our knowledge of the potential for past, present, or future life beyond Earth. Despite the great promise of ME for ultrasensitive portable chemical analysis, to date, it has never been used on a robotic mission of exploration to another world. We provide a current snapshot of the technology readiness level (TRL) of ME instrumentation, where the TRL is the NASA systems engineering metric used to evaluate the maturity of technology, and its fitness for implementation on missions. We explain how the NASA flight implementation process would apply specifically to ME instrumentation, and outline the scientific and technology development issues that must be addressed for ME analyses to be performed successfully on another world. We also outline research demonstrations that could be accomplished by independent researchers to help advance the TRL of ME instrumentation for future exploration missions. The overall approach described here for system development could be readily applied to a wide range of other instrumentation development efforts having broad societal and commercial impact.

  14. Quantification of sugars in breakfast cereals using capillary electrophoresis.

    PubMed

    Toutounji, Michelle R; Van Leeuwen, Matthew P; Oliver, James D; Shrestha, Ashok K; Castignolles, Patrice; Gaborieau, Marianne

    2015-05-18

    About 80% of the Australian population consumes breakfast cereal (BC) at least five days a week. With high prevalence rates of obesity and other diet-related diseases, improved methods for monitoring sugar levels in breakfast cereals would be useful in nutrition research. The heterogeneity of the complex matrix of BCs can make carbohydrate analysis challenging or necessitate tedious sample preparation leading to potential sugar loss or starch degradation into sugars. A recently established, simple and robust free solution capillary electrophoresis (CE) method was used in a new application to 13 BCs (in Australia) and compared with several established methods for quantification of carbohydrates. Carbohydrates identified in BCs by CE included sucrose, maltose, glucose and fructose. The CE method is simple requiring no sample preparation or derivatization and carbohydrates are detected by direct UV detection. CE was shown to be a more robust and accurate method for measuring carbohydrates than Fehling method, DNS (3,5-dinitrosalicylic acid) assay and HPLC (high performance liquid chromatography).

  15. Capillary zone electrophoresis of inorganic anions with conductivity detection.

    PubMed

    Kaniansky, D; Zelenská, V; Baluchová, D

    1996-12-01

    A carrier electrolyte system for capillary zone electrophoresis (CZE) resolving chloride, bromide, iodide, fluoride, nitrite, nitrate, sulfate, and phosphate in a hydrodynamically closed separation compartment is described. The carrier electrolyte combines the effects of pH, polyvinylpyrrolidone (PVP) and the counterionic constituent on the effective mobilities of the anions. In 300 microns ID capillary tubes made of fluorinated ethylene-propylene copolymer (FEP), and with detection of analytes with the aid of an alternating current conductivity detector, detection limits in the range of 3-10 ppb could be achieved for 200 nL sample volumes. The separation efficiencies were in the range of 1.5-2.5 x 10(5) theoretical plates per meter for an adequate sample load. The reproducibility was evaluated for two concentration levels. For concentrations close to the limits of quantitation (50-120 ppb), the RSD values ranged from 1.5-12.6%, with the highest scatter for fluoride and phosphate. The RSD values were in the range of 0.4-1.5% for 300-1200 ppb concentrations of the anions. Typical analysis times were 2-5 min, depending on the anion species. A series of water samples (drinking, river, rain) was used to assess the practical applicability of the CZE method. The method is a suitable alternative for the determination of both anionic macro- and microconstituents in water with a good overall selectivity.

  16. A Contactless Capacitance Detection System for Microchip Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Wu, Peter

    2008-05-01

    The design, construction and operation of a simple, inexpensive and compact high voltage power supply for use in conjunction with a simple cross, capillary electrophoresis microchip is presented. The detection system utilizes a single high voltage power supply (15 kV), a voltage divider network for obtaining the required voltages for enabling a gated injection valve, and two high voltage relays for switching between the open and closed gate sequences of the injection. The system is used to determine sodium monofluoroacetate (MFA) concentration in diluted fruit juices and tap water. A separation buffer consisting of 20 mM citric acid and histidine at pH 3.5 enabled the detection of the anion in diluted apple juice, cranberry juice, and orange juice without lengthy sample pretreatments. Limit of detection in diluted juices and tap water were determined to be 125, 167, 138, and 173 mg/L for tap water, apple juice, cranberry juice, and orange juice, respectively, based upon an S/N of 3:1. The total analysis time for detecting the MFA anion in fruit juices was less than 5 min, which represents a considerable reduction in analysis time compared to other analytical methods currently used in food analysis.

  17. Electrochemical methods in conjunction with capillary and microchip electrophoresis.

    PubMed

    Mark, Jonas J P; Scholz, Rebekka; Matysik, Frank-Michael

    2012-12-01

    Electromigrative techniques such as capillary and microchip electrophoresis (CE and MCE) are inherently associated with various electrochemical phenomena. The electrolytic processes occurring in the buffer reservoirs have to be considered for a proper design of miniaturized electrophoretic systems and a suitable selection of buffer composition. In addition, the control of the electroosmotic flow plays a crucial role for the optimization of CE/MCE separations. Electroanalytical methods have significant importance in the field of detection in conjunction with CE/MCE. At present, amperometric detection and contactless conductivity detection are the predominating electrochemical detection methods for CE/MCE. This paper reviews the most recent trends in the field of electrochemical detection coupled to CE/MCE. The emphasis is on methodical developments and new applications that have been published over the past five years. A rather new way for the implementation of electrochemical methods into CE systems is the concept of electrochemically assisted injection which involves the electrochemical conversions of analytes during the injection step. This approach is particularly attractive in hyphenation to mass spectrometry (MS) as it widens the range of CE-MS applications. An overview of recent developments of electrochemically assisted injection coupled to CE is presented.

  18. Examination of black inkjet printing inks by capillary electrophoresis.

    PubMed

    Król, Małgorzata; Kula, Agnieszka; Wietecha-Posłuszny, Renata; Woźniakiewicz, Michał; Kościelniak, Paweł

    2012-07-15

    Counterfeiting of documents is a common phenomenon in the modern world. A large proportion of forgeries relates to inkjet printed documents. Hence there is an evident need to develop an effective and reliable method for the differentiation and identification of inkjet inks on questioned documents. The aim of the presented study was to investigate the possibility of applying micellar electrokinetic capillary chromatography (MECC) to forensic analysis of inkjet inks extracted from black and white printouts. In order to achieve the above aim, a capillary electrophoresis system equipped with a diode array detector was used. The separation was performed using a fused silica capillary (60/50cm total/effective length, 75μm i.d.) with a background electrolyte composed of 40mM sodium borate, 20mM SDS and 10% (v/v) acetonitrile (pH 9.5) at 25°C and 30kV. Ink samples were extracted from black inkjet printouts with the use of dimethyl sulphoxide (DMSO). Differentiation of inks was based on the number of significant peaks at different wavelengths, the relative migration times and the characteristic UV-Vis spectra. The electropherograms of the inks extracted from paper showed patterns which in most cases were distinctly different from each other. The greatest diversity of electrophoretic profiles was revealed for documents printed by Hewlett-Packard inkjet technology. A database of electrophoretic separation results of inks has been constructed for further forensic use.

  19. Determination of acidity constants of enolisable compounds by capillary electrophoresis.

    PubMed

    Mofaddel, N; Bar, N; Villemin, D; Desbène, P L

    2004-10-01

    Research on the structure-activity relationships of molecules with acidic carbon atoms led us to undertake a feasibility study on the determination of their acidity constants by capillary electrophoresis (CE). The studied molecules had diverse structures and were tetronic acid, acetylacetone, diethylmalonate, Meldrum's acid, 3-methylrhodanine, nitroacetic acid ethyl ester, pyrimidine-2,4,6-trione, 3-oxo-3-phenylpropionic acid ethyl ester, 1-phenylbutan-1,3-dione, 5,5-dimethylcyclohexan-1,3-dione and homophthalic anhydride. The p Ka range explored by CE was therefore very large (from 3 to 12) and p Ka values near 12 were evaluated by mathematical extrapolations. The analyses were carried out in CZE mode using a fused silica capillary grafted (or not) with hexadimethrine. Owing to the electrophoretic behaviour of these compounds according to the pH, their acidity constants could be evaluated and appeared in perfect agreement with the literature data obtained, a few decades ago, by means of potentiometry, spectrometry or conductimetry. The p Ka of homophthalic anhydride and 3-methylrhodanine were evaluated for the first time.

  20. Combining Capillary Electrophoresis with Mass Spectrometry for Applications in Proteomics

    SciTech Connect

    Simpson, David C.; Smith, Richard D.

    2005-04-01

    Throughout the field of global proteomics, ranging from simple organism studies to human medical applications, the high sample complexity creates demands for improved separations and analysis techniques. Furthermore, with increased organism complexity, the correlation between proteome and genome becomes less certain due to extensive mRNA processing prior to translation. In this way, the same DNA sequence can potentially code for regions in a number of distinct proteins; quantitative differences in expression (or abundance) between these often-related species are of significant interest. Well-established proteomics techniques, which use genomic information to identify peptides that originate from protease digestion, often cannot easily distinguish between such gene products; intact protein-level analyses are required to complete the picture, particularly for identifying post-translational modifications. While chromatographic techniques are currently better suited to peptide analysis, capillary electrophoresis (CE) in combination with mass spectrometry (MS) may become important for intact protein analysis. This review focuses on CE/MS instrumentation and techniques showing promise for such applications, highlighting those with greatest potential. Reference will also be made to developments relevant to peptide-level analyses for use in time- or sample-limited situations.

