Science.gov

Sample records for 2-electrode voltage clamp

  1. Voltage clamp experiments on ventricular myocarial fibres.

    PubMed

    Beeler, G W; Reuter, H

    1970-03-01

    1. A voltage clamp method utilizing a sucrose gap and glass microelectrodes was developed and used to study dog ventricular myocardial fibre bundles. The limitations and the reliability of this method are demonstrated by a series of tests.2. A dynamic sodium current, excited at membrane potentials more positive than -65 mV, was measured. The equilibrium potential for this large, rapid inward current depends directly on [Na](o), shifting 29.0 +/- 2.3 mV (+/- S.E. of mean), as opposed to a theoretically expected value of 30.6 mV, when [Na](o) is reduced to 31% of normal.3. Sodium current is inactivated by conditioning depolarizations. Complete inactivation occurs with conditioning potentials more positive than -45 mV, and 50% inactivation occurs at about -55 mV. The location of the inactivation curve shifts along the voltage axis, when [Ca](o) is varied between 0.2 and 7.2 mM.4. A second, much smaller and slower net inward current, with a threshold around -30 mV, and an equilibrium potential above +40 mV was also observed.5. The ;steady-state' current-voltage relationship (after 300-600 msec) exhibits inward-going (anomalous) rectification with negative slope between -50 and -25 mV.6. A small, very slowly developing component of outward current was observed at inside positive potentials. The equilibrium potential for this current, although slightly dependent on [K](o), is neither identical with the potassium equilibrium potential nor with the resting potential in normal Tyrode solution.7. Anatomical limitations, primarily resistance in the extracellular space within the bundle, prevent complete characterization of the rapid, large sodium current, but do not limit the application of the clamp method to the study of other, smaller and slower currents. The evidence for this is discussed extensively in the Appendix. PMID:5503866

  2. Patch voltage clamp of squid axon membrane.

    PubMed

    Fishman, H M

    1975-12-01

    A small area (patch) of the external surface of a squid axon can be "isolated" electrically from the surrounding bath by means of a pair of concentric glass pipettes. The seawater-filled inner pipette makes contact with the axon and constitutes the external access to the patch. The outer pipette is used to direct flowing sucrose solution over the area surrounding the patch of membrane underlying the inner pipette. Typically, sucrose isolated patches remain in good condition (spike amplitude greater than 90 mV) for periods of approximately one half hour. Patches of axon membrane which had previously been exposed to sucrose solution were often excitable. Membrane survival of sucrose treatment apparently arises from an outflow of ions from the axon and perhaps satellite cells into the interstitial cell space surrounding the exolemma. Estimate of the total access resistance (electrode plus series resistance) to the patch is about 100 komega (7 omega cm2). Patch capacitance ranges from 10-100 pF, which suggests areas of 10(-4) to 10(-5) cm2 and resting patch resistances of 10-100 Momega. Shunt resistance through the interstitial space exposed to sucrose solution, which isolates the patch, is typically 1-2 Momega. These parameters indicate that good potential control and response times can be achieved on a patch. Furthermore, spatial uniformity is demonstrated by measurement of an exoplasmic isopotential during voltage clamp of an axon patch. The method may be useful for other preparations in which limited membrane area is available or in special instances such as in the measurement of membrane conduction noise. PMID:1214276

  3. Outward currents in voltage-clamped rat sympathetic neurones.

    PubMed Central

    Galvan, M; Sedlmeir, C

    1984-01-01

    Outward membrane currents were studied in neurones of the isolated rat superior cervical ganglion by using a two-micro-electrode or single-micro-electrode voltage-clamp technique. Under current clamp, depolarization elicited electrotonic potentials that displayed marked outward rectification. From negative resting potentials (-70 mV) a short latency, short duration outward rectification was observed. From more positive potentials (-40 mV) a longer latency persistent outward rectification could be demonstrated. Under voltage clamp, four distinct outward currents were observed: a delayed rectifier (IK); a transient outward current (IA); a Ca2+-activated current (IC) and the M-current (IM). The maximum amplitude of IK, IA and IC was 1-2 orders of magnitude greater than IM. Depolarizing from -40 mV to potentials more positive than -20 mV co-activated IK and IC, producing a characteristic N-shaped current voltage curve with a minimum at about +80 mV. Superfusion with Mn2+-containing solutions reduced outward current at all voltages and abolished the N-characteristic; the remaining current (IK) slowly inactivated (tau greater than 1 s). Raising [K+]o from 6 to 36 mmol/l reversed outward tail currents observed in normal solution. Addition of tetraethylammonium ions (1-3 mmol/l) strongly reduced the amplitude of IK and IC. IA was characterized by very rapid activation at potentials more positive than -60 mV and by fast and complete inactivation at potentials in the activation range. The amplitude of IA was dependent on [K+]o and was reduced by external 4-aminopyridine (1-3 mmol/l). The activation appeared to depend on the nature and concentration of divalent cations present in the superfusate. It is concluded that the soma membrane of rat sympathetic neurones, like many other vertebrate and invertebrate neurones, contains multiple populations of K+ channels. The possible functions of these in the control of ganglion cell excitability are discussed. PMID:6097667

  4. Voltage clamping single cells in intact malpighian tubules of mosquitoes.

    PubMed

    Masia, R; Aneshansley, D; Nagel, W; Nachman, R J; Beyenbach, K W

    2000-10-01

    Principal cells of the Malpighian tubule of the yellow fever mosquito were studied with the methods of two-electrode voltage clamp (TEVC). Intracellular voltage (V(pc)) was -86.7 mV, and input resistance (R(pc)) was 388.5 kOmega (n = 49 cells). In six cells, Ba(2+) (15 mM) had negligible effects on V(pc), but it increased R(pc) from 325.3 to 684.5 kOmega (P < 0.001). In the presence of Ba(2+), leucokinin-VIII (1 microM) increased V(pc) to -101.8 mV (P < 0.001) and reduced R(pc) to 340.2 kOmega (P < 0.002). Circuit analysis yields the following: basolateral membrane resistance, 652. 0 kOmega; apical membrane resistance, 340.2 kOmega; shunt resistance (R(sh)), 344.3 kOmega; transcellular resistance, 992.2 kOmega. The fractional resistance of the apical membrane (0.35) and the ratio of transcellular resistance and R(sh) (3.53) agree closely with values obtained by cable analysis in isolated perfused tubules and confirm the usefulness of TEVC methods in single principal cells of the intact Malpighian tubule. Dinitrophenol (0.1 mM) reversibly depolarized V(pc) from -94.3 to -10.7 mV (P < 0.001) and reversibly increased R(pc) from 412 to 2,879 kOmega (P < 0.001), effects that were duplicated by cyanide (0.3 mM). Significant effects of metabolic inhibition on voltage and resistance suggest a role of ATP in electrogenesis and the maintenance of conductive transport pathways. PMID:10997925

  5. Modeling CICR in rat ventricular myocytes: voltage clamp studies

    PubMed Central

    2010-01-01

    Background The past thirty-five years have seen an intense search for the molecular mechanisms underlying calcium-induced calcium-release (CICR) in cardiac myocytes, with voltage clamp (VC) studies being the leading tool employed. Several VC protocols including lowering of extracellular calcium to affect Ca2+ loading of the sarcoplasmic reticulum (SR), and administration of blockers caffeine and thapsigargin have been utilized to probe the phenomena surrounding SR Ca2+ release. Here, we develop a deterministic mathematical model of a rat ventricular myocyte under VC conditions, to better understand mechanisms underlying the response of an isolated cell to calcium perturbation. Motivation for the study was to pinpoint key control variables influencing CICR and examine the role of CICR in the context of a physiological control system regulating cytosolic Ca2+ concentration ([Ca2+]myo). Methods The cell model consists of an electrical-equivalent model for the cell membrane and a fluid-compartment model describing the flux of ionic species between the extracellular and several intracellular compartments (cell cytosol, SR and the dyadic coupling unit (DCU), in which resides the mechanistic basis of CICR). The DCU is described as a controller-actuator mechanism, internally stabilized by negative feedback control of the unit's two diametrically-opposed Ca2+ channels (trigger-channel and release-channel). It releases Ca2+ flux into the cyto-plasm and is in turn enclosed within a negative feedback loop involving the SERCA pump, regulating[Ca2+]myo. Results Our model reproduces measured VC data published by several laboratories, and generates graded Ca2+ release at high Ca2+ gain in a homeostatically-controlled environment where [Ca2+]myo is precisely regulated. We elucidate the importance of the DCU elements in this process, particularly the role of the ryanodine receptor in controlling SR Ca2+ release, its activation by trigger Ca2+, and its refractory characteristics

  6. Solutions for transients in arbitrarily branching cables: III. Voltage clamp problems.

    PubMed Central

    Major, G

    1993-01-01

    Branched cable voltage recording and voltage clamp analytical solutions derived in two previous papers are used to explore practical issues concerning voltage clamp. Single exponentials can be fitted reasonably well to the decay phase of clamped synaptic currents, although they contain many underlying components. The effective time constant depends on the fit interval. The smoothing effects on synaptic clamp currents of dendritic cables and series resistance are explored with a single cylinder + soma model, for inputs with different time courses. "Soma" and "cable" charging currents cannot be separated easily when the soma is much smaller than the dendrites. Subtractive soma capacitance compensation and series resistance compensation are discussed. In a hippocampal CA1 pyramidal neurone model, voltage control at most dendritic sites is extremely poor. Parameter dependencies are illustrated. The effects of series resistance compound those of dendritic cables and depend on the "effective capacitance" of the cell. Plausible combinations of parameters can cause order-of-magnitude distortions to clamp current waveform measures of simulated Schaeffer collateral inputs. These voltage clamp problems are unlikely to be solved by the use of switch clamp methods. PMID:8369450

  7. The Xenopus Oocyte Cut-open Vaseline Gap Voltage-clamp Technique With Fluorometry

    PubMed Central

    Rudokas, Michael W.; Varga, Zoltan; Schubert, Angela R.; Asaro, Alexandra B.; Silva, Jonathan R.

    2014-01-01

    The cut-open oocyte Vaseline gap (COVG) voltage clamp technique allows for analysis of electrophysiological and kinetic properties of heterologous ion channels in oocytes. Recordings from the cut-open setup are particularly useful for resolving low magnitude gating currents, rapid ionic current activation, and deactivation. The main benefits over the two-electrode voltage clamp (TEVC) technique include increased clamp speed, improved signal-to-noise ratio, and the ability to modulate the intracellular and extracellular milieu. Here, we employ the human cardiac sodium channel (hNaV1.5), expressed in Xenopus oocytes, to demonstrate the cut-open setup and protocol as well as modifications that are required to add voltage clamp fluorometry capability. The properties of fast activating ion channels, such as hNaV1.5, cannot be fully resolved near room temperature using TEVC, in which the entirety of the oocyte membrane is clamped, making voltage control difficult. However, in the cut-open technique, isolation of only a small portion of the cell membrane allows for the rapid clamping required to accurately record fast kinetics while preventing channel run-down associated with patch clamp techniques. In conjunction with the COVG technique, ion channel kinetics and electrophysiological properties can be further assayed by using voltage clamp fluorometry, where protein motion is tracked via cysteine conjugation of extracellularly applied fluorophores, insertion of genetically encoded fluorescent proteins, or the incorporation of unnatural amino acids into the region of interest1. This additional data yields kinetic information about voltage-dependent conformational rearrangements of the protein via changes in the microenvironment surrounding the fluorescent molecule. PMID:24637712

  8. Measurement of transmembrane potential and current in cardiac muscle: a new voltage clamp method.

    PubMed Central

    Goldman, Y; Morad, M

    1977-01-01

    1. A single sucrose gap voltage clamp technique was developed to correct for artifacts of 'leakage' corrent and extracellular resistance making possible improved measurement of membrane current and membrane potential in cardiac muscle. 2. A fourth compartment termed 'guard gap' was added to the sucrose gap. The guard gap is maintained at the same potential as the Reinger pool, so that no extracellular leakage current can flow into the Ringer pool. Comparison of experimental results with the predictions of an idealized cable model indicates that the guard gap is effective in trapping leakage current. 3. The slow charging of membrane capacitance due to extracellular series resistance was accelerated by applying a 'pre-pulse' of the command potential past the final voltage clamp value. 4. A second technique, termed 'chopped current pulse clamp', was used to compensate for the extracellular resistance throughout the voltage clamp step. The applied current was turned on and off at a frequency of 0-5-2 kHz. The membrane potential sampled during the zero current phase was fed back through the clamp loop. 5. With either of these compensation techniques, the voltage and current traces settle to effectively constant values within 2-4 msec after initiation of a hyperpolarizing voltage clamp step from rest. 6. The membrane conductance measured by the prepulse and chopped current-pulse technique are equal and confirm a higher conductance at rest than during the plateau of the action potential. 7. The 'instantaneous' current-voltage relation of the membrane is linear during the plateau of the frog ventricular action potential. PMID:301933

  9. Bactridine's effects on DUM cricket neurons under voltage clamp conditions.

    PubMed

    Forsyth, P; Sevcik, C; Martínez, R; Castillo, C; D'Suze, G

    2012-12-01

    We describe the effects of six bactridines (150 nM) on cricket dorsal unpaired median (DUM) neurons. The addition of bactridine 2 to DUM neurons induced a large current component with a reversal potential more negative than -30 mV, most evident at the end of the pulses. This current was completely suppressed when 1 μM amiloride was applied before adding the bactridines. Since the amiloride sensitive current is able to distort the aim of our study, i.e. the effect of bactridines on sodium channels, all experiments were done in the presence of 1 μM amiloride. Most bactridines induced voltage shifts of V(1/2) of the Boltzmann inactivation voltage dependency curves in the hyperpolarizing direction. Bactridines 1, 4 and 6 reduced Na current peak by 65, 80 and 24% of the control, respectively. The sodium conductance blockage by bactridines was voltage independent at potentials >20 mV. Bactridines effect on cricket DUM neurons does not correspond to neither α- nor β-toxins. Most bactridines shifted the inactivation curves in the hyperpolarizing direction without any effects on the activation m(∞)-like curves. Also bactridines differ from other NaScpTx in that they increased an amiloride-sensitive conductance in DUM neurons. Our result suggest that the α/β classification of sodium scorpion toxins is not all encompassing. The present work shows that bactridines target more than one site: insect voltage dependent Na channels and an amiloride-sensitive ionic pathway which is under study. PMID:23085555

  10. A voltage-clamp study of the light response in solitary rods of the tiger salamander.

    PubMed Central

    Bader, C R; Macleish, P R; Schwartz, E A

    1979-01-01

    1. Single, isolated, rod photoreceptors were obtained by enzymatic dissociation of the tiger salamander (Ambystoma tigrinum) retina. These solitary cells retained the morphological features of rods of the intact retina and could be maintained in culture for several days. Solitary cells were penetrated with one or two micropipettes and their electrophysiology was studied by the voltage-clamp technique. 2. Intracellular recording with two micropipettes demonstrated that the inner segment of a solitary rod was effectively isopotential with the outer segment. 3. The time course of the voltage response to a flash resembled that of responses observed in rods in the intact retina. At low light intensities the response reached a peak in approximately 0.7 sec and then slowly declined. At high light intensities the time to peak response decreased and an initial transient arose as the response, after reaching the peak, quickly decreased to a less polarized plateau. 4. The normal voltage response could be compared with the current observed during a voltage clamp. At low light intensities the time course of the current response resembled the time course of the voltage response. When light intensity was increased the time course of the current response differed from the voltage response in that the time to peak amplitude remained relatively constant and an initial transient did not occur. It was possible to predict the current response produced by any intensity of light by using (i) an empirical equation which reproduced the time course of a dim response and (ii) the Michaelis-Menten equation. 5. The time course of the voltage-clamp current produced by a flash was the same at different values of maintained voltage. 6. The maximum amplitude of the voltage-clamp current produced by a flash or step of light was a non-linear function of membrane potential. It was relatively constant within the physiological range, decreased as the membrane potential was moved toward 0 mV, reversed

  11. The ventral photoreceptor cells of Limulus. 3. A voltage-clamp study.

    PubMed

    Millecchia, R; Mauro, A

    1969-09-01

    In the dark, the ventral photoreceptor of Limulus exhibits time-variant currents under voltage-clamp conditions; that is, if the membrane potential of the cell is clamped to a depolarized value there is an initial large outward current which slowly declines to a steady level. The current-voltage relation of the cell in the dark is nonlinear. The only ion tested which has any effect on the current-voltage relation is potassium; high potassium shifts the reversal potential towards zero and introduces a negative slope-conductance region. When the cell is illuminated under voltage-clamp conditions, an additional current, the light-induced current, flows across the cell membrane. The time course of this current mimics the time course of the light response (receptor potential) in the unclamped cell; namely, an initial transient phase is followed by a steady-state phase. The amplitude of the peak transient current can be as large as 60 times the amplitude of the steady-state current, while in the unclamped cell the amplitude of the peak transient voltage never exceeds 4 times the amplitude of the steady-state voltage. The current-voltage relations of the additional light-induced current obtained for different instants of time are also nonlinear, but differ from the current-voltage relations of the dark current. The ions tested which have the greatest effect on the light-induced current are sodium and calcium; low sodium decreases the current, while low calcium increases the current. The data strongly support the hypothesis that two systems of electric current exist in the membrane. Thus the total ionic current which flows in the membrane is accounted for as the sum of a dark current and a light-induced current. PMID:5806593

  12. The Anion Paradox in Sodium Taste Reception: Resolution by Voltage-Clamp Studies

    NASA Astrophysics Data System (ADS)

    Ye, Qing; Heck, Gerard L.; Desimone, John A.

    1991-11-01

    Sodium salts are potent taste stimuli, but their effectiveness is markedly dependent on the anion, with chloride yielding the greatest response. The cellular mechanisms that mediate this phenomenon are not known. This "anion paradox" has been resolved by considering the field potential that is generated by restricted electrodiffusion of the anion through paracellular shunts between taste-bud cells. Neural responses to sodium chloride, sodium acetate, and sodium gluconate were studied while the field potential was voltage-clamped. Clamping at electronegative values eliminated the anion effect, whereas clamping at electropositive potentials exaggerated it. Thus, field potentials across the lingual epithelium modulate taste reception, indicating that the functional unit of taste reception includes the taste cell and its paracellular microenvironment.

  13. Voltage-clamp frequency domain analysis of NMDA-activated neurons.

    PubMed

    Moore, L E; Hill, R H; Grillner, S

    1993-02-01

    1. Voltage and current-clamp steps were added to a sum of sine waves to measure the tetrodotoxin-insensitive membrane properties of neurons in the intact lamprey spinal cord. A systems analysis in the frequency domain was carried out on two types of cells that have very different morphologies in order to investigate the structural dependence of their electrophysiological properties. The method explicitly takes into account the geometrical shapes of (i) nearly spherical dorsal cells with one or two processes and (ii) motoneurons and interneurons that have branched dendritic structures. Impedance functions were analysed to obtain the cable properties of these in situ neurons. These measurements show that branched neurons are not isopotential and, therefore, a conventional voltage-clamp analysis is not valid. 2. The electrophysiological data from branched neurons were curve-fitted with a lumped soma-equivalent cylinder model consisting of eight equal compartments coupled to an isopotential cell body to obtain membrane parameters for both passive and active properties. The analysis provides a quantitative description of both the passive electrical properties imposed by the geometrical structure of neurons and the voltage-dependent ionic conductances determined by ion channel kinetics. The model fitting of dorsal cells was dominated by a one-compartment resistance and capacitance in parallel (RC) corresponding to the spherical, non-branched shape of these cells. Branched neurons required a model that contained both an RC compartment and a cable that reflected the structure of the cells. At rest, the electrotonic length of the cable was about two. Uniformly distributed voltage-dependent ionic conductance sites were adequate to describe the data at different membrane potentials. 3. The frequency domain admittance method in conjunction with a step voltage clamp was used to control and measure the oscillatory behavior induced by N-methyl-D-aspartate (NMDA) on lamprey spinal

  14. Membrane tether formation from voltage-clamped outer hair cells using optical tweezers

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Ermilov, Sergey A.; Murdock, David R.; Brownell, William E.; Anvari, Bahman

    2004-06-01

    Outer hair cells contribute an active mechanical feedback to the vibrations of the cochlear structures resulting in the high sensitivity and frequency selectivity of normal hearing. We have designed and implemented a novel experimental setup that combines optical tweezers with patch-clamp apparatus to investigate the electromechanical properties of cellular plasma membranes. A micron-size bead trapped by the optical tweezers is brought in contact with the membrane of a voltage-clamped cell, and subsequently moved away to form a plasma membrane tether. Bead displacement during tether elongation is monitored by a quadrant photodetector to obtain time-resolved measurements of the tethering force. Salient information associated with the mechanical properties of the membrane tether can thus be obtained. Tethers can be pulled from the cell membrane at different holding potentials, and the tether force response can be measured while changing transmembrane potential. Experimental results from outer hair cells and human embryonic kidney cells are presented.

  15. Numerical analysis of the voltage-clamp technique applied to frog neuromuscular junctions.

    PubMed Central

    Torres, M E; Sevcik, C; Parthe, V

    1982-01-01

    The nonlinear cable equation was solved numerically by means of an implicit procedure. The correlation between end-plate length and fiber diameter was determined in frog (Rana pipiens) sartorius muscles stained with gold chloride (Löwit, 1875). The diameter of the fibers stained by the Löwit method was 80 (74-85) micron (median and its 95% confidence interval for 52 fibers), the length of the end plates in the same fibers was 382 (353-417) micron. The fibers simulated were 80 micron in diameter. To solve the equation the muscle fibers were represented by 500 segments 20 micron long, and the equation was solved in steps of 10 microseconds; a double exponential function was incorporated to the first seven segments to represent the neuromuscular junction. The potential of the first segment of the cable was set to the clamping level and the membrane potential of the remaining segments calculated. The current needed to hold the first segment was estimated by adding the current flowing through the first segment to the current flowing from it to the second segment. Our results indicate that the lack of space clamp in the point voltage-clamp studies of the frog neuromuscular junction introduces serious errors in the estimates of the end-plate conductance value, the kinetics of the conductance changes, and the reversal potential of the end-plate currents. The possibility of an efficient voltage-clamp technique is also explored. Our calculations suggest that the study of end-plate current and conductance is possible with little error if the end-plate potential is controlled at both ends of the synaptic area simultaneously. Images FIGURE 1 PMID:6981435

  16. Serotonin increases intracellular Ca2+ transients in voltage-clamped sensory neurons of Aplysia californica.

    PubMed Central

    Boyle, M B; Klein, M; Smith, S J; Kandel, E R

    1984-01-01

    Noxious stimulation of the tail of Aplysia californica produces behavioral sensitization; it enhances several related defensive reflexes. This reflex enhancement involves heterosynaptic facilitation of transmitter release from sensory neurons of the reflex. The facilitation is stimulated by serotonin (5-HT) and involves suppression of a 5-HT-sensitive K+ current (the S current). Suppression of the S current broadens the action potential of the sensory neurons and is thought to enhance transmitter release by prolonging entry of Ca2+ in the presynaptic terminals. We now report a component of enhanced Ca2+ accumulation that is independent of changes in spike shape. We have measured intracellular free Ca2+ transients during long depolarizing steps in voltage-clamped sensory neuron cell bodies injected with the Ca2+-sensitive dye arsenazo III. The free Ca2+ transients elicited by a range of depolarizing voltage-clamp steps increase in amplitude by 75% following application of 5-HT. Since it is observed under voltage-clamp conditions, this increase in the free Ca2+ transients is not merely secondary to the changes in K+ current but must reflect an additional mechanism, an intrinsic change in the handling of Ca2+ by the cell. We have not yet determined whether this change in Ca2+ handling reflects an increase in Ca2+ influx, a reduction in intracellular Ca2+ uptake, or a release of Ca2+ from intracellular stores. Regardless of the underlying mechanism, however, it seems possible that the enhancement of Ca2+ accumulation and the reduction in K+ current act synergistically in producing short-term presynaptic facilitation. Alternatively, this additional modulation of Ca2+ by 5-HT might contribute to processes such as classical conditioning or long-term sensitization that may depend on Ca2+. PMID:6594707

  17. Sodium influxes in internally perfused squid giant axon during voltage clamp.

    PubMed

    Atwater, I; Bezanilla, F; Rojas, E

    1969-05-01

    1. An experimental method for measuring ionic influxes during voltage clamp in the giant axon of Dosidicus is described; the technique combines intracellular perfusion with a method for controlling membrane potential.2. Sodium influx determinations were carried out while applying rectangular pulses of membrane depolarization. The ratio ;measured sodium influx/computed ionic flux during the early current' is 0.92 +/- 0.12.3. Plots of measured sodium influx and computed ionic flux during the early current against membrane potential are very similar. There was evidence that the membrane potential at which the sodium influx vanishes is the potential at which the early current reverses. PMID:5767887

  18. Voltage-dependent clamp of intracellular pH of identified leech glial cells.

    PubMed Central

    Deitmer, J W; Schneider, H P

    1995-01-01

    1. The intracellular pH (pHi) was measured in voltage-clamped, giant neuropile glial cells in isolated segmental ganglia of the leech Hirudo medicinalis, using double-barrelled, pH-sensitive microelectrodes and a slow, two-electrode voltage-clamp system. The potential sensitivity of the pHi regulation in these glial cells was found to be due to an electrogenic Na(+)-HCO3- cotransporter (Deitmer & Szatkowski, 1990). 2. In the presence of 5% CO2 and 24 mM HCO3- (pH 7.4), pHi shifted by 1 pH unit per 110 mV, corresponding to a stoichiometry of 2HCO3-: 1 Na+ of the cotransporter, while in Hepes-buffered CO2-HCO3(-)-free saline (pH 7.4), pHi changed by 1 pH unit per 274 mV. The potential sensitivity of pHi decreased at lower pHo, being 1 pH unit per 216 mV at external pH (pHo) 7.0. 3. Changing pHo between 7.8 and 6.6 induced pHi shifts with a slope of 0.72 pHi units per pHo unit in non-clamped, and of 0.80 pHi units per pHo unit in voltage-clamped cells, indicating that pHi largely followed pHo. The electrochemical gradient of H(+)-HCO3- across the glial membrane was around 56 mV, and remained almost constant over this pHo range. 4. The membrane potential-dependent and pHo-sensitive shifts of pHi were unaffected by amiloride, an inhibitor of Na(+)-H+ exchange. 5. The intracellular acidification upon lowering pHo could be reversed by depolarizing the membrane as predicted from a cotransporter, whose equilibrium follows the membrane potential by resetting pHi. 6. The results indicate that the pHi of leech glial cells is dominated by the electrogenic Na(+)-HCO3- cotransporter, and is hence a function of the membrane potential, and the Na+ and H(+)-HCO3- gradients, across the cell membrane. PMID:7658370

  19. X-ray microanalysis of single cardiac myocytes frozen under voltage-clamp conditions

    SciTech Connect

    Wendt-Gallitelli, M.F.; Isenberg, G.

    1989-02-01

    By means of a patch pipette, an isolated ventricular myocyte was transferred into the taper of a silver holder covered by pioloform film. Once the cell was on the film, the cell was voltage clamped (pulses from -45 to +5 mV at 0.5 Hz). The amount of Ca entry was estimated from the Ca current. When contractility (cell shortening) was potentiated with either five pulses of 0.2 s or four pulses of 1 s, shock freezing was timed 116 or 816 ms after start of the clamp pulse. Electron micrographs from freeze-substituted cells revealed the good preservation of the intracellular compartments. The myocytes were cut at -150 degrees C, and the cryosections were freeze dried. In representative examples, the amount of Ca entry is compared with the subcellular Ca distribution as it is analyzed with energy dispersive X-ray microprobe analysis in cytoplasm, junctional sarcoplasmic reticulum (SR), mitochondria, and the subsarcolemmal space (sarcolemma, peripheral SR, fringe of cytosol).

  20. Studies of calcium channels in rat clonal pituitary cells with patch electrode voltage clamp

    PubMed Central

    Hagiwara, Susumu; Ohmori, Harunori

    1982-01-01

    1. The properties of the Ca channel in tissue cultured clonal cells (GH3) isolated from a rat anterior pituitary tumour were studied with the patch electrode voltage-clamp technique. 2. To isolate the current through the Ca channel, the currents through the Na channel, the delayed K channel and the Ca2+ induced K channel were minimized by replacing the external Na+ with TEA+ and adding EGTA to the K-free solution inside the patch electrode. 3. The selectivity ratios through the Ca channel with different cations were 2·7 (Ba2+):1·6 (Sr2+):1·0 (Ca2+) and the m2 form of the activation kinetics and the relationships between the time constant and the membrane potential were common to the three divalent cations. 4. The amplitude of the Ba2+ current increased linearly with [Ba2+]o up to 25 mM and thereafter tended to show saturation. 5. The current—voltage relation showed a positive shift along the voltage axis as [Ba2+]o increased, probably due to the screening effect of Ba2+ on the negative surface charges. 6. The time constant of activation as a function of the membrane potential showed a parallel shift as [Ba2+]o was increased, suggesting that the activation kinetics were independent of the permeant ion concentration. 7. The time constant of the tail current was consistent with m2 kinetics for opening and closing of the Ca channel. 8. The extrapolated `instantaneous' tail current rapidly increased as the activating membrane potential became more positive and reached an apparent saturation at membrane potentials substantially more positive than the potential that gave the maximum peak inward current, and suggested that the single channel has a sigmoidal current—voltage relationship. 9. The power density spectrum obtained during the steady-state inward Ba2+ current had a cut-off frequency which was nearly voltage independent; this is expected if the fluctuation of the current originates from m2 activation kinetics. 10. The results of noise analysis suggest that

  1. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers.

    PubMed

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-01

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class. PMID:23902112

  2. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers

    SciTech Connect

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-15

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.

  3. Crayfish stretch receptor: an investigation with voltage-clamp and ion-sensitive electrodes.

    PubMed Central

    Brown, H M; Ottoson, D; Rydqvist, B

    1978-01-01

    1. The membrane characteristics of the slowly adapting stretch receptor from the crayfish, Astacus fluviatilis, were examined with electrophysiological techniques consisting of membrane potential recording, voltage clamp and ion-sensitive microelectrodes. 2. The passive membrane current (Ip) following step changes of the membrane potential to levels above 0 mV required more than a minute to decay to a steady-state level. 3. The stretch-induced current (SIC, where SIC = Itotal--Ipassive) was not fully developed until the Ip had decayed to a steady state. 4. With Ip at the steady state and the stretch-induced current at the O-current potential, a slow stretch-induced inward current was isolated. The latter reaches a maximum after 1 sec of stretch and declines even more slowly after stretch. The I-V relation of the slow current had a negative slope and reversed sign near the resting potential. It is suggested that this current is due to a Cl- conductance change. 5. The stretch-induced current, consisting of a rapid transient phase and a steady component can be isolated from the slow stretch-induced current at a holding potential corresponding to the resting potential. 6. The SIC-Em relation is non-linear and reverses sign at about +15 mV. 7. In a given cell, the reversal potential of the stretch-induced potential change obtained with current clamp coincided with the 0-current potential of the stretch-induced current obtained by voltage clamp. The average value from twenty-six cells was +13 +/- 6.5 mV; cell to cell variability seemed to be correlated with dendrite length. 8. Tris (mol. wt. 121) or arginine (mol. wt. 174) susbstituted for Na+ reduces but does not abolish the stretch-induced current. 9. The permeability ratios of Tris:Na and arginine:Na were estimated from changes in the 0-current potential as these cations replaced Na+ in the external medium. The PTris:PNa was somewhat higher (0.31) than the Parginine:PNa ratio (0.25). 10. Changes in the external Ca2

  4. Single Cell Measurement of Dopamine Release with Simultaneous Voltage-clamp and Amperometry

    PubMed Central

    Saha, Kaustuv; Swant, Jarod; Khoshbouei, Habibeh

    2012-01-01

    After its release into the synaptic cleft, dopamine exerts its biological properties via its pre- and post-synaptic targets1. The dopamine signal is terminated by diffusion2-3, extracellular enzymes4, and membrane transporters5. The dopamine transporter, located in the peri-synaptic cleft of dopamine neurons clears the released amines through an inward dopamine flux (uptake). The dopamine transporter can also work in reverse direction to release amines from inside to outside in a process called outward transport or efflux of dopamine5. More than 20 years ago Sulzer et al. reported the dopamine transporter can operate in two modes of activity: forward (uptake) and reverse (efflux)5. The neurotransmitter released via efflux through the transporter can move a large amount of dopamine to the extracellular space, and has been shown to play a major regulatory role in extracellular dopamine homeostasis6. Here we describe how simultaneous patch clamp and amperometry recording can be used to measure released dopamine via the efflux mechanism with millisecond time resolution when the membrane potential is controlled. For this, whole-cell current and oxidative (amperometric) signals are measured simultaneously using an Axopatch 200B amplifier (Molecular Devices, with a low-pass Bessel filter set at 1,000 Hz for whole-cell current recording). For amperometry recording a carbon fiber electrode is connected to a second amplifier (Axopatch 200B) and is placed adjacent to the plasma membrane and held at +700 mV. The whole-cell and oxidative (amperometric) currents can be recorded and the current-voltage relationship can be generated using a voltage step protocol. Unlike the usual amperometric calibration, which requires conversion to concentration, the current is reported directly without considering the effective volume7. Thus, the resulting data represent a lower limit to dopamine efflux because some transmitter is lost to the bulk solution. PMID:23207721

  5. Multiphysics model of a rat ventricular myocyte: A voltage-clamp study

    PubMed Central

    2012-01-01

    Background The objective of this study is to develop a comprehensive model of the electromechanical behavior of the rat ventricular myocyte to investigate the various factors influencing its contractile response. Methods Here, we couple a model of Ca2 + dynamics described in our previous work, with a well-known model of contractile mechanics developed by Rice, Wang, Bers and de Tombe to develop a composite multiphysics model of excitation-contraction coupling. This comprehensive cell model is studied under voltage clamp (VC) conditions, since it allows to focus our study on the elaborate Ca2 + signaling system that controls the contractile mechanism. Results We examine the role of various factors influencing cellular contractile response. In particular, direct factors such as the amount of activator Ca2 + available to trigger contraction and the type of mechanical load applied (resulting in isosarcometric, isometric or unloaded contraction) are investigated. We also study the impact of temperature (22 to 38°C) on myofilament contractile response. The critical role of myofilament Ca2 + sensitivity in modulating developed force is likewise studied, as is the indirect coupling of intracellular contractile mechanism with the plasma membrane via the Na + /Ca2 + exchanger (NCX). Finally, we demonstrate a key linear relationship between the rate of contraction and relaxation, which is shown here to be intrinsically coupled over the full range of physiological perturbations. Conclusions Extensive testing of the composite model elucidates the importance of various direct and indirect modulatory influences on cellular twitch response with wide agreement with measured data on all accounts. Thus, the model provides mechanistic insights into whole-cell responses to a wide variety of testing approaches used in studies of cardiac myofilament contractility that have appeared in the literature over the past several decades. PMID:23171697

  6. Intracellular calcium and its sodium-independent regulation in voltage-clamped snail neurones.

    PubMed Central

    Kennedy, H J; Thomas, R C

    1995-01-01

    1. We have used both Ca(2+)-sensitive microelectrodes and fura-2 to measure the intracellular free calcium ion concentration ([Ca2+]i or its negative log, pCai) of snail neurones voltage clamped to -50 or -60 mV. Using Ca(2+)-sensitive microelectrodes, [Ca2+]i was found to be approximately 174 nM and pCai, 6.76 +/- 0.09 (mean +/- S.E.M.; n = 11); using fura-2, [Ca2+]i was approximately 40 nM and pCai, 7.44 +/- 0.06 (mean +/- S.E.M., n = 10). 2. Depolarizations (1-20 s) caused an increase in [Ca2+]i which was abolished by removal of extracellular Ca2+, indicating that the rise in [Ca2+]i was due to Ca2+ influx through voltage-activated Ca2+ channels. 3. Caffeine (10-20 mM) caused an increase in [Ca2+]i in the presence or absence of extracellular Ca2+. The effects of caffeine on [Ca2+]i could be prevented by ryanodine. 4. Thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a small increase in resting [Ca2+]i and slowed the rate of recovery from Ca2+ loads following 20 s depolarizations. 5. Neither replacement of extracellular sodium with N-methyl-D-glucamine (NMDG), nor loading the cells with intracellular sodium, had any effect on resting [Ca2+]i or the rate of recovery of [Ca2+]i following depolarizations. 6. The mitochondrial uncoupling agent carbonyl cyanide m-chlorophenylhydrazone (CCmP) caused a small gradual rise in resting [Ca2+]i. Removal of extracellular sodium during exposure to CCmP had no further effect on [Ca2+]i. 7. Intracellular orthovanadate caused an increase in resting [Ca2+]i and prevented the full recovery of [Ca2+]i following small Ca2+ loads, but removal of extracellular sodium did not cause a rise in [Ca2+]i. We conclude that there is no Na(+)-Ca2+ exchanger present in the cell body of these neurones and that [Ca2+]i is maintained by an ATP-dependent Ca2+ pump. Images Figure 1 PMID:7623274

  7. Voltage clamp measurements of sodium channel properties in rabbit cardiac Purkinje fibres.

    PubMed

    Colatsky, T J

    1980-08-01

    1. Voltage clamp studies of the excitatory sodium current, INa, were carried out in rabbit cardiac Purkinje fibres using th two-micro-electrode technique. Previous work has shown the rabbit Purkinje fibre to have relatively simple morphology (Sommer & Johnson, 1968) and electrical structure (Colatsky & Tsien, 1979a) compared to other cardiac preparations. 2. Non-uniformities in membrane potential were kept small by reducing the size of INa to less than 50 microA/cm2 of total membrane surface area through prepulse inactivation or removal of external sodium, Nao. Temporal resolution was improved by cooling to 10-26 degrees C. These adjustments did not greatly alter the measured properties of the sodium channel. 3. Under these conditions, sodium currents were recorded satisfying a number of criteria for adequate voltage control. Direct measurement of longitudinal non-uniformity using a second voltage electrode showed only small deviations at the time of peak current. 4. The properties of the sodium channel were examined using conventional protocols. Both peak sodium permeability, PNa, and steady-state sodium inactivation, h infinity, showed a sigmoidal dependence on membrane potential. PNa rose steeply with small depolarizations, increasing roughly e-fold per 3.2 mV, and reaching half-maximal activation at -30 +/- 2 mV. The h infinity -V curve had a midpoint of -74.9 +/- 2 mV and a reciprocal slope of 4.56 +/- 0.13 mV at temperatures of 10-19.5 degrees C, and showed a dependence on temperature, shifting to more negative potentials with cooling (approximately 3 mV/10 degrees C). Recovery of INa from inactivation in double pulse experiments followed a single exponential time course with time constants of 108-200 msec at 19 degrees C for holding potentials near -80 mV. No attempt was made to describe the activation kinetics because of uncertainties about the early time course of the current. 5. These data predict a maximum duration for INa of less than 1-2 msec and a

  8. Curvature-driven pore growth in charged membranes during charge-pulse and voltage-clamp experiments.

    PubMed

    Kroeger, Jens H; Vernon, Dan; Grant, Martin

    2009-02-01

    We find that curvature-driven growth of pores in electrically charged membranes correctly reproduces charge-pulse experiments. Our model, consisting of a Langevin equation for the time dependence of the pore radius coupled to an ordinary differential equation for the number of pores, captures the statistics of the pore population and its effect on the membrane conductance. The calculated pore radius is a linear, and not an exponential, function of time, as observed experimentally. Two other important features of charge-pulse experiments are recovered: pores reseal for low and high voltages but grow irreversibly for intermediate values of the voltage. Our set of coupled ordinary differential equations is equivalent to the partial differential equation used previously to study pore dynamics, but permits the study of longer timescales necessary for the simulations of voltage-clamp experiments. An effective phase diagram for such experiments is obtained. PMID:19186129

  9. A DC-Voltage-Balancing Circuit for a Five-Level Diode-Clamped PWM Inverter Intended for Motor Drives

    NASA Astrophysics Data System (ADS)

    Hasegawa, Kazunori; Akagi, Hirofumi

    This paper proposes a new dc-voltage-balancing circuit for a five-level diode-clamped inverter intended for a medium-voltage motor drive. This circuit consists of two unidirectional choppers and a single coupled inductor with two galvanically-isolated windings. The dc magnetic fluxes in the magnetic core, which are generated by the two windings, cancel out each other. Therefore, the inductor does not generate any dc-magnetic flux in the magnetic core. This makes the inductor compact by a factor of six compared to previously used balancing circuits containing two non-coupled inductors. Experimental results obtained from a 200-V 5.5-kW downscaled model verify that the dc mean voltages of the four split dc capacitors are balanced well under all operating conditions.

  10. Curvature-Driven Pore Growth in Charged Membranes during Charge-Pulse and Voltage-Clamp Experiments

    PubMed Central

    Kroeger, Jens H.; Vernon, Dan; Grant, Martin

    2009-01-01

    We find that curvature-driven growth of pores in electrically charged membranes correctly reproduces charge-pulse experiments. Our model, consisting of a Langevin equation for the time dependence of the pore radius coupled to an ordinary differential equation for the number of pores, captures the statistics of the pore population and its effect on the membrane conductance. The calculated pore radius is a linear, and not an exponential, function of time, as observed experimentally. Two other important features of charge-pulse experiments are recovered: pores reseal for low and high voltages but grow irreversibly for intermediate values of the voltage. Our set of coupled ordinary differential equations is equivalent to the partial differential equation used previously to study pore dynamics, but permits the study of longer timescales necessary for the simulations of voltage-clamp experiments. An effective phase diagram for such experiments is obtained. PMID:19186129

  11. A Numerical Approach to Ion Channel Modelling Using Whole-Cell Voltage-Clamp Recordings and a Genetic Algorithm

    PubMed Central

    Gurkiewicz, Meron; Korngreen, Alon

    2007-01-01

    The activity of trans-membrane proteins such as ion channels is the essence of neuronal transmission. The currently most accurate method for determining ion channel kinetic mechanisms is single-channel recording and analysis. Yet, the limitations and complexities in interpreting single-channel recordings discourage many physiologists from using them. Here we show that a genetic search algorithm in combination with a gradient descent algorithm can be used to fit whole-cell voltage-clamp data to kinetic models with a high degree of accuracy. Previously, ion channel stimulation traces were analyzed one at a time, the results of these analyses being combined to produce a picture of channel kinetics. Here the entire set of traces from all stimulation protocols are analysed simultaneously. The algorithm was initially tested on simulated current traces produced by several Hodgkin-Huxley–like and Markov chain models of voltage-gated potassium and sodium channels. Currents were also produced by simulating levels of noise expected from actual patch recordings. Finally, the algorithm was used for finding the kinetic parameters of several voltage-gated sodium and potassium channels models by matching its results to data recorded from layer 5 pyramidal neurons of the rat cortex in the nucleated outside-out patch configuration. The minimization scheme gives electrophysiologists a tool for reproducing and simulating voltage-gated ion channel kinetics at the cellular level. PMID:17784781

  12. Improved Active Clamp Converter By Resonance Blanking Used For Wide Input Voltage Range

    NASA Astrophysics Data System (ADS)

    Strixner, E.; Godzik, S.

    2011-10-01

    The GPS line receiver as a standard product line of Astrium GmbH Ottobrunn shall operate according to customer requirements on different power busses with no or only minor modifications. Consequently there is an up coming demand to develop a power converter with a wide input voltage range. The hardware shall work with minor adaptation on all standard bus voltages of 28V, 50V and 100V. Themainfocuswas to cover the unregulated 28V bus and the regulated 50V bus without any modifications on the converter module and providing performance data being similar to low input voltage range converters.

  13. Effects of stimulating the acetylcholine receptor on the current-voltage relationships of the smooth muscle membrane studied by voltage clamp of potential recorded by micro-electrode.

    PubMed

    Bolton, T B

    1975-08-01

    1. A double sucrose-gap voltage-clamp technique is described for use on smooth muscle strips longer than about 2 mm. It involves intracellular recording by microelectrode of the membrane potential of a narrow region of the strip ("node") sandwiched between two streams of deionized sucrose solution. Current was passed into the node across one or both sucrose streams. 2. Preliminary experiments in which potential was recorded intracellularly at two points during polarization of a "short cable" preparation, formed by folding over a strip of smooth muscle, suggested that a node width of less than 0-15 mm was needed to achieve uniform potential during inward current flow. However, when node width between sucrose-gaps was reduced to 0-5 mm, spontaneous electrical activity was lost, and below 0-5 mm spike threshold was raised and the regenerative spike became graded. The currents flowing during the application of rectangular voltage-clamp command potentials were described. 3. Using taenia smooth muscle it was shown by recording with a second, independent micro-electrode that potential was not uniform for up to 200 ms or more following a step change in potential under voltage-clamp in nodes 0-4-0-5 mm wide where current was passed across both sucrose gaps. However, reasonably uniform nodal potentials were obtained using ramps with relatively slow rates of rise (25 mV/s). 4. Using such slow ramp commands under voltage clamp, the effects of carbachol on the current-voltage relationship of longitudinal muscle of ileum and taenia were studied in hypertonic solution. 5. In the presence of carbachol (10(-6) to 10(-5) g/ml.) additional inward current flowed across the membrane (in some experiments an equilibrium potential was observed at which this current reversed direction). The magnitude of this additional current was linearly related to potential at potentials negative to the resting potential. At potentials positive to the resting membrane potential, this additional current

  14. Mechanism of action of ketamine in the current and voltage clamped myelinated nerve fibre of the frog.

    PubMed Central

    Benoit, E.; Carratù, M. R.; Dubois, J. M.; Mitolo-Chieppa, D.

    1986-01-01

    The effects of the general anaesthetic ketamine, on the frog isolated node of Ranvier, were studied under current and voltage clamp conditions. Ketamine (0.5 and 1 mM) reversibly decreased the amplitude of the action potential and increased both the duration of the action potential and the threshold potential. When the K current was blocked, spontaneous action potentials appeared after washout of the drug. Ketamine rapidly blocked the Na current and more slowly modified a fraction of Na channels (about 10%) to give rise to a non-inactivatable (late) Na current. After washout of the drug, the block reversed more rapidly than the ketamine-induced late Na current disappeared. Steady-state outward, peak Na and ketamine-induced late Na currents were rapidly and reversibly blocked by ketamine with an apparent dissociation constant of 0.7 mM. Both peak Na and ketamine-induced late Na currents were reversibly blocked by procaine. PMID:2420405

  15. Electrophysiological Characterization of Na,K-ATPases Expressed in Xenopus laevis Oocytes Using Two-Electrode Voltage Clamping.

    PubMed

    Hilbers, Florian; Poulsen, Hanne

    2016-01-01

    The transport of three Na(+) per two K(+) means that the Na,K-ATPase is electrogenic, and though the currents generated by the ion pump are small compared to ion channel currents, they can be measured using electrophysiology, both steady-state pumping and individual steps in the transport cycle. Various electrophysiological techniques have been used to study the endogenous pumps of the squid giant axon and of cardiac myocytes from for example rabbits. Here, we describe the characterization of heterologously expressed Na,K-ATPases using two-electrode voltage clamping (TEVC) and oocytes from the Xenopus laevis frog as the model cell. With this system, the effects of particular mutations can be studied, including the numerous mutations that in later years have been found to cause human diseases. PMID:26695042

  16. Single cardiac Purkinje cells: general electrophysiology and voltage-clamp analysis of the pace-maker current.

    PubMed

    Callewaert, G; Carmeliet, E; Vereecke, J

    1984-04-01

    Single Purkinje cells from dog, sheep and cow hearts were isolated by injecting a Ca-free collagenase containing Tyrode solution in the space between the connective tissue sheath and the Purkinje cells. A small proportion of these cells survived the isolation procedure and these cells were used for further investigation. The cells showed electrophysiological properties similar to intact Purkinje fibres as indicated by the following results. Maximum diastolic potentials between -70 and -85 mV and specific membrane resistances of 21-32 k omega cm2 indicated that the single cells were not leaky or hyperpermeable . The action potential showed a rapid upstroke, with a maximum rate of rise, Vmax' between 150 and 750 V/s, and two phases of fast repolarization separated by a plateau phase with a duration of about 200 ms. Each action potential was followed by a spontaneous depolarization with an amplitude between 1 and 10 mV. The upstroke of the action potential could be blocked by tetrodotoxin (TTX) in a dose-dependent manner. The rate of depolarization of the action potential was sensitive to changes in membrane potential; the resulting S-shaped curve showed a half-maximum potential of -65 mV and a steepness of 0.46 mV-1. The duration of the action potential was sensitive to external K concentrations, catecholamines and TTX in a way similar to intact Purkinje fibres. Both application of catecholamines and lowering the external K concentration induced spontaneous activity. The cells were used to study the ionic nature of the pace-maker current under voltage-clamp conditions using the two-micro-electrode technique. This pace-maker current was blocked in a voltage-dependent manner by 1 mM-Cs, and was not affected by 1 mM-Ba. The steady-state activation curve was shifted in the depolarizing direction by application of adrenaline. In contrast to voltage-clamp data obtained on the pace-maker current of intact Purkinje fibres, the pace-maker current in a single cell did not

  17. Highly selective water channel activity measured by voltage clamp: Analysis of planar lipid bilayers reconstituted with purified AqpZ

    PubMed Central

    Pohl, Peter; Saparov, Sapar M.; Borgnia, Mario J.; Agre, Peter

    2001-01-01

    Aquaporins are membrane channels selectively permeated by water or water plus glycerol. Conflicting reports have described ion conductance associated with some water channels, raising the question of whether ion conductance is a general property of the aquaporin family. To clarify this question, a defined system was developed to simultaneously measure water permeability and ion conductance. The Escherichia coli water channel aquaporin-Z (AqpZ) was studied, because it is a highly stable tetramer. Planar lipid bilayers were formed from unilamellar vesicles containing purified AqpZ. The hydraulic conductivity of bilayers made from the total extract of E. coli lipids increased 3-fold if reconstituted with AqpZ, but electric conductance was unchanged. No channel activity was detected under voltage-clamp conditions, indicating that less than one in 109 transport events is electrogenic. Microelectrode measurements were simultaneously undertaken adjacent to the membrane. Changes in sodium concentration profiles accompanying transmembrane water flow permitted calculation of the activation energies: 14 kcal/mol for protein-free lipid bilayers and 4 kcal/mol for lipid bilayers containing AqpZ. Neither the water permeability nor the electric conductivity exhibited voltage dependence. This sensitive system demonstrated that AqpZ is permeated by water but not charged ions and should permit direct analyses of putative electrogenic properties of other aquaporins. PMID:11493683

  18. Voltage clamp of bull-frog cardiac pace-maker cells: a quantitative analysis of potassium currents.

    PubMed Central

    Giles, W R; Shibata, E F

    1985-01-01

    Spontaneously active single cells have been obtained from the sinus venosus region of the bull-frog, Rana catesbeiana, using an enzymic dispersion procedure involving serial applications of trypsin, collagenase and elastase in nominally 0 Ca2+ Ringer solution. These cells have normal action potentials and fire spontaneously at a rate very similar to the intact sinus venosus. A single suction micro-electrode technique (Hamill, Marty, Neher, Sakmann & Sigworth, 1981; Hume & Giles, 1983) has been used to record the spontaneous diastolic depolarizations or pace-maker activity as well as the regenerative action potentials in these cells. This electrophysiological activity is completely insensitive to tetrodotoxin (TTX; 3 X 10(-6) M) and is very similar to that recorded from an in vitro sinus venosus preparation. The present experiments were aimed at identifying the transmembrane potassium currents, and analysing their role(s) in the development of the pace-maker potential and the repolarization of the action potential. Depolarizing voltage-clamp steps from the normal maximum diastolic potential (-75 mV) elicit a time- and voltage-dependent activation of an outward current. The reversal potential of this current in normal Ringer solution [( K+]0 2.5 mM) is near -95 mV; and it shifts by 51 mV per tenfold increase in [K+]0, which strongly suggests that this current is carried by K+. We therefore labelled it IK. The reversal potential of IK did not shift in the positive direction following very long (20 s) depolarizing clamp steps to +20 mV, indicating that 'extracellular' accumulation of [K+]0 does not produce any significant artifacts. The fully activated instantaneous current-voltage (I-V) relationship for IK is approximately linear over the range of potentials -130 to -30 mV. Thus, the ion transfer mechanism of IK may be described as a simple ohmic conductance in this range of potentials. Positive relative to -30 mV, however, the I-V exhibits significant inward

  19. Effects of Na+ and Ca2+ gradients on intracellular free Ca2+ in voltage-clamped Aplysia neurons.

    PubMed

    Levy, S; Tillotson, D

    1988-12-01

    Selected neurons of the abdominal ganglion of Aplysia californica were voltage-clamped and intracellular free Ca [( Ca2+]i) and Na [( Na+]i) concentrations were monitored with ion selective microelectrodes. Reducing [Na+]o from 500 mM (normal seawater, NSW) to 5 mM resulted in a decrease of the potential measured by the Ca electrode (VCa). Increasing [Ca2+]o from 10 to 50 mM increased [Ca2+]i two-fold, keeping [Ca2+]o at 50 mM and decreasing [Na+]o to 5 mM still led to a decrease in VCa. With 100 mM [Ca2+]o, which also increased [Ca2+]i, decreasing [Na+]o increased VCa in two of the eight cells tested. This indicates that in normal or moderately high resting [Ca2+]i, Ca2+ extrusion by Na/Ca exchange (forward mode) is not essential for [Ca2+]i buffering. [Na+]i was 12.9 +/- 3.6 mM (S.E.M., n = 7) in NSW; reducing [Na+]o to 5 mM decreased [Na+]i to 2.0 +/- 1.1 mM (S.E.M.). Keeping [Na+]o at 5 mM and increasing [Ca2+]o from 10 to 20 mM further decreased [Na+]i to about 1.0 mM, evidence of Na/Ca exchange operating in the reverse mode. Attempts to increase [Ca2+]i by bath application of the Ca ionophores A23187, X537A, ionomycin or ETH 1001 resulted in no measurable change of the resting [Ca2+]i. Application of Ouabain caused an apparent increase in [Ca2+]i in two of the six cells tested. In cells injected with the metallochromic indicator arsenazo III (AIII), the rate of the falling phase of the AIII absorbance increase, following a voltage-clamp pulse, was significantly slower in 5 mM [Na+]o. This indicates that in its forward mode Na-Ca exchange is active in clearing large submembrane increases in [Ca2+]i. PMID:3208137

  20. Correlation of 125I-LSD autoradiographic labeling with serotonin voltage clamp responses in Aplysia neurons

    SciTech Connect

    Evans, M.L.; Kadan, M.J.; Hartig, P.R.; Carpenter, D.O. )

    1991-05-01

    Autoradiographic receptor binding studies using 125I-LSD (2-(125I)lysergic acid diethyamide) revealed intense labelling on the soma of a symmetrically located pair of cells in the abdominal ganglion of Aplysia californica. This binding was blocked by micromolar concentrations of serotonin and lower concentrations of the serotonergic antagonists, cyproheptadine and mianserin. Electrophysiological investigation of responses to serotonin of neurons in the left upper quadrant, where one of the labeled neurons is located, revealed a range of serotonin responses. Cells L3 and L6 have a K+ conductance increase in response to serotonin that is not blocked by cyproheptadine or mianserin. Cells L2 and L4 have a biphasic response to serotonin: a Na+ conductance increase, which can be blocked by cyproheptadine and mianserin, followed by a voltage dependent Ca2+ conductance which is blocked by Co2+ but not the serotonergic antagonists. Cell L1, and its symmetrical pair, R1, have in addition to the Na+ and Ca2+ responses observed in L2 and L4, a Cl- conductance increase blocked by LSD, cyproheptadine and mianserin. LSD had little effect on the other responses. The authors conclude that the symmetrically located cells L1 and R1 have a Cl- channel linked to a cyproheptadine- and mianserin-sensitive serotonin receptor that is selectively labelled by 125I-LSD. This receptor has many properties in common with the mammalian serotonin 1C receptor.

  1. Control of Gastric H,K-ATPase Activity by Cations, Voltage and Intracellular pH Analyzed by Voltage Clamp Fluorometry in Xenopus Oocytes

    PubMed Central

    Dürr, Katharina L.; Tavraz, Neslihan N.; Friedrich, Thomas

    2012-01-01

    Whereas electrogenic partial reactions of the Na,K-ATPase have been studied in depth, much less is known about the influence of the membrane potential on the electroneutrally operating gastric H,K-ATPase. In this work, we investigated site-specifically fluorescence-labeled H,K-ATPase expressed in Xenopus oocytes by voltage clamp fluorometry to monitor the voltage-dependent distribution between E1P and E2P states and measured Rb+ uptake under various ionic and pH conditions. The steady-state E1P/E2P distribution, as indicated by the voltage-dependent fluorescence amplitudes and the Rb+ uptake activity were highly sensitive to small changes in intracellular pH, whereas even large extracellular pH changes affected neither the E1P/E2P distribution nor transport activity. Notably, intracellular acidification by approximately 0.5 pH units shifted V0.5, the voltage, at which the E1P/E2P ratio is 50∶50, by −100 mV. This was paralleled by an approximately two-fold acceleration of the forward rate constant of the E1P→E2P transition and a similar increase in the rate of steady-state cation transport. The temperature dependence of Rb+ uptake yielded an activation energy of ∼90 kJ/mol, suggesting that ion transport is rate-limited by a major conformational transition. The pronounced sensitivity towards intracellular pH suggests that proton uptake from the cytoplasmic side controls the level of phosphoenzyme entering the E1P→E2P conformational transition, thus limiting ion transport of the gastric H,K-ATPase. These findings highlight the significance of cellular mechanisms contributing to increased proton availability in the cytoplasm of gastric parietal cells. Furthermore, we show that extracellular Na+ profoundly alters the voltage-dependent E1P/E2P distribution indicating that Na+ ions can act as surrogates for protons regarding the E2P→E1P transition. The complexity of the intra- and extracellular cation effects can be rationalized by a kinetic model suggesting

  2. A Novel Method for the Description of Voltage-Gated Ionic Currents Based on Action Potential Clamp Results—Application to Hippocampal Mossy Fiber Boutons

    PubMed Central

    Clay, John R.

    2016-01-01

    Action potential clamp (AP-clamp) recordings of the delayed rectifier K+ current IK and the fast-activated Na+ current INa in rat hippocampal mossy fiber boutons (MFBs) are analyzed using a computational technique recently reported. The method is implemented using a digitized AP from an MFB and computationally applying that data set to published models of IK and INa. These numerical results are compared with experimental AP-clamp recordings. The INa result is consistent with experiment; the IK result is not. The difficulty with the IK model concerns the fully activated current-voltage relation, which is described here by the Goldman-Hodgkin-Katz dependence on the driving force (V-EK) rather than (V-EK) itself, the standard model for this aspect of ion permeation. That revision leads to the second—a much steeper voltage dependent activation curve for IK than the one obtained from normalization of a family of IK records by (V-EK). The revised model provides an improved description of the AP-clamp measurement of IK in MFBs compared with the standard approach. The method described here is general. It can be used to test models of ionic currents in any excitable cell. In this way it provides a novel approach to the relationship between ionic current and membrane excitability in neurons. PMID:26793065

  3. Post clamp

    NASA Technical Reports Server (NTRS)

    Ramsey, John K. (Inventor); Meyn, Erwin H. (Inventor)

    1990-01-01

    A pair of spaced collars are mounted at right angles on a clamp body by retaining rings which enable the collars to rotate with respect to the clamp body. Mounting posts extend through aligned holes in the collars and clamp body. Each collar can be clamped onto the inserted post while the clamp body remains free to rotate about the post and collar. The clamp body is selectively clamped onto each post.

  4. Analysis of the effects of calcium or magnesium on voltage-clamp currents in perfused squid axons bathed in solutions of high potassium.

    PubMed

    Rojas, E; Taylor, R E; Atwater, I; Bezanilla, F

    1969-10-01

    Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15-30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system. PMID:5823216

  5. A voltage-clamp study of the permeability change induced by quanta of transmitter at the mouse end-plate.

    PubMed Central

    Linder, T M; Quastel, D M

    1978-01-01

    1. Miniature end-plate currents (m.e.p.c.s) were recorded from mouse diaphragm using a point voltage-clamp. The relation between m.e.p.c. amplitude and membrane potential was determined in bathing solutions of varied composition. 2. In solution containing normal sodium the relation between m.e.p.c. height and membrane potential (Im.e.p.c./Vm relation) was always linear, at least in the range +30 to -100 mV; the reversal potential (Vr) at which Im.e.p.c. was zero was close to 0. The slope of the Im.e.p.c./Vm line varied little between junctions (coefficient of variation about 20%) and was about 50 nS, or 1nA per 20 mV. The Im.e.p.c./Vm relation was not altered by withdrawal of Ca2+, addition of ethanol, or substitution of NO-3 or SO2-(4) for Cl-. 3. Alteration of K+ concentration in the bathing medium, in the range 10 to 1 mM, had no apparent effect on the Im.e.p.c./Vm relation. 4. Reduction of Na+ concentration, with isosmotic substitution of sucrose, caused rapid alteration of the Im.e.p.c./Vm relation, which became rectifying, with a slope at negative Vm less than at positive Vm. Vr was shifted in the negative direction. Quantitatively these changes were close to those predicted by the Goldman-Hodgkin-Katz formulation for permeation of monovalent ions through a membrane with constant field. 5. In solution with low Na+ (2 mM) and partial substitution of K+ for Na+, the Im.e.p.c./Vm relation was indistinguishable from that in solutions with Na" as the predominant extracellular cation. With complete substitution of K+ for Na+ the Im.e.p.c./Vm relation was a little less steep (at negative Vm) than in Na+ solution and Vr was shifted slightly in the negative direction. 6. With substitution of NH+4 for Na+, the Im.e.p.c./Vm relation was little changed (about 10% steeper at negative Vm). With substitution of Li+ for Na+, the Im.e.p.c./Vm relation remained linear, but was made less steep, at positive as well as negative Vm, and Vr was shifted slightly in the positive

  6. Rigid clamp

    DOEpatents

    Benavides, G.L.; Burt, J.D.

    1994-07-12

    The invention relates to a clamp mechanism that can be used to attach or temporarily support objects inside of tubular goods. The clamp mechanism can also be modified so that it grips objects. The clamp has a self-centering feature to accommodate out-of-roundness or other internal defections in tubular objects such as pipe. A plurality of clamping shoes are expanded by a linkage which is preferably powered by a motor to contact the inside of a pipe. The motion can be reversed and jaw elements can be connected to the linkage so as to bring the jaws together to grab an object. 12 figs.

  7. Rigid clamp

    DOEpatents

    Benavides, Gilbert L.; Burt, Jack D.

    1994-01-01

    The invention relates to a clamp mechanism that can be used to attach or temporarily support objects inside of tubular goods. The clamp mechanism can also be modified so that it grips objects. The clamp has a self-centering feature to accommodate out-of-roundness or other internal defections in tubular objects such as pipe. A plurality of clamping shoes are expanded by a linkage which is preferably powered by a motor to contact the inside of a pipe. The motion can be reversed and jaw elements can be connected to the linkage so as to bring the jaws together to grab an object.

