Science.gov

Sample records for 2-dimensional premixed flames

  1. Premixed conical flame stabilization

    NASA Astrophysics Data System (ADS)

    Krikunova, A. I.; Son, E. E.; Saveliev, A. S.

    2016-11-01

    In the current work, stabilization of premixed laminar and lean turbulent flames for wide range of flow rates and equivalence ratios was performed. Methane-air mixture was ignited after passing through premixed chamber with beads and grids, and conical nozzle (Bunsen-type burner). On the edge of the nozzle a stabilized body-ring was mounted. Ring geometry was varied to get the widest stable flame parameters. This work was performed as part of the project on experimental investigation of premixed flames under microgravity conditions.

  2. Statistics of premixed flame cells

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1991-01-01

    The statistics of random cellular patterns in premixed flames are analyzed. Agreement is found with a variety of topological relations previously found for other networks, namely, Lewis's law and Aboav's law. Despite the diverse underlying physics, flame cells are shown to share a broad class of geometric properties with other random networks-metal grains, soap foams, bioconvection, and Langmuir monolayers.

  3. Statistics of premixed flame cells

    SciTech Connect

    Noever, D.A. )

    1991-07-15

    The statistics of random cellular patterns in premixed flames are analyzed. Agreement is found with a variety of topological relations previously found for other networks, namely, Lewis's law and Aboav's law. Despite the diverse underlying physics, flame cells are shown to share a broad class of geometric properties with other random networks---metal grains, soap foams, bioconvection, and Langmuir monolayers.

  4. Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Wu, Qi; Huang, Qunxing; Zhang, Haidan; Yan, Jianhua; Cen, Kefa

    2015-07-01

    An innovative tomographic method using tunable diode laser absorption spectroscopy (TDLAS) and algebraic reconstruction technique (ART) is presented in this paper for detecting two-dimensional distribution of H2O concentration and temperature in a premixed flame. The collimated laser beam emitted from a low cost diode laser module was delicately split into 24 sub-beams passing through the flame from different angles and the acquired laser absorption signals were used to retrieve flame temperature and H2O concentration simultaneously. The efficiency of the proposed reconstruction system and the effect of measurement noise were numerically evaluated. The temperature and H2O concentration in flat methane/air premixed flames under three different equivalence ratios were experimentally measured and reconstruction results were compared with model calculations. Numerical assessments indicate that the TDLAS tomographic system is capable for temperature and H2O concentration profiles detecting even the noise strength reaches 3% of absorption signal. Experimental results under different combustion conditions are well demonstrated along the vertical direction and the distribution profiles are in good agreement with model calculation. The proposed method exhibits great potential for 2-D or 3-D combustion diagnostics including non-uniform flames.

  5. Turbulent flame propagation in partially premixed flames

    NASA Technical Reports Server (NTRS)

    Poinsot, T.; Veynante, D.; Trouve, A.; Ruetsch, G.

    1996-01-01

    Turbulent premixed flame propagation is essential in many practical devices. In the past, fundamental and modeling studies of propagating flames have generally focused on turbulent flame propagation in mixtures of homogeneous composition, i.e. a mixture where the fuel-oxidizer mass ratio, or equivalence ratio, is uniform. This situation corresponds to the ideal case of perfect premixing between fuel and oxidizer. In practical situations, however, deviations from this ideal case occur frequently. In stratified reciprocating engines, fuel injection and large-scale flow motions are fine-tuned to create a mean gradient of equivalence ratio in the combustion chamber which provides additional control on combustion performance. In aircraft engines, combustion occurs with fuel and secondary air injected at various locations resulting in a nonuniform equivalence ratio. In both examples, mean values of the equivalence ratio can exhibit strong spatial and temporal variations. These variations in mixture composition are particularly significant in engines that use direct fuel injection into the combustion chamber. In this case, the liquid fuel does not always completely vaporize and mix before combustion occurs, resulting in persistent rich and lean pockets into which the turbulent flame propagates. From a practical point of view, there are several basic and important issues regarding partially premixed combustion that need to be resolved. Two such issues are how reactant composition inhomogeneities affect the laminar and turbulent flame speeds, and how the burnt gas temperature varies as a function of these inhomogeneities. Knowledge of the flame speed is critical in optimizing combustion performance, and the minimization of pollutant emissions relies heavily on the temperature in the burnt gases. Another application of partially premixed combustion is found in the field of active control of turbulent combustion. One possible technique of active control consists of pulsating

  6. Flame structure and chemiluminescence in premixed flames

    NASA Astrophysics Data System (ADS)

    Grana-Otero, Jose; Mahmoudi, Siamak

    2016-11-01

    The quantitative use of chemiluminescence requires the knowledge of the relationship between the concentration of excited species with flame properties such as the equivalency ratio, the burning rate or the heat release rate. With the aim of rigorously finding from first principles these relations we have analyzed, numerically and analytically, the distribution of the excited species OH* and CH* in steady hydrogen and methane planar premixed flames. Their mass fractions turn out to be extremely small; thus, a kinetic mechanism describing their dynamics in the flame can be obtained by simply adding the kinetic mechanism describing the excitation and de-excitation to the mechanism of the base flame. Due also to their small concentrations, the excited species are in steady state, facilitating a simple analytical description. The analyses show that OH*, both in hydrogen and methane flames, can be found broadly distributed downstream the preheat region, in a three-layer structure that is analytically described. The distribution of CH* is much simpler, being always in equilibrium with CH, whose concentration is in turn proportional to that of CH4. As a result, CH* is confined to the methane consumption layer in lean flames, but broadly distributed in rich flames.

  7. Flame front geometry in premixed turbulent flames

    SciTech Connect

    Shepherd, I.G.; Ashurst, W.T.

    1991-12-01

    Experimental and numerical determinations of flame front curvature and orientation in premixed turbulent flames are presented. The experimental data is obtained from planar, cross sectional images of stagnation point flames at high Damkoehler number. A direct numerical simulation of a constant energy flow is combined with a zero-thickness, constant density flame model to provide the numerical results. The computational domain is a 32{sup 3} cube with periodic boundary conditions. The two-dimensional curvature distributions of the experiments and numerical simulations compare well at similar q{prime}/S{sub L} values with means close to zero and marked negative skewness. At higher turbulence levels the simulations show that the distributions become symmetric about zero. These features are also found in the three dimensional distributions of curvature. The simulations support assumptions which make it possible to determine the mean direction cosines from the experimental data. This leads to a reduction of 12% in the estimated flame surface area density in the middle of the flame brush. 18 refs.

  8. Turbulent transport in premixed flames

    NASA Technical Reports Server (NTRS)

    Rutland, C. J.; Cant, R. S.

    1994-01-01

    Simulations of planar, premixed turbulent flames with heat release were used to study turbulent transport. Reynolds stress and Reynolds flux budgets were obtained and used to guide the investigation of important physical effects. Essentially all pressure terms in the transport equations were found to be significant. In the Reynolds flux equations, these terms are the major source of counter-gradient transport. Viscous and molecular terms were also found to be significant, with both dilatational and solenoidal terms contributing to the Reynolds stress dissipation. The BML theory of premixed turbulent combustion was critically examined in detail. The BML bimodal pdf was found to agree well with the DNS data. All BML decompositions, through the third moments, show very good agreement with the DNS results. Several BML models for conditional terms were checked using the DNS data and were found to require more extensive development.

  9. Flame propagation under partially-premixed conditions

    NASA Technical Reports Server (NTRS)

    Ruetsch, Gregory R.

    1994-01-01

    This study concentrates on developing a better understanding of triple flames. We relax the assumption of zero heat release, address the issue of stabilization, and, in order to investigate the role that heat release plays in flame propagation in partially premixed combustion, we return to a simple flow field and investigate the behavior of flames in a laminar environment. We solve the compressible Navier-Stokes equations in a two-dimensional domain. At the boundaries, we use an inflow boundary condition on the left and nearly-perfect reflective boundary conditions, required to avoid pressure drift, at the outflow and sides. After the flow and flame are initialized, the mixture fraction is varied at the inlet from its uniform stoichiometric value to a tanh profile varying from zero to one. As the mixture fraction gradient reaches the flame surface only the centerline is exposed to the stoichionetric mixture fraction and locally maintains the planar flame speed and reaction rate. Above this point the mixture is fuel rich, and below fuel lean. As a result, these regions of non-unity equivalence ratio burn less, the reaction rate drops, and the local flame speed is reduced. The excess fuel and oxidizer then combine behind the premixed flame along the stoichiometric surface and burn in a trailing diffusion flame. Thus the 'triple' flame refers to the fuel-rich premixed flame, the fuel-lean premixed flame, and the trailing diffusion flame. Due to heat release, the normal velocity across the flame is increased, whereas the tangential component remains unchanged. Far-field flame speed, local flame speed, and their differences are shown as a function of the local mixing thickness. It was also determined that the lateral position of the flame affects stabilization, and the distribution of the reaction rate along the premixed wings of triple flames affects flame propagation.

  10. Soot Formation in Laminar Premixed Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Krishnan, S. S.; Faeth, G. M.

    1999-01-01

    Soot processes within hydrocarbon-fueled flames affect emissions of pollutant soot, thermal loads on combustors, hazards of unwanted fires and capabilities for computational combustion. In view of these observations, the present study is considering processes of soot formation in both burner-stabilized and freely-propagating laminar premixed flames. These flames are being studied in order to simplify the interpretation of measurements and to enhance computational tractability compared to the diffusion flame environments of greatest interest for soot processes. In addition, earlier studies of soot formation in laminar premixed flames used approximations of soot optical and structure properties that have not been effective during recent evaluations, as well as questionable estimates of flow residence times). The objective of present work was to exploit methods of avoiding these difficulties developed for laminar diffusion flames to study soot growth in laminar premixed flames. The following description of these studies is brief.

  11. Premixed turbulent flame propagation in microgravity

    NASA Technical Reports Server (NTRS)

    Menon, S.; Jagoda, J.; Sujith, R.

    1995-01-01

    To reduce pollutant formation there is, at present, an increased interest in employing premixed fuel/air mixture in combustion devices. It is well known that greater control over local temperature can be achieved with premixed flames and with lean premixed mixtures, significant reduction of pollutants such as NO(x) can be achieved. However, an issue that is still unresolved is the predictability of the flame propagation speed in turbulent premixed mixtures, especially in lean mixtures. Although substantial progress has been made in recent years, there is still no direct verification that flame speeds in turbulent premixed flows are highly predictable in complex flow fields found in realistic combustors. One of the problems associated with experimental verification is the difficulty in obtaining access to all scales of motion in typical high Reynolds number flows, since, such flows contain scales of motion that range from the size of the device to the smallest Kolmogorov scale. The overall objective of this study is to characterize the behavior of turbulent premixed flames at reasonable high Reynolds number, Re(sub L). Of particular interest here is the thin flame limit where the laminar flame thickness is much smaller than the Kolmogorov scale. Thin flames occur in many practical combustion devices and will be numerically studied using a recently developed new formulation that is briefly described.

  12. Displacement speeds in turbulent premixed flame simulations

    SciTech Connect

    Day, Marcus S.; Shepherd, Ian G.; Bell, J.; Grcar, Joseph F.; Lijewski, Michael J.

    2007-07-01

    The theory of turbulent premixed flames is based on acharacterization of the flame as a discontinuous surface propagatingthrough the fluid. The displacement speed, defined as the local speed ofthe flame front normal to itself, relative to the unburned fluid,provides one characterization of the burning velocity. In this paper, weintroduce a geometric approach to computing displacement speed anddiscuss the efficacy of the displacement speed for characterizing aturbulent flame.

  13. Turbulent Premixed Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1996-01-01

    The experimental cold-flow facility is now full operational and is currently being used to obtain baseline turbulence data in a Couette flow. The baseline turbulence data is necessary to confirm the capability of the chosen device to generate and maintain the required turbulence intensity. Subsequent reacting flow studies will assume that a similar turbulent flow field exists ahead of the premixed flame. Some modifications and refinements had to be made to enable accurate measurements. It consists of two rollers, one (driven by a motor) which drives a continuous belt and four smaller rollers used to set the belt spacing and tension to minimize belt flutter. The entire assemble is enclosed in a structure that has the dimensions to enable future drop tower experiments of the hot facility. All critical dimensions are the same as the original plans except for the pulley ratio which has been changed to enable a wider operating regime in terms of the Reynolds number. With the current setup, Reynolds numbers as low as 100 and as high as 14,000 can be achieved. This is because the in-between belt spacing can be varied from 1 cm to 7.6 cm, and the belt speed can be accurately varied from .15 m/sec to 3.1 m/sec.

  14. Premixed flame stabilization on a bluff body

    SciTech Connect

    Hertzberg, J.R.; Talbot, L.

    1986-01-01

    This paper studies the effects of fluid mechanics on combustion, the density and velocity fields of a turbulent premixed flame stabilized on a bluff-body flameholder observed by using Rayleigh scattering for single point measurements of density and laser Doppler velocimetry for velocity data. The stabilization region near the flameholder is the focus of this work. There are several motivations for a study of this nature. First, this configuration, in which a premixed flame is stabilized in the free shear layer of a separated wake behind a bluff body has implications for both mixing layer and basic flame anchoring questions, making this a fundamental problem. Second, since most premixed flames require some form of stabilization for laboratory study, understanding the interaction of the stabilization region and the propagating premixed flame is essential for the interpretation of any resultant data. Third, flame stabilization is of ongoing concern for ramjets, turbojet afterburners and other practical combustion systems. Finally, global models of flame stabilization are based on assumptions, such as the presence of stable recirculating vortices and high turbulence in the recirculation zone, which require verification.

  15. The behavior of partially premixed flames

    NASA Astrophysics Data System (ADS)

    Choi, Chun Wai

    In this investigation, we have characterized the structure of two-dimensional partially-premixed slot burner flames through the measurement of the heat release topography, and the temperature and velocity distribution. The measurements were used to infer the flame stretch and the response of the local propagation speed of the inner rich premixed reaction zone in these flames to stretch rate variations due to hydrodynamic and curvature effects. The inner premixed reaction zone of the PPFs exhibits a highly curved portion near its tip and planar topography along its lower portion. An "effective flame speed" was characterized for two flames beyond the rich flammability limit that can only burn in a partially-premixed mode due to the synergy between the inner premixed and outer nonpremixed reaction zones. The reaction zone speed in the curved region increases significantly during the transition from a planar to curved topology due to curvature effects. The Markstein relation must be suitably modified to account for the curvature of the reaction zones for flame with negative curvature. Negative curvature increases the local value of the flame speed above the unstretched flame speed Su o while positive curvature decreases it below that value. Although curvature effects are included in the definition of stretch, they are not fully accounted for by the Su(kappa) Markstein linear relation. This implies that the curvature has an influence on Su through kappa and another more explicit effect. The propagation of triple flames in premixed and nonpremixed jet modes was investigated. The response of flame speed at the triple point to stretch has a turning behavior due to the variation of the radius of curvature while the flame is propagating downward. In normal gravity, the buoyant gases accelerate the flow in a direction opposite to the gravity vector, causing air entrainment, which enhances the mixing of the reactants with ambient laboratory air and consequently, influences the

  16. Dynamics and structure of turbulent premixed flames

    NASA Technical Reports Server (NTRS)

    Bilger, R. W.; Swaminathan, N.; Ruetsch, G. R.; Smith, N. S. A.

    1995-01-01

    In earlier work (Mantel & Bilger, 1994) the structure of the turbulent premixed flame was investigated using statistics based on conditional averaging with the reaction progress variable as the conditioning variable. The DNS data base of Trouve and Poinsot (1994) was used in this investigation. Attention was focused on the conditional dissipation and conditional axial velocity in the flame with a view to modeling these quantities for use in the conditional moment closure (CMC) approach to analysis of kinetics in premixed flames (Bilger, 1993). Two remarkable findings were made: there was almost no acceleration of the axial velocity in the flame front itself; and the conditional scalar dissipation remained as high, or higher, than that found in laminar premixed flames. The first finding was surprising since in laminar flames all the fluid acceleration occurs through the flame front, and this could be expected also for turbulent premixed flames at the flamelet limit. The finding gave hope of inventing a new approach to the dynamics of turbulent premixed flames through use of rapid distortion theory or an unsteady Bernoulli equation. This could lead to a new second order closure for turbulent premixed flames. The second finding was contrary to our measurements with laser diagnostics in lean hydrocarbon flames where it is found that conditional scalar dissipation drops dramatically below that for laminar flamelets when the turbulence intensity becomes high. Such behavior was not explainable with a one-step kinetic model, even at non-unity Lewis number. It could be due to depletion of H2 from the reaction zone by preferential diffusion. The capacity of the flame to generate radicals is critically dependent on the levels of H2 present (Bilger, et al., 1991). It seemed that a DNS computation with a multistep reduced mechanism would be worthwhile if a way could be found to make this feasible. Truly innovative approaches to complex problems often come only when there is the

  17. Internal structure of a premixed turbulent flame

    SciTech Connect

    Rajan, S.; Smith, J.R.; Rambach, G.D.

    1982-10-01

    A pulsed laser and a multielement detector have been used to make instantaneous Rayleigh profiles along a line through a turbulent flame front thus eliminating the effects of flame front motion. The flame front in a premixed turbulent flame moves randomly about a mean position, giving rise to the visually observed flame brush or time-averaged flame thickness which is larger than the instantaneous thickness of the reaction zone. The physical characteristics and statistical properties of such turbulent flames reported previously were deduced from the time histories of Rayleigh scattered laser light at one or two points within the reaction zone. The study was conducted on a premixed propane-air flame stabilized on a rod at the exit plane of a square burner. Turbulence-producing screens below the burner exit controlled turbulent length scales while intensity was controlled with inlet mixture velocity. Turbulence properties of the cold reactants were determined by hot-wire anemometry. Mean and fluctuating velocity in the unburnt and burnt gases were measured using laser Doppler velocimetry. At the low level of turbulence studied, the instantaneous flame front thickness was found to be only slightly greater than the laminar flame thickness, and the magnitude of the density fluctuations only slightly greater than the cold flow turbulence intensity. Mean and rms values of density and velocity; density and velocity probability density functions; spatial density correlations; and comparison of data with the Bray-Moss-Libby model are presented.

  18. Premixed Turbulent Flame Propagation in Microgravity

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1999-01-01

    A combined numerical-experimental study has been carried out to investigate the structure and propagation characteristics of turbulent premixed flames with and without the influence of buoyancy. Experimentally, the premixed flame characteristics are studied in the wrinkled regime using a Couette flow facility and an isotropic flow facility in order to resolve the scale of flame wrinkling. Both facilities were chosen for their ability to achieve sustained turbulence at low Reynolds number. This implies that conventional diagnostics can be employed to resolve the smallest scales of wrinkling. The Couette facility was also built keeping in mind the constraints imposed by the drop tower requirements. Results showed that the flow in this Couette flow facility achieves full-developed turbulence at low Re and all turbulence statistics are in good agreement with past measurements on large-scale facilities. Premixed flame propagation studies were then carried out both using the isotropic box and the Couette facility. Flame imaging showed that fine scales of wrinkling occurs during flame propagation. Both cases in Ig showed significant buoyancy effect. To demonstrate that micro-g can remove this buoyancy effect, a small drop tower was built and drop experiments were conducted using the isotropic box. Results using the Couette facility confirmed the ability to carry out these unique reacting flow experiments at least in 1g. Drop experiments at NASA GRC were planned but were not completed due to termination of this project.

  19. Gravity Effects Observed In Partially Premixed Flames

    NASA Technical Reports Server (NTRS)

    Puri, Ishwar K.; Aggarwal, Suresh K.; Lock, Andrew J.; Gauguly, Ranjan; Hegde, Uday

    2003-01-01

    Partially premixed flames (PPFs) contain a rich premixed fuel air mixture in a pocket or stream, and, for complete combustion to occur, they require the transport of oxidizer from an appropriately oxidizer-rich (or fuel-lean) mixture that is present in another pocket or stream. Partial oxidation reactions occur in fuel-rich portions of the mixture and any remaining unburned fuel and/or intermediate species are consumed in the oxidizer-rich portions. Partial premixing, therefore, represents that condition when the equivalence ratio (phi) in one portion of the flowfield is greater than unity, and in another section its value is less than unity. In general, for combustion to occur efficiently, the global equivalence ratio is in the range fuel-lean to stoichiometric. These flames can be established by design by placing a fuel-rich mixture in contact with a fuel-lean mixture, but they also occur otherwise in many practical systems, which include nonpremixed lifted flames, turbulent nonpremixed combustion, spray flames, and unwanted fires. Other practical applications of PPFs are reported elsewhere. Although extensive experimental studies have been conducted on premixed and nonpremixed flames under microgravity, there is a absence of previous experimental work on burner stabilized PPFs in this regard. Previous numerical studies by our group employing a detailed numerical model showed gravity effects to be significant on the PPF structure. We report on the results of microgravity experiments conducted on two-dimensional (established on a Wolfhard-Parker slot burner) and axisymmetric flames (on a coannular burner) that were investigated in a self-contained multipurpose rig. Thermocouple and radiometer data were also used to characterize the thermal transport in the flame.

  20. Premixed flame propagation in vertical tubes

    NASA Astrophysics Data System (ADS)

    Kazakov, Kirill A.

    2016-04-01

    Analytical treatment of the premixed flame propagation in vertical tubes with smooth walls is given. Using the on-shell flame description, equations for a quasi-steady flame with a small but finite front thickness are obtained and solved numerically. It is found that near the limits of inflammability, solutions describing upward flame propagation come in pairs having close propagation speeds and that the effect of gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a theory of partial flame propagation driven by a strong gravitational field is developed. A complete explanation is given of the intricate observed behavior of limit flames, including dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction. The role of the finite front-thickness effects is discussed in detail. Also, various mechanisms governing flame acceleration in smooth tubes are identified. Acceleration of methane-air flames in open tubes is shown to be a combined effect of the hydrostatic pressure difference produced by the ambient cold air and the difference of dynamic gas pressure at the tube ends. On the other hand, a strong spontaneous acceleration of the fast methane-oxygen flames at the initial stage of their evolution in open-closed tubes is conditioned by metastability of the quasi-steady propagation regimes. An extensive comparison of the obtained results with the experimental data is made.

  1. Premixed flames in closed cylindrical tubes

    NASA Astrophysics Data System (ADS)

    Metzener, Philippe; Matalon, Moshe

    2001-09-01

    We consider the propagation of a premixed flame, as a two-dimensional sheet separating unburned gas from burned products, in a closed cylindrical tube. A nonlinear evolution equation, that describes the motion of the flame front as a function of its mean position, is derived. The equation contains a destabilizing term that results from the gas motion induced by thermal expansion and has a memory term associated with vorticity generation. Numerical solutions of this equation indicate that, when diffusion is stabilizing, the flame evolves into a non-planar form whose shape, and its associated symmetry properties, are determined by the Markstein parameter, and by the initial data. In particular, we observe the development of convex axisymmetric or non-axisymmetric flames, tulip flames and cellular flames.

  2. Nongradient diffusion in premixed turbulent flames

    NASA Technical Reports Server (NTRS)

    Libby, Paul A.

    1988-01-01

    Recent theoretical and experimental results demonstrating the interaction between force fields and density inhomogeneities as they arise in premixed turbulent flames are discussed. In such flames, the density fluctuates between two levels, the high density in reactants rho sub r and the low density in products rho sub p, with the ratio rho sub r/rho sub p on the order of five to ten in flows of applied interest. The force fields in such flames arise from the mean pressure drop across the flame or from the Reynolds shear stresses in tangential flames with constrained streamlines. The consequence of the interaction is nongradient turbulent transport, countergradient in the direction normal to the flame and nongradient in the tangential direction. The theoretical basis for these results, the presently available experimental support therefore and the implications for other variable density turbulent flows are discussed.

  3. The premixed flame in uniform straining flow

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.

    1982-01-01

    Characteristics of the premixed flame in uniform straining flow are investigated by the technique of activation-energy asymptotics. An inverse method is used, which avoids some of the restrictions of previous analyses. It is shown that this method recovers known results for adiabatic flames. New results for flames with heat loss are obtained, and it is shown that, in the presence of finite heat loss, straining can extinguish flames. A stability analysis shows that straining can suppress the cellular instability of flames with Lewis number less than unity. Strain can produce instability of flames with Lewis number greater than unity. A comparison shows quite good agreement between theoretical deductions and experimental observations of Ishizuka, Miyasaka & Law (1981).

  4. Transient response of premixed methane flames

    SciTech Connect

    Vagelopoulos, Christina M.; Frank, Jonathan H.

    2006-08-15

    The response of premixed methane-air flames to transient strain and local variations in equivalence ratio is studied during isolated interactions between a line-vortex pair and a V-flame. The temporal evolution of OH and CH is measured with planar laser-induced fluorescence for N{sub 2}-diluted flames with equivalence ratios ranging from 0.8 to 1.2. One-dimensional laminar flame calculations are used to simulate the flame response to unsteady strain and variations in reactant composition. When the reactant composition of the vortex pair and the V-flame are identical, the measurements and predictions show that the peak mole fractions of OH and CH decay monotonically in lean, stoichiometric, and rich flames. We also investigate the effects of a vortex pair with a leaner composition than the V-flame. In a stoichiometric flame, the leaner vortex enhances the decay of both OH and CH. In a rich flame, we observe an abrupt increase in OH-LIF signal and a disappearance of CH-LIF signal that are consistent with a previous experimental investigation. Our results indicate that the previously observed OH burst and CH breakage were caused by a difference in the equivalence ratios of the vortex pair and the main reactant flow. A numerical study shows that N{sub 2} dilution enhances the response of premixed flames to unsteady strain and variations in stoichiometry. Reaction-path and sensitivity analyses indicate that the peak OH and CH mole fractions exhibit significant sensitivity to the main branching reaction, H+O{sub 2} {r_reversible}OH+O. The sensitivity of OH and CH to this and other reactions is enhanced by N{sub 2} dilution. As a result, N{sub 2}-diluted flames provide a good test case for studying the reliability of chemical kinetic and transport models. (author)

  5. Flame surface density and burning rate in premixed turbulent flames

    SciTech Connect

    Shepherd, I.G.

    1995-10-01

    The flame surface density has been measured in hydrocarbon/air stagnation point and v-shaped premixed turbulent flames. A method is proposed to determine the flame surface density from the data obtained by laser sheet tomography. The average flame length and flame zone area as a function of the progress variable are calculated from a map of progress variable and a set of flame edges obtained from the tomographs. From these results a surface density estimate in two dimensions is determined. By this technique it is possible to avoid the difficulties which arise when using an algebraic model based on the measurement of the flame front geometry and a scalar length scale. From these results the burning rate can be obtained which compares well with estimates calculated using the fractal technique. The present method, however, is not constrained by a minimum window size as is the case for the fractal determinations.

  6. Studies of Premixed Laminar and Turbulent Flames at Microgravity

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.

    1993-01-01

    The work of the Principal Investigator (PI) has encompassed four topics related to the experimental and theoretical study of combustion limits in premixed flames at microgravity, as discussed in the following sections. These topics include: (1) radiation effects on premixed gas flames; (2) flame structure and stability at low Lewis number; (3) flame propagation and extinction is cylindrical tubes; and (4) experimental simulation of combustion processes using autocatalytic chemical reactions.

  7. The structure of particle cloud premixed flames

    NASA Technical Reports Server (NTRS)

    Seshadri, K.; Berlad, A. L.

    1992-01-01

    The structure of premixed flames propagating in combustible systems containing uniformly distributed volatile fuel particles in an oxidizing gas mixture is analyzed. This analysis is motivated by experiments conducted at NASA Lewis Research Center on the structure of flames propagating in combustible mixtures of lycopodium particles and air. Several interesting modes of flame propagation were observed in these experiments depending on the number density and the initial size of the fuel particle. The experimental results show that steady flame propagation occurs even if the initial equivalence ratio of the combustible mixture based on the gaseous fuel available in the particles, phi sub u, is substantially larger than unity. A model is developed to explain these experimental observations. In the model, it is presumed that the fuel particles vaporize first to yield a gaseous fuel of known chemical composition which then reacts with oxygen in a one-step overall process. The activation energy of the chemical reaction is presumed to be large. The activation energy characterizing the kinetics of vaporization is also presumed to be large. The equations governing the structure of the flame were integrated numerically. It is shown that the interplay of vaporization kinetics and oxidation process can result in steady flame propagation in combustible mixtures where the value of phi sub u is substantially larger than unity. This prediction is in agreement with experimental observations.

  8. The structure of particle cloud premixed flames

    NASA Technical Reports Server (NTRS)

    Seshadri, K.

    1993-01-01

    The aim of this study is to provide a numerical and asymptotic description of the structure of planar laminar flames, propagating in a medium containing a uniform cloud of fuel-particles premixed with air. Attention is restricted here to systems where the fuel-particles first vaporize to form a known gaseous fuel, which is then oxidized in the gas-phase. This program is supported for the period September 14, 1991 to September 13, 1992. Some results of the study is shown in Ref. 1. The work summarized in Ref. 1 was initiated prior to September 14, 1991 and was completed on February 1992. Research performed in addition to that described in Ref. 1 in collaboration with Professor A. Linan, is summarized here.

  9. Studies of premixed laminar and turbulent flames at microgravity

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.

    1993-01-01

    A two and one-half year experimental and theoretical research program on the properties of laminar and turbulent premixed gas flames at microgravity was conducted. Progress during this program is identified and avenues for future studies are discussed.

  10. Experimental study of premixed flames in intense isotropic turbulence

    SciTech Connect

    Bedat, B.; Cheng, R.K.

    1994-04-01

    A methodology for investigating premixed turbulent flames propagating in intense isotropic turbulence has been developed. The burner uses a turbulence generator developed by Videto and Santavicca and the flame is stabilized by weak-swirl generated by air injectors. This set-up produces stable premixed turbulent flames under a wide range of mixture conditions and turbulence intensities. The experiments are designed to investigate systematically the changes in flame structures for conditions which can be classified as wrinkled laminar flames, corrugated flames and flames with distributed reaction zones. Laser Doppler anemometry and Rayleigh scattering techniques are used to determine the turbulence and scalar statistics. In the intense turbulence, the flames are found to produce very little changes in the mean and rams velocities. Their flame speed increase linearly with turbulence intensity as for wrinkled laminar flames. The Rayleigh scattering pdfs for flames within the distributed reaction zone regime are distinctly bimodal. The probabilities of the reacting states (i.e. contributions from within the reaction zone) is not higher than those of wrinkled laminar flame. These results show that there is no drastic changes in flame structures at Karlovitz number close to unity. This suggest that the Klimov-Williams criterion under-predicts the resilience of wrinkled flamelets to intense turbulence.

  11. Active Control for Statistically Stationary Turbulent PremixedFlame Simulations

    SciTech Connect

    Bell, J.B.; Day, M.S.; Grcar, J.F.; Lijewski, M.J.

    2005-08-30

    The speed of propagation of a premixed turbulent flame correlates with the intensity of the turbulence encountered by the flame. One consequence of this property is that premixed flames in both laboratory experiments and practical combustors require some type of stabilization mechanism to prevent blow-off and flashback. The stabilization devices often introduce a level of geometric complexity that is prohibitive for detailed computational studies of turbulent flame dynamics. Furthermore, the stabilization introduces additional fluid mechanical complexity into the overall combustion process that can complicate the analysis of fundamental flame properties. To circumvent these difficulties we introduce a feedback control algorithm that allows us to computationally stabilize a turbulent premixed flame in a simple geometric configuration. For the simulations, we specify turbulent inflow conditions and dynamically adjust the integrated fueling rate to control the mean location of the flame in the domain. We outline the numerical procedure, and illustrate the behavior of the control algorithm on methane flames at various equivalence ratios in two dimensions. The simulation data are used to study the local variation in the speed of propagation due to flame surface curvature.

  12. Field Effects of Buoyancy on Lean Premixed Turbulent Flames

    NASA Technical Reports Server (NTRS)

    Cheng, R. K.; Johnson, M. R.; Greenberg, P. S.; Wernet, M. P.

    2003-01-01

    The study of field effects of buoyancy on premixed turbulent flames is directed towards the advancement of turbulent combustion theory and the development of cleaner combustion technologies. Turbulent combustion is considered the most important unsolved problem in combustion science and laboratory studies of turbulence flame processes are vital to theoretical development. Although buoyancy is dominant in laboratory flames, most combustion models are not yet capable to consider buoyancy effects. This inconsistency has impeded the validation of theories and numerical simulations with experiments. Conversely, the understanding of buoyancy effects is far too limited to help develop buoyant flame models. Our research is also relevant to combustion technology because lean premixed combustion is a proven method to reduce the formation of oxides of nitrogen (NOx). In industrial lean premixed combustion systems, their operating conditions make them susceptible to buoyancy thus affecting heat distribution, emissions, stability, flashback and blowoff. But little knowledge is available to guide combustion engineers as to how to avoid or overcome these problems. Our hypothesis is that through its influence on the mean pressure field, buoyancy has direct and indirect effects on local flame/turbulence interactions. Although buoyancy acts on the hot products in the farfield the effect is also felt in the nearfield region upstream of the flame. These changes also influence the generation and dissipation of turbulent kinetic energy inside the flame brush and throughout the flowfield. Moreover, the plume of an open flame is unstable and the periodic fluctuations make additional contributions to flame front dynamics in the farfield. Therefore, processes such as flame wrinkling, flow acceleration due to heat release and flame- generated vorticity are all affected. Other global flame properties (e.g. flame stabilization limits and flame speed) may all be coupled to buoyancy. This

  13. Premixing quality and flame stability: A theoretical and experimental study

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, K.; Heywood, J. B.; Tabaczynski, R. J.

    1979-01-01

    Models for predicting flame ignition and blowout in a combustor primary zone are presented. A correlation for the blowoff velocity of premixed turbulent flames is developed using the basic quantities of turbulent flow, and the laminar flame speed. A statistical model employing a Monte Carlo calculation procedure is developed to account for nonuniformities in a combustor primary zone. An overall kinetic rate equation is used to describe the fuel oxidation process. The model is used to predict the lean ignition and blow out limits of premixed turbulent flames; the effects of mixture nonuniformity on the lean ignition limit are explored using an assumed distribution of fuel-air ratios. Data on the effects of variations in inlet temperature, reference velocity and mixture uniformity on the lean ignition and blowout limits of gaseous propane-air flames are presented.

  14. Blowoff dynamics of bluff body stabilized turbulent premixed flames

    SciTech Connect

    Chaudhuri, Swetaprovo; Kostka, Stanislav; Renfro, Michael W.; Cetegen, Baki M.

    2010-04-15

    This article concerns the flame dynamics of a bluff body stabilized turbulent premixed flame as it approaches lean blowoff. Time resolved chemiluminescence imaging along with simultaneous particle image velocimetry and OH planar laser-induced fluorescence were utilized in an axisymmetric bluff body stabilized, propane-air flame to determine the sequence of events leading to blowoff and provide a quantitative analysis of the experimental results. It was found that as lean blowoff is approached by reduction of equivalence ratio, flame speed decreases and the flame shape progressively changes from a conical to a columnar shape. For a stably burning conical flame away from blowoff, the flame front envelopes the shear layer vortices. Near blowoff, the columnar flame front and shear layer vortices overlap to induce high local stretch rates that exceed the extinction stretch rates instantaneously and in the mean, resulting in local flame extinction along the shear layers. Following shear layer extinction, fresh reactants can pass through the shear layers to react within the recirculation zone with all other parts of the flame extinguished. This flame kernel within the recirculation zone may survive for a few milliseconds and can reignite the shear layers such that the entire flame is reestablished for a short period. This extinction and reignition event can happen several times before final blowoff which occurs when the flame kernel fails to reignite the shear layers and ultimately leads to total flame extinguishment. (author)

  15. Numerical simulation of premixed H2-air cellular tubular flames

    NASA Astrophysics Data System (ADS)

    Hall, Carl Alan; Wendell Pitz, Robert

    2016-03-01

    The detailed flame structure of laminar premixed cellular flames in the tubular domain is simulated in 2D using a fully-implicit primitive variable finite difference formulation that includes multicomponent transport and detailed chemical kinetics. Numerical results for H2/air flames are presented and compared against spatially resolved experimental measurements of temperature and chemical species including atomic H and OH. The experimental results compare well for flame structure and cell number, despite the numerical model under-predicting the peak temperature by 200 K. Numerical experiments were performed to assess the ability for cellular tubular flames to impact experimental and numerical investigations of practical flames. The cellular flame structure is found to provide a highly sensitive geometry that is useful for validating diffusive transport modelling approximations. This capability is exemplified through the development of a simple and accurate approximation for thermal diffusion (i.e. the Soret effect) that is suitable for practical combustion codes.

  16. Characteristics of Non-Premixed Turbulent Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Hegde, U.; Yuan, Z. G.; Stocker, D. P.; Bahadori, M. Y.

    2001-01-01

    This project is concerned with the characteristics of turbulent hydrocarbon (primarily propane) gas-jet diffusion flames in microgravity. A microgravity environment provides the opportunity to study the structure of turbulent diffusion flames under momentum-dominated conditions (large Froude number) at moderate Reynolds number which is a combination not achievable in normal gravity. This paper summarizes progress made since the last workshop. Primarily, the features of flame radiation from microgravity turbulent jet diffusion flames in a reduced gravity environment are described. Tests were conducted for non-premixed, nitrogen diluted propane flames burning in quiescent air in the NASA Glenn 5.18 Second Zero Gravity Facility. Measured flame radiation from wedge-shaped, axial slices of the flame are compared for microgravity and normal gravity flames. Results from numerical computations of the flame using a k-e model for the turbulence are also presented to show the effects of flame radiation on the thermal field. Flame radiation is an important quantity that is impacted by buoyancy as has been shown in previous studies by the authors and also by Urban et al. It was found that jet diffusion flames burning under microgravity conditions have significantly higher radiative loss (about five to seven times higher) compared to their normal gravity counterparts because of larger flame size in microgravity and larger convective heat loss fraction from the flame in normal gravity. These studies, however, were confined to laminar flames. For the case of turbulent flames, the flame radiation is a function of time and both the time-averaged and time-dependent components are of interest. In this paper, attention is focused primarily on the time-averaged level of the radiation but the turbulent structure of the flame is also assessed from considerations of the radiation power spectra.

  17. Dynamics of premixed hydrogen/air flames in mesoscale channels

    SciTech Connect

    Pizza, Gianmarco; Frouzakis, Christos E.; Boulouchos, Konstantinos; Mantzaras, John; Tomboulides, Ananias G.

    2008-10-15

    Direct numerical simulation with detailed chemistry and transport is used to study the stabilization and dynamics of lean ({phi}=0.5) premixed hydrogen/air atmospheric pressure flames in mesoscale planar channels. Channel heights of h=2, 4, and 7 mm, and inflow velocities in the range 0.3{<=}U{sub IN}{<=}1100cm/ s are investigated. Six different burning modes are identified: mild combustion, ignition/extinction, closed steady symmetric flames, open steady symmetric flames, oscillating and, finally, asymmetric flames. Chaotic behavior of cellular flame structures is observed for certain values of U{sub IN}. Stability maps delineating the regions of the different flame types are finally constructed. (author)

  18. Accelerative propagation and explosion triggering by expanding turbulent premixed flames.

    PubMed

    Akkerman, V'yacheslav; Chaudhuri, Swetaprovo; Law, Chung K

    2013-02-01

    The dynamics and morphology of outwardly propagating, accelerating turbulent premixed flames and the effect of flame acceleration on explosion triggering are analyzed. Guided by recent theoretical results and substantiated by experiments, we find that an expanding flame front in an externally forced, near-isotropic turbulent environment exhibits accelerative propagation given by a well-defined power law based on the average global flame radius. In this context the limits of the power-law exponent and the effective turbulence intensity experienced by the flame are derived. The power-law exponent is found to be substantially larger than that for the hydrodynamically unstable cellular laminar flames, hence facilitating the possibility of detonation triggering in turbulent environments. For large length scales, hydrodynamic instability is expected to provide additional acceleration, thus further favoring the attainment of detonation triggering.

  19. Combustion mechanism of ultralean rotating counterflow twin premixed flame

    NASA Astrophysics Data System (ADS)

    Uemichi, Akane; Nishioka, Makihito

    2015-01-01

    In our previous numerical studies [Nishioka Makihito, Zhenyu Shen, and Akane Uemichi. "Ultra-lean combustion through the backflow of burned gas in rotating counterflow twin premixed flames." Combustion and Flame 158.11 (2011): 2188-2198. Uemichi Akane, and Makihito Nishioka. "Numerical study on ultra-lean rotating counterflow twin premixed flame of hydrogen-air." Proceedings of the Combustion Institute 34.1 (2013): 1135-1142]. we found that methane- and hydrogen-air rotating counterflow twin flames (RCTF) can achieve ultralean combustion when backward flow of burned gas occurs due to the centrifugal force created by rotation. In this study, we investigated the mechanisms of ultralean combustion in these flames by the detailed numerical analyses of the convective and diffusive transport of the main species. We found that, under ultralean conditions, the diffusive transport of fuel exceeds its backward convective transport in the flame zone, which is located on the burned-gas side of the stagnation point. In contrast, the relative magnitudes of diffusive and convective transport for oxygen are reversed compared to those for the fuel. The resulting flows for fuel and oxygen lead to what we call a 'net flux imbalance'. This net flux imbalance increases the flame temperature and concentrations of active radicals. For hydrogen-air RCTF, a very large diffusivity of hydrogen enhances the net flux imbalance, significantly increasing the flame temperature. This behaviour is intrinsic to a very lean premixed flame in which the reaction zone is located in the backflow of its own burned gas.

  20. Heat Transfer Effects on a Fully Premixed Methane Impinging Flame

    DTIC Science & Technology

    2014-10-30

    HEAT TRANSFER EFFECTS ON A FULLY PREMIXED METHANE IMPINGING FLAME D. Mira1, M. Zavala1, M. Avila1, H. Owen1, J.C. Cajas1, G. Houzeaux1 and M...to evaluate the numeri- cal algorithms and the effects of the thermal coupling with the flow dynamics is the case of a jet flame im- pinging on a...investigate the heat transfer effects and flow dynamics of an imping- ing flame with low nozzle-to-plate distance when the solid plate is considered non

  1. Spectral Kinetic Energy Transfer Through a Premixed Flame Brush

    NASA Astrophysics Data System (ADS)

    Towery, Colin A. Z.; Poludnenko, Alexei Y.; Hamlington, Peter E.

    2014-11-01

    Turbulence-flame interactions are of fundamental importance for understanding and modeling premixed turbulent reacting flows. These interactions can result in nonlinear feedback leading to large changes in both the turbulence and flame. Recent computational studies have indicated, however, that not all scales of turbulent motion are affected equally. Small-scale motions appear to be suppressed while larger-scale motions are unaffected or even enhanced. In order to determine the scale-dependence of turbulence-flame interactions, direct numerical simulations of statistically planar, premixed flames have been performed and analyzed. Two-dimensional kinetic energy spectra, conditioned on the planar-averaged fuel mass-fraction, are measured through the flame brush and compared to both compressible and incompressible non-reacting flow spectra. Changes in the spectra with respect to fuel mass-fraction are then connected to the dynamics of the kinetic energy spectrum transport equation. Particular focus is placed on understanding triadic velocity, pressure, and dilatation interactions, including the characterization of backscatter due to heat release and compressibility. Finally, the implications of these results for modeling practical premixed combustion problems are outlined.

  2. Partially Premixed Flame (PPF) Research for Fire Safety

    NASA Technical Reports Server (NTRS)

    Puri, Ishwar K.; Aggarwal, Suresh K.; Lock, Andrew J.; Hegde, Uday

    2004-01-01

    Incipient fires typically occur after the partial premixing of fuel and oxidizer. The mixing of product species into the fuel/oxidizer mixture influences flame stabilization and fire spread. Therefore, it is important to characterize the impact of different levels of fuel/oxidizer/product mixing on flame stabilization, liftoff and extinguishment under different gravity conditions. With regard to fire protection, the agent concentration required to achieve flame suppression is an important consideration. The initial stage of an unwanted fire in a microgravity environment will depend on the level of partial premixing and the local conditions such as air currents generated by the fire itself and any forced ventilation (that influence agent and product mixing into the fire). The motivation of our investigation is to characterize these impacts in a systematic and fundamental manner.

  3. Extinction conditions of a premixed flame in a channel

    SciTech Connect

    Alliche, Mounir; Haldenwang, Pierre; Chikh, Salah

    2010-06-15

    A local refinement method is used to numerically predict the propagation and extinction conditions of a premixed flame in a channel considering a thermodiffusive model. A local refinement method is employed because of the numerous length scales that characterize this phenomenon. The time integration is self adaptive and the solution is based on a multigrid method using a zonal mesh refinement in the flame reaction zone. The objective is to determine the conditions of extinction which are characterized by the flame structure and its properties. We are interested in the following properties: the curvature of the flame, its maximum temperature, its speed of propagation and the distance separating the flame from the wall. We analyze the influence of heat losses at the wall through the thermal conductivity of the wall and the nature of the fuel characterized by the Lewis number of the mixture. This investigation allows us to identify three propagation regimes according to heat losses at the wall and to the channel radius. The results show that there is an intermediate value of the radius for which the flame can bend and propagate provided that its curvature does not exceed a certain limit value. Indeed, small values of the radius will choke the flame and extinguish it. The extinction occurs if the flame curvature becomes too small. Furthermore, this study allows us to predict the limiting values of the heat loss coefficient at extinction as well as the critical value of the channel radius above which the premixed flame may propagate without extinction. A dead zone of length 2-4 times the flame thickness appears between the flame and the wall for a Lewis number (Le) between 0.8 and 2. For small values of Le, local extinctions are observed. (author)

  4. Behaviour of a Premixed Flame Subjected to Acoustic Oscillations

    PubMed Central

    Qureshi, Shafiq R.; Khan, Waqar A.; Prosser, Robert

    2013-01-01

    In this paper, a one dimensional premixed laminar methane flame is subjected to acoustic oscillations and studied. The purpose of this analysis is to investigate the effects of acoustic perturbations on the reaction rates of different species, with a view to their respective contribution to thermoacoustic instabilities. Acoustically transparent non reflecting boundary conditions are employed. The flame response has been studied with acoustic waves of different frequencies and amplitudes. The integral values of the reaction rates, the burning velocities and the heat release of the acoustically perturbed flame are compared with the unperturbed case. We found that the flame's sensitivity to acoustic perturbations is greatest when the wavelength is comparable to the flame thickness. Even in this case, the perturbations are stable with time. We conclude that acoustic fields acting on the chemistry do not contribute significantly to the emergence of large amplitude pressure oscillations. PMID:24376501

  5. Turbulent premixed flames on fractal-grid-generated turbulence

    NASA Astrophysics Data System (ADS)

    Soulopoulos, N.; Kerl, J.; Sponfeldner, T.; Beyrau, F.; Hardalupas, Y.; Taylor, A. M. K. P.; Vassilicos, J. C.

    2013-12-01

    A space-filling, low blockage fractal grid is used as a novel turbulence generator in a premixed turbulent flame stabilized by a rod. The study compares the flame behaviour with a fractal grid to the behaviour when a standard square mesh grid with the same effective mesh size and solidity as the fractal grid is used. The isothermal gas flow turbulence characteristics, including mean flow velocity and rms of velocity fluctuations and Taylor length, were evaluated from hot-wire measurements. The behaviour of the flames was assessed with direct chemiluminescence emission from the flame and high-speed OH-laser-induced fluorescence. The characteristics of the two flames are considered in terms of turbulent flame thickness, local flame curvature and turbulent flame speed. It is found that, for the same flow rate and stoichiometry and at the same distance downstream of the location of the grid, fractal-grid-generated turbulence leads to a more turbulent flame with enhanced burning rate and increased flame surface area.

  6. Vorticity isotropy in high Karlovitz number premixed flames

    NASA Astrophysics Data System (ADS)

    Bobbitt, Brock; Blanquart, Guillaume

    2016-10-01

    The isotropy of the smallest turbulent scales is investigated in premixed turbulent combustion by analyzing the vorticity vector in a series of high Karlovitz number premixed flame direct numerical simulations. It is found that increasing the Karlovitz number and the ratio of the integral length scale to the flame thickness both reduce the level of anisotropy. By analyzing the vorticity transport equation, it is determined that the vortex stretching term is primarily responsible for the development of any anisotropy. The local dynamics of the vortex stretching term and vorticity resemble that of homogeneous isotropic turbulence to a greater extent at higher Karlovitz numbers. This results in small scale isotropy at sufficiently high Karlovitz numbers and supports a fundamental similarity of the behavior of the smallest turbulent scales throughout the flame and in homogeneous isotropic turbulence. At lower Karlovitz numbers, the vortex stretching term and the vorticity alignment in the strain-rate tensor eigenframe are altered by the flame. The integral length scale has minimal impact on these local dynamics but promotes the effects of the flame to be equal in all directions. The resulting isotropy in vorticity does not reflect a fundamental similarity between the smallest turbulent scales in the flame and in homogeneous isotropic turbulence.

  7. Response mechanisms of attached premixed flames subjected to harmonic forcing

    NASA Astrophysics Data System (ADS)

    Shreekrishna

    The persistent thrust for a cleaner, greener environment has prompted air pollution regulations to be enforced with increased stringency by environmental protection bodies all over the world. This has prompted gas turbine manufacturers to move from nonpremixed combustion to lean, premixed combustion. These lean premixed combustors operate quite fuel-lean compared to the stochiometric, in order to minimize CO and NOx productions, and are very susceptible to oscillations in any of the upstream flow variables. These oscillations cause the heat release rate of the flame to oscillate, which can engage one or more acoustic modes of the combustor or gas turbine components, and under certain conditions, lead to limit cycle oscillations. This phenomenon, called thermoacoustic instabilities, is characterized by very high pressure oscillations and increased heat fluxes at system walls, and can cause significant problems in the routine operability of these combustors, not to mention the occasional hardware damages that could occur, all of which cumulatively cost several millions of dollars. In a bid towards understanding this flow-flame interaction, this research works studies the heat release response of premixed flames to oscillations in reactant equivalence ratio, reactant velocity and pressure, under conditions where the flame preheat zone is convectively compact to these disturbances, using the G-equation. The heat release response is quantified by means of the flame transfer function and together with combustor acoustics, forms a critical component of the analytical models that can predict combustor dynamics. To this end, low excitation amplitude (linear) and high excitation amplitude (nonlinear) responses of the flame are studied in this work. The linear heat release response of lean, premixed flames are seen to be dominated by responses to velocity and equivalence ratio fluctuations at low frequencies, and to pressure fluctuations at high frequencies which are in the

  8. Structural study of non-premixed tubular hydrocarbon flames

    SciTech Connect

    Hu, Shengteng; Pitz, Robert W.

    2009-01-15

    Tubular non-premixed flames are formed by a uniquely designed opposed tubular burner. Structural measurements of hydrocarbon flames are conducted using the laser-induced Raman scattering technique. Temperature and major species concentrations are recorded for flames produced by 30% CH{sub 4}/N{sub 2} and 15% C{sub 3}H{sub 8}/N{sub 2} burning against air. Numerical simulations of these flames with detailed chemistry show good agreement between the measured and simulated results. By comparing the numerical results of the tubular curved flames to those of the opposed-jet planar flames, it is shown that flame curvature towards the fuel stream strongly effects the temperature ({+-}80 K) of flames with low fuel Lewis number (15% H{sub 2}/N{sub 2}, Le{sub f} = 0.41). The effect of curvature on flames with high (15% C{sub 3}H{sub 8}/N{sub 2}, Le{sub f} = 1.51) and near-unity (30% CH{sub 4}/N{sub 2}, Le{sub f}{approx_equal}1) fuel Lewis numbers is much less. (author)

  9. Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV

    NASA Astrophysics Data System (ADS)

    Steinberg, Adam M.; Driscoll, James F.; Ceccio, Steven L.

    2008-06-01

    A new experimental method is described that provides high-speed movies of turbulent premixed flame wrinkling dynamics and the associated vorticity fields. This method employs cinema stereoscopic particle image velocimetry and has been applied to a turbulent slot Bunsen flame. Three-component velocity fields were measured with high temporal and spatial resolutions of 0.9 ms and 140 μm, respectively. The flame-front location was determined using a new multi-step method based on particle image gradients, which is described. Comparisons are made between flame fronts found with this method and simultaneous CH-PLIF images. These show that the flame contour determined corresponds well to the true location of maximum gas density gradient. Time histories of typical eddy-flame interactions are reported and several important phenomena identified. Outwardly rotating eddy pairs wrinkle the flame and are attenuated at they pass through the flamelet. Significant flame-generated vorticity is produced downstream of the wrinkled tip. Similar wrinkles are caused by larger groups of outwardly rotating eddies. Inwardly rotating pairs cause significant convex wrinkles that grow as the flame propagates. These wrinkles encounter other eddies that alter their behavior. The effects of the hydrodynamic and diffusive instabilities are observed and found to be significant contributors to the formation and propagation of wrinkles.

  10. The propagation of premixed flames in closed tubes

    NASA Astrophysics Data System (ADS)

    Matalon, Moshe; Metzener, Philippe

    1997-04-01

    A nonlinear evolution equation that describes the propagation of a premixed flame in a closed tube has been derived from the general conservation equations. What distinguishes it from other similar equations is a memory term whose origin is in the vorticity production at the flame front. The two important parameters in this equation are the tube's aspect ratio and the Markstein parameter. A linear stability analysis indicates that when the Markstein parameter [alpha] is above a critical value [alpha]c the planar flame is the stable equilibrium solution. For [alpha] below [alpha]c the planar flame is no longer stable and there is a band of growing modes. Numerical solutions of the full nonlinear equation confirm this conclusion. Starting with random initial conditions the results indicate that, after a short transient, a at flame develops when [alpha]>[alpha]c and it remains flat until it reaches the end of the tube. When [alpha]<[alpha]c, on the other hand, stable curved flames may develop down the tube. Depending on the initial conditions the flame assumes either a cellular structure, characterized by a finite number of cells convex towards the unburned gas, or a tulip shape characterized by a sharp indentation at the centre of the tube pointing toward the burned gases. In particular, if the initial conditions are chosen so as to simulate the elongated finger-like flame that evolves from an ignition source, a tulip flame evolves downstream. In accord with experimental observations the tulip shape forms only after the flame has travelled a certain distance down the tube, it does not form in short tubes and its formation depends on the mixture composition. While the initial deformation of the flame front is a direct result of the hydrodynamic instability, the actual formation of the tulip flame results from the vortical motion created in the burned gas which is a consequence of the vorticity produced at the flame front.

  11. Jet flow and premixed jet flame control by plasma swirler

    NASA Astrophysics Data System (ADS)

    Li, Gang; Jiang, Xi; Zhao, Yujun; Liu, Cunxi; Chen, Qi; Xu, Gang; Liu, Fuqiang

    2017-04-01

    A swirler based on dielectric barrier discharge plasma actuators is designed and its effectiveness in both jet flow and premixed jet flame control is demonstrated. In contrast to traditional spanwise-oriented actuators, plasma actuators are placed along the axial direction of the injector to induce a circumferential velocity to the main flow and create a swirl flow without any insertion or moving part. In the DBD plasma swirl injector, the discharge does not ignite the mixture nor does it induce flashback. Flame visualization is obtained by cameras while velocity profiles are obtained by Laser Doppler Anemometry measurements. The results obtained indicate the effectiveness of the new design.

  12. Stationary premixed flames in spherical and cylindrical geometries

    NASA Technical Reports Server (NTRS)

    Ronney, P. D.; Whaling, K. N.; Abbud-Madrid, A.; Gatto, J. L.; Pisowiscz, V. L.

    1994-01-01

    Stationary source-free spherical flames ('flame balls') in premixed combustible gases were studied by employing low-gravity (micro-g) environments in a drop tower and an aircraft flying parabolic trajectories to diminish the impact of buoyancy-induced convective flow. Flame balls were found in all mixture families tested when: (1) the Lewis number Le of the deficient reactant was sufficiently low; and (2) the compositions were sufficiently close to the flammability limits. Probably as a consequence of the reduction in buoyant convection, the flammability limits at micro-g were significantly more dilute than those at Earth gravity; for example, 3.35% H2 vs 4.0% H2 in lean H2-air mixtures. By comparison with analytical and computational models, it is inferred that the phenomenon is probably related to diffusive-thermal effects in low-Le mixtures in conjunction with flame-front curvature and radiative heat losses from the combustion products. The chemical reaction mechanism appears to play no qualitative role. In the aircraft experiments, the gravity levels (approximately equal 10(exp -2)g(sub 0)) were found to cause noticeable motion of flame balls due to buoyancy, which in turn influenced the behavior of flame balls. At these g levels, a new type of transient, nearly cylindrical flame structure, termed 'flame strings,' was observed.

  13. Non-premixed acoustically perturbed swirling flame dynamics

    SciTech Connect

    Idahosa, Uyi; Saha, Abhishek; Xu, Chengying; Basu, Saptarshi

    2010-09-15

    An investigation into the response of non-premixed swirling flames to acoustic perturbations at various frequencies (f{sub p}=0-315 Hz) and swirl intensities (S=0.09 and 0.34) is carried out. Perturbations are generated using a loudspeaker at the base of an atmospheric co-flow burner with resulting velocity oscillation amplitudes vertical stroke u'/U{sub avg} vertical stroke in the 0.03-0.30 range. The dependence of flame dynamics on the relative richness of the flame is investigated by studying various constant fuel flow rate flame configurations. Flame heat release rate is quantitatively measured using a photomultiplier with a 430 nm bandpass filter for observing CH* chemiluminescence which is simultaneously imaged with a phase-locked CCD camera. The flame response is observed to exhibit a low-pass filter characteristic with minimal flame response beyond pulsing frequencies of 200 Hz. Flames at lower fuel flow rates are observed to remain attached to the central fuel pipe at all acoustic pulsing frequencies. PIV imaging of the associated isothermal fields show the amplification in flame aspect ratio is caused by the narrowing of the inner recirculation zone (IRZ). Good correlation is observed between the estimated flame surface area and the heat release rate signature at higher swirl intensity flame configurations. A flame response index analogous to the Rayleigh criterion in non-forced flames is used to assess the potential for a strong flame response at specific perturbation configurations and is found to be a good predictor of highly responsive modes. Phase conditioned analysis of the flame dynamics yield additional criteria in highly responsive modes to include the effective amplitude of velocity oscillations induced by the acoustic pulsing. In addition, highly responsive modes were characterized by velocity to heat release rate phase differences in the {+-}{pi}/2 range. A final observed characteristic in highly responsive flames is a Strouhal number between

  14. High frequency acoustic wave scattering from turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Narra, Venkateswarlu

    This thesis describes an experimental investigation of high frequency acoustic wave scattering from turbulent premixed flames. The objective of this work was to characterize the scattered incoherent acoustic field and determine its parametric dependence on frequency, flame brush thickness, incident and measurement angles, mean velocity and flame speed. The experimental facility consists of a slot burner with a flat flame sheet that is approximately 15 cm wide and 12 cm tall. The baseline cold flow characteristics and flame sheet statistics were extensively characterized. Studies were performed over a wide range of frequencies (1-24 kHz) in order to characterize the role of the incident acoustic wave length. The spectrum of the scattered acoustic field showed distinct incoherent spectral sidebands on either side of the driving frequency. The scattered incoherent field was characterized in terms of the incoherent field strength and spectral bandwidth and related to the theoretical predictions. The role of the flame front wrinkling scale, i.e., flame brush thickness, was also studied. Flame brush thickness was varied independent of the mean velocity and flame speed by using a variable turbulence generator. Results are reported for five flame brush thickness cases, ranging from 1.2 mm to 5.2 mm. Some dependence of scattered field characteristics on flame brush thickness was observed, but the magnitude of the effect was much smaller than expected from theoretical considerations. The spatial dependence of the scattered field was investigated by measuring the scattered field at four measurement angles and exciting the flame at four incident angles. Theory predicts that these variations influence the spatial scale of the acoustic wave normal to the flame, a result confirmed by the measurements. Measurements were performed for multiple combinations of mean velocities and flame speeds. The scattered field was observed to depend strongly on the flame speed. Further analysis

  15. Premixed burner experiments: Geometry, mixing, and flame structure issues

    SciTech Connect

    Gupta, A.K.; Lewis, M.J.; Gupta, M.

    1995-10-01

    This research program is exploring techniques for improved fuel-air mixing, with the aim of achieving combustor operations up to stoichiometric conditions with minimal NO x and maximum efficiency. The experimental studies involve the use of a double-concentric natural gas burner that is operable in either premixed or non-premixed modes, and the system allows systematic variation of equivalence ratio, swirl strength shear length region and flow momentum in each annulus. Flame structures formed with various combinations of swirl strengths, flow throughput and equivalence ratios in premixed mode show the significant impact of swirl flow distribution on flame structure emanating from the mixedness. This impact on flame structure is expected to have a pronounced effect on the heat release rate and the emission of NO{sub x}. Thus, swirler design and configuration remains a key factor in the quest for completely optimized combustion. Parallel numerical studies of the flow and combustion phenomena were carried out, using the RSM and thek-{epsilon} turbulence models. These results have not only indicated the strengths and limitations of CFD in performance and pollutants emission predictions, but have provided guidelines on the size and strength of the recirculation produced and the spatio-temporal structure of the combustion flowfield. The first stage of parametric studies on geometry and operational parameters at Morgan State University have culminated in the completion of a one-dimensional flow code that is integrated with a solid, virtual model of the existing premixed burner. This coupling will provide the unique opportunity to study the impact of geometry on the flowfield and vice-versa, with particular emphasis on concurrent design optimization.

  16. Flame Oscillations In Non-Premixed Systems Diffusion Flames and Edge-Flames

    NASA Technical Reports Server (NTRS)

    Matalon, Moshe

    2003-01-01

    Diffusive-thermal instabilities are well known features of premixed and diffusion flames. In one of its form the instability appears as spontaneous oscillations. In premixed systems oscillations are predicted to occur when the effective Lewis number, defined as the ratio of the thermal diffusivity of the mixture to the mass diffusivity of the deficient component, is sufficiently larger than one. Oscillations would therefore occur in mixtures that are deficient in the less mobile reactant, namely in lean hydrocarbon-air or rich hydrogen-air mixtures. The theoretical predictions summarized above are in general agreement with experimental results; see for example [5] where a jet configuration was used and experiments were conducted for various inert-diluted propane and methane flames burning in inert-diluted oxygen. Nitrogen, argon and SF6 were used as inert in order to produce conditions of substantially different Lewis numbers and mixture strength. In accord with the predicted trend, it was found that oscillations arise at near extinction conditions, that for oscillations to occur it suffices that one of the two Lewis numbers be sufficiently large, and that oscillations are more likely to be observed when is relatively large.

  17. Direct simulations of premixed turbulent flames with nonunity Lewis numbers

    NASA Technical Reports Server (NTRS)

    Rutland, C. J.; Trouve, A.

    1993-01-01

    A principal effect of turbulence on premixed flames in the flamelet regime is to wrinkle the flame fronts. For nonunity Lewis numbers, Le is not equal to 1, the local flame structure is altered in curved regions. This effect is examined using direct numerical simulations of 3D isotropic turbulence with constant density, single-step Arrhenius kinetics chemistry. Simulations of Lewis numbers 0.8, 1.0, and 1.2 are compared. At the local level, curvature effects dominated changes to the flame structure while strain effects were insignificant. A strong Lewis-number-dependent correlation was found between surface curvature and the local flame speed. The correlation was positive for Le less than 1 and negative for Le greater than 1. At the global level, strain-related effects were more significant than curvature effects. The turbulent flame speed changed significantly with Lewis number, increasing as Le decreased. This was found to be due to strain effects that have a nonzero mean over the flame surface, rather than to curvature effects that have a nearly zero mean. The mean product temperature was also found to vary with Lewis number, being higher for Le greater than 1 and lower for Le less than 1.

  18. Temperature response of turbulent premixed flames to inlet velocity oscillations

    NASA Astrophysics Data System (ADS)

    Ayoola, B.; Hartung, G.; Armitage, C. A.; Hult, J.; Cant, R. S.; Kaminski, C. F.

    2009-01-01

    Flame-turbulence interactions are at the heart of modern combustion research as they have a major influence on efficiency, stability of operation and pollutant emissions. The problem remains a formidable challenge, and predictive modelling and the implementation of active control measures both rely on further fundamental measurements. Model burners with simple geometry offer an opportunity for the isolation and detailed study of phenomena that take place in real-world combustors, in an environment conducive to the application of advanced laser diagnostic tools. Lean premixed combustion conditions are currently of greatest interest since these are able to provide low NO x and improved increased fuel economy, which in turn leads to lower CO2 emissions. This paper presents an experimental investigation of the response of a bluff-body-stabilised flame to periodic inlet fluctuations under lean premixed turbulent conditions. Inlet velocity fluctuations were imposed acoustically using loudspeakers. Spatially resolved heat release rate imaging measurements, using simultaneous planar laser-induced fluorescence (PLIF) of OH and CH2O, have been performed to explore the periodic heat release rate response to various acoustic forcing amplitudes and frequencies. For the first time we use this method to evaluate flame transfer functions and we compare these results with chemiluminescence measurements. Qualitative thermometry based on two-line OH PLIF was also used to compare the periodic temperature distribution around the flame with the periodic fluctuation of local heat release rate during acoustic forcing cycles.

  19. Finite amplitude wave interaction with premixed laminar flames

    NASA Astrophysics Data System (ADS)

    Aslani, Mohamad; Regele, Jonathan D.

    2014-11-01

    The physics underlying combustion instability is an active area of research because of its detrimental impact in many combustion devices, such as turbines, jet engines, and liquid rocket engines. Pressure waves, ranging from acoustic waves to strong shocks, are potential sources of these disturbances. Literature on flame-disturbance interactions are primarily focused on either acoustics or strong shock wave interactions, with little information about the wide spectrum of behaviors that may exist between these two extremes. For example, the interaction between a flame and a finite amplitude compression wave is not well characterized. This phenomenon is difficult to study numerically due to the wide range of scales that need to be captured, requiring powerful and efficient numerical techniques. In this work, the interaction of a perturbed laminar premixed flame with a finite amplitude compression wave is investigated using the Parallel Adaptive Wavelet Collocation Method (PAWCM). This method optimally solves the fully compressible Navier-Stokes equations while capturing the essential scales. The results show that depending on the amplitude and duration of a finite amplitude disturbance, the interaction between these waves and premixed flames can produce a broad range of responses.

  20. The ``turbulent flame speed'' of wrinkled premixed flames

    NASA Astrophysics Data System (ADS)

    Matalon, Moshe; Creta, Francesco

    2012-11-01

    The determination of the turbulent flame speed is a central problem in combustion theory. Early studies by Damköhler and Shelkin resorted to geometrical and scaling arguments to deduce expressions for the turbulent flame speed and its dependence on turbulence intensity. A more rigorous approach was undertaken by Clavin and Williams who, based on a multi-scale asymptotic approach valid for weakly wrinkled flames, derived an expression that apart from a numerical factor recaptures the early result by Damköhler and Shelkin. The common denominator of the phenomenological and the more rigorous propositions is an increase in turbulent flame speed due solely to an increase in flame surface area. Various suggestions based on physical and/or experimental arguments have been also proposed, incorporating other functional parameters into the flame speed relation. The objective of this work is to extend the asymptotic results to a fully nonlinear regime that permits to systematically extract scaling laws for the turbulent flame speed that depend on turbulence intensity and scale, mixture composition and thermal expansion, flow conditions including effects of curvature and strain, and flame instabilities. To this end, we use a hybrid Navier-Stokes/front-capturing methodology, which consistently with the asymptotic model, treats the flame as a surface of density discontinuity separating burned and unburned gases. The present results are limited to positive Markstein length, corresponding to lean hydrocarbon-air or rich hydrogen-air mixtures, and to wrinkled flames of vanishingly small thickness, smaller that the smallest fluid scales. For simplicity we have considered here two-dimensional turbulence, which although lacks some features of real three-dimensional turbulence, is not detrimental when using the hydrodynamic model under consideration, because the turbulent flame retains its laminar structure and its interaction with turbulence is primarily advective/kinematic in

  1. Preflame zone structure and main features of fuel conversion in atmospheric pressure premixed laminar hydrocarbon flames

    SciTech Connect

    Ksandopulo, G.I.

    1995-08-25

    This report describes the structure study of the premixed hydrocarbon-oxidizer Bunsen flames burning at the atmospheric pressure and also the ones with some inhibitors added. Studies were performed on hexane, propane, methane, acetylene, and hexene flames.

  2. Premixed flame propagation in combustible particle cloud mixtures

    NASA Technical Reports Server (NTRS)

    Seshadri, K.; Yang, B.

    1993-01-01

    The structures of premixed flames propagating in combustible systems, containing uniformly distributed volatile fuel particles, in an oxidizing gas mixtures is analyzed. The experimental results show that steady flame propagation occurs even if the initial equivalence ratio of the combustible mixture based on the gaseous fuel available in the particles, phi(u) is substantially larger than unity. A model is developed to explain these experimental observations. In the model it is presumed that the fuel particles vaporize first to yield a gaseous fuel of known chemical composition which then reacts with oxygen in a one-step overall process. It is shown that the interplay of vaporization kinetics and oxidation process, can result in steady flame propagation in combustible mixtures where the value of phi(u) is substantially larger than unity. This prediction is in agreement with experimental observations.

  3. Premixed-Gas Flame Propagation in Hele-Shaw Cells

    NASA Technical Reports Server (NTRS)

    Sharif, J.; Abid, M.; Ronney, P. D.

