Science.gov

Sample records for 2-h glucose levels

  1. N-Glucosides as human sodium-dependent glucose cotransporter 2 (hSGLT2) inhibitors.

    PubMed

    Yamamoto, Yasuo; Kawanishi, Eiji; Koga, Yuichi; Sakamaki, Shigeki; Sakamoto, Toshiaki; Ueta, Kiichiro; Matsushita, Yasuaki; Kuriyama, Chiaki; Tsuda-Tsukimoto, Minoru; Nomura, Sumihiro

    2013-10-15

    Inhibition of renal sodium-dependent glucose cotransporter 2 (SGLT2) increases urinary glucose excretion (UGE), and thus reduces blood glucose levels in hyperglycemia. A series of N-glucosides was synthesized for biological evaluation as human SGLT2 (hSGLT2) inhibitors. Among these compounds, N-glucoside 9d possessing an indole core structure showed good in vitro activity (IC50=7.1 nM against hSGLT2). Furthermore, 9d exhibited favorable in vivo potency with regard to UGE in rats based on good pharmacokinetic profiles. PMID:23999047

  2. The 13C/2H-glucose test for determination of small intestinal lactase activity.

    PubMed

    Vonk, R J; Stellaard, F; Priebe, M G; Koetse, H A; Hagedoorn, R E; De Bruijn, S; Elzinga, H; Lenoir-Wijnkoop, I; Antoine, J M

    2001-03-01

    To diagnose hypolactasia, determination of lactase enzyme activity in small intestinal biopsy material is considered to be the golden standard. Because of its strongly invasive character and the sampling problems, alternative methods have been looked for. We analysed the 13C-glucose response in serum after consumption of 25 g of naturally enriched 13C-lactose. As an internal standard, 0.5 g of 2H-glucose was added and the 2H-glucose response in serum was measured simultaneously. The studies were performed in healthy volunteers with a background of genetically determined lactase nonpersistence (n = 12; low lactase activity) and lactase persistence (n = 27; high lactase activity). The results were compared with those of the lactose hydrogen breath test, the lactose 13CO2 breath test and the previously described 13C-lactose digestion test. After consumption of 13C-lactose and 2H-glucose, the mean ratio 13C-glucose/2H-glucose concentration in serum at 45-75 min was 0.26 +/- 0.09 in the low lactase activity group and 0.93 +/- 0.17 in the high lactase activity group (P < 0.01). Threshold of the ratio between digesters and maldigesters was calculated as 0.46. Accuracy of the new test was superior to all other tests. We conclude that the 13C/2H-glucose test has the potential of determining the small intestinal lactase activity in vivo and of estimating the amount of lactose which is digested in the small intestine. PMID:11264650

  3. The 13C/2H-glucose test for determination of small intestinal lactase activity.

    PubMed

    Vonk, R J; Stellaard, F; Priebe, M G; Koetse, H A; Hagedoorn, R E; De Bruijn, S; Elzinga, H; Lenoir-Wijnkoop, I; Antoine, J M

    2001-03-01

    To diagnose hypolactasia, determination of lactase enzyme activity in small intestinal biopsy material is considered to be the golden standard. Because of its strongly invasive character and the sampling problems, alternative methods have been looked for. We analysed the 13C-glucose response in serum after consumption of 25 g of naturally enriched 13C-lactose. As an internal standard, 0.5 g of 2H-glucose was added and the 2H-glucose response in serum was measured simultaneously. The studies were performed in healthy volunteers with a background of genetically determined lactase nonpersistence (n = 12; low lactase activity) and lactase persistence (n = 27; high lactase activity). The results were compared with those of the lactose hydrogen breath test, the lactose 13CO2 breath test and the previously described 13C-lactose digestion test. After consumption of 13C-lactose and 2H-glucose, the mean ratio 13C-glucose/2H-glucose concentration in serum at 45-75 min was 0.26 +/- 0.09 in the low lactase activity group and 0.93 +/- 0.17 in the high lactase activity group (P < 0.01). Threshold of the ratio between digesters and maldigesters was calculated as 0.46. Accuracy of the new test was superior to all other tests. We conclude that the 13C/2H-glucose test has the potential of determining the small intestinal lactase activity in vivo and of estimating the amount of lactose which is digested in the small intestine.

  4. Simultaneous quantification of labeled (2)H5-glycerol, (13)C6-glucose, and endogenous D-glucose in mouse plasma using liquid chromatography tandem mass spectrometry.

    PubMed

    Jahouh, Farid; Wang, Rong

    2015-11-01

    Monitoring the level of glucose and glycerol or their labeled derivatives in biological fluid for kinetic studies has always been challenging, especially in mice, because of the limited volume in addition to the complexity of plasma. For such application, we developed a simple, fast, and sensitive method for the simultaneous measurement of absolute concentrations of labeled (2)H5-glycerol and (13)C6-glucose as well as endogenous D-glucose using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). In our study, 15.0 μL of mouse plasma was processed by a one-step protein precipitation, followed by LC-MS/MS analysis. The quantification of the analytes was carried out by monitoring the product ion scan of their corresponding deprotonated molecular ions and constructing the extracted ion fragmentogram by choosing a specific product ion for each analyte (equivalent to precursor ion to product ion transitions). The limit of detection (LOD) was evaluated to be 1.0 μM for both (2)H5-glycerol and (13)C6-glucose, and the limit of quantitation (LOQ) was observed to be 5.0 μM for both (2)H5-glycerol and (13)C6-glucose in diluted mice plasma that corresponds to 50 μM in plasma or 4.60 and 9.01 mg/dL of glycerol and glucose in plasma, respectively. The extraction recoveries are 81.9 % (CV = 8.1 %) for (2)H5-glycerol and 26.2 % (CV = 13.6 %) for (13)C6-glucose. PMID:26362155

  5. Whole body glucose kinetics in type I diabetes studied with (6,6-/sup 2/H) and (U-/sup 13/C)-glucose and the artificial B-cell

    SciTech Connect

    Darmaun, D.; Cirillo, D.; Koziet, J.; Chauvet, D.; Young, V.R.; Robert, J.J.

    1988-05-01

    Dynamic aspects of whole body glucose metabolism were assessed in ten young adult insulin-dependent (type I) diabetic men. Using a primed, continuous intravenous infusion of (6,6-/sup 2/H)glucose and (U-/sup 13/C)glucose, endogenous production, tissue uptake, carbon recycling, and oxidation of glucose were measured in the postabsorptive state. These studies were undertaken after blood glucose had been maintained overnight at 5.9 +/- 0.4 mmol/L (n = 10), and on another night at 10.5 +/- 0.4 mmol/L (n = 4) or 15.2 +/- 0.6 mmol/L (n = 6). In the normoglycemic state, endogenous glucose production averaged 2.15 +/- 0.13 mg x kg-1 x min-1. This value, as well as the rate of glucose carbon recycling (0.16 +/- 0.04 mg x kg-1 x min-1) and glucose oxidation (1.52 +/- 0.16 mg x kg-1 x min-1) are comparable to those found in nondiabetic controls. In the hyperglycemic states at 10 or 15 mmol/L, endogenous glucose production was increased by 11% (P less than .01) and 60% (P less than .01) compared to the normoglycemic states, respectively. Glucose carbon recycling contributed only a small percentage to this variation in glucose production (15% at the 15 mmol/L glucose level). This suggests that if gluconeogenesis participates in the increased glucose output, it is not dependent on a greater systemic supply of three-carbon precursors. The increased rate of glucose production in the hyperglycemic state was quantitatively offset by a rise in urinary glucose excretion. Glucose tissue uptake, as well as glucose oxidation, did not vary between normoglycemic and hyperglycemic states.

  6. Blood Glucose Levels and Problem Behavior

    ERIC Educational Resources Information Center

    Valdovinos, Maria G.; Weyand, David

    2006-01-01

    The relationship between varying blood glucose levels and problem behavior during daily scheduled activities was examined. The effects that varying blood glucose levels had on problem behavior during daily scheduled activities were examined. Prior research has shown that differing blood glucose levels can affect behavior and mood. Results of this…

  7. Effect of hydroxyethyl starch on blood glucose levels

    PubMed Central

    Shim, Soo Bin; Choi, Woo Young

    2016-01-01

    Background Hydroxyethyl starch (HES), a commonly used resuscitation fluid, has the property to induce hyperglycemia as it contains large ethyl starch, which can be metabolized to produce glucose. We evaluated the effect of 6% HES-130 on the blood glucose levels in non-diabetic patients undergoing surgery under spinal anesthesia. Methods Patients scheduled to undergo elective lower limb surgery were enrolled. Fifty-eight patients were divided into two groups according to the type of the main intravascular fluid used before spinal anesthesia (Group LR: lactated Ringer's solution, n = 30 vs. Group HES: 6% hydroxyethyl starch 130/0.4, n = 28). Blood glucose levels were measured at the following time points: 0 (baseline), 20 min (T1), 1 h (T2), 2 h (T3), 4 h (T4), and 6 h (T6). Results Mean blood glucose levels at T5 in the LR group and T4, T5 in the HES group, increased significantly compared to baseline. There were no significant changes in the serial differences of mean blood glucose levels from baseline between the two groups. Conclusions Administration of 6% HES-130 increased blood glucose levels within the physiologic limits, but the degree of glucose increase was not greater than that caused by administration of lactated Ringer's solution. In conclusion, we did not find evidence that 6% HES-130 induces hyperglycemia in non-diabetic patients. PMID:27482311

  8. Neural control of blood glucose level.

    PubMed

    Niijima, A

    1986-01-01

    All of the experimental results described above can be categorized as follows: the relationship between glucose levels and pancreatic and adrenal nerve activities; innervations of the liver and their role in the regulation of blood glucose level; central integration of blood glucose level; glucose-sensitive afferent nerve fibers in the liver and regulation of blood glucose; oral and intestinal inputs involved in reflex control of blood glucose level. We showed that an increase in blood glucose content produced an increase in the activity of the pancreatic branch of the vagus nerve, whereas it induced a decrease in the activity of the adrenal nerve. It was also shown that a decrease in blood glucose activated the sympatho-adrenal system and suppressed the vago-pancreatic system. It seems rational that these responses are involved in the maintenance of blood glucose level. Studies on the innervation of the liver led us to a conclusion that sympathetic innervation of the liver might play a role in eliciting a prompt hyperglycemic response through liberation of norepinephrine from the nerve terminals, and that the vagal innervation synergically worked with the humoral factor (insulin) for glycogen synthesis in the hyperglycemic condition. The glucose-sensitive afferents from the liver seem to initiate a reflex control of blood glucose level. The gustatory information on EIR response, reported by STEFFENS, is supported by the electrophysiological observations. MEI's reports also indicated the importance of information from the intestinal glucoreceptors in the reflex control of insulin secretion. The role of integrative functions of the hypothalamus and brainstem through neuronal networks on neural control of blood glucose levels is also evident. A schematic diagram of the nervous networks involved in the regulation of the blood glucose levels is shown in Fig. 3. PMID:3550186

  9. Validation of pentaacetylaldononitrile derivative for dual 2H gas chromatography/mass spectrometry and 13C gas chromatography/combustion/isotope ratio mass spectrometry analysis of glucose.

    PubMed

    Sauvinet, Valérie; Gabert, Laure; Qin, Du; Louche-Pélissier, Corinne; Laville, Martine; Désage, Michel

    2009-12-01

    A reference method to accurately define kinetics in response to the ingestion of glucose in terms of total, exogenous and endogenous glucose is to use stable-isotope-labelled compounds such as 2H and 13C glucose followed by gas chromatography/mass spectrometry (GC/MS) and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) analysis. The use of the usual pentaacetyl (5Ac) derivative generates difficulties in obtaining accurate and reproducible results due to the two chromatographic peaks for the syn and anti isomers, and to the isotopic effect occurring during acetylation. Therefore, the pentaacetylaldononitrile derivative (Aldo) was validated for both isotopes, and compared with the 5Ac derivative. A correction factor including carbon atom dilution (stoichiometric equation) and the kinetic isotopic effect (KIE) was determined. Analytical validation results for the 2H GC/MS and 13C GC/C/IRMS measurements produced acceptable results with both derivatives. When 2H enrichments of plasma samples were < or = 1 mol % excess (MPE), the repeatability (RSD(Aldo Intra assay and Intra day) <0.94%, RSD(5Ac Intra assay and Intra day) <3.29%), accuracy (Aldo <3.4%, 5Ac <29.0%), and stability of the derivatized samples were significantly better when the Aldo derivatives of the plasma samples were used (p < 0.05). When the glucose kinetics were assessed in nine human subjects, after glucose ingestion, the plasma glucose 2H enrichments were identical with both derivatives, whereas the 13C enrichments needed a correction factor to fit together. Due to KIE variation, this correction factor was not constant and had to be calculated for each batch of analyses, to obtain satisfactory results. Mean quantities of exogenous glucose exhibit marked difference (20.9 +/- 1.3g (5Ac) vs. 26.7 +/- 2.5g (Aldo)) when calculated with stoichiometric correction, but fit perfectly when calculated after application of the correction factor (22.1 +/- 1.3g (5Ac) vs. 22.9 +/- 1.9g

  10. Mass spectrometry-based microassay of (2)H and (13)C plasma glucose labeling to quantify liver metabolic fluxes in vivo.

    PubMed

    Hasenour, Clinton M; Wall, Martha L; Ridley, D Emerson; Hughey, Curtis C; James, Freyja D; Wasserman, David H; Young, Jamey D

    2015-07-15

    Mouse models designed to examine hepatic metabolism are critical to diabetes and obesity research. Thus, a microscale method to quantitatively assess hepatic glucose and intermediary metabolism in conscious, unrestrained mice was developed. [(13)C3]propionate, [(2)H2]water, and [6,6-(2)H2]glucose isotopes were delivered intravenously in short- (9 h) and long-term-fasted (19 h) C57BL/6J mice. GC-MS and mass isotopomer distribution (MID) analysis were performed on three 40-μl arterial plasma glucose samples obtained during the euglycemic isotopic steady state. Model-based regression of hepatic glucose and citric acid cycle (CAC)-related fluxes was performed using a comprehensive isotopomer model to track carbon and hydrogen atom transitions through the network and thereby simulate the MIDs of measured fragment ions. Glucose-6-phosphate production from glycogen diminished, and endogenous glucose production was exclusively gluconeogenic with prolonged fasting. Gluconeogenic flux from phosphoenolpyruvate (PEP) remained stable, whereas that from glycerol modestly increased from short- to long-term fasting. CAC flux [i.e., citrate synthase (VCS)] was reduced with long-term fasting. Interestingly, anaplerosis and cataplerosis increased with fast duration; accordingly, pyruvate carboxylation and the conversion of oxaloacetate to PEP were severalfold higher than VCS in long-term fasted mice. This method utilizes state-of-the-art in vivo methodology and comprehensive isotopomer modeling to quantify hepatic glucose and intermediary fluxes during physiological stress in mice. The small plasma requirements permit serial sampling without stress and the affirmation of steady-state glucose kinetics. Furthermore, the approach can accommodate a broad range of modeling assumptions, isotope tracers, and measurement inputs without the need to introduce ad hoc mathematical approximations.

  11. 13C, 2h NMR studies of structural and dynamical modifications of glucose-exposed porcine aortic elastin.