  8. Energy harvesting under excitation of clamped-clamped beam

    NASA Astrophysics Data System (ADS)

    Batra, Ashok; Alomari, Almuatasim; Aggarwal, Mohan; Bandyopadhyay, Alak

    2016-04-01

    In this article, a piezoelectric energy harvesting has been developed experimentally and theoretically based on Euler- Bernoulli Theory. A PVDF piezoelectric thick film has attached along of clamped-clamped beam under sinusoidal base excitation of shaker. The results showed a good agreement between the experimental and simulation of suggested model. The voltage output frequency response function (FRF), current FRF, and output power has been studied under short and open circuit conditions at first vibration mode. The mode shape of the clamped-clamped beam for first three resonance frequency has been modeled and investigated using COMSOL Multiphysics and MATLAB.

  9. Sperm Patch-Clamp

    PubMed Central

    Lishko, Polina; Clapham, David E.; Navarro, Betsy; Kirichok, Yuriy

    2014-01-01

    Sperm intracellular pH and calcium concentration ([Ca2+]i) are two central factors that control sperm activity within the female reproductive tract. As such, the ion channels of the sperm plasma membrane that alter intracellular sperm [Ca2+] and pH play important roles in sperm physiology and the process of fertilization. Indeed, sperm ion channels regulate sperm motility, control sperm chemotaxis toward the egg in some species, and may trigger the acrosome reaction. Until recently, our understanding of these important molecules was rudimentary due to the inability to patch-clamp spermatozoa and directly record the activity of these ion channels under voltage clamp. Recently, we overcame this technical barrier and developed a method for reproducible application of the patch-clamp technique to mouse and human spermatozoa. This chapter covers important aspects of application of the patch-clamp technique to spermatozoa, such as selection of the electrophysiological equipment, isolation of spermatozoa for patch-clamp experiments, formation of the gigaohm seal with spermatozoa, and transition into the whole-cell mode of recording. We also discuss potential pitfalls in application of the patch-clamp technique to flagellar ion channels. PMID:23522465

  10. A study of pace-maker potential in rabbit sino-atrial node: measurement of potassium activity under voltage-clamp conditions.

    PubMed

    Maylie, J; Morad, M; Weiss, J

    1981-02-01

    1. A single sucrose-gap voltage-clamp technique was used to control the membrane potential and to measure current in rabbit sino-atrial (SA) strips. K+ activity in the extracellular space was simultaneously measured using K+-selective micro-electrodes. 2. Using double-barrelled K+ selective micro-electrodes it was possible to measure the time course of accumulation or depletion of K+ accompanying a single action potential without complications arising from mechanical or electrical artifacts. 3. K+ activity in the extracellular space increased during the action potential and then decreased to base-line levels during the diastolic depolarization phase. Single beat accumulations of 0.1-0.4 M could be measured. 4. The magnitude of accumulation or depletion of K+ depended upon the membrane potential such that K+ accumulated at potentials positive to -50 mV (K+ efflux greater than K+ uptake) and was depleted from the extracellular space at potentials negative to -50 mV (K+ efflux less than K+ uptake). 5. The rate of K+ depletion was fairly constant during the time course of a clamp step within the range of diastolic depolarization (-55 to -75 mV) even though the accompanying membrane current showed marked time-dependent kinetics. 6. The total membrane conductance measured during the time course of the diastolic depolarization or during the time course of activation of time-dependent 'pace-maker' current remained fairly constant or increased. 7. No reversal potential for the time-dependent 'pace-maker' current could be measured at EK in solutions containing 2.7, 5.4 and 8.1 mM-K+. 8. These results do not support the turn-off a K+ conductance as the primary mechanisms for the generation of the pace-maker potential in SA nodal tissue; rather the results are more consistent with the idea that activation of an inward current, with large positive equilibrium potential, is responsible for pace-making activity. PMID:7264968

  11. Patch-clamp analysis of voltage-activated and chemically activated currents in the vomeronasal organ of Sternotherus odoratus (stinkpot/musk turtle)

    PubMed Central

    Fadool, D. A.; Wachowiak, M.; Brann, J. H.

    2011-01-01

    Summary The electrophysiological basis of chemical communication in the specialized olfactory division of the vomeronasal (VN) organ is poorly understood. In total, 198 patch-clamp recordings were made from 42 animals (Sternotherus odoratus, the stinkpot/musk turtle) to study the electrically and chemically activated properties of VN neurons. The introduction of tetramethylrhodamine-conjugated dextran into the VN orifice permitted good visualization of the vomeronasal neural epithelium prior to dissociating it into single neurons. Basic electrical properties of the neurons were measured (resting potential, −54.5±2.7 mV, N=11; input resistance, 6.7±1.4GΩ, N=25; capacitance, 4.2±0.3 pF, N=22; means ± S.E.M.). The voltage-gated K+ current inactivation rate was significantly slower in VN neurons from males than in those from females, and K+ currents in males were less sensitive (greater Ki) to tetraethylammonium. Vomeronasal neurons were held at a holding potential of −60 mV and tested for their response to five natural chemicals, female urine, male urine, female musk, male musk and catfish extract. Of the 90 VN neurons tested, 33 (34 %) responded to at least one of the five compounds. The peak amplitude of chemically evoked currents ranged from 4 to 180 pA, with two-thirds of responses less than 25 pA. Urine-evoked currents were of either polarity, whereas musk and catfish extract always elicited only inward currents. Urine applied to neurons harvested from female animals evoked currents that were 2–3 times larger than those elicited from male neurons. Musk-evoked inward currents were three times the magnitude of urine-or catfish-extract-evoked inward currents. The calculated breadth of responsiveness for neurons presented with this array of five chemicals indicated that the mean response spectrum of the VN neurons is narrow (H metric 0.11). This patch-clamp study indicates that VN neurons exhibit sexual dimorphism in function and specificity in response

  12. Charlie's Clamp.

    ERIC Educational Resources Information Center

    Tarino, Janet Z.

    1998-01-01

    Presents a version of the crush-the-can demonstration which is a hands-on activity in which students use an inexpensive, easily made holder for the can called Charlie's clamp. Includes some suggestions for the follow-up discussion. (DDR)

  13. Clamp usable as jig and lifting clamp

    DOEpatents

    Tsuyama, Yoshizo

    1976-01-01

    There is provided a clamp which is well suited for use as a lifting clamp for lifting and moving materials of assembly in a shipyard, etc. and as a pulling jig in welding and other operations. The clamp comprises a clamp body including a shackle for engagement with a pulling device and a slot for receiving an article, and a pair of jaws provided on the leg portions of the clamp body on the opposite sides of the slot to grip the article in the slot, one of said jaws consisting of a screw rod and the other jaw consisting of a swivel jaw with a spherical surface, whereby when the article clamped in the slot by the pair of jaws tends to slide in any direction with respect to the clamp body, the article is more positively gripped by the pair of jaws.

  14. Force-Measuring Clamp

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2004-01-01

    A precision clamp that accurately measures force over a wide range of conditions is described. Using a full bridge or other strain gage configuration. the elastic deformation of the clamp is measured or detected by the strain gages. Thc strain gages transmit a signal that corresponds to the degree of stress upon the clamp. Thc strain gage signal is converted to a numeric display. Calibration is achieved by ero and span potentiometers which enable accurate measurements by the force-measuring clamp.

  15. Photovoltaic panel clamp

    DOEpatents

    Mittan, Margaret Birmingham; Miros, Robert H. J.; Brown, Malcolm P.; Stancel, Robert

    2012-06-05

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  16. Photovoltaic panel clamp

    DOEpatents

    Brown, Malcolm P.; Mittan, Margaret Birmingham; Miros, Robert H. J.; Stancel, Robert

    2013-03-19

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  17. Effect on the indo-1 transient of applying Ca2+ channel blocker for a single beat in voltage-clamped guinea-pig cardiac myocytes.

    PubMed Central

    Levi, A J; Li, J; Spitzer, K W; Bridge, J H

    1996-01-01

    1. We used rapid solution changes to investigate the mechanisms which trigger Ca2+ release from the sarcoplasmic reticulum (SR) in guinea-pig ventricular myocytes. We patch-clamped myocytes at 36 degrees C and used indo-1 to monitor intracellular Ca2+. Before each test pulse, we established a standard level of SR Ca2+ load by applying a train of conditioning pulses. 2. We switched rapidly to 32 microM nifedipine (an L-type Ca2+ current (ICa,L) blocker) 8 s before a test pulse, and just after applying nifedipine we applied a ramp depolarization to pre-block Ca2+ channels. We found that ICa,L elicited by the following test pulse was inhibited almost completely (98-99% inhibition). 3. The indo-1 transient elicited by an 800 ms depolarizing pulse showed a rapid initial rise which was inhibited by ryanodine-thapsigargin. This indicated that the rapid rise was due to Ca2+ release from the SR, and therefore provides an index of SR Ca2+ release. 4. In cells dialysed internally with 10 mM Na(+)-containing solution, nifedipine application before a +10 mV test pulse blocked 62% of the rapid initial phase of the indo-1 transient. Calibration curves of indo-1 for intracellular Ca2+ (using a KD of indo-1 for Ca2+ of either 250 or 850 nM, the reported range) indicated that between 67 and 76% of the Ca2+i transient was inhibited by nifedipine. Thus, in cells dialysed with 10 mM Na+ and depolarized to +10 mV, and in the absence of ICa,L, this suggests that another trigger mechanism for SR release is able to trigger between 33 and 24% of the Ca2+i transient. 5. For a given dialysing Na+ concentration, the fraction of indo-1 transient which was inhibited by nifedipine decreased as test potential became more positive. In cells dialysed with 10 mM Na+ and pulsed to +110 mV, 24% of the rapid phase of the indo-1 transient was inhibited by nifedipine (equivalent to between 27 and 37% of the Ca2+i transient). 6. For a given test potential, the fraction of the indo-1 transient which was

  18. Voltage clamp measurements of the hyperpolarization-activated inward current I(f) in single cells from rabbit sino-atrial node.

    PubMed Central

    van Ginneken, A C; Giles, W

    1991-01-01

    1. The kinetics and ion transfer characteristics of the hyperpolarization-activated inward current, I(f), have been studied in single cells obtained by enzymatic dispersion from the rabbit sino-atrial (S-A) node. These experiments were done to assess the role of I(f) in the generation of the pacemaker depolarization in the S-A node. 2. The activation and the deactivation of I(f) in these single cells are accompanied by significant conductance increases and decreases respectively, confirming earlier findings from multicellular man-made strips of rabbit S-A node, and from mammalian Purkinje fibres. 3. The steady-state activation of I(f) lies between -40 and -120 mV, and its voltage dependence can be described by a Boltzmann relation with the half-activation point at approximately -70 mV. 4. The delay or sigmoidicity in both the onset of I(f) and the deactivation of the tail currents can be accounted for semi-quantitatively by using a second-order Hodgkin-Huxley kinetic scheme. 5. The reversal potential for I(f) is -24 +/- 2 mV (mean +/- S.E.M., n = 6). It does not change significantly as a function of the amount of I(f) which is activated, indicating that ion accumulation or depletion phenomena are not important variables controlling the time course of I(f), or its selectivity. 6. The fully-activated current-voltage relationship for I(f) is approximately linear with a slope conductance of 12.0 +/- 0.88 nS per cell (mean +/- S.E.M., n = 6). 7. A simple mathematical model based on the measured values of maximum conductance, reversal potential, and kinetics of I(f) has been developed to simulate the size and time course of I(f) during typical spontaneous pacemaker activity in rabbit sino-atrial node cells. The calculations show that I(f) can change significantly during pacing and suggest that this current change is, at least in part, responsible for the pacemaker depolarization. Images Fig. 1 PMID:1708824

  19. Construction of a low-frequency high-power piezoelectric transformer with a specified step-up voltage transformation ratio using two identical bolt-clamped Langevin-type transducers

    NASA Astrophysics Data System (ADS)

    Adachi, Kazunari; Konno, Takuma; Kosugi, Satoshi

    2015-06-01

    We propose a low-frequency piezoelectric transformer comprising two identical bolt-clamped Langevin-type transducers (BLTs) and a stepped horn with a half-wavelength straight extension. The transformer can realize a specified step-up voltage transformation ratio as determined by the cross-sectional area ratio of the horn whose both ends the two BLTs are connected to, and the driving frequency at which the specified transformation ratio is realized can be set near its mechanical resonance. Thus, it can be mechanically held firmly at its vibratory node without affecting the mechanical vibration mode or resulting in a loss of energy. After relevant finite-element simulations, experiments were conducted for a trial-fabricated transformer of the above type. As a result, the experimental results predicted by the simulations were obtained in step-up operation. The influence of the load resistance on the deviation of the driving frequency from its total mechanical resonance of 53.1 kHz was found to be less than 130 Hz (0.24% of the resonance frequency) only. High-power performance of the piezoelectric transformer was also demonstrated.

  20. Radial wedge flange clamp

    DOEpatents

    Smith, Karl H.

    2002-01-01

    A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.

  1. Patch-Clamp Fluorometry: Electrophysiology meets Fluorescence

    PubMed Central

    Kusch, Jana; Zifarelli, Giovanni

    2014-01-01

    Ion channels and transporters are membrane proteins whose functions are driven by conformational changes. Classical biophysical techniques provide insight into either the structure or the function of these proteins, but a full understanding of their behavior requires a correlation of both these aspects in time. Patch-clamp and voltage-clamp fluorometry combine spectroscopic and electrophysiological techniques to simultaneously detect conformational changes and ionic currents across the membrane. Since its introduction, patch-clamp fluorometry has been responsible for invaluable advances in our knowledge of ion channel biophysics. Over the years, the technique has been applied to many different ion channel families to address several biophysical questions with a variety of spectroscopic approaches and electrophysiological configurations. This review illustrates the strength and the flexibility of patch-clamp fluorometry, demonstrating its potential as a tool for future research. PMID:24655500

  2. Reusable thermal cycling clamp

    NASA Technical Reports Server (NTRS)

    Debnam, W. J., Jr.; Fripp, A. L.; Crouch, R. K. (Inventor)

    1985-01-01

    A reusable metal clamp for retaining a fused quartz ampoule during temperature cycling in the range of 20 deg C to 1000 deg C is described. A compressible graphite foil having a high radial coefficient of thermal expansion is interposed between the fused quartz ampoule and metal clamp to maintain a snug fit between these components at all temperature levels in the cycle.

  3. Quick action clamp

    NASA Technical Reports Server (NTRS)

    Calco, Frank S. (Inventor)

    1991-01-01

    A quick release toggle clamp that utilizes a spring that requires a deliberate positive action for disengagement is presented. The clamp has a sliding bolt that provides a latching mechanism. The bolt is moved by a handle that tends to remain in an engaged position while under tension.

  4. Laser beam guard clamps

    DOEpatents

    Dickson, Richard K.

    2010-09-07

    A quick insert and release laser beam guard panel clamping apparatus having a base plate mountable on an optical table, a first jaw affixed to the base plate, and a spring-loaded second jaw slidably carried by the base plate to exert a clamping force. The first and second jaws each having a face acutely angled relative to the other face to form a V-shaped, open channel mouth, which enables wedge-action jaw separation by and subsequent clamping of a laser beam guard panel inserted through the open channel mouth. Preferably, the clamping apparatus also includes a support structure having an open slot aperture which is positioned over and parallel with the open channel mouth.

  5. A monogenean without clamps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ectoparasites face a daily challenge: to remain attached to their host. Polyopisthocotylean monogeneans attach to the surface of fish gills by highly specialized structures, the sclerotized clamps. In the original description of the protomicrocotylid species Lethacotyle fijiensis, described 50 years...

  6. Clamp for arctic pipeline support

    SciTech Connect

    Morton, A.W.

    1988-11-29

    This patent describes a ring clamp for supporting and anchoring a large diameter metallic arctic pipeline comprising substantially rigid, curved clamp portions adapted to completely encircle the pipeline and fastening means connecting the clamp portions, the clamp portions having inner and outer layers of fiber reinforced rigid polymer material and an intermediate core layer of honeycomb-form aramid paper.

  7. Clamping characteristics study on different types of clamping unit

    SciTech Connect

    Jiao, Zhiwei; Liu, Haichao; Xie, Pengcheng; Yang, Weimin

    2015-05-22

    Plastic products are becoming more and more widely used in aerospace, IT, digital electronics and many other fields. With the development of technology, the requirement of product precision is getting higher and higher. However, type and working performance of clamping unit play a decisive role in product precision. Clamping characteristics of different types of clamping unit are discussed in this article, which use finite element numerical analysis method through the software ABAQUS to study the clamping uniformity, and detect the clamping force repeatability precision. The result shows that compared with toggled three-platen clamping unit, clamping characteristics of internal circulation two-platen clamping unit are better, for instance, its mold cavity deformation and force that bars and mold parting surface suffered are more uniform, and its clamping uniformity and repeatability precision is also better.

  8. Piezoresistive cantilever force-clamp system

    SciTech Connect

    Park, Sung-Jin; Petzold, Bryan C.; Pruitt, Beth L.; Goodman, Miriam B.

    2011-04-15

    We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or ''clamps'' the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of {mu}N force and nm up to tens of {mu}m displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode.

  9. Clamp for detonating fuze

    NASA Technical Reports Server (NTRS)

    Holderman, E. J.

    1968-01-01

    Quick acting clamp provides physical support for a closely confined detonating fuse in an application requiring removal and replacement at frequent intervals during test. It can be designed with a base of any required strength and configuration to permit the insertion of an object.

  10. Piezoresistive cantilever force-clamp system

    PubMed Central

    Park, Sung-Jin; Petzold, Bryan C.; Goodman, Miriam B.; Pruitt, Beth L.

    2011-01-01

    We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or “clamps” the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of μN force and nm up to tens of μm displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode. PMID:21529009

  11. Microchip amplifier for in vitro, in vivo, and automated whole cell patch-clamp recording.

    PubMed

    Harrison, Reid R; Kolb, Ilya; Kodandaramaiah, Suhasa B; Chubykin, Alexander A; Yang, Aimei; Bear, Mark F; Boyden, Edward S; Forest, Craig R

    2015-02-15

    Patch clamping is a gold-standard electrophysiology technique that has the temporal resolution and signal-to-noise ratio capable of reporting single ion channel currents, as well as electrical activity of excitable single cells. Despite its usefulness and decades of development, the amplifiers required for patch clamping are expensive and bulky. This has limited the scalability and throughput of patch clamping for single-ion channel and single-cell analyses. In this work, we have developed a custom patch-clamp amplifier microchip that can be fabricated using standard commercial silicon processes capable of performing both voltage- and current-clamp measurements. A key innovation is the use of nonlinear feedback elements in the voltage-clamp amplifier circuit to convert measured currents into logarithmically encoded voltages, thereby eliminating the need for large high-valued resistors, a factor that has limited previous attempts at integration. Benchtop characterization of the chip shows low levels of current noise [1.1 pA root mean square (rms) over 5 kHz] during voltage-clamp measurements and low levels of voltage noise (8.2 μV rms over 10 kHz) during current-clamp measurements. We demonstrate the ability of the chip to perform both current- and voltage-clamp measurement in vitro in HEK293FT cells and cultured neurons. We also demonstrate its ability to perform in vivo recordings as part of a robotic patch-clamping system. The performance of the patch-clamp amplifier microchip compares favorably with much larger commercial instrumentation, enabling benchtop commoditization, miniaturization, and scalable patch-clamp instrumentation. PMID:25429119

  12. Cantilever clamp fitting

    NASA Technical Reports Server (NTRS)

    Melton, Patrick B. (Inventor)

    1989-01-01

    A device is disclosed for sealing and clamping a cylindrical element which is to be attached to an object such as a wall, a pressurized vessel or another cylindrical element. The device includes a gland having an inner cylindrical wall, which is threaded at one end and is attached at a bendable end to a deformable portion, which in turn is attached to one end of a conical cantilever structure. The other end of the cantilever structure connects at a bendable area to one end of an outer cylindrical wall. The opposite end of cylindrical wall terminates in a thickened portion, the radially outer surface of which is adapted to accommodate a tool for rotating the gland. The terminal end of cylindrical wall also includes an abutment surface, which is adapted to engage a seal, which in turn engages a surface of a receiver. The receiver further includes a threaded portion for engagement with the threaded portion of gland whereby a tightening rotation of gland relative to receiver will cause relative movement between cylindrical walls and of gland. This movement causes a rotation of the conical structure and thus a bending action at bending area and at the bending end of the upper end of inner cylindrical wall. These rotational and bending actions result in a forcing of the deformable portion radially inwardly so as to contact and deform a pipe. This forcible contact creates a seal between gland and pipe, and simultaneously clamps the pipe in position.

  13. Hand-Held Power Clamp

    NASA Technical Reports Server (NTRS)

    Clancy, J. P.

    1985-01-01

    Tool furnishes large pushing or pulling forces. Device includes two clamping blocks, two clamping plates, and a motor-driven linear actuator with selflocking screw shaft. Power clamp exerts opening or closing force at push of switch. Tool approximately 1 m long. Originally designed to secure payload aboard Space Shuttle, operated with one hand to apply opening or closing force of up to 1,000 lb (4,400 N). Clamp has potential applications as end effector for industrial robots and in rescue work to push or pull wreckage with great force.

  14. Internal V-Band Clamp

    DOEpatents

    Vaughn, Mark R.; Hafenrichter, Everett S.; Chapa, Agapito C.; Harris, Steven M.; Martinez, Marcus J.; Baty, Roy S.

    2006-02-28

    A system for clamping two tubular members together in an end-to-end relationship uses a split ring with a V-shaped outer rim that can engage a clamping surface on each member. The split ring has a relaxed closed state where the ends of the ring are adjacent and the outside diameter of the split ring is less than the minimum inside diameter of the members at their ends. The members are clamped when the split ring is spread into an elastically stretched position where the ring rim is pressed tightly against the interior surfaces of the members. Mechanisms are provided for removing the spreader so the split ring will return to the relaxed state, releasing the clamped members.

  15. Lifting clamp positively grips structural shapes

    NASA Technical Reports Server (NTRS)

    Reinhardt, E. C.

    1966-01-01

    Welded steel clamps securely grip structural shapes of various sizes for crane operations. The clamp has adjustable clamping jaws and screw-operated internal v-jaws and provides greater safety than hoisting slings presently used. The structural member can be rotated in any manner, angle, or direction without being released by the clamp.

  16. Reconstruction of Cell Surface Densities of Ion Pumps, Exchangers, and Channels from mRNA Expression, Conductance Kinetics, Whole-Cell Calcium, and Current-Clamp Voltage Recordings, with an Application to Human Uterine Smooth Muscle Cells.

    PubMed

    Atia, Jolene; McCloskey, Conor; Shmygol, Anatoly S; Rand, David A; van den Berg, Hugo A; Blanks, Andrew M

    2016-04-01

    Uterine smooth muscle cells remain quiescent throughout most of gestation, only generating spontaneous action potentials immediately prior to, and during, labor. This study presents a method that combines transcriptomics with biophysical recordings to characterise the conductance repertoire of these cells, the 'conductance repertoire' being the total complement of ion channels and transporters expressed by an electrically active cell. Transcriptomic analysis provides a set of potential electrogenic entities, of which the conductance repertoire is a subset. Each entity within the conductance repertoire was modeled independently and its gating parameter values were fixed using the available biophysical data. The only remaining free parameters were the surface densities for each entity. We characterise the space of combinations of surface densities (density vectors) consistent with experimentally observed membrane potential and calcium waveforms. This yields insights on the functional redundancy of the system as well as its behavioral versatility. Our approach couples high-throughput transcriptomic data with physiological behaviors in health and disease, and provides a formal method to link genotype to phenotype in excitable systems. We accurately predict current densities and chart functional redundancy. For example, we find that to evoke the observed voltage waveform, the BK channel is functionally redundant whereas hERG is essential. Furthermore, our analysis suggests that activation of calcium-activated chloride conductances by intracellular calcium release is the key factor underlying spontaneous depolarisations. PMID:27105427

  17. Reconstruction of Cell Surface Densities of Ion Pumps, Exchangers, and Channels from mRNA Expression, Conductance Kinetics, Whole-Cell Calcium, and Current-Clamp Voltage Recordings, with an Application to Human Uterine Smooth Muscle Cells

    PubMed Central

    Atia, Jolene; McCloskey, Conor; Shmygol, Anatoly S.; Rand, David A.; van den Berg, Hugo A.; Blanks, Andrew M.

    2016-01-01

    Uterine smooth muscle cells remain quiescent throughout most of gestation, only generating spontaneous action potentials immediately prior to, and during, labor. This study presents a method that combines transcriptomics with biophysical recordings to characterise the conductance repertoire of these cells, the ‘conductance repertoire’ being the total complement of ion channels and transporters expressed by an electrically active cell. Transcriptomic analysis provides a set of potential electrogenic entities, of which the conductance repertoire is a subset. Each entity within the conductance repertoire was modeled independently and its gating parameter values were fixed using the available biophysical data. The only remaining free parameters were the surface densities for each entity. We characterise the space of combinations of surface densities (density vectors) consistent with experimentally observed membrane potential and calcium waveforms. This yields insights on the functional redundancy of the system as well as its behavioral versatility. Our approach couples high-throughput transcriptomic data with physiological behaviors in health and disease, and provides a formal method to link genotype to phenotype in excitable systems. We accurately predict current densities and chart functional redundancy. For example, we find that to evoke the observed voltage waveform, the BK channel is functionally redundant whereas hERG is essential. Furthermore, our analysis suggests that activation of calcium-activated chloride conductances by intracellular calcium release is the key factor underlying spontaneous depolarisations. PMID:27105427

  18. Split-tapered joint clamping device

    DOEpatents

    Olsen, Max J.; Schwartz, Jr., John F.

    1988-01-01

    This invention relates to a clamping device for removably attaching a tool element to a bracket element wherein a bracket element is disposed in a groove in the tool and a clamping member is disposed in said groove and in engagement with a clamping face of the bracket and a wall of the groove and with the clamping member having pivot means engaging the bracket and about which the clamping member rotates.

  19. How to Assess the Quality of Glucose Clamps? Evaluation of Clamps Performed With ClampArt, a Novel Automated Clamp Device

    PubMed Central

    Benesch, Carsten; Heise, Tim; Klein, Oliver; Heinemann, Lutz; Arnolds, Sabine

    2015-01-01

    Background: There are no widely accepted parameters to assess the quality of glucose clamps. Thus, we selected different parameters describing clamp quality. These parameters were then evaluated in glucose clamps carried out with ClampArt, a novel CE-marked, state-of-the-art fully automated glucose clamp device employing continuous blood glucose (BG) measurements and minute-by-minute adaptations of glucose infusion rate (GIR). Methods: Thirty-nine glucose clamps were performed in 10 healthy and 29 subjects with type 1 diabetes (T1DM) (total duration 583 h). ClampArt-based BG measurements were compared with those obtained with a laboratory reference method. Clamp quality was assessed by 5 parameters: (1) difference (mg/dl) of all paired BG measurements of ClampArt versus reference method (“trueness”), (2) coefficient of variation (CV, %) of ClampArt’s BG measurements at target clamp level (“precision”), (3) mean absolute relative difference (MARD, %) at target clamp level (“accuracy”), (4) difference (mg/dl) between ClampArt and target BG (“control deviation”), and (5) percentage operational time (“utility”). Results: ClampArt-based BG measurements showed a trueness of 1.2 ± 2.5 mg/dl. CV and MARD at target BG were 5.5 ± 2.1% and 5.3 ± 2.3%, respectively. There were only small deviations from target level (1.2 ± 1.6 mg/dl). Operational time was as high as 95.4% ± 4.1% (means ± SD). Conclusions: The selected parameters seem to be adequate to characterize clamp quality. The novel, fully automated clamp device ClampArt achieves high clamp quality, which in future trials should be compared with other (automated and manual) clamp methods. PMID:25852075

  20. Limit analysis of pipe clamps

    SciTech Connect

    Flanders, H.E. Jr.

    1990-01-01

    The Service Level D (faulted) load capacity of a conventional three-bolt pipe-clamp based upon the limit analysis method is presented. The load distribution, plastic hinge locations, and collapse load are developed for the lower bound limit load method. The results of the limit analysis are compared with the manufacturer's rated loads. 3 refs.

  1. Near-uv photon efficiency in a TiO2 electrode - Application to hydrogen production from solar energy

    NASA Technical Reports Server (NTRS)

    Desplat, J.-L.

    1976-01-01

    An n-type (001) TiO2 electrode irradiated at 365 nm was tested under anodic polarization. A saturation current independent of pH and proportional to light intensity has been observed. Accurate measurements of the incident power lead to a 60 per cent photon efficiency. A photoelectrochemical cell built with such an electrode, operated under solar irradiation without concentration, produced an electrolysis current of 0.7 mA/sq cm without applied voltage.

  2. Note: High-efficiency energy harvester using double-clamped piezoelectric beams

    SciTech Connect

    Zheng, Yingmei; Wu, Xuan; Parmar, Mitesh; Lee, Dong-weon

    2014-02-15

    In this study, an improvement in energy conversion efficiency has been reported, which is realized by using a double-clamped piezoelectric beam, based on uniaxial stretching strain. The buckling mechanism is applied to maximize axial stress in the double-clamped beam. The voltage generated by using the double-clamped piezoelectric beam is higher than that generated by using other conventional structures, such as bending cantilevers coated/sandwiched with piezoelectric film, which is proven both theoretically and experimentally. The power generation efficiency is enhanced by further optimizing the double-clamped structure. The optimized high-efficiency energy harvester utilizing double-clamped piezoelectric beams generates a peak output power of 80 μW, under an acceleration of 0.1g.

  3. Finite element analysis on factors influencing the clamping force in an electrostatic chuck

    NASA Astrophysics Data System (ADS)

    Xingkuo, Wang; Jia, Cheng; Kesheng, Wang; Yiyong, Yang; Yuchun, Sun; Minglu, Cao; Linhong, Ji

    2014-09-01

    As one of the core components of IC manufacturing equipment, the electrostatic chuck (ESC) has been widely applied in semiconductor processing such as etching, PVD and CVD. The clamping force of the ESC is one of the most important technical indicators. A multi-physics simulation software COMSOL is used to analyze the factors influencing the clamping force. The curves between the clamping force and the main parameters such as DC voltage, electrode thickness, electrode radius, dielectric thickness and helium gap are obtained. Moreover, the effects of these factors on the clamping force are investigated by means of orthogonal experiments. The results show that the factors can be ranked in order of voltage, electrode radius, helium gap and dielectric thickness according to their importance, which may offer certain reference for the design of ESCs.

  4. A clamped rectangular plate containing a crack

    NASA Technical Reports Server (NTRS)

    Tang, R.; Erdogan, F.

    1985-01-01

    The general problem of a rectangular plate clamped along two parallel sides and containing a crack parallel to the clamps is considered. The problem is formulated in terms of a system of singular integral equations and the asymptotic behavior of the stress state near the corners is investigated. Numerical examples are considered for a clamped plate without a crack and with a centrally located crack, and the stress intensity factors and the stresses along the clamps are calculated.

  5. Solution structure of an "open" E. coli Pol III clamp loader sliding clamp complex.

    PubMed

    Tondnevis, Farzaneh; Weiss, Thomas M; Matsui, Tsutomu; Bloom, Linda B; McKenna, Robert

    2016-06-01

    Sliding clamps are opened and loaded onto primer template junctions by clamp loaders, and once loaded on DNA, confer processivity to replicative polymerases. Previously determined crystal structures of eukaryotic and T4 clamp loader-clamp complexes have captured the sliding clamps in either closed or only partially open interface conformations. In these solution structure studies, we have captured for the first time the clamp loader-sliding clamp complex from Escherichia coli using size exclusion chromatography coupled to small angle X-ray scattering (SEC-SAXS). The data suggests the sliding clamp is in an open conformation which is wide enough to permit duplex DNA binding. The data also provides information about spatial arrangement of the sliding clamp with respect to the clamp loader subunits and is compared to complex crystal structures determined from other organisms. PMID:26968362

  6. Dynamics of Open DNA Sliding Clamps.

    PubMed

    Oakley, Aaron J

    2016-01-01

    A range of enzymes in DNA replication and repair bind to DNA-clamps: torus-shaped proteins that encircle double-stranded DNA and act as mobile tethers. Clamps from viruses (such as gp45 from the T4 bacteriophage) and eukaryotes (PCNAs) are homotrimers, each protomer containing two repeats of the DNA-clamp motif, while bacterial clamps (pol III β) are homodimers, each protomer containing three DNA-clamp motifs. Clamps need to be flexible enough to allow opening and loading onto primed DNA by clamp loader complexes. Equilibrium and steered molecular dynamics simulations have been used to study DNA-clamp conformation in open and closed forms. The E. coli and PCNA clamps appear to prefer closed, planar conformations. Remarkably, gp45 appears to prefer an open right-handed spiral conformation in solution, in agreement with previously reported biophysical data. The structural preferences of DNA clamps in solution have implications for understanding the duty cycle of clamp-loaders. PMID:27148748

  7. Dynamics of Open DNA Sliding Clamps

    PubMed Central

    Oakley, Aaron J.

    2016-01-01

    A range of enzymes in DNA replication and repair bind to DNA-clamps: torus-shaped proteins that encircle double-stranded DNA and act as mobile tethers. Clamps from viruses (such as gp45 from the T4 bacteriophage) and eukaryotes (PCNAs) are homotrimers, each protomer containing two repeats of the DNA-clamp motif, while bacterial clamps (pol III β) are homodimers, each protomer containing three DNA-clamp motifs. Clamps need to be flexible enough to allow opening and loading onto primed DNA by clamp loader complexes. Equilibrium and steered molecular dynamics simulations have been used to study DNA-clamp conformation in open and closed forms. The E. coli and PCNA clamps appear to prefer closed, planar conformations. Remarkably, gp45 appears to prefer an open right-handed spiral conformation in solution, in agreement with previously reported biophysical data. The structural preferences of DNA clamps in solution have implications for understanding the duty cycle of clamp-loaders. PMID:27148748

  8. High-speed pressure clamp.

    PubMed

    Besch, Stephen R; Suchyna, Thomas; Sachs, Frederick

    2002-10-01

    We built a high-speed, pneumatic pressure clamp to stimulate patch-clamped membranes mechanically. The key control element is a newly designed differential valve that uses a single, nickel-plated piezoelectric bending element to control both pressure and vacuum. To minimize response time, the valve body was designed with minimum dead volume. The result is improved response time and stability with a threefold decrease in actuation latency. Tight valve clearances minimize the steady-state air flow, permitting us to use small resonant-piston pumps to supply pressure and vacuum. To protect the valve from water contamination in the event of a broken pipette, an optical sensor detects water entering the valve and increases pressure rapidly to clear the system. The open-loop time constant for pressure is 2.5 ms for a 100-mmHg step, and the closed-loop settling time is 500-600 micros. Valve actuation latency is 120 micros. The system performance is illustrated for mechanically induced changes in patch capacitance. PMID:12397401

  9. A shared mechanism for lipid- and beta-subunit-coordinated stabilization of the activated K+ channel voltage sensor.

    PubMed

    Choi, Eun; Abbott, Geoffrey W

    2010-05-01

    The low-dielectric plasma membrane provides an energy barrier hindering transmembrane movement of charged particles. The positively charged, voltage-sensing fourth transmembrane domain (S4) of voltage-gated ion channels must surmount this energy barrier to initiate channel activation, typically necessitating both membrane depolarization and interaction with membrane lipid phospho-head groups (MLPHGs). In contrast, and despite containing S4, the KCNQ1 K(+) channel alpha subunit exhibits predominantly constitutive activation when in complexes with transmembrane beta subunits, MinK-related peptide (MiRP) 1 (KCNE2) or MiRP2 (KCNE3). Here, using a 2-electrode voltage clamp and scanning mutagenesis of channels heterologously expressed in Xenopus laevis oocytes, we discovered that 2 of the 8 MiRP2 extracellular domain acidic residues (D54 and D55) are important for KCNQ1-MiRP2 constitutive activation. Double-mutant thermodynamic cycle analysis revealed energetic coupling of D54 and D55 to R237 in KCNQ1 S4 but not to 10 other native or introduced polar residues in KCNQ1 S4 and surrounding linkers. MiRP2-D54 and KCNQ1-R237 also similarly dictated susceptibility to the inhibitory effects of MLPHG hydrolysis, whereas other closely situated polar residues did not. Thus, by providing negative charge near the plasma membrane extracellular face, MiRP2 uses a lipomimetic mechanism to constitutively stabilize the activated KCNQ1 voltage sensor. PMID:20040519

  10. Advanced motor driven clamped borehole seismic receiver

    DOEpatents

    Engler, Bruce P.; Sleefe, Gerard E.; Striker, Richard P.

    1993-01-01

    A borehole seismic tool including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric meter in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  11. Advanced motor driven clamped borehole seismic receiver

    DOEpatents

    Engler, B.P.; Sleefe, G.E.; Striker, R.P.

    1993-02-23

    A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  12. MATLAB implementation of a dynamic clamp with bandwidth >125 KHz capable of generating INa at 37°C

    PubMed Central

    Clausen, Chris; Valiunas, Virginijus; Brink, Peter R.; Cohen, Ira S.

    2012-01-01

    We describe the construction of a dynamic clamp with bandwidth >125 KHz that utilizes a high performance, yet low cost, standard home/office PC interfaced with a high-speed (16 bit) data acquisition module. High bandwidth is achieved by exploiting recently available software advances (code-generation technology, optimized real-time kernel). Dynamic-clamp programs are constructed using Simulink, a visual programming language. Blocks for computation of membrane currents are written in the high-level matlab language; no programming in C is required. The instrument can be used in single- or dual-cell configurations, with the capability to modify programs while experiments are in progress. We describe an algorithm for computing the fast transient Na+ current (INa) in real time, and test its accuracy and stability using rate constants appropriate for 37°C. We then construct a program capable of supplying three currents to a cell preparation: INa, the hyperpolarizing-activated inward pacemaker current (If), and an inward-rectifier K+ current (IK1). The program corrects for the IR drop due to electrode current flow, and also records all voltages and currents. We tested this program on dual patch-clamped HEK293 cells where the dynamic clamp controls a current-clamp amplifier and a voltage-clamp amplifier controls membrane potential, and current-clamped HEK293 cells where the dynamic clamp produces spontaneous pacing behavior exhibiting Na+ spikes in otherwise passive cells. PMID:23224681

  13. Diverless pipeline repair clamp: Phase 2

    SciTech Connect

    Miller, J.E.; Lane, B. )

    1992-04-01

    The objective of this project sponsored by the Pipeline Research Committee of the American Gas Association, is to develop a system suitable for repairing small leaks on deepwater pipelines. Phase I of the project, completed in 1990 by Stress Engineering Services, Inc. investigated the types of problems that would have to be overcome to effect a diverless clamp-type repair. Several repair systems were investigated and ten mechanisms were proposed that could be used to secure two clamp halves together. This current Phase 11 effort, is to take two most promising clamp concepts from Phase 1, further evaluate hardware and installation issues, develop conceptual designs, and determine which concept should be carried forward to detailed design. The two concepts evaluated were (1) a bolted split-sleeve clamp suited for ROV installation, and (2) a hydraulically self-actuating clamp requiring only placement on the pipe and actuation by ROV hydraulic hot stabs. Both concepts were evaluated for a 12-inch (324 mm) nominal pipe diameter with an ANSI 900 (15.3 mPa) pressure rating, presuming either system could be adapted to a wider range of pipe sizes and design pressures. Based on the results of this investigation a modified bolted split-sleeve clamp was recommended over the hydraulically self-actuating clamp. The main reasons are (1) the bolted split-sleeve clamp can be adapted to installation by a ROV, (2) sealing and clamping mechanisms borrow from available proven technology, (3) it would require less development effort than the hydraulically self-actuating clamp, and (4) the bolted split-sleeve clamp would probably result in a simpler, less costly design.

  14. Protein folding in a force clamp

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek; Szymczak, P.

    2006-05-01

    Kinetics of folding of a protein held in a force clamp are compared to an unconstrained folding. The comparison is made within a simple topology-based dynamical model of ubiquitin. We demonstrate that the experimentally observed variations in the end-to-end distance reflect microscopic events during folding. However, the folding scenarios in and out of the force clamp are distinct.

  15. The Monogenean Which Lost Its Clamps

    PubMed Central

    Justine, Jean-Lou; Rahmouni, Chahrazed; Gey, Delphine; Schoelinck, Charlotte; Hoberg, Eric P.

    2013-01-01

    Ectoparasites face a daily challenge: to remain attached to their hosts. Polyopisthocotylean monogeneans usually attach to the surface of fish gills using highly specialized structures, the sclerotized clamps. In the original description of the protomicrocotylid species Lethacotyle fijiensis, described 60 years ago, the clamps were considered to be absent but few specimens were available and this observation was later questioned. In addition, genera within the family Protomicrocotylidae have either clamps of the “gastrocotylid” or the “microcotylid” types; this puzzled systematists because these clamp types are characteristic of distinct, major groups. Discovery of another, new, species of the genus Lethacotyle, has allowed us to explore the nature of the attachment structures in protomicrocotylids. Lethacotyle vera n. sp. is described from the gills of the carangid Caranx papuensis off New Caledonia. It is distinguished from Lethacotyle fijiensis, the only other species of the genus, by the length of the male copulatory spines. Sequences of 28S rDNA were used to build a tree, in which Lethacotyle vera grouped with other protomicrocotylids. The identity of the host fish was confirmed with COI barcodes. We observed that protomicrocotylids have specialized structures associated with their attachment organ, such as lateral flaps and transverse striations, which are not known in other monogeneans. We thus hypothesized that the clamps in protomicrocotylids were sequentially lost during evolution, coinciding with the development of other attachment structures. To test the hypothesis, we calculated the surfaces of clamps and body in 120 species of gastrocotylinean monogeneans, based on published descriptions. The ratio of clamp surface: body surface was the lowest in protomicrocotylids. We conclude that clamps in protomicrocotylids are vestigial organs, and that occurrence of “gastrocotylid” and simpler “microcotylid” clamps within the same family are

  16. 33 CFR 183.560 - Hose clamps: Installation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Hose clamps: Installation. Each hose clamp on a hose from the fuel tank to the fuel inlet connection on..., pipe, or hose fitting; and (d) Not depend solely on the spring tension of the clamp for...

  17. Surface characterization of selected LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Cromer, T. F.; Grammer, H. L.; Wightman, J. P.; Young, Philip R.; Slemp, Wayne S.

    1993-01-01

    The surface characterization of chromic acid anodized 6061-T6 aluminum alloy tray clamps has shown differences in surface chemistry depending upon the position on the Long Duration Exposure Facility (LDEF). Water contact angle results showed no changes in wettability of the tray clamps. The overall surface topography of the control, trailing edge(E3) and leading edge(D9) samples was similar. The thickness of the aluminum oxide layer for all samples determined by Auger depth profiling was less than one micron. X-ray photoelectron spectroscopy (XPS) analysis of the tray clamps showed significant differences in the surface composition. Carbon and silicon containing compounds were the primary contaminants detected.

  18. Dual Functions, Clamp Opening and Primer-Template Recognition, Define a Key Clamp Loader Subunit

    PubMed Central

    Coman, Maria Magdalena; Jin, Mi; Ceapa, Razvan; Finkelstein, Jeff; O'Donnell, Michael; Chait, Brian T.; Hingorani, Manju M.

    2010-01-01

    Clamp loader proteins catalyze assembly of circular sliding clamps on DNA to enable processive DNA replication. During the reaction, the clamp loader binds primer-template DNA and positions it in the center of a clamp to form a topological link between the two. Clamp loaders are multi-protein complexes, such as the five protein Escherichia coli, Saccharomyces cerevisiae, and human clamp loaders, and the two protein Pyrococcus furiosus and Methanobacterium thermoautotrophicum clamp loaders, and thus far the site(s) responsible for binding and selecting primer-template DNA as the target for clamp assembly remain unknown. To address this issue, we analyzed the interaction between the E. coli γ complex clamp loader and DNA using UV-induced protein–DNA cross-linking and mass spectrometry. The results show that the δ subunit in the γ complex makes close contact with the primer-template junction. Tryptophan 279 in the δ C-terminal domain lies near the 3′-OH primer end and may play a key role in primer-template recognition. Previous studies have shown that δ also binds and opens the β clamp (hydrophobic residues in the N-terminal domain of δ contact β. The clamp-binding and DNA-binding sites on δ appear positioned for facile entry of primer-template into the center of the clamp and exit of the template strand from the complex. A similar analysis of the S. cerevisiae RFC complex suggests that the dual functionality observed for δ in the γ complex may be true also for clamp loaders from other organisms. PMID:15364574

  19. Dynamic clamp with StdpC software

    PubMed Central

    2011-01-01

    Dynamic clamp is a powerful method that allows the introduction of artificial electrical components into target cells to simulate ionic conductances and synaptic inputs. This method is based on a fast cycle of measuring the membrane potential of a cell, calculating the current of a desired simulated component using an appropriate model and injecting this current into the cell. Here, we present a dynamic clamp protocol using free, fully integrated, open-source software (StdpC, Spike timing dependent plasticity Clamp). Use of this protocol does not require specialist hardware, costly commercial software, experience in real time operating systems or a strong programming background. The software enables the configuration and operation of a wide range of complex and fully automated dynamic clamp experiments via an intuitive and powerful interface with a minimal initial lead-time of a few hours. After initial configuration, experimental results can be generated within minutes of cell impalement. PMID:21372819

  20. Molecular Mechanisms of DNA Polymerase Clamp Loaders

    NASA Astrophysics Data System (ADS)

    Kelch, Brian; Makino, Debora; Simonetta, Kyle; O'Donnell, Mike; Kuriyan, John

    Clamp loaders are ATP-driven multiprotein machines that couple ATP hydrolysis to the opening and closing of a circular protein ring around DNA. This ring-shaped clamp slides along DNA, and interacts with numerous proteins involved in DNA replication, DNA repair and cell cycle control. Recently determined structures of clamp loader complexes from prokaryotic and eukaryotic DNA polymerases have revealed exciting new details of how these complex AAA+ machines perform this essential clamp loading function. This review serves as background to John Kuriyan's lecture at the 2010 Erice School, and is not meant as a comprehensive review of the contributions of the many scientists who have advanced this field. These lecture notes are derived from recent reviews and research papers from our groups.

  1. Structural analysis of a eukaryotic sliding DNA clamp-clamp loadercomplex.

    SciTech Connect

    Bowman, Gregory D.; O'Donnell, Mike; Kuriyan, John

    2006-06-17

    Sliding clamps are ring-shaped proteins that encircle DNA and confer high processivity on DNA polymerases. Here we report the crystal structure of the five-protein clamp loader complex (replication factor-C, RFC) of the yeast Saccharomyces cerevisiae, bound to the sliding clamp (proliferating cell nuclear antigen, PCNA). Tight interfacial coordination of the ATP analogue ATP-?-S by RFC results in a spiral arrangement of the ATPase domains of the clamp loader above the PCNA ring. Placement of a model for primed DNA within the central hole of PCNA reveals a striking correspondence between the RFC spiral and the grooves of the DNA double helix. This model, in which the clamp loader complex locks onto primed DNA in a screw-cap-like arrangement, provides a simple explanation for the process by which the engagement of primer-template junctions by the RFC:PCNA complex results in ATP hydrolysis and release of the sliding clamp on DNA.

  2. Protein folding in a force-clamp

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek; Szymczak, Piotr

    2006-03-01

    Kinetics of folding of a protein held in a force-clamp are compared to an unconstrained folding. The comparison is made within a simple topology-based dynamical model of ubiquitin. We demonstrate that the experimentally observed rapid changes in the end-to-end distance mirror microscopic events during folding. However, the folding scenarios in and out of the force-clamp are distinct.

  3. Diverless pipeline repair clamp, Phase 3

    SciTech Connect

    Miller, J.E.

    1993-08-01

    The objective of this project is to develop a system suitable for repairing small leaks in deep water pipelines. It is assumed that leak repair operations at the water depths in question will be performed by Remotely Operated Vehicles (ROV`s). This report summarizes the results of the third and final phase of this project. Phase 3 work included design, manufacture, and dry testing of (1) a one-half scale model of a 12 inch repair clamp, (2) a full-scale bolt test fixture to demonstrate bolt containment and startup under realistic misalignment of the clamp halves, and (3) a full-scale one-way cylinder for end seal activation. Phase 3 also included a study commissioned from Oceaneering directed at defining the interfaces of the clamp package and the ROV, including suggested procedures for deployment and positioning of the clamp package on the pipeline. Issues regarding bolt make-up by the ROV were also studied in detail and limitations in bolting capability were outlined. The conclusion of this work is that the clamping system described herein may be implemented in a direct manner. The design issues causing the most concern have been resolved through laboratory tests. Note however that all testing performed was mechanical in nature and performed in a dry environment. The recommended next development step, prior to declaring the system operational, is to manufacture a fully outfitted clamp package and to perform installation tests in a controlled underwater environment using a typical deepwater ROV. Wet tests are required in order to demonstrate ROV interfaces and installation procedures, however, the major mechanical features represented by the clamp design as well as its operation have been proven.

  4. 21 CFR 882.4460 - Neurosurgical head holder (skull clamp).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Neurosurgical head holder (skull clamp). 882.4460... holder (skull clamp). (a) Identification. A neurosurgical head holder (skull clamp) is a device used to clamp the patient's skull to hold head and neck in a particular position during surgical procedures....

  5. 21 CFR 882.4460 - Neurosurgical head holder (skull clamp).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Neurosurgical head holder (skull clamp). 882.4460... holder (skull clamp). (a) Identification. A neurosurgical head holder (skull clamp) is a device used to clamp the patient's skull to hold head and neck in a particular position during surgical procedures....

  6. 21 CFR 882.4460 - Neurosurgical head holder (skull clamp).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Neurosurgical head holder (skull clamp). 882.4460... holder (skull clamp). (a) Identification. A neurosurgical head holder (skull clamp) is a device used to clamp the patient's skull to hold head and neck in a particular position during surgical procedures....

  7. 21 CFR 882.4460 - Neurosurgical head holder (skull clamp).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Neurosurgical head holder (skull clamp). 882.4460... holder (skull clamp). (a) Identification. A neurosurgical head holder (skull clamp) is a device used to clamp the patient's skull to hold head and neck in a particular position during surgical procedures....

  8. 21 CFR 882.4460 - Neurosurgical head holder (skull clamp).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Neurosurgical head holder (skull clamp). 882.4460... holder (skull clamp). (a) Identification. A neurosurgical head holder (skull clamp) is a device used to clamp the patient's skull to hold head and neck in a particular position during surgical procedures....

  9. An Ultrasonic Clamp for Bloodless Partial Nephrectomy

    NASA Astrophysics Data System (ADS)

    Lafon, Cyril; Bouchoux, Guillaume; Murat, François Joseph; Birer, Alain; Theillère, Yves; Chapelon, Jean Yves; Cathignol, Dominique

    2007-05-01

    Maximum conservation of the kidney is preferable through partial nephrectomy for patients at risk of disease recurrence of renal cancers. Haemostatic tools are needed in order to achieve bloodless surgery and reduce post surgery morbidity. Two piezo-ceramic transducers operating at a frequency of 4 MHz were mounted on each arm of a clamp. When used for coagulation purposes, two transducers situated on opposite arms of the clamp were driven simultaneously. Heat delivery was optimized as each transducers mirrored back to targeted tissues the wave generated by the opposite transducer. Real-time treatment monitoring with an echo-based technique was also envisaged with this clamp. Therapy was periodically interrupted so one transducer could generate a pulse. The echo returning from the opposite transducer was treated. Coagulation necroses were obtained in vitro on substantial thicknesses (23-38mm) of pig liver over exposure durations ranging from 30s to 130s, and with acoustic intensities of less than 15W/cm2 per transducer. Both kidneys of two pigs were treated in vivo with the clamp (14.5W/cm2 for 90s), and the partial nephrectomies performed proved to be bloodless. In vitro and in vivo, wide transfixing lesions corresponded to an echo energy decrease superior to -10dB and parabolic form of the time of flight versus treatment time. In conclusion, this ultrasound clamp has proven to be an excellent mean for achieving monitored haemostasis in kidney.

  10. Compact, Stiff, Remotely-Actuable Quick-Release Clamp

    NASA Technical Reports Server (NTRS)

    Tsai, Ted W. (Inventor)

    2000-01-01

    The present invention provides a clamp that is compact and lightweight, yet provides high holding strength and stiffness or rigidity. The clamp uses a unique double slant interface design which provides mechanical advantages to resist forces applied to the clamp member as the load increases. The clamp allows for rapid and remote-activated release of the clamp jaws by applying only a small operating force to an over-center lock/release mechanism, such as by pulling a manual tether.

  11. Novel description of ionic currents recorded with the action potential clamp technique: application to excitatory currents in suprachiasmatic nucleus neurons

    PubMed Central

    2015-01-01

    The traditional method of recording ionic currents in neurons has been with voltage-clamp steps. Other waveforms such as action potentials (APs) can be used. The AP clamp method reveals contributions of ionic currents that underlie excitability during an AP (Bean BP. Nat Rev Neurosci 8: 451–465, 2007). A novel usage of the method is described in this report. An experimental recording of an AP from the literature is digitized and applied computationally to models of ionic currents. These results are compared with experimental AP-clamp recordings for model verification or, if need be, alterations to the model. The method is applied to the tetrodotoxin-sensitive sodium ion current, INa, and the calcium ion current, ICa, from suprachiasmatic nucleus (SCN) neurons (Jackson AC, Yao GL, Bean BP. J Neurosci 24: 7985–7998, 2004). The latter group reported voltage-step and AP-clamp results for both components. A model of INa is constructed from their voltage-step results. The AP clamp computational methodology applied to that model compares favorably with experiment, other than a modest discrepancy close to the peak of the AP that has not yet been resolved. A model of ICa was constructed from both voltage-step and AP-clamp results of this component. The model employs the Goldman-Hodgkin-Katz equation for the current-voltage relation rather than the traditional linear dependence of this aspect of the model on the Ca2+ driving force. The long-term goal of this work is a mathematical model of the SCN AP. The method is general. It can be applied to any excitable cell. PMID:26041831

  12. A shared mechanism for lipid- and β-subunit-coordinated stabilization of the activated K+ channel voltage sensor

    PubMed Central

    Choi, Eun; Abbott, Geoffrey W.

    2010-01-01

    The low-dielectric plasma membrane provides an energy barrier hindering transmembrane movement of charged particles. The positively charged, voltage-sensing fourth transmembrane domain (S4) of voltage-gated ion channels must surmount this energy barrier to initiate channel activation, typically necessitating both membrane depolarization and interaction with membrane lipid phospho-head groups (MLPHGs). In contrast, and despite containing S4, the KCNQ1 K+ channel α subunit exhibits predominantly constitutive activation when in complexes with transmembrane β subunits, MinK-related peptide (MiRP) 1 (KCNE2) or MiRP2 (KCNE3). Here, using a 2-electrode voltage clamp and scanning mutagenesis of channels heterologously expressed in Xenopus laevis oocytes, we discovered that 2 of the 8 MiRP2 extracellular domain acidic residues (D54 and D55) are important for KCNQ1-MiRP2 constitutive activation. Double-mutant thermodynamic cycle analysis revealed energetic coupling of D54 and D55 to R237 in KCNQ1 S4 but not to 10 other native or introduced polar residues in KCNQ1 S4 and surrounding linkers. MiRP2-D54 and KCNQ1-R237 also similarly dictated susceptibility to the inhibitory effects of MLPHG hydrolysis, whereas other closely situated polar residues did not. Thus, by providing negative charge near the plasma membrane extracellular face, MiRP2 uses a lipomimetic mechanism to constitutively stabilize the activated KCNQ1 voltage sensor.—Choi, E., Abbott, G. W. A shared mechanism for lipid- and β-subunit-coordinated stabilization of the activated K+ channel voltage sensor. PMID:20040519

  13. Kinetic analysis of PCNA clamp binding and release in the clamp loading reaction catalyzed by Saccharomyces cerevisiae replication factor C

    PubMed Central

    Marzahn, Melissa R.; Hayner, Jaclyn N.; Meyer, Jennifer A.; Bloom, Linda B.

    2014-01-01

    DNA polymerases require a sliding clamp to achieve processive DNA synthesis. The toroidal clamps are loaded onto DNA by clamp loaders, members of the AAA+ family of ATPases. These enzymes utilize the energy of ATP binding and hydrolysis to perform a variety of cellular functions. In this study, a clamp loader-clamp binding assay was developed to measure the rates of ATP-dependent clamp binding and ATP-hydrolysis-dependent clamp release for the S. cerevisiae clamp loader (RFC) and clamp (PCNA). Pre-steady-state kinetics of PCNA binding showed that although ATP binding to RFC increases affinity for PCNA, ATP binding rates and ATP-dependent conformational changes in RFC are fast relative to PCNA binding rates. Interestingly, RFC binds PCNA faster than the Escherichia coli γ complex clamp loader binds the β-clamp. In the process of loading clamps on DNA, RFC maintains contact with PCNA while PCNA closes, as the observed rate of PCNA closing is faster than the rate of PCNA release, precluding the possibility of an open clamp dissociating from DNA. Rates of clamp closing and release are not dependent on the rate of the DNA binding step and are also slower than reported rates of ATP hydrolysis, showing that these rates reflect unique intramolecular reaction steps in the clamp loading pathway. PMID:25450506

  14. Limit analysis of pipe clamps. Revision 1

    SciTech Connect

    Flanders, H.E. Jr.

    1990-12-31

    The Service Level D (faulted) load capacity of a conventional three-bolt pipe-clamp based upon the limit analysis method is presented. The load distribution, plastic hinge locations, and collapse load are developed for the lower bound limit load method. The results of the limit analysis are compared with the manufacturer`s rated loads. 3 refs.

  15. Clamp and Gas Nozzle for TIG Welding

    NASA Technical Reports Server (NTRS)

    Gue, G. B.; Goller, H. L.

    1982-01-01

    Tool that combines clamp with gas nozzle is aid to tungsten/inert-gas (TIG) welding in hard-to-reach spots. Tool holds work to be welded while directing a stream of argon gas at weld joint, providing an oxygen-free environment for tungsten-arc welding.

  16. Voltage regulator

    SciTech Connect

    Rossetti, N.

    1986-12-09

    This patent describes a prior art integrated circuit voltage regulator having an unregulated voltage input terminal and a regulated voltage output terminal, and further comprising: a first transistor having an emitter, a collector and a base, the first transistor having a first base-emitter voltage characteristic, the collector of the first transistor being connected through a first resistor to a current source. The current source is derived from the unregulated voltage, the emitter of the first transistor being connected through a second resistor to a reference voltage; and a second transistor having an emitter, a collector and a base, the second transistor having a second base-emitter voltage characteristic, the base of the second transistor being connected to the collector of the first transistor. The collector of the second transistor is connected to the current source, the emitter of the second transistor being connected to the reference voltage. The regulated output of the voltage regulator is provided at the collector of the second transistor and the regulated voltage output is a function of the first base-emitter voltage characteristic of the first transistor plus the quantity comprising the difference between the first base-emitter voltage characteristic of the first transistor and the second base-emitter voltage characteristic of the second transistor, times the ratio of the value of resistance of the first resistor and the value of resistance of the second resistor. The improvement described here comprises: a third transistor having a collector, an emitter and a base.

  17. Electrical cable connector-clamp has smooth exterior surface

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Electrical cable connector-clamp fitted with a collet has a smooth exterior surface that can be easily gripped. The collet clamps a portion of the cable and provides for connecting it to a standard electrical connector.

  18. Voltage equaliser for Li-Fe battery

    NASA Astrophysics Data System (ADS)

    Wu, Jinn-Chang; Jou, Hurng-Liahng; Chuang, Ping-Hao

    2013-10-01

    In this article, a voltage equaliser is proposed for a battery string with four Li-Fe batteries. The proposed voltage equaliser is developed from a flyback converter, which comprises a transformer, a power electronic switch and a resonant clamped circuit. The transformer contains a primary winding and four secondary windings with the same number of turns connected to each battery. The resonant clamped circuit is for recycling the energy of leakage inductance of the transformer and for performing zero-voltage switching (ZVS) of the power electronic switch. When the power electronic switch is switched on, the energy is stored in the transformer; and when the power electronic switch is switched off, the energy stored in the transformer will automatically charge the battery whose voltage is the lowest. In this way, the voltage of individual batteries in the battery string is balanced. The salient features of the proposed voltage equaliser are that only one switch is used, the energy stored in the leakage inductance of the transformer can be recycled and ZVS is obtained. A prototype is developed and tested to verify the performance of the proposed voltage equaliser. The experimental results show that the proposed voltage equaliser achieves the expected performance.

  19. Mechanical and metallurgical properties of carotid artery clamps.

    PubMed

    Dujovny, M; Kossovsky, N; Kossowsky, R; Segal, R; Diaz, F G; Kaufman, H; Perlin, A; Cook, E E

    1985-11-01

    The mechanical and metallurgical properties of carotid artery clamps were evaluated. The pressure plate retreat propensity, metallurgical composition, surface morphology, magnetic properties, and corrosion resistance of the Crutchfield, Selverstone, Salibi, and Kindt clamps were tested. None of the clamps showed evidence of pressure plate retreat. The clamps differed significantly in their composition, surface cleanliness, magnetic properties, and corrosion resistance. The Crutchfield clamp was the only one manufactured from an ASTM-ANSI-approved implantable stainless steel (AISI 316) and the only clamp in which the surfaces were clean and free of debris. The Selverstone clamp was made principally from AISI 304 stainless steel, as was one Salibi clamp. The pressure plate on another Salibi clamp was made from a 1% chromium and 1% manganese steel. Machining and surface debris consisting principally of aluminum, silicon, and sulfur was abundant on the Selverstone and Salibi clamps. The Kindt clamp was manufactured from AISI 301 stainless steel with a silicate-aluminized outer coating. The Crutchfield and Selverstone clamps were essentially nonferromagnetic, whereas the Salibi and Kindt clamps were sensitive to magnetic flux. In the pitting potential corrosion test, the Crutchfield clamp demonstrated good corrosion resistance with a pitting potential of 310 mV and no surface corrosion or pitting by scanning electron microscopy examination. The Selverstone clamp had lower pitting potentials and showed various degrees of corrosion and surface pitting by scanning electron microscopy. The Salibi pressure plate had a very low pitting potential of -525 mV and showed severe corrosion. By metallurgical criteria, only the Crutchfield clamp is suitable for long term implantation. PMID:4069328

  20. 30 CFR 18.40 - Cable clamps and grips.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Requirements § 18.40 Cable clamps and grips. Insulated clamps shall be provided for all portable (trailing) cables to prevent strain on the cable terminals of a machine. Also insulated clamps shall be provided to... mounted component. Cable grips anchored to the cable may be used in lieu of insulated strain...

  1. 30 CFR 18.40 - Cable clamps and grips.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Requirements § 18.40 Cable clamps and grips. Insulated clamps shall be provided for all portable (trailing) cables to prevent strain on the cable terminals of a machine. Also insulated clamps shall be provided to... mounted component. Cable grips anchored to the cable may be used in lieu of insulated strain...