    1999-01-01

    It is well known that buoyancy and thermal expansion affect the propagation ra and shapes of premixed gas flames. The understanding of such effects is complicated by the large density ratio between the reactants and products, which induces a baroclinic production of vorticity due to misalignment of density and pressure gradients at the front, which in turn leads to a complicated multi-dimensional flame/flow interaction. The Hele-Shaw cell, i.e., the region between closely-spaced flat parallel plates, is probably the simplest system in which multi-dimensional convection is presents consequently, the behavior of fluids in this system has been studied extensively (Homsy, 1987). Probably the most important characteristic of Hele-Shaw flows is that when the Reynolds number based on gap width is sufficiently small, the Navier-Stokes equations averaged over the gap reduce to a linear relation, namely a Laplace equation for pressure (Darcy's law). In this work, flame propagation in Hele-Shaw cells is studied to obtain a better understanding of buoyancy and thermal expansion effects on premixed flames. This work is also relevant to the study of unburned hydrocarbon emissions produced by internal combustion engines since these emissions are largely a result of the partial burning or complete flame quenching in the narrow, annular gap called the "crevice volume" between the piston and cylinder walls (Heywood, 1988). A better understanding of how flames propagate in these volumes through experiments using Hele-Shaw cells could lead to identification of means to reduce these emissions.

  4. A high-pressure premixed flat-flame burner for chemical process studies. [of pollutant formation in hydrocarbon flames

    NASA Technical Reports Server (NTRS)

    Miller, I. M.

    1978-01-01

    A premixed flat-flame burner was designed and tested with methane-air mixtures at pressures from 1.1 to 20 atm and equivalence ratios from 0.7 to 1.1. Reactant velocity in the burner mixing chamber was used to characterize the range of stable flames at each pressure-equivalence-ratio condition. Color photographs of the flames were used to determine flame zone thickness and flame height. The results show that this burner can be used for chemical process studies in premixed high pressure methane-air flames up to 20 atm.

  5. Flame-Generated Vorticity Production in Premixed Flame-Vortex Interactions

    NASA Technical Reports Server (NTRS)

    Patnaik, G.; Kailasanath, K.

    2003-01-01

    In this study, we use detailed time-dependent, multi-dimensional numerical simulations to investigate the relative importance of the processes leading to FGV in flame-vortex interactions in normal gravity and microgravity and to determine if the production of vorticity in flames in gravity is the same as that in zero gravity except for the contribution of the gravity term. The numerical simulations will be performed using the computational model developed at NRL, FLAME3D. FLAME3D is a parallel, multi-dimensional (either two- or three-dimensional) flame model based on FLIC2D, which has been used extensively to study the structure and stability of premixed hydrogen and methane flames.

  6. Numerical simulation of premixed flame propagation in a closed tube

    NASA Astrophysics Data System (ADS)

    Kuzuu, Kazuto; Ishii, Katsuya; Kuwahara, Kunio

    1996-08-01

    Premixed flame propagation of methane-air mixture in a closed tube is estimated through a direct numerical simulation of the three-dimensional unsteady Navier-Stokes equations coupled with chemical reaction. In order to deal with a combusting flow, an extended version of the MAC method, which can be applied to a compressible flow with strong density variation, is employed as a numerical method. The chemical reaction is assumed to be an irreversible single step reaction between methane and oxygen. The chemical species are CH 4, O 2, N 2, CO 2, and H 2O. In this simulation, we reproduce a formation of a tulip flame in a closed tube during the flame propagation. Furthermore we estimate not only a two-dimensional shape but also a three-dimensional structure of the flame and flame-induced vortices, which cannot be observed in the experiments. The agreement between the calculated results and the experimental data is satisfactory, and we compare the phenomenon near the side wall with the one in the corner of the tube.

  7. Time-dependent Computational Studies of Premixed Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Kailasanath, K.; Patnaik, Gopal; Oran, Elaine S.

    1993-01-01

    This report describes the research performed at the Center for Reactive Flow and Dynamical Systems in the Laboratory for Computational Physics and Fluid Dynamics, at the Naval Research Laboratory, in support of NASA Microgravity Science and Applications Program. The primary focus of this research is on investigating fundamental questions concerning the propagation and extinction of premixed flames in earth gravity and in microgravity environments. Our approach is to use detailed time-dependent, multispecies, numerical models as tools to simulate flames in different gravity environments. The models include a detailed chemical kinetics mechanism consisting of elementary reactions among the eight reactive species involved in hydrogen combustion, coupled to algorithms for convection, thermal conduction, viscosity, molecular and thermal diffusion, and external forces. The external force, gravity, can be put in any direction relative to flame propagation and can have a range of values. Recently more advanced wall boundary conditions such as isothermal and no-slip have been added to the model. This enables the simulation of flames propagating in more practical systems than before. We have used the numerical simulations to investigate the effects of heat losses and buoyancy forces on the structure and stability of flames, to help resolve fundamental questions on the existence of flammability limits when there are no external losses or buoyancy forces in the system, to understand the interaction between the various processes leading to flame instabilities and extinguishment, and to study the dynamics of cell formation and splitting. Our studies have been able to bring out the differences between upward- and downward-propagating flames and predict the zero-gravity behavior of these flames. The simulations have also highlighted the dominant role of wall heat losses in the case of downward-propagating flames. The simulations have been able to qualitatively predict the

  8. Experimental study on the flame behaviors of premixed methane/air mixture in horizontal rectangular ducts

    NASA Astrophysics Data System (ADS)

    Chen, Dongliang; Sun, Jinhua; Chen, Sining; Liu, Yi; Chu, Guanquan

    2007-01-01

    In order to explore the flame propagation characteristics and tulip flame formation mechanism of premixed methane/air mixture in horizontal rectangular ducts, the techniques of Schlieren and high-speed video camera are used to study the flame behaviors of the premixed gases in a closed duct and opened one respectively, and the propagation characteristics in both cases and the formation mechanism of the tulip flame are analyzed. The results show that, the propagation flame in a closed duct is prior to form a tulip flame structure than that in an opened duct, and the tulip flame structure formation in a closed duct is related to the flame propagation velocity decrease. The sharp decrease of the flame propagation velocity is one of the reasons to the tulip flame formation, and the decrease of the flame propagation velocity is due to the decrease of the burned product flow velocity mainly.

  9. On flame kernel formation and propagation in premixed gases

    SciTech Connect

    Eisazadeh-Far, Kian; Metghalchi, Hameed; Parsinejad, Farzan; Keck, James C.

    2010-12-15

    Flame kernel formation and propagation in premixed gases have been studied experimentally and theoretically. The experiments have been carried out at constant pressure and temperature in a constant volume vessel located in a high speed shadowgraph system. The formation and propagation of the hot plasma kernel has been simulated for inert gas mixtures using a thermodynamic model. The effects of various parameters including the discharge energy, radiation losses, initial temperature and initial volume of the plasma have been studied in detail. The experiments have been extended to flame kernel formation and propagation of methane/air mixtures. The effect of energy terms including spark energy, chemical energy and energy losses on flame kernel formation and propagation have been investigated. The inputs for this model are the initial conditions of the mixture and experimental data for flame radii. It is concluded that these are the most important parameters effecting plasma kernel growth. The results of laminar burning speeds have been compared with previously published results and are in good agreement. (author)

  10. Rayleigh-Taylor Instability in non-premixed reacting flames.

    NASA Astrophysics Data System (ADS)

    Attal, Nitesh; Ramaprabhu, Praveen

    2015-11-01

    The Rayleigh-Taylor instability (RTI) occurs at a perturbed interface between fluids of different densities when a light fluid pushes a heavier fluid. The mixing driven by RTI affects several physical phenomena, such as Inertial Confinement Fusion, Supernovae detonation, centrifugal combustors and liquid rocket engines. The RTI in such flows is often coupled with chemical/nuclear reactions that may form complex density stratifications in the form of flames or ablative layers. We investigate such a non-premixed fuel-air interface subject to a constant acceleration and developing under the influence of chemical reactions using high-resolution, Navier-Stokes simulations. The H2 fuel is diluted with N2 to vary the density difference across the interface in thermal equilibrium (at 1000K). The intervening layer between fuel and air is subject to exothermic combustion reactions to form a flame. Following combustion, initially unstable fuel-air interfaces at an Atwood number (At) <0.5, transform into stable (fuel-flame) and unstable (flame-air) interfaces. We report on interfaces (At = 0.2 and 0.6) with single wavelength, sinusoidal perturbations and a broadband spectrum of multimode perturbations.

  11. Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame – an analysis of flame stretch and flame thickening [Direct numerical simulations of a high Ka laboratory premixed jet flame - an analysis of flame stretch and flame thickening

    DOE PAGES

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.; ...

    2017-02-23

    This article reports an analysis of the first detailed chemistry direct numerical simulation (DNS) of a high Karlovitz number laboratory premixed flame. The DNS results are first compared with those from laser-based diagnostics with good agreement. The subsequent analysis focuses on a detailed investigation of the flame area, its local thickness and their rates of change in isosurface following reference frames, quantities that are intimately connected. The net flame stretch is demonstrated to be a small residual of large competing terms: the positive tangential strain term and the negative curvature stretch term. The latter is found to be driven bymore » flame speed–curvature correlations and dominated in net by low probability highly curved regions. Flame thickening is demonstrated to be substantial on average, while local regions of flame thinning are also observed. The rate of change of the flame thickness (as measured by the scalar gradient magnitude) is demonstrated, analogously to flame stretch, to be a competition between straining tending to increase gradients and flame speed variations in the normal direction tending to decrease them. The flame stretch and flame thickness analyses are connected by the observation that high positive tangential strain rate regions generally correspond with low curvature regions; these regions tend to be positively stretched in net and are relatively thinner compared with other regions. Finally, high curvature magnitude regions (both positive and negative) generally correspond with lower tangential strain; these regions are in net negatively stretched and thickened substantially.« less

  12. Measurements and modeling of nitric oxide formation in counterflow, premixed, methane/oxygen/nitrogen flames

    NASA Astrophysics Data System (ADS)

    Thomsen, Duane Douglas

    1999-10-01

    Laser-induced fluorescence (LIF) measurements of NO concentration in a variety of CH4/O2/N2 flames are used to evaluate the chemical kinetics of NO formation. The analysis begins with previous measurements in flat, laminar, premixed CH4/O2/N 2 flames stabilized on a water-cooled McKenna burner at pressures ranging from 1 to 14.6 atm, equivalence ratios from 0.5 to 1.6, and volumetric nitrogen/oxygen dilution ratios of 2.2, 3.1 and 3.76. These measured results are compared to predictions to determine the capabilities and limitations of the comprehensive kinetic mechanism developed by the Gas Research Institute (GRI), version 2.11. The model is shown to predict well the qualitative trends of NO formation in lean-premixed flames, while quantitatively underpredicting NO concentration by 30-50%. For rich flames, the model is unable to even qualitatively match the experimental results. These flames were found to be limited by low temperatures and an inability to separate the flame from the burner surface. In response to these limitations, a counterflow burner was designed for use in opposed premixed flame studies. A new LIF calibration technique was developed and applied to obtain quantitative measurements of NO concentration in laminar, counterflow premixed, CH 4/O2/N2 flames at pressures ranging from 1 to 5.1 atm, equivalence ratios of 0.6 to 1.5, and an N2/O2 dilution ratio of 3.76. The counterflow premixed flame measurements are combined with measurements in burner-stabilized premixed flames and counterflow diffusion flames to build a comprehensive database for analysis of the GRI kinetic mechanism. Pathways, quantitative reaction path and sensitivity analyses are applied to the GRI mechanism for these flame conditions. The prompt NO mechanism is found to severely underpredict the amount of NO formed in rich premixed and nitrogen-diluted diffusion flames. This underprediction is traced to uncertainties in the CH kinetics as well as in the nitrogen oxidation chemistry

  13. Assessment of turbulence-chemistry interaction models in the computation of turbulent non-premixed flames

    NASA Astrophysics Data System (ADS)

    Lewandowski, M. T.; Pozorski, J.

    2016-10-01

    The present work reports on the assessment of different turbulence-chemistry interaction closures for the modelling of turbulent non-premixed combustion. Two-dimensional axisymmetric simulations have been carried out based on three different laboratory flames. The methane fueled, piloted jet flame Sandia D, the simple jet syngas flame and the so-called Delft Jet-in-Hot Coflow flame are studied. All the flames can be characterised as non-premixed but differ by some features which are taken into account through appropriate modelling approach.

  14. The Behavior of Methane-Air Partially Premixed Flames Under Normal- and Zero-G Conditions

    NASA Technical Reports Server (NTRS)

    Puri, Ishwar K.; Aggarwal, Suresh K.; Choi, Chun Wai; Hegde, Uday

    2001-01-01

    Partially premixed flames (PPFs) represent a class of hybrid flames containing multiple reaction zones. These flames are established when less than stoichiometric quantity of oxidizer is molecularly mixed with the fuel stream before entering the reaction zone where additional oxidizer is available for complete combustion. This mode of combustion can be used to exploit the advantages of both nonpremixed and premixed flames regarding operational safety, lower pollutant emissions and flame stabilization. A double flame containing a fuel-rich premixed reaction zone, which is anchored by a nonpremixed reaction zone, is one example of a partially premixed flame. A triple flame is also a PPF that contains three reaction zones, namely, a fuel-rich premixed zone, a fuel-lean premixed zone, and a nonpremixed reaction zone. Herein we focus on two aspects of our investigation, one involving the development of optical diagnostics that can be used on a microgravity rig, which has been recently fabricated, and the other on the numerically predicted differences between normal- and zero-gravity PPFs. Both the measurements and simulations examine the detailed structure of methane-air PPFs stabilized on a Wolfhard-Parker slot burner.

  15. Soot Formation in Purely-Curved Premixed Flames and Laminar Flame Speeds of Soot-Forming Flames

    NASA Technical Reports Server (NTRS)

    Buchanan, Thomas; Wang, Hai

    2005-01-01

    The research addressed here is a collaborative project between University of Delaware and Case Western Reserve University. There are two basic and related scientific objectives. First, we wish to demonstrate the suitability of spherical/cylindrical, laminar, premixed flames in the fundamental study of the chemical and physical processes of soot formation. Our reasoning is that the flame standoff distance in spherical/cylindrical flames under microgravity can be substantially larger than that in a flat burner-stabilized flame. Therefore the spherical/cylindrical flame is expected to give better spatial resolution to probe the soot inception and growth chemistry than flat flames. Second, we wish to examine the feasibility of determining the laminar flame speed of soot forming flames. Our basic assumption is that under the adiabatic condition (in the absence of conductive heat loss), the amount and dynamics of soot formed in the flame is unique for a given fuel/air mixture. The laminar flame speed can be rigorously defined as long as the radiative heat loss can be determined. This laminar flame speed characterizes the flame soot formation and dynamics in addition to the heat release rate. The research involves two integral parts: experiments of spherical and cylindrical sooting flames in microgravity (CWRU), and the computational counterpart (UD) that aims to simulate sooting laminar flames, and the sooting limits of near adiabatic flames. The computations work is described in this report, followed by a summary of the accomplishments achieved to date. Details of the microgra+ experiments will be discussed in a separate, final report prepared by the co-PI, Professor C-J. Sung of CWRU. Here only a brief discussion of these experiments will be given.

  16. RANS/PDF and LES/FDF for prediction of turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Yilmaz, Server Levent

    Probability density function (PDF) and filtered density function (FDF) methodologies are developed and implemented, respectively, for Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) of turbulent premixed flames. RANS predictions are made of a lean premixed bluff-body flame via the joint velocity-scalar-frequency PDF model. LES of a premixed Bunsen-burner flame is conducted via the scalar FDF methodology. Both simulations employ finite rate kinetics via a reduced methane chemistry mechanism to account for combustion. Prediction results are compared with experimental data, and are shown to capture some of the intricate physics of turbulent premixed combustion. Keywords. large eddy simulation, filtered density function, Reynolds-averaged Navier-Stokes, probability density function, turbulent reacting flows, lean premixed combustion.

  17. PREMIXED FLAME PROPAGATION AND MORPHOLOGY IN A CONSTANT VOLUME COMBUSTION CHAMBER

    SciTech Connect

    Hariharan, A; Wichman, IS

    2014-06-04

    This work presents an experimental and numerical investigation of premixed flame propagation in a constant volume rectangular channel with an aspect ratio of six (6) that serves as a combustion chamber. Ignition is followed by an accelerating cusped finger-shaped flame-front. A deceleration of the flame is followed by the formation of a "tulip"-shaped flame-front. Eventually, the flame is extinguished when it collides with the cold wall on the opposite channel end. Numerical computations are performed to understand the influence of pressure waves, instabilities, and flow field effects causing changes to the flame structure and morphology. The transient 2D numerical simulation results are compared with transient 3D experimental results. Issues discussed are the appearance of oscillatory motions along the flame front and the influences of gravity on flame structure. An explanation is provided for the formation of the "tulip" shape of the premixed flame front.

  18. The dynamics of turbulent premixed flames: Mechanisms and models for turbulence-flame interaction

    NASA Astrophysics Data System (ADS)

    Steinberg, Adam M.

    The use of turbulent premixed combustion in engines has been garnering renewed interest due to its potential to reduce NOx emissions. However there are many aspects of turbulence-flame interaction that must be better understood before such flames can be accurately modeled. The focus of this dissertation is to develop an improved understanding for the manner in which turbulence interacts with a premixed flame in the 'thin flamelet regime'. To do so, two new diagnostics were developed and employed in a turbulent slot Bunsen flame. These diagnostics, Cinema-Stereoscopic Particle Image Velocimetry and Orthogonal-Plane Cinema-Stereoscopic Particle Image Velocimetry, provided temporally resolved velocity and flame surface measurements in two- and three-dimensions with rates of up to 3 kHz and spatial resolutions as low as 280 mum. Using these measurements, the mechanisms with which turbulence generates flame surface area were studied. It was found that the previous concept that flame stretch is characterized by counter-rotating vortex pairs does not accurately describe real turbulence-flame interactions. Analysis of the experimental data showed that the straining of the flame surface is determined by coherent structures of fluid dynamic strain rate, while the wrinkling is caused by vortical structures. Furthermore, it was shown that the canonical vortex pair configuration is not an accurate reflection of the real interaction geometry. Hence, models developed based on this geometry are unlikely to be accurate. Previous models for the strain rate, curvature stretch rate, and turbulent burning velocity were evaluated. It was found that the previous models did not accurately predict the measured data for a variety of reasons: the assumed interaction geometries did not encompass enough possibilities to describe the possible effects of real turbulence, the turbulence was not properly characterized, and the transport of flame surface area was not always considered. New models

  19. An Investigation of a Hybrid Mixing Model for PDF Simulations of Turbulent Premixed Flames

    NASA Astrophysics Data System (ADS)

    Zhou, Hua; Li, Shan; Wang, Hu; Ren, Zhuyin

    2015-11-01

    Predictive simulations of turbulent premixed flames over a wide range of Damköhler numbers in the framework of Probability Density Function (PDF) method still remain challenging due to the deficiency in current micro-mixing models. In this work, a hybrid micro-mixing model, valid in both the flamelet regime and broken reaction zone regime, is proposed. A priori testing of this model is first performed by examining the conditional scalar dissipation rate and conditional scalar diffusion in a 3-D direct numerical simulation dataset of a temporally evolving turbulent slot jet flame of lean premixed H2-air in the thin reaction zone regime. Then, this new model is applied to PDF simulations of the Piloted Premixed Jet Burner (PPJB) flames, which are a set of highly shear turbulent premixed flames and feature strong turbulence-chemistry interaction at high Reynolds and Karlovitz numbers. Supported by NSFC 51476087 and NSFC 91441202.

  20. Hydrodynamics of Spherical Flows and Geometry of Premixed Flames near the Stagnation Point of Axisymmetric Viscous Counterflows

    NASA Technical Reports Server (NTRS)

    Sohrab, Siavash H.

    1999-01-01

    Counterflow premixed flames play a significant role in the modeling of laminar flames. This is in part motivated by the fact that stretched premixed flames simulate local flamelet dynamics within turbulent premixed flames. In the present study, the modified form of the Navier-Stokes equation for reactive fields introduced earlier is employed to investigate the hydrodynamics of spherical flows embedded within counterflows. The geometry of premixed flames near the stagnation point is also determined. The predictions are in favorable agreement with the experimental observations and prior numerical studies.

  1. On the Structure and Stabilization Mechanisms of Planar and Cylindrical Premixed Flames

    NASA Technical Reports Server (NTRS)

    Eng, James A.; Zhu, Delin; Law, Chung K.

    1993-01-01

    The configurational simplicity of the stationary one-dimensional flames renders them intrinsically attractive for fundamental flame structure studies. The possibility and fidelity of studies of such flames on earth, however, have been severely restricted by the unidirectional nature of the gravity vector. To demonstrate these complications, let us first consider the premixed flame. Here a stationary, one-dimensional flame can be established by using the flat-flame burner. We next consider nonpremixed flames. First it may be noted that in an unbounded gravity-free environment, the only stationary one-dimensional flame is the spherical flame. Indeed, this is a major motivation for the study of microgravity droplet combustion, in which the gas-phase processes can be approximated to be quasi-steady because of the significant disparity between the gas and liquid densities for subcritical combustion. In view of the above considerations, an experimental and theoretical program on cylindrical and spherical premixed and nonpremixed flames in microgravity has been initiated. For premixed flames, we are interested in: (1) assessing the heat loss versus flow divergence as the dominant stabilization mechanism; (2) determining the laminar flame speed by using this configuration; and (3) understanding the development of flamefront instability and the effects of the flame curvature on the burning intensity.

  2. A theoretical and experimental study of preferential-diffusion/stretch interactions of laminar premixed flames

    NASA Astrophysics Data System (ADS)

    Kwon, Oh Chae

    Recent work shows that preferential-diffusion/stretch interactions of laminar premixed flames are sufficiently robust to affect the stability of practical strongly-turbulent flames. In addition, past measurements of laminar burning velocities should be re-assessed because there generally was no attempt to control flame stretch. Finally, the sensitivity of laminar premixed flames to stretch (represented by the Markstein number) should be studied to better understand and model the properties of laminar premixed flames. Motivated by these considerations, an experimental and computational study of preferential-diffusion/stretch interactions for laminar premixed flames, for both alkane/alcohol-fuel-vapor-fueled flames (as practical fuels) and hydrogen-fueled flames (considering diluent-variation effects) was carried out during the present investigation. Considering outwardly-propagating spherical laminar premixed flames, laminar burning velocities of fuel-vapor/oxygen/nitrogen flames and hydrogen/oxygen/diluent (nitrogen, argon or helium) flames were measured for various values of stretch, fuel-equivalence ratios (0.6--4.5) and pressures (0.3--3 atm). The measurements were reduced to find fundamental unstretched laminar burning velocities and Markstein numbers. The measurements were also used to evaluate corresponding numerical simulations of the experimentally-observed flames, based on contemporary detailed H2/O2 reaction mechanisms. Both measured and predicted ratios of unstretched to stretched laminar burning velocities varied linearly with flame stretch (represented by the Karlovitz number), yielding a constant Markstein number for a particular reactant mixture. The present flames were very sensitive to flame stretch (i.e., they had large Markstein numbers with significant ratios of unstretched to stretched laminar burning velocities) for levels of flame stretch well below quenching conditions. Increasing flame temperatures tended to reduce flame sensitivity to

  3. The flame anchoring mechanism and associated flow structure in bluff-body stabilized lean premixed flames

    NASA Astrophysics Data System (ADS)

    Michaels, Dan; Shanbhogue, Santosh; Ghoniem, Ahmed

    2015-11-01

    We present numerical analysis of a lean premixed flame anchoring on a heat conducting bluff-body. Different mixtures of CH4/H2/air are analyzed in order to systematically vary the burning velocity, adiabatic flame temperature and extinction strain rate. The study was motivated by our experimental measurements in a step combustor which showed that both the recirculation zone length and stability map under acoustically coupled conditions for different fuels and thermodynamic conditions collapse using the extinction strain rate. The model fully resolves unsteady two-dimensional flow with detailed chemistry and species transport, and without artificial flame anchoring boundary conditions. The model includes a low Mach number operator-split projection algorithm, coupled with a block-structured adaptive mesh refinement and an immersed boundary method for the solid body. Calculations reveal that the recirculation zone length correlates with the flame extinction strain rate, consistent with the experimental evidence. It is found that in the vicinity of the bluff body the flame is highly stretched and its leading edge location is controlled by the reactants combustion characteristics under high strain. Moreover, the flame surface location relative to the shear layer influences the vorticity thus impacting the velocity field and the recirculation zone. The study sheds light on the experimentally observed collapse of the combustor dynamics using the reactants extinction strain rate.

  4. Tabulated Combustion Model Development For Non-Premixed Flames

    NASA Astrophysics Data System (ADS)

    Kundu, Prithwish

    Turbulent non-premixed flames play a very important role in the field of engineering ranging from power generation to propulsion. The coupling of fluid mechanics and complicated combustion chemistry of fuels pose a challenge for the numerical modeling of these type of problems. Combustion modeling in Computational Fluid Dynamics (CFD) is one of the most important tools used for predictive modeling of complex systems and to understand the basic fundamentals of combustion. Traditional combustion models solve a transport equation of each species with a source term. In order to resolve the complex chemistry accurately it is important to include a large number of species. However, the computational cost is generally proportional to the cube of number of species. The presence of a large number of species in a flame makes the use of CFD computationally expensive and beyond reach for some applications or inaccurate when solved with simplified chemistry. For highly turbulent flows, it also becomes important to incorporate the effects of turbulence chemistry interaction (TCI). The aim of this work is to develop high fidelity combustion models based on the flamelet concept and to significantly advance the existing capabilities. A thorough investigation of existing models (Finite-rate chemistry and Representative Interactive Flamelet (RIF)) and comparative study of combustion models was done initially on a constant volume combustion chamber with diesel fuel injection. The CFD modeling was validated with experimental results and was also successfully applied to a single cylinder diesel engine. The effect of number of flamelets on the RIF model and flamelet initialization strategies were studied. The RIF model with multiple flamelets is computationally expensive and a model was proposed on the frame work of RIF. The new model was based on tabulated chemistry and incorporated TCI effects. A multidimensional tabulated chemistry database generation code was developed based on the 1

  5. Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame

    NASA Astrophysics Data System (ADS)

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.

    2016-09-01

    In the present work, direct numerical simulation (DNS) of a laboratory premixed turbulent jet flame was performed to study turbulence-flame interactions. The turbulent flame features moderate Reynolds number and high Karlovitz number (Ka). The orientations of the flame normal vector n, the vorticity vector ω and the principal strain rate eigenvectors ei are examined. The in-plane and out-of-plane angles are introduced to quantify the vector orientations, which also measure the flame geometry and the vortical structures. A general observation is that the distributions of these angles are more isotropic downstream as the flame and the flow become more developed. The out-of-plane angle of the flame normal vector, β, is a key parameter in developing the correction of 2D measurements to estimate the corresponding 3D quantities. The DNS results show that the correction factor is unity at the inlet and approaches its theoretical value of an isotropic distribution downstream. The alignment characteristics of n, ω and ei, which reflect the interactions of turbulence and flame, are also studied. Similar to a passive scalar gradient in non-reacting flows, the flame normal has a tendency to align with the most compressive strain rate, e3, in the flame, indicating that turbulence contributes to the production of scalar gradient. The vorticity dynamics are examined via the vortex stretching term, which was found to be the predominant source of vorticity generation balanced by dissipation, in the enstrophy transport equation. It is found that although the vorticity preferentially aligns with the intermediate strain rate, e2, the contribution of the most extensive strain rate, e1, to vortex stretching is comparable with that of the intermediate strain rate, e2. This is because the eigenvalue of the most extensive strain rate, λ1, is always large and positive. It is confirmed that the vorticity vector is preferentially positioned along the flame tangential plane, contributing

  6. Analysis of Turbulent Scales of Motion in Premixed Flames Using Structure Functions

    NASA Astrophysics Data System (ADS)

    Hamlington, Peter; Whitman, Samuel; Towery, Colin; Poludnenko, Alexei

    2016-11-01

    Recently, multiscale turbulence-flame interactions in premixed reacting flows have been examined using both physical space and spectral approaches. However, there remains relatively little understanding of how turbulent scales of motion vary through the internal structure of the flame itself (i.e., through premixed flamelets). Such an analysis is made difficult by the inhomogeneity, small scale, and spatial locality of many premixed flames, particularly at high Damköhler and low Karlovitz numbers. Conditional structure functions provide a possible solution to this analysis challenge, and in this talk we present results from the calculation of structure functions using data from highly-resolved direct numerical simulations (DNS) of turbulent premixed flames. The high resolution of the DNS allows structure functions to be calculated normally and tangentially to the local flame surface, revealing the specific effects of the flame on turbulent scales of motion near the scale of the local flame width. Moreover, the conditional nature of the analysis allows the effects of different flame regions (e.g., the preheat and reaction zones) on turbulence to be isolated. The implications of these results for the theory and modeling of turbulent flame physics are outlined.

  7. Extinction and near-extinction instability of non-premixed tubular flames

    SciTech Connect

    Hu, Shengteng; Pitz, Robert W.; Yu, Wang

    2009-01-15

    Tubular non-premixed flames are formed by an opposed tubular burner, a new tool to study the effects of curvature on extinction and flame instability of non-premixed flames. Extinction of the opposed tubular flames generated by burning diluted H{sub 2}, CH{sub 4} or C{sub 3}H{sub 8} with air is investigated for both concave and convex curvature. To examine the effects of curvature on extinction, the critical fuel dilution ratios at extinction are measured at various stretch rates, initial mixture strengths and flame curvature for fuels diluted in N{sub 2}, He, Ar or CO{sub 2}. In addition, the onset conditions of the cellular instability are mapped as a function of stretch rates, initial mixture strengths, and flame curvature. For fuel mixtures with Lewis numbers much less than unity, such as H{sub 2}/N{sub 2}, concave flame curvature towards the fuel suppresses cellular instabilities. (author)

  8. Correlation of flame speed with stretch in turbulent premixed methane/air flames

    SciTech Connect

    Chen, J.H.; Im, H.G.

    1998-03-01

    Direct numerical simulations of two-dimensional unsteady premixed methane/air flames are performed to determine the correlation of flame speed with stretch over a wide range of curvatures and strain rates generated by intense two-dimensional turbulence. Lean and stoichiometric premixtures are considered with a detailed C{sub 1}-mechanism for methane oxidation. The computed correlation shows the existence of two distinct stable branches. It further shows that exceedingly large negative values of stretch can be obtained solely through curvature effects which give rise to an overall nonlinear correlation of the flame speed with stretch. Over a narrower stretch range, {minus}1 {le} Ka {le} 1, which includes 90% of the sample, the correlation is approximately linear, and hence, the asymptotic theory for stretch is practically applicable. Overall, one-third of the sample has negative stretch. In this linear range, the Markstein number associated with the positive branch is determined and is consistent with values obtained from comparable steady counterflow computations. In addition to this conventional positive branch, a negative branch is identified. This negative branch occurs when a flame cusp, with a center of curvature in the burnt gases, is subjected to intense compressive strain, resulting in a negative displacement speed. Negative flame speeds are also encountered for extensive tangential strain rates exceeding a Karlovitz number of unity, a value consistent with steady counterflow computations.

  9. Surface properties of turbulent premixed propane/air flames at various Lewis numbers

    SciTech Connect

    Lee, T.W.; North, G.L.; Santavicca, D.A. )

    1993-06-01

    Surface properties of turbulent premixed flames including the wrinkled flame perimeter, fraction of the flame pocket perimeter, flame curvature, and orientation distributions have been measured for propane-air flames at Lewis numbers ranging from 0.98 to 1.86 and u[prime]/S[sub L] = 1.42-5.71. The wrinkled flame perimeter is found to be greater for the thermodiffusively unstable Lewis number (Le < 1) by up to 30% in comparison to the most stable condition (Le = 1.86) tested, while the fraction of the flame pocket perimeter shows a similar tendency to be greater for Le < 1. The flame curvature probability density functions are nearly symmetric with respect to the zero mean at all Lewis numbers throughout the range of u[prime]/S[sub L] tested, and show a much stronger dependence on the turbulence condition than on the Lewis number. Similarly, the flame orientation distributions show a trend from anisotropy toward a more uniform distribution with increasing u[prime]/S[sub L] at a similar rate for all Lewis numbers. Thus, for turbulent premixed propane/air flames for a practical range of Lewis number from 0.98 to 1.86, the effect of Lewis number is primarily to affect the flame structures and thereby flame surface areas and flame pocket areas, while the flame curvature and orientation statistics are essentially determined by the turbulence properties.

  10. Lean premixed flames for low NO{sub x} combustors

    SciTech Connect

    Sojka, P.; Tseng, L.; Bryjak, J.

    1995-10-01

    Gas turbines are being used throughout the world to generate electricity. Due to increasing fuel costs and environmental concerns, gas turbines must meet stringent performance requirements, demonstrating high thermal efficiencies and low pollutant emissions. In order for U.S. manufactured gas turbines to stay competitive, their NO{sub x} levels must be below 10 ppm and their thermal efficiencies should approach 60%. Current technology is being stretched to achieve these goals. The twin goals of high efficiency and low NO{sub x} emissions require extending the operating range of current gas turbines. Higher efficiency requires operation at higher pressures and temperatures. Lower NO{sub x} emissions requires lower flame temperatures. Lower flame temperatures can be achieved through partially to fully pre-mixed combustion. However, increased performance and lower emissions result in a set of competing goals. In order to achieve a successful compromise between high efficiency and low NO{sub x} emissions, advanced design tools must be developed. One key design tool is a computationally efficient, high pressure, turbulent flow, combustion model capable of predicting pollutant formation in an actual gas turbine. Its development is the goal of this program. Achieving this goal requires completion of three tasks. The first task is to develop a reduced chemical kinetics model describing N{sub O}x formation in natural gas-air systems. The second task is to develop a computationally efficient model that describes turbulence-chemistry interactions. The third task is to incorporate the reduced chemical kinetics and turbulence-chemistry interaction models into a commercially available flow solver and compare its predictions with experimental data obtained under carefully controlled conditions so that the accuracy of model predictions can be evaluated.

  11. Gravitational Influences on Flame Propagation Through Non-Uniform Premixed Gas Systems

    NASA Technical Reports Server (NTRS)

    Miller, Fletcher J.; Easton, John; Ross, Howard D.; Marchese, Anthony

    1999-01-01

    Flame propagation through non-uniformly premixed gases occurs in several common combustion situations. As summarized in a previous conference paper, non-uniform premixed gas combustion has received scant attention compared to the more usual limiting cases of diffusion or uniformly premixed flames. It is the goal of this research to further our knowledge of layered combustion, in which a fuel concentration gradient exists normal to the direction of flame spread, in particular by focusing on the role that gravity plays. Gravity can affect flame propagation in at least three ways: through a hydrostatic pressure gradient, by altering the initial distribution of fuel vapor, and through buoyantly induced flows once ignition has occurred. An understanding of the phenomena involved is important to fire safety, especially aboard spacecraft since no microgravity data exist. The data obtained will also be useful to verify theoretical models of this problem, which are easier to implement if buoyancy is neglected.

  12. An investigation of diamond film deposition in a premixed oxyacetylene flame

    NASA Astrophysics Data System (ADS)

    Cappelli, Mark A.; Paul, P. H.

    1989-09-01

    Polycrystalline diamond film synthesis has been demonstrated using a wide variety of enhanced chemical vapor deposition (CVD) techniques. The method of choice depends on the end application of the deposited film or coating. Diamond film has been deposited in a single-nozzle pre-mixed oxy-acetylene flame. Results of runs of varying duration suggest that diamond is deposited via the transport of hydrocarbon fragments produced at the secondary flame front. Planar laser induced photodissociation fluorescence suggests that this region is rich in C2H species. Emission studies also suggest that the post primary flame zone presents a source of C2 radicals which may account for the observed graphite and diamond-like carbon deposited on the substrate exposed to this region of the flame. The results on the pre-mixed flame suggest that it would be possible and more convenient to attempt large area deposition using a multi-nozzle diffusion flame.

  13. Recent Advances in Understanding of Thermal Expansion Effects in Premixed Turbulent Flames

    NASA Astrophysics Data System (ADS)

    Sabelnikov, Vladimir A.; Lipatnikov, Andrei N.

    2017-01-01

    When a premixed flame propagates in a turbulent flow, not only does turbulence affect the burning rate (e.g., by wrinkling the flame and increasing its surface area), but also the heat release in the flame perturbs the pressure field, and these pressure perturbations affect the turbulent flow and scalar transport. For instance, the latter effects manifest themselves in the so-called countergradient turbulent scalar flux, which has been documented in various flames and has challenged the combustion community for approximately 35 years. Over the past decade, substantial progress has been made in investigating (a) the influence of thermal expansion in a premixed flame on the turbulent flow and turbulent scalar transport within the flame brush, as well as (b) the feedback influence of countergradient scalar transport on the turbulent burning rate. The present article reviews recent developments in this field and outlines issues to be solved in future research.

  14. Development and Validation of a Thickened Flame Modeling Approach for Large Eddy Simulation of Premixed Combustion

    SciTech Connect

    Strakey, Peter A.; Eggenspieler, Gilles

    2010-04-07

    The development of a dynamic thickened flame (TF) turbulence-chemistry interaction model is presented based on a novel approach to determine the subfilter flame wrinkling efficiency. The burner is based on an enclosed scaled-down version of the low swirl injector developed at Lawrence Berkeley National Laboratory (LBNL). A perfectly premixed lean methane-air flame was studied, as well as the cold-flow characteristics of the combustor.

  15. On the flame-generated vorticity dynamics of bluff-body stabilized premixed flames

    NASA Astrophysics Data System (ADS)

    Caramella, Lucia

    This investigation considers the dynamics of the flame-generated vorticity for a premixed, submerged bluff-body stabilized flame. Digital particle image velocimetry (DPIV) is used to obtain mean and instantaneous velocity and vorticity fields in four streamwise locations, capturing nearly the entire combustion chamber. The Mie scattering images which are collected for DPIV prove useful in determining the approximate location of the flame as indicated by a stark difference in seeding particle density caused by volumetric expansion. Examining the location of the flame fronts in relation to the mean velocity, mean vorticity, and corresponding instantaneous fields provides useful information about the interaction of the flame and the flow. Experiments characterize the far-field region in particular with a level of detail not previously afforded to this type of flow. The unique nature of the velocity and vorticity fields, as well as a change in rotation of the flame structures observed in the Mie scattering images, are explained by appealing to the baroclinic generation of vorticity. The baroclinic mechanism is activated when non-parallel pressure and density gradients are present. Mean static pressure measurements at the combustion chamber wall allow inferences about the pressure field to be made. The coupling that exists among pressure, heat release, and baroclinic generation is also acknowledged and will influence strategies for control of the baroclinic mechanism. Particular details of the coupling remain unclear, nevertheless improved understanding can lead to advancements in combustion efficiency. Simple scaling of the problem allows a prediction of baroclinic vorticity generation to be obtained. Further insight into the dynamics in the region of interest are provided using CH* filtered and unfiltered chemiluminescence images.

  16. How ''flat'' is the rich premixed flame produced by your McKenna burner?

    SciTech Connect

    Migliorini, F.; De Iuliis, S.; Cignoli, F.; Zizak, G.

    2008-05-15

    McKenna burners are widely used in the combustion community for producing ''flat'' premixed flames. These flames are considered as standards for the development and calibration of optical techniques. Rich premixed flames produced by McKenna burners are frequently investigated in order to understand soot formation processes both by optical and by sampling techniques. Measurements are normally performed along the axis of the flames, with a uniform distribution of temperature and species concentration assumed in the radial direction. In this work it is shown that the soot radial profiles of rich premixed ethylene-air flames produced by a McKenna burner with a stainless steel porous plug may be far from being ''flat.'' Soot is mainly distributed in an annular region and nonsoot fluorescing species are present in the core of the flames. This surprising result was verified under several working conditions. Furthermore, flames cannot be considered axial-symmetric but present a skewed soot distribution. Another McKenna burner with a bronze porous disk was used to produce flames of the same equivalence ratio and flows. These flames show a completely different soot radial profile, closer to the claimed flat distribution. These results cast doubts about the conclusions drawn in several studies on soot formation performed with a stainless steel McKenna burner. (author)

  17. Field Effects of Buoyancy on a Premixed Turbulent Flame Studied by Particle Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Cheng, Robert K.

    2003-01-01

    Typical laboratory flames for the scientific investigation of flame/turbulence interactions are prone to buoyancy effects. Buoyancy acts on these open flame systems and provides upstream feedbacks that control the global flame properties as well as local turbulence/flame interactions. Consequently the flame structures, stabilization limits, and turbulent reaction rates are directly or indirectly coupled with buoyancy. The objective of this study is to characterize the differences between premixed turbulent flames pointing upwards (1g), pointing downwards (-1g), and in microgravity (mg). The configuration is an inverted conical flame stabilized by a small cone-shaped bluff body that we call CLEAN Flames (Cone-Stabilized Lean Flames). We use two laser diagnostics to capture the velocity and scalar fields. Particle image velocimetry (PIV) measures the mean and root mean square velocities and planar imaging by the flame fronts method outlines the flame wrinkle topology. The results were obtained under typical conditions of small domestic heating systems such as water heaters, ovens, and furnaces. Significant differences between the 1g and -1g flames point to the need for including buoyancy contributions in theoretical and numerical calculations. In Earth gravity, there is a complex coupling of buoyancy with the turbulent flow and heat release in the flame. An investigation of buoyancy-free flames in microgravity will provide the key to discern gravity contributions. Data obtained in microgravity flames will provide the benchmark for interpreting and analyzing 1g and -1g flame results.

  18. Numerical study of transient evolution of lifted jet flames: partially premixed flame propagation and influence of physical dimensions

    NASA Astrophysics Data System (ADS)

    Chen, Zhi; Ruan, Shaohong; Swaminathan, Nedunchezhian

    2016-07-01

    Three-dimensional (3D) unsteady Reynolds-averaged Navier-Stokes simulations of a spark-ignited turbulent methane/air jet flame evolving from ignition to stabilisation are conducted for different jet velocities. A partially premixed combustion model is used involving a correlated joint probability density function and both premixed and non-premixed combustion mode contributions. The 3D simulation results for the temporal evolution of the flame's leading edge are compared with previous two-dimensional (2D) results and experimental data. The comparison shows that the final stabilised flame lift-off height is well predicted by both 2D and 3D computations. However, the transient evolution of the flame's leading edge computed from 3D simulation agrees reasonably well with experiment, whereas evident discrepancies were found in the previous 2D study. This difference suggests that the third physical dimension plays an important role during the flame transient evolution process. The flame brush's leading edge displacement speed resulting from reaction, normal and tangential diffusion processes are studied at different typical stages after ignition in order to understand the effect of the third physical dimension further. Substantial differences are found for the reaction and normal diffusion components between 2D and 3D simulations especially in the initial propagation stage. The evolution of reaction progress variable scalar gradients and its interaction with the flow and mixing field in the 3D physical space have an important effect on the flame's leading edge propagation.

  19. Subfilter Scale Combustion Modelling for Large Eddy Simulation of Turbulent Premixed Flames

    NASA Astrophysics Data System (ADS)

    Shahbazian, Nasim

    Large eddy simulation (LES) is a powerful computational tool for modelling turbulent combustion processes. However, for reactive flows, LES is still under significant development. In particular, for turbulent premixed flames, a considerable complication of LES is that the flame thickness is generally much smaller than the LES filter width such that the flame front and chemical reactions cannot be resolved on the grid. Accurate and robust subfilter-scale (SFS) models of the unresolved turbulence-chemistry interactions are therefore required and studies are needed to evaluate and improve them. In this thesis, a detailed comparison and evaluation of five different SFS models for turbulence- chemistry interactions in LES of premixed flames is presented. These approaches include both flamelet- and non-flamelet-based models, coupled with simple or tabulated chemistry. The mod- elling approaches considered herein are: algebraic- and transport-equation variants of the flame surface density (FSD) model, the presumed conditional moment (PCM) with flame prolongation of intrinsic low-dimensional manifold (FPI) tabulated chemistry, or PCM-FPI approach, evaluated with two different presumed probability density function (PDF) models; and conditional source-term estimation (CSE) approach. The predicted LES solutions are compared to the existing laboratory-scale experimental observation of Bunsen-type turbulent premixed methane-air flames, corresponding to lean and stoichiometric conditions lying from the upper limit of the flamelet regime to well within the thin reaction zones regime of the standard regimes diagram. Direct comparison of different SFS approaches allows investigation of stability and performance of the models, while the weaknesses and strengths of each approach are identified. Evaluation of algebraic and transported FSD models highlights the importance of non-equilibrium transport in turbulent premixed flames. The effect of the PDF type for the reaction progress

  20. Subfilter scale combustion modelling for large eddy simulation of turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Shahbazian, Nasim

    Large eddy simulation (LES) is a powerful computational tool for modelling turbulent combustion processes. However, for reactive flows, LES is still under significant development. In particular, for turbulent premixed flames, a considerable complication of LES is that the flame thickness is generally much smaller than the LES filter width such that the flame front and chemical reactions cannot be resolved on the grid. Accurate and robust subfilter-scale (SFS) models of the unresolved turbulence-chemistry interactions are therefore required and studies are needed to evaluate and improve them. In this thesis, a detailed comparison and evaluation of five different SFS models for turbulence-chemistry interactions in LES of premixed flames is presented. These approaches include both flamelet- and non-flamelet-based models, coupled with simple or tabulated chemistry. The modelling approaches considered herein are: algebraic- and transport-equation variants of the flame surface density (FSD) model, the presumed conditional moment (PCM) with flame prolongation of intrinsic low-dimensional manifold (FPI) tabulated chemistry, or PCM-FPI approach, evaluated with two different presumed probability density function (PDF) models; and conditional source-term estimation (CSE) approach. The predicted LES solutions are compared to the existing laboratory-scale experimental observation of Bunsen-type turbulent premixed methane-air flames, corresponding to lean and stoichiometric conditions lying from the upper limit of the flamelet regime to well within the thin reaction zones regime of the standard regimes diagram. Direct comparison of different SFS approaches allows investigation of stability and performance of the models, while the weaknesses and strengths of each approach are identified. Evaluation of algebraic and transported FSD models highlights the importance of non-equilibrium transport in turbulent premixed flames. The effect of the PDF type for the reaction progress

  1. On the Interaction of a Premixed Flame with an Acoustic Disturbance

    NASA Technical Reports Server (NTRS)

    Hood, Caroline; Frendi, Abdelkader

    2005-01-01

    The main objective of this research is to analyze the effect of acoustic disturbances on a premixed flame and determine their role in the onset of combustion instabilities. Computations for the one-dimensional, unsteady combustion of a lean premixed methane-air mixture are performed. An acoustic excitation is introduced in the chamber and interacts with the flame front. Our results indicate that as the amplitude of the acoustic excitation is increased, the flame front position fluctuates rapidly. This phenomenon is even more intense when the frequency of the acoustic disturbance matches the fundamental frequency of the chamber. Our results suggest that the interactions between the flame and the acoustic excitation may result in flame extinguishment. In addition various passive control devices are tested and we found that the Helmholtz resonator with rounded inlet corners is the most efficient.

  2. Analysis of the flamelet concept in the numerical simulation of laminar partially premixed flames

    SciTech Connect

    Consul, R.; Oliva, A.; Perez-Segarra, C.D.; Carbonell, D.; de Goey, L.P.H.

    2008-04-15

    The aim of this work is to analyze the application of flamelet models based on the mixture fraction variable and its dissipation rate to the numerical simulation of partially premixed flames. Although the main application of these models is the computation of turbulent flames, this work focuses on the performance of flamelet concept in laminar flame simulations removing, in this way, turbulence closure interactions. A well-known coflow methane/air laminar flame is selected. Five levels of premixing are taken into account from an equivalence ratio {phi}={infinity} (nonpremixed) to {phi}=2.464. Results obtained using the flamelet approaches are compared to data obtained from the detailed solution of the complete transport equations using primitive variables. Numerical simulations of a counterflow flame are also presented to support the discussion of the results. Special emphasis is given to the analysis of the scalar dissipation rate modeling. (author)

  3. An Investigation of a Hybrid Mixing Timescale Model for PDF Simulations of Turbulent Premixed Flames

    NASA Astrophysics Data System (ADS)

    Zhou, Hua; Kuron, Mike; Ren, Zhuyin; Lu, Tianfeng; Chen, Jacqueline H.

    2016-11-01

    Transported probability density function (TPDF) method features the generality for all combustion regimes, which is attractive for turbulent combustion simulations. However, the modeling of micromixing due to molecular diffusion is still considered to be a primary challenge for TPDF method, especially in turbulent premixed flames. Recently, a hybrid mixing rate model for TPDF simulations of turbulent premixed flames has been proposed, which recovers the correct mixing rates in the limits of flamelet regime and broken reaction zone regime while at the same time aims to properly account for the transition in between. In this work, this model is employed in TPDF simulations of turbulent premixed methane-air slot burner flames. The model performance is assessed by comparing the results from both direct numerical simulation (DNS) and conventional constant mechanical-to-scalar mixing rate model. This work is Granted by NSFC 51476087 and 91441202.

  4. Flame-vortex interaction and mixing behaviors of turbulent non-premixed jet flames under acoustic forcing

    SciTech Connect

    Kim, Munki; Choi, Youngil; Oh, Jeongseog; Yoon, Youngbin

    2009-12-15

    This study examines the effect of acoustic excitation using forced coaxial air on the flame characteristics of turbulent hydrogen non-premixed flames. A resonance frequency was selected to acoustically excite the coaxial air jet due to its ability to effectively amplify the acoustic amplitude and reduce flame length and NO{sub x} emissions. Acoustic excitation causes the flame length to decrease by 15% and consequently, a 25% reduction in EINO{sub x} is achieved, compared to coaxial air flames without acoustic excitation at the same coaxial air to fuel velocity ratio. Moreover, acoustic excitation induces periodical fluctuation of the coaxial air velocity, thus resulting in slight fluctuation of the fuel velocity. From phase-lock PIV and OH PLIF measurement, the local flow properties at the flame surface were investigated under acoustic forcing. During flame-vortex interaction in the near field region, the entrainment velocity and the flame surface area increased locally near the vortex. This increase in flame surface area and entrainment velocity is believed to be a crucial factor in reducing flame length and NO{sub x} emission in coaxial jet flames with acoustic excitation. Local flame extinction occurred frequently when subjected to an excessive strain rate, indicating that intense mass transfer of fuel and air occurs radially inward at the flame surface. (author)

  5. Nonlinear hydrodynamic and thermoacoustic oscillations of a bluff-body stabilised turbulent premixed flame

    NASA Astrophysics Data System (ADS)

    Lee, Chin Yik; Li, Larry Kin Bong; Juniper, Matthew P.; Cant, Robert Stewart

    2016-01-01

    Turbulent premixed flames often experience thermoacoustic instabilities when the combustion heat release rate is in phase with acoustic pressure fluctuations. Linear methods often assume a priori that oscillations are periodic and occur at a dominant frequency with a fixed amplitude. Such assumptions are not made when using nonlinear analysis. When an oscillation is fully saturated, nonlinear analysis can serve as a useful avenue to reveal flame behaviour far more elaborate than period-one limit cycles, including quasi-periodicity and chaos in hydrodynamically or thermoacoustically self-excited system. In this paper, the behaviour of a bluff-body stabilised turbulent premixed propane/air flame in a model jet-engine afterburner configuration is investigated using computational fluid dynamics. For the frequencies of interest in this investigation, an unsteady Reynolds-averaged Navier-Stokes approach is found to be appropriate. Combustion is represented using a modified laminar flamelet approach with an algebraic closure for the flame surface density. The results are validated by comparison with existing experimental data and with large eddy simulation, and the observed self-excited oscillations in pressure and heat release are studied using methods derived from dynamical systems theory. A systematic analysis is carried out by increasing the equivalence ratio of the reactant stream supplied to the premixed flame. A strong variation in the global flame structure is observed. The flame exhibits a self-excited hydrodynamic oscillation at low equivalence ratios, becomes steady as the equivalence ratio is increased to intermediate values, and again exhibits a self-excited thermoacoustic oscillation at higher equivalence ratios. Rich nonlinear behaviour is observed and the investigation demonstrates that turbulent premixed flames can exhibit complex dynamical behaviour including quasiperiodicity, limit cycles and period-two limit cycles due to the interactions of various

  6. Bluff-body stabilized flame dynamics of lean premixed syngas combustion

    NASA Astrophysics Data System (ADS)

    Im, Hong G.; Kim, Yu Jeong; Lee, Bok Jik; Kaust Team

    2015-11-01

    Recently, syngas combustion has been actively investigated for the potential application to integrated gasification combined cycle (IGCC) systems. While lean premixed combustion is attractive for both reduced emission and enhanced efficiency, flame instability becomes often an issue. Bluff-bodies have been adopted as effective flame holders for practical application of premixed flames. In the present study, high-fidelity direct numerical simulations are conducted to investigate the dynamics of lean premixed syngas flames stabilized on a bluff-body, in particular at the near blow-off regime of the flame. A two-dimensional domain of 4 mm height and 20 mm length with a flame holder of a 1 mm-by-1 mm square geometry is used. For a syngas mixture with the equivalence ratio of 0.5 and the CO:H2 ratio of 1, several distinct flame modes are identified as the inflow velocity approaches to the blowoff limit. The sequences of extinction pathway and combustion characteristics are discussed.

  7. Three-dimensional DNS of turbulent premixed flames in a constant volume vessel

    NASA Astrophysics Data System (ADS)

    Fukushima, Naoya; Tsunemi, Akihiko; Shimura, Masayasu; Shim, Youngsam; Tanahashi, Mamoru; Miyauchi, Toshio

    2010-11-01

    Clarification of flame behaviors in a vessel is of great importance for high efficiency of combustors, especially in SI engines. Direct numerical simulation of turbulent hydrogen-air premixed flames in a constant volume rectangular vessel at relatively high Reynolds number has been conducted by considering detailed kinetic mechanism. At first, flame ignites and propagates from the ignition kernel. When the flame approaches a wall, the flame displacement speed normal to the wall decreases gradually. After the flame impingement on the wall, the flame propagates along the wall and the flame displacement speed parallel to the wall becomes higher than that of freely propagating flames. The flame is also strongly affected by internal pressure rise in the vessel. Since the pressure increase makes flame thickness thin, heat release rate of each flame element is augmented. The local pressure rise due to dilatation also enhances turbulence and finer scale vortices appear, which makes flame surface more complicated and results in increase of the flame surface area.

  8. The evolution equation for the flame surface density in turbulent premixed combustion

    NASA Technical Reports Server (NTRS)

    Trouve, Arnaud

    1993-01-01

    The mean reaction rate in flamelet models for turbulent premixed combustion depends on two basic quantities: a mean chemical rate, called the flamelet speed, and the flame surface density. Our previous work had been primarily focused on the problem of the structure and topology of turbulent premixed flames, and it was then determined that the flamelet speed, when space-averaged, is only weakly sensitive to the turbulent flow field. Consequently, the flame surface density is the key quantity that conveys most of the effects of the turbulence on the rate of energy release. In flamelet models, this quantity is obtained via a modeled transport equation called the Sigma-equation. Past theoretical work has produced a rigorous approach that leads to an exact but unclosed formulation for the turbulent Sigma-equation. In the exact Sigma-equation, it appears that the dynamical properties of the flame surface density are determined by a single parameter, namely the turbulent flame stretch. Unfortunately, the turbulent flame stretch as well as the flame surface density is not available from experiments, and, in the absence of experimental data, little is known on the validity of the closure assumptions used in current flamelet models. Direct Numerical Simulation (DNS) is the alternative approach to get basic information on these fundamental quantities. In the present work, three-dimensional DNS of premixed flames in isotropic turbulent flow is used to estimate the different terms appearing in the Sigma-equation. A new methodology is proposed to provide the source and sink terms for the flame surface density, resolved both temporally and spatially throughout the turbulent flame brush. Using this methodology, our objective is to extract the turbulent flame stretch from the DNS data base and then perform extensive comparisons with flamelet models. Thanks to the detailed information produced by the DNS-based analysis, it is expected that this type of comparison will not only

  9. Effects of Buoyancy on the Flowfields of Lean Premixed Turbulent V-Flames

    NASA Technical Reports Server (NTRS)

    Cheng, R. K.; Bedat, B.; Yegian, D. T.; Greenberg, P.

    1999-01-01

    Open laboratory turbulent flames used for investigating fundamental flame turbulence interactions are greatly affected by buoyancy. Though much of our current knowledge is based on observations made in open flames, buoyancy effects are usually not considered in data interpretation, numerical analysis or theories. This inconsistency remains an obstacle to merging experimental observations and theoretical predictions. To better understanding the effects of buoyancy, our research focuses on steady lean premixed flames propagating in fully developed turbulence. We hypothesize that the most significant role of buoyancy forces on these flames is to influence their flowfields through a coupling with the mean and the fluctuating pressure fields. This coupling relates to the elliptical problem that emphasizes the importance of the upstream, wall and downstream boundary conditions in determining all aspects of flame propagation. Therefore, buoyancy has the same significance as other parameters such as flow configuration, and flame geometry.

  10. Stratification effects on laminar premixed-flame response to mixture perturbations

    NASA Astrophysics Data System (ADS)

    Casey, Tiernan; Chen, Jyh-Yuan

    2015-11-01

    While complete mixing on the molecular level is desirable for ensuring that combustion processes are limited by chemical kinetics rather than mass transport, it is often the case that practical devices operate with some degree of unmixedness. As such, phenomena such as ignition or flame propagation will inevitably occur in regions that exhibit mixture or thermal non-uniformity. Here we present unsteady simulations of laminar premixed flames in the low-Mach limit subject to mixture perturbations of varying wavelength and amplitude, and qualify their effect on the flame behavior. When flames experience variations in mixture the transport processes in the flame zone vary with time and the flame behavior can depend on the burned gas history. Also, the possibility of extending flames beyond their flammability limits so as to maximize the overall mass of fuel burned is explored by exploiting these unsteady effects.

  11. Effects of operating pressure on flame oscillation and emission characteristics in a partially premixed swirl combustor

    SciTech Connect

    Kim, Jong-Ryul; Choi, Gyung-Min; Kim, Duck-Jool

    2011-01-15

    The influence of varying combustor pressure on flame oscillation and emission characteristics in the partially premixed turbulent flame were investigated. In order to investigate combustion characteristics in the partially premixed turbulent flame, the combustor pressure was controlled in the range of -30 to 30 kPa for each equivalence ratio ({phi} = 0.8-1.2). The r.m.s. of the pressure fluctuations increased with decreasing combustor pressure for the lean condition. The combustor pressure had a sizeable influence on combustion oscillation, whose dominant frequency varied with the combustor pressure. Combustion instabilities could be controlled by increasing the turbulent intensity of the unburned mixture under the lean condition. An unstable flame was caused by incomplete combustion; hence, EICO greatly increased. Furthermore, EINO{sub x} simply reduced with decreasing combustor pressure at a rate of 0.035 g/10 kPa. The possibility of combustion control on the combusting mode and exhaust gas emission was demonstrated. (author)

  12. Study of Turbulent Premixed Flame Propagation using a Laminar Flamelet Model

    NASA Technical Reports Server (NTRS)

    Im, H. G.

    1995-01-01

    The laminar flamelet concept in turbulent reacting flows is considered applicable to many practical combustion systems (Linan & Williams 1993). For turbulent premixed combustion, the laminar flamelet regime is valid when turbulent Karlovitz number is less than unity, which is equivalent to stating that the characteristic thickness of the flame is less than that of a Kolmogorov eddy; this is known as the Klimov-Williams criterion (Williams 1985). In such a case, the flame maintains its laminar structure, and the effect of turbulent flow is merely to wrinkle and strain the flame front. The propagating wrinkled premixed flame can then be described as an infinitesimally thin surface dividing the unburnt fresh mixture and the burnt product.

  13. Mechanisms of combustion limits in premixed gas flames at microgravity

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.

    1991-01-01

    A three-year experimental and theoretical research program on the mechanisms of combustion limits of premixed gasflames at microgravity was conducted. Progress during this program is identified and avenues for future studies are discussed.

  14. Gravitational Influences on Flame Propagation Through Non-Uniform, Premixed Gas Systems

    NASA Technical Reports Server (NTRS)

    Miller, Fletcher J.; Easton, John; Marchese, Anthony; Hovermann, Fred

    2003-01-01

    Flame propagation through non-uniformly premixed (or layered) gases has importance both in useful combustion systems and in unintentional fires. As summarized recently and in previous Microgravity Workshop papers, non-uniform premixed gas combustion receives scant attention compared to the more usual limiting cases of diffusion or uniformly premixed flames, especially regarding the role gravity plays. This paper summarizes our recent findings on gravitational effects on layered combustion along a floor, in which the fuel concentration gradient exists normal to the direction of flame spread. In an effort to understand the mechanism by which the flames spread faster in microgravity (and much faster, in laboratory coordinates, than the laminar burning velocity for uniform mixtures), we have begun making pressure measurements across the spreading flame front that are described here. Earlier researchers, testing in 1g, claimed that hydrostatic pressure differences could account for the rapid spread rates. Additionally, we present the development of a new apparatus to study flame spread in free (i.e., far from walls), non-homogeneous fuel layers formed in a flow tunnel behind an airfoil that has been tested in normal gravity.

  15. Gravitational Influences on Flame Propagation through Non-Uniform, Premixed Gas Systems

    NASA Technical Reports Server (NTRS)

    Miller, Fletcher J.; Easton, John; Ross, Howard D.; Marchese, Anthony; Perry, David; Kulis, Michael

    2001-01-01

    Flame propagation through non-uniformly premixed (or layered) gases has importance both in useful combustion systems and in unintentional fires. As summarized previously, non-uniform premixed gas combustion receives scant attention compared to the more usual limiting cases of diffusion or uniformly premixed flames, especially regarding the role gravity plays. This paper summarizes our progress on furthering the knowledge of layered combustion, in which a fuel concentration gradient exists normal to the direction of flame spread. We present experimental and numerical results for flame spread through propanol-air layers formed near the flash point temperature (25 C) or near the stoichiometric temperature (33 C). Both the model and experimental results show that the removal of gravity results in a faster spreading flame, by as much as 80% depending on conditions. This is exactly the opposite effect as that predicted by an earlier model reported. We also found that having a gallery lid results in faster flame spread, an effect more pronounced at normal gravity, demonstrating the importance of enclosure geometry. Also reported here is the beginning of our spectroscopic measurements of fuel vapor.

  16. The role of in situ reforming in plasma enhanced ultra lean premixed methane/air flames

    SciTech Connect

    Kim, Wookyung; Godfrey Mungal, M.; Cappelli, Mark A.

    2010-02-15

    This paper describes a mechanism for the stabilization of ultra lean premixed methane/air flames by pulsed nonequilibrium plasma enhancement. It is shown that the pulsed discharge plasma produces a cool ({proportional_to}500-600 K) stream of relatively stable intermediate species including hydrogen (H{sub 2}) and carbon monoxide (CO), which play a central role in enhancing flame stability. This stream is readily visualized by ultraviolet emission from electronically excited hydroxyl (OH) radicals. The rotational and vibrational temperature of this ''preflame'' are determined from its emission spectrum. Qualitative imaging of the overall flame structure is obtained by planar laser-induced fluorescence measurements of OH. Preflame nitric oxide (NO) concentrations are determined by gas sampling chromatography. A simple numerical model of this plasma enhanced premixed flame is proposed that includes the generation of the preflame through plasma activation, and predicts the formation of a dual flame structure that arises when the preflame serves to pilot the combustion of the surrounding non-activated premixed flow. The calculation represents the plasma through its ability to produce an initial radical yield, which serves as a boundary condition for conventional flame simulations. The simulations also capture the presence of the preflame and the dual flame structure, and predict preflame levels of NO comparable to those measured. A subsequent pseudo-sensitivity analysis of the preflame shows that flame stability is most sensitive to the concentrations of H{sub 2} and CO in the preflame. As a consequence of the role of H{sub 2} and CO in enhancing the flame stability, the blowout limit extensions of methane/air and hydrogen/air mixtures in the absence/presence of a discharge are investigated experimentally. For methane/air mixtures, the blowout limit of the current burner is extended by {proportional_to}10% in the presence of a discharge while comparable studies carried

  17. A simulation of a bluff-body stabilized turbulent premixed flame using LES-PDF

    NASA Astrophysics Data System (ADS)

    Kim, Jeonglae; Pope, Stephen

    2013-11-01

    A turbulent premixed flame stabilized by a triangular cylinder as a flame-holder is simulated. The computational condition matches the Volvo experiments (Sjunnesson et al. 1992). Propane is premixed at a fuel lean condition of ϕ = 0 . 65 . For this reactive simulation, LES-PDF formulation is used, similar to Yang et al. (2012). The evolution of Lagrangian particles is simulated by solving stochastic differential equations modeling transport of the composition PDF. Mixing is modeled by the modified IEM model (Viswanathan et al. 2011). Chemical reactions are calculated by ISAT and for the good load balancing, PURAN distribution of ISAT tables is applied (Hiremath et al. 2012). To calculate resolved density, the two-way coupling (Popov & Pope 2013) is applied, solving a transport equation of resolved specific volume to reduce statistical noise. A baseline calculation shows a good agreement with the experimental measurements in turbulence statistics, temperature, and minor species mass fractions. Chemical reaction does not significantly contribute to the overall computational cost, in contrast to non-premixed flame simulations (Hiremath et al. 2013), presumably due to the restricted manifold of the purely premixed flame in the composition space.

  18. Understanding and predicting soot generation in turbulent non-premixed jet flames.

    SciTech Connect

    Wang, Hai; Kook, Sanghoon; Doom, Jeffrey; Oefelein, Joseph Charles; Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.; Pickett, Lyle M.

    2010-10-01

    This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation model

  19. Direct numerical simulation of turbulent non-premixed methane-air flames

    SciTech Connect

    Chen, J.H.; Card, J.M.; Day, M.; Mahalingam, S.

    1995-07-01

    Turbulent non-premixed stoichiometric methane-air flames have been studied using the direct numerical simulation approach. A global one- step mechanism is used to describe the chemical kinetics, and molecular transport is modeled with constant Lewis numbers for individual species. The effect of turbulence on the internal flame structure and extinction characteristics of methane-air flames is evaluated. The flame is wrinkled and in some regions extinguished by the turbulence, while the turbulence is weakened in the vicinity of the flame due to a combination of dilatation and a 25:1 increase in kinematic viscosity across the flame. Reignition followed by partially-premixed burning is observed in the present results. Local curvature effects are found to be important in determining the local stoichiometry of the flame, and hence, the location of the peak reaction rate relative to the stoichiometric surface. The results presented in this study demonstrate the feasibility of incorporating global-step kinetics for the oxidation of methane into direct numerical simulations of homogeneous turbulence to study the flame structure.

  20. On stability of premixed flames in stagnation - Point flow

    NASA Technical Reports Server (NTRS)

    Sivashinsky, G. I.; Law, C. K.; Joulin, G.

    1982-01-01

    A quantitative description of flame stabilization in stagnation-point flow is proposed. Asymptotic and stability analyses are made for a flame model where the density of the gas is assumed to be constant and the reaction zone is assumed to be narrow and concentrated over the flame front. It is shown that, if blowing is sufficiently strong, the corrugations disappear and a plane flame results. The phenomena cannot be fully described by means of classical linear stability analysis.

  1. Effect of vorticity flip-over on the premixed flame structure: Experimental observation of type-I inflection flames.

    PubMed

    El-Rabii, Hazem; Kazakov, Kirill A

    2015-12-01

    Premixed flames propagating in horizontal tubes are observed to take on a convex shape towards the fresh mixture, which is commonly explained as a buoyancy effect. A recent rigorous analysis has shown, on the contrary, that this process is driven by the balance of vorticity generated by a curved flame front with the baroclinic vorticity, and predicted existence of a regime in which the leading edge of the flame front is concave. We report experimental realization of this regime. Our experiments on ethane and n-butane mixtures with air show that flames with an inflection point on the front are regularly produced in lean mixtures, provided that a sufficiently weak ignition is used. The observed flame shape perfectly agrees with that theoretically predicted.

  2. Effects of Buoyancy on the Flowfields of Lean Premixed Turbulent V-Flames

    NASA Technical Reports Server (NTRS)

    Cheng, R. K.; Greenberg, P.; Bedat, B.; Yegian, D. T.

    1999-01-01

    Open laboratory turbulent flames used for investigating fundament flame turbulence interactions are greatly affected by buoyancy. Though much of our current knowledge is based on observations made in these open flames, the effects of buoyancy are usually not included in data interpretation, numerical analysis or theories. This inconsistency remains an obstacle to merging experimental observations and theoretical predictions. To better understanding the effects of buoyancy, our research focuses on steady lean premixed flames propagating in fully developed turbulence. We hypothesize that the most significant role of buoyancy forces on these flames is to influence their flowfields through a coupling with mean and fluctuating pressure fields. Changes in flow pattern alter the mean aerodynamic stretch and in turn affect turbulence fluctuation intensities both upstream and downstream of the flame zone. Consequently, flame stabilization, reaction rates, and turbulent flame processes are all affected. This coupling relates to the elliptical problem that emphasizes the importance of the upstream, wall and downstream boundary conditions in determining all aspects of flame propagation. Therefore, buoyancy has the same significance as other parameters such as flow configuration, flame geometry, means of flame stabilization, flame shape, enclosure size, mixture conditions, and flow conditions.