  1. Competitive immunoassay of progesterone by microchip electrophoresis with chemiluminescence detection.

    PubMed

    Ye, Fanggui; Liu, Jinwen; Huang, Yong; Li, Shutin; Zhao, Shulin

    2013-10-01

    A sensitive and rapid homogeneous immunoassay method based on microchip electrophoresis-chemiluminescence detection (MCE-CL) using luminol-hydrogen peroxide as chemiluminescence system catalyzed by horseradish peroxidase (HRP) was developed for the determination of progesterone (P). The assay was based on the competitive immunoreactions between HRP-labeled P antigen (HRP-P) and P with a limited amount of anti-P mouse monoclonal antibody (Ab), and MCE separation of free HRP-P and HRP-P-Ab immunocomplex followed by CL detection. The effect of various factors such as conditions for the CL reaction, MCE and incubation time for the immunoreactions were examined and optimized. Under optimal assay conditions, the MCE separation was accomplished within 80s. The linear range of detection for P was 8-800nM with a detection limit of 3.8nM (signal/noise ratio=3). This present method has been applied to determine P in human serum samples from normal and pregnant women. The result indicates that the proposed MCE-CL based homogeneous immunoassay method can serve as an alternative tool for clinical assay of P.

  2. Microchip immunoaffinity electrophoresis of antibody-thymidine kinase 1 complex.

    PubMed

    Pagaduan, Jayson V; Ramsden, Madison; O'Neill, Kim; Woolley, Adam T

    2015-03-01

    Thymidine kinase 1 (TK1) is an important cancer biomarker whose serum levels are elevated in early cancer development. We developed a microchip electrophoresis immunoaffinity assay to measure recombinant purified TK1 (pTK1) using an antibody (Ab) that binds to human TK1. We fabricated PMMA microfluidic devices to test the feasibility of detecting Ab-pTK1 immune complexes as a step toward TK1 analysis in clinical serum samples. We were able to separate immune complexes from unbound Abs using 0.5× PBS (pH 7.4) containing 0.01% Tween-20, with 1% w/v methylcellulose that acts as a dynamic surface coating and sieving matrix. Separation of the Ab and Ab-pTK1 complex was observed within a 5 mm effective separation length. This method of detecting pTK1 is easy to perform, requires only a 10 μL sample volume, and takes just 1 min for separation.

  3. Chiral analysis by capillary electrophoresis using antibiotics as chiral selector.

    PubMed

    Desiderio, C; Fanali, S

    1998-05-20

    The separation of chiral compounds by capillary electrophoresis (CE) is a very interesting field of research in different areas such as pharmaceutical, environmental, agricultural analysis etc. The separation of two enantiomers can be achieved in CE using a chiral environment interacting with the two analytes on forming diastereoisomers with different stability constants and thus different mobilities. A wide number of chiral selectors have been employed in CE and among them glycopeptide antibiotics exhibited excellent enantioselective properties towards a wide number of racemic compounds. Vancomycin, ristocetin A, rifamycins, teicoplanin, kanamycin, streptomycin, fradiomycin, and two vancomycin analogues, added to the background electrolyte (BGE), are the antibiotics studied by CE running the separation in untreated and/or coated fused-silica capillary. Due to adsorption and absorption phenomena, some drawbacks can be expected when using bare fused-silica capillary, e.g., changes of electroosmotic flow (EOF), broaden peaks, reduced efficiency and low sensitivity. Coated capillary and counter current mode can be the solution to overcome the above mentioned problems. This review surveys the separation of enantiomers by CE when macrocyclic antibiotics are used as chiral selector. The enantioselectivity can be easily controlled modifying several parameters such as antibiotic type and concentration, pH, ionic strength and concentration of the background electrolyte, organic modifier etc. The paper also presents a list of the latest chiral separations achieved by CE where antibiotics were used as chiral selector.

  4. Use of cyclodextrins in capillary electrophoresis: resolution of tramadol enantiomers.

    PubMed

    Rudaz, S; Veuthey, J L; Desiderio, C; Fanali, S

    1998-11-01

    Capillary zone electrophoresis was successfully applied to the enantiomeric resolution of racemic tramadol. Both uncoated and polyacrylamide-coated capillaries were tested for method optimization using either negatively charged or native cyclodextrins (CD) added to the background electrolyte (BGE). The resolution was strongly influenced by the CD type and concentration as well as by the pH and the concentration of the BGE. Among the CDs tested, carboxymethylated-beta-cyclodextrin allowed the baseline separation of tramadol enantiomers. After the method was optimized, it was validated in a coated capillary for enantiomeric analysis of tramadol enantiomers in pharmaceutical formulation, including specificity and elution order, linearity, accuracy and precision, determination of limit of detection (LOD) and quantification (LOQ), enantiomeric purity linearity, freedom from interference, and stability of sample solutions. Precision at the target concentration was less than 2%, with an accuracy higher than 99%. Furthermore, the method was able to detect 0.3% and to quantify 1% of the minor enantiomer in the presence of the major one at the target value.

  5. Capillary electrophoresis of conidia from cultivated microscopic filamentous fungi.

    PubMed

    Horká, Marie; Růzicka, Filip; Kubesová, Anna; Holá, Veronika; Slais, Karel

    2009-05-15

    In immunocompromised people fungal agents are able to cause serious infections with high mortality rate. An early diagnosis can increase the chances of survival of the affected patients. Simultaneously, the fungi produce toxins and they are frequent cause of allergy. Currently, various methods are used for detection and identification of these pathogens. They use microscopic examination and growth characteristic of the fungi. New methods are based on the analysis of structural elements of the target microorganisms such as proteins, polysaccharides, glycoproteins, nucleic acids, etc. for the construction of antibodies, probes, and primers for detection. The above-mentioned methods are time-consuming and elaborate. Here hydrophobic conidia from the cultures of different strains of the filamentous fungi were focused and separated by capillary zone electrophoresis and capillary isoelectric focusing. The detection was optimized by dynamic modifying of conidia by the nonionogenic tenside on the basis of pyrenebutanoate. Down to 10 labeled conidia of the fungal strains were fluorometrically detected, and isoelectric points of conidia were determined. The observed isoelectric points were compared with those obtained from the separation of the cultured clinical samples, and they were found to be not host-specific.

  6. Capillary electrophoresis as an orthogonal technique in HPLC method validation.

    PubMed

    Jimidar, M Ilias; De Smet, Maurits; Sneyers, Rudy; Van Ael, Willy; Janssens, Willy; Redlich, Dirk; Cockaerts, Paul

    2003-01-01

    High-performance liquid chromatography is usually used to assay the main compound and organic impurity content of drug substance and drug product during pharmaceutical development. A crucial validation parameter of these methods is specificity--the ability to unequivocally assess the analyte in the presence of component expected to be present. Typically, these include impurities, degradation products, and matrices. Besides adequate chromatographic separation with sufficient selectivity, additional 2- or 3-D spectroscopic or chromatographic tools are frequently necessary for this purpose. In our current practice, HPLC is used with ultraviolet photodiode array detection and on-line mass spectrometry (LC-UVDAD-MS) during the assessment of specificity. Although this approach is very powerful and can solve the majority of problems, separation of isomers of the main compound is still difficult. Since HPLC usually cannot offer the required selectivity and because of the similar molecular weights, structural isomers are not specifically detected using LC-MS. Capillary electrophoresis, on the other hand, offers high separation efficiency and can be applied as an adjunct to HPLC. Therefore, a set of highly selective CE methods is used orthogonally in the specificity assessment of HPLC methods.

  7. Study on Dicarboxylic Acids in Aerosol Samples with Capillary Electrophoresis

    PubMed Central

    Adler, Heidi; Sirén, Heli

    2014-01-01

    The research was performed to study the simultaneous detection of a homologous series of α, ω-dicarboxylic acids (C2–C10), oxalic, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic, and sebacic acids, with capillary electrophoresis using indirect UV detection. Good separation efficiency in 2,6-pyridinedicarboxylic acid as background electrolyte modified with myristyl trimethyl ammonium bromide was obtained. The dicarboxylic acids were ionised and separated within five minutes. For the study, authentic samples were collected onto dry cellulose membrane filters of a cascade impactor (12 stages) from outdoor spring aerosols in an urban area. Hot water and ultrasonication extraction methods were used to isolate the acids from membrane filters. Due to the low concentrations of acids in the aerosols, the extracts were concentrated with solid-phase extraction (SPE) before determination. The enrichment of the carboxylic acids was between 86 and 134% with sample pretreatment followed by 100-time increase by preparation of the sample to 50 μL. Inaccuracy was optimised for all the sample processing steps. The aerosols contained dicarboxylic acids C2–C10. Then, mostly they contained C2, C5, and C10. Only one sample contained succinic acid. In the study, the concentrations of the acids in aerosols were lower than 10 ng/m3. PMID:24729915

  8. [Determination of glyoxalate and oxalate by capillary zone electrophoresis].

    PubMed

    Guan, Jin; Wang, Huize; Ren, Liyan; Niu, Qiuling

    2012-01-01

    A method for the simultaneous determination of glyoxalate and oxalate by capillary zone electrophoresis (CZE) was developed. The influences of type, concentration and pH of the running buffer, and the applied voltage on separation were investigated. Glyoxalate and oxalate were separated within 11 min under the conditions of 20 mmol/L borax-5.5 mmol/L potassium hydrogen phthalate (pH 9.0), applied voltage of 20 kV, and detected wavelength of 212 nm. The calibration curves of glyoxalate and oxalate showed good linearity in the ranges of 0.8 -20 g/L and 1.2-20 g/L, respectively. The correlation coefficients were 0.999 3 and 0.997 5, respectively. The limits of detection for glyoxalate and oxalate were 0.2 and 0.4 g/L (S/N = 3), respectively. The average recoveries at three spiked levels were 98.3%-102.5% with acceptable relative standard deviations of 0.35%-0.61%. This method is simple, low cost and high performance. The method was successfully used for the determination of glyoxalate and oxalate in real samples, and the assay results were satisfactory. PMID:22667103

  9. Simultaneous quantification of sialyloligosaccharides from human milk by capillary electrophoresis

    PubMed Central

    Bao, Yuanwu; Zhu, Libin; Newburg, David S.