  2. 30 CFR 18.40 - Cable clamps and grips.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Requirements § 18.40 Cable clamps and grips. Insulated clamps shall be provided for all portable (trailing) cables to prevent strain on the cable terminals of a machine. Also insulated clamps shall be provided to... mounted component. Cable grips anchored to the cable may be used in lieu of insulated strain...

  3. 30 CFR 18.40 - Cable clamps and grips.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Requirements § 18.40 Cable clamps and grips. Insulated clamps shall be provided for all portable (trailing) cables to prevent strain on the cable terminals of a machine. Also insulated clamps shall be provided to... mounted component. Cable grips anchored to the cable may be used in lieu of insulated strain...

  4. Single molecule study of a processivity clamp sliding on DNA

    SciTech Connect

    Laurence, T A; Kwon, Y; Johnson, A; Hollars, C; O?Donnell, M; Camarero, J A; Barsky, D

    2007-07-05

    Using solution based single molecule spectroscopy, we study the motion of the polIII {beta}-subunit DNA sliding clamp ('{beta}-clamp') on DNA. Present in all cellular (and some viral) forms of life, DNA sliding clamps attach to polymerases and allow rapid, processive replication of DNA. In the absence of other proteins, the DNA sliding clamps are thought to 'freely slide' along the DNA; however, the abundance of positively charged residues along the inner surface may create favorable electrostatic contact with the highly negatively charged DNA. We have performed single-molecule measurements on a fluorescently labeled {beta}-clamp loaded onto freely diffusing plasmids annealed with fluorescently labeled primers of up to 90 bases. We find that the diffusion constant for 1D diffusion of the {beta}-clamp on DNA satisfies D {le} 10{sup -14} cm{sup 2}/s, much slower than the frictionless limit of D = 10{sup -10} cm{sup 2}/s. We find that the {beta} clamp remains at the 3-foot end in the presence of E. coli single-stranded binding protein (SSB), which would allow for a sliding clamp to wait for binding of the DNA polymerase. Replacement of SSB with Human RP-A eliminates this interaction; free movement of sliding clamp and poor binding of clamp loader to the junction allows sliding clamp to accumulate on DNA. This result implies that the clamp not only acts as a tether, but also a placeholder.

  5. π-Clamp Mediated Cysteine Conjugation

    PubMed Central

    Zhang, Chi; Welborn, Matthew; Zhu, Tianyu; Yang, Nicole J.; Santos, Michael S.; Van Voorhis, Troy; Pentelute, Bradley L.

    2016-01-01

    Site-selective functionalization of complex molecules is a grand challenge in chemistry. Protecting groups or catalysts must be used to selectively modify one site among many that are similarly reactive. General strategies are rare such the local chemical environment around the target site is tuned for selective transformation. Here we show a four amino acid sequence (Phe-Cys-Pro-Phe), which we call the “π-clamp”, tunes the reactivity of its cysteine thiol for the site-selective conjugation with perfluoroaromatic reagents. We used the π-clamp to selectively modify one cysteine site in proteins containing multiple endogenous cysteine residues (e.g. antibodies and cysteine-based enzymes), which was impossible with prior cysteine modification methods. The modified π-clamp antibodies retained binding affinity to their targets, enabling the synthesis of site-specific antibody-drug conjugates (ADCs) for selective killing of HER2-positive breast cancer cells. The π-clamp is an unexpected approach for site-selective chemistry and provides opportunities to modify biomolecules for research and therapeutics. PMID:26791894

  6. Temperature-Controlled Clamping and Releasing Mechanism

    NASA Technical Reports Server (NTRS)

    Rosing, David; Ford, Virginia

    2005-01-01

    A report describes the development of a mechanism that automatically clamps upon warming and releases upon cooling between temperature limits of approx. =180 K and approx. =293 K. The mechanism satisfied a need specific to a program that involved repeated excursions of a spectrometer between a room-temperature atmospheric environment and a cryogenic vacuum testing environment. The mechanism was also to be utilized in the intended application of the spectrometer, in which the spectrometer would be clamped for protection during launch of a spacecraft and released in the cold of outer space to allow it to assume its nominal configuration for scientific observations. The mechanism is passive in the sense that its operation does not depend on a control system and does not require any power other than that incidental to heating and cooling. The clamping and releasing action is effected by bolt-preloaded stacks of shape-memory-alloy (SMA) cylinders. In designing this mechanism, as in designing other, similar SMA mechanisms, it was necessary to account for the complex interplay among thermal expansion, elastic and inelastic deformation under load, and SMA thermomechanical properties.

  7. Carbon nanotube-clamped metal atomic chain

    PubMed Central

    Tang, Dai-Ming; Yin, Li-Chang; Li, Feng; Liu, Chang; Yu, Wan-Jing; Hou, Peng-Xiang; Wu, Bo; Lee, Young-Hee; Ma, Xiu-Liang; Cheng, Hui-Ming

    2010-01-01

    Metal atomic chain (MAC) is an ultimate one-dimensional structure with unique physical properties, such as quantized conductance, colossal magnetic anisotropy, and quantized magnetoresistance. Therefore, MACs show great potential as possible components of nanoscale electronic and spintronic devices. However, MACs are usually suspended between two macroscale metallic electrodes; hence obvious technical barriers exist in the interconnection and integration of MACs. Here we report a carbon nanotube (CNT)-clamped MAC, where CNTs play the roles of both nanoconnector and electrodes. This nanostructure is prepared by in situ machining a metal-filled CNT, including peeling off carbon shells by spatially and elementally selective electron beam irradiation and further elongating the exposed metal nanorod. The microstructure and formation process of this CNT-clamped MAC are explored by both transmission electron microscopy observations and theoretical simulations. First-principles calculations indicate that strong covalent bonds are formed between the CNT and MAC. The electrical transport property of the CNT-clamped MAC was experimentally measured, and quantized conductance was observed. PMID:20427743

  8. π-Clamp-mediated cysteine conjugation

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Welborn, Matthew; Zhu, Tianyu; Yang, Nicole J.; Santos, Michael S.; van Voorhis, Troy; Pentelute, Bradley L.

    2016-02-01

    Site-selective functionalization of complex molecules is one of the most significant challenges in chemistry. Typically, protecting groups or catalysts must be used to enable the selective modification of one site among many that are similarly reactive, and general strategies that selectively tune the local chemical environment around a target site are rare. Here, we show a four-amino-acid sequence (Phe-Cys-Pro-Phe), which we call the ‘π-clamp’, that tunes the reactivity of its cysteine thiol for site-selective conjugation with perfluoroaromatic reagents. We use the π-clamp to selectively modify one cysteine site in proteins containing multiple endogenous cysteine residues. These examples include antibodies and cysteine-based enzymes that would be difficult to modify selectively using standard cysteine-based methods. Antibodies modified using the π-clamp retained binding affinity to their targets, enabling the synthesis of site-specific antibody-drug conjugates for selective killing of HER2-positive breast cancer cells. The π-clamp is an unexpected approach to mediate site-selective chemistry and provides new avenues to modify biomolecules for research and therapeutics.

  9. Voltage-dependent sodium channels in an invertebrate striated muscle.

    PubMed

    Schwartz, L M; Stühmer, W

    1984-08-01

    Striated skeletal muscles from the planktonic arrowworm Sagitta elegans (phylum Chaetognatha) were voltage-clamped. The muscles displayed classical voltage-dependent sodium channels that (i) showed peak transient currents when the membrane was depolarized 90 millivolts from rest, (ii) opened rapidly with peak currents flowing within 0.4 milliseconds at 4 degrees C, (iii) showed voltage-dependent inactivation with 50 percent inactivation at +25 millivolts from rest, and (iv) were blocked by 500 nanomolar tetrodotoxin. PMID:6330898

  10. Condition of chromic acid anodized aluminum clamps flown

    NASA Technical Reports Server (NTRS)

    Plagemann, W. L.

    1991-01-01

    A survey of the condition of the chromic acid anodized (CAA) coating on selected LDEF tray clamps was carried out. Measurements of solar absorptance and thermal emittance were carried out at multiple locations on both the space exposed and spacecraft facing sides of the clamps. Multiple clamps from each available angle relative to the ram direction were examined. The diffuse component of the reflectance spectrum was measured for a selected subset of the clamps. The thickness of the CAA was determined for a small set of clamps. Examples of variation in integrity of the coatings from leading to trailing edge will be shown.

  11. Electrochemical cyclability mechanism for MnO 2 electrodes utilized as electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Wei, Weifeng; Cui, Xinwei; Chen, Weixing; Ivey, Douglas G.

    The electrochemical cyclability mechanism of nanocrystalline MnO 2 electrodes with rock salt-type and hexagonal ɛ-type structures was investigated to determine the relationship between physicochemical feature evolution and the corresponding electrochemical behaviour of MnO 2 electrodes. Rock salt MnO 2 and hexagonal ɛ-MnO 2 electrodes, with fibrous and porous morphologies, evolve into the antifluorite-type MnO 2 with a petal-shaped nanosheet structure after electrochemical cycling, similar to that observed in nanocrystalline antifluorite-type MnO 2 electrodes after electrochemical cycling. However, a different impedance response was observed for the rock salt MnO 2 and hexagonal ɛ-MnO 2 electrodes during the charge-discharge cycles, compared with the improved impedance response observed for the cycled antifluorite-type MnO 2. A dissolution-redeposition mechanism is proposed to account for the impedance response of the MnO 2 electrodes with different morphologies and crystal structures.

  12. VOLTAGE REGULATOR

    DOEpatents

    Von Eschen, R.L.; Scheele, P.F.

    1962-04-24

    A transistorized voltage regulator which provides very close voitage regulation up to about 180 deg F is described. A diode in the positive line provides a constant voltage drop from the input to a regulating transistor emitter. An amplifier is coupled to the positive line through a resistor and is connected between a difference circuit and the regulating transistor base which is negative due to the difference in voltage drop across thc diode and the resistor so that a change in the regulator output causes the amplifier to increase or decrease the base voltage and current and incrcase or decrease the transistor impedance to return the regulator output to normal. (AEC)

  13. How shunting inhibition affects the discharge of lumbar motoneurones: a dynamic clamp study in anaesthetized cats

    PubMed Central

    Brizzi, L; Meunier, C; Zytnicki, D; Donnet, M; Hansel, D; d'Incamps, B Lamotte; van Vreeswijk, C

    2004-01-01

    In the present work, dynamic clamp was used to inject a current that mimicked tonic synaptic activity in the soma of cat lumbar motoneurones with a microelectrode. The reversal potential of this current could be set at the resting potential so as to prevent membrane depolarization or hyperpolarization. The only effect of the dynamic clamp was then to elicit a constant and calibrated increase of the motoneurone input conductance. The effect of the resulting shunt was investigated on repetitive discharges elicited by current pulses. Shunting inhibition reduced very substantially the firing frequency in the primary range without changing the slope of the current–frequency curves. The shift of the I–f curve was proportional to the conductance increase imposed by the dynamic clamp and depended on an intrinsic property of the motoneurone that we called the shunt potential. The shunt potential ranged between 11 and 37 mV above the resting potential, indicating that the sensitivity of motoneurones to shunting inhibition was quite variable. The shunt potential was always near or above the action potential voltage threshold. A theoretical model allowed us to interpret these experimental results. The shunt potential was shown to be a weighted time average of membrane voltage. The weighting factor is the phase response function of the neurone that peaks at the end of the interspike interval. The shunt potential indicates whether mixed synaptic inputs have an excitatory or inhibitory effect on the ongoing discharge of the motoneurone. PMID:15169842

  14. Characterization of solid electrode materials using chronoamperometry: A study of the alkaline γ-MnO 2 electrode

    NASA Astrophysics Data System (ADS)

    Malloy, Aaron P.; Donne, Scott W.

    Large voltage step chronoamperometry is shown to be a time-efficient means to examine solid electrode materials compared with conventional electrochemical methods such as linear sweep voltammetry (LSV) and step potential electrochemical spectroscopy (SPECS), all the while providing comparable information concerning the rate capability of a material and its capacity. The applicability of the technique is demonstrated through a study of the alkaline γ-MnO 2 electrode. By sampling the current (and hence the charge) at various times after the chronoamperometric voltage step, the compatibility between chronoamperometry and LSV is disclosed. Furthermore, modelling of the chronoamperometric data using two curves based on a spherical diffusion model representing fast and slow discharge processes are found to be statistically suitable. From this modelling, values of A√ D (where A is the electrochemically active surface area and D is the diffusion coefficient) for the two processes are 3.89 × 10 -4 and 0.70 × 10 -4 cm 3 s -1/2 g -1, respectively, both of which are comparable with A√ D data extracted from a SPECS experiment on an identical electrode.

  15. Biological cell controllable patch-clamp microchip

    NASA Astrophysics Data System (ADS)

    Penmetsa, Siva; Nagrajan, Krithika; Gong, Zhongcheng; Mills, David; Que, Long

    2010-12-01

    A patch-clamp (PC) microchip with cell sorting and positioning functions is reported, which can avoid drawbacks of random cell selection or positioning for a PC microchip. The cell sorting and positioning are enabled by air bubble (AB) actuators. AB actuators are pneumatic actuators, in which air pressure is generated by microheaters within sealed microchambers. The sorting, positioning, and capturing of 3T3 cells by this type of microchip have been demonstrated. Using human breast cancer cells MDA-MB-231 as the model, experiments have been demonstrated by this microchip as a label-free technical platform for real-time monitoring of the cell viability.

  16. Current advances in invertebrate vision: insights from patch-clamp studies of photoreceptors in apposition eyes.

    PubMed

    Frolov, Roman V

    2016-08-01

    Traditional electrophysiological research on invertebrate photoreceptors has been conducted in vivo, using intracellular recordings from intact compound eyes. The only exception used to be Drosophila melanogaster, which was exhaustively studied by both intracellular recording and patch-clamp methods. Recently, several patch-clamp studies have provided new information on the biophysical properties of photoreceptors of diverse insect species, having both apposition and neural superposition eyes, in the contexts of visual ecology, behavior, and ontogenesis. Here, I discuss these and other relevant results, emphasizing differences between fruit flies and other species, between photoreceptors of diurnal and nocturnal insects, properties of distinct functional types of photoreceptors, postembryonic developmental changes, and relationships between voltage-gated potassium channels and visual ecology. PMID:27250910

  17. Negligible substrate clamping effect on piezoelectric response in (111)-epitaxial tetragonal Pb(Zr, Ti)O{sub 3} films

    SciTech Connect

    Yamada, Tomoaki; Yasumoto, Jun; Ito, Daisuke; Yoshino, Masahito; Nagasaki, Takanori; Sakata, Osami; Imai, Yasuhiko; Kiguchi, Takanori; Shiraishi, Takahisa; Shimizu, Takao; Funakubo, Hiroshi

    2015-08-21

    The converse piezoelectric responses of (111)- and (001)-epitaxial tetragonal Pb(Zr{sub 0.35}Ti{sub 0.65})O{sub 3} [PZT] films were compared to investigate the orientation dependence of the substrate clamping effect. Synchrotron X-ray diffraction (XRD) and piezoelectric force microscopy revealed that the as-grown (111)-PZT film has a polydomain structure with normal twin boundaries that are changed by the poling process to inclined boundaries, as predicted by Romanov et al. [Phys. Status Solidi A 172, 225 (1999)]. Time-resolved synchrotron XRD under bias voltage showed the negligible impact of substrate clamping on the piezoelectric response in the (111)-PZT film, unlike the case for (001)-PZT film. The origin of the negligible clamping effect in the (111)-PZT film is discussed from the viewpoint of the elastic properties and the compensation of lattice distortion between neighboring domains.

  18. Laser-assisted patch clamping: a methodology

    NASA Technical Reports Server (NTRS)

    Henriksen, G. H.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    1997-01-01

    Laser microsurgery can be used to perform both cell biological manipulations, such as targeted cell ablation, and molecular genetic manipulations, such as genetic transformation and chromosome dissection. In this report, we describe a laser microsurgical method that can be used either to ablate single cells or to ablate a small area (1-3 microns diameter) of the extracellular matrix. In plants and microorganisms, the extracellular matrix consists of the cell wall. While conventional patch clamping of these cells, as well as of many animal cells, requires enzymatic digestion of the extracellular matrix, we illustrate that laser microsurgery of a portion of the wall enables patch clamp access to the plasma membrane of higher plant cells remaining situated in their tissue environment. What follows is a detailed description of the construction and use of an economical laser microsurgery system, including procedures for single cell and targeted cell wall ablation. This methodology will be of interest to scientists wishing to perform cellular or subcellular ablation with a high degree of accuracy, or wishing to study how the extracellular matrix affects ion channel function.

  19. ClampOn acoustic solid fuel monitor

    SciTech Connect

    Vesterhus, T.

    1999-07-01

    The general idea of the project is to develop a ClampOn Solid Fuel Monitor, enabling optimization of the combustion process in pulverized coal fired boilers. The development will be based on adapting existing technology for measuring the content of sand particles in a flow of natural gas. The Norwegian firm ClampOn AS develops equipment for such measurements, and has already a proven track record as a result of its work with major oil companies throughout the world. The industry wants some sort of fuel indicator, e.g. a piece of equipment that enables the operator to measure and control the amounts of the fuel to each individual burner. The best techniques available today--as far as the author knows--can only offer samples of the fuel stream at discrete points of time. To truly optimize the combustion process, it is vital to continuously monitor the mass of fuel to each burner, and optimize the combustion process through continuous and infinitesimal adjustments of the fuel flow. This will minimize the NO{sub x} created by uneven temperature-distribution in the combustion chamber. In this way maximum power generation can be obtained at minimal emission of pollutants for a given amount of coal burned.

  20. Testing of Diode-Clamping in an Inductive Pulsed Plasma Thruster Circuit

    NASA Technical Reports Server (NTRS)

    Toftul, Alexandra; Polzin, Kurt A.; Martin, Adam K.; Hudgins, Jerry L.

    2014-01-01

    Testing of a 5.5 kV silicon (Si) diode and 5.8 kV prototype silicon carbide (SiC) diode in an inductive pulsed plasma thruster (IPPT) circuit was performed to obtain a comparison of the resulting circuit recapture efficiency,eta(sub r), defined as the percentage of the initial charge energy remaining on the capacitor bank after the diode interrupts the current. The diode was placed in a pulsed circuit in series with a silicon controlled rectifier (SCR) switch, and the voltages across different components and current waveforms were collected over a range of capacitor charge voltages. Reverse recovery parameters, including turn-off time and peak reverse recovery current, were measured and capacitor voltage waveforms were used to determine the recapture efficiency for each case. The Si fast recovery diode in the circuit was shown to yield a recapture efficiency of up to 20% for the conditions tested, while the SiC diode further increased recapture efficiency to nearly 30%. The data presented show that fast recovery diodes operate on a timescale that permits them to clamp the discharge quickly after the first half cycle, supporting the idea that diode-clamping in IPPT circuit reduces energy dissipation that occurs after the first half cycle

  1. Characterization of the clamp pressure of electrostatic chucks

    NASA Astrophysics Data System (ADS)

    Ziemann, M.; Voss, S.; Baldus, O.; Schmidt, V.

    2010-04-01

    Berliner Glas KGaA is specialized on the manufacturing of high performance wafer and reticle chucks. Electrostatic chucks (ESC) are especially used in vacuum environments e.g. during lithographic processing, coating and etching. The main task of the chuck is to provide a well defined positioning and thermal stabilization of the wafer or reticle. Typical wafer materials are semiconductors like silicon and in some special cases dielectrics like magnesia, alumina or glass. For a functional characterization of the ESC clamps Berliner Glas has developed a measurement method to determine the clamp pressure with a Fizeau interferometer. The setup utilizes the local bending of clamped wafers to determine the effective clamp pressure. The clamp pressure is measured in the range of 20...500 mbar. This new method allows for a lateral resolution of the clamp pressure measurement. It can be calibrated by various methods. Direct computation of the clamp pressure based on the bending height or comparative measurements with vacuum chucking by the same chuck gives evidence for the quantitative results. Transient clamp pressure variation can be measured with a resolution of 2 mbar. The results can be used to qualify and optimize ESĆs and even for a local correction of the clamp force.

  2. An Optimal Cell Detection Technique for Automated Patch Clamping

    NASA Technical Reports Server (NTRS)

    McDowell, Mark; Gray, Elizabeth

    2004-01-01

    While there are several hardware techniques for the automated patch clamping of cells that describe the equipment apparatus used for patch clamping, very few explain the science behind the actual technique of locating the ideal cell for a patch clamping procedure. We present a machine vision approach to patch clamping cell selection by developing an intelligent algorithm technique that gives the user the ability to determine the good cell to patch clamp in an image within one second. This technique will aid the user in determining the best candidates for patch clamping and will ultimately save time, increase efficiency and reduce cost. The ultimate goal is to combine intelligent processing with instrumentation and controls in order to produce a complete turnkey automated patch clamping system capable of accurately and reliably patch clamping cells with a minimum amount of human intervention. We present a unique technique that identifies good patch clamping cell candidates based on feature metrics of a cell's (x, y) position, major axis length, minor axis length, area, elongation, roundness, smoothness, angle of orientation, thinness and whether or not the cell is only particularly in the field of view. A patent is pending for this research.

  3. Spectral infrared hemispherical reflectance measurements for LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Cromwell, B. K.; Shepherd, S. D.; Pender, C. W.; Wood, B. E.

    1993-01-01

    Infrared hemispherical reflectance measurements that were made on 58 chromic acid anodized tray clamps from LDEF are described. The measurements were made using a hemiellipsoidal mirror reflectometer with interferometer for wavelengths between 2-15 microns. The tray clamps investigated were from locations about the entire spacecraft and provided the opportunity for comparing the effects of atomic oxygen at each location. Results indicate there was essentially no dependence on atomic oxygen fluence for the surfaces studied, but there did appear to be a slight dependence on solar radiation exposure. The reflectances of the front sides of the tray clamps consistently were slightly higher than for the protected rear tray clamp surfaces.

  4. Re-visiting the trans insertion model for complexin clamping.

    PubMed

    Krishnakumar, Shyam S; Li, Feng; Coleman, Jeff; Schauder, Curtis M; Kümmel, Daniel; Pincet, Frederic; Rothman, James E; Reinisch, Karin M

    2015-01-01

    We have previously proposed that complexin cross-links multiple pre-fusion SNARE complexes via a trans interaction to function as a clamp on SNARE-mediated neurotransmitter release. A recent NMR study was unable to detect the trans clamping interaction of complexin and therefore questioned the previous interpretation of the fluorescence resonance energy transfer and isothermal titration calorimetry data on which the trans clamping model was originally based. Here we present new biochemical data that underscore the validity of our previous interpretation and the continued relevancy of the trans insertion model for complexin clamping. PMID:25831964

  5. The self-discharge of the NiOOH/Ni(OH)2 electrode constant potential study

    NASA Technical Reports Server (NTRS)

    Mao, Z.; White, R. E.

    1992-01-01

    Hydrogen oxidation currents at a NiOOH/Ni(OH)2 electrode were measured directly at constant potentials for various hydrogen pressures and states of charge. It was found that the hydrogen oxidation current is linearly proportional to the hydrogen pressure at all electrode potentials and that the logarithm of the anodic current is a linear function of electrode potential. It was also found that hydrogen oxidation on the nickel substrate material was strongly inhibited by the presence of nickel hydroxide on the substrate surface. By comparing the currents for hydrogen oxidation and oxygen evolution on the NiOOH/Ni(OH)2 electrode and a nickel substrate, it is suggested that the self-discharge of the NiOOH/Ni(OH)2 electrode is mainly due to electrochemical oxidation of hydrogen on the active electrode material.

  6. MATLAB implementation of a dynamic clamp with bandwidth of >125 kHz capable of generating I Na at 37 °C.

    PubMed

    Clausen, Chris; Valiunas, Virginijus; Brink, Peter R; Cohen, Ira S

    2013-04-01

    We describe the construction of a dynamic clamp with a bandwidth of >125 kHz that utilizes a high-performance, yet low-cost, standard home/office PC interfaced with a high-speed (16 bit) data acquisition module. High bandwidth is achieved by exploiting recently available software advances (code-generation technology and optimized real-time kernel). Dynamic-clamp programs are constructed using Simulink, a visual programming language. Blocks for computation of membrane currents are written in the high-level MATLAB language; no programming in C is required. The instrument can be used in single- or dual-cell configurations, with the capability to modify programs while experiments are in progress. We describe an algorithm for computing the fast transient Na(+) current (I Na) in real time and test its accuracy and stability using rate constants appropriate for 37 °C. We then construct a program capable of supplying three currents to a cell preparation: I Na, the hyperpolarizing-activated inward pacemaker current (I f) and an inward-rectifier K(+) current (I K1). The program corrects for the IR drop due to electrode current flow and also records all voltages and currents. We tested this program on dual patch-clamped HEK293 cells where the dynamic clamp controls a current-clamp amplifier and a voltage-clamp amplifier controls membrane potential, and current-clamped HEK293 cells where the dynamic clamp produces spontaneous pacing behavior exhibiting Na(+) spikes in otherwise passive cells. PMID:23224681

  7. Analysis of screw pitch effects on the performance of bolt-clamped Langevin-type transducers

    NASA Astrophysics Data System (ADS)

    Adachi, Kazunari; Takahashi, Toru; Hasegawa, Hiroshi

    2004-09-01

    Bolt-clamped Langevin-type transducers (BLTs) are common vibration sources in high-power ultrasonic applications such as ultrasonic plastic joining. In this paper, the authors propose a low-aspect-ratio BLT shape based on numerical solutions of a complex elastic contact problem concerning the bearing stress (prestress) imposed on the interfaces between the parts by clamping with the screw bolt. The prestress distribution at the interface has significant influence on the mechanical quality factor (Q) of the BLT. It is found that the screw pitch of the clamping bolt heavily affects the prestress distribution in the simulation using the finite element method. The newly developed BLTs with a high resonance frequency of approximately 80 kHz has a relatively wide radiating face and sufficient volume ratio of the piezoelectric elements that convert electrical energy into mechanical energy. The average of their measured Q values exceeds 1000 despite their high resonance frequency when they are driven at a voltage higher than 17 V rms.

  8. Combination Space Station Handrail Clamp and Pointing Device

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J. (Inventor)

    1999-01-01

    A device for attaching an experiment carrier to a space station handrail is provided. The device has two major components, a clamping mechanism for attachment to a space station handrail, and a pointing carrier on which an experiment package can be mounted and oriented. The handrail clamp uses an overcenter mechanism and the carrier mechanism uses an adjustable preload ball and socket for carrier positioning. The handrail clamp uses a stack of disk springs to provide a spring loaded button. This configuration provides consistent clamping force over a range of possible handrail thicknesses. Three load points are incorporated in the clamping mechanism thereby spreading the clamping load onto three separate points on the handrail. A four bar linkage is used to provide for a single actuation lever for all three load points. For additional safety, a secondary lock consisting of a capture plate and push lock keeps the clamp attached to the handrail in the event of main clamp failure. For the carrier positioning mechanism, a ball in a spring loaded socket uses friction to provide locking torque; however. the ball and socket are torque limited so that the ball ran slip under kick loads (125 pounds or greater). A lead screw attached to disk spring stacks is used to provide an adjustable spring force on the socket. A locking knob is attached to the lead screw to allow for hand manipulation of the lead screw.

  9. OPTIMAL TIMING FOR CLAMPING THE UMBILICAL CORD AFTER BIRTH

    PubMed Central

    Raju, Tonse N. K.; Singal, Nalini

    2013-01-01

    Synopsis This paper provides a brief overview of pros and cons of clamping the cord too early (within seconds) after birth. It also highlights evolving data that suggests that delaying cord clamping for 30–60 seconds after birth is beneficial to the baby and the mother, with no measurable negative effects. PMID:23164185

  10. 21 CFR 876.5160 - Urological clamp for males.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Urological clamp for males. 876.5160 Section 876.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5160 Urological clamp for males. (a) Identification. A urological...

  11. Off-clamp robotic partial nephrectomy: Technique and outcome

    PubMed Central

    Lamoshi, Abdulraouf Y.; Salkini, Mohamad W.

    2015-01-01

    Introduction: Robotic partial nephrectomy (RPN) is a technically challenging procedure. Advanced skills are needed to accomplish tumor resection, hemostasis, and renorrhaphy within short ischemia time in RPN. Off-clamp RPN with zero ischemia may decrease the risk of ischemic reperfusion injury to the kidney. However, the off-clamp technique has been associated with an increased risk of blood loss. The purpose of this study was to evaluate the outcome of our modified off-clamp technique utilized in certain RPN cases. Patients and Methods: A total of 81 patients underwent RPN between September 2009 and July 2013 for renal masses. We studied a subgroup of patients who underwent off-clamp RPN with zero ischemia time. The off-clamp technique was utilized for exophytic, nonhilar tumors that have a base of 2 cm or less. We developed a novel technique to avoid ischemia reperfusion renal injury while minimizing blood loss in certain cases of RPN. Results: Of the 81 cases of RPN, we reviewed and adopted the off-clamp technique in 34 patients (41.98%). Utilizing off-clamp RPN resulted in an average blood loss of 96.29 ml and 1.56 days (range: 1-3 days) of hospital stay and minimal change in serum creatinine. Conclusions: Off-clamp RPN is safe and feasible approach to excise certain kidney tumors. It carries the benefits of RPN and prevents ischemia reperfusion renal injury. PMID:25835489

  12. 21 CFR 876.5160 - Urological clamp for males.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Urological clamp for males. 876.5160 Section 876.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5160 Urological clamp for...

  13. 21 CFR 876.5160 - Urological clamp for males.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Urological clamp for males. 876.5160 Section 876.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5160 Urological clamp for males. (a) Identification. A urological...

  14. Circumferential hoof clamp method of lameness induction in the horse.

    PubMed

    Swaab, M E; Mendez-Angulo, J L; Groschen, D M; Ernst, N S; Brown, M P; Trumble, T N

    2015-07-01

    A circumferential hoof clamp method to induce controlled and reversible lameness in the forelimbs of eight horses was assessed. Peak vertical forces and vertical impulses were recorded using a force plate to verify induced lameness. Video recordings were used by blinded observers to determine subjective lameness using a 0-5 scale and any residual lameness following clamp loosening. Tightening of clamps resulted in consistent, visible lameness in the selected limbs in all horses. Lameness was confirmed by significant decreases from baseline in the peak vertical force (P <0.01). Lameness was also confirmed subjectively by elevated median scores (0 at baseline and 2 during lameness). Lameness was not immediately reversible after clamp loosening (median score 1.5), but horses were not obviously lame after clamp removal and were no different from initial baseline (median score 0.5) approximately 3 days later. PMID:26045357

  15. Discrete Waves and Phototransduction in Voltage-damped Ventral Photoreceptors

    PubMed Central

    Behbehani, Michael; Srebro, Richard

    1974-01-01

    Discrete waves in the voltage-clamped photoreceptor of Limulus are remarkably similar in all essential properties to those found in an unclamped cell. The latency distribution of discrete waves is not affected by considerable changes in the holding potential in a voltage-clamped cell. Both large and small waves occur in voltage-clamped and unclamped cells and in approximately the same proportion. Large and small waves also share the same latency distributions and spectral sensitivity. We suggest that small waves may result from the activation of damaged membrane areas. Large waves have an average amplitude of approximately 5 nA in voltage-clamped photoreceptors. It probably requires several square microns of cell membrane to support this much photo-current. Thus the amplification inherent in the discrete wave process may involve spatial spread of activation from unimolecular dimensions to several square microns of cell membrane surface. Neither local current flow, nor pre-packaging of any transmitter substance appears to be involved in the amplification process. The possible mechanisms of the amplification are evaluated with relationship to the properties of discrete waves. PMID:4846766

  16. A novel measuring method of clamping force for electrostatic chuck in semiconductor devices

    NASA Astrophysics Data System (ADS)

    Kesheng, Wang; Jia, Cheng; Yin, Zhong; Linhong, Ji

    2016-04-01

    Electrostatic chucks are one of the core components of semiconductor devices. As a key index of electrostatic chucks, the clamping force must be controlled within a reasonable range. Therefore, it is essential to accurately measure the clamping force. To reduce the negative factors influencing measurement precision and repeatability, this article presents a novel method to measure the clamping force and we elaborate both the principle and the key procedure. A micro-force probe component is introduced to monitor, adjust, and eliminate the gap between the wafer and the electrostatic chuck. The contact force between the ruby probe and the wafer is selected as an important parameter to characterize de-chucking, and we have found that the moment of de-chucking can be exactly judged. Moreover, this article derives the formula calibrating equivalent action area of backside gas pressure under real working conditions, which can effectively connect the backside gas pressure at the moment of de-chucking and the clamping force. The experiments were then performed on a self-designed measuring platform. The de-chucking mechanism is discussed in light of our analysis of the experimental data. Determination criteria for de-chucking point are summed up. It is found that the relationship between de-chucking pressure and applied voltage conforms well to quadratic equation. Meanwhile, the result reveals that actual de-chucking behavior is much more complicated than the description given in the classical empirical formula. Project supported by No. 02 National Science and Technology Major Project of China (No. 2011ZX02403-004).

  17. Cell-Detection Technique for Automated Patch Clamping

    NASA Technical Reports Server (NTRS)

    McDowell, Mark; Gray, Elizabeth

    2008-01-01

    A unique and customizable machinevision and image-data-processing technique has been developed for use in automated identification of cells that are optimal for patch clamping. [Patch clamping (in which patch electrodes are pressed against cell membranes) is an electrophysiological technique widely applied for the study of ion channels, and of membrane proteins that regulate the flow of ions across the membranes. Patch clamping is used in many biological research fields such as neurobiology, pharmacology, and molecular biology.] While there exist several hardware techniques for automated patch clamping of cells, very few of those techniques incorporate machine vision for locating cells that are ideal subjects for patch clamping. In contrast, the present technique is embodied in a machine-vision algorithm that, in practical application, enables the user to identify good and bad cells for patch clamping in an image captured by a charge-coupled-device (CCD) camera attached to a microscope, within a processing time of one second. Hence, the present technique can save time, thereby increasing efficiency and reducing cost. The present technique involves the utilization of cell-feature metrics to accurately make decisions on the degree to which individual cells are "good" or "bad" candidates for patch clamping. These metrics include position coordinates (x,y) in the image plane, major-axis length, minor-axis length, area, elongation, roundness, smoothness, angle of orientation, and degree of inclusion in the field of view. The present technique does not require any special hardware beyond commercially available, off-the-shelf patch-clamping hardware: A standard patchclamping microscope system with an attached CCD camera, a personal computer with an imagedata- processing board, and some experience in utilizing imagedata- processing software are all that are needed. A cell image is first captured by the microscope CCD camera and image-data-processing board, then the image

  18. Dynamic clamp: a powerful tool in cardiac electrophysiology.

    PubMed

    Wilders, Ronald

    2006-10-15

    Dynamic clamp is a collection of closely related techniques that have been employed in cardiac electrophysiology to provide direct answers to numerous research questions regarding basic cellular mechanisms of action potential formation, action potential transfer and action potential synchronization in health and disease. Building on traditional current clamp, dynamic clamp was initially used to create virtual gap junctions between isolated myocytes. More recent applications include the embedding of a real pacemaking myocyte in a simulated network of atrial or ventricular cells and the insertion of virtual ion channels, either simulated in real time or simultaneously recorded from an expression system, into the membrane of an isolated myocyte. These applications have proven that dynamic clamp, which is characterized by the real-time evaluation and injection of simulated membrane current, is a powerful tool in cardiac electrophysiology. Here, each of the three different experimental configurations used in cardiac electrophysiology is reviewed. Also, directions are given for the implementation of dynamic clamp in the cardiac electrophysiology laboratory. With the growing interest in the application of dynamic clamp in cardiac electrophysiology, it is anticipated that dynamic clamp will also prove to be a powerful tool in basic research on biological pacemakers and in identification of specific ion channels as targets for drug development. PMID:16873403

  19. Insulin Tolerance Test and Hyperinsulinemic-Euglycemic Clamp

    PubMed Central

    Paschos, Georgios K.; FitzGerald, Garret A.

    2016-01-01

    The two tests are used to evaluate in vivo sensitivity to insulin in mouse. The hypoerinsulinemic-euglycemic clamp provides information about the sensitivity to insulin in liver and other metabolically relevant tissues.

  20. A clamp-like biohybrid catalyst for DNA oxidation

    NASA Astrophysics Data System (ADS)

    van Dongen, Stijn F. M.; Clerx, Joost; Nørgaard, Kasper; Bloemberg, Tom G.; Cornelissen, Jeroen J. L. M.; Trakselis, Michael A.; Nelson, Scott W.; Benkovic, Stephen J.; Rowan, Alan E.; Nolte, Roeland J. M.

    2013-11-01

    In processive catalysis, a catalyst binds to a substrate and remains bound as it performs several consecutive reactions, as exemplified by DNA polymerases. Processivity is essential in nature and is often mediated by a clamp-like structure that physically tethers the catalyst to its (polymeric) template. In the case of the bacteriophage T4 replisome, a dedicated clamp protein acts as a processivity mediator by encircling DNA and subsequently recruiting its polymerase. Here we use this DNA-binding protein to construct a biohybrid catalyst. Conjugation of the clamp protein to a chemical catalyst with sequence-specific oxidation behaviour formed a catalytic clamp that can be loaded onto a DNA plasmid. The catalytic activity of the biohybrid catalyst was visualized using a procedure based on an atomic force microscopy method that detects and spatially locates oxidized sites in DNA. Varying the experimental conditions enabled switching between processive and distributive catalysis and influencing the sliding direction of this rotaxane-like catalyst.

  1. High voltage load resistor array

    DOEpatents

    Lehmann, Monty Ray

    2005-01-18

    A high voltage resistor comprising an array of a plurality of parallel electrically connected resistor elements each containing a resistive solution, attached at each end thereof to an end plate, and about the circumference of each of the end plates, a corona reduction ring. Each of the resistor elements comprises an insulating tube having an electrode inserted into each end thereof and held in position by one or more hose clamps about the outer periphery of the insulating tube. According to a preferred embodiment, the electrode is fabricated from stainless steel and has a mushroom shape at one end, that inserted into the tube, and a flat end for engagement with the end plates that provides connection of the resistor array and with a load.

  2. Two-Photon Lifetime Imaging of Voltage Indicating Proteins as a Probe of Absolute Membrane Voltage.

    PubMed

    Brinks, Daan; Klein, Aaron J; Cohen, Adam E

    2015-09-01

    Genetically encoded voltage indicators (GEVIs) can report cellular electrophysiology with high resolution in space and time. Two-photon (2P) fluorescence has been explored as a means to image voltage in tissue. Here, we used the 2P electronic excited-state lifetime to probe absolute membrane voltage in a manner that is insensitive to the protein expression level, illumination intensity, or photon detection efficiency. First, we tested several GEVIs for 2P brightness, response speed, and voltage sensitivity. ASAP1 and a previously described citrine-Arch electrochromic Förster resonance energy transfer sensor (dubbed CAESR) showed the best characteristics. We then characterized the voltage-dependent lifetime of ASAP1, CAESR, and ArcLight under voltage-clamp conditions. ASAP1 and CAESR showed voltage-dependent lifetimes, whereas ArcLight did not. These results establish 2P fluorescence lifetime imaging as a viable means of measuring absolute membrane voltage. We discuss the prospects and improvements necessary for applications in tissue. PMID:26331249

  3. Spectral infrared hemispherical reflectance measurements for LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Wood, Bobby E.; Cromwell, Brian K.; Pender, Charles W.; Shepherd, Seth D.

    1992-01-01

    This paper describes infrared hemispherical reflectance measurements (2-15 microns) that were made on 58 chromic acid anodized tray clamps retrieved from the LDEF spacecraft. These clamps were used for maintaining the experiments in place and were located at various locations about the spacecraft. Changes in reflectance of the tray clamps at these locations were compared with atomic oxygen fluxes at the same locations. A decrease in absorption band depth was seen for the surfaces exposed to space indicating that there was some surface layer erosion. In all of the surfaces measured, little evidence of contamination was observed and none of the samples showed evidence of the brown nicotine stain that was so prominent in other experiments. Total emissivity values were calculated for both exposed and unexposed tray clamp surfaces. Only small differences, usually less than 1 percent, were observed. The spectral reflectances were measured using a hemi-ellipsoidal mirror reflectometer matched with an interferometer spectrometer. The rapid scanning capability of the interferometer allowed the reflectance measurements to be made in a timely fashion. The ellipsoidal mirror has its two foci separated by 2 inches and located on the major axis. A blackbody source was located at one focus while the tray clamp samples were located at the conjugate focus. The blackbody radiation was modulated and then focused by the ellipsoid onto the tray clamps. Radiation reflected from the tray clamp was sampled by the interferometer by viewing through a hole in the ellipsoid. A gold mirror (reflectance approximately 98 percent) was used as the reference surface.

  4. Action potential characterization of human induced pluripotent stem cell-derived cardiomyocytes using automated patch-clamp technology.

    PubMed

    Scheel, Olaf; Frech, Stefanie; Amuzescu, Bogdan; Eisfeld, Jörg; Lin, Kun-Han; Knott, Thomas

    2014-10-01

    Recent progress in embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) research led to high-purity preparations of human cardiomyocytes (CMs) differentiated from these two sources-suitable for tissue regeneration, in vitro models of disease, and cardiac safety pharmacology screening. We performed a detailed characterization of the effects of nifedipine, cisapride, and tetrodotoxin (TTX) on Cor.4U(®) human iPSC-CM, using automated whole-cell patch-clamp recordings with the CytoPatch™ 2 equipment, within a complex assay combining multiple voltage-clamp and current-clamp protocols in a well-defined sequence, and quantitative analysis of several action potential (AP) parameters. We retrieved three electrical phenotypes based on AP shape: ventricular, atrial/nodal, and S-type (with ventricular-like depolarization and lack of plateau). To suppress spontaneous firing, present in many cells, we injected continuously faint hyperpolarizing currents of -10 or -20 pA. We defined quality criteria (both seal and membrane resistance over 1 GΩ), and focused our study on cells with ventricular-like AP. Nifedipine induced marked decreases in AP duration (APD): APD90 (49.8% and 40.8% of control values at 1 and 10 μM, respectively), APD50 (16.1% and 12%); cisapride 0.1 μM increased APD90 to 176.2%; and tetrodotoxin 10 μM decreased maximum slope of phase to 33.3% of control, peak depolarization potential to 76.3% of control, and shortened APD90 on average to 80.4%. These results prove feasibility of automated voltage- and current-clamp recordings on human iPSC-CM and their potential use for in-depth drug evaluation and proarrhythmic liability assessment, as well as for diagnosis and pharmacology tests for cardiac channelopathy patients. PMID:25353059

  5. Measuring beta-cell function relative to insulin sensitivity in youth: Does the hyperglycemic clamp suffice?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To compare beta-cell function relative to insulin sensitivity, disposition index (DI), calculated from two clamps (2cDI, insulin sensitivity from the hyperinsulinemic-euglycemic clamp and first-phase insulin from the hyperglycemic clamp) with the DI calculated from the hyperglycemic clamp alone (hcD...

  6. Verification of effect of electric field on electron transport in TiO2 electrode

    NASA Astrophysics Data System (ADS)

    Chuang, Kai-Ling; Chen, Yi-Jia; Wong, Ming-Show; Ling, Hong Syuan; Tsai, Chih-Hung; Wang, Chien Chin

    2015-09-01

    We demonstrated that the dense TiO2 planar negative electrode is an effective electron transport material in the perovskite solar cells. The highest Voc is 900 mV using negative electrode with a dense TiO2 layer of 400 nm plus a mesoporous TiO2 layer of 400 nm. For conventional dye-sensitized solar cells (DSSCs) the thickness of the mesoporous negative electrode is around 15 μm. The ideal range of film thickness in DSSCs is usually 12~16 μm, suggesting that the electron has comparable diffusion length in the mesoporous negative electrode such that the electron recombination is insignificant below 15 μm. However, design of thicker mesoporous TiO2 negative electrode in perovskite solar cells is not usually encouraged as the solar cell efficiency decreases with electrode thickness greater than 500 nm. In this study, we would like to verify if the efficiency decrease of perovskite solar cells with electrode thickness is really due to the increase of thickness of TiO2 electrode itself or some consequences that come with the increase of thickness, such as increased roughness. We will report the solar cell efficiency dependence on the thickness of dense TiO2 layer in negative electrode so to verify if the electric field does play a role in electron transport in the TiO2 electrode. With this understanding, we will be able to design a novel structure of TiO2 electrode that is suitable for perovskite solar cells.

  7. Dynamic Clamp in Cardiac and Neuronal Systems Using RTXI

    PubMed Central

    Ortega, Francis A.; Butera, Robert J.; Christini, David J.; White, John A.; Dorval, Alan D.

    2016-01-01

    The injection of computer-simulated conductances through the dynamic clamp technique has allowed researchers to probe the intercellular and intracellular dynamics of cardiac and neuronal systems with great precision. By coupling computational models to biological systems, dynamic clamp has become a proven tool in electrophysiology with many applications, such as generating hybrid networks in neurons or simulating channelopathies in cardiomyocytes. While its applications are broad, the approach is straightforward: synthesizing traditional patch clamp, computational modeling, and closed-loop feedback control to simulate a cellular conductance. Here, we present two example applications: artificial blocking of the inward rectifier potassium current in a cardiomyocyte and coupling of a biological neuron to a virtual neuron through a virtual synapse. The design and implementation of the necessary software to administer these dynamic clamp experiments can be difficult. In this chapter, we provide an overview of designing and implementing a dynamic clamp experiment using the Real-Time eXperiment Interface (RTXI), an open- source software system tailored for real-time biological experiments. We present two ways to achieve this using RTXI’s modular format, through the creation of a custom user-made module and through existing modules found in RTXI’s online library. PMID:25023319

  8. Resonant-type Smooth Impact Drive Mechanism (SIDM) actuator using a bolt-clamped Langevin transducer.

    PubMed

    Nishimura, Takuma; Hosaka, Hiroshi; Morita, Takeshi

    2012-01-01

    The Smooth Impact Drive Mechanism (SIDM) is a linear piezoelectric actuator that has seen practically applied to camera lens modules. Although previous SIDM actuators are easily miniaturized and enable accurate positioning, these actuators cannot actuate at high speed and cannot provide powerful driving because they are driven at an off-resonant frequency using a soft-type PZT. In the present study, we propose a resonant-type SIDM using a bolt-clamped Langevin transducer (BLT) with a hard-type PZT. The resonant-type SIDM overcomes the above-mentioned problems and high-power operation becomes possible with a very simple structure. As a result, we confirmed the operation of resonant-type SIDM by designing a bolt-clamped Langevin transducer. The properties of no-load maximum speed was 0.28m/s at driving voltages of 80V(p-p) for 44.9kHz and 48V(p-p) for 22.45kHz with a pre-load of 3.1N. PMID:21784499

  9. Self-locking clamping tool with swivel jaws

    NASA Technical Reports Server (NTRS)

    Redmon, Jr., John W. (Inventor); Jankowski, Fred (Inventor)

    1989-01-01

    A plier-like tool (11) having two plier-like members (13, 15) pivotally joined togther intermediate of their ends and having handle portions (17, 18) and swivel jaw members (29,30). An automatic locking mechanism (27) extending between the members permits an user to clamp the handle portions together so as to clamp the jaw members on an object (25) but holds the position so reached if the clamping action of the user is removed. A release device (65) is provided so that the jaw members may be opened up again. A compression spring (23) extending between the members (19, 20) assists in the opening of the jaw members. The swivel jaw members (29, 30) permit the user to rotate the plier-like members (13,15) relative to the object (25) being grasped.

  10. Hysteresis modeling of clamp band joint with macro-slip

    NASA Astrophysics Data System (ADS)

    Qin, Zhaoye; Cui, Delin; Yan, Shaoze; Chu, Fulei

    2016-01-01

    Clamp band joints are commonly used to connect spacecrafts with launch vehicles. Due to the frictional slippage between the joint components, hysteresis behavior might occur at joint interfaces under cyclic loading. The joint hysteresis will bring friction damping into the launching systems. In this paper, a closed-form hysteresis model for the clamp band joint is developed based on theoretical and numerical analyses of the interactions of the joint components. Then, the hysteresis model is applied to investigating the dynamic response of a payload fastened by the clamp band joint, where the nonlinearity and friction damping effects of the joint is evaluated. The proposed analytical model, which is validated by both finite element analyses and quasi-static experiments, has a simple form with sound accuracy and can be incorporated into the dynamic models of launching systems conveniently.

  11. Improving the transient response of a bolt-clamped Langevin transducer using a parallel resistor.

    PubMed

    Chang, Kuo Tsi

    2003-08-01

    This paper suggests a parallel resistor to reduce DC time constant and DC response time of the transient response, induced immediately after an AC voltage connected to a bolt-clamped Langevin transducer (BLT) is switched off. An equivalent circuit is first expressed. Then, an open-circuit transient response at the terminals induced by initial states is derived and measured, and thus parameters for losses of the BLT device are estimated by DC and AC time constants of the transient response. Moreover, a driving and measuring system is designed to determine transient response and steady-state responses of the BLT device, and a parallel resistor is connected to the BLT device to reduce the DC time constant. Experimental results indicate that the DC time constant greatly exceeds the AC time constant without the parallel resistor, and greatly decreases from 42 to 1 ms by a 100-kOmega parallel resistor. PMID:12853079

  12. [Pedicular clamping in major hepatectomies: clamping "of principle" or "of necessity"? A comparative study].

    PubMed

    Le Treut, Y P; Christophe, M; Banti, J C; Berthet, B; Bricot, R

    1995-02-01

    Fifty-two consecutive patients undergoing major hepatic resection for liver tumor were divided into two groups according to the operative procedure. Group A consisted of 34 patients in whom vascular inflow occlusion was performed "de principle" during parenchymal division and intrahepatic approach of the portal structures; the mean duration of the portal triad clamping was 43 mn (ranged 17 to 70 mn). Group B patients (18 cases) had hilar division of the structures of that portion of the liver due to be removed, prior to parenchymal division was performed without vascular arrest, except in five "de necessitate" cases during 5 to 22 mn. Groups A and B were comparable in terms of patient age or status, of king of liver tumors and extent of resection. Mean operating duration (215 vs 263 mn), volume of intraoperative blood transfusion (557 vs 1019 ml), intensive care (2.5 vs 4.2 days) and total hospital stays (19.6 vs 30.5 days) were significantly reduced in group A. A higher but transient increase of amino-transferase level was the only biochemical consequence of liver ischemia in group A, whereas postoperative disturbance in serum bilirubin, prothrombin time, fibrinogen, and total protein were significantly greater in group B, probably because of the greater volume of blood transfusion in this group. Thus, routine vascular inflow occlusion with transhepatic approach of the portal structures may be an effective and innocuous procedure for major liver resection. PMID:7751341

  13. Plasma temperature clamping in filamentation laser induced breakdown spectroscopy

    SciTech Connect

    Harilal, Sivanandan S.; Yeak, J.; Phillips, Mark C.

    2015-10-19

    Ultrafast laser filament induced breakdown spectroscopy is a very promising method for remote material detection. We present characteristics of plasmas generated in a metal target by laser filaments in air. Our measurements show that the temperature of the ablation plasma is clamped along the filamentation channel due to intensity clamping in a filament. Nevertheless, significant changes in radiation intensity are noticeable, and this is essentially due to variation in the number density of emitting atoms. The present results also partly explains the reason for the occurrence of atomic plume during fs LIBS in air compared to long-pulse ns LIBS.

  14. Plasma temperature clamping in filamentation laser induced breakdown spectroscopy.

    PubMed

    Harilal, S S; Yeak, J; Phillips, M C

    2015-10-19

    Ultrafast laser filament induced breakdown spectroscopy is a very promising method for remote material detection. We present characteristics of plasmas generated in a metal target by laser filaments in air. Our measurements show that the temperature of the ablation plasma is clamped along the filament channel due to intensity clamping in a filament. Nevertheless, significant changes in radiation intensity are noticeable, and this is essentially due to variation in the number density of emitting atoms. The present results also explain the near absence of ion emission but strong atomic neutral emission from plumes produced during fs LIBS in air. PMID:26480372

  15. E-beam high voltage switching power supply

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1996-01-01

    A high-power power supply produces a controllable, constant high voltage put under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  16. E-beam high voltage switching power supply

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1996-10-15

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 figs.

  17. Whole-Cell Patch-Clamp Recording of Mouse and Rat Inner Hair Cells in the Intact Organ of Corti.

    PubMed

    Goutman, Juan D; Pyott, Sonja J

    2016-01-01

    Whole-cell patch clamping is a widely applied method to record currents across the entire membrane of a cell. This protocol describes application of this method to record currents from the sensory inner hair cells in the intact auditory sensory epithelium, the organ of Corti, isolated from rats or mice. This protocol particularly outlines the basic equipment required, provides instructions for the preparation of solutions and small equipment items, and methodology for recording voltage-activated and evoked synaptic currents from the inner hair cells. PMID:27259943

  18. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1995-05-23

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  19. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  20. Highly efficient dye-sensitized solar cells based on HfO{sub 2} modified TiO{sub 2} electrodes

    SciTech Connect

    Ramasamy, Parthiban; Kang, Moon-Sung; Cha, Hyeon-Jung; Kim, Jinkwon

    2013-01-15

    Graphical abstract: Display Omitted Highlights: ► HfO{sub 2} has been used to modify TiO{sub 2} electrodes in dye sensitized solar cells. ► HfO{sub 2} layer increases the dye adsorption. ► Diffusion coefficient (D{sub e}) and lifetime (τ{sub e}) of the photoelectrons were increased. ► Solar cell efficiency (η) was greatly improved from 5.67 to 9.59%. -- Abstract: In this article, we describe the use of hafnium oxide (HfO{sub 2}) as a new and efficient blocking layer material to modify TiO{sub 2} electrodes in dye sensitized solar cells. Different thicknesses of HfO{sub 2} over-layers were prepared by simple dip coating from two different precursors and their effects on the performance of DSSCs were studied. The HfO{sub 2} modification remarkably increases dye adsorption, resulting from the fact that the surface of HfO{sub 2} is more basic than that of TiO{sub 2}. Furthermore, the HfO{sub 2} coating demonstrated increased diffusion coefficient (D{sub e}) and lifetime (τ{sub e}) of the photoelectrons, indicating the improved retardation of the back electron transfer, which increases short-circuit current (J{sub sc}) and open-circuit voltage (V{sub oc}). Thereby, the photo conversion efficiency (η) of the solar cell was greatly improved from 5.67 to 9.59% (an improvement of 69.02%) as the HfO{sub 2} layer was coated over TiO{sub 2} films.

  1. A band clamp with a spring toggle lever

    NASA Technical Reports Server (NTRS)

    Simmonds, M.

    1974-01-01

    Clamp could have several applications, as it provides tolerance for both expansion and contraction. It might be useful with firemen's breathing apparatus and luggage racks and other freight-carrying equipment. Also, using same piece as handle and spring reduces production costs by reducing number of parts.

  2. 30 CFR 18.40 - Cable clamps and grips.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design...) cables to prevent strain on the cable terminals of a machine. Also insulated clamps shall be provided to prevent strain on both ends of each cable or cord leading from a machine to a detached or...

  3. Mechanical stability of multidomain proteins and novel mechanical clamps.

    PubMed

    Sikora, Mateusz; Cieplak, Marek

    2011-06-01

    We estimate the size of mechanostability for 318 multidomain proteins which are single-chain and contain up to 1021 amino acids. We predict existence of novel types of mechanical clamps in which interdomain contacts play an essential role. Mechanical clamps are structural regions which are the primary source of a protein's resistance to pulling. Among these clamps there is one that opposes tensile stress due to two domains swinging apart. This movement strains and then ruptures the contacts that hold the two domains together. Another clamp also involves tensile stress but it originates from an immobilization of a structural region by a surrounding knot-loop (without involving any disulfide bonds). Still another mechanism involves shear between helical regions belonging to two domains. We also consider the amyloid-prone cystatin C which provides an example of a two-chain 3D domain-swapped protein. We predict that this protein should withstand remarkably large stress, perhaps of order 800 pN, when inducing a shearing strain. The survey is generated through molecular dynamics simulations performed within a structure-based coarse grained model. PMID:21465555

  4. 21 CFR 882.5175 - Carotid artery clamp.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carotid artery clamp. 882.5175 Section 882.5175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... (the principal artery in the neck that supplies blood to the brain) and has a removable...

  5. 21 CFR 882.5175 - Carotid artery clamp.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carotid artery clamp. 882.5175 Section 882.5175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... (the principal artery in the neck that supplies blood to the brain) and has a removable...

  6. 21 CFR 882.5175 - Carotid artery clamp.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carotid artery clamp. 882.5175 Section 882.5175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... (the principal artery in the neck that supplies blood to the brain) and has a removable...

  7. 21 CFR 882.5175 - Carotid artery clamp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carotid artery clamp. 882.5175 Section 882.5175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... (the principal artery in the neck that supplies blood to the brain) and has a removable...

  8. 21 CFR 882.5175 - Carotid artery clamp.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carotid artery clamp. 882.5175 Section 882.5175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... (the principal artery in the neck that supplies blood to the brain) and has a removable...

  9. Management of Senile Ptosis with Levator Muscle Resection Using the Putterman Clamp

    PubMed Central

    2016-01-01

    Summary: Putterman clamp, a muscle clamp, is commonly used in conjunctival müllerectomies. We report 3 cases of senile ptosis repaired with levator muscle resection using the Putterman clamp. The redundant levator aponeurosis was removed with electrocautery after clamping with the Putterman clamp. The levator muscle was refixed to the tarsus with three 4-0 Vicryl stitches after adjusting the height of the eyelid fissure. No intraoperative difficulties were encountered. Ecchymosis and edema were limited in the immediate postoperative period. No complications were noted during the follow-up. The benefits of using the Putterman clamp in levator muscle resection are illustrated in these cases. PMID:27482474

  10. Management of Senile Ptosis with Levator Muscle Resection Using the Putterman Clamp.

    PubMed

    Yang, Ju-Wen

    2016-06-01

    Putterman clamp, a muscle clamp, is commonly used in conjunctival müllerectomies. We report 3 cases of senile ptosis repaired with levator muscle resection using the Putterman clamp. The redundant levator aponeurosis was removed with electrocautery after clamping with the Putterman clamp. The levator muscle was refixed to the tarsus with three 4-0 Vicryl stitches after adjusting the height of the eyelid fissure. No intraoperative difficulties were encountered. Ecchymosis and edema were limited in the immediate postoperative period. No complications were noted during the follow-up. The benefits of using the Putterman clamp in levator muscle resection are illustrated in these cases. PMID:27482474

  11. Polyacrylate bound TiSb2 electrodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Gómez-Cámer, Juan Luis; Novák, Petr

    2015-01-01

    Crystalline TiSb2 electrodes prepared using two different binders, PVDF and lithium polyacrylate (LiPAA), were examined as negative electrodes in Li-ion batteries. The cycle life of the electrodes is strongly influenced by the choice of the binder, reaching ca. 120 cycles with LiPAA vs. ca. 90 cycles achieved with the common binder PVDF. Moreover, rate capability is improved using LiPAA binder. The reduction in TiSb2 particle size is shown to influence the average practical specific charge at high charge/discharge rates. The reasons for this improvement are discussed and the optimized electrode was demonstrated in full Li-ion cells.

  12. Effect of Perovskite Overlayers on TiO2 Electrodes in Perovskite-Sensitized Solar Cells.

    PubMed

    Kim, Kang-Pil; Kim, Jeong-Hwa; Hwang, Dae-Kue

    2016-05-01

    In this paper, we have studied the effect of the thickness of a CH3NH3PbI3 perovskite overlayer on mesoporous TiO2 electrodes in perovskite solar cells. The overlayers were prepared by spin coating PbI2 films on the electrodes, which were subsequently exposed to a CH3NH3I/2-propanol solution. We controlled the thickness of the perovskite overlayer by changing the PbI2 solution concentration. The thicknesses of the overlayers spin-coated from 0.5, 0.75, 0.9, and 1 M PbI2 solutions were approximately 179, 262, 316, and 341 nm, respectively. Perovskite solar cells with an approximately 316-nm-thick overlayer showed the highest efficiency of 9.11%. We conclude that optimization of the perovskite overlayer thickness in the solar cell structure is necessary to improve the cell efficiency. PMID:27483921

  13. Vibration control of a flexible clamped-clamped plate based on an improved FULMS algorithm and laser displacement measurement

    NASA Astrophysics Data System (ADS)

    Xie, Lingbo; Qiu, Zhi-cheng; Zhang, Xian-min

    2016-06-01

    This paper presents a novel active resonant vibration control experiment of a flexible clamped-clamped plate using an improved filtered-U least mean square (FULMS) algorithm and laser displacement measurement. Different from the widely used PZT sensors or acceleration transducers, the vibration of the flexible clamped-clamped plate is measured by a non-contact laser displacement measurement sensor with higher measurement accuracy and without additional load to the plate. The conventional FULMS algorithm often uses fixed step size and needs reference signal related to the external disturbance signal. However, the fixed step size method cannot obtain a fast convergence speed and it will result in a low residual error. Thus, a variable step size method is investigated. In addition, it is difficult to extract reference signal related to the vibration source directly in the practical application. Therefore, it is practically useful that a reference signal is constructed by both the controller parameters and the vibration residual signal. The experimental results demonstrate that the improved FULMS algorithm has better vibration control effect than the proportional derivative (PD) feedback control algorithm and the fixed step-size control algorithm.

  14. Room temperature, very sensitive thermometer using a doubly clamped microelectromechanical beam resonator for bolometer applications

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Watanabe, Y.; Hosono, S.; Nagai, N.; Hirakawa, K.

    2016-04-01

    We propose a room temperature, all electrical driving and detecting, very sensitive thermometer structure using a microelectromechanical (MEMS) resonator for bolometer applications. We have fabricated a GaAs doubly clamped MEMS beam resonator whose oscillation can be excited and detected by the piezoelectric effect. When a heating power is applied to a NiCr film deposited on the MEMS beam surface, internal thermal stress is generated in the beam, leading to a reduction in the resonance frequency. The present device detects the shift in the resonance frequency caused by heating and works as a very sensitive thermometer. When the resonator was driven by a voltage slightly below the threshold for the nonlinear, hysteretic oscillation, the thermometer showed a voltage responsivity of about 3300 V/W, while keeping a low noise spectral density of about 60 nV/Hz1/2, demonstrating a noise equivalent power of <20 pW/Hz1/2 even at room temperature. The observed effect can be used for realizing high-sensitivity terahertz bolometers for room-temperature operation.

  15. Review: The lord of the rings: Structure and mechanism of the sliding clamp loader.

    PubMed

    Kelch, Brian A

    2016-08-01

    Sliding clamps are ring-shaped polymerase processivity factors that act as master regulators of cellular replication by coordinating multiple functions on DNA to ensure faithful transmission of genetic and epigenetic information. Dedicated AAA+ ATPase machines called clamp loaders actively place clamps on DNA, thereby governing clamp function by controlling when and where clamps are used. Clamp loaders are also important model systems for understanding the basic principles of AAA+ mechanism and function. After nearly 30 years of study, the ATP-dependent mechanism of opening and loading of clamps is now becoming clear. Here I review the structural and mechanistic aspects of the clamp loading process, as well as comment on questions that will be addressed by future studies. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 532-546, 2016. PMID:26918303

  16. Screening Fluorescent Voltage Indicators with Spontaneously Spiking HEK Cells

    PubMed Central

    Venkatachalam, Veena; Kralj, Joel M.; Dib-Hajj, Sulayman D.; Waxman, Stephen G.; Cohen, Adam E.