    PubMed

    Silverstein, Moshe C; Bilici, Kübra; Morgan, Steven W; Wang, Yunjie; Zhang, Yanhang; Boutis, Gregory S

    2015-04-01

    Elastin, the principal component of the elastic fiber of the extracellular matrix, imparts to vertebrate tissues remarkable resilience and longevity. This work focuses on elucidating dynamical and structural modifications of porcine aortic elastin exposed to glucose by solid-state NMR spectroscopic and relaxation methodologies. Results from macroscopic stress-strain tests are also presented and indicate that glucose-treated elastin is mechanically stiffer than the same tissue without glucose treatment. These measurements show a large hysteresis in the stress-strain behavior of glucose-treated elastin-a well-known signature of viscoelasticity. Two-dimensional relaxation NMR methods were used to investigate the correlation time, distribution, and population of water in these samples. Differences are observed between the relative populations of water, whereas the measured correlation times of tumbling motion of water across the samples were similar. (13)C magic-angle-spinning NMR methods were applied to investigate structural and dynamical modifications after glucose treatment. Although some overall structure is preserved, the process of glucose exposure results in more heterogeneous structures and slower mobility. The correlation times of tumbling motion of the (13)C-(1)H internuclear vectors in the glucose-treated sample are larger than in untreated samples, pointing to their more rigid structure. The (13)C cross-polarization spectra reveal a notably increased α-helical character in the alanine motifs after glucose exposure. Results from molecular dynamics simulations are provided that add further insight into dynamical and structural changes of a short repeat, [VPGVG]5, an alanine pentamer, desmosine, and isodesmosine sites with and without glucose. The simulations point to changes in the entropic and energetic contributions in the retractive forces of VPGVG and AAAAA motifs. The most notable change is the increase of the energetic contribution in the retractive

  12. 13C, 2H NMR Studies of Structural and Dynamical Modifications of Glucose-Exposed Porcine Aortic Elastin

    PubMed Central

    Silverstein, Moshe C.; Bilici, Kübra; Morgan, Steven W.; Wang, Yunjie; Zhang, Yanhang; Boutis, Gregory S.

    2015-01-01

    Elastin, the principal component of the elastic fiber of the extracellular matrix, imparts to vertebrate tissues remarkable resilience and longevity. This work focuses on elucidating dynamical and structural modifications of porcine aortic elastin exposed to glucose by solid-state NMR spectroscopic and relaxation methodologies. Results from macroscopic stress-strain tests are also presented and indicate that glucose-treated elastin is mechanically stiffer than the same tissue without glucose treatment. These measurements show a large hysteresis in the stress-strain behavior of glucose-treated elastin—a well-known signature of viscoelasticity. Two-dimensional relaxation NMR methods were used to investigate the correlation time, distribution, and population of water in these samples. Differences are observed between the relative populations of water, whereas the measured correlation times of tumbling motion of water across the samples were similar. 13C magic-angle-spinning NMR methods were applied to investigate structural and dynamical modifications after glucose treatment. Although some overall structure is preserved, the process of glucose exposure results in more heterogeneous structures and slower mobility. The correlation times of tumbling motion of the 13C-1H internuclear vectors in the glucose-treated sample are larger than in untreated samples, pointing to their more rigid structure. The 13C cross-polarization spectra reveal a notably increased α-helical character in the alanine motifs after glucose exposure. Results from molecular dynamics simulations are provided that add further insight into dynamical and structural changes of a short repeat, [VPGVG]5, an alanine pentamer, desmosine, and isodesmosine sites with and without glucose. The simulations point to changes in the entropic and energetic contributions in the retractive forces of VPGVG and AAAAA motifs. The most notable change is the increase of the energetic contribution in the retractive force

  13. High Blood Glucose Levels Correlate with Tumor Malignancy in Colorectal Cancer Patients

    PubMed Central

    Cui, Ge; Zhang, Ting; Ren, Fan; Feng, Wen-Ming; Yao, Yunliang; Cui, Jie; Zhu, Guo-Liang; Shi, Qi-Lin

    2015-01-01

    Background Research shows that type 2 diabetes mellitus (T2DM) affects the risk and prognosis of colorectal cancer (CRC). Here, we conducted a retrospective study to investigate whether the clinicopathological features of CRC patients correlate with their blood glucose levels. Material/Methods We enrolled 391 CRC patients hospitalized in our center between 2008 and 2013. Data of their first fasting plasma glucose (FPG) and 2-h postprandial glucose (2hPPG) level after admission, their clinicopathological features, and survival were collected. The correlations between blood glucose level and clinicopathological features were analyzed by Pearson chi-square analysis. Patient survival was analyzed by Kaplan-Meier and Cox-regression analysis. Results There were 116 out of the 391 CRC patients who had high blood glucose level (H-G group, 29.67%), among which 58 (14.83%), 18 (4.60%), and 40 (10.23%) were diabetes mellitus (DM), impaired glucose tolerance (IGT), and impaired fasting glucose (IFG), respectively, while 275 (70.33%) patients had normal glucose level (N-G group). Compared with the N-G group, patients in the H-G group had larger tumor diameters and lower tumor differentiation (p<0.05). A higher ratio of patients in the H-G group also had more advanced TNM staging and more ulcerative CRC gross type (p<0.05). No significant difference was observed in patient overall survival among different glucose groups. No effect of insulin therapy on CRC development and patient survival was observed. Conclusions Blood glucose level in CRC patients correlates significantly with local tumor malignancy, but no significant effect on distant metastasis and patient overall survival was observed. PMID:26644185

  14. A Comparison of hs-CRP Levels in New Diabetes Groups Diagnosed Based on FPG, 2-hPG, or HbA1c Criteria.

    PubMed

    Tutuncu, Yildiz; Satman, Ilhan; Celik, Selda; Dinccag, Nevin; Karsidag, Kubilay; Telci, Aysegul; Genc, Sema; Issever, Halim; Tuomilehto, Jaakko; Omer, Beyhan

    2016-01-01

    Fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) have been used to diagnose new-onset diabetes mellitus (DM) in order to simplify the diagnostic tests compared with the 2-hour oral glucose tolerance test (OGTT; 2-hPG). We aimed to identify optimal cut-off points of high sensitive C-reactive protein (hs-CRP) in new-onset DM people based on FPG, 2-hPG, or HbA1c methods. Data derived from recent population-based survey in Turkey (TURDEP-II). The study included 26,499 adult people (63% women, response rate 85%). The mean serum concentration of hs-CRP in women was higher than in men (p < 0.001). The people with new-onset DM based on HbA1c had higher mean hs-CRP level than FPG based and 2-hPG based DM cases. In HbA1c, 2-hPG, and FPG based new-onset DM people, cut-off levels of hs-CRP in women were 2.9, 2.1, and 2.5 mg/L [27.5, 19.7, and 23.5 nmol/L] and corresponding values in men were 2.0, 1.8, and 1.8 mg/L (19.0, 16.9, and 16.9 nmol/L), respectively (sensitivity 60-65% and specificity 54-64%). Our results revealed that hs-CRP may not further strengthen the diagnosis of new-onset DM. Nevertheless, the highest hs-CRP level observed in new-onset DM people diagnosed with HbA1c criterion supports the general assumption that this method might recognize people in more advanced diabetic stage compared with other diagnostic methods.

  15. Effect of pertussis toxin pretreated centrally on blood glucose level induced by stress.

    PubMed

    Suh, Hong-Won; Sim, Yun-Beom; Park, Soo-Hyun; Sharma, Naveen; Im, Hyun-Ju; Hong, Jae-Seung

    2016-09-01

    In the present study, we examined the effect of pertussis toxin (PTX) administered centrally in a variety of stress-induced blood glucose level. Mice were exposed to stress after the pretreatment of PTX (0.05 or 0.1 µg) i.c.v. or i.t. once for 6 days. Blood glucose level was measured at 0, 30, 60 and 120 min after stress stimulation. The blood glucose level was increased in all stress groups. The blood glucose level reached at maximum level after 30 min of stress stimulation and returned to a normal level after 2 h of stress stimulation in restraint stress, physical, and emotional stress groups. The blood glucose level induced by cold-water swimming stress was gradually increased up to 1 h and returned to the normal level. The intracerebroventricular (i.c.v.) or intrathecal (i.t.) pretreatment with PTX, a Gi inhibitor, alone produced a hypoglycemia and almost abolished the elevation of the blood level induced by stress stimulation. The central pretreatment with PTX caused a reduction of plasma insulin level, whereas plasma corticosterone level was further up-regulated in all stress models. Our results suggest that the hyperglycemia produced by physical stress, emotional stress, restraint stress, and the cold-water swimming stress appear to be mediated by activation of centrally located PTX-sensitive G proteins. The reduction of blood glucose level by PTX appears to due to the reduction of plasma insulin level. The reduction of blood glucose level by PTX was accompanied by the reduction of plasma insulin level. Plasma corticosterone level up-regulation by PTX in stress models may be due to a blood glucose homeostatic mechanism. PMID:27610033

  16. Effect of pertussis toxin pretreated centrally on blood glucose level induced by stress

    PubMed Central

    Suh, Hong-Won; Sim, Yun-Beom; Park, Soo-Hyun; Sharma, Naveen; Im, Hyun-Ju

    2016-01-01

    In the present study, we examined the effect of pertussis toxin (PTX) administered centrally in a variety of stress-induced blood glucose level. Mice were exposed to stress after the pretreatment of PTX (0.05 or 0.1 µg) i.c.v. or i.t. once for 6 days. Blood glucose level was measured at 0, 30, 60 and 120 min after stress stimulation. The blood glucose level was increased in all stress groups. The blood glucose level reached at maximum level after 30 min of stress stimulation and returned to a normal level after 2 h of stress stimulation in restraint stress, physical, and emotional stress groups. The blood glucose level induced by cold-water swimming stress was gradually increased up to 1 h and returned to the normal level. The intracerebroventricular (i.c.v.) or intrathecal (i.t.) pretreatment with PTX, a Gi inhibitor, alone produced a hypoglycemia and almost abolished the elevation of the blood level induced by stress stimulation. The central pretreatment with PTX caused a reduction of plasma insulin level, whereas plasma corticosterone level was further up-regulated in all stress models. Our results suggest that the hyperglycemia produced by physical stress, emotional stress, restraint stress, and the cold-water swimming stress appear to be mediated by activation of centrally located PTX-sensitive G proteins. The reduction of blood glucose level by PTX appears to due to the reduction of plasma insulin level. The reduction of blood glucose level by PTX was accompanied by the reduction of plasma insulin level. Plasma corticosterone level up-regulation by PTX in stress models may be due to a blood glucose homeostatic mechanism. PMID:27610033

  17. Effect of pertussis toxin pretreated centrally on blood glucose level induced by stress

    PubMed Central

    Suh, Hong-Won; Sim, Yun-Beom; Park, Soo-Hyun; Sharma, Naveen; Im, Hyun-Ju

    2016-01-01

    In the present study, we examined the effect of pertussis toxin (PTX) administered centrally in a variety of stress-induced blood glucose level. Mice were exposed to stress after the pretreatment of PTX (0.05 or 0.1 µg) i.c.v. or i.t. once for 6 days. Blood glucose level was measured at 0, 30, 60 and 120 min after stress stimulation. The blood glucose level was increased in all stress groups. The blood glucose level reached at maximum level after 30 min of stress stimulation and returned to a normal level after 2 h of stress stimulation in restraint stress, physical, and emotional stress groups. The blood glucose level induced by cold-water swimming stress was gradually increased up to 1 h and returned to the normal level. The intracerebroventricular (i.c.v.) or intrathecal (i.t.) pretreatment with PTX, a Gi inhibitor, alone produced a hypoglycemia and almost abolished the elevation of the blood level induced by stress stimulation. The central pretreatment with PTX caused a reduction of plasma insulin level, whereas plasma corticosterone level was further up-regulated in all stress models. Our results suggest that the hyperglycemia produced by physical stress, emotional stress, restraint stress, and the cold-water swimming stress appear to be mediated by activation of centrally located PTX-sensitive G proteins. The reduction of blood glucose level by PTX appears to due to the reduction of plasma insulin level. The reduction of blood glucose level by PTX was accompanied by the reduction of plasma insulin level. Plasma corticosterone level up-regulation by PTX in stress models may be due to a blood glucose homeostatic mechanism.

  18. How High Glucose Levels Affect Tendon Homeostasis.

    PubMed

    Snedeker, Jess G

    2016-01-01

    Among the many factors playing a role in tendon disease, unregulated biochemical reactions between glucose and the collagen extracellular matrix are coming increasingly into focus. We have shown that formation of advanced glycation end-products that cross-link the collagen extracellular matrix can drastically affect cellular level mechanical properties of the matrix, and in turn affect cell-level biomechanical stimuli during physiological loading of the tissue. We suggest that these may adversely affect tendon cell response to matrix damage, as well as the quality of the consequent repair. If such mechanical feedback loops are altered, the ability of tendon cells to maintain tissue in a functional, healthy state may be compromised. Although key foundational elements of biochemical, biomechanical, and biological understanding are now in place, the full extent of how these aspects interact, including the precise mechanisms by which advanced glycation end-products pathologically disrupt connective tissue homeostasis and damage repair, are only beginning to be adequately appreciated. PMID:27535261

  19. Change in blood glucose level in rats after immobilization

    NASA Technical Reports Server (NTRS)

    Platonov, R. D.; Baskakova, G. M.; Chepurnov, S. A.

    1981-01-01

    Experiments were carried out on male white rats divided into four groups. In group one the blood glucose level was determined immediately after immobilization. In the other three groups, two hours following immobilization, the blood glucose level was determined every 20 minutes for 3 hours 40 minutes by the glucose oxidase method. Preliminary immobilization for 2 hours removed the increase in the blood glucose caused by the stress reaction. By the 2nd hour of immobilization in the presence of continuing stress, the blood glucose level stabilized and varied within 42 + or - 5.5 and 47 + or - 8.1 mg %. Within 2 hours after the immobilization, the differences in the blood glucose level of the rats from the control groups were statistically insignificant.

  20. Effects of iriflophenone 3-C-β-glucoside on fasting blood glucose level and glucose uptake

    PubMed Central

    Pranakhon, Ratree; Aromdee, Chantana; Pannangpetch, Patchareewan

    2015-01-01

    Background: One of the biological activities of agar wood (Aquilaria sinensis Lour., Thymelaeaceae), is anti-hyperglycemic activity. The methanolic extract (ME) was proven to possess the fasting blood glucose activity in rat and glucose uptake transportation by rat adipocytes. Objective: To determine the decreasing fasting blood glucose level of constituents affordable for in vivo test. If the test was positive, the mechanism which is positive to the ME, glucose transportation, will be performed. Materials and Methods: The ME was separated by column chromatography and identified by spectroscopic methods. Mice was used as an animal model (in vivo), and rat adipocytes were used for the glucose transportation activity (in vitro). Result: Iriflophenone 3-C-β-glucoside (IPG) was the main constituent, 3.17%, and tested for the activities. Insulin and the ME were used as positive controls. The ME, IPG and insulin lowered blood glucose levels by 40.3, 46.4 and 41.5%, respectively, and enhanced glucose uptake by 152, 153, and 183%, respectively. Conclusion: These findings suggest that IPG is active in lowering fasting blood glucose with potency comparable to that of insulin. PMID:25709215

  1. Evaluation testing of a portable vapor detector for Part-Per-Billion (PPB) level UDMH and N2H4

    NASA Technical Reports Server (NTRS)

    Curran, Dan; Lueck, Dale E.

    1995-01-01

    Trace level detection of hydrazine (N2H4), monomethyl hydrazine (MMH) and unsymmetrical dimethylhydrazine (UDMH) has been receiving increased attention over the past several years. In May 1995 the American Conference of Government Industrial Hygienists (ACGIH) lowered their acceptable threshold limit value (TLV) from 100 parts-per-billion (ppb) to 10 ppb. Several types of ppb-level detectors are being developed by the United States Air Force (USAF) Space and Missile Systems Center (SMSC). A breadboard version of a portable, lightweight hydrazine detection sensor was developed and produced by Giner Corp. for the USAF. This sensor was designed for ppb level UDMH and N2H4 vapor detection in near real-time. This instrument employs electrochemical sensing, utilizing a three electrode cell with an anion-exchange polymer electrolyte membrane as the only electrolyte in the system. The sensing, counter and reference electrodes are bonded to the membrane forming a single component. The only liquid required to maintain the sensor is deionized water which hydrates the membrane. At the request of the USAF SMSC, independent testing and evaluation of the breadboard instrument was performed at NASA's Toxic Vapor Detection Laboratory (TVDL) for response to ppb-level N2H4 and UDMH and MMH. The TVDL, located at Kennedy Space Center (KSC) has the unique ability to generate calibrated sample vapor streams of N2H4, UDMH, and MMH over a range from less than 10 ppb to thousands of parts per million (ppm) with full environmental control of relative humidity (0-90%) and temperature (0-50 C). The TVDL routinely performs these types of tests. Referenced sensors were subjected to extensive testing, including precision, linearity, response/recovery times, zero and span drift, humidity and temperature effects as well as ammonia interference. Results of these tests and general operation characteristics are reported.