    2007-01-01

    The acidic oligosaccharides of human milk are predominantly sialyloligosaccharides. Pathogens that bind sialic acid-containing glycans on their host mucosal surfaces may be inhibited by human milk sialyloligosaccharides, but testing this hypothesis requires their reliable quantification in milk. Sialyloligosaccharides have been quantified by anion exchange HPLC, reverse or normal phase HPLC, and capillary electrophoresis (CE) of fluorescent derivatives; in milk, these oligosaccharides have been analyzed by high pH anion exchange chromatography with pulsed amperometric detection, and, in our laboratory, by CE with detection at 205 nm. The novel method described herein uses a running buffer of aqueous 200 mM NaH2PO4 at pH 7.05 containing 100 mM SDS made 45% (v/v) with methanol to baseline resolve five oligosaccharides, and separate all 12. This allows automated simultaneous quantification of the 12 major sialyloligosaccharides of human milk in a single 35-minute run. This method revealed differences in sialyloligosaccharide concentrations between less and more mature milk from the same donors. Individual donors also varied in expression of sialyloligosaccharides in their milk. Thus, the facile quantification of sialyloligosaccharides by this method is suitable for measuring variation in expression of specific sialyloligosaccharides in milk and their relationship to decreased risk of specific diseases in infants. PMID:17761135

  10. Continuous superporous agarose beds for chromatography and electrophoresis.

    PubMed

    Gustavsson, P E; Larsson, P O

    1999-02-01

    Continuous agarose beds (monoliths) were prepared by casting agarose emulsions designed to generate superporous agarose. The gel structures obtained were transected by superpores (diameters could be varied in the range 20-200 microns) through which liquids could be pumped. The pore structure and the basic properties of the continuous gel were investigated by microscopy and size exclusion chromatography. The chromatographic behaviour was approximately the same as for beds packed with homogeneous agarose beads with a particle diameter equivalent to the distance between the superpores. In one application, the superporous continuous agarose bed was derivatized with a NAD+ analogue and used in the affinity purification of bovine lactate dehydrogenase from a crude extract. In another application, a new superporous composite gel material was prepared by adding hydroxyapatite particles to the agarose phase. The composite bed was used to separate a protein mixture by hydroxyapatite chromatography. In a third application, the continuous superporous agarose material was used as an electrophoresis gel. Here, a water-immiscible organic liquid was pumped through the superpores to dissipate the joule heat evolved, thus allowing high current densities.

  11. Scanning electrochemical microscopy as a readout tool for protein electrophoresis.

    PubMed

    Zhang, Meiqin; Wittstock, Gunther; Shao, Yuanhua; Girault, Hubert H

    2007-07-01

    Scanning electrochemical microscopy (SECM) was used to image silver-stained proteins on a poly(vinylidene difluoride) membrane. The method is based on measuring the current at a scanning microelectrode in the feedback mode. The electrochemical feedback is caused by the redox-mediated etching of the isolated 5 - 10-nm-diameter silver nanoparticles formed during the staining process. Several parameters, such as the redox mediator and the staining protocol, were optimized to ensure a high resolution and a low detection limit, i.e., 0.5 ng of bovine serum albumin (4 x 10(-14) mol) distributed on an area of 1 mm(2) (4 x 10(-16) mol x cm(-2)). Images of beta-lactoglobulin A and myoglobin bands after gel electrophoretic separation and electroblotting were obtained in order to demonstrate that SECM can be employed as a sensitive and quantitative readout method for detection of proteins after gel electrophoresis. An additional advantage is that the silver staining can be removed, allowing further downstream mass spectrometry analysis. PMID:17539601

  12. Latex samples for RAMSES electrophoresis experiment on IML 2

    NASA Technical Reports Server (NTRS)

    Seaman, Geoffrey V. F.; Knox, Robert J.

    1994-01-01

    The objectives of these reported studies were to provide ground based support services for the flight experiment team for the RAMSES experiment to be flown aboard IML-2. The specific areas of support included consultation on the performance of particle based electrophoresis studies, development of methods for the preparation of suitable samples for the flight hardware, the screening of particles to obtain suitable candidates for the flight experiment, and the electrophoretic characterization of sample particle preparations. The first phases of these studies were performed under this contract, while the follow on work was performed under grant number NAG8 1081, 'Preparation and Characterization of Latex Samples for RAMSES Experiment on IML 2.' During this first phase of the experiment the following benchmarks were achieved: Methods were tested for the concentration and resuspension of latex samples in the greater than 0.4 micron diameter range to provide moderately high solids content samples free of particle aggregation which interferred with the normal functioning of the RAMSES hardware. Various candidate latex preparations were screened and two candidate types of latex were identified for use in the flight experiments, carboxylate modified latex (CML) and acrylic acid-acrylamide modified latex (AAM). These latexes have relatively hydrophilic surfaces, are not prone to aggregate, and display sufficiently low electrophoretic mobilities in the flight buffer so that they can be used to make mixtures to test the resolving power of the flight hardware.

  13. Separation of biogenic materials by electrophoresis under zero gravity (L-3)

    NASA Technical Reports Server (NTRS)

    Kuroda, Masao

    1993-01-01

    Electrophoresis separates electrically charged materials by imposing a voltage between electrodes. Though free-flow electrophoresis is used without carriers such as colloids to separate and purify biogenic materials including biogenic cells and proteins in blood, its resolving power and separation efficiency is very low on Earth due to sedimentation, flotation, and thermal convection caused by the specific gravity differences between separated materials and buffer solutions. The objective of this experiment is to make a comparative study of various electrophoresis conditions on the ground and in zero-gravity in order to ultimately develop a method for separating various important 'vial' components which are difficult to separate on the ground.

  14. Temporal profiles and 2-dimensional oxy-, deoxy-, and total-hemoglobin somatosensory maps in rat versus mouse cortex

    PubMed Central

    Prakash, Neal; Biag, Jonathan D.; Sheth, Sameer A.; Mitsuyama, Satoshi; Theriot, Jeremy; Ramachandra, Chaithanya; Toga, Arthur W.

    2007-01-01

    Background Mechanisms of neurovascular coupling—the relationship between neuronal chemoelectrical activity and compensatory metabolic and hemodynamic changes—appear to be preserved across species from rats to humans despite differences in scale. However, previous work suggests that the highly cellular dense mouse somatosensory cortex has different functional hemodynamic changes compared to other species. Methods We developed novel hardware and software for 2-dimensional optical spectroscopy (2DOS). Optical changes at four simultaneously recorded wavelengths were measured in both rat and mouse primary somatosensory cortex (S1) evoked by forepaw stimulation to create four spectral maps. The spectral maps were converted to maps of deoxy-, oxy-, and total-hemoglobin (HbR, HbO, and HbT) concentration changes using the modified Beer-Lambert law and phantom HbR and HbO absorption spectra. Results Functional hemodynamics were different in mouse versus rat neocortex. On average, hemodynamics were as expected in rat primary somatosensory cortex (S1): the fractional change in the log of HbT concentration increased monophasically 2 s after stimulus, whereas HbO changes mirrored HbR changes, with HbO showing a small initial dip at 0.5 s followed by a large increase 3.0 s post stimulus. In contrast, mouse S1 showed a novel type of stimulus-evoked hemodynamic response, with prolonged, concurrent, monophasic increases in HbR and HbT and a parallel decrease in HbO that all peaked 3.5–4.5 s post stimulus onset. For rats, at any given time point the average size and shape of HbO and HbR forepaw maps were the same, whereas surface veins distorted the shape of the HbT map. For mice, HbO, HbR, and HbT forepaw maps were generally the same size and shape at any post-stimulus time point. Conclusions 2DOS using image splitting optics is feasible across species for brain mapping and quantifying the map topography of cortical hemodynamics. These results suggest that during physiologic

  15. A large-scale electrophoresis- and chromatography-based determination of gene expression profiles in bovine brain capillary endothelial cells after the re-induction of blood-brain barrier properties

    PubMed Central

    2010-01-01

    Background Brain capillary endothelial cells (BCECs) form the physiological basis of the blood-brain barrier (BBB). The barrier function is (at least in part) due to well-known proteins such as transporters, tight junctions and metabolic barrier proteins (e.g. monoamine oxidase, gamma glutamyltranspeptidase and P-glycoprotein). Our previous 2-dimensional gel proteome analysis had identified a large number of proteins and revealed the major role of dynamic cytoskeletal remodelling in the differentiation of bovine BCECs. The aim of the present study was to elaborate a reference proteome of Triton X-100-soluble species from bovine BCECs cultured in the well-established in vitro BBB model developed in our laboratory. Results A total of 215 protein spots (corresponding to 130 distinct proteins) were identified by 2-dimensional gel electrophoresis, whereas over 350 proteins were identified by a shotgun approach. We classified around 430 distinct proteins expressed by bovine BCECs. Our large-scale gene expression analysis enabled the correction of mistakes referenced into protein databases (e.g. bovine vinculin) and constitutes valuable evidence for predictions based on genome annotation. Conclusions Elaboration of a reference proteome constitutes the first step in creating a gene expression database dedicated to capillary endothelial cells displaying BBB characteristics. It improves of our knowledge of the BBB and the key proteins in cell structures, cytoskeleton organization, metabolism, detoxification and drug resistance. Moreover, our results emphasize the need for both appropriate experimental design and correct interpretation of proteome datasets. PMID:21078152

  16. Application of capillary electrophoresis for the determination of inorganic ions in trace explosives and explosive residues.