    2013-01-01

    Development of improved fluorescent voltage indicators is a key challenge in neuroscience, but progress has been hampered by the low throughput of patch-clamp characterization. We introduce a line of non-fluorescent HEK cells that stably express NaV 1.3 and KIR 2.1 and generate spontaneous electrical action potentials. These cells enable rapid, electrode-free screening of speed and sensitivity of voltage sensitive dyes or fluorescent proteins on a standard fluorescence microscope. We screened a small library of mutants of archaerhodopsin 3 (Arch) in spiking HEK cells and identified two mutants with greater voltage-sensitivity than found in previously published Arch voltage indicators. PMID:24391999

  17. Screening fluorescent voltage indicators with spontaneously spiking HEK cells.

    PubMed

    Park, Jeehae; Werley, Christopher A; Venkatachalam, Veena; Kralj, Joel M; Dib-Hajj, Sulayman D; Waxman, Stephen G; Cohen, Adam E

    2013-01-01

    Development of improved fluorescent voltage indicators is a key challenge in neuroscience, but progress has been hampered by the low throughput of patch-clamp characterization. We introduce a line of non-fluorescent HEK cells that stably express NaV 1.3 and KIR 2.1 and generate spontaneous electrical action potentials. These cells enable rapid, electrode-free screening of speed and sensitivity of voltage sensitive dyes or fluorescent proteins on a standard fluorescence microscope. We screened a small library of mutants of archaerhodopsin 3 (Arch) in spiking HEK cells and identified two mutants with greater voltage-sensitivity than found in previously published Arch voltage indicators. PMID:24391999

  18. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid.

    PubMed

    Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi

    2016-07-01

    The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane. PMID:27330112

  19. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid

    PubMed Central

    Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi

    2016-01-01

    The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane. PMID:27330112

  20. Patch Clamp Experiments under Conditions of Variable Graviy

    NASA Astrophysics Data System (ADS)

    Kohn, F. P. M.; Meissner, K.

    2013-02-01

    The cellular membrane is an intrinsic part of any cell. It has a complex composition of lipid molecules and proteins. The membrane is, among others, involved in excitation and signal transduction. Ion channels, as integral membrane proteins, play an important role. For the question of gravity sensitivity of biological systems, especially neuronal cells, ion channels are of high interest. Gravity might directly interact with the ion channel protein or it might change the thermodynamic membrane parameters, influencing the incorporated proteins indirectly. Detailed information about the effects of gravity on the function of single ion-channels can up to now only be acquired by electrophysiological approaches like the patch clamp technique. Today this technique is the preferentially used technique for single ion-channel studies. Consequently, experiments have been developed in recent years to investigate the interaction of gravity with single ion channel molecules utilizing the patch-clamp technology on different macro- and micro-gravity platforms.

  1. Patch Clamp Recording of Ion Channels Expressed in Xenopus Oocytes

    PubMed Central

    L Brown, Austin; E. Johnson, Brandon; B. Goodman, Miriam

    2008-01-01

    Since its development by Sakmann and Neher 1, 2, the patch clamp has become established as an extremely useful technique for electrophysiological measurement of single or multiple ion channels in cells. This technique can be applied to ion channels in both their native environment and expressed in heterologous cells, such as oocytes harvested from the African clawed frog, Xenopus laevis. Here, we describe the well-established technique of patch clamp recording from Xenopus oocytes. This technique is used to measure the properties of expressed ion channels either in populations (macropatch) or individually (single-channel recording). We focus on techniques to maximize the quality of oocyte preparation and seal generation. With all factors optimized, this technique gives a probability of successful seal generation over 90 percent. The process may be optimized differently by every researcher based on the factors he or she finds most important, and we present the approach that have lead to the greatest success in our hands. PMID:19078941

  2. DNA Sliding Clamps: Just the Right Twist to Load onto DNA

    SciTech Connect

    Barsky, D; Venclovas, C

    2005-10-24

    Two recent papers illuminate a long sought step in DNA sliding clamp loading. One paper reveals the structure of the PCNA clamp wrapped around DNA--still open from being loaded--while a second paper discovers that the clamp may assist this process by forming a right-handed helix upon opening.

  3. Oscillations and latency in the clamped pupil light reflex

    NASA Astrophysics Data System (ADS)

    Milton, John G.; Ohira, Toru; Steck, Jeff; Crate, John; Longtin, Andre

    1993-11-01

    It is shown that the pupil latency can be estimated from pupil cycling measurements when the pupil light reflex is clamped with piecewise constant negative feedback. The solution of the mathematical model previously shown to describe these oscillations is utilized to develop a variety of strategies to estimate latency and to evaluate the effects of noise on these estimates. The results demonstrate that the pupil latency shows considerable variation.

  4. Acute aortic dissection from cross-clamp injury.

    PubMed

    Litchford, B; Okies, J E; Sugimura, S; Starr, A

    1976-11-01

    Acute dissection of the ascending aorta secondary to cross-clamp injury can be successfully managed if the problem is recognized immediately. Bypass must be instituted after recannulation at a point distal to the innominate artery so that proper exposure of the site of injury can be obtained. Systemic as well as local hypothermia for myocardial preservation are both necessary. Direct suture closure of all layers at the site of dissection over Teflon felt can terminate this process. PMID:979312

  5. From Galvani to patch clamp: the development of electrophysiology.

    PubMed

    Verkhratsky, Alexei; Krishtal, O A; Petersen, Ole H

    2006-12-01

    The development of electrophysiology is traced from the early beginnings represented by the work of the Dutch microscopist, Jan Swammerdam, in the 17th century through the first notion of an aqueous transmembrane pore as a substrate of excitability made by Luigi Galvani in late 18th century to the invention late in the 20th century of the patch-clamp technique by Erwin Neher and Bert Sakmann. PMID:17072639

  6. Force-clamp laser trapping of rapidly interacting molecules

    NASA Astrophysics Data System (ADS)

    Capitanio, Marco; Monico, Carina; Vanzi, Francesco; Pavone, Francesco S.

    2013-06-01

    Forces play a fundamental role in a wide array of biological processes, regulating enzymatic activity, kinetics of molecular bonds, and molecular motors mechanics. Single molecule force spectroscopy techniques have enabled the investigation of such processes, but they are inadequate to probe short-lived (millisecond and sub-millisecond) molecular complexes. We developed an ultrafast force-clamp spectroscopy technique that uses a dual trap configuration to apply constant loads to a single intermittently interacting biological polymer and a binding protein. Our system displays a delay of only ˜10 μs between formation of the molecular bond and application of the force and is capable of detecting interactions as short as 100 μs. The force-clamp configuration in which our assay operates allows direct measurements of load-dependence of lifetimes of single molecular bonds. Moreover, conformational changes of single proteins and molecular motors can be recorded with sub-nanometer accuracy and few tens of microseconds of temporal resolution. We demonstrate our technique on molecular motors, using myosin II from fast skeletal muscle and on protein-DNA interaction, specifically on Lactose repressor (LacI). The apparatus is stabilized to less than 1 nm with both passive and active stabilization, allowing resolving specific binding regions along the actin filament and DNA molecule. Our technique extends single-molecule force-clamp spectroscopy to molecular complexes that have been inaccessible up to now, opening new perspectives for the investigation of the effects of forces on biological processes.

  7. Stress-stimulated current of dry rocks with constant clamping stress

    NASA Astrophysics Data System (ADS)

    Dahlgren, R. P.; Vanderbilt, V. C.; Johnston, M. J. S.

    2014-12-01

    A set of nominally dry rocks (gabbro, granite, limestone, marble, and sandstone) were subjected to asymmetric loading with a large hydraulic press. A pair of precision platens made from 1018 low carbon steel were used to apply uniaxial compressive stress (σ) to the sample, via a thin electrical insulator made from ultra-high molecular weight (UHMW) polyethylene. Self-adhesive copper electrodes were applied and burnished on the end faces and the stress-stimulated current (SSC) was monitored using a Keithley 617 instrument. A preload stress level of 5.5 MPa was applied to firmly clamp the assembly throughout the experiment. From this baseline, σ was increased to 22.25 MPa and held for 100 seconds before returning to the clamping stress level. This loading profile was repeated for four or more cycles, with a stress rate on the order of 5MPa/sec. After the first load cycle, the SSC transients (and SSV offsets) are reversible when σ returned to its baseline level. All samples showed alternating unipolar SSC transients at the beginning and end of each load cycle. SSC from limestone, Westerly granite and marble were at, or below, the measurement limit (±1 pA). All other samples except sandstone showed a negative SSC with increasing stress. For stress-stimulated voltage (SSV) there was a richer variety of transients observed such as unipolar, bipolar and more complex transient dynamics. Limestone was the only sample tested with no SSV transients although this particular rock had a major calcite inclusion in the sample. White granite tended to have the least stable SSC and SSV values. Of the six different rock samples tested under identical conditions, the SSC and SSV observed were not greater than -15 pA, presumably due to improved experimental procedures. The response for rocks with semiconductor properties (gabbro, granite) is the same as those without semiconductor properties (limestone, marble), although the values for marble were below the noise. For repetitive

  8. Flat band potential measurements of naked and viologen-modified n-WS[sub 2] electrodes in aqueous iodide and triiodide solutions

    SciTech Connect

    Huang, J.; Wrighton, M.S. )

    1994-09-15

    The flat band potentials, E[sub FB], of naked n-WS[sub 2] electrodes and cationic viologen polymer-modified n-WS[sub 2] electrodes have been determined in KI and KI[sub 3] solutions by differential capacitance measurements. The E[sub FB] values for naked n-WS[sub 2] electrodes are shifted negatively in electrolyte media containing I[sup [minus

  9. HIGH VOLTAGE GENERATOR

    DOEpatents

    Zito, G.V.

    1959-04-21

    This patent relates to high voltage supply circuits adapted for providing operating voltages for GeigerMueller counter tubes, and is especially directed to an arrangement for maintaining uniform voltage under changing conditions of operation. In the usual power supply arrangement for counter tubes the counter voltage is taken from across the power supply output capacitor. If the count rate exceeds the current delivering capaciiy of the capacitor, the capacitor voltage will drop, decreasing the counter voltage. The present invention provides a multivibrator which has its output voltage controlled by a signal proportional to the counting rate. As the counting rate increases beyond the current delivering capacity of the capacitor, the rectified voltage output from the multivibrator is increased to maintain uniform counter voltage.

  10. O2 reduction at the IFC orbiter fuel cell O2 electrode

    NASA Technical Reports Server (NTRS)

    Fielder, William L.; Singer, Joseph

    1990-01-01

    O2 reduction Tafel data were obtained for the IFC Orbiter fuel cell O2 electrode (Au-10 percent Pt catalyst) at temperatures between 24 and 81 C. BET measurements gave an electrode surface area of about 2040 sq cm per sq cm of geometric area. The Tafel data could be fitted to three straight line regions. For current densities less than 0.001 A/sq cm, the slope was essentially independent of temperature with a value of about 0.032 V/decade. Above 0.001 A/sq cm, the two regions, designated in the present study as the 0.04 and 0.12 V/decate regions, were temperature dependent. The apparent energies of activation for these two regions were about 9.3 and 6.5 kcal/mol, respectively. Tafel data (1 atmosphere O2) were extrapolated to 120 C for predicting changes in overpotential with increasing temperature. A mechanism is presented for O2 reduction.

  11. First principles study of nanostructured TiS2 electrodes for Na and Mg ion storage

    NASA Astrophysics Data System (ADS)

    Li, S. N.; Liu, J. B.; Liu, B. X.

    2016-07-01

    The development of competitive Na- and Mg-ion batteries (NIBs and MIBs) with performance comparable to Li-ion batteries is hindered by the major challenge of finding advanced electrode materials. In this work, nanostructured TiS2 electrodes including nanosheets, nanoribbons and nanotubes are shown by first principles calculations to achieve improved Na and Mg ion diffusion as compared with the bulk phase. Comparative studies between Li, Na, and Mg reveal that the diffusion kinetics of Na ions would especially benefit from the nanostructure design of TiS2. More specifically, the Na ion diffusivity turns out to be considerably higher than Li ion diffusivity, which is opposite to that observed in bulk TiS2. However, in the case of Mg ions, fast diffusion is still beyond attainment since a relatively high degree of interaction is expected between Mg and the S atoms. Edge-induced modifications of diffusion properties appear in both Na and Mg ions, while the mobility of Li ions along the ribbon edges may not be as appealing. Effects of the curvature of nanotubes on the adsorption strength and ion conductivity are also explored. Our results highlight the nanostructure design as a rich playground for exploring electrodes in NIBs and MIBs.

  12. Mechanism of voltage-sensitive fluorescence in a microbial rhodopsin

    PubMed Central

    Maclaurin, Dougal; Venkatachalam, Veena; Lee, Hohjai; Cohen, Adam E.

    2013-01-01

    Microbial rhodopsins were recently introduced as genetically encoded fluorescent indicators of membrane voltage. An understanding of the mechanism underlying this function would aid in the design of improved voltage indicators. We asked, what states can the protein adopt, and which states are fluorescent? How does membrane voltage affect the photostationary distribution of states? Here, we present a detailed spectroscopic characterization of Archaerhodopsin 3 (Arch). We performed fluorescence spectroscopy on Arch and its photogenerated intermediates in Escherichia coli and in single HEK293 cells under voltage-clamp conditions. These experiments probed the effects of time-dependent illumination and membrane voltage on absorption, fluorescence, membrane current, and membrane capacitance. The fluorescence of Arch arises through a sequential three-photon process. Membrane voltage modulates protonation of the Schiff base in a 13-cis photocycle intermediate (M ⇌ N equilibrium), not in the ground state as previously hypothesized. We present experimental protocols for optimized voltage imaging with Arch, and we discuss strategies for engineering improved rhodopsin-based voltage indicators. PMID:23530193

  13. Linalool suppresses voltage-gated currents in sensory neurons and cerebellar Purkinje cells.

    PubMed

    Narusuye, K; Kawai, F; Matsuzaki, K; Miyachi, E

    2005-02-01

    Linalool is a major component of essential oils and possesses various biological effects in sensory or central nervous systems. To investigate the pharmacological and biophysical effects of linalool on voltage-gated currents in sensory neurons, we used the whole-cell patch clamp and the Ca(2+) imaging techniques. Under the voltage clamp, membrane depolarization generated time- and voltage-dependent current responses in newt olfactory receptor cells (ORCs). Linalool significantly and reversibly suppressed the voltage-gated currents in ORCs. The dose-suppression relation of linalool for the voltage-gated Na(+) current could be fitted by the Hill equation with a half-blocking concentration of 0.56 mM and a Hill coefficient of 1.2. To test whether linalool suppresses voltage-gated currents in ORCs specifically or suppresses currents in other neurons generally, we next examined the effects of linalool on voltage-gated currents in newt retinal neurons and rat cerebellar Purkinje cells. Linalool suppressed the voltage-gated currents not only in retinal horizontal cells and ganglion cells but also in Purkinje cells. Furthermore, bath application of linalool inhibited the KCl-induced [Ca(2+)](i) response of ORCs, suggesting that linalool suppresses Ca(2+) currents in ORCs. These results suggest that linalool non-selectively suppresses the voltage-gated currents in newt sensory neurons and rat cerebellar Purkinje cells. PMID:15365786

  14. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    SciTech Connect

    Murty, B.V.

    2000-03-21

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  15. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    DOEpatents

    Murty, Balarama Vempaty

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  16. Self-tuning behavior of a clamped-clamped beam with sliding proof mass for broadband energy harvesting

    NASA Astrophysics Data System (ADS)

    Pillatsch, P.; Miller, L. M.; Halvorsen, E.; Wright, P. K.; Yeatman, E. M.; Holmes, A. S.

    2013-12-01

    Real world systems rarely vibrate at a single resonance frequency and the frequencies drift over time. Tunable devices exist, but generally need additional energy to achieve frequency adaptation. This means that the benefits in power output from this tuning need to be large enough to power the mechanism itself. Passively self-tuning systems go into resonance without requiring active control. This paper focuses on a passively self-tuning system with a proof mass that can slide freely along a clamped-clamped beam. Under external vibration, the slider moves along the beam until the system goes into resonance. A proof-of-concept design is introduced using either a copper or a steel beam and a 3D-printed ABS thermoplastic proof mass. Successful self-tuning is demonstrated in both cases. The frequencies range from 80 - 140 Hz at accelerations as low as 0.007 g rms. Results show the resonance of the beam and the position of the slider along the beam with time. Furthermore, the dynamic magnification and the proof mass position at resonance are discussed, together with the inherent non-linearities of double-clamped beam resonators. The findings support the hypothesis that the effect of the ratio between proof mass and beam mass outweighs the Duffing spring stiffening effects.

  17. Yeast Rad17/Mec3/Ddc1: A sliding clamp for the DNA damage checkpoint

    PubMed Central

    Majka, Jerzy; Burgers, Peter M. J.

    2003-01-01

    The Saccharomyces cerevisiae Rad24 and Rad17 checkpoint proteins are part of an early response to DNA damage in a signal transduction pathway leading to cell cycle arrest. Rad24 interacts with the four small subunits of replication factor C (RFC) to form the RFC-Rad24 complex. Rad17 forms a complex with Mec3 and Ddc1 (Rad17/3/1) and shows structural similarities with the replication clamp PCNA. This parallelism with a clamp-clamp loader system that functions in DNA replication has led to the hypothesis that a similar clamp-clamp loader relationship exists for the DNA damage response system. We have purified the putative checkpoint clamp loader RFC-Rad24 and the putative clamp Rad17/3/1 from a yeast overexpression system. Here, we provide experimental evidence that, indeed, the RFC-Rad24 clamp loader loads the Rad17/3/1 clamp around partial duplex DNA in an ATP-dependent process. Furthermore, upon ATP hydrolysis, the Rad17/3/1 clamp is released from the clamp loader and can slide across more than 1 kb of duplex DNA, a process which may be well suited for a search for damage. Rad17/3/1 showed no detectable exonuclease activity. PMID:12604797

  18. Effect of various irrigant and autoclaving regimes on the fracture resistance of rubber dam clamps.

    PubMed

    Sutton, J; Saunders, W P

    1996-09-01

    Rubber dam clamps are known to break during clinical use in endodontics. This in-vitro study examined some of the variables which may contribute to the fracture. Stainless steel rubber dam clamps were subjected to various cleaning and autoclaving regimes and exposure to various solutions of sodium hypochlorite (NaOCl). Each clamp was examined after four cycles of cleaning and exposure to NaOCl. During environmental exposure to NaOCl, the clamp was stressed over a perspex rod to simulate placement onto the crown of a tooth. Clamps were examined after each test cycle visually and microscopically, or immediately after breakage. Results suggested that the fractures were because of a stress corrosion cracking phenomenon. There was evidence of intergranular and transgranular cracking of the metal. Corrosion spots were seen on the surface of the clamps and fracture occurred mainly through these spots. A number of recommendations to reduce breakage of clamps have been suggested. PMID:9206417

  19. Ion channelopathies in human induced pluripotent stem cell derived cardiomyocytes: a dynamic clamp study with virtual IK1

    PubMed Central

    Meijer van Putten, Rosalie M. E.; Mengarelli, Isabella; Guan, Kaomei; Zegers, Jan G.; van Ginneken, Antoni C. G.; Verkerk, Arie O.; Wilders, Ronald

    2015-01-01

    Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) are widely used in studying basic mechanisms of cardiac arrhythmias that are caused by ion channelopathies. Unfortunately, the action potential profile of hiPSC-CMs—and consequently the profile of individual membrane currents active during that action potential—differs substantially from that of native human cardiomyocytes, largely due to almost negligible expression of the inward rectifier potassium current (IK1). In the present study, we attempted to “normalize” the action potential profile of our hiPSC-CMs by inserting a voltage dependent in silico IK1 into our hiPSC-CMs, using the dynamic clamp configuration of the patch clamp technique. Recordings were made from single hiPSC-CMs, using the perforated patch clamp technique at physiological temperature. We assessed three different models of IK1, with different degrees of inward rectification, and systematically varied the magnitude of the inserted IK1. Also, we modified the inserted IK1 in order to assess the effects of loss- and gain-of-function mutations in the KCNJ2 gene, which encodes the Kir2.1 protein that is primarily responsible for the IK1 channel in human ventricle. For our experiments, we selected spontaneously beating hiPSC-CMs, with negligible IK1 as demonstrated in separate voltage clamp experiments, which were paced at 1 Hz. Upon addition of in silico IK1 with a peak outward density of 4–6 pA/pF, these hiPSC-CMs showed a ventricular-like action potential morphology with a stable resting membrane potential near −80 mV and a maximum upstroke velocity >150 V/s (n = 9). Proarrhythmic action potential changes were observed upon injection of both loss-of-function and gain-of-function IK1, as associated with Andersen–Tawil syndrome type 1 and short QT syndrome type 3, respectively (n = 6). We conclude that injection of in silico IK1 makes the hiPSC-CM a more reliable model for investigating mechanisms underlying cardiac

  20. Phosphatase activity of the voltage-sensing phosphatase, VSP, shows graded dependence on the extent of activation of the voltage sensor.

    PubMed

    Sakata, Souhei; Okamura, Yasushi

    2014-03-01

    The voltage-sensing phosphatase (VSP) consists of a voltage sensor and a cytoplasmic phosphatase region, and the movement of the voltage sensor is coupled to the phosphatase activity. However, its coupling mechanisms still remain unclear. One possible scenario is that the phosphatase is activated only when the voltage sensor is in a fully activated state. Alternatively, the enzymatic activity of single VSP proteins could be graded in distinct activated states of the voltage sensor, and partial activation of the voltage sensor could lead to partial activation of the phosphatase. To distinguish between these two possibilities, we studied a voltage sensor mutant of zebrafish VSP, where the voltage sensor moves in two steps as evidenced by analyses of charge movements of the voltage sensor and voltage clamp fluorometry. Measurements of the phosphatase activity toward phosphatidylinositol 4,5-bisphosphate revealed that both steps of voltage sensor activation are coupled to the tuning of phosphatase activities, consistent with the idea that the phosphatase activity is graded by the magnitude of the movement of the voltage sensor. PMID:24277865

  1. Automatic voltage imbalance detector

    DOEpatents

    Bobbett, Ronald E.; McCormick, J. Byron; Kerwin, William J.

    1984-01-01

    A device for indicating and preventing damage to voltage cells such as galvanic cells and fuel cells connected in series by detecting sequential voltages and comparing these voltages to adjacent voltage cells. The device is implemented by using operational amplifiers and switching circuitry is provided by transistors. The device can be utilized in battery powered electric vehicles to prevent galvanic cell damage and also in series connected fuel cells to prevent fuel cell damage.

  2. Mixed voltage VLSI design

    NASA Technical Reports Server (NTRS)

    Panwar, Ramesh; Rennels, David; Alkalaj, Leon

    1993-01-01

    A technique for minimizing the power dissipated in a Very Large Scale Integration (VLSI) chip by lowering the operating voltage without any significant penalty in the chip throughput even though low voltage operation results in slower circuits. Since the overall throughput of a VLSI chip depends on the speed of the critical path(s) in the chip, it may be possible to sustain the throughput rates attained at higher voltages by operating the circuits in the critical path(s) with a high voltage while operating the other circuits with a lower voltage to minimize the power dissipation. The interface between the gates which operate at different voltages is crucial for low power dissipation since the interface may possibly have high static current dissipation thus negating the gains of the low voltage operation. The design of a voltage level translator which does the interface between the low voltage and high voltage circuits without any significant static dissipation is presented. Then, the results of the mixed voltage design using a greedy algorithm on three chips for various operating voltages are presented.

  3. Nonlinear vibrations of fluid-filled clamped circular cylindrical shells

    NASA Astrophysics Data System (ADS)

    Karagiozis, K. N.; Amabili, M.; Païdoussis, M. P.; Misra, A. K.

    2005-12-01

    In this study, the nonlinear vibrations are investigated of circular cylindrical shells, empty or fluid-filled, clamped at both ends and subjected to a radial harmonic force excitation. Two different theoretical models are developed. In the first model, the standard form of the Donnell's nonlinear shallow-shell equations is used; in the second, the equations of motion are derived by a variational approach which permits the inclusion of constraining springs at the shell extremities and taking in-plane inertial terms into account. In both cases, the solution includes both driven and companion modes, thus allowing for a travelling wave in the circumferential direction; they also include axisymmetric modes to capture the nonlinear inward shell contraction and the correct type (softening) nonlinear behaviour observed in experiments. In the first model, the clamped beam eigenfunctions are used to describe the axial variations of the shell deformation, automatically satisfying the boundary conditions, leading to a 7 degree-of-freedom (dof) expansion for the solution. In the second model, rotational springs are used at the ends of the shell, which when large enough reproduce a clamped end; the solution involves a sine series for axial variations of the shell deformation, leading to a 54 dof expansion for the solution. In both cases the modal expansions satisfy the boundary conditions and the circumferential continuity condition exactly. The Galerkin method is used to discretize the equations of motion, and AUTO to integrate the discretized equations numerically. When the shells are fluid-filled, the fluid is assumed to be incompressible and inviscid, and the fluid structure interaction is described by linear potential flow theory. The results from the two theoretical models are compared with existing experimental data, and in all cases good qualitative and quantitative agreement is observed.

  4. Intensity clamping in the filament of femtosecond laser radiation

    SciTech Connect

    Kandidov, V P; Fedorov, V Yu; Tverskoi, O V; Kosareva, O G; Chin, S L

    2011-04-30

    We have studied numerically the evolution of the light field intensity and induced refractive index of a medium upon filamentation of femtosecond laser radiation in air. It is shown that the intensity clamping results from the dynamic balance of optical powers of nonlinear lenses, induced by radiation due to the Kerr nonlinearity of air, and laser plasma produced during photoionisation. We have found the relation between the peak values of the light field intensity and the electron density in laser-produced plasma, as well as the transverse sizes of the filament and the plasma channel. (effects of laser radiation on matter)

  5. Vibration of clamped right triangular thin plates: Accurate simplified solutions

    NASA Astrophysics Data System (ADS)

    Saliba, H. T.

    1994-12-01

    Use of the superposition techniques in the free-vibration analyses of thin plates, as they were first introduced by Gorman, has provided simple and effective solutions to a vast number of rectangular plate problems. A modified superposition method is presented that is a noticeable improvement over existing techniques. It deals only with simple support conditions, leading to a simple, highly accurate, and very economical solution to the free-vibration problem of simply-supported right angle triangular plates. The modified method is also applicable to clamped-edge conditions.

  6. Normal-Pressure Tests of Circular Plates with Clamped Edges

    NASA Technical Reports Server (NTRS)

    Mcpherson, Albert E; Ramberg, Walter; Levy, Samuel

    1942-01-01

    A fixture is described for making normal-pressure tests of flat plates 5 inches in diameter in which particular care was taken to obtain rigid clamping at the edges. Results are given for 19 plates, ranging in thickness form 0.015 to 0.072 inch. The center deflections and the extreme-fiber stresses at low pressures were found to agree with theoretical values; the center deflections at high pressures were 4 to 12 percent greater than the theoretical values. Empirical curves are derived of the pressure for the beginning of the permanent set as a function of the dimensions of the plate and the tensile properties of the material.

  7. High Voltage SPT Performance

    NASA Technical Reports Server (NTRS)

    Manzella, David; Jacobson, David; Jankovsky, Robert

    2001-01-01

    A 2.3 kW stationary plasma thruster designed to operate at high voltage was tested at discharge voltages between 300 and 1250 V. Discharge specific impulses between 1600 and 3700 sec were demonstrated with thrust between 40 and 145 mN. Test data indicated that discharge voltage can be optimized for maximum discharge efficiency. The optimum discharge voltage was between 500 and 700 V for the various anode mass flow rates considered. The effect of operating voltage on optimal magnet field strength was investigated. The effect of cathode flow rate on thruster efficiency was considered for an 800 V discharge.

  8. Relaxation of Isolated Ventricular Cardiomyocytes by a Voltage-Dependent Process

    NASA Astrophysics Data System (ADS)

    Bridge, John H. B.; Spitzer, Kenneth W.; Ershler, Philip R.

    1988-08-01

    Cell contraction and relaxation were measured in single voltage-clamped guinea pig cardiomyocytes to investigate the contribution of sarcolemmal Na+-Ca2+ exchange to mechanical relaxation. Cells clamped from -80 to 0 millivolts displayed initial phasic and subsequent tonic contractions; caffeine reduced or abolished the phasic and enlarged the tonic contraction. The rate of relaxation from tonic contractions was steeply voltage-dependent and was significantly slowed in the absence of a sarcolemmal Na+ gradient. Tonic contractions elicited in the absence of a Na+ gradient promptly relaxed when external Na+ was applied, reflecting activation of Na+-Ca2+ exchange. It appears that a voltage-dependent Na+-Ca2+ exchange can rapidly mechanically relax mammalian heart muscle.

  9. The human dynamic clamp as a paradigm for social interaction.

    PubMed

    Dumas, Guillaume; de Guzman, Gonzalo C; Tognoli, Emmanuelle; Kelso, J A Scott

    2014-09-01

    Social neuroscience has called for new experimental paradigms aimed toward real-time interactions. A distinctive feature of interactions is mutual information exchange: One member of a pair changes in response to the other while simultaneously producing actions that alter the other. Combining mathematical and neurophysiological methods, we introduce a paradigm called the human dynamic clamp (HDC), to directly manipulate the interaction or coupling between a human and a surrogate constructed to behave like a human. Inspired by the dynamic clamp used so productively in cellular neuroscience, the HDC allows a person to interact in real time with a virtual partner itself driven by well-established models of coordination dynamics. People coordinate hand movements with the visually observed movements of a virtual hand, the parameters of which depend on input from the subject's own movements. We demonstrate that HDC can be extended to cover a broad repertoire of human behavior, including rhythmic and discrete movements, adaptation to changes of pacing, and behavioral skill learning as specified by a virtual "teacher." We propose HDC as a general paradigm, best implemented when empirically verified theoretical or mathematical models have been developed in a particular scientific field. The HDC paradigm is powerful because it provides an opportunity to explore parameter ranges and perturbations that are not easily accessible in ordinary human interactions. The HDC not only enables to test the veracity of theoretical models, it also illuminates features that are not always apparent in real-time human social interactions and the brain correlates thereof. PMID:25114256

  10. Patch-clamp analysis of the effects of the insecticide deltamethrin on insect neurones.

    PubMed

    Amar, M; Pichon, Y; Inoue, I

    1992-02-01

    1. The mode of action of the pyrethroid insecticide deltamethrin on inexcitable embryonic cultured cockroach neurones has been investigated using the patch-clamp technique. 2. Whole-cell recordings of the current induced by step depolarizations of the cell membrane showed that concentrations of deltamethrin ranging from 10(-8) to 5 x 10(-6) mol l-1 induced a small tetrodotoxin (TTX)-sensitive inward current that peaked at around +10 mV and reversed at around +60 mV. The activation and inactivation kinetics of this current were much slower than those of the axonal sodium current in this same species and were relatively insensitive to membrane potential. Steady-state inactivation was almost absent. 3. Single-channel activity associated with the action of the insecticide was analyzed using the cell-attached configuration. Three distinct patterns of activity were found: (1) discrete single-channel events of relatively short duration, (2) long events of comparatively small amplitude and (3) complex bursts made up of a succession of openings and closings to several levels. These three patterns were analyzed quantitatively using specially designed programs. 4. The first pattern of activity could be seen in most patches. It consisted of short (1-10 ms) rectangular events of comparatively small amplitude (1.5 pA at rest) and very low open time probability (around 0.001). The current-voltage relationship of these small events was linear over the voltage range studied and the (extrapolated) reversal potential approximated ENa. 5. The second pattern of activity was observed less frequently. The channels could stay open for very long periods (up to several seconds) and occasionally flickered between two or more levels. 6. The third pattern of activity was observed in many patches. During the burst, which could last from a few milliseconds to a few hundred milliseconds, the single-channel current jumped almost continuously between several levels (up to 7 or 8). PMID:1372926

  11. Contributions of Counter-Charge in a Potassium Channel Voltage-Sensor Domain

    PubMed Central

    Pless, Stephan A.; Galpin, Jason D.; Niciforovic, Ana P.; Ahern, Christopher A.

    2016-01-01

    Voltage-sensor domains couple membrane potential to conformational changes in voltage-gated ion channels and phosphatases. Highly co-evolved acidic and aromatic side-chains assist the transfer of cationic side-chains across the transmembrane electric field during voltage-sensing. We investigated the functional contribution of negative electrostatic potentials from these residues to channel gating and voltage-sensing with unnatural amino acid mutagenesis, electrophysiology, voltage-clamp fluorometry and ab initio calculations. The data show that neutralization of two conserved acidic side-chains in transmembrane segments S2 and S3, Glu293 and Asp316 in Shaker potassium channels, have little functional effect on conductance-voltage relationships, although Glu293 appears to catalyze S4 movement. Our results suggest that neither Glu293 nor Asp316 engages in electrostatic state-dependent charge-charge interactions with S4, likely because they occupy, and possibly help create, a water-filled vestibule. PMID:21785425

  12. Influence of squeeze film damping on the higher-order modes of clamped–clamped microbeams

    NASA Astrophysics Data System (ADS)

    Alcheikh, N.; Kosuru, L.; Jaber, N.; Bellaredj, M.; Younis, M. I.

    2016-06-01

    This paper presents an experimental study and a finite-element analysis of the effect of squeeze film damping on the resonance frequency and quality factor of the higher-order flexure vibrations modes of clamped–clamped microbeams. Viscoelastic and silicon nitride microbeams are fabricated and are electrostatically actuated by various electrode configurations to trigger the first, second, and third modes. The damping characteristic and the resonance frequency of these modes are examined for a wide range of gas pressure and electrostatic voltage loads. The results of the silicon nitride beams and viscoelastic beams are compared. It is found that the intrinsic material loss is the major dissipation mechanism at low pressure for the viscoelastic microbeams, significantly limiting their quality factor. It is also found that while the silicon nitride beams show higher quality factors at the intrinsic and molecular regimes of pressure, due to their low intrinsic loss, their quality factors near atmospheric pressure are lower than those of the viscoelastic microbeams. Further, the higher-order modes of all the beams show much higher quality factors at atmospheric pressure compared to the first mode, which could be promising for operating such resonators in air. Experimental results and finite element model simulations show good agreement for resonance frequency and quality factor for the three studied modes.

  13. Canine muscle cell culture and consecutive patch-clamp measurements - a new approach to characterize muscular diseases in dogs

    PubMed Central

    2012-01-01

    Background The recognition of functional muscular disorders, (e.g. channelopathies like Myotonia) is rising in veterinary neurology. Morphologic (e.g. histology) and even genetic based studies in these diseases are not able to elucidate the functional pathomechanism. As there is a deficit of knowledge and skills considering this special task, the aim of the current pilot study was to develop a canine muscle cell culture system derived from muscle biopsies of healthy client-owned dogs, which allows sampling of the biopsies under working conditions in the daily veterinary practise. Results Muscular biopsies from 16 dogs of different age and breed were taken during standard surgical procedures and were stored for one to three days at 4°C in a transport medium in order to simulate shipping conditions. Afterwards biopsies were professionally processed, including harvesting of satellite cells, inducing their proliferation, differentiating them into myotubes and recultivating myotubes after long-term storage in liquid nitrogen. Myogenic origin of cultured cells was determined by immunofluorescence, immunohistology and by their typical morphology after inducing differentiation. Subsequent to the differentiation into myotubes feasibility of patch-clamp recordings of voltage gated ion channels was successfully. Conclusion We have developed a canine muscle cell culture system, which allows sampling of biopsies from young and old dogs of different breeds under practical conditions. Patch clamp measurements can be carried out with the cultured myotubes demonstrating potential of these cells as source for functional research. PMID:23171640

  14. Fabrication of micro/nano-composite porous TiO2 electrodes for quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Song, Xiaohui; Wang, Minqiang; Xing, Tiying; Deng, Jianping; Ding, Jijun; Yang, Zhi; Zhang, Xiangyu

    2014-05-01

    For colloidal quantum dots-sensitized solar cells (QDSSC), the penetration and distribution of quantum dots (QDs) within electrodes is very crucial for performance improvement. In view of much bigger size of colloidal QDs than that of dye molecules, a TiO2 electrode with open structure is helpful for the distribution of QDs. In this study, micro/nano-composite porous TiO2 electrodes are fabricated by incorporating polystyrene (PS) spheres into the TiO2 screen-printing paste. After sintering, the embedded PS spheres are burnt off, leaving randomly distributed submicrometer voids in the electrodes, which favor easy penetration of the colloidal CdSe QDs within the TiO2 electrodes, and thus avoiding the unfavorable clogging of pores by CdSe QDs. In addition, this kind of composite structure enhances the scattering properties of the electrodes and hence the light capture inside the device. In order to obtain optimized devices, we probe into the influence of the PS concentration on the photovoltaic performance. The result shows that a maximum conversion efficiency of 2.23% is obtained for the QDSSC made from the PS:TiO2 = 1:4 paste.

  15. Delaying cord clamping until ventilation onset improves cardiovascular function at birth in preterm lambs

    PubMed Central

    Bhatt, Sasmira; Alison, Beth J; Wallace, Euan M; Crossley, Kelly J; Gill, Andrew W; Kluckow, Martin; te Pas, Arjan B; Morley, Colin J; Polglase, Graeme R; Hooper, Stuart B

    2013-01-01

    Delayed cord clamping improves circulatory stability in preterm infants at birth, but the underlying physiology is unclear. We investigated the effects of umbilical cord clamping, before and after ventilation onset, on cardiovascular function at birth. Prenatal surgery was performed on lambs (123 days) to implant catheters into the pulmonary and carotid arteries and probes to measure pulmonary (PBF), carotid (CaBF) and ductus arteriosus blood flows. Lambs were delivered at 126 ± 1 days and: (1) the umbilical cord was clamped at delivery and ventilation was delayed for about 2 min (Clamp 1st; n = 6), and (2) umbilical cord clamping was delayed for 3–4 min, until after ventilation was established (Vent 1st; n = 6). All lambs were subsequently ventilated for 30 min. In Clamp 1st lambs, cord clamping rapidly (within four heartbeats), but transiently, increased pulmonary and carotid arterial pressures (by ∼30%) and CaBF (from 30.2 ± 5.6 to 40.1 ± 4.6 ml min−1 kg−1), which then decreased again within 30–60 s. Following ventilation onset, these parameters rapidly increased again. In Clamp 1st lambs, cord clamping reduced heart rate (by ∼40%) and right ventricular output (RVO; from 114.6 ± 14.4 to 38.8 ± 9.7 ml min−1 kg−1), which were restored by ventilation. In Vent 1st lambs, cord clamping reduced RVO from 153.5 ± 3.8 to 119.2 ± 10.6 ml min−1 kg−1, did not affect heart rates and resulted in stable blood flows and pressures during transition. Delaying cord clamping for 3–4 min until after ventilation is established improves cardiovascular function by increasing pulmonary blood flow before the cord is clamped. As a result, cardiac output remains stable, leading to a smoother cardiovascular transition throughout the early newborn period. PMID:23401615

  16. Stabilization xLi{sub 2}MnO{sub 3}{sm_bullet}(1-x)LiMO{sub 2} electrode surfaces (M=Mn, Ni, Co) with mildly acidic, fluorinated solutions.

    SciTech Connect

    Kang, S.-H.; Thackeray, M. M.; Chemical Sciences and Engineering Division

    2008-01-01

    It has been demonstrated previously that Li{sub 2}MnO{sub 3}-stabilized LiMO{sub 2} electrodes [xLi{sub 2}MnO{sub 3} {sm_bullet} (1?x)LiMO{sub 2}, M=Mn, Ni, Co] can provide anomalously high electrochemical capacities ({approx}250 mAh/g) if charged to high potentials (>4.6 V). High-voltage charging results in an irreversible capacity loss on the initial charge/discharge cycle; it also damages the electrode surface, leading to a high cell impedance. In this paper, we report that preconditioning 0.1Li{sub 2}MnO{sub 3} {sm_bullet} 0.9LiMn{sub 0.256}Ni{sub 0.372}Co{sub 0.372}O{sub 2} electrode powders [alternatively Li{sub 1.048}(Mn{sub 0.333}Ni{sub 0.333}Co{sub 0.333}){sub 0.952}O{sub 2} in Li{sub 1+x}M{sub 1?x}O{sub 2} notation] with extremely mild acidic solutions of NH{sub 4}PF{sub 6}, (NH{sub 4}){sub 3}AlF{sub 6}, and NH{sub 4}BF{sub 4} salts in water and methanol (pH 6-6.5) leads to remarkable cycling stability of both lithium half-cells and full lithium-ion cells when repeatedly charged to high voltages ({ge} 4.5 V). The enhanced electrochemical performance is attributed to stabilized electrode surfaces that are etched and passivated by fluorinated species. The low-temperature behavior of unconditioned and preconditioned electrodes is presented.

  17. Triplex-stabilizing properties of parallel clamps carrying LNA derivatives at the Hoogsteen strand.

    PubMed

    Alvira, Margarita; Eritja, Ramon

    2010-02-01

    DNA Parallel clamps with a polypurine strand linked to a polypyrimidine Hoogsteen strand containing locked nucleic acids bind their corresponding polypyrimidine targets with high affinity. PMID:20151386

  18. Optical voltage reference

    DOEpatents

    Rankin, Richard; Kotter, Dale

    1994-01-01

    An optical voltage reference for providing an alternative to a battery source. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function.

  19. Optical voltage reference

    DOEpatents

    Rankin, R.; Kotter, D.

    1994-04-26

    An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.

  20. Electrochemical degradation of nitrobenzene by anodic oxidation on the constructed TiO2-NTs/SnO2-Sb/PbO2 electrode.

    PubMed

    Chen, Yong; Li, Hongyi; Liu, Weijing; Tu, Yong; Zhang, Yaohui; Han, Weiqing; Wang, Lianjun

    2014-10-01

    The interlayer of Sb-doped SnO2 (SnO2-Sb) and TiO2 nanotubes (TiO2-NTs) on Ti has been introduced into the PbO2 electrode system with the aim to reveal the mechanism of enhanced electrochemical performance of TiO2-NTs/SnO2-Sb/PbO2 electrode. In contrast with the traditional Ti/SnO2-Sb/PbO2 electrode, the constructed PbO2 electrode has a more regular and compact morphology with better oriented crystals of lower size. The TiO2-NTs/SnO2-Sb interlayer prepared by electrodeposition process improves PbO2 coating structure effectively, and enhances the electrochemical performance of PbO2 electrode. Kinetic analyses indicated that the electrochemical oxidation of nitrobenzene on the PbO2 electrodes followed pseudo-first-order reaction, and mass transport was enhanced at the constructed electrode. The accumulation of nitrocompounds of degradation intermediates on constructed electrode was lower, and almost all of the nitro groups were eliminated from aromatic rings after 6h of electrolysis. Higher combustion efficiency was obtained on the constructed TiO2-NTs/SnO2-Sb/PbO2 electrode. The intermediates of nitrobenzene oxidation were confirmed by IC and GC/MS. PMID:25065789

  1. Self-clamping arc light reflector for welding torch

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1987-01-01

    This invention is directed to a coaxial extending metal mirror reflector attached to the electrode housing or gas cup on a welding torch. An electric welding torch with an internal viewing system for robotic welding is provded with an annular arc light reflector to reflect light from the arc back onto the workpiece. The reflector has a vertical split or gap in its surrounding wall to permit the adjacent wall ends forming the split to be sprung open slightly to permit the reflector to be removed or slipped onto the torch housing or gas cup. The upper opening of the reflector is slightly smaller than the torch housing or gas cup and therefore, when placed on the torch housing or gas cup has that springiness to cause it to clamp tightly on the housing or gas cup. The split or gap also serves to permit the feed of weld wire through to the weld area,

  2. Non-Linear Vibration Characteristics of Clamped Laminated Shallow Shells

    NASA Astrophysics Data System (ADS)

    ABE, A.; KOBAYASHI, Y.; YAMADA, G.

    2000-07-01

    This paper examines non-linear free vibration characteristics of first and second vibration modes of laminated shallow shells with rigidly clamped edges. Non-linear equations of motion for the shells based on the first order shear deformation and classical shell theories are derived by means of Hamilton's principle. We apply Galerkin's procedure to the equations of motion in which eigenvectors for first and second modes of linear vibration obtained by the Ritz method are employed as trial functions. Then simultaneous non-linear ordinary differential equations are derived in terms of amplitudes of the first and second vibration modes. Backbone curves for the first and second vibration modes are solved numerically by the Gauss-Legendre integration method and the shooting method respectively. The effects of lamination sequences and transverse shear deformation on the behavior are discussed. It is also shown that the motion of the first vibration mode affects the response for the second vibration mode.

  3. Simple clamp pressure cell up to 30 kbar

    NASA Astrophysics Data System (ADS)

    Fujiwara, H.; Kadomatsu, H.; Tohma, K.

    1980-10-01

    A design of simple clamp type pressure apparatus utilized for measurements of magnetic susceptibility and electrical resistivity at low temperatures is presented. The cell consists of a WC piston and Be-Cu cylinder which was autofrettage-processed, and the sample cavity consists of a teflon bucket and an electrode plug. In a temperature range from 300 to 77 K, pressure was determined by a manganin gage calibrated by Bi I-II transition pressure at room temperature; the temperature dependence of pressure coefficient of manganin resistance was taken into account. As a result, the cell was capable of generating hydrostatic pressures up to 30 kbar at room temperature and at least up to 25 kbar at 4.2 K.

  4. Vibration of clamped right triangular thin plates: Accurate simplified solutions

    NASA Astrophysics Data System (ADS)

    Saliba, H. T.

    1994-12-01

    Use of the superposition techniques in the free-vibration analyses of thin plates, as they were first introduced by Gorman, has provided simple and effective solutions to a vast number of rectangular plate problems. The method has also been extended to nonrectangular plates such as triangular and trapezoidal plates. However, serious difficulties were encountered in some of these analyses. These difficulties were discussed and obviated in Salibra, 1990. This reference, however, dealt only with simple support conditions, leading to a simple, highly accurate, and very economical solution to the free-vibration problem of simply supported right angle triangular plates. The purpose of this Note is to show that the modified superposition method of Salibra, 1990 is also applicable to clamped-edge conditions. This is accomplished through the application of this method to the title problem.

  5. Whole-cell Patch-clamp Recordings in Brain Slices.

    PubMed

    Segev, Amir; Garcia-Oscos, Francisco; Kourrich, Saïd

    2016-01-01

    Whole-cell patch-clamp recording is an electrophysiological technique that allows the study of the electrical properties of a substantial part of the neuron. In this configuration, the micropipette is in tight contact with the cell membrane, which prevents current leakage and thereby provides more accurate ionic current measurements than the previously used intracellular sharp electrode recording method. Classically, whole-cell recording can be performed on neurons in various types of preparations, including cell culture models, dissociated neurons, neurons in brain slices, and in intact anesthetized or awake animals. In summary, this technique has immensely contributed to the understanding of passive and active biophysical properties of excitable cells. A major advantage of this technique is that it provides information on how specific manipulations (e.g., pharmacological, experimenter-induced plasticity) may alter specific neuronal functions or channels in real-time. Additionally, significant opening of the plasma membrane allows the internal pipette solution to freely diffuse into the cytoplasm, providing means for introducing drugs, e.g., agonists or antagonists of specific intracellular proteins, and manipulating these targets without altering their functions in neighboring cells. This article will focus on whole-cell recording performed on neurons in brain slices, a preparation that has the advantage of recording neurons in relatively well preserved brain circuits, i.e., in a physiologically relevant context. In particular, when combined with appropriate pharmacology, this technique is a powerful tool allowing identification of specific neuroadaptations that occurred following any type of experiences, such as learning, exposure to drugs of abuse, and stress. In summary, whole-cell patch-clamp recordings in brain slices provide means to measure in ex vivo preparation long-lasting changes in neuronal functions that have developed in intact awake animals

  6. The human dynamic clamp as a paradigm for social interaction

    PubMed Central

    Dumas, Guillaume; de Guzman, Gonzalo C.; Tognoli, Emmanuelle; Kelso, J. A. Scott

    2014-01-01

    Social neuroscience has called for new experimental paradigms aimed toward real-time interactions. A distinctive feature of interactions is mutual information exchange: One member of a pair changes in response to the other while simultaneously producing actions that alter the other. Combining mathematical and neurophysiological methods, we introduce a paradigm called the human dynamic clamp (HDC), to directly manipulate the interaction or coupling between a human and a surrogate constructed to behave like a human. Inspired by the dynamic clamp used so productively in cellular neuroscience, the HDC allows a person to interact in real time with a virtual partner itself driven by well-established models of coordination dynamics. People coordinate hand movements with the visually observed movements of a virtual hand, the parameters of which depend on input from the subject’s own movements. We demonstrate that HDC can be extended to cover a broad repertoire of human behavior, including rhythmic and discrete movements, adaptation to changes of pacing, and behavioral skill learning as specified by a virtual “teacher.” We propose HDC as a general paradigm, best implemented when empirically verified theoretical or mathematical models have been developed in a particular scientific field. The HDC paradigm is powerful because it provides an opportunity to explore parameter ranges and perturbations that are not easily accessible in ordinary human interactions. The HDC not only enables to test the veracity of theoretical models, it also illuminates features that are not always apparent in real-time human social interactions and the brain correlates thereof. PMID:25114256

  7. Illuminating Myocyte-Fibroblast Homotypic and Heterotypic Gap Junction Dynamics Using Dynamic Clamp.

    PubMed

    Brown, Tashalee R; Krogh-Madsen, Trine; Christini, David J

    2016-08-23

    Fibroblasts play a significant role in the development of electrical and mechanical dysfunction of the heart; however, the underlying mechanisms are only partially understood. One widely studied mechanism suggests that fibroblasts produce excess extracellular matrix, resulting in collagenous septa that slow propagation, cause zig-zag conduction paths, and decouple cardiomyocytes, resulting in a substrate for cardiac arrhythmia. An emerging mechanism suggests that fibroblasts promote arrhythmogenesis through direct electrical interactions with cardiomyocytes via gap junction (GJ) channels. In the heart, three major connexin (Cx) isoforms, Cx40, Cx43, and Cx45, form GJ channels in cell-type-specific combinations. Because each Cx is characterized by a unique time- and transjunctional voltage-dependent profile, we investigated whether the electrophysiological contributions of fibroblasts would vary with the specific composition of the myocyte-fibroblast (M-F) GJ channel. Due to the challenges of systematically modifying Cxs in vitro, we coupled native cardiomyocytes with in silico fibroblast and GJ channel electrophysiology models using the dynamic-clamp technique. We found that there is a reduction in the early peak of the junctional current during the upstroke of the action potential (AP) due to GJ channel gating. However, effects on the cardiomyocyte AP morphology were similar regardless of the specific type of GJ channel (homotypic Cx43 and Cx45, and heterotypic Cx43/Cx45 and Cx45/Cx43). To illuminate effects at the tissue level, we performed multiscale simulations of M-F coupling. First, we developed a cell-specific model of our dynamic-clamp experiments and investigated changes in the underlying membrane currents during M-F coupling. Second, we performed two-dimensional tissue sheet simulations of cardiac fibrosis and incorporated GJ channels in a cell type-specific manner. We determined that although GJ channel gating reduces junctional current, it does not

  8. Use of vacuum tubes in test instrumentation for measuring characteristics of fast high-voltage semiconductor devices

    NASA Technical Reports Server (NTRS)

    Berning, D.

    1981-01-01

    Circuits are described that permit measurement of fast events occurring in power semiconductors. These circuits were developed for the dynamic characterization of transistors used in inductive-load switching applications. Fast voltage clamping using vacuum diodes is discussed, and reference is made to a unique circuit that was built for performing nondestructive, reverse-bias, second-breakdown tests on transistors.

  9. Use of vacuum tubes in test instrumentation for measuring characteristics of fast high-voltage semiconductor devices

    NASA Astrophysics Data System (ADS)

    Berning, D.

    1981-09-01

    Circuits are described that permit measurement of fast events occurring in power semiconductors. These circuits were developed for the dynamic characterization of transistors used in inductive-load switching applications. Fast voltage clamping using vacuum diodes is discussed, and reference is made to a unique circuit that was built for performing nondestructive, reverse-bias, second-breakdown tests on transistors.

  10. Analysis of impactor residues in tray clamps from the Long Duration Exposure Facility. Part 1: Clamps from Bay A of the satellite

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Bernhard, Ronald P.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) was placed in low Earth orbit (LEO) in 1984 and was recovered 5.7 years later. The LDEF was host to several individual experiments that were specifically designed to characterize critical aspects of meteoroid and debris environment in LEO. It was realized from the beginning, however, that the most efficient use of the satellite would be to examine the entire surface of the Earth for impact features. In this regard, particular interest has centered on common exposed materials that faced in all LDEF pointing directions. Among the most important of these materials is the tray clamps. Therefore, in an effort to understand the nature of particulates in LEO and their effects on spacecraft hardware better, we are analyzing residues found in impact features on LDEF tray clamp surfaces. This catalog presents all data from clamps from Bay A of the LDEF. Subsequent catalogs will include clamps from succeeding bays of the satellite.

  11. Influence of TiCl4 post-treatment condition on TiO2 electrode for enhancement photovoltaic efficiency of dye-sensitized solar cells.

    PubMed

    Eom, Tae Sung; Kim, Kyung Hwan; Bark, Chung Wung; Choi, Hyung Wook

    2014-10-01

    Titanium tetrachloride (TiCl4) treatment processed by chemical bath deposition is usually adopted as pre- and post-treatment for nanocrystalline titanium dioxide (TiO2) film deposition in the dye-sensitized solar cells (DSSCs) technology. TiCl4 post-treatment is a widely known method capable of improving the performance of dye-sensitized solar cells. In this work, the effect of TiCl4 post-treatment on the TiO2 electrode is proposed and compared to the untreated film. A TiO2 passivating layer was deposited on FTO glass by RF magnetron sputtering. The TiO2 sol prepared sol-gel method, nanoporous TiO2 upper layer was deposited by screen printing method on the passivating layer. TiCl4 post-treatment was deposited on the substrate by hydrolysis of TiCl4 aqueous solution. Crystalline structure was adjusted by various TiCl4 concentration and dipping time: 20 mM-150 mM and 30 min-120 min. The conversion efficiency was measured by solar simulator (100 mW/cm2). The dye-sensitized solar cell using TiCl4 post-treatment was measured the maximum conversion efficiency of 5.04% due to electron transport effectively. As a result, the DSSCs based on TiCl4 post-treatment showed better photovoltaic performance than cells made purely of TiO2 nanoparticles. The relative DSSCs devices are characterized in terms of short circuit current density, open circuit voltage, fill factor, conversion efficiency. PMID:25942852

  12. Detecting Rearrangements of Shaker and NaChBac in Real-Time with Fluorescence Spectroscopy in Patch-Clamped Mammalian Cells

    PubMed Central

    Blunck, Rikard; Starace, Dorine M.; Correa, Ana M.; Bezanilla, Francisco

    2004-01-01

    Time-resolved fluorescence detection of site-directed probes is a major tool in the investigation of structure-function relationships of voltage-dependent ion channels. However, the technique has been limited so far to the Xenopus-oocyte system making it difficult to study proteins, like, e.g., the prokaryotic sodium channel NaChBac, whose expression in oocytes is insufficient or whose physiological functions are distorted in oocytes. To expand the application of site-directed fluorescence detection to these proteins, we used two techniques—semiconfocal epifluorescence and total internal reflection fluorescence—to detect time-resolved fluorescence changes from site-directed labeled proteins expressed in mammalian cells under patch-clamp conditions, and investigated the characteristics and limitations of the techniques. The voltage-sensitive dye, di-8-ANEPPS, was used to monitor control of the membrane voltage in epifluorescence and total internal reflection fluorescence. Fluorescence changes in patch-clamped cells were recorded from a Shaker channel mutant (M356C) labeled in the S3–S4 linker using semiconfocal epifluorescence. The gating kinetics and fluorescence changes were in accordance with previous studies using fluorescence spectroscopy in Xenopus-oocyte systems. We applied our technique to the prokaryotic sodium channel NaChBac. Voltage-dependent protein-rearrangements of S4 could be detected that are independent of inactivation. Comparison of the S3–S4 linker regions revealed structural differences to the KvAP voltage sensor. The results from the NaChBac channel point to structural requirements for the S3–S4 loop to generate a fluorescence signal. PMID:15189893

  13. Optical electrophysiology for probing function and pharmacology of voltage-gated ion channels

    PubMed Central

    Zhang, Hongkang; Reichert, Elaine; Cohen, Adam E

    2016-01-01

    Voltage-gated ion channels mediate electrical dynamics in excitable tissues and are an important class of drug targets. Channels can gate in sub-millisecond timescales, show complex manifolds of conformational states, and often show state-dependent pharmacology. Mechanistic studies of ion channels typically involve sophisticated voltage-clamp protocols applied through manual or automated electrophysiology. Here, we develop all-optical electrophysiology techniques to study activity-dependent modulation of ion channels, in a format compatible with high-throughput screening. Using optical electrophysiology, we recapitulate many voltage-clamp protocols and apply to Nav1.7, a channel implicated in pain. Optical measurements reveal that a sustained depolarization strongly potentiates the inhibitory effect of PF-04856264, a Nav1.7-specific blocker. In a pilot screen, we stratify a library of 320 FDA-approved compounds by binding mechanism and kinetics, and find close concordance with patch clamp measurements. Optical electrophysiology provides a favorable tradeoff between throughput and information content for studies of NaV channels, and possibly other voltage-gated channels. DOI: http://dx.doi.org/10.7554/eLife.15202.001 PMID:27215841

  14. HIGH VOLTAGE REGULATOR

    DOEpatents

    Wright, B.T.

    1959-06-01

    A high voltage regulator for use with calutrons is described which rapidly restores accelerating voltage after a sudden drop such as is caused by sparking. The rapid restoration characteristic prevents excessive contamination of lighter mass receiver pockets by the heavier mass portion of the beam. (T.R.H.)

  15. Voltage verification unit

    DOEpatents

    Martin, Edward J.

    2008-01-15

    A voltage verification unit and method for determining the absence of potentially dangerous potentials within a power supply enclosure without Mode 2 work is disclosed. With this device and method, a qualified worker, following a relatively simple protocol that involves a function test (hot, cold, hot) of the voltage verification unit before Lock Out/Tag Out and, and once the Lock Out/Tag Out is completed, testing or "trying" by simply reading a display on the voltage verification unit can be accomplished without exposure of the operator to the interior of the voltage supply enclosure. According to a preferred embodiment, the voltage verification unit includes test leads to allow diagnostics with other meters, without the necessity of accessing potentially dangerous bus bars or the like.

  16. A comparison of the performance and application differences between manual and automated patch-clamp techniques.

    PubMed

    Yajuan, Xiao; Xin, Liang; Zhiyuan, Li

    2012-01-01

    The patch clamp technique is commonly used in electrophysiological experiments and offers direct insight into ion channel properties through the characterization of ion channel activity. This technique can be used to elucidate the interaction between a drug and a specific ion channel at different conformational states to understand the ion channel modulators' mechanisms. The patch clamp technique is regarded as a gold standard for ion channel research; however, it suffers from low throughput and high personnel costs. In the last decade, the development of several automated electrophysiology platforms has greatly increased the screen throughput of whole cell electrophysiological recordings. New advancements in the automated patch clamp systems have aimed to provide high data quality, high content, and high throughput. However, due to the limitations noted above, automated patch clamp systems are not capable of replacing manual patch clamp systems in ion channel research. While automated patch clamp systems are useful for screening large amounts of compounds in cell lines that stably express high levels of ion channels, the manual patch clamp technique is still necessary for studying ion channel properties in some research areas and for specific cell types, including primary cells that have mixed cell types and differentiated cells that derive from induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs). Therefore, further improvements in flexibility with regard to cell types and data quality will broaden the applications of the automated patch clamp systems in both academia and industry. PMID:23346269

  17. 30 CFR 75.605 - Clamping of trailing cables to equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Clamping of trailing cables to equipment. 75.605 Section 75.605 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.605 Clamping of trailing cables to equipment....

  18. 30 CFR 75.605 - Clamping of trailing cables to equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Clamping of trailing cables to equipment. 75.605 Section 75.605 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.605 Clamping of trailing cables to equipment....

  19. 30 CFR 75.605 - Clamping of trailing cables to equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Clamping of trailing cables to equipment. 75.605 Section 75.605 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.605 Clamping of trailing cables to equipment....

  20. 30 CFR 75.605 - Clamping of trailing cables to equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Clamping of trailing cables to equipment. 75.605 Section 75.605 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.605 Clamping of trailing cables to equipment....

  1. Structural insight into β-Clamp and its interaction with DNA Ligase in Helicobacter pylori.

    PubMed

    Pandey, Preeti; Tarique, Khaja Faisal; Mazumder, Mohit; Rehman, Syed Arif Abdul; Kumari, Nilima; Gourinath, Samudrala

    2016-01-01

    Helicobacter pylori, a gram-negative and microaerophilic bacterium, is the major cause of chronic gastritis, gastric ulcers and gastric cancer. Owing to its central role, DNA replication machinery has emerged as a prime target for the development of antimicrobial drugs. Here, we report 2Å structure of β-clamp from H. pylori (Hpβ-clamp), which is one of the critical components of DNA polymerase III. Despite of similarity in the overall fold of eubacterial β-clamp structures, some distinct features in DNA interacting loops exists that have not been reported previously. The in silico prediction identified the potential binders of β-clamp such as alpha subunit of DNA pol III and DNA ligase with identification of β-clamp binding regions in them and validated by SPR studies. Hpβ-clamp interacts with DNA ligase in micromolar binding affinity. Moreover, we have successfully determined the co-crystal structure of β-clamp with peptide from DNA ligase (not reported earlier in prokaryotes) revealing the region from ligase that interacts with β-clamp. PMID:27499105

  2. Structural insight into β-Clamp and its interaction with DNA Ligase in Helicobacter pylori

    PubMed Central

    Pandey, Preeti; Tarique, Khaja Faisal; Mazumder, Mohit; Rehman, Syed Arif Abdul; kumari, Nilima; Gourinath, Samudrala

    2016-01-01

    Helicobacter pylori, a gram-negative and microaerophilic bacterium, is the major cause of chronic gastritis, gastric ulcers and gastric cancer. Owing to its central role, DNA replication machinery has emerged as a prime target for the development of antimicrobial drugs. Here, we report 2Å structure of β-clamp from H. pylori (Hpβ-clamp), which is one of the critical components of DNA polymerase III. Despite of similarity in the overall fold of eubacterial β-clamp structures, some distinct features in DNA interacting loops exists that have not been reported previously. The in silico prediction identified the potential binders of β-clamp such as alpha subunit of DNA pol III and DNA ligase with identification of β-clamp binding regions in them and validated by SPR studies. Hpβ-clamp interacts with DNA ligase in micromolar binding affinity. Moreover, we have successfully determined the co-crystal structure of β-clamp with peptide from DNA ligase (not reported earlier in prokaryotes) revealing the region from ligase that interacts with β-clamp. PMID:27499105

  3. Zero Voltage Soft Switching Duty Cycle Pulse Modulated High Frequency Inverter-Fed

    NASA Astrophysics Data System (ADS)

    Ishitobi, Manabu; Matsushige, Takayuki; Nakaoka, Mutsuo; Bessyo, Daisuke; Omori, Hideki; Terai, Haruo

    The utility grid voltage of commercial AC power source in Japan and USA is 100V, but in other Asian and European countries, it is 220V. In recent years, in Japan 200V outputted single-phase three-wire system begins to be used for high power applications. In 100V utility AC power applications and systems, an active voltage clamped quasi-resonant inverter circuit topology sing IGBTs has been effectively used so far for the consumer microwave oven. In this paper, presented is a half bridge type voltage-clamped asymmetrical soft switching PWM high-frequency inverter type AC-DC converter using IGBTs which is designed for consumer magnetron drive used as the consumer microwave oven in 200V utility AC power system. The zero voltage soft switching inverter treated here can use the same power rated switching semiconductor devices and three-winding high frequency transformer as those of the active voltage clamped quasi-resonant inverter using the IGBTs that has already been used for 100V utility AC power source. The operating performances of the voltage source single ended push pull (SEPP) type soft switching PWM inverter are evaluated and discussed for 100V and 200V common use consumer microwave oven. The harmonic line current components in the utility AC power side of the AC-DC power converter with ZVS-PWM SEPP inverter are reduced and improved on the basis of sine wave like pulse frequency modulation and sine wave like pulse width modulation for the utility AC voltage source.