  2. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O.

    PubMed

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-14

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments. PMID:26178101

  3. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-01

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.

  4. Sourdough-leavened bread improves postprandial glucose and insulin plasma levels in subjects with impaired glucose tolerance.

    PubMed

    Maioli, Mario; Pes, Giovanni Mario; Sanna, Manuela; Cherchi, Sara; Dettori, Mariella; Manca, Elena; Farris, Giovanni Antonio

    2008-06-01

    Sourdough bread has been reported to improve glucose metabolism in healthy subjects. In this study postprandial glycaemic and insulinaemic responses were evaluated in subjects with impaired glucose tolerance (IGT) who had a meal containing sourdough bread leavened with lactobacilli, in comparison to a reference meal containing bread leavened with baker yeast. Sixteen IGT subjects (age range 52-75, average BMI 29.9 +/- 4.2 kg/ m2) were randomly given a meal containing sourdough bread (A) and a meal containing the reference bread (B) in two separate occasions at the beginning of the study and after 7 days. Sourdough bread was leavened for 8 h using a starter containing autochthonous Saccharomyces cerevisiae and several bacilli able to produce a significant amount of D-and L-lactic acid, whereas the reference bread was leavened for 2 h with commercial baker yeast containing Saccharomyces cerevisiae. Plasma glucose and insulin levels were measured at time 0, 30, 60, 120, and 180 min. In IGT subjects sourdough bread induced a significantly lower plasma glucose response at 30 minutes (p = 0.048) and a smaller incremental area under curve (AUC) delta 0-30 and delta 0-60 min (p = 0.020 and 0.018 respectively) in comparison to the bread leavened with baker yeast. Plasma insulin response to this type of bread showed lower values at 30 min (p = 0.045) and a smaller AUC delta 0-30 min (p = 0.018). This study shows that in subjects with IGT glycaemic and insulinaemic responses after the consumption of sourdough bread are lower than after the bread leavened with baker yeast. This effect is likely due to the lactic acid produced during dough leavening as well as the reduced availability of simple carbohydrates. Thus, sour-dough bread may potentially be of benefit in subjects with impaired glucose metabolism.

  5. Full-dimensional, high-level ab initio potential energy surfaces for H2(H2O) and H2(H2O)2 with application to hydrogen clathrate hydrates.

    PubMed

    Homayoon, Zahra; Conte, Riccardo; Qu, Chen; Bowman, Joel M

    2015-08-28

    New, full-dimensional potential energy surfaces (PESs), obtained using precise least-squares fitting of high-level electronic energy databases, are reported for intrinsic H2(H2O) two-body and H2(H2O)2 three-body potentials. The database for H2(H2O) consists of approximately 44 000 energies at the coupled cluster singles and doubles plus perturbative triples (CCSD(T))-F12a/haQZ (aug-cc-pVQZ for O and cc-pVQZ for H) level of theory, while the database for the three-body interaction consists of more than 36 000 energies at the CCSD(T)-F12a/haTZ (aug-cc-pVTZ for O, cc-pVTZ for H) level of theory. Two precise potentials are based on the invariant-polynomial technique and are compared to computationally faster ones obtained via "purified" symmetrization. All fits use reduced permutational symmetry appropriate for these non-covalent interactions. These intrinsic potentials are employed together with existing ones for H2, H2O, and (H2O)2, to obtain full PESs for H2(H2O) and H2(H2O)2. Properties of these full PESs are presented, including a diffusion Monte Carlo calculation of the zero-point energy and wavefunction, and dissociation energy of the H2(H2O) dimer. These PESs together with an existing one for water clusters are used in a many-body representation of the PES of hydrogen clathrate hydrates, illustrated for H2@(H2O)20. An analysis of this hydrate is presented, including the electronic dissociation energy to remove H2 from the calculated equilibrium structure.

  6. Normal fasting plasma glucose levels in some birds of prey.

    PubMed

    O'Donnell, J A; Garbett, R; Morzenti, A

    1978-10-01

    Blood samples taken from five great horned owls (Bubo virginianus), eight red-tailed hawks (Buteo jamaicensis), four marsh hawks (Circus cyaneus), two prairie falcons (Falco mexicanus), five golden eagles (Aquila chrysaetos), and five white leghorn chickens (Gallus domesticus) that had been fasted for 24 h were used to determine plasma levels of glucose by the glucose oxidase method. The mean plasma glucose levels were: great horned owls 374.6 mg/100 ml, red-tailed hawks 346.5 mg/00 ml, marsh hawks 369.3 mg/100 ml, prairie falcons 414.5 mg/100 ml, golden eagles 368.4 mg/100 ml, and white Leghorn chickens 218.2 mg/100 ml. The plasma glucose levels obtained for the raptorial birds in this study were considerably higher than those found for the chickens. These values are discussed in relation to the carnivorous food habits of raptors. PMID:739587

  7. Association of curry consumption with blood lipids and glucose levels

    PubMed Central

    2016-01-01

    BACKGROUND/OBJECTIVES Curcumin, an active ingredient in turmeric, is highly consumed in South Asia. However, curry that contains turmeric as its main spice might be the major source of curcumin in most other countries. Although curcumin consumption is not as high in these countries as South Asia, the regular consumption of curcumin may provide a significant health-beneficial effect. This study evaluated whether the moderate consumption of curry can affect blood glucose and lipid levels that become dysregulated with age. SUBJECTS/METHODS This study used data obtained from the Korea National Health and Nutrition Examination Survey, conducted from 2012 to 2013, to assess curry consumption frequency as well as blood glucose and blood lipid levels. The levels of blood glucose and lipids were subdivided by age, sex, and body mass index, and compared according to the curry consumption level. The estimates in each subgroup were further adjusted for potential confounding factors, including the diagnosis of diseases, physical activity, and smoking. RESULTS After adjusting for the above confounding factors, the blood glucose and triglyceride levels were significantly lower in the moderate curry consumption group compared to the low curry consumption group, both in older (> 45) male and younger (30 to 44) female overweight individuals who have high blood glucose and triglyceride levels. CONCLUSIONS These results suggest that curcumin consumption, in an ordinary diet, can have health-beneficial effects, including being helpful in maintaining blood glucose and triglyceride levels that become dysregulated with age. The results should be further confirmed in future studies. PMID:27087906

  8. Acute effects of traditional Japanese alcohol beverages on blood glucose and polysomnography levels in healthy subjects.

    PubMed

    Kido, Megumi; Asakawa, Akihiro; Koyama, Ken-Ichiro K; Takaoka, Toshio; Tajima, Aya; Takaoka, Shigeru; Yoshizaki, Yumiko; Okutsu, Kayu; Takamine, Kazunori T; Sameshima, Yoshihiro; Inui, Akio

    2016-01-01

    Background. Alcohol consumption is a lifestyle factor associated with type 2 diabetes. This relationship is reportedly different depending on the type of alcohol beverage. The purpose of this study was to examine the acute effects of traditional Japanese alcohol beverages on biochemical parameters, physical and emotional state, and sleep patterns. Methods. Six healthy subjects (three men and three women; age, 28.8 ± 9.5 years; body mass index, 21.4 ± 1.6 kg/m(2)) consumed three different types of alcohol beverages (beer, shochu, and sake, each with 40 g ethanol) or mineral water with dinner on different days in the hospital. Blood samples were collected before and 1, 2, and 12 h after drinking each beverage, and assessments of physical and emotional state were administered at the same time. In addition, sleep patterns and brain waves were examined using polysomnography. Results. Blood glucose levels at 1 h and the 12-h area under the curve (AUC) value after drinking shochu were significantly lower than that with water and beer. The 12-h blood insulin AUC value after drinking shochu was significantly lower than that with beer. Blood glucose × insulin level at 1 h and the 2-h blood glucose × insulin AUC value with shochu were significantly lower than that with beer. The insulinogenic indexes at 2 h with beer and sake, but not shochu, were significantly higher than that with water. The visual analogue scale scores of physical and emotional state showed that the tipsiness levels with beer, shochu, and sake at 1 h were significantly higher than that with water. These tipsiness levels were maintained at 2 h. The polysomnography showed that the rapid eye movement (REM) sleep latency with shochu and sake were shorter than that with water and beer. Conclusions. Acute consumption of alcohol beverages with a meal resulted in different responses in postprandial glucose and insulin levels as well as REM sleep latency. Alcohol beverage type should be taken into consideration

  9. Acute effects of traditional Japanese alcohol beverages on blood glucose and polysomnography levels in healthy subjects

    PubMed Central

    Kido, Megumi; Asakawa, Akihiro; Koyama, Ken-Ichiro K.; Takaoka, Toshio; Tajima, Aya; Takaoka, Shigeru; Yoshizaki, Yumiko; Okutsu, Kayu; Takamine, Kazunori T.; Sameshima, Yoshihiro

    2016-01-01

    Background. Alcohol consumption is a lifestyle factor associated with type 2 diabetes. This relationship is reportedly different depending on the type of alcohol beverage. The purpose of this study was to examine the acute effects of traditional Japanese alcohol beverages on biochemical parameters, physical and emotional state, and sleep patterns. Methods. Six healthy subjects (three men and three women; age, 28.8 ± 9.5 years; body mass index, 21.4 ± 1.6 kg/m2) consumed three different types of alcohol beverages (beer, shochu, and sake, each with 40 g ethanol) or mineral water with dinner on different days in the hospital. Blood samples were collected before and 1, 2, and 12 h after drinking each beverage, and assessments of physical and emotional state were administered at the same time. In addition, sleep patterns and brain waves were examined using polysomnography. Results. Blood glucose levels at 1 h and the 12-h area under the curve (AUC) value after drinking shochu were significantly lower than that with water and beer. The 12-h blood insulin AUC value after drinking shochu was significantly lower than that with beer. Blood glucose × insulin level at 1 h and the 2-h blood glucose × insulin AUC value with shochu were significantly lower than that with beer. The insulinogenic indexes at 2 h with beer and sake, but not shochu, were significantly higher than that with water. The visual analogue scale scores of physical and emotional state showed that the tipsiness levels with beer, shochu, and sake at 1 h were significantly higher than that with water. These tipsiness levels were maintained at 2 h. The polysomnography showed that the rapid eye movement (REM) sleep latency with shochu and sake were shorter than that with water and beer. Conclusions. Acute consumption of alcohol beverages with a meal resulted in different responses in postprandial glucose and insulin levels as well as REM sleep latency. Alcohol beverage type should be taken into consideration

  10. Full-dimensional, high-level ab initio potential energy surfaces for H{sub 2}(H{sub 2}O) and H{sub 2}(H{sub 2}O){sub 2} with application to hydrogen clathrate hydrates

    SciTech Connect

    Homayoon, Zahra; Conte, Riccardo; Qu, Chen; Bowman, Joel M.

    2015-08-28

    New, full-dimensional potential energy surfaces (PESs), obtained using precise least-squares fitting of high-level electronic energy databases, are reported for intrinsic H{sub 2}(H{sub 2}O) two-body and H{sub 2}(H{sub 2}O){sub 2} three-body potentials. The database for H{sub 2}(H{sub 2}O) consists of approximately 44 000 energies at the coupled cluster singles and doubles plus perturbative triples (CCSD(T))-F12a/haQZ (aug-cc-pVQZ for O and cc-pVQZ for H) level of theory, while the database for the three-body interaction consists of more than 36 000 energies at the CCSD(T)-F12a/haTZ (aug-cc-pVTZ for O, cc-pVTZ for H) level of theory. Two precise potentials are based on the invariant-polynomial technique and are compared to computationally faster ones obtained via “purified” symmetrization. All fits use reduced permutational symmetry appropriate for these non-covalent interactions. These intrinsic potentials are employed together with existing ones for H{sub 2}, H{sub 2}O, and (H{sub 2}O){sub 2}, to obtain full PESs for H{sub 2}(H{sub 2}O) and H{sub 2}(H{sub 2}O){sub 2}. Properties of these full PESs are presented, including a diffusion Monte Carlo calculation of the zero-point energy and wavefunction, and dissociation energy of the H{sub 2}(H{sub 2}O) dimer. These PESs together with an existing one for water clusters are used in a many-body representation of the PES of hydrogen clathrate hydrates, illustrated for H{sub 2}@(H{sub 2}O){sub 20}. An analysis of this hydrate is presented, including the electronic dissociation energy to remove H{sub 2} from the calculated equilibrium structure.

  11. Urinary phthalate metabolite concentrations and blood glucose levels during pregnancy

    PubMed Central

    Robledo, Candace A.; Peck, Jennifer D.; Stoner, Julie; Calafat, Antonia M.; Carabin, Hélène; Cowan, Linda; Goodman, Jean R.

    2016-01-01

    Purpose To examine associations between phthalate metabolite urinary concentrations during early pregnancy and blood glucose levels obtained at the time of screening for gestational diabetes mellitus (GDM). Methods Upon initiation of prenatal care, women with a mean gestational age of 12.8 weeks were recruited for a study of environmental chemical exposures (n = 110) and provided a spot urinary specimen. Blood glucose concentrations (mg/dl) were obtained from the electronic medical record for those patients who did not experience a pregnancy loss and did not transfer care to another facility prior to glucose screening (n = 72). Urinary concentrations of nine phthalate metabolites and creatinine were measured at the US Centers for Disease Control and Prevention. Associations between tertiles of phthalate metabolites concentrations and blood glucose levels were estimated using linear regression. Results Compared to pregnant women in the lowest concentration tertile, women with the highest urinary concentrations (≥3rd tertile) of mono-iso-butyl phthalate (tertile: ≥15.3 μg/l, β = −18.3, 95% CI: −35.4, −1.2) and monobenzyl phthalate (tertile: ≥30.3 μg/l, β = −17.3, 95% CI: −34.1, −0.4) had lower blood glucose levels at the time of GDM screening after adjustment for urinary creatinine and demographic covariates. Conclusion Because maternal glucose levels increase during pregnancy to provide adequate nutrition for fetal growth and development, these findings may have implications for fetal health. However, given the limitations of our study, findings should be interpreted cautiously. PMID:25726127

  12. Fasting Serum Glucose Level in Postmenopausal Bangladeshi Women.

    PubMed

    Tajkia, T; Nessa, A; Mia, M R; Das, R K; Sufrin, S; Zannat, M R; Naznin, R; Khanam, A; Akter, R; Nasreen, S

    2016-07-01

    The study was done to find out the causes that changes the fasting serum glucose level in postmenopausal women. This was descriptive type of cross sectional study carried out over a period of one year from July 2014 to June 2015 in the department of physiology, Mymensingh Medical College, Mymensingh. Women of reproductive age (25-45 years) and clinically diagnosed 100 menopausal women (45-70 years) were included for this study. Convenience type of sampling technique was used for selecting the study subjects. Measurement of fasting serum glucose was done by GOD-PAP method. Data were expressed as mean±SD and statistical significance of difference among the groups were calculated by unpaired student's 't' test. The mean±SD of serum glucose in menopausal women were significant at 1% level of probability than women of reproductive age. This study revealed that postmenopausal women showed higher levels of fasting serum glucose level. Fasting blood sugar level between the study & control group were 7.69±2.37 and 4.59±0.73 and the difference was statistically significant. PMID:27612883

  13. Serum Glucose Level in First and Third Trimester of Pregnancy.

    PubMed

    Zannat, M R; Nessa, A; Hossain, M M; Das, R K; Asrin, M; Sufrin, S; Islam, M T; Tajkia, T; Nasreen, S

    2016-04-01

    In the present study serum glucose were estimated in pregnant women during the first trimester of pregnancy and third trimester of pregnancy to observe the frequency of hyperglycemia during pregnancy and to assess the incidence of gestational diabetes mellitus. This study was a cross sectional study, carried out in the Department of Physiology of Mymensingh Medical College, Mymensingh from July 2014 to June 2015. For this purpose, total 300 women with age ranged from 18 to 35 years were selected and divided into 100 healthy non pregnant women as control group and 200 normal pregnant women as study group. Study group was further divided into 100 pregnant women in first trimester of pregnancy and 100 pregnant women in third trimester of pregnancy. Diagnosed case of type I and type II diabetes, hypothyroidism, cushing's syndrome, polycystic ovary, antipsychotic drug users, regular steroid users were excluded from this study. Serum glucose was evaluated by the glucose-oxidase principle by GOD-PAP method in women with 1st trimester of pregnancy, 3rd trimester of pregnancy and in non pregnant women. Statistical analysis of data was done by unpaired student's t test. The results showed that the serum glucose levels increased significantly in third trimester and the value is not significant in first trimester. The increasing frequency of serum glucose level in third trimester may predispose the women to hyperglycemia of pregnancy or gestational diabetes mellitus.