  3. Experimental study of the flowfield of a V-shaped premixed turbulent flame

    SciTech Connect

    Cheng, R.K.; Ng, T.T.

    1981-01-01

    The flowfield of a V-shaped, premixed ethylene/air flame in grid induced turbulence has been studied using Laser Doubler Velocimetry. The experimental conditions covered free-stream velocities of 5 and 7 m/s and equivalence ratios ranging from 0.6 to 0.78. The two-dimensional velocity vectors obtained indicate that flow deflection in the free stream was significant and seemed to correlate with the flame angle. The influence of the flame holder wake on the flame was demonstrated. In the presence of the flame, an increase in the turbulence level in the free stream was found and was attributed to fluctuations in flow deflection induced by the fluctuating flame.

  4. Impact of heat release on strain rate field in turbulent premixed Bunsen flames

    SciTech Connect

    Coriton, Bruno Rene Leon; Frank, Jonathan H.

    2016-08-10

    The effects of combustion on the strain rate field are investigated in turbulent premixed CH4/air Bunsen flames using simultaneous tomographic PIV and OH LIF measurements. Tomographic PIV provides three-dimensional velocity measurements, from which the complete strain rate tensor is determined. The OH LIF measurements are used to determine the position of the flame surface and the flame-normal orientation within the imaging plane. This combination of diagnostic techniques enables quantification of divergence as well as flame-normal and tangential strain rates, which are otherwise biased using only planar measurements. Measurements are compared in three lean-to-stoichiometric flames that have different amounts of heat release and Damköhler numbers greater than unity. The effects of heat release on the principal strain rates and their alignment relative to the local flame normal are analyzed. The extensive strain rate preferentially aligns with the flame normal in the reaction zone, which has been indicated by previous studies. The strength of this alignment increases with increasing heat release and, as a result, the flame-normal strain rate becomes highly extensive. These effects are associated with the gas expansion normal to the flame surface, which is largest for the stoichiometric flame. In the preheat zone, the compressive strain rate has a tendency to align with the flame normal. Away from the flame front, the flame – strain rate alignment is arbitrary in both the reactants and products. The flame-tangential strain rate is on average positive across the flame front, and therefore the turbulent strain rate field contributes to the enhancement of scalar gradients as in passive scalar turbulence. As a result, increases in heat release result in larger positive values of the divergence as well as flame-normal and tangential strain rates, the tangential strain rate has a weaker dependence on heat release than the flame-normal strain rate and the

  5. Impact of heat release on strain rate field in turbulent premixed Bunsen flames

    DOE PAGES

    Coriton, Bruno Rene Leon; Frank, Jonathan H.

    2016-08-10

    The effects of combustion on the strain rate field are investigated in turbulent premixed CH4/air Bunsen flames using simultaneous tomographic PIV and OH LIF measurements. Tomographic PIV provides three-dimensional velocity measurements, from which the complete strain rate tensor is determined. The OH LIF measurements are used to determine the position of the flame surface and the flame-normal orientation within the imaging plane. This combination of diagnostic techniques enables quantification of divergence as well as flame-normal and tangential strain rates, which are otherwise biased using only planar measurements. Measurements are compared in three lean-to-stoichiometric flames that have different amounts of heatmore » release and Damköhler numbers greater than unity. The effects of heat release on the principal strain rates and their alignment relative to the local flame normal are analyzed. The extensive strain rate preferentially aligns with the flame normal in the reaction zone, which has been indicated by previous studies. The strength of this alignment increases with increasing heat release and, as a result, the flame-normal strain rate becomes highly extensive. These effects are associated with the gas expansion normal to the flame surface, which is largest for the stoichiometric flame. In the preheat zone, the compressive strain rate has a tendency to align with the flame normal. Away from the flame front, the flame – strain rate alignment is arbitrary in both the reactants and products. The flame-tangential strain rate is on average positive across the flame front, and therefore the turbulent strain rate field contributes to the enhancement of scalar gradients as in passive scalar turbulence. As a result, increases in heat release result in larger positive values of the divergence as well as flame-normal and tangential strain rates, the tangential strain rate has a weaker dependence on heat release than the flame-normal strain rate and the

  6. Direct Numerical Simulation of a Cavity-Stabilized Ethylene/Air Premixed Flame

    NASA Astrophysics Data System (ADS)

    Chen, Jacqueline; Konduri, Aditya; Kolla, Hemanth; Rauch, Andreas; Chelliah, Harsha

    2016-11-01

    Cavity flame holders have been shown to be important for flame stabilization in scramjet combustors. In the present study the stabilization of a lean premixed ethylene/air flame in a rectangular cavity at thermo-chemical conditions relevant to scramjet combustors is simulated using a compressible reacting multi-block direct numerical simulation solver, S3D, incorporating a 22 species ethylene-air reduced chemical model. The fuel is premixed with air to an equivalence ratio of 0.4 and enters the computational domain at Mach numbers between 0.3 and 0.6. An auxiliary inert channel flow simulation is used to provide the turbulent velocity profile at the inlet for the reacting flow simulation. The detailed interaction between intense turbulence, nonequilibrium concentrations of radical species formed in the cavity and mixing with the premixed main stream under density variations due to heat release rate and compressibility effects is quantified. The mechanism for flame stabilization is quantified in terms of relevant non-dimensional parameters, and detailed analysis of the flame and turbulence structure will be presented. We acknowledge the sponsorship of the AFOSR-NSF Joint Effort on Turbulent Combustion Model Assumptions and the DOE Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

  7. Soot Formation in Laminar Premixed Methane/Oxygen Flames at Atmospheric Pressure. Appendix H

    NASA Technical Reports Server (NTRS)

    Xu, F.; Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Flame structure and soot formation were studied within soot-containing laminar premixed methanefoxygen flames at atmospheric pressure. The following measurements were made: soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, soot structure by thermophoretic sampling and transmission electron microscope (TEM), major gas species concentrations by sampling and gas chromatography, and gas velocities by laser velocimetry. Present measurements of gas species concentrations were in reasonably good agreement with earlier measurements due to Ramer et al. as well as predictions based on the detailed mechanisms of Frenklach and co-workers and Leung and Lindstedt; the predictions also suggest that H atom concentrations are in local thermodynamic equilibrium throughout the soot formation region. Using this information, it was found that measured soot surface growth rates could be correlated successfully by predictions based on the hydrogenabstraction/carbon-addition (HACA) mechanisms of both Frenklach and co-workers and Colket and Hall, extending an earlier assessment of these mechanisms for premixed ethylene/air flames to conditions having larger H/C ratios and acetylene concentrations. Measured primary soot particle nucleation rates were somewhat lower than the earlier observations for laminar premixed ethylene/air flames and were significantly lower than corresponding rates in laminar diffusion flames, for reasons that still must be explained.

  8. Soot Formation in Laminar Premixed Methane/Oxygen Flames at Atmospheric Pressure

    NASA Technical Reports Server (NTRS)

    Xu, F.; Lin, K.-C.; Faeth, G. M.

    1998-01-01

    Flame structure and soot formation were studied within soot-containing laminar premixed mc1hane/oxygen flames at atmospheric pressure. The following measurements were made: soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, soot structure by thermophoretic sampling and transmission electron microscope (TEM), major gas species concentrations by sampling and gas chromatography, and gas velocities by laser velocimetry. Present measurements of gas species concentrations were in reasonably good agreement with earlier measurements due to Ramer et al. as well as predictions based on the detailed mechanisms of Frenklach and co-workers and Leung and Lindstedt: the predictions also suggest that H atom concentrations are in local thermodynamic equilibrium throughout the soot formation region. Using this information, it was found that measured soot surface growth rates could be correlated successfully by predictions based on the hydrogen-abstraction/carbon-addition (HACA) mechanisms of both Frenklach and co-workers and Colket and Hall, extending an earlier assessment of these mechanisms for premixed ethylene/air flames to conditions having larger H/C ratios and acetylene concentrations. Measured primary soot particle nucleation rates were somewhat lower than the earlier observations for laminar premixed ethylene/air flames and were significantly lower than corresponding rates in laminar diffusion flames. for reasons that still must be explained.

  9. Laser-saturated fluorescence of nitric oxide and chemiluminescence measurements in premixed ethanol flames

    SciTech Connect

    Marques, Carla S.T.; Barreta, Luiz G.; Sbampato, Maria E.; dos Santos, Alberto M.

    2010-11-15

    In this study, nitric oxide laser-saturated fluorescence (LSF) measurements were acquired from premixed ethanol flames at atmospheric pressure in a burner. NO-LSF experimental profiles for fuel-rich premixed ethanol flames ({phi} = 1.34 and {phi} = 1.66) were determined through the excitation/detection scheme of the Q{sub 2}(26.5) rotational line in the A{sup 2}{sigma}{sup +} - X{sup 2}{pi} (0,0) vibronic band and {gamma}(0,1) emission band. A calibration procedure by NO doping into the flame was applied to establish the NO concentration profiles in these flames. Chemiluminescent emission measurements in the (0, 0) vibronic emission bands of the OH{sup *} (A{sup 2}{sigma}{sup +} - X{sup 2}{pi}) and CH{sup *}(A{sup 2}{delta} - X{sup 2}{pi}) radicals were also obtained with high spatial and spectral resolution for fuel-rich premixed ethanol flames to correlate them with NO concentrations. Experimental chemiluminescence profiles and the ratios of the integrated areas under emission spectra (A{sub CH*}/A{sub CH*}(max.) and A{sub CH*}/A{sub OH*}) were determined. The relationships between chemiluminescence and NO concentrations were established along the premixed ethanol flames. There was a strong connection between CH{sup *} radical chemiluminescence and NO formation and the prompt-NO was identified as the governing mechanism for NO production. The results suggest the optimum ratio of the chemiluminescence of two radicals (A{sub CH*}/A{sub OH*}) for NO diagnostic purposes. (author)

  10. Simulations and experiments on the ignition probability in turbulent premixed bluff-body flames

    NASA Astrophysics Data System (ADS)

    Sitte, Michael Philip; Bach, Ellen; Kariuki, James; Bauer, Hans-Jörg; Mastorakos, Epaminondas

    2016-05-01

    The ignition characteristics of a premixed bluff-body burner under lean conditions were investigated experimentally and numerically with a physical model focusing on ignition probability. Visualisation of the flame with a 5 kHz OH* chemiluminescence camera confirmed that successful ignitions were those associated with the movement of the kernel upstream, consistent with previous work on non-premixed systems. Performing many separate ignition trials at the same spark position and flow conditions resulted in a quantification of the ignition probability Pign, which was found to decrease with increasing distance downstream of the bluff body and a decrease in equivalence ratio. Flows corresponding to flames close to the blow-off limit could not be ignited, although such flames were stable if reached from a richer already ignited condition. A detailed comparison with the local Karlovitz number and the mean velocity showed that regions of high Pign are associated with low Ka and negative bulk velocity (i.e. towards the bluff body), although a direct correlation was not possible. A modelling effort that takes convection and localised flame quenching into account by tracking stochastic virtual flame particles, previously validated for non-premixed and spray ignition, was used to estimate the ignition probability. The applicability of this approach to premixed flows was first evaluated by investigating the model's flame propagation mechanism in a uniform turbulence field, which showed that the model reproduces the bending behaviour of the ST-versus-u‧ curve. Then ignition simulations of the bluff-body burner were carried out. The ignition probability map was computed and it was found that the model reproduces all main trends found in the experimental study.

  11. Measurements and Modeling of Nitric Oxide Formation in Counterflow, Premixed CH4/O2/N2 Flames

    NASA Technical Reports Server (NTRS)

    Thomsen, D. Douglas; Laurendeau, Normand M.

    2000-01-01

    Laser-induced fluorescence (LIF) measurements of NO concentration in a variety of CH4/O2/N2 flames are used to evaluate the chemical kinetics of NO formation. The analysis begins with previous measurements in flat, laminar, premixed CH4/O2/N2 flames stabilized on a water-cooled McKenna burner at pressures ranging from 1 to 14.6 atm, equivalence ratios from 0.5 to 1.6, and volumetric nitrogen/oxygen dilution ratios of 2.2, 3.1 and 3.76. These measured results are compared to predictions to determine the capabilities and limitations of the comprehensive kinetic mechanism developed by the Gas Research Institute (GRI), version 2.11. The model is shown to predict well the qualitative trends of NO formation in lean-premixed flames, while quantitatively underpredicting NO concentration by 30-50%. For rich flames, the model is unable to even qualitatively match the experimental results. These flames were found to be limited by low temperatures and an inability to separate the flame from the burner surface. In response to these limitations, a counterflow burner was designed for use in opposed premixed flame studies. A new LIF calibration technique was developed and applied to obtain quantitative measurements of NO concentration in laminar, counterflow premixed, CH4/O2/N2 flames at pressures ranging from 1 to 5.1 atm, equivalence ratios of 0.6 to 1.5, and an N2/O2 dilution ratio of 3.76. The counterflow premixed flame measurements are combined with measurements in burner-stabilized premixed flames and counterflow diffusion flames to build a comprehensive database for analysis of the GRI kinetic mechanism. Pathways, quantitative reaction path and sensitivity analyses are applied to the GRI mechanism for these flame conditions. The prompt NO mechanism is found to severely underpredict the amount of NO formed in rich premixed and nitrogen-diluted diffusion flames. This underprediction is traced to uncertainties in the CH kinetics as well as in the nitrogen oxidation chemistry

  12. Investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations

    SciTech Connect

    Armitage, C.A.; Mastorakos, E.; Cant, R.S.; Balachandran, R.

    2006-08-15

    Acoustically forced lean premixed turbulent bluff-body stabilized flames are investigated using turbulent combustion CFD. The calculations simulate aspects of the experimental investigation by Balachandran et al. [R. Balachandran, B. Ayoola, C. Kaminski, A. Dowling, E. Mastorakos, Combust. Flame 143 (2005) 37-55] and focus on the amplitude dependence of the flame response. For the frequencies of interest in this investigation an unsteady Reynolds-averaged Navier-Stokes (URANS) approach is appropriate. The combustion is represented using a modified laminar flamelet approach with an algebraic representation of the flame surface density. The predictions are compared with flame surface density (FSD) and OH* chemiluminescence measurements. In the experiments the response of the flame has been quantified by means of a number of single-frequency, amplitude-dependent transfer functions. The predicted flame shape and position are in good agreement with the experiment. The dynamic response of the flame to inlet velocity forcing is also well captured by the calculations. At moderate frequencies nonlinear behavior of the transfer functions is observed as the forcing amplitude is increased. In the experiments this nonlinearity was attributed in part to the rollup of the reacting shear layer into vortices and in part to the collision of the inner and outer flame sheets. This transition to nonlinearity is also observed in the transfer functions obtained from the predictions. Furthermore, the vortex shedding and flame-sheet collapse may be seen in snapshots of the predicted flow field taken throughout the forcing cycle. The URANS methodology successfully predicts the behavior of the forced premixed turbulent flames and captures the effects of saturation in the transfer function of the response of the heat release to velocity fluctuations. (author)

  13. DNS of premixed turbulent V-flame: coupling spectral and finite difference methods

    NASA Astrophysics Data System (ADS)

    Hauguel, Raphael; Vervisch, Luc; Domingo, Pascale

    2005-01-01

    To allow for a reliable examination of the interaction between velocity fluctuations, acoustics and combustion, a novel numerical procedure is discussed in which a spectral solution of the Navier-Stokes equations is directly associated to a high-order finite difference fully compressible DNS solver (sixth order PADE). Using this combination of high-order solvers with accurate boundary conditions, simulations have been performed where a turbulent premixed V-shape flame develops in grid turbulence. In the light of the DNS results, a sub-model for premixed turbulent combustion is analyzed. To cite this article: R. Hauguel et al., C. R. Mecanique 333 (2005).

  14. Local curvature measurements of a lean, partially premixed swirl-stabilised flame

    NASA Astrophysics Data System (ADS)

    Bayley, Alan E.; Hardalupas, Yannis; Taylor, Alex M. K. P.

    2012-04-01

    A swirl-stabilised, lean, partially premixed combustor operating at atmospheric conditions has been used to investigate the local curvature distributions in lifted, stable and thermoacoustically oscillating CH4-air partially premixed flames for bulk cold-flow Reynolds numbers of 15,000 and 23,000. Single-shot OH planar laser-induced fluorescence has been used to capture instantaneous images of these three different flame types. Use of binary thresholding to identify the reactant and product regions in the OH planar laser-induced fluorescence images, in order to extract accurate flame-front locations, is shown to be unsatisfactory for the examined flames. The Canny-Deriche edge detection filter has also been examined and is seen to still leave an unacceptable quantity of artificial flame-fronts. A novel approach has been developed for image analysis where a combination of a non-linear diffusion filter, Sobel gradient and threshold-based curve elimination routines have been used to extract traces of the flame-front to obtain local curvature distributions. A visual comparison of the effectiveness of flame-front identification is made between the novel approach, the threshold binarisation filter and the Canny-Deriche filter. The novel approach appears to most accurately identify the flame-fronts. Example histograms of the curvature for six flame conditions and of the total image area are presented and are found to have a broader range of local flame curvatures for increasing bulk Reynolds numbers. Significantly positive values of mean curvature and marginally positive values of skewness of the histogram have been measured for one lifted flame case, but this is generally accounted for by the effect of flame brush curvature. The mean local flame-front curvature reduces with increasing axial distance from the burner exit plane for all flame types. These changes are more pronounced in the lifted flames but are marginal for the thermoacoustically oscillating flames. It is

  15. Spatially distributed flame transfer functions for predicting combustion dynamics in lean premixed gas turbine combustors

    SciTech Connect

    Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A.

    2010-09-15

    The present paper describes a methodology to improve the accuracy of prediction of the eigenfrequencies and growth rates of self-induced instabilities and demonstrates its application to a laboratory-scale, swirl-stabilized, lean-premixed, gas turbine combustor. The influence of the spatial heat release distribution is accounted for using local flame transfer function (FTF) measurements. The two-microphone technique and CH{sup *} chemiluminescence intensity measurements are used to determine the input (inlet velocity perturbation) and the output functions (heat release oscillation), respectively, for the local flame transfer functions. The experimentally determined local flame transfer functions are superposed using the flame transfer function superposition principle, and the result is incorporated into an analytic thermoacoustic model, in order to predict the linear stability characteristics of a given system. Results show that when the flame length is not acoustically compact the model prediction calculated using the local flame transfer functions is better than the prediction made using the global flame transfer function. In the case of a flame in the compact flame regime, accurate predictions of eigenfrequencies and growth rates can be obtained using the global flame transfer function. It was also found that the general response characteristics of the local FTF (gain and phase) are qualitatively the same as those of the global FTF. (author)

  16. The effect of temperature on soot properties in premixed methane flames

    SciTech Connect

    Alfe, M.; Apicella, B.; Tregrossi, A.; Ciajolo, A.; Rouzaud, J.-N.

    2010-10-15

    The effect of flame temperature on soot properties was studied in premixed methane/oxygen flames burning at a constant mixture composition (C/O = 0.60, {phi} = 2.4) and different cold-gas flow velocities (4 and 5 cm s{sup -1}). Temperature and concentration profiles of stable gases and condensed phases combustion products were measured along the flame axis. It was found that the high flame temperature conditions cause a larger decomposition of methane into hydrogen and C{sub 2}-C{sub 4} hydrocarbons, thereby reducing the formation of benzene and condensed phases including condensed species and soot. Soot properties were studied by UV-Visible absorption spectroscopy, thermogravimetry and H/C elemental analysis. A description of soot nanostructural organization was also performed by means of high-resolution transmission electron microscopy. Different properties and nanostructures were found to develop in the soot, depending on the temperature and on soot aging associated. Soot dehydrogenation occurred to a larger extent in the high flame temperature conditions. As soot dehydrogenates the mass absorption coefficients of soot exhibited an increasing trend along the flame axis. However, mature soot retained a relatively high H/C ratio and low absorption coefficients with respect to other less hydrogenated fuels even in high temperature conditions. This indicates that the aromatization/dehydrogenation of soot in premixed flames is more dependent on the fuel characteristics rather than on the flame temperature. Generally, it was assessed that mature soot produced from diverse hydrocarbon fuels with similar flame temperatures and flame types possess a different chemical composition and structure. To this regard the H/C atomic ratio and mass absorption coefficients appeared to be signatures of soot properties and structural evolution. (author)

  17. The evolution equation for the flame surface density in turbulent premixed combustion

    NASA Technical Reports Server (NTRS)

    Trouve, A.; Poinsot, T.

    1992-01-01

    One central ingredient in flamelet models for turbulent premixed combustion is the flame surface density. This quantity conveys most of the effects of the turbulence on the rate of energy release and is obtained via a modeled transport equation, called the Sigma-equation. Past theoretical work has produced a rigorous approach that leads to an exact, but unclosed, formulation for the turbulent Sigma-equation. In this exact Sigma-equation, it appears that the dynamical properties of the flame surface density are determined by a single parameter, namely the turbulent flame stretch. Unfortunately, the flame surface density and the turbulent flame stretch are not available from experiments and, in the absence of experimental data, little is known on the validity of the closure assumptions used in current flamelet models. Direct Numerical Simulation (DNS) is the obvious, complementary approach to get basic information on these fundamental quantities. Three-dimensional DNS of premixed flames in isotropic turbulent flow is used to estimate the different terms appearing in the Sigma-equation. A new methodology is proposed to provide the source and sink terms for the flame surface density, resolved both temporally and spatially throughout the turbulent flame brush. Using this methodology, the effects of the Lewis number on the rate of production of flame surface area are described in great detail and meaningful comparisons with flamelet models can be performed. The analysis reveals in particular the tendency of the models to overpredict flame surface dissipation as well as their inability to reproduce variations due to thermo-diffusive phenomena. Thanks to the detailed information produced by a DNS-based analysis, this type of comparison not only underscores the shortcomings of current models but also suggests ways to improve them.

  18. Prediction of electron and ion concentrations in low-pressure premixed acetylene and ethylene flames

    NASA Astrophysics Data System (ADS)

    Cancian, J.; Bennett, B. A. V.; Colket, M. B.; Smooke, M. D.

    2013-04-01

    Flame stabilisation and extinction in a number of different flows can be affected by application of electric fields. Electrons and ions are present in flames, and because of charge separation, weak electric fields can also be generated even when there is no externally applied electric field. In this work, a numerical model incorporating ambipolar diffusion and plasma kinetics has been developed to predict gas temperature, species, and ion and electron concentrations in laminar premixed flames without applied electric fields. This goal has been achieved by combining the existing CHEMKIN-based PREMIX code with a recently developed methodology for the solution of electron temperature and transport properties that uses a plasma kinetics model and a Boltzmann equation solver. A chemical reaction set has been compiled from seven sources and includes chemiionisation, ion-molecule, and dissociative-recombination reactions. The numerical results from the modified PREMIX code (such as peak number densities of positive ions) display good agreement with previously published experimental data for fuel-rich, non-sooting, low-pressure acetylene and ethylene flames without applied electric fields.

  19. Field Effects of Buoyancy on Lean Premixed Turbulent Flames

    NASA Technical Reports Server (NTRS)

    Cheng, R. K.; Dimalanta, R.; Wernet, M. P.; Greenberg, P. S.

    2001-01-01

    Buoyancy affects the entire flowfield of steady turbulent flames and this aspect of flame buoyancy coupling is largely unexplored by experiments or by theory. Open flames and flames within large confinements are free to expand and interact with the surrounding environment. In addition to fluid and combustion conditions, their aerodynamic flowfields are determined by the flame brush orientation and geometry, wake of the stabilizer, enclosure size, and of course, the gravitational field. Because the flowfield consists mainly of cold reactants (mostly in the nearfield) and hot products (mostly in the farfield), buoyancy effects are manifested in the farfield region. In upward pointing flames, an obvious effect is a favorable axial pressure gradient that accelerates the products thereby increasing the axial aerodynamic stretch rate. Intrinsic to turbulent flows, changes in mean aerodynamic stretch also couple to the fluctuating pressure field. Consequently, buoyancy can influence the turbulence intensities upstream and downstream of the flame. Flame wrinkling process, and heat release rate are also directly affected. This backward coupling mechanism is the so-called elliptic problem. To resolve the field effects of buoyancy would require the solution of three-dimensional non-linear Navier Stokes equations with full specification of the upstream, wall and downstream boundary conditions.

  20. Experimental study on a comparison of typical premixed combustible gas-air flame propagation in a horizontal rectangular closed duct.

    PubMed

    Jin, Kaiqiang; Duan, Qiangling; Liew, K M; Peng, Zhongjing; Gong, Liang; Sun, Jinhua

    2017-04-05

    Research surrounding premixed flame propagation in ducts has a history of more than one hundred years. Most previous studies focus on the tulip flame formation and flame acceleration in pure gas fuel-air flame. However, the premixed natural gas-air flame may show different behaviors and pressure dynamics due to its unique composition. Natural gas, methane and acetylene are chosen here to conduct a comparison study on different flame behaviors and pressure dynamics, and to explore the influence of different compositions on premixed flame dynamics. The characteristics of flame front and pressure dynamics are recorded using high-speed schlieren photography and a pressure transducer, respectively. The results indicate that the compositions of the gas mixture greatly influence flame behaviors and pressure. Acetylene has the fastest flame tip speed and the highest pressure, while natural gas has a faster flame tip speed and higher pressure than methane. The Bychkov theory for predicting the flame skirt motion is verified, and the results indicate that the experimental data coincide well with theory in the case of equivalence ratios close to 1.00. Moreover, the Bychkov theory is able to predict flame skirt motion for acetylene, even outside of the best suitable expansion ratio range of 6

  1. Direct spectral/hp element simulation of piloted jet non-premixed flames

    NASA Astrophysics Data System (ADS)

    Nastase, Cristian R.

    2004-11-01

    The spectral/hp element method is used for direct numerical simulation (DNS) of piloted non premixed methane jet flames. This method combines the accuracy of spectral methods with versatility of finite element methods, and allows accurate simulations of complex flows on structured and unstructured grids. Here, the methodology is extended for simulation of multi-species, reactive flows using the discontinuous Galerkin formulation. Parallel computation is performed via MPI standards coupled with a domain decomposition methodology. The overall computational scheme allows for an efficient partitioning of the flow configuration. Tests performed with up to 64 processors show quasi-linear parallel performance and scalability. The flame configurations are similar to the piloted jet non-premixed flame considered at the Combustion Research Facility at the Sandia National Laboratories. For a momentum dominated flame, the simulated results portray many of the features observed experimentally. This pertains to both the spatial and the compositional structures of the flow. For a buoyancy controlled flame (at elevated gravity levels), the results indicate an increase in both the turbulence levels and flow acceleration. Departure from equilibrium, including localized extinction is observed on a significant portion of this flame.

  2. DNS and modeling of the interaction between turbulent premixed flames and walls

    NASA Technical Reports Server (NTRS)

    Poinsot, T. J.; Haworth, D. C.

    1992-01-01

    The interaction between turbulent premixed flames and walls is studied using a two-dimensional full Navier-Stokes solver with simple chemistry. The effects of wall distance on the local and global flame structure are investigated. Quenching distances and maximum wall heat fluxes during quenching are computed in laminar cases and are found to be comparable to experimental and analytical results. For turbulent cases, it is shown that quenching distances and maximum heat fluxes remain of the same order as for laminar flames. Based on simulation results, a 'law-of-the-wall' model is derived to describe the interaction between a turbulent premixed flame and a wall. This model is constructed to provide reasonable behavior of flame surface density near a wall under the assumption that flame-wall interaction takes place at scales smaller than the computational mesh. It can be implemented in conjunction with any of several recent flamelet models based on a modeled surface density equation, with no additional constraints on mesh size or time step.

  3. Blowoff behavior of bluff body stabilized flames in vitiated and partially premixed flows

    NASA Astrophysics Data System (ADS)

    Tuttle, Steven G.

    Turbulent flame holding and blowoff characteristics of bluff body stabilized flames were measured in an enclosed rectangular duct with a triangular flame holder in vitiated, premixed and unvitiated, asymmetrically stratified flows. Blowoff stability margins were characterized, with chemiluminescence measurements performed by high-speed imaging to capture flame dynamics during blow off. As the equivalence ratio was decreased, local extinction along the shear layer flames occurred with greater frequency and proximity to the wake stagnation zone. Decreased equivalence ratio resulted in extinction events at the trailing edge of the stagnation zone, where reactants were convected into the recirculation zone and burned. Eventually, increasing reactant dilution of the recirculation zone either increased the ignition time scale or the lowered the strain tolerance of the propagating flames in the flame anchoring region, resulting in lift-off or extinction, and the near field shear layer flames convected to the wake stagnation zone, where they continued to propagate. From there, the flames were convected upstream into the recirculation zone, where they were eventually quenched. Simultaneous PIV and OH PLIF measurements captured the flame edge location and aerodynamic behavior as blowoff was approached. Two-dimensional hydrodynamic stretch alone the flame front and flow field vorticity maps were extracted from the combined PIV/OH PLIF data. The distribution of flame stretch shifted to greater values as the equivalence ratio decreased. Asymmetric fuel distributions, measured with acetone LW, were found to increase the equivalence ratio at blow off from that found with uniformly-fueled flows. This was attributed to the greater wake instability and extinction of the lean-side flames. The asymmetrically fueled flames were more susceptible to thermoacoustic instabilities when the shedding frequency was near an acoustic eigenmode of the exhaust duct, due to the decreased

  4. Numerical studies on the structure of two-dimensional H{sub 2}/air premixed jet flame

    SciTech Connect

    Katta, V.R.; Roquemore, W.M.

    1995-07-01

    The burning characteristics of a premixed, H{sub 2}/air Bunsen-type flame are investigated using a time-dependent, axisymmetric numerical model with variable transport properties and a detailed-chemical-kinetics mechanism. The temperature, species concentration, and velocity fields are investigated under fuel-lean, stoichiometric, and fuel-rich conditions. The calculations show that under fuel-lean conditions the flame exhibits the ``tip-opening`` phenomenon, while under fuel-rich condition the tip of the flame burns intensely. These results are in agreement with the experimental findings of Mizomoto et al. who have suggested that the tip-opening phenomenon results from the nonunity Lewis number. To further investigate the impact of local Lewis number on the premixed-flame structure, numerical experiments are performed by modifying the local Lewis numbers of the individual species. Results for the fuel-lean condition confirm that the local Lewis number is responsible for the tip-opening phenomenon. Indeed, when the local Lewis number is set equal to 2, the burning pattern of the fuel-lean premixed flame resembles that of a fuel-rich flame with a closed tip. The spatial distributions of NO in the fuel-lean, stoichiometric, and fuel-rich flames are also examined. Under the fuel-lean and stoichiometric conditions, the NO is formed along the high-temperature cone of the flame, as expected. In the fuel-rich case, a dual flame structure is observed. The NO production occurs primarily in the secondary ``diffusion`` flame which is established at the interface of the excess fuel and ambient oxygen. Buoyancy-induced toroidal vortices are found to form in the vertically mounted premixed flames. However, the dynamic characteristics of a premixed flame, in contrast to those of a jet diffusion flame, are observed to be dependent on the inlet velocity profile of the fuel jet.

  5. Pre-mixed flame simulations for non-unity Lewis numbers

    NASA Technical Reports Server (NTRS)

    Rutland, C. J.; Trouve, A.

    1990-01-01

    A principal effect of turbulence on premixed flames in the flamelet region is to wrinkle the flame fronts. For non-unity Lewis numbers (Le), the local flame structure is altered in curved regions. This effect is examined using direct numerical simulations of the three dimensional, constant density, decaying isotropic turbulence with a single step, finite rate chemical reaction. Simulations of Lewis numbers 0.8, 1.0, and 1.2 are compared. The turbulent flame speed, S(sub T), increases as Le decreases. The correlation between S(sub T) and u prime found in previous Le = 1 simulations has a strong Lewis number dependency. The variance of the pdf of the flame curvature increases as Le decreases, indicating that the flames become more wrinkled. A strong correlation between local flame speed and curvature was found. For Le greater than 1, the flame speed increases in regions concave towards the products and decreases in convex regions. The opposite correlation was found for Le less than 1. The mean temperature of the products was also found to vary with Lewis number. For Le = 0.8, it is less than the adiabatic flame temperature and for Le = 1.2 it is greater.

  6. Consistent flamelet modeling of differential molecular diffusion for turbulent non-premixed flames

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng

    2016-03-01

    Treating differential molecular diffusion correctly and accurately remains as a great challenge to the modeling of turbulent non-premixed combustion. The aim of this paper is to develop consistent modeling strategies for differential molecular diffusion in flamelet models. Two types of differential molecular diffusion models are introduced, linear differential diffusion models and nonlinear differential diffusion models. A multi-component turbulent mixing layer problem is analyzed in detail to gain insights into differential molecular diffusion and its characteristics, particularly the dependence of differential molecular diffusion on the Reynolds number and the Lewis number. These characteristics are then used to validate the differential molecular diffusion models. Finally, the new models are applied to the modeling of a series of laboratory-scale turbulent non-premixed jet flames with different Reynolds number (Sandia Flames B, C, and D) to further assess the models' performance.

  7. Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane–air jet flames

    DOE PAGES

    Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; ...

    2015-06-22

    Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall onmore » the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.« less

  8. Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane–air jet flames

    SciTech Connect

    Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; Chen, Jacqueline H.

    2015-06-22

    Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall on the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.

  9. Self-organized Spiral and Circular Waves in Premixed Gas Flames

    NASA Technical Reports Server (NTRS)

    Pealman, Howard G.; Ronney, Paul D.

    1994-01-01

    A diffusive-thermal high Lewis number (Le) gas-phase oscillator has been observed in premixed flames using a lean mixture of butane and oxygen diluted with helium (Le approx. 3.0). This reactive-diffusive system exhibits both propagating radial pulsations and rotating spiral waves perhaps,analogous to those observed in other excitable media such as the Belousov-Zhabotinsky reaction.

  10. Self-organized spiral and circular waves in premixed gas flames

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard G.; Ronney, Paul D.

    1994-01-01

    A diffusive-thermal high Lewis number (Le) gas-phase oscillator has been observed in premixed flames using a lean mixture of butane and oxygen diluted with helium (Le approximately equals 3.0). This reactive-diffusive system exhibits both propagating radial pulsations and rotating spiral waves perhaps analogous to those observed in other excitable media such as the Belousov-Zhabotinsky reaction.

  11. Low and High Temperature Combustion Chemistry of Butanol Isomers in Premixed Flames and Autoignition Systems

    SciTech Connect

    Sarathy, S M; Pitz, W J; Westbrook, C K; Mehl, M; Yasunaga, K; Curran, H J; Tsujimura, T; Osswald, P; Kohse-Hoinghaus, K

    2010-12-12

    Butanol is a fuel that has been proposed as a bio-derived alternative to conventional petroleum derived fuels. The structural isomer in traditional 'bio-butanol' fuel is n-butanol, but newer conversion technologies produce iso-butanol as a fuel. In order to better understand the combustion chemistry of bio-butanol, this study presents a comprehensive chemical kinetic model for all the four isomers of butanol (e.g., 1-, 2-, iso- and tert-butanol). The proposed model includes detailed high temperature and low temperature reaction pathways. In this study, the primary experimental validation target for the model is premixed flat low-pressure flame species profiles obtained using molecular beam mass spectrometry (MBMS). The model is also validated against previously published data for premixed flame velocity and n-butanol rapid compression machine and shock tube ignition delay. The agreement with these data sets is reasonably good. The dominant reaction pathways at the various pressures and temperatures studied are elucidated. At low temperature conditions, we found that the reaction of alphahydroxybutyl with O{sub 2} was important in controlling the reactivity of the system, and for correctly predicting C{sub 4} aldehyde profiles in low pressure premixed flames. Enol-keto isomerization reactions assisted by HO{sub 2} were also found to be important in converting enols to aldehydes and ketones in the low pressure premixed flames. In the paper, we describe how the structural features of the four different butanol isomers lead to differences in the combustion properties of each isomer.

  12. On the structure, propagation, and stabilization of laminar premixed flames. Final report

    SciTech Connect

    Law, Chung K.

    1999-07-01

    The primary objective of the funded program was to qualitatively understand and quantitatively determine the structure and dynamics of laminar premixed flames. The investigation was conducted using laser-based experimentation, computational simulation with detailed chemistry and transport, and activation energy asymptotic analysis. Highlights of accomplishments were discussed in the annual reports submitted to the program monitor for this project. Details are reported in the thirty journal publications cited in the journal article list which is the major component of this final report.

  13. Kinetic Effects of Non-Equilibrium Plasma on Partially Premixed Flame Extinction

    DTIC Science & Technology

    2011-01-01

    dissociative attachment processes. The Boltzmann equation calculates the rate coefficients of the electron impact elementary reactions by averaging the...ion-ion neutralization processes, ion-molecule reactions, and electron attachment and detachment processes. Note that the present model does not solve...partially premixed methane flames was studied at 60 Torr by blending 2% CH4 into the oxidizer stream. The non-equilibrium discharge accelerated

  14. A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion

    SciTech Connect

    Grcar, Joseph F; Grcar, Joseph F

    2008-06-30

    Ultra-lean, hydrogen-air mixtures are found to support another kind of laminar flame that is steady and stable beside flat flames and flame balls. Direct numerical simulations are performed of flames that develop into steadily and stably propagating cells. These cells were the original meaning of the word"flamelet'' when they were observed in lean flammability studies conducted early in the development of combustion science. Several aspects of these two-dimensional flame cells are identified and are contrasted with the properties of one-dimensional flame balls and flat flames. Although lean hydrogen-air flames are subject to thermo-diffusive effects, in this case the result is to stabilize the flame rather than to render it unstable. The flame cells may be useful as basic components of engineering models for premixed combustion when the other types of idealized flames are inapplicable.

  15. Interaction of turbulent premixed flames with combustion products: Role of stoichiometry

    DOE PAGES

    Coriton, Bruno Rene Leon; Frank, Jonathan H.; Gomez, Alessandro

    2016-05-30

    Stabilization methods of turbulent flames often involve mixing of reactants with hot products of combustion. The stabilizing effect of combustion product enthalpy has been long recognized, but the role played by the chemical composition of the product gases is typically overlooked. We employ a counterflow system to pinpoint the effects of the combustion product stoichiometry on the structure of turbulent premixed flames under conditions of both stable burning and local extinction. To that end, a turbulent jet of lean-to-rich, CH4/O2/N2-premixed reactants at a turbulent Reynolds number of 1050 was opposed to a stream of hot products of combustion that weremore » generated in a preburner. While the combustion product stream temperature was kept constant, its stoichiometry was varied independently from that of the reactant stream, leading to reactant-to-product stratification of relevance to practical combustion systems. The detailed structure of the turbulent flame front was analyzed in two series of experiments using laser-induced fluorescence (LIF): joint CH2O LIF and OH LIF measurements and joint CO LIF and OH LIF measurements. Results revealed that a decrease in local CH2O+OH and CO+OH reaction rates coincide with the depletion of OH radicals in the vicinity of the combustion product stream. These critical combustion reaction rates were more readily quenched in the presence of products of combustion from a stoichiometric flame, whereas they were favored by lean combustion products. As a result, stoichiometric combustion products contributed to a greater occurrence of local extinction. Furthermore, they limited the capacity of premixed reactants to ignite and of the turbulent premixed flames to stabilize. In contrast, lean and rich combustion products facilitated flame ignition and stability and reduced the rate of local extinction. The influence of the combustion product stream on the turbulent flame front was limited to a zone of approximately two millimeters

  16. Interaction of turbulent premixed flames with combustion products: Role of stoichiometry

    SciTech Connect

    Coriton, Bruno Rene Leon; Frank, Jonathan H.; Gomez, Alessandro

    2016-05-30

    Stabilization methods of turbulent flames often involve mixing of reactants with hot products of combustion. The stabilizing effect of combustion product enthalpy has been long recognized, but the role played by the chemical composition of the product gases is typically overlooked. We employ a counterflow system to pinpoint the effects of the combustion product stoichiometry on the structure of turbulent premixed flames under conditions of both stable burning and local extinction. To that end, a turbulent jet of lean-to-rich, CH4/O2/N2-premixed reactants at a turbulent Reynolds number of 1050 was opposed to a stream of hot products of combustion that were generated in a preburner. While the combustion product stream temperature was kept constant, its stoichiometry was varied independently from that of the reactant stream, leading to reactant-to-product stratification of relevance to practical combustion systems. The detailed structure of the turbulent flame front was analyzed in two series of experiments using laser-induced fluorescence (LIF): joint CH2O LIF and OH LIF measurements and joint CO LIF and OH LIF measurements. Results revealed that a decrease in local CH2O+OH and CO+OH reaction rates coincide with the depletion of OH radicals in the vicinity of the combustion product stream. These critical combustion reaction rates were more readily quenched in the presence of products of combustion from a stoichiometric flame, whereas they were favored by lean combustion products. As a result, stoichiometric combustion products contributed to a greater occurrence of local extinction. Furthermore, they limited the capacity of premixed reactants to ignite and of the turbulent premixed flames to stabilize. In contrast, lean and rich combustion products facilitated flame ignition and stability and reduced the rate of local extinction. The influence of the combustion product stream on the turbulent flame front was

  17. Structure of the Soot Growth Region of Laminar Premixer Methane/Oxygen Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.

    1999-01-01

    Soot is a dominant feature of hydrocarbon/air flames, affecting their reaction mechanisms and structure. As a result, soot processes affect capabilities for computational combustion as well as predictions of flame radiation and pollution emissions. Motivated by these observations, the present investigation extended past work on soot growth in laminar premixed flames, seeking to evaluate model predictions of flame structure. Xu et al. report direct measurements of soot residence times, soot concentrations, soot structure, gas temperatures and gas compositions for premixed flames similar to those studied by Harris and Weiner and Ramer et al. respectively. It was found that predictions of major stable gas species concentrations based on mechanisms of Leung and Lindstedt and Frenklach and coworkers, were in good agreement with the measurements. The results were also used to evaluate the hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms of Frenklach and coworkers and Colket and Hall. It was found that these mechanisms were effective using quite reasonable correlations for the steric factors appearing in the theories. The successful evaluation of the HACA mechanism of soot growth in Refs. 1 and 2 is encouraging but one aspect of this evaluation is a concern. In particular, H-atom concentrations play a crucial role in the HACA mechanism and it was necessary to estimate these concentrations because they were not measured directly. These estimates were made assuming local thermodynamic equilibrium between H, and H based on measured temperatures and H2 concentrations and the equilibrium constant data of Kee et al.. This approach was justified by the flame structure predictions; nevertheless, direct evaluation of equilibrium estimates of H-atom concentrations in the soot growth regions of laminar premixed flames is needed to provide more convincing proof of this behavior. Thus, the objective of the present investigation was to complete new measurements of the

  18. A comparison of transport algorithms for premixed, laminar steady state flames

    NASA Technical Reports Server (NTRS)

    Coffee, T. P.; Heimerl, J. M.

    1980-01-01

    The effects of different methods of approximating multispecies transport phenomena in models of premixed, laminar, steady state flames were studied. Five approximation methods that span a wide range of computational complexity were developed. Identical data for individual species properties were used for each method. Each approximation method is employed in the numerical solution of a set of five H2-02-N2 flames. For each flame the computed species and temperature profiles, as well as the computed flame speeds, are found to be very nearly independent of the approximation method used. This does not indicate that transport phenomena are unimportant, but rather that the selection of the input values for the individual species transport properties is more important than the selection of the method used to approximate the multispecies transport. Based on these results, a sixth approximation method was developed that is computationally efficient and provides results extremely close to the most sophisticated and precise method used.

  19. Premixed hydrocarbon stagnation flames : experiments and simulations to validate combustion chemical-kinetic models

    NASA Astrophysics Data System (ADS)

    Benezech, Laurent Jean-Michel

    A methodology based on the comparison of flame simulations relying on reacting flow models with experiment is applied to C1-C3 stagnation flames. The work reported targets the assessment and validation of the modeled reactions and reaction rates relevant to (C1-C3)-flame propagation in several detailed combustion kinetic models. A concensus does not, as yet, exist on the modeling of the reasonably well-understood oxidation of C1-C2 flames, and a better knowledge of C3 hydrocarbon combustion chemistry is required before attempting to bridge the gap between the oxidation of C1-C2 hydrocarbons and the more complex chemistry of heavier hydrocarbons in a single kinetic model. Simultaneous measurements of velocity and CH-radical profiles were performed in atmospheric propane(C3H8)- and propylene(C3H6)-air laminar premixed stagnation flames stabilized in a jet-wall configuration. These nearly-flat flames can be modeled by one-dimensional simulations, providing a means to validate kinetic models. Experimental data for these C3 flames and similar experimental data for atmospheric methane(CH4)-, ethane(C2H6)-, and ethylene(C2H4)-air flames are compared to numerical simulations performed with a one-dimensional hydrodynamic model, a multi-component transport formulation including thermal diffusion, and different detailed-chemistry models, in order to assess the adequacy of the models employed. A novel continuation technique between kinetic models was developed and applied successfully to obtain solutions with the less-robust models. The 2005/12 and 2005/10 releases of the San Diego mechanism are found to have the best overall performance in C3H8 and C3H6 flames, and in CH4, C2H6, and C2H4 flames, respectively. Flame position provides a good surrogate for flame speed in stagnation-flow stabilized flames. The logarithmic sensitivities of the simulated flame locations to variations in the kinetic rates are calculated via the "brute-force" method for fifteen representative flames

  20. A comparison of experimental results of soot production in laminar premixed flames

    NASA Astrophysics Data System (ADS)

    Caetano, Nattan R.; Soares, Diego; Nunes, Roger P.; Pereira, Fernando M.; Smith Schneider, Paulo; Vielmo, Horácio A.; van der Laan, Flávio Tadeu

    2015-05-01

    Soot emission has been the focus of numerous studies due to the numerous applications in industry, as well as the harmful effects caused to the environment. Thus, the purpose of this work is to analyze the soot formation in a flat flame burner using premixed compressed natural gas and air, where these quasi-adiabatic flames have one-dimensional characteristics. The measurements were performed applying the light extinction technique. The air/fuel equivalence ratiowas varied to assess the soot volume fractions for different flame configurations. Soot production along the flamewas also analyzed by measurements at different heights in relation to the burner surface. Results indicate that soot volume fraction increases with the equivalence ratio. The higher regions of the flamewere analyzed in order to map the soot distribution on these flames. The results are incorporated into the experimental database for measurement techniques calibration and for computational models validation of soot formation in methane premixed laminar flames, where the equivalence ratio ranging from 1.5 up to 8.

  1. DNS of turbulent premixed slot flames with mixture inhomogeneity: a study of NOx formation

    NASA Astrophysics Data System (ADS)

    Luca, Stefano; Attili, Antonio; Bisetti, Fabrizio

    2016-11-01

    A set of Direct Numerical Simulations of three-dimensional methane/air lean flames in a spatially developing turbulent slot burner are performed. The flames are in the thin-reaction zone regimes and the jet Reynolds number is 5600. This configuration is of interest since it displays turbulent production by mean shear as in real devices. The gas phase hydrodynamics are modeled with the reactive, unsteady Navier-Stokes equations in the low Mach number limit. Combustion is treated with finite-rate chemistry. The jet is characterized by a non-uniform equivalence ratio at the inlet and varying levels of incomplete premixing for the methane/air mixture are considered. The global equivalence ratio is 0.7 and temperature is 800 K. All simulations are performed at 4 atm. The instantaneous profiles of the mass fractions of methane and air at the inlet are sampled from a set of turbulent channel simulations that provide realistic, fully turbulent fields. The data are analyzed to study the influence of partial premixing on the flame structure. Particular focus is devoted to the assessment of heat release rate fluctuations and NOx formation. In particular, the effects of partial premixing on the production rates for the various pathways to NOx formation are investigated.

  2. Flame front tracking in turbulent lean premixed flames using stereo PIV and time-sequenced planar LIF of OH

    NASA Astrophysics Data System (ADS)

    Hartung, G.; Hult, J.; Balachandran, R.; Mackley, M. R.; Kaminski, C. F.

    2009-09-01

    This paper describes the simultaneous application of time-sequenced laser-induced fluorescence imaging of OH radicals and stereoscopic particle image velocimetry for measurements of the flame front dynamics in lean and premixed LP turbulent flames. The studied flames could be acoustically driven, to simulate phenomena important in LP combustion technologies. In combination with novel image post processing techniques we show how the data obtained can be used to track the flame front contour in a plane defined by the illuminating laser sheets. We consider effects of chemistry and convective fluid motion on the dynamics of the observed displacements and analyse the influence of turbulence and acoustic forcing on the observed contour velocity, a quantity we term as s {/d 2D}. We show that this quantity is a valuable and sensitive indicator of flame turbulence interactions, as (a) it is measurable with existing experimental methodologies, and (b) because computational data, e.g. from large eddy simulations, can be post processed in an identical fashion. s {/d 2D} is related (to a two-dimensional projection) of the three-dimensional flame displacement speed s d , but artifacts due to out of plane convective motion of the flame surface and the uncertainty in the angle of the flame surface normal have to be carefully considered. Monte Carlo simulations were performed to estimate such effects for several distributions of flame front angle distributions, and it is shown conclusively that s {/d 2D} is a sensitive indicator of a quantity related to s d in the flames we study. s {/d 2D} was shown to increase linearly both with turbulent intensity and with the amplitude of acousting forcing for the range of conditions studied.

  3. Combustion dynamics linked to flame behaviour in a partially premixed swirled industrial burner

    SciTech Connect

    Biagioli, Fernando; Guethe, Felix; Schuermans, Bruno

    2008-07-15

    Previous work [Biagioli, F., Stabilization mechanism of turbulent premixed flames in strongly swirled flows, Combustion, Theory and Modelling 10 (3) (2006) 389-412; Guethe, F., Lachner, R., Schuermans, B., Biagioli, F., Geng, W., Inauen, A., Schenker, S., Bombach, R., Hubschmid, W., Flame imaging on the ALSTOM EV-burner: thermo acoustic pulsations and CFD-validation, in: AIAA Paper 2006-437 presented at the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 9-12, 2006] has shown that turbulent dry low NO{sub x} (partially premixed) flames in high swirl conical burners may be subject to a large change of their anchoring location at the symmetry axis when a critical value of the bulk equivalence ratio is reached, i.e. they are bi-stable. This flame behavior is linked here to combustion pressure dynamics measured in an atmospheric test rig for a prototype version of the Alstom EnVironmental (EV) conical burner. The link is made via the solution of the problem of the 'travelling flameholder', which shows that the unsteady displacement of the flame anchoring location implies an unsteady variation of the flame surface area and therefore unsteady heat release. The relevance of this source of unsteady heat release - which is different from more usual ones due to variations in turbulent burning rate and in the sensible enthalpy jump across the flame - to the generation of combustion dynamics in strongly swirled flows is confirmed here by the strong positive correlation between the tendency of the flame to be displaced and the measured amplitude of pressure pulsations. (author)

  4. Soot Formation in Laminar Premixed Ethylene/Air Flames at Atmospheric Pressure. Appendix G

    NASA Technical Reports Server (NTRS)

    Xu, F.; Sunderland, P. B.; Faeth, G. M.; Urban, D. L. (Technical Monitor)

    2001-01-01

    Soot formation was studied within laminar premixed ethylene/air flames (C/O ratios of 0.78-0.98) stabilized on a flat-flame burner operating at atmospheric pressure. Measurements included soot volume fractions by both laser extinction and gravimetric methods, temperatures by multiline emission, soot structure by thermophoretic sampling and transmission electron microscopy, major gas species concentrations by sampling and gas chromatography, concentrations of condensable hydrocarbons by gravimetric sampling. and velocities by laser velocimetry. These data were used to find soot surface growth rates and primary soot particle nucleation rates along the axes of the flames. Present measurements of soot surface growth rates were correlated successfully by predictions based on typical hydrogen-abstraction/carbon-addition (HACA) mechanisms of Frenklach and co-workers and Colket and Hall. These results suavest that reduced soot surface growth rates with increasing residence time seen in the present and other similar flames were mainly caused by reduced rates of surface activation due to reduced H atom concentrations as temperatures decrease as a result of radiative heat losses. Primary soot particle nucleation rates exhibited variations with temperature and acetylene concentrations that were similar to recent observations for diffusion flames; however, nucleation rates in the premixed flames were significantly lower than in, the diffusion flames for reasons that still must be explained. Finally, predictions of yields of major gas species based on mechanisms from both Frenklach and co-workers and Leung and Lindstedt were in good agreement with present measurements and suggest that H atom concentrations (relevant to HACA mechanisms) approximate estimates based on local thermodynamic equilibrium in the present flames.

  5. Laser induced fluorescence measurements and modeling of nitric oxide in high-pressure premixed flames

    NASA Technical Reports Server (NTRS)

    Reisel, John R.; Laurendeau, Normand M.

    1994-01-01

    Laser-induced fluorescence (LIF) has been applied to the quantitative measurement of nitric oxide (NO) in premixed, laminar, high-pressure flames. Their chemistry was also studied using three current kinetics schemes to determine the predictive capabilities of each mechanism with respect to NO concentrations. The flames studied were low-temperature (1600 less than T less than 1850K) C2H6/O2/N2 and C2H6/O2/N2 flames, and high temperature (2100 less than T less than 2300K) C2H6/O2/N2 flames. Laser-saturated fluorescence (LSF) was initially used to measure the NO concentrations. However, while the excitation transition was well saturated at atmospheric pressure, the fluorescence behavior was basically linear with respect to laser power at pressures above 6 atm. Measurements and calculations demonstrated that the fluorescence quenching rate variation is negligible for LIF measurements of NO at a given pressure. Therefore, linear LIF was used to perform quantitative measurements of NO concentration in these high-pressure flames. The transportability of a calibration factor from one set of flame conditions to another also was investigated by considering changes in the absorption and quenching environment for different flame conditions. The feasibility of performing LIF measurements of (NO) in turbulent flames was studied; the single-shot detection limit was determined to be 2 ppm.

  6. Examination of the effect of differential molecular diffusion in DNS of turbulent non-premixed flames

    DOE PAGES

    Han, Chao; Lignell, David O.; Hawkes, Evatt R.; ...

    2017-02-09

    Here, the effect of differential molecular diffusion (DMD) in turbulent non-premixed flames is studied by examining two previously reported DNS of temporally evolving planar jet flames, one with CO/H2 as the fuel and the other with C2H4 as the fuel. The effect of DMD in the CO/H2 DNS flames in which H2 is part of fuel is found to behave similar to laminar flamelet, while in the C2H4 DNS flames in which H2 is not present in the fuel it is similar to laminar flamelet in early stages but becomes different from laminar flamelet later. The scaling of the effectmore » of DMD with respect to the Reynolds number Re is investigated in the CO/H2 DNS flames, and an evident power law scaling (~Re–a with a a positive constant) is observed. The scaling of the effect of DMD with respect to the Damkohler number Da is explored in both laminar counter-flow jet C2H4 diffusion flames and the C2H4 DNS flames. A power law scaling (~Daa with a a positive constant) is clearly demonstrated for C2H4 nonpremixed flames.« less

  7. Markstein Numbers of Negatively-Stretched Premixed Flames: Microgravity Measurements and Computations

    NASA Technical Reports Server (NTRS)

    Ibarreta, Alfonso F.; Driscoll, James F.; Feikema, Douglas A.; Salzman, Jack (Technical Monitor)

    2001-01-01

    The effect of flame stretch, composed of strain and curvature, plays a major role in the propagation of turbulent premixed flames. Although all forms of stretch (positive and negative) are present in turbulent conditions, little research has been focused on the stretch due to curvature. The present study quantifies the Markstein number (which characterizes the sensitivity of the flame propagation speed to the imposed stretch rate) for an inwardly-propagating flame (IPF). This flame is of interest because it is negatively stretched, and is subjected to curvature effects alone, without the competing effects of strain. In an extension of our previous work, microgravity experiments were run using a vortex-flame interaction to create a pocket of reactants surrounded by an IPF. Computations using the RUN-1DL code of Rogg were also performed in order to explain the measurements. It was found that the Markstein number of an inwardly-propagating flame, for both the microgravity experiment and the computations, is significantly larger than that of an outwardly-propagating flame. Further insight was gained by running the computations for the simplified (hypothetical) cases of one step chemistry, unity Lewis number, and negligible heat release. Results provide additional evidence that the Markstein numbers associated with strain and curvature have different values.

  8. LES of Triangular-stabilized Lean Premixed Turbulent Flames with an algebraic reaction closure: Quality and Error Assessment

    NASA Astrophysics Data System (ADS)

    Manickam, B.; Franke, J.; Muppala, S. P. R.; Dinkelacker, F.

    In this LES study, an algebraic flame surface wrinkling model based on the progress variable gradient approach is validated for lean premixed turbulent propane/air flames measured on VOLVO test rig. These combustion results are analyzed for uncertainty in the solution using two quality assessment techniques.

  9. Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber.

    PubMed

    Xiao, Huahua; Sun, Jinhua; Chen, Peng

    2014-03-15

    An experimental and numerical study of dynamics of premixed hydrogen/air flame in a closed explosion vessel is described. High-speed shlieren cinematography and pressure recording are used to elucidate the dynamics of the combustion process in the experiment. A dynamically thickened flame model associated with a detailed reaction mechanism is employed in the numerical simulation to examine the flame-flow interaction and effect of wall friction on the flame dynamics. The shlieren photographs show that the flame develops into a distorted tulip shape after a well-pronounced classical tulip front has been formed. The experimental results reveal that the distorted tulip flame disappears with the primary tulip cusp and the distortions merging into each other, and then a classical tulip is repeated. The combustion dynamics is reasonably reproduced in the numerical simulations, including the variations in flame shape and position, pressure build-up and periodically oscillating behavior. It is found that both the tulip and distorted tulip flames can be created in the simulation with free-slip boundary condition at the walls of the vessel and behave in a manner quite close to that in the experiments. This means that the wall friction could be unimportant for the tulip and distorted tulip formation although the boundary layer formed along the sidewalls has an influence to a certain extent on the flame behavior near the sidewalls. The distorted tulip flame is also observed to be produced in the absence of vortex flow in the numerical simulations. The TF model with a detailed chemical scheme is reliable for investigating the dynamics of distorted tulip flame propagation and its underlying mechanism.

  10. Straining and wrinkling processes during turbulence-premixed flame interaction measured using temporally-resolved diagnostics

    SciTech Connect

    Steinberg, Adam M.; Driscoll, James F.

    2009-12-15

    The dynamical processes of flame surface straining and wrinkling that occur as turbulence interacts with a premixed flame were measured using cinema-stereoscopic PIV (CS-PIV) and orthogonal-plane cinema-stereoscopic PIV (OPCS-PIV). These diagnostics provided temporally resolved measurements of turbulence-flame interaction at frame rates of up to 3 kHz and spatial resolutions as small as 280{mu} m. Previous descriptions of flame straining and wrinkling have typically been derived based on a canonical interaction between a pair of counter-rotating vortices and a planar flame surface. However, it was found that this configuration did not properly represent real turbulence-flame interaction. Interactions resembling the canonical configuration were observed in less than 10% of the recorded frames. Instead, straining and wrinkling were generally caused more geometrically complex turbulence, consisting of large groups of structures that could be multiply curved and intertwined. The effect of the interaction was highly dependent on the interaction geometry. Furthermore, even when the turbulence did exist in the canonical geometry, the straining and wrinkling of the flame surface were not well characterized by the vortical structures. A new mechanistic description of the turbulence-flame interaction was therefore identified and confirmed by the measurements. In this description, flame surface straining is caused by coherent structures of fluid-dynamic strain-rate (strain-rate structures). The role of vortical structures is to curve existing flame surface, creating wrinkles. By simultaneously considering both forms of turbulent structure, turbulence-flame interactions in both the canonical configuration and more complex geometries could be understood. (author)

  11. Near field flow structure of isothermal swirling flows and reacting non-premixed swirling flames

    SciTech Connect

    Olivani, Andrea; Solero, Giulio; Cozzi, Fabio; Coghe, Aldo

    2007-04-15

    Two confined lean non-premixed swirl-stabilized flame typologies were investigated in order to achieve detailed information on the thermal and aerodynamic field in the close vicinity of the burner throat and provide correlation with the exhaust emissions. Previous finding indicated the generation of a partially premixed flame with radial fuel injection and a purely diffusive flame with co-axial injection in a swirling co-flow. In the present work, the experimental study is reported which has been conducted on a straight exit laboratory burner with no quarl cone, fuelled by natural gas and air, and fired vertically upwards with the flame stabilized at the end of two concentric pipes with the annulus supplying swirled air and the central pipe delivering the fuel. Two fuel injection typologies, co-axial and radial (i.e., transverse), leading to different mixing mechanisms, have been characterized through different techniques: particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) for a comprehensive analysis of the velocity field, still photography for the detection of flame front and main visible features, and thermocouples for the temperature distribution. Isothermal flow conditions have been included in the experimental investigation to provide a basic picture of the flow field and to comprehend the modifications induced by the combustion process. The results indicated that, although the global mixing process and the main flame structure are governed by the swirl motion imparted to the air stream, the two different fuel injection methodologies play an important role on mixture formation and flame stabilization in the primary mixing zone. Particularly, it has been found that, in case of axial injection, the turbulent interaction between the central fuel jet and the backflow generated by the swirl can induce an intermittent fuel penetration in the recirculated hot products and the formation of a central sooting luminous plume, a phenomenon totally

  12. Laser ablation plasma-assisted stabilization of premixed methane/air flame

    NASA Astrophysics Data System (ADS)

    Li, Xiaohui; Yu, Yang; Peng, Jiangbo; Yu, Xin; Fan, Rongwei; Sun, Rui; Chen, Deying

    2016-01-01

    Laser ablation plasma has been applied to assist stabilization of premixed methane/air flames with a flow speed up to 15.3 m/s. The ablation plasma was generated using the 50 Hz, 1064 nm output of a Nd:YAG laser onto a tantalum slab. With the ablation plasma, the stabilization equivalence ratio has been extended to the fuel-leaner end and the blow off limits have been enhanced by from 3.6- to 14.8-folds for flames which can stabilize without the plasma. The laser pulse energy required for flameholding was reduced to 10 mJ, a 64 % reduction compared with that of gas breakdown plasma, which will ease the demand for high-power lasers for high-frequency plasma generation. The temporal evolutions of the flame kernels following the ablation plasma were investigated using the OH* chemiluminescence imaging approach, and the flame propagation speed ( v f) was measured from the flame kernel evolutions. With the ablation plasma, the v f with flow speed of 4.7-9.0 m/s and equivalence ratio of 1.4 has been enhanced from 0.175 m/s of laminar premixed methane/air flame to 2.79-4.52 and 1.59-5.46 m/s, respectively, in the early and late time following the ablation plasma. The increase in the combustion radical concentrations by the ablation plasma was thought to be responsible for the v f enhancement and the resulted flame stabilization.

  13. Numerical simulations of turbulent premixed H2/O2/N2 flames with complex chemistry

    NASA Technical Reports Server (NTRS)

    Baum, M.; Poinsot, T. J.; Haworth, D. C.

    1992-01-01

    Premixed stoichiometric H2/O2/N2 flames propagating in two-dimensional turbulence were studied using direct numerical simulation (simulations in which all fluid and thermochemical scales are fully resolved) including realistic chemical kinetics and molecular transport. Results are compared with earlier zero-chemistry (flame sheet) and one-step chemistry simulations. Consistent with the simpler models, the turbulent flame with realistic chemistry aligns preferentially with extensive strain rates in the tangent plane and flame curvature probability density functions are close to symmetric with near-zero means. By contrast to simple-chemistry results with non-unity Lewis numbers (ratio of thermal to species diffusivity), local flame structure does not correlate with curvature but rather with tangential strain rate. Turbulent straining results in substantial thinning of the flame relative to the steady unstrained laminar case. Heat release and H2O2 contours remain thin and connected ('flamelet-like') while species including H-atom and OH are more diffuse. Peak OH concentration occurs well behind the peak heat-release zone. The feasibility of incorporating realistic chemistry into full turbulence simulations to address issues such as pollutant formation in hydrocarbon-air flames is suggested.

  14. A numerical and experimental investigation of premixed methane-air flame transient response

    SciTech Connect

    Habib N. Najm; Phillip H. Paul; Omar M. Knio; Andrew McIlroy

    2000-01-06

    The authors report the results of a numerical and experimental investigation of the response of premixed methane-air flames to transient strain-rate disturbances induced by a two-dimensional counter-rotating vortex-pair. The numerical and experimental time histories of flow and flame evolution are matched over a 10 ms interaction time. Measurements and computations of CH and OH peak data evolution are reported, and found to indicate mis-prediction of the flame time scales in the numerical model. Qualitative transient features of OH at rich conditions are not predicted in the computations. On the other hand, evolution of computed and measured normalized HCO fractions are in agreement. The computed CH{sub 3}O response exhibits a strong transient driven by changes to internal flame structure, namely temperature profile steepening, induced by the flow field. Steady state experimental PLIF CH{sub 3}O data is reported, but experimental transient CH{sub 3}O data is not available. The present analysis indicates that the flame responds at time scales that are quite distinct from ``propagation'' time scale derived from flame thickness and burning speed. Evidently, these propagation time scales are not adequate for characterizing the transient flame response.

  15. An Experimental Study of the Structure of Turbulent Non-Premixed Jet Flames in Microgravity

    NASA Astrophysics Data System (ADS)

    Boxx, Isaac; Idicheria, Cherian; Clemens, Noel

    2000-11-01

    The aim of this work is to investigate the structure of transitional and turbulent non-premixed jet flames under microgravity conditions. The microgravity experiments are being conducted using a newly developed drop rig and the University of Texas 1.5 second drop tower. The rig itself measures 16”x33”x38” and contains a co-flowing round jet flame facility, flow control system, CCD camera, and data/image acquisition computer. These experiments are the first phase of a larger study being conducted at the NASA Glenn Research Center 2.2 second drop tower facility. The flames being studied include methane and propane round jet flames at jet exit Reynolds numbers as high as 10,000. The primary diagnostic technique employed is emission imaging of flame luminosity using a relatively high-speed (350 fps) CCD camera. The high-speed images are used to study flame height, flame tip dynamics and burnout characteristics. Results are compared to normal gravity experimental results obtained in the same apparatus.

  16. Filtered chemical source term modeling for LES of high Karlovitz number premixed flames

    NASA Astrophysics Data System (ADS)

    Lapointe, Simon; Blanquart, Guillaume

    2015-11-01

    Tabulated chemistry with the transport of a single progress variable is a popular technique for large eddy simulations of premixed turbulent flames. Since the reaction zone thickness is usually smaller than the LES grid size, modeling of the filtered progress variable reaction rate is required. Most models assume that the filtered progress variable reaction rate is a function of the filtered progress variable and its variance where the dependence can be obtained through the probability density function (PDF) of the progress variable. Among the most common approaches, the PDF can be presumed (usually as a β-PDF) or computed using spatially filtered one dimensional laminar flames (FLF). Models for the filtered source term are studied a priori using results from DNS of turbulent n-heptane/air premixed flames at varying Karlovitz numbers. Predictions from the optimal estimator and models based on laminar flames using a β-PDF or a FLF-PDF are compared to the exact filtered source term. For all filter widths and Karlovitz numbers, the optimal estimator yields small errors while β-PDF and FLF-PDF approaches present larger errors. Sources of differences are discussed.

  17. Radiation properties of soot from premixed flat flame

    SciTech Connect

    Hamadi, M.B.; Vervisch, P.; Coppalle, A.

    1987-04-01

    The spectroscopic analysis of the radiation from luminous flames burning propane and methane fuels were carried out in the wavelength range from 0.4 ..mu..m to 5 ..mu..m and monochromatic spectra of the radiation from the soot particle cloud were measured. A large discrepancy between experimental and predicted k/sub lambda/ from Mie theory is observed. Calculations from Mie theory were performed to clarify the effect of the shape, size, and complex refractive index of soot particles.

  18. Geometrical properties of turbulent premixed flames and other corrugated interfaces.

    PubMed

    Thiesset, F; Maurice, G; Halter, F; Mazellier, N; Chauveau, C; Gökalp, I

    2016-01-01

    This study focuses on the geometrical properties of turbulent flame fronts and other interfaces. Toward that end, we use an original tool based on proper orthogonal decomposition (POD), which is applied to the interface spatial coordinates. The focus is mainly on the degree of roughness of the flame front, which is quantified through the scale dependence of its coverage arclength. POD is first validated by comparing with the caliper technique. Fractal characteristics are extracted in an unambiguous fashion using a parametric expression which appears to be impressively well suited for representing Richardson plots. Then it is shown that, for the range of Reynolds numbers investigated here, the scale-by-scale contribution to the arclength does not comply with scale similarity, irrespectively of the type of similarity which is invoked. The finite ratios between large and small scales, referred to as finite Reynolds number effects, are likely to explain this observation. In this context, the Reynolds number that ought to be achieved for a proper inertial range to be discernible, and for scale similarity to be likely to apply, is calculated. Fractal characteristics of flame folding are compared to available predictions. It is confirmed that the inner cutoff satisfactorily correlates with the Kolmogorov scale while the outer cutoff appears to be proportional to the integral length scale. However, the scaling for the fractal dimension is much less obvious. It is argued that much higher Reynolds numbers have to be reached for drawing firm statements about the evolution (or constancy) of the fractal dimension with respect to flame and flow parameters. Finally, a heuristic phenomenology of corrugated interfaces is highlighted. The degree of generality of the latter phenomenology is confirmed by comparing the folding of different interfaces including a turbulent-nonturbulent interface, a liquid jet destabilized by a surrounding air jet, a cavitating flow, and an isoscalar

  19. Characterization of flame front surfaces in turbulent premixed methane/air combustion

    SciTech Connect

    Smallwood, G.J.; Guelder, Oe.L.; Snelling, D.R.; Deschamps, B.M.; Goekalp, I.