    PubMed

    Kishi, T; Nakamura, J; Arai, H

    1998-01-01

    Capillary electrophoresis was developed for the analysis of low explosive residue, because a significant amount of inorganic anions and cations remain after deflagration. Certain high explosives, such as emulsion explosives, produce a vast quantity of inorganic ions after a blast and can readily be analyzed using capillary electrophoresis. Often, trace amounts of explosive residues may be present on physical evidence submitted in criminal cases. Trace amounts of inorganic ions such as nitrate, chlorate, and ammonium may be detected using capillary electrophoresis owing to the low detection limit of these species. The utility of capillary electrophoresis in the analysis of explosive residues is in its ability to simultaneously analyze trace explosives and ionic products present on physical evidence. PMID:9511855

  17. IDENTIFICATION OF REACTIVE DYES IN SPENT DYEBATHS AND WASTEWATER BY CAPILLARY ELECTROPHORESIS/MASS SPECTROMETRY

    EPA Science Inventory

    Capillary electrophoresis with diode array detection and mass spectrometry combined with solid-phase extraction were employed for the identification of reactive vinylsulfone and chlorotriazine dyes and their hydrolysis products in spent dyebaths and raw and treated wastewater. Re...

  18. ANALYSIS OF THE ENANTIOMERS OF CHIRAL PESTICIDES AND OTHER POLLUTANTS IN ENVIRONMENTAL SAMPLES BY CAPILLARY ELECTROPHORESIS

    EPA Science Inventory

    The generic method described here involves typical capillary electrophoresis (CE) techniques, with the addition of cyclodextrin chiral selectors to the electrolyte for enantiomer separation and also, in the case of neutral analytes, the further addition of a micelle forming comp...

  19. Renaturation of enzymes after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate

    SciTech Connect

    Lacks, S.A.; Springhorn, S.S.

    1980-08-10

    A number of enzymes, including amylases, dehydrogenases, and proteases, were shown to be renaturable after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Enzyme activity was detected in situ by action on substrates introduced into the gel and subsequent staining of either the product or unreacted substrate. Enzymes appeared to recover activity as soon as the detergent diffused out of the gel. Renatured enzymes were retained in gels after electrophoresis longer than native enzymes which had been subjected to electrophoresis in the absence of detergent. Re-electrophoresis of the renatured enzymes showed that part of the retained activity was physically anchored to the gel, possibly by the folding of polypeptides around the gel matrix as the enzymes were renatured.

  20. INFLUENCE OF BORATE BUFFERS ON THE ELECTROPHORETIC BEHAVIOR OF HUMIC SUBSTANCES IN CAPILLARY ZONE ELECTROPHORESIS

    EPA Science Inventory

    The influence of tetrahydroxyborate ions on the electrophoretic mobility of humic acids was evaluated by capillary electrophoresis (CE). Depending on the molarity of borate ions in the separation buffer, the humic acids exhibit electropherograms with sharp peaks consistently exte...

  1. Application of capillary electrophoresis for the determination of inorganic ions in trace explosives and explosive residues.

    PubMed

    Kishi, T; Nakamura, J; Arai, H

    1998-01-01

    Capillary electrophoresis was developed for the analysis of low explosive residue, because a significant amount of inorganic anions and cations remain after deflagration. Certain high explosives, such as emulsion explosives, produce a vast quantity of inorganic ions after a blast and can readily be analyzed using capillary electrophoresis. Often, trace amounts of explosive residues may be present on physical evidence submitted in criminal cases. Trace amounts of inorganic ions such as nitrate, chlorate, and ammonium may be detected using capillary electrophoresis owing to the low detection limit of these species. The utility of capillary electrophoresis in the analysis of explosive residues is in its ability to simultaneously analyze trace explosives and ionic products present on physical evidence.

  2. Capillary Electrophoresis Profiles and Fluorophore Components of Humic Acids in Nebraska Corn and Philippine Rice Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As humic substances represent relatively high molecular mass polyelectrolytes containing aromatic, aliphatic and heterocyclic subunits, capillary electrophoresis (CE) has become an attractive method for “finger-print” characterization of humic acids. In addition, fluorescence excitation-emission ma...

  3. APPLICATION OF ELECTROPHORESIS TO STUDY THE ENANTIOSELECTIVE TRANSFORMATION OF FIVE CHIRAL PESTICIDES IN AEROBIC SOIL SLURRIES

    EPA Science Inventory

    The enantiomers of five chiral pesticides of environmental interest, metalaxyl, imazaquin, fonofos (dyfonate), ruelene (cruformate) and dichlorprop, were separated analytically using capillary electrophoresis (CE) with cyclodextrin chiral selectors. CE is shown to be a simple, ef...

  4. APPLICATIONS OF CAPILLARY ELECTROPHORESIS/LASER-INDUCED FLUORESCENCE DETECTION TO GROUND WATER MIGRATION STUDIES

    EPA Science Inventory

    Capillary electrophoresis (CE) has been applied to the determination of groundwater migration based on laser-induced fluorescence (LIF) detection and traditional spectrofluorimetry. The detection limits of injected dye-fluorescent whitening agent (tinopal) in the low parts per tr...

  5. CAPILLARY ELECTROPHORESIS/LASER-INDUCED FLUORESCENCE DETECTION OF FLUORESCEIN AS A GROUNDWATER MIGRATION TRACER

    EPA Science Inventory

    Capillary electrophoresis (CE) has been applied to the determination of the groundwater migration tracer dye fluorescein based on laser-induced fluorescence (LIF) detection and compared to determinations obtained with traditional spectrofluorimetry. Detection limits of injected d...

  6. Electrophoresis tests on STS-3 and ground control experiments - A basis for future biological sample selections

    NASA Technical Reports Server (NTRS)

    Morrison, D. R.; Lewis, M. L.

    1982-01-01

    Static zone electrophoresis is an electrokinetic method of separating macromolecules and small particles. However, its application for the isolation of biological cells and concentrated protein solutions is limited by sedimentation and convection. Microgravity eliminates or reduces sedimentation, floatation, and density-driven convection arising from either Joule heating or concentration differences. The advantages of such an environment were first demonstrated in space during the Apollo 14 and 16 missions. In 1975 the Electrophoresis Technology Experiment (MA-011) was conducted during the Apollo-Soyuz Test Project flight. In 1979 a project was initiated to repeat the separations of human kidney cells. One of the major objectives of the Electrophoresis Equipment Verification Tests (EEVT) on STS-3 was to repeat and thereby validate the first successful electrophoretic separation of human kidney cells. Attention is given to the EEVT apparatus, the preflight electrophoresis, and inflight operational results.

  7. Thiocyanato Chromium (III) Complexes: Separation by Paper Electrophoresis and Estimate of Stability Constants

    ERIC Educational Resources Information Center

    Larsen, Erik; Eriksen, J.

    1975-01-01

    Describes an experiment wherein the student can demonstrate the existence of all the thiocyanato chromium complexes, estimate the stepwise formation constants, demonstrate the robustness of chromium III complexes, and show the principles of paper electrophoresis. (GS)

  8. Familial correlations of HDL subclasses based on gradient gel electrophoresis.

    PubMed

    Williams, P T; Vranizan, K M; Austin, M A; Krauss, R M

    1992-12-01

    We used nondenaturing polyacrylamide gradient gel electrophoresis to examine the familial correlations of high density lipoprotein (HDL) subclasses for 150 offspring in 47 nuclear families. The absorbance of protein stain was used as an index of mass concentrations at intervals of 0.01 nm within five HDL subclasses: HDL3c (7.2-7.8 nm), HDL3b (7.8-8.2 nm), HDL3a (8.2-8.8 nm), HDL2a (8.8-9.7 nm), and HDL2b (9.7-12 nm). Parent-offspring correlations were computed for two different characterizations of the parents: 1) by sex (i.e., mother versus father) and 2) by their relative values (highest versus lowest HDL). Sibling resemblance was assessed by using the intraclass correlations coefficient. Family members were significantly related for the following subclasses: HDL3c (sibling and father-offspring), HDL3b (sibling), HDL3a (sibling and mother-offspring), HDL2a (mother-offspring), and HDL2b (sibling, father-offspring, and mother-offspring). The offsprings' HDL3c and HDL2b values were more strongly related to their fathers' than to their mothers' values, whereas their HDL2a levels were more strongly related to their mothers' than their fathers' values. In addition, fathers' HDL2b levels were inversely correlated with the offsprings' HDL3b. The parents' HDL subclass levels were more strongly related to subclass levels of their younger (< or = 20 years) than their older offspring. Among all subclasses, HDL2b showed the strongest parent-offspring relation, with the parents' HDL values accounting for over 30% of the variance in offsprings' HDL2b.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Analysis of Dictyostelium discoideum inositol pyrophosphate metabolism by gel electrophoresis.

    PubMed

    Pisani, Francesca; Livermore, Thomas; Rose, Giuseppina; Chubb, Jonathan Robert; Gaspari, Marco; Saiardi, Adolfo

    2014-01-01

    The social amoeba Dictyostelium discoideum was instrumental in the discovery and early characterization of inositol pyrophosphates, a class of molecules possessing highly-energetic pyrophosphate bonds. Inositol pyrophosphates regulate diverse biological processes and are attracting attention due to their ability to control energy metabolism and insulin signalling. However, inositol pyrophosphate research has been hampered by the lack of simple experimental procedures to study them. The recent development of polyacrylamide gel electrophoresis (PAGE) and simple staining to resolve and detect inositol pyrophosphate species has opened new investigative possibilities. This technology is now commonly applied to study in vitro enzymatic reactions. Here we employ PAGE technology to characterize the D. discoideum inositol pyrophosphate metabolism. Surprisingly, only three major bands are detectable after resolving acidic extract on PAGE. We have demonstrated that these three bands correspond to inositol hexakisphosphate (IP₆ or Phytic acid) and its derivative inositol pyrophosphates, IP₇ and IP₈. Biochemical analyses and genetic evidence were used to establish the genuine inositol phosphate nature of these bands. We also identified IP₉ in D. discoideum cells, a molecule so far detected only from in vitro biochemical reactions. Furthermore, we discovered that this amoeba possesses three different inositol pentakisphosphates (IP₅) isomers, which are largely metabolised to inositol pyrophosphates. Comparison of PAGE with traditional Sax-HPLC revealed an underestimation of the cellular abundance of inositol pyrophosphates by traditional methods. In fact our study revealed much higher levels of inositol pyrophosphates in D. discoideum in the vegetative state than previously detected. A three-fold increase in IP₈ was observed during development of D. discoideum a value lower that previously reported. Analysis of inositol pyrophosphate metabolism using ip6k null amoeba

  10. Quantification of Carbohydrates in Grape Tissues Using Capillary Zone Electrophoresis

    PubMed Central

    Zhao, Lu; Chanon, Ann M.; Chattopadhyay, Nabanita; Dami, Imed E.; Blakeslee, Joshua J.