  14. Serum Glucose Level in First and Third Trimester of Pregnancy.

    PubMed

    Zannat, M R; Nessa, A; Hossain, M M; Das, R K; Asrin, M; Sufrin, S; Islam, M T; Tajkia, T; Nasreen, S

    2016-04-01

    In the present study serum glucose were estimated in pregnant women during the first trimester of pregnancy and third trimester of pregnancy to observe the frequency of hyperglycemia during pregnancy and to assess the incidence of gestational diabetes mellitus. This study was a cross sectional study, carried out in the Department of Physiology of Mymensingh Medical College, Mymensingh from July 2014 to June 2015. For this purpose, total 300 women with age ranged from 18 to 35 years were selected and divided into 100 healthy non pregnant women as control group and 200 normal pregnant women as study group. Study group was further divided into 100 pregnant women in first trimester of pregnancy and 100 pregnant women in third trimester of pregnancy. Diagnosed case of type I and type II diabetes, hypothyroidism, cushing's syndrome, polycystic ovary, antipsychotic drug users, regular steroid users were excluded from this study. Serum glucose was evaluated by the glucose-oxidase principle by GOD-PAP method in women with 1st trimester of pregnancy, 3rd trimester of pregnancy and in non pregnant women. Statistical analysis of data was done by unpaired student's t test. The results showed that the serum glucose levels increased significantly in third trimester and the value is not significant in first trimester. The increasing frequency of serum glucose level in third trimester may predispose the women to hyperglycemia of pregnancy or gestational diabetes mellitus. PMID:27277349

  15. Elevated glucose levels in early puerperium, and association with high cortisol levels during parturition.

    PubMed

    Risberg, Anitha; Sjöquist, Mats; Wedenberg, Kaj; Larsson, Anders

    2016-07-01

    Background Gestational diabetes is one of the commonest metabolic problems associated with pregnancy and an accurate diagnosis is critical for the care. Research has shown that pregnant women have high levels of cortisol during the last stage of parturition. As cortisol is a diabetogenic hormone causing increased glucose levels, we wanted to study the association between cortisol and glucose levels during parturition. Materials and methods Glucose and cortisol were analyzed during parturition in 50 females divided according to slow (n = 11) and normal labors (n = 39). Blood samples were analyzed three times during the parturition and four times in the first day after delivery. Glucose levels were also measured once in each trimester. Results In the normal group, the glucose concentration increased from 6.2 (IQR 5.6-8.0) mmol/L in the latency phase to 11.6 (10.0-13.3) mmol/L at aftercare (p < 0.05). After parturition the glucose concentrations decreased gradually. There were significant Spearman rank correlations between glucose and cortisol values. Conclusions The changes associated with birth cause significant elevations of cortisol and glucose around parturition.

  16. Fasting serum glucose and glycosylated hemoglobin level in obesity.

    PubMed

    Das, R K; Nessa, A; Hossain, M A; Siddiqui, N I; Hussain, M A

    2014-04-01

    Obesity is a condition in which the body fat stores are increased to an extent which impairs health and leads to serious health consequences. The amount of body fat is difficult to measure directly, and is usually determined from an indirect measure - the body mass index (BMI). Increased BMI in obese persons is directly associated with an increase in metabolic disease, such as type 2 diabetes mellitus. This Analytical cross sectional study was undertaken to assess the relation between obesity and glycemic control of body by measuring fasting serum glucose and glycosylated hemoglobin. This study was carried out in the Department of Physiology, Mymensingh Medical College, Mymensingh from 1st July 2011 to 30th June 2012 on 120 equally divided male and female persons within the age range of 25 to 55 years. Age more than 55 years and less than 25 years and diagnosed case of Hypothyroidism, Cushing's syndrome, polycystic ovary, Antipsychotic drug user and regular steroid users were excluded. Non probability purposive type of sampling technique was used for selecting the study subjects. Measurement of body mass index was done as per procedure. Fasting serum glucose was estimated by glucose oxidase method and Glycosylated hemoglobin by Boronate Affinity method. Statistical analysis was done by SPSS (version 17.0). Data were expressed as Mean±SE and statistical significance of difference among the groups were calculated by unpaired student's 't' test and Pearson's correlation coefficient tests were done as applicable. The Mean±SE of fasting serum glucose was significant at 1% level (P value <0.001) for obese group of BMI. There was no significant difference of glycosylated hemoglobin level between control and study groups. But there was positive correlation within each group. Fasting serum glucose also showed a bit stronger positive correlation with BMI. Both obese male and female persons showed higher levels of fasting serum glucose and glycosylated hemoglobin. The

  17. Glucose availability and glycolytic metabolism dictate glycosphingolipid levels.

    PubMed

    Stathem, Morgan; Marimuthu, Subathra; O'Neal, Julie; Rathmell, Jeffrey C; Chesney, Jason A; Beverly, Levi J; Siskind, Leah J

    2015-01-01

    Cancer therapeutics has seen an emergence and re-emergence of two metabolic fields in recent years, those of bioactive sphingolipids and glycolytic metabolism. Anaerobic glycolysis and its implications in cancer have been at the forefront of cancer research for over 90 years. More recently, the role of sphingolipids in cancer cell metabolism has gained recognition, notably ceramide's essential role in programmed cell death and the role of the glucosylceramide synthase (GCS) in chemotherapeutic resistance. Despite this knowledge, a direct link between these two fields has yet to be definitively drawn. Herein, we show that in a model of highly glycolytic cells, generation of the glycosphingolipid (GSL) glucosylceramide (GlcCer) by GCS was elevated in response to increased glucose availability, while glucose deprivation diminished GSL levels. This effect was likely substrate dependent, independent of both GCS levels and activity. Conversely, leukemia cells with elevated GSLs showed a significant change in GCS activity, but no change in glucose uptake or GCS expression. In a leukemia cell line with elevated GlcCer, treatment with inhibitors of glycolysis or the pentose phosphate pathway (PPP) significantly decreased GlcCer levels. When combined with pre-clinical inhibitor ABT-263, this effect was augmented and production of pro-apoptotic sphingolipid ceramide increased. Taken together, we have shown that there exists a definitive link between glucose metabolism and GSL production, laying the groundwork for connecting two distinct yet essential metabolic fields in cancer research. Furthermore, we have proposed a novel combination therapeutic option targeting two metabolic vulnerabilities for the treatment of leukemia.

  18. Diet-induced obesity impairs hypothalamic glucose sensing but not glucose hypothalamic extracellular levels, as measured by microdialysis

    PubMed Central

    de Andrade, I S; Zemdegs, J C S; de Souza, A P; Watanabe, R L H; Telles, M M; Nascimento, C M O; Oyama, L M; Ribeiro, E B

    2015-01-01

    Background/Objectives: Glucose from the diet may signal metabolic status to hypothalamic sites controlling energy homeostasis. Disruption of this mechanism may contribute to obesity but its relevance has not been established. The present experiments aimed at evaluating whether obesity induced by chronic high-fat intake affects the ability of hypothalamic glucose to control feeding. We hypothesized that glucose transport to the hypothalamus as well as glucose sensing and signaling could be impaired by high-fat feeding. Subjects/methods: Female Wistar rats were studied after 8 weeks on either control or high-lard diet. Daily food intake was measured after intracerebroventricular (i.c.v.) glucose. Glycemia and glucose content of medial hypothalamus microdialysates were measured in response to interperitoneal (i.p.) glucose or meal intake after an overnight fast. The effect of refeeding on whole hypothalamus levels of glucose transporter proteins (GLUT) 1, 2 and 4, AMPK and phosphorylated AMPK levels was determined by immunoblotting. Results: High-fat rats had higher body weight and fat content and serum leptin than control rats, but normal insulin levels and glucose tolerance. I.c.v. glucose inhibited food intake in control but failed to do so in high-fat rats. Either i.p. glucose or refeeding significantly increased glucose hypothalamic microdialysate levels in the control rats. These levels showed exacerbated increases in the high-fat rats. GLUT1 and 4 levels were not affected by refeeding. GLUT2 levels decreased and phosphor-AMPK levels increased in the high-fat rats but not in the controls. Conclusions: The findings suggest that, in the high-fat rats, a defective glucose sensing by decreased GLUT2 levels contributed to an inappropriate activation of AMPK after refeeding, despite increased extracellular glucose levels. These derangements were probably involved in the abolition of hypophagia in response to i.c.v. glucose. It is proposed that ‘glucose resistance

  19. PCOS women show significantly higher homocysteine level, independent to glucose and E2 level

    PubMed Central

    Eskandari, Zahra; Sadrkhanlou, Rajab-Ali; Nejati, Vahid; Tizro, Gholamreza

    2016-01-01

    Background: It is reasonable to think that some biochemical characteristics of follicular fluid (FF) surrounding the oocyte may play a critical role in determining the quality of oocyte and the subsequent potential needed to achieve fertilization and embryo development. Objective: This study was carried out to evaluate the levels of FF homocysteine (Hcy) in IVF candidate polycystic ovary syndrome (PCOS) women and any relationships with FF glucose and estradiol (E2) levels. Materials and Methods: In this case control study which was performed in Dr. Tizro Day Care and IVF Center 70 infertile patients were enrolled in two groups: comprising 35 PCOS and 35 non PCOS women. Long protocol was performed for all patients. FF Hcy, glucose and E2 levels were analyzed at the time of oocyte retrieval. Results: It was observed that FF Hcy level was significantly higher in PCOS patients compared with non PCOSs (p<0.01). Observations demonstrated that in PCOS group, the Hcy level increased independent to E2, glucose levels, BMI and age, while the PCOS group showed significantly higher BMI compared with non-PCOS group (p=0.03). However, no significant differences were revealed between groups for FF glucose and E2 levels. Conclusion: Present data showed that although FF glucose and E2 levels were constant in PCOS and non PCOS patients, but the FF Hcy levels in PCOS were significantly increased (p=0.01). PMID:27679823

  20. PCOS women show significantly higher homocysteine level, independent to glucose and E2 level

    PubMed Central

    Eskandari, Zahra; Sadrkhanlou, Rajab-Ali; Nejati, Vahid; Tizro, Gholamreza

    2016-01-01

    Background: It is reasonable to think that some biochemical characteristics of follicular fluid (FF) surrounding the oocyte may play a critical role in determining the quality of oocyte and the subsequent potential needed to achieve fertilization and embryo development. Objective: This study was carried out to evaluate the levels of FF homocysteine (Hcy) in IVF candidate polycystic ovary syndrome (PCOS) women and any relationships with FF glucose and estradiol (E2) levels. Materials and Methods: In this case control study which was performed in Dr. Tizro Day Care and IVF Center 70 infertile patients were enrolled in two groups: comprising 35 PCOS and 35 non PCOS women. Long protocol was performed for all patients. FF Hcy, glucose and E2 levels were analyzed at the time of oocyte retrieval. Results: It was observed that FF Hcy level was significantly higher in PCOS patients compared with non PCOSs (p<0.01). Observations demonstrated that in PCOS group, the Hcy level increased independent to E2, glucose levels, BMI and age, while the PCOS group showed significantly higher BMI compared with non-PCOS group (p=0.03). However, no significant differences were revealed between groups for FF glucose and E2 levels. Conclusion: Present data showed that although FF glucose and E2 levels were constant in PCOS and non PCOS patients, but the FF Hcy levels in PCOS were significantly increased (p=0.01).

  1. Piceatannol lowers the blood glucose level in diabetic mice.

    PubMed

    Uchida-Maruki, Hiroko; Inagaki, Hiroyuki; Ito, Ryouichi; Kurita, Ikuko; Sai, Masahiko; Ito, Tatsuhiko

    2015-01-01

    We previously found that passion fruit (Passiflora edulis) seeds contained a high amount of piceatannol (3,5,3',4'-trans-tetrahydroxystilbene), a natural analog of resveratrol (3,5,4'-trans-trihydroxystilbene). Resveratrol has been proposed as a potential anti-metabolic disorder compound, by its activation of sirtuin and AMP-activated protein kinase. Many reports show that resveratrol ameliorates diet-induced obesity and insulin resistance. However, it is not known whether piceatannol also affects diet-induced obesity. We explored the effect of piceatannol on high fat diet-fed mice. The results showed that piceatannol did not affect high fat diet-induced body weight gain or visceral fat gain in mice. However, piceatannol did reduce fasting blood glucose levels. Furthermore, to explore the potential of passion fruit seed extract containing piceatannol as a functional food, passion fruit seed extract was administered in a genetic diabetic mouse model (db/db mice). Single administration of passion fruit seed extract, as well as piceatannol reduced the blood glucose levels of these db/db mice. These results suggest that piceatannol and passion fruit seed extract may have potential application in the prevention of diabetes. PMID:25832644

  2. Evaluation of the appropriateness of using glucometers for measuring the blood glucose levels in mice.

    PubMed

    Togashi, Yu; Shirakawa, Jun; Okuyama, Tomoko; Yamazaki, Shunsuke; Kyohara, Mayu; Miyazawa, Ayumi; Suzuki, Takafumi; Hamada, Mari; Terauchi, Yasuo

    2016-01-01

    Glucometers are also widely used in diabetes research conducted using animal models. However, the appropriateness of measuring blood glucose levels using glucometers in animal models remains unclear. In this study, we evaluated the consistency between the blood glucose levels measured by 11 models of glucometers and plasma glucose levels measured by a laboratory biochemical test in blood samples collected by retro-orbital sinus puncture or tail-tip amputation. In both blood samples obtained by retro-orbital sinus puncture and those obtained by tail-tip amputation, 10 of the 11 models of glucometers yielded higher glucose values, while 1 yielded lower glucose values, than the plasma glucose values yielded by the laboratory test, the differences being in direct proportion to the plasma glucose values. Most glucometers recorded higher blood glucose levels after glucose loading and lower blood glucose levels after insulin loading in retro-orbital sinus blood as compared to tail vein blood. Our data suggest that the blood glucose levels measured by glucometers in mice tended to be higher than the plasma glucose levels yielded by the biochemical test under the hyperglycemic state, and that differences in the measured levels were observed according to the blood collection method depending on the glycemia status. PMID:27151424

  3. Evaluation of the appropriateness of using glucometers for measuring the blood glucose levels in mice

    PubMed Central

    Togashi, Yu; Shirakawa, Jun; Okuyama, Tomoko; Yamazaki, Shunsuke; Kyohara, Mayu; Miyazawa, Ayumi; Suzuki, Takafumi; Hamada, Mari; Terauchi, Yasuo

    2016-01-01

    Glucometers are also widely used in diabetes research conducted using animal models. However, the appropriateness of measuring blood glucose levels using glucometers in animal models remains unclear. In this study, we evaluated the consistency between the blood glucose levels measured by 11 models of glucometers and plasma glucose levels measured by a laboratory biochemical test in blood samples collected by retro-orbital sinus puncture or tail-tip amputation. In both blood samples obtained by retro-orbital sinus puncture and those obtained by tail-tip amputation, 10 of the 11 models of glucometers yielded higher glucose values, while 1 yielded lower glucose values, than the plasma glucose values yielded by the laboratory test, the differences being in direct proportion to the plasma glucose values. Most glucometers recorded higher blood glucose levels after glucose loading and lower blood glucose levels after insulin loading in retro-orbital sinus blood as compared to tail vein blood. Our data suggest that the blood glucose levels measured by glucometers in mice tended to be higher than the plasma glucose levels yielded by the biochemical test under the hyperglycemic state, and that differences in the measured levels were observed according to the blood collection method depending on the glycemia status. PMID:27151424

  4. Blood glucose levels in diabetic patients following corticosteroid injections into the hand and wrist

    PubMed Central

    Stepan, Jeffrey G.; London, Daniel A.; Boyer, Martin I.; Calfee, Ryan P.