    1995-06-01

    A detailed experimental investigation of the application of fractal geometry concepts in determining the turbulent burning velocity in the wrinkled flame regime of turbulent premixed combustion was conducted. The fractal dimension and cutoff scales were determined for six different turbulent flames in the wrinkled flame regime, where the turbulence intensity, turbulent length scale, and equivalence ratio were varied. Unlike previous reports, it has proved possible to obtain the fractal dimension and inner and outer cutoffs from individual flame images. From this individual data, the pdf distributions of all three fractal parameters, along with the distribution of the predicted increase in surface area, may be determined. The analysis of over 300 flame images for each flame condition provided a sufficient sample size to accurately define the pdf distributions and their means. However, the predicted S{sub T}/S{sub L}, calculated using fractal parameters, was significantly below the measured values. For conical flames, a geometrical modification factor was employed to predict S{sub T}/S{sub L}, however, this did little to improve the predictions. There appeared to be no dependence of the predicted S{sub T}/S{sub L} on the approach flow turbulence. The cutoffs did not seem to vary significantly with any of the length scales in the approach flow turbulence, although the fractal dimension did appear to have a weak dependence on u{prime}/S{sub L} and Re{sub {lambda}}. The probable reasons that fractal geometry does not correctly predict S{sub T}/S{sub L} are that S{sub T}/S{sub L} = A{sub w}/A{sub 0} does not hold in wrinkled turbulent premixed flames, that the flame front surface cannot be described by a single scaling exponent, or that these are not wrinkled flames. S{sub T} = turbulent burning velocity, S{sub L} = laminar burning velocity, A{sub w} = wrinkled flame surface area, and A{sub 0} = flow cross section area.

  20. Potential-flow models for channelled two-dimensional premixed flames around near-circular obstacles.

    PubMed

    Joulin, G; Denet, B; El-Rabii, H

    2010-01-01

    The dynamics of two-dimensional thin premixed flames is addressed in the framework of mathematical models where the flow field on either side of the front is piecewise incompressible and vorticity free. Flames confined in channels with asymptotically straight impenetrable walls are considered. Besides a few free propagations along straight channels, attention is focused on flames propagating against high-speed flows and positioned near a round central obstacle or near two symmetric bumps protruding inward. Combining conformal maps and Green's functions, a regularized generalization of Frankel's integro-differential equation for the instantaneous front shape in each configuration is derived and solved numerically. This produces a variety of real looking phenomena: steady fronts (symmetric or not), noise-induced subwrinkles, flashback events, and breathing fronts in pulsating flows. Perspectives and open mathematical and physical problems are finally evoked.

  1. Influence of temperature and hydroxyl concentration on incipient soot formation in premixed flames

    NASA Technical Reports Server (NTRS)

    Harris, M. M.; King, G. B.; Laurendeau, N. M.

    1986-01-01

    Critical equivalence ratios phi(c) have been measured as a function of temperature (1600-1880 K) for premixed flames at atmospheric pressure. The five fuels studied are methane, ethane, propane, ethylene, and acetylene. The flames were stabilized on a flat flame burner and the temperatures were measured using sodium D-line reversal. A linear relationship is found between In phi(c) and 1/T for each fuel. Based on a global kinetic model in which soot precursors are formed by fuel pyrolysis and oxidized by OH, a predictive correlation has been developed which shows the influence of temperature, OH concentration, and C/H ratio on sooting tendency. This correlation describes all of the measured phi(c) versus temperature data, suggesting that the overall mechanism of soot formation is similar among aliphatic fuels.

  2. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames

    SciTech Connect

    Wang, H.; Frenklach, M.

    1997-07-01

    A computational study was performed for the formation and growth of polycyclic aromatic hydrocarbons (PAHs) in laminar premixed acetylene and ethylene flames. A new detailed reaction mechanism describing fuel pyrolysis and oxidation, benzene formation, and PAH mass growth and oxidation is presented and critically tested. It is shown that the reaction model predicts reasonably well the concentration profiles of major and intermediate species and aromatic molecules in a number of acetylene and ethylene flames reported in the literature. It is demonstrated that reactions of n-C{sub 4}H{sub x} + C{sub 2}H{sub 2} leading to the formation of one-ring aromatics are as important as the propargyl recombination, and hence must be included in kinetic modeling of PAH formation in hydrocarbon flames. It is further demonstrated that the mass growth of PAHs can be accounted for by the previously proposed H-abstraction-C{sub 2}H{sub 2}-addiction mechanism.

  3. Quantifying real-gas effects on a laminar n-dodecane - air premixed flame

    NASA Astrophysics Data System (ADS)

    Gopal, Abishek; Yellapantula, Shashank; Larsson, Johan

    2015-11-01

    With the increasing demand for higher efficiencies in aircraft gas-turbine engines, there has been a progressive march towards high pressure-ratio cycles. Under these conditions, the aviation fuel, Jet A, is injected into the combustor at supercritical pressures. In this work, we study and quantify the effects of transcriticality on a 1D freely propagating laminar n-dodecane - air premixed flame. The impact of the constitutive state relations arising from the Ideal Gas equation of state(EOS) and Peng-Robinson EOS on flame structure and propagation is presented. The effects of real-gas models of transport properties, such as viscosity on laminar flame speed, are also presented.

  4. Effect of fuel type on equivalence ratio measurements using chemiluminescence in premixed flames

    NASA Astrophysics Data System (ADS)

    Orain, Mikaël; Hardalupas, Yannis

    2010-05-01

    Local temporally-resolved measurements of chemiluminescent intensity from OH ∗, CH ∗ and C ∗2 radicals were obtained in premixed counterflow flames operating with propane and prevaporised fuels (isooctane, ethanol and methanol), for different equivalence ratios and strain rates. The results quantified independently the effects of fuel type, strain rate and equivalence ratio on chemiluminescent emissions from flames. The ability of chemiluminescent intensity from OH ∗, CH ∗ and C ∗2 radicals to indicate heat release rate depends strongly on fuel type. The intensity ratio OH ∗/CH ∗ has a monotonic decrease with equivalence ratio for all fuels and can be used to measure equivalence ratio of the reacting mixture. For propane and isooctane, the OH ∗/CH ∗ ratio remains independent of flame strain rate, whereas some dependence is observed for ethanol and methanol.

  5. Flow field studies of a new series of turbulent premixed stratified flames

    SciTech Connect

    Seffrin, F.; Fuest, F.; Dreizler, A.; Geyer, D.

    2010-02-15

    This paper presents a new burner design for lean premixed stratified combustion for experiments to validate models for numerical simulations. The burner demonstrates combustion phenomena relevant to technological applications, where flames are often turbulent, lean premixed, and stratified. The generic burner was designed for high Reynolds number flows and can stabilize a variety of different lean premixed flames. The burner's design and its versatile operational conditions are introduced. Shear, stratification, and fuel type are parametrically varied to provide a sound database of related flow configurations. Reacting and corresponding non-reacting configurations are examined. Experimental setups and the results of laser Doppler velocimetry (LDV) and particle image velocimetry (PIV) are presented and discussed. LDV measurements provide radial profiles of mean axial velocity, mean radial velocity, and turbulent kinetic energy as well as integral time scales. High-speed PIV is introduced as a novel technique to determine integral time and length scales and provide 2D 2-component velocity fields and related quantities, such as vorticity. (author)

  6. Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames

    SciTech Connect

    Bremer, Peer-Timo; Weber, Gunther; Pascucci, Valerio; Day, Marc; Bell, John

    2009-06-01

    This paper presents topology-based methods to robustly extract, analyze, and track features defined as subsets of isosurfaces. First, we demonstrate how features identified by thresholding isosurfaces can be defined in terms of the Morse complex. Second, we present a specialized hierarchy that encodes the feature segmentation independent of the threshold while still providing a flexible multi-resolution representation. Third, for a given parameter selection we create detailed tracking graphs representing the complete evolution of all features in a combustion simulation over several hundred time steps. Finally, we discuss a user interface that correlates the tracking information with interactive rendering of the segmented isosurfaces enabling an in-depth analysis of the temporal behavior. We demonstrate our approach by analyzing three numerical simulations of lean hydrogen flames subject to different levels of turbulence. Due to their unstable nature, lean flames burn in cells separated by locally extinguished regions. The number, area, and evolution over time of these cells provide important insights into the impact of turbulence on the combustion process. Utilizing the hierarchy we can perform an extensive parameter study without re-processing the data for each set of parameters. The resulting statistics enable scientist to select appropriate parameters and provide insight into the sensitivity of the results wrt. to the choice of parameters. Our method allows for the first time to quantitatively correlate the turbulence of the burning process with the distribution of burning regions, properly segmented and selected. In particular, our analysis shows that counter-intuitively stronger turbulence leads to larger cell structures, which burn more intensely than expected. This behavior suggests that flames could be stabilized under much leaner conditions than previously anticipated.

  7. Quasi-steady stages in the process of premixed flame acceleration in narrow channels

    NASA Astrophysics Data System (ADS)

    Valiev, D. M.; Bychkov, V.; Akkerman, V.; Eriksson, L.-E.; Law, C. K.

    2013-09-01

    The present paper addresses the phenomenon of spontaneous acceleration of a premixed flame front propagating in micro-channels, with subsequent deflagration-to-detonation transition. It has recently been shown experimentally [M. Wu, M. Burke, S. Son, and R. Yetter, Proc. Combust. Inst. 31, 2429 (2007)], 10.1016/j.proci.2006.08.098, computationally [D. Valiev, V. Bychkov, V. Akkerman, and L.-E. Eriksson, Phys. Rev. E 80, 036317 (2009)], 10.1103/PhysRevE.80.036317, and analytically [V. Bychkov, V. Akkerman, D. Valiev, and C. K. Law, Phys. Rev. E 81, 026309 (2010)], 10.1103/PhysRevE.81.026309 that the flame acceleration undergoes different stages, from an initial exponential regime to quasi-steady fast deflagration with saturated velocity. The present work focuses on the final saturation stages in the process of flame acceleration, when the flame propagates with supersonic velocity with respect to the channel walls. It is shown that an intermediate stage may occur during acceleration with quasi-steady velocity, noticeably below the Chapman-Jouguet deflagration speed. The intermediate stage is followed by additional flame acceleration and subsequent saturation to the Chapman-Jouguet deflagration regime. We elucidate the intermediate stage by the joint effect of gas pre-compression ahead of the flame front and the hydraulic resistance. The additional acceleration is related to viscous heating at the channel walls, being of key importance at the final stages. The possibility of explosion triggering is also demonstrated.

  8. Interplay of Darrieus-Landau instability and weak turbulence in premixed flame propagation

    NASA Astrophysics Data System (ADS)

    Creta, Francesco; Lamioni, Rachele; Lapenna, Pasquale Eduardo; Troiani, Guido

    2016-11-01

    In this study we investigate, both numerically and experimentally, the interplay between the intrinsic Darrieus-Landau (DL) or hydrodynamic instability of a premixed flame and the moderately turbulent flow field in which the flame propagates. The objective is threefold: to establish, unambiguously, through a suitably defined marker, the presence or absence of DL-induced effects on the turbulent flame, to quantify the DL effects on the flame propagation and morphology and, finally, to asses whether such effects are mitigated or suppressed as the turbulence intensity is increased. The numerical simulations are based on a deficient reactant model which lends itself to a wealth of results from asymptotic theory, such as the determination of stability limits. The skewness of the flame curvature probability density function is identified as an unambiguous morphological marker for the presence or absence of DL effects in a turbulent environment. In addition, the turbulent propagation speed is shown to exhibit a distinct dual behavior whereby it is noticeably enhanced in the presence of DL instability while it is unchanged otherwise. Furthermore, increasing the turbulence intensity is found to be mitigating with respect to DL-induced effects such as the mentioned dual behavior which disappears at higher intensities. Experimental propane and/or air Bunsen flames are also investigated, utilizing two distinct diameters, respectively, above and below the estimated DL cutoff wavelength. Curvature skewness is still clearly observed to act as a marker for DL instability while the turbulent propagation speed is concurrently enhanced in the presence of the instability.

  9. Direct numerical simulations of turbulent non-premixed methane-air flames modeled with reduced kinetics

    NASA Technical Reports Server (NTRS)

    Card, J. M.; Chen, J. H.; Day, M.; Mahalingam, S.

    1994-01-01

    Turbulent non-premixed stoichiometric methane-air flames modeled with reduced kinetics have been studied using the direct numerical simulation approach. The simulations include realistic chemical kinetics, and the molecular transport is modeled with constant Lewis numbers for individual species. The effect of turbulence on the internal flame structure and extinction characteristics of methane-air flames is evaluated. Consistent with earlier DNS with simple one-step chemistry, the flame is wrinkled and in some regions extinguished by the turbulence, while the turbulence is weakened in the vicinity of the flame due to a combination of dilatation and an increase in kinematic viscosity. Unlike previous results, reignition is observed in the present simulations. Lewis number effects are important in determining the local stoichiometry of the flame. The results presented in this work are preliminary but demonstrate the feasibility of incorporating reduced kinetics for the oxidation of methane with direct numerical simulations of homogeneous turbulence to evaluate the limitations of various levels of reduction in the kinetics and to address the formation of thermal and prompt NO(x).

  10. Interplay of Darrieus-Landau instability and weak turbulence in premixed flame propagation.

    PubMed

    Creta, Francesco; Lamioni, Rachele; Lapenna, Pasquale Eduardo; Troiani, Guido

    2016-11-01

    In this study we investigate, both numerically and experimentally, the interplay between the intrinsic Darrieus-Landau (DL) or hydrodynamic instability of a premixed flame and the moderately turbulent flow field in which the flame propagates. The objective is threefold: to establish, unambiguously, through a suitably defined marker, the presence or absence of DL-induced effects on the turbulent flame, to quantify the DL effects on the flame propagation and morphology and, finally, to asses whether such effects are mitigated or suppressed as the turbulence intensity is increased. The numerical simulations are based on a deficient reactant model which lends itself to a wealth of results from asymptotic theory, such as the determination of stability limits. The skewness of the flame curvature probability density function is identified as an unambiguous morphological marker for the presence or absence of DL effects in a turbulent environment. In addition, the turbulent propagation speed is shown to exhibit a distinct dual behavior whereby it is noticeably enhanced in the presence of DL instability while it is unchanged otherwise. Furthermore, increasing the turbulence intensity is found to be mitigating with respect to DL-induced effects such as the mentioned dual behavior which disappears at higher intensities. Experimental propane and/or air Bunsen flames are also investigated, utilizing two distinct diameters, respectively, above and below the estimated DL cutoff wavelength. Curvature skewness is still clearly observed to act as a marker for DL instability while the turbulent propagation speed is concurrently enhanced in the presence of the instability.

  11. Stability of a premixed flame in stagnation-point flow against general disturbances

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas L.; Matalon, Moshe

    1992-01-01

    Previously, the stability of a premixed flame in a stagnation flow was discussed for a restricted class of disturbances that are self-similar to the basic undisturbed flow; thus, flame fronts with corrugations only in the cross stream direction were considered. Here, we consider a more general class of three-dimensional flame front perturbations which also permits corrugations in the streamwise direction. It is shown that, because of the stretch experienced by the flame, the hydrodynamic instability is limited only to disturbances of short wavelength. If in addition diffusion effects have a stabilizing influence, as would be the case of mixtures with Lewis number greater than one, a stretched flame could be absolutely stable. Instabilities occur when the Lewis number is below some critical value less than one. Neutral stability boundaries are presented in terms of the Lewis number, the strain rate, and the appropriate wavenumbers. Beyond the stability threshold, the two-dimensional self-similar modes always grow first. However, if disturbances of long wavelength are excluded, it is possible for the three-dimensional modes to be the least stable one. Accordingly, the pattern that will be observed on the flame front, at the onset of instability, will consist of either ridges in the direction of stretch or the more common three-dimensional cellular structure.

  12. Large scale Direct Numerical Simulation of premixed turbulent jet flames at high Reynolds number

    NASA Astrophysics Data System (ADS)

    Attili, Antonio; Luca, Stefano; Lo Schiavo, Ermanno; Bisetti, Fabrizio; Creta, Francesco

    2016-11-01

    A set of direct numerical simulations of turbulent premixed jet flames at different Reynolds and Karlovitz numbers is presented. The simulations feature finite rate chemistry with 16 species and 73 reactions and up to 22 Billion grid points. The jet consists of a methane/air mixture with equivalence ratio ϕ = 0 . 7 and temperature varying between 500 and 800 K. The temperature and species concentrations in the coflow correspond to the equilibrium state of the burnt mixture. All the simulations are performed at 4 atm. The flame length, normalized by the jet width, decreases significantly as the Reynolds number increases. This is consistent with an increase of the turbulent flame speed due to the increased integral scale of turbulence. This behavior is typical of flames in the thin-reaction zone regime, which are affected by turbulent transport in the preheat layer. Fractal dimension and topology of the flame surface, statistics of temperature gradients, and flame structure are investigated and the dependence of these quantities on the Reynolds number is assessed.

  13. Effects of Buoyancy on Lean Premixed V-Flames Part I: Laminar and Turblent Flame Structure

    NASA Technical Reports Server (NTRS)

    Cheng, Robert K.; Bedat, Benoit; Kostiuk, Larry W.

    1998-01-01

    Laser schlieren and planar laser-induced fluorescence techniques have been used to investigate laminar and turbulent v-flames in +g, -g, and micro g under flow conditions that span the regimes of momentum domination (Ri < 0. 1) and buoyancy domination (Ri > 0.1). Overall flame features shown by schlieren indicate that buoyancy dominates the entire flow field for conditions close to Ri = 1. With decreasing Ri, buoyancy effects are observed only in the far-field regions. Analyses of the mean flame angles demonstrate that laminar and turbulent flames do not have similar responses to buoyancy. Difference in the laminar +g and -g flame angles decrease with Ri (i.e., increasing Re) and converge to the microgravity flame angle at the momentum limit (Ri - 0). This is consistent with the notion that the effects of buoyancy diminish with increasing flow momentum. The +g and -g turbulent flame angles, however, do not converge at Ri = 0. As shown by OH-PLIF images, the inconsistency in +g and -g turbulent flame angles is associated with the differences in flame wrinkles. Turbulent flame wrinkles evolve more slowly in +g than in -g. The difference in flame wrinkle structures, however, cannot be explained in terms of buoyancy effects on flame instability mechanisms. It seems to be associated with the field effects of buoyancy that stretches the turbulent flame brushes in +g and compresses the flame brush in -g. Flame wrinkling offers a mechanism through which the flame responds to the field effects of buoyancy despite increasing flow momentum. These observations point to the need to include both upstream and downstream contributions in theoretical analysis of flame turbulence interactions.

  14. Response dynamics of bluff-body stabilized conical premixed turbulent flames with spatial mixture gradients

    SciTech Connect

    Chaudhuri, Swetaprovo; Cetegen, Baki M.

    2009-03-15

    Response of bluff-body stabilized conical turbulent premixed flames was experimentally studied for a range of excitation frequencies (10-400 Hz), mean flow velocities (5, 10 and 15 m/s) and three different spatial mixture distributions (uniform, inner and outer enrichment). Upstream excitation was provided by a loudspeaker producing velocity oscillation amplitudes of about 8% of the mean flow velocity. Flame response was detected by a photomultiplier observing the CH{sup *} emission from the flame. The studied turbulent flames exhibited transfer function characteristics of a low-pass filter with a cutoff Strouhal number between 0.08 and 0.12. The amplification factors at low frequencies ranged from 2 to 20 and generally increased for mean flow velocities from 5 to 15 m/s. The highest levels of amplification were found for the outer mixture enrichment followed in decreasing order by uniform and inner mixture gradient cases. The high levels of flame response for the outer enrichment case were attributed to the enhanced flame-vortex interaction in outer jet shear layer. At high excitation levels (u{sup '}/U{sub m}{approx}0.3) for U{sub m}=5 m/ s where non-linear flame response is expected, the flame exhibited a reduced amplitude response in the frequency range between 40 and 100 Hz for the uniform and outer equivalence ratio gradient cases and no discernible effect for the inner equivalence ratio gradient. In all cases, transfer function phase was found to vary linearly with excitation frequency. Finally, a relationship between the amplitude characteristics of the bluff-body wake transfer function and flame blowoff equivalence ratio was presented. (author)

  15. Turbulent combustion of premixed flames in closed vessels

    SciTech Connect

    Checkel, M.D. . Mechanical Engineering); Thomas, A. . Mechanical Engineering)

    1994-03-01

    An extensive series of experiments on spark-ignited explosion of propane-air mixtures in both turbulent and quiescent conditions in a cubic closed vessel is described. Turbulence was produced by a moving grid, and the development with time of pressure and of flame area (from light emission) recorded. The effects of grid-hole diameter, grid velocity, spark timing after passage of the grid, equivalence ratio, and initial pressure were investigated. Estimates of the rate of strain in the unburnt gases were derived from hot-wire anemometry. Results indicated that rate of strain was a major factor governing the rate of combustion. Theoretical simulations of explosions with a simple model were made, in which turbulence was characterized solely by the rate of strain, and in which the decay of turbulence during explosions and the effect of changes in pressure on both burning velocity and flow field were taken into account. The simulations were compared with experimental results, and reinforced the idea that turbulence has the dual effect of causing wrinkling of flames and, especially for weaker mixtures, reducing the burning velocity. An empirical relationship was found in which the logarithmic rate of wrinkling was proportional to the square root of the rate of strain. Some simple conclusions are drawn regarding practical application of the results.

  16. Effects of pressure fluctuations on the combustion process in turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Beardsell, Guillaume; Lapointe, Simon; Blanquart, Guillaume

    2016-11-01

    The need for a thorough understanding of turbulence-combustion interactions in compressible flows is driven by recent technological developments in propulsion as well as renewed interest in the development of next generation supersonic and hypersonic vehicles. In such flows, pressure fluctuations displaying a wide range of length and timescales are present. These fluctuations are expected to impact the combustion process to varying degrees, depending amongst other things on the amplitude of the pressure variations and the timescales of the chemical reactions taking place in the flame. In this context, numerical simulations of these flows can provide insight into the impact of pressure fluctuations on the combustion process. In the present work, we analyze data from simulations of statistically-flat premixed n-heptane/air flames at high Karlovitz numbers. The compressible Navier-Stokes equations are solved exactly (DNS) and results obtained with both detailed kinetic modeling and one-step chemistry are considered. The effects of pressure fluctuations on the fuel burning rate are investigated. The findings are compared with results obtained from simulations of one-dimensional premixed flames subjected to various pressure waves.

  17. Effects of porous insert on flame dynamics in a lean premixed swirl-stabilized combustor

    NASA Astrophysics Data System (ADS)

    Brown, Marcus; Agrawal, Ajay; Allen, James; Kornegay, John

    2016-11-01

    In this study, we investigated different methods of determining the effect a porous insert has on flame dynamics during lean premixed combustion. A metallic porous insert is used to mitigate instabilities in a swirl-stabilized combustor. Thermoacoustic instabilities are seen as negative consequences of lean premixed combustion and eliminating them is the motivation for our research. Three different diagnostics techniques with high-speed Photron SA5 cameras were used to monitor flame characteristics. Particle image velocimetry (PIV) was used to observe vortical structures and recirculation zones within the combustor. Using planar laser induced fluorescence (PLIF), we were able to observe changes in the reaction zones during instabilities. Finally, utilizing a color high-speed camera, visual images depicting a flame's oscillations during the instability were captured. Using these monitoring techniques, we are able to support the claims made in previous studies stating that the porous insert in the combustor significantly reduces the thermoacoustic instability. Funding for this research was provided by the NSF REU site Grant EEC 1358991 and NASA Grant NNX13AN14A.

  18. Large eddy simulation of soot formation in a turbulent non-premixed jet flame

    SciTech Connect

    El-Asrag, Hossam; Menon, Suresh

    2009-02-15

    A recently developed subgrid model for soot dynamics [H. El-Asrag, T. Lu, C.K. Law, S. Menon, Combust. Flame 150 (2007) 108-126] is used to study the soot formation in a non-premixed turbulent flame. The model allows coupling between reaction, diffusion and soot (including soot diffusion and thermophoretic forces) processes in the subgrid domain without requiring ad hoc filtering or model parameter adjustments. The combined model includes the entire process, from the initial phase, when the soot nucleus diameter is much smaller than the mean free path, to the final phase, after coagulation and aggregation, where it can be considered in the continuum regime. A relatively detailed but reduced kinetics for ethylene-air is used to simulate an experimentally studied non-premixed ethylene/air jet diffusion flame. Acetylene is used as a soot precursor species. The soot volume fraction order of magnitude, the location of its maxima, and the soot particle size distribution are all captured reasonably. Along the centerline, an initial region dominated by nucleation and surface growth is established followed by an oxidation region. The diffusion effect is found to be most important in the nucleation regime, while the thermophoretic forces become more influential downstream of the potential core in the oxidation zone. The particle size distribution shows a log-normal distribution in the nucleation region, and a more Gaussian like distribution further downstream. Limitations of the current approach and possible solution strategies are also discussed. (author)

  19. Structure and dynamics of premixed flames in microgravity

    NASA Technical Reports Server (NTRS)

    Kailasanath, K.; Patnaik, Gopal

    1993-01-01

    In this report we describe the research performed at the Naval Research Laboratory in support of the NASA Microgravity Science and Applications Program over the past three years with emphasis on the work performed since February 1992, the beginning of the current project. The focus of our research has been on investigating fundamental combustion questions concerning the propagation and extinction of gas-phase flames in microgravity and earth-gravity environments. Our approach to resolving these fundamental questions has been to use detailed time-dependent, multidimensional numerical models to perform carefully designed computational experiments. The basic questions we have addressed, a general description of the numerical approach, and a summary of the results are described in this report. More detailed discussions are available in the papers published which are referenced herein.

  20. Study and modeling of finite rate chemistry effects in turbulent non-premixed flames

    NASA Technical Reports Server (NTRS)

    Vervisch, Luc

    1993-01-01

    The development of numerical models that reflect some of the most important features of turbulent reacting flows requires information about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between turbulent and chemical processes is so strong that it is extremely difficult to isolate the role played by one individual physical phenomenon. Direct numerical simulation (hereafter DNS) allows us to study in detail the turbulence-chemistry interaction in some restricted but completely defined situations. Globally, non-premixed flames are controlled by two limiting regimes: the fast chemistry case, where the turbulent flame can be pictured as a random distribution of local chemical equilibrium problems; and the slow chemistry case, where the chemistry integrates in time the turbulent fluctuations. The Damkoehler number, ratio of a mechanical time scale to chemical time scale, is used to distinguish between these regimes. Today most of the industrial computer codes are able to perform predictions in the hypothesis of local equilibrium chemistry using a presumed shape for the probability density function (pdt) of the conserved scalar. However, the finite rate chemistry situation is of great interest because industrial burners usually generate regimes in which, at some points, the flame is undergoing local extinction or at least non-equilibrium situations. Moreover, this variety of situations strongly influences the production of pollutants. To quantify finite rate chemistry effect, the interaction between a non-premixed flame and a free decaying turbulence is studied using DNS. The attention is focused on the dynamic of extinction, and an attempt is made to quantify the effect of the reaction on the small scale mixing process. The unequal diffusivity effect is also addressed. Finally, a simple turbulent combustion model based on the DNS observations and tractable in real flow configurations is proposed.

  1. Tulip flames: changes in shape of premixed flames propagating in closed tubes

    NASA Astrophysics Data System (ADS)

    Dunn-Rankin, D.; Sawyer, R. F.

    The experimental results that are the subject of this communication provide high-speed schlieren images of the closed-tube flame shape that has come to be known as the tulip flame. The schlieren images, along with in-chamber pressure records, help demonstrate the effects of chamber length, equivalence ratio, and igniter geometry on formation of the tulip flame. The pressure/time records show distinct features which correlate with flame shape changes during the transition to tulip. The measurements indicate that the basic tulip flame formation is a robust phenomenon that depends on little except the overall geometry of the combustion vessel.

  2. Control of oscillations and NOx concentrations in ducted premixed flames by spray injection of water

    SciTech Connect

    Sivasegaram, S.; Tsai, R.F.; Whitelaw, J.H.

    1995-12-31

    The antinodal rms pressure fluctuations of a ducted premixed flame has been reduced from 9 to 1.75 kPa by pulsed injection of water with heat removal of less than 3% of the total heat release of 150 kW. A corresponding benefit was the reduction in NO{sub x} emissions from 65 to 30 ppm. Several control strategies were considered and active control based on the oscillation of injection at the same phase as that of the oscillations was found to provide the best combination of attenuation and NO{sub x} reduction.

  3. LES of a bluff-body stabilized premixed flame using discontinuous Galerkin scheme

    NASA Astrophysics Data System (ADS)

    Lv, Yu; Ihme, Matthias; Stanford University Team

    2016-11-01

    This talk focuses on the development of a high-order discontinuous Galerkin (DG) method for application to chemically reacting flows. To enable these simulations, several algorithmic aspects are addressed, including the time-integration of multi-step chemical reactions, the incorporation of detailed thermo-viscous transport properties, and the stabilization of high-order solution representation. This DG solver is applied in implicit LES of a turbulent bluff-body stabilized propane/air premixed flame. The simulation results for cold-flow and reacting conditions are reported and compared to experimental data.

  4. Low pressure premixed CH4/air flames with forced periodic mixture fraction oscillations: experimental approach

    NASA Astrophysics Data System (ADS)

    Ax, H.; Kutne, P.; Meier, W.; König, K.; Maas, U.; Class, A.; Aigner, M.

    2009-03-01

    An experimental setup for the generation and investigation of periodic equivalence ratio oscillations in laminar premixed flames is presented. A special low-pressure burner was developed which generates stable flames in a wide pressure range down to 20 mbar and provides the possibility of rapid mixture fraction variations. The technical realization of the mixture fraction variations and the characteristics of the burner are described. 1D laser Raman scattering was applied to determine the temperature and concentration profiles of the major species through the flame front in correlation to the phase-angle of the periodic oscillation. OH* chemiluminescence was detected to qualitatively analyze the response of the flame to mixture fraction variations by changing shape and position. Exemplary results from a flame at p=69 mbar, forced at a frequency of 10 Hz, are shown and discussed. The experiments are part of a cooperative research project including the development of kinetic models and numerical simulation tools with the aim of a better understanding and prediction of periodic combustion instabilities in gas turbines. The focus of the current paper lies on the presentation of the experimental realization and the measuring techniques.

  5. Effect of a uniform electric field on soot in laminar premixed ethylene/air flames

    SciTech Connect

    Wang, Y.; Yao, Q.; Nathan, G.J.; Alwahabi, Z.T.; King, K.D.; Ho, K.

    2010-07-15

    The effect of a nominally uniform electric field on the initially uniform distribution of soot has been assessed for laminar premixed ethylene/air flames from a McKenna burner. An electrophoretic influence on charged soot particles was measured through changes to the deposition rate of soot on the McKenna plug, using laser extinction (LE). Soot volume fraction was measured in situ using laser-induced incandescence (LII). Particle size and morphologies were assessed through ex situ transmission electron microscopy (TEM) using thermophoretic sampling particle diagnostics (TSPD). The results show that the majority of these soot particles are positively charged. The presence of a negatively charged plug was found to decrease the particle residence times in the flame and to influence the formation and oxidation progress. A positively charged plug has the opposite effect. The effect on soot volume fraction, particles size and morphology with electric field strength is also reported. Flame stability was also found to be affected by the presence of the electric field, with the balance of the electrophoretic force and drag force controlling the transition to unstable flame flicker. The presence of charged species generated by the flame was found to reduce the dielectric field strength to one seventh that of air. (author)

  6. Structure of the Soot Growth Region of Laminar Premixed Methane/Oxygen Flames. Appendix I

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The structure of the soot growth region of laminar premixed methane/oxygen flames (fuel-equivalence ratios of 1.60-2.77) was studied both experimentally and computationally. Measurements were carried out in flames stabilized on a flat flame burner operated at standard temperature and pressure, and included velocities by laser velocimetry, soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, major gas species concentrations by sampling and gas chromatography, and hydrogen atom concentrations by the Li/LiOH technique in conjunction with atomic absorption to find the proportion of free lithium in the flames. The measured concentrations of major gas species were in reasonably good agreement with predictions based on the detailed mechanisms of Leung and Lindstedt, and Frenklach and coworkers. The measurements also confirmed predictions of both these mechanisms that H-atom concentrations are in local thermodynamic equilibrium throughout the soot growth region even through the concentrations of major gas species are not. Thus, present findings support recent evaluations of the hydrogen-abstraction/carbon-addition (HACA) soot growth mechanism in similar flames, where the approximation that H-atom concentrations were in local thermodynamic equilibrium was adopted, based on predictions using the two mechanisms, due to the absence of direct H-atom concentration measurements.

  7. Structure of Soot Growth Region of Laminar Premixed Methane/Oxygen Flames. Appendix B

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The structure of the soot growth region of laminar premixed methane/oxygen flames (fuel-equivalence ratios of 1.60 - 2.77) was studied both experimentally and computationally. Measurements were carried out in flames stabilized on a flat flame burner operated at standard temperature and pressure, and included velocities by laser velocimetry, soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, major gas species concentrations by sampling and gas chromatography, and hydrogen atom concentrations by the Li/LiOH technique in conjunction with atomic absorption to find the proportion of free lithium in the flames. The measured concentrations of major gas species were in reasonably good agreement with predictions based on the detailed mechanisms of Leung and Lindstedt, and Frenklach and coworkers. The measurements also confirmed predictions of both these mechanisms that H-atom concentrations are in local thermodynamic equilibrium throughout the soot growth region even through the concentrations of major gas species are not. Thus, present findings support recent evaluations of the hydrogen-abstraction/carbon-addition (HACA) soot growth mechanism in similar flames, where the approximation that H-atom concentrations were in local thermodynamic equilibrium was adopted, based on predictions using the two mechanisms, due to the absence of direct H-atom concentration measurements.

  8. Structure of the Soot Growth Region of Laminar Premixed Methane/Oxygen Flames. Appendix G

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The structure of the soot growth region of laminar premixed methane/oxygen flames (fuel-equivalence ratios of 1.60-2.77) was studied both experimentally and computationally. Measurements were carried out in flames stabilized on a flat flame burner operated at standard temperature and pressure, and included velocities by laser velocimetry, soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, major gas species concentrations by sampling and gas chromatography, and hydrogen atom concentrations by the Li/LiOH technique in conjunction with atomic absorption to find the proportion of free lithium in the flames. The measured concentrations of major gas species were in reasonably good agreement with predictions based on the detailed mechanisms of Leung and Lindstedt, and Frenklach and coworkers. The measurements also confirmed predictions of both these mechanisms that H-atom concentrations are in local thermodynamic equilibrium throughout the soot growth region even through the concentrations of major gas species are not. Thus, present findings support recent evaluations of the hydrogen-abstraction/carbon-addition (HACA) soot growth mechanism in similar flames, where the approximation that H-atom concentrations were in local thermodynamic equilibrium was adopted, based on predictions using the two mechanisms, due to the absence of direct H-atom concentration measurements.

  9. Measurements of fuel mixture fraction oscillations of a turbulent jet non-premixed flame

    SciTech Connect

    Kanga, D.M.; Fernandez, V.; Culick, F.E.C.; Ratner, A.

    2009-01-15

    This work describes new type of combustion instability for which the 3-way coupling between mixing, flame heat release, and acoustics is modified by local buoyancy effects. Measurements of fuel mixture fraction are made for a non-premixed jet flame in a combustion chamber to assess the dynamics of mixing under imposed acoustic oscillations (22-55 Hz). Infrared laser absorption and phase resolved acetone-planar laser induced fluorescence are used to measure the fuel mixture fraction and then the degree of fuel/air mixing is calculated by determining the unmixedness. Results show acoustic excitation causes oscillations in the degree of fuel/air mixing at the driving frequency, which results in oscillatory flame behavior. This oscillatory flame behavior couples to the buoyancy and this in turn affects the mixing. Results also show that the mixing becomes less effective when the excitation frequency is increased or when the flame is present, compared to the non-reacting case. This work describes a key coupling mechanism that occurs when buoyancy is a significant factor in the flow field. (author)

  10. Premixed Atmosphere and Convection Influences on Flame Inhibition and Combustion (Pacific)

    NASA Technical Reports Server (NTRS)

    Honda, Linton K.; Ronney, Paul D.

    1997-01-01

    Flame spread over flat solid fuel beds is a useful paradigm for studying the behavior of more complex two-phase nonpremixed flames. For practical applications, two of the most important elements of flame spreading are the effects of (1) the ambient atmosphere (e.g. pressure and composition) and (2) the flow environment on the spread rate and extinction conditions. Concerning (1), studies of flame spread in vitiated air and non-standard atmospheres such as those found in undersea vessels and spacecraft are particularly important for the assessment of fire hazards in these environments as well as determination of the effectiveness of fire suppressants. Concerning (2), the flow environment may vary widely even when no forced flow is present because of buoyancy effects. Consequently, the goal of this work is to employ microgravity (micro g) experiments to extend previous studies of the effects of ambient atmosphere and the flow environment on flame spread through the use of microgravity (micro g) experiments. Because of the considerable differences between upward (concurrent-flow) and downward (opposed-flow) flame spread at 1g (Williams, 1976, Fernandez-Pello, 1984), in this work both upward and downward 1g spread are tested. Two types of changes to the oxidizing atmosphere are considered in this work. One is the addition of sub-flammability-limit concentrations of a gaseous fuel ('partially premixed' atmospheres). This is of interest because in fires in enclosures, combustion may occur under poorly ventilated conditions, so that oxygen is partially depleted from the air and is replaced by combustible gases such as fuel vapors, H2 or CO. Subsequent fire spread over the solid fuel could occur under conditions of varying oxygen and gaseous fuel content. The potential significance of flame spread under vitiated or partially premixed conditions has been noted previously (Beyler, 1984). The second change is the diluent type, which affects the radiative properties of the

  11. Studies in premixed combustion

    SciTech Connect

    Sivashinsky, G.I.

    1992-01-01

    This report discusses the following topics on premixed combustion: theory of turbulent flame propagation; pattern formation in premixed flames and related problems; and pattern formation in extended systems. (LSP)

  12. Wavelet multi-resolution analysis of energy transfer in turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Kim, Jeonglae; Bassenne, Maxime; Towery, Colin; Poludnenko, Alexei; Hamlington, Peter; Ihme, Matthias; Urzay, Javier

    2016-11-01

    Direct numerical simulations of turbulent premixed flames are examined using wavelet multi-resolution analyses (WMRA) as a diagnostics tool to evaluate the spatially localized inter-scale energy transfer in reacting flows. In non-reacting homogeneous-isotropic turbulence, the net energy transfer occurs from large to small scales on average, thus following the classical Kolmogorov energy cascade. However, in turbulent flames, our prior work suggests that thermal expansion leads to a small-scale pressure-work contribution that transfers energy in an inverse cascade on average, which has important consequences for LES modeling of reacting flows. The current study employs WMRA to investigate, simultaneously in physical and spectral spaces, the characteristics of this combustion-induced backscatter effect. The WMRA diagnostics provide spatial statistics of the spectra, scale-conditioned intermittency of velocity and vorticity, along with energy-transfer fluxes conditioned on the local progress variable.

  13. Flame front surface characteristics in turbulent premixed propane/air combustion

    SciTech Connect

    Guelder, O.L.; Smallwood, G.J.; Wong, R.; Snelling, D.R.; Smith, R.; Deschamps, B.M.; Sautet, J.C.

    2000-03-01

    The characteristics of the flame front surfaces in turbulent premixed propane/air flames were investigated. Flame front images were obtained using laser-induced fluorescence (LIF) of OH and Mie scattering on two Bunsen-type burners of 11.2-mm and 22.4-mm diameters. Nondimensional turbulence intensity, u{prime}/S{sub L}, was varied from 0.9 to 15, and the Reynolds number, based on the integral length scale, varied from 40 to 467. Approximately 100 images were recorded for each experimental condition. Fractal parameters (fractal dimension, inner and outer cutoffs) and corresponding standard deviations were determined by analysis of the flame front images using the caliper technique. The fractal dimensions derived from OH and Mie scattering images are almost identical. However, inner and outer cutoffs from OH images are consistently higher than those obtained from Mie scattering. The self-similar region of the flame front wrinkling is about a decade for all flames studied. In the nondimensional turbulence intensity range from 1 to 15, it was found that the mean fractal dimension is about 2.2 and it does not show any dependence on turbulence intensity. This contradicts the findings of the previous studies that showed that the fractal dimension asymptotically reaches to 2.35--2.37 when the nondimensional turbulence intensity u{prime}/S{sub L} exceeds 3. It is shown that the reason for this discrepancy is the image analysis method used in the previous studies. Examples are given to show the inadequacy of the circle method used in previous studies for extraction of fractal parameters from flame front images. The fractal parameters obtained so far, in this and previous studies, are not capable of correctly predicting the turbulent burning velocity using the available fractal area closure model.

  14. Computational study of lean premixed turbulent flames using RANSPDF and LESPDF methods

    NASA Astrophysics Data System (ADS)

    Rowinski, David H.; Pope, Stephen B.

    2013-08-01

    A computational study is performed on a series of four piloted, lean, premixed turbulent jet flames. These flames use the Sydney Piloted Premixed Jet Burner (PPJB), and with jet velocities of 50, 100, 150 and 200 m/s are denoted PM150, PM1100, PM1150 and PM1200, respectively. Calculations are performed using the RANSPDF and LESPDF methodologies, with different treatments of molecular diffusion, with detailed chemistry and flamelet-based chemistry modelling, and using different imposed boundary conditions. The sensitivities of the calculations to these different aspects of the modelling are compared and discussed. Comparisons are made to experimental data and to previously-performed calculations. It is found that, given suitable boundary conditions and treatment of molecular diffusion, excellent agreement between the calculations and experimental measurements of the mean and variance fields can be achieved for PM150 and PM1100. The application of a recently developed implementation of molecular diffusion results in a large improvement in the computed variance fields in the LESPDF calculations. The inclusion of differential diffusion in the LESPDF calculations provides insight on the behaviour in the near-field region of the jet, but its effects are found to be confined to this region and to the species CO, OH and H2. A major discrepancy observed in many previous calculations of these flames is an overprediction of reaction progress in PM1150 and PM1200, and this discrepancy is also observed in the LESPDF calculations; however, a parametric study of the LESPDF mixing model reveals that, with a sufficiently large mixing frequency, calculations of these two flames are capable of yielding improved reaction progress in good qualitative agreement with the mean and RMS scalar measurements up to an x/D of 30. Lastly, the merits of each computational methodology are discussed in light of their computational costs.

  15. A mixing timescale model for TPDF simulations of turbulent premixed flames

    DOE PAGES

    Kuron, Michael; Ren, Zhuyin; Hawkes, Evatt R.; ...

    2017-02-06

    Transported probability density function (TPDF) methods are an attractive modeling approach for turbulent flames as chemical reactions appear in closed form. However, molecular micro-mixing needs to be modeled and this modeling is considered a primary challenge for TPDF methods. In the present study, a new algebraic mixing rate model for TPDF simulations of turbulent premixed flames is proposed, which is a key ingredient in commonly used molecular mixing models. The new model aims to properly account for the transition in reactive scalar mixing rate behavior from the limit of turbulence-dominated mixing to molecular mixing behavior in flamelets. An a priorimore » assessment of the new model is performed using direct numerical simulation (DNS) data of a lean premixed hydrogen–air jet flame. The new model accurately captures the mixing timescale behavior in the DNS and is found to be a significant improvement over the commonly used constant mechanical-to-scalar mixing timescale ratio model. An a posteriori TPDF study is then performed using the same DNS data as a numerical test bed. The DNS provides the initial conditions and time-varying input quantities, including the mean velocity, turbulent diffusion coefficient, and modeled scalar mixing rate for the TPDF simulations, thus allowing an exclusive focus on the mixing model. Here, the new mixing timescale model is compared with the constant mechanical-to-scalar mixing timescale ratio coupled with the Euclidean Minimum Spanning Tree (EMST) mixing model, as well as a laminar flamelet closure. It is found that the laminar flamelet closure is unable to properly capture the mixing behavior in the thin reaction zones regime while the constant mechanical-to-scalar mixing timescale model under-predicts the flame speed. Furthermore, the EMST model coupled with the new mixing timescale model provides the best prediction of the flame structure and flame propagation among the models tested, as the dynamics of reactive

  16. Effects of CO addition on the characteristics of laminar premixed CH{sub 4}/air opposed-jet flames

    SciTech Connect

    Wu, C.-Y.; Chao, Y.-C.; Chen, C.-P.; Ho, C.-T.; Cheng, T.S.

    2009-02-15

    The effects of CO addition on the characteristics of premixed CH{sub 4}/air opposed-jet flames are investigated experimentally and numerically. Experimental measurements and numerical simulations of the flame front position, temperature, and velocity are performed in stoichiometric CH{sub 4}/CO/air opposed-jet flames with various CO contents in the fuel. Thermocouple is used for the determination of flame temperature, velocity measurement is made using particle image velocimetry (PIV), and the flame front position is measured by direct photograph as well as with laser-induced predissociative fluorescence (LIPF) of OH imaging techniques. The laminar burning velocity is calculated using the PREMIX code of Chemkin collection 3.5. The flame structures of the premixed stoichiometric CH{sub 4}/CO/air opposed-jet flames are simulated using the OPPDIF package with GRI-Mech 3.0 chemical kinetic mechanisms and detailed transport properties. The measured flame front position, temperature, and velocity of the stoichiometric CH{sub 4}/CO/air flames are closely predicted by the numerical calculations. Detailed analysis of the calculated chemical kinetic structures reveals that as the CO content in the fuel is increased from 0% to 80%, CO oxidation (R99) increases significantly and contributes to a significant level of heat-release rate. It is also shown that the laminar burning velocity reaches a maximum value (57.5 cm/s) at the condition of 80% of CO in the fuel. Based on the results of sensitivity analysis, the chemistry of CO consumption shifts to the dry oxidation kinetics when CO content is further increased over 80%. Comparison between the results of computed laminar burning velocity, flame temperature, CO consumption rate, and sensitivity analysis reveals that the effect of CO addition on the laminar burning velocity of the stoichiometric CH{sub 4}/CO/air flames is due mostly to the transition of the dominant chemical kinetic steps. (author)

  17. Comparison of direct numerical simulation of lean premixed methane-air flames with strained laminar flame calculations.

    SciTech Connect

    Chen, Jacqueline H.; Hawkes, Evatt R.

    2004-08-01

    Direct numerical simulation (DNS) with complex chemistry was used to study statistics of displacement and consumption speeds in turbulent lean premixed methane-air flames. The main focus of the study is an evaluation of the extent to which a turbulent flame in the thin reaction zones regime can be described by an ensemble of strained laminar flames. Conditional averages with respect to strain for displacement and consumption speeds are presented over a wide range of strain typically encountered in a turbulent flame, compared with previous studies that either made local pointwise comparisons or conditioned the data on small strain and curvature. The conditional averages for positive strains are compared with calculated data from two different canonical strained laminar configurations to determine which is the optimal representation of a laminar flame structure embedded in a turbulent flame: the reactant-to-product (R-to-P) configuration or the symmetric twin flame configuration. Displacement speed statistics are compared for the progress-variable isosurface of maximum reaction rate and an isosurface toward the fresh gases, which are relevant for both modeling and interpretation of experiment results. Displacement speeds in the inner reaction layer are found to agree very well with the laminar R-to-P calculations over a wide range of strain for higher Damkhler number conditions, well beyond the regime in which agreement was expected. For lower Damkhler numbers, a reduced response to strain is observed, consistent with previous studies and theoretical expectations. Compared with the inner layer, broader and shifted probability density functions (PDFs) of displacement speed were observed in the fresh gases, and the agreement with the R-to-P calculations deteriorated. Consumption speeds show a poorer agreement with strained laminar calculations, which is attributed to multidimensional effects and a more attenuated unsteady response to strain fluctuations; however, they

  18. Comparison of direct numerical simulation of lean premixed methane-air flames with strained laminar flame calculations

    SciTech Connect

    Hawkes, Evatt R.; Chen, Jacqueline H.

    2006-01-01

    Direct numerical simulation (DNS) with complex chemistry was used to study statistics of displacement and consumption speeds in turbulent lean premixed methane-air flames. The main focus of the study is an evaluation of the extent to which a turbulent flame in the thin reaction zones regime can be described by an ensemble of strained laminar flames. Conditional averages with respect to strain for displacement and consumption speeds are presented over a wide range of strain typically encountered in a turbulent flame, compared with previous studies that either made local pointwise comparisons or conditioned the data on small strain and curvature. The conditional averages for positive strains are compared with calculated data from two different canonical strained laminar configurations to determine which is the optimal representation of a laminar flame structure embedded in a turbulent flame: the reactant-to-product (R-to-P) configuration or the symmetric twin flame configuration. Displacement speed statistics are compared for the progress-variable isosurface of maximum reaction rate and an isosurface toward the fresh gases, which are relevant for both modeling and interpretation of experiment results. Displacement speeds in the inner reaction layer are found to agree very well with the laminar R-to-P calculations over a wide range of strain for higher Damkohler number conditions, well beyond the regime in which agreement was expected. For lower Damkohler numbers, a reduced response to strain is observed, consistent with previous studies and theoretical expectations. Compared with the inner layer, broader and shifted probability density functions (PDFs) of displacement speed were observed in the fresh gases, and the agreement with the R-to-P calculations deteriorated. Consumption speeds show a poorer agreement with strained laminar calculations, which is attributed to multidimensional effects and a more attenuated unsteady response to strain fluctuations; however

  19. Extractive probe/TDLAS measurements of acetylene in atmospheric-pressure fuel-rich premixed methane/air flames

    SciTech Connect

    Gersen, S.; Mokhov, A.V.; Levinsky, H.B.

    2005-11-01

    The profiles of C{sub 2}H{sub 2} mole fractions were measured in flat atmospheric-pressure rich-premixed methane/air flames using microprobe gas sampling followed by tunable diode laser absorption spectroscopy (TDLAS), and compared the results with predictions of one-dimensional flame calculations. Acetylene concentrations are also determined by spontaneous Raman scattering to quantify possible uncertainties due to chemical reactions on the probe surface or acceleration of the combustion products into the probe.

  20. The effect of nitrogen on biogas flame propagation characteristic in premix combustion

    NASA Astrophysics Data System (ADS)

    Anggono, Willyanto; Suprianto, Fandi D.; Hartanto, Tan Ivan; Purnomo, Kenny; Wijaya, Tubagus P.

    2016-03-01

    Biogas is one of alternative energy and categorized as renewable energy. The main sources of biogas come from animal waste, garbage, and household waste that are organic waste. Primarily, over 50% of this energy contains methane (CH4). The other substances or inhibitors are nitrogen and carbon dioxide. Previously, carbon dioxide effect on biogas combustion is already experimented. The result shows that carbon dioxide reduces the flame propagation speed of biogas combustion. Then, nitrogen as an inhibitor obviously also brings some effects to the biogas combustion, flame propagation speed, and flame characteristics. Spark ignited cylinder is used for the premixed biogas combustion research. An acrylic glass is used as the material of this transparent cylinder chamber. The cylinder is filled with methane (CH4), oxygen (O2), and nitrogen (N2) with particular percentage. In this experiment, the nitrogen composition are set to 0%, 5%, 10%, 20%, 30%, 40%, and 50%. The result shows that the flame propagation speed is reduced in regard to the increased level of nitrogen. It can also be implied that nitrogen can decrease the biogas combustion rate.

  1. A comparative study of TiO2 nanoparticles synthesized in premixed and diffusion flames

    NASA Astrophysics Data System (ADS)

    Ma, Hsiao-Kang; Yang, Hsiung-An

    2010-12-01

    Previous studies have been shown that synthesis of titania (TiO2) crystalline phase purity could be effectively controlled by the oxygen concentration through titanium tetra-isopropoxide (TTIP) via premixed flame from a Bunsen burner. In this study, a modified Hencken burner was used to synthesize smaller TiO2 nanoparticles via short diffusion flames. The frequency of collisions among particles would decrease and reduce TiO2 nanoparticle size in a short diffusion flame height. The crystalline structure of the synthesized nanoparticles was characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), Barrett-Joyner-Halenda (BJH) and Brunauer-Emmett-Teller (BET) measurements. The characteristic properties of TiO2 nanoparticles synthesized from a modified Hencken burner were compared with the results from a Bunsen burner and commercial TiO2 (Degussa P25). The results showed that the average particle size of 6.63 nm from BET method was produced by a modified Hencken burner which was smaller than the TiO2 in a Bunsen burner and commercial TiO2. Moreover, the rutile content of TiO2 nanoparticles increased as the particle collecting height increased. Also, the size of TiO2 nanoparticles was highly dependent on the TTIP loading and the collecting height in the flame.

  2. Optical measurements of soot in premixed flames. Ph.D. Thesis - California Univ.

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.

    1988-01-01

    Two laser diagnostic techniques were used to measure soot volume fractions, number densities and soot particle radii in premixed propane/oxygen flat flames. The two techniques were two wavelength extinction, using 514.5 to 632.8 nm and 457.9 to 632.8 nm wavelength combinations, and extinction/scattering using 514.5 nm light. The flames were fuel rich and had cold gas velocities varying from 3.4 to 5.5 cm/s. Measurements were made at various heights above the sintered bronze, water colored flat flame burner with the equivalence ratio and cold gas velocity fixed. Also, measurements were made at a fixed height above the burner and fixed cold gas velocity while varying the equivalence ratio. Both laser techniques are based on the same underlying assumptions of particle size distribution and soot optical properties. Full Mie theory was used to determine the extinction coefficients and the scattering efficiencies. Temperature measurements in the flame were made using infrared radiometry and fine wire thermocouples. Good agreement between the two techniques in terms of soot particle radii, number density and volume fraction was found for intensity ratios between 0.1 and 0.8.

  3. Impact of chemical kinetic model reduction on premixed turbulent flame characteristics

    NASA Astrophysics Data System (ADS)

    Fillo, Aaron; Niemeyer, Kyle

    2016-11-01

    The use of detailed chemical kinetic models for direct numerical simulations (DNS) is prohibitively expensive. Current best practice for the development of reduced models is to match laminar burning parameters such as flame speed, thickness, and ignition delay time to predictions of the detailed chemical kinetic models. Prior studies using reduced models implicitly assumed that matching the homogeneous and laminar properties of the detailed model will result in similar behavior in a turbulent environment. However, this assumption has not been tested. Fillo et al. recently demonstrated experimentally that real jet fuels with similar chemistry and laminar burning parameters exhibit different turbulent flame speeds under the same flow conditions. This result raises questions about the validity of current best practices for the development of reduced chemical kinetic models for turbulent DNS. This study will investigate the validity of current best practices. Turbulent burning parameters, including flame speed, thickness, and stretch rate, will be compared for three skeletal mechanisms of the Princeton POSF 4658 mechanism, reduced using current best practice methods. DNS calculations of premixed, high-Karlovitz flames will be compared to determine if these methods are valid. This material is based upon work supported by the National Science Foundation under Grant No. 1314109-DGE.

  4. Scalar mixing in LES/PDF of a high-Ka premixed turbulent jet flame

    NASA Astrophysics Data System (ADS)

    You, Jiaping; Yang, Yue

    2016-11-01

    We report a large-eddy simulation (LES)/probability density function (PDF) study of a high-Ka premixed turbulent flame in the Lund University Piloted Jet (LUPJ) flame series, which has been investigated using direct numerical simulation (DNS) and experiments. The target flame, featuring broadened preheat and reaction zones, is categorized into the broken reaction zone regime. In the present study, three widely used mixing modes, namely the Interaction by Exchange with the Mean (IEM), Modified Curl (MC), and Euclidean Minimum Spanning Tree (EMST) models are applied to assess their performance through detailed a posteriori comparisons with DNS. A dynamic model for the time scale of scalar mixing is formulated to describe the turbulent mixing of scalars at small scales. Better quantitative agreement for the mean temperature and mean mass fractions of major and minor species are obtained with the MC and EMST models than with the IEM model. The multi-scalar mixing in composition space with the three models are analyzed to assess the modeling of the conditional molecular diffusion term. In addition, we demonstrate that the product of OH and CH2O concentrations can be a good surrogate of the local heat release rate in this flame. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11521091 and 91541204).

  5. Experimental quantification of transient stretch effects from vortices interacting with premixed flames

    NASA Astrophysics Data System (ADS)

    Danby, Sean James

    The understanding of complex premixed combustion reactions is paramount to the development of new concepts and devices used to increase the overall usefulness and capabilities of current technology. The complex interactions which occur within any modern practical combustion device were studied by isolating a single turbulent scale of the turbulence-chemistry interaction. Methane-air flame equivalence ratios (φ = 0.64, 0.90, and 1.13) were chosen to observe the mild affects of thermo-diffusive stability on the methane-air flame. Nitrogen was used as a diluent to retard the flame speeds of the φ = 0.90, and 1.13 mixtures so that the undisturbed outwardly propagating spherical flame kernel propagation rates, drf/dt, were approximately equal. Five primary propane equivalence ratios were utilized for investigation: φ = 0.69, 0.87, 1.08, 1.32, and 1.49. The choice of equivalence ratio was strategically made so that the φ = 0.69/1.49 and φ = 0.87/1.32 mixtures have the same undiluted flame propagation rate, drf/dt. Therefore, in the undiluted case, there are three flame speeds (in laboratory coordinates, not to be confused with burning velocity) represented by these mixtures. Three vortices were selected to be used in this investigation. The vortex rotational velocities were measured to be 77 cm/s, 266 cm/s and 398 cm/s for the "weak", "medium" and "strong" vortices, respectively. Ignition of the flame occurred in two ways: (1) spark-ignition or (2) laser ignition using an Nd:YAG laser at its second harmonic (lambda = 532 nm) in order to quantify the effect of electrode interference. Accompanying high-speed chemiluminescence imaging measurements, instantaneous pressure measurements were obtained to give a more detailed understanding of the effect of vortex strength on the overall flame speed and heat release rate over an extended time scale and to explore the use of a simple measurement to describe turbulent mixing. Further local flame-vortex interface analysis was

  6. The coupling between flame surface dynamics and species mass conservation in premixed turbulent combustion

    NASA Technical Reports Server (NTRS)

    Trouve, A.; Veynante, D.; Bray, K. N. C.; Mantel, T.

    1994-01-01

    Current flamelot models based on a description of the flame surface dynamics require the closure of two inter-related equations: a transport equation for the mean reaction progress variable, (tilde)c, and a transport equation for the flame surface density, Sigma. The coupling between these two equations is investigated using direct numerical simulations (DNS) with emphasis on the correlation between the turbulent fluxes of (tilde)c, bar(pu''c''), and Sigma, (u'')(sub S)Sigma. Two different DNS databases are used in the present work: a database developed at CTR by A. Trouve and a database developed by C. J. Rutland using a different code. Both databases correspond to statistically one-dimensional premixed flames in isotropic turbulent flow. The run parameters, however, are significantly different, and the two databases correspond to different combustion regimes. It is found that in all simulated flames, the correlation between bar(pu''c'') and (u'')(sub S)Sigma is always strong. The sign, however, of the turbulent flux of (tilde)c or Sigma with respect to the mean gradients, delta(tilde)c/delta(x) or delta(Sigma)/delta(x), is case-dependent. The CTR database is found to exhibit gradient turbulent transport of (tilde)c and Sigma, whereas the Rutland DNS features counter-gradient diffusion. The two databases are analyzed and compared using various tools (a local analysis of the flow field near the flame, a classical analysis of the conservation equation for (tilde)(u''c''), and a thin flame theoretical analysis). A mechanism is then proposed to explain the discrepancies between the two databases and a preliminary simple criterion is derived to predict the occurrence of gradient/counter-gradient turbulent diffusion.

  7. Lagrangian coherent structures during combustion instability in a premixed-flame backward-step combustor.

    PubMed

    Sampath, Ramgopal; Mathur, Manikandan; Chakravarthy, Satyanarayanan R

    2016-12-01

    This paper quantitatively examines the occurrence of large-scale coherent structures in the flow field during combustion instability in comparison with the flow-combustion-acoustic system when it is stable. For this purpose, the features in the recirculation zone of the confined flow past a backward-facing step are studied in terms of Lagrangian coherent structures. The experiments are conducted at a Reynolds number of 18600 and an equivalence ratio of 0.9 of the premixed fuel-air mixture for two combustor lengths, the long duct corresponding to instability and the short one to the stable case. Simultaneous measurements of the velocity field using time-resolved particle image velocimetry and the CH^{*} chemiluminescence of the flame along with pressure time traces are obtained. The extracted ridges of the finite-time Lyapunov exponent (FTLE) fields delineate dynamically distinct regions of the flow field. The presence of large-scale vortical structures and their modulation over different time instants are well captured by the FTLE ridges for the long combustor where high-amplitude acoustic oscillations are self-excited. In contrast, small-scale vortices signifying Kelvin-Helmholtz instability are observed in the short duct case. Saddle-type flow features are found to separate the distinct flow structures for both combustor lengths. The FTLE ridges are found to align with the flame boundaries in the upstream regions, whereas farther downstream, the alignment is weaker due to dilatation of the flow by the flame's heat release. Specifically, the FTLE ridges encompass the flame curl-up for both the combustor lengths, and thus act as the surrogate flame boundaries. The flame is found to propagate upstream from an earlier vortex roll-up to a newer one along the backward-time FTLE ridge connecting the two structures.

  8. Lagrangian coherent structures during combustion instability in a premixed-flame backward-step combustor

    NASA Astrophysics Data System (ADS)

    Sampath, Ramgopal; Mathur, Manikandan; Chakravarthy, Satyanarayanan R.

    2016-12-01

    This paper quantitatively examines the occurrence of large-scale coherent structures in the flow field during combustion instability in comparison with the flow-combustion-acoustic system when it is stable. For this purpose, the features in the recirculation zone of the confined flow past a backward-facing step are studied in terms of Lagrangian coherent structures. The experiments are conducted at a Reynolds number of 18600 and an equivalence ratio of 0.9 of the premixed fuel-air mixture for two combustor lengths, the long duct corresponding to instability and the short one to the stable case. Simultaneous measurements of the velocity field using time-resolved particle image velocimetry and the C H* chemiluminescence of the flame along with pressure time traces are obtained. The extracted ridges of the finite-time Lyapunov exponent (FTLE) fields delineate dynamically distinct regions of the flow field. The presence of large-scale vortical structures and their modulation over different time instants are well captured by the FTLE ridges for the long combustor where high-amplitude acoustic oscillations are self-excited. In contrast, small-scale vortices signifying Kelvin-Helmholtz instability are observed in the short duct case. Saddle-type flow features are found to separate the distinct flow structures for both combustor lengths. The FTLE ridges are found to align with the flame boundaries in the upstream regions, whereas farther downstream, the alignment is weaker due to dilatation of the flow by the flame's heat release. Specifically, the FTLE ridges encompass the flame curl-up for both the combustor lengths, and thus act as the surrogate flame boundaries. The flame is found to propagate upstream from an earlier vortex roll-up to a newer one along the backward-time FTLE ridge connecting the two structures.

  9. EFFECTS OF EQUIVALENCE RATIO ON SPECIES AND SOOT CONCENTRATIONS IN PREMIXED N-HEPTANE FLAMES. (R828193)

    EPA Science Inventory

    The micro-structure of laminar premixed, atmospheric-pressure, fuel-rich flames of n-heptane/oxygen/argon has been studied at two equivalence ratios (C/O = 0.63 and C/O = 0.67). A heated quartz microprobe coupled to an online gas chromatography/mass spectrometry (HP 5890 Serie...

  10. THE EFFECTS OF EQUIVALENCE RATIO ON THE FORMATION OF POLYCYCLIC AROMATIC HYDROCARBONS AND SOOT IN PREMIXED ETHANE FLAMES. (R825412)

    EPA Science Inventory

    Abstract

    The formation of polycyclic aromatic hydrocarbons (PAH) and soot has been investigated in atmospheric-pressure, laminar, ethane/oxygen/argon premixed flames as a function of mixture equivalence ratio. Mole fraction profiles of major products, trace aromatics, ...

  11. Correlation of Flame Speed with Stretch in Turbulent Premixed Methane/Air Flames

    NASA Astrophysics Data System (ADS)

    Chen, Jacqueline H.; Im, Hong G.

    1997-11-01

    Flame speed correlation with stretch is obtained from direct numerical simulations of lean to stoichiometric methane/air flames over a broad range of Karlovitz numbers. The correlation is interpreted in terms of local tangential strain rate and curvature effects. DNS results show that there exist two distinct branches in the correlation curve depending on the sign of the displacement speed. For small Karlovitz numbers with positive displacement speed, the estimated Markstein length from the DNS results agrees well with that obtained from steady strained laminar flame calculations as well as with experimental studies. Larger values of Karlovitz numbers observed in the DNS results are found to be mainly due to the effect of strong curvatures; for those cases the correlation shows nonlinear behavior. The sensitivity of the correlation to the definition of the flame front and the statistical importance of particular branches in the correlation are also discussed.

  12. Flame speeds and curvature of premixed, spherically expanding flames advecting in a turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Fries, Dan; Ochs, Bradley; Ranjan, Devesh; Menon, Suresh

    2016-11-01

    A new facility has been developed at the Georgia Institute of Technology to study sub- and supersonic combustion, which is based on classical flame bomb studies but incorporates a mean flow, allowing for a wider variety of turbulent conditions and the inclusion of effects like compressibility, while supporting shear-free spherical flames. Homogeneous, isotropic turbulence is generated via an active vane grid. Methane-air flame kernels advecting with the mean flow are generated using Laser Induced Breakdown ignition. The facility is accessing the thin reaction zone regime with uRMS' /SL0 = 6 . 9 - 22 , L11 /δF = 44 - 68 and Reλ = 190 - 550 . The flame kernels are probed with OH-Planar Laser Induced Fluorescence (PLIF). To validate the facility, results at Ū = 30 m/s are compared to existing data using a scaling derived from a spectral closure of the G-equation. This indicates the reacting flow remains Galilean invariant under the given conditions. The differences between global and local turbulent consumption speeds derived from OH-PLIF results are discussed with a focus on modeling efforts. The curvature of flame wrinkles is evaluated to examine the impact of different turbulent scales on flame development. This work was supported by the Air Force Office of Scientific Research under basic research Grant FA9550-15-1-0512 (Project monitor: Dr. Chiping Li).

  13. Numerical investigation of flame-vortex interactions in laminar cross-flow non-premixed flames in the presence of bluff bodies

    NASA Astrophysics Data System (ADS)

    Kozhumal Shijin, Puthiyaparambath; Raghavan, Vasudevan; Babu, Viswanathan

    2016-07-01

    Flame stabilisation in a combustor having vortices generated by flame holding devices constitutes an interesting fundamental problem. The presence of vortices in many practical combustors ranging from industrial burners to high speed propulsion systems induces vortex-flame interactions and complex stabilisation conditions. The scenario becomes more complex if the flame sustains after separating itself from the flame holder. In a recent study [P.K. Shijin, S.S. Sundaram, V. Raghavan, and V. Babu, Numerical investigation of laminar cross-flow non-premixed flames in the presence of a bluff-body, Combust. Theory Model. 18, 2014, pp. 692-710], the authors reported details of the regimes of flame stabilisation of non-premixed laminar flames established in a cross-flow combustor in the presence of a square cylinder. In that, the separated flame has been shown to be three dimensional and highly unsteady. Such separated flames are investigated further in the present study. Flame-vortex interactions in separated methane-air cross flow flames established behind three bluff bodies, namely a square cylinder, an isosceles triangular cylinder and a half V-gutter, have been analysed in detail. The mixing process in the reactive flow has been explained using streamlines of species velocities of CH4 and O2. The time histories of z-vorticity, net heat release rate and temperature are analysed to reveal the close relationship between z-vorticity and net heat release rate spectra. Two distinct fluctuating layers are visible in the proper orthogonal decomposition and discrete Fourier transform of OH mass fraction data. The upper fluctuating layer observed in the OH field correlates well with that of temperature. A detailed investigation of the characteristics of OH transport has also been carried out to show the interactions between factors affecting fluid dynamics and chemical kinetics that cause multiple fluctuating layers in the OH.

  14. A Study of Strain Rate Effects for Turbulent Premixed Flames with Application to LES of a Gas Turbine Combustor Model

    SciTech Connect

    Kemenov, Konstantin A.; Calhoon, William H.

    2015-03-24

    Large-scale strain rate field, a resolved quantity which is easily computable in large-eddy simulations (LES), could have profound effects on the premixed flame properties by altering the turbulent flame speed and inducing local extinction. The role of the resolved strain rate has been investigated in a posterior LES study of GE lean premixed dry low NOx emissions LM6000 gas turbine combustor model. A novel approach which is based on the coupling of the lineareddy model with a one-dimensional counter-flow solver has been applied to obtain the parameterizations of the resolved premixed flame properties in terms of the reactive progress variable, the local strain rate measure, and local Reynolds and Karlovitz numbers. The strain rate effects have been analyzed by comparing LES statistics for several models of the turbulent flame speed, i.e, with and without accounting for the local strain rate effects, with available experimental data. The sensitivity of the simulation results to the inflow velocity conditions as well as the grid resolution have been also studied. Overall, the results suggest the necessity to represent the strain rate effects accurately in order to improve LES modeling of the turbulent flame speed.