  4. A study of Na(x)Pt3O4 as an O2 electrode bifunctional electrocatalyst

    NASA Technical Reports Server (NTRS)

    Fielder, William L.; Singer, Joseph

    1991-01-01

    The present study suggests that polytetrafluoroethylene (PTFE) bonded Na(X)Pt3O4 gas porous diffusion electrodes may be a viable candidate for bifunctional O2 reduction and evolution activity. The electrodes exhibited Tafel slopes of about 0.06 V/decade for both O2 reduction an evolution. For O2 reduction, the 0.06 slope doubled to 0.12 V/decade at larger current densities. Preliminary stability testing at 24 C suggest that the Na(x)Pt3O4 electrodes were relatively stable at reducing and oxidizing potentials typically encountered at the O2 electrodes in a regenerative fuel cell.

  5. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, F.Z.; Lai, J.S.

    1997-07-01

    Disclosed is a voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means. 15 figs.

  6. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    1997-01-01

    A voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means.

  7. Clamp ultrastructure of the basal monogenean Chimaericola leptogaster (Leuckart, 1830) (Polyopisthocotylea: Chimaericolidae).

    PubMed

    Poddubnaya, Larisa G; Hemmingsen, Willy; Gibson, David I

    2014-11-01

    The ultrastructure of the haptoral clamps of the chimaericolid monogenean Chimaericola leptogaster, a basal polyopisthocotylean from the gills of a holocephalan fish, is described. These clamps are characterized by the presence of two muscle blocks interrupted mid-anteriorly and mid-posteriorly and different kinds of hard structures: a single median and paired lateral sclerites embedded in the clamp wall; six spine-like structures directed towards the clamp lumen; and electron dense surface structures along the internal surface of the anterior clamp lips and along the luminal surface of the tegument of the clamp lumen. The lateral sclerites are situated deep within muscular tissue and are closely bounded by radial myofibrils, possessing a uniform electron dense matrix within which are hollow areas of different sizes. The median sclerite occupies an area between the clamp wall myofibrils and the luminal epithelium, is surrounded by a basement lamina and is composed of a heterogeneous matrix comprising two different morphological layers related to variations in the type and concentration of fibrils. Four of the spine-like structures are extensions of the margins of the two spindle-like muscle blocks in the clamps, i.e. the two anterior and two posterior structures, and the two others are situated at the lateral constrictions of the left and right muscle blocks. The electron dense surface structures are derivations of the clamp tegument or, to be more precise, its outer, densely fibrous region. These results are discussed in relation to the evidence that the haptoral clamps of C. leptogaster are apparently ancient origin. PMID:25112214

  8. Substation voltage upgrading

    SciTech Connect

    Panek, J.; Elahi, H.; Sublich, M. . Systems Development and Engineering Dept.)

    1989-08-01

    Substation voltage uprating, i.e., conversion of a substation from a lower rated voltage to a higher rated voltage without a complete substation rebuild, can lead to excellent economic benefits. Utilization of the old substation layout and/or the existing equipment, to some extent, is the practical objective of such an uprating. The objective of this project was to assess the opportunities for substation uprating in the industry, to establish feasibility for such uprating and to study methods for accomplishing it. The final aim of the project was to provide guidance to utilities interested in uprating. 56 refs., 41 figs., 18 tabs.

  9. Low voltage to high voltage level shifter and related methods

    NASA Technical Reports Server (NTRS)

    Mentze, Erik J. (Inventor); Hess, Herbert L. (Inventor); Buck, Kevin M. (Inventor); Cox, David F. (Inventor)

    2006-01-01

    A shifter circuit comprises a high and low voltage buffer stages and an output buffer stage. The high voltage buffer stage comprises multiple transistors arranged in a transistor stack having a plurality of intermediate nodes connecting individual transistors along the stack. The transistor stack is connected between a voltage level being shifted to and an input voltage. An inverter of this stage comprises multiple inputs and an output. Inverter inputs are connected to a respective intermediate node of the transistor stack. The low voltage buffer stage has an input connected to the input voltage and an output, and is operably connected to the high voltage buffer stage. The low voltage buffer stage is connected between a voltage level being shifted away from and a lower voltage. The output buffer stage is driven by the outputs of the high voltage buffer stage inverter and the low voltage buffer stage.

  10. Control method for peak power delivery with limited DC-bus voltage

    SciTech Connect

    Edwards, John; Xu, Longya; Bhargava, Brij B.

    2006-09-05

    A method for driving a neutral point-clamped multi-level voltage source inverter supplying a synchronous motor is provided. A DC current is received at a neutral point-clamped multi-level voltage source inverter. The inverter has first, second, and third output nodes. The inverter also has a plurality of switches. A desired speed of a synchronous motor connected to the inverter by the first second and third nodes is received by the inverter. The synchronous motor has a rotor and the speed of the motor is defined by the rotational rate of the rotor. A position of the rotor is sensed, current flowing to the motor out of at least two of the first, second, and third output nodes is sensed, and predetermined switches are automatically activated by the inverter responsive to the sensed rotor position, the sensed current, and the desired speed.

  11. Intracellular calcium affects prestin's voltage operating point indirectly via turgor-induced membrane tension

    NASA Astrophysics Data System (ADS)

    Song, Lei; Santos-Sacchi, Joseph

    2015-12-01

    Recent identification of a calmodulin binding site within prestin's C-terminus indicates that calcium can significantly alter prestin's operating voltage range as gauged by the Boltzmann parameter Vh (Keller et al., J. Neuroscience, 2014). We reasoned that those experiments may have identified the molecular substrate for the protein's tension sensitivity. In an effort to understand how this may happen, we evaluated the effects of turgor pressure on such shifts produced by calcium. We find that the shifts are induced by calcium's ability to reduce turgor pressure during whole cell voltage clamp recording. Clamping turgor pressure to 1kPa, the cell's normal intracellular pressure, completely counters the calcium effect. Furthermore, following unrestrained shifts, collapsing the cells abolishes induced shifts. We conclude that calcium does not work by direct action on prestin's conformational state. The possibility remains that calcium interaction with prestin alters water movements within the cell, possibly via its anion transport function.

  12. Allosteric substrate switching in a voltage-sensing lipid phosphatase.

    PubMed

    Grimm, Sasha S; Isacoff, Ehud Y

    2016-04-01

    Allostery provides a critical control over enzyme activity, biasing the catalytic site between inactive and active states. We found that the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), which modifies phosphoinositide signaling lipids (PIPs), has not one but two sequential active states with distinct substrate specificities, whose occupancy is allosterically controlled by sequential conformations of the voltage-sensing domain (VSD). Using fast fluorescence resonance energy transfer (FRET) reporters of PIPs to monitor enzyme activity and voltage-clamp fluorometry to monitor conformational changes in the VSD, we found that Ci-VSP switches from inactive to a PIP3-preferring active state when the VSD undergoes an initial voltage-sensing motion and then into a second PIP2-preferring active state when the VSD activates fully. This two-step allosteric control over a dual-specificity enzyme enables voltage to shape PIP concentrations in time, and provides a mechanism for the complex modulation of PIP-regulated ion channels, transporters, cell motility, endocytosis and exocytosis. PMID:26878552

  13. Voltage-sensitive potassium channels in Limulus ventral photoreceptors

    PubMed Central

    1978-01-01

    The steady-state slope conductance of Limulus ventral photoreceptors increases markedly when the membrane is depolarized from rest. The ionic basis of this rectification has been examined with a voltage- clamp technique. Tail currents that occur when membrane potential is repolarized after having been depolarized have been identified. The tail currents reverse direction at a voltage that becomes more positive when Ko is increased. Rectification is reduced by extracellular 4- aminopyridine and by intracellular injection of tetra-ethyl-ammonium (TEA). These results indicate that the membrane rectification around resting potential is due primarily to voltage-sensitive K+ channels. The increase in gK caused by depolarization is not mediated by a voltage-dependent rise in in Cai++, since intracellular injection of Ca++ causes a decrease rather than an increase in slope conductance. TEA can be used to examine the functional role of the K+ channels because it blocks them without substantially affecting the light- activated Na+ conductance. The effect of TEA on response-intensity curves shows that the K+ channels serve to compress the voltage range of receptor potentials. PMID:621492

  14. Clamping the Mec1/ATR checkpoint kinase into action.

    PubMed

    Majka, Jerzy; Burgers, Peter M J

    2007-05-15

    The yeast checkpoint protein kinase Mec1, the ortholog of human ATR, is the essential upstream regulator of the cell cycle checkpoint in response to DNA damage and to stalling of DNA replication forks. The activity of Mec1/ATR is not directly regulated by the DNA substrates that signal checkpoint activation. Rather the signal appears to be transduced to Mec1 by factors that interact with the signaling DNA substrates. One of these factors, the DNA damage checkpoint clamp Rad17-Mec3-Ddc1 (human 9-1-1) is loaded onto gapped DNA resulting from the partial repair of DNA damage, and the Ddc1 subunit of this complex activates Mec1. In vertebrate cells, the TopBP1 protein (Cut5 in S. pombe and Dpb11 in S. cervisiae) that is also required for establishment of the replication fork, functions during replication fork dysfunction to activate ATR. Both mechanisms of activation generally upregulate the kinase activity towards all downstream targets. PMID:17495536

  15. Position clamping in a holographic counterpropagating optical trap.

    PubMed

    Bowman, Richard; Jesacher, Alexander; Thalhammer, Gregor; Gibson, Graham; Ritsch-Marte, Monika; Padgett, Miles

    2011-05-01

    Optical traps consisting of two counterpropagating, divergent beams of light allow relatively high forces to be exerted along the optical axis by turning off one beam, however the axial stiffness of the trap is generally low due to the lower numerical apertures typically used. Using a high speed spatial light modulator and CMOS camera, we demonstrate 3D servocontrol of a trapped particle, increasing the stiffness from 0.004 to 1.5 μN m(-1). This is achieved in the "macro-tweezers" geometry [Thalhammer, J. Opt. 13, 044024 (2011); Pitzek, Opt. Express 17, 19414 (2009)], which has a much larger field of view and working distance than single-beam tweezers due to its lower numerical aperture requirements. Using a 10×, 0.2 NA objective, active feedback produces a trap with similar effective stiffness to a conventional single-beam gradient trap, of order 1 μN m(-1) in 3D. Our control loop has a round-trip latency of 10 ms, leading to a resonance at 20 Hz. This is sufficient bandwidth to reduce the position fluctuations of a 10 μm bead due to Brownian motion by two orders of magnitude. This approach can be trivially extended to multiple particles, and we show three simultaneously position-clamped beads. PMID:21643247

  16. Dynamic Clamp Analysis of Synaptic Integration in Sympathetic Ganglia

    PubMed Central

    Horn, J. P.; Kullmann, P. H. M.

    2008-01-01

    Advances in modern neuroscience require the identification of principles that connect different levels of experimental analysis, from molecular mechanisms to explanations of cellular functions, then to circuits, and, ultimately, to systems and behavior. Here, we examine how synaptic organization of the sympathetic ganglia may enable them to function as use-dependent amplifiers of preganglionic activity and how the gain of this amplification may be modulated by metabotropic signaling mechanisms. The approach combines a general computational model of ganglionic integration together with experimental tests of the model using the dynamic clamp method. In these experiments, we recorded intracellularly from dissociated bullfrog sympathetic neurons and then mimicked physiological synapses with virtual computer-generated synapses. It thus became possible to analyze the synaptic gain by recording cellular responses to complex patterns of synaptic activity that normally arise in vivo from convergent nicotinic and muscarinic synapses. The results of these studies are significant because they illustrate how gain generated through ganglionic integration may contribute to the feedback control of important autonomic behaviors, in particular to the control of the blood pressure. We dedicate this paper to the memory of Professor Vladimir Skok, whose rich legacy in synaptic physiology helped establish the modern paradigm for connecting multiple levels of analysis in studies of the nervous system. PMID:19756262

  17. One-channel Cell-attached Patch-clamp Recording

    PubMed Central

    Maki, Bruce A.; Cummings, Kirstie A.; Paganelli, Meaghan A.; Murthy, Swetha E.; Popescu, Gabriela K.

    2014-01-01

    Ion channel proteins are universal devices for fast communication across biological membranes. The temporal signature of the ionic flux they generate depends on properties intrinsic to each channel protein as well as the mechanism by which it is generated and controlled and represents an important area of current research. Information about the operational dynamics of ion channel proteins can be obtained by observing long stretches of current produced by a single molecule. Described here is a protocol for obtaining one-channel cell-attached patch-clamp current recordings for a ligand gated ion channel, the NMDA receptor, expressed heterologously in HEK293 cells or natively in cortical neurons. Also provided are instructions on how to adapt the method to other ion channels of interest by presenting the example of the mechano-sensitive channel PIEZO1. This method can provide data regarding the channel’s conductance properties and the temporal sequence of open-closed conformations that make up the channel’s activation mechanism, thus helping to understand their functions in health and disease. PMID:24961614

  18. Fabrication of a nano-structured PbO2 electrode by using printing technology: Surface characterization and application

    NASA Astrophysics Data System (ADS)

    Kannan, K.; Muthuraman, G.; Cho, G.; Moon, I. S.

    2014-08-01

    This investigation aimed to introduce printing technology for the first time to prepare a nanostrucutured PbO2 electrode and its application to a cerium redox transfer process. The new method of nano-size PbO2 preparation demonstrated that nano-PbO2 could be obtained in less time and at less cost at room temperature. The prepared nano-PbO2 screen printed on a Ti electrode by three different compositions under similar conditions showed through surface and electrochemical analyses no adherence on Ti and no contact with other nano-PbO2 particles. Gravure printing of nano-PbO2 on a PET (poly ethylene thin) film at high pressure was done with two different compositions for the first time. The selective composition of 57.14 % nano-PbO2 powder with 4.28 % carbon black and 38.58 % ECA (ethyl carbitol acetate) produced a film with a nanoporous structure with an electron transfer ability. Finally, the optimized gravure-printed nano-PbO2 electrode was applied to the oxidation of Ce(III) to Ce(IV) by using cyclic voltammetry. The gravure-printed nano-PbO2 should pave the way to promising applications in electrochemical and sensor fields.

  19. Stochastic modal models of slender uncertain curved beams preloaded through clamping

    NASA Astrophysics Data System (ADS)

    Avalos, Javier; Richter, Lanae A.; Wang, X. Q.; Murthy, Raghavendra; Mignolet, Marc P.

    2015-01-01

    This paper addresses the stochastic modeling of the stiffness matrix of slender uncertain curved beams that are forced fit into a clamped-clamped fixture designed for straight beams. Because of the misfit with the clamps, the final shape of the clamped-clamped beams is not straight and they are subjected to an axial preload. Both of these features are uncertain given the uncertainty on the initial, undeformed shape of the beams and affect significantly the stiffness matrix associated with small motions around the clamped-clamped configuration. A modal model using linear modes of the straight clamped-clamped beam with a randomized stiffness matrix is employed to characterize the linear dynamic behavior of the uncertain beams. This stiffness matrix is modeled using a mixed nonparametric-parametric stochastic model in which the nonparametric (maximum entropy) component is used to model the uncertainty in final shape while the preload is explicitly, parametrically included in the stiffness matrix representation. Finally, a maximum likelihood framework is proposed for the identification of the parameters associated with the uncertainty level and the mean model, or part thereof, using either natural frequencies only or natural frequencies and mode shape information of the beams around their final clamped-clamped state. To validate these concepts, three simulated, computational experiments were conducted within Nastran to produce populations of natural frequencies and mode shapes of uncertain slender curved beams after clamping. The three experiments differed from each other by the nature of the clamping condition in the in-plane direction. One experiment assumed a no-slip condition (zero in-plane displacement), another a perfect slip (no in-plane force), while the third one invoked friction. The first two experiments gave distributions of frequencies with similar features while the latter one yielded a strong deterministic dependence of the frequencies on each other, a

  20. Voltage- and calcium-dependent motility of saccular hair bundles

    NASA Astrophysics Data System (ADS)

    Quiñones, Patricia M.; Meenderink, Sebastiaan W. F.; Bozovic, Dolores

    2015-12-01

    Active bundle motility, which is hypothesized to supply feedback for mechanical amplification of signals, is thought to enhance sensitivity and sharpen tuning in vestibular and auditory organs. To study active hair bundle motility, we combined high-speed camera recordings of bullfrog sacculi, which were mounted in a two-compartment chamber, and voltage-clamp of the hair cell membrane potential. Using this paradigm, we measured three types of bundle motions: 1) spontaneous oscillations which can be analyzed to measure the physiological operating range of the transduction channel; 2) a sustained quasi-static movement of the bundle that depends on membrane potential; and 3) a fast, transient and asymmetric movement that resets the bundle position and depends on changes in the membrane potential. These data support a role for both calcium and voltage in the transduction-channel function.

  1. Imaging voltage in neurons

    PubMed Central

    Peterka, Darcy S.; Takahashi, Hiroto; Yuste, Rafael

    2011-01-01

    In the last decades, imaging membrane potential has become a fruitful approach to study neural circuits, especially in invertebrate preparations with large, resilient neurons. At the same time, particularly in mammalian preparations, voltage imaging methods suffer from poor signal to noise and secondary side effects, and they fall short of providing single-cell resolution when imaging of the activity of neuronal populations. As an introduction to these techniques, we briefly review different voltage imaging methods (including organic fluorophores, SHG chromophores, genetic indicators, hybrid, nanoparticles and intrinsic approaches), and illustrate some of their applications to neuronal biophysics and mammalian circuit analysis. We discuss their mechanisms of voltage sensitivity, from reorientation, electrochromic or electro-optical phenomena, to interaction among chromophores or membrane scattering, and highlight their advantages and shortcomings, commenting on the outlook for development of novel voltage imaging methods. PMID:21220095

  2. High Voltage TAL Performance

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Jankovsky, Robert S.; Rawlin, Vincent K.; Manzella, David H.

    2001-01-01

    The performance of a two-stage, anode layer Hall thruster was evaluated. Experiments were conducted in single and two-stage configurations. In single-stage configuration, the thruster was operated with discharge voltages ranging from 300 to 1700 V. Discharge specific impulses ranged from 1630 to 4140 sec. Thruster investigations were conducted with input power ranging from 1 to 8.7 kW, corresponding to power throttling of nearly 9: 1. An extensive two-stage performance map was generated. Data taken with total voltage (sum of discharge and accelerating voltage) constant revealed a decrease in thruster efficiency as the discharge voltage was increased. Anode specific impulse values were comparable in the single and two-stage configurations showing no strong advantage for two-stage operation.

  3. High voltage power supply

    NASA Technical Reports Server (NTRS)

    Ruitberg, A. P.; Young, K. M. (Inventor)

    1985-01-01

    A high voltage power supply is formed by three discrete circuits energized by a battery to provide a plurality of concurrent output signals floating at a high output voltage on the order of several tens of kilovolts. In the first two circuits, the regulator stages are pulse width modulated and include adjustable ressistances for varying the duty cycles of pulse trains provided to corresponding oscillator stages while the third regulator stage includes an adjustable resistance for varying the amplitude of a steady signal provided to a third oscillator stage. In the first circuit, the oscillator, formed by a constant current drive network and a tuned resonant network included a step up transformer, is coupled to a second step up transformer which, in turn, supplies an amplified sinusoidal signal to a parallel pair of complementary poled rectifying, voltage multiplier stages to generate the high output voltage.

  4. Effects of van der Waals Force and Thermal Stresses on Pull-in Instability of Clamped Rectangular Microplates

    PubMed Central

    Batra, Romesh C.; Porfiri, Maurizio; Spinello, Davide

    2008-01-01

    We study the influence of von Kármán nonlinearity, van der Waals force, and thermal stresses on pull-in instability and small vibrations of electrostatically actuated microplates. We use the Galerkin method to develop a tractable reduced-order model for electrostatically actuated clamped rectangular microplates in the presence of van der Waals forces and thermal stresses. More specifically, we reduce the governing two-dimensional nonlinear transient boundary-value problem to a single nonlinear ordinary differential equation. For the static problem, the pull-in voltage and the pull-in displacement are determined by solving a pair of nonlinear algebraic equations. The fundamental vibration frequency corresponding to a deflected configuration of the microplate is determined by solving a linear algebraic equation. The proposed reduced-order model allows for accurately estimating the combined effects of van der Waals force and thermal stresses on the pull-in voltage and the pull-in deflection profile with an extremely limited computational effort.

  5. Characterization of K+ currents using an in situ patch clamp technique in body wall muscle cells from Caenorhabditis elegans

    PubMed Central

    Jospin, Maëlle; Mariol, Marie-Christine; Ségalat, Laurent; Allard, Bruno

    2002-01-01

    The properties of K+ channels in body wall muscle cells acutely dissected from the nematode Caenorhabditis elegans were investigated at the macroscopic and unitary level using an in situ patch clamp technique. In the whole-cell configuration, depolarizations to potentials positive to −40 mV gave rise to outward currents resulting from the activation of two kinetically distinct voltage-dependent K+ currents: a fast activating and inactivating 4-aminopyridine-sensitive component and a slowly activating and maintained tetraethylammonium-sensitive component. In cell-attached patches, voltage-dependent K+ channels, with unitary conductances of 34 and 80 pS in the presence of 5 and 140 mm external K+, respectively, activated at membrane potentials positive to −40 mV. Excision revealed that these channels corresponded to Ca2+-activated K+ channels exhibiting an unusual sensitivity to internal Cl− and whose activity progressively decreased in inside-out conditions. After complete run-down of these channels, one third of inside-out patches displayed activity of another Ca2+-activated K+ channel of smaller unitary conductance (6 pS at 0 mV in the presence of 5 mm external K+). In providing a detailed description of native K+ currents in body wall muscle cells of C. elegans, this work lays the basis for further comparisons with mutants to assess the function of K+ channels in this model organism that is highly amenable to molecular and classical genetics. PMID:12381812

  6. High voltage DC power supply

    DOEpatents

    Droege, T.F.

    1989-12-19

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

  7. High voltage DC power supply

    DOEpatents

    Droege, Thomas F.

    1989-01-01

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.

  8. Low-voltage gyrotrons

    SciTech Connect

    Glyavin, M. Yu.; Zavolskiy, N. A.; Sedov, A. S.; Nusinovich, G. S.

    2013-03-15

    For a long time, the gyrotrons were primarily developed for electron cyclotron heating and current drive of plasmas in controlled fusion reactors where a multi-megawatt, quasi-continuous millimeter-wave power is required. In addition to this important application, there are other applications (and their number increases with time) which do not require a very high power level, but such issues as the ability to operate at low voltages and have compact devices are very important. For example, gyrotrons are of interest for a dynamic nuclear polarization, which improves the sensitivity of the nuclear magnetic resonance spectroscopy. In this paper, some issues important for operation of gyrotrons driven by low-voltage electron beams are analyzed. An emphasis is made on the efficiency of low-voltage gyrotron operation at the fundamental and higher cyclotron harmonics. These efficiencies calculated with the account for ohmic losses were, first, determined in the framework of the generalized gyrotron theory based on the cold-cavity approximation. Then, more accurate, self-consistent calculations for the fundamental and second harmonic low-voltage sub-THz gyrotron designs were carried out. Results of these calculations are presented and discussed. It is shown that operation of the fundamental and second harmonic gyrotrons with noticeable efficiencies is possible even at voltages as low as 5-10 kV. Even the third harmonic gyrotrons can operate at voltages about 15 kV, albeit with rather low efficiency (1%-2% in the submillimeter wavelength region).

  9. Low-voltage gyrotrons

    NASA Astrophysics Data System (ADS)

    Glyavin, M. Yu.; Zavolskiy, N. A.; Sedov, A. S.; Nusinovich, G. S.

    2013-03-01

    For a long time, the gyrotrons were primarily developed for electron cyclotron heating and current drive of plasmas in controlled fusion reactors where a multi-megawatt, quasi-continuous millimeter-wave power is required. In addition to this important application, there are other applications (and their number increases with time) which do not require a very high power level, but such issues as the ability to operate at low voltages and have compact devices are very important. For example, gyrotrons are of interest for a dynamic nuclear polarization, which improves the sensitivity of the nuclear magnetic resonance spectroscopy. In this paper, some issues important for operation of gyrotrons driven by low-voltage electron beams are analyzed. An emphasis is made on the efficiency of low-voltage gyrotron operation at the fundamental and higher cyclotron harmonics. These efficiencies calculated with the account for ohmic losses were, first, determined in the framework of the generalized gyrotron theory based on the cold-cavity approximation. Then, more accurate, self-consistent calculations for the fundamental and second harmonic low-voltage sub-THz gyrotron designs were carried out. Results of these calculations are presented and discussed. It is shown that operation of the fundamental and second harmonic gyrotrons with noticeable efficiencies is possible even at voltages as low as 5-10 kV. Even the third harmonic gyrotrons can operate at voltages about 15 kV, albeit with rather low efficiency (1%-2% in the submillimeter wavelength region).

  10. Experimental Evaluation of the Static Strain on the Clamping Bolt in the Structure of a Bolt-Clamped Langevin-Type Transducer

    NASA Astrophysics Data System (ADS)

    Takahashi, Toru; Adachi, Kazunari

    2008-06-01

    Bolt-clamped Langevin-type transducers (BLTs) used in high-power ultrasonics are required to realize various characteristics depending on the technical field where they are used. Specifically for high amplitude operation, the static prestress or bearing stress imposed on the piezoelectric elements in the transducer by clamping should be large enough to compensate for their low tensile strength. The authors previously calculated prestress by the finite element method (FEM), but the numerical results have not been experimentally confirmed yet because of the difficulty of directly measuring of the prestress. In this study, the authors measured the strain on the surface of the clamping bolt using strain gauges pasted on it and compared the results with those of the numerical analysis by FEM in order to confirm the validity of the calculation. The measurement has been conducted for three BLTs of identical shape. The results of the measurement show reasonable agreement with those of the numerical analysis, and thus the authors have found that the measurement of the strain on the clamping bolt gives us a practical method for indirect evaluation of the prestress actually imposed on the piezoelectric elements that changes with the turning angle of the metal block in the clamping.

  11. The double transverse microvascular clamp: a new instrument for microsurgical anastomoses.

    PubMed

    El-Shazly, Mohamed

    2012-11-01

    Since the introduction of microvascular surgeries, the sophisticated ideas and techniques of tissue transplantations are continually advancing and searching for the best work conditions to present the best outcomes in these critical interferences. Every tissue transplant has its donor vessels, artery and vein, which should be anastomosed to recipient vessels. A new instrument, the double transverse microvascular clamp (DTMC), has been developed to be applied simultaneously, as one clamp, to both the artery and its accompanying vein. The transverse design of this clamp keeps the artery separate from its vein, allowing each anastomosis to be performed more easily. The limited clamp surface area minimizes the glazing and blurring effects. Applying only one clamp to the two vessels presents more work space and overcomes the crowdedness caused by the use of two single clamps. Using a DTMC on both the recipient and donor vessels provides optimal suture maneuverability and ideal work situation compared with the use of two double approximating clamps. We believe this DTMC would be a valuable addition to the microsurgical instruments market. PMID:22711201

  12. The checkpoint clamp activates Mec1 kinase during initiation of the DNA damage checkpoint

    PubMed Central

    Majka, Jerzy; Niedziela-Majka, Anita; Burgers, Peter M. J.

    2007-01-01

    SUMMARY Yeast Mec1/Ddc2 protein kinase, the ortholog of human ATR/ATRIP, plays a central role in the DNA-damage checkpoint. The PCNA-like clamp Rad17/Mec3/Ddc1 (the 9-1-1 complex in human) and its loader Rad24-RFC are also essential components of this signal transduction pathway. Here we have studied the role of the clamp in regulating Mec1, and delineate how the signal generated by DNA lesions is transduced to the Rad53 effector kinase. The checkpoint clamp greatly activates the kinase activity of Mec1, but only if the clamp is appropriately loaded upon partial duplex DNA. Activated Mec1 phosphorylates the Ddc1 and Mec3 subunits of the clamp, the Rad24 subunit of the loader, and the Rpa1 and Rpa2 subunits of RPA. Phosphorylation of Rad53, and of human PHAS-1, a non-specific target, also requires a properly loaded clamp. Phosphorylation and binding studies with individual clamp subunits indicate that the Ddc1 subunit mediates the functional interactions with Mec1. PMID:17189191

  13. The checkpoint clamp activates Mec1 kinase during initiation of the DNA damage checkpoint.

    PubMed

    Majka, Jerzy; Niedziela-Majka, Anita; Burgers, Peter M J

    2006-12-28

    Yeast Mec1/Ddc2 protein kinase, the ortholog of human ATR/ATRIP, plays a central role in the DNA damage checkpoint. The PCNA-like clamp Rad17/Mec3/Ddc1 (the 9-1-1 complex in human) and its loader Rad24-RFC are also essential components of this signal transduction pathway. Here we have studied the role of the clamp in regulating Mec1, and we delineate how the signal generated by DNA lesions is transduced to the Rad53 effector kinase. The checkpoint clamp greatly activates the kinase activity of Mec1, but only if the clamp is appropriately loaded upon partial duplex DNA. Activated Mec1 phosphorylates the Ddc1 and Mec3 subunits of the clamp, the Rad24 subunit of the loader, and the Rpa1 and Rpa2 subunits of RPA. Phosphorylation of Rad53, and of human PHAS-1, a nonspecific target, also requires a properly loaded clamp. Phosphorylation and binding studies with individual clamp subunits indicate that the Ddc1 subunit mediates the functional interactions with Mec1. PMID:17189191

  14. Motion of a DNA Sliding Clamp Observed by Single Molecule Fluorescence Spectroscopy*S⃞

    PubMed Central

    Laurence, Ted A.; Kwon, Youngeun; Johnson, Aaron; Hollars, Christopher W.; O'Donnell, Mike; Camarero, Julio A.; Barsky, Daniel

    2008-01-01

    DNA sliding clamps attach to polymerases and slide along DNA to allow rapid, processive replication of DNA. These clamps contain many positively charged residues that could curtail the sliding due to attractive interactions with the negatively charged DNA. By single-molecule spectroscopy we have observed a fluorescently labeled sliding clamp (polymerase III β subunit or β clamp) loaded onto freely diffusing, single-stranded M13 circular DNA annealed with fluorescently labeled DNA oligomers of up to 90 bases. We find that the diffusion constant for the β clamp diffusing along DNA is on the order of 10–14 m2/s, at least 3 orders of magnitude less than that for diffusion through water alone. We also find evidence that the β clamp remains at the 3′ end in the presence of Escherichia coli single-stranded-binding protein. These results may imply that the clamp not only acts to hold the polymerase on the DNA but also prevents excessive drifting along the DNA. PMID:18556658

  15. Performance of Li-Ion Cells Under Battery Voltage Charge Control

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari; Day, John H. (Technical Monitor)

    2001-01-01

    A study consisting of electrochemical characterization and Low-Earth-Orbit (LEO) cycling of Li-Ion cells from three vendors was initiated in 1999 to determine the cycling performance and to infuse the new technology in the future NASA missions. The 8-cell batteries included in this evaluation are prismatic cells manufactured by Mine Safety Appliances Company (MSA), cylindrical cells manufactured by SAFT and prismatic cells manufactured by Yardney Technical Products, Inc. (YTP). The three batteries were cycle tested in the LEO regime at 40% depth of discharge, and under a charge control technique that consists of battery voltage clamp with a current taper. The initial testing was conducted at 20 C; however, the batteries were cycled also intermittently at low temperatures. YTP 20 Ah cells consisted of mixed-oxide (Co and Ni) positive, graphitic carbon negative, LIPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was 32 V. The low temperature cycling tests started after 4575 cycles at 20 C. The cells were not capable of cycling. at low temperature since the charge acceptance at battery level was poor. There was a cell in the battery that showed too high an end-of-charge (EOC) voltage thereby limiting the ability to charge the rest of the cells in the battery. The battery has completed 6714 cycles. SAFT 12 Ah cells consisted of mixed-oxide (Co and NO positive, graphitic carbon negative, LiPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was for 30.8 V. The low temperature cycling tests started after 4594 cycles at 20 C. A cell that showed low end of discharge (EOD) and EOC voltages and three other cells that showed higher EOC voltages limited the charge acceptance at the selected voltage limit during charge. The cells were capable of cycling at 10 C and 0 C but the charge voltage limit had to be increased to 34.3 V (4.3 V per cell). The low temperature cycling may have induced poor chargeability since the voltage had to

  16. High voltage pulse generator

    DOEpatents

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  17. [A data interface based on USB bus technology for full auto patch-clamp system].

    PubMed

    Liu, Youlin; Hu, Yang; Qu, Anlian

    2006-04-01

    A USB bus based data interface technology for full auto Patch-Clamp system is discussed in the article. The main controller is CY2131QC (Cypress) and the logic controller is EPM3256A (Altera). Optocouplers are used to get rid of the noise from the interface. It makes the installation of the Patch-Clamp system easier by using the USB bus, and is suitable for the new generation of the Patch-Clamp system with a high speed of 1M bytes/s. PMID:16706338

  18. Device for monitoring cell voltage

    DOEpatents

    Doepke, Matthias; Eisermann, Henning

    2012-08-21

    A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

  19. Patch-Clamp Study of Hepatitis C p7 Channels Reveals Genotype-Specific Sensitivity to Inhibitors.

    PubMed

    Breitinger, Ulrike; Farag, Noha S; Ali, Nourhan K M; Breitinger, Hans-Georg A

    2016-06-01

    Hepatitis C is a major worldwide disease and health hazard, affecting ∼3% of the world population. The p7 protein of hepatitis C virus (HCV) is an intracellular ion channel and pH regulator that is involved in the viral replication cycle. It is targeted by various classical ion channel blockers. Here, we generated p7 constructs corresponding to HCV genotypes 1a, 2a, 3a, and 4a for recombinant expression in HEK293 cells, and studied p7 channels using patch-clamp recording techniques. The pH50 values for recombinant p7 channels were between 6.0 and 6.5, as expected for proton-activated channels, and current-voltage dependence did not show any differences between genotypes. Inhibition of p7-mediated currents by amantadine, however, exhibited significant, genotype-specific variation. The IC50 values of p7-1a and p7-4a were 0.7 ± 0.1 nM and 3.2 ± 1.2 nM, whereas p7-2a and p7-3a had 50- to 1000-fold lower sensitivity, with IC50 values of 2402 ± 334 nM and 344 ± 64 nM, respectively. The IC50 values for rimantadine were low across all genotypes, ranging from 0.7 ± 0.1 nM, 1.6 ± 0.6 nM, and 3.0 ± 0.8 nM for p7-1a, p7-3a, and p7-4a, respectively, to 24 ± 4 nM for p7-2a. Results from patch-clamp recordings agreed well with cellular assays of p7 activity, namely, measurements of intracellular pH and hemadsorption assays, which confirmed the much reduced amantadine sensitivity of genotypes 2a and 3a. Thus, our results establish patch-clamp studies of recombinant viroporins as a valid analytical tool that can provide quantitative information about viroporin channel properties, complementing established techniques. PMID:27276260

  20. Benzonatate inhibition of voltage-gated sodium currents.

    PubMed

    Evans, M Steven; Maglinger, G Benton; Fletcher, Anita M; Johnson, Stephen R

    2016-02-01

    Benzonatate was FDA-approved in 1958 as an antitussive. Its mechanism of action is thought to be anesthesia of vagal sensory nerve fibers that mediate cough. Vagal sensory neurons highly express the Nav1.7 subtype of voltage-gated sodium channels, and inhibition of this channel inhibits the cough reflex. Local anesthetics inhibit voltage-gated sodium channels, but there are no reports of whether benzonatate affects these channels. Our hypothesis is that benzonatate inhibits Nav1.7 voltage-gated sodium channels. We used whole cell voltage clamp recording to test the effects of benzonatate on voltage-gated sodium (Na(+)) currents in two murine cell lines, catecholamine A differentiated (CAD) cells, which express primarily Nav1.7, and N1E-115, which express primarily Nav1.3. We found that, like local anesthetics, benzonatate strongly and reversibly inhibits voltage-gated Na(+) channels. Benzonatate causes both tonic and phasic inhibition. It has greater effects on channel inactivation than on activation, and its potency is much greater at depolarized potentials, indicating inactivated-state-specific effects. Na(+) currents in CAD cells and N1E-115 cells are similarly affected, indicating that benzonatate is not Na(+) channel subtype-specific. Benzonatate is a mixture of polyethoxy esters of 4-(butylamino) benzoic acid having varying degrees of hydrophobicity. We found that Na(+) currents are inhibited most potently by a benzonatate fraction containing the 9-ethoxy component. Detectable effects of benzonatate occur at concentrations as low as 0.3 μM, which has been reported in humans. We conclude that benzonatate has local anesthetic-like effects on voltage-gated sodium channels, including Nav1.7, which is a possible mechanism for cough suppression by the drug. PMID:26386152

  1. E-beam high voltage switching power supply

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  2. E-beam high voltage switching power supply

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1997-03-11

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360{degree}/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs.

  3. KCNE3 acts by promoting voltage sensor activation in KCNQ1

    PubMed Central

    Barro-Soria, Rene; Perez, Marta E.; Larsson, H. Peter

    2015-01-01

    KCNE β-subunits assemble with and modulate the properties of voltage-gated K+ channels. In the colon, stomach, and kidney, KCNE3 coassembles with the α-subunit KCNQ1 to form K+ channels important for K+ and Cl− secretion that appear to be voltage-independent. How KCNE3 subunits turn voltage-gated KCNQ1 channels into apparent voltage-independent KCNQ1/KCNE3 channels is not completely understood. Different mechanisms have been proposed to explain the effect of KCNE3 on KCNQ1 channels. Here, we use voltage clamp fluorometry to determine how KCNE3 affects the voltage sensor S4 and the gate of KCNQ1. We find that S4 moves in KCNQ1/KCNE3 channels, and that inward S4 movement closes the channel gate. However, KCNE3 shifts the voltage dependence of S4 movement to extreme hyperpolarized potentials, such that in the physiological voltage range, the channel is constitutively conducting. By separating S4 movement and gate opening, either by a mutation or PIP2 depletion, we show that KCNE3 directly affects the S4 movement in KCNQ1. Two negatively charged residues of KCNE3 (D54 and D55) are found essential for the effect of KCNE3 on KCNQ1 channels, mainly exerting their effects by an electrostatic interaction with R228 in S4. Our results suggest that KCNE3 primarily affects the voltage-sensing domain and only indirectly affects the gate. PMID:26668384

  4. Nanoscale characterization of TiO(2) films grown by atomic layer deposition on RuO(2) electrodes.

    PubMed

    Murakami, Katsuhisa; Rommel, Mathias; Hudec, Boris; Rosová, Alica; Hušeková, Kristína; Dobročka, Edmund; Rammula, Raul; Kasikov, Aarne; Han, Jeong Hwan; Lee, Woongkyu; Song, Seul Ji; Paskaleva, Albena; Bauer, Anton J; Frey, Lothar; Fröhlich, Karol; Aarik, Jaan; Hwang, Cheol Seong

    2014-02-26

    Topography and leakage current maps of TiO2 films grown by atomic layer deposition on RuO2 electrodes using either a TiCl4 or a Ti(O-i-C3H7)4 precursor were characterized at nanoscale by conductive atomic force microscopy (CAFM). For both films, the leakage current flows mainly through elevated grains and not along grain boundaries. The overall CAFM leakage current is larger and more localized for the TiCl4-based films (0.63 nm capacitance equivalent oxide thickness, CET) compared to the Ti(O-i-C3H7)4-based films (0.68 nm CET). Both films have a physical thickness of ∼20 nm. The nanoscale leakage currents are consistent with macroscopic leakage currents from capacitor structures and are correlated with grain characteristics observed by topography maps and transmission electron microscopy as well as with X-ray diffraction. PMID:24483129

  5. Voltage controlled current source

    DOEpatents

    Casne, Gregory M.

    1992-01-01

    A seven decade, voltage controlled current source is described for use in testing intermediate range nuclear instruments that covers the entire test current range of from 10 picoamperes to 100 microamperes. High accuracy is obtained throughout the entire seven decades of output current with circuitry that includes a coordinated switching scheme responsive to the input signal from a hybrid computer to control the input voltage to an antilog amplifier, and to selectively connect a resistance to the antilog amplifier output to provide a continuous output current source as a function of a preset range of input voltage. An operator controlled switch provides current adjustment for operation in either a real-time simulation test mode or a time response test mode.

  6. Electron launching voltage monitor

    DOEpatents

    Mendel, C.W.; Savage, M.E.

    1992-03-17

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors. 5 figs.

  7. Electron launching voltage monitor

    DOEpatents

    Mendel, Clifford W.; Savage, Mark E.

    1992-01-01

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors.

  8. Voltage Amplification using Plasma

    SciTech Connect

    Farias, E. E.; Cavalcanti, G. H.; Santiago, M. A. M.

    2006-12-04

    The purpose of this work is to present experimental results about voltage amplification using plasma produced by a simple neon lamp, series connected with a signal generator and discrete circuit elements. The main advantage of employing plasma as an amplifier is due to its ability to drive larger power and potentially to operate in a larger frequency range compared with traditional amplifiers. Our results show that both, the voltage gain and the frequency range where the gain is bigger than one, are related to the plasma density which may be adjusted by a proper control of electrical discharge conditions. The plasma produced into the neon lamp exhibits a diode characteristic that is the principal responsible by the nonlinear plasma response. The amplification occurs when the plasma shows a negative conductance. In this regime the lamp works as an active amplifier and voltage gain higher than 18 was obtained.

  9. The Role of S4 Charges in Voltage-dependent and Voltage-independent KCNQ1 Potassium Channel Complexes

    PubMed Central

    Panaghie, Gianina; Abbott, Geoffrey W.

    2007-01-01

    Voltage-gated potassium (Kv) channels extend their functional repertoire by coassembling with MinK-related peptides (MiRPs). MinK slows the activation of channels formed with KCNQ1 α subunits to generate the voltage-dependent IKs channel in human heart; MiRP1 and MiRP2 remove the voltage dependence of KCNQ1 to generate potassium “leak” currents in gastrointestinal epithelia. Other Kv α subunits interact with MiRP1 and MiRP2 but without loss of voltage dependence; the mechanism for this disparity is unknown. Here, sequence alignments revealed that the voltage-sensing S4 domain of KCNQ1 bears lower net charge (+3) than that of any other eukaryotic voltage-gated ion channel. We therefore examined the role of KCNQ1 S4 charges in channel activation using alanine-scanning mutagenesis and two-electrode voltage clamp. Alanine replacement of R231, at the N-terminal side of S4, produced constitutive activation in homomeric KCNQ1 channels, a phenomenon not observed with previous single amino acid substitutions in S4 of other channels. Homomeric KCNQ4 channels were also made constitutively active by mutagenesis to mimic the S4 charge balance of R231A-KCNQ1. Loss of single S4 charges at positions R231 or R237 produced constitutively active MinK-KCNQ1 channels and increased the constitutively active component of MiRP2-KCNQ1 currents. Charge addition to the CO2H-terminal half of S4 eliminated constitutive activation in MiRP2-KCNQ1 channels, whereas removal of homologous charges from KCNQ4 S4 produced constitutively active MiRP2-KCNQ4 channels. The results demonstrate that the unique S4 charge paucity of KCNQ1 facilitates its unique conversion to a leak channel by ancillary subunits such as MiRP2. PMID:17227916

  10. High voltage variable diameter insulator

    DOEpatents

    Vanacek, D.L.; Pike, C.D.

    1982-07-13

    A high voltage feedthrough assembly having a tubular insulator extending between the ground plane ring and the high voltage ring. The insulator is made of Pyrex and decreases in diameter from the ground plane ring to the high voltage ring, producing equipotential lines almost perpendicular to the wall of the insulator to optimize the voltage-holding capability of the feedthrough assembly.

  11. Substrate Clamping Effects on Irreversible Domain Wall Dynamics in Lead Zirconate Titanate Thin Films

    SciTech Connect

    Griggio, Flavio; Jesse, Stephen; Kumar, Amit; Ovchinnikov, Oleg S; Kim, H.; Jackson, T. N.; Damjanovic, Dragan; Kalinin, Sergei V; Trolier-Mckinstry, Susan E

    2012-01-01

    The role of long-range strain interactions on domain wall dynamics is explored through macroscopic and local measurements of nonlinear behavior in mechanically clamped and released polycrystalline lead zirconate-titanate (PZT) films. Released films show a dramatic change in the global dielectric nonlinearity and its frequency dependence as a function of mechanical clamping. Furthermore, we observe a transition from strong clustering of the nonlinear response for the clamped case to almost uniform nonlinearity for the released film. This behavior is ascribed to increased mobility of domain walls. These results suggest the dominant role of collective strain interactions mediated by the local and global mechanical boundary conditions on the domain wall dynamics. The work presented in this Letter demonstrates that measurements on clamped films may considerably underestimate the piezoelectric coefficients and coupling constants of released structures used in microelectromechanical systems, energy harvesting systems, and microrobots.

  12. Acoustic plane waves incident on an oblique clamped panel in a rectangular duct

    NASA Technical Reports Server (NTRS)

    Unz, H.; Roskam, J.

    1980-01-01

    The theory of acoustic plane waves incident on an oblique clamped panel in a rectangular duct was developed from basic theoretical concepts. The coupling theory between the elastic vibrations of the panel (plate) and the oblique incident acoustic plane wave in infinite space was considered in detail, and was used for the oblique clamped panel in the rectangular duct. The partial differential equation which governs the vibrations of the clamped panel (plate) was modified by adding to it stiffness (spring) forces and damping forces. The Transmission Loss coefficient and the Noise Reduction coefficient for oblique incidence were defined and derived in detail. The resonance frequencies excited by the free vibrations of the oblique finite clamped panel (plate) were derived and calculated in detail for the present case.

  13. High voltage distributed amplifier

    NASA Astrophysics Data System (ADS)

    Willems, D.; Bahl, I.; Wirsing, K.

    1991-12-01

    A high-voltage distributed amplifier implemented in GaAs MMIC technology has demonstrated good circuit performance over at least two octave bandwidth. This technique allows for very broadband amplifier operation with good efficiency in satellite, active-aperture radar, and battery-powered systems. Also, by increasing the number of FETs, the amplifier can be designed to match different voltage rails. The circuit does require a small amount of additional chip size over conventional distributed amplifiers but does not require power dividers or additional matching networks. This circuit configuration should find great use in broadband power amplifier design.

  14. Performance of Li-Ion Cells Under Battery Voltage Charge Control

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Hari; Rao, Gopalakrishna M.

    2002-01-01

    Li-ion cells manufactured by YTP, SAFT, and MSA have completed 6714, 6226, and 3441 cycles, respectively. An increase in the charge voltage limit was required in all cases to maintain the discharge voltage. SAFT and MSA cells were capable of cycling at -10 C and 0 C with an increase in the charge voltage limit, whereas Yardney cells could not be cycled. Reconditioning improved the discharge voltage of SAFT and MSA cells; it is important to note that the effect has been temporary as in Ni-H and Ni-Cd batteries. It was demonstrated that the charge operation with VT clamp at battery rather than at cell level is feasible. Continuation of testing depends on the health of the cells and on the funding situation.

  15. A multilevel voltage-source inverter with separate dc sources for static var generation

    SciTech Connect

    Peng, Fang Zheng |; Lai, Jih-Sheng; McKeever, J.; VanCoevering, J.

    1995-09-01

    A new multilevel voltage-source inverter with a separate dc sources is proposed for high-voltage, high-power applications, such as flexible ac transmission systems (FACTS) including static var generation (SVG), power line conditioning, series compensation, phase shifting, voltage balancing, fuel cell and photovoltaic utility systems interfacing, etc. The new M-level inverter consists of (M-1)/2 single phase full bridges in which each bridge has its own separate dc source. This inverter can generate almost sinusoidal waveform voltage with only one time switching per cycle as the number of levels increases. It can solve the problems of conventional transformer-based multipulse inverters and the problems of the multilevel diode-clamped inverter and the multilevel flying capacitor inverter. To demonstrate the superiority of the new inverter, a SVG system using the new inverter topology is discussed through analysis, simulation and experiment.

  16. The TCF C-clamp DNA binding domain expands the Wnt transcriptome via alternative target recognition

    PubMed Central

    Hoverter, Nate P.; Zeller, Michael D.; McQuade, Miriam M.; Garibaldi, Angela; Busch, Anke; Selwan, Elizabeth M.; Hertel, Klemens J.; Baldi, Pierre; Waterman, Marian L.

    2014-01-01

    LEF/TCFs direct the final step in Wnt/β-catenin signalling by recruiting β-catenin to genes for activation of transcription. Ancient, non-vertebrate TCFs contain two DNA binding domains, a High Mobility Group box for recognition of the Wnt Response Element (WRE; 5′-CTTTGWWS-3′) and the C-clamp domain for recognition of the GC-rich Helper motif (5′-RCCGCC-3′). Two vertebrate TCFs (TCF-1/TCF7 and TCF-4/TCF7L2) use the C-clamp as an alternatively spliced domain to regulate cell-cycle progression, but how the C-clamp influences TCF binding and activity genome-wide is not known. Here, we used a doxycycline inducible system with ChIP-seq to assess how the C-clamp influences human TCF1 binding genome-wide. Metabolic pulse-labeling of nascent RNA with 4′Thiouridine was used with RNA-seq to connect binding to the Wnt transcriptome. We find that the C-clamp enables targeting to a greater number of gene loci for stronger occupancy and transcription regulation. The C-clamp uses Helper sites concurrently with WREs for gene targeting, but it also targets TCF1 to sites that do not have readily identifiable canonical WREs. The coupled ChIP-seq/4′Thiouridine-seq analysis identified new Wnt target genes, including additional regulators of cell proliferation. Thus, C-clamp containing isoforms of TCFs are potent transcriptional regulators with an expanded transcriptome directed by C-clamp-Helper site interactions. PMID:25414359

  17. Voltage-dependent conductances in Limulus ventral photoreceptors

    PubMed Central

    1982-01-01

    The voltage-dependent conductances of Limulus ventral photoreceptors have been investigated using a voltage-clamp technique. Depolarization in the dark induces inward and outward currents. The inward current is reduced by removing Na+ or Ca2+ and is abolished by removing both ions. These results suggest that both Na+ and Ca2+ carry voltage-dependent inward current. Inward current is insensitive to tetrodotoxin but is blocked by external Ni2+. The outward current has a large transient component that is followed by a smaller maintained component. Intracellular tetraethylammonium preferentially reduces the maintained component, and extracellular 4-amino pyridine preferentially reduces the transient component. Neither component is strongly affected by removal of extracellular Ca2+ or by intracellular injection of EGTA. It is concluded that the photoreceptors contain at least three separate voltage-dependent conductances: 1) a conductance giving rise to inward currents; 2) a delayed rectifier giving rise to maintained outward K+ current; and 3) a rapidly inactivating K+ conductance similar to the A current of molluscan neurons. PMID:7057161

  18. Resurgent current of voltage-gated Na+ channels

    PubMed Central

    Lewis, Amanda H; Raman, Indira M

    2014-01-01

    Resurgent Na+ current results from a distinctive form of Na+ channel gating, originally identified in cerebellar Purkinje neurons. In these neurons, the tetrodotoxin-sensitive voltage-gated Na+ channels responsible for action potential firing have specialized mechanisms that reduce the likelihood that they accumulate in fast inactivated states, thereby shortening refractory periods and permitting rapid, repetitive, and/or burst firing. Under voltage clamp, step depolarizations evoke transient Na+ currents that rapidly activate and quickly decay, and step repolarizations elicit slower channel reopening, or a ‘resurgent’ current. The generation of resurgent current depends on a factor in the Na+ channel complex, probably a subunit such as NaVβ4 (Scn4b), which blocks open Na+ channels at positive voltages, competing with the fast inactivation gate, and unblocks at negative voltages, permitting recovery from an open channel block along with a flow of current. Following its initial discovery, resurgent Na+ current has been found in nearly 20 types of neurons. Emerging research suggests that resurgent current is preferentially increased in a variety of clinical conditions associated with altered cellular excitability. Here we review the biophysical, molecular and structural mechanisms of resurgent current and their relation to the normal functions of excitable cells as well as pathophysiology. PMID:25172941

  19. Comparative analysis of Drosophila and mammalian complexins as fusion clamps and facilitators of neurotransmitter release

    PubMed Central

    Cho, Richard W.; Song, Yun; Littleton, J. Troy

    2010-01-01

    The SNARE-binding protein complexin (Cpx) has been demonstrated to regulate synaptic vesicle fusion. Previous studies are consistent with Cpx functioning either as a synaptic vesicle fusion clamp to prevent premature exocytosis, or as a facilitator to directly stimulate release. Here we examined conserved roles of invertebrate and mammalian Cpx isoforms in the regulation of neurotransmitter release using the Drosophila neuromuscular junction as a model synapse. We find that SNARE binding by Cpx is required for its role as a fusion clamp. All four mammalian Cpx proteins (mCpx), which have been demonstrated to facilitate release, also function as fusion clamps when expressed in Drosophilacpx null mutants, though their clamping abilities varies between isoforms. Moreover, expression of mCpx I, II or III isoforms dramatically enhance evoked release compared to mCpx IV or Drosophila Cpx. Differences in the clamping and facilitating properties of complexin isoforms can be partially attributed to differences in the C-terminal membrane tethering domain. Our findings indicate that the function of complexins as fusion clamps and facilitators of fusion are conserved across evolution, and that these roles are genetically separable within an isoform and across different isoforms. PMID:20678575

  20. The sliding clamp tethers the endonuclease domain of MutL to DNA

    PubMed Central

    Pillon, Monica C.; Babu, Vignesh M. P.; Randall, Justin R.; Cai, Jiudou; Simmons, Lyle A.; Sutton, Mark D.; Guarné, Alba

    2015-01-01

    The sliding clamp enhances polymerase processivity and coordinates DNA replication with other critical DNA processing events including translesion synthesis, Okazaki fragment maturation and DNA repair. The relative binding affinity of the sliding clamp for its partners determines how these processes are orchestrated and is essential to ensure the correct processing of newly replicated DNA. However, while stable clamp interactions have been extensively studied; dynamic interactions mediated by the sliding clamp remain poorly understood. Here, we characterize the interaction between the bacterial sliding clamp (β-clamp) and one of its weak-binding partners, the DNA mismatch repair protein MutL. Disruption of this interaction causes a mild mutator phenotype in Escherichia coli, but completely abrogates mismatch repair activity in Bacillus subtilis. We stabilize the MutL-β interaction by engineering two cysteine residues at variable positions of the interface. Using disulfide bridge crosslinking, we have stabilized the E. coli and B. subtilis MutL-β complexes and have characterized their structures using small angle X-ray scattering. We find that the MutL-β interaction greatly stimulates the endonuclease activity of B. subtilis MutL and supports this activity even in the absence of the N-terminal region of the protein. PMID:26384423

  1. Mechanism of polymerase collision release from sliding clamps on the lagging strand

    PubMed Central

    Georgescu, Roxana E; Kurth, Isabel; Yao, Nina Y; Stewart, Jelena; Yurieva, Olga; O'Donnell, Mike

    2009-01-01

    Replicative polymerases are tethered to DNA by sliding clamps for processive DNA synthesis. Despite attachment to a sliding clamp, the polymerase on the lagging strand must cycle on and off DNA for each Okazaki fragment. In the ‘collision release' model, the lagging strand polymerase collides with the 5′ terminus of an earlier completed fragment, which triggers it to release from DNA and from the clamp. This report examines the mechanism of collision release by the Escherichia coli Pol III polymerase. We find that collision with a 5′ terminus does not trigger polymerase release. Instead, the loss of ssDNA on filling in a fragment triggers polymerase to release from the clamp and DNA. Two ssDNA-binding elements are involved, the τ subunit of the clamp loader complex and an OB domain within the DNA polymerase itself. The τ subunit acts as a switch to enhance polymerase binding at a primed site but not at a nick. The OB domain acts as a sensor that regulates the affinity of Pol III to the clamp in the presence of ssDNA. PMID:19696739

  2. The sliding clamp tethers the endonuclease domain of MutL to DNA.

    PubMed

    Pillon, Monica C; Babu, Vignesh M P; Randall, Justin R; Cai, Jiudou; Simmons, Lyle A; Sutton, Mark D; Guarné, Alba

    2015-12-15

    The sliding clamp enhances polymerase processivity and coordinates DNA replication with other critical DNA processing events including translesion synthesis, Okazaki fragment maturation and DNA repair. The relative binding affinity of the sliding clamp for its partners determines how these processes are orchestrated and is essential to ensure the correct processing of newly replicated DNA. However, while stable clamp interactions have been extensively studied; dynamic interactions mediated by the sliding clamp remain poorly understood. Here, we characterize the interaction between the bacterial sliding clamp (β-clamp) and one of its weak-binding partners, the DNA mismatch repair protein MutL. Disruption of this interaction causes a mild mutator phenotype in Escherichia coli, but completely abrogates mismatch repair activity in Bacillus subtilis. We stabilize the MutL-β interaction by engineering two cysteine residues at variable positions of the interface. Using disulfide bridge crosslinking, we have stabilized the E. coli and B. subtilis MutL-β complexes and have characterized their structures using small angle X-ray scattering. We find that the MutL-β interaction greatly stimulates the endonuclease activity of B. subtilis MutL and supports this activity even in the absence of the N-terminal region of the protein. PMID:26384423

  3. A novel monolithic piezoelectric actuated flexure-mechanism based wire clamp for microelectronic device packaging.

    PubMed

    Liang, Cunman; Wang, Fujun; Tian, Yanling; Zhao, Xingyu; Zhang, Hongjie; Cui, Liangyu; Zhang, Dawei; Ferreira, Placid

    2015-04-01

    A novel monolithic piezoelectric actuated wire clamp is presented in this paper to achieve fast, accurate, and robust microelectronic device packaging. The wire clamp has compact, flexure-based mechanical structure and light weight. To obtain large and robust jaw displacements and ensure parallel jaw grasping, a two-stage amplification composed of a homothetic bridge type mechanism and a parallelogram leverage mechanism was designed. Pseudo-rigid-body model and Lagrange approaches were employed to conduct the kinematic, static, and dynamic modeling of the wire clamp and optimization design was carried out. The displacement amplification ratio, maximum allowable stress, and natural frequency were calculated. Finite element analysis (FEA) was conducted to evaluate the characteristics of the wire clamp and wire electro discharge machining technique was utilized to fabricate the monolithic structure. Experimental tests were carried out to investigate the performance and the experimental results match well with the theoretical calculation and FEA. The amplification ratio of the clamp is 20.96 and the working mode frequency is 895 Hz. Step response test shows that the wire clamp has fast response and high accuracy and the motion resolution is 0.2 μm. High speed precision grasping operations of gold and copper wires were realized using the wire clamper. PMID:25933896

  4. A novel monolithic piezoelectric actuated flexure-mechanism based wire clamp for microelectronic device packaging

    NASA Astrophysics Data System (ADS)

    Liang, Cunman; Wang, Fujun; Tian, Yanling; Zhao, Xingyu; Zhang, Hongjie; Cui, Liangyu; Zhang, Dawei; Ferreira, Placid

    2015-04-01

    A novel monolithic piezoelectric actuated wire clamp is presented in this paper to achieve fast, accurate, and robust microelectronic device packaging. The wire clamp has compact, flexure-based mechanical structure and light weight. To obtain large and robust jaw displacements and ensure parallel jaw grasping, a two-stage amplification composed of a homothetic bridge type mechanism and a parallelogram leverage mechanism was designed. Pseudo-rigid-body model and Lagrange approaches were employed to conduct the kinematic, static, and dynamic modeling of the wire clamp and optimization design was carried out. The displacement amplification ratio, maximum allowable stress, and natural frequency were calculated. Finite element analysis (FEA) was conducted to evaluate the characteristics of the wire clamp and wire electro discharge machining technique was utilized to fabricate the monolithic structure. Experimental tests were carried out to investigate the performance and the experimental results match well with the theoretical calculation and FEA. The amplification ratio of the clamp is 20.96 and the working mode frequency is 895 Hz. Step response test shows that the wire clamp has fast response and high accuracy and the motion resolution is 0.2 μm. High speed precision grasping operations of gold and copper wires were realized using the wire clamper.

  5. Peptide- and proton-driven allosteric clamps catalyze anthrax toxin translocation across membranes

    PubMed Central

    Das, Debasis; Krantz, Bryan A.