    2016-01-01

    Soluble sugars play an important role in freezing tolerance in both herbaceous and woody plants, functioning in both the reduction of freezing-induced dehydration and the cryoprotection of cellular constituents. The quantification of soluble sugars in plant tissues is, therefore, essential in understanding freezing tolerance. While a number of analytical techniques and methods have been used to quantify sugars, most of these are expensive and time-consuming due to complex sample preparation procedures which require the derivatization of the carbohydrates being analyzed. Analysis of soluble sugars using capillary zone electrophoresis (CZE) under alkaline conditions with direct UV detection has previously been used to quantify simple sugars in fruit juices. However, it was unclear whether CZE-based methods could be successfully used to quantify the broader range of sugars present in complex plant extracts. Here, we present the development of an optimized CZE method capable of separating and quantifying mono-, di-, and tri-saccharides isolated from plant tissues. This optimized CZE method employs a column electrolyte buffer containing 130 mM NaOH, pH 13.0, creating a current of 185 μA when a separation voltage of 10 kV is employed. The optimized CZE method provides limits-of-detection (an average of 1.5 ng/μL) for individual carbohydrates comparable or superior to those obtained using gas chromatography–mass spectrometry, and allows resolution of non-structural sugars and cell wall components (structural sugars). The optimized CZE method was successfully used to quantify sugars from grape leaves and buds, and is a robust tool for the quantification of plant sugars found in vegetative and woody tissues. The increased analytical efficiency of this CZE method makes it ideal for use in high-throughput metabolomics studies designed to quantify plant sugars. PMID:27379118

  11. Quantification of Carbohydrates in Grape Tissues Using Capillary Zone Electrophoresis.

    PubMed

    Zhao, Lu; Chanon, Ann M; Chattopadhyay, Nabanita; Dami, Imed E; Blakeslee, Joshua J

    2016-01-01

    Soluble sugars play an important role in freezing tolerance in both herbaceous and woody plants, functioning in both the reduction of freezing-induced dehydration and the cryoprotection of cellular constituents. The quantification of soluble sugars in plant tissues is, therefore, essential in understanding freezing tolerance. While a number of analytical techniques and methods have been used to quantify sugars, most of these are expensive and time-consuming due to complex sample preparation procedures which require the derivatization of the carbohydrates being analyzed. Analysis of soluble sugars using capillary zone electrophoresis (CZE) under alkaline conditions with direct UV detection has previously been used to quantify simple sugars in fruit juices. However, it was unclear whether CZE-based methods could be successfully used to quantify the broader range of sugars present in complex plant extracts. Here, we present the development of an optimized CZE method capable of separating and quantifying mono-, di-, and tri-saccharides isolated from plant tissues. This optimized CZE method employs a column electrolyte buffer containing 130 mM NaOH, pH 13.0, creating a current of 185 μA when a separation voltage of 10 kV is employed. The optimized CZE method provides limits-of-detection (an average of 1.5 ng/μL) for individual carbohydrates comparable or superior to those obtained using gas chromatography-mass spectrometry, and allows resolution of non-structural sugars and cell wall components (structural sugars). The optimized CZE method was successfully used to quantify sugars from grape leaves and buds, and is a robust tool for the quantification of plant sugars found in vegetative and woody tissues. The increased analytical efficiency of this CZE method makes it ideal for use in high-throughput metabolomics studies designed to quantify plant sugars.

  12. Weakly nonlinear electrophoresis of a highly charged colloidal particle

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory; Zeyde, Roman; Yavneh, Irad; Yariv, Ehud

    2013-05-01

    At large zeta potentials, surface conduction becomes appreciable in thin-double-layer electrokinetic transport. In the linear weak-field regime, where this effect is quantified by the Dukhin number, it is manifested in non-Smoluchowski electrophoretic mobilities. In this paper we go beyond linear response, employing the recently derived macroscale model of Schnitzer and Yariv ["Macroscale description of electrokinetic flows at large zeta potentials: Nonlinear surface conduction," Phys. Rev. E 86, 021503 (2012), 10.1103/PhysRevE.86.021503] as the infrastructure for a weakly nonlinear analysis of spherical-particle electrophoresis. A straightforward perturbation in the field strength is frustrated by the failure to satisfy the far-field conditions, representing a non-uniformity of the weak-field approximation at large distances away from the particle, where salt advection becomes comparable to diffusion. This is remedied using inner-outer asymptotic expansions in the spirit of Acrivos and Taylor ["Heat and mass transfer from single spheres in Stokes flow," Phys. Fluids 5, 387 (1962), 10.1063/1.1706630], with the inner region representing the particle neighborhood and the outer region corresponding to distances scaling inversely with the field magnitude. This singular scheme furnishes an asymptotic correction to the electrophoretic velocity, proportional to the applied field cubed, which embodies a host of nonlinear mechanisms unfamiliar from linear electrokinetic theories. These include the effect of induced zeta-potential inhomogeneity, animated by concentration polarization, on electro-osmosis and diffuso-osmosis; bulk advection of salt; nonuniform bulk conductivity; Coulomb body forces acting on bulk volumetric charge; and the nonzero electrostatic force exerted upon the otherwise screened particle-layer system. A numerical solution of the macroscale model validates our weakly nonlinear analysis.

  13. Examination of colour inkjet printing inks by capillary electrophoresis.

    PubMed

    Szafarska, Małgorzata; Wietecha-Posłuszny, Renata; Woźniakiewicz, Michał; Kościelniak, Paweł

    2011-06-15

    The possibility of comparing inkjet printing inks by micellar electrokinetic capillary electrophoresis (MECC) with diode array detection was studied. An analytical procedure was designed and successfully applied to discriminate between the electrophoretic profiles of inks (extracted from paper) produced by five well-known manufacturers. The separation process was conducted in a polyimide-coated fused silica capillary (ID 50 μm, 60 cm total/50 cm effective length) with +30 kV high voltage applied. Background electrolyte was used of the following optimum composition: 40 mM sodium borate buffer, 20mM sodium dodecyl sulphate(IV) (SDS) and 10% (v/v) acetonitrile (pH 9.56). The experimental conditions were adjusted in terms of resolution and analysis time. The best results were obtained at 10 and 25°C storage and capillary temperature, respectively, using 25 dots (ø 0.8mm) cut from printouts as the sample and BGE diluted with water (1:99, v/v) as the injecting solution. The MECC separation of main printing ink components by the proposed method showed excellent precision - the RSD value of the migration time calculated for each of the investigated peaks did not exceed 3.3%. The optimized method was applied to group identification and differentiation of: (a) three colours of printing inks, (b) inks from different manufacturers (Hewlett-Packard, Epson, Brother, Lexmark and Canon) and (c) inks from different printer models. In all these cases, inks were successfully differentiated on the basis of position (migration time) and shape of their characteristic peaks.

  14. 3D Printed Micro Free-Flow Electrophoresis Device.

    PubMed

    Anciaux, Sarah K; Geiger, Matthew; Bowser, Michael T

    2016-08-01

    The cost, time, and restrictions on creative flexibility associated with current fabrication methods present significant challenges in the development and application of microfluidic devices. Additive manufacturing, also referred to as three-dimensional (3D) printing, provides many advantages over existing methods. With 3D printing, devices can be made in a cost-effective manner with the ability to rapidly prototype new designs. We have fabricated a micro free-flow electrophoresis (μFFE) device using a low-cost, consumer-grade 3D printer. Test prints were performed to determine the minimum feature sizes that could be reproducibly produced using 3D printing fabrication. Microfluidic ridges could be fabricated with dimensions as small as 20 μm high × 640 μm wide. Minimum valley dimensions were 30 μm wide × 130 μm wide. An acetone vapor bath was used to smooth acrylonitrile-butadiene-styrene (ABS) surfaces and facilitate bonding of fully enclosed channels. The surfaces of the 3D-printed features were profiled and compared to a similar device fabricated in a glass substrate. Stable stream profiles were obtained in a 3D-printed μFFE device. Separations of fluorescent dyes in the 3D-printed device and its glass counterpart were comparable. A μFFE separation of myoglobin and cytochrome c was also demonstrated on a 3D-printed device. Limits of detection for rhodamine 110 were determined to be 2 and 0.3 nM for the 3D-printed and glass devices, respectively.