  15. A Study of Strain Rate Effects for Turbulent Premixed Flames with Application to LES of a Gas Turbine Combustor Model

    DOE PAGES

    Kemenov, Konstantin A.; Calhoon, William H.

    2015-03-24

    Large-scale strain rate field, a resolved quantity which is easily computable in large-eddy simulations (LES), could have profound effects on the premixed flame properties by altering the turbulent flame speed and inducing local extinction. The role of the resolved strain rate has been investigated in a posterior LES study of GE lean premixed dry low NOx emissions LM6000 gas turbine combustor model. A novel approach which is based on the coupling of the lineareddy model with a one-dimensional counter-flow solver has been applied to obtain the parameterizations of the resolved premixed flame properties in terms of the reactive progress variable,more » the local strain rate measure, and local Reynolds and Karlovitz numbers. The strain rate effects have been analyzed by comparing LES statistics for several models of the turbulent flame speed, i.e, with and without accounting for the local strain rate effects, with available experimental data. The sensitivity of the simulation results to the inflow velocity conditions as well as the grid resolution have been also studied. Overall, the results suggest the necessity to represent the strain rate effects accurately in order to improve LES modeling of the turbulent flame speed.« less

  16. Measurements of soot formation and hydroxyl concentration in near critical equivalence ratio premixed ethylene flame

    NASA Technical Reports Server (NTRS)

    Inbody, Michael Andrew

    1993-01-01

    The testing and development of existing global and detailed chemical kinetic models for soot formation requires measurements of soot and radical concentrations in flames. A clearer understanding of soot particle inception relies upon the evaluation and refinement of these models in comparison with such measurements. We present measurements of soot formation and hydroxyl (OH) concentration in sequences of flat premixed atmospheric-pressure C2H4/O2/N2 flames and 80-torr C2H4/O2 flames for a unique range of equivalence ratios bracketting the critical equivalence ratio (phi(sub c)) and extending to more heavily sooting conditions. Soot volume fraction and number density profiles are measured using a laser scattering-extinction apparatus capable of resolving a 0.1 percent absorption. Hydroxyl number density profiles are measured using laser-induced fluorescence (LIF) with broadband detection. Temperature profiles are obtained from Rayleigh scattering measurements. The relative volume fraction and number density profiles of the richer sooting flames exhibit the expected trends in soot formation. In near-phi(sub c) visibility sooting flames, particle scattering and extinction are not detected, but an LIF signal due to polycyclic aromatic hydrocarbons (PAH's) can be detected upon excitation with an argon-ion laser. A linear correlation between the argon-ion LIF and the soot volume fraction implies a common mechanistic source for the growth of PAH's and soot particles. The peak OH number density in both the atmospheric and 80-torr flames declines with increasing equivalence ratio, but the profile shape remains unchanged in the transition to sooting, implying that the primary reaction pathways for OH remain unchanged over this transition. Chemical kinetic modeling is demonstrated by comparing predictions using two current reaction mechanisms with the atmospheric flame data. The measured and predicted OH number density profiles show good agreement. The predicted benzene

  17. Measurements of the heat release rate integral in turbulent premixed stagnation flames with particle image velocimetry

    SciTech Connect

    Chen, Yung-Cheng; Kim, Munki; Han, Jeongjae; Yun, Sangwook; Yoon, Youngbin

    2008-08-15

    A new definition of turbulent consumption speed is proposed in this work that is based on the heat release rate integral, rather than the mass burning rate integral. Its detailed derivation and the assumptions involved are discussed in a general context that applies to all properly defined reaction progress variables. The major advantage of the proposed definition is that it does not require the thin-flame assumption, in contrast to previous definitions. Experimental determination of the local turbulent displacement speed, S{sub D}, and the local turbulent consumption speed, S{sub C}, is also demonstrated with the particle image velocimetry technique in three turbulent premixed stagnation flames. The turbulence intensity of these flames is of the same order of the laminar burning velocity. Based on the current data, a model equation for the local mean heat release rate is proposed. The relationship between S{sub D} and S{sub C} is discussed along with a possible modeling approach for the turbulent displacement speed. (author)

  18. Dynamic Mode Decomposition (DMD) application to premixed Low Swirl Injector flames

    NASA Astrophysics Data System (ADS)

    Palies, Paul; Cheng, Robert; Davis, Dustin; Ilak, Milos

    2015-11-01

    DMD is implemented and applied to premixed flame image data from the Low Swirl Injector. The data consists of high speed video flame images at three different equivalence ratios, corresponding to low-amplitude oscillation, transient growth, and high-amplitude oscillation regimes. DMD reveals spectra of growth rates and frequencies with corresponding spatial modes, ranked by mode norm. For the low-amplitude oscillation regime, DMD does not capture any dominant mode shapes or frequencies. For the high-amplitude oscillation case, the frequency of the dominant mode and its harmonics match the frequency recorded by pressure measurement. The spatial mode from DMD is used to extract the propagation velocity of perturbations. In the transient regime, DMD captures the growth rate and frequency of the transient mode. The corresponding DMD spatial mode shows a similar shape to the high oscillation case indicating that the transition to a limit cycle is associated with a convective mode. The underlying mechanism of unsteady heat release is identified as induced by a convected wave along the flame front, whose velocity is confirmed by a separate analysis. Supported by Dept. of Energy Contract No. DE-AC02-05CH11231.

  19. Influence of Aerodynamic Strain Rate on Local Extinction in Turbulent Non-premixed Jet Flames

    NASA Astrophysics Data System (ADS)

    Ramachandran, Aravind; Narayanaswamy, Venkateswaran; Lyons, Kevin

    2016-11-01

    2-D velocity field measurements obtained from Particle Image Velocimetry (PIV) are used to obtain aerodynamic strain rate information in regions of local extinction in lifted turbulent non-premixed methane jet flames in coflow. Diluting the coflow to reduce the oxygen molefraction results in increased occurrences of local extinction. Statistical analysis is performed to correlate regions of high local strain rate with local extinctions in both air coflow and diluted coflow cases to study the influence of strain rate against vortical structures in extinguishing the flame front. A comparison is also made with heated and vitiated coflow cases, where autoignition is a flame stabilization mechanism and influenced by local strain rate. At high jet exit velocities (Ux > > Ur), the out-of-plane strain rate component can be neglected but the convection of extinguished pockets into the measurement plane needs to be resolved by stereoscopic (3-D) measurements which will be done in a future work. This work has been supported by the U.S. Army Research Office (Contracts W911NF1210140 and W911NF1610087) Dr. Ralph Anthenien, Technical Monitor, ARO.

  20. Numerical simulations of Rayleigh-Taylor instability in non-premixed flames using detailed chemistry

    NASA Astrophysics Data System (ADS)

    Attal, Nitesh; Ramaprabhu, Praveen

    2016-11-01

    The Rayleigh-Taylor (RT) instability occurs at a perturbed interface separating fluids of different densities, when the lighter fluid accelerates the heavier fluid. We examine the occurrence of the RT instability, when the perturbed interface demarcates a light, fuel stream from a heavier air stream at elevated temperatures. The study is conducted using the FLASH code with modifications that include detailed chemistry, temperature-dependent EOS, and diffusive transport. The fuel-air interface is initialized at thermal equilibrium (Tfuel = Tair = 1000K) in a constant background acceleration (g). We vary the density difference across the interface by diluting the H2 fuel stream with inert N2. The non-premixed flame formed across a burning interface alters the underlying density (ρ) stratification, so that an initially RT unstable (stable) interface can be locally stabilized (destabilized). We observe this change in local stability for both single-wavelength and multimode perturbations, and draw some conclusions on the implications of these findings to applications such as ultra-compact combustors. We also make some comparisons of the reacting, non-premixed RT problem with the corresponding inert flow.

  1. The multispecies modeling of the premixed, laminar steady-state ozone flame

    NASA Technical Reports Server (NTRS)

    Heimerl, J. M.; Coffee, T. P.

    1980-01-01

    Species dependent kinetic, transport and thermodynamic coefficients were employed in a one dimensional model of the premixed, laminar, steady state ozone flame. Convenient expressions for these coefficients are reported. They are based on independent measurements, no arbitrary parameters are used. The governing equations are solved using a relaxation technique and the partial differential equation package, PDECOL. Species and temperature profiles and the burning velocities are found over the range of initial ozone mole fraction of 0.25 to 1.00. The computed burning velocities are no more than 30% greater than the measurements of Streng and Grosses. Comparison with the computed results of Warnatz shows agreement within + or - 12%, even though quite different expressions for some of the kinetic coefficients were used. These differences are most obvious in the atomic oxygen and temperature profiles at an initial ozone mole fraction of unity.

  2. Magnifying and Tracking Observation of Micro PET Particles Passing through a Plane Premixed Flame Front

    NASA Astrophysics Data System (ADS)

    Ohiwa, Norio; Ishino, Yojiro; Tomatsu, Takanori; Yamakita, Ryuji

    In order to observe detailed behavior of micro plastic particles under rapid heating, a fundamental investigation is made by introducing two ingenious devices; one is the construction of a plane laminar premixed burner exhibiting extremely excellent two-dimensionality, the other is the construction of a magnifying particle-tracking system composed of a pair of rotating plane mirrors and a fixed high-speed video camera. Taking account of the flow patterns obtained using a PIV/PTV system, a series of heating processes from melting to burning of micro PET particles passing through a laminar flame sheet is optically observed. It is found that the proposed high-speed and magnifying tracking system can realize a wide straight range of particle tracking up to 50 mm and clarify many interesting facts concerning the ignition and burning processes of micro PET particles.

  3. Conditional statistics in a turbulent premixed flame derived from direct numerical simulation

    NASA Technical Reports Server (NTRS)

    Mantel, Thierry; Bilger, Robert W.

    1994-01-01

    The objective of this paper is to briefly introduce conditional moment closure (CMC) methods for premixed systems and to derive the transport equation for the conditional species mass fraction conditioned on the progress variable based on the enthalpy. Our statistical analysis will be based on the 3-D DNS database of Trouve and Poinsot available at the Center for Turbulence Research. The initial conditions and characteristics (turbulence, thermo-diffusive properties) as well as the numerical method utilized in the DNS of Trouve and Poinsot are presented, and some details concerning our statistical analysis are also given. From the analysis of DNS results, the effects of the position in the flame brush, of the Damkoehler and Lewis numbers on the conditional mean scalar dissipation, and conditional mean velocity are presented and discussed. Information concerning unconditional turbulent fluxes are also presented. The anomaly found in previous studies of counter-gradient diffusion for the turbulent flux of the progress variable is investigated.

  4. LES-Modeling of a Partially Premixed Flame using a Deconvolution Turbulence Closure

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Wu, Hao; Ihme, Matthias

    2015-11-01

    The modeling of the turbulence/chemistry interaction in partially premixed and multi-stream combustion remains an outstanding issue. By extending a recently developed constrained minimum mean-square error deconvolution (CMMSED) method, to objective of this work is to develop a source-term closure for turbulent multi-stream combustion. In this method, the chemical source term is obtained from a three-stream flamelet model, and CMMSED is used as closure model, thereby eliminating the need for presumed PDF-modeling. The model is applied to LES of a piloted turbulent jet flame with inhomogeneous inlets, and simulation results are compared with experiments. Comparisons with presumed PDF-methods are performed, and issues regarding resolution and conservation of the CMMSED method are examined. The author would like to acknowledge the support of funding from Stanford Graduate Fellowship.

  5. Low Fractal Dimension Cluster-Dilute Soot Aggregates from a Premixed Flame

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Rajan K.; Moosmüller, Hans; Arnott, W. Patrick; Garro, Mark A.; Tian, Guoxun; Slowik, Jay G.; Cross, Eben S.; Han, Jeong-Ho; Davidovits, Paul; Onasch, Timothy B.; Worsnop, Douglas R.

    2009-06-01

    Using a novel morphology segregation technique, we observed minority populations (≈3%) of submicron-sized, cluster-dilute fractal-like aggregates, formed in the soot-formation window (fuel-to-air equivalence ratio of 2.0-3.5) of a premixed flame, to have mass fractal dimensions between 1.2 and 1.51. Our observations disagree with previous observations of a universal mass fractal dimension of ≈1.8 for fractal-like aerosol aggregates formed in the dilute-limit via three-dimensional diffusion-limited cluster aggregation processes. A hypothesis is presented to explain this observation. Subject to verification of this hypothesis, it may be possible to control the fractal dimension and associated properties of aggregates in the cluster-dilute limit through application of a static electric field during the aggregation process.

  6. Chemiluminescence-based multivariate sensing of local equivalence ratios in premixed atmospheric methane-air flames

    SciTech Connect

    Tripathi, Markandey M.; Krishnan, Sundar R.; Srinivasan, Kalyan K.; Yueh, Fang-Yu; Singh, Jagdish P.

    2011-09-07

    Chemiluminescence emissions from OH*, CH*, C2, and CO2 formed within the reaction zone of premixed flames depend upon the fuel-air equivalence ratio in the burning mixture. In the present paper, a new partial least square regression (PLS-R) based multivariate sensing methodology is investigated and compared with an OH*/CH* intensity ratio-based calibration model for sensing equivalence ratio in atmospheric methane-air premixed flames. Five replications of spectral data at nine different equivalence ratios ranging from 0.73 to 1.48 were used in the calibration of both models. During model development, the PLS-R model was initially validated with the calibration data set using the leave-one-out cross validation technique. Since the PLS-R model used the entire raw spectral intensities, it did not need the nonlinear background subtraction of CO2 emission that is required for typical OH*/CH* intensity ratio calibrations. An unbiased spectral data set (not used in the PLS-R model development), for 28 different equivalence ratio conditions ranging from 0.71 to 1.67, was used to predict equivalence ratios using the PLS-R and the intensity ratio calibration models. It was found that the equivalence ratios predicted with the PLS-R based multivariate calibration model matched the experimentally measured equivalence ratios within 7%; whereas, the OH*/CH* intensity ratio calibration grossly underpredicted equivalence ratios in comparison to measured equivalence ratios, especially under rich conditions ( > 1.2). The practical implications of the chemiluminescence-based multivariate equivalence ratio sensing methodology are also discussed.

  7. Experimental study of the stabilization process of a non-premixed flame via the destabilization analysis of the blue ring flame

    SciTech Connect

    Pinguet, Guillaume; Escudie, Dany

    2007-04-15

    The flame stabilization phenomenon remains a crucial issue. The experimental study of flame stabilization behind a tulip-shaped flame-holder is addressed in this paper. The process leading to the transition between specific modes - the blue ring flame and the instable ring - of a non-premixed flame stabilized on a tulip-shaped bluff-body is detailed. The aim of this study is to provide an accurate description of the destabilization of specific combustion modes, which enables a further understanding of the entire stabilization mechanism. The aerodynamic and mixing fields are described by laser Doppler anemometry and concentration measurements by sampling probe respectively. The behaviour of shear layers developing at the wake and jet boundaries are characterized by means of a spectral analysis of the fluctuating radial velocity. Results show that the destabilization process is related to the intensification of hot gas recirculation, inducing an upheaval of the dynamical condition of stabilization and a transition of mixing phenomena. (author)

  8. Effects of Radiative Emission and Absorption on the Propagation and Extinction of Premixed Gas Flames

    NASA Technical Reports Server (NTRS)

    Ju, Yiguang; Masuya, Goro; Ronney, Paul D.

    1998-01-01

    Premixed gas flames in mixtures of CH4, O2, N2, and CO2 were studied numerically using detailed chemical and radiative emission-absorption models to establish the conditions for which radiatively induced extinction limits may exist independent of the system dimensions. It was found that reabsorption of emitted radiation led to substantially higher burning velocities and wider extinction limits than calculations using optically thin radiation models, particularly when CO2, a strong absorber, is present in the unburned gas, Two heat loss mechanisms that lead to flammability limits even with reabsorption were identified. One is that for dry hydrocarbon-air mixtures, because of the differences in the absorption spectra of H2O and CO2, most of the radiation from product H2O that is emitted in the upstream direction cannot be absorbed by the reactants. The second is that the emission spectrum Of CO2 is broader at flame temperatures than ambient temperature: thus, some radiation emitted near the flame front cannot be absorbed by the reactants even when they are seeded with CO2 Via both mechanisms, some net upstream heat loss due to radiation will always occur, leading to extinction of sufficiently weak mixtures. Downstream loss has practically no influence. Comparison with experiment demonstrates the importance of reabsorption in CO2 diluted mixtures. It is concluded that fundamental flammability limits can exist due to radiative heat loss, but these limits are strongly dependent on the emission-absorption spectra of the reactant and product -gases and their temperature dependence and cannot be predicted using gray-gas or optically thin model parameters. Applications to practical flames at high pressure, in large combustion chambers, and with exhaust-gas or flue-gas recirculation are discussed.

  9. Turbulent piloted partially-premixed flames with varying levels of O2/N2: stability limits and PDF calculations

    NASA Astrophysics Data System (ADS)

    Juddoo, Mrinal; Masri, Assaad R.; Pope, Stephen B.

    2011-12-01

    This paper reports measured stability limits and PDF calculations of piloted, turbulent flames of compressed natural gas (CNG) partially-premixed with either pure oxygen, or with varying levels of O2/N2. Stability limits are presented for flames of CNG fuel premixed with up to 20% oxygen as well as CNG-O2-N2 fuel where the O2 content is varied from 8 to 22% by volume. Calculations are presented for (i) Sydney flame B [Masri et al. 1988] which uses pure CNG as well as flames B15 to B25 where the CNG is partially-premixed with 15-25% oxygen by volume, respectively and (ii) Sandia methane-air (1:3 by volume) flame E [Barlow et al. 2005] as well as new flames E15 and E25 that are partially-premixed with 'reconstituted air' where the O2 content in nitrogen is 15 and 25% by volume, respectively. The calculations solve a transported PDF of composition using a particle-based Monte Carlo method and employ the EMST mixing model as well as detailed chemical kinetics. The addition of oxygen to the fuel increases stability, shortens the flames, broadens the reaction zone, and shifts the stoichiometric mixture fraction towards the inner side of the jet. It is found that for pure CNG flames where the reaction zone is narrow (∼0.1 in mixture fraction space), the PDF calculations fail to reproduce the correct level of local extinction on approach to blow-off. A broadening in the reaction zone up to about 0.25 in mixture fraction space is needed for the PDF/EMST approach to be able to capture these finite-rate chemistry effects. It is also found that for the same level of partial premixing, increasing the O2/N2 ratio increases the maximum levels of CO and NO but shifts the peak to richer mixture fractions. Over the range of oxygenation investigated here, stability limits have shown to improve almost linearly with increasing oxygen levels in the fuel and with increasing the contribution of release rate from the pilot.

  10. Sub-grid scale combustion models for large eddy simulation of unsteady premixed flame propagation around obstacles.

    PubMed

    Di Sarli, Valeria; Di Benedetto, Almerinda; Russo, Gennaro

    2010-08-15

    In this work, an assessment of different sub-grid scale (sgs) combustion models proposed for large eddy simulation (LES) of steady turbulent premixed combustion (Colin et al., Phys. Fluids 12 (2000) 1843-1863; Flohr and Pitsch, Proc. CTR Summer Program, 2000, pp. 61-82; Kim and Menon, Combust. Sci. Technol. 160 (2000) 119-150; Charlette et al., Combust. Flame 131 (2002) 159-180; Pitsch and Duchamp de Lageneste, Proc. Combust. Inst. 29 (2002) 2001-2008) was performed to identify the model that best predicts unsteady flame propagation in gas explosions. Numerical results were compared to the experimental data by Patel et al. (Proc. Combust. Inst. 29 (2002) 1849-1854) for premixed deflagrating flame in a vented chamber in the presence of three sequential obstacles. It is found that all sgs combustion models are able to reproduce qualitatively the experiment in terms of step of flame acceleration and deceleration around each obstacle, and shape of the propagating flame. Without adjusting any constants and parameters, the sgs model by Charlette et al. also provides satisfactory quantitative predictions for flame speed and pressure peak. Conversely, the sgs combustion models other than Charlette et al. give correct predictions only after an ad hoc tuning of constants and parameters.

  11. Lagrangian analysis of premixed turbulent combustion in hydrogen-air flames

    NASA Astrophysics Data System (ADS)

    Darragh, Ryan; Poludnenko, Alexei; Hamlington, Peter

    2016-11-01

    Lagrangian analysis has long been a tool used to analyze non-reacting turbulent flows, and has recently gained attention in the reacting flow and combustion communities. The approach itself allows one to separate local molecular effects, such as those due to reactions or diffusion, from turbulent advective effects along fluid pathlines, or trajectories. Accurate calculation of these trajectories can, however, be rather difficult due to the chaotic nature of turbulent flows and the added complexity of reactions. In order to determine resolution requirements and verify the numerical algorithm, extensive tests are described in this talk for prescribed steady, unsteady, and chaotic flows, as well as for direct numerical simulations (DNS) of non-reacting homogeneous isotropic turbulence. The Lagrangian analysis is then applied to DNS of premixed hydrogen-air flames at two different turbulence intensities for both single- and multi-step chemical mechanisms. Non-monotonic temperature and fuel-mass fraction evolutions are found to exist along trajectories passing through the flame brush. Such non-monotonicity is shown to be due to molecular diffusion resulting from large spatial gradients created by turbulent advection. This work was supported by the Air Force Office of Scientific Research (AFOSR) under Award No. FA9550-14-1-0273, and the Department of Defense (DoD) High Performance Computing Modernization Program (HPCMP) under a Frontier project award.

  12. Numerical prediction of turbulent flame stability in premixed/prevaporized (HSCT) combustors

    NASA Technical Reports Server (NTRS)

    Winowich, Nicholas S.

    1990-01-01

    A numerical analysis of combustion instabilities that induce flashback in a lean, premixed, prevaporized dump combustor is performed. KIVA-II, a finite volume CFD code for the modeling of transient, multidimensional, chemically reactive flows, serves as the principal analytical tool. The experiment of Proctor and T'ien is used as a reference for developing the computational model. An experimentally derived combustion instability mechanism is presented on the basis of the observations of Proctor and T'ien and other investigators of instabilities in low speed (M less than 0.1) dump combustors. The analysis comprises two independent procedures that begin from a calculated stable flame: The first is a linear increase of the equivalence ratio and the second is the linear decrease of the inflow velocity. The objective is to observe changes in the aerothermochemical features of the flow field prior to flashback. It was found that only the linear increase of the equivalence ratio elicits a calculated flashback result. Though this result did not exhibit large scale coherent vortices in the turbulent shear layer coincident with a flame flickering mode as was observed experimentally, there were interesting acoustic effects which were resolved quite well in the calculation. A discussion of the k-e turbulence model used by KIVA-II is prompted by the absence of combustion instabilities in the model as the inflow velocity is linearly decreased. Finally, recommendations are made for further numerical analysis that may improve correlation with experimentally observed combustion instabilities.

  13. Effects of nucleating species on soot formation in turbulent non-premixed sooting jet flames

    NASA Astrophysics Data System (ADS)

    Jain, Abhishek; Xuan, Yuan

    2016-11-01

    Soot nucleation is one of the most unknown processes in the soot life cycle, and it is believed to occur from Polycyclic Aromatic Hydrocarbons (PAH) generated from the combustion of various fuel sources under locally fuel-rich conditions. Current soot nucleation models may include as few as one (typically naphthalene) or as many as a dozen of nucleating species. In this study, the effects of PAH inclusion in the soot nucleation model on soot yield and distribution are studied by means of Large-Eddy Simulations (LES) of two piloted turbulent non-premixed sooting jet flames, using ethylene and a jet fuel surrogate, respectively. Two sets of simulations are performed for each flame, one considering only a single nucleating PAH (naphthalene) and the other one considering a range of nucleating PAH from naphthalene to cyclopenta[cd]pyrene. Flamelet-based chemistry tabulation is used for the major thermochemical quantities, and a recently developed relaxation model is used for PAH species to account for the interactions between turbulence and their chemistry. The effects of nucleating PAH species on soot are highlighted by comparing the mean soot volume fraction distributions and statistical characteristics of soot obtained from both sets of simulations against experimental measurements. Graduate Student, MNE.

  14. Computational analysis of some physical issues in nonpremixed and premixed turbulent flames

    NASA Astrophysics Data System (ADS)

    Steinberger, Craig J.

    1997-07-01

    Results are presented of direct numerical simulations (DNS) of a randomly perturbed spatially developing planar jet under the influence of a finite rate chemical reaction of the type F+O/to Product with initially nonpremixed reactants. The objectives of the simulations are to assess the compositional structure of the flame and to determine the influence of reaction exothermicity. It is shown that as the intensity of mixing is increased and the effect of finite rate chemistry is more pronounced, the magnitudes of the ensemble mean and root mean square of the product mass fraction decrease and those of the reactants mass fraction increase. At higher mixing rates the joint probability density functions of the reactants' mass fractions shift towards higher values within the composition domain indicating a lower reactedness. These trends are consistent with those observed experimentally and are useful in portraying the statistical structure of non-equilibrium diffusion flames. The DNS generated data are also utilized to examine the applicability of the 'laminar diffusion flamelet model' in predicting the rate of the reactant conversion with finite rate chemistry. This examination indicates that the performance of the model is improved as the value of the local Damkohler number is increased. In the setting of a 'turbulent' flame, the effect of the heat liberated by the chemical reaction is shown to increase the rate of reactant conversion. This finding is different from those of earlier DNS results and laboratory investigations. Lagrangian simulations are conducted of unsteady premixed flames in a spatially developing planar mixing layer. The flames are simulated via the FLAIR (Flux Line-Segment Model for Advection and Interface Reconstruction) algorithms combined with a vortex method flow solver. The objective of the simulations is to capture the structure of the flame front, ascertain the influences of exothermicity and baroclinic torque on the flame, and to assess the

  15. Effects of Lewis number, density ratio and gravity on burning velocity and conditional statistics in stagnating turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Kwon, Jaesung; Huh, Kang Y.

    2014-09-01

    DNS is performed to analyse the effects of Lewis number (Le), density ratio and gravity in stagnating turbulent premixed flames. The results show good agreement with those of Lee and Huh (Combustion and Flame, Vol. 159, 2012, pp. 1576-1591) with respect to the turbulent burning velocity, ST, in terms of turbulent diffusivity, flamelet thickness, mean curvature and displacement speed at the leading edge. In all four stagnating flames studied, a mean tangential strain rate resulting in a mean flamelet thickness smaller than the unstretched laminar flame thickness leads to an increase in ST. A flame cusp of positive curvature involves a superadiabatic burned gas temperature due to diffusive-thermal instability for an Le less than unity. Wrinkling tends to be suppressed at a larger density ratio, not enhanced by hydrodynamic instability, in the stagnating flow configuration. Turbulence is produced, resulting in highly anisotropic turbulence with heavier unburned gas accelerating through a flame brush by Rayleigh-Taylor instability. Results are also provided on brush thickness, flame surface density and conditional velocities in burned and unburned gas and on flame surfaces to represent the internal brush structures for all four test flames.

  16. Transfer function characteristics of bluff-body stabilized, conical V-shaped premixed turbulent propane-air flames

    SciTech Connect

    Chaparro, Andres; Landry, Eric; Cetegen, Baki M.

    2006-04-15

    The response of bluff-body stabilized conical V-shaped premixed flames to periodic upstream velocity oscillations was characterized as a function of oscillation frequency, mean flow velocity, and equivalence ratio. The flame heat release response to the imposed velocity oscillations was determined from the CH* chemiluminescence captured by two photomultiplier (PMT) detectors at a wavelength of 430 nm. One of the PMTs viewed flame radiation in a 10-mm horizontal slice, 50 mm above the bluff-body. The second PMT observed the overall flame radiation. The flame transfer function characteristics were determined from the spectral analysis of the velocity and PMT signals. It was found that the flame heat release amplitude response is confined to low-frequency excitation below a Strouhal number of 4. The phase relationship of the transfer function for these turbulent flames was evaluated using the signal from the spatially masked PMT. The transfer function estimate based on these data exhibits second-order characteristics with a phase lag between the velocity and heat release signals. The localized heat-release response contains frequencies that are multiples of the excitation frequency, suggesting splitting and tilting of flame structures as well as some nonlinear effects. Increase of flame equivalence ratio from lean toward stoichiometric resulted in slight amplification of the high-frequency response. (author)

  17. Application of Dielectric-Barrier Discharge to the Stabilization of Lifted Non-Premixed Methane/Air Jet Flames

    NASA Astrophysics Data System (ADS)

    Liao, Ying-Hao; Zhao, Xiang-Hong

    2016-11-01

    Recent studies have shown that the application of non-thermal plasma is a promising way to enhance the flame stabilization and combustion efficiency. The present study experimentally investigates the effect of a dielectric-barrier discharge (DBD) on the stabilization of lifted non-premixed methane/air jet flames. The jet flame with co-annular DBD is produced by a co-flow burner and has a Reynolds number of Re = 2500, 5000, 7000, and 9000. The application of DBD is seen to have an impact on the flame lift-off height, and the degree of impact is subject to flow conditions (such as Reynolds number and co-flow velocity) and plasma power. In general, the enhancement of flame stabilization, indicated by the decrease in lift-off height, is most evident at low Reynolds number and co-flow velocity. For flames with a Reynolds number less than Re = 5000, flames are attached to the nozzle regardless of the co-flow velocity and plasma power; at Re = 5000, flames are often intermittently attached. The enhancement is not that significant at high Reynolds number and co-flow velocity at least for the plasma power employed in the current study. A slight increase in plasma power leads to enhanced flame stabilization.

  18. Experimental data regarding the characterization of the flame behavior near lean blowout in a non-premixed liquid fuel burner

    PubMed Central

    De Giorgi, Maria Grazia; Sciolti, Aldebara; Campilongo, Stefano; Ficarella, Antonio

    2015-01-01

    The article presents the data related to the flame acquisitions in a liquid-fuel gas turbine derived burner operating in non-premixed mode under three different equivalence fuel/air ratio, which corresponds to a richer, an intermediate, and an ultra-lean condition, near lean blowout (LBO). The data were collected with two high speed visualization systems which acquired in the visible (VIS) and in the infrared (NIR) spectral region. Furthermore chemiluminescence measurements, which have been performed with a photomultiplier (PMT), equipped with an OH* filter, and gas exhaust measurements were also given. For each acquisition the data were related to operating parameters as pressure, temperature and equivalent fuel/air ratio. The data are related to the research article “Image processing for the characterization of flame stability in a non-premixed liquid fuel burner near lean blowout” in Aerospace Science and Technology [1]. PMID:26862557

  19. Origin of activated combustion in steady-state premixed burner flame with superposition of dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Zaima, Kazunori; Akashi, Haruaki; Sasaki, Koichi

    2016-01-01

    The objective of this work is to understand the mechanism of plasma-assisted combustion in a steady-state premixed burner flame. We examined the spatiotemporal variation of the density of atomic oxygen in a premixed burner flame with the superposition of dielectric barrier discharge (DBD). We also measured the spatiotemporal variations of the optical emission intensities of Ar and OH. The experimental results reveal that atomic oxygen produced in the preheating zone by electron impact plays a key role in the activation of combustion reactions. This understanding is consistent with that described in our previous paper indicating that the production of “cold OH(A2Σ+)” via CHO + O → OH(A2Σ+) + CO has the sensitive response to the pulsed current of DBD [K. Zaima and K. Sasaki, Jpn. J. Appl. Phys. 53, 110309 (2014)].

  20. Scaling and efficiency of PRISM in adaptive simulations of turbulent premixed flames

    SciTech Connect

    Tonse, Shaheen R.; Bell, J.B.; Brown, N.J.; Day, M.S.; Frenklach, M.; Grcar, J.F.; Propp, R.M.

    1999-12-01

    The dominant computational cost in modeling turbulent combustion phenomena numerically with high fidelity chemical mechanisms is the time required to solve the ordinary differential equations associated with chemical kinetics. One approach to reducing that computational cost is to develop an inexpensive surrogate model that accurately represents evolution of chemical kinetics. One such approach, PRISM, develops a polynomial representation of the chemistry evolution in a local region of chemical composition space. This representation is then stored for later use. As the computation proceeds, the chemistry evolution for other points within the same region are computed by evaluating these polynomials instead of calling an ordinary differential equation solver. If initial data for advancing the chemistry is encountered that is not in any region for which a polynomial is defined, the methodology dynamically samples that region and constructs a new representation for that region. The utility of this approach is determined by the size of the regions over which the representation provides a good approximation to the kinetics and the number of these regions that are necessary to model the subset of composition space that is active during a simulation. In this paper, we assess the PRISM methodology in the context of a turbulent premixed flame in two dimensions. We consider a range of turbulent intensities ranging from weak turbulence that has little effect on the flame to strong turbulence that tears pockets of burning fluid from the main flame. For each case, we explore a range of sizes for the local regions and determine the scaling behavior as a function of region size and turbulent intensity.

  1. Multi-kHz temperature imaging in turbulent non-premixed flames using planar Rayleigh scattering

    NASA Astrophysics Data System (ADS)

    Patton, R. A.; Gabet, K. N.; Jiang, N.; Lempert, W. R.; Sutton, J. A.

    2012-08-01

    In this manuscript, we describe the development of two-dimensional, high-repetition-rate (10-kHz) Rayleigh scattering imaging as applied to turbulent combustion environments. In particular, we report what we believe to be the first sets of high-speed planar Rayleigh scattering images in turbulent non-premixed flames, yielding temporally correlated image sequences of the instantaneous temperature field. Sample results are presented for the well-characterized DLR flames A and B (CH4/H2/N2) at Reynolds numbers of 15,200 and 22,800 at various axial positions downstream of the jet exit. The measurements are facilitated by the use of a user-calibrated, intensified, high-resolution CMOS camera in conjunction with a unique high-energy, high-repetition-rate pulse-burst laser system (PBLS) at Ohio State University, which yields output energies up to 200 mJ/pulse at 532 nm with 100-μs laser pulse spacing. The spatial and temporal resolution of the imaging system and acquired images are compared to the finest spatial and temporal scales expected within the turbulent flames. One of the most important features of the PBLS is the ability to readily change the pulse-to-pulse spacing as the required temporal resolution necessitates it. The quality and accuracy of the high-speed temperature imaging results are assessed by comparing derived statistics (mean and standard deviation) to that of previously reported point-based reference data acquired at Sandia National Laboratories and available within the TNF workshop. Good agreement between the two data sets is obtained providing an initial indication of quantitative nature of the planar, kHz-rate temperature imaging results.

  2. Numerical Parametric Studies of Laminar Flame Structures in Opposed Jets of Partially Premixed Methane-Air Streams

    NASA Astrophysics Data System (ADS)

    Arun, C. R.; Raghavan, Vasudevan

    2012-09-01

    Interactions of fuel-rich and fuel-lean mixtures and formation of interlinked multiple flame zones are observed in gas turbines and industrial furnaces. For fundamentally understanding such flames, numerical investigation of heat and mass transport, and chemical reaction processes, in laminar, counter flowing partially premixed rich and lean streams of methane and air mixtures, is presented. An axisymmetric numerical reactive flow model, with C2 detailed mechanism for describing methane oxidation in air and an optically thin radiation sub-model, is used in simulations. The numerical results are validated against the experimental results from literature. The equivalence ratios of counter flowing rich and lean reactant streams and the resulting strain rates have been varied. The effect of these parameters on the flame structure is presented. For a given rich and lean side equivalence ratios, by varying the strain rates, triple, double and single flame zones are obtained.

  3. Combustion Characteristics in a Non-Premixed Cool-Flame Regime of n-Heptane in Microgravity

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.; Hicks, Michael C.

    2015-01-01

    A series of distinct phenomena have recently been observed in single-fuel-droplet combustion tests performed on the International Space Station (ISS). This study attempts to simulate the observed flame behavior numerically using a gaseous n-heptane fuel source in zero gravity and a time-dependent axisymmetric (2D) code, which includes a detailed reaction mechanism (127 species and 1130 reactions), diffusive transport, and a radiation model (for CH4, CO, CO2, H2O, and soot). The calculated combustion characteristics depend strongly on the air velocity around the fuel source. In a near-quiescent air environment (< or = 2 mm/s), with a sufficiently large fuel injection velocity (1 cm/s), a growing spherical diffusion flame extinguishes at ˜1200 K due to radiative heat losses. This is typically followed by a transition to the low-temperature (cool-flame) regime with a reaction zone (at ˜700 K) in close proximity to the fuel source. The 'cool flame' regime is formed due to the negative temperature coefficient in the low-temperature chemistry. After a relatively long period (˜18 s) of the cool flame regime, a flash re-ignition occurs, associated with flame-edge propagation and subsequent extinction of the re-ignited flame. In a low-speed (˜3 mm/s) airstream (which simulates the slight droplet movement), the diffusion flame is enhanced upstream and experiences a local extinction downstream at ˜1200 K, followed by steady flame pulsations (˜0.4 Hz). At higher air velocities (4-10 mm/s), the locally extinguished flame becomes steady state. The present axisymmetric computational approach helps in revealing the non-premixed 'cool flame' structure and 2D flame-flow interactions observed in recent microgravity droplet combustion experiments.

  4. Blowoff characteristics of bluff-body stabilized conical premixed flames with upstream spatial mixture gradients and velocity oscillations

    SciTech Connect

    Chaudhuri, Swetaprovo; Cetegen, Baki M.

    2008-06-15

    This experimental study concerns determination of blowoff equivalence ratios for lean premixed conical flames for different mixture approach velocities ranging from 5 to 16 m/s in the presence of spatial mixture gradients and upstream velocity modulation. Conical flames were anchored on a disk-shaped bluff body that was attached to a central rod in the burner nozzle. A combustible propane-air mixture flowed through a converging axisymmetric nozzle with a concentric insert, allowing radial mixture variation by tailoring the composition in the inner and outer parts of the nozzle. The radial mixture profiles were characterized near the location of the flame holder by laser Rayleigh light scattering. Additionally, a loudspeaker at the nozzle base allowed introduction of periodic velocity oscillations with an amplitude of 9% of the mean flow velocity up to a frequency of 350 Hz. The flame blowoff equivalence ratio was experimentally determined by continuously lowering the fuel flow rates and determining the flame detachment point from the flame holder. Flame detachment was detected by a rapid reduction of CH* emission from the flame base imaged by a photomultiplier detector. It was found that the flame blowoff is preceded by progressive narrowing of the flame cone for the case of higher inner jet equivalence ratios. In this case, the fuel-lean outer flow cannot sustain combustion, and clearly this is not a good way of operating a combustor. Nevertheless, the overall blowoff equivalence ratio is reduced by inner stream fuel enrichment. A possible explanation for this behavior is given based on the radial extent of the variable-equivalence-ratio mixture burning near the flame stabilization region. Fuel enrichment in the outer flow was found to have no effect on blowoff as compared to the case of uniform mixture. The results were similar for the whole range of mean flow velocities and upstream excitation frequencies. (author)

  5. Dynamics and Structure of Dusty Reacting Flows: Inert Particles in Strained, Laminar, Premixed Flames

    NASA Technical Reports Server (NTRS)

    Egolfopoulos, Fokion N.; Campbell, Charles S.

    1999-01-01

    A detailed numerical study was conducted on the dynamics and thermal response of inert, spherical particles in strained, laminar, premixed hydrogen/air flames. The modeling included the solution of the steady conservation equations for both the gas and particle phases along and around the stagnation streamline of an opposed-jet configuration, and the use of detailed descriptions of chemical kinetics and molecular transport, For the gas phase, the equations of mass, momentum, energy, and species are considered, while for the particle phase, the model is based on conservation equations of the particle momentum balance in the axial and radial direction, the particle number density, and the particle thermal energy equation. The particle momentum equation includes the forces as induced by drag, thermophoresis, and gravity. The particle thermal energy equation includes the convective/conductive heat exchange between the two phases, as well as radiation emission and absorption by the particle. A one-point continuation method is also included in the code that allows for the description of turning points, typical of ignition and extinction behavior. As expected, results showed that the particle velocity can be substantially different than the gas phase velocity, especially in the presence of large temperature gradients and large strain rates. Large particles were also found to cross the gas stagnation plane, stagnate, and eventually reverse as a result of the opposing gas phase velocity. It was also shown that the particle number density varies substantially throughout the flowfield, as a result of the straining of the flow and the thermal expansion. Finally, for increased values of the particle number density, substantial flame cooling to extinction states and modification of the gas phase fluid mechanics were observed. As also expected, the effect of gravity was shown to be important for low convective velocities and heavy particles. Under such conditions, simulations

  6. Dynamics and Structure of Dusty Reacting Flows: Inert Particles in Strained, Laminar, Premixed Flames

    NASA Technical Reports Server (NTRS)

    Egolfopoulos, Fokion N.; Campbell, Charles S.; Wu, Ming-Shin (Technical Monitor)

    1999-01-01

    A detailed numerical study was conducted on the dynamics and thermal response of inert spherical particles in strained, laminar, premixed hydrogen/air flames. The modeling included the solution of the steady conservation equations for both the gas and particle phases along and around the stagnation streamline of an opposed-jet configuration, and the use of detailed descriptions of chemical kinetics and molecular transport. For the gas phase, the equations of mass, momentum, energy, and species are considered, while for the particle phase, the model is based on conservation equations of the particle momentum balance in the axial and radial direction, the particle number density, and the particle thermal energy equation. The particle momentum equation includes the forces as induced by drag, thermophoresis, and gravity. The particle thermal energy equation includes the convective/conductive heat exchange between the two phases, as well as radiation emission and absorption by the particle. A one-point continuation method is also included in the code that allows for the description of turning points, typical of ignition and extinction behavior. As expected, results showed that the particle velocity can be substantially different than the gas phase velocity, especially in the presence of large temperature gradients and large strain rates. Large particles were also found to cross the gas stagnation plane, stagnate, and eventually reverse as a result of the opposing gas phase velocity. It was also shown that the particle number density varies substantially throughout the flowfield, as a result of the straining of the flow and the thermal expansion. Finally, for increased values of the particle number density, substantial flame cooling to extinction states and modification of the gas phase fluid mechanics were observed. As also expected, the effect of gravity was shown to be important for low convective velocities and heavy particles. Under such conditions, simulations

  7. A numerical study of the stability of one-dimensional laminar premixed flames in inert porous media

    SciTech Connect

    Mendes, M.A.A.; Pereira, J.M.C.; Pereira, J.C.F.

    2008-06-15

    This work presents a numerical study of the stabilization diagram of methane/air premixed flames in a finite porous media foam with a uniform ambient temperature. A set of steady computations are considered, using a 1D numerical model that takes into account solid and gas energy equations as well as chemistry and radiation models. The present results show that both stable and unstable solutions, for upper and lower flames, exist either at the surface or submerged in the porous matrix. The influence of the 1D computational domain, boundary conditions, and gas/solid interface treatment on the stability of the calculated flames is also discussed. A linearized version of the discrete-ordinates radiation model is included in the linear stability analysis to discuss the influence of radiation on the stability of the flames. The full stabilization diagram and the linear stability analysis provide information on the stability of the flames, pointing to the existence of unstable upstream surface flames as well as unstable submerged flames on the downstream part of the porous media. (author)

  8. Experimental Study of the Flowfield of a Two-Dimensional Premixed Turbulent Flame

    SciTech Connect

    Ganji, A. R.; Sawyer, R. F.

    1980-07-01

    A turbulent reacting shear layer in a premixed propane/air flow has been studied in a two dimensional combustor, with the flame stabilized behind a rearward facing streamlined step. Spark shadowgraphs show that in the range of velocities (7.5 to 22.5 m/sec corresponding to Reynolds numbers of .5 x 10{sup 4} cm{sup -1} to 1. 5 x 10{sup 4} cm{sup -1} ) and equivalence ratios (0.4 to 0.7) studied, the mixing layer is dominated by Brown~ Roshko type large coherent structures in both reacting and nonreacting flows. High speed schlieren movies show that these eddies are convected downstream and increase their size and spacing by combustion and coalescence with neighboring eddies. Tracing individual eddies shows, in the reacting shear layer, that, on the average, eddies accelerate as they move downstream with the highest acceleration close to the origin of the shear layer. Combustion is confined to these large structures which develop as a result of vortical action of the shear flow. On the average, the reacting eddies have a lower growth rate than nonreacting eddies. A turbulent boundary layer created by means of a tripping wire upstream of the edge of the step virtually eliminates the large coherent structures in the shear layer, while for the case in which the wire could not trigger the transition to turbulence, the large coherent structures dominated the reacting and nonreacting flows.

  9. Nitric oxide formation in a lean, premixed-prevaporized jet A/air flame tube: An experimental and analytical study

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Bianco, Jean; Deur, John M.; Ghorashi, Bahman

    1992-01-01

    An experimental and analytical study was performed on a lean, premixed-prevaporized Jet A/air flame tube. The NO(x) emissions were measured in a flame tube apparatus at inlet temperatures ranging from 755 to 866 K (900 to 1100 F), pressures from 10 to 15 atm, and equivalence ratios from 0.37 to 0.62. The data were then used in regressing an equation to predict the NO(x) production levels in combustors of similar design. Through an evaluation of parameters it was found that NO(x) is dependent on adiabatic flame temperature and combustion residence time, yet independent of pressure and inlet air temperature for the range of conditions studied. This equation was then applied to experimental data that were obtained from the literature, and a good correlation was achieved.

  10. A detailed kinetic modeling study of toluene oxidation in a premixed laminar flame

    SciTech Connect

    Tian, Z; Pitz, W J; Fournet, R; Glaude, P; Battin-Leclerc, F

    2009-12-18

    An improved chemical kinetic model for the toluene oxidation based on experimental data obtained in a premixed laminar low-pressure flame with vacuum ultraviolet (VUV) photoionization and molecular beam mass spectrometry (MBMS) techniques has been proposed. The present mechanism consists of 273 species up to chrysene and 1740 reactions. The rate constants of reactions of toluene, decomposition, reaction with oxygen, ipso-additions and metatheses with abstraction of phenylic H-atom are updated; new pathways of C{sub 4} + C{sub 2} species giving benzene and fulvene are added. Based on the experimental observations, combustion intermediates such as fulvenallene, naphtol, methylnaphthalene, acenaphthylene, 2-ethynylnaphthalene, phenanthrene, anthracene, 1-methylphenanthrene, pyrene and chrysene are involved in the present mechanism. The final toluene model leads to an overall satisfactory agreement between the experimentally observed and predicted mole fraction profiles for the major products and most combustion intermediates. The toluene depletion is governed by metathese giving benzyl radicals, ipso-addition forming benzene and metatheses leading to C{sub 6}H{sub 4}CH{sub 3} radicals. A sensitivity analysis indicates that the unimolecular decomposition via the cleavage of a C-H bond has a strong inhibiting effect, while decomposition via C-C bond breaking, ipso-addition of H-atom to toluene, decomposition of benzyl radicals and reactions related to C{sub 6}H{sub 4}CH{sub 3} radicals have promoting effect for the consumption of toluene. Moreover, flow rate analysis is performed to illustrate the formation pathways of mono- and polycyclic aromatics.

  11. Effects of buoyancy on lean premixed v-flames, Part II. VelocityStatistics in Normal and Microgravity

    SciTech Connect

    Cheng, R.K.; Bedat, B.; Yegian, D.T.

    1999-07-01

    The field effects of buoyancy on laminar and turbulent premixed v-flames have been studied by the use of laser Doppler velocimetry to measure the velocity statistics in +1g, -1g and {micro}g flames. The experimental conditions covered mean velocity, Uo, of 0.4 to 2 m/s, methane/air equivalence ratio, f, of 0.62 to 0.75. The Reynolds numbers, from 625 to 3130 and the Richardson number from 0.05 to 1.34. The results show that a change from favorable (+1g) to unfavorable (-1g) mean pressure gradient in the plume create stagnating flows in the far field whose influences on the mean and fluctuating velocities persist in the near field even at the highest Re we have investigated. The use of Richardson number < 0.1 as a criterion for momentum dominance is not sufficient to prescribe an upper limit for these buoyancy effects. In {micro}g, the flows within the plumes are non-accelerating and parallel. Therefore, velocity gradients and hence mean strain rates in the plumes of laboratory flames are direct consequences of buoyancy. Furthermore, the rms fluctuations in the plumes of {micro}g flames are lower and more isotropic than in the laboratory flames to show that the unstable plumes in laboratory flames also induce velocity fluctuations. The phenomena influenced by buoyancy i.e. degree of flame wrinkling, flow acceleration, flow distribution, and turbulence production, can be subtle due to their close coupling with other flame flow interaction processes. But they cannot be ignored in fundamental studies or else the conclusions and insights would be ambiguous and not very meaningful.

  12. Response analysis of a laminar premixed M-flame to flow perturbations using a linearized compressible Navier-Stokes solver

    SciTech Connect

    Blanchard, M.; Schuller, T.; Sipp, D.; Schmid, P. J.

    2015-04-15

    The response of a laminar premixed methane-air flame subjected to flow perturbations around a steady state is examined experimentally and using a linearized compressible Navier-Stokes solver with a one-step chemistry mechanism to describe combustion. The unperturbed flame takes an M-shape stabilized both by a central bluff body and by the external rim of a cylindrical nozzle. This base flow is computed by a nonlinear direct simulation of the steady reacting flow, and the flame topology is shown to qualitatively correspond to experiments conducted under comparable conditions. The flame is then subjected to acoustic disturbances produced at different locations in the numerical domain, and its response is examined using the linearized solver. This linear numerical model then allows the componentwise investigation of the effects of flow disturbances on unsteady combustion and the feedback from the flame on the unsteady flow field. It is shown that a wrinkled reaction layer produces hydrodynamic disturbances in the fresh reactant flow field that superimpose on the acoustic field. This phenomenon, observed in several experiments, is fully interpreted here. The additional perturbations convected by the mean flow stem from the feedback of the perturbed flame sheet dynamics onto the flow field by a mechanism similar to that of a perturbed vortex sheet. The different regimes where this mechanism prevails are investigated by examining the phase and group velocities of flow disturbances along an axis oriented along the main direction of the flow in the fresh reactant flow field. It is shown that this mechanism dominates the low-frequency response of the wrinkled shape taken by the flame and, in particular, that it fully determines the dynamics of the flame tip from where the bulk of noise is radiated.

  13. Two-time correlation of heat release rate and spectrum of combustion noise from turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Liu, Yu

    2015-09-01

    The spectral characteristics of combustion noise are dictated by the temporal correlation of the overall change of heat release rate fluctuations which has not received sufficient attention in prior studies. In this work, the two-time correlation of the volumetric heat release rate fluctuations within the flame brush and its role in modeling combustion noise spectrum are investigated by analyzing direct numerical simulation (DNS) data of turbulent premixed V-flames. This two-time correlation can be well represented by Gaussian-type functions and it captures the slow global variation of the fluctuating heat release rate and hence the low-frequency noise sources of unsteady combustion. The resulting correlation model is applied to predict the far-field noise spectrum from test open flames, and different reference time scales are used to scale this correlation from the DNS data to the test flames. The comparison between predictions and measurements indicates that the correlation models of all reference time scales are capable of reproducing the essential spectral shape including the low- and high-frequency dependencies. Reasonable agreement in the peak frequency, peak sound pressure level, and the Strouhal number scaling of peak frequency is also achieved for two turbulent time scales. A promising convective time scale shows great potential for characterizing the spectral features, yet its predictive capabilities are to be further verified through a longer DNS signal of a bounded flame configuration.

  14. Effects of Turbulence on the Combustion Properties of Partially Premixed Flames of Canola Methyl Ester and Diesel Blends

    DOE PAGES

    Dhamale, N.; Parthasarathy, R. N.; Gollahalli, S. R.

    2011-01-01

    Canola methyl ester (CME) is a biofuel that is a renewable alternative energy resource and is produced by the transesterification of canola oil. The objective of this study was to document the effects of turbulence on the combustion characteristics of blends of CME and No 2 diesel fuel in a partially-premixed flame environment. The experiments were conducted with mixtures of pre-vaporized fuel and air at an initial equivalence ratio of 7 and three burner exit Reynolds numbers, 2700, 3600, and 4500. Three blends with 25, 50, and 75% volume concentration of CME were studied. The soot volume fraction was highestmore » for the pure diesel flames and did not change significantly with Reynolds number due to the mutually compensating effects of increased carbon input rate and increased air entrainment as the Reynolds number was increased. The global NOx emission index was highest and the CO emission index was the lowest for the pure CME flame, and varied non-monotonically with biofuel content in the blend The mean temperature and the NOx concentration at three-quarter flame height were generally correlated, indicating that the thermal mechanism of NOx formation was dominant in the turbulent biofuel flames also.« less

  15. A Detailed Chemical Kinetic Reaction Mechanism for Oxidation of Four Small Alkyl Esters in Laminar Premixed Flames

    SciTech Connect

    Westbrook, C K; Pitz, W J; Westmoreland, P R; Dryer, F L; Chaos, M; Osswald, P; Kohse-Hoinghaus, K; Cool, T A; Wang, J; Yang, B; Hansen, N; Kasper, T

    2008-02-08

    A detailed chemical kinetic reaction mechanism has been developed for a group of four small alkyl ester fuels, consisting of methyl formate, methyl acetate, ethyl formate and ethyl acetate. This mechanism is validated by comparisons between computed results and recently measured intermediate species mole fractions in fuel-rich, low pressure, premixed laminar flames. The model development employs a principle of similarity of functional groups in constraining the H atom abstraction and unimolecular decomposition reactions in each of these fuels. As a result, the reaction mechanism and formalism for mechanism development are suitable for extension to larger oxygenated hydrocarbon fuels, together with an improved kinetic understanding of the structure and chemical kinetics of alkyl ester fuels that can be extended to biodiesel fuels. Variations in concentrations of intermediate species levels in these flames are traced to differences in the molecular structure of the fuel molecules.

  16. Characterization of temperature non-uniformity over a premixed CH4-air flame based on line-of-sight TDLAS

    NASA Astrophysics Data System (ADS)

    Zhang, Guangle; Liu, Jianguo; Xu, Zhenyu; He, Yabai; Kan, Ruifeng

    2016-01-01

    A novel technique for characterizing temperature non-uniformity has been investigated based on measurements of line-of-sight tunable diode laser absorption spectroscopy. It utilized two fiber-coupled distributed feedback diode lasers at wavelengths around 1339 and 1392 nm as light sources to probe the field at multiple absorptions lines of water vapor and applied a temperature binning strategy combined with Gauss-Seidel iteration method to explore the temperature non-uniformity of the field in one dimension. The technique has been applied to a McKenna burner, which produced a flat premixed laminar CH4-air flame. The flame and its adjacent area formed an atmospheric field with significant non-uniformity of temperature and water vapor concentration. The effect of the number of temperature bins on column-density and temperature results has also been explored.

  17. The effect of stratification on premixed swirl-flame flashback by using porous center-body injection

    NASA Astrophysics Data System (ADS)

    McCaslin, Andrew; Ranjan, Rakesh; Clemens, Noel

    2016-11-01

    Boundary layer flashback must be prevented in order to stably operate stationary gas turbines. One strategy to avoid flashback is to create equivalence-ratio stratification, such as by reducing the fuel/air ratio in the boundary layer below the flammability limit. Typically, stratification is achieved by using radially non-uniform fuel injection. The goal of the current study is to reduce the propensity of flashback in a premixed annular swirl combustor that uses a premix section with center-body. A porous metal center-body (10 micron pore size) is used to bleed air directly into the boundary layer and thus locally reduce the equivalence ratio. Planar laser-induced fluorescence imaging of anisole-seeded flow is carried out to assess the stratification in the flow. Time-resolved PIV and chemiluminescence imaging are used to investigate flashback at atmospheric pressure conditions. A comparative study between fully premixed and stratified flame flashback is conducted to determine how stratification influences flashback physics. This work was sponsored by the DOE NETL under Grant DEFC2611-FE0007107. This source of funding is gratefully acknowledged.

  18. Propagation and extinction of premixed C{sub 5}-C{sub 12}n-alkane flames

    SciTech Connect

    Ji, Chunsheng; Dames, Enoch; Wang, Yang L.; Wang, Hai; Egolfopoulos, Fokion N.

    2010-02-15

    Laminar flame speeds and extinction strain rates of premixed C{sub 5}-C{sub 12}n-alkane flames were determined at atmospheric pressure and elevated unburned mixture temperatures, over a wide range of equivalence ratios. Experiments were performed in the counterflow configuration and flow velocities were measured using Laser Doppler Velocimetry. The laminar flame speeds were obtained using a non-linear extrapolation technique utilizing numerical simulations of the counterflow experiments with detailed descriptions of chemical kinetics and molecular transport. Compared to linearly extrapolated values, the laminar flame speeds obtained using non-linear extrapolations were found to be 1-4 cm/s lower depending on the equivalence ratio. It was determined that the laminar flame speeds of all n-alkane/air mixtures considered in this investigation are similar to each other and sensitive largely to the H{sub 2}/CO and C{sub 1}-C{sub 4} hydrocarbon kinetics. Additionally, the resistance to extinction decreases as the fuel molecular weight increases. Simulations of the experiments were performed using the recently developed JetSurF 0.2 reaction model consisting of 194 species and 1459 reactions. The laminar flame speeds were predicted with good accuracy for all the n-alkane-air mixtures considered. The experimental extinction strain rates are well predicted by the model for fuel-lean mixtures. For stoichiometric and fuel-rich mixtures, the predicted extinction strain rates are approximately 10% lower than the experimental values. Insights into the physical and chemical processes that control the response of n-alkane flames are provided through detailed sensitivity analyses on both reaction rates and binary diffusion coefficients. (author)

  19. Flame behaviors of propane/air premixed flame propagation in a closed rectangular duct with a 90-deg bend

    NASA Astrophysics Data System (ADS)

    He, Xuechao; Sun, Jinhua; Yuen, K. K.; Ding, Yibin; Chen, Sining

    2008-11-01

    Experiments of flame propagation in a small, closed rectangular duct with a 90° bend were performed for a propane-air mixture. The high speed camera and Schlieren techniques were used to record images of flame propagation process in the combustion pipe. Meanwhile, the fine thermocouples and ion current probes were applied to measure the temperature distribution and reaction intensity of combustion. The characteristics of propane-air flame and its microstructure were analyzed in detail by the experimental results. In the test, the special tulip flame formation was observed. Around the bend, the flame tip proceeded more quickly at the lower side with the flame front elongated toward the axial direction. And transition to turbulent flame occurred. It was suggested that fluctuations of velocity, ion current and temperature were mainly due to the comprehensive effects of multi-wave and the intense of turbulent combustion.

  20. Evaluation of Presumed Probability-Density-Function Models in Non-Premixed Flames by using Large Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Cao, Hong-Jun; Zhang, Hui-Qiang; Lin, Wen-Yi

    2012-05-01

    Four kinds of presumed probability-density-function (PDF) models for non-premixed turbulent combustion are evaluated in flames with various stoichiometric mixture fractions by using large eddy simulation (LES). The LES code is validated by the experimental data of a classical turbulent jet flame (Sandia flame D). The mean and rms temperatures obtained by the presumed PDF models are compared with the LES results. The β-function model achieves a good prediction for different flames. The predicted rms temperature by using the double-δ function model is very small and unphysical in the vicinity of the maximum mean temperature. The clip-Gaussian model and the multi-δ function model make a worse prediction of the extremely fuel-rich or fuel-lean side due to the clip at the boundary of the mixture fraction space. The results also show that the overall prediction performance of presumed PDF models is better at mediate stoichiometric mixture fractions than that at very small or very large ones.

  1. Diode laser absorption measurement and analysis of HCN in atmospheric-pressure, fuel-rich premixed methane/air flames

    SciTech Connect

    Gersen, S.; Mokhov, A.V.; Levinsky, H.B.

    2008-10-15

    Measurements of HCN in flat, fuel-rich premixed methane/air flames at atmospheric pressure are reported. Quartz-microprobe sampling followed by wavelength modulation absorption spectroscopy with second harmonic detection was used to obtain an overall measurement uncertainty of better than 20% for mole fractions HCN on the order of 10 ppm. The equivalence ratio, {phi}, was varied between 1.3 and 1.5, while the flame temperature was varied independently by changing the mass flux through the burner surface at constant equivalence ratio. Under the conditions of the experiments, the peak mole fractions vary little, in the range of 10-15 ppm. Increasing the flame temperature by increasing the mass flux had little influence on the peak mole fraction, but accelerated HCN burnout substantially. At high equivalence ratio and low flame temperature, HCN burnout is very slow: at {phi}=1.5, {proportional_to}10ppm HCN is still present 7 mm above the burner surface. Substantial quantitative disagreement is observed between the experimental profiles and those obtained from calculations using GRI-Mech 3.0, with the calculations generally overpredicting the results significantly. Changing the rates of key formation and consumption reactions for HCN can improve the agreement, but only by making unreasonable changes in these rates. Inclusion of reactions describing NCN formation and consumption in the calculations improves the agreement with the measurements considerably. (author)

  2. An experimental study of low-pressure premixed pyrrole/oxygen/argon flames with tunable synchrotron photoionization

    SciTech Connect

    Tian, Zhenyu; Li, Yuyang; Zhang, Taichang; Qi, Fei; Zhu, Aiguo; Cui, Zhifeng

    2007-10-15

    Two premixed laminar pyrrole/oxygen/argon flames at 3.33 kPa (25 Torr) with equivalence ratios of 0.55 (C/O/N = 1:5.19:0.25) and 1.84 (C/O/N = 1:1.56:0.25) have been investigated using tunable synchrotron photoionization and molecular-beam mass spectrometry techniques. All observed flame species, including some nitrogen-containing intermediates, have been identified by measurements of photoionization efficiency spectra. Mole fraction profiles of species including reactants, intermediates, and products have been determined by scanning burner position at some selected photon energies near ionization thresholds, and flame temperature has been measured by a Pt/Pt-13% Rh thermocouple. The results indicate that N{sub 2}, NO, and NO{sub 2} are the major nitrogenous products, while hydrogen cyanide, isocyanic acid, and 2-propenenitrile are the most important nitrogen-containing intermediates in pyrrole flames. Radicals such as methyl, propargyl, allyl, cyanomethyl, n-propyl, isobutyl, cyclopentadienyl, phenyl, cyclohexyl, phenoxy, and 4-methylbenzyl are observed as well. Moreover, ethenol and methylacrylonitrile are also detected. Reaction pathways involving the major species are proposed. The new results will be useful in developing a kinetic model of nitrogenous compound combustion. (author)

  3. Experimental study of vorticity-strain rate interaction in turbulent partially-premixed jet flames using tomographic particle image velocimetry

    DOE PAGES

    Coriton, Bruno; Frank, Jonathan H.

    2016-02-16

    In turbulent flows, the interaction between vorticity, ω, and strain rate, s, is considered a primary mechanism for the transfer of energy from large to small scales through vortex stretching. The ω-s coupling in turbulent jet flames is investigated using tomographic particle image velocimetry (TPIV). TPIV provides a direct measurement of the three-dimensional velocity field from which ω and s are determined. The effects of combustion and mean shear on the ω-s interaction are investigated in turbulent partially premixed methane/air jet flames with high and low probabilities of localized extinction as well as in a non-reacting isothermal air jet withmore » Reynolds number of approximately 13,000. Results show that combustion causes structures of high vorticity and strain rate to agglomerate in highly correlated, elongated layers that span the height of the probe volume. In the non-reacting jet, these structures have a more varied morphology, greater fragmentation, and are not as well correlated. The enhanced spatiotemporal correlation of vorticity and strain rate in the stable flame results in stronger ω-s interaction characterized by increased enstrophy and strain-rate production rates via vortex stretching and straining, respectively. The probability of preferential local alignment between ω and the eigenvector of the intermediate principal strain rate, s2, which is intrinsic to the ω-s coupling in turbulent flows, is larger in the flames and increases with the flame stability. The larger mean shear in the flame imposes a preferential orientation of ω and s2 tangential to the shear layer. The extensive and compressive principal strain rates, s1 and s3, respectively, are preferentially oriented at approximately 45° with respect to the jet axis. As a result, the production rates of strain and vorticity tend to be dominated by instances in which ω is parallel to the s1¯-s2¯ plane and orthogonal to s3¯.« less

  4. Investigation of non-premixed flame combustion characters in GO2/GH2 shear coaxial injectors using non-intrusive optical diagnostics

    NASA Astrophysics Data System (ADS)

    Dai, Jian; Yu, NanJia; Cai, GuoBiao

    2015-12-01

    Single-element combustor experiments are conducted for three shear coaxial geometry configuration injectors by using gaseous oxygen and gaseous hydrogen (GO2/GH2) as propellants. During the combustion process, several spatially and timeresolved non-intrusive optical techniques, such as OH planar laser induced fluorescence (PLIF), high speed imaging, and infrared imaging, are simultaneously employed to observe the OH radical concentration distribution, flame fluctuations, and temperature fields. The results demonstrate that the turbulent flow phenomenon of non-premixed flame exhibits a remarkable periodicity, and the mixing ratio becomes a crucial factor to influence the combustion flame length. The high speed and infrared images have a consistent temperature field trend. As for the OH-PLIF images, an intuitionistic local flame structure is revealed by single-shot instantaneous images. Furthermore, the means and standard deviations of OH radical intensity are acquired to provide statistical information regarding the flame, which may be helpful for validation of numerical simulations in future. Parameters of structure configurations, such as impinging angle and oxygen post thickness, play an important role in the reaction zone distribution. Based on a successful flame contour extraction method assembled with non-linear anisotropic diffusive filtering and variational level-set, it is possible to implement a fractal analysis to describe the fractal characteristics of the non-premixed flame contour. As a result, the flame front cannot be regarded as a fractal object. However, this turbulent process presents a self-similarity characteristic.

  5. Propagation and Extinction of a Cylindrical Premixed Flame Undergoing Equivalence Ratio Fluctuation Near the Lean Limit

    NASA Astrophysics Data System (ADS)

    Suenaga, Yosuke; Kitano, Michio; Takahashi, Yoichi

    Experimental study was made to investigate the propagation and extinction characteristics of a stretched cylindrical flame undergoing periodic fluctuation of equivalence ratio near the lean limit. With a lean methane-air and a lean propane-air mixture, burning velocity, flame luminosity and flame stretch rate were measured or evaluated for the fluctuation frequencies of 5Hz and 20Hz. The results were summarized as follows: (1) In some part of a period, burning velocity and flame luminosity of the dynamic flame near the lean limit were possible to become lower than those at the lean flammability limit of the static flame. (2) At the high frequency of 20Hz, the burning velocity took a negative value in a certain time range. In spite of this loss of propagation ability, the flame was not extinguished but sustained, indicating the recovery of the flame intensity due to the dynamic effect of fluctuating flame. (3) Flame recovery phenomenon could occur more easily for the methane flame which was strengthened by the Lewis number effect than the propane flame which was weakened by that effect.

  6. Extinction of premixed H{sub 2}/air flames: Chemical kinetics and molecular diffusion effects

    SciTech Connect

    Dong, Yufei; Holley, Adam T.; Andac, Mustafa G.; Egolfopoulos, Fokion N.; Wang, Hai; Davis, Scott G.; Middha, Prankul

    2005-09-01

    Laminar flame speed has traditionally been used for the partial validation of flame kinetics. In most cases, however, its accurate determination requires extensive data processing and/or extrapolations, thus rendering the measurement of this fundamental flame property indirect. Additionally, the presence of flame front instabilities does not conform to the definition of laminar flame speed. This is the case for Le<1 flames, with the most notable example being ultralean H{sub 2}/air flames, which develop cellular structures at low strain rates so that determination of laminar flame speeds for such mixtures is not possible. Thus, this low-temperature regime of H{sub 2} oxidation has not been validated systematically in flames. In the present investigation, an alternative/supplemental approach is proposed that includes the experimental determination of extinction strain rates for these flames, and these rates are compared with the predictions of direct numerical simulations. This approach is meaningful for two reasons: (1) Extinction strain rates can be measured directly, as opposed to laminar flame speeds, and (2) while the unstretched lean H{sub 2}/air flames are cellular, the stretched ones are not, thus making comparisons between experiment and simulations meaningful. Such comparisons revealed serious discrepancies between experiments and simulations for ultralean H{sub 2}/air flames by using four kinetic mechanisms. Additional studies were conducted for lean and near-stoichiometric H{sub 2}/air flames diluted with various amounts of N{sub 2}. Similarly to the ultralean flames, significant discrepancies between experimental and predicted extinction strain rates were also found. To identify the possible sources of such discrepancies, the effect of uncertainties on the diffusion coefficients was assessed and an improved treatment of diffusion coefficients was advanced and implemented. Under the conditions considered in this study, the sensitivity of diffusion

  7. Chemical structures of low-pressure premixed methylcyclohexane flames as benchmarks for the development of a predictive combustion chemistry model

    SciTech Connect

    Skeen, Scott A.; Yang, Bin; Jasper, Ahren W.; Pitz, William J.; Hansen, Nils

    2011-11-14

    The chemical compositions of three low-pressure premixed flames of methylcyclohexane (MCH) are investigated with the emphasis on the chemistry of MCH decomposition and the formation of aromatic species, including benzene and toluene. The flames are stabilized on a flat-flame (McKenna type) burner at equivalence ratios of φ = 1.0, 1.75, and 1.9 and at low pressures between 15 Torr (= 20 mbar) and 30 Torr (= 40 mbar). The complex chemistry of MCH consumption is illustrated in the experimental identification of several C7H12, C7H10, C6H12, and C6H10 isomers sampled from the flames as a function of distance from the burner. Three initiation steps for MCH consumption are discussed: ring-opening to heptenes and methyl-hexenes (isomerization), methyl radical loss yielding the cyclohexyl radical (dissociation), and H abstraction from MCH. Mole fraction profiles as a function of distance from the burner for the C7 species supplemented by theoretical calculations are presented, indicating that flame structures resulting in steeper temperature gradients and/or greater peak temperatures can lead to a relative increase in MCH consumption through the dissociation and isomerization channels. Trends observed among the stable C6 species as well as 1,3-pentadiene and isoprene also support this conclusion. Relatively large amounts of toluene and benzene are observed in the experiments, illustrating the importance of sequential H-abstraction steps from MCH to toluene and from cyclohexyl to benzene. Furthermore, modeled results using the detailed chemical model of Pitz et al. (Proc. Combust. Inst.2007, 31, 267–275) are also provided to illustrate the use of these data as a benchmark for the improvement or future development of a MCH mechanism.