    2016-01-01

    Anthrax toxin is an intracellularly acting toxin in which sufficient information is available regarding the structure of its transmembrane channel, allowing for detailed investigation of models of translocation. Anthrax toxin, comprising three proteins—protective antigen (PA), lethal factor (LF), and edema factor—translocates large proteins across membranes. Here we show that the PA translocase channel has a transport function in which its catalytic active sites operate allosterically. We find that the phenylalanine clamp (ϕ-clamp), the known conductance bottleneck in the PA translocase, gates as either a more closed state or a more dilated state. Thermodynamically, the two channel states have >300-fold different binding affinities for an LF-derived peptide. The change in clamp thermodynamics requires distant α-clamp and ϕ-clamp sites. Clamp allostery and translocation are more optimal for LF peptides with uniform stereochemistry, where the least allosteric and least efficiently translocated peptide had a mixed stereochemistry. Overall, the kinetic results are in less agreement with an extended-chain Brownian ratchet model but, instead, are more consistent with an allosteric helix-compression model that is dependent also on substrate peptide coil-to-helix/helix-to-coil cooperativity. PMID:27506790

  6. Peptide- and proton-driven allosteric clamps catalyze anthrax toxin translocation across membranes.

    PubMed

    Das, Debasis; Krantz, Bryan A

    2016-08-23

    Anthrax toxin is an intracellularly acting toxin in which sufficient information is available regarding the structure of its transmembrane channel, allowing for detailed investigation of models of translocation. Anthrax toxin, comprising three proteins-protective antigen (PA), lethal factor (LF), and edema factor-translocates large proteins across membranes. Here we show that the PA translocase channel has a transport function in which its catalytic active sites operate allosterically. We find that the phenylalanine clamp (ϕ-clamp), the known conductance bottleneck in the PA translocase, gates as either a more closed state or a more dilated state. Thermodynamically, the two channel states have >300-fold different binding affinities for an LF-derived peptide. The change in clamp thermodynamics requires distant α-clamp and ϕ-clamp sites. Clamp allostery and translocation are more optimal for LF peptides with uniform stereochemistry, where the least allosteric and least efficiently translocated peptide had a mixed stereochemistry. Overall, the kinetic results are in less agreement with an extended-chain Brownian ratchet model but, instead, are more consistent with an allosteric helix-compression model that is dependent also on substrate peptide coil-to-helix/helix-to-coil cooperativity. PMID:27506790

  7. High Voltage Insulation Technology

    NASA Astrophysics Data System (ADS)

    Scherb, V.; Rogalla, K.; Gollor, M.

    2008-09-01

    In preparation of new Electronic Power Conditioners (EPC's) for Travelling Wave Tub Amplifiers (TWTA's) on telecom satellites a study for the development of new high voltage insulation technology is performed. The initiative is mandatory to allow compact designs and to enable higher operating voltages. In a first task a market analysis was performed, comparing different materials with respect to their properties and processes. A hierarchy of selection criteria was established and finally five material candidates (4 Epoxy resins and 1 Polyurethane resin) were selected to be further investigated in the test program. Samples for the test program were designed to represent core elements of an EPC, the high voltage transformer and Printed Circuit Boards of the high voltage section. All five materials were assessed in the practical work flow of the potting process and electrical, mechanical, thermal and lifetime testing was performed. Although the lifetime tests results were overlayed by a larges scatter, finally two candidates have been identified for use in a subsequent qualification program. This activity forms part of element 5 of the ESA ARTES Programme.

  8. Voltage-Controlled Oscillator

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Integrated Component Systems, Inc. incorporated information from a NASA Tech Briefs article into a voltage-controlled oscillator it designed for a customer. The company then applied the technology to its series of phase-locked loop synthesizers, which offer superior phase noise performance.

  9. Compact high voltage battery

    SciTech Connect

    Kinsman, G.F.; Land, E.H.

    1980-03-18

    A high voltage, low impedance laminar battery comprising a stack of series connected cells confined under pressure in a housing is described. The cells comprise laminar anodes, cathodes and separators. The cells are connected in series by laminar conductive intercell connectors. An annular spacer is associated with each cell. The spacers are separated by interdigitated ones of the separators and intercell connectors.

  10. Measuring Breakdown Voltage.

    ERIC Educational Resources Information Center

    Auer, Herbert J.

    1978-01-01

    The article discusses an aspect of conductivity, one of the electrical properties subdivisions, and describes a tester that can be shop-built. Breakdown voltage of an insulation material is specifically examined. Test procedures, parts lists, diagrams, and test data form are included. (MF)

  11. Geomagnetism and Induced Voltage

    ERIC Educational Resources Information Center

    Abdul-Razzaq, W.; Biller, R. D.

    2010-01-01

    Introductory physics laboratories have seen an influx of "conceptual integrated science" over time in their classrooms with elements of other sciences such as chemistry, biology, Earth science, and astronomy. We describe a laboratory to introduce this development, as it attracts attention to the voltage induced in the human brain as it is…

  12. Analysis of impactor residues in tray clamps from the Long Duration Exposure Facility. Part 2: Clamps from Bay B of the satellite

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Zolensky, Michael E.

    1994-01-01

    The Long Duration Exposure Facility (LDEF) was placed in low-Earth orbit (LEO) in 1984 and recovered 5.7 years later. The LDEF was host to several individual experiments specifically designed to characterize critical aspects of meteoroid and debris environment in LEO. However, it was realized from the beginning that the most efficient use of the satellite would be to examine the entire surface for impact features. In this regard, particular interest centered on common exposed materials that faced in all LDEF pointing directions. Among the most important of these materials was the tray clamps. Therefore, in an effort to better understand the nature of particulates in LEO and their effects on spacecraft hardware, residues found in impact features on LDEF tray clamp surfaces are being analyzed. This catalog presents all data from clamps from Bay B of the LDEF. NASA Technical Memorandum 104759 has cataloged impacts that occurred on Bay B (published March 1993). Subsequent catalogs will include clamps from succeeding bays of the satellite.

  13. The tailored inner space of TiO2 electrodes via a 30 second wet etching process: high efficiency solid-state perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Kwon, Jeong; Kim, Sung June; Park, Jong Hyoek

    2015-06-01

    We fabricated a perovskite solar cell with enhanced device efficiency based on the tailored inner space of the TiO2 electrode by utilizing a very short chemical etching process. It was found that the mesoporous TiO2 photoanode treated with a HF solution exhibited remarkably enhanced power conversion efficiencies under simulated AM 1.5G one sun illumination. The controlled inner space and morphology of the etched TiO2 electrode provide an optimized space for perovskite sensitizers and infiltration of a hole transport layer without sacrificing its original electron transport ability, which resulted in higher JSC, FF and VOC values. This simple platform provides new opportunities for tailoring the microstructure of the TiO2 electrode and has great potential in various optoelectronic devices utilizing metal oxide nanostructures.We fabricated a perovskite solar cell with enhanced device efficiency based on the tailored inner space of the TiO2 electrode by utilizing a very short chemical etching process. It was found that the mesoporous TiO2 photoanode treated with a HF solution exhibited remarkably enhanced power conversion efficiencies under simulated AM 1.5G one sun illumination. The controlled inner space and morphology of the etched TiO2 electrode provide an optimized space for perovskite sensitizers and infiltration of a hole transport layer without sacrificing its original electron transport ability, which resulted in higher JSC, FF and VOC values. This simple platform provides new opportunities for tailoring the microstructure of the TiO2 electrode and has great potential in various optoelectronic devices utilizing metal oxide nanostructures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01714a

  14. Generation of sodium hypochlorite (NaOCl) from sodium chloride solution using C/PbO2 and Pb/PbO2 electrodes

    NASA Astrophysics Data System (ADS)

    Ghalwa, Nasser Abu; Tamos, Hassan; ElAskalni, Mohamed; El Agha, Abed Rhman

    2012-06-01

    Two modified electrodes (Pb/PbO2 and C/PbO2) were prepared by electrodepositing a lead oxide layer on lead and carbon substrates. These modified electrodes were used as anodes for the generation of sodium hypochlorite (NaOCl) from sodium chloride solution. Different operating conditions and factors affecting the treatment process of NaOCl generation, including current density, pH values, conductive electrolytes, and electrolysis time, were studied and optimized. By comparison the C/PbO2 electrode shows a higher efficiency than the Pb/PbO2 electrode for the generation of NaOCl.

  15. Development of Automatic Voltage Regulator for Low Voltage Distribution Systems

    NASA Astrophysics Data System (ADS)

    Matsuda, Katsuhiro; Horikoshi, Kazuhiro; Seto, Toshiyuki; Iyama, Osamu; Kobayashi, Hiromu

    This paper presents the development of a new type of voltage regulator that can adequately maintain the voltage supplied to customers, dealing with the problem of voltage control along with the widespread use of photovoltaic power generation systems. The developed equipment is a pole-mounted type voltage regulator consisting of a step-down transformer that converts voltage from high to low and a series transformer for voltage compensation. The demonstration test conducted at the CRIEPI Akagi Test Center confirmed that the voltage control function of the developed voltage regulator is satisfactory based on the proposed control algorism. Also, simulation analysis, on the assumption of the clustered installation of photovoltaic power generation systems, confirmed that the introduction of the developed voltage regulator enables the system voltage to be adequately maintained and full photovoltaic power generation is possible without suppressing the output. It is anticipated that the developed voltage regulator is very effective in adequately regulating the voltage for low voltage distribution systems and gives an effective way for even more widespread photovoltaic power generation.

  16. Multiple pore conformations driven by asynchronous movements of voltage sensors in a eukaryotic sodium channel

    PubMed Central

    Goldschen-Ohm, Marcel P.; Capes, Deborah L.; Oelstrom, Kevin M.; Chanda, Baron

    2013-01-01

    Voltage-dependent Na+ channels are crucial for electrical signalling in excitable cells. Membrane depolarization initiates asynchronous movements in four non-identical voltage-sensing domains of the Na+ channel. It remains unclear to what extent this structural asymmetry influences pore gating as compared with outwardly rectifying K+ channels, where channel opening results from a final concerted transition of symmetric pore gates. Here we combine single channel recordings, cysteine accessibility and voltage clamp fluorimetry to probe the relationships between voltage sensors and pore conformations in an inactivation deficient Nav1.4 channel. We observe three distinct conductance levels such that DI-III voltage sensor activation is kinetically correlated with formation of a fully open pore, whereas DIV voltage sensor movement underlies formation of a distinct subconducting pore conformation preceding inactivation in wild-type channels. Our experiments reveal that pore gating in sodium channels involves multiple transitions driven by asynchronous movements of voltage sensors. These findings shed new light on the mechanism of coupling between activation and fast inactivation in voltage-gated sodium channels. PMID:23322038

  17. Fast and slow activation kinetics of voltage-gated sodium channels in molluscan neurons.

    PubMed

    Gilly, W F; Gillette, R; McFarlane, M

    1997-05-01

    Whole cell patch-clamp recordings of Na current (I(Na)) were made under identical experimental conditions from isolated neurons from cephalopod (Loligo, Octopus) and gastropod (Aplysia, Pleurobranchaea, Doriopsilla) species to compare properties of activation gating. Voltage dependence of peak Na conductance (gNa) is very similar in all cases, but activation kinetics in the gastropod neurons studied are markedly slower. Kinetic differences are very pronounced only over the voltage range spanned by the gNa-voltage relation. At positive and negative extremes of voltage, activation and deactivation kinetics of I(Na) are practically indistinguishable in all species studied. Voltage-dependent rate constants underlying activation of the slow type of Na channel found in gastropods thus appear to be much more voltage dependent than are the equivalent rates in the universally fast type of channel that predominates in cephalopods. Voltage dependence of inactivation kinetics shows a similar pattern and is representative of activation kinetics for the two types of Na channels. Neurons with fast Na channels can thus make much more rapid adjustments in the number of open Na channels at physiologically relevant voltages than would be possible with only slow Na channels. This capability appears to be an adaptation that is highly evolved in cephalopods, which are well known for their high-speed swimming behaviors. Similarities in slow and fast Na channel subtypes in molluscan and mammalian neurons are discussed. PMID:9163364

  18. Limitations of the whole cell patch clamp technique in the control of intracellular concentrations.

    PubMed Central

    Mathias, R T; Cohen, I S; Oliva, C

    1990-01-01

    Recent experimental studies (Pusch and Neher, 1988) and theoretical studies (Oliva et al., 1988) have found that the pipette tip is a significant barrier to diffusion in the whole cell patch clamp configuration. In this paper, we extend the theoretical analysis of fluxes between the pipette and cell to include transmembrane fluxes. The general conclusions are: (a) within the pipette, ion fluxes are driven primarily by diffusion rather than voltage gradients. (b) At steady state there is a concentration difference between the bulk pipette and intracellular solution that is described by delta c = jRp/Dp, where delta c = 1 mM for a flux, j = 1 fmol/s, through a pipette of resistance, Rp = 1 M omega, filled with a solution of resistivity, p = 100 omega --cm, given a solute diffusion coefficient, D = 10(-5) cm2/s. (c) The time to steady state is always accelerated by membrane transport, regardless of the direction of transport. We apply our analysis to the measurement of transport by the Na/K pump and Na/Ca exchanger in cells from the ventricles of mammalian heart. We find that the binding curve for intracellular Na+ to the Na/K pump will appear significantly less steep and more linear if one does not correct for the concentration difference between intracellular and pipette Na+. Similar shifts in the binding curve for extracellular Na+ to the Na/Ca exchanger can occur due to depletion of intracellular Ca(+)+ when the exchanger is stimulated. Lastly, in Appendix we analyze the effects of mobile and fixed intracellular buffers on the movement of Ca(+)+ between the pipette and cell. Fixed buffers greatly slow the time for equilibration of pipette and intracellular Ca(+)+. Mobile buffers act like a shuttle system, as they carry Ca(+)+ from pipette to cell then diffuse back when they are empty. Vigorous transport by the Na/Ca exchanger depletes mobile buffered calcium, thus stimulating diffusion from the pipette to match the rate of Ca(+)+ transport. Moreover, we find that

  19. Current-clamp analysis of a time-dependent rectification in rat optic nerve.

    PubMed Central

    Eng, D L; Gordon, T R; Kocsis, J D; Waxman, S G

    1990-01-01

    1. Rat optic nerves were studied using intra-axonal and whole-nerve recording techniques in a sucrose-gap chamber. Constant-current pulses were applied across the outer compartments of the chamber to achieve a current clamp. 2. The nerves displayed a prominent time-dependent conductance increase elicited by a hyperpolarizing constant-current pulse, as evidenced by a relaxation or 'sag' in membrane potential towards resting potential. The inward current began at about 80 ms and reached a steady level over the next 100-200 ms. Its magnitude progressively increased with increasing levels of hyperpolarization. 3. The inward current elicited by hyperpolarization was reduced, but not abolished, when Na+ was reduced from the normal bath concentration of 151 mM to 0 mM. In Na(+)-free solutions the bath K+ concentration, [K+]o, was varied between 0 and 5 mM; the inward current was greatest when [K+]o was 5 mM and was abolished when [K+]o was zero. 4. The inward current was not abolished by tetrodotoxin (TTX), tetraethylammonium (TEA) or 4-aminopyridine (4-AP) suggesting that conventional voltage-dependent sodium and potassium channels do not underlie the time-dependent conductance increase. Low concentrations of Cs+ completely blocked the inward current, and Ba2+ induced a partial block. External application of divalent cations (Cd2+ and Mg2+) did not block the inward current. These properties are similar to the inwardly rectifying conductance observed in a central nervous system neurone. 5. Stimulus-response curves obtained during the hyperpolarization pulse, before and during the conductance increase, indicate that excitability is increased during the conductance increase. This along with the intra-axonal recordings demonstrates that the origin of the increased conductance is axonal and not glial. 6. It is concluded that central nervous system myelinated fibres in rat optic nerve display a prominent time-dependent conductance increase in response to hyperpolarization that

  20. Intermittent selective clamping improves rat liver regeneration by attenuating oxidative and endoplasmic reticulum stress

    PubMed Central

    Ben Mosbah, I; Duval, H; Mbatchi, S-F; Ribault, C; Grandadam, S; Pajaud, J; Morel, F; Boudjema, K; Compagnon, P; Corlu, A

    2014-01-01

    Intermittent clamping of the portal trial is an effective method to avoid excessive blood loss during hepatic resection, but this procedure may cause ischemic damage to liver. Intermittent selective clamping of the lobes to be resected may represent a good alternative as it exposes the remnant liver only to the reperfusion stress. We compared the effect of intermittent total or selective clamping on hepatocellular injury and liver regeneration. Entire hepatic lobes or only lobes to be resected were subjected twice to 10 min of ischemia followed by 5 min of reperfusion before hepatectomy. We provided evidence that the effect of intermittent clamping can be damaging or beneficial depending to its mode of application. Although transaminase levels were similar in all groups, intermittent total clamping impaired liver regeneration and increased apoptosis. In contrast, intermittent selective clamping improved liver protein secretion and hepatocyte proliferation when compared with standard hepatectomy. This beneficial effect was linked to better adenosine-5′-triphosphate (ATP) recovery, nitric oxide production, antioxidant activities and endoplasmic reticulum adaptation leading to limit mitochondrial damage and apoptosis. Interestingly, transient and early chaperone inductions resulted in a controlled activation of the unfolded protein response concomitantly to endothelial nitric oxide synthase, extracellular signal-regulated kinase-1/2 (ERK1/2) and p38 MAPK activation that favors liver regeneration. Endoplasmic reticulum stress is a central target through which intermittent selective clamping exerts its cytoprotective effect and improves liver regeneration. This procedure could be applied as a powerful protective modality in the field of living donor liver transplantation and liver surgery. PMID:24603335

  1. Can selective arterial clamping with fluorescence imaging preserve kidney function during robotic partial nephrectomy?

    PubMed Central

    McClintock, Tyler R.; Bjurlin, Marc A.; Wysock, James S.; Borofsky, Michael S.; Marien, Tracy P.; Okoro, Chinonyerem; Stifelman, Michael D.

    2015-01-01

    Objectives To compare renal functional outcomes in robotic partial nephrectomy (RPN) with selective arterial clamping guided by near infrared fluorescence (NIRF) imaging to a matched cohort of patients who underwent RPN without selective arterial clamping and NIRF imaging. Methods From April 2011 to December 2012, NIRF imaging-enhanced RPN with selective clamping was utilized in 42 cases. Functional outcomes of successful cases were compared with a cohort of patients, matched by tumor size, preoperative eGFR, functional kidney status, age, sex, body mass index, and American Society of Anesthesiologists score, who underwent RPN without selective clamping and NIRF imaging. Results In matched-pair analysis, selective clamping with NIRF was associated with superior kidney function at discharge, as demonstrated by postoperative eGFR (78.2 vs 68.5 ml/min per 1.73m2; P=0.04), absolute reduction of eGFR (−2.5 vs −14.0 ml/min per 1.73m2; P<0.01) and percent change in eGFR (−1.9% vs −16.8%, P<0.01). Similar trends were noted at three month follow up but these differences became non-significant (P[eGFR]=0.07], P[absolute reduction of eGFR]=0.10, and P[percent change in eGFR]=0.07). In the selective clamping group, a total of four perioperative complications occurred in three patients, all of which were Clavien I-III. Conclusion Utilization of NIRF imaging was associated with improved short-term renal functional outcomes when compared to RPN without selective arterial clamping and NIRF imaging. With this effect attenuated at later follow-up, randomized prospective studies and long-term assessment of kidney-specific functional outcomes are needed to further assess the benefits of this technology. PMID:24909960

  2. Yielding of the clamped-wire system in the Ilizarov external fixator.

    PubMed

    Watson, M A; Matthias, K J; Maffulli, N; Hukins, D W L

    2003-01-01

    This study demonstrates that the clamped-wire system used to suspend bones within an Ilizarov external fixator yields when the perpendicular load exceeds 50 N per wire. Cyclic loading was applied to tensioned wires clamped within an Ilizarov ring component, with steadily increasing load amplitude. Wires were tested at four initial tension settings. The amount of energy lost within the clamped-wire system per load cycle was calculated for every test. The results showed that there was a consistent trend to increasing non-recoverable energy loss per load cycle when peak loads exceed 50 N for all initial tension settings. A finite element (FE) model replicating the experimental conditions was performed to investigate the levels of stress within the loaded wires. The FE model analyses showed that high stresses were generated in the wires close to the clamping sites, and that the stress levels could reasonably be expected to exceed the material yield stress when loaded to about 55 N, for all initial tension settings. The results show that material yield, accompanied by some wire slippage through the clamps, is responsible for system yield, in agreement with previous studies. Although the initial wire tension has an appreciable effect on the wire stiffness, it did not affect the elastic load range of the clamped-wire system. To prevent yield of the clamped-wire system in practice, the fixator should be assembled with sufficient wires to ensure that the load transmitted to each wire by the patient does not exceed 50 N. PMID:14558649

  3. Intermittent selective clamping improves rat liver regeneration by attenuating oxidative and endoplasmic reticulum stress.

    PubMed

    Ben Mosbah, I; Duval, H; Mbatchi, S-F; Ribault, C; Grandadam, S; Pajaud, J; Morel, F; Boudjema, K; Compagnon, P; Corlu, A

    2014-01-01

    Intermittent clamping of the portal trial is an effective method to avoid excessive blood loss during hepatic resection, but this procedure may cause ischemic damage to liver. Intermittent selective clamping of the lobes to be resected may represent a good alternative as it exposes the remnant liver only to the reperfusion stress. We compared the effect of intermittent total or selective clamping on hepatocellular injury and liver regeneration. Entire hepatic lobes or only lobes to be resected were subjected twice to 10 min of ischemia followed by 5 min of reperfusion before hepatectomy. We provided evidence that the effect of intermittent clamping can be damaging or beneficial depending to its mode of application. Although transaminase levels were similar in all groups, intermittent total clamping impaired liver regeneration and increased apoptosis. In contrast, intermittent selective clamping improved liver protein secretion and hepatocyte proliferation when compared with standard hepatectomy. This beneficial effect was linked to better adenosine-5'-triphosphate (ATP) recovery, nitric oxide production, antioxidant activities and endoplasmic reticulum adaptation leading to limit mitochondrial damage and apoptosis. Interestingly, transient and early chaperone inductions resulted in a controlled activation of the unfolded protein response concomitantly to endothelial nitric oxide synthase, extracellular signal-regulated kinase-1/2 (ERK1/2) and p38 MAPK activation that favors liver regeneration. Endoplasmic reticulum stress is a central target through which intermittent selective clamping exerts its cytoprotective effect and improves liver regeneration. This procedure could be applied as a powerful protective modality in the field of living donor liver transplantation and liver surgery. PMID:24603335

  4. A low voltage ``railgun''

    NASA Astrophysics Data System (ADS)

    Starr, Stanley O.; Youngquist, Robert C.; Cox, Robert B.

    2013-01-01

    Due to recent advances in solid-state switches and ultra-capacitors, it is now possible to construct a "railgun" that can operate at voltages below 20 V. Railguns typically operate above a thousand volts, generating huge currents for a few milliseconds to provide thousands of g's of acceleration to a small projectile. The low voltage railgun described herein operates for much longer time periods (tenths of seconds to seconds), has far smaller acceleration and speed, but can potentially propel a much larger object. The impetus for this development is to lay the groundwork for a possible ground-based supersonic launch track, but the resulting system may also have applications as a simple linear motor. The system would also be a useful teaching tool, requiring concepts from electrodynamics, mechanics, and electronics for its understanding, and is relatively straightforward to construct.

  5. Increased voltage photovoltaic cell

    NASA Technical Reports Server (NTRS)

    Ross, B.; Bickler, D. B.; Gallagher, B. D. (Inventor)

    1985-01-01

    A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer.

  6. High Voltage Seismic Generator

    NASA Astrophysics Data System (ADS)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes

  7. High voltage pulse conditioning

    DOEpatents

    Springfield, Ray M.; Wheat, Jr., Robert M.

    1990-01-01

    Apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close.

  8. Insulators for high voltages

    SciTech Connect

    Looms, J.S.T.

    1987-01-01

    This book describes electrical insulators for high voltage applications. Topics considered include the insulating materials, the manufacture of wet process porcelain, the manufacture of tempered glass, the glass-fibre core, the polymeric housing, the common problem - terminating an insulator, mechanical constraints, the physics of pollution flashover, the physics of contamination, testing of insulators, conclusions from testing, remedies for flashover, insulators for special cases, interference and noise, and the insulator of the future.

  9. HIGH VOLTAGE GENERATOR

    DOEpatents

    Schwemin, A.J.

    1959-03-17

    A generator is presented for producing relatively large currents at high voltages. In general, the invention comprises a plurality of capacitors connected in series by a plurality of switches alternately disposed with the capacitors. The circuit is mounted for movement with respect to contact members and switch closure means so that a load device and power supply are connected across successive numbers of capacitors, while the other capacitors are successively charged with the same power supply.

  10. High voltage generator

    DOEpatents

    Schwemin, A. J.

    1959-03-17

    A generator for producing relatively large currents at high voltages is described. In general, the invention comprises a plurality of capacitors connected in series by a plurality of switches alternately disposed with the capacitors. The above-noted circuit is mounted for movement with respect to contact members and switch closure means so that a load device and power supply are connected across successive numbers of capacitors, while the other capacitors are successively charged with the same power supply.

  11. Effects of baclofen on mechanical noxious and innocuous transmission in the spinal dorsal horn of the adult rat: in vivo patch-clamp analysis.

    PubMed

    Fukuhara, Kaori; Katafuchi, Toshihiko; Yoshimura, Megumu

    2013-11-01

    The effects of a GABAB agonist, baclofen, on mechanical noxious and innocuous synaptic transmission in the substantia gelatinosa (SG) were investigated in adult rats with the in vivo patch-clamp technique. Under current-clamp conditions, perfusion with baclofen (10 μm) on the surface of the spinal cord caused hyperpolarisation of SG neurons and a decrease in the number of action potentials elicited by pinch and touch stimuli applied to the receptive field of the ipsilateral hindlimb. The suppression of action potentials was preserved under blockade of postsynaptic G-proteins, although baclofen-induced hyperpolarisation was completely blocked. These findings suggest presynaptic effects of baclofen on the induced action potentials. Under voltage-clamp conditions, application of baclofen reduced the frequency, but not the amplitude, of miniature excitatory postsynaptic currents (mEPSCs), whereas the GABAB receptor antagonist CGP55845 increased the frequency of mEPSCs without affecting the amplitude. Furthermore, application of a GABA uptake inhibitor, nipecotic acid, decreased the frequency of mEPSCs; this effect was blocked by CGP55845, but not by the GABAA antagonist bicuculline. Both the frequency and the amplitude of the pinch-evoked barrage of excitatory postsynaptic currents (EPSCs) were suppressed by baclofen in a dose-dependent manner. The frequency and amplitude of touch-evoked EPSCs was also suppressed by baclofen, but the suppression was significantly smaller than that of pinch-evoked EPSCs. We conclude that mechanical noxious transmission is presynaptically blocked through GABAB receptors in the SG, and is more effectively suppressed than innocuous transmission, which may account for a part of the mechanism of the efficient analgesic effects of baclofen. PMID:23961926

  12. Direct Effect of Remifentanil and Glycine Contained in Ultiva® on Nociceptive Transmission in the Spinal Cord: In Vivo and Slice Patch Clamp Analyses

    PubMed Central

    Sumie, Makoto; Shiokawa, Hiroaki; Yamaura, Ken; Karashima, Yuji; Hoka, Sumio; Yoshimura, Megumu

    2016-01-01

    Background Ultiva® is commonly administered intravenously for analgesia during general anaesthesia and its main constituent remifentanil is an ultra-short-acting μ-opioid receptor agonist. Ultiva® is not approved for epidural or intrathecal use in clinical practice. Previous studies have reported that Ultiva® provokes opioid-induced hyperalgesia by interacting with spinal dorsal horn neurons. Ultiva® contains glycine, an inhibitory neurotransmitter but also an N-methyl-D-aspartate receptor co-activator. The presence of glycine in the formulation of Ultiva® potentially complicates its effects. We examined how Ultiva® directly affects nociceptive transmission in the spinal cord. Methods We made patch-clamp recordings from substantia gelatinosa (SG) neurons in the adult rat spinal dorsal horn in vivo and in spinal cord slices. We perfused Ultiva® onto the SG neurons and analysed its effects on the membrane potentials and synaptic responses activated by noxious mechanical stimuli. Results Bath application of Ultiva® hyperpolarized membrane potentials under current-clamp conditions and produced an outward current under voltage-clamp conditions. A barrage of excitatory postsynaptic currents (EPSCs) evoked by the stimuli was suppressed by Ultiva®. Miniature EPSCs (mEPSCs) were depressed in frequency but not amplitude. Ultiva®-induced outward currents and suppression of mEPSCs were not inhibited by the μ-opioid receptor antagonist naloxone, but were inhibited by the glycine receptor antagonist strychnine. The Ultiva®-induced currents demonstrated a specific equilibrium potential similar to glycine. Conclusions We found that intrathecal administration of Ultiva® to SG neurons hyperpolarized membrane potentials and depressed presynaptic glutamate release predominantly through the activation of glycine receptors. No Ultiva®-induced excitatory effects were observed in SG neurons. Our results suggest different analgesic mechanisms of Ultiva® between intrathecal

  13. HIGH VOLTAGE ION SOURCE

    DOEpatents

    Luce, J.S.

    1960-04-19

    A device is described for providing a source of molecular ions having a large output current and with an accelerated energy of the order of 600 kv. Ions are produced in an ion source which is provided with a water-cooled source grid of metal to effect maximum recombination of atomic ions to molecular ions. A very high accelerating voltage is applied to withdraw and accelerate the molecular ions from the source, and means are provided for dumping the excess electrons at the lowest possible potentials. An accelerating grid is placed adjacent to the source grid and a slotted, grounded accelerating electrode is placed adjacent to the accelerating grid. A potential of about 35 kv is maintained between the source grid and accelerating grid, and a potential of about 600 kv is maintained between the accelerating grid and accelerating electrode. In order to keep at a minimum the large number of oscillating electrons which are created when such high voltages are employed in the vicinity of a strong magnetic field, a plurality of high voltage cascaded shields are employed with a conventional electron dumping system being employed between each shield so as to dump the electrons at the lowest possible potential rather than at 600 kv.

  14. Hippocampal glucocorticoid receptor activation enhances voltage-dependent Ca2+ conductances: relevance to brain aging.

    PubMed Central

    Kerr, D S; Campbell, L W; Thibault, O; Landfield, P W

    1992-01-01

    Glucocorticoids (GCs) activate several biochemical/molecular processes in the hippocampus through two receptor types. In addition, GCs influence cognitive behaviors and hippocampal neural activity and can also increase the rate of aging-dependent cell loss in the hippocampus. However, the ionic mechanisms through which GCs modulate hippocampal neuronal function are not well understood. We report here direct evidence that activation of cytosolic steroid receptors, specifically of the type II GC receptor, can enhance voltage-dependent Ca2+ conductances in brain neurons. Ca2+ current was assessed by current-clamp measures of Ca2+ action potentials and by sharp electrode voltage-clamp analyses of voltage-sensitive currents in cesium-, tetrodotoxin-, and tetraethylammonium-treated CA1 neurons in hippocampal slices. Both Ca2+ action potentials and voltage-activated Ca2+ currents (N- and L-like) were increased by 2-hr exposure to the synthetic GC receptor agonist, RU 28362. This effect of RU 28362 was blocked by coincubation with cycloheximide, indicating that the GC receptor-Ca2+ channel interaction depends on de novo protein synthesis. Dysregulated calcium homeostasis is also viewed as a candidate mechanism in brain aging. Thus, present results are consistent with the hypothesis that excessive GC-receptor activation and resultant increased Ca2+ influx may be two sequential phases of a brain-aging process that results initially in impairment of function and eventually in neuronal loss. PMID:1528857

  15. Identification and Modulation of Voltage-Gated Ca2+ Currents in Zebrafish Rohon-Beard Neurons

    PubMed Central

    Won, Yu-Jin; Ono, Fumihito

    2011-01-01

    Electrically excitable cells have voltage-dependent ion channels on the plasma membrane that regulate membrane permeability to specific ions. Voltage-gated Ca2+ channels (VGCCs) are especially important as Ca2+ serves as both a charge carrier and second messenger. Zebrafish (Danio rerio) are an important model vertebrate for studies of neuronal excitability, circuits, and behavior. However, electrophysiological properties of zebrafish VGCCs remain largely unexplored because a suitable preparation for whole cell voltage-clamp studies is lacking. Rohon-Beard (R-B) sensory neurons represent an attractive candidate for this purpose because of their relatively large somata and functional homology to mammalian dorsal root ganglia (DRG) neurons. Transgenic zebrafish expressing green fluorescent protein in R-B neurons, (Isl2b:EGFP)ZC7, were used to identify dissociated neurons suitable for whole cell patch-clamp experiments. Based on biophysical and pharmacological properties, zebrafish R-B neurons express both high- and low-voltage-gated Ca2+ current (HVA- and LVA-ICa, respectively). Ni+-sensitive LVA-ICa occur in the minority of R-B neurons (30%) and ω-conotoxin GVIA-sensitive CaV2.2 (N-type) Ca2+ channels underlie the vast majority (90%) of HVA-ICa. To identify G protein coupled receptors (GPCRs) that modulate HVA-ICa, a panel of neurotransmitters was screened. Application of GABA/baclofen or serotonin produced a voltage-dependent inhibition while application of the mu-opioid agonist DAMGO resulted in a voltage-independent inhibition. Unlike in mammalian neurons, GPCR-mediated voltage-dependent modulation of ICa appears to be transduced primarily via a cholera toxin-sensitive Gα subunit. These results provide the basis for using the zebrafish model system to understanding Ca2+ channel function, and in turn, how Ca2+ channels contribute to mechanosensory function. PMID:20962070

  16. Achieving Maximal Speed of Solution Exchange for Patch Clamp Experiments

    PubMed Central

    Auzmendi, Jerónimo; Fernández Do Porto, Darío; Pallavicini, Carla; Moffatt, Luciano

    2012-01-01

    Background Resolving the kinetics of agonist binding events separately from the subsequent channel gating processes requires the ability of applying and removing the agonist before channel gating occurs. No reported system has yet achieved pulses shorter than 100 µs, necessary to study nicotinic ACh receptor or AMPA receptor activation. Methodology/Principal Findings Solution exchange systems deliver short agonist pulses by moving a sharp interface between a control and an experimental solution across a channel preparation. We achieved shorter pulses by means of an exchange system that combines a faster flow velocity, narrower partition between the two streams, and increased velocity and bandwidth of the movement of the interface. The measured response of the entire system was fed back to optimize the voltage signal applied to the piezoelectric actuator overcoming the spurious oscillations arising from the mechanical resonances when a high bandwidth driving function was applied. Optimization was accomplished by analyzing the transfer function of the solution exchange system. When driven by optimized command pulses the enhanced system provided pulses lasting 26 ± 1 µs and exchanging 93 ± 1% of the solution, as measured in the open tip of a patch pipette. Conclusions/Significance Pulses of this duration open the experimental study of the molecular events that occur between the agonist binding and the opening of the channel. PMID:22879927

  17. APPARATUS FOR REGULATING HIGH VOLTAGE

    DOEpatents

    Morrison, K.G.

    1951-03-20

    This patent describes a high-voltage regulator of the r-f type wherein the modulation of the r-f voltage is accomplished at a high level, resulting in good stabilization over a large range of load conditions.

  18. Trail without Catheter after Transurethral Resection of Prostate: Clamp It or Not?

    PubMed Central

    Talreja, Vikash; Saeed, Summaya; Rani, Kiran; Farid, Farah Naz; Haider, Mumtazuddin

    2016-01-01

    Background. There has been argument between clinical practitioners about clamping catheter or not prior to its removal after transurethral resection of prostate (TURP). We conducted a clinical trial to assess whether clamping has any role in early bladder tone recovery particularly in patients who undergo TURP. Methods. Randomized clinical trial was conducted at a tertiary care hospital, Karachi from January 2014 to July 2015. Eighty-six study participants who underwent TURP were randomly allocated into two groups of 43 participants each. In Group I, patient's Foley catheter was not clamped prior to its removal and in Group II Foley catheter was clamped. Data of all subjects were analyzed using SPSS version 20. Results. There was no significant difference in age and weight of resected tissues between two groups. Among 4 patients in Group I who required recatheterization, 1 patient was discharged with catheter as compared to Group II in which 2 patients were discharged with catheter (P = 0.99). Only 1 patient (2.3%) in Group II had bleeding which required recatheterization. Length of stay was significantly affected by early and free removal of Foley catheter (P < 0.001). Conclusion. The results of current study identified that clamping whether done or not had no significant impact on urinary retention. PMID:27034894

  19. Dynamics of beta and proliferating cell nuclear antigen sliding clamps in traversing DNA secondary structure.

    PubMed

    Yao, N; Hurwitz, J; O'Donnell, M

    2000-01-14

    Chromosomal replicases of cellular organisms utilize a ring shaped protein that encircles DNA as a mobile tether for high processivity in DNA synthesis. These "sliding clamps" have sufficiently large linear diameters to encircle duplex DNA and are perhaps even large enough to slide over certain DNA secondary structural elements. This report examines the Escherichia coli beta and human proliferating cell nuclear antigen clamps for their ability to slide over various DNA secondary structures. The results show that these clamps are capable of traversing a 13-nucleotide ssDNA loop, a 4-base pair stem-loop, a 4-nucleotide 5' tail, and a 15-mer bubble within the duplex. However, upon increasing the size of these structures (20-nucleotide loop, 12-base pair stem-loop, 28-nucleotide 5' tail, and 20-nucleotide bubble) the sliding motion of the beta and proliferating cell nuclear antigen over these elements is halted. Studies of the E. coli replicase, DNA polymerase III holoenzyme, in chain elongation with the beta clamp demonstrate that upon encounter with an oligonucleotide annealed in its path, it traverses the duplex and resumes synthesis on the 3' terminus of the oligonucleotide. This sliding and resumption of synthesis occurs even when the oligonucleotide contains a secondary structure element, provided the beta clamp can traverse the structure. However, upon encounter with a downstream oligonucleotide containing a large internal secondary structure, the holoenzyme clears the obstacle by strand displacing the oligonucleotide from the template. Implications of these protein dynamics to DNA transactions are discussed. PMID:10625694

  20. Nonlinear Bending Stiffness of Plates Clamped by Bolted Joints under Bending Moment

    NASA Astrophysics Data System (ADS)

    Naruse, Tomohiro; Shibutani, Yoji

    Equivalent stiffness of plates clamped by bolted joints for designing should be evaluated according to not only the strength of bolted joints but also the deformation and vibration characteristics of the structures. When the applied external axial load or the bending moment is sufficiently small, the contact surfaces of the bolted joint are stuck together, and thus both the bolt and the clamped plates deform linearly. Although the sophisticated VDI 2230 code gives the appropriate stiffness of clamped plates for the infinitesimal deformation, the stiffness may vary nonlinearly with increasing the loading because of changing the contact state. Therefore, the present paper focuses on the nonlinear behaviour of the bending stiffness of clamped plates by using Finite Element (FE) analyses, taking the contact condition on bearing surfaces and between the plates into account. The FE models of the plates with thicknesses of 3.2, 4.5, 6.0 and 9.0 mm tightened with M8, 10, 12 and 16 bolts were constructed. The relation between bending moment and bending compliance of clamped plates is found to be categorized into three regions, namely, (i) constant compliance with fully stuck contact surfaces, (ii) transition showing the nonlinear compliance, and (iii) constant compliance with one-side contact surfaces. The mechanical models for these three regions are proposed and compared with FEM solutions. The prediction on the bounds of three regions is in a fairly good agreement except the case with smaller bolts and thicker plates.

  1. A bacterial toxin inhibits DNA replication elongation through a direct interaction with the β sliding clamp.

    PubMed

    Aakre, Christopher D; Phung, Tuyen N; Huang, David; Laub, Michael T

    2013-12-12

    Toxin-antitoxin (TA) systems are ubiquitous on bacterial chromosomes, yet the mechanisms regulating their activity and the molecular targets of toxins remain incompletely defined. Here, we identify SocAB, an atypical TA system in Caulobacter crescentus. Unlike canonical TA systems, the toxin SocB is unstable and constitutively degraded by the protease ClpXP; this degradation requires the antitoxin, SocA, as a proteolytic adaptor. We find that the toxin, SocB, blocks replication elongation through an interaction with the sliding clamp, driving replication fork collapse. Mutations that suppress SocB toxicity map to either the hydrophobic cleft on the clamp that binds DNA polymerase III or a clamp-binding motif in SocB. Our findings suggest that SocB disrupts replication by outcompeting other clamp-binding proteins. Collectively, our results expand the diversity of mechanisms employed by TA systems to regulate toxin activity and inhibit bacterial growth, and they suggest that inhibiting clamp function may be a generalizable antibacterial strategy. PMID:24239291

  2. The effects of thoracic aortic cross-clamping and declamping on visceral organ blood flow.

    PubMed Central

    Oyama, M; McNamara, J J; Suehiro, G T; Suehiro, A; Sue-Ako, K

    1983-01-01

    Blood flow was measured using radioactive microspheres in 11 macaque monkeys 1) before hemorrhage shock, 2) after onset of shock, 3) after aortic cross-clamping and resuscitation, and 4) after release of the cross-clamp and stabilization. Hemodynamic parameters (cardiac output, arterial, right atrial and left atrial pressure) and blood gases were also monitored. Total abdominal organ flow fell with hemorrhage and fell further with aortic clamping. Reinfusion of shed volume did not restore abdominal organ flow (4.7% baselines) but increased LAP and cardiac output to the upper body. Release of the cross-clamp produced profound acidosis that was treated effectively with NcHCO3. After stabilization of blood, flow to kidney remained low (49% baseline) although intestinal flow was increased threefold (320% of baseline). It is clear that thoracic aortic cross-clamping in shock further compromises already reduced visceral blood flow and may contribute to the problem of ischemic multiple organ failure after resuscitation from hemorrhagic shock. PMID:6830352

  3. Highly efficient electrochemical degradation of perfluorooctanoic acid (PFOA) by F-doped Ti/SnO2 electrode.

    PubMed

    Yang, Bo; Jiang, Chaojin; Yu, Gang; Zhuo, Qiongfang; Deng, Shubo; Wu, Jinhua; Zhang, Hong

    2015-12-15

    The novel F-doped Ti/SnO2 electrode prepared by SnF4 as the single-source precursor was used for electrochemical degradation of aqueous perfluorooctanoic acid (PFOA). Higher oxidation reactivity and significantly longer service life were achieved for Ti/SnO2-F electrode than Ti/SnO2-X (X=Cl, Br, I, or Sb) electrode, which could decomposed over 99% of PFOA (50 mL of 100 mg L(-1)) within 30-min electrolysis. The property of Ti/SnO2-F electrode and its electrooxidation mechanism were investigated by XRD, SEM-EDX, EIS, LSV, and interfacial resistance measurements. We propose that the similar ionic radii of F and O as well as strong electronegativity of F caused its electrochemical stability with high oxygen evolution potential (OEP) and smooth surface to generate weakly adsorbed OH. The preparation conditions of electrode were also optimized including F doping amount, calcination temperature, and dip coating times, which revealed the formation process of electrode. Additionally, the major mineralization product, F(-), and low concentration of shorter chain perfluorocarboxylic acids (PFCAs) were detected in solution. So the reaction pathway of PFOA electrooxidation was proposed by intermediate analysis. These results demonstrate that Ti/SnO2-F electrode is promising for highly efficient treatment of PFOA in wastewater. PMID:26183235

  4. The role of reducing agent in oxidation reactions of water on illuminated TiO{sub 2} electrodes

    SciTech Connect

    Salama, S.B.; Natarajan, C.; Nogami, G.; Kennedy, J.H.

    1995-03-01

    Oxidation of water on an illuminated TiO{sub 2} electrode was investigated using a rotating ring-disk electrode, focusing on the role of the reducing agent, SO{sub 3}{sup 2{minus}}, added in solution. The TiO{sub 2} disk was illuminated with a chopped-light source, and the corresponding ring response at the Pt-ring, {Delta}I{sub R} = I{sub R} (light) {minus} I{sub R} (dark), was recorded. Although oxidation products were expected to be produced on the disk surface and carried to the ring electrode, {Delta}I{sub R} was found to be negative in dilute Na{sub 2}SO{sub 3} solution even at large negative potentials, e.g., {minus}0.8 V vs. SCE. This phenomenon was observed in neutral and basic solutions. It is proposed that SO{sub 3}{sup {minus}*} radical is formed at an illuminated TiO{sub 2}-disk and subsequently initiates a homogeneous free-radical chain oxidation of sulfite ion. This chain reaction consumes oxygen to be supplied from the solution via the disk to the ring, reducing the ring current associated with the reduction of oxygen. As a result, the ring current is lower under illumination than in the dark.

  5. Synthesis and characterization of Pt-MoO x -TiO2 electrodes for direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Yu; Zhang, Jing-Chang; Cao, Xu-Dong; Jiang, Yuan-Sheng; Zhu, Hong

    2011-10-01

    To enhance the CO-tolerance performance of anode catalysts for direct ethanol fuel cells, carbon nanotubes were modified by titanium dioxide (donated as CNTs@TiO2) and subsequently served as the support for the preparation of Pt/CNTs@TiO2 and Pt-Mo/CNTs@TiO2 electrocatalysts via a UV-photoreduction method. The physicochemical characterizations of the catalysts were carried out by using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and infrared spectroscopy of adsorbed probe ammonia molecules. The electrocatalytic properties of the catalysts for methanol oxidation were investigated by the cyclic voltammetry technique. The results show that Pt-Mo/CNTs@TiO2 electrode exhibits the highest performance in all the electrodes. It is explained that, the structure, the oxidation states, and the acid-base properties of the catalysts are influenced due to the strong interaction between Ti and Mo species by adding TiO2 and MoO x to the Pt-based catalysts.

  6. High voltage variable diameter insulator

    DOEpatents

    Vanecek, David L.; Pike, Chester D.

    1984-01-01

    A high voltage feedthrough assembly (10) having a tubular insulator (15) extending between the ground plane ring (16) and the high voltage ring (30). The insulator (15) is made of Pyrex and decreases in diameter from the ground plane ring (16) to the high voltage ring (30), producing equipotential lines almost perpendicular to the wall (27) of the insulator (15) to optimize the voltage-holding capability of the feedthrough assembly (10).

  7. Low-voltage polyphasic circuits

    NASA Astrophysics Data System (ADS)

    Baird, William H.; Jaynes, Michael L.

    2010-05-01

    Experimentation with polyphasic voltages is greatly simplified when microcontrollers are used to generate multiple square waves with fixed phase offsets. Each square wave is sent through a simple second-order Sallen-Key filter to produce an approximately sinusoidal voltage signal. The microcontroller allows the reproduction of split-phase and three-phase voltage relationships, mirroring those commonly distributed on the North American power grid, at safe voltage levels.

  8. Charge-pump voltage converter

    DOEpatents

    Brainard, John P.; Christenson, Todd R.

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  9. The Role of the C-Clamp in Wnt-Related Colorectal Cancers

    PubMed Central

    Ravindranath, Aditi J.; Cadigan, Ken M.

    2016-01-01

    T-cell Factor/Lymphoid Enhancer Factor (TCF/LEF) transcription factors are major regulators of Wnt targets, and the products of the TCF7 and TCF7L2 genes have both been implicated in the progression of colorectal cancer in animal models and humans. TCFs recognize specific DNA sequences through their high mobility group (HMG) domains, but invertebrate TCFs and some isoforms of vertebrate TCF7 and TCF7L2 contain a second DNA binding domain known as the C-clamp. This review will cover the basic properties of C-clamps and their importance in Wnt signaling, using data from Drosophila, C. elegans, and mammalian cell culture. The connection between C-clamp containing TCFs and colorectal cancer will also be discussed. PMID:27527215

  10. The Role of the C-Clamp in Wnt-Related Colorectal Cancers.

    PubMed

    Ravindranath, Aditi J; Cadigan, Ken M

    2016-01-01

    T-cell Factor/Lymphoid Enhancer Factor (TCF/LEF) transcription factors are major regulators of Wnt targets, and the products of the TCF7 and TCF7L2 genes have both been implicated in the progression of colorectal cancer in animal models and humans. TCFs recognize specific DNA sequences through their high mobility group (HMG) domains, but invertebrate TCFs and some isoforms of vertebrate TCF7 and TCF7L2 contain a second DNA binding domain known as the C-clamp. This review will cover the basic properties of C-clamps and their importance in Wnt signaling, using data from Drosophila, C. elegans, and mammalian cell culture. The connection between C-clamp containing TCFs and colorectal cancer will also be discussed. PMID:27527215

  11. Delayed cord clamping in red blood cell alloimmunization: safe, effective, and free?

    PubMed Central

    2016-01-01

    Hemolytic disease of the newborn (HDN), an alloimmune disorder due to maternal and fetal blood type incompatibility, is associated with fetal and neonatal complications related to red blood cell (RBC) hemolysis. After delivery, without placental clearance, neonatal hyperbilirubinemia may develop from ongoing maternal antibody-mediated RBC hemolysis. In cases refractory to intensive phototherapy treatment, exchange transfusions (ET) may be performed to prevent central nervous system damage by reducing circulating bilirubin levels and to replace antibody-coated red blood cells with antigen-negative RBCs. The risks and costs of treating HDN are significant, but appear to be decreased by delayed umbilical cord clamping at birth, a strategy that promotes placental transfusion to the newborn. Compared to immediate cord clamping (ICC), safe and beneficial short-term outcomes have been demonstrated in preterm and term neonates receiving delayed cord clamping (DCC), a practice that may potentially be effective in cases RBC alloimmunization. PMID:27186530

  12. Temporary clamping of branch pulmonary artery for pulmonary hemorrhage after endarterectomy.

    PubMed

    Reddy, Srinivasa; Rajanbabu, Balram Babu; Kumar, Nalkunda Kyathaplar Sunil; Rajani, Indira

    2013-10-01

    A 49-year-old man underwent pulmonary thromboendarterectomy for chronic thromboembolic pulmonary hypertension. A massive pulmonary hemorrhage developed, which was identified to be from the right lower lobe, when weaning off cardiopulmonary bypass was attempted. He was managed by temporary overnight clamping of the right pulmonary artery, after the upper lobe branch. The next morning the clamp was removed, the bleeding had stopped completely, and his chest was closed. The patient was discharged on the 21st day. At 14 months' follow-up, he is in New York Heart Association functional class I. In suitable patients, temporary clamping of branch pulmonary artery can be a useful salvage measure, as in this patient. PMID:24088460

  13. Delayed cord clamping in red blood cell alloimmunization: safe, effective, and free?

    PubMed

    McAdams, Ryan M

    2016-04-01

    Hemolytic disease of the newborn (HDN), an alloimmune disorder due to maternal and fetal blood type incompatibility, is associated with fetal and neonatal complications related to red blood cell (RBC) hemolysis. After delivery, without placental clearance, neonatal hyperbilirubinemia may develop from ongoing maternal antibody-mediated RBC hemolysis. In cases refractory to intensive phototherapy treatment, exchange transfusions (ET) may be performed to prevent central nervous system damage by reducing circulating bilirubin levels and to replace antibody-coated red blood cells with antigen-negative RBCs. The risks and costs of treating HDN are significant, but appear to be decreased by delayed umbilical cord clamping at birth, a strategy that promotes placental transfusion to the newborn. Compared to immediate cord clamping (ICC), safe and beneficial short-term outcomes have been demonstrated in preterm and term neonates receiving delayed cord clamping (DCC), a practice that may potentially be effective in cases RBC alloimmunization. PMID:27186530

  14. The interplay of primer-template DNA phosphorylation status and single-stranded DNA binding proteins in directing clamp loaders to the appropriate polarity of DNA

    PubMed Central

    Hayner, Jaclyn N.; Douma, Lauren G.; Bloom, Linda B.

    2014-01-01

    Sliding clamps are loaded onto DNA by clamp loaders to serve the critical role of coordinating various enzymes on DNA. Clamp loaders must quickly and efficiently load clamps at primer/template (p/t) junctions containing a duplex region with a free 3′OH (3′DNA), but it is unclear how clamp loaders target these sites. To measure the Escherichia coli and Saccharomyces cerevisiae clamp loader specificity toward 3′DNA, fluorescent β and PCNA clamps were used to measure clamp closing triggered by DNA substrates of differing polarity, testing the role of both the 5′phosphate (5′P) and the presence of single-stranded binding proteins (SSBs). SSBs inhibit clamp loading by both clamp loaders on the incorrect polarity of DNA (5′DNA). The 5′P groups contribute selectivity to differing degrees for the two clamp loaders, suggesting variations in the mechanism by which clamp loaders target 3′DNA. Interestingly, the χ subunit of the E. coli clamp loader is not required for SSB to inhibit clamp loading on phosphorylated 5′DNA, showing that χ·SSB interactions are dispensable. These studies highlight a common role for SSBs in directing clamp loaders to 3′DNA, as well as uncover nuances in the mechanisms by which SSBs perform this vital role. PMID:25159615

  15. Sensing voltage across lipid membranes

    PubMed Central

    Swartz, Kenton J.

    2009-01-01

    The detection of electrical potentials across lipid bilayers by specialized membrane proteins is required for many fundamental cellular processes such as the generation and propagation of nerve impulses. These membrane proteins possess modular voltage-sensing domains, a notable example being the S1-S4 domains of voltage-activated ion channels. Ground-breaking structural studies on these domains explain how voltage sensors are designed and reveal important interactions with the surrounding lipid membrane. Although further structures are needed to fully understand the conformational changes that occur during voltage sensing, the available data help to frame several key concepts that are fundamental to the mechanism of voltage sensing. PMID:19092925

  16. Improved PeT molecules for optically sensing voltage in neurons

    PubMed Central

    Woodford, Clifford R.; Frady, E. Paxon; Smith, Richard S.; Morey, Benjamin; Canzi, Gabriele; Palida, Sakina F.; Araneda, Ricardo C.; Kristan, William B.; Kubiak, Clifford P.; Miller, Evan W.; Tsien, Roger Y.

    2015-01-01

    VoltageFluor (VF) dyes have the potential to optically measure voltage in excitable membranes with the combination of high spatial and temporal resolution essential to better characterize the voltage dynamics of large groups of excitable cells. VF dyes sense voltage with high speed and sensitivity using photoinduced electron transfer (PeT) through a conjugated molecular wire. We show that tuning the driving force for PeT (ΔGPeT + w) through systematic chemical substitution modulates voltage sensitivity, estimate (ΔGPeT + w) values from experimentally measured redox potentials, and validate the voltage sensitivities in patch-clamped HEK cells for 10 new VF dyes. VF2.1(OMe).H, with a 48% ΔF/F per 100 mV, shows approximately 2-fold improvement over previous dyes in HEK cells, dissociated rat cortical neurons, and medicinal leech ganglia. Additionally, VF2.1(OMe).H faithfully reports pharmacological effects and circuit activity in mouse olfactory bulb slices, thus opening a wide range of previously inaccessible applications for voltage sensitive dyes. PMID:25584688

  17. A voltage regulator system with dynamic bandwidth boosting for passive UHF RFID transponders

    NASA Astrophysics Data System (ADS)

    Jinpeng, Shen; Xin'an, Wang; Shan, Liu; Shoucheng, Li; Zhengkun, Ruan

    2013-10-01

    This paper presents a voltage regulator system for passive UHF RFID transponders, which contains a rectifier, a limiter, and a regulator. The rectifier achieves power by rectifying the incoming RF energy. Due to the huge variation of the rectified voltage, a limiter at the rectifier output is used to clamp the rectified voltage. In this paper, the design of a limiter circuit is discussed in detail, which can provide a stable limiting voltage with low sensitivity to temperature variation and process dispersion. The key aspect of the voltage regulator system is the dynamic bandwidth boosting in the regulator. By sensing the excess current that is bypassed in the limiter during periods of excess energy, the bias current as well as the bandwidth of the regulator are increased, the output supply voltage can recover quickly from line transients during the periods of no RF energy to a full blast of RF energy. This voltage regulator system is implemented in a 0.18 μm CMOS process.

  18. A voltage-activated proton current in human cardiac fibroblasts

    SciTech Connect

    El Chemaly, Antoun; Guinamard, Romain; Demion, Marie; Fares, Nassim; Jebara, Victor; Faivre, Jean-Francois; Bois, Patrick . E-mail: patrick.bois@univ-poitiers.fr

    2006-02-10

    A voltage-activated proton current in human cardiac fibroblasts, measured using the whole-cell recording configuration of the patch-clamp technique, is reported. Increasing the pH of the bathing solution shifted the current activation threshold to more negative potentials and increased both the current amplitude and its rate of activation. Changing the pH gradient by one unit caused a 51 mV shift in the reversal potential of the current, demonstrating a high selectivity for protons of the channel carrying the current. Extracellularly applied Zn{sup 2+} reversibly inhibited the current. Activation of the current contributes to the resting membrane conductance under conditions of intracellular acidosis. It is proposed that this current in cardiac fibroblasts is involved in the regulation of the intracellular pH and the membrane potential under physiological conditions as well as in response to pathological conditions such as ischemia.

  19. A Tight-Seal Whole Cell Study of the Voltage-Dependent Gating Mechanism of K+-Channels of Protoplasmic Droplets of Chara corallina1

    PubMed Central

    Homblé, Fabrice

    1987-01-01

    The biophysical properties of voltage-dependent K+-channels of protoplasmic droplets of Chara corallina Klein ex Willd., em, R.D.W. were investigated using the tight-seal whole cell method. Two potassium currents were observed in voltage-clamp mode and they can be used to explain the transient membrane potential time course observed in current-clamp mode. The K+-channels are identified by the effect of tetraethylammonium chloride which blocks both currents. A two-state, constant dipole moment model is used to fit the voltage-conductance curve. From this model the minimum equivalent gating charge involved in the gating mechanism of K+-channels of Chara can be estimated. PMID:16665457

  20. Cracking associated with micrometeoroid impact craters in anodized aluminum alloy clamps on LDEF

    NASA Technical Reports Server (NTRS)

    Murr, Lawrence E.; Niou, Chorng S.; Quinones, Stella; Murr, Kyle S.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) is a reusable hollow-cylindrical satellite sustaining a total of 57 different experiments. The 130 sq m of spacecraft surface area included anodized 6061-T6 Al alloy bay frames and clamps for holding experiment trays in the bay areas. Attention is presently given to the micrometeoroid impact crater features observed on two tray clamps recovered from the LDEF leading-edge locations. It is found that even very subtle surface modifications in structural alloy anodizing can influence micrometeoroid impact crater cracking, notable radial cracking due to the ejecta-rim of the impact craters.

  1. High pressure clamp for electrical measurements up to 8 GPa and temperature down to 77 K

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, A. K.; Nalini, A. V.; Gopal, E. S. R.; Subramanyam, S. V.

    1980-01-01

    A compact clamp-type high pressure cell for carrying out electrical conductivity measurements on small solid samples of size 1 mm or less at pressures upto 8 GPa (i.e., 80 kbar) and for use down to 77 K has been designed and fabricated. The pressure generated in the sample region has been calibrated at room temperature against the polymorphic phase transitions of Bismuth and Ytterbium. The pressure relaxation of the clamp at low temperatures has been estimated by monitoring the electrical conductivity behavior of lead.

  2. Clamping of RNA with PNA enables targeting of microRNA.

    PubMed

    Ghidini, Alice; Bergquist, Helen; Murtola, Merita; Punga, Tanel; Zain, Rula; Strömberg, Roger

    2016-06-21

    To be able to target microRNAs also at stages where these are in a double stranded or hairpin form we have studied BisPNA designed to clamp the target and give sufficient affinity to allow for strand invasion. We show that BisPNA complexes are more stable with RNA than with DNA. In addition, 24-mer BisPNA (AntimiR) constructs form complexes with a hairpin RNA that is a model of the microRNA miR-376b, suggesting that PNA-clamping may be an effective way of targeting microRNAs. PMID:27203783

  3. Ultrafast spectroscopy of super high frequency mechanical modes of doubly clamped beams

    NASA Astrophysics Data System (ADS)

    Ristow, Oliver; Merklein, Moritz; Grossmann, Martin; Hettich, Mike; Schubert, Martin; Bruchhausen, Axel; Grebing, Jochen; Erbe, Artur; Mounier, Denis; Gusev, Vitalyi; Scheer, Elke; Dekorsy, Thomas; Barretto, Elaine C. S.

    2013-12-01

    We use ultrafast pump-probe spectroscopy to study the mechanical vibrations in the time domain of doubly clamped silicon nitride beams. Beams with two different clamping conditions are investigated. Finite element method calculations are performed to analyse the mode spectra of both structures. By calculating the strain integral on the surface of the resonators, we are able to reproduce the effect of the detection mechanism and identify all the measured modes. We show that our spectroscopy technique combined with our modelling tools allow the investigation of several different modes in the super high frequency range (3-30 GHz) and above, bringing more information about the vibration modes of nanomechanical resonators.

  4. Cellular defibrillation: interaction of micro-scale electric fields with voltage-gated ion channels.

    PubMed

    Kargol, Armin; Malkinski, Leszek; Eskandari, Rahmatollah; Carter, Maya; Livingston, Daniel

    2015-09-01

    We study the effect of micro-scale electric fields on voltage-gated ion channels in mammalian cell membranes. Such micro- and nano-scale electric fields mimic the effects of multiferroic nanoparticles that were recently proposed [1] as a novel way of controlling the function of voltage-sensing biomolecules such as ion channels. This article describes experimental procedures and initial results that reveal the effect of the electric field, in close proximity of cells, on the ion transport through voltage-gated ion channels. We present two configurations of the whole-cell patch-clamping apparatus that were used to detect the effect of external stimulation on ionic currents and discuss preliminary results that indicate modulation of the ionic currents consistent with the applied stimulus. PMID:26067055

  5. Voltage dependence of agonist effectiveness at the frog neuromuscular junction: resolution of a paradox.

    PubMed Central

    Dionne, V E; Stevens, C F

    1975-01-01

    1. End-plate currents produced by nerve-released acetylcholine and iontophoretically applied acetylcholine and carbachol have been recorded from voltage-clamped frog cutaneous pectoris neuromuscular junctions made visible with Nomarski differential interference contrast optics. 2. The effectiveness of agonists - that is, the end-plate conductance change produced by a given dose-has been determined as a function of post-junctional membrane potential. 3. As the post-junctional membrane potential is made more negative, nerve-released acetylcholine becomes less effective whereas iontophoretically-applied agonists become more effective. 4. This voltage dependence of agonist effectiveness is mediated neither by end-plate current iontophoresis of agonist into the cleft nor through electric field effects on the esterase. 5. Influences of membrane potential on the opening and closing of end-plate channel gates can account quantitatively for the voltage-dependent effectiveness of both nerve-released and iontophoretically applied agonist. PMID:1081139

  6. Reduction in overvoltages and dynamic power losses in power switches of multilevel voltage inverters

    NASA Astrophysics Data System (ADS)

    Voronin, P. A.; Voronin, I. P.; Panfilov, D. I.; Rozhkov, D. V.

    2014-12-01

    A number of the circuit and design decisions that provide a reduction in overvoltage and dynamic power losses in power switches of multilevel voltage inverters with clamping diodes is considered. It is shown that the integral or unpackaged version is the most effective method for a reduction in the stray inductance in the multilevel circuit, which is the general cause for occurrence of dynamic overvoltage. To reduce dynamic losses of power, a method for resonant commutation on fronts, which provides commutation of switches in the multilevel circuit at zero voltage (SZV) and zero current (SZC), is proposed. The resonant switching method as applied to the multilevel circuit simultaneously solves a problem of dynamic overvoltage by means of limitation for the rate of voltage rise in the SZV mode or the mode of preliminary fault of energy stored in the inductance of the switching circuit in the SZC mode.

  7. Na(+)-activated K+ channels and voltage-evoked ionic currents in brain stem and parasympathetic neurones of the chick.