    2014-01-01

    Purpose To quantify diabetic patients’ change in blood glucose levels after corticosteroid injection for common hand diseases and to assess which patient-level risk factors may predict an increase in blood glucose levels. Methods Patients were recruited for this case-crossover study in the clinic of fellowship-trained hand surgeons at a tertiary care center. Patients with diabetes mellitus type 1 or 2 receiving a corticosteroid injection recorded their morning fasting blood glucose levels for 14 days after their injection. Fasting glucose levels on days 1–7 after injection qualified as “case” data with levels on days 10–14 providing control data. A mixed model with a priori contrasts were used to compare post-injection blood glucose levels to baseline levels. A linear regression model was used to determine patient predictors of a post-injection rise in blood glucose levels. Results Forty of 67 patients (60%) recruited for the study returned completed blood glucose logs. There was a significant increase in fasting blood glucose levels following injection limited to post-injection days 1 and 2. Among patient risk factors in our linear regression model, type 1 diabetes and use of insulin each predicted a post-injection increase in blood glucose levels from baseline while higher HbA1c levels did not predict increases. Discussion Corticosteroid injections in the hand transiently increase blood glucose levels in diabetic patients. Patients with type 1 diabetes and insulin-dependent diabetics are more likely to experience this transient rise in blood glucose levels. Level of Evidence Therapeutic Level III PMID:24679910

  5. Sugarcoated isolation: evidence that social avoidance is linked to higher basal glucose levels and higher consumption of glucose

    PubMed Central

    Ein-Dor, Tsachi; Coan, James A.; Reizer, Abira; Gross, Elizabeth B.; Dahan, Dana; Wegener, Meredyth A.; Carel, Rafael; Cloninger, Claude R.; Zohar, Ada H.

    2015-01-01

    Objective: The human brain adjusts its level of effort in coping with various life stressors as a partial function of perceived access to social resources. We examined whether people who avoid social ties maintain a higher fasting basal level of glucose in their bloodstream and consume more sugar-rich food, reflecting strategies to draw more on personal resources when threatened. Methods: In Study 1 (N = 60), we obtained fasting blood glucose and adult attachment orientations data. In Study 2 (N = 285), we collected measures of fasting blood glucose and adult attachment orientations from older adults of mixed gender, using a measure of attachment style different from Study 1. In Study 3 (N = 108), we examined the link between trait-like attachment avoidance, manipulation of an asocial state, and consumption of sugar-rich food. In Study 4 (N = 115), we examined whether manipulating the social network will moderate the effect of attachment avoidance on consumption of sugar-rich food. Results: In Study 1, fasting blood glucose levels corresponded with higher attachment avoidance scores after statistically adjusting for time of assessment and interpersonal anxiety. For Study 2, fasting blood glucose continued to correspond with higher adult attachment avoidance even after statistically adjusting for interpersonal anxiety, stress indices, age, gender, social support and body mass. In Study 3, people high in attachment avoidance consume more sugar-rich food, especially when reminded of asocial tendencies. Study 4 indicated that after facing a stressful task in the presence of others, avoidant people gather more sugar-rich food than more socially oriented people. Conclusion: Results are consistent with the suggestion that socially avoidant individuals upwardly adjust their basal glucose levels and consume more glucose-rich food with the expectation of increased personal effort because of limited access to social resources. Further investigation of this link is warranted

  6. Depletion of norepinephrine of the central nervous system Down-regulates the blood glucose level in d-glucose-fed and restraint stress models.

    PubMed

    Park, Soo-Hyun; Kim, Sung-Su; Lee, Jae-Ryeong; Sharma, Naveen; Suh, Hong-Won

    2016-05-01

    DSP-4[N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride] is a neurotoxin that depletes norepinephrine. The catecholaminergic system has been implicated in the regulation of blood glucose level. In the present study, the effect of DSP-4 administered intracerebroventricularly (i.c.v.) or intrathecally (i.t.) on blood glucose level was examined in d-glucose-fed and restraint stress mice models. Mice were pretreated once i.c.v. or i.t. with DSP-4 (10-40μg) for 3days, and d-glucose (2g/kg) was fed orally. Blood glucose level was measured 0 (prior to glucose feeding or restraint stress), 30, 60, and 120min after d-glucose feeding or restraint stress. The i.c.v. or i.t. pretreatment with DSP-4 attenuated blood glucose level in the d-glucose-fed model. Plasma corticosterone level was downregulated in the d-glucose-fed model, whereas plasma insulin level increased in the d-glucose-fed group. The i.c.v. or i.t. pretreatment with DSP-4 reversed the downregulation of plasma corticosterone induced by feeding d-glucose. In addition, the d-glucose-induced increase in plasma insulin was attenuated by the DSP-4 pretreatment. Furthermore, i.c.v. or i.t. pretreatment with DSP-4 reduced restraint stress-induced increases in blood glucose levels. Restraint stress increased plasma corticosterone and insulin levels. The i.c.v. pretreatment with DSP-4 attenuated restraint stress-induced plasma corticosterone and insulin levels. Our results suggest that depleting norepinephrine at the supraspinal and spinal levels appears to be responsible for downregulating blood glucose levels in both d-glucose-fed and restraint stress models.

  7. Effect of fish oil intake on glucose levels in rat prefrontal cortex, as measured by microdialysis

    PubMed Central

    2013-01-01

    Background Brain glucose sensing may contribute to energy homeostasis control. The prefrontal cortex (PFC) participates in the hedonic component of feeding control. As high-fat diets may disrupt energy homeostasis, we evaluated in male Wistar rats whether intake of high-fat fish-oil diet modified cortical glucose extracellular levels and the feeding induced by intracerebroventricular glucose or PFC glucoprivation. Methods Glucose levels in PFC microdialysates were measured before and after a 30-min meal. Food intake was measured in animals receiving intracerebroventricular glucose followed, 30-min. later, by 2-deoxy-D-glucose injected into the PFC. Results The fish-oil group showed normal body weight and serum insulin while fat pads weight and glucose levels were increased. Baseline PFC glucose and 30-min. carbohydrates intake were similar between the groups. Feeding-induced PFC glucose levels increased earlier and more pronouncedly in fish-oil than in control rats. Intracerebroventricular glucose inhibited feeding consistently in the control but not in the fish-oil group. Local PFC glucoprivation with 2-DG attenuated glucose-induced hypophagia. Conclusions The present experiments have shown that, following food intake, more glucose reached the prefrontal cortex of the rats fed the high-fat fish-oil diet than of the rats fed the control diet. However, when administered directly into the lateral cerebral ventricle, glucose was able to consistently inhibit feeding only in the control rats. The findings indicate that, an impairment of glucose transport into the brain does not contribute to the disturbances induced by the high-fat fish-oil feeding. PMID:24369745

  8. Local Perturbations in the (10110) and (10101) Levels of C_2H_2 from Frequency Comb-Referenced Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sears, Trevor; Twagirayezu, Sylvestre; Forthomme, Damien; Hall, Gregory; Cich, Matthew

    2015-06-01

    In work reported by Twagirayezu et al. at this meeting, the rest frequencies of more than 100 lines in the ν_4 and ν_5 hot bands in the ν_1 + ν_3 combination band of acetylene have been measured by saturation dip spectroscopy using an extended cavity diode laser locked to a frequency comb. This work was orginally directed towards providing a set of accurate frequencies for the hot band line positions to aid in modeling the lineshapes of the main lines in the band. In analyzing the results, we find that many of the upper levels in the hot band transitions suffer small, and in some cases not so small, local perturbations. These arise because of J-dependent near degeneracies between the title levels and background levels of the same symmetry, mostly derived from zero order states involving multiple quanta of bending excitation. The vibration-rotation levels at the energies in question have previously been modeled using a polyad-based Hamiltonian and the present data can be interpreted on the basis of this model, but they also provide information which can be used to refine the model, and point to terms that may have previously been neglected. The most important result is that the high precision of the measurements gives the opportunity to calibrate the effects of background levels associated with high bending quantum numbers and angular momentun states that are otherwise very difficult to access. Acknowledgments: We are most grateful to D. S Perry (U. Akron) and M. Herman (U. Libre de Bruxelles) for helpful discussions. Work at Brookhaven National Laboratory is funded by the Division of Chemical Sciences, Geosciences and Biosciences within the Offices of Basic Energy Sciences, Office of Sciences, U.S. Department of Energy under Contract Nos. DE-AC02-98CH10886 and DE-SC0012704. M. Herman and D. S. Perry, Phys. Chem. Chem. Phys., 15, 9970-9993 (2013)

  9. Decreased serum glucose and glycosylated hemoglobin levels in patients with Chuvash polycythemia: a role for HIF in glucose metabolism.

    PubMed

    McClain, Donald A; Abuelgasim, Khadega A; Nouraie, Mehdi; Salomon-Andonie, Juan; Niu, Xiaomei; Miasnikova, Galina; Polyakova, Lydia A; Sergueeva, Adelina; Okhotin, Daniel J; Cherqaoui, Rabia; Okhotin, David; Cox, James E; Swierczek, Sabina; Song, Jihyun; Simon, M Celeste; Huang, Jingyu; Simcox, Judith A; Yoon, Donghoon; Prchal, Josef T; Gordeuk, Victor R

    2013-01-01

    In Chuvash polycythemia, a homozygous 598C>T mutation in the von Hippel-Lindau gene (VHL) leads to an R200W substitution in VHL protein, impaired degradation of α-subunits of hypoxia-inducible factor (HIF)-1 and HIF-2, and augmented hypoxic responses during normoxia. Chronic hypoxia of high altitude is associated with decreased serum glucose and insulin concentrations. Other investigators reported that HIF-1 promotes cellular glucose uptake by increased expression of GLUT1 and increased glycolysis by increased expression of enzymes such as PDK. On the other hand, inactivation of Vhl in murine liver leads to hypoglycemia associated with a HIF-2-related decrease in the expression of the gluconeogenic enzyme genes Pepck, G6pc, and Glut2. We therefore hypothesized that glucose concentrations are decreased in individuals with Chuvash polycythemia. We found that 88 Chuvash VHL ( R200W ) homozygotes had lower random glucose and glycosylated hemoglobin A1c levels than 52 Chuvash subjects with wild-type VHL alleles. Serum metabolomics revealed higher glycerol and citrate levels in the VHL ( R200W ) homozygotes. We expanded these observations in VHL ( R200W ) homozygote mice and found that they had lower fasting glucose values and lower glucose excursions than wild-type control mice but no change in fasting insulin concentrations. Hepatic expression of Glut2 and G6pc, but not Pdk2, was decreased, and skeletal muscle expression of Glut1, Pdk1, and Pdk4 was increased. These results suggest that both decreased hepatic gluconeogenesis and increased skeletal uptake and glycolysis contribute to the decreased glucose concentrations. Further study is needed to determine whether pharmacologically manipulating HIF expression might be beneficial for treatment of diabetic patients. PMID:23015148

  10. Glucose Levels in Culture Medium Determine Cell Death Mode in MPP+-treated Dopaminergic Neuronal Cells

    PubMed Central

    Yoon, So-Young

    2015-01-01

    We previously demonstrated that 1-methyl-4-phenylpyridinium (MPP+) causes caspase-independent, non-apoptotic death of dopaminergic (DA) neuronal cells. Here, we specifically examined whether change of glucose concentration in culture medium may play a role for determining cell death modes of DA neurons following MPP+ treatment. By incubating MN9D cells in medium containing varying concentrations of glucose (5~35 mM), we found that cells underwent a distinct cell death as determined by morphological and biochemical criteria. At 5~10 mM glucose concentration (low glucose levels), MPP+ induced typical of the apoptotic dell death accompanied with caspase activation and DNA fragmentation as well as cell shrinkage. In contrast, MN9D cells cultivated in medium containing more than 17.5 mM (high glucose levels) did not demonstrate any of these changes. Subsequently, we observed that MPP+ at low glucose levels but not high glucose levels led to ROS generation and subsequent JNK activation. Therefore, MPP+-induced cell death only at low glucose levels was significantly ameliorated following co-treatment with ROS scavenger, caspase inhibitor or JNK inhibitor. We basically confirmed the quite similar pattern of cell death in primary cultures of DA neurons. Taken together, our results suggest that a biochemically distinct cell death mode is recruited by MPP+ depending on extracellular glucose levels. PMID:26412968

  11. Dietary lipids do not contribute to the higher hepatic triglyceride levels of fructose- compared to glucose-fed mice.

    PubMed

    Nunes, Patricia M; Wright, Alan J; Veltien, Andor; van Asten, Jack J A; Tack, Cees J; Jones, John G; Heerschap, Arend

    2014-05-01

    Fructose consumption has been associated with the surge in obesity and dyslipidemia. This may be mediated by the fructose effects on hepatic lipids and ATP levels. Fructose metabolism provides carbons for de novo lipogenesis (DNL) and stimulates enterocyte secretion of apoB48. Thus, fructose-induced hepatic triglyceride (HTG) accumulation can be attributed to both DNL stimulation and dietary lipid absorption. The aim of this study was to assess the effects of fructose diet on HTG and ATP content and the contributions of dietary lipids and DNL to HTG. Measurements were performed in vivo in mice by magnetic resonance imaging (MRI) and novel magnetic resonance spectroscopy (MRS) approaches. Abdominal adipose tissue volume and intramyocellular lipid levels were comparable between 8-wk fructose- and glucose-fed mice. HTG levels were ∼1.5-fold higher in fructose-fed than in glucose-fed mice (P<0.05). Metabolic flux analysis by (13)C and (2)H MRS showed that this was not due to dietary lipid absorption, but due to DNL stimulation. The contribution of oral lipids to HTG was, after 5 h, 1.60 ± 0.23% for fructose and 2.16 ± 0.35% for glucose diets (P=0.26), whereas that of DNL was higher in fructose than in glucose diets (2.55±0.51 vs.1.13±0.24%, P=0.01). Hepatic energy status, assessed by (31)P MRS, was similar for fructose- and glucose-fed mice. Fructose-induced HTG accumulation is better explained by DNL and not by dietary lipid uptake, while not compromising ATP homeostasis.

  12. An artificial pancreas provided a novel model of blood glucose level variability in beagles.

    PubMed

    Munekage, Masaya; Yatabe, Tomoaki; Kitagawa, Hiroyuki; Takezaki, Yuka; Tamura, Takahiko; Namikawa, Tsutomu; Hanazaki, Kazuhiro

    2015-12-01

    Although the effects on prognosis of blood glucose level variability have gained increasing attention, it is unclear whether blood glucose level variability itself or the manifestation of pathological conditions that worsen prognosis. Then, previous reports have not been published on variability models of perioperative blood glucose levels. The aim of this study is to establish a novel variability model of blood glucose concentration using an artificial pancreas. We maintained six healthy, male beagles. After anesthesia induction, a 20-G venous catheter was inserted in the right femoral vein and an artificial pancreas (STG-22, Nikkiso Co. Ltd., Tokyo, Japan) was connected for continuous blood glucose monitoring and glucose management. After achieving muscle relaxation, total pancreatectomy was performed. After 1 h of stabilization, automatic blood glucose control was initiated using the artificial pancreas. Blood glucose level varied for 8 h, alternating between the target blood glucose values of 170 and 70 mg/dL. Eight hours later, the experiment was concluded. Total pancreatectomy was performed for 62 ± 13 min. Blood glucose swings were achieved 9.8 ± 2.3 times. The average blood glucose level was 128.1 ± 5.1 mg/dL with an SD of 44.6 ± 3.9 mg/dL. The potassium levels after stabilization and at the end of the experiment were 3.5 ± 0.3 and 3.1 ± 0.5 mmol/L, respectively. In conclusion, the results of the present study demonstrated that an artificial pancreas contributed to the establishment of a novel variability model of blood glucose levels in beagles.