  15. Insight of Saffron Proteome by Gel-Electrophoresis.

    PubMed

    Paredi, Gianluca; Raboni, Samanta; Marchesani, Francesco; Ordoudi, Stella A; Tsimidou, Maria Z; Mozzarelli, Andrea

    2016-01-01

    Saffron is a spice comprised of the dried stigmas and styles of Crocus sativus L. flowers and, since it is very expensive, it is frequently adulterated. So far, proteomic tools have never been applied to characterize the proteome of saffron or identify possible cases of fraud. In this study, 1D-Gel Electrophoresis was carried out to characterize the protein profile of (i) fresh stigmas and styles of the plant; (ii) dried stigmas and styles from different geographical origins (Spanish, Italian, Greek and Iranian) that had been stored for various periods of time after their processing; and (iii) two common plant adulterants, dried petals of Carthamus tinctorius L. and dried fruits of Gardenia jasminoides Ellis. A selective protein extraction protocol was applied to avoid interference from colored saffron metabolites, such as crocins, during electrophoretic analyses of saffron. We succeeded in separating and assigning the molecular weights to more than 20 proteins. In spite of the unavailability of the genome of saffron, we were able to identify five proteins by Peptide Mass Fingerprinting: phosphoenolpyruvate carboxylase 3, heat shock cognate 70 KDa protein, crocetin glucosyltransferase 2, α-1,4-glucan-protein synthase and glyceraldehydes-3-phosphate dehydrogenase-2. Our findings indicate that (i) few bands are present in all saffron samples independently of origin and storage time, with amounts that significantly vary among samples and (ii) aging during saffron storage is associated with a reduction in the number of detectable bands, suggesting that proteases are still active. The protein pattern of saffron was quite distinct from those of two common adulterants, such as the dried petals of Carthamus tinctorius and the dried fruits of Gardenia jasminoides indicating that proteomic analyses could be exploited for detecting possible frauds. PMID:26840283

  16. Insight of Saffron Proteome by Gel-Electrophoresis.

    PubMed

    Paredi, Gianluca; Raboni, Samanta; Marchesani, Francesco; Ordoudi, Stella A; Tsimidou, Maria Z; Mozzarelli, Andrea

    2016-01-29

    Saffron is a spice comprised of the dried stigmas and styles of Crocus sativus L. flowers and, since it is very expensive, it is frequently adulterated. So far, proteomic tools have never been applied to characterize the proteome of saffron or identify possible cases of fraud. In this study, 1D-Gel Electrophoresis was carried out to characterize the protein profile of (i) fresh stigmas and styles of the plant; (ii) dried stigmas and styles from different geographical origins (Spanish, Italian, Greek and Iranian) that had been stored for various periods of time after their processing; and (iii) two common plant adulterants, dried petals of Carthamus tinctorius L. and dried fruits of Gardenia jasminoides Ellis. A selective protein extraction protocol was applied to avoid interference from colored saffron metabolites, such as crocins, during electrophoretic analyses of saffron. We succeeded in separating and assigning the molecular weights to more than 20 proteins. In spite of the unavailability of the genome of saffron, we were able to identify five proteins by Peptide Mass Fingerprinting: phosphoenolpyruvate carboxylase 3, heat shock cognate 70 KDa protein, crocetin glucosyltransferase 2, α-1,4-glucan-protein synthase and glyceraldehydes-3-phosphate dehydrogenase-2. Our findings indicate that (i) few bands are present in all saffron samples independently of origin and storage time, with amounts that significantly vary among samples and (ii) aging during saffron storage is associated with a reduction in the number of detectable bands, suggesting that proteases are still active. The protein pattern of saffron was quite distinct from those of two common adulterants, such as the dried petals of Carthamus tinctorius and the dried fruits of Gardenia jasminoides indicating that proteomic analyses could be exploited for detecting possible frauds.

  17. 3D Printed Micro Free-Flow Electrophoresis Device.

    PubMed

    Anciaux, Sarah K; Geiger, Matthew; Bowser, Michael T

    2016-08-01

    The cost, time, and restrictions on creative flexibility associated with current fabrication methods present significant challenges in the development and application of microfluidic devices. Additive manufacturing, also referred to as three-dimensional (3D) printing, provides many advantages over existing methods. With 3D printing, devices can be made in a cost-effective manner with the ability to rapidly prototype new designs. We have fabricated a micro free-flow electrophoresis (μFFE) device using a low-cost, consumer-grade 3D printer. Test prints were performed to determine the minimum feature sizes that could be reproducibly produced using 3D printing fabrication. Microfluidic ridges could be fabricated with dimensions as small as 20 μm high × 640 μm wide. Minimum valley dimensions were 30 μm wide × 130 μm wide. An acetone vapor bath was used to smooth acrylonitrile-butadiene-styrene (ABS) surfaces and facilitate bonding of fully enclosed channels. The surfaces of the 3D-printed features were profiled and compared to a similar device fabricated in a glass substrate. Stable stream profiles were obtained in a 3D-printed μFFE device. Separations of fluorescent dyes in the 3D-printed device and its glass counterpart were comparable. A μFFE separation of myoglobin and cytochrome c was also demonstrated on a 3D-printed device. Limits of detection for rhodamine 110 were determined to be 2 and 0.3 nM for the 3D-printed and glass devices, respectively. PMID:27377354

  18. Capillary zone electrophoresis: an additional technique for the identification of hemoglobin variants.

    PubMed

    Lin, C; Cotton, F; Fontaine, B; Gulbis, B; Janssens, J; Vertongen, F

    1999-05-01

    Two capillary zone electrophoresis kits (Hb A2 and Hb A1c) were tested for confirmation and identification of hemoglobin variants. The capillary zone electrophoresis experiments were performed at pH 4.7 (Hb A1c kit) and 8.7 (Hb A2 kit) in a 24 cm uncoated fused silica capillary tube (25 microm I.D.). Normal hemoglobins and common hemoglobin variants, including Hbs S, D-Punjab, C, E, O-Arab, and G-Philadelphia, were successfully separated by both methods within a few minutes. Both systems provided completely different elution profiles of normal and abnormal hemoglobin fractions tested and were complementary. The inter-assay coefficient of variations of the migration times of hemoglobin variants were less than 1.0 and 1.3% by the Hb A2 and Hb A1c, respectively. This permits a higher resolution of some hemoglobin variants in low concentrations, like Hb S in newborns, compared with conventional electrophoresis methods. The present capillary zone electrophoresis methods are sensitive, rapid, not labor intensive, and highly selective for the separation of hemoglobin variants. Combination of both methods with some conventional methods, such as isoelectrofocusing, allows identification of Hbs C, E, O-Arab, S, and D-Punjab, as well as their quantification. We have demonstrated that the conventional electrophoresis methods (electrophoresis at pH 6.5 in citrate agar gel and electrophoresis at pH 8.6 on cellulose acetate) can be advantageously replaced by the present capillary zone electrophoresis methods in a clinical laboratory practice for the detection and quantification of hemoglobin variants. PMID:10335978

  19. Multiple Vibrio vulnificus strains in oysters as demonstrated by clamped homogeneous electric field gel electrophoresis.

    PubMed Central

    Buchrieser, C; Gangar, V V; Murphree, R L; Tamplin, M L; Kaspar, C W

    1995-01-01

    Clamped homogeneous electric field gel electrophoresis and a computer program for managing electrophoresis banding patterns (ELBAMAP) were used to analyze genomic DNA of 118 Vibrio vulnificus strains, isolated from three oysters by direct plating. Analysis with SfiI resulted in 60 restriction endonuclease digestion profiles (REDP), while analysis with SrfI produced 53 different REDP. Similarities between REDP ranged from 7 to 93%. Principal-component analysis showed that the strains were heterogeneous. PMID:7793918

  20. Role of capillary electrophoresis in the fight against doping in sports.

    PubMed

    Harrison, Christopher R

    2013-08-01

    At present the role of capillary electrophoresis in the detection of doping agents in athletes is, for the most part, nonexistent. More traditional techniques, namely gas and liquid chromatography with mass spectrometric detection, remain the gold standard of antidoping tests. This Feature will investigate the in-roads that capillary electrophoresis has made, the limitations that the technique suffers from, and where the technique may grow into being a key tool for antidoping analysis.

  1. Hydraulic Modeling of Alluvial Fans along the Truckee Canal using the 2-Dimensional Model SRH2D

    NASA Astrophysics Data System (ADS)

    Wright, J.; Kallio, R.; Sankovich, V.

    2013-12-01

    Alluvial fans are gently sloping, fan-shaped landforms created by sediment deposition at the ends of mountain valleys. Their gentle slopes and scenic vistas are attractive to developers. Unfortunately, alluvial fans are highly flood-prone, and the flow paths of flood events are highly variable, thereby placing human developments at risk. Many studies have been performed on alluvial fans in the arid west because of the uncertainty of their flow paths and flood extents. Most of these studies have been focused on flood elevations and mitigation. This study is not focused on the flood elevations. Rather, it is focused on the attenuation effects of alluvial fans on floods entering and potentially failing a Reclamation canal. The Truckee Canal diverts water from the Truckee River to Lahontan Reservoir. The drainage areas along the canal are alluvial fans with complex distributary channel networks . Ideally, in nature, the sediment grain-size distribution along the alluvial fan flow paths would provide enough infiltration and subsurface storage to attenuate floods entering the canal and reduce risk to low levels. Human development, however, can prevent the natural losses from occurring due to concentrated flows within the alluvial fan. While the concentrated flows might mitigate flood risk inside the fan, they do not lower the flood risk of the canal. A 2-dimensional hydraulic model, SRH-2D, was coupled to a 1-dimensional rainfall-runoff model to estimate the flood attenuation effects of the alluvial fan network surrounding an 11 mile stretch of the Truckee Canal near Fernley, Nevada. Floods having annual exceedance probabilities ranging from 1/10 to 1/100 were computed and analyzed. SRH-2D uses a zonal approach for modeling river systems, allowing areas to be divided into separate zones based on physical parameters such as surface roughness and infiltration. One of the major features of SRH-2D is the adoption of an unstructured hybrid mixed element mesh, which is based

  2. Simulating the Osceola Mudflow Lahar Event in the Pacific Northwest using a GPU Based 2-Dimensional Hydraulic Model

    NASA Astrophysics Data System (ADS)

    Katz, B. G.; Eppert, S.; Lohmann, D.; Li, S.; Goteti, G.; Kaheil, Y. H.