    PubMed Central

    Dryer, S E

    1991-01-01

    1. Patch-clamp and computer-modelling techniques were used to study the activation of Na(+)-activated K+ channels (IK(Na] in dissociated neurones from the embryonic chick ciliary ganglion and the embryonic chick brain stem. 2. Numerical solutions of diffusion equations suggested that Na+ accumulation as a result of Na+ influx through voltage-sensitive Na+ channels (INa) is insufficient to allow for alteration in the gating of IK(Na) channels. 3. Whole-cell recordings using two independent micropipettes were made from chick ciliary-ganglion neurones. These showed that transient outward currents were present only when there were clear indications of incomplete voltage clamp. 4. Single-electrode whole-cell recordings from ciliary-ganglion neurones showed that transient tetrodotoxin (TTX)-sensitive outward currents were present, but only when partial TTX blockade produced significant alterations in the kinetics of INa. In cells that were properly voltage clamped, there was no effect of TTX on the kinetics of INa or on voltage-evoked outward currents. 5. Examination of the relationship between peak INa and the command potential showed that transient outward currents were only present in neurones that showed sharp deviations from the behaviour expected of a cell that is adequately voltage clamped. Transient outward currents were not present in cells that were adequately voltage clamped. 6. Application of TTX to isolated outside-out patches obtained from ciliary ganglion neurones eliminated voltage-evoked inward currents but had no effect on outward currents. 7. Isolated inside-out patches obtained from ciliary-ganglion neurones did not contain IK(Na) channels. These patches usually contained Ca(2+)-activated K+ channels (IK(Ca] with a unitary conductance of around 200 pS when [K+]o = 150 mM and [K+]i = 75 mM. 8. Two-electrode whole-cell recordings from cultured brain stem neurones showed that transient outward currents were present only when there were clear indications

  8. Isomerically Pure Tetramethylrhodamine Voltage Reporters.

    PubMed

    Deal, Parker E; Kulkarni, Rishikesh U; Al-Abdullatif, Sarah H; Miller, Evan W

    2016-07-27

    We present the design, synthesis, and application of a new family of fluorescent voltage indicators based on isomerically pure tetramethylrhodamines. These new Rhodamine Voltage Reporters, or RhoVRs, use photoinduced electron transfer (PeT) as a trigger for voltage sensing, display excitation and emission profiles in the green to orange region of the visible spectrum, demonstrate high sensitivity to membrane potential changes (up to 47% ΔF/F per 100 mV), and employ a tertiary amide derived from sarcosine, which aids in membrane localization and simultaneously simplifies the synthetic route to the voltage sensors. The most sensitive of the RhoVR dyes, RhoVR 1, features a methoxy-substituted diethylaniline donor and phenylenevinylene molecular wire at the 5'-position of the rhodamine aryl ring, exhibits the highest voltage sensitivity to date for red-shifted PeT-based voltage sensors, and is compatible with simultaneous imaging alongside green fluorescent protein-based indicators. The discoveries that sarcosine-based tertiary amides in the context of molecular-wire voltage indicators prevent dye internalization and 5'-substituted voltage indicators exhibit improved voltage sensitivity should be broadly applicable to other types of PeT-based voltage-sensitive fluorophores. PMID:27428174

  9. Functional heterogeneity of the four voltage sensors of a human L-type calcium channel

    PubMed Central

    Pantazis, Antonios; Savalli, Nicoletta; Sigg, Daniel; Neely, Alan; Olcese, Riccardo

    2014-01-01

    Excitation-evoked Ca2+ influx is the fastest and most ubiquitous chemical trigger for cellular processes, including neurotransmitter release, muscle contraction, and gene expression. The voltage dependence and timing of Ca2+ entry are thought to be functions of voltage-gated calcium (CaV) channels composed of a central pore regulated by four nonidentical voltage-sensing domains (VSDs I–IV). Currently, the individual voltage dependence and the contribution to pore opening of each VSD remain largely unknown. Using an optical approach (voltage-clamp fluorometry) to track the movement of the individual voltage sensors, we discovered that the four VSDs of CaV1.2 channels undergo voltage-evoked conformational rearrangements, each exhibiting distinct voltage- and time-dependent properties over a wide range of potentials and kinetics. The voltage dependence and fast kinetic components in the activation of VSDs II and III were compatible with the ionic current properties, suggesting that these voltage sensors are involved in CaV1.2 activation. This view is supported by an obligatory model, in which activation of VSDs II and III is necessary to open the pore. When these data were interpreted in view of an allosteric model, where pore opening is intrinsically independent but biased by VSD activation, VSDs II and III were each found to supply ∼50 meV (∼2 kT), amounting to ∼85% of the total energy, toward stabilizing the open state, with a smaller contribution from VSD I (∼16 meV). VSD IV did not appear to participate in channel opening. PMID:25489110

  10. Electroporation of subcutaneous mouse tumors by rectangular and trapezium high voltage pulses.

    PubMed

    Pliquett, U; Elez, R; Piiper, A; Neumann, E

    2004-04-01

    The artificial electrotransfer of bioactive agents such as drugs, peptides or therapeutical nucleic acids and oligonucleotides by membrane electroporation (MEP) into single cells and tissue cells requires knowledge of the optimum ranges of the voltage, pulse duration and frequency of the applied pulses. For clinical use, the classical electroporators appear to necessitate some tissue specific presetting of the pulse parameters at the high voltage generator, before the actual therapeutic pulsing is applied. The optimum pulse parameters may be derived from the kinetic normal mode analysis of the current relaxations due to a voltage step (rectangular pulse). Here, the novel method of trapezium test pulses is proposed to rapidly assess the current (I)/voltage (U) characteristics (IUC). The analysis yields practical values for the voltage U(app) between a given electrode distance and pulse duration t(E) of rectangular high voltage (HV) pulses, to be preset for an effective in vivo electroporation of mouse subcutaneous tumors, clamped between two planar plate electrodes of stainless steel. The IUC of the trapezium pulse compares well with the IUC of rectangular pulses of increasing amplitudes. The trapezium pulse phase (s) of constant voltage and 3 ms duration, following the rising ramp phase (r), yields a current relaxation which is similar to the current relaxation during a rectangular pulse of similar duration. The fit of the current relaxation of the trapezium phase (s) to an exponential function and the IUC can be used to estimate the maximum current at a given voltage. The IUC of the falling edge (phase f) of the trapezium pulse serves to estimate the minimum voltage for the exploration of the long-lived electroporation membrane states with consecutive low-voltage (LV) pulses of longer duration, to eventually enhance electrophoretic uptake of ionic substances, initiated by the preceding HV pulses. PMID:14990329

  11. High voltage isolation transformer

    NASA Technical Reports Server (NTRS)

    Clatterbuck, C. H.; Ruitberg, A. P. (Inventor)

    1985-01-01

    A high voltage isolation transformer is provided with primary and secondary coils separated by discrete electrostatic shields from the surfaces of insulating spools on which the coils are wound. The electrostatic shields are formed by coatings of a compound with a low electrical conductivity which completely encase the coils and adhere to the surfaces of the insulating spools adjacent to the coils. Coatings of the compound also line axial bores of the spools, thereby forming electrostatic shields separating the spools from legs of a ferromagnetic core extending through the bores. The transformer is able to isolate a high constant potential applied to one of its coils, without the occurrence of sparking or corona, by coupling the coatings, lining the axial bores to the ferromagnetic core and by coupling one terminal of each coil to the respective coating encasing the coil.

  12. Substation voltage upgrading

    SciTech Connect

    Panek, J.; Elahi, H.; Lux, A.; Imece, A.F. . Power Systems Engineering Dept.); LaPanse, R.A.; Stewart, J.R. )

    1992-04-01

    This report addresses specific issues to support sound yet not unduly conservative uprating practices for substations. The main parts of the report cover the insulation withstand and overvoltage protection aspects, environmental measurements, reliability criteria, and industry experience. First the insulation design concerns are addressed. Substation stress by a backflashover of the line insulation due to lightning in the vicinity of the substation is recognized as a critical stress. A representative part of a 550 kV BIL substation was erected at the EPRI High Voltage Transmission Research Center, where also a special test circuit was assembled to produce a fast front, slow tail (0.2/200 {mu}s) wave. The substation as well as some special configurations were tested for line-to-ground and line-to-line withstand. Computer studies were performed to complement the test results. A number of important conclusions was reached. The most prominent result in that the high frequency oscillations, as caused by reflections within the substation, do not effect the Critical Flashover Voltage (CFO). The present practice, based on the highest peak is therefore very conservative. The slow tail of the wave appears to dictate the CFO. An arrester model for computer studies to represent very fast as well as slow phenomena was derived. It is based on full scale arrester test data, made available in this project. The computer program to calculate arrester model parameters is also a part of the report. The electric environmental measurements are reported for the tested substation at the HVTRC and for the uprated substation of Public Service Company of Colorado, both before and after the uprating. The performance is satisfactory when corona free hardware is used. Insulation design criteria are analyzed based on substation reliability, the system viewpoint and consequences of the failure. Utility experience with uprated substations is reviewed.

  13. A Single-Strand Annealing Protein Clamps DNA to Detect and Secure Homology

    PubMed Central

    Ander, Marcel; Subramaniam, Sivaraman; Fahmy, Karim; Stewart, A. Francis; Schäffer, Erik

    2015-01-01

    Repair of DNA breaks by single-strand annealing (SSA) is a major mechanism for the maintenance of genomic integrity. SSA is promoted by proteins (single-strand-annealing proteins [SSAPs]), such as eukaryotic RAD52 and λ phage Redβ. These proteins use a short single-stranded region to find sequence identity and initiate homologous recombination. However, it is unclear how SSAPs detect homology and catalyze annealing. Using single-molecule experiments, we provide evidence that homology is recognized by Redβ monomers that weakly hold single DNA strands together. Once annealing begins, dimerization of Redβ clamps the double-stranded region and nucleates nucleoprotein filament growth. In this manner, DNA clamping ensures and secures a successful detection for DNA sequence homology. The clamp is characterized by a structural change of Redβ and a remarkable stability against force up to 200 pN. Our findings not only present a detailed explanation for SSAP action but also identify the DNA clamp as a very stable, noncovalent, DNA–protein interaction. PMID:26271032

  14. Development of a reusable, low-shock clamp band separation system for small spacecraft release applications

    NASA Astrophysics Data System (ADS)

    Dowen, David; Christiansen, Scott; Arulf, Orjan

    2001-09-01

    In small spacecraft, the proximity of sensitive components to release systems has led to the need for low-shock spacecraft release systems. Marmon band systems are often desirable for their flight history, structural capability, and reliability. Until recently, only pyrotechnically released clamp bands were readily available. The clamp band system described in ths paper reduces shock in two ways: it eliminates shock typically associated with pyrotechnic release devices as well as utilizing a release device that reduces the shock associated with the rapid release of the preload strain energy. Patented Fast Acting Shockless Separation Nut (FASSN) technology is utilized to convert strain energy stored in the system into rotational energy of a flywheel. Early FASSN devices were designed for discrete point applications and were somewhat large and massive. Additional development of the FASSN device has reduced the size and weight to enable the use of the technology in a medium sized (23 to 60 cm diameter) clamp band system. This paper describes the overall design, performance, and initial test results for the FASSN-based, non-pyrotechnic, low-shock clamp band release system.

  15. ELECTROCARDIOGRAPHIC RESPONSES OF RAT FETUSES WITH CLAMPED OR INTACT UMBILICAL CORDS TO ACUTE MATERNAL UTERINE ISCHEMIA

    EPA Science Inventory

    Uterine ischemia results in severe cardiac disturbances in the fetus. It has been postulated that these effects are due to interaction with the ischemic uterus or placenta and not due to hypoxia or build up of metabolites in the fetus. The fetal cardiac responses to uterine clamp...

  16. Construction, Calibration, and Validation of a Simple Patch-Clamp Amplifier for Physiology Education

    ERIC Educational Resources Information Center

    Rouzrokh, Ali; Ebrahimi, Soltan Ahmed; Mahmoudian, Massoud

    2009-01-01

    A modular patch-clamp amplifier was constructed based on the Strickholm design, which was initially published in 1995. Various parts of the amplifier such as the power supply, input circuit, headstage, feedback circuit, output and nulling circuits were redesigned to use recent software advances and fabricated using the common lithographic printed…

  17. A Single-Strand Annealing Protein Clamps DNA to Detect and Secure Homology.

    PubMed

    Ander, Marcel; Subramaniam, Sivaraman; Fahmy, Karim; Stewart, A Francis; Schäffer, Erik

    2015-08-01

    Repair of DNA breaks by single-strand annealing (SSA) is a major mechanism for the maintenance of genomic integrity. SSA is promoted by proteins (single-strand-annealing proteins [SSAPs]), such as eukaryotic RAD52 and λ phage Redβ. These proteins use a short single-stranded region to find sequence identity and initiate homologous recombination. However, it is unclear how SSAPs detect homology and catalyze annealing. Using single-molecule experiments, we provide evidence that homology is recognized by Redβ monomers that weakly hold single DNA strands together. Once annealing begins, dimerization of Redβ clamps the double-stranded region and nucleates nucleoprotein filament growth. In this manner, DNA clamping ensures and secures a successful detection for DNA sequence homology. The clamp is characterized by a structural change of Redβ and a remarkable stability against force up to 200 pN. Our findings not only present a detailed explanation for SSAP action but also identify the DNA clamp as a very stable, noncovalent, DNA-protein interaction. PMID:26271032

  18. A Single Subunit Directs the Assembly of the Escherichia coli DNA Sliding Clamp Loader

    PubMed Central

    Park, Ah Young; Jergic, Slobodan; Politis, Argyris; Ruotolo, Brandon T.; Hirshberg, Daniel; Jessop, Linda L.; Beck, Jennifer L.; Barsky, Daniel; O’Donnell, Mike; Dixon, Nicholas E.; Robinson, Carol V.

    2016-01-01

    SUMMARY Multi-protein clamp loader complexes are required to load sliding clamps onto DNA. In Escherichia coli the clamp loader contains three DnaX (τ/γ) proteins, δ, and δ′, which together form an asymmetric pentameric ring that also interacts with ψχ. Here we used mass spectrometry to examine the assembly and dynamics of the clamp loader complex. We find that γ exists exclusively as a stable homotetramer, while τ is in a monomer-dimer-trimer-tetramer equilibrium. δ′ plays a direct role in the assembly as a τ/γ oligomer breaker, thereby facilitating incorporation of lower oligomers. With δ′, both δ and ψχ stabilize the trimeric form of DnaX, thus completing the assembly. When τ and γ are present simultaneously, mimicking the situation in vivo, subunit exchange between τ and γ tetramers occurs rapidly to form heterocomplexes but is retarded when δδ′ is present. The implications for intracellular assembly of the DNA polymerase III holoenzyme are discussed. PMID:20223211

  19. Critical clamp loader processing by an essential AAA+ protease in Caulobacter crescentus

    PubMed Central

    Vass, Robert H.; Chien, Peter

    2013-01-01

    Chromosome replication relies on sliding clamps that are loaded by energy-dependent complexes. In Escherichia coli, the ATP-binding clamp loader subunit DnaX exists as both long (τ) and short (γ) forms generated through programmed translational frameshifting, but the need for both forms is unclear. Here, we show that in Caulobacter crescentus, DnaX isoforms are unexpectedly generated through partial proteolysis by the AAA+ protease casein lytic proteinase (Clp) XP. We find that the normally processive ClpXP protease partially degrades DnaX to produce stable fragments upon encountering a glycine-rich region adjacent to a structured domain. Increasing the sequence complexity of this region prevents partial proteolysis and generates a τ-only form of DnaX in vivo that is unable to support viability on its own. Growth is restored when γ is provided in trans, but these strains are more sensitive to DNA damage compared with strains that can generate γ through proteolysis. Our work reveals an unexpected mode of partial processing by the ClpXP protease to generate DnaX isoforms, demonstrates that both τ and γ forms of DnaX are required for Caulobacter viability, and identifies a role for clamp loader diversity in responding to DNA damage. The conservation of distinct DnaX isoforms throughout bacteria despite fundamentally different mechanisms for producing them suggests there may be a conserved need for alternate clamp loader complexes during DNA damaging conditions. PMID:24145408

  20. Experimental and numerical analysis of clamped joints in front motorbike suspensions

    NASA Astrophysics Data System (ADS)

    Croccolo, D.; de Agostinis, M.; Vincenzi, N.

    2010-06-01

    Clamped joints are shaft-hub connections used, as an instance, in front motorbike suspensions to lock the steering plates with the legs and the legs with the wheel pin, by means of one or two bolts. The preloading force, produced during the tightening process, should be evaluated accurately, since it must lock safely the shaft, without overcoming the yielding point of the hub. Firstly, friction coefficients have been evaluated on “ad-hoc designed” specimens, by applying the Design of Experiment approach: the applied tightening torque has been precisely related to the imposed preloading force. Then, the tensile state of clamps have been evaluated both via FEM and by leveraging some design formulae proposed by the Authors as function of the preloading force and of the clamp geometry. Finally, the results have been compared to those given by some strain gauges applied on the tested clamps: the discrepancies between numerical analyses, the design formulae and the experimental results remains under a threshold of 10%.

  1. Scanning electron microscope/energy dispersive x ray analysis of impact residues on LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1992-01-01

    To better understand the nature of particulates in low-Earth orbit (LEO), and their effects on spacecraft hardware, we are analyzing residues found in impacts on the Long Duration Exposure Facility (LDEF) tray clamps. LDEF experiment trays were held in place by 6 to 8 chromic-anodized aluminum (6061-T6) clamps that were fastened to the spacecraft frame using three stainless steel hex bolts. Each clamp exposed an area of approximately 58 sq cm (4.8 cm x 12.7 cm x .45 cm, minus the bolt coverage). Some 337 out of 774 LDEF tray clamps were archived at JSC and are available through the Meteoroid & Debris Special Investigation Group (M&D SIG). Optical scanning of clamps, starting with Bay/Row A01 and working toward H25, is being conducted at JSC to locate and document impacts as small as 40 microns. These impacts are then inspected by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis (SEM/EDXA) to select those features which contain appreciable impact residue material. Based upon the composition of projectile remnants, and using criteria developed at JSC, we have made a preliminary discrimination between micrometeoroid and space debris residue-containing impact features. Presently, 13 impacts containing significant amounts of unmelted and semi-melted micrometeoritic residues were forwarded to Centre National d'Etudes Spatiales (CNES) in France. At the CNES facilities, the upgraded impacts were analyzed using a JEOL T330A SEM equipped with a NORAN Instruments, Voyager X-ray Analyzer. All residues were quantitatively characterized by composition (including oxygen and carbon) to help understand interplanetary dust as possibly being derived from comets and asteroids.

  2. Evaluation of the Safe Ischemic Time of Clamping During Intermittent Pringles Maneuver in Rabbits

    PubMed Central

    Kolahdoozan, Mohsen; Behdad, Akbar; Hosseinpour, Mehrdad; Behdad, Samin; Rezaei, Mohammad Taghi

    2015-01-01

    Background: The liver is the most commonly injured organ in blunt abdominal trauma. Although major hepatic bleeding may be partially controlled with portal triade clamping (the Pringle’s maneuver), continuous prolonged clamping results in liver ischemia. Objectives: The purpose of this study was to determine the safe time of Pringle maneuver based on pathologic changes of liver in rabbit models. Materials and Methods: In an experimental study, 20 New-Zealand white rabbits were selected. In laparotomy, a blunt dissector was passed through the foramen of Winslow and the hepato-duodenal ligament encircled with an umbilical tape. En masse Pringle maneuver was performed using atraumatic flexible clamps. Rabbits were divided into four groups based on Pringle maneuver time (30 minutes, 45 minutes, 60 minutes, and 75 minutes). A hepatic biopsy was performed at the beginning of operation. The degree of tissue injury was evaluated using blood markers. Results: There were five rabbits in each group. At the end of 60 minutes ischemia, only minor alterations were observed in pathological specimens. At the end of 75 minutes, hepatocyte damage and necrosis were observed. The serum levels of alanine aminotransferase (Group A: P = 0.02; Group B: P = 0.01; Group C: P = 0.0002; Group D: P = 0.01) and Aspartate aminotransferase (Group A: P = 0.03; Group B: P = 0.002; Group C: P = 0.0004; Group D: P = 0.0003) were significantly increased post-operatively. The maximum level was in the first day after operation. Conclusions: Continuous portal triade clamping (the Pringle maneuver) during liver ischemia (30 and 45 minutes) in rabbits resulted in no ischemic change. Increasing time of clamping to 30 minutes was safe in intermittent Pringle maneuver. PMID:26848477

  3. Voltage-sensing phosphatase modulation by a C2 domain

    PubMed Central

    Castle, Paul M.; Zolman, Kevin D.; Kohout, Susy C.

    2015-01-01

    The voltage-sensing phosphatase (VSP) is the first example of an enzyme controlled by changes in membrane potential. VSP has four distinct regions: the transmembrane voltage-sensing domain (VSD), the inter-domain linker, the cytosolic catalytic domain, and the C2 domain. The VSD transmits the changes in membrane potential through the inter-domain linker activating the catalytic domain which then dephosphorylates phosphatidylinositol phosphate (PIP) lipids. The role of the C2, however, has not been established. In this study, we explore two possible roles for the C2: catalysis and membrane-binding. The Ci-VSP crystal structures show that the C2 residue Y522 lines the active site suggesting a contribution to catalysis. When we mutated Y522 to phenylalanine, we found a shift in the voltage dependence of activity. This suggests hydrogen bonding as a mechanism of action. Going one step further, when we deleted the entire C2 domain, we found voltage-dependent enzyme activity was no longer detectable. This result clearly indicates the entire C2 is necessary for catalysis as well as for modulating activity. As C2s are known membrane-binding domains, we tested whether the VSP C2 interacts with the membrane. We probed a cluster of four positively charged residues lining the top of the C2 and suggested by previous studies to interact with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] (Kalli et al., 2014). Neutralizing those positive charges significantly shifted the voltage dependence of activity to higher voltages. We tested membrane binding by depleting PI(4,5)P2 from the membrane using the 5HT2C receptor and found that the VSD motions as measured by voltage clamp fluorometry (VCF) were not changed. These results suggest that if the C2 domain interacts with the membrane to influence VSP function it may not occur exclusively through PI(4,5)P2. Together, this data advances our understanding of the VSP C2 by demonstrating a necessary and critical role for the C2 domain in

  4. Slow unloading leads to DNA-bound β2-sliding clamp accumulation in live Escherichia coli cells

    PubMed Central

    Moolman, M. Charl; Krishnan, Sriram Tiruvadi; Kerssemakers, Jacob W. J.; van den Berg, Aafke; Tulinski, Pawel; Depken, Martin; Reyes-Lamothe, Rodrigo; Sherratt, David J.; Dekker, Nynke H.

    2014-01-01

    The ubiquitous sliding clamp facilitates processivity of the replicative polymerase and acts as a platform to recruit proteins involved in replication, recombination and repair. While the dynamics of the E. coli β2-sliding clamp have been characterized in vitro, its in vivo stoichiometry and dynamics remain unclear. To probe both β2-clamp dynamics and stoichiometry in live E. coli cells, we use custom-built microfluidics in combination with single-molecule fluorescence microscopy and photoactivated fluorescence microscopy. We quantify the recruitment, binding and turnover of β2-sliding clamps on DNA during replication. These quantitative in vivo results demonstrate that numerous β2-clamps in E. coli remain on the DNA behind the replication fork for a protracted period of time, allowing them to form a docking platform for other enzymes involved in DNA metabolism. PMID:25520215

  5. Slow unloading leads to DNA-bound β2-sliding clamp accumulation in live Escherichia coli cells

    NASA Astrophysics Data System (ADS)

    Moolman, M. Charl; Krishnan, Sriram Tiruvadi; Kerssemakers, Jacob W. J.; van den Berg, Aafke; Tulinski, Pawel; Depken, Martin; Reyes-Lamothe, Rodrigo; Sherratt, David J.; Dekker, Nynke H.

    2014-12-01

    The ubiquitous sliding clamp facilitates processivity of the replicative polymerase and acts as a platform to recruit proteins involved in replication, recombination and repair. While the dynamics of the E. coli β2-sliding clamp have been characterized in vitro, its in vivo stoichiometry and dynamics remain unclear. To probe both β2-clamp dynamics and stoichiometry in live E. coli cells, we use custom-built microfluidics in combination with single-molecule fluorescence microscopy and photoactivated fluorescence microscopy. We quantify the recruitment, binding and turnover of β2-sliding clamps on DNA during replication. These quantitative in vivo results demonstrate that numerous β2-clamps in E. coli remain on the DNA behind the replication fork for a protracted period of time, allowing them to form a docking platform for other enzymes involved in DNA metabolism.

  6. Functional significance of voltage-dependent conductances in Limulus ventral photoreceptors

    PubMed Central

    1982-01-01

    The influence of voltage-dependent conductances on the receptor potential of Limulus ventral photoreceptors was investigated. During prolonged, bright illumination, the receptor potential consists of an initial transient phase followed by a smaller plateau phase. Generally, a spike appears on the rising edge of the transient phase, and often a dip occurs between the transient and plateau. Block of the rapidly inactivating outward current, iA, by 4-aminopyridine eliminates the dip under some conditions. Block of maintained outward current by internal tetraethylammonium increases the height of the plateau phase, but does not eliminate the dip. Block of the voltage-dependent Na+ and Ca2+ current by external Ni2+ eliminates the spike. The voltage-dependent Ca2+ conductance also influences the sensitivity of the photoreceptor to light as indicated by the following evidence: depolarizing voltage- clamp pulses reduce sensitivity to light. This reduction is blocked by removal of external Ca2+ or by block of inward Ca2+ current with Ni2+. The reduction of sensitivity depends on the amplitude of the pulse, reaching a maximum at or approximately +15 mV. The voltage dependence is consistent with the hypothesis that the desensitization results from passive Ca2+ entry through a voltage-dependent conductance. PMID:7057162

  7. Voltage-dependent potassium currents in cochlear hair cells of the embryonic chick.

    PubMed

    Griguer, C; Fuchs, P A

    1996-01-01

    1. Hair cells were isolated from apical and basal regions of the embryonic chick's cochlea. Outward potassium currents were recorded using whole cell tight-seal voltage clamp. 2. Outward currents in basal hair cells activated and inactivated rapidly. The average time to half-maximum at 0 mV was 2.9 ms. The time constant of inactivation at 0 mV was 71 ms. Boltzmann fits to conductance-voltage curves gave an average half-activation voltage of -36 mV, and steady-state inactivation was half-maximal at -62 mV. 3. Potassium currents in apical hair cells had slower kinetics, with a time to half-maximum of 6.7 ms and an inactivation time constant of 242 ms at + 10 mV. The half-activation voltage derived from Boltzmann fits was -16 mV and that for inactivation was -43 mV. 4. With respect to kinetic and voltage-dependent properties, the rapidly and slowly activating potassium currents of embryonic cells were similar to the rapidly inactivating "A" current of mature short hair cells and to the delayed rectifier of mature tall hair cells. However, unlike the adult currents, the embryonic currents did not show differential sensitivities to tetraethylammonium chloride and 4-aminopyridine. As early as the tenth day of embryogenesis, hair cells at the apical and basal extremes of the cochlea produced functionally distinct voltage-gated potassium currents. PMID:8822574

  8. Voltage-dependent potassium currents in developing neurones from quail mesencephalic neural crest.

    PubMed Central

    Bader, C R; Bertrand, D; Dupin, E

    1985-01-01

    Neurones in explants cultured from quail mesencephalic neural crest were studied at different stages of their development using the voltage-clamp technique. A voltage-dependent outward current activated by membrane depolarization was identified as a potassium current by the sensitivity of its reversal potential to extracellular potassium. The voltage-dependent potassium current is made up of two components which differ in their sensitivity to 4-aminopyridine (4-AP) and tetraethylammonium (TEA). The component most sensitive to 4-AP has fast activation kinetics and inactivates quickly at sustained depolarized voltages. By analogy with a current described in other preparations, this current was called IA. The component most sensitive to TEA has slower activation kinetics and inactivates more slowly at sustained depolarized voltages. This current was called IK. IA and IK were already present in neurones cultured for 24 h. The ratio between the peak of IK and that of IA increased significantly between 24 h and 4 days in culture. This means that the two components of the voltage-dependent potassium current follow a different time course during development. Images Plate 1 PMID:2414432

  9. Voltage dependence of Hodgkin-Huxley rate functions for a multistage K+ channel voltage sensor within a membrane

    NASA Astrophysics Data System (ADS)

    Vaccaro, S. R.

    2014-11-01

    The activation of a K+channel sensor in two sequential stages during a voltage clamp may be described as the translocation of a Brownian particle in an energy landscape with two large barriers between states. A solution of the Smoluchowski equation for a square-well approximation to the potential function of the S4 voltage sensor satisfies a master equation and has two frequencies that may be determined from the forward and backward rate functions. When the higher-frequency terms have small amplitude, the solution reduces to the relaxation of a rate equation, where the derived two-state rate functions are dependent on the relative magnitude of the forward rates (α and γ ) and the backward rates (β and δ ) for each stage. In particular, the voltage dependence of the Hodgkin-Huxley rate functions for a K+channel may be derived by assuming that the rate functions of the first stage are large relative to those of the second stage—α ≫γ and β ≫δ . For a Shaker IR K+ channel, the first forward and backward transitions are rate limiting (α <γ and δ ≪β ), and for an activation process with either two or three stages, the derived two-state rate functions also have a voltage dependence that is of a similar form to that determined for the squid axon. The potential variation generated by the interaction between a two-stage K+ ion channel and a noninactivating Na+ ion channel is determined by the master equation for K+channel activation and the ionic current equation when the Na+channel activation time is small, and if β ≪δ and α ≪γ , the system may exhibit a small amplitude oscillation between spikes, or mixed-mode oscillation, in which the slow closed state modulates the K+ ion channel conductance in the membrane.

  10. Experimental demonstration of an anode voltage sensor for high voltage IGBT over-voltage protection

    NASA Astrophysics Data System (ADS)

    Caramel, C.; Flores, D.; Hidalgo, S.; Legal, J.; Austin, P.; Imbernon, E.; Rebollo, J.; Sánchez, J. L.

    2010-11-01

    This paper deals with the design and fabrication of a monolithically integrated over-voltage sensor together with high voltage IGBTs. This solution will be of interest in harsh environment applications such as power modules for traction. First, the anode voltage sensor concept is introduced and an initial experimental validation on 600 V insulated gate bipolar transistor (IGBT) devices is provided. Then, guidelines for the design of a 3.3 kV IGBT including the proposed anode voltage sensor are pointed out together with its process fabrication. Finally, experimental results on fabricated 3.3 kV IGBTs are presented and compared with simulated expected behaviour.

  11. Temperature controlled high voltage regulator

    DOEpatents

    Chiaro, Jr., Peter J.; Schulze, Gerald K.

    2004-04-20

    A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

  12. Smaller insulators handle higher voltage

    SciTech Connect

    Wilt, G.

    1997-10-01

    Researcher at Lawrence Livermore have designed the Ultra High Gradient Insulator, a device that can reliably withstand electrical voltages four times greater than before. The Ultra-HGI is designed with alternating layers which divide voltages so finely that the chances of failure are small, and when they do occur, they are confined to a very small portion of the insulator.

  13. Voltage sensor and dielectric material

    DOEpatents

    Yakymyshyn, Christopher Paul; Yakymyshyn, Pamela Jane; Brubaker, Michael Allen

    2006-10-17

    A voltage sensor is described that consists of an arrangement of impedance elements. The sensor is optimized to provide an output ratio that is substantially immune to changes in voltage, temperature variations or aging. Also disclosed is a material with a large and stable dielectric constant. The dielectric constant can be tailored to vary with position or direction in the material.

  14. Transient voltage oscillations in coils

    SciTech Connect

    Chowdhuri, P.

    1985-01-01

    Magnet coils may be excited into internal voltage oscillations by transient voltages. Such oscillations may electrically stress the magnet's dielectric components to many times its normal stress. This may precipitate a dielectric failure, and the attendant prolonged loss of service and costly repair work. Therefore, it is important to know the natural frequencies of oscillations of a magnet during the design stage, and to determine whether the expected switching transient voltages can excite the magnet into high-voltage internal oscillations. The series capacitance of a winding significantly affects its natural frequencies. However, the series capacitance is difficult to calculate, because it may comprise complex capacitance network, consisting of intra- and inter-coil turn-to-turn capacitances of the coil sections. A method of calculating the series capacitance of a winding is proposed. This method is rigorous but simple to execute. The time-varying transient voltages along the winding are also calculated.

  15. Fendiline inhibits L-type calcium channels in guinea-pig ventricular myocytes: a whole-cell patch-clamp study.

    PubMed Central

    Tripathi, O.; Schreibmayer, W.; Tritthart, H. A.

    1993-01-01

    1. Fendiline, a diphenylalkylamine type of antianginal drug, was examined for its effects on L-type calcium channels in guinea-pig ventricular myocytes by the whole-cell patch-clamp technique. 2. Fendiline (0.3-100 microM) applied extracellularly inhibited the calcium channel current (ICa) in a concentration- and time-dependent manner. The IC50 of fendiline was 17.0 +/- 2.43 microM and the Hill slope was 1.39 +/- 0.23. 3. Inhibition of ICa by fendiline appeared with an onset of less than 3 s. 4. Fendiline inhibited ICa at all the membrane potentials tested and shifted the current-voltage curve upwards. The overall calcium channel conductance (gCa) of the cell was reduced and conductance-voltage curve was shifted to the left in the presence of fendiline. 5. Isoprenaline (0.5-1 microM), a beta-adrenoceptor agonist, partially reversed the inhibitory effect of fendiline on ICa. 6. It is suggested that fendiline applied extracellularly blocks L-type calcium channels and reduces calcium channel conductance of the cell. The calcium channels thus inhibited are, nevertheless, still available for beta-adrenoceptor stimulation. PMID:8485628

  16. An accurate continuous calibration system for high voltage current transformer

    SciTech Connect

    Tong Yue; Li Binhong

    2011-02-15

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site.

  17. An accurate continuous calibration system for high voltage current transformer.

    PubMed

    Tong, Yue; Li, Bin Hong

    2011-02-01

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site. PMID:21361633

  18. Intraoperative assessment of hepatic venous congestion with direct clamping of the hepatic vein trunk for living donor liver transplantation.

    PubMed

    Hwang, S; Lee, S G; Kim, K H; Park, K M; Lee, Y J; Ahn, C S; Moon, D B; Ha, T Y; Cho, S H; Oh, K B

    2004-06-01

    We devised a hepatic vein clamping method to assess the amount of hepatic venous congestion (HVC) before liver transection. From February 2003 to May 2003, this method was applied to 5 of 58 living donor livers especially to assess donor safety. The left portal vein and proper hepatic artery as well as the middle hepatic vein (MHV)-left hepatic vein (LHV) trunk were clamped simultaneously to assess the HVC in the remnant right lobe before performing extended left lobectomy. As three donors demonstrated the extent of the HVC equivalent to about 40% of the right lobe volume (RLV), their operations proceeded according to the preoperative plan. The territory of HVC after liver transection was the same as that observed with direct clamping of the hepatic vein. However, one donor showed massive HVC more than 50% of RLV and the operative plan was adjusted to harvest only the left lobe without the MHV trunk for donor safety. To assess the HVC in the remnant left lobe, the isolated LHV trunk was occluded after clamping the donor's proper hepatic artery. The whole left lobe except for a small area at the anterior portion of the medial segment became discolored on LHV clamping: the opposite demarcation appeared on MHV clamping. The amount of HVC was so small that we harvested the right lobe with the MHV trunk. All donors and recipients recovered uneventfully. We believe that this direct clamping method makes the assessment of HVC feasible before parenchymal transection of a donor liver. PMID:15251358

  19. Design and experimental research of a novel inchworm type piezo-driven rotary actuator with the changeable clamping radius

    NASA Astrophysics Data System (ADS)

    Zhao, Hongwei; Fu, Lu; Ren, Luquan; Huang, Hu; Fan, Zunqiang; Li, Jianping; Qu, Han

    2013-01-01

    In this paper, a novel piezo-driven rotary actuator with the changeable clamping radius is developed based on the inchworm principle. This actuator mainly utilizes three piezoelectric actuators, a flexible gripper, a clamping block, and a rotor to achieve large stroke rotation with high resolution. The design process of the flexible gripper consisting of the driving unit and the clamping unit is described. Lever-type mechanisms were used to amplify the micro clamping displacements. The amplifying factor and parasitic displacement of the lever-type mechanism in the clamping unit was analyzed theoretically and experimentally. In order to investigate the rotation characteristics of the actuator, a series of experiments was carried out. Experimental results indicate that the actuator can rotate at a speed of 77 488 μrad/s with a driving frequency of 167 Hz. The rotation resolution and maximum load torque of the actuator are 0.25 μrad and 37 N mm, respectively. The gripper is movable along the z direction based on an elevating platform, and the clamping radius can change from 10.6 mm to 25 mm. Experimental results confirm that the actuator can achieve different rotation speeds by changing the clamping radius.

  20. Attachment ability of a clamp-bearing fish parasite, Diplozoon paradoxum (Monogenea), on gills of the common bream, Abramis brama.

    PubMed

    Wong, Wey-Lim; Gorb, Stanislav N

    2013-08-15

    Monogeneans, which are mainly fish ectoparasites, use various types of haptoral (posterior) attachment apparatus to secure their attachment onto their hosts. However, it remains unclear how strongly a monogenean can attach onto its host. In the present study, we aimed for the first time to (1) measure pull-off forces required to detach a pair of clamp-bearing monogeneans, Diplozoon paradoxum, from gills of Abramis brama and (2) determine the contribution of muscles to the clamp movements. A mean force of 6.1±2.7 mN (~246 times the animals' weight) was required to dislodge a paired D. paradoxum vertically from the gills. There were significant differences (P<0.05, Tukey test) between the widths of clamp openings in D. paradoxum treated in three different solutions: the widest clamp openings were observed in the monogeneans treated in 100 mmol l(-1) potassium chloride solution (58.26±13.44 μm), followed by those treated in 20 mmol l(-1) magnesium chloride solution (37.91±7.58 μm), and finally those treated in filtered lake water (20.16±8.63 μm). This suggests that the closing of the clamps is probably not due to the continuous contraction of extrinsic muscles but is caused by the elasticity of the clamp material and that muscle activity is required for clamp opening. PMID:23580722

  1. Fatal Delayed Esophageal Rupture Following Aortic Clamping for Treatment of Stanford Type B Dissection

    SciTech Connect

    Ito, Hisao; Yamada, Takayuki; Ishibashi, Tadashi; Akiyama, Masatoshi; Nakame, Takahiko; Ito, Yasuhiro; Konnai, Toshiaki

    2003-11-15

    A 65-year-old man underwent a thromboexclusionoperation for management of chronic Stanford type B dissecting aneurysmin 1991. However, long-term follow-up CT scans after the operation revealed that the ascending aorta gradually enlarged and was eventually complicated by recurrent aortic dissection. The patient complained of frequent bloody sputum, whereas chest roentogenography showed no pulmonary abnormalities. Subsequent swallow esophagogram demonstrated that the upper esophagus was deviated to the right and the middle esophagus was greatly compressed by the aortic clamp. Esophageal endoscopy showed a bloody inner surface and marked swelling of the middle esophagus. The patient eventually died of massive hematemesis in 2001. We describe the imaging features of unanticipated complications such as recurrent dissecting aneurysm or impending esophageal rupture.Furthermore, we discuss the cause of hematemesis and document that the aortic clamp migrated and resulted in development of a recurrent aneurysmal dissection, which in turn resulted in esophageal rupture with aneurysmal disruption.

  2. Local and remote ischemic preconditioning protect against intestinal ischemic/reperfusion injury after supraceliac aortic clamping

    PubMed Central

    Erling, Nilon; de Souza Montero, Edna Frasson; Sannomiya, Paulina; Poli-de-Figueiredo (in memoriam), Luiz Francisco

    2013-01-01

    OBJECTIVES: This study tests the hypothesis that local or remote ischemic preconditioning may protect the intestinal mucosa against ischemia and reperfusion injuries resulting from temporary supraceliac aortic clamping. METHODS: Twenty-eight Wistar rats were divided into four groups: the sham surgery group, the supraceliac aortic occlusion group, the local ischemic preconditioning prior to supraceliac aortic occlusion group, and the remote ischemic preconditioning prior to supraceliac aortic occlusion group. Tissue samples from the small bowel were used for quantitative morphometric analysis of mucosal injury, and blood samples were collected for laboratory analyses. RESULTS: Supraceliac aortic occlusion decreased intestinal mucosal length by reducing villous height and elevated serum lactic dehydrogenase and lactate levels. Both local and remote ischemic preconditioning mitigated these histopathological and laboratory changes. CONCLUSIONS: Both local and remote ischemic preconditioning protect intestinal mucosa against ischemia and reperfusion injury following supraceliac aortic clamping. PMID:24473514

  3. Experimental validation of new mathematical solutions for orthotropic plates with clamped edges

    NASA Astrophysics Data System (ADS)

    Sprinťu, Iuliana; Roateşi, Simona

    2013-10-01

    This paper deals with analytical solutions for the bending deformation of rectangular orthotropic elastic composite plates with various boundary conditions. The models are based on the classical laminated plate theory (CLPT). The Ritz method, in conjunction with the weighted residue method for the coefficients calculation is used to analytically determine the bending solutions of orthotropic laminated plates subjected to uniform pressure on the bottom laminate, having clamped edges or possessing two opposite edges simply supported and the remaining two edges clamped, respectively. Numerical examples of laminated plates considering similar boundary value problems as treated analytically are presented. It is presented the experimental device and the experimental test results, as well. Thorough comparison between analytical solutions, numerical results and experimental data is performed and a good agreement is obtained.

  4. Anthropomorphizing the Mouse Cardiac Action Potential via a Novel Dynamic Clamp Method

    PubMed Central

    Ahrens-Nicklas, Rebecca C.; Christini, David J.

    2009-01-01

    Abstract Interspecies differences can limit the translational value of excitable cells isolated from model organisms. It can be difficult to extrapolate from a drug- or mutation-induced phenotype in mice to human pathophysiology because mouse and human cardiac electrodynamics differ greatly. We present a hybrid computational-experimental technique, the cell-type transforming clamp, which is designed to overcome such differences by using a calculated compensatory current to convert the macroscopic electrical behavior of an isolated cell into that of a different cell type. We demonstrate the technique's utility by evaluating drug arrhythmogenicity in murine cardiomyocytes that are transformed to behave like human myocytes. Whereas we use the cell-type transforming clamp in this work to convert between mouse and human electrodynamics, the technique could be adapted to convert between the action potential morphologies of any two cell types of interest. PMID:19917221

  5. Characterization of active hair-bundle motility by a mechanical-load clamp

    NASA Astrophysics Data System (ADS)

    Salvi, Joshua D.; Maoiléidigh, Dáibhid Ó.; Fabella, Brian A.; Tobin, Mélanie; Hudspeth, A. J.

    2015-12-01

    Active hair-bundle motility endows hair cells with several traits that augment auditory stimuli. The activity of a hair bundle might be controlled by adjusting its mechanical properties. Indeed, the mechanical properties of bundles vary between different organisms and along the tonotopic axis of a single auditory organ. Motivated by these biological differences and a dynamical model of hair-bundle motility, we explore how adjusting the mass, drag, stiffness, and offset force applied to a bundle control its dynamics and response to external perturbations. Utilizing a mechanical-load clamp, we systematically mapped the two-dimensional state diagram of a hair bundle. The clamp system used a real-time processor to tightly control each of the virtual mechanical elements. Increasing the stiffness of a hair bundle advances its operating point from a spontaneously oscillating regime into a quiescent regime. As predicted by a dynamical model of hair-bundle mechanics, this boundary constitutes a Hopf bifurcation.

  6. In Vivo Whole-Cell Patch-Clamp Recording in the Zebrafish Brain.

    PubMed

    Zhang, Rong-Wei; Du, Jiu-Lin

    2016-01-01

    Zebrafish (Danio rerio) is a newly emerged vertebrate animal model with a conserved gross architecture of the brain and a rich repertoire of behaviors. Due to the optical transparency and structural simplicity of its brain, larval zebrafish has become an ideal in vivo model for dissecting neural mechanisms of brain functions at a whole-brain scale based on a strategy that spans scales from synapses, neurons, and circuits to behaviors. Whole-cell patch-clamp recording is an indispensable approach for studying synaptic and circuit mechanisms of brain functions. Due to the small size of neurons in the zebrafish brain, it is challenging to get whole-cell recordings from these cells. Here, we describe a protocol for obtaining in vivo whole-cell patch-clamp recordings from neurons in larval zebrafish. PMID:27464815

  7. Simplified Estimating Method for Shock Response Spectrum Envelope of V-Band Clamp Separation Shock

    NASA Astrophysics Data System (ADS)

    Iwasa, Takashi; Shi, Qinzhong

    A simplified estimating method for the Shock Response Spectrum (SRS) envelope at the spacecraft interface near the V-band clamp separation device has been established. This simplified method is based on the pyroshock analysis method with a single degree of freedom (D.O.F) model proposed in our previous paper. The parameters required in the estimating method are only geometrical information of the interface and a tension of the V-band clamp. According to the use of these parameters, a simplified calculation of the SRS magnitude at the knee frequency is newly proposed. By comparing the estimation results with actual pyroshock test results, it was verified that the SRS envelope estimated with the simplified method appropriately covered the pyroshock test data of the actual space satellite systems except some specific high frequency responses.

  8. Ultrafast spectroscopy of super high frequency mechanical modes of doubly clamped beams

    SciTech Connect

    Ristow, Oliver; Merklein, Moritz; Grossmann, Martin; Hettich, Mike; Schubert, Martin; Bruchhausen, Axel; Scheer, Elke; Dekorsy, Thomas; Barretto, Elaine C. S.; Grebing, Jochen; Erbe, Artur; Mounier, Denis; Gusev, Vitalyi

    2013-12-02

    We use ultrafast pump-probe spectroscopy to study the mechanical vibrations in the time domain of doubly clamped silicon nitride beams. Beams with two different clamping conditions are investigated. Finite element method calculations are performed to analyse the mode spectra of both structures. By calculating the strain integral on the surface of the resonators, we are able to reproduce the effect of the detection mechanism and identify all the measured modes. We show that our spectroscopy technique combined with our modelling tools allow the investigation of several different modes in the super high frequency range (3-30 GHz) and above, bringing more information about the vibration modes of nanomechanical resonators.

  9. An investigation of the behavior of the clamp-induced bending stresses

    NASA Astrophysics Data System (ADS)

    Huang, S. N.

    1991-12-01

    The Fast Flux Test Facility is a demonstration and test facility for the sodium cooled fast breeder reactor. Insulated pipe clamps are used in the heat transport and safety related systems. This investigation determines whether the clamp induced pipe stresses should be classified as primary or secondary stresses. Three finite element models were developed using the ANSYS computer program. Inelastic analyses were performed to investigate the behavior of meridional bending stress and hoop bending stress. The double exponential creep law of 316 stainless steel was used in the creep analysis. Results indicate that pipe bending stresses do not completely relax with time. Therefore, a portion of the meridional bending stress and the hoop bending stress should be classified as primary stress.

  10. Force dependency of biochemical reactions measured by single molecule force-clamp spectroscopy

    PubMed Central

    Popa, Ionel; Kosuri, Pallav; Alegre-Cebollada, Jorge; Garcia-Manyes, Sergi; Fernandez, Julio M.

    2015-01-01

    Here we describe a protocol for using force-clamp spectroscopy to precisely quantify the effect of force on biochemical reactions. A calibrated force is used to control the exposure of reactive sites in a single polyprotein substrate composed of repeated domains. The use of polyproteins allows the identification of successful single-molecule recordings from unambiguous mechanical unfolding fingerprints. Biochemical reactions are then measured directly by detecting the length changes of the substrate held at a constant force. We present the layout of a force-clamp spectrometer along with protocols to design and conduct experiments. These experiments measure reaction kinetics as a function of applied force. We show sample data of the force dependency of two different reactions, protein unfolding and disulfide reduction. These data, which can be acquired in just a few days, reveal mechanistic details of the reactions that currently cannot be resolved by any other technique. PMID:23744288

  11. Operation of a voltage source converter at increased utility voltage

    SciTech Connect

    Kaura, V.; Blasko, V.

    1997-01-01

    The operation of a voltage source converter (VSC) with regeneration capability, controllable power factor, and low distortion of utility currents is analyzed at increased utility voltage. Increase in the utility voltage causes a VSC to saturate and enter a nonlinear mode of operation. To operate under elevated utility, two steps are taken: (1) a pulse width modulation (PWM) algorithm is implemented which extends the linear region of operation by 15% and (2) a PWM saturation regulator is used to control the reactive current at higher utility voltages. The PWM algorithm reduces the switching losses by at least 33% and the effect of blanking time by one-third. All analytical results are experimentally verified on a 100 kW three-phase VSC.

  12. Results from the CCSM Carbon-Land Model Intercomparison Project (C-LAMP)

    NASA Astrophysics Data System (ADS)

    Hoffman, F. M.; Randerson, J. T.; Fung, I.; Thornton, P.; Lee, Y. J.; Covey, C. C.

    2007-12-01

    The National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM) Biogeochemistry Working Group has initiated an intercomparison of terrestrial biosphere models running within the CCSM framework. Called the CCSM Carbon-Land Model Intercomparison Project (C-LAMP), its purpose is to allow the U.S. scientific community to evaluate the performance of biogeochemical cycling models within CCSM and to identify the most important processes for inclusion in future versions of CCSM. Two terrestrial biogeochemistry modules coupled to CCSM---CLM3-CASA' and CLM3-CN---have been evaluated following a set of carefully crafted experiments that build upon the C4MIP Phase 1 protocol. In Experiment 1, the models were forced with an improved NCEP/NCAR reanalysis data set, while in Experiment 2, the models were coupled to the Community Atmosphere Model Version 3 (CAM3) with carbon, water, and energy exchanges over the 20th century. Unlike with most model intercomparisons, for C-LAMP a model performance methodology based on comparison against best-available observational data sets has been developed. Scalar metrics for each model are derived from comparisons against measurements of net primary production, leaf area index, the seasonal cycle of CO2, carbon stocks, and energy. Results from both experiments for CLM3- CASA' and CLM3-CN will be presented, along with recommendations for future evaluations of terrestrial models. C-LAMP model output will be made available by the Program for Climate Model Diagnosis and Intercomparison (PCMDI) via the Earth System Grid (ESG). C-LAMP is a sub-project of the Computational Climate Science End Station headed by Dr. Warren Washington, using computing resources at the U.S. Department of Energy's National Center for Computational Sciences (NCCS).

  13. Microwave electromechanical resonator consisting of clamped carbon nanotubes in an abacus arrangement

    NASA Astrophysics Data System (ADS)

    Peng, H. B.; Chang, C. W.; Aloni, S.; Yuzvinsky, T. D.; Zettl, A.

    2007-07-01

    We describe nanoscale electromechanical resonators capable of operating in ambient-pressure air at room temperature with unprecedented fundamental resonance frequency of ˜4GHz . The devices are created from suspended carbon nanotubes loaded abacus style with inertial metal clamps, yielding short effective beam lengths. We examine the energy dissipation in the system due to air damping and contact loss. Such nanoabacus resonators open windows for immediate practical microwave frequency nanoelectromechanical system applications.

  14. An Adjustable Gain-Clamped Semiconductor Optical Amplifier (AGC-SOA)

    NASA Astrophysics Data System (ADS)

    Michie, C.; Kelly, A. E.; Armstrong, I.; Andonovic, I.; Tombling, C.

    2007-06-01

    The operation of a semiconductor optical amplifier (SOA)-ring laser-based subsystem, with the capability to provide adjustable gain-clamped operation, will be described, and preliminary characterization results will be presented. The device uses two SOAs in a ring-cavity topology: one to amplify the signal and the other to control the gain. This type of subsystem finds applications in packet-based dynamic systems where it may be used for power equalization and linear amplification.

  15. Application of 3-dimensional printing in hand surgery for production of a novel bone reduction clamp.

    PubMed

    Fuller, Sam M; Butz, Daniel R; Vevang, Curt B; Makhlouf, Mansour V

    2014-09-01

    Three-dimensional printing is being rapidly incorporated in the medical field to produce external prosthetics for improved cosmesis and fabricated molds to aid in presurgical planning. Biomedically engineered products from 3-dimensional printers are also utilized as implantable devices for knee arthroplasty, airway orthoses, and other surgical procedures. Although at first expensive and conceptually difficult to construct, 3-dimensional printing is now becoming more affordable and widely accessible. In hand surgery, like many other specialties, new or customized instruments would be desirable; however, the overall production cost restricts their development. We are presenting our step-by-step experience in creating a bone reduction clamp for finger fractures using 3-dimensional printing technology. Using free, downloadable software, a 3-dimensional model of a bone reduction clamp for hand fractures was created based on the senior author's (M.V.M.) specific design, previous experience, and preferences for fracture fixation. Once deemed satisfactory, the computer files were sent to a 3-dimensional printing company for the production of the prototypes. Multiple plastic prototypes were made and adjusted, affording a fast, low-cost working model of the proposed clamp. Once a workable design was obtained, a printing company produced the surgical clamp prototype directly from the 3-dimensional model represented in the computer files. This prototype was used in the operating room, meeting the expectations of the surgeon. Three-dimensional printing is affordable and offers the benefits of reducing production time and nurturing innovations in hand surgery. This article presents a step-by-step description of our design process using online software programs and 3-dimensional printing services. As medical technology advances, it is important that hand surgeons remain aware of available resources, are knowledgeable about how the process works, and are able to take advantage of

  16. Higher Accurate Estimation of Axial and Bending Stiffnesses of Plates Clamped by Bolts

    NASA Astrophysics Data System (ADS)

    Naruse, Tomohiro; Shibutani, Yoji

    Equivalent stiffness of clamped plates should be prescribed not only to evaluate the strength of bolted joints by the scheme of “joint diagram” but also to make structural analyses for practical structures with many bolted joints. We estimated the axial stiffness and bending stiffness of clamped plates by using Finite Element (FE) analyses while taking the contact condition on bearing surfaces and between the plates into account. The FE models were constructed for bolted joints tightened with M8, 10, 12 and 16 bolts and plate thicknesses of 3.2, 4.5, 6.0 and 9.0 mm, and the axial and bending compliances were precisely evaluated. These compliances of clamped plates were compared with those from VDI 2230 (2003) code, in which the equivalent conical compressive stress field in the plate has been assumed. The code gives larger axial stiffness for 11% and larger bending stiffness for 22%, and it cannot apply to the clamped plates with different thickness. Thus the code shall give lower bolt stress (unsafe estimation). We modified the vertical angle tangent, tanφ, of the equivalent conical by adding a term of the logarithm of thickness ratio t1/t2 and by fitting to the analysis results. The modified tanφ can estimate the axial compliance with the error from -1.5% to 6.8% and the bending compliance with the error from -6.5% to 10%. Furthermore, the modified tanφ can take the thickness difference into consideration.

  17. Scanning electron microscope/energy dispersive x ray analysis of impact residues in LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1993-01-01

    Detailed optical scanning of tray clamps is being conducted in the Facility for the Optical Inspection of Large Surfaces at JSC to locate and document impacts as small as 40 microns in diameter. Residues from selected impacts are then being characterized by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis at CNES. Results from this analysis will be the initial step to classifying projectile residues into specific sources.

  18. Reversible fastener clamp load monitor with continuous visual or remote readout

    NASA Astrophysics Data System (ADS)

    Hodge, Malcolm H.; Kausel, Theodore C., Jr.; Begley, Matthew R.

    1998-03-01

    SIMS has developed a simple means for detecting and monitoring both absolute and relative clamp load, or bolt tension, in fastener systems. More than twenty-five percent of automotive failures are known to be due to undetected loss of fastener clamp load. While the equivalent aerospace maintenance statistics are not known, the average automobile has 3,500 fasteners while a Boeing 747 has closer to one million. It is therefore anticipated that the new SensaBolt clamp load tracking system could find wide applications in the aerospace arena. We describe a visually-evident and retrofitted clamp load monitoring design which is based on the differential joint substrate compression at, and immediately adjacent to, the fastener location. This intrinsically-accurate indicator does not necessarily require alteration in either the bolt or nut geometries, thereby facilitating product introduction and retrofit in aging aircraft applications. In addition, SensaBolt's sole reliance on substrate compression renders it more accurate then torque wrench or turn-of-nut techniques. Readout may be accomplished by any of three principal methods: for those applications with ease of access to the sensor, loss of tension can be determined by direct visual inspection. Application of a standard wrench can then be made to restore the fastener's proper tightness, per the SensaBolt indicators. In those instances where line-of-sight is unimpeded and more formal inspection is desired, the SensaBolt may be interrogated by a laser scanner bar code reader. Finally, SensaBolt may be addressed by the SIMS fiber optic harness for those instances where full-time remote interrogation is desired.

  19. Considerations in the design of hyperinsulinemic-euglycemic clamps in the conscious mouse.

    PubMed

    Ayala, Julio E; Bracy, Deanna P; McGuinness, Owen P; Wasserman, David H

    2006-02-01

    Despite increased use of the hyperinsulinemic-euglycemic clamp to study insulin action in mice, the effects of experimental parameters on the results obtained have not been addressed. In our studies, we determined the influences of sampling sites, fasting duration, and insulin delivery on results obtained from clamps in conscious mice. Carotid artery and jugular vein catheters were implanted in C57BL/6J mice (n = 6-10/group) fed a normal diet for sampling and infusions. After a 5-day recovery period, mice underwent a 120-min clamp (2.5-mU . kg(-1) . min(-1) insulin infusion; approximately 120-130 mg/dl glucose) while receiving [3-(3)H]glucose to determine glucose appearance (endoR(a)) and disappearance (R(d)). Sampling large volumes (approximately 100 mul) from the cut tail resulted in elevated catecholamines and basal glucose compared with artery sampling. Catecholamines were not elevated when taking small samples ( approximately 5 mul) from the cut tail. Overnight (18-h) fasting resulted in greater loss of total body, lean, and fat masses and hepatic glycogen but resulted in enhanced insulin sensitivity compared with 5-h fasting. Compared with a 16-mU/kg insulin prime, a 300-mU/kg prime resulted in hepatic insulin resistance and slower acquisition of steady-state glucose infusion rates (GIR) after a 5-h fast. The steady-state GIR was expedited after the 300-mU/kg prime in 18-h-fasted mice. The GIR and R(d) rose with increasing insulin infusions (0.8, 2.5, 4, and 20 mU . kg(-1) . min(-1)), but endoR(a) was fully suppressed with doses higher than 0.8 mU . kg(-1) . min(-1). Thus, common variations in experimental factors yield different results and should be considered in designing and interpreting clamps. PMID:16443772

  20. New device for saphenous vein-to-aorta proximal anastomosis without side-clamping

    PubMed Central

    Tappainer, Ernesto

    2007-01-01

    Background Side clamping to perform saphenous vein-to-aorta proximal anastomosis is a well known cause of cerebral embolization during coronary bypass surgery. Automatic and manual devices have been introduced to avoid aortic clamping and facilitate proximal anastomosis but the manual ones only allow the traditional hand-sewing running suture. Nevertheless, they are not easy to use and very expensive to buy. Methods We developed a simple object that helps to perform a manual proximal anastomosis without the need to clamp the side of the aorta. This device is a steel bar which blocks the aortic hole and simultaneously it provides a slit to receive the needle. Through the slit comes out a thin, sharp, straight, but also well directed and predictable jet of blood which could be easily controlled during the suture. Results The function of the object is quite different from other devices. Nothing is deployed in the aorta. The object is only placed on the aorta with the small appendage slipped into the hole. The main advantage of the device is that while manipulation of the aorta is avoided no foreign bodies are incorporated in the suture and – most importantly – the aortic intima is not touched at all. The main drawback of the device is the blood jet coming from the slit so that the blood pressure has to be lowered by vasodilators during the anastomosis. Moreover, the suture has to change direction and the needle has to enter the aortic wall first to slip out through the slit. Conclusion The object was named "Slit Device" and is not a routine instrument. It would be only an alternative to other anastomotic devices with the same surgical indications. In the case of ascending aortic disease and saphenous vein grafting, the Slit Device avoids aortic clamping thereby preventing atheroembolism and also avoiding the need for hypothermic circulatory arrest in patients with unclampable aorta. PMID:17480222

  1. Small deflection of a class of clamped thin plates using collocation

    NASA Technical Reports Server (NTRS)

    Worley, W. J.

    1977-01-01

    Equations are given for the optimization of a class of two-and three-dimensional structures. The application of existing analytical techniques to the response of thin clamped plates is described. The ratios of deflections to plate thickness are given for uniform transverse loads as well as for uniform plus linearly varying transverse loads. Deflections are presented at angular increments of 5 degrees and at radial increments of 0.1 of the radius.

  2. Magnetostrictive wire-bonding clamp for semiconductor packaging: initial prototype design, modeling, and experiments

    NASA Astrophysics Data System (ADS)

    Dozor, David M.

    1998-06-01

    A magnetostrictive wire-bonding clamp for use in semiconductor packaging applications has been developed by Mechatronic Technology Co. Semiconductor industry trends, requiring high process throughput on increasing lead count packaging, make the magnetostrictive material Terfenol-D a candidate for this application. To construct this small, lightweight device, small samples of Terfenol-D were prepared by ETREMA Products, Inc. This paper reports the initial design, mathematical modeling, and experiments related to this initial prototype.

  3. Localized Patch Clamping of Plasma Membrane of a Polarized Plant Cell 1

    PubMed Central

    Taylor, Alison R.; Brownlee, Colin

    1992-01-01

    We used an ultraviolet laser to rupture a small region of cell wall of a polarized Fucus spiralis rhizoid cell and gained localized access to the plasma membrane at the growing apex. Careful control of cell turgor enabled a small portion of plasma membrane-bound cytoplasm to be exposed. Gigaohm seals allowing single-channel recordings were obtained with a high success rate using this method with conventional patch clamp techniques. ImagesFigure 1 PMID:16669092

  4. Single-molecule analysis of the E. coli replisome and use of clamps to bypass replication barriers

    PubMed Central

    Georgescu, Roxana E.; Yao, Nina Y.; O’Donnell, Mike

    2010-01-01

    The process of chromosome duplication faces many obstacles. One way to circumvent blocks is to hop over them by placing a new clamp on a downstream primer. This resembles lagging strand synthesis, where the tight grip of polymerase to the clamp and DNA must be overcome upon completing each Okazaki fragment so it can transfer to new primed sites. This review focuses on recent single-molecule studies showing that E. coli Pol III can hop from one clamp to another without leaving the replication fork. This capability provides a means to circumvent obstacles like transcription or DNA lesions without fork collapse. PMID:20388515

  5. Improved Programmable High-Voltage Power Supply

    NASA Technical Reports Server (NTRS)

    Castell, Karen; Rutberg, Arthur

    1994-01-01

    Improved dc-to-dc converter functions as programmable high-voltage power supply with low-power-dissipation voltage regulator on high-voltage side. Design of power supply overcomes deficiencies of older designs. Voltage regulation with low power dissipation provided on high-voltage side.

  6. Dynamic simulation of voltage collapses

    SciTech Connect

    Deuse, J.; Stubbe, M. )

    1993-08-01

    Most of the time the voltage collapse phenomena are studied by means of computer programs designed for the calculation of steady state conditions. But in the real world, the simultaneous occurrences of losses of synchronism, of AVR dynamics or of transformer tap changes call for a full dynamic simulation of voltage phenomena. The present paper shows some examples of dynamic simulations of voltage phenomena using a new general purpose stability program (EUROSTAG), covering in a continuous way the classical fields of transient, mid-term and long-term stability, and also the quasi steady state conditions of a power system.