  13. The effect of short-term metformin treatment on plasma prolactin levels in bromocriptine-treated patients with hyperprolactinaemia and impaired glucose tolerance: a pilot study.

    PubMed

    Krysiak, Robert; Okrzesik, Joanna; Okopien, Boguslaw

    2015-05-01

    Metformin was found to affect plasma levels of some pituitary hormones. This study was aimed at investigating whether metformin treatment has an impact on plasma prolactin levels in bromocriptine-treated patients with hyperprolactinaemia and impaired glucose tolerance. The study included 27 patients with hyperprolactinaemia, who had been treated for at least 6 months with bromocriptine. Based on prolactin levels, bromocriptine-treated patients were divided into two groups: patients with elevated (group A, n = 12) and patients with normal (group B, n = 15) prolactin levels. The control group included 16 age-, sex- and weight-matched hyperprolactinaemia-free individuals with impaired glucose tolerance (group C).The lipid profile, fasting plasma glucose levels, the homeostatic model assessment of insulin resistance ratio (HOMA-IR), glycated haemoglobin, as well as plasma levels of prolactin, thyrotropin and insulin-like growth factor-1 (IGF-1) were assessed at baseline and after 4 months of metformin treatment (2.55-3 g daily). In all treatment groups, metformin reduced HOMA-IR, plasma triglycerides and 2-h postchallenge plasma glucose. In patients with hyperprolactinaemia, but not in the other groups of patients, metformin slightly reduced plasma levels of prolactin, and this effect correlated weakly with the metabolic effects of this drug. Our study shows that metformin decreases plasma prolactin levels only in patients with elevated levels of this hormone. The obtained results suggest that metformin treatment may bring some benefits to hyperprolactinaemic patients with coexisting glucose metabolism disturbances already receiving dopamine agonist therapy.

  14. Glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding.

    PubMed

    Suyama, Shigetomo; Maekawa, Fumihiko; Maejima, Yuko; Kubota, Naoto; Kadowaki, Takashi; Yada, Toshihiko

    2016-01-01

    Adiponectin regulates glucose and lipid metabolism, acting against metabolic syndrome and atherosclerosis. Accumulating evidence suggest that adiponectin acts on the brain including hypothalamic arcuate nucleus (ARC), where proopiomelanocortin (POMC) neurons play key roles in feeding regulation. Several studies have examined intracerebroventricular (ICV) injection of adiponectin and reported opposite effects, increase or decrease of food intake. These reports used different nutritional states. The present study aimed to clarify whether adiponectin exerts distinct effects on food intake and ARC POMC neurons depending on the glucose concentration. Adiponectin was ICV injected with or without glucose for feeding experiments and administered to ARC slices with high or low glucose for patch clamp experiments. We found that adiponectin at high glucose inhibited POMC neurons and increased food intake while at low glucose it exerted opposite effects. The results demonstrate that glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding. PMID:27503800

  15. Glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding

    PubMed Central

    Suyama, Shigetomo; Maekawa, Fumihiko; Maejima, Yuko; Kubota, Naoto; Kadowaki, Takashi; Yada, Toshihiko

    2016-01-01

    Adiponectin regulates glucose and lipid metabolism, acting against metabolic syndrome and atherosclerosis. Accumulating evidence suggest that adiponectin acts on the brain including hypothalamic arcuate nucleus (ARC), where proopiomelanocortin (POMC) neurons play key roles in feeding regulation. Several studies have examined intracerebroventricular (ICV) injection of adiponectin and reported opposite effects, increase or decrease of food intake. These reports used different nutritional states. The present study aimed to clarify whether adiponectin exerts distinct effects on food intake and ARC POMC neurons depending on the glucose concentration. Adiponectin was ICV injected with or without glucose for feeding experiments and administered to ARC slices with high or low glucose for patch clamp experiments. We found that adiponectin at high glucose inhibited POMC neurons and increased food intake while at low glucose it exerted opposite effects. The results demonstrate that glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding. PMID:27503800

  16. The Effects of Blood Glucose Levels on Cognitive Performance: A Review of the Literature

    NASA Technical Reports Server (NTRS)

    Feldman, Jolene; Barshi, Immanuel

    2007-01-01

    The purpose of this review paper is to discuss the research literature on the effects of blood glucose levels on executive and non-executive functions in humans. The review begins with a brief description of blood glucose, how it has been studied, previous syntheses of prior studies, and basic results regarding the role of blood glucose on cognitive functioning. The following sections describe work that investigated the effect of blood glucose on both non-executive and executive functions (e.g., sensory processing, psychomotor functioning, attention, vigilance, memory, language and communication, judgement and decision-making, and complex task performance). Within each section, summaries of the findings and challenges to the literature are included. Measurement conversions of blood glucose levels, blood glucose values, and associated symptoms are depicted. References to the types of tests used to investigate blood glucose and cognitive performance are provided. For more detailed descriptions of references within (and in addition to) this paper, an annotated bibliography is also provided. Several moderator variables including individual differences and contextual variables related to the effects of blood glucose levels on performance (e.g., age, gender, time of day, familiarity with the task and symptom awareness, expectancy effects, dose dependent effects, time dependent effects, task specific effects, rising and falling blood glucose levels, and speed and/or accuracy trade-offs) are addressed later in the paper. Some suggestions for future experimental methodologies are also made.

  17. Correlation between high blood IL-6 level, hyperglycemia, and glucose control in septic patients

    PubMed Central

    2012-01-01

    Introduction The aim of the present study was to investigate the relationship between the blood IL-6 level, the blood glucose level, and glucose control in septic patients. Methods This retrospective observational study in a general ICU of a university hospital included a total of 153 patients with sepsis, severe sepsis, or septic shock who were admitted to the ICU between 2005 and 2010, stayed in the ICU for 7 days or longer, and did not receive steroid therapy prior to or after ICU admission. The severity of stress hyperglycemia, status of glucose control, and correlation between those two factors in these patients were investigated using the blood IL-6 level as an index of hypercytokinemia. Results A significant positive correlation between blood IL-6 level and blood glucose level on ICU admission was observed in the overall study population (n = 153; r = 0.24, P = 0.01), and was stronger in the nondiabetic subgroup (n = 112; r = 0.42, P < 0.01). The rate of successful glucose control (blood glucose level < 150 mg/dl maintained for 6 days or longer) decreased with increase in blood IL-6 level on ICU admission (P < 0.01). The blood IL-6 level after ICU admission remained significantly higher and the 60-day survival rate was significantly lower in the failed glucose control group than in the successful glucose control group (P < 0.01 and P < 0.01, respectively). Conclusions High blood IL-6 level was correlated with hyperglycemia and with difficulties in glucose control in septic patients. These results suggest the possibility that hypercytokinemia might be involved in the development of hyperglycemia in sepsis, and thereby might affect the success of glucose control. PMID:22494810

  18. Lack of correlation of glucose levels in filtered blood plasma to density and conductivity measurements.

    PubMed

    Gordon, David M; Ash, Stephen R

    2009-01-01

    The purpose of this research project was to determine whether the glucose level of a blood plasma sample from a diabetic patient could be predicted by measuring the density and conductivity of ultrafiltrate of plasma created by a 30,000 m.w. cutoff membrane. Conductivity of the plasma filtrate measures electrolyte concentration and should correct density measurements for changes in electrolytes and water concentration. In vitro studies were performed measuring conductivity and density of solutions of varying glucose and sodium chloride concentrations. Plasma from seven hospitalized patients with diabetes was filtered across a 30,000 m.w. cutoff membrane. The filtrate density and conductivity were measured and correlated to glucose levels. In vitro studies confirmed the ability to predict glucose from density and conductivity measurements, in varying concentrations of glucose and saline. In plasma filtrate, the conductivity and density measurements of ultrafiltrate allowed estimation of glucose in some patients with diabetes but not others. The correlation coefficient for the combined patient data was 0.45 which was significant but only explained 20% of the variability in the glucose levels. Individually, the correlation was significant in only two of the seven patients with correlation coefficients of 0.79 and 0.88. The reasons for lack of correlation are not clear, and cannot be explained by generation of idiogenic osmoles, effects of alcohol dehydrogenase, water intake, etc. This combination of physical methods for glucose measurement is not a feasible approach to measuring glucose in plasma filtrate.

  19. Proteins altered by elevated levels of palmitate or glucose implicated in impaired glucose-stimulated insulin secretion

    PubMed Central

    Sol, E-ri M; Hovsepyan, Meri; Bergsten, Peter

    2009-01-01

    Background Development of type 2 diabetes mellitus (T2DM) is characterized by aberrant insulin secretory patterns, where elevated insulin levels at non-stimulatory basal conditions and reduced hormonal levels at stimulatory conditions are major components. To delineate mechanisms responsible for these alterations we cultured INS-1E cells for 48 hours at 20 mM glucose in absence or presence of 0.5 mM palmitate, when stimulatory secretion of insulin was reduced or basal secretion was elevated, respectively. Results After culture, cells were protein profiled by SELDI-TOF-MS and 2D-PAGE. Differentially expressed proteins were discovered and identified by peptide mass fingerprinting. Complimentary protein profiles were obtained by the two approaches with SELDI-TOF-MS being more efficient in separating proteins in the low molecular range and 2D-PAGE in the high molecular range. Identified proteins included alpha glucosidase, calmodulin, gars, glucose-6-phosphate dehydrogenase, heterogenous nuclear ribonucleoprotein A3, lon peptidase, nicotineamide adenine dinucleotide hydrogen (NADH) dehydrogenase, phosphoglycerate kinase, proteasome p45, rab2, pyruvate kinase and t-complex protein. The observed glucose-induced differential protein expression pattern indicates enhanced glucose metabolism, defense against reactive oxygen species, enhanced protein translation, folding and degradation and decreased insulin granular formation and trafficking. Palmitate-induced changes could be related to altered exocytosis. Conclusion The identified altered proteins indicate mechanism important for altered β-cell function in T2DM. PMID:19607692

  20. Effects of passive static stretching on blood glucose levels in patients with type 2 diabetes mellitus

    PubMed Central

    Park, Seong Hoon

    2015-01-01

    [Purpose] This study determined the effects of passive static stretching on blood glucose levels in patients with type 2 diabetes. [Subjects] Fifteen patients (8 males and 7 females) with type 2 diabetes were recruited and randomly assigned to the control group or passive static stretching group. [Methods] Glycated hemoglobin was measured before and after the 8-week training period. [Results] Glycated hemoglobin levels decreased significantly in the passive static stretching group, and there were significant differences in blood glucose levels between the 2 groups. [Conclusion] Passive static stretching of the skeletal muscles may be an alternative to exercise to help regulate blood glucose levels in diabetes patients. PMID:26157241

  1. Effectiveness of traditional Malaysian vegetables (ulam) in modulating blood glucose levels.

    PubMed

    Bachok, Mohd Faez; Yusof, Barakatun-Nisak Mohd; Ismail, Amin; Hamid, Azizah Abdul

    2014-01-01

    Ulam refers to a group of traditional Malaysian plants commonly consumed as a part of a meal, either in the raw form or after a short blanching process. Many types of ulam are thought to possess blood glucose-lowering properties, but relatively little is known on the effectiveness of ulam in modulating blood glucose levels in humans. This review aims to systematically evaluate the effectiveness of ulam in modulating blood glucose levels in humans. A literature review was conducted using multiple databases with no time restriction. Eleven studies were retrieved based on a priori inclusion and exclusion criteria. In these 11 studies, only Momordica charantia, locally known as "peria katak", was extensively studied, followed by Centella asiatica, locally known as "daun pegaga", and Alternanthera sessilis, locally known as "kermak putih". Of the 11 studies, 9 evaluated the effectiveness of M. charantia on blood glucose parameters, and 7 of which showed significant improvement in at least one parameter of blood glucose concentration. The remaining 2 studies reported nonsignificant improvements in blood glucose parameters, despite having high-quality study design according to Jadad scale. None of the studies related to C. asiatica and A. sessilis showed significant improvement in blood glucose-related parameters. Current clinical evidence does not support the popular claim that ulam has glucose-lowering effects, not even for M. charantia. Hence, further clinical investigation is needed to verify the glucose modulation effect of M. charantia, C. asiatica, and A. sessilis.

  2. Effectiveness of traditional Malaysian vegetables (ulam) in modulating blood glucose levels.

    PubMed

    Bachok, Mohd Faez; Yusof, Barakatun-Nisak Mohd; Ismail, Amin; Hamid, Azizah Abdul

    2014-01-01

    Ulam refers to a group of traditional Malaysian plants commonly consumed as a part of a meal, either in the raw form or after a short blanching process. Many types of ulam are thought to possess blood glucose-lowering properties, but relatively little is known on the effectiveness of ulam in modulating blood glucose levels in humans. This review aims to systematically evaluate the effectiveness of ulam in modulating blood glucose levels in humans. A literature review was conducted using multiple databases with no time restriction. Eleven studies were retrieved based on a priori inclusion and exclusion criteria. In these 11 studies, only Momordica charantia, locally known as "peria katak", was extensively studied, followed by Centella asiatica, locally known as "daun pegaga", and Alternanthera sessilis, locally known as "kermak putih". Of the 11 studies, 9 evaluated the effectiveness of M. charantia on blood glucose parameters, and 7 of which showed significant improvement in at least one parameter of blood glucose concentration. The remaining 2 studies reported nonsignificant improvements in blood glucose parameters, despite having high-quality study design according to Jadad scale. None of the studies related to C. asiatica and A. sessilis showed significant improvement in blood glucose-related parameters. Current clinical evidence does not support the popular claim that ulam has glucose-lowering effects, not even for M. charantia. Hence, further clinical investigation is needed to verify the glucose modulation effect of M. charantia, C. asiatica, and A. sessilis. PMID:25164446

  3. Measurement of Physiologic Glucose Levels Using Raman Spectroscopy in a Rabbit Aqueous Humor Model

    NASA Technical Reports Server (NTRS)

    Lambert, J.; Storrie-Lombardi, M.; Borchert, M.

    1998-01-01

    We have elecited a reliable glucose signature in mammalian physiological ranges using near infrared Raman laser excitation at 785 nm and multivariate analysis. In a recent series of experiments we measured glucose levels in an artificial aqueous humor in the range from 0.5 to 13X normal values.

  4. The Effects of Oxygen Level and Glucose Concentration on the Metabolism of Porcine TMJ Disc Cells

    PubMed Central

    Cisewski, Sarah E.; Zhang, Lixia; Kuo, Jonathan; Wright, Gregory J.; Wu, Yongren; Kern, Michael J.; Yao, Hai

    2015-01-01

    Objective To determine the combined effect of oxygen level and glucose concentration on cell viability, ATP production, and matrix synthesis of temporomandibular joint (TMJ) disc cells. Design TMJ disc cells were isolated from pigs aged 6-8 months and cultured in a monolayer. Cell cultures were preconditioned for 48 hours with 0, 1.5, 5, or 25mM glucose DMEM under 1%, 5%, 10%, or 21% O2 level, respectively. The cell viability was measured using the WST-1 assay. ATP production was determined using the Luciferin-Luciferase assay. Collagen and proteoglycan synthesis were determined by measuring the incorporation of [2, 3-3H]proline and [35S]sulfate into the cells, respectively. Results TMJ disc cell viability significantly decreased (P<0.0001) without glucose. With glucose present, decreased oxygen levels significantly increased viability (P<0.0001), while a decrease in glucose concentration significantly decreased viability (P<0.0001). With glucose present, decreasing oxygen levels significantly reduced ATP production (P<0.0001) and matrix synthesis (P<0.0001). A decreased glucose concentration significantly decreased collagen synthesis (P<0.0001). The interaction between glucose and oxygen was significant in regards to cell viability (P<0.0001), ATP production (P=0.00015), and collagen (P=0.0002) and proteoglycan synthesis (P<0.0001). Conclusions Although both glucose and oxygen are important, glucose is the limiting nutrient for TMJ disc cell survival. At low oxygen levels, the production of ATP, collagen, and proteoglycan are severely inhibited. These results suggest that steeper nutrient gradients may exist in the TMJ disc and it may be vulnerable to pathological events that impede nutrient supply. PMID:26033165

  5. Using meta-differential evolution to enhance a calculation of a continuous blood glucose level.

    PubMed

    Koutny, Tomas

    2016-09-01

    We developed a new model of glucose dynamics. The model calculates blood glucose level as a function of transcapillary glucose transport. In previous studies, we validated the model with animal experiments. We used analytical method to determine model parameters. In this study, we validate the model with subjects with type 1 diabetes. In addition, we combine the analytic method with meta-differential evolution. To validate the model with human patients, we obtained a data set of type 1 diabetes study that was coordinated by Jaeb Center for Health Research. We calculated a continuous blood glucose level from continuously measured interstitial fluid glucose level. We used 6 different scenarios to ensure robust validation of the calculation. Over 96% of calculated blood glucose levels fit A+B zones of the Clarke Error Grid. No data set required any correction of model parameters during the time course of measuring. We successfully verified the possibility of calculating a continuous blood glucose level of subjects with type 1 diabetes. This study signals a successful transition of our research from an animal experiment to a human patient. Researchers can test our model with their data on-line at https://diabetes.zcu.cz. PMID:27393799

  6. [Glucose absorption in the rat small intestine in vivo after various levels of local substrate load].