    2011-12-01

    At 4,400 meters, Mount Rainer has been the point of origin for several major lahar events. The largest event, termed the "Osceola Mudflow," occurred 5,500 years ago and covered an area of approximately 550km2 with a total volume of deposited material from 2 to 4km3. Particularly deadly, large lahars are estimated to have maximum flow velocities in of 100km/h with a density often described as "Flowing Concrete." While rare, these events typically cause total destruction within a lahar inundation zone. It is estimated that approximately 150,000 people live on top of previous deposits left by lahars which can be triggered by anything from earthquakes to glacial and chemical erosion of volcanic bedrock over time to liquefaction caused by extreme rainfall events. A novel methodology utilizing a 2 dimensional hydraulic model has been implemented allowing for high resolution (30m) lahar inundation maps to be generated. The utility of this model above or in addition to other methodologies such as that of Iverson (1998), lies in its portability to other lahar zones as well as its ability to model any total volume specified by the user. The process for generating lahar flood plains requires few inputs including: a Digital Terrain Map of any resolution (DTM), a mask defining the locations for lahar genesis, a raster of friction coefficients, and a time series depicting uniform material accumulation over the genesis mask which is allowed to flow down-slope. Finally, a significant improvement in speed has been made for solving the two dimensional model by utilizing the latest in graphics processing unit (GPU) technology which has resulted in a greater than 200 times speed up in model run time over previous CPU-based methods. The model runs for the Osceola Mudflow compare favorably with USGS derived inundation regions as derived using field measurements and GIS based approaches such as the LAHARZ program suit. Overall gradation of low to high risk match well, however the new

  3. Modification of vital wheat gluten with phosphoric acid to produce high free-solution capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten reacts with phosphoric acid to produce natural superabsorbent gels. The gel properties are defined by Fourier Transform Infra-red (FTIR) spectroscopy, 2-dimensional gel electrophoresis (2DE), and uptake of water, salt solutions, and aqueous ethanol. Temperatures above 120'C and dry cond...

  4. Transcription Factor Proteomics: Identification by a Novel Gel Mobility Shift-Three-Dimensional Electrophoresis Method Coupled with Southwestern Blot and HPLC-Electrospray-Mass Spectrometry Analysis

    PubMed Central

    Jiang, Daifeng; Jia, Yinshan; Jarrett, Harry W.

    2011-01-01

    Transcription factor (TF) purification and identification is an important step in elucidating gene regulatory mechanisms. In this study, we present two new electrophoretic mobility shift assay (EMSA)-based multi-dimensional electrophoresis approaches to isolate and characterize TFs, using detection with either southwestern or western blotting and HPLC-nanoESI-MS/MS analysis for identification. These new techniques involve several major steps. First, EMSA is performed with agents that diminish non-specific DNA-binding and the DNA-protein complex is separated by native PAGE gel. The gel is then electrotransferred to PVDF membrane and visualized by autoradiography. Next, the DNA-protein complex, which has been transferred onto the blot, is extracted using a detergent-containing elution buffer. Following detergent removal, concentrated extract is separated by SDS-PAGE (EMSA-2DE), followed by in-gel trypsin digestion and HPLC-nanoESI-MS/MS analysis, or the concentrated extract is separated by two-dimensional gel electrophoresis EMSA-3DE), followed by southwestern or western blot analysis to localize DNA binding proteins on blot which are further identified by on-blot trypsin digestion and HPLC-nanoESI-MS/MS analysis. Finally, the identified DNA binding proteins are further validated by EMSA-immunoblotting or EMSA antibody supershift assay. This approach is used to purify and identify GFP-C/EBP fusion protein from bacterial crude extract, as well as purifying AP1 and CEBP DNA binding proteins from a human embryonic kidney cell line (HEK293) nuclear extract. AP1 components, c-Jun, Jun-D, c-Fos, CREB, ATF1 and ATF2 were successfully identified from 1.5 mg of nuclear extract (equivalent to 3 ×107 HEK293 cells) with AP1 binding activity of 750 fmol. In conclusion, this new strategy of combining EMSA with additional dimensions of electrophoresis and using southwestern blotting for detection proves to be a valuable approach in the identification of transcriptional complexes

  5. [In situ photopolymerization of polyacrylamide-based preconcentrator on a microfluidic chip for capillary electrophoresis].

    PubMed

    Yamamoto, Sachio

    2012-01-01

    Microchip electrophoresis is widely used for microfluidics and has been studied extensively over the past decade. Translation of capillary electrophoresis methods from traditional capillary systems to a microchip platform provides rapid separation and easy quantitation of sample components. However, most microfluidic systems suffer from critical scaling problems. One promising solution to this problem is online sample preconcentration of all analytes in a sample reservoir before the separation channel. Herein, the following three techniques for online preconcentration during microchip electrophoresis are proposed: (1) in situ fabrication of an ionic polyacrylamide-based preconcentrator on a simple poly(methyl methacrylate) microfluidic chip for perm-selective preconcentration and capillary electrophoretic separation of anionic compounds, (2) simultaneous concentration enrichment and electrophoretic separation of weak acids on a microchip using an in situ photopolymerized carboxylate-type polyacrylamide gels as the perm-selective preconcentrator, and (3) microchip electrophoresis of oligosaccharides using lectin-immobilized preconcentrator gels fabricated by in situ photopolymerization. These techniques are expected to be powerful tools for clinical and pharmaceutical studies with on-line preconcentration during microchip electrophoresis.

  6. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis.

    PubMed

    Scherer, James R; Liu, Peng; Mathies, Richard A

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ~20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex(®) 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  7. Nonlinear effects on electrophoresis of a charged dielectric nanoparticle in a charged hydrogel medium

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; De, Simanta

    2016-09-01

    The impact of the solid polarization of a charged dielectric particle in gel electrophoresis is studied without imposing a weak-field or a thin Debye length assumption. The electric polarization of a dielectric particle due to an external electric field creates a non-uniform surface charge density, which in turn creates a non-uniform Debye layer at the solid-gel interface. The solid polarization of the particle, the polarization of the double layer, and the electro-osmosis of mobile ions within the hydrogel medium create a nonlinear effect on the electrophoresis. We have incorporated those nonlinear effects by considering the electrokinetics governed by the Stokes-Brinkman-Nernst-Planck-Poisson equations. We have computed the governing nonlinear coupled set of equations numerically by adopting a finite volume based iterative algorithm. Our numerical method is tested for accuracy by comparing with several existing results on free-solution electrophoresis as well as results based on the Debye-Hückel approximation. Our computed result shows that the electrophoretic velocity decreases with the rise of the particle dielectric permittivity constant and attains a saturation limit at large values of permittivity. A significant impact of the solid polarization is found in gel electrophoresis compared to the free-solution electrophoresis.

  8. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis

    NASA Astrophysics Data System (ADS)

    Scherer, James R.; Liu, Peng; Mathies, Richard A.

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ˜20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex® 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  9. [In situ photopolymerization of polyacrylamide-based preconcentrator on a microfluidic chip for capillary electrophoresis].

    PubMed

    Yamamoto, Sachio

    2012-01-01

    Microchip electrophoresis is widely used for microfluidics and has been studied extensively over the past decade. Translation of capillary electrophoresis methods from traditional capillary systems to a microchip platform provides rapid separation and easy quantitation of sample components. However, most microfluidic systems suffer from critical scaling problems. One promising solution to this problem is online sample preconcentration of all analytes in a sample reservoir before the separation channel. Herein, the following three techniques for online preconcentration during microchip electrophoresis are proposed: (1) in situ fabrication of an ionic polyacrylamide-based preconcentrator on a simple poly(methyl methacrylate) microfluidic chip for perm-selective preconcentration and capillary electrophoretic separation of anionic compounds, (2) simultaneous concentration enrichment and electrophoretic separation of weak acids on a microchip using an in situ photopolymerized carboxylate-type polyacrylamide gels as the perm-selective preconcentrator, and (3) microchip electrophoresis of oligosaccharides using lectin-immobilized preconcentrator gels fabricated by in situ photopolymerization. These techniques are expected to be powerful tools for clinical and pharmaceutical studies with on-line preconcentration during microchip electrophoresis. PMID:23023420

  10. Comparative analysis of excretory-secretory antigens of Trichinella spiralis and Trichinella britovi muscle larvae by two-dimensional difference gel electrophoresis and immunoblotting

    PubMed Central

    2012-01-01

    Background Trichinellosis is a zoonotic disease in humans caused by Trichinella spp. The present study was undertaken to discover excretory-secretory (E-S) proteins from T. spiralis and T. britovi muscle larvae (ML) that hold promise for species-specific diagnostics. To that end, the purified E-S proteins were analyzed by fluorescent two-dimensional difference gel electrophoresis (2-D DIGE) coupled with protein identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS). To search for immunoreactive proteins that are specifically recognized by host antibodies the E-S proteins were subjected to two-dimensional (2-DE) immunoblotting with antisera derived from pigs experimentally infected with T. spiralis or T. britovi. Results According to 2-D DIGE analysis, a total of twenty-two proteins including potentially immunogenic proteins and proteins produced only by one of the two Trichinella species were subjected to LC-MS/MS for protein identification. From these proteins seventeen could be identified, of which many were identified in multiple spots, suggesting that they have undergone post-translational modification, possibly involving glycosylation and/or proteolysis. These proteins included 5'-nucleotidase, serine-type protease/proteinase, and p43 glycoprotein (gp43) as well as 49 kDa E-S protein (p49). Our findings also suggest that some of the commonly identified proteins were post-translationally modified to different extents, which in certain cases seemed to result in species-specific modification. Both commonly and specifically recognized immunoreactive proteins were identified by 2-DE immunoblotting; shared antigens were identified as gp43 and different protease variants, whereas those specific to T. britovi included multiple isoforms of the 5'-nucleotidase. Conclusions Both 2-D DIGE and 2-DE immunoblotting approaches indicate that T. spiralis and T. britovi produce somewhat distinctive antigen profiles, which contain E-S antigens with potential

  11. A review of microdialysis coupled to microchip electrophoresis for monitoring biological events.

    PubMed

    Saylor, Rachel A; Lunte, Susan M

    2015-02-20

    Microdialysis is a powerful sampling technique that enables monitoring of dynamic processes in vitro and in vivo. The combination of microdialysis with chromatographic or electrophoretic methods with selective detection yields a "separation-based sensor" capable of monitoring multiple analytes in near real time. For monitoring biological events, analysis of microdialysis samples often requires techniques that are fast (<1 min), have low volume requirements (nL-pL), and, ideally, can be employed on-line. Microchip electrophoresis fulfills these requirements and also permits the possibility of integrating sample preparation and manipulation with detection strategies directly on-chip. Microdialysis coupled to microchip electrophoresis has been employed for monitoring biological events in vivo and in vitro. This review discusses technical considerations for coupling microdialysis sampling and microchip electrophoresis, including various interface designs, and current applications in the field. PMID:25637011

  12. A review of microdialysis coupled to microchip electrophoresis for monitoring biological events

    PubMed Central

    Saylor, Rachel A.; Lunte, Susan M.