  8. Chemical structures of low-pressure premixed methylcyclohexane flames as benchmarks for the development of a predictive combustion chemistry model

    DOE PAGES

    Skeen, Scott A.; Yang, Bin; Jasper, Ahren W.; ...

    2011-11-14

    The chemical compositions of three low-pressure premixed flames of methylcyclohexane (MCH) are investigated with the emphasis on the chemistry of MCH decomposition and the formation of aromatic species, including benzene and toluene. The flames are stabilized on a flat-flame (McKenna type) burner at equivalence ratios of φ = 1.0, 1.75, and 1.9 and at low pressures between 15 Torr (= 20 mbar) and 30 Torr (= 40 mbar). The complex chemistry of MCH consumption is illustrated in the experimental identification of several C7H12, C7H10, C6H12, and C6H10 isomers sampled from the flames as a function of distance from the burner.more » Three initiation steps for MCH consumption are discussed: ring-opening to heptenes and methyl-hexenes (isomerization), methyl radical loss yielding the cyclohexyl radical (dissociation), and H abstraction from MCH. Mole fraction profiles as a function of distance from the burner for the C7 species supplemented by theoretical calculations are presented, indicating that flame structures resulting in steeper temperature gradients and/or greater peak temperatures can lead to a relative increase in MCH consumption through the dissociation and isomerization channels. Trends observed among the stable C6 species as well as 1,3-pentadiene and isoprene also support this conclusion. Relatively large amounts of toluene and benzene are observed in the experiments, illustrating the importance of sequential H-abstraction steps from MCH to toluene and from cyclohexyl to benzene. Furthermore, modeled results using the detailed chemical model of Pitz et al. (Proc. Combust. Inst.2007, 31, 267–275) are also provided to illustrate the use of these data as a benchmark for the improvement or future development of a MCH mechanism.« less

  9. Exhaust emissions from a premixing, prevaporizing flame tube using liquid jet A fuel

    NASA Technical Reports Server (NTRS)

    Marek, C. J.; Papathakos, L. C.

    1976-01-01

    Emissions of nitrogen oxides, carbon monoxide, and unburned hydrocarbons were measured in a burner where liquid Jet A fuel was sprayed into the heated air stream and vaporized upstream of a perforated plate flameholder. The burner was tested at inlet air temperatures at 640, 800, and 833 K, an inlet pressure of 5.6 X 100,000 N/m squared, a reference velocity of 25 m/sec, and equivalence ratios from lean blowout to 0.7. Nitrogen oxide levels of below 1.0 g NO2/kg fuel were obtained at combustion efficiencies greater than 99 percent. The measured emission levels for the liquid fuel agreed well with previously reported premixed gaseous propane data and agreed with well stirred reactor predictions. Autoignition of the premixed fuel air mixture was a problem at inlet temperatures above 650 K with 104 msec premixing time.

  10. Effects of platinum stagnation surface on the lean extinction limits of premixed methane/air flames at moderate surface temperatures

    SciTech Connect

    Wiswall, J.T.; Li, J.; Wooldridge, M.S.; Im, H.G.

    2011-01-15

    A stagnation flow reactor was used to study the effects of platinum on the lean flammability limits of atmospheric pressure premixed methane/air flames at moderate stagnation surface temperatures. Experimental and computational methods were used to quantify the equivalence ratio at the lean extinction limit ({phi}{sub ext}) and the corresponding stagnation surface temperature (T{sub s}). A range of flow rates (57-90 cm/s) and corresponding strain rates were considered. The results indicate that the gas-phase methane/air flames are sufficiently strong relative to the heterogeneous chemistry for T{sub s} conditions less than 750 K that the platinum does not affect {phi}{sub ext}. The computational results are in good agreement with the experimentally observed trends and further indicate that higher reactant flow rates (>139 cm/s) and levels of dilution (>{proportional_to}10% N{sub 2}) are required to weaken the gas-phase flame sufficiently for surface reaction to play a positive role on extending the lean flammability limits. (author)

  11. AROMATIC AND POLYCYCLIC AROMATIC HYDROCARBON FORMATION IN A LAMINAR PREMIXED N-BUTANE FLAME. (R825412)

    EPA Science Inventory

    Abstract

    Experimental and detailed chemical kinetic modeling work has been performed to investigate aromatic and polycyclic aromatic hydrocarbon (PAH) formation pathways in a premixed, rich, sooting, n-butane¯oxygen¯argon burner s...

  12. Implementation of Thermal Diffusion in Chemistry Tabulation for Unstable Premixed Flames

    NASA Astrophysics Data System (ADS)

    Schlup, Jason; Blanquart, Guillaume

    2016-11-01

    The inclusion of thermal diffusion, by means of multicomponent diffusion transport models, has been shown to affect the results of numerical simulations of thermo-diffusively unstable lean hydrogen flames. However, the multicomponent diffusion model involves costly matrix inversion operations, leading it to be useful in only simplified flame configurations and computational domains. In this work, a mixture-averaged thermal diffusion model is implemented into a tabulated chemistry framework. The resulting reacting flows are compared to one- and two-dimensional detailed chemistry simulations of lean hydrogen-air flames with multicomponent diffusion. The configurations used to validate the mixture-averaged thermal diffusion model with tabulated chemistry include flat and cellular tubular flames. Three-dimensional flames, both laminar and turbulent, are also considered as an application of the mixture-averaged thermal diffusion model using tabulated chemistry. These flames are compared to cases neglecting thermal diffusion and cases using detailed chemistry with the mixture-averaged thermal diffusion model.

  13. Buoyancy induced limits for nanoparticle synthesis experiments in horizontal premixed low-pressure flat-flame reactors

    NASA Astrophysics Data System (ADS)

    Weise, C.; Faccinetto, A.; Kluge, S.; Kasper, T.; Wiggers, H.; Schulz, C.; Wlokas, I.; Kempf, A.

    2013-06-01

    Premixed low-pressure flat-flame reactors can be used to investigate the synthesis of nanoparticles. The present work examines the flow field inside such a reactor during the formation of carbon (soot) and iron oxide (from Fe(CO)5) nanoparticles, and how it affects the measurements of nanoparticle size distribution. The symmetry of the flow and the impact of buoyancy were analysed by three-dimensional simulations and the nanoparticle size distribution was obtained by particle mass spectrometry (PMS) via molecular beam sampling at different distances from the burner. The PMS measurements showed a striking, sudden increase in particle size at a critical distance from the burner, which could be explained by the flow field predicted in the simulations. The simulation results illustrate different fluid mechanical phenomena which have caused this sudden rise in the measured particle growth. Up to the critical distance, buoyancy does not affect the flow, and an (almost) linear growth is observed in the PMS experiments. Downstream of this critical distance, buoyancy deflects the hot gas stream and leads to an asymmetric flow field with strong recirculation. These recirculation zones increase the particle residence time, inducing very large particle sizes as measured by PMS. This deviation from the assumed symmetric, one-dimensional flow field prevents the correct interpretation of the PMS results. To overcome this problem, modifications to the reactor were investigated; their suitability to reduce the flow asymmetry was analysed. Furthermore, 'safe' operating conditions were identified for which accurate measurements are feasible in premixed low-pressure flat-flame reactors that are transferrable to other experiments in this type of reactor. The present work supports experimentalists to find the best setup and operating conditions for their purpose.

  14. The Soret Effect in Naturally Propagating, Premixed, Lean, Hydrogen-Air Flames

    SciTech Connect

    Grcar, Joseph F; Grcar, Joseph F.; Bell, John B.; Day, Marcus S.

    2008-06-30

    Comparatively little attention has been given to multicomponent diffusion effects in lean hydrogen-air flames, in spite of the importance of these flames in safety and their potential importance to future energy technologies. Prior direct numerical simulations either have considered only the mixture-averaged transport model, or have been limited to stabilized flames that do not exhibit the thermo-diffusive instability. The so-called full, multicomponent transport model with cross-diffusion is found to predict hotter, significantly faster flames with much faster extinction and division of cellular structures.

  15. Effects of combined dimension reduction and tabulation on the simulations of a turbulent premixed flame using a large-eddy simulation/probability density function method

    NASA Astrophysics Data System (ADS)

    Kim, Jeonglae; Pope, Stephen B.

    2014-05-01

    A turbulent lean-premixed propane-air flame stabilised by a triangular cylinder as a flame-holder is simulated to assess the accuracy and computational efficiency of combined dimension reduction and tabulation of chemistry. The computational condition matches the Volvo rig experiments. For the reactive simulation, the Lagrangian Large-Eddy Simulation/Probability Density Function (LES/PDF) formulation is used. A novel two-way coupling approach between LES and PDF is applied to obtain resolved density to reduce its statistical fluctuations. Composition mixing is evaluated by the modified Interaction-by-Exchange with the Mean (IEM) model. A baseline case uses In Situ Adaptive Tabulation (ISAT) to calculate chemical reactions efficiently. Its results demonstrate good agreement with the experimental measurements in turbulence statistics, temperature, and minor species mass fractions. For dimension reduction, 11 and 16 represented species are chosen and a variant of Rate Controlled Constrained Equilibrium (RCCE) is applied in conjunction with ISAT to each case. All the quantities in the comparison are indistinguishable from the baseline results using ISAT only. The combined use of RCCE/ISAT reduces the computational time for chemical reaction by more than 50%. However, for the current turbulent premixed flame, chemical reaction takes only a minor portion of the overall computational cost, in contrast to non-premixed flame simulations using LES/PDF, presumably due to the restricted manifold of purely premixed flame in the composition space. Instead, composition mixing is the major contributor to cost reduction since the mean-drift term, which is computationally expensive, is computed for the reduced representation. Overall, a reduction of more than 15% in the computational cost is obtained.

  16. Simultaneous particle image velocimetry and chemiluminescence visualization of millisecond-pulsed current-voltage-induced perturbations of a premixed propane/air flame

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob; Kostka, Stanislav; Lynch, Amy; Ganguly, Biswa

    2011-09-01

    The effects of millisecond-wide, pulsed current-voltage-induced behavior in premixed laminar flames have been investigated through the simultaneous collection of particle image velocimetry (PIV) and chemiluminescence data with particular attention paid to the onset mechanisms. Disturbances caused by applied voltages of 2 kV over a 30-mm gap to a downward propagating, atmospheric pressure, premixed propane/air flame with a flow speed near 2 m/s and an equivalence ratio of 1.06 are investigated. The combined PIV and chemiluminescence-based experimental data show the observed disturbance originates only in or near the cathode fall region very close to the burner base. The data also suggest that the coupling mechanism responsible for the flame disturbance behavior is fluidic in nature, developing from the radial positive chemi-ion distribution and an ion-drift current-induced net body force that acts along the annular space discharge distribution in the reaction zone in or near the cathode fall. This net body force causes a reduction in flow speed above these near cathodic regions causing the base of the flame to laterally spread. Also, this effect seems to produce a velocity gradient leading to the transition of a laminar flame to turbulent combustion for higher applied current-voltage conditions as shown in previous work (Marcum and Ganguly in Combust Flame 143:27-36, 2005; Schmidt and Ganguly in 48th AIAA aerospace sciences meeting. Orlando, 2010).

  17. Simultaneous Burst Imaging of Dual Species Using Planar Laser-Induced Fluorescence at 50 kHz in Turbulent Premixed Flames.

    PubMed

    Li, Zheming; Rosell, Joakim; Aldén, Marcus; Richter, Mattias

    2016-11-18

    Spatially and temporally resolved measurements are of great importance in turbulent premixed flame studies, especially when investigating rapid processes such as when flame local extinction, re-ignition, or flashback occur in a reacting flow. Here, an experimental approach for simultaneously probing two different species at high frame rates (50 kHz) is presented by employing a multi-YAG laser system. The laser radiation at 355 nm generated by a multi-YAG laser system was split into two beam paths: one beam for exciting formaldehyde and the other for pumping an optical parametric oscillator (OPO). To be able to capture the resulting fluorescence at such a high frame rate without significant loss in spatial resolution, two framing cameras, containing a total of 16 intensified charge-coupled devices (CCDs), were employed. In principle, the proposed setup provides the possibility of probing formaldehyde and simultaneously accessing the distribution of one other relevant species at this high frame rate. In this demonstration, the laser wavelength was tuned to 283 nm and, in conjunction with the 355 nm beam path, simultaneously high speed two-dimensional (2D) visualization of OH-radicals and formaldehyde was achieved. A modified flat flame, McKenna-type burner was used to provide a turbulent premixed jet-flame supported by a surrounding pilot flame. Local flame extinction and re-ignition processes were recorded for fuel/air jet speeds of 120 m/s.

  18. Experimental study of vorticity-strain rate interaction in turbulent partially-premixed jet flames using tomographic particle image velocimetry

    SciTech Connect

    Coriton, Bruno; Frank, Jonathan H.

    2016-02-16

    In turbulent flows, the interaction between vorticity, ω, and strain rate, s, is considered a primary mechanism for the transfer of energy from large to small scales through vortex stretching. The ω-s coupling in turbulent jet flames is investigated using tomographic particle image velocimetry (TPIV). TPIV provides a direct measurement of the three-dimensional velocity field from which ω and s are determined. The effects of combustion and mean shear on the ω-s interaction are investigated in turbulent partially premixed methane/air jet flames with high and low probabilities of localized extinction as well as in a non-reacting isothermal air jet with Reynolds number of approximately 13,000. Results show that combustion causes structures of high vorticity and strain rate to agglomerate in highly correlated, elongated layers that span the height of the probe volume. In the non-reacting jet, these structures have a more varied morphology, greater fragmentation, and are not as well correlated. The enhanced spatiotemporal correlation of vorticity and strain rate in the stable flame results in stronger ω-s interaction characterized by increased enstrophy and strain-rate production rates via vortex stretching and straining, respectively. The probability of preferential local alignment between ω and the eigenvector of the intermediate principal strain rate, s2, which is intrinsic to the ω-s coupling in turbulent flows, is larger in the flames and increases with the flame stability. The larger mean shear in the flame imposes a preferential orientation of ω and s2 tangential to the shear layer. The extensive and compressive principal strain rates, s1 and s3, respectively, are preferentially oriented at approximately 45° with respect to the jet axis. As a result, the production rates of strain and vorticity tend to be dominated by instances in which ω is parallel to the s1¯-s2¯ plane and orthogonal

  19. Structure of turbulent non-premixed flames modeled with two-step chemistry

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Mahalingam, S.; Puri, I. K.; Vervisch, L.

    1992-01-01

    Direct numerical simulations of turbulent diffusion flames modeled with finite-rate, two-step chemistry, A + B yields I, A + I yields P, were carried out. A detailed analysis of the turbulent flame structure reveals the complex nature of the penetration of various reactive species across two reaction zones in mixture fraction space. Due to this two zone structure, these flames were found to be robust, resisting extinction over the parameter ranges investigated. As in single-step computations, mixture fraction dissipation rate and the mixture fraction were found to be statistically correlated. Simulations involving unequal molecular diffusivities suggest that the small scale mixing process and, hence, the turbulent flame structure is sensitive to the Schmidt number.

  20. Flame holding tolerant fuel and air premixer for a gas turbine combustor

    DOEpatents

    York, William David; Johnson, Thomas Edward; Ziminsky, Willy Steve

    2012-11-20

    A fuel nozzle with active cooling is provided. It includes an outer peripheral wall, a nozzle center body concentrically disposed within the outer wall in a fuel and air pre-mixture. The fuel and air pre-mixture includes an air inlet, a fuel inlet and a premixing passage defined between the outer wall in the center body. A gas fuel flow passage is provided. A first cooling passage is included within the center body in a second cooling passage is defined between the center body and the outer wall.

  1. Route to chaos for combustion instability in ducted laminar premixed flames

    NASA Astrophysics Data System (ADS)

    Kabiraj, Lipika; Saurabh, Aditya; Wahi, Pankaj; Sujith, R. I.

    2012-06-01

    Complex thermoacoustic oscillations are observed experimentally in a simple laboratory combustor that burns lean premixed fuel-air mixture, as a result of nonlinear interaction between the acoustic field and the combustion processes. The application of nonlinear time series analysis, particularly techniques based on phase space reconstruction from acquired pressure data, reveals rich dynamical behavior and the existence of several complex states. A route to chaos for thermoacoustic instability is established experimentally for the first time. We show that, as the location of the heat source is gradually varied, self-excited periodic thermoacoustic oscillations undergo transition to chaos via the Ruelle-Takens scenario.

  2. Large eddy simulations of partially premixed ethanol dilute spray flames using the flamelet generated manifold model

    NASA Astrophysics Data System (ADS)

    El-Asrag, Hossam A.; Braun, Markus; Masri, Assaad R.

    2016-07-01

    The paper presents Large Eddy Simulations (LESs) for the Sydney ethanol piloted turbulent dilute spray flames ETF2, ETF6, and ETF7. The Flamelet Generated Manifold (FGM) approach is employed to predict mixing and burning of the evaporating fuel droplets. A methodology to match the experimental inflow spray profiles is presented. The spray statistical time-averaged results show reasonable agreement with mean and RMS data. The Particle Size Distribution (PSD) shows a good match downstream of the nozzle exit and up to x/D = 10. At x/D = 20 and 30 the PSD is under-predicted for droplets with mean diameter D10 > 20μm and over-predicted for the smaller size droplets. The simulations reasonably predict the reported mean flame structure and length. The effect of increasing the carrier velocity (ETF2-ETF7) or decreasing the liquid fuel injection mass flow rate (ETF2-ETF6) is found to result in a leaner, shorter flame and stronger spray-flow interactions. Higher tendency to local extinction is observed for ETF7 which is closer to blow-off compared to ETF2 and has higher scalar dissipation rates, higher range of Stokes number, and faster droplet response. The possible sources of LES-FGM deviations from the measurements are discussed and highlighted. In particular, the spray time-averaged statistical error contribution is quantified and the impact of the inflow uncertainty is studied. Sensitivity analysis to the pre-vaporized nozzle fuel mass fraction show that such small inflow perturbations (by ± 2% for the ETF2 flame) have a strong impact on the flame structure, and the droplets' dynamics. Conditional scatter plots show that the flame exhibits wide range of mixing conditions and bimodal mixing lines particularly at upstream locations (x/D < 20), where the injected droplets are still penetrating the centerline. This is relaxed further downstream as droplets gradually evaporate and burn in a diffusion like mode.

  3. Influence of G-jitter on the characteristics of a non-premixed flame: Experimental approach

    NASA Astrophysics Data System (ADS)

    Joulain, Pierre; Cordeiro, Pierre; Rouvreau, Sébastien; Legros, Guillaume; Fuentes, Andres; Torero, José L.

    2005-03-01

    The combustion of a flat plate in a boundary layer under microgravity conditions, which was first described by Emmons, is studied using a gas burner. Magnitude of injection and blowing velocities are chosen to be characteristic of pyrolyzing velocity of solid fuels, and of ventilation systems in space stations. These velocities are about 0.1 m/s for oxidiser flow and 0.004m/s for fuel flow. In this configuration, flame layout results from a coupled interaction between oxidiser flow, fuel flow and thermal expansion. Influences of these parameters are studied experimentally by means of flame length and standoff distance measurements using CH* chemiluminescence's and visible emission of the flame. Flow was also studied with Particle Image Velocimetry (PIV). Inert flows, with and without injection, and reacting flow in a microgravity environment were considered to distinguish aerodynamic from thermal effect. Thermal expansion effects have been shown by means of the acceleration of oxidiser flow. Three-dimensional effects, which are strongly marked for high injection velocities were studied. Three-dimensional tools adaptability to parabolic flights particular conditions were of concern. Flame sensitivity to g-jitters was investigated according to g-jitters frequency and range involved by parabolic flights. It appears that flame location (standoff distance), flame characteristics (length, thickness, brightness) and the aerodynamic field of the low velocity reacting flow are very much affected by the fluctuation of the gravity level or g-jitter. The lower the g-jitter frequency is, the higher the perturbation. Consequently it is difficult to perform relevant experiments for a main flow velocity lower than 0.05m/s. DNS calculations confirm the present observations, but most of the results are presented elsewhere.

  4. Mixing and stabilization study of a partially premixed swirling flame using laser induced fluorescence

    SciTech Connect

    Galley, D.; Ducruix, S.; Lacas, F.; Veynante, D.

    2011-01-15

    A laboratory-scale swirling burner, presenting many similarities with gas turbines combustors, has been studied experimentally using planar laser induced fluorescence (PLIF) on OH radical and acetone vapor in order to characterize the flame stabilization process. These diagnostics show that the stabilization point rotates in the combustion chamber and that air and fuel mixing is not complete at the end of the mixing tube. Fuel mass fraction decays exponentially along the mixing tube axis and transverse profiles show a gaussian shape. However, radial pressure gradients tend to trap the fuel in the core of the vortex that propagates axially in the mixing tube. As the mixing tube vortex enters the combustion chamber, vortex breakdown occurs through a precessing vortex core (PVC). The axially propagating vortex shows a helicoidal trajectory in the combustion chamber which trace is observed with transverse acetone PLIF. As a consequence, the stabilizing point of the flame in the combustion chamber rotates with the PVC structure. This phenomenon has been observed in the present study with a high speed camera recording spontaneous emission of the flame. The stabilization point rotation frequency tends to increase with mass flow rates. It was also shown that the coupling between the PVC and the flame stabilization occurs via mixing, explaining one possible coupling mechanism between acoustic waves in the flow and the reaction rate. This path may also be envisaged for flashback, an issue that will be more completely treated in a near future. (author)

  5. Thermoacoustic instability of a laminar premixed flame in Rijke tube with a hydrodynamic region

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Chow, Z. H.

    2013-07-01

    In this work, a Rijke tube with a hydrodynamic region confined is considered to investigate its non-normality and the effect of the hydrodynamic region on the system stability behaviors. Experiments are first conducted on Rijke tubes with different lengths. It is found that the fundamental mode frequency is decreased and then increased, as the flame is placed at different axial positions at the bottom half of the tube. This trend agrees well with the prediction from the thermoacoustic model developed, of which the hydrodynamic region is modelled as an oscillating 'airplug' and the flame dynamics is captured by using classical G-equation. In addition, the flame as measured is found to respond differently to oncoming acoustic disturbances. Modal and non-modal stability analyses are then conducted to determine the eigenmode growth rate and the transient one of acoustic disturbances. The 'safest' and most 'dangerous' flame locations as defined as those corresponding to extreme eigenmode and transient growth rate are estimated, and compared with those from the model without the hydrodynamic region. In order to mitigate such detrimental oscillations, identification and mitigation algorithms are experimentally implemented on the Rijke tube. The sound pressure level is reduced by approximately 50 dB. To gain insights on the thermoacoustic system, transfer function of the actuated Rijke tube system is measured by injecting a broad-band white noise. Compared with the estimation from our model, good agreement is observed. Finally, the marginal stability regions are estimated.

  6. Joint PDF Modelling of Local Extinction and Pollutant Formation in Non-premixed Turbulent Flames

    NASA Astrophysics Data System (ADS)

    Tang, Qing; Xu, Jun; Pope, Stephen B.

    2000-11-01

    A velocity-composition-turbulence frequency joint PDF approach is applied to model piloted methane/air turbulent diffusion flames investigated experimentally by Barlow and Frank. These flames exhibit an increasing amount of local extinction with increasing jet velocity, and are good cases to test the capabilities of turbulence-chemistry and combustion-chemistry models to account for local extinction and pollutant formation. In this study, the chemistry is an augmented reduced mechanism (19 species and 15 reaction steps) derived from the GRI2.11 detailed mechanism for methane oxidation by Sung and co-workers. The mechanism takes account of C2 chemistry, and the formation of oxides of nitrogen is treated by the inclusion of NO, NH3 and HCN. The turbulence models include the simplified Langevin model (SLM) for velocity, a stochastic model of Jayesh and Pope for turbulence frequency, the EMST model of Subramaniam and Pope for molecular mixing. The computational method for the solution of the modeled joint PDF equation features moving particles in a Lagrangian framework. The reaction calculations are performed via the in situ adaptive tabulation (ISAT) algorithm of Pope. The calculation results show good agreement with the experimental data, including the minor species NO and CO. The increase of local extinction (quantitatively characterized by a single variable - burning index) with increasing jet velocity is also accurately predicted by the calculations. It is founded that a small change of the inlet pilot temperature has a significant influence on the calculations and a systematic study has been made to investigate this sensitivity. For the flame with lowest velocity, the large influence is mainly observed close to the nozzle, while for the flame close to extinction, the calculated behavior is exquisitely sensitive to the pilot temperature, i.e., a 10K lower pilot temperature may cause global extinction.

  7. Nanosecond Plasma Enhanced H2/O2/N2 Premixed Flat Flames

    DTIC Science & Technology

    2014-01-01

    a function of height above the burner surface. As shown in Fig. 1b, the configuration referred to as “direct flame coupling” ( DFC ) is...single exponential decay and the radiative lifetime is taken from German [14]. For the spatially-resolved measurements, only one time delay ( t =8 µs...between the plasma discharge and the Nd:YAG laser is reported. This  t corresponds to the time delay after which the largest increase of OH (due to

  8. Apparatus for studying premixed laminar flames using mass spectrometry and fiber-optic spectrometry

    NASA Astrophysics Data System (ADS)

    Olsson, Jim O.; Andersson, Lars L.; Lenner, Magnus; Simonson, Margaret

    1990-03-01

    An integrated flat-flame/ microprobe sampling quadrupole mass spectrometer system, complemented by optical spectrometry based on optical fibers, is presented. The short microprobe sampling line (total 25 cm) is directly connected to an open ion source closely flanked by two nude cryopumps (900 l/s) yielding a background pressure of 10-9 Torr and a sampling pressure of about 10-5 Torr. Due to this improved microprobe system, mass spectrometry can be used for analysis of stable species (including fuel, O2, H2O, CO2, CO, and Ar) with less disturbance of the sample than with a conventional microprobe with a back pressure of about 1 Torr. Optical spectrometry is used for the study of emission from important radical species (such as C2, CH, and OH). The system is proposed as a complement to more conventional flat-flame/MBMS systems in which the sampling cone can effect the experimental system. Details are provided concerning the configuration of the whole system ranging from gas delivery to data evaluation. Test data are presented for a 16% methanol/68% oxygen/16% argon flame studied at a pressure of 40 Torr, to elucidate the special features of this system.

  9. Gaseous Non-Premixed Flame Research Planned for the International Space Station

    NASA Technical Reports Server (NTRS)

    Stocker, Dennis P.; Takahashi, Fumiaki; Hickman, J. Mark; Suttles, Andrew C.

    2014-01-01

    Thus far, studies of gaseous diffusion flames on the International Space Station (ISS) have been limited to research conducted in the Microgravity Science Glovebox (MSG) in mid-2009 and early 2012. The research was performed with limited instrumentation, but novel techniques allowed for the determination of the soot temperature and volume fraction. Development is now underway for the next experiments of this type. The Advanced Combustion via Microgravity Experiments (ACME) project consists of five independent experiments that will be conducted with expanded instrumentation within the stations Combustion Integrated Rack (CIR). ACMEs goals are to improve our understanding of flame stability and extinction limits, soot control and reduction, oxygen-enriched combustion which could enable practical carbon sequestration, combustion at fuel lean conditions where both optimum performance and low emissions can be achieved, the use of electric fields for combustion control, and materials flammability. The microgravity environment provides longer residence times and larger length scales, yielding a broad range of flame conditions which are beneficial for simplified analysis, e.g., of limit behaviour where chemical kinetics are important. The detailed design of the modular ACME hardware, e.g., with exchangeable burners, is nearing completion, and it is expected that on-orbit testing will begin in 2016.

  10. Time-dependent solution of pre-mixed laminar flames with a known temperature profile

    SciTech Connect

    Olsson, J.O.; Andersson, L.L.

    1985-07-01

    A computer program designed for the evaluation of molecular flows interacting through chemical kinetics and molecular diffusion is described. Measured values of temperature profile and mass flow are used. The starting profiles and the hot boundary values are calculated by a kinetics approximation found by neglecting diffusion. A time-dependent method is used together with successive grid refinements. The successive grid refinements reduced the execution times by a factor of 5 for a H/sub 2//air flame at a pressure of 1 atm. For a CH/sub 4//O/sub 2/ flame at 0.05 atm the reduction due to grid refinements was a factor 50 or more according to the estimations. The execution times for the test flames were a factor 4 slower than a current implementation of the steady state method. Possible optimizations of the present time-dependent version can decrease that difference significantly. The computed concentration profiles agreed with published computed results with 1%.

  11. Numerical simulation and sensitivity analysis of detailed soot particle size distribution in laminar premixed ethylene flames

    SciTech Connect

    Singh, Jasdeep; Patterson, Robert I.A.; Kraft, Markus; Wang, Hai

    2006-04-15

    In this paper, the prediction of a soot model [J. Appel, H. Bockhorn, M. Frenklach, Combust. Flame 121 (2000) 122-136] is compared to a recently published set of highly detailed soot particle size distributions [B. Zhao, Z. Yang, Z. Li, M.V. Johnston, H. Wang, Proc. Combust. Inst. 30 (2005)]. A stochastic approach is used to obtain soot particle size distributions (PSDs). The key features of the measured and simulated particle size distributions are identified and used as a simple way of comparing PSDs. The sensitivity of the soot PSDs to the parameters defining parts of the soot model, such as soot inception, particle and PAH collision efficiency and enhancement, and surface activity is investigated. Incepting soot particle size is found to have a very significant effect on the small-size end of the PSDs, especially the position of the trough for a bimodal soot PSDs. A new model for the decay in the surface activity is proposed in which the activity of the soot particle depends only on the history of that particle and the local temperature in the flame. This is a first attempt to use local flame variables to define the surface aging which has major impact on the prediction of the large-size end of the PSDs. Using these modifications to the soot model it is possible to improve the agreement between some of the points of interest in the simulated and measured PSDs. The paper achieves the task to help advance the soot models to predict soot PSD in addition to soot volume fraction and number density, which has been the focus of the literature. (author)

  12. Simultaneous one-dimensional fluorescence lifetime measurements of OH and CO in premixed flames

    NASA Astrophysics Data System (ADS)

    Jonsson, Malin; Ehn, Andreas; Christensen, Moah; Aldén, Marcus; Bood, Joakim

    2014-04-01

    A method for simultaneous measurements of fluorescence lifetimes of two species along a line is described. The experimental setup is based on picosecond laser pulses from two tunable optical parametric generator/optical parametric amplifier systems together with a streak camera. With an appropriate optical time delay between the two laser pulses, whose wavelengths are tuned to excite two different species, laser-induced fluorescence can be both detected temporally and spatially resolved by the streak camera. Hence, our method enables one-dimensional imaging of fluorescence lifetimes of two species in the same streak camera recording. The concept is demonstrated for fluorescence lifetime measurements of CO and OH in a laminar methane/air flame on a Bunsen-type burner. Measurements were taken in flames with four different equivalence ratios, namely ϕ = 0.9, 1.0, 1.15, and 1.25. The measured one-dimensional lifetime profiles generally agree well with lifetimes calculated from quenching cross sections found in the literature and quencher concentrations predicted by the GRI 3.0 mechanism. For OH, there is a systematic deviation of approximately 30 % between calculated and measured lifetimes. It is found that this is mainly due to the adiabatic assumption regarding the flame and uncertainty in H2O quenching cross section. This emphasizes the strength of measuring the quenching rates rather than relying on models. The measurement concept might be useful for single-shot measurements of fluorescence lifetimes of several species pairs of vital importance in combustion processes, hence allowing fluorescence signals to be corrected for quenching and ultimately yield quantitative concentration profiles.

  13. Gravitational Influences on Flame Propagation Through Non-Uniform Premixed Gas Systems

    NASA Technical Reports Server (NTRS)

    Miller, Fletcher J.; White, Ed; Ross, Howard D.

    1997-01-01

    We have built an apparatus for measuring flame spread rates through non-homogeneous fuel-air mixtures as a function of layer thickness and concentration. The layer thickness is adjusted by controlling the diffusion time above a fuel-saturated porous media, while the concentration is controlled by the fuel temperature. Normal gravity tests with methanol have so far explored largely the effect of temperature, as well as the effects of various aspects of the apparatus. Good agreement with previous research has been obtained. We have also demonstrated the ability of a rainbow schlieren system to quantitatively measure fuel vapor concentrations in the static case.

  14. Verification and Improvement of Flamelet Approach for Non-Premixed Flames

    NASA Technical Reports Server (NTRS)

    Zaitsev, S.; Buriko, Yu.; Guskov, O.; Kopchenov, V.; Lubimov, D.; Tshepin, S.; Volkov, D.

    1997-01-01

    Studies in the mathematical modeling of the high-speed turbulent combustion has received renewal attention in the recent years. The review of fundamentals, approaches and extensive bibliography was presented by Bray, Libbi and Williams. In order to obtain accurate predictions for turbulent combustible flows, the effects of turbulent fluctuations on the chemical source terms should be taken into account. The averaging of chemical source terms requires to utilize probability density function (PDF) model. There are two main approaches which are dominant in high-speed combustion modeling now. In the first approach, PDF form is assumed based on intuitia of modelliers (see, for example, Spiegler et.al.; Girimaji; Baurle et.al.). The second way is much more elaborate and it is based on the solution of evolution equation for PDF. This approach was proposed by S.Pope for incompressible flames. Recently, it was modified for modeling of compressible flames in studies of Farschi; Hsu; Hsu, Raji, Norris; Eifer, Kollman. But its realization in CFD is extremely expensive in computations due to large multidimensionality of PDF evolution equation (Baurle, Hsu, Hassan).

  15. Visualization and Analysis of a Hydrocarbon Premixed Flame a in Small Scale Scramjet Combustor

    NASA Astrophysics Data System (ADS)

    Cantu, Luca Maria Luigi

    Nitric oxide (NO) planar induced laser fluorescence (PLIF) measurements have been performed in a small scale scramjet combustor at the University of Virginia Aerospace Research Laboratory at nominal simulated Mach 5 flight enthalpy. A mixture of NO and N2 was injected at the upstream end of the inlet isolator as a surrogate for ethylene fuel, and the mixing of this fuel simulant was studied with and without a shock train. The shock train was produced by an air throttle, which simulated the blockage effects of combustion downstream of the cavity flame holder. NO PLIF signal was imaged in a plane orthogonal to the freestream at the leading edge of the cavity. Instantaneous planar images were recorded and analyzed to identify the most uniform cases, which were achieved by varying the location of the fuel injection and shock train. This method was used to screen different possible fueling configurations to provide optimized test conditions for follow-on combustion measurements using ethylene fuel. A theoretical study of the selected NO rotational transitions was performed to obtain a LIF signal that is linear with NO mole fraction and approximately independent of pressure and temperature. In the same facility, OH PLIF measurements were also performed; OH lines were carefully chosen to have fluorescent signal that is independent of pressure and temperature but linear with mole fraction. The OH PLIF signal was imaged in planes orthogonal to and parallel to the freestream flow at different equivalence ratios. Flameout limits were tested and identified. Instantaneous planar images were recorded and analyzed to compare the results with width increased dual-pump enhanced coherent anti-Stokes Raman spectroscopy (WIDECARS) measurements in the same facility and large eddy simulation/Reynolds average Navier-Stokes (LES/RANS) numerical simulations. The flame angle was found to be approximately 10 degrees for several different conditions, which is in agreement with numerical

  16. A lean methane premixed laminar flame doped with components of diesel fuel part III: Indane and comparison between n-butylbenzene, n-propylcyclohexane and indane

    SciTech Connect

    Pousse, E.; Tian, Z.Y.; Glaude, P.A.; Fournet, R.; Battin-Leclerc, F.

    2010-07-15

    To better understand the chemistry of the combustion of components of diesel fuel, the structure of a laminar lean premixed methane flame doped with indane has been investigated. The inlet gases contained 7.1% (molar) of methane, 36.8% of oxygen and 0.9% of indane corresponding to an equivalence ratio of 0.67 and a ratio C{sub 10}H{sub 14}/CH{sub 4} of 12.8%. The flame has been stabilized on a burner at a pressure of 6.7 kPa (50 Torr) using argon as diluent, with a gas velocity at the burner of 49.1 cm s{sup -1} at 333 K. Quantified species included the usual methane C{sub 0}-C{sub 2} combustion products, but also 16 C{sub 3}-C{sub 5} non-aromatic hydrocarbons, 6 C{sub 1}-C{sub 3} non-aromatic oxygenated compounds, as well as 22 aromatic products, namely benzene, toluene, xylenes, phenylacetylene, ethylbenzene, styrene, propenylbenzene, allylbenzene, n-propylbenzene, methylstyrenes, ethyltoluenes, trimethylbenzenes, n-butylbenzene, dimethylethylbenzene, indene, methylindenes, methylindane, benzocyclobutene, naphthalene, phenol, benzaldehyde, and benzofuran. A new mechanism for the oxidation of indane was proposed whose predictions were in satisfactory agreement with measured species profiles in both flames and jet-stirred reactor experiments. The main reaction pathways of consumption of indane have been derived from flow rate analyses in the two types of reactors. A comparison of the effect of the addition of three components of diesel fuel, namely indane, n-butylbenzene and n-propylcyclohexane (parts I and II of this series of paper), on the structure of a laminar lean premixed methane flame is also presented. (author)

  17. On the Experimental and Theoretical Investigations of Lean Partially Premixed Combustion, Burning Speed, Flame Instability and Plasma Formation of Alternative Fuels at High Temperatures and Pressures

    NASA Astrophysics Data System (ADS)

    Askari, Omid

    This dissertation investigates the combustion and injection fundamental characteristics of different alternative fuels both experimentally and theoretically. The subjects such as lean partially premixed combustion of methane/hydrogen/air/diluent, methane high pressure direct-injection, thermal plasma formation, thermodynamic properties of hydrocarbon/air mixtures at high temperatures, laminar flames and flame morphology of synthetic gas (syngas) and Gas-to-Liquid (GTL) fuels were extensively studied in this work. These subjects will be summarized in three following paragraphs. The fundamentals of spray and partially premixed combustion characteristics of directly injected methane in a constant volume combustion chamber have been experimentally studied. The injected fuel jet generates turbulence in the vessel and forms a turbulent heterogeneous fuel-air mixture in the vessel, similar to that in a Compressed Natural Gas (CNG) Direct-Injection (DI) engines. The effect of different characteristics parameters such as spark delay time, stratification ratio, turbulence intensity, fuel injection pressure, chamber pressure, chamber temperature, Exhaust Gas recirculation (EGR) addition, hydrogen addition and equivalence ratio on flame propagation and emission concentrations were analyzed. As a part of this work and for the purpose of control and calibration of high pressure injector, spray development and characteristics including spray tip penetration, spray cone angle and overall equivalence ratio were evaluated under a wide range of fuel injection pressures of 30 to 90 atm and different chamber pressures of 1 to 5 atm. Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the statistical thermodynamics was developed to calculate the ultra-high temperature plasma

  18. Electrical Characteristics, Electrode Sheath and Contamination Layer Behavior of a Meso-Scale Premixed Methane-Air Flame Under AC/DC Electric Fields

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Yan, Limin; Zhang, Hao; Li, Guoxiu

    2016-05-01

    Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC (0-4300 V, 0-500 Hz) and DC (0-3300 V) electric fields were studied. I-V curves were measured under different experimental conditions to estimate the magnitude of the total current 100-102 μA, the electron density 1015-1016 m-3 and further the power dissipation ≤ 0.7 W in the reaction zone. At the same time, the meso-scale premixed flame conductivity 10-4-10-3 Ω-1·m-1 as a function of voltage and frequency was experimentally obtained and was believed to represent a useful order-of magnitude estimate. Moreover, the influence of the collision sheath relating to Debye length (31-98 μm) and the contamination layer of an active electrode on measurements was discussed, based on the combination of simulation and theoretical analysis. As a result, the electrode sheath dimension was evaluated to less than 0.5 mm, which indicated a complex effect of the collision sheath on the current measurements. The surface contamination effect of an active electrode was further analyzed using the SEM imaging method, which showed elements immigration during the contamination layer formation process. supported by National Natural Science Foundation of China (No. 51376021), and the Fundamental Research Fund for Major Universities (No. 2013JBM079)

  19. PIV, 2D-LIF and 1D-Raman measurements of flow field, composition and temperature in premixed gas turbine flames

    SciTech Connect

    Stopper, U.; Aigner, M.; Ax, H.; Meier, W.; Sadanandan, R.; Stoehr, M.; Bonaldo, A.

    2010-04-15

    Several laser diagnostic measurement techniques have been applied to study the lean premixed natural gas/air flames of an industrial swirl burner. This was made possible by equipping the burner with an optical combustion chamber that was installed in the high-pressure test rig facility at the DLR Institute of Combustion Technology in Stuttgart. The burner was operated with preheated air at various operating conditions with pressures up to p = 6 bar and a maximum thermal power of P = 1 MW. The instantaneous planar flow field inside the combustor was studied with particle image velocimetry (PIV). Planar laser induced fluorescence (PLIF) of OH radicals on a single-shot basis was used to determine the shape and the location of the flame front as well as the spatial distribution of reaction products. 1D laser Raman spectroscopy was successfully applied for the measurement of the temperature and the concentration of major species under realistic gas turbine conditions. Results of the flow field analysis show the shape and the size of the main flow regimes: the inflow region, the inner and the outer recirculation zone. The highly turbulent flow field of the inner shear layer is found to be dominated by small and medium sized vortices. High RMS fluctuations of the flow velocity in the exhaust gas indicate the existence of a rotating exhaust gas swirl. From the PLIF images it is seen that the primary reactions happened in the shear layers between inflow and the recirculation zones and that the appearance of the reaction zones changed with flame parameters. The results of the multiscalar Raman measurements show a strong variation of the local mixture fraction allowing conclusions to be drawn about the premix quality. Furthermore, mixing effects of unburnt fuel and air with fully reacted combustion products are studied giving insights into the processes of the turbulence-chemistry interaction. (author)

  20. Demonstration of a new laser diagnostic based on photodissociation spectroscopy for imaging mixture fraction in a non-premixed jet flame.

    PubMed

    Zhao, Yan; Tong, Chenning; Ma, Lin

    2010-04-01

    The study of turbulent combustion calls for new diagnostics that can measure multidimensional mixture fraction under a wide range of flame conditions. A laser diagnostic technique based on photodissociation spectroscopy (PDS) is proposed to address this need. This paper describes the concept of the PDS-based diagnostic, reports its experimental demonstration in a non-premixed jet flame, and assesses its performance and applicable range. This new technique is centered around the creative use of photodissociation (PD) for flow visualization. A carefully chosen PD precursor is seeded into the flow of interest to measure mixture fraction. The precursor is chosen such that (1) both the precursor itself and the products formed from the precursor (if it reacts) can be completely and rapidly photodissociated; thus, the concentration of one of the photofragments forms a conserved scalar and can be used to infer the mixture fraction, and (2) the target photofragment offers friendly spectroscopic properties (e.g., strong laser-induced fluorescence signals and/or simple signal interpretation) so multidimensional imaging can be readily obtained. Molecular iodine (I(2)) was identified as a precursor satisfying both requirements and was seeded into a carbon monoxide (CO)-air jet flame for single-shot two-dimensional imaging of mixture fraction. This demonstration illustrates the potential of the PDS-based technique to overcome the limitations of existing techniques and to provide multidimensional measurements of mixture fraction in a variety of reactive flows.

  1. Quantitative Studies on the Propagation and Extinction of Near-Limit Premixed Flames under Normal- and Micro-gravity

    NASA Technical Reports Server (NTRS)

    Egolfopoulos, F. N.; Dong, Y.; Spedding, G.; Cuenot, B.; Poinsot, T.

    2001-01-01

    Strained laminar flames have been systematically studied, as the understanding of their structure and dynamic behavior is of relevance to turbulent combustion.. Most of these studies have been conducted in opposed-jet, stagnation-type flow configurations. Studies at high strain rates are important in quantifying and understanding the response of vigorously burning flames and determine extinction states. Studies of weakly strained flames can be of particular interest for all stoichiometries. For example, the laminar flame speeds, S(sup o)(sub u), can be accurately determined by using the counterflow technique only if measurements are obtained at very low strain rates. Furthermore, near-limit flames are stabilized by weak strain rates. Previous studies have shown that near-limit flames are particularly sensitive to chain mechanisms, thermal radiation, and unsteadiness. The stabilization and study of weakly strained flames is complicated by the presence of buoyancy that can render the flames unstable to the point of extinction. Thus, the use of microgravity (mu-g) becomes essential in order to provide meaningful insight into this important combustion regime. In our past studies the laminar flame speeds and extinction strain rates were directly measured at ultra-low strain rates. The laminar flame speeds were measured by having a positively strained planar flame undergoing a transition to a negatively strained Bunsen flame and by measuring the propagation speed during that transition. The extinction strain rates of near-limit flames were measured in mu-g. Results obtained for CH4/air and C3H8/air mixtures are in agreement with those obtained by Maruta et al.

  2. The behavior of fuel-lean premixed flames in a standard flammability limit tube under controlled gravity conditions

    NASA Technical Reports Server (NTRS)

    Wherley, B. L.; Strehlow, R. A.

    1986-01-01

    Fuel-lean flames in methane-air mixtures from 4.90 to 6.20 volume percent fuel and propane-air mixtures from 1.90 to 3.00 volume percent fuel were studied in the vicinity of the limit for a variety of gravity conditions. The limits were determined and the behavior of the flames studied for one g upward, one g downward, and zero g propagation. Photographic records of all flammability tube firings were obtained. The structure and behavior of these flames were detailed including the variations of the curvature of the flame front, the skirt length, and the occurrence of cellular instabilities with varying gravity conditions. The effect of ignition was also discussed. A survey of flame speeds as a function of mixture strength was made over a range of lean mixture compositions for each of the fuels studied. The results were presented graphically with those obtained by other researchers. The flame speed for constant fractional gravity loadings were plotted as a function of gravity loadings from 0.0 up to 2.0 g's against flame speeds extracted from the transient gravity flame histories for corresponding gravity loadings. The effects of varying gravity conditions on the extinguishment process for upward and downward propagating flames were investigated.

  3. Studies in premixed combustion. Progress report, November 1, 1990--October 31, 1992

    SciTech Connect

    Sivashinsky, G.I.

    1992-08-01

    This report discusses the following topics on premixed combustion: theory of turbulent flame propagation; pattern formation in premixed flames and related problems; and pattern formation in extended systems. (LSP)

  4. Effects of H{sub 2} and H preferential diffusion and unity Lewis number on superadiabatic flame temperatures in rich premixed methane flames

    SciTech Connect

    Liu, Fengshan; Guelder, OEmer L.

    2005-11-01

    The structures of freely propagating rich CH{sub 4}/air and CH{sub 4}/O{sub 2} flames were studied numerically using a relatively detailed reaction mechanism. Species diffusion was modeled using five different methods/assumptions to investigate the effects of species diffusion, in particular H{sub 2} and H, on superadiabatic flame temperature. With the preferential diffusion of H{sub 2} and H accounted for, significant amount of H{sub 2} and H produced in the flame front diffuse from the reaction zone to the preheat zone. The preferential diffusion of H{sub 2} from the reaction zone to the preheat zone has negligible effects on the phenomenon of superadiabatic flame temperature in both CH{sub 4}/air and CH{sub 4}/O{sub 2} flames. It is therefore demonstrated that the superadiabatic flame temperature phenomenon in rich hydrocarbon flames is not due to the preferential diffusion of H{sub 2} from the reaction zone to the preheat zone as recently suggested by Zamashchikov et al. [V.V. Zamashchikov, I.G. Namyatov, V.A. Bunev, V.S. Babkin, Combust. Explosion Shock Waves 40 (2004) 32]. The suppression of the preferential diffusion of H radicals from the reaction zone to the preheat zone drastically reduces the degree of superadiabaticity in rich CH{sub 4}/O{sub 2} flames. The preferential diffusion of H radicals plays an important role in the occurrence of superadiabatic flame temperature. The assumption of unity Lewis number for all species leads to the suppression of H radical diffusion from the reaction zone to the preheat zone and significant diffusion of CO{sub 2} from the postflame zone to the reaction zone. Consequently, the degree of superadiabaticity of flame temperature is also significantly reduced. Through reaction flux analyses and numerical experiments, the chemical nature of the superadiabatic flame temperature phenomenon in rich CH{sub 4}/air and CH{sub 4}/O{sub 2} flames was identified to be the relative scarcity of H radical, which leads to overshoot of

  5. Asymptotic expressions for turbulent burning velocity at the leading edge of a premixed flame brush and their validation by published measurement data

    NASA Astrophysics Data System (ADS)

    Lee, Jaeseo; Lee, Gwang G.; Huh, Kang Y.

    2014-12-01

    This paper presents validation of new analytical expressions for the turbulent burning velocity, ST, based on asymptotic behavior at the leading edge (LE) in turbulent premixed combustion. Reaction and density variation are assumed to be negligible at the LE to avoid the cold boundary difficulty in the statistically steady state. Good agreement is shown for the slopes, dST/du', with respect to Lc/δf at low turbulence, with both normalized by those of the reference cases. δf is the inverse of the maximum gradient of reaction progress variable through an unstretched laminar flame, and Lc is the characteristic length scale given as burner diameter or measured integral length scale. Comparison is made for thirty-five datasets involving different fuels, equivalence ratios, H2 fractions in fuel, pressures, and integral length scales from eight references [R. C. Aldredge et al., "Premixed-flame propagation in turbulent Taylor-Couette flow," Combust. Flame 115, 395 (1998); M. Lawes et al., "The turbulent burning velocity of iso-octane/air mixtures," Combust. Flame 159, 1949 (2012); H. Kido et al., "Influence of local flame displacement velocity on turbulent burning velocity," Proc. Combust. Inst. 29, 1855 (2002); J. Wang et al., "Correlation of turbulent burning velocity for syngas/air mixtures at high pressure up to 1.0 MPa," Exp. Therm. Fluid Sci. 50, 90 (2013); H. Kobayashi et al., "Experimental study on general correlation of turbulent burning velocity at high pressure," Proc. Combust. Inst. 27, 941 (1998); C. W. Chiu et al., "High-pressure hydrogen/carbon monoxide syngas turbulent burning velocities measured at constant turbulent Reynolds numbers," Int. J. Hydrogen Energy 37, 10935 (2012); P. Venkateswaran et al., "Pressure and fuel effects on turbulent consumption speeds of H2/CO blends," Proc. Combust. Inst. 34, 1527 (2013); M. Fairweather et al., "Turbulent burning rates of methane and methane-hydrogen mixtures," Combust. Flame 156, 780 (2009)]. The turbulent

  6. Non-dispersive atomic-fluorescence spectrometry of trace amounts of bismuth by introduction of its gaseous hydride into a premixed argon (entrained air)-hydrogen flame.

    PubMed

    Kobayashi, S; Nakahara, T; Musha, S

    1979-10-01

    A method has been developed for the determination of bismuth by generation of its gaseous hydride and introduction of the hydride into a premixed argon (entrained air)-hydrogen flame, the atomic-fluorescence lines from which are all detected by use of a non-dispersive system. The detection limit is 5 pg/ml, or 0.1 ng of bismuth, but the reagent blank found in a 20-ml sample volume was approximately 2 ng of bismuth. Analytical working curves obtained by measuring peak-heights and integrated peak-areas of the signals are linear over a range of about four orders of magnitude from the detection limit. Perchloric, phosphoric and sulphuric acids up to 2.0M concentration give no interference, but nitric acid gives slight depression of the signal. The presence of silver, gold, nickel, palladium, platinum, selenium and tellurium in 1000-fold ratio to bismuth causes pronounced depression of the signal, whereas mercury and tin slightly enhance the atomic-fluorescence signal. The method has been applied to the determination of bismuth in aluminium-base alloys and sulphide ores with use of the standard additions method. The results are in good agreement with those obtained by flame atomic-absorption spectrometry and optical emission spectrometry with an inductively coupled plasma.

  7. Evolution of soot size distribution in premixed ethylene/air and ethylene/benzene/air flames: Experimental and modeling study

    SciTech Connect

    Echavarria, Carlos A.; Sarofim, Adel F.; Lighty, JoAnn S.; D'Anna, Andrea

    2011-01-15

    The effect of benzene concentration in the initial fuel on the evolution of soot size distribution in ethylene/air and ethylene/benzene/air flat flames was characterized by experimental measurements and model predictions of size and number concentration within the flames. Experimentally, a scanning mobility particle sizer was used to allow spatially resolved and online measurements of particle concentration and sizes in the nanometer-size range. The model couples a detailed kinetic scheme with a discrete-sectional approach to follow the transition from gas-phase to nascent particles and their coagulation to larger soot particles. The evolution of soot size distribution (experimental and modeled) in pure ethylene and ethylene flames doped with benzene showed a typical nucleation-sized (since particles do not actually nucleate in the classical sense particle inception is often used in place of nucleation) mode close to the burner surface, and a bimodal behavior at greater height above burner (HAB). However, major features were distinguished between the data sets. The growth of nucleation and agglomeration-sized particles was faster for ethylene/benzene/air flames, evidenced by the earlier presence of bimodality in these flames. The most significant changes in size distribution were attributed to an increase in benzene concentration in the initial fuel. However, these changes were more evident for high temperature flames. In agreement with the experimental data, the model also predicted the decrease of nucleation-sized particles in the postflame region for ethylene flames doped with benzene. This behavior was associated with the decrease of soot precursors after the main oxidation zone of the flames. (author)

  8. Nitric Oxide and Oxygen Air-Contamination Effects on Extinction Limits of Non-Premixed Hydrocarbon-Air Flames for a HIFiRE Scramjet

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Dawson, Lucy C.; Vaden, Sarah N.; Wilson, Lloyd G.

    2009-01-01

    Unique nitric oxide (NO) and oxygen air-contamination effects on the extinction Flame Strength (FS) of non-premixed hydrocarbon (HC) vs. air flames are characterized for 7 gaseous HCs, using a new idealized 9.3 mm straight-tube Opposed Jet Burner (OJB) at 1 atm. FS represents a laminar strain-induced extinction limit based on cross-section-average air jet velocity, Uair, that sustains combustion of a counter jet of gaseous fuel just before extinction. Besides ethane, propane, butane, and propylene, the HCs include ethylene, methane, and a 64 mole-% ethylene / 36 % methane mixture, the writer s previously recommended gaseous surrogate fuel for HIFiRE scramjet tests. The HC vs. clean air part of the work is an extension of a May 2008 JANNAF paper that characterized surrogates for the HIFiRE project that should mimic the flameholding of reformed (thermally- or catalytically-cracked) endothermic JP-like fuels. The new FS data for 7 HCs vs. clean air are thus consolidated with the previously validated data, normalized to absolute (local) axial-input strain rates, and co-plotted on a dual kinetically dominated reactivity scale. Excellent agreement with the prior data is obtained for all 7 fuels. Detailed comparisons are also made with recently published (Univ. Va) numerical results for ethylene extinction. A 2009-revised ethylene kinetic model (Univ. Southern Cal) led to predicted limits within approx. 5 % (compared to 45 %, earlier) of this writer s 2008 (and present) ethylene FSs, and also with recent independent data (Univ. Va) obtained on a new OJB system. These +/- 5 % agreements, and a hoped-for "near-identically-performing" reduced kinetics model, would greatly enhance the capability for accurate numerical simulations of surrogate HC flameholding in scramjets. The measured air-contamination effects on normalized FS extinction limits are projected to assess ongoing Arc-Heater-induced "facility test effects" of NO production (e.g., 3 mole-%) and resultant oxygen

  9. On the thermodynamic properties of thermal plasma in the flame kernel of hydrocarbon/air premixed gases

    NASA Astrophysics Data System (ADS)

    Askari, Omid; Beretta, Gian Paolo; Eisazadeh-Far, Kian; Metghalchi, Hameed

    2016-07-01

    Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the complete chemical equilibrium assumption is developed to calculate the ultra-high temperature plasma composition and thermodynamic properties, including enthalpy, entropy, Gibbs free energy, specific heat at constant pressure, specific heat ratio, speed of sound, mean molar mass, and degree of ionization. The method is applied to compute the thermodynamic properties of H2/air and CH4/air plasma mixtures for different temperatures (1000-100 000 K), different pressures (10-6-100 atm), and different fuel/air equivalence ratios within flammability limit. In calculating the individual thermodynamic properties of the atomic species needed to compute the complete equilibrium composition, the Debye-Huckel cutoff criterion has been used for terminating the series expression of the electronic partition function so as to capture the reduction of the ionization potential due to pressure and the intense connection between the electronic partition function and the thermodynamic properties of the atomic species and the number of energy levels taken into account. Partition functions have been calculated using tabulated data for available atomic energy levels. The Rydberg and Ritz extrapolation and interpolation laws have been used for energy levels which are not observed. The calculated plasma properties are then presented as functions of temperature, pressure and equivalence ratio, in terms of a new set of thermodynamically self-consistent correlations that are shown to provide very accurate fits suitable for efficient use in CFD simulations. Comparisons with existing data for air plasma show excellent agreement.

  10. LEM-CF Premixed Tool Kit

    SciTech Connect

    2015-01-19

    The purpose of LEM-CF Premixed Tool Kit is to process premixed flame simulation data from the LEM-CF solver (https://fileshare.craft-tech.com/clusters/view/lem-cf) into a large-eddy simulation (LES) subgrid model database. These databases may be used with a user-defined-function (UDF) that is included in the Tool Kit. The subgrid model UDF may be used with the ANSYS FLUENT flow solver or other commercial flow solvers.

  11. Combustor flame flashback

    NASA Technical Reports Server (NTRS)

    Proctor, M. P.; Tien, J. S.

    1985-01-01

    A stainless steel, two-dimensional (rectangular), center-dump, premixed-prevaporized combustor with quartz window sidewalls for visual access was designed, built, and used to study flashback. A parametric study revealed that the flashback equivalence ratio decreased slightly as the inlet air temperature increased. It also indicated that the average premixer velocity and premixer wall temperature were not governing parameters of flashback. The steady-state velocity balance concept as the flashback mechanism was not supported. From visual observation several stages of burning were identified. High speed photography verified upstream flame propagation with the leading edge of the flame front near the premixer wall. Combustion instabilities (spontaneous pressure oscillations) were discovered during combustion at the dump plane and during flashback. The pressure oscillation frequency ranged from 40 to 80 Hz. The peak-to-peak amplitude (up to 1.4 psi) increased as the fuel/air equivalence ratio was increased attaining a maximum value just before flashback. The amplitude suddenly decreased when the flame stabilized in the premixer. The pressure oscillations were large enough to cause a local flow reversal. A simple test using ceramic fiber tufts indicated flow reversals existed at the premixer exit during flickering. It is suspected that flashback occurs through the premixer wall boundary layer flow reversal caused by combustion instability. A theoretical analysis of periodic flow in the premixing channel has been made. The theory supports the flow reversal mechanism.

  12. A premixed hydrogen/oxygen catalytic igniter

    NASA Technical Reports Server (NTRS)

    Green, James M.

    1989-01-01

    The catalytic ignition of hydrogen and oxygen propellants was studied using a premixing hydrogen/oxygen injector. The premixed injector was designed to eliminate problems associated with catalytic ignition caused by poor propellant mixing in the catalyst bed. Mixture ratio, mass flow rate, and propellant inlet temperature were varied parametrically in testing, and a pulse mode life test of the igniter was conducted. The results of the tests showed that the premixed injector eliminated flame flashback in the reactor and increased the life of the igniter significantly. The results of the experimental program and a comparison with data collected in a previous program are given.

  13. Dynamics and structure of stretched flames

    SciTech Connect

    Law, C.K.

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  14. Premixed direct injection disk

    SciTech Connect

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  15. Numerical simulation of premixed turbulent methane combustion

    SciTech Connect

    Bell, John B.; Day, Marcus S.; Grcar, Joseph F.

    2001-12-14

    In this paper we study the behavior of a premixed turbulent methane flame in three dimensions using numerical simulation. The simulations are performed using an adaptive time-dependent low Mach number combustion algorithm based on a second-order projection formulation that conserves both species mass and total enthalpy. The species and enthalpy equations are treated using an operator-split approach that incorporates stiff integration techniques for modeling detailed chemical kinetics. The methodology also incorporates a mixture model for differential diffusion. For the simulations presented here, methane chemistry and transport are modeled using the DRM-19 (19-species, 84-reaction) mechanism derived from the GRIMech-1.2 mechanism along with its associated thermodynamics and transport databases. We consider a lean flame with equivalence ratio 0.8 for two different levels of turbulent intensity. For each case we examine the basic structure of the flame including turbulent flame speed and flame surface area. The results indicate that flame wrinkling is the dominant factor leading to the increased turbulent flame speed. Joint probability distributions are computed to establish a correlation between heat release and curvature. We also investigate the effect of turbulent flame interaction on the flame chemistry. We identify specific flame intermediates that are sensitive to turbulence and explore various correlations between these species and local flame curvature. We identify different mechanisms by which turbulence modulates the chemistry of the flame.

  16. Large-Eddy Simulation of Premixed and Partially Premixed Turbulent Combustion Using a Level Set Method

    NASA Astrophysics Data System (ADS)

    Duchamp de Lageneste, Laurent; Pitsch, Heinz

    2001-11-01

    Level-set methods (G-equation) have been recently used in the context of RANS to model turbulent premixed (Hermann 2000) or partially premixed (Chen 1999) combustion. By directly taking into account unsteady effects, LES can be expected to improve predictions over RANS. Since the reaction zone thickness of premixed flames in technical devices is usually much smaller than the LES grid spacing, chemical reactions completely occur on the sub-grid scales and hence have to be modeled entirely. In the level-set methodology, the flame front is represented by an arbitrary iso-surface G0 of a scalar field G whose evolution is described by the so-called G-equation. This equation is only valid at G=G_0, and hence decoupled from other G levels. Heat release is then modeled using a flamelet approach in which temperature is determined as a function of G and the mixture-fraction Z. In the present study, the proposed approach has been formulated for LES and validated using data from a turbulent Bunsen burner experiment (Chen, Peters 1996). Simulation of an experimental Lean Premixed Prevapourised (LPP) dump combustor (Besson, Bruel 1999, 2000) under different premixed or partially premixed conditions will also be presented.

  17. Effect of finite-rate chemistry and unequal Schmidt numbers on turbulent non-premixed flames modeled with single-step chemistry

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Mahalingam, S.; Puri, I. K.; Vervisch, L.

    1992-01-01

    The interaction between a quasi-laminar flame and a turbulent flowfield is investigated through direct numerical simulations (DNS) of reacting flow in two- and three-dimensional domains. Effects due to finite-rate chemistry are studied using a single step global reaction A (fuel) + B (oxidizer) yields P (product), and by varying a global Damkoehler number, as a result of which the turbulence-chemistry interaction in the flame is found to generate a wide variety of conditions, ranging from near-equilibrium to near-extinction. Differential diffusion effects are studied by changing the Schmidt number of one reactive species to one-half. It is observed that laminar flamelet response is followed within the turbulent flowfield, except in regions where transient effects seem to dominate.

  18. Understanding the Role of Heat Recirculation in Enhancing the Speed of Premixed Laminar Flames in a Parallel Plate Micro-Combustor

    DTIC Science & Technology

    2009-01-01

    is a single valued function of the flame speed and independent of the velocity profile (Plug or Report Documentation Page Form ApprovedOMB No. 0704...0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing...Washington Headquarters Services, Directorate for Information Operations and Reports , 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302

  19. Simulation of lean premixed turbulent combustion

    NASA Astrophysics Data System (ADS)

    Bell, J.; Day, M.; Almgren, A.; Lijewski, M.; Rendleman, C.; Cheng, R.; Shepherd, I.

    2006-09-01

    There is considerable technological interest in developing new fuel-flexible combustion systems that can burn fuels such as hydrogen or syngas. Lean premixed systems have the potential to burn these types of fuels with high efficiency and low NOx emissions due to reduced burnt gas temperatures. Although traditional Scientific approaches based on theory and laboratory experiment have played essential roles in developing our current understanding of premixed combustion, they are unable to meet the challenges of designing fuel-flexible lean premixed combustion devices. Computation, with its ability to deal with complexity and its unlimited access to data, has the potential for addressing these challenges. Realizing this potential requires the ability to perform high fidelity simulations of turbulent lean premixed flames under realistic conditions. In this paper, we examine the specialized mathematical structure of these combustion problems and discuss simulation approaches that exploit this structure. Using these ideas we can dramatically reduce computational cost, making it possible to perform high-fidelity simulations of realistic flames. We illustrate this methodology by considering ultra-lean hydrogen flames and discuss how this type of simulation is changing the way researchers study combustion.

  20. Chaos in an imperfectly premixed model combustor

    SciTech Connect

    Kabiraj, Lipika Saurabh, Aditya; Paschereit, Christian O.; Karimi, Nader; Sailor, Anna; Mastorakos, Epaminondas; Dowling, Ann P.

    2015-02-15

    This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration.

  1. Droplet and Supercritical Flame Dynamics in Propulsion

    DTIC Science & Technology

    2010-03-26

    In order to study the stability of a lifted jet flame by nozzle-generated vortexes, we have developed a chemical explosive mode analysis ( CEMA ) to...runaway can consequently be distinguished. CEMA of the lifted flame shows the existence of two premixed flame fronts, which are difficult to detect

  2. Studies of Flame Structure in Microgravity

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Sung, C. J.; Zhu, D. L.

    1997-01-01

    The present research endeavor is concerned with gaining fundamental understanding of the configuration, structure, and dynamics of laminar premixed and diffusion flames under conditions of negligible effects of gravity. Of particular interest is the potential to establish and hence study the properties of spherically- and cylindrically-symmetric flames and their response to external forces not related to gravity. For example, in an earlier experimental study of the burner-stabilized cylindrical premixed flames, the possibility of flame stabilization through flow divergence was established, while the resulting one-dimensional, adiabatic, stretchless flame also allowed an accurate means of determining the laminar flame speeds of combustible mixtures. We have recently extended our studies of the flame structure in microgravity along the following directions: (1) Analysis of the dynamics of spherical premixed flames; (2) Analysis of the spreading of cylindrical diffusion flames; (3) Experimental observation of an interesting dual luminous zone structure of a steady-state, microbuoyancy, spherical diffusion flame of air burning in a hydrogen/methane mixture environment, and its subsequent quantification through computational simulation with detailed chemistry and transport; (4) Experimental quantification of the unsteady growth of a spherical diffusion flame; and (5) Computational simulation of stretched, diffusionally-imbalanced premixed flames near and beyond the conventional limits of flammability, and the substantiation of the concept of extended limits of flammability. Motivation and results of these investigations are individually discussed.

  3. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Varatharajan, Balachandar; Ziminsky, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2012-12-11

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  4. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Naidu, Balachandar; Ziminksy, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2013-08-13

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  5. Oscillatory Extinction Of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Yoo, S. W.; Christianson, E. W.

    2003-01-01

    Since extinction has been observed in an oscillatory manner in Le greater than 1 premixed flames, it is not unreasonable to expect that extinction could occur in an unsteady manner for diffusion flames. Indeed, near-limit oscillations have been observed experimentally under microgravity conditions for both candle flames and droplet flames. Furthermore, the analysis of Cheatham and Matalon on the unsteady behavior of diffusion flames with heat loss, identified an oscillatory regime which could be triggered by either a sufficiently large Lewis number (even without heat loss) or an appreciable heat loss (even for Le=1). In light of these recent understanding, the present investigation aims to provide a well-controlled experiment that can unambiguously demonstrate the oscillation of diffusion flames near both the transport- and radiation-induced limits. That is, since candle and jet flames are stabilized through flame segments that are fundamentally premixed in nature, and since premixed flames are prone to oscillate, there is the possibility that the observed oscillation of these bulk diffusion flames could be triggered and sustained by the oscillation of the premixed flame segments. Concerning the observed oscillatory droplet extinction, it is well-known that gas-phase oscillation in heterogeneous burning can be induced by and is thereby coupled with condensed-phase unsteadiness. Consequently, a convincing experiment on diffusion flame oscillation must exclude any ingredients of premixed flames and other sources that may either oscillate themselves or promote the oscillation of the diffusion flame. The present experiment on burner-generated spherical flames with a constant reactant supply endeavored to accomplish this goal. The results are further compared with those from computational simulation for further understanding and quantification of the flame dynamics and extinction.