    PubMed

    Gruzdkov, A A; Gromova, L V

    2013-05-01

    In order to evaluate relative roles of various mechanisms of glucose transport in the small intestine at high substrate loads in chronic experiments on rats, we investigated kinetics of glucose absorption in isolated part (-20 cm) of the intestine after its perfusion for 6 and 14 days during 1.5 h per day with 125 mM glucose solution (gr. 1--increased substrate load) or during 45-60 min per day with 25 mM glucose solution (gr. 2--reduced substrate load). The results of the experiments were analyzed by means of mathematical simulation. It was found that in the rats of gr. 1 the regular substrate load was more effective in maintaining a high level of glucose absorption in the isolated part of the intestine. Adaptation of glucose absorption to the increased local glucose load occurs due to enhancement of the secondary active transport via SGLT1. This component in many times exceeds the "unsaturated" component of glucose absorption, which is mainly determined by the facilitated diffusion via GLUT2, both at high and low glucose concentrations in the intestinal lumen.

  7. Insulin and Insulin-like Growth Factor 1 (IGF-1) Modulate Cytoplasmic Glucose and Glycogen Levels but Not Glucose Transport across the Membrane in Astrocytes.

    PubMed

    Muhič, Marko; Vardjan, Nina; Chowdhury, Helena H; Zorec, Robert; Kreft, Marko

    2015-04-24

    Astrocytes contain glycogen, an energy buffer, which can bridge local short term energy requirements in the brain. Glycogen levels reflect a dynamic equilibrium between glycogen synthesis and glycogenolysis. Many factors that include hormones and neuropeptides, such as insulin and insulin-like growth factor 1 (IGF-1) likely modulate glycogen stores in astrocytes, but detailed mechanisms at the cellular level are sparse. We used a glucose nanosensor based on Förster resonance energy transfer to monitor cytosolic glucose concentration with high temporal resolution and a cytochemical approach to determine glycogen stores in single cells. The results show that after glucose depletion, glycogen stores are replenished. Insulin and IGF-1 boost the process of glycogen formation. Although astrocytes appear to express glucose transporter GLUT4, glucose entry across the astrocyte plasma membrane is not affected by insulin. Stimulation of cells with insulin and IGF-1 decreased cytosolic glucose concentration, likely because of elevated glucose utilization for glycogen synthesis.

  8. Glucose deprivation increases hydrogen peroxide level in immunostimulated rat primary astrocytes.

    PubMed

    Choi, Ji Woong; Shin, Chan Young; Yoo, Byoung Kwon; Choi, Min Sik; Lee, Woo Jong; Han, Byoung Hee; Kim, Won-Ki; Kim, Hyoung-Chun; Ko, Kwang Ho

    2004-03-01

    Activated astrocytes produce a large amount of bioactive molecules, including reactive oxygen and nitrogen species. Astrocytes are in general resistant to those reactive species. However, we previously reported that immunostimulated astrocytes became highly vulnerable to metabolic insults, such as glucose deprivation. In this study, we investigated whether H(2)O(2) production was associated with the increased vulnerability. Glucose deprivation for up to 8 hr did not change the intracellular level of H(2)O(2) in astrocytes. Treatment with lipopolysaccharide plus interferon-gamma for 48 hr evoked astroglial H(2)O(2) production; however, no apparent death or injury was observed in immunostimulated astrocytes. Glucose deprivation after 48 hr of immunostimulation markedly increased H(2)O(2) level, depleted adenosine triphosphate (ATP), and enhanced lactate dehydrogenase (LDH) release. The ATP depletion and LDH release were in part prevented by catalase, mannitol, and N-acetyl-L-cysteine. The enhanced level of H(2)O(2) in glucose-deprived immunostimulated astrocytes appeared to be secondary to the depletion of reduced glutathione. 4-(2-Aminoethyl)bebzenesulfonyl fluoride (AEBSF), an inhibitor of NADPH oxidase, reduced H(2)O(2) level and LDH release in glucose-deprived immunostimulated astrocytes. H(2)O(2), either endogenously produced or exogenously added, depolarized mitochondrial transmembrane potential in glucose-deprived astrocytes, leading to their ATP depletion and death. The present results strongly indicate that glucose deprivation causes deterioration of immunostimulated astrocytes by increasing the intracellular concentration of H(2)O(2).

  9. Effects of Dietary Glucose on Serum Estrogen Levels and Onset of Puberty in Gilts

    PubMed Central

    Li, Fangfang; Zhu, Yujing; Ding, Lan; Zhang, Yong

    2016-01-01

    Metabolic signals and the state of energy reserves have been shown to play a crucial role in the regulation of reproductive function. This study was carried out to investigate the effects of dietary glucose levels on puberty onset in gilts. Weight-matched, landrace gilts (n = 36) 162±3 days old, weighing about 71.05±4.53 kg, were randomly assigned to 3 dietary treatment groups of 12 gilts each. The trial lasted until the onset of puberty. Gilts in each group were supplied with diets containing different levels of glucose as follows: i) starch group (SG) was free of glucose, contained 64% corn derived starch; ii) low-dose group (LDG) contained 19.2% glucose and 44.8% corn derived starch; iii) high-dose group (HDG) contained 30% glucose and 30% corn derived starch. Results indicated: i) The growth performance of gilts were not affected by the addition of glucose, but the age of puberty onset was advanced significantly (p<0.05); ii) Compared with the SG, the concentration of insulin significantly increased before puberty in HDG (p<0.05); iii) There was no difference in serum progesterone (P) levels amongst the different feed groups, however, levels of estradiol (E2), luteinizing hormone, and follicle-stimulating hormone were significantly higher at puberty onset in HDG (p<0.05). Overall, our findings indicate that glucose supplementation significantly advances puberty onset, which can have practical purposes for commercial breeding. PMID:26954130

  10. Protective effect of berberine on serum glucose levels in non-obese diabetic mice.

    PubMed

    Chueh, Wei-Han; Lin, Jin-Yuarn

    2012-03-01

    Among the active components in traditional anti-diabetic herbal plants, berberine which is an isoquinoline alkaloid exhibits promising potential for its potent anti-inflammatory and hypoglycemic effects. However, the berberine effect on serum glucose levels in type 1 diabetes (T1D) subjects still remains unknown. This study investigated berberine's effects on serum glucose levels using non-obese diabetic (NOD) mice that spontaneously develop T1D. The NOD mice were randomly divided into four groups, administered water with 50, 150, and 500 mg berberine/kg bw, respectively, through 14 weeks. ICR mice were also selected as a species control group to compare with the NOD mice. Changes in body weight, oral glucose challenge, and serum glucose levels were determined to identify the protective effect of berberine on T1D. After the 14-week oral supplementation, berberine decreased fasting serum glucose levels in NOD mice close to the levels in normal ICR mice in a dose dependent manner. Serum berberine levels showed a significantly (P<0.05) negative and non-linear correlation with fasting glucose levels in berberine-administered NOD mice. Our results suggested that berberine supplemented at appropriate doses for 14 weeks did not cause toxic side effects, but improved hyperglycemia in NOD mice.

  11. Energized by love: thinking about romantic relationships increases positive affect and blood glucose levels.

    PubMed

    Stanton, Sarah C E; Campbell, Lorne; Loving, Timothy J

    2014-10-01

    We assessed the impact of thinking of a current romantic partner on acute blood glucose responses and positive affect over a short period of time. Participants in romantic relationships were randomly assigned to reflect on their partner, an opposite-sex friend, or their morning routine. Blood glucose levels were assessed prior to reflection, as well as at 10 and 25 min postreflection. Results revealed that individuals in the routine and friend conditions exhibited a decline in glucose over time, whereas individuals in the partner condition did not exhibit this decline (rather, a slight increase) in glucose over time. Reported positive affect following reflection was positively associated with increases in glucose, but only for individuals who reflected on their partner, suggesting this physiological response reflects eustress. These findings add to the literature on eustress in relationships and have implications for relationship processes.

  12. Delaying time to first nocturnal void may have beneficial effects on reducing blood glucose levels.

    PubMed

    Juul, Kristian Vinter; Jessen, Niels; Bliwise, Donald L; van der Meulen, Egbert; Nørgaard, Jens Peter

    2016-09-01

    Experimental studies disrupting sleep and epidemiologic studies of short sleep durations indicate the importance of deeper and longer sleep for cardiometabolic health. We examined the potential beneficial effects of lengthening the first uninterrupted sleep period (FUSP) on blood glucose. Long-term data (≥3 months of treatment) were derived from three clinical trials, testing low-dose (10-100 µg) melt formulations of desmopressin in 841 male and female nocturia patients (90 % of which had nocturnal polyuria). We performed post hoc multiple regression with non-fasting blood glucose as dependent variable and the following potential covariates/factors: time-averaged change of FUSP since baseline, age, gender, race, ethnicity, baseline glucose, baseline weight, change in weight, patient metabolic status (normal, metabolic syndrome, type II diabetes), dose, follow-up interval, and time of random glucose sampling. Increases in FUSP resulted in statistically significant reductions in blood glucose (p = 0.0131), even after controlling for all remaining covariates. Per hour increase in time to first void was associated with glucose decreases of 1.6 mg/dL. This association was more pronounced in patients with increased baseline glucose levels (test of baseline glucose by FUSP change interaction: p < 0.0001). Next to FUSP change, other statistically significant confounding factors/covariates also associated with glucose changes were gender, ethnicity, metabolic subgroup, and baseline glucose. These analyses indicate that delaying time to first void may have beneficial effects on reducing blood glucose in nocturia patients. These data are among the first to suggest that improving sleep may have salutary effects on a cardiometabolic measure. PMID:27003433

  13. The effects of food deprivation and incentive motivation on blood glucose levels and cognitive function.

    PubMed

    Green, M W; Elliman, N A; Rogers, P J

    1997-11-01

    The current study investigated the relationships between blood glucose levels, mild food deprivation, sympathetic arousal, and cognitive processing efficiency. Subjects (n = 82) were randomly assigned to four experimental conditions, comprising combined manipulations of food deprivation and incentive motivation. Baseline and mid-session measurements of blood glucose, blood pressure and pulse rate were taken. Subjects completed a number of measures of cognitive processing efficiency and self report measures of affective and somatic state. Although glucose levels were lowered following food deprivation, there was no significant detrimental effect of food deprivation on task performance. However, improved recognition memory processing times were associated with deprivation. Incentive motivation was associated with faster simple reaction times and higher diastolic blood pressure. There were no significant relationships between glucose levels and task performance, further supporting the hypothesis that the brain is relatively invulnerable to short food deprivation. PMID:9399371

  14. A survey of cognitive functioning at difference glucose levels in diabetic persons.

    PubMed

    Holmes, C S; Hayford, J T; Gonzalez, J L; Weydert, J A

    1983-01-01

    Cognitive functioning was assessed in diabetic patients during hypoglycemia (60 mg/dl), euglycemia/control (110 mg/dl), and hyperglycemia (300 mg/dl). Blood glucose levels were set and maintained to within 4% of targeted levels by an artificial insulin/glucose infusion system (Biostator). Attention and fine motor skills, assessed by visual reaction time, was slowed at altered glucose levels. Performance was less impaired during hyperglycemia than hypoglycemia when a longer interstimulus interval was used, although it was still slower than normal. The time required to solve simple addition problems was increased during hypoglycemia, although reading comprehension was not affected. The possibility that some automatic brain skills are disrupted at altered glucose concentrations is discussed, while associative or inferential skills may be less affected.

  15. EFFECTS OF ADMINISTRATION ROUTE, DIETARY CONDITION, AND BLOOD GLUCOSE LEVEL ON KINETICS AND UPTAKE OF 18F-FDG IN MICE

    PubMed Central

    Wong, Koon-Pong; Sha, Wei; Zhang, Xiaoli; Huang, Sung-Cheng

    2011-01-01

    The effects of dietary condition and blood glucose level on the kinetics and uptake of 18F-FDG in mice were systematically investigated using intraperitoneal and tail-vein injection. Methods Dynamic PET was performed for 60 min on 23 isoflurane-anesthetized male C57BL/6 mice after intravenous (n = 11) or intraperitoneal (n = 12) injection of 18F-FDG. Five and 6 mice in the intravenous and intraperitoneal groups, respectively, were kept fasting overnight (18 ± 2 h), and the others were fed ad libitum. Serial blood samples were collected from the femoral artery to measure 18F-FDG and glucose concentrations. Image data were reconstructed using filtered backprojection with CT-based attenuation correction. The standardized uptake value (SUV) was estimated from the 45- to 60-min image. The metabolic rate of glucose (MRGlu) and 18F-FDG uptake constant (Ki) were derived by Patlak graphical analysis. Results In the brain, SUV and Ki were significantly higher in fasting mice with intraperitoneal injection, but MRGlu did not differ significantly under different dietary states and administration routes. Cerebral Ki was inversely related to elevated blood glucose levels, irrespective of administration route or dietary state. In myocardium, SUV, Ki, and MRGlu were significantly lower in fasting than in nonfasting mice for both routes of injection. Myocardial SUV and Ki were strongly dependent on the dietary state, and Ki did not correlate with the blood glucose level. Similar results were obtained for skeletal muscle, although the differences were not as pronounced. Conclusions Intraperitoneal injection is a valid alternative route, providing pharmacokinetic data equivalent to data from tail-vein injection for small-animal 18F-FDG PET. Cerebral Ki varies inversely with blood glucose level, but the measured cerebral MRGlu does not correlate with blood glucose level or dietary condition. Conversely, the Ki values of the myocardium and skeletal muscle are strongly dependent on

  16. The Association between Concentrations of Green Tea and Blood Glucose Levels.

    PubMed

    Maruyama, Koutatsu; Iso, Hiroyasu; Sasaki, Satoshi; Fukino, Yoko

    2009-01-01

    Our objective was to examine whether habitual green tea consumption is associated with blood glucose levels and other biomarkers of glucose metabolism. We conducted a cross-sectional study of 35 male volunteers, 23-63 years old and residing in Shizuoka Prefecture in Japan. Biochemical data were measured and we conducted a questionnaire survey on health, lifestyle, and nutrition, as well as frequency of consumption and concentrations (1%, 2%, and 3%) of green tea. Men who consumed a 3% concentration of green tea showed lower mean values of fasting blood glucose and fructosamine than those who consumed a 1% concentration. Fasting blood glucose levels were found to be significantly associated with green tea concentration (beta = -0.14, p = 0.03). However, green tea consumption frequency showed no significant differences in mean levels of blood glucose, fructosamine and hemoglobin A(1c.) In conclusion, our findings suggest that the consumption of green tea at a high concentration has the potential to reduce blood glucose levels.

  17. Overtone vibrational spectroscopy in H2-H2O complexes: A combined high level theoretical ab initio, dynamical and experimental study

    NASA Astrophysics Data System (ADS)

    Ziemkiewicz, Michael P.; Pluetzer, Christian; Nesbitt, David J.; Scribano, Yohann; Faure, Alexandre; van der Avoird, Ad

    2012-08-01

    First results are reported on overtone (vOH = 2 ← 0) spectroscopy of weakly bound H2-H2O complexes in a slit supersonic jet, based on a novel combination of (i) vibrationally mediated predissociation of H2-H2O, followed by (ii) UV photodissociation of the resulting H2O, and (iii) UV laser induced fluorescence on the nascent OH radical. In addition, intermolecular dynamical calculations are performed in full 5D on the recent ab initio intermolecular potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008), 10.1063/1.2988314] in order to further elucidate the identity of the infrared transitions detected. Excellent agreement is achieved between experimental and theoretical spectral predictions for the most strongly bound van der Waals complex consisting of ortho (I = 1) H2 and ortho (I = 1) H2O (oH2-oH2O). Specifically, two distinct bands are seen in the oH2-oH2O spectrum, corresponding to internal rotor states in the upper vibrational manifold of Σ and Π rotational character. However, none of the three other possible nuclear spin modifications (pH2-oH2O, pH2-pH2O, or oH2-pH2O) are observed above current signal to noise level, which for the pH2 complexes is argued to arise from displacement by oH2 in the expansion mixture to preferentially form the more strongly bound species. Direct measurement of oH2-oH2O vibrational predissociation in the time domain reveals lifetimes of 15(2) ns and <5(2) ns for the Σ and Π states, respectively. Theoretical calculations permit the results to be interpreted in terms of near resonant energy levels and intermolecular alignment of the H2 and H2O wavefunctions, providing insight into predissociation dynamical pathways from these metastable levels.

  18. Genistein improves spatial learning and memory in male rats with elevated glucose level during memory consolidation.

    PubMed

    Kohara, Yumi; Kawaguchi, Shinichiro; Kuwahara, Rika; Uchida, Yutaro; Oku, Yushi; Yamashita, Kimihiro

    2015-03-01

    Cognitive dysfunction due to higher blood glucose level has been reported previously. Genistein (GEN) is a phytoestrogen that we hypothesized might lead to improved memory, despite elevated blood glucose levels at the time of memory consolidation. To investigate this hypothesis, we compared the effects of orally administered GEN on the central nervous system in normal versus glucose-loaded adult male rats. A battery of behavioral assessments was carried out. In the MAZE test, which measured spatial learning and memory, the time of normal rats was shortened by GEN treatment compared to the vehicle group, but only in the early stages of testing. In the glucose-loaded group, GEN treatment improved performance as mazes were advanced. In the open-field test, GEN treatment delayed habituation to the new environment in normal rats, and increased the exploratory behaviors of glucose-loaded rats. There were no significant differences observed for emotionality or fear-motivated learning and memory. Together, these results indicate that GEN treatment improved spatial learning and memory only in the early stages of testing in the normal state, but improved spatial learning and memory when glucose levels increased during memory consolidation.

  19. GDF-15 and Hepcidin Levels in Nonanemic Patients with Impaired Glucose Tolerance

    PubMed Central

    Altinova, Alev Eroglu; Akturk, Mujde; Gulbahar, Ozlem; Arslan, Emre; Ors Sendogan, Damla; Yetkin, Ilhan; Toruner, Fusun Balos

    2016-01-01

    Aims. Growth Differentiation Factor-15 (GDF-15) has been suggested as one of the regulators of hepcidin, an important regulatory peptide for iron deposition. Current data is conflicting about the relationship between hepcidin and disorders of glucose metabolism. We aimed to investigate serum hepcidin and GDF-15 concentrations and their associations with each other, in nonanemic subjects with impaired glucose tolerance (IGT) in comparison with the nonanemic subjects with normal glucose tolerance (NGT). Methods. Thirty-seven subjects with IGT and 32 control subjects with NGT, who were age-, gender-, and body mass index- (BMI-) matched, were included in the study. Results. Serum GDF-15 levels were significantly higher in IGT compared to NGT. There were no differences in hepcidin, interleukin-6, and high sensitive C-reactive protein levels between the groups. We found a positive correlation between GDF-15 and hepcidin levels. There were also positive correlations between GDF-15 and age, uric acid, creatinine, and area under the curve for glucose (AUC-G). Hepcidin was correlated positively with ferritin levels. In the multiple regression analysis, GDF-15 concentrations were independently associated with age, uric acid, and AUC-G. Conclusions. Impaired glucose tolerance is associated with increased GDF-15 levels even in the absence of anemia, but the levels of hepcidin are not significantly altered in prediabetic state.

  20. GDF-15 and Hepcidin Levels in Nonanemic Patients with Impaired Glucose Tolerance

    PubMed Central

    Altinova, Alev Eroglu; Akturk, Mujde; Gulbahar, Ozlem; Arslan, Emre; Ors Sendogan, Damla; Yetkin, Ilhan; Toruner, Fusun Balos

    2016-01-01

    Aims. Growth Differentiation Factor-15 (GDF-15) has been suggested as one of the regulators of hepcidin, an important regulatory peptide for iron deposition. Current data is conflicting about the relationship between hepcidin and disorders of glucose metabolism. We aimed to investigate serum hepcidin and GDF-15 concentrations and their associations with each other, in nonanemic subjects with impaired glucose tolerance (IGT) in comparison with the nonanemic subjects with normal glucose tolerance (NGT). Methods. Thirty-seven subjects with IGT and 32 control subjects with NGT, who were age-, gender-, and body mass index- (BMI-) matched, were included in the study. Results. Serum GDF-15 levels were significantly higher in IGT compared to NGT. There were no differences in hepcidin, interleukin-6, and high sensitive C-reactive protein levels between the groups. We found a positive correlation between GDF-15 and hepcidin levels. There were also positive correlations between GDF-15 and age, uric acid, creatinine, and area under the curve for glucose (AUC-G). Hepcidin was correlated positively with ferritin levels. In the multiple regression analysis, GDF-15 concentrations were independently associated with age, uric acid, and AUC-G. Conclusions. Impaired glucose tolerance is associated with increased GDF-15 levels even in the absence of anemia, but the levels of hepcidin are not significantly altered in prediabetic state. PMID:27642607

  1. Effects of individual glucose levels on the neuronal correlates of emotions

    PubMed Central

    Schöpf, Veronika; Fischmeister, Florian Ph. S.; Windischberger, Christian; Gerstl, Florian; Wolzt, Michael; Karlsson, Karl Æ.; Moser, Ewald

    2013-01-01

    This study aimed to directly assess the effect of changes in blood glucose levels on the psychological processing of emotionally charged material. We used functional magnetic resonance imaging (fMRI) to evaluate the effect of blood glucose levels on three categories of visually presented emotional stimuli. Seventeen healthy young subjects participated in this study (eight females; nine males; body weight, 69.3 ± 14.9 kg; BMI, 22 ± 2.7; age, 24 ± 3 years), consisting of two functional MRI sessions: (1) after an overnight fast under resting conditions (before glucose administration); (2) after reaching the hyperglycemic state (after glucose administration). During each session, subjects were presented with visual stimuli featuring funny, neutral, and sad content. Single-subject ratings of the stimuli were used to verify the selection of stimuli for each category and were covariates for the fMRI analysis. Analysis of the interaction effect of the two sessions (eu- and hyperglycemia), and the emotional categories accounting for the single-subject glucose differences, revealed a single activation cluster in the hypothalamus. Analysis of the activation profile of the left amygdala corresponded to the three emotional conditions, and this profile was obtained for both sessions regardless of glucose level. Our results indicate that, in a hyperglycemic state, the hypothalamus can no longer respond to emotions. This study offers novel insight for the understanding of disease-related behavior associated with dysregulation of glucose and glucose availability, potentially offering improved diagnostic and novel therapeutic strategies in the future. PMID:23734117

  2. Effects of different levels of coconut fiber on blood glucose, serum insulin and minerals in rats.

    PubMed

    Sindurani, J A; Rajamohan, T

    2000-01-01

    The effect of neutral detergent fiber (NDF) from coconut kernel (Cocos nucifera L) in rats fed 5%, 15% and 30% level on the concentration of blood glucose, serum insulin and excretion of minerals was studied. Increase in the intake of fiber resulted in significant decrease in the level of blood glucose and serum insulin. Faecal excretion of Cu, Cr, Mn, Mg, Zn and Ca was found to increase in rats fed different levels of coconut fiber when compared to fiber free group. The result of the present investigation suggest that inclusion of coconut fiber in the diet results in significant hypoglycemic action.

  3. Effect of sulfonylureas administered centrally on the blood glucose level in immobilization stress model.

    PubMed

    Sharma, Naveen; Sim, Yun-Beom; Park, Soo-Hyun; Lim, Su-Min; Kim, Sung-Su; Jung, Jun-Sub; Hong, Jae-Seung; Suh, Hong-Won

    2015-05-01

    Sulfonylureas are widely used as an antidiabetic drug. In the present study, the effects of sulfonylurea administered supraspinally on immobilization stress-induced blood glucose level were studied in ICR mice. Mice were once enforced into immobilization stress for 30 min and returned to the cage. The blood glucose level was measured 30, 60, and 120 min after immobilization stress initiation. We found that intracerebroventricular (i.c.v.) injection with 30 µg of glyburide, glipizide, glimepiride or tolazamide attenuated the increased blood glucose level induced by immobilization stress. Immobilization stress causes an elevation of the blood corticosterone and insulin levels. Sulfonylureas pretreated i.c.v. caused a further elevation of the blood corticosterone level when mice were forced into the stress. In addition, sulfonylureas pretreated i.c.v. alone caused an elevation of the plasma insulin level. Furthermore, immobilization stress-induced insulin level was reduced by i.c.v. pretreated sulfonylureas. Our results suggest that lowering effect of sulfonylureas administered supraspinally against immobilization stress-induced increase of the blood glucose level appears to be primarily mediated via elevation of the plasma insulin level. PMID:25954123

  4. Plasma Glucose Levels for Red Drum Sciaenops Ocellatus in a Florida Estuarine Fisheries Reserve

    NASA Technical Reports Server (NTRS)

    Bourtis, Carla M.; Francis-Floyd, Ruth; Boggs, Ashley S P.; Reyier, Eric A.; Stolen, Eric D.; Yanong, Roy P.; Guillette, Louis J., Jr.

    2015-01-01

    Despite the significant value of the southeastern United States' red drum (Sciaenops ocellatus) fishery, there is a lack of clinical blood chemistry data. This was the first study to assess plasma glucose values as an indicator of stress response to evaluate variation and the effect of reproductive activity for wild adult red drum in Florida. Red drum (n=126) were collected from NASA's Kennedy Space Center waters during three reproductive periods in 2011. Samples were obtained from the branchial vessels of the gill arch. Plasma glucose levels were significantly different among reproductive periods, with the highest mean values recorded during the spawning period, September- October (38.23 mg / dL +/- 10.0). The glucose range was 17 - 69 mg / dL. Glucose values were lower during all three periods than previous values recorded for cultured or captive red drum studies. This may indicate that fish from this population were under less stress than other populations previously sampled.

  5. T3 supplementation affects ventilatory timing & glucose levels in type 2 diabetes mellitus model.

    PubMed

    Bollinger, Stephen S; Weltman, Nathen Y; Gerdes, A Martin; Schlenker, Evelyn H

    2015-01-01

    Type II diabetes mellitus (T2DM) can affect ventilation, metabolism, and fasting blood glucose levels. Hypothyroidism may be a comorbidity of T2DM. In this study T2DM was induced in 20 female Sprague Dawley rats using Streptozotocin (STZ) and Nicotinamide (N). One of experimental STZ/N groups (N=10 per group) was treated with a low dose of triiodothyronine (T3). Blood glucose levels, metabolism and ventilation (in air and in response to hypoxia) were measured in the 3 groups. STZ/N-treated rats increased fasting blood glucose compared to control rats eight days and 2 months post-STZ/N injections indicating stable induction of T2DM state. Treatments had no effects on ventilation, metabolism or body weight. After one month of T3 supplementation, there were no physiological indications of hyperthyroidism, but T3 supplementation altered ventilatory timing and decreased blood glucose levels compared to STZ/N rats. These results suggest that low levels of T3 supplementation could offer modest effects on blood glucose and ventilatory timing in this T2M model.

  6. Comparison of sugar molecule decomposition through glucose and fructose: a high-level quantum chemical study.

    SciTech Connect

    Assary, R. S.; Curtiss, L. A.

    2012-02-01

    Efficient chemical conversion of biomass is essential to produce sustainable energy and industrial chemicals. Industrial level conversion of glucose to useful chemicals, such as furfural, hydroxymethylfurfural, and levulinic acid, is a major step in the biomass conversion but is difficult because of the formation of undesired products and side reactions. To understand the molecular level reaction mechanisms involved in the decomposition of glucose and fructose, we have carried out high-level quantum chemical calculations [Gaussian-4 (G4) theory]. Selective 1,2-dehydration, keto-enol tautomerization, isomerization, retro-aldol condensation, and hydride shifts of glucose and fructose molecules were investigated. Detailed kinetic and thermodynamic analyses indicate that, for acyclic glucose and fructose molecules, the dehydration and isomerization require larger activation barriers compared to the retro-aldol reaction at 298 K in neutral medium. The retro-aldol reaction results in the formation of C2 and C4 species from glucose and C3 species from fructose. The formation of the most stable C3 species, dihydroxyacetone from fructose, is thermodynamically downhill. The 1,3-hydride shift leads to the cleavage of the C-C bond in the acyclic species; however, the enthalpy of activation is significantly higher (50-55 kcal/mol) than that of the retro-aldol reaction (38 kcal/mol) mainly because of the sterically hindered distorted four-membered transition state compared to the hexa-membered transition state in the retro-aldol reaction. Both tautomerization and dehydration are catalyzed by a water molecule in aqueous medium; however, water has little effect on the retro-aldol reaction. Isomerization of glucose to fructose and glyceraldehyde to dihydroxyacetone proceeds through hydride shifts that require an activation enthalpy of about 40 kcal/mol at 298 K in water medium. This investigation maps out accurate energetics of the decomposition of glucose and fructose molecules

  7. Analytical model for real time, noninvasive estimation of blood glucose level.

    PubMed

    Adhyapak, Anoop; Sidley, Matthew; Venkataraman, Jayanti

    2014-01-01

    The paper presents an analytical model to estimate blood glucose level from measurements made non-invasively and in real time by an antenna strapped to a patient's wrist. Some promising success has been shown by the RIT ETA Lab research group that an antenna's resonant frequency can track, in real time, changes in glucose concentration. Based on an in-vitro study of blood samples of diabetic patients, the paper presents a modified Cole-Cole model that incorporates a factor to represent the change in glucose level. A calibration technique using the input impedance technique is discussed and the results show a good estimation as compared to the glucose meter readings. An alternate calibration methodology has been developed that is based on the shift in the antenna resonant frequency using an equivalent circuit model containing a shunt capacitor to represent the shift in resonant frequency with changing glucose levels. Work under progress is the optimization of the technique with a larger sample of patients.

  8. Blood glucose levels in patients with metastatic renal cell carcinoma treated with sunitinib

    PubMed Central

    Billemont, B; Medioni, J; Taillade, L; Helley, D; Meric, J B; Rixe, O; Oudard, S

    2008-01-01

    Sunitinib, a multitargeted tyrosine-kinase inhibitor, extends survival of patients with metastatic renal cell carcinoma (mRCC) and gastrointestinal stromal tumours. Between October 2005 and March 2007, we retrospectively reviewed blood glucose level variations associated with sunitinib therapy in patients treated for mRCC. Nineteen of the patients had type II diabetes. All 19 patients had a decrease in blood glucose level (mean 1.77 mmol l−1) after 4 weeks of treatment. This was followed by re-elevation in the 2-week rest period. After two cycles of sunitinib administration, two patients had stopped blood glucose-lowering drugs whereas five other patients had normalised their blood glucose level. On the basis of pre-clinical data, we hypothesise that several mechanisms could be involved in this process, such as capillary regression of pancreatic islets, IGF-1 modulation through