    2015-01-01

    Microdialysis is a powerful sampling technique that enables monitoring of dynamic processes in vitro and in vivo. The combination of microdialysis with chromatographic or electrophoretic methods yields along with selective detection methods yields a “separation-based sensor” capable of monitoring multiple analytes in near real time. Analysis of microdialysis samples requires techniques that are fast (<1 min), have low volume requirements (nL–pL), and, ideally, can be employed on-line. Microchip electrophoresis fulfills these requirements and also permits the possibility of integrating sample preparation and manipulation with detection strategies directly on-chip. Microdialysis coupled to microchip electrophoresis has been employed for monitoring biological events in vivo and in vitro. This review discusses technical considerations for coupling microdialysis sampling and microchip electrophoresis, including various interface designs, and current applications in the field. PMID:25637011

  13. Determination of preservatives in soft drinks by capillary electrophoresis with ionic liquids as the electrolyte additives.

    PubMed

    Sun, Bingbing; Qi, Li; Wang, Minglin

    2014-08-01

    A capillary electrophoresis method for separating preservatives with various ionic liquids as the electrolyte additives has been developed. The performances for separation of the preservatives using five ionic liquids with different anions and different substituted group numbers on imidazole ring were studied. After investigating the influence of the key parameters on the separation (the concentration of ionic liquids, pH, and the concentration of borax), it has been found that the separation efficiency could be improved obviously using the ionic liquids as the electrolyte additives and tested preservatives were baseline separated. The proposed capillary electrophoresis method exhibited favorable quantitative analysis property of the preservatives with good linearity (r(2) = 0.998), repeatability (relative standard deviations ≤ 3.3%) and high recovery (79.4-117.5%). Furthermore, this feasible and efficient capillary electrophoresis method was applied in detecting the preservatives in soft drinks, introducing a new way for assaying the preservatives in food products.

  14. Continuous flow electrophoresis system experiments on shuttle flights STS-6 and STS-7

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.; Rhodes, Percy H.; Miller, Teresa Y.

    1988-01-01

    The development of a space continuous flow electrophoresis system (CFES) is discussed. The objectives of the experiment were: (1) to use a model sample material at a high concentration to evaluate the continuous flow electrophoresis process in the McDonnell Douglass CFES instrument and compare its separation resolution and sample throughput with related devices on Earth, and (2) to expand the basic knowledge of the limitations imposed by fluid flows and particle concentration effects on the electrophoresis process by careful design and evaluation of the space experiment. Hemoglobin and polysaccharide were selected as samples of concentration effects. The results from space show a large band spread of the high concentration of the single species of hemoglobin that was principally due to the mismatch of electrical conductivity between the sample and buffer.

  15. Two-dimensional fluorescence difference gel electrophoresis for comparative proteomics profiling

    PubMed Central

    Tannu, Nilesh S; Hemby, Scott E

    2007-01-01

    Quantitative proteomics is the workhorse of the modern proteomics initiative. The gel-based and MuDPIT approaches have facilitated vital advances in the measurement of protein expression alterations in normal and disease phenotypic states. The methodological advance in two-dimensional gel electrophoresis (2DGE) has been the multiplexing fluorescent two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). 2D-DIGE is based on direct labeling of lysine groups on proteins with cyanine CyDye DIGE Fluor minimal dyes before isoelectric focusing, enabling the labeling of 2–3 samples with different dyes and electrophoresis of all the samples on the same 2D gel. This capability minimizes spot pattern variability and the number of gels in an experiment while providing simple, accurate and reproducible spot matching. This protocol can be completed in 3–5 weeks depending on the sample size of the experiment and the level of expertise of the investigator. PMID:17487156

  16. Enzymophoresis of nucleic acids by tandem capillary enzyme reactor-capillary zone electrophoresis.

    PubMed

    Nashabeh, W; el Rassi, Z

    1992-04-10

    Enzymophoresis with coupled heterogeneous capillary enzyme reactor-capillary zone electrophoresis was developed and evaluated in the area of nucleic acids. Ribonuclease T1, hexokinase and adenosine deaminase were successfully immobilized on the inner walls of short fused-silica capillaries through glutaraldehyde attachment. These open-tubular capillary enzyme reactors were quite stable for a prolonged period of use under operation conditions normally used in capillary zone electrophoresis. The capillary enzyme reactors coupled in series with capillary zone electrophoresis served as peak locator on the electropherogram, improved the system selectivity, and facilitated the quantitative determination of the analytes with good accuracy. Also, they allowed the on-line digestion and mapping of minute amounts of transfer ribonucleic acids, and the simultaneous synthesis and separation of nanogram quantities of oligonucleotides.

  17. Evaluation of the Separability of Monodisperse Polystyrene Latex Microspheres in a Continuous Flow Electrophoresis System

    NASA Technical Reports Server (NTRS)

    Williams, G., Jr.

    1983-01-01

    The continuous flow electrophoresis system makes electrophoresis possible in a free flowing film of aqueous electrolyte medium. The sample is introduced at one end of the chamber and is subjected to a lateral dc field. This process separates the sample into fractions since each component has a distinctive electrophoric mobility. Evaluations were made of sample conductivity and buffer conductivity as they affect sample band spread and separation using the Continuous Particle Electrophoresis (CPE) system. Samples were prepared from mixtures of 5 percent and 1 percent polystyrene latex (PSL) microspheres which were .4, .56 and .7 microns in diameter. These were prepared in electrolyte media 1x and 3x the conductivity of the curtain buffer, approximately 150 and 450 micro mhos/cm. Samples with matched conductivities produced greater resolution and less band spread than those with 3x the conductivity of the curtain buffer.

  18. Studies with sample conductivity, insertion rates, and particle deflection in a continuous flow electrophoresis system

    NASA Technical Reports Server (NTRS)

    Williams, G., Jr.

    1982-01-01

    The continuous flow electrophoresis system makes electrophoresis possible in a free-flowing film of aqueous electrolyte medium. The sample continuously enters the electrolyte at the top of the chamber and is subjected to the action of a lateral dc field. This divides the sample into fractions since each component has a distinctive electrophoretic mobility. Tests were made using monodisperse polystyrene latex microspheres to determine optimum sample conductivity, insertion rates and optimum electric field applications as baseline data for future STS flight experiments. Optimum sample flow rates for the selected samples were determined to be approximately 26 micro-liters/min. Experiments with samples in deionized water yielded best results and voltages in the 20 V/cm to 30 V/cm range were optimum. Deflections of formaldehyde fixed turkey and bovine erythrocytes were determined using the continuous flow electrophoresis system. The effects of particle interactions on sample resolution and migration in the chamber was also evaluated.

  19. Separation of Recombinant Therapeutic Proteins Using Capillary Gel Electrophoresis and Capillary Isoelectric Focusing.

    PubMed

    De Jong, Caitlyn A G; Risley, Jessica; Lee, Alexis K; Zhao, Shuai Sherry; Chen, David D Y

    2016-01-01

    Detailed step-by-step methods for protein separation techniques based on capillary electrophoresis (CE) are described in this chapter. Focus is placed on two techniques, capillary gel electrophoresis (CGE) and capillary isoelectric focusing (cIEF). CGE is essentially gel electrophoresis, performed in a capillary, where a hydrogel is used as a sieving matrix to separate proteins or peptides based on size. cIEF separates proteins or peptides based on their isoelectric point (pI), the pH at which the protein or peptide bears no charges. Detailed protocols and steps (including capillary preparation, sample preparation, CE separation conditions, and detection) for both CGE and cIEF presented so that readers can follow the described methods in their own labs. PMID:27473487

  20. A review of microdialysis coupled to microchip electrophoresis for monitoring biological events.

    PubMed

    Saylor, Rachel A; Lunte, Susan M

    2015-02-20

    Microdialysis is a powerful sampling technique that enables monitoring of dynamic processes in vitro and in vivo. The combination of microdialysis with chromatographic or electrophoretic methods with selective detection yields a "separation-based sensor" capable of monitoring multiple analytes in near real time. For monitoring biological events, analysis of microdialysis samples often requires techniques that are fast (<1 min), have low volume requirements (nL-pL), and, ideally, can be employed on-line. Microchip electrophoresis fulfills these requirements and also permits the possibility of integrating sample preparation and manipulation with detection strategies directly on-chip. Microdialysis coupled to microchip electrophoresis has been employed for monitoring biological events in vivo and in vitro. This review discusses technical considerations for coupling microdialysis sampling and microchip electrophoresis, including various interface designs, and current applications in the field.