  6. Multiscale Interactions and Backscatter in Premixed Combustion

    NASA Astrophysics Data System (ADS)

    Hamlington, Peter; Towery, Colin; O'Brien, Jeffrey; Poludnenko, Alexei; Urzay, Javier; Ihme, Matthias

    2015-11-01

    Multiscale interactions and energy transfer between turbulence and flames are fundamental to understanding and modeling premixed turbulent reacting flows. To investigate such flows, direct numerical simulations of statistically planar turbulent premixed flames have been performed, and the dynamics of kinetic energy transfer are examined in both spectral and physical spaces. In the spectral analysis, two-dimensional kinetic energy spectra and triadic interactions are computed through the flame brush. It is found that there is suppression of turbulent small-scale motions in the combustion products, along with backscatter of energy for a range of scales near the thermal laminar flame width. In the physical-space analysis, a differential filter is applied to examine the transfer of kinetic energy between subgrid and resolved scales in the context of large eddy simulations. Subgrid-scale backscatter of kinetic energy driven by combustion is found to prevail over forward scatter throughout the flame brush. The spectral- and physical-space analyses thus both suggest an enhancement of reverse-cascade phenomena in the flame brush, which is possibly driven by accumulation of kinetic energy in the scales where combustion-induced heat release is preferentially deployed.

  7. Quantitative measurement of hydroxyl radical (OH) concentration in premixed flat flame by combining laser-induced fluorescence and direct absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Shuang; Su, Tie; Li, Zhong-Shan; Bai, Han-Chen; Yan, Bo; Yang, Fu-Rong

    2016-10-01

    An accurate and reasonable technique combining direct absorption spectroscopy and laser-induced fluorescence (LIF) methods is developed to quantitatively measure the concentrations of hydroxyl in CH4/air flat laminar flame. In our approach, particular attention is paid to the linear laser-induced fluorescence and absorption processes, and experimental details as well. Through measuring the temperature, LIF signal distribution and integrated absorption, spatially absolute OH concentrations profiles are successfully resolved. These experimental results are then compared with the numerical simulation. It is proved that the good quality of the results implies that this method is suitable for calibrating the OH-PLIF measurement in a practical combustor. Project supported by the National Natural Science Foundation of China (Grant No. 11272338), the Science and Technology on Scramjet Key Laboratory Funding, China (Grant No. STSKFKT 2013004), and the China Scholarship Council.

  8. Large eddy simulation of bluff body stabilized premixed and partially premixed combustion

    NASA Astrophysics Data System (ADS)

    Porumbel, Ionut

    Large Eddy Simulation (LES) of bluff body stabilized premixed and partially premixed combustion close to the flammability limit is carried out in this thesis. The main goal of the thesis is the study of the equivalence ratio effect on flame stability and dynamics in premixed and partially premixed flames. An LES numerical algorithm able to handle the entire range of combustion regimes and equivalence ratios is developed for this purpose. The algorithm has no ad-hoc adjustable model parameters and is able to respond automatically to variations in the inflow conditions, without user intervention. Algorithm validation is achieved by conducting LES of reactive and non-reactive flow. Comparison with experimental data shows good agreement for both mean and unsteady flow properties. In the reactive flow, two scalar closure models, Eddy Break-Up (EBULES) and Linear Eddy Mixing (LEMLES), are used and compared. Over important regions, the flame lies in the Broken Reaction Zone regime. Here, the EBU model assumptions fail. In LEMLES, the reaction-diffusion equation is not filtered, but resolved on a linear domain and the model maintains validity. The flame thickness predicted by LEMLES is smaller and the flame is faster to respond to turbulent fluctuations, resulting in a more significant wrinkling of the flame surface when compared to EBULES. As a result, LEMLES captures better the subtle effects of the flame-turbulence interaction, the flame structure shows higher complexity, and the far field spreading of the wake is closer to the experimental observations. Three premixed (φ = 0.6, 0.65, and 0.75) cases are simulated. As expected, for the leaner case (φ = 0.6) the flame temperature is lower, the heat release is reduced and vorticity is stronger. As a result, the flame in this case is found to be unstable. In the rich case (φ = 0.75), the flame temperature is higher, and the spreading rate of the wake is increased due to the higher amount of heat release. The ignition

  9. Simulation of lean premixed turbulent combustion

    SciTech Connect

    Bell, John B.; Day, Marcus S.; Almgren, Ann S.; Lijewski, MichaelJ.; Rendleman, Charles A.; Cheng, Robert K.; Shepherd, Ian G.

    2006-06-25

    There is considerable technological interest in developingnew fuel-flexible combustion systems that can burn fuels such ashydrogenor syngas. Lean premixed systems have the potential to burn thesetypes of fuels with high efficiency and low NOx emissions due to reducedburnt gas temperatures. Although traditional scientific approaches basedon theory and laboratory experiment have played essential roles indeveloping our current understanding of premixed combustion, they areunable to meet the challenges of designing fuel-flexible lean premixedcombustion devices. Computation, with itsability to deal with complexityand its unlimited access to data, hasthe potential for addressing thesechallenges. Realizing this potential requires the ability to perform highfidelity simulations of turbulent lean premixed flames under realisticconditions. In this paper, we examine the specialized mathematicalstructure of these combustion problems and discuss simulation approachesthat exploit this structure. Using these ideas we can dramatically reducecomputational cost, making it possible to perform high-fidelitysimulations of realistic flames. We illustrate this methodology byconsidering ultra-lean hydrogen flames and discuss how this type ofsimulation is changing the way researchers study combustion.

  10. Numerical simulation of premixed turbulent methane combustion

    SciTech Connect

    Day, Marc S.; Bell, John B.; Almgren, Ann S.; Beckner, Vincent E.; Lijewski, Michael J.; Cheng, Robert; Shepherd, Ian; Johnson, Matthew

    2003-06-14

    With adaptive-grid computational methodologies and judicious use of compressible and low Mach number combustion models, we are carrying out three-dimensional, time-dependent direct numerical simulations of a laboratory-scale turbulent premixed methane burner. In the laboratory experiment, turbulence is generated by a grid located in the throat of a 50mm diameter circular nozzle; swirl is be introduced by four tangential air jets spaced uniformly around the circumference of the nozzle just above the turbulence grid. A premixed methane flame is stabilized above the nozzle in the central core region where a velocity deficit is induced7the swirling flow. The time-dependent flow field inside the nozzle, from the turbulence grid and the high-speed jets, to the nozzle exit plane is simulated using an adaptive-grid embedded-boundary compressible Navier-Stokes solver. The compressible calculation then provides time-dependent boundary conditions for an adaptive low Mach number model of the swirl-stabilized premixed flame. The low Mach model incorporates detailed chemical kinetics and species transport using 20 species and 84 reactions. Laboratory diagnostics available for comparisons include characterizations of the flow field just down stream of the nozzle exit plane, and flame surface statistics, such as mean location, wrinkling and crossing frequencies.

  11. Pdf modeling for premixed turbulent combustion based on the properties of iso-concentration surfaces

    NASA Technical Reports Server (NTRS)

    Vervisch, L.; Kollmann, W.; Bray, K. N. C.; Mantel, T.

    1994-01-01

    In premixed turbulent flames the presence of intense mixing zones located in front of and behind the flame surface leads to a requirement to study the behavior of iso-concentration surfaces defined for all values of the progress variable (equal to unity in burnt gases and to zero in fresh mixtures). To support this study, some theoretical and mathematical tools devoted to level surfaces are first developed. Then a database of direct numerical simulations of turbulent premixed flames is generated and used to investigate the internal structure of the flame brush, and a new pdf model based on the properties of iso-surfaces is proposed.

  12. Propagation Limits of High Pressure Cool Flames

    NASA Astrophysics Data System (ADS)

    Ju, Yiguang

    2016-11-01

    The flame speeds and propagation limits of premixed cool flames at elevated pressures with radiative heat loss are numerically modelled using dimethyl ether mixtures. The primary focus is paid on the effects of pressure, mixture dilution, flame size, and heat loss on cool flame propagation. The results showed that cool flames exist on both fuel lean and fuel rich sides and thus dramatically extend the lean and rich flammability limits. There exist three different flame regimes, hot flame, cool flame, and double flame. A new flame flammability diagram including both cool flames and hot flames is obtained at elevated pressure. The results show that pressure significantly changes cool flame propagation. It is found that the increases of pressure affects the propagation speeds of lean and rich cool flames differently due to the negative temperature coefficient effect. On the lean side, the increase of pressure accelerates the cool flame chemistry and shifts the transition limit of cool flame to hot flame to lower equivalence ratio. At lower pressure, there is an extinction transition from hot flame to cool flame. However, there exists a critical pressure above which the cool flame to hot flame transition limit merges with the lean flammability limit of the hot flame, resulting in a direct transition from hot flame to cool flame. On the other hand, the increase of dilution reduces the heat release of hot flame and promotes cool flame formation. Moreover, it is shown that a smaller flame size and a higher heat loss also extend the cool flame transition limit and promote cool flame formation.

  13. Spectral kinetic energy transfer in turbulent premixed reacting flows.

    PubMed

    Towery, C A Z; Poludnenko, A Y; Urzay, J; O'Brien, J; Ihme, M; Hamlington, P E

    2016-05-01

    Spectral kinetic energy transfer by advective processes in turbulent premixed reacting flows is examined using data from a direct numerical simulation of a statistically planar turbulent premixed flame. Two-dimensional turbulence kinetic-energy spectra conditioned on the planar-averaged reactant mass fraction are computed through the flame brush and variations in the spectra are connected to terms in the spectral kinetic energy transport equation. Conditional kinetic energy spectra show that turbulent small-scale motions are suppressed in the burnt combustion products, while the energy content of the mean flow increases. An analysis of spectral kinetic energy transfer further indicates that, contrary to the net down-scale transfer of energy found in the unburnt reactants, advective processes transfer energy from small to large scales in the flame brush close to the products. Triadic interactions calculated through the flame brush show that this net up-scale transfer of energy occurs primarily at spatial scales near the laminar flame thermal width. The present results thus indicate that advective processes in premixed reacting flows contribute to energy backscatter near the scale of the flame.

  14. Gas turbine premixing systems

    SciTech Connect

    Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

    2013-12-31

    Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

  15. Diffusion Flame Stabilization

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2007-01-01

    Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm) (Fig. 1, left). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated (Fig. 1, right). A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.

  16. Diffusion Flame Stabilization

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, V. R.

    2006-01-01

    Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated. A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.

  17. PDF Modeling of Turbulent Lean Premixed Combustion

    SciTech Connect

    Yilmaz, S.L.; •Givi, P.; Strakey, P.A.

    2007-10-01

    The joint velocity-scalar-frequency probability density function (PDF) methodology is employed for prediction of a bluff-body stabilized lean premixed methane-air flame. A reduced mechanism with CO and NO chemistry is used to describe fuel oxidation. The predicted mean and rms values of the velocity, temperature and concentrations of major and minor species are compared with laboratory measurements. This technical effort was performed in support of the National Energy Technology Laboratory’s on-going research in “Assessment of Turbo-Chemistry Models for Gas Turbine Combustion Emissions” under the RDS contract DE-AC26-04NT41817.

  18. Local Limit Phenomena, Flow Compression, and Fuel Cracking Effects in High-Speed Turbulent Flames

    DTIC Science & Technology

    2015-06-01

    previously generated at Sandia are employed for the analysis: a non-premixed temporal jet flame of ethylene-air diluted with N2 (DNS by D.O. Lignell...flame temperature). Both the DNS datasets were generated from Sandia’s multi-million-CPU-hour supercomputing and are high fidelity data sources for...computational diagnostic benchmarking and turbulent combustion model creation and validation. The CEMA result for the non-premixed temporal jet flame

  19. Ignition transition in turbulent premixed combustion

    SciTech Connect

    Shy, S.S.; Liu, C.C.; Shih, W.T.

    2010-02-15

    Recently, Shy and his co-workers reported a turbulent ignition transition based on measurements of minimum ignition energies (MIE) of lean premixed turbulent methane combustion in a centrally-ignited, fan-stirred cruciform burner capable of generating intense isotropic turbulence. Using the same methodology, this paper presents new complete MIE data sets for stoichiometric and rich cases at three different equivalence ratios {phi} = 1.0, 1.2 and 1.3, each covering a wide range of a turbulent Karlovitz number (Ka) indicating a time ratio between chemical reaction and turbulence. Thus, ignition transition in premixed turbulent combustion depending on both Ka and {phi} can be identified for the first time. It is found that there are two distinct modes on ignition in randomly stirred methane-air mixtures (ignition transition) separated by a critical Ka where values of Ka{sub c} {approx} 8-26 depending on {phi} with the minimum Ka{sub c} occurring near {phi} = 1. For Ka < Ka{sub c}, MIE increases gradually with Ka, flame kernel formation is similar to laminar ignition remaining a torus, and 2D laser tomography images of subsequent outwardly-propagating turbulent flames show sharp fronts. For Ka > Ka{sub c}, MIE increases abruptly with Ka, flame kernel is disrupted, and subsequent randomly-propagating turbulent flames reveal distributed-like fronts. Moreover, we introduce a reaction zone Peclet number (P{sub RZ}) indicating the diffusivity ratio between turbulence and chemical reaction, such that the aforementioned very scattering MIE data depending on Ka and {phi} can be collapsed into a single curve having two drastically different increasing slopes with P{sub RZ} which are separated by a critical P{sub RZ} {approx} 4.5 showing ignition transition. Finally, a physical model is proposed to explain these results. (author)

  20. Numerical Study of Buoyancy and Differential Diffusion Effects on the Structure and Dynamics of Triple Flames

    NASA Technical Reports Server (NTRS)

    Chen, J. -Y.; Echekki, T.

    1999-01-01

    Triple flames arise in a number of practical configurations where fuel and oxidizer are partially premixed, such as in the base of a lifted jet flame. Past experimental studies, theoretical analyses, and numerical modeling of triple flames suggested the potential role of triple flames in stabilizing turbulent flames and in promoting flame propagation. From recent numerical simulations of laminar triple flames, a strong influence of differential diffusion among species and heat on the triple flame structure has been gradually appreciated. This paper reports preliminary numerical results on the influence of gravity and differential diffusion effects on the structure and dynamics of triple flames with a one-step global irreversible chemistry model.

  1. Flame structure of nozzles offsetting opposite flows

    NASA Astrophysics Data System (ADS)

    Yahagi, Yuji; Morinaga, Yuichiro; Hamaishi, Kyosuke; Makino, Ikuyo

    2016-09-01

    Effects of vortexes behind flame zone on the flame structures are investigated experimentally by nozzles offsetting opposite flows with 2D laser diagnosis. Methane air premixed gas issued from upper and lower burners with equal flow rate. An imbalanced counter flow is produced to slide the lower burner from the center axis. In our proposed flow system, the vortexes are only formed in the burnt gas region by the shear stress due to the velocity difference between the upper flow and lower flow. Three distinct flames structures, slant flames, edge shape flames, and hyperbolic flames are decided with the offsetting rate and fuel flows composition. The formed vortexes structures changed with the offsetting rate. The vortex formed behind the flame plays an important role for the flame stability.

  2. An experimental investigation on flame interaction and the existence of negative flame speeds

    NASA Technical Reports Server (NTRS)

    Sohrab, S. H.; Ye, Z. Y.; Law, C. K.

    1985-01-01

    Downstream interaction between two counterflow premixed flames of different stoichiometries are investigated. Various flame configurations are observed and quantified; these include the binary system of two lean or rich flames, the triplet system of a lean and a rich flame separated by a diffusion flame, and single diffusion flames with some degree of premixedness. Extinction limits are determined for methane/air and butane/air mixtures over the entire range of mixture concentrations. Results show that these extinction limits can be significantly modified in the presence of interaction such that a mixture much beyond the flammability limit can still burn if it is supported by a stronger flame. The experiment also demonstrates the existence of negative flames whose propagation velocity is in the same general direction as that of the bulk convective flow. Implications of the present results on the flammability of stratified mixtures and on the modeling of turbulent flames are discussed.

  3. Modelling of turbulent lifted jet flames using flamelets: a priori assessment and a posteriori validation

    NASA Astrophysics Data System (ADS)

    Ruan, Shaohong; Swaminathan, Nedunchezhian; Darbyshire, Oliver

    2014-03-01

    This study focuses on the modelling of turbulent lifted jet flames using flamelets and a presumed Probability Density Function (PDF) approach with interest in both flame lift-off height and flame brush structure. First, flamelet models used to capture contributions from premixed and non-premixed modes of the partially premixed combustion in the lifted jet flame are assessed using a Direct Numerical Simulation (DNS) data for a turbulent lifted hydrogen jet flame. The joint PDFs of mixture fraction Z and progress variable c, including their statistical correlation, are obtained using a copula method, which is also validated using the DNS data. The statistically independent PDFs are found to be generally inadequate to represent the joint PDFs from the DNS data. The effects of Z-c correlation and the contribution from the non-premixed combustion mode on the flame lift-off height are studied systematically by including one effect at a time in the simulations used for a posteriori validation. A simple model including the effects of chemical kinetics and scalar dissipation rate is suggested and used for non-premixed combustion contributions. The results clearly show that both Z-c correlation and non-premixed combustion effects are required in the premixed flamelets approach to get good agreement with the measured flame lift-off heights as a function of jet velocity. The flame brush structure reported in earlier experimental studies is also captured reasonably well for various axial positions. It seems that flame stabilisation is influenced by both premixed and non-premixed combustion modes, and their mutual influences.

  4. Flame Propagation in Low-Intensity Turbulence under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Aldredge, R. C.

    2001-01-01

    The goal of the research is to understand the influences of the hydrodynamic instability on premixed-flame propagation. It is known that coupling between flame and flow-field dynamics in association with the hydrodynamic instability may lead to flame-generated turbulence, flame acceleration and enhancement of burning rates. As a result of such hydrodynamic coupling the transition from initially planar or wrinkled laminar flames to fast turbulent flames or detonations is possible, even when diffusive-thermal effects associated with non-unity reactant Lewis numbers are not destabilizing. It is important to identify methods of suppressing the hydrodynamic instability so as to insure fire safety, particularly in space.

  5. Development of Criteria for Flameholding Tendencies within Premixer Passages for High Hydrogen Content Fuels

    SciTech Connect

    Lewis, Elliot Sullivan-; McDonell, Vincent G.

    2014-12-01

    Due to increasingly stringent air quality requirements stationary power gas turbines have moved to lean-premixed operation, which reduces pollutant emissions but can result in flashback. Flashback can cause serious damage to the premixer hardware. Curtailing flashback can be difficult with hydrocarbon fuels and becomes even more challenging when hydrogen is used as the fuel. The two main approaches for coping with flashback are either to design a combustor that is resistant to flashback, or to design a premixer that will not anchor a flame if flashback occurs. Even with a well-designed combustor flashback can occur under certain circumstances, thus it is necessary to determine how to avoid flameholding within the premixer passageways of a gas turbine. To this end, an experiment was designed that would determine the flameholding propensities at elevated pressures and temperatures of three different classes of geometric features commonly found in gas turbine premixers, with both natural gas and hydrogen fuel. Experiments to find the equivalence ratio at blow off were conducted within an optically accessible test apparatus with four flameholders: 0.25 and 0.50 inch diameter cylinders, a reverse facing step with a height of 0.25 inches, and a symmetric airfoil with a thickness of 0.25 inches and a chord length of one inch. Tests were carried out at temperatures between 300 K and 750 K, at pressures up to 9 atmospheres. Typical bulk velocities were between 40 and 100 m/s. The effect of airfoil’s angle of rotation was also investigated. Blow off for hydrogen flames was found to occur at much lower adiabatic flame temperatures than natural gas flames. Additionally it was observed that at high pressures and high turbulence intensities, reactant velocity does not have a noticeable effect on the point of blow off due in large part to corresponding increases in turbulent flame speed. Finally a semi empirical correlation was developed that predicts flame extinction for both

  6. Flame tolerant secondary fuel nozzle

    SciTech Connect

    Khan, Abdul Rafey; Ziminsky, Willy Steve; Wu, Chunyang; Zuo, Baifang; Stevenson, Christian Xavier

    2015-02-24

    A combustor for a gas turbine engine includes a plurality of primary nozzles configured to diffuse or premix fuel into an air flow through the combustor; and a secondary nozzle configured to premix fuel with the air flow. Each premixing nozzle includes a center body, at least one vane, a burner tube provided around the center body, at least two cooling passages, a fuel cooling passage to cool surfaces of the center body and the at least one vane, and an air cooling passage to cool a wall of the burner tube. The cooling passages prevent the walls of the center body, the vane(s), and the burner tube from overheating during flame holding events.

  7. Lean Premixed Combustion Stabilized by Low Swirl a Promising Concept for Practical Applications

    NASA Technical Reports Server (NTRS)

    Cheng, R. K.

    1999-01-01

    Since its inception, the low-swirl burner (LSB) has shown to be a useful laboratory apparatus for fundamental studies of premixed turbulent flames. The LSB operates under wide ranges of equivalence ratios, flow rates, and turbulence intensities. Its flame is lifted and detached from the burner and allows easy access for laser diagnostics. The flame brush is axisymmetric and propagates normal to the incident reactants. Therefore, the LSB is well suited for investigating detailed flame structures and empirical coefficients such as flame speed, turbulence transport, and flame generated turbulence. Due to its capability to stabilize ultra-lean premixed turbulent flames (phi approx. = 0.55), the LSB has generated interest from the gas appliance industry for use as an economical low-NO(x) burner. Lean premixed combustion emits low levels of NO(x), due primarily to the low flame temperature. Therefore, it is a very effective NO(x) prevention method without involving selective catalytic reduction (SCR), fuel-air staging, or flue gas recirculation (FGR). En the gas turbine industry, substantial research efforts have already been undertaken and engines with lean premixed combustors are already in use. For commercial and residential applications, premixed pulsed combustors and premixed ceramic matrix burners are commercially available. These lean premixed combustion technologies, however, tend to be elaborate but have relatively limited operational flexibility, and higher capital, operating and maintenance costs. Consequently, these industries are continuing the development of lean premixed combustion technologies as well as exploring new concepts. This paper summarizes the research effects we have undertaken in the past few years to demonstrate the feasibility of applying the low-swirl flame stabilization method for a wide range of heating and power generation systems. The principle of flame stabilization by low-swirl is counter to the conventional high-swirl methods that

  8. Large Lewis No. Edge-Flame Instabilities

    NASA Technical Reports Server (NTRS)

    Buckmaster, J.

    2001-01-01

    Edge-flames play an important role in a number of microgravity investigations, and in the general study of flames. Examples include the candle-flame experiments carried out on board both the Space Shuttle and the Mir Space Station; the flame-spread-over-liquid work carried out by H. Ross and W. Sirignano amongst others and lifted turbulent diffusion flames. In all of these configurations a local two-dimensional flame structure can be identified which looks like a flame-sheet with an edge, and these structures exhibit dynamical behavior which characterizes them and distinguishes them from ad hoc 2D flame structures. Edge-flames can exist in both a non-premixed context (edges of diffusion flames) and in a premixed context (edges of deflagrations), but the work reported here deals with the edges of diffusion flames. It is particularly relevant, we believe, to oscillations that have been seen in both the candle-flame context, and the flame-spread-over-liquid context. These oscillations are periodic edge-oscillations (in an appropriate reference frame), sans oscillation of the trailing diffusion flame. It is shown that if the Lewis number of the fuel is sufficiently large (the Lewis number of the oxidizer is taken to be 1), and the Damkohler number is sufficiently small, oscillating-edge solutions can be found. Oscillations are encouraged by an on-edge convective flow and the insertion of a cold probe, discouraged by an off-edge convective flow. In the present work, the nature of these oscillations is examined in more depth, using a variety of numerical strategies.

  9. Turbulent Nonpremixed Flames (TNF): Experimental Data Archives and Computational Submodels

    DOE Data Explorer

    In the 1990s an international collaboration formed around a series of workshops that became known collectively as the International Workshop on Measurement and Computation of Turbulent Non-Premixed Flames (TNF). An online library, hosted by Sandia National Laboratory (California) was established that provides data sets and submodels or "mechanisms" for the study of turbulence-chemistry interactions in turbulent nonpremixed and partially premixed combustion. Data are organized by flame types: simple jet flames, piloted jet flames, bluff body flames, and swirl flames. These data sets provide a means for collaborative comparisons of both measured and simulated/modeled research results and also assist scientists in determining priorities for further research. More than 20 data sets or databases are available from this website, along with various downloadable files of chemical mechanisms. The website also provides an extensive bibliography and the proceedings of the workshops themselves from 1996 through 2012. Information continues to be added to this collection.

  10. Structure Of Flame Balls At Low Lewis-number (SOFBALL)

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.

    1995-01-01

    The work has encompassed several topics related to the experimental and theoretical study of combustion limits in premixed flames at microgravity. These topics include (1) flame structure and stability at low Lewis number (which is the basis for the SOFBALL space flight experiment), (2) flame propagation and extinction in cylindrical tubes, and (3) experimental simulation of combustion processes using autocatalytic chemical reactions. Progress on each of these topics is outlined.

  11. Turbulent premixed combustion; Further discussions on the scales of fluctuations

    SciTech Connect

    Borghi, R. )

    1990-06-01

    The prediction of turbulent combustion is classically performed by numerical integration of modeled equations. For each existing approach, a crucial quantity is a time scale for the destruction of temperature (or concentration) fluctuations. Usually, this time scale is simply taken as proportional to the corresponding time scale for velocity fluctuations, but the question of the influence of the reaction on this scale arises, and has already been discussed. The authors discuss this point in the particular case of wrinkled premixed flames. Algebraic closure formulas, as well as closures based on the so-called {epsilon}{sub y} equation, or on the equation for the flame surface by unit of volume of Marble and Broadwell, are proposed and discussed. It is found, in particular, that in the case of wrinkled flames with infinite Damkohler and Reynolds numbers the reaction does not play any direct role on the time scale.

  12. Premixer Design for High Hydrogen Fuels

    SciTech Connect

    Benjamin P. Lacy; Keith R. McManus; Balachandar Varatharajan; Biswadip Shome

    2005-12-16

    This 21-month project translated DLN technology to the unique properties of high hydrogen content IGCC fuels, and yielded designs in preparation for a future testing and validation phase. Fundamental flame characterization, mixing, and flame property measurement experiments were conducted to tailor computational design tools and criteria to create a framework for predicting nozzle operability (e.g., flame stabilization, emissions, resistance to flashback/flame-holding and auto-ignition). This framework was then used to establish, rank, and evaluate potential solutions to the operability challenges of IGCC combustion. The leading contenders were studied and developed with the most promising concepts evaluated via computational fluid dynamics (CFD) modeling and using the design rules generated by the fundamental experiments, as well as using GE's combustion design tools and practices. Finally, the project scoped the necessary steps required to carry the design through mechanical and durability review, testing, and validation, towards full demonstration of this revolutionary technology. This project was carried out in three linked tasks with the following results. (1) Develop conceptual designs of premixer and down-select the promising options. This task defined the ''gap'' between existing design capabilities and the targeted range of IGCC fuel compositions and evaluated the current capability of DLN pre-mixer designs when operated at similar conditions. Two concepts (1) swirl based and (2) multiple point lean direct injection based premixers were selected via a QFD from 13 potential design concepts. (2) Carry out CFD on chosen options (1 or 2) to evaluate operability risks. This task developed the leading options down-selected in Task 1. Both a GE15 swozzle based premixer and a lean direct injection concept were examined by performing a detailed CFD study wherein the aerodynamics of the design, together with the chemical kinetics of the combustion process, were

  13. Aromatics oxidation and soot formation in flames

    SciTech Connect

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T.

    1993-12-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

  14. Turbulent Flame Processes Via Diffusion Flame-Vortex Ring Interactions

    NASA Technical Reports Server (NTRS)

    Dahm, Werner J. A.; Chen, Shin-Juh; Silver, Joel A.; Piltch, Nancy D.; VanderWal, Randall L.

    2001-01-01

    Flame-vortex interactions are canonical configurations that can be used to study the underlying processes occurring in turbulent reacting flows. This configuration contains many of the fundamental aspects of the coupling between fluid dynamics and combustion that could be investigated with more controllable conditions than are possible under direct investigations of turbulent flames. Diffusion flame-vortex ring interaction contains many of the fundamental elements of flow, transport, combustion, and soot processes found in turbulent diffusion flames. Some of these elements include concentrated vorticity, entrainment and mixing, strain and nonequilibrium phenomena, diffusion and differential diffusion, partial premixing and diluent effects, soot formation and oxidation, and heat release effects. Such simplified flowfield allows the complex processes to be examined more closely and yet preserving the physical processes present in turbulent reacting flows. Furthermore, experimental results from the study of flame-vortex interactions are useful for the validation of numerical simulations and more importantly to deepen our understanding of the fundamental processes present in reacting flows. Experimental and numerical results obtained under microgravity conditions of the diffusion flame-vortex ring interaction are summarized in this paper. Results are obtained using techniques that include Flame Luminosity Imaging (FLI), Laser Soot-Mie Scattering (LSMS), Computational Fluid Dynamics and Combustion (CFDC), and Diode Laser Spectroscopy/Iterative Temperature with Assumed Chemistry (DLS/ITAC).

  15. Non-premixed conditions in the flameholding recirculation region behind a step in supersonic flow

    NASA Astrophysics Data System (ADS)

    Thakur, Amit

    Flameholding in supersonic flow depends on local conditions in the recirculation region, and on mass transfer into and out of this region. Large gradients in local gas composition and temperature exist in the recirculation region. Hence, stability parameter correlations developed for premixed flames cannot be used to determine blowout stability limits for non-premixed flames encountered in practical devices. In the present study, mixture samples were extracted at different locations in the recirculation region and the shear layer formed behind a rearward-facing step in supersonic flow, and analyzed by mass spectrometry to determine the species concentration distribution in the region. The point-wise mass spectrometer measurements were complemented by acetone planar laser-induced fluorescence (PLIF) measurements to get a planar distribution of fuel mole fraction in the recirculation region. Non-reacting flow tests and combustion experiments were performed by varying various fuel related parameters such as injection location, injection pressure and fuel type. Fuel injection upstream of the step was not effective in supplying enough fuel to the recirculation region and did not sustain the flame in combustion experiments. Fuel injection at the step base was effective in sustaining the flame. For base injection, the local fuel mole fraction in the recirculation region determined from experiments was an order of magnitude higher than the global fuel mole fraction based on total moles of air flowing through the test section and total fuel injected in the test section. This suggests substantial difference in flame stability curve for non-premixed conditions in the scramjet engine compared to premixed flow. For base injection, fuel remained in the recirculation region even at higher injection pressure. Due to slower diffusion rate, the heavier fuel had higher local mole fraction in the recirculation region compared to lighter fuel for a unit global fuel mole fraction

  16. Effect of fuel mixture fraction and velocity perturbations on the flame transfer function of swirl stabilized flames

    NASA Astrophysics Data System (ADS)

    Wysocki, Stefan; Di-Chiaro, Giacomo; Biagioli, Fernando

    2015-11-01

    A novel methodology is developed to decompose the classic Flame Transfer Function (FTF) used in the thermo-acoustic stability analysis of lean premix combustors into contributions of different types. The approach is applied, in the context of Large Eddy Simulation (LES), to partially-premixed and fully-premixed flames, which are stabilized via a central recirculation zone as a result of the vortex breakdown phenomenon. The first type of decomposition is into contributions driven by fuel mixture fraction and dynamic velocity fluctuations. Each of these two contributions is further split into the components of turbulent flame speed and flame surface area. The flame surface area component, driven by the pure dynamic velocity fluctuation, which is shown to be a dominant contribution to the overall FTF, is also additionally decomposed over the coherent flow structures using proper orthogonal decomposition. Using a simplified model for the dynamic response of premixed flames, it is shown that the distribution of the FTF, as obtained from LES, is closely related to the characteristics of the velocity field frequency response to the inlet perturbation. Initially, the proposed method is tested and validated with a well characterized laboratory burner geometry. Subsequently, the method is applied to an industrial gas turbine burner.

  17. The effects of complex chemistry on triple flames

    NASA Technical Reports Server (NTRS)

    Echekki, T.; Chen, J. H.

    1996-01-01

    The structure, ignition, and stabilization mechanisms for a methanol (CH3OH)-air triple flame are studied using Direct Numerical Simulations (DNS). The methanol (CH3OH)-air triple flame is found to burn with an asymmetric shape due to the different chemical and transport processes characterizing the mixture. The excess fuel, methanol (CH3OH), on the rich premixed flame branch is replaced by more stable fuels CO and H2, which burn at the diffusion flame. On the lean premixed flame side, a higher concentration of O2 leaks through to the diffusion flame. The general structure of the triple point features the contribution of both differential diffusion of radicals and heat. A mixture fraction-temperature phase plane description of the triple flame structure is proposed to highlight some interesting features in partially premixed combustion. The effects of differential diffusion at the triple point add to the contribution of hydrodynamic effects in the stabilization of the triple flame. Differential diffusion effects are measured using two methods: a direct computation using diffusion velocities and an indirect computation based on the difference between the normalized mixture fractions of C and H. The mixture fraction approach does not clearly identify the effects of differential diffusion, in particular at the curved triple point, because of ambiguities in the contribution of carbon and hydrogen atoms' carrying species.

  18. Experimental assessment of O2 interferences on laser-induced fluorescence measurements of NO in high-pressure, lean premixed flames by use of narrow-band and broadband detection

    NASA Astrophysics Data System (ADS)

    Partridge, William P., Jr.; Klassen, Michael S.; Thomsen, D. Douglas; Laurendeau, Normand M.

    1996-08-01

    We experimentally investigate the influence of O 2 interferences on laser-induced fluorescence measurements of NO in lean methane-fueled flames at a range of pressures for both narrow-band and broadband fluorescence detection. We identify NO excitation schemes that minimize O2 interferences. From detection scans we obtain interference spectra for the different NO excitation schemes. We then identify optimum excitation-detection schemes for narrow-band detection measurements of NO. To simulate broadband detection experiments, we numerically apply five different filter combinations to the experimentally obtained detection scans. We develop filter-assessment parameters to judge the effectiveness of the different filtering schemes, and we establish a methodology for evaluating broadband excitation-detection strategies. From this research we identify optimum excitation-detection schemes for broadband detection measurements of NO.

  19. Experimental assessment of O 2 interferences on laser-induced fluorescence measurements of NO in high-pressure, lean premixed flames by use of narrow-band and broadband detection

    NASA Astrophysics Data System (ADS)

    Partridge, William P.; Klassen, Michael S.; Thomsen, D. Douglas; Laurendeau, Normand M.

    1995-08-01

    We experimentally investigate the influence of O 2 interferences on laser-induced fluorescence measurements of NO in lean methane-fueled flames at a range of pressures for both narrow-band and broadband fluorescence detection. We identify NO excitation schemes that minimize O 2 interferences. From detection scans we obtain interference spectra for the different NO excitation schemes. We then identify optimum excitation-detection schemes for narrow-band detection measurements of NO. To simulate broadband detection experiments, we numerically apply five different filter combinations to the experimentally obtained detection scans. We develop filter-assessment parameters to judge the effectiveness of the different filtering schemes, and we establish a methodology for evaluating broadband excitation-detection strategies. From this research we identify optimum excitation-detection schemes for broadband detection measurements of NO.

  20. Flame acceleration in the early stages of burning in tubes

    SciTech Connect

    Bychkov, Vitaly; Fru, Gordon; Petchenko, Arkady; Akkerman, V'yacheslav; Eriksson, Lars-Erik

    2007-09-15

    Acceleration of premixed laminar flames in the early stages of burning in long tubes is considered. The acceleration mechanism was suggested earlier by Clanet and Searby [Combust. Flame 105 (1996) 225]. Acceleration happens due to the initial ignition geometry at the tube axis when a flame develops to a finger-shaped front, with surface area growing exponentially in time. Flame surface area grows quite fast but only for a short time. The analytical theory of flame acceleration is developed, which determines the growth rate, the total acceleration time, and the maximal increase of the flame surface area. Direct numerical simulations of the process are performed for the complete set of combustion equations. The simulations results and the theory are in good agreement with the previous experiments. The numerical simulations also demonstrate flame deceleration, which follows acceleration, and the so-called ''tulip flames''. (author)

  1. Lean premixed/prevaporized combustion

    NASA Technical Reports Server (NTRS)

    Lefebvre, A. H. (Editor)

    1977-01-01

    Recommendations were formulated on the status and application of lean premixed/prevaporized combustion to the aircraft gas turbine for the reduction of pollutant emissions. The approach taken by the NASA Stratospheric Cruise Emission Reduction Program (SCERP) in pursuing the lean premixed/prevaporized combustion technique was also discussed. The proceedings contains an overview of the SCERP program, the discussions and recommendations of the participants, and an overall summary.

  2. Stretch-rate relationships for turbulent premixed combustion LES subgrid models measured using temporally resolved diagnostics

    SciTech Connect

    Steinberg, Adam M.; Driscoll, James F.

    2010-07-15

    Temporally resolved measurements of turbulence-flame interaction were used to experimentally determine relationships for the strain-rate and curvature stretch-rate exerted on a premixed flame surface. These relationships include a series of transfer functions that are analogous to, but not equal to, stretch-efficiency functions. The measurements were obtained by applying high-repetition-rate particle image velocimetry in a turbulent slot Bunsen flame and were able to resolve the range of turbulent scales that cause flame surface straining and wrinkling. Fluid control masses were tracked in a Lagrangian manner as they interacted with the flame surface. From each interaction, the spatially and temporally filtered subgrid strain-rate and curvature stretch-rate were measured. By analyzing the statistics of thousands of turbulence-flame interactions, relationships for the strain-rate and curvature stretch-rate were determined that are appropriate for Large Eddy Simulation. It was found that the strain-rate exerted on the flame during these interactions was better correlated with the strength of the subgrid fluid-dynamic strain-rate field than with previously used characteristic strain-rates. Furthermore, stretch-efficiency functions developed from simplified vortex-flame interactions significantly over-predict the measurements. Hence, the proposed relationship relates the strain-rate on the flame to the filtered subgrid fluid-dynamic strain-rate field during real turbulence-flame interactions using an empirically determined Strain-Rate Transfer function. It was found that the curvature stretch-rate did not locally balance the strain-rate as has been proposed in previous models. A geometric relationship was found to exist between the subgrid flame surface wrinkling factor and subgrid curvature stretch-rate, which could be expressed using an empirically determined wrinkling factor transfer function. Curve fits to the measured relationships are provided that could be

  3. Representation of the Essential Flame-Turbulence Dynamics using Specific Flame-Vortex Interactions

    NASA Astrophysics Data System (ADS)

    Paes, Paulo L. K.; Brasseur, James; Xuan, Yuan

    2016-11-01

    Many engineering applications involve turbulent reacting flows, where nonlinear, multi-scale turbulence-combustion couplings are important. Directly resolving the complex fluid dynamics involved in these applications is associated with prohibitive computational costs, which makes it necessary to employ turbulent closure models and turbulent combustion models to account for the effects of unresolved scales on resolved scales. Most of these existent closure models rely on some assumptions about the turbulence dynamics and the scale separation between turbulence and the different combustion processes. A better understanding of the turbulence-combustion interactions is required for the development of more accurate, physics-based sub-grid-scale models for turbulent reacting flows. Instead of developing an extreme-resolution, high Reynolds number turbulent flame simulation that is limited to a localized part of the regime diagram, in this work, we propose to develop a series of numerical experiments of simplified interactions between a laminar premixed flame and specified vortex distributions of varying strengths and scales to capture the essential flame-turbulence dynamics over distinct premixed turbulent combustion regimes. The response of the laminar flame to different vortex time and length scales is investigated and the physical relevance of each dataset to practical turbulent premixed flames is discussed.

  4. Flame Chemiluminescence Rate Constants for Quantitative Microgravity Combustion Diagnostics

    NASA Technical Reports Server (NTRS)

    Luque, Jorge; Smith, Gregory P.; Jeffries, Jay B.; Crosley, David R.; Weiland, Karen (Technical Monitor)

    2001-01-01

    Absolute excited state concentrations of OH(A), CH(A), and C2(d) were determined in three low pressure premixed methane-air flames. Two dimensional images of chemiluminescence from these states were recorded by a filtered CCD camera, processed by Abel inversion, and calibrated against Rayleigh scattering, Using a previously validated 1-D flame model with known chemistry and excited state quenching rate constants, rate constants are extracted for the reactions CH + O2 (goes to) OH(A) + CO and C2H + O (goes to) CH(A) + CO at flame temperatures. Variations of flame emission intensities with stoichiometry agree well with model predictions.

  5. An experimental investigation of flame behavior during cylindrical vessel explosions

    SciTech Connect

    Starke, R.; Roth, P.

    1986-12-01

    The propagation of premixed flames centrally ignited at one of the end flanges of a closed cylindrical vessel and the flame-induced fluid flow have been investigated in the present study. Photographic records show that under specific geometrical conditions the flame exhibits a cone form with a backward directed top, called ''tulip'' -shaped. This appears after the flame has lost a main part of its area by side wall quenching. With a laser-Doppler anemometer the instantaneous flow velocity during the short explosion process was measured together with pressure records.

  6. An experimental investigation of flame behavior during cylindrical vessel explosions

    NASA Astrophysics Data System (ADS)

    Starke, R.; Roth, P.

    1986-12-01

    The propagation of premixed flames centrally ignited at one of the end flanges of a closed cylindrical vessel and the flame-induced flow have been investigated. Photographic records show that under specific geometrical conditions the flame exhibits a cone form with a backward directed top, called tulip-shaped. This appears after the flame has lost a main part of its area by side wall quenching. The instantaneous flow velocity during the short explosion process was measured, together with pressure records, with an LDV. An analogy to the experiments of Markstein (1964), is shown, and the explanations of several authors for the 'tulip' formation are given.

  7. The Effects of Gravity on Wrinkled Laminar Flames

    NASA Technical Reports Server (NTRS)

    Kostiuk, Larry W.; Zhou, Liming; Cheng, Robert K.

    1993-01-01

    The effects of gravity are significant to the dynamics of idealized unconfined open premixed flames. Moderate to low turbulence Reynolds number flames, i.e., wrinkled laminar flames, of various unconfined geometries have been used extensively for investigating fundamental processes of turbulent flame propagation and to validate theoretical models. Without the wall constraints, the flames are free to expand and interact with surrounding ambient air. The flow field in which the flame exists is determined by a coupling of burner geometry, flame orientation and the gravity field. These complex interactions raise serious questions regarding the validity of comparing the experimental data of open flames with current theoretical and numerical models that do not include the effects of gravity nor effects of the larger aerodynamic flowfield. Therefore, studies of wrinkled laminar flame in microgravity are needed for a better understanding of the role of gravity on flame characteristics such as the orientation, mean aerodynamics stretch, flame wrinkle size and burning rate. Our approach to characterize and quantify turbulent flame structures under microgravity is to exploit qualitative and quantitative flow visualization techniques coupled with video recording and computer controlled image analysis technologies. The experiments will be carried out in the 2.2 second drop tower at the NASA Lewis Research Center. The longest time scales of typical wrinkled laminar flames in the geometries considered here are in the order of 10 msec. Hence, the duration of the drop is sufficient to obtain the amount of statistical data necessary for characterize turbulent flame structures.

  8. Experimental study of turbulent flame kernel propagation

    SciTech Connect

    Mansour, Mohy; Peters, Norbert; Schrader, Lars-Uve

    2008-07-15

    Flame kernels in spark ignited combustion systems dominate the flame propagation and combustion stability and performance. They are likely controlled by the spark energy, flow field and mixing field. The aim of the present work is to experimentally investigate the structure and propagation of the flame kernel in turbulent premixed methane flow using advanced laser-based techniques. The spark is generated using pulsed Nd:YAG laser with 20 mJ pulse energy in order to avoid the effect of the electrodes on the flame kernel structure and the variation of spark energy from shot-to-shot. Four flames have been investigated at equivalence ratios, {phi}{sub j}, of 0.8 and 1.0 and jet velocities, U{sub j}, of 6 and 12 m/s. A combined two-dimensional Rayleigh and LIPF-OH technique has been applied. The flame kernel structure has been collected at several time intervals from the laser ignition between 10 {mu}s and 2 ms. The data show that the flame kernel structure starts with spherical shape and changes gradually to peanut-like, then to mushroom-like and finally disturbed by the turbulence. The mushroom-like structure lasts longer in the stoichiometric and slower jet velocity. The growth rate of the average flame kernel radius is divided into two linear relations; the first one during the first 100 {mu}s is almost three times faster than that at the later stage between 100 and 2000 {mu}s. The flame propagation is slightly faster in leaner flames. The trends of the flame propagation, flame radius, flame cross-sectional area and mean flame temperature are related to the jet velocity and equivalence ratio. The relations obtained in the present work allow the prediction of any of these parameters at different conditions. (author)

  9. Conditional budgets of second-order statistics in nonpremixed and premixed turbulent combustion

    NASA Astrophysics Data System (ADS)

    Macart, Jonathan F.; Grenga, Temistocle; Mueller, Michael E.

    2016-11-01

    Combustion heat release modifies or introduces a number of new terms to the balance equations for second-order turbulence statistics (turbulent kinetic energy, scalar variance, etc.) compared to incompressible flow. A major modification is a significant increase in viscosity and dissipation in the high-temperature combustion products, but new terms also appear due to density variation and gas expansion (dilatation). Previous scaling analyses have hypothesized that dilatation effects are important in turbulent premixed combustion but are unimportant in turbulent nonpremixed combustion. To explore this hypothesis, a series of DNS calculations have been performed in the low Mach number limit for spatially evolving turbulent planar jet flames of hydrogen and air in both premixed and nonpremixed configurations. Unlike other studies exploring the effects of heat release on turbulence, the turbulence is not forced, and detailed chemical kinetics are used to describe hydrogen-air combustion. Budgets for second-order statistics are computed conditioned on progress variable in the premixed flame and on mixture fraction in the nonpremixed flame in order to locate regions with respect to the flame structure where dilatation effects are strongest.

  10. Extinction of Lifted Flames Under Normal and Micro-Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Lock, Andrew; Puri, Ishwar; Aggarwal, Suresh; Hegde, Uday

    2005-11-01

    Inert diluents are commonly used to suppress fires in both normal- and microgravity conditions. While previous work has elucidated the effects of introducing an inert diluent into a flow in which nonpremixed flames are established, little work has been done on the effect these diluents have on partially premixed flames (PPFs). PPFs are hybrid flames that have characteristics of both premixed and nonpremixed flames. Herein, experimental measurements and numerical simulations of PPF and nonpremixed flames diluted by CO2 are conducted. Visual images are experimentally obtained in microgravity, while visual images, chemiluminescence, and radiation measurements are obtained in normal gravity . The resulting fluid dynamics and chemistry interactions are elucidated. PPFs and nonpremixed flames lift off as CO2 is added to the flame prior to blowout. The quantity of CO2 necessary for flame blowout decreases with increased partial premixing of the initial flow. The rich premixed reaction zone of a PPF is found to weaken as CO2 is added to the flow.

  11. Flashback detection sensor for lean premix fuel nozzles

    DOEpatents

    Thornton, Jimmy Dean; Richards, George Alan; Straub, Douglas L.; Liese, Eric Arnold; Trader, Jr., John Lee; Fasching, George Edward

    2002-08-06

    A sensor for detecting the flame occurring during a flashback condition in the fuel nozzle of a lean premix combustion system is presented. The sensor comprises an electrically isolated flashback detection electrode and a guard electrode, both of which generate electrical fields extending to the walls of the combustion chamber and to the walls of the fuel nozzle. The sensor is positioned on the fuel nozzle center body at a location proximate the entrance to the combustion chamber of the gas turbine combustion system. The sensor provides 360.degree. detection of a flashback inside the fuel nozzle, by detecting the current conducted by the flame within a time frame that will prevent damage to the gas turbine combustion system caused by the flashback condition.

  12. Computations of turbulent lean premixed combustion using conditional moment closure

    NASA Astrophysics Data System (ADS)

    Amzin, Shokri; Swaminathan, Nedunchezhian

    2013-12-01

    Conditional Moment Closure (CMC) is a suitable method for predicting scalars such as carbon monoxide with slow chemical time scales in turbulent combustion. Although this method has been successfully applied to non-premixed combustion, its application to lean premixed combustion is rare. In this study the CMC method is used to compute piloted lean premixed combustion in a distributed combustion regime. The conditional scalar dissipation rate of the conditioning scalar, the progress variable, is closed using an algebraic model and turbulence is modelled using the standard k-ɛ model. The conditional mean reaction rate is closed using a first order CMC closure with the GRI-3.0 chemical mechanism to represent the chemical kinetics of methane oxidation. The PDF of the progress variable is obtained using a presumed shape with the Beta function. The computed results are compared with the experimental measurements and earlier computations using the transported PDF approach. The results show reasonable agreement with the experimental measurements and are consistent with the transported PDF computations. When the compounded effects of shear-turbulence and flame are strong, second order closures may be required for the CMC.

  13. The effect of background turbulence on the propagation of large-scale flames

    NASA Astrophysics Data System (ADS)

    Matalon, Moshe

    2008-12-01

    This paper is based on an invited presentation at the Conference on Turbulent Mixing and Beyond held in the Abdus Salam International Center for Theoretical Physics, Trieste, Italy (August 2007). It consists of a summary of recent investigations aimed at understanding the nature and consequences of the Darrieus-Landau instability that is prominent in premixed combustion. It describes rigorous asymptotic methodologies used to simplify the propagation problem of multi-dimensional and time-dependent premixed flames in order to understand the nonlinear evolution of hydrodynamically unstable flames. In particular, it addresses the effect of background turbulent noise on the structure and propagation of large-scale flames.

  14. Vortex combustor for low NOx emissions when burning lean premixed high hydrogen content fuel

    DOEpatents

    Steele, Robert C.; Edmonds, Ryan G.; Williams, Joseph T.; Baldwin, Stephen P.

    2009-10-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  15. Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel

    SciTech Connect

    Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

    2012-11-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  16. Formation and Combustion of Smoke in Laminar Flames

    NASA Technical Reports Server (NTRS)

    Schalla, Rose L; Clark, Thomas P; Mcdonald, Glen E

    1954-01-01

    The nature and formation of smoke and its combustion were investigated. Smoke, which consist of tiny mesomorphous crystals tightly packed into popcorn-ball-like particles that agglomerate to give filaments, was found to contain about 5 percent of the hydrogen originally present in the fuel. Factors affecting smoke formation were studied in both diffusion flames and premixed Bunsen flames. It is suggested that smoking tendency increases with increasing stability of the carbon skeleton of the molecule, as determined by relative bond strength.

  17. Detailed reduction of reaction mechanisms for flame modeling

    NASA Technical Reports Server (NTRS)

    Wang, Hai; Frenklach, Michael

    1991-01-01

    A method for reduction of detailed chemical reaction mechanisms, introduced earlier for ignition system, was extended to laminar premixed flames. The reduction is based on testing the reaction and reaction-enthalpy rates of the 'full' reaction mechanism using a zero-dimensional model with the flame temperature profile as a constraint. The technique is demonstrated with numerical tests performed on the mechanism of methane combustion.

  18. Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung K.

    2013-09-01

    In this paper we clarify the role of Markstein diffusivity, which is the product of the planar laminar flame speed and the Markstein length, on the turbulent flame speed and its scaling, based on experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame propagation data are presented for premixed flames of mixtures of hydrogen, methane, ethylene, n-butane, and dimethyl ether with air, in near-isotropic turbulence in a dual-chamber, fan-stirred vessel. For each individual fuel-air mixture presented in this work and the recently published iso-octane data from Leeds, normalized turbulent flame speed data of individual fuel-air mixtures approximately follow a ReT,f0.5 scaling, for which the average radius is the length scale and thermal diffusivity is the transport property of the turbulence Reynolds number. At a given ReT,f, it is experimentally observed that the normalized turbulent flame speed decreases with increasing Markstein number, which could be explained by considering Markstein diffusivity as the leading dissipation mechanism for the large wave number flame surface fluctuations. Consequently, by replacing thermal diffusivity with the Markstein diffusivity in the turbulence Reynolds number definition above, it is found that normalized turbulent flame speeds could be scaled by ReT,M0.5 irrespective of the fuel, equivalence ratio, pressure, and turbulence intensity for positive Markstein number flames.

  19. Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations.

    PubMed

    Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung K

    2013-09-01

    In this paper we clarify the role of Markstein diffusivity, which is the product of the planar laminar flame speed and the Markstein length, on the turbulent flame speed and its scaling, based on experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame propagation data are presented for premixed flames of mixtures of hydrogen, methane, ethylene, n-butane, and dimethyl ether with air, in near-isotropic turbulence in a dual-chamber, fan-stirred vessel. For each individual fuel-air mixture presented in this work and the recently published iso-octane data from Leeds, normalized turbulent flame speed data of individual fuel-air mixtures approximately follow a Re_{T,f}^{0.5} scaling, for which the average radius is the length scale and thermal diffusivity is the transport property of the turbulence Reynolds number. At a given Re_{T,f}^{}, it is experimentally observed that the normalized turbulent flame speed decreases with increasing Markstein number, which could be explained by considering Markstein diffusivity as the leading dissipation mechanism for the large wave number flame surface fluctuations. Consequently, by replacing thermal diffusivity with the Markstein diffusivity in the turbulence Reynolds number definition above, it is found that normalized turbulent flame speeds could be scaled by Re_{T,M}^{0.5} irrespective of the fuel, equivalence ratio, pressure, and turbulence intensity for positive Markstein number flames.

  20. Aromatics oxidation and soot formation in flames

    SciTech Connect

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T.

    1993-04-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify, and to confirm or determine rate constants for, the main benzene oxidation reactions in flames, and to characterize soot and fullerenes and their formation mechanisms and kinetics. Stable and radical species profiles in the aromatics oxidation study are measured using molecular beam sampling with on-line mass spectrometry. The rate of soot formation measured by conventional optical techniques is found to support the hypotheses that particle inception occurs through reactive coagulation of high molecular weight PAH in competition with destruction by OHattack, and that the subsequent growth of the soot mass occurs through addition reactions of PAH and C[sub 2]H[sub 2] with the soot particles. During the first year of this reporting period, fullerenes C[sub 60] and C[sub 70] in substantial quantities were found in the flames being studied. The fullerenes were recovered, purified and spectroscopically identified. The yields of C[sub 60] and C[sub 70] were then determined over ranges of conditions in low-pressure premixed flames of benzene and oxygen.

  1. Premixed Prevaporized Combustor Technology Forum

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Forum was held to present the results of recent and current work intended to provide basic information required for demonstration of lean, premixed prevaporized combustors for aircraft gas turbine engine application. Papers are presented which deal with the following major topics: (1) engine interfaces; (2) fuel-air preparation; (3) autoignition; (4) lean combustion; and (5) concept design studies.

  2. Wrinkled flames and geometrical stretch

    NASA Astrophysics Data System (ADS)

    Denet, Bruno; Joulin, Guy

    2011-07-01

    Localized wrinkles of thin premixed flames subject to hydrodynamic instability and geometrical stretch of uniform intensity (S) are studied. A stretch-affected nonlinear and nonlocal equation, derived from an inhomogeneous Michelson-Sivashinsky equation, is used as a starting point, and pole decompositions are used as a tool. Analytical and numerical descriptions of isolated (centered or multicrested) wrinkles with steady shapes (in a frame) and various amplitudes are provided; their number increases rapidly with 1/S>0. A large constant S>0 weakens or suppresses all localized wrinkles (the larger the wrinkles, the easier the suppression), whereas S<0 strengthens them; oscillations of S further restrict their existence domain. Self-similar evolutions of unstable many-crested patterns are obtained. A link between stretch, nonlinearity, and instability with the cutoff size of the wrinkles in turbulent flames is suggested. Open problems are evoked.

  3. Experimental analysis of an oblique turbulent flame front propagating in a stratified flow

    SciTech Connect

    Galizzi, C.; Escudie, D.

    2010-12-15

    This paper details the experimental study of a turbulent V-shaped flame expanding in a nonhomogeneous premixed flow. Its aim is to characterize the effects of stratification on turbulent flame characteristics. The setup consists of a stationary V-shaped flame stabilized on a rod and expanding freely in a lean premixed methane-air flow. One of the two oblique fronts interacts with a stratified slice, which has an equivalence ratio close to one and a thickness greater than that of the flame front. Several techniques such as PIV and CH{sup *} chemiluminescence are used to investigate the instantaneous fields, while laser Doppler anemometry and thermocouples are combined with a concentration probe to provide information on the mean fields. First, in order to provide a reference, the homogeneous turbulent case is studied. Next, the stratified turbulent premixed flame is investigated. Results show significant modifications of the whole flame and of the velocity field upstream of the flame front. The analysis of the geometric properties of the stratified flame indicates an increase in flame brush thickness, closely related to the local equivalence ratio. (author)

  4. Studies in premixed combustion. Annual progress report, November 1, 1992--October 31, 1993

    SciTech Connect

    Sivashinsky, G.I.

    1993-03-01

    During the period under review, significant progress was been made in studying the intrinsic dynamics of premixed flames and the problems of flame-flow interaction. (1) A weakly nonlinear model for Bunsen burner stabilized flames was proposed and employed for the simulation of three-dimensional polyhedral flames -- one of the most graphic manifestations of thermal-diffusive instability in premixed combustion. (2) A high-precision large-scale numerical simulation of Bunsen burner tip structure was conducted. The results obtained supported the earlier conjecture that the tip opening observed in low Lewis number systems is a purely optical effect not involving either flame extinction or leakage of unburned fuel. (3) A one-dimensional model describing a reaction wave moving through a unidirectional periodic flow field is proposed and studied numerically. For long-wavelength fields the system exhibits a peculiar non-uniqueness of possible propagation regimes. The transition from one regime to another occurs in a manner of hysteresis.

  5. Turbulent non-premixed combustion driven by the Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Varshochi, Hilda; Ramaprabhu, Praveen; Attal, Nitesh

    2016-11-01

    We report on 3D high resolution numerical simulations of a non-premixed, reacting Richmyer-Meshkov (RM) instability performed using the FLASH code. In the simulations, a Mach 1.6 shock traverses a diffuse, corrugated material interface separating Hydrogen at 1000 K and Oxygen at 300 K, so that local misalignments between pressure and density gradients induce baroclinic vorticity at the contact line. The vorticity deposition drives the RM instability, which in turn results in combustion and flame formation. We study the evolution of the interface and the flame as the resulting RM instability grows through linear, nonlinear and turbulent stages. We develop a detailed understanding of the effects of heat release and combustion on the underlying flow properties by comparing our results with a baseline non-reacting RM flow. We document the properties of the instability (growth rates, pdfs, spectra) and the flame (scalar dissipation rate, flame surface area, heat release rate) as well as the nature of the coupling between the two. Our findings are relevant to supernovae detonation, knocking in IC engines and scramjet performance, while the underlying flow problem defined here represents a novel canonical framework to understand the broader class of non-premixed turbulent flames.

  6. Dual-pump CARS temperature and major species concentration measurements in counter-flow methane flames using narrowband pump and broadband Stokes lasers

    SciTech Connect

    Thariyan, Mathew P.; Ananthanarayanan, Vijaykumar; Bhuiyan, Aizaz H.; Naik, Sameer V.; Gore, Jay P.; Lucht, Robert P.

    2010-07-15

    Dual-pump coherent anti-Stokes Raman scattering (CARS) is used to measure temperature and species profiles in representative non-premixed and partially-premixed CH{sub 4}/O{sub 2}/N{sub 2} flames. A new laser system has been developed to generate a tunable single-frequency beam for the second pump beam in the dual-pump N{sub 2}-CO{sub 2} CARS process. The second harmonic output ({proportional_to}532 nm) from an injection-seeded Nd:YAG laser is used as one of the narrowband pump beams. The second single-longitudinal-mode pump beam centered near 561 nm is generated using an injection-seeded optical parametric oscillator, consisting of two non-linear {beta}-BBO crystals, pumped using the third harmonic output ({proportional_to}355 nm) of the same Nd:YAG laser. A broadband dye laser (BBDL), pumped using the second harmonic output of an unseeded Nd:YAG laser, is employed to produce the Stokes beam centered near 607 nm with full-width-at-half-maximum of {proportional_to}250 cm{sup -1}. The three beams are focused between two opposing nozzles of a counter-flow burner facility to measure temperature and major species concentrations in a variety of CH{sub 4}/O{sub 2}/N{sub 2} non-premixed and partially-premixed flames stabilized at a global strain rate of 20 s{sup -1} at atmospheric-pressure. For the non-premixed flames, excellent agreement is observed between the measured profiles of temperature and CO{sub 2}/N{sub 2} concentration ratios with those calculated using an opposed-flow flame code with detailed chemistry and molecular transport submodels. For partially-premixed flames, with the rich side premixing level beyond the stable premixed flame limit, the calculations overestimate the distance between the premixed and the non-premixed flamefronts. Consequently, the calculated temperatures near the rich, premixed flame are higher than those measured. Accurate prediction of the distance between the premixed and the non-premixed flames provides an interesting challenge for

  7. Experiments on Diffusion Flame Structure of a Laminar Vortex Ring

    NASA Technical Reports Server (NTRS)

    Chen, Shin-Juh; Dahm, Werner J. A.

    1999-01-01

    The study of flame-vortex interactions provides one of the means to better understand turbulent combustion, and allows for canonical configurations that contain the fundamental elements found in turbulent flames, These include concentrated vorticity, entrainment and mixing, strain and nonequilibrium phenomena, diffusion and differential diffusion, partial premixing and diluent effects, and heat release effects. In flame- vortex configurations, these fundamental elements can be studied under more controlled conditions than is possible in direct investigations of turbulent flames. Since the paper of Marble, the problem of the flame-vortex interaction has received considerable attention theoretically, numerically and experimentally. Several configurations exist for study of the premixed flame/vortex ring interaction but more limited results have been obtained to date for the diffusion flame/vortex ring case. The setup of Chen and Dahm, which is conceptually similar to that of Karagozian and Manda and Karagozian, Suganuma and Strom where the ring is composed of fuel and air and combustion begins during the ring formation process, is used in the current study. However, it is essential to conduct the experiments in microgravity to remove the asymmetries caused by buoyancy and thus obtain highly symmetric and repeatable interactions. In previous studies it was found that the flame structure of the vortex ring was similar to that obtained analytically by Karagozian and Manda. Dilution of propane with nitrogen led mainly to a reduction in flame luminosities, flame burnout times were affected by both fuel volumes and amount of dilution, and a simple model of the burnout times was developed. In this paper, a discussion on reacting ring displacement and flame burnout time will be given, and the flame structures of vortex rings containing ethane and air will be compared to those of propane reacting in air.

  8. Investigation of H2 Concentration and Combustion Instability Effects on the Kinetics of Strained Syngas Flames

    SciTech Connect

    Ahsan R. Choudhuri

    2006-08-07

    The flame extinction limits of syngas (H{sub 2}-CO) flames were measured using a twin-flame-counter-flow burner. Plots of Extinction limits vs. global stretch rates were generated at different mixture compositions and an extrapolation method was used to calculate the flame extinction limit corresponding to an experimentally unattainable zero-stretch condition. The zero-stretch extinction limit of H{sub 2}-CO mixtures decreases (from rich to lean) with the increase in H{sub 2} concentration in the mixture. The average difference between the measured flame extinction limit and the Le Chatelier's calculation is around {approx} 7%. The measured OH{sup -} chemiluminescent data indicates that regardless of mixture compositions the OH radical concentration reduces (within the experimental uncertainties) to an extinction value prior to the flame extinction. Flame extinction limits of H{sub 2}-CO mixtures measured in a flat-flame burner configuration also show a similar relation. Additionally, the measured laminar flame velocity close to the extinction indicates that regardless of fuel composition the premixed flame of hydrogen fuel blends extinguishes when the mixture laminar flame velocity falls below a critical value. The critical laminar flame velocity at extinction for H{sub 2}-CO premixed flames (measured in the flat flame burner configuration) is found to be 3.77({+-}0.38) cm/s. An externally perturbed H{sub 2}-CO twin flame was not experimentally achievable for the mixture conditions used in the present investigation. A slightest perturbation in the flow-field distorts the H{sub 2}-CO twin-flame. The flame becomes highly unstable with the introduction of an externally excited flow oscillation.

  9. Transport Algorithms for Premixed, Laminar Steady State Flames

    DTIC Science & Technology

    1981-03-01

    Equilibrium Compositions, Rocket Performance, Inci- dent and Reflected Shocks and Chapman - Jouguet Detonations", NASA-SP- 273, (1971), (1976...Incident and Reflected Shocks and Chapman - Jouguet Detonations’’ NASA-SP-273, (1971), (1976 program version). 5. Y. S. Touloukian, P. E. Liley, and S...Oran procedure) is at least as accurate and in some cases substantially more accurate than the traditional Method IV for computing the Vi

  10. Localized flame extinction and re-ignition in turbulent jet ignition assisted combustion

    NASA Astrophysics Data System (ADS)

    Validi, Abdoulahad; Schock, Harold; Jaberi, Farhad; Computational Fluid Dynamics Laboratory Team

    2016-11-01

    Direct numerical simulations (DNS) of turbulent jet ignition (TJI)-assisted combustion of ultra-lean fuel-air is performed in a three-dimensional planar jet configuration. TJI is a novel ignition enhancement method which facilitates the combustion of lean and ultra-lean mixtures by rapidly exposing them to high temperature combustion products. Fully compressible gas dynamics and species equations are solved with high order finite difference methods. The hydrogen-air reaction is simulated with a detailed chemical kinetics mechanism consisting of 9 species and 38 elementary reactions. The interesting phenomena involved in TJI combustion including localized premixed flame extinction/re-ignition and simultaneous premixed/non-premixed flames are investigated by using the flame heat release, temperature, species concentrations, and a newly defined TJI progress variable.

  11. Structure and Early Soot Oxidation Properties of Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    El-Leathy, A. M.; Xu, F.; Faeth, G. M.

    2001-01-01

    Soot is an important unsolved problem of combustion science because it is present in most hydrocarbon-fueled flames and current understanding of the reactive and physical properties of soot in flame environments is limited. This lack of understanding affects progress toward developing reliable predictions of flame radiation properties, reliable predictions of flame pollutant emission properties and reliable methods of computational combustion, among others. Motivated by these observations, the present investigation extended past studies of soot formation in this laboratory, to consider soot oxidation in laminar diffusion flames using similar methods. Early work showed that O2 was responsible for soot oxidation in high temperature O2-rich environments. Subsequent work in high temperature flame environments having small O2 concentrations, however, showed that soot oxidation rates substantially exceeded estimates based on the classical O2 oxidation rates of Nagle and Strickland-Constable and suggests that radicals such as O and OH might be strong contributors to soot oxidation for such conditions. Neoh et al. subsequently made observations in premixed flames, supported by later work, that showed that OH was responsible for soot oxidation at these conditions with a very reasonable collision efficiency of 0.13. Subsequent studies in diffusion flames, however, were not in agreement with the premixed flame studies: they agreed that OH played a dominant role in soot oxidation in flames, but found collision efficiencies that varied with flame conditions and were not in good agreement with each other or with Neoh et al. One explanation for these discrepancies is that optical scattering and extinction properties were used to infer soot structure properties for the studies that have not been very successful for representing the optical properties of soot. Whatever the source of the problem, however, these differences among observations of soot oxidation in premixed and

  12. Microwave Plasma Assisted Combustion of Premixed Ar/CH4 and He/CH4 Gases at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Chuji; Srivastava, Nimisha; Malik Kaya, Burak

    2010-11-01

    Low-temperature nonthermal plasma assisted combustion is of growing interest due to potential applications in the improvement of combustion efficiency, reduction of ignition delay time, fuel reforming, etc. A 2.45 GHz microwave plasma source was used to study the microwave plasma enhanced flame of premixed Ar/CH4 and He/CH4 gases at atmospheric pressure. We present the visual observations of the plasma-assisted flames sustained at different mixing ratios of Ar/CH4 and He/CH4 gases. Optical emission spectroscopy (OES) was employed to study the reactive species generated from plasma flame. Visual imaging clearly showed the effect of microwave power and difference in flame shapes created in the Ar/CH4 and He/CH4 combustion: for Ar/CH4 continuous flames were observed; for He/CH4 floating flames (flames sustained with an air-gap from the plasma orifice) were observed at low plasma powers and some particular gas mixing ratios of He/CH4. Measured flame temperatures were much higher than plasma gas temperatures. Reactive species, such as OH, NO, N2, and C2, were observed using OES. Effect of various gas mixing ratios, flow rates, and plasma powers on flame shape and flame temperature were also studied.

  13. Premixed burner studies of NO{sub x} formation and control

    SciTech Connect

    Casleton, K.H.; Straub, D.L.; Moran, C.; Stephens, J.W.

    1993-11-01

    One of the primary reasons for using this type of premixed, flat flame burner is that it is essentially one-dimensional (1-D), i.e., that important parameters such as temperature are nearly constant in regions near the central vertical axis of the burner for a fixed height above the burner surface. As a result of this 1-D nature, computer codes such as Sandia National Laboratory`s PREMIX can be used to model the important chemical interactions involved in the combustion processes. These predictions can be compared with experimental measurements to gain valuable insight into the formation of nitrogen oxides. The bulk of the burner experiments performed to date have been focussed primarily toward characterization of burner and the sample extraction and analysis system. All experiments thus far have been for methane/air flames at one atmosphere pressure. Figure 2 shows the burner centerline temperature profile for an equivalence ratio of {Phi} = 0.87. The sharp peak in temperature near 0.3 cm corresponds to the luminous zone of the flame. The high temperature in the luminous zone shows an abrupt decay with increasing height above the burner. The temperature gradient in the non-luminous post-flame zone is much smaller, approximately 2.5{degree}C decrease in temperature for each millimeter increase in height over the range of 1.3 to 4 cm above the burner. Radial temperature profiles have also been measured to assess the onedimensional nature of this burner.