  7. Low voltage nonprimary explosive detonator

    DOEpatents

    Dinegar, Robert H.; Kirkham, John

    1982-01-01

    A low voltage, electrically actuated, nonprimary explosive detonator is disclosed wherein said detonation is achieved by means of an explosive train in which a deflagration-to-detonation transition is made to occur. The explosive train is confined within a cylindrical body and positioned adjacent to low voltage ignition means have electrical leads extending outwardly from the cylindrical confining body. Application of a low voltage current to the electrical leads ignites a self-sustained deflagration in a donor portion of the explosive train which then is made to undergo a transition to detonation further down the train.

  8. Two terminal line voltage thermostat

    SciTech Connect

    Stalsberg, K.J.; Ingalls, J.E.; Hoglund, S.R.

    1995-10-10

    A two terminal line voltage thermostat includes a switch which effectively connects line voltage to a heater load. The entire process is controlled by an integrated circuit microcontroller which is powered by a rectified voltage from a transformer secondary connected to a primary which is in series with the heater load. Backup battery power is provided to maintain limited functions of the microcontroller in the event of overall power loss. The microcontroller is programmed to meet the temperature sensing and control requirements specific to a two terminal electric baseboard heating installation. 7 figs.

  9. Voltage Sensors Monitor Harmful Static

    NASA Technical Reports Server (NTRS)

    2009-01-01

    A tiny sensor, small enough to be worn on clothing, now monitors voltage changes near sensitive instruments after being created to alert Agency workers to dangerous static buildup near fuel operations and avionics. San Diego s Quasar Federal Systems received a Small Business Innovation Research (SBIR) contract from Kennedy Space Center to develop its remote voltage sensor (RVS), a dime-sized electrometer designed to measure triboelectric changes in the environment. One of the unique qualities of the RVS is that it can detect static at greater distances than previous devices, measuring voltage changes from a few centimeters to a few meters away, due to its much-improved sensitivity.

  10. Power-MOSFET Voltage Regulator

    NASA Technical Reports Server (NTRS)

    Miller, W. N.; Gray, O. E.

    1982-01-01

    Ninety-six parallel MOSFET devices with two-stage feedback circuit form a high-current dc voltage regulator that also acts as fully-on solid-state switch when fuel-cell out-put falls below regulated voltage. Ripple voltage is less than 20 mV, transient recovery time is less than 50 ms. Parallel MOSFET's act as high-current dc regulator and switch. Regulator can be used wherever large direct currents must be controlled. Can be applied to inverters, industrial furnaces photovoltaic solar generators, dc motors, and electric autos.

  11. Ultra-fast force-clamp laser trapping of single molecular motors and DNA binding proteins

    NASA Astrophysics Data System (ADS)

    Capitanio, Marco; Monico, Carina; Vanzi, Francesco; Pavone, Francesco S.

    2013-09-01

    Forces play a fundamental role in a wide array of biological processes, regulating enzymatic activity, kinetics of molecular bonds, and molecular motors mechanics. Single molecule force spectroscopy techniques have enabled the investigation of such processes, but they are inadequate to probe short-lived (millisecond and sub-millisecond) molecular complexes. We developed an ultrafast force-clamp spectroscopy technique that uses a dual trap configuration to apply constant loads to a single intermittently interacting biological polymer and a binding protein. Our system displays a delay of only ˜10 μs between formation of the molecular bond and application of the force and is capable of detecting interactions as short as 100 μs. The force-clamp configuration in which our assay operates allows direct measurements of load-dependence of lifetimes of single molecular bonds. Moreover, conformational changes of single proteins and molecular motors can be recorded with sub-nanometer accuracy and few tens of microseconds of temporal resolution. We demonstrate our technique on molecular motors, using myosin II from fast skeletal muscle and on protein-DNA interaction, specifically on Lactose repressor (LacI). The apparatus is stabilized to less than 1 nm with both passive and active stabilization, allowing resolving specific binding regions along the actin filament and DNA molecule. Our technique extends single-molecule force-clamp spectroscopy to molecular complexes that have been inaccessible up to now, opening new perspectives for the investigation of the effects of forces on biological processes.

  12. Haemodynamic effects of thoracic epidural anaesthesia during proximal aortic cross-clamping in pigs.

    PubMed

    Aadahl, P; Saether, O D; Stenseth, R; Myhre, H O

    1995-01-01

    Cross-clamping (XC) of the thoracic aorta induces a hyperdynamic circulation proximal to the aortic clamp. In this investigation, the effects of thoracic epidural anaesthesia (TEA) on the haemodynamic response to XC were studied in pigs. Seventeen pigs were anaesthetized with ketamine, and the thoracic aorta was cross-clamped for 30 minutes. In eight of the animals (TEA-group) a thoracic epidural block (3 ml 0.5% bupivacaine) was added to the general anaesthesia. Prior to XC there was a lower heart rate (HR), cardiac output (CO) and mixed venous oxygen saturation (SvO2) in the TEA-group compared to the nine animals with general anasthesia only (control-group). During XC there was an increase in HR, CO, SvO2 and proximal aortic blood pressure (PPROX) in both groups, without differences between groups. Following aortic declamping central venous pressure (CVP), pulmonary artery pressure (PAP) and pulmonary capillary wedge pressure (PCWP) increased in both groups. Fifteen minutes after declamping, one animal in each group died. It was concluded that in this experimental model, TEA combined with general anaesthesia did not modify the haemodynamic response to XC of the thoracic aorta. PMID:7725879

  13. Structural insight into recruitment of translesion DNA polymerase Dpo4 to sliding clamp PCNA

    SciTech Connect

    Xing, G.; Kirouac, K.; Shin, Y.J.; Bell, S.D.; Ling, H.

    2009-09-16

    DNA polymerases are co-ordinated by sliding clamps (PCNA/{beta}-clamp) in translesion synthesis. It is unclear how these enzymes assemble on PCNA with geometric and functional compatibility. We report the crystal structure of a full-length Y-family polymerase, Dpo4, in complex with heterodimeric PCNA1-PCNA2 at 2.05 {angstrom} resolution. Dpo4 exhibits an extended conformation that differs from the Dpo4 structures in apo- or DNA-bound form. Two hinges have been identified in Dpo4, which render the multidomain polymerase flexible conformations and orientations relative to PCNA. Dpo4 binds specifically to PCNA1 on the conserved ligand binding site. The C-terminal peptide of Dpo4 becomes structured with a 3{sub 10} helix and dominates the specific binding. The Y-family polymerase also contacts PCNA1 with its finger, thumb and little finger domains, which are conformation-dependent protein-protein interactions that diversify the binding mode of Dpo4 on PCNA. The structure reveals a molecular model in which substrate/partner binding-coupled multiple conformations of a Y-family polymerase facilitate its recruitment and co-ordination on the sliding clamp. The conformational flexibility would turn the error-prone Y-family polymerase off when more efficient high-fidelity DNA polymerases work on undamaged DNA and turn it onto DNA templates to perform translesion synthesis when replication forks are stalled by DNA lesions.

  14. Dwell-time distribution analysis of polyprotein unfolding using force-clamp spectroscopy.

    PubMed

    Brujic, Jasna; Hermans, Rodolfo I Z; Garcia-Manyes, Sergi; Walther, Kirstin A; Fernandez, Julio M

    2007-04-15

    Using the recently developed single molecule force-clamp technique we quantitatively measure the kinetics of conformational changes of polyprotein molecules at a constant force. In response to an applied force of 110 pN, we measure the dwell times of 1647 unfolding events of individual ubiquitin modules within each protein chain. We then establish a rigorous method for analyzing force-clamp data using order statistics. This allows us to test the success of a history-independent, two-state model in describing the kinetics of the unfolding process. We find that the average unfolding trajectory is independent of the number of protein modules N in each trajectory, which varies between 3 and 12 (the engineered protein length), suggesting that the unfolding events in each chain are uncorrelated. We then derive a binomial distribution of dwell times to describe the stochastic dynamics of protein unfolding. This distribution successfully describes 81% of the data with a single rate constant of alpha = 0.6 s(-1) for all N. The remainder of the data that cannot be accounted for suggests alternative unfolding barriers in the energy landscape of the protein. This method investigates the statistical features of unfolding beyond the average measurement of a single rate constant, thus providing an attractive alternative for measuring kinetics by force-clamp spectroscopy. PMID:17259284

  15. Mannitol Infusion Within 15 Min of Cross-Clamp Improves Living Donor Kidney Preservation

    PubMed Central

    Andrews, Peter M.; Cooper, Matthew; Verbesey, Jennifer; Ghasemian, Seyed; Rogalsky, Derek; Moody, Patrick; Chen, Allen; Alexandrov, Peter; Wang, Hsing-Wen; Chen, Yu

    2014-01-01

    Background Optical coherence tomography (OCT) revealed that cells lining proximal convoluted tubules of living donor kidneys (LDKs) procured by laparoscopic procedures were very swollen in response to the brief period of ischemia experienced between the time of arterial vessel clamping and flushing the excised kidney with cold preservation solution. Damage to the tubules as a result of this cell swelling resulted in varying degrees of acute tubular necrosis (ATN) that slowed the recovery of the donor kidneys during the first 2 weeks after their transplantation. Methods To prevent this cell damage during LDK procurement, we changed the protocol for intravenous administration of mannitol (i.e., 12.5 or 25 g) to the donor. Specifically, we reduced the time of mannitol administration from 30 to 15 min or less before clamping the renal artery. Result OCT revealed that this change in the timing of mannitol administration protected the human donor proximal tubules from normothermic-induced cell swelling. An evaluation of posttransplant recovery of renal function showed that patients treated with this modified protocol returned to normal renal function significantly faster than those treated with mannitol 30 min or more before clamping the renal artery. Conclusion Because slow graft recovery in the first weeks after transplantation represents a risk factor for long-term graft function and survival, we believe that this change in pretreatment protocol will improve renal transplants in patients receiving LDK. PMID:24831920

  16. Suppression of the Work-Piece Vibrations in Milling Using Active Clamp System

    NASA Astrophysics Data System (ADS)

    Parus, A.; Hoffmann, M.; Okulik, T.

    The machining is always accompanied by vibration. In certain cases the level of vibration is very high and may cause shortening of the tool life, poor quality of machined surface. Operational speed and machined surface depend on dynamic stability of three components of the machine tool-cutting system: the cutting tool, the machine tool structure, the work-piece and the clamping system. To assure stable machining, parameters of the cutting process have to be tuned and frequently the machining productivity is decreased. For this reasons different types of systems are developed for suppressing the work-piece vibration. In some cases an additional modification of the work-piece is allowed and mounting the vibration absorber is possible. The paper describes a modification of the work-piece dynamic properties using active clamp system. In comparison to the vibration absorbers this solution has a great advantageous - adaptation of the work-piece is not necessary. In the paper the simulation results of different variants of milling process with work-piece mounted using the active clamp are presented. Piezo actuators are used in order to assure active influence on the work-piece. The aim of the state space feedback control system is to minimize the amplitude of the vibration during machining process.

  17. Transposase interaction with the β sliding clamp: effects on insertion sequence proliferation and transposition rate

    PubMed Central

    Díaz-Maldonado, Héctor; Gómez, Manuel J.; Moreno-Paz, Mercedes; San Martín-Úriz, Patxi; Amils, Ricardo; Parro, Víctor; López de Saro, Francisco J.

    2015-01-01

    Insertion sequences (ISs) are ubiquitous and abundant mobile genetic elements in prokaryotic genomes. ISs often encode only one protein, the transposase, which catalyzes their transposition. Recent studies have shown that transposases of many different IS families interact with the β sliding clamp, a DNA replication factor of the host. However, it was unclear to what extent this interaction limits or favors the ability of ISs to colonize a chromosome from a phylogenetically-distant organism, or if the strength of this interaction affects the transposition rate. Here we describe the proliferation of a member of the IS1634 family in Acidiphilium over ~600 generations of cultured growth. We demonstrate that the purified transposase binds to the β sliding clamp of Acidiphilium, Leptospirillum and E. coli. Further, we also demonstrate that the Acidiphilium IS1634 transposase binds to the archaeal sliding clamp (PCNA) from Methanosarcina, and that the transposase encoded by Methanosarcina IS1634 binds to Acidiphilium β. Finally, we demonstrate that increasing the strength of the interaction between β and transposase results in a higher transposition rate in vivo. Our results suggest that the interaction could determine the potential of ISs to be mobilized in bacterial populations and also their ability to proliferate within chromosomes. PMID:26306550

  18. Influence of Static Prestress on the Characteristics of Bolt-Clamped Langevin-Type Transducers

    NASA Astrophysics Data System (ADS)

    Adachi, Kazunari; Ogasawara, Isao; Tamura, Yasutaka; Makino, Munekazu; Kato, Naoyoshi

    1998-05-01

    Bolt-clamped Langevin-type transducers (BLTs) are widely used as powerful vibration sources in high-power ultrasonic applications. In the structure of a BLT, static compressional prestress is imposed on piezoelectric ceramic elements by clamping, to compensate for their weakness to tensile stress. Nevertheless, no report has been made about the clamping effects on the characteristics of a BLT with a reasonable estimation of the prestress. Previous works on material property change of piezoelectric ceramics caused by static compressional stress have always presumed a groundless uniformity of stress distribution in the objects examined. The authors have investigated the effects by some experiments and numerical simulations with the use of the finite-element analysis system to estimate precisely the prestress.As a result of these experiments, the prestress has been found to reduce the electromechanical coupling factor of the BLT. Estimation of the prestress is considered indispensable for designing BLTs, although the microscopic mechanism of the piezoelectricity reduction isnot yet clarified.

  19. To Pringle or not to pringle: is Pedicle clamping a necessity in liver resection?

    PubMed

    Obiekwe, S R; Quintaine, L; Khannaz, A; Laurent, C; Saric, J

    2014-01-01

    A single center prospective study was done to evaluate the role of hepatic portal pedicle clamping (PC) during right hepatectomy (RH) in patients with primary and secondary liver tumors. Cirrhotics were excluded. Two groups were compared for preoperative demographics including diagnosis, tumor size, portal vein embolization and liver enzymes, pre and postoperative hemoglobin levels, percentage of residual liver mass, morbidity and mortality, pedicle clamp time, intensive care unit stay, length of hospital stay and blood loss. We observed no significant difference in the analysis of the post-operative hemoglobin, liver enzymes, residual liver size, size of tumor resected, need for postoperative monitoring in ICU stay, length of hospital stay and blood loss. Mortality and morbidity were the same. None of the patients were transfused during surgery. Our findings show that pedicle clamping was beneficial 15% of the time when uncontrolled intra-operative bleeding was encountered or in a subset of patients with peliosis, steatohepatitis, Jehovah Witness patient, and post-chemotherapy patients. However, its advantage has to be weighed against the disadvantages. PMID:25513103

  20. To Pringle or not to pringle: is Pedicle clamping a necessity in liver resection?

    PubMed

    Obiekwe, S R; Quintaine, L; Khannaz, A; Laurent, C; Saric, J

    2014-01-01

    A single center prospective study was done to evaluate the role of hepatic portal pedicle clamping (PC) during right hepatectomy (RH) in patients with primary and secondary liver tumors. Cirrhotics were excluded. Two groups were compared for preoperative demographics including diagnosis, tumor size, portal vein embolization and liver enzymes, pre and postoperative hemoglobin levels, percentage of residual liver mass, morbidity and mortality, pedicle clamp time, intensive care unit stay, length of hospital stay and blood loss. We observed no significant difference in the analysis of the post-operative hemoglobin, liver enzymes, residual liver size, size of tumor resected, need for postoperative monitoring in ICU stay, length of hospital stay and blood loss. Mortality and morbidity were the same. None of the patients were transfused during surgery. Our findings show that pedicle clamping was beneficial 15% of the time when uncontrolled intra-operative bleeding was encountered or in a subset of patients with peliosis, steatohepatitis, Jehovah Witness patient, and post-chemotherapy patients. However, its advantage has to be weighed against the disadvantages. PMID:25436318

  1. Characterization of single-cell electroporation by using patch-clamp and fluorescence microscopy.

    PubMed Central

    Ryttsén, F; Farre, C; Brennan, C; Weber, S G; Nolkrantz, K; Jardemark, K; Chiu, D T; Orwar, O

    2000-01-01

    Electroporation of single NG108-15 cells with carbon-fiber microelectrodes was characterized by patch-clamp recordings and fluorescence microscopy. To minimize adverse capacitive charging effects, the patch-clamp pipette was sealed on the cell at a 90(o) angle with respect to the microelectrodes where the applied potential reaches a minimum. From transmembrane current responses, we determined the electric field strengths necessary for ion-permeable pore formation and investigated the kinetics of pore opening and closing as well as pore open times. From both patch-clamp and fluorescence microscopy experiments, the threshold transmembrane potentials for dielectric breakdown of NG108-15 cells, using 1-ms rectangular waveform pulses, was approximately 250 mV. The electroporation pulse preceded pore formation, and analyte entry into the cells was dictated by concentration, and membrane resting potential driving forces. By stepwise moving a cell out of the focused field while measuring the transmembrane current response during a supramaximal pulse, we show that cells at a distance of approximately 30 microm from the focused field were not permeabilized. PMID:11023903

  2. Molecular jamming—The cystine slipknot mechanical clamp in all-atom simulations

    NASA Astrophysics Data System (ADS)

    Pepłowski, Łukasz; Sikora, Mateusz; Nowak, Wiesław; Cieplak, Marek

    2011-02-01

    A recent survey of 17 134 proteins has identified a new class of proteins which are expected to yield stretching induced force peaks in the range of 1 nN. Such high force peaks should be due to forcing of a slip-loop through a cystine ring, i.e., by generating a cystine slipknot. The survey has been performed in a simple coarse grained model. Here, we perform all-atom steered molecular dynamics simulations on 15 cystine knot proteins and determine their resistance to stretching. In agreement with previous studies within a coarse grained structure based model, the level of resistance is found to be substantially higher than in proteins in which the mechanical clamp operates through shear. The large stretching forces arise through formation of the cystine slipknot mechanical clamp and the resulting steric jamming. We elucidate the workings of such a clamp in an atomic detail. We also study the behavior of five top strength proteins with the shear-based mechanostability in which no jamming is involved. We show that in the atomic model, the jamming state is relieved by moving one amino acid at a time and there is a choice in the selection of the amino acid that advances the first. In contrast, the coarse grained model also allows for a simultaneous passage of two amino acids.

  3. Molecular jamming--the cystine slipknot mechanical clamp in all-atom simulations.

    PubMed

    Pepłowski, Lukasz; Sikora, Mateusz; Nowak, Wiesław; Cieplak, Marek

    2011-02-28

    A recent survey of 17 134 proteins has identified a new class of proteins which are expected to yield stretching induced force peaks in the range of 1 nN. Such high force peaks should be due to forcing of a slip-loop through a cystine ring, i.e., by generating a cystine slipknot. The survey has been performed in a simple coarse grained model. Here, we perform all-atom steered molecular dynamics simulations on 15 cystine knot proteins and determine their resistance to stretching. In agreement with previous studies within a coarse grained structure based model, the level of resistance is found to be substantially higher than in proteins in which the mechanical clamp operates through shear. The large stretching forces arise through formation of the cystine slipknot mechanical clamp and the resulting steric jamming. We elucidate the workings of such a clamp in an atomic detail. We also study the behavior of five top strength proteins with the shear-based mechanostability in which no jamming is involved. We show that in the atomic model, the jamming state is relieved by moving one amino acid at a time and there is a choice in the selection of the amino acid that advances the first. In contrast, the coarse grained model also allows for a simultaneous passage of two amino acids. PMID:21361557

  4. Carrier lifetime influence on clamped silicon wafer resonance by PTA effect

    NASA Astrophysics Data System (ADS)

    Chapus, C.; Augereau, F.; Podlecki, J.; Lévêque, G.; Foucaran, A.; Attal, J.

    2010-06-01

    This experimental work presents reproducible measurement conditions to allow amplification of the mechanical vibration generated by photo-thermo-acoustics (PTA) effect using the resonance of circular silicon membranes clamped by nitrile o-rings on a diameter of 30 mm (Di). We use wafers with various thickness (h) between 250 and 1000 μm and with carrier lifetime between 3 and 30 μs. Under the condition to have a resolution of few picometers for the measurement, it is possible to characterize the resonance mechanism obtained without contact by conventional laser vibrometry using a modulated laser diode of only a few milliwatts of power. Compared to perfect clamped membranes, the first Eigen frequency presents a downward shift of some hundreds Hertz due to the circular clamping by o-ring as predicted by our simplified model. The resonance frequency depends linearly on the thickness as long as Di/h > 80. The quality factor (Q) does not exceed ten in agreement with our model for spring loaded membrane in air. The low value of quality factor and its variation according to thickness follow our predictions. Moreover, Q is independent of carrier lifetime whereas first resonance amplitude increases with it but less than prediction for bulks.

  5. A phage-encoded inhibitor of Escherichia coli DNA replication targets the DNA polymerase clamp loader.

    PubMed

    Yano, Sho T; Rothman-Denes, Lucia B

    2011-03-01

    Coliphage N4 infection leads to shut-off of host DNA replication without inhibition of host transcription or translation. We report the identification and characterization of gp8, the N4 gene product responsible for this phenotype. N4 gp8 is an Escherichia coli bacteriostatic inhibitor that colocalizes with the E. coli replisome in a replication-dependent manner. Gp8 was purified and observed to cross-link to complexes containing the replicative DNA polymerase, DNAP III, in vivo. Purified gp8 inhibits DNA polymerization by DNA polymerase III holoenzyme in vitro by interfering with polymerase processivity. Gp8 specifically inhibits the clamp-loading activity of DNAP III by targeting the delta subunit of the DNAP III clamp loader; E. coli mutations conferring gp8 resistance were identified in the holA gene, encoding delta. Delta and gp8 interact in vitro; no interaction was detected between gp8 inactive mutants and wild-type delta or between delta gp8-resistant mutants and wild-type gp8. Therefore, this work identifies the DNAP III clamp loader as a new target for inhibition of bacterial growth. Finally, we show that gp8 is not essential in N4 development under laboratory conditions, but its activity contributes to phage yield. PMID:21205014

  6. Analytical and experimental investigation on transmission loss of clamped double panels: implication of boundary effects.

    PubMed

    Xin, F X; Lu, T J

    2009-03-01

    The air-borne sound insulation performance of a rectangular double-panel partition clamp mounted on an infinite acoustic rigid baffle is investigated both analytically and experimentally and compared with that of a simply supported one. With the clamped (or simply supported) boundary accounted for by using the method of modal function, a double series solution for the sound transmission loss (STL) of the structure is obtained by employing the weighted residual (Galerkin) method. Experimental measurements with Al double-panel partitions having air cavity are subsequently carried out to validate the theoretical model for both types of the boundary condition, and good overall agreement is achieved. A consistency check of the two different models (based separately on clamped modal function and simply supported modal function) is performed by extending the panel dimensions to infinite where no boundaries exist. The significant discrepancies between the two different boundary conditions are demonstrated in terms of the STL versus frequency plots as well as the panel deflection mode shapes. PMID:19275309

  7. Stepwise loading of yeast clamp revealed by ensemble and single-molecule studies

    PubMed Central

    Kumar, Ravindra; Nashine, Vishal C.; Mishra, Padmaja P.; Benkovic, Stephen J.; Lee, Tae-Hee

    2010-01-01

    In ensemble and single-molecule experiments using the yeast proliferating cell nuclear antigen (PCNA, clamp) and replication factor C (RFC, clamp loader), we have examined the assembly of the RFC·PCNA·DNA complex and its progression to holoenzyme upon addition of polymerase δ (polδ). We obtained data that indicate (i) PCNA loading on DNA proceeds through multiple conformational intermediates and is successful after several failed attempts; (ii) RFC does not act catalytically on a primed 45-mer templated fork; (iii) the RFC·PCNA·DNA complex formed in the presence of ATP is derived from at least two kinetically distinguishable species; (iv) these species disassemble through either unloading of RFC·PCNA from DNA or dissociation of PCNA into its component subunits; and (v) in the presence of polδ only one species converts to the RFC·PCNA·DNA·polδ holoenzyme. These findings redefine and deepen our understanding of the clamp-loading process and reveal that it is surprisingly one of trial and error to arrive at a heuristic solution. PMID:21041673

  8. Ion Channels in Native Chloroplast Membranes: Challenges and Potential for Direct Patch-Clamp Studies

    PubMed Central

    Pottosin, Igor; Dobrovinskaya, Oxana

    2015-01-01

    Photosynthesis without any doubt depends on the activity of the chloroplast ion channels. The thylakoid ion channels participate in the fine partitioning of the light-generated proton-motive force (p.m.f.). By regulating, therefore, luminal pH, they affect the linear electron flow and non-photochemical quenching. Stromal ion homeostasis and signaling, on the other hand, depend on the activity of both thylakoid and envelope ion channels. Experimentally, intact chloroplasts and swollen thylakoids were proven to be suitable for direct measurements of the ion channels activity via conventional patch-clamp technique; yet, such studies became infrequent, although their potential is far from being exhausted. In this paper we wish to summarize existing challenges for direct patch-clamping of native chloroplast membranes as well as present available results on the activity of thylakoid Cl− (ClC?) and divalent cation-permeable channels, along with their tentative roles in the p.m.f. partitioning, volume regulation, and stromal Ca2+ and Mg2+ dynamics. Patch-clamping of the intact envelope revealed both large-conductance porin-like channels, likely located in the outer envelope membrane and smaller conductance channels, more compatible with the inner envelope location. Possible equivalent model for the sandwich-like arrangement of the two envelope membranes within the patch electrode will be discussed, along with peculiar properties of the fast-activated cation channel in the context of the stromal pH control. PMID:26733887

  9. Ordered ATP hydrolysis in the gamma complex clamp loader AAA+ machine.

    PubMed

    Johnson, Aaron; O'Donnell, Mike

    2003-04-18

    The gamma complex couples ATP hydrolysis to the loading of beta sliding clamps onto DNA for processive replication. The gamma complex structure shows that the clamp loader subunits are arranged as a circular heteropentamer. The three gamma motor subunits bind ATP, the delta wrench opens the beta ring, and the delta' stator modulates the delta-beta interaction. Neither delta nor delta' bind ATP. This report demonstrates that the delta' stator contributes a catalytic arginine for hydrolysis of ATP bound to the adjacent gamma(1) subunit. Thus, the delta' stator contributes to the motor function of the gamma trimer. Mutation of arginine 169 of gamma, which removes the catalytic arginines from only the gamma(2) and gamma(3) ATP sites, abolishes ATPase activity even though ATP site 1 is intact and all three sites are filled. This result implies that hydrolysis of the three ATP molecules occurs in a particular order, the reverse of ATP binding, where ATP in site 1 is not hydrolyzed until ATP in sites 2 and/or 3 is hydrolyzed. Implications of these results to clamp loaders of other systems are discussed. PMID:12582167

  10. Site-Specific Surface Functionalization of Gold Nanorods Using DNA Origami Clamps.

    PubMed

    Shen, Chenqi; Lan, Xiang; Lu, Xuxing; Meyer, Travis A; Ni, Weihai; Ke, Yonggang; Wang, Qiangbin

    2016-02-17

    Precise control over surface functionalities of nanomaterials offers great opportunities for fabricating complex functional nanoarchitectures but still remains challenging. In this work, we successfully developed a novel strategy to modify a gold nanorod (AuNR) with specific surface recognition sites using a DNA origami clamp. AuNRs were encapsulated by the DNA origami through hybridization of single-stranded DNA on the AuNRs and complementary capture strands inside the clamp. Another set of capture strands on the outside of the clamp create the specific recognition sites on the AuNR surface. By means of this strategy, AuNRs were site-specifically modified with gold nanoparticles at the top, middle, and bottom of the surface, respectively, to construct a series of well-defined heterostructures with controlled "chemical valence". Our study greatly expands the utility of DNA origami as a tool for building complex nanoarchitectures and represents a new approach for precise tailoring of nanomaterial surfaces. PMID:26824749

  11. Xanthine derivatives without PDE effect stimulate voltage-activated chloride conductance of toad skin.

    PubMed

    Nagel, Wolfram; Katz, Uri

    2003-02-01

    The effect of xanthine derivatives on the voltage-activated Cl(-) conductance (G(Cl)) of amphibian skin was analyzed. 3-Isobutyl-1-methylxanthine (IBMX) and the recently synthesized xanthine derivatives 3,7-dimethyl-1-propyl xanthine (X-32) and 3,7-dimethyl-1-isobutyl xanthine (X-33), which lack inhibitory effects on phosphodiesterases in CHO and Calu-3 cells, increased voltage-activated G(Cl) without effect on baseline conductance at inactivating voltage. Half-maximal stimulation of G(Cl) occurred at 108 +/- 9 microM for X-32 and X-33 after apical or basolateral application. The stimulation of G(Cl), which occurs only in the presence of Cl(-) in the mucosal solution, is caused by a shift of the voltage sensitivity to lower clamp potentials and an increase of the maximally activated level. Furosemide reversed both the shift of sensitivity and the increase in magnitude. These patterns are fundamentally different from those seen after application of membrane-permeant, nonmetabolized analogs of cAMP, and they indicate that the xanthines stimulate G(Cl) directly. This notion is strengthened by the lack of influence on intracellular cAMP content, which is consistent with the observations in CHO and Calu-3 cells. We propose that the xanthine derivatives increase the voltage sensitivity of a regulative component in the conductive Cl(-) pathway across amphibian skin. PMID:12397028

  12. Extracellular Protons Inhibit Charge Immobilization in the Cardiac Voltage-Gated Sodium Channel

    PubMed Central

    Jones, D.K.; Claydon, T.W.; Ruben, P.C.

    2013-01-01

    Low pH depolarizes the voltage-dependence of cardiac voltage-gated sodium (NaV1.5) channel activation and fast inactivation and destabilizes the fast-inactivated state. The molecular basis for these changes in protein behavior has not been reported. We hypothesized that changes in the kinetics of voltage sensor movement may destabilize the fast-inactivated state in NaV1.5. To test this idea, we recorded NaV1.5 gating currents in Xenopus oocytes using a cut-open voltage-clamp with extracellular solution titrated to either pH 7.4 or pH 6.0. Reducing extracellular pH significantly depolarized the voltage-dependence of both the QON/V and QOFF/V curves, and reduced the total charge immobilized during depolarization. We conclude that destabilized fast-inactivation and reduced charge immobilization in NaV1.5 at low pH are functionally related effects. PMID:23823228

  13. Suppression of voltage-gated Na(+) channels and neuronal excitability by imperatorin.

    PubMed

    Wu, King-Chuen; Chen, Yi-Hung; Cheng, Ka-Shun; Kuo, Yueh-Hsiung; Yang, Chin-Tsang; Wong, Kar-Lok; Tu, Yuan-Kun; Chan, Paul; Leung, Yuk-Man

    2013-12-01

    Imperatorin is a naturally occurring furocoumarin compound isolated from plants such as Angelica archangelica and Cnidium monnieri. It has multiple pharmacological effects including anticonvulsant effects. Here we determined the effects of imperatorin on voltage-gated Na(+) channels (VGSC) using whole-cell patch clamp techniques in differentiated neuronal NG108-15 cells. We showed that imperatorin inhibited VGSC; such inhibition did not show state-dependence. Imperatorin caused a left shift in the steady-state inactivation curve without affecting activation gating. The inhibition of VGSC by imperatorin displayed a mild frequency-dependence. Imperatorin was also shown to inhibit VGSC and action potential amplitude without affecting voltage-gated K(+) channels in rat hippocampal CA1 neurons. In conclusion, our results suggest that imperatorin dampens neuronal excitability by inhibiting VGSC. PMID:24113522

  14. High voltage lightning grounding device

    NASA Technical Reports Server (NTRS)

    Hoffman, R. G.; Peterson, V. S.

    1971-01-01

    Grounding device insertion in wire termination cabinets and terminal block modification prevent lightning-induced high voltage transients from reaching inputs or outputs of solid state instruments and control systems. Installation minimizes wiring confusion and achieves 100 percent protection.

  15. High voltage solar array experiments

    NASA Technical Reports Server (NTRS)

    Kennerud, K. L.

    1974-01-01

    The interaction between the components of a high voltage solar array and a simulated space plasma is studied to obtain data for the design of a high voltage solar array capable of 15kW at 2 to 16kV. Testing was conducted in a vacuum chamber 1.5-m long by 1.5-m diameter having a plasma source which simulated the plasma conditions existing in earth orbit between 400 nautical miles and synchronous altitude. Test samples included solar array segments pinholes in insulation covering high voltage electrodes, and plain dielectric samples. Quantitative data are presented in the areas of plasma power losses, plasma and high voltage induced damage, and dielectric properties. Limitations of the investigation are described.

  16. Inhibition of voltage-gated sodium channels by sumatriptan bioisosteres

    PubMed Central

    Carbonara, Roberta; Carocci, Alessia; Roussel, Julien; Crescenzo, Giuseppe; Buonavoglia, Canio; Franchini, Carlo; Lentini, Giovanni; Camerino, Diana Conte; Desaphy, Jean-François

    2015-01-01

    Voltage-gated sodium channels are known to play a pivotal role in perception and transmission of pain sensations. Gain-of-function mutations in the genes encoding the peripheral neuronal sodium channels, hNav1.7–1.9, cause human painful diseases. Thus while treatment of chronic pain remains an unmet clinical need, sodium channel blockers are considered as promising druggable targets. In a previous study, we evaluated the analgesic activity of sumatriptan, an agonist of serotonin 5HT1B/D receptors, and some new chiral bioisosteres, using the hot plate test in the mouse. Interestingly, we observed that the analgesic effectiveness was not necessarily correlated to serotonin agonism. In this study, we evaluated whether sumatriptan and its congeners may inhibit heterologously expressed hNav1.7 sodium channels using the patch-clamp method. We show that sumatriptan blocks hNav1.7 channels only at very high, supratherapeutic concentrations. In contrast, its three analogs, namely 20b, (R)-31b, and (S)-22b, exert a dose and use-dependent sodium channel block. At 0.1 and 10 Hz stimulation frequencies, the most potent compound, (S)-22b, was 4.4 and 1.7 fold more potent than the well-known sodium channel blocker mexiletine. The compound induces a negative shift of voltage dependence of fast inactivation, suggesting higher affinity to the inactivated channel. Accordingly, we show that (S)-22b likely binds the conserved local anesthetic receptor within voltage-gated sodium channels. Combining these results with the previous ones, we hypothesize that use-dependent sodium channel blockade contributes to the analgesic activity of (R)-31b and (S)-22b. These later compounds represent promising lead compounds for the development of efficient analgesics, the mechanism of action of which may include a dual action on sodium channels and 5HT1D receptors. PMID:26257653

  17. Timing of clamping and factors associated with iron stores in full-term newborns

    PubMed Central

    Oliveira, Fabiana de Cássia Carvalho; Assis, Karine Franklin; Martins, Mariana Campos; do Prado, Mara Rúbia Maciel Cardoso; Ribeiro, Andréia Queiroz; Sant’Ana, Luciana Ferreira da Rocha; Priore, Silvia Eloiza; Franceschini, Sylvia do Carmo Castro

    2014-01-01

    OBJECTIVE To analyze the impact of timing of clamping and obstetric, biological and socioeconomic factors on the iron stores of full-term newborns. METHODS Cross-sectional study between October 2011 and July 2012 in which hematological parameters were evaluated for newborns in Viçosa, MG, Southeastern Brazil. It involved collecting 7 mL of umbilical cord blood from 144 full-term not underweight newborns. The parameters investigated were complete blood count, serum iron, ferritin and C-reactive protein. The time of umbilical cord clamping was measured using a digital timer without interfering in the procedures of childbirth. The birth data were collected from Live Birth Certificates and other information was obtained from the mother through a questionnaire applied in the first month postpartum. Analysis of multiple linear regression was then used to estimate the influence of biological, obstetrics and socioeconomic factors on the ferritin levels at birth. RESULTS The median ferritin was 130.3 µg/L (n = 129, minimum = 16.4; maximum = 420.5 µg/L), the mean serum iron was 137.9 μg/dL (n = 144, SD = 39.29) and mean hemoglobin was 14.7 g/dL (n = 144, SD = 1.47). The median time of cord clamping was 36 seconds, ranging between 7 and 100. The bivariate analysis detected an association between ferritin levels and color of the child, timing clamping of 60 seconds, type of delivery, the presence of gestational diabetes and per capita family income. In multivariate analysis, the variables per capita income, number of antenatal visits and length at birth accounted for 22.0% of variation in ferritin levels. CONCLUSIONS Iron stores at birth were influenced by biological, obstetric and social characteristics. Tackling anemia should involve creating policies aimed at reducing social inequalities, improving the quality of antenatal care, as well as implementing a criterion of delayed clamping of the umbilical cord within the guidelines of labor. PMID:24789632

  18. Modeling hepatic insulin sensitivity during a meal: validation against the euglycemic hyperinsulinemic clamp.

    PubMed

    Dalla Man, Chiara; Piccinini, Francesca; Basu, Rita; Basu, Ananda; Rizza, Robert A; Cobelli, Claudio

    2013-04-15

    Recently, we proposed a model describing the suppression of endogenous glucose production (EGP) during a meal. It assumes that EGP suppression depends on glucose concentration and its rate of change and on delayed insulin action. Hepatic insulin sensitivity (S(I)(Lmeal)) can be derived from EGP model parameters. This model was shown to adequately describe EGP profiles measured with multiple tracer techniques; however, S(I)(Lmeal) has never been compared directly with its euglycemic hyperinsulinemic clamp counterpart (S(I)(Lclamp)). To do so, 62 subjects with different degrees of glucose tolerance underwent a triple-tracer mixed meal. Fifty-seven subjects also underwent a labeled ([3-(3)H]glucose) euglycemic hyperinsulinemic clamp. From the triple-tracer meal data, virtually model-independent estimates of EGP were obtained using the tracer-to-tracee clamp technique, and the EGP model was identified in each subject. Model fit was satisfactory, and S(I)(Lmeal) was estimated with good precision. Correlation between S(I)(Lclamp) and S(I)(Lmeal) was good (r = 0.72, P < 0.001); however, S(I)(Lmeal) was lower than S(I)(Lclamp) (4.60 ± 0.64 vs. 8.73 ± 1.07 10(-4) dl·kg(-1)·min(-1) per μU/ml, P < 0.01). This difference may be due to different ranges of insulin explored during the two tests (ΔI(clamp) = 15.60 ± 1.61 vs. ΔI(meal)= 83.37 ± 10.71 μU/ml) as well as steady- vs. non-steady-state glucose and insulin profiles. In conclusion, the new EGP model provides an estimate of hepatic insulin sensitivity during a meal that is in good agreement with that derived in the same individuals with a hyperinsulinemic clamp. When used in conjunction with the minimal model, the approach potentially enables estimation of hepatic insulin sensitivity from a single-tracer labeled meal or oral glucose tolerance test. PMID:23443923

  19. Direct and indirect photoelectrooxidation of urea, and the synthesis of oxidizing agents at n-type TiO/sub 2/ electrodes

    SciTech Connect

    Grinberg, V.A.; Gromyko, V.A.; Kazarinov, V.E.; Rotenberg, Z.A.; Vasil'ev, Y.B.

    1986-07-01

    The pollution of water resources by organics has become an acute problem which places more stringent requirements on the purification of effluents and domestic water supplies. This paper studies the following anodic processes at an illuminated n-type TiO/sub 2/ electrode: the direct electrooxidation of urea in 0.5 M H/sub 2/SO/sub 4/ solutions not containing chloride ions; the electrooxidation of chloride ions in neutral aqueous solution, with the aim of synthesizing sodium hypochlorite as an oxidizing agent; and the joint photoelectrooxidation of urea and chloride ions in neutral aqueous solution.

  20. Low-Voltage Bypass Device

    NASA Technical Reports Server (NTRS)

    Wilson, J. P.

    1994-01-01

    Improved bypass device provides low-resistance current shunt around low-voltage power cell when cell fails in open-circuit condition during operation. In comparison with older bypass devices for same application, this one weighs less, generates less heat, and has lower voltage drop (less resistance). Bypass device connected in parallel with power cell. Draws very little current during normal operation of cell.

  1. Switched-Capacitor Voltage Multiplier

    NASA Technical Reports Server (NTRS)

    Sridharan, Govind

    1991-01-01

    Dc-to-dc power converter multiplies input supply potential by factor of nearly 40. Design does not make use of transformers or inductors but effects voltage boost-up by capacitive energy transfer. Circuit primarily made up of banks of capacitors, connected by network of integrated-circuit relays. Converter functionally linear voltage amplifier with fixed gain figure. Bipolar in operation. Output fully floating, and excellent dc isolation between input and output terminals.

  2. A matter of quantum voltages

    NASA Astrophysics Data System (ADS)

    Sellner, Bernhard; Kathmann, Shawn M.

    2014-11-01

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. The variation of voltages in matter can be measured by experiment, however, modern supercomputers allow the calculation of accurate quantum voltages with spatial resolutions of bulk systems well beyond what can currently be measured provided a sufficient level of theory is employed. Of particular interest is the Mean Inner Potential (Vo) - the spatial average of these quantum voltages referenced to the vacuum. Here we establish a protocol to reliably evaluate Vo from quantum calculations. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of Vo for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Certain aspects in this regard are highlighted making use of simple model systems/approximations. Furthermore, we predict Vo as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms.

  3. A matter of quantum voltages

    SciTech Connect

    Sellner, Bernhard; Kathmann, Shawn M.

    2014-11-14

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. The variation of voltages in matter can be measured by experiment, however, modern supercomputers allow the calculation of accurate quantum voltages with spatial resolutions of bulk systems well beyond what can currently be measured provided a sufficient level of theory is employed. Of particular interest is the Mean Inner Potential (V{sub o}) – the spatial average of these quantum voltages referenced to the vacuum. Here we establish a protocol to reliably evaluate V{sub o} from quantum calculations. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of V{sub o} for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Certain aspects in this regard are highlighted making use of simple model systems/approximations. Furthermore, we predict V{sub o} as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms.

  4. A Matter of Quantum Voltages

    SciTech Connect

    Sellner, Bernhard; Kathmann, Shawn M.

    2014-11-14

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. Electron holography is able to measure the variation of voltages in matter and modern supercomputers allow the calculation of quantum voltages with practically unlimited spatial and temporal resolution of bulk systems. Of particular interest is the Mean Inner Potential (Vo) - the spatial average of these voltages. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of Vo for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Furthermore, we predict Vo as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  5. L-band all-optical gain-clamped EDFA by utilizing C-band backward ASE

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Jin, Yanli; Dou, Qingying; Liu, Yange; Yuan, Shuzhong; Dong, Xiaoyi

    2006-04-01

    By using an optical circulator and C/L-band wavelength division multiplexer to recycle the C-band backward ASE, an L-band gain-clamped erbium-doped fiber amplifier is presented. We have experimentally studied the static gain clamping property of this amplifier. As the ASE feedback attenuation is set to 0, the gain at 1585 nm can be clamped at 18.84 ± 0.26 dB within dynamic range of 25 dB and the critical power reaches about -15.09 dBm. The gain variation and saturated output power at 1585 nm for 0 dB attenuation are 1 dB lower and 2.17 dB higher than those for 30 dB attenuation, which indicates that the L-band EDFA gain can be effectively clamped via the ASE injection technique.

  6. Conformational analysis of processivity clamps in solution demonstrates that tertiary structure does not correlate with protein dynamics.

    PubMed

    Fang, Jing; Nevin, Philip; Kairys, Visvaldas; Venclovas, Ceslovas; Engen, John R; Beuning, Penny J

    2014-04-01

    The relationship between protein sequence, structure, and dynamics has been elusive. Here, we report a comprehensive analysis using an in-solution experimental approach to study how the conservation of tertiary structure correlates with protein dynamics. Hydrogen exchange measurements of eight processivity clamp proteins from different species revealed that, despite highly similar three-dimensional structures, clamp proteins display a wide range of dynamic behavior. Differences were apparent both for structurally similar domains within proteins and for corresponding domains of different proteins. Several of the clamps contained regions that underwent local unfolding with different half-lives. We also observed a conserved pattern of alternating dynamics of the α helices lining the inner pore of the clamps as well as a correlation between dynamics and the number of salt bridges in these α helices. Our observations reveal that tertiary structure and dynamics are not directly correlated and that primary structure plays an important role in dynamics. PMID:24613485

  7. Conformational analysis of processivity clamps in solution demonstrates that tertiary structure does not correlate with protein dynamics

    PubMed Central

    Kairys, Visvaldas; Venclovas, Česlovas; Engen, John R.; Beuning, Penny J.

    2014-01-01

    Summary The relationship between protein sequence, structure, and dynamics has been elusive. We report one of the first comprehensive analyses using an in-solution experimental approach to study how the conservation of tertiary structure correlates with protein dynamics. Hydrogen exchange measurements of eight processivity clamp proteins from different species revealed that, despite highly similar three-dimensional structures, clamp proteins display a wide range of dynamic behavior. Differences were apparent both for structurally similar domains within proteins and for corresponding domains of different proteins. Several of the clamps contained regions that underwent local unfolding with different half-lives. We also observed a conserved pattern of alternating dynamics of the α-helices lining the inner pore of the clamps as well as a correlation between dynamics and the number of salt bridges in these α-helices. Our observations reveal that tertiary structure and dynamics are not directly correlated and that primary structure plays an important role in dynamics. PMID:24613485

  8. Voltage-Boosting Driver For Switching Regulator

    NASA Technical Reports Server (NTRS)

    Trump, Ronald C.

    1990-01-01

    Driver circuit assures availability of 10- to 15-V gate-to-source voltage needed to turn on n-channel metal oxide/semiconductor field-effect transistor (MOSFET) acting as switch in switching voltage regulator. Includes voltage-boosting circuit efficiently providing gate voltage 10 to 15 V above supply voltage. Contains no exotic parts and does not require additional power supply. Consists of NAND gate and dual voltage booster operating in conjunction with pulse-width modulator part of regulator.

  9. Voltage oscillations and ionic conductances in hair cells isolated from the alligator cochlea.

    PubMed

    Fuchs, P A; Evans, M G

    1988-12-01

    Tall hair cells were isolated by enzymatic and mechanical dissociation from selected regions of the apical half of the alligator (A. mississippiensis) cochlea. Single cells were subjected to voltage-clamp and current-clamp using the tight-seal whole-cell recording technique. Most hair cells isolated from the apex of the cochlea produced slowly regenerative depolarizations or Na action potentials during current injection, whereas hair cells isolated from more basal regions usually produced voltage oscillations (ringing) in response to depolarizing current injection, an indication of electrical resonance. Resonant frequencies ranged from 50 to 157 Hz in different cells. The higher-frequency cells tended to have larger and more rapidly activating outward currents than did the lower-frequency cells. An inward Ca current and an outward Ca-activated K current were present in all hair cells. In addition, an inwardly rectifying current and a small, transient outward current were often seen. Thus, we conclude that an electrical tuning mechanism is present in alligator hair cells. The role of the ionic conductances in shaping hair cell responses to current injection, and the possible contributions of these electrical responses to cochlear function are discussed. PMID:3244125

  10. Structural Features and Functional Dependency on β-Clamp Define Distinct Subfamilies of Bacterial Mismatch Repair Endonuclease MutL.

    PubMed

    Fukui, Kenji; Baba, Seiki; Kumasaka, Takashi; Yano, Takato

    2016-08-12

    In early reactions of DNA mismatch repair, MutS recognizes mismatched bases and activates MutL endonuclease to incise the error-containing strand of the duplex. DNA sliding clamp is responsible for directing the MutL-dependent nicking to the newly synthesized/error-containing strand. In Bacillus subtilis MutL, the β-clamp-interacting motif (β motif) of the C-terminal domain (CTD) is essential for both in vitro direct interaction with β-clamp and in vivo repair activity. A large cluster of negatively charged residues on the B. subtilis MutL CTD prevents nonspecific DNA binding until β clamp interaction neutralizes the negative charge. We found that there are some bacterial phyla whose MutL endonucleases lack the β motif. For example, the region corresponding to the β motif is completely missing in Aquifex aeolicus MutL, and critical amino acid residues in the β motif are not conserved in Thermus thermophilus MutL. We then revealed the 1.35 Å-resolution crystal structure of A. aeolicus MutL CTD, which lacks the β motif but retains the metal-binding site for the endonuclease activity. Importantly, there was no negatively charged cluster on its surface. It was confirmed that CTDs of β motif-lacking MutLs, A. aeolicus MutL and T. thermophilus MutL, efficiently incise DNA even in the absence of β-clamp and that β-clamp shows no detectable enhancing effect on their activity. In contrast, CTD of Streptococcus mutans, a β motif-containing MutL, required β-clamp for the digestion of DNA. We propose that MutL endonucleases are divided into three subfamilies on the basis of their structural features and dependence on β-clamp. PMID:27369079

  11. Structure-Function Analysis of the C-clamp of TCF/Pangolin in Wnt/ß-catenin Signaling

    PubMed Central

    Ravindranath, Aditi; Cadigan, Ken M.

    2014-01-01

    The evolutionarily conserved Wnt/ß-catenin (Wnt/ß-cat) pathway plays an important role in animal development in metazoans. Many Wnt targets are regulated by members of the TCF/LEF1 (TCF) family of transcription factors. All TCFs contain a High Mobility Group (HMG) domain that bind specific DNA sequences. Invertebrate TCFs and some vertebrate TCF isoforms also contain another domain, called the C-clamp, which allows TCFs to recognize an additional DNA motif known as the Helper site. While the C-clamp has been shown to be important for regulating several Wnt reporter genes in cell culture, its physiological role in regulating Wnt targets is less clear. In addition, little is known about this domain, except that two of the four conserved cysteines are functionally important. Here, we carried out a systematic mutagenesis and functional analysis of the C-clamp from the Drosophila TCF/Pangolin (TCF/Pan) protein. We found that the C-clamp is a zinc-binding domain that is sufficient for binding to the Helper site. In addition to this DNA-binding activity, the C-clamp also inhibits the HMG domain from binding its cognate DNA site. Point mutations were identified that specifically affected DNA-binding or reduced the inhibitory effect. These mutants were characterized in TCF/Pan rescue assays. The specific DNA-binding activity of the C-clamp was essential for TCF/Pan function in cell culture and in patterning the embryonic epidermis of Drosophila, demonstrating the importance of this C-clamp activity in regulating Wnt target gene expression. In contrast, the inhibitory mutation had a subtle effect in cell culture and no effect on TCF/Pan activity in embryos. These results provide important information about the functional domains of the C-clamp, and highlight its importance for Wnt/ß-cat signaling in Drosophila. PMID:24465946

  12. Structure-function analysis of the C-clamp of TCF/Pangolin in Wnt/ß-catenin signaling.

    PubMed

    Ravindranath, Aditi J; Ravindranath, Aditi; Cadigan, Ken M

    2014-01-01

    The evolutionarily conserved Wnt/ß-catenin (Wnt/ß-cat) pathway plays an important role in animal development in metazoans. Many Wnt targets are regulated by members of the TCF/LEF1 (TCF) family of transcription factors. All TCFs contain a High Mobility Group (HMG) domain that bind specific DNA sequences. Invertebrate TCFs and some vertebrate TCF isoforms also contain another domain, called the C-clamp, which allows TCFs to recognize an additional DNA motif known as the Helper site. While the C-clamp has been shown to be important for regulating several Wnt reporter genes in cell culture, its physiological role in regulating Wnt targets is less clear. In addition, little is known about this domain, except that two of the four conserved cysteines are functionally important. Here, we carried out a systematic mutagenesis and functional analysis of the C-clamp from the Drosophila TCF/Pangolin (TCF/Pan) protein. We found that the C-clamp is a zinc-binding domain that is sufficient for binding to the Helper site. In addition to this DNA-binding activity, the C-clamp also inhibits the HMG domain from binding its cognate DNA site. Point mutations were identified that specifically affected DNA-binding or reduced the inhibitory effect. These mutants were characterized in TCF/Pan rescue assays. The specific DNA-binding activity of the C-clamp was essential for TCF/Pan function in cell culture and in patterning the embryonic epidermis of Drosophila, demonstrating the importance of this C-clamp activity in regulating Wnt target gene expression. In contrast, the inhibitory mutation had a subtle effect in cell culture and no effect on TCF/Pan activity in embryos. These results provide important information about the functional domains of the C-clamp, and highlight its importance for Wnt/ß-cat signaling in Drosophila. PMID:24465946

  13. Modelling and control of a seven level NPC voltage source inverter. Application to high power induction machine drive

    NASA Astrophysics Data System (ADS)

    Gheraia, H.; Berkouk, E. M.; Manesse, G.

    2001-08-01

    In this paper, we study a new kind of continuous-alternating converters: a seven-level neutral point clamping (NPC) voltage source inverter (VSI). We propose this inverter for applications in high voltage and high power fields. In the first part, we develop the knowledge and the control models of this inverter using the connections functions of the semi-conductors. After that, we present two pulse width modulation (PWM) algorithms to control this converter using its control model. We propose these algorithms for digital implementation. This multilevel inverter is associated to the induction machine. The performances obtained are full of promise to use it in the high voltage and high power fields of electrical traction.

  14. Catch and Patch: A Pipette-Based Approach for Automating Patch Clamp That Enables Cell Selection and Fast Compound Application.

    PubMed

    Danker, Timm; Braun, Franziska; Silbernagl, Nikole; Guenther, Elke

    2016-03-01

    Manual patch clamp, the gold standard of electrophysiology, represents a powerful and versatile toolbox to stimulate, modulate, and record ion channel activity from membrane fragments and whole cells. The electrophysiological readout can be combined with fluorescent or optogenetic methods and allows for ultrafast solution exchanges using specialized microfluidic tools. A hallmark of manual patch clamp is the intentional selection of individual cells for recording, often an essential prerequisite to generate meaningful data. So far, available automation solutions rely on random cell usage in the closed environment of a chip and thus sacrifice much of this versatility by design. To parallelize and automate the traditional patch clamp technique while perpetuating the full versatility of the method, we developed an approach to automation, which is based on active cell handling and targeted electrode placement rather than on random processes. This is achieved through an automated pipette positioning system, which guides the tips of recording pipettes with micrometer precision to a microfluidic cell handling device. Using a patch pipette array mounted on a conventional micromanipulator, our automated patch clamp process mimics the original manual patch clamp as closely as possible, yet achieving a configuration where recordings are obtained from many patch electrodes in parallel. In addition, our implementation is extensible by design to allow the easy integration of specialized equipment such as ultrafast compound application tools. The resulting system offers fully automated patch clamp on purposely selected cells and combines high-quality gigaseal recordings with solution switching in the millisecond timescale. PMID:26991363

  15. Effect of Sb dopant amount on the structure and electrocatalytic capability of Ti/Sb-SnO2 electrodes in the oxidation of 4-chlorophenol.

    PubMed

    Kong, Jiang-tao; Shi, Shao-yuan; Zhu, Xiu-ping; Ni, Jin-ren

    2007-01-01

    Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The physicochemical properties of the Sb-SnO2 coating were markedly influenced by different amounts of Sb dopant. The electrodes, which contained 5% Sb dopant in the coating, presented a much more homogenous surface and much smaller mud-cracks, compared with Ti/Sb-SnO2 electrodes containing 10% or 15% Sb dopant, which exibited larger mud cracks and pores on the surface. However, the main microstructure remained unchanged with the addition of the Sb dopant. No new crystal phase was observed by X-ray diffraction (XRD). The electrochemical oxidation of 4-chlorophenol on the Ti/SnO2 electrode with 5% Sb dopant was inclined to electrochemical combustion; while for those containing more Sb dopant, intermediate species were accumulated. The electrodes with 5% Sb dopant showed the highest efficiency in the bulk electrolysis of 4-chlorophenol at a current density of 20 mA/cm2 for 180 min; and the removal rates of 4-chlorophenol and COD were 51.0% and 48.9%, respectively. PMID:18232235

  16. Electrode voltage fall and total voltage of a transient arc

    NASA Astrophysics Data System (ADS)

    Valensi, F.; Ratovoson, L.; Razafinimanana, M.; Masquère, M.; Freton, P.; Gleizes, A.

    2016-06-01

    This paper deals with an experimental study of the components of a transient arc total voltage with duration of a few tens of ms and a current peak close to 1000 A. The cathode tip is made of graphite whereas the flat anode is made either of copper or of graphite; the electrodes gap is a few mm. The analysis of the electrical parameters is supported and validated by fast imaging and by two models: the first one is a 2D physical model of the arc allowing to calculate both the plasma temperature field and the arc voltage; the second model is able to estimate the transient heating of the graphite electrode. The main aim of the study was to detect the possible change of the cathode voltage fall (CVF) during the first instants of the arc. Indeed it is expected that during the first ms the graphite cathode is rather cool and the main mechanism of the electron emission should be the field effect emission, whereas after several tens of ms the cathode is strongly heated and thermionic emission should be predominant. We have observed some change in the apparent CVF but we have shown that this apparent change can be attributed to the variation of the solid cathode resistance. On the other hand, the possible change of CVF corresponding to the transition between a ‘cold’ and a ‘hot’ cathode should be weak and could not be characterized considering our measurement uncertainty of about 2 V. The arc column voltage (ACV) was estimated by subtracting the electrode voltage fall from the total arc voltage. The experimental transient evolution of the ACV is in very good agreement with the theoretical variation predicted by the model, showing the good ability of the model to study this kind of transient arc.

  17. Voltage Sensor in Voltage-gated ion channels

    NASA Astrophysics Data System (ADS)

    Bezanilla, Francisco

    2006-03-01

    Voltage-gated ion channels are intrinsic membrane proteins that play a fundamental role in the generation and propagation of the nerve impulse. Their salient characteristic is that the probability of the ion channel of being open depends steeply on the voltage across the membrane where those channels are inserted. Thus, in a membrane containing many channels, the ionic conductance is controlled by the membrane potential. The voltage exerts its control on the channel by reorienting intrinsic charges in the protein, generally arginine or lysine residues located in the 4th transmembrane segment of the channel protein, a region that has been called the voltage sensor. Upon changing the membrane potential, the charged groups reorient in the field generating a transient current (gating current). The properties of the gating current may be studied with a small number of channels to infer the operation of the sensor at the single molecule level by noise analysis or with a large number of channels to infer the details of the energy landscape the sensor traverses in opening the pore. This information is global in nature and cannot pinpoint the exact origin of the charge movement that generates the gating current. The movement of physical charges in the protein has been inferred with site-directed mutagenesis of the charged residues to histidine that allows the study of proton accessibility. The actual movement has been studied with fluorescence spectroscopy, fluorescence resonance energy transfer. The combined information of site-directed mutagenesis, gating currents, fluorescence studies and emerging crystal structures have started to delineate a physical representation of the conformational changes responsible for voltage sensing that lead to the opening of the conduction pore in voltage-gated ion channels.

  18. Voltage limitations of electrostatic accelerators

    SciTech Connect

    Hyder, H. R. McK.

    1999-04-26

    The history of electrostatic accelerators has been punctuated by a series of projects in which innovative designs have failed to meet the expectations of their designers. From the early, air-insulated Van de Graaffs at Round Hill to certain of the large pressurized heavy ion accelerators of the 1970s and 1980s, increases in size or changes in design and materials have not always led to the maximum voltages expected or extrapolated. Since these failures have continued beyond childhood into a mature technology, it is reasonable to assume that the causes of voltage limitation are varied and complex. They have remained poorly understood for a number of reasons: resources for an extended program of research into breakdown and failure of electrostatic generators have always been meager, especially for large machines devoted to nuclear research; the inaccessibility of pressurized generators makes instrumentation difficult and testing slow; the calculation of transient and dynamic effects is laborious and the results difficult to verify; voltage test experiments on operating accelerators are inhibited by the significant risk of damage due to energy release on breakdown: and the total voltages (though not the local fields) achieved in many electrostatic accelerators exceed those produced in any other man-made environment. In this review, the behavior of several generators of different designs is examined in order to assess the importance of the various design features and operating conditions that control the maximum voltage achievable in a working machine.

  19. Voltage limitations of electrostatic accelerators

    SciTech Connect

    Hyder, H.R. )

    1999-04-01

    The history of electrostatic accelerators has been punctuated by a series of projects in which innovative designs have failed to meet the expectations of their designers. From the early, air-insulated Van de Graaffs at Round Hill to certain of the large pressurized heavy ion accelerators of the 1970s and 1980s, increases in size or changes in design and materials have not always led to the maximum voltages expected or extrapolated. Since these failures have continued beyond childhood into a mature technology, it is reasonable to assume that the causes of voltage limitation are varied and complex. They have remained poorly understood for a number of reasons: resources for an extended program of research into breakdown and failure of electrostatic generators have always been meager, especially for large machines devoted to nuclear research; the inaccessibility of pressurized generators makes instrumentation difficult and testing slow; the calculation of transient and dynamic effects is laborious and the results difficult to verify; voltage test experiments on operating accelerators are inhibited by the significant risk of damage due to energy release on breakdown: and the total voltages (though not the local fields) achieved in many electrostatic accelerators exceed those produced in any other man-made environment. In this review, the behavior of several generators of different designs is examined in order to assess the importance of the various design features and operating conditions that control the maximum voltage achievable in a working machine. [copyright] [ital 1999 American Institute of Physics.

  20. A new balancing three level three dimensional space vector modulation strategy for three level neutral point clamped four leg inverter based shunt active power filter controlling by nonlinear back stepping controllers.

    PubMed

    Chebabhi, Ali; Fellah, Mohammed Karim; Kessal, Abdelhalim; Benkhoris, Mohamed F

    2016-07-01

    In this paper is proposed a new balancing three-level three dimensional space vector modulation (B3L-3DSVM) strategy which uses a redundant voltage vectors to realize precise control and high-performance for a three phase three-level four-leg neutral point clamped (NPC) inverter based Shunt Active Power Filter (SAPF) for eliminate the source currents harmonics, reduce the magnitude of neutral wire current (eliminate the zero-sequence current produced by single-phase nonlinear loads), and to compensate the reactive power in the three-phase four-wire electrical networks. This strategy is proposed in order to gate switching pulses generation, dc bus voltage capacitors balancing (conserve equal voltage of the two dc bus capacitors), and to switching frequency reduced and fixed of inverter switches in same times. A Nonlinear Back Stepping Controllers (NBSC) are used for regulated the dc bus voltage capacitors and the SAPF injected currents to robustness, stabilizing the system and to improve the response and to eliminate the overshoot and undershoot of traditional PI (Proportional-Integral). Conventional three-level three dimensional space vector modulation (C3L-3DSVM) and B3L-3DSVM are calculated and compared in terms of error between the two dc bus voltage capacitors, SAPF output voltages and THDv, THDi of source currents, magnitude of source neutral wire current, and the reactive power compensation under unbalanced single phase nonlinear loads. The success, robustness, and the effectiveness of the proposed control strategies are demonstrated through simulation using Sim Power Systems and S-Function of MATLAB/SIMULINK. PMID:27018144