  14. Premixed Parenteral Nutrition Solution Use in Children

    PubMed Central

    Crill, Catherine M.

    2015-01-01

    OBJECTIVES: In response to national drug shortages, our institution established criteria for the use of commercial premixed parenteral nutrition (PN) solutions in select pediatric patients. Although these solutions have been marketed for use in children, there are no data in this patient population. The objective of this study was to review our use of commercial premixed PN solutions in children. METHODS: This was a retrospective review of patients ≤18 years of age who received a premixed PN solution from October 2010 to April 2012. All premixed PN courses were assessed for incidence of premixed PN discontinuation due to laboratory abnormalities. Estimated goal and actual protein and total caloric intake were evaluated for premixed PN courses that were continued for >48 hours. RESULTS: Sixty-nine patients received 74 courses of premixed PN solutions for a mean duration of 5.6 ± 6.2 (range, 1–31) days. Fifteen courses (20%) required discontinuation of premixed PN as a result of mild laboratory abnormalities. No changes in clinical status were observed in patients and all abnormalities were corrected after switching to individualized PN. In patients receiving PN for >48 hours, premixed PN solutions provided goal protein in 48/49 (98%) courses and goal calories in 33/49 (67%) courses. CONCLUSIONS: Premixed PN solutions were used in a wide range of pediatric patients and provide a potential option for PN support in pediatric patients when drug shortages limit PN product supply. Close monitoring for electrolyte abnormalities and protein and caloric intake is recommended when using premixed PN solutions in children. PMID:26472952

  15. Mixing Model Performance in Non-Premixed Turbulent Combustion

    NASA Astrophysics Data System (ADS)

    Pope, Stephen B.; Ren, Zhuyin

    2002-11-01

    In order to shed light on their qualitative and quantitative performance, three different turbulent mixing models are studied in application to non-premixed turbulent combustion. In previous works, PDF model calculations with detailed kinetics have been shown to agree well with experimental data for non-premixed piloted jet flames. The calculations from two different groups using different descriptions of the chemistry and turbulent mixing are capable of producing the correct levels of local extinction and reignition. The success of these calculations raises several questions, since it is not clear that the mixing models used contain an adequate description of the processes involved. To address these questions, three mixing models (IEM, modified Curl and EMST) are applied to a partially-stirred reactor burning hydrogen in air. The parameters varied are the residence time and the mixing time scale. For small relative values of the mixing time scale (approaching the perfectly-stirred limit) the models yield the same extinction behavior. But for larger values, the behavior is distictly different, with EMST being must resistant to extinction.

  16. Numerical solution of an edge flame boundary value problem

    NASA Astrophysics Data System (ADS)

    Shields, Benjamin; Freund, Jonathan; Pantano, Carlos

    2016-11-01

    We study edge flames for modeling extinction, reignition, and flame lifting in turbulent non-premixed combustion. An adaptive resolution finite element method is developed for solving a strained laminar edge flame in the intrinsic moving frame of reference of a spatially evolving shear layer. The variable-density zero Mach Navier-Stokes equations are used to solve for both advancing and retreating edge flames. The eigenvalues of the system are determined simultaneously (implicitly) with the scalar fields using a Schur complement strategy. A homotopy transformation over density is used to transition from constant- to variable-density, and pseudo arc-length continuation is used for parametric tracing of solutions. Full details of the edge flames as a function of strain and Lewis numbers will be discussed. This material is based upon work supported [in part] by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.

  17. Gas turbine premixer with internal cooling

    DOEpatents

    York, William David; Johnson, Thomas Edward; Lacy, Benjamin Paul; Stevenson, Christian Xavier

    2012-12-18

    A system that includes a turbine fuel nozzle comprising an air-fuel premixer. The air-fuel premixed includes a swirl vane configured to swirl fuel and air in a downstream direction, wherein the swirl vane comprises an internal coolant path from a downstream end portion in an upstream direction through a substantial length of the swirl vane.

  18. Flashback resistant pre-mixer assembly

    DOEpatents

    Laster, Walter R [Oviedo, FL; Gambacorta, Domenico [Oviedo, FL

    2012-02-14

    A pre-mixer assembly associated with a fuel supply system for mixing of air and fuel upstream from a main combustion zone in a gas turbine engine. The pre-mixer assembly includes a swirler assembly disposed about a fuel injector of the fuel supply system and a pre-mixer transition member. The swirler assembly includes a forward end defining an air inlet and an opposed aft end. The pre-mixer transition member has a forward end affixed to the aft end of the swirler assembly and an opposed aft end defining an outlet of the pre-mixer assembly. The aft end of the pre-mixer transition member is spaced from a base plate such that a gap is formed between the aft end of the pre-mixer transition member and the base plate for permitting a flow of purge air therethrough to increase a velocity of the air/fuel mixture exiting the pre-mixer assembly.

  19. Flame Spectra.

    ERIC Educational Resources Information Center

    Cromer, Alan

    1983-01-01

    When salt (NaCl) is introduced into a colorless flame, a bright yellow light (characteristic of sodium) is produced. Why doesn't the chlorine produce a characteristic color of light? The answer to this question is provided, indicating that the flame does not excite the appropriate energy levels in chlorine. (JN)

  20. Attached and lifted diffusion flames in a mixing layer

    NASA Astrophysics Data System (ADS)

    Matalon, Moshe; Lu, Zhanbin

    2016-11-01

    Many practical combustion devices are concerned with the stabilization of diffusion flames that are formed by injecting gaseous fuels into a co-flowing stream containing an oxidizer. A primary concern of these configurations is the attachment and lift-off characteristics of the diffusion flame relative to the rim of the injector. In such circumstances, the edge of the flame, which possesses a distinct structure that combines characteristics of both premixed an diffusion flames, is found to play a crucial role in determining the stabilization of the diffusion flame. In this study, we examine the effect of streams of unequal flow rates on the structural and dynamical properties of the edge flame. We show that, depending on the stoichiometric conditions and the diffusive properties of the fuel and oxidizer, the diffusion flame may either be attached to the rim of the injector, lifted and stabilized at a downstream equilibrium position, or blown off by the flow. Under certain conditions the diffusion flame may undergo spontaneous oscillations, whereby the edge of the flame exhibits a back and forth motion along a direction that coincides with the diffusion flame surface.

  1. Characterization and modeling of premixed turbulent n-heptane ames in the thin reaction zone regime

    NASA Astrophysics Data System (ADS)

    Savard, Bruno

    n-heptane/air premixed turbulent flames in the high-Karlovitz portion of the thin reaction zone regime are characterized and modeled in this thesis using Direct Numerical Simulations (DNS) with detailed chemistry. In order to perform these simulations, a time-integration scheme that can efficiently handle the stiffness of the equations solved is developed first. A first simulation with unity Lewis number is considered in order to assess the effect of turbulence on the flame in the absence of differential diffusion. A second simulation with non-unity Lewis numbers is considered to study how turbulence affects differential diffusion. In the absence of differential diffusion, minimal departure from the 1D unstretched flame structure (species vs. temperature profiles) is observed. In the non-unity Lewis number case, the flame structure lies between that of 1D unstretched flames with "laminar'' non-unity Lewis numbers and unity Lewis number. This is attributed to effective Lewis numbers resulting from intense turbulent mixing and a first model is proposed. The reaction zone is shown to be thin for both flames, yet large chemical source term fluctuations are observed. The fuel consumption rate is found to be only weakly correlated with stretch, although local extinctions in the non-unity Lewis number case are well correlated with high curvature. These results explain the apparent turbulent flame speeds. Other variables that better correlate with this fuel burning rate are identified through a coordinate transformation. It is shown that the unity Lewis number turbulent flames can be accurately described by a set of 1D (in progress variable space) flamelet equations parameterized by the dissipation rate of the progress variable. In the non-unity Lewis number flames, the flamelet equations suggest a dependence on a second parameter, the diffusion of the progress variable. A new tabulation approach is proposed for the simulation of such flames with these dimensionally

  2. Flow topologies in different regimes of premixed turbulent combustion: A direct numerical simulation analysis

    NASA Astrophysics Data System (ADS)

    Wacks, Daniel H.; Chakraborty, Nilanjan; Klein, Markus; Arias, Paul G.; Im, Hong G.

    2016-12-01

    The distributions of flow topologies within the flames representing the corrugated flamelets, thin reaction zones, and broken reaction zone regimes of premixed turbulent combustion are investigated using direct numerical simulation data of statistically planar turbulent H2-air flames with an equivalence ratio ϕ =0.7 . It was found that the diminishing influence of dilatation rate with increasing Karlovitz number has significant influences on the statistical behaviors of the first, second, and third invariants (i.e., P ,Q , and R ) of the velocity gradient tensor. These differences are reflected in the distributions of the flow topologies within the flames considered in this analysis. This has important consequences for those topologies that make dominant contributions to the scalar-turbulence interaction and vortex-stretching terms in the scalar dissipation rate and enstrophy transport equations, respectively. Detailed physical explanations are provided for the observed regime dependences of the flow topologies and their implications on the scalar dissipation rate and enstrophy transport.

  3. Basic Study on the Generation of RF Plasmas in Premixed Oxy-combustion with Methane

    NASA Astrophysics Data System (ADS)

    Osaka, Yugo; Kobayashi, Noriyuki; Razzak, M. A.; Ohno, Noriyasu; Takamura, Shuichi; Uesugi, Yoshihiko

    Oxy-combustion generates a high temperature field (above 3000 K), which is applied to next generation power plants and high temperature industrial technologies because of N2 free processes. However, the combustion temperature is so high that the furnace wall may be fatally damaged. In addition, it is very difficult to control the heat flux and chemical species' concentrations because of rapid chemical reactions. We have developed a new method for controlling the flame by electromagnetic force on this field. In this paper, we experimentally investigated the power coupling between the premixed oxy-combustion with methane and radio frequency (RF) power through the induction coil. By optimizing the power coupling, we observed that the flame can absorb RF power up to 1.5 kW. Spectroscopic measurements also showed an increase in the emission intensity from OH radicals in the flame, indicating improved combustibility.

  4. Structure and Soot Formation Properties of Laminar Flames

    NASA Technical Reports Server (NTRS)

    El-Leathy, A. M.; Xu, F.; Faeth, G. M.

    2001-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science for several reasons: soot emissions are responsible for more deaths than any other combustion-generated pollutant, thermal loads due to continuum radiation from soot limit the durability of combustors, thermal radiation from soot is mainly responsible for the growth and spread of unwanted fires, carbon monoxide emissions associated with soot emissions are responsible for most fire deaths, and limited understanding of soot processes in flames is a major impediment to the development of computational combustion. Motivated by these observations, soot processes within laminar premixed and nonpremixed (diffusion) flames are being studied during this investigation. The study is limited to laminar flames due to their experimental and computational tractability, noting the relevance of these results to practical flames through laminar flamelet concepts. Nonbuoyant flames are emphasized because buoyancy affects soot processes in laminar diffusion flames whereas effects of buoyancy are small for most practical flames. This study involves both ground- and space-based experiments, however, the following discussion will be limited to ground-based experiments because no space-based experiments were carried out during the report period. The objective of this work was to complete measurements in both premixed and nonpremixed flames in order to gain a better understanding of the structure of the soot-containing region and processes of soot nucleation and surface growth in these environments, with the latter information to be used to develop reliable ways of predicting soot properties in practical flames. The present discussion is brief, more details about the portions of the investigation considered here can be found in refs. 8-13.

  5. Analytical study in the mechanism of flame movement in horizontal tubes. II. Flame acceleration in smooth open tubes

    NASA Astrophysics Data System (ADS)

    Kazakov, Kirill A.

    2013-08-01

    The problem of spontaneous acceleration of premixed flames propagating in open horizontal tubes with smooth walls is revisited. It is proved that in long tubes, this process can be considered quasi-steady, and an equation for the flame front position is derived using the on-shell description. Numerical solutions of this equation are found which show that as in the case of uniform flame movement, there are two essentially different regimes of flame propagation. In the type I regime, the flame speed and its acceleration are comparatively low, whereas the type II regime is characterized by significant flame acceleration that rapidly increases as the flame travels along the tube. A detailed comparison of the obtained results with the experimental data on flame acceleration in methane-air mixtures is given. In particular, it is confirmed that flames propagating in near-stoichiometric mixtures and mixtures near the limits of inflammability belong to the types II and I, respectively, whereas flames in transient mixtures undergo transitions between the two regimes during their travel.

  6. Fullerenes, PAH, Carbon Nanostructures, and Soot in Low Pressure Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Grieco, William J.; Lafleur, Arthur L.; Rainey, Lenore C.; Taghizadeh, Koli; VanderSande, John B.; Howard, Jack B.

    1997-01-01

    The formation of fullerenes C60 and C7O is known to occur in premixed laminar benzene/oxygen/argon flames operated at reduced pressures. High resolution transmission electron microscopy (HRTEM) images of material collected from these flames has identified a variety of multishelled nanotubes and fullerene 'onions' as well as some trigonous structures. These fullerenes and nanostructures resemble the material that results from commercial fullerene production systems using graphite vaporization. As a result, combustion is an interesting method for fullerenes synthesis. If commercial scale operation is to be considered, the use of diffusion flames might be safer and less cumbersome than premixed flames. However, it is not known whether diffusion flames produce the types and yields of fullerenes obtained from premixed benzene/oxygen flames. Therefore, the formation of fullerenes and carbon nanostructures, as well as polycyclic aromatic hydrocarbons (PAH) and soot, in acetylene and benzene diffusion flames is being studied using high performance liquid chromatography (HPLC) and high resolution transmission electron microscopy (HRTEM).

  7. Real fuel effects on flame extinction and re-ignition

    NASA Astrophysics Data System (ADS)

    Zhao, Xinyu; Wu, Bifen; Xu, Chao; Lu, Tianfeng; Chen, Jacqueline H.

    2016-11-01

    Flame-vortex interactions have significant implications in studying combustion in practical aeronautical engines, and can be used to facilitate the model development in capturing local extinction and re-ignition. To study the interactions between the complex fuel and the intense turbulence that are commonly encountered in engines, direct numerical simulations of the interactions between a flame and a vortex pair are carried out using a recently-developed 24-species reduced chemistry for n-dodecane. Both non-premixed and premixed flames with different initial and inlet thermochemical conditions are studied. Parametric studies of different vortex strengths and orientations are carried out to induce maximum local extinction and re-ignition. Chemical-explosive-mode-analysis based flame diagnostic tools are used to identify different modes of combustion, including auto-ignition and extinction. Results obtained from the reduced chemistry are compared with those obtained from one-step chemistry to quantify the effect of fuel pyrolysis on the extinction limit. Effects of flame curvature, heat loss and unsteadiness on flame extinction are also explored. Finally, the validity of current turbulent combustion models to capture the local extinction and re-ignition will be discussed.

  8. Effects of pressure on syngas/air turbulent nonpremixed flames

    NASA Astrophysics Data System (ADS)

    Lee, Bok Jik; Im, Hong G.; Ciottoli, Pietro Paolo; Valorani, Mauro

    2016-11-01

    Large eddy simulations (LES) of turbulent non-premixed jet flames were conducted to investigate the effects of pressure on the syngas/air flame behavior. The software to solve the reactive Navier-Stokes equations was developed based on the OpenFOAM framework, using the YSLFM library for the flamelet-based chemical closure. The flamelet tabulation is obtained by means of an in-house code designed to solve unsteady flamelets of both ideal and real fluid mixtures. The validation of the numerical setup is attained by comparison of the numerical results with the Sandia/ETH-Zurich experimental database of the CO/H2/N2 non-premixed, unconfined, turbulent jet flame, referred to as "Flame A". Two additional simulations, at pressure conditions of 2 and 5 atm, are compared and analyzed to unravel computational and scientific challenges in characterizing turbulent flames at high pressures. A set of flamelet solutions, representative of the jet flames under review, are analyzed following a CSP approach. In particular, the Tangential Stretching Rate (TSR), representing the reciprocal of the most energetic time scale associated with the chemical source term, and its extension to reaction-diffusion systems (extended TSR), are adopted.

  9. Fuel premixing module for gas turbine engine combustor

    NASA Technical Reports Server (NTRS)

    Chin, Jushan (Inventor); Rizk, Nader K. (Inventor); Razdan, Mohan K. (Inventor); Marshall, Andre W. (Inventor)

    2005-01-01

    A fuel-air premixing module is designed to reduce emissions from a gas turbine engine. In one form, the premixing module includes a central pilot premixer module with a main premixer module positioned thereround. Each of the portions of the fuel-air premixing module include an axial inflow swirler with a plurality of fixed swirler vanes. Fuel is injected into the main premixer module between the swirler vanes of the axial inflow swirler and at an acute angle relative to the centerline of the premixing module.

  10. The interaction of high-speed turbulence with flames: Turbulent flame speed

    SciTech Connect

    Poludnenko, A.Y.; Oran, E.S.

    2011-02-15

    Direct numerical simulations of the interaction of a premixed flame with driven, subsonic, homogeneous, isotropic, Kolmogorov-type turbulence in an unconfined system are used to study the mechanisms determining the turbulent flame speed, S{sub T}, in the thin reaction zone regime. High intensity turbulence is considered with the r.m.s. velocity 35 times the laminar flame speed, S{sub L}, resulting in the Damkoehler number Da=0.05. The simulations were performed with Athena-RFX, a massively parallel, fully compressible, high-order, dimensionally unsplit, reactive-flow code. A simplified reaction-diffusion model, based on the one-step Arrhenius kinetics, represents a stoichiometric H{sub 2}-air mixture under the assumption of the Lewis number Le=1. Global properties and the internal structure of the flame were analyzed in an earlier paper, which showed that this system represents turbulent combustion in the thin reaction zone regime. This paper demonstrates that: (1) The flame brush has a complex internal structure, in which the isosurfaces of higher fuel mass fractions are folded on progressively smaller scales. (2) Global properties of the turbulent flame are best represented by the structure of the region of peak reaction rate, which defines the flame surface. (3) In the thin reaction zone regime, S{sub T} is predominantly determined by the increase of the flame surface area, A{sub T}, caused by turbulence. (4) The observed increase of S{sub T} relative to S{sub L} exceeds the corresponding increase of A{sub T} relative to the surface area of the planar laminar flame, on average, by {approx}14%, varying from only a few percent to as high as {approx}30%. (5) This exaggerated response is the result of tight flame packing by turbulence, which causes frequent flame collisions and formation of regions of high flame curvature >or similar 1/{delta}{sub L}, or ''cusps,'' where {delta}{sub L} is the thermal width of the laminar flame. (6) The local flame speed in the cusps

  11. Flame Structure and Emissions of Strongly-Pulsed Turbulent Diffusion Flames with Swirl

    NASA Astrophysics Data System (ADS)

    Liao, Ying-Hao

    This work studies the turbulent flame structure, the reaction-zone structure and the exhaust emissions of strongly-pulsed, non-premixed flames with co-flow swirl. The fuel injection is controlled by strongly-pulsing the fuel flow by a fast-response solenoid valve such that the fuel flow is completely shut off between pulses. This control strategy allows the fuel injection to be controlled over a wide range of operating conditions, allowing the flame structure to range from isolated fully-modulated puffs to interacting puffs to steady flames. The swirl level is controlled by varying the ratio of the volumetric flow rate of the tangential air to that of the axial air. For strongly-pulsed flames, both with and without swirl, the flame geometry is strongly impacted by the injection time. Flames appear to exhibit compact, puff-like structures for short injection times, while elongated flames, similar in behaviors to steady flames, occur for long injection times. The flames with swirl are found to be shorter for the same fuel injection conditions. The separation/interaction level between flame puffs in these flames is essentially governed by the jet-off time. The separation between flame puffs decreases as swirl is imposed, consistent with the decrease in flame puff celerity due to swirl. The decreased flame length and flame puff celerity are consistent with an increased rate of air entrainment due to swirl. The highest levels of CO emissions are generally found for compact, isolated flame puffs, consistent with the rapid quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels, suggesting more rapid and complete fuel/air mixing by imposing swirl in the co-flow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off time. The swirled co-flow air can, in some cases, increase the NO

  12. Apparatus and method for burning a lean, premixed fuel/air mixture with low NOx emission

    DOEpatents

    Kostiuk, Larry W.; Cheng, Robert K.

    1996-01-01

    An apparatus for enabling a burner to stably burn a lean fuel/air mixture. The burner directs the lean fuel/air mixture in a stream. The apparatus comprises an annular flame stabilizer; and a device for mounting the flame stabilizer in the fuel/air mixture stream. The burner may include a body having an internal bore, in which case, the annular flame stabilizer is shaped to conform to the cross-sectional shape of the bore, is spaced from the bore by a distance greater than about 0.5 mm, and the mounting device mounts the flame stabilizer in the bore. An apparatus for burning a gaseous fuel with low NOx emissions comprises a device for premixing air with the fuel to provide a lean fuel/air mixture; a nozzle having an internal bore through which the lean fuel/air mixture passes in a stream; and a flame stabilizer mounted in the stream of the lean fuel/air mixture. The flame stabilizer may be mounted in the internal bore, in which case, it is shaped and is spaced from the bore as just described. In a method of burning a lean fuel/air mixture, a lean fuel/air mixture is provided, and is directed in a stream; an annular eddy is created in the stream of the lean fuel/air mixture; and the lean fuel/air mixture is ignited at the eddy.

  13. Measurements of density field in a swirling flame by 2D spontaneous Raman scattering

    NASA Astrophysics Data System (ADS)

    Sharaborin, D. K.; Dulin, V. M.; Lobasov, A. S.; Markovich, D. M.

    2016-10-01

    This paper presents an evaluation of the density distribution in swirling turbulent premixed flames. The measurement principle is based on registration of spontaneous Raman scattering, when the reacting gas flow is illuminated by a laser sheet. Evaluation of 1D and 2D distributions of density and temperature were performed in a laminar Bunsen flame as a test case for validation of experimental technique. Time-averaged 2D images of the scattering during rovibronic transitions of nitrogen molecules were captured in turbulent premixed low-swirl and high-swirl (Re = 5000) propane-air flames in a wide range of equivalence ratio. The obtained density fields are useful for better understanding of heat and mass transfer in swirl-stabilized turbulent flames and for validation of CFD results.

  14. Emissions of oxides of nitrogen from an experimental premixed-hydrogen burner

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1976-01-01

    Flame-tube experiments using premixed hydrogen and air were conducted to determine the emissions of oxides of nitrogen (NOx) resulting from ultralean combustion. Measurements of NOx emissions and combustion efficiency were made for inlet mixture temperatures of 600 and 700 K, pressures of 3.8 x 10 to the 5th power and 5.2 x 10 to the 5th power N/m squared, reference velocities of 15 to 18 m/sec, and equivalence ratios of 0.2 to 0.4. At the 700 K inlet mixture temperature, NOx emissions were 0.06 ppmv, and combustion efficiency was 98 percent at an equivalence ratio of 0.24. The use of a high-blockage (92-percent blockage) flameholder made it possible to conduct tests without upstream burning in the premixing duct for mixtures with equivalence ratios less than 0.4. For richer mixtures upstream burning did occur and prevented further testing.

  15. Degree of vaporization using an airblast type fuel injector for a premixed-prevaporized combustor

    NASA Technical Reports Server (NTRS)

    Tacina, R. R.

    1978-01-01

    Vaporization data are presented which could be useful in designing premixed-prevaporized fuel preparation systems for gas turbine combustors. Lean, premixed-prevaporized combustion systems are being developed because they operate with low flame temperatures and, therefore, produce low levels of nitrogen oxides. Parametric tests of the effect of inlet air temperature, length (residence time), reference velocity, pressure and fuel-air ratio on the degree of vaporization are reported. Jet A and Diesel no. 2 fuel were tested. A formula is provided which shows the effect of inlet air temperature, residence time, reference velocity, and pressure on the degree of vaporization for a constant fuel-air ratio of 0.020. The results of the effect of inlet air temperature on the degree of vaporization using Jet A and Diesel no. 2 are nearly identical.

  16. Flame Detector

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Scientific Instruments, Inc. has now developed a second generation, commercially available instrument to detect flames in hazardous environments, typically refineries, chemical plants and offshore drilling platforms. The Model 74000 detector incorporates a sensing circuit that detects UV radiation in a 100 degree conical field of view extending as far as 250 feet from the instrument. It operates in a bandwidth that makes it virtually 'blind' to solar radiation while affording extremely high sensitivity to ultraviolet flame detection. A 'windowing' technique accurately discriminates between background UV radiation and ultraviolet emitted from an actual flame, hence the user is assured of no false alarms. Model 7410CP is a combination controller and annunciator panel designed to monitor and control as many as 24 flame detectors. *Model 74000 is no longer being manufactured.

  17. Soot Formation in Hydrocarbon/Air Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Faeth, G. M.

    1994-01-01

    Soot processes within hydrocarbon/air diffusion flames are important because they affect the durability and performance of propulsion systems, the hazards of unwanted fires, the pollutant and particulate emissions from combustion processes, and the potential for developing computational combustion. Motivated by these observations, this investigation involved an experimental study of the structure and soot properties of round laminar jet diffusion flames, seeking an improved understanding of soot formation (growth and nucleation) within diffusion flames. The present study extends earlier work in this laboratory concerning laminar smoke points (l) and soot formation in acetylene/air laminar jet diffusion flames (2), emphasizing soot formation in hydrocarbon/air laminar jet diffusion flames for fuels other than acetylene. In the flame system, acetylene is the dominant gas species in the soot formation region and both nucleation and growth were successfully attributed to first-order reactions of acetylene, with nucleation exhibiting an activation energy of 32 kcal/gmol while growth involved negligible activation energy and a collision efficiency of O.53%. In addition, soot growth in the acetylene diffusion flames was comparable to new soot in premixed flame (which also has been attributed to first-order acetylene reactions). In view of this status, a major issue is the nature of soot formation processes in diffusion flame involving hydrocarbon fuels other than acetylene. In particular, information is needed about th dominant gas species in the soot formation region and the impact of gas species other than acetylene on soot nucleation and growth.

  18. Stabilization of an unconfined flame by a bluff body

    SciTech Connect

    Hertzberg, J.R.

    1986-01-01

    The study of turbulent combustion is motivated by the need for more-efficient use of fossil fuels. In particular, the stabilization region of an unconfined premixed turbulent flame on a bluff body is important as a fundamental and practical problem, for its implications for other stabilized flames and for its applications in turbojet afterburners. A detailed study of the velocity and density fields of an ethylene-air V-shaped flame in an open jet (50 mm diameter) wind tunnel with grid-generated turbulence was made. Two velocity components were measured simultaneously using Laser Doppler Anemometry. Point measurements of gas density were made non-intrusively using laser Rayleigh scattering. The development of the leading edge of the flame sheet was analyzed with an ionization probe. Only the richer flame stabilized, showing evidence of vortices shed in the wake. These did not, however, perturb the flame. Near the flame holder, the density and velocity probability density functions have monomodal distributions but further downstream these evolve into the bimodal shape characteristic of wrinkled laminar flames. This was found to be a useful stabilization criterion when comparing the various flames.

  19. Buoyancy induced extinction of laminar gas jet diffusion flames

    NASA Technical Reports Server (NTRS)

    Altenkirch, R. A.; Eichhorn, R.; Brancic, A. B.

    1977-01-01

    The behavior of laminar gas jet diffusion flames subjected to elevated gravity in order to investigate the role of buoyancy in such flames has been studied experimentally. Higher than earth normal gravity was achieved using a 1.83 m diameter centrifuge. Methane, ethane, propane and hydrogen air flames were stabilized at the exit of small tubular burners ranging in size from .05 to .21 cm in diameter. The experimental arrangement was such that the flames were burnt vertically upward. Following a shortening of the flame and a decrease in luminosity with increasing gravity level, further increases in gravity caused the hydrocarbon flames to separate from the rim and eventually extinguish. The extinction gravity levels appear to correlate with the parameter g alpha (u)/S to the 3rd (u), which should be a constant for buoyancy controlled extinction. This parameter is developed by a rudimentary analysis of the heat loss from the premixed stabilizing flame in the lifted flame base. When the loss is excessive, the flame is extinguished.

  20. Vortex evolution and dynamics during turbulence-flame interaction

    NASA Astrophysics Data System (ADS)

    Haffner, Eileen; Peter Hamlington Collaboration, Dr.; Alexei Poludnenko Collaboration, Dr.; Elaine Oran Collaboration, Dr.; Melissa A. Green Collaboration, Dr.

    2016-11-01

    Individual vortex structures are tracked in dynamic three-dimensional vortex-flame interactions using results from a previously-published implicit LES of premixed hydrogen and air combustion. The evolution of the vortices are visualized using isosurfaces of the Q criterion coupled with isosurfaces of the fuel mass fraction throughout the flame brush. Structures with high magnitude vorticity are observed to persist through the flame brush, whereas weaker vortices lose vorticity magnitude due to fluid stretching effects and volume expansion when interacting with the flame brush. The flame itself can also create new vortex structures both within and outside of the flame brush, which has been shown in previous two-dimensional simulations and experiments. The individual terms of the vorticity evolution equation were calculated to further explore the dynamics of the vorticity within the flame brush, such as: stretch due to compressibility effects, tilt due to changes in the velocity gradients, and vorticity generation and destruction due to baroclinic torque (misalignment of the pressure and density gradients). The baroclinic torque is the potential generator for new structures that appear within the flame brush. Using these calculations we can obtain a better idea of the physical phenomenon that is occurring within and after the flame brush.

  1. Simultaneous high-speed 3D flame front detection and tomographic PIV

    NASA Astrophysics Data System (ADS)

    Ebi, Dominik; Clemens, Noel T.

    2016-03-01

    A technique capable of detecting the instantaneous, time-resolved, 3D flame topography is successfully demonstrated in a lean-premixed swirl flame undergoing flashback. A simultaneous measurement of the volumetric velocity field is possible without the need for additional hardware. Droplets which vaporize in the preheat zone of the flame serve as the marker for the flame front. The droplets are illuminated with a laser and imaged from four different views followed by a tomographic reconstruction to obtain the volumetric particle field. Void regions in the reconstructed particle field, which correspond to regions of burnt gas, are detected with a series of image processing steps. The interface separating the void region from regions filled with particles is defined as the flame surface. The velocity field in the unburnt gas is measured using tomographic PIV. The resulting data include the simultaneous 3D flame front and 3D volumetric velocity field at 5 kHz. The technique is applied to a lean-premixed (ϕ  =  0.8), swirling methane-air flame and validated against simultaneously acquired planar measurements. The mean error associated with the reconstructed 3D flame topography is about 0.4 mm, which is smaller than the flame thickness under the studied conditions. The mean error associated with the volumetric velocity field is about 0.2 m s-1.

  2. Experimental investigation on flame pattern formations of DME-air mixtures in a radial microchannel

    SciTech Connect

    Fan, Aiwu; Maruta, Kaoru; Nakamura, Hisashi; Kumar, Sudarshan; Liu, Wei

    2010-09-15

    Flame pattern formations of premixed DME-air mixture in a heated radial channel with a gap distance of 2.5 mm were experimentally investigated. The DME-air mixture was introduced into the radial channel through a delivery tube which connected with the center of the top disk. With an image-intensified high-speed video camera, rich flame pattern formations were identified in this configuration. Regime diagram of all these flame patterns was drawn based on the experimental findings in the equivalence ratio range of 0.6-2.0 and inlet velocity range of 1.0-5.0 m/s. Compared with our previous study on premixed methane-air flames, there are several distinct characteristics for the present study. First, Pelton-wheel-like rotary flames and traveling flames with kink-like structures were observed for the first time. Second, in most cases, flames can be stabilized near the inlet port of the channel, exhibiting a conical or cup-like shape, while the conventional circular flame was only observed under limited conditions. Thirdly, an oscillating flame phenomenon occurred under certain conditions. During the oscillation process, a target appearance was seen at some instance. These pattern formation characteristics are considered to be associated with the low-temperature oxidation of DME. (author)

  3. Studies in premixed combustion. [Benjamin Levich Inst. for Physico-Chemical Hydrodynamics, City College of CUNY, New York, New York

    SciTech Connect

    Sivashinsky, G.I.

    1993-01-01

    During the period under review, significant progress was been made in studying the intrinsic dynamics of premixed flames and the problems of flame-flow interaction. (1) A weakly nonlinear model for Bunsen burner stabilized flames was proposed and employed for the simulation of three-dimensional polyhedral flames -- one of the most graphic manifestations of thermal-diffusive instability in premixed combustion. (2) A high-precision large-scale numerical simulation of Bunsen burner tip structure was conducted. The results obtained supported the earlier conjecture that the tip opening observed in low Lewis number systems is a purely optical effect not involving either flame extinction or leakage of unburned fuel. (3) A one-dimensional model describing a reaction wave moving through a unidirectional periodic flow field is proposed and studied numerically. For long-wavelength fields the system exhibits a peculiar non-uniqueness of possible propagation regimes. The transition from one regime to another occurs in a manner of hysteresis.

  4. Detailed Studies on Flame Extinction by Inert Particles in Normal- and Micro-gravity

    NASA Technical Reports Server (NTRS)

    Andac, M. G.; Egolfopoulos, F. N.; Campbell, C. S.

    2001-01-01

    The combustion of dusty flows has been studied to lesser extent than pure gas phase flows and sprays. Particles can have a strong effect by modifying the dynamic response and detailed structure of flames through the dynamic, thermal, and chemical couplings between the two phases. A rigorous understanding of the dynamics and structure of two-phase flows can be attained in stagnation flow configurations, which have been used by others to study spray combustion as well as reacting dusty flows. In earlier studies on reacting dusty flows, the thermal coupling between the two phases as well as the effect of gravity on the flame response were not considered. However, in Ref. 6, the thermal coupling between chemically inert particles and the gas was addressed in premixed flames. The effects of gravity was also studied showing that it can substantially affect the profiles of the particle velocity, number density, mass flux, and temperature. The results showed a strong dynamic and thermal dependence of reacting dusty flows to particle number density. However, the work was only numerical and limited to twin-flames, stagnation, premixed flames. In Ref. 7 the effects of chemically inert particle clouds on the extinction of strained premixed and non-premixed flames were studied both experimentally and numerically at 1-g. It was shown and explained that large particles can cause more effective flame cooling compared to smaller particles. The effects of flame configuration and particle injection orientation were also addressed. The complexity of the coupling between the various parameters in such flows was demonstrated and it was shown that it was impossible to obtain a simple and still meaningful scaling that captured all the pertinent physics.

  5. Unstrained and strained flamelets for LES of premixed combustion

    NASA Astrophysics Data System (ADS)

    Langella, Ivan; Swaminathan, Nedunchezhian

    2016-05-01

    The unstrained and strained flamelet closures for filtered reaction rate in large eddy simulation (LES) of premixed flames are studied. The required sub-grid scale (SGS) PDF in these closures is presumed using the Beta function. The relative performances of these closures are assessed by comparing numerical results from large eddy simulations of piloted Bunsen flames of stoichiometric methane-air mixture with experimental measurements. The strained flamelets closure is observed to underestimate the burn rate and thus the reactive scalars mass fractions are under-predicted with an over-prediction of fuel mass fraction compared with the unstrained flamelet closure. The physical reasons for this relative behaviour are discussed. The results of unstrained flamelet closure compare well with experimental data. The SGS variance of the progress variable required for the presumed PDF is obtained by solving its transport equation. An order of magnitude analysis of this equation suggests that the commonly used algebraic model obtained by balancing source and sink in this transport equation does not hold. This algebraic model is shown to underestimate the SGS variance substantially and the implications of this variance model for the filtered reaction rate closures are highlighted.

  6. Suppression of Low Strain Rate Nonpremixed Flames by an Agent

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L. (Technical Monitor); Hamins, A.; Bundy, M.; Oh, C. B.; Park, J.; Puri, I. K.

    2004-01-01

    The extinction and structure of non-premixed methane/air flames were investigated in normal gravity and microgravity through the comparison of experiments and calculations using a counterflow configuration. From a fire safety perspective, low strain rate conditions are important for several reasons. In normal gravity, many fires start from small ignition sources where the convective flow and strain rates are weak. Fires in microgravity conditions, such as a manned spacecraft, may also occur in near quiescent conditions where strain rates are very low. When designing a fire suppression system, worst-case conditions should be considered. Most diffusion flames become more robust as the strain rate is decreased. The goal of this project is to investigate the extinction limits of non-premixed flames using various agents and to compare reduced gravity and normal gravity conditions. Experiments at the NASA Glenn Research Center's 2.2-second drop tower were conducted to attain extinction and temperature measurements in low-strain non-premixed flames. Extinction measurements using nitrogen added to the fuel stream were performed for global strain rates from 7/s to 50/s. The results confirmed the "turning point" behavior observed previously by Maruta et al. in a 10 s drop tower. The maximum nitrogen volume fraction in the fuel stream needed to assure extinction for all strain rates was measured to be 0.855+/-0.016, associated with the turning point determined to occur at a strain rate of 15/s. The critical nitrogen volume fraction in the fuel stream needed for extinction of 0-g flames was measured to be higher than that of 1-g flames.

  7. Modelling of Landau-Darrieus and thermo-diffusive instability effects for CFD simulations of laminar and turbulent premixed combustion

    NASA Astrophysics Data System (ADS)

    Keppeler, Roman; Pfitzner, Michael

    2015-01-01

    An algebraic model is derived that accounts for the effects of non-resolved Landau-Darrieus and thermo-diffusive instabilities on the propagation speed of fully premixed laminar and turbulent flame fronts in the Large Eddy Simulation (LES) context provided that the laminar flame speed appears as a model parameter in the LES combustion model. The model is derived assuming fractal characteristics of flames which exhibit cellular structures due to instabilities. The smallest and largest unstable wavelengths are computed employing a dispersion relation for nominally planar flames. Values for the fractal dimension characterising the flame structures are taken from the literature. A phenomenological model accounts for the stabilising effect of strain. Based on experimental data, a correlation for a critical strain rate, which indicates the onset of instabilities, is formulated. To validate the new model which accounts for instabilities on the effective speed of laminar flame propagation, laminar expanding spherical methane-air flames at p = 5 bar and p = 10 bar are simulated in the LES context. Values for the fractal dimension, as proposed in the literature, are varied. The predicted flame propagation speed is in very good agreement with experimental data when applying a fractal dimension of about D = 2.06. The critical strain turns out to be a suitable parameter to indicate the onset of instabilities and to quantify the influence of instabilities. Simulations applying a second model proposed by Bradley and valid for spherically expanding flames show similar results. LES of turbulent Bunsen flames at 1, 5 and 10 bar, which are characterised by u‧/s0L < 1, are performed to evaluate the derived instability model for turbulent flames. The simulated flames (from the Kobayashi database) have already been experimentally investigated in the context of Landau-Darrieus and thermo-diffusive instabilities. In agreement with conclusions from these investigations, for the

  8. Premixed autoignition in compressible turbulence

    NASA Astrophysics Data System (ADS)

    Konduri, Aditya; Kolla, Hemanth; Krisman, Alexander; Chen, Jacqueline

    2016-11-01

    Prediction of chemical ignition delay in an autoignition process is critical in combustion systems like compression ignition engines and gas turbines. Often, ignition delay times measured in simple homogeneous experiments or homogeneous calculations are not representative of actual autoignition processes in complex turbulent flows. This is due the presence of turbulent mixing which results in fluctuations in thermodynamic properties as well as chemical composition. In the present study the effect of fluctuations of thermodynamic variables on the ignition delay is quantified with direct numerical simulations of compressible isotropic turbulence. A premixed syngas-air mixture is used to remove the effects of inhomogeneity in the chemical composition. Preliminary results show a significant spatial variation in the ignition delay time. We analyze the topology of autoignition kernels and identify the influence of extreme events resulting from compressibility and intermittency. The dependence of ignition delay time on Reynolds and turbulent Mach numbers is also quantified. Supported by Basic Energy Sciences, Dept of Energy, United States.

  9. NO{sub x}-abatement potential of lean-premixed GT combustors

    SciTech Connect

    Sattelmayer, T.; Polifke, W.; Winkler, D.; Doebbeling, K.

    1998-01-01

    The influence of the structure of perfectly premixed flames on NO{sub x} formation is investigated theoretically. Since a network of reaction kinetics modules and model flames is used for this purpose, the results obtained are independent of specific burner geometries. Calculations are presented for a mixture temperature of 630 K, an adiabatic flame temperature of 1840 K, and 1 and 15 bars combustor pressure. In particular, the following effects are studied separately from each other: molecular diffusion of temperature and species, flame strain, local quench in highly strained flames and subsequent reignition, turbulent diffusion (no preferential diffusion), and small scale mixing (stirring) in the flame front. Either no relevant influence or an increase in NO{sub x} burners is to avoid excessive turbulent stirring in the flame front. Turbulent flames that exhibit locally and instantaneously near laminar structures (flamelets) appear to be optimal. Using the same methodology, the scope of the investigation is extended to lean-lean staging, since a higher NO{sub x}-abatement potential can be expected in principle. As long as the chemical reactions of the second stage take place in the boundary between the fresh mixture of the second stage and the combustion products from upstream, no advantage can be expected from lean-lean staging. Only if the preliminary burner exhibits much poorer mixing than the second stage can lean-lean staging be beneficial. In contrast, if full mixing between the two stages prior to afterburning can be achieved (lean-mix-lean technique), the combustor outlet temperature can in principle be increased somewhat without NO penalty.

  10. Experimental study of the operating characteristics of premixing-prevaporizing fuel/air mixing passages

    NASA Technical Reports Server (NTRS)

    Rohy, D. A.; Meier, J. G.

    1983-01-01

    Fuel spray and air flow characteristics were determined using nonintrusive (optical) measurement techniques in a fuel preparation duct. A very detailed data set was obtained at high pressures (to 10 atm) and temperatures (to 750 K). The data will be used to calibrate an analytical model which will facilitate the design of a lean premixed prevaporized combustor. This combustor has potential for achieving low pollutant emissions and low levels of flame radiation and pattern factors conductive to improved durability and performance for a variety of fuels.

  11. Candle Flames in Microgravity: USML-1 Results - 1 Year Later

    NASA Technical Reports Server (NTRS)

    Ross, H. D.; Dietrich, D. L.; Tien, J. S.

    1994-01-01

    We report on the sustained behavior of a candle flame in microgravity determined in the glovebox facility aboard the First United States Microgravity Labomtofy. In a quiescent, microgmvjfy environment, diffusive transport becomes the dominant mode of heat and mass transfer; whether the diffusive transport rate is fast enough to sustain low-gravity candle flames in air was unknown to this series of about 70 tests. After an initial transient in which soot is observed, the microgravity candle flame in air becomes and remains hemispherical and blue (apparently soot-Ne) with a large flame standoff distance. Near flame extinction, spontaneous flame oscillations are regularly observed; these are explained as a flashback of flame through a premixed combustible gas followed by a retreat owed to flame quenching. The frequency of oscillations can be related to diffusive transport rates, and not to residual buoyant convective flow. The fact that the flame tip is the last point of the flame to survive suggests that it is the location of maximum fuel reactivity; this is unlike normal gravity, where the location of maximum fuel reactivity is the flame base. The flame color, size, and shape behaved in a quasi-steady manner; the finite size of the glovebox, combined with the restricted passages of the candlebox, inhibited the observation of true steady-state burning. Nonetheless, through calculations, and inference from the series of shuttle tests, if is concluded that a candle can burn indefinitely in a large enough ambient of air in microgravity. After igniting one candle, a second candle in close pximity could not be lit. This may be due to wax coating the wick and/or local oxygen depletion around the second, unlit candle. Post-mission testing suggests that simultaneous ignition may overcome these behaviors and enable both candles to be ignited.

  12. Isomer-specific combustion chemistry in allene and propyne flames

    SciTech Connect

    Hansen, Nils; Miller, James A.; Westmoreland, Phillip R.; Kasper, Tina; Kohse-Hoeinghaus, Katharina; Wang, Juan; Cool, Terrill A.

    2009-11-15

    A combined experimental and modeling study is performed to clarify the isomer-specific combustion chemistry in flames fueled by the C{sub 3}H{sub 4} isomers allene and propyne. To this end, mole fraction profiles of several flame species in stoichiometric allene (propyne)/O{sub 2}/Ar flames are analyzed by means of a chemical kinetic model. The premixed flames are stabilized on a flat-flame burner under a reduced pressure of 25 Torr (=33.3 mbar). Quantitative species profiles are determined by flame-sampling molecular-beam mass spectrometry, and the isomer-specific flame compositions are unraveled by employing photoionization with tunable vacuum-ultraviolet synchrotron radiation. The temperature profiles are measured by OH laser-induced fluorescence. Experimental and modeled mole fraction profiles of selected flame species are discussed with respect to the isomer-specific combustion chemistry in both flames. The emphasis is put on main reaction pathways of fuel consumption, of allene and propyne isomerization, and of isomer-specific formation of C{sub 6} aromatic species. The present model includes the latest theoretical rate coefficients for reactions on a C{sub 3}H{sub 5} potential [J.A. Miller, J.P. Senosiain, S.J. Klippenstein, Y. Georgievskii, J. Phys. Chem. A 112 (2008) 9429-9438] and for the propargyl recombination reactions [Y. Georgievskii, S.J. Klippenstein, J.A. Miller, Phys. Chem. Chem. Phys. 9 (2007) 4259-4268]. Larger peak mole fractions of propargyl, allyl, and benzene are observed in the allene flame than in the propyne flame. In these flames virtually all of the benzene is formed by the propargyl recombination reaction. (author)

  13. Simulation of a turbulent flame in a channel

    NASA Technical Reports Server (NTRS)

    Bruneaux, G.; Akselvoll, K.; Poinsot, T.; Ferziger, J. H.

    1994-01-01

    The interaction between turbulent premixed flames and channel walls is studied. Combustion is represented by a simple irreversible reaction with a large activation temperature. Feedback to the flowfield is suppressed by invoking a constant density assumption. The effect of wall distance on local and global flame structure is investigated. Quenching distances and maximum wall heat fluxes computed in laminar cases are compared to DNS results. It is found that quenching distances decrease and maximum heat fluxes increase relative to laminar flame values. It is shown that these effects are due to large coherent structures which push flame elements towards to wall. The effect of wall strain is studied in flame-wall interaction in a stagnation line flow; this is used to explain the DNS results. It is also shown that 'remarkable' flame events are produced by interaction with a horseshoe vortex: burnt gases are pushed towards the wall at high speed and induce quenching and high wall heat fluxes while fresh gases are expelled from the wall region and form finger-like structures. Effects of the wall on flame surface density are investigated, and a simple model for flame-wall interaction is proposed; its predictions compare well with the DNS results.

  14. Flow/Soot-Formation Interactions in Nonbuoyant Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Dai, Z.; Faeth, G. M.

    1999-01-01

    Nonpremixed (diffusion) flames are attractive for practical applications because they avoid the stability, autoignition, flashback, etc. problems of premixed flames. Unfortunately, soot formation in practical hydrocarbon-fueled diffusion flames reduces their attractiveness due to widely-recognized public health and combustor durability problems of soot emissions. For example, more deaths are attributed to the emission of soot (15,000-60,000 deaths annually in the U.S. alone) than any other combustion-generated pollutant. In addition, continuum radiation from soot-containing flames is the principle heat load to combustor components and is mainly responsible for engine durability problems of aircraft and gas turbine engines. As a result, there is considerable interest in controlling both soot concentrations within flames and soot emissions from flames. Thus, the objective of the present investigation is to study ways to control soot formation in diffusion flames by manipulating the mixing process between the fuel and oxidant streams. In order to prevent the intrusion of gravity from masking flow properties that reduce soot formation in practical flames (where effects of gravity are small), methods developed during past work will be exploited to minimize effects of buoyant motion.

  15. Two-Dimensional Failure Waves and Ignition Fronts in Premixed Combustion

    NASA Technical Reports Server (NTRS)

    Vedarajan, T. G.; Buckmaster J.; Ronney, P.

    1998-01-01

    This paper is a continuation of our work on edge-flames in premixed combustion. An edge-flame is a two-dimensional structure constructed from a one-dimensional configuration that has two stable solutions (bistable equilibrium). Edge-flames can display wavelike behavior, advancing as ignition fronts or retreating as failure waves. Here we consider two one-dimensional configurations: twin deflagrations in a straining flow generated by the counterflow of fresh streams of mixture: and a single deflagration subject to radiation losses. The edge-flames constructed from the first configuration have positive or negative speeds, according to the value of the strain rate. But our numerical solutions strongly suggest that only positive speeds (corresponding to ignition fronts) can exist for the second configuration. We show that this phenomenon can also occur in diffusion flames when the Lewis numbers are small. And we discuss the asymptotics of the one-dimensional twin deflagration configuration. an overlooked problem from the 70s.

  16. High spatial resolution PIV and CH-PLIF measurements of a Shear Layer Stabilized Flame

    NASA Astrophysics Data System (ADS)

    Foley, Christopher; Chterev, Ianko; Seitzman, Jerry; Lieuwen, Tim

    2014-11-01

    In practical combustors, flames stabilize in thin shear layers with very high strain rates, which alter the flame burning rate - either enhancing or diminishing reaction rates, and even leading to extinction. Therefore, the bulk velocity that provides stable operation in these combustors is limited, presumably due to the associated maximum stretch rate that the flame is able to withstand. The focus of this work is to develop a deeper understanding of the interaction between flow and flame for a shear layer stabilized, premixed flame. This study consists of planar, high resolution, simultaneous PIV and CH-PLIF measurements, in a 8 x 6 mm plane with 0.11 mm and 0.16 mm PIV vector and CH-PLIF image resolution, respectively, of the flame stabilization region in a swirling jet. The hydrodynamic strain induced stretch rate along the high CH concentration layer of the flame front is calculated from these measurements. In addition, this study elucidates the unsteady behavior of the flame in the thin shear layer. The measured flame stretch is highly spatially and temporally dependent, and dominated by contributions from normal and shear strain terms of axial velocity. Although normal strain is much greater than shear, the near horizontal flame orientation results in neither strain term dominating flame stretch. Furthermore, the flame angle changes the sign of the shear strain contributions as observed experimentally, an important implication for reduced order modeling approaches.

  17. Design and calibration of a flat-flame burner using line-reversal techniques. Technical note

    SciTech Connect

    Snelling, D.R.; Fischer, M.

    1985-04-01

    A premixed methane/air flat-flame burner is described. The burner was designed to have a central flame that can be seeded with sodium, and an annular guard flame that ensured a flat-temperature profile in the seeded region. The burner produced a well-behaved flat flame for linear gas velocities of 20 to 30 cm/s and air-to-fuel ratios within 15% of stoichiometric. The temperature distribution in the flame was measured for a range of operating conditions using the sodium line-reversal technique. The temperatures measured were within the range 2000-2100 K, slightly lower than the adiabatic methane/air flame temperature. This burner will be used as a calibration tool in the development of CARS (Coherent anti-Stokes Raman spectroscopy).

  18. A Method for Computing the Flame Speed or a Laminar, Premixed, One Dimensional Flame.

    DTIC Science & Technology

    1980-01-01

    a number of simplifications in the input data. These may affect the validity of his results, but do not change the basic numerical prob- lem . (The...Carlos, CA 94070 ATTN- H. Korman One Space Park 907 2 Rockwell International Corp. Redondo Beach, CA9 Rocketdyne Division ATTN: C. Obert 2 United...Universal Propulsion Co. Rocketdyne Division ATTN: H.j. McSpadden ATTN: W. Haymes P.O. Box 546 Tech Lib Riverside, CA 92502 McGregor, TX 76657 1 cieeor

  19. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix H

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  20. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix J

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation--O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  1. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix C

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  2. Flames in vortices & tulip-flame inversion

    NASA Astrophysics Data System (ADS)

    Dold, J. W.

    This article summarises two areas of research regarding the propagation of flames in flows which involve significant fluid-dynamical motion [1]-[3]. The major difference between the two is that in the first study the fluid motion is present before the arrival of any flame and remains unaffected by the flame [1, 2] while, in the second study it is the flame that is responsible for all of the fluid dynamical effects [3]. It is currently very difficult to study flame-motion in which the medium is both highly disturbed before the arrival of a flame and is further influenced by the passage of the flame.

  3. Effect of azimuthal flow fluctuations on flow and flame dynamics of axisymmetric swirling flames

    NASA Astrophysics Data System (ADS)

    Acharya, Vishal; Lieuwen, Timothy

    2015-10-01

    Recent studies have clearly shown the important role of swirl fluctuations (or, more precisely, fluctuations in axial vorticity) in the response of premixed flames to flow oscillations. An important implication of this mechanism is that the axial location of the swirler plays a key role in the phase between the acoustic flow excitation source and the resulting axial vorticity fluctuation at the flame. Similar to the previously well recognized role of azimuthal vorticity fluctuations, these swirl fluctuations are vortical and convect at the mean flow velocity, unlike the acoustic flow fluctuations. However, there is a fundamental difference between axial and azimuthal vorticity disturbances in terms of the flow oscillations they induce on the flame. Specifically, azimuthal vorticity disturbances excite radial and axial flow disturbances, while axial vorticity oscillations, in general induce both radial and azimuthal flow fluctuations, but in the axisymmetric case, they only directly excite azimuthal flow fluctuations. The axial vorticity fluctuations do, however, indirectly excite axial and radial velocity fluctuations when the axial vortex tube is tilted off-axis, such as at locations of area expansion. This difference is significant because axisymmetric flames are disturbed only by the velocity component normal to it, which stem from axial and radial velocity components only. This implies that axisymmetric mean flames are not directly affected by azimuthal flow fluctuations, since they are tangential to it. Thus, it is the extent to which the axial vorticity is tilted and rotated that controls the strength of the flow oscillations normal to the flame and, in turn, lead to heat release oscillations. This coupling process is not easily amenable to analytical calculations and, as such, we report here a computational study of the role of these different flow fluctuations on the flame response in an axisymmetric framework. The results indicate that the swirl

  4. A comparison of one and two dimensional flame quenching: Heat transfer results

    SciTech Connect

    Ezekoye, O.A.; Greif, R.

    1993-03-01

    A theoretical investigation of laminar premixed flame quenching is carried out. Two orientations in which a flame may contact a cold wall are compared and contrasted by solving the conservation equations of mass, energy, and species utilizing a finite difference methodology. A one-step mechanism is used to specify the reaction rates. A simple analytical model, which is in qualitative agreement with the numerical results, is also presented. The results show that the heat transfer histories for one and two dimensional laminar flame quenching are similar.

  5. Design factors for stable lean premix combustion

    SciTech Connect

    Richards, G.A.; Yip, M.J.; Gemmen, R.S.

    1995-10-01

    The Advanced Turbine Systems (ATS) program includes the development of low-emission combustors. Low emissions have already been achieved by premixing fuel and air to avoid the hot gas pockets produced by nozzles without premixing. While the advantages of premixed combustion have been widely recognized, turbine developers using premixed nozzles have experienced repeated problems with combustion oscillations. Left uncontrolled, these oscillations can lead to pressure fluctuations capable of damaging engine hardware. Elimination of such oscillations is often difficult and time consuming - particularly when oscillations are discovered in the last stages of engine development. To address this issue, METC is studying oscillating combustion from lean premixing fuel nozzles. These tests are providing generic information on the mechanisms that contribute to oscillating behavior in gas turbines. METC is also investigating the use of so-called {open_quotes}active{close_quotes} control of combustion oscillations. This technique periodically injects fuel pulses into the combustor to disrupt the oscillating behavior. Recent results on active combustion control are presented in Gemmen et al. (1995) and Richards et al. (1995). This paper describes the status of METC efforts to avoid oscillations through simple design changes.

  6. Lean and ultralean stretched propane-air counterflow flames

    SciTech Connect

    Cheng, Zhongxian; Pitz, Robert W.; Wehrmeyer, Joseph A.

    2006-06-15

    Stretched laminar flame structures for a wide range of C{sub 3}H{sub 8}-air mixtures vs hot products are investigated by laser-based diagnostics and numerical simulation. The hot products are produced by a lean H{sub 2}-air premixed flame. The effect of stretch rate and equivalence ratio on four groups of C{sub 3}H{sub 8}-air flame structures is studied in detail by Raman scattering measurements and by numerical calculations of the major species concentration and temperature profiles. The equivalence ratio, f, is varied from a near-stoichiometric condition (f=0.86) to the sublean limit (f=0.44) and the stretch rate varies from 90 s{sup -1} to near extinction. For most of these C{sub 3}H{sub 8}-air lean mixtures, hot products are needed to maintain the flame. The significant feature of these flames is the relatively low flame temperatures (1200-1800 K). For this temperature range, the predicted C{sub 3}H{sub 8}-air flame structure is sensitive to the specific chemical kinetic mechanism. Two types of flame structures (a lean self-propagating flame and a lean diffusion-controlled flame) are obtained based on the combined effect of stretch and equivalence ratio. Three different mechanisms, the M5 mechanism, the Optimized mechanism, and the San Diego mechanism, are chosen for the numerical simulations. None of the propane chemical mechanisms give good agreement with the data over the entire range of flame conditions. (author)

  7. Monte-Carlo computation of turbulent premixed methane/air ignition

    NASA Astrophysics Data System (ADS)

    Carmen, Christina Lieselotte

    The present work describes the results obtained by a time dependent numerical technique that simulates the early flame development of a spark-ignited premixed, lean, gaseous methane/air mixture with the unsteady spherical flame propagating in homogeneous and isotropic turbulence. The algorithm described is based upon a sub-model developed by an international automobile research and manufacturing corporation in order to analyze turbulence conditions within internal combustion engines. Several developments and modifications to the original algorithm have been implemented including a revised chemical reaction scheme and the evaluation and calculation of various turbulent flame properties. Solution of the complete set of Navier-Stokes governing equations for a turbulent reactive flow is avoided by reducing the equations to a single transport equation. The transport equation is derived from the Navier-Stokes equations for a joint probability density function, thus requiring no closure assumptions for the Reynolds stresses. A Monte-Carlo method is also utilized to simulate phenomena represented by the probability density function transport equation by use of the method of fractional steps. Gaussian distributions of fluctuating velocity and fuel concentration are prescribed. Attention is focused on the evaluation of the three primary parameters that influence the initial flame kernel growth-the ignition system characteristics, the mixture composition, and the nature of the flow field. Efforts are concentrated on the effects of moderate to intense turbulence on flames within the distributed reaction zone. Results are presented for lean conditions with the fuel equivalence ratio varying from 0.6 to 0.9. The present computational results, including flame regime analysis and the calculation of various flame speeds, provide excellent agreement with results obtained by other experimental and numerical researchers.

  8. Simultaneous PIV/OH-PLIF, Rayleigh thermometry/OH-PLIF and stereo PIV measurements in a low-swirl flame.

    PubMed

    Petersson, Per; Olofsson, Jimmy; Brackman, Christian; Seyfried, Hans; Zetterberg, Johan; Richter, Mattias; Aldén, Marcus; Linne, Mark A; Cheng, Robert K; Nauert, Andreas; Geyer, Dirk; Dreizler, Andreas

    2007-07-01

    The diagnostic techniques for simultaneous velocity and relative OH distribution, simultaneous temperature and relative OH distribution, and three component velocity mapping are described. The data extracted from the measurements include statistical moments for inflow fluid dynamics, temperature, conditional velocities, and scalar flux. The work is a first step in the development of a detailed large eddy simulation (LES) validation database for a turbulent, premixed flame. The low-swirl burner used in this investigation has many of the necessary attributes for LES model validation, including a simplified interior geometry; it operates well into the thin reaction zone for turbulent premixed flames, and flame stabilization is based entirely on the flow field and not on hardware or pilot flames.

  9. Triple flame structure and diffusion flame stabilization

    NASA Technical Reports Server (NTRS)

    Veynante, D.; Vervisch, L.; Poinsot, T.; Linan, A.; Ruetsch, G.

    1994-01-01

    The stabilization of diffusion flames is studied using asymptotic techniques and numerical tools. The configuration studied corresponds to parallel streams of cold oxidizer and fuel initially separated by a splitter plate. It is shown that stabilization of a diffusion flame may only occur in this situation by two processes. First, the flame may be stabilized behind the flame holder in the wake of the splitter plate. For this case, numerical simulations confirm scalings previously predicted by asymptotic analysis. Second, the flame may be lifted. In this case a triple flame is found at longer distances downstream of the flame holder. The structure and propagation speed of this flame are studied by using an actively controlled numerical technique in which the triple flame is tracked in its own reference frame. It is then possible to investigate the triple flame structure and velocity. It is shown, as suggested from asymptotic analysis, that heat release may induce displacement speeds of the triple flame larger than the laminar flame speed corresponding to the stoichiometric conditions prevailing in the mixture approaching the triple flame. In addition to studying the characteristics of triple flames in a uniform flow, their resistance to turbulence is investigated by subjecting triple flames to different vortical configurations.

  10. Flame stabilization in a model ramjet combustor using a transverse slot jet

    NASA Astrophysics Data System (ADS)

    Ahmed, Kareem

    Flame stabilization is the act of maintaining combustion in the presence of a high-speed premixed flow, and continues to be an important process that influences the performance and limitations for propulsion applications. A common approach for current generation flame holders involves the employment of a low-speed recirculation zone where hot combustion products are maintained and act as a continuous ignition source. The recirculation zone is often induced using a wake-generating bluff body that is submerged in the flow, or through the use of a rearward facing step. A fluidic-based flame holder using a transverse slot jet issuing into a cross flow offers potential thrust and efficiency benefits for propulsion. The transverse slot jet flame holder has been shown to develop a low-speed recirculation zone capable of stabilizing a stationary flame, analogous to a rearward-facing step (i.e. a wall-bounded bluff body). Turbulent flame structures were investigated for various flame holders. The role of baroclinic torque on turbulent flame structures evolution and the flowfield will be described. Comparisons will be made to a rearward-facing step flame holder. The details of the turbulent flow with and without combustion will be described, showing the potential advantages achieved using fluidics. The fluidic flame holder provides competitive flame holding performance to the mechanical counterpart, while having enhanced combustion rates that result in higher combustor efficiencies and/or shorter burners.

  11. DNS assessment of relation between mean reaction and scalar dissipation rates in the flamelet regime of premixed turbulent combustion

    NASA Astrophysics Data System (ADS)

    Nikolaevich Lipatnikov, Andrei; Nishiki, Shinnosuke; Hasegawa, Tatsuya

    2015-05-01

    The linear relation between the mean rate of product creation and the mean scalar dissipation rate, derived in the seminal paper by K.N.C. Bray ['The interaction between turbulence and combustion', Proceedings of the Combustion Institute, Vol. 17 (1979), pp. 223-233], is the cornerstone for models of premixed turbulent combustion that deal with the dissipation rate in order to close the reaction rate. In the present work, this linear relation is straightforwardly validated by analysing data computed earlier in the 3D Direct Numerical Simulation (DNS) of three statistically stationary, 1D, planar turbulent flames associated with the flamelet regime of premixed combustion. Although the linear relation does not hold at the leading and trailing edges of the mean flame brush, such a result is expected within the framework of Bray's theory. However, the present DNS yields substantially larger (smaller) values of an input parameter cm (or K2 = 1/(2cm - 1)), involved by the studied linear relation, when compared to the commonly used value of cm = 0.7 (or K2 = 2.5). To gain further insight into the issue and into the eventual dependence of cm on mixture composition, the DNS data are combined with the results of numerical simulations of stationary, 1D, planar laminar methane-air flames with complex chemistry, with the results being reported in terms of differently defined combustion progress variables c, i.e. the normalised temperature, density, or mole fraction of CH4, O2, CO2 or H2O. Such a study indicates the dependence of cm both on the definition of c and on the equivalence ratio. Nevertheless, K2 and cm can be estimated by processing the results of simulations of counterpart laminar premixed flames. Similar conclusions were also drawn by skipping the DNS data, but invoking a presumed beta probability density function in order to evaluate cm for the differently defined c's and various equivalence ratios.

  12. Interaction between a laminar flame and its self-generated flow

    SciTech Connect

    Dunn-Rankin, D.

    1985-04-01

    The interaction between a premixed laminar flame and its self-generated flow is experimentally studied in a closed duct. A laser Doppler anemometer measures two components of the enclosed gas velocity during the flame propagation. High-speed schlieren cinematography is used to observe changes in flame shape and location. Pressure records correlate with the qualitative schlieren movies and help quantify the progress of the combustion process. A one-dimensional model accurately predicts the unburned gas motion. The flow in the burned gas is rotational because of vorticity generated from flow deflection through the curved flame front. The density difference between the burned and unburned gas requires a velocity jump at the flame front to maintain continuity of mass flux. The measured velocity jump corresponds to this predicted value. A large flame cusp, called a ''tulip'' flame, appears during the flame propagation. Flame instability, pressure wave/flame interaction, and large scale circulation in the unburned gas are suggested explanation for the ''tulip'' flame. Velocity measurements of this work show that no large scale circulation exists in the unburned gas. The onset of the ''tulip'' process coincides with the quench of part of the flame at the sidewalls of the combustion vessel. The velocity decrease in the unburned gas and the curved flame shape at the time of quench combine to generate a vortex in the burned gas. The vortex remains in the proximity of the flame and modifies the flame shape and unburned gas field such that the flame cusp or ''tulip'' is formed.

  13. Lifted methane-air jet flames in a vitiated coflow

    SciTech Connect

    Cabra, R.; Chen, J.-Y.; Dibble, R.W.; Karpetis, A.N.; Barlow, R.S.

    2005-12-01

    The present vitiated coflow flame consists of a lifted jet flame formed by a fuel jet issuing from a central nozzle into a large coaxial flow of hot combustion products from a lean premixed H{sub 2}/air flame. The fuel stream consists of CH{sub 4} mixed with air. Detailed multiscalar point measurements from combined Raman-Rayleigh-LIF experiments are obtained for a single base-case condition. The experimental data are presented and then compared to numerical results from probability density function (PDF) calculations incorporating various mixing models. The experimental results reveal broadened bimodal distributions of reactive scalars when the probe volume is in the flame stabilization region. The bimodal distribution is attributed to fluctuation of the instantaneous lifted flame position relative to the probe volume. The PDF calculation using the modified Curl mixing model predicts well several but not all features of the instantaneous temperature and composition distributions, time-averaged scalar profiles, and conditional statistics from the multiscalar experiments. A complementary series of parametric experiments is used to determine the sensitivity of flame liftoff height to jet velocity, coflow velocity, and coflow temperature. The liftoff height is found to be approximately linearly related to each parameter within the ranges tested, and it is most sensitive to coflow temperature. The PDF model predictions for the corresponding conditions show that the sensitivity of flame liftoff height to jet velocity and coflow temperature is reasonably captured, while the sensitivity to coflow velocity is underpredicted.

  14. Effect of inlet temperature and pressure on emissions from a premixing gas turbine primary zone combustor

    NASA Technical Reports Server (NTRS)

    Roffe, G.

    1976-01-01

    Experiments were conducted to determine the performance of a premixing prevaporizing gas turbine primary zone combustor design over a range of combustor inlet temperatures from 700 to 1000 K and a range of inlet pressures from 40 to 240 N/sq cm. The 1 meter long combustor could be operated at pressures up to and including 120 N/sq cm without autoignition in the premixing duct or flashback from the stabilized combustion zone. Autoignition occurred in the mixer tube at the 240 N/sq cm pressure level with an entrance temperature of 830 K and a mixer residence time of 4 msec. Measured NOx level, combustion inefficiency, and hydrocarbon emission index correlated well with adiabatic flame temperature. The NOx levels varied from approximately 0.2 to 2.0 g NO2/kg fuel at combustion inefficiencies from 4 to 0.04 percent, depending upon adiabatic flame temperature and pressure. Measured NOx levels were sensitive to pressure. Tests were made at equivalence ratios ranging from 0.35 to 0.65. The overall total pressure drop for the configuration varied slightly with reference velocity and equivalence ratio, but never exceeded 3 percent.

  15. Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability.

    PubMed

    Chaudhuri, Swetaprovo; Akkerman, V'yacheslav; Law, Chung K

    2011-08-01

    Effects of Darrieus-Landau (DL) instability on the structure and propagation of turbulent premixed flame fronts are considered. By first hypothesizing separation of time scales of instability and turbulence, we estimate whether the instability can develop in the presence of turbulence of given flow rms-velocity and integral length scale. As a result, we modify the standard turbulent premixed combustion regime diagram by introducing new boundaries, limiting the domain where the instability influences the global flame shape and speed. Based on this analysis, a "turbulence-induced DL cutoff" as a function of turbulence and instability parameters is introduced, which when combined with a turbulent flame speed without DL instability yields the turbulent flame speed accounting for the instability. The consumption turbulent flame speed for no DL instability is formulated from the spectral closure of the G equation, thus accounting for the scale-dependent "turbulent" nature of the problem. Finally, an analytical form of the turbulent flame speed is derived, which is found to agree well with the corresponding experimentally measured turbulent flame speed from literature over wide ranges of normalized turbulence intensities and length scales.

  16. Flame dynamics in a micro-channeled combustor

    SciTech Connect

    Hussain, Taaha; Balachandran, Ramanarayanan; Markides, Christos N.

    2015-01-22

    The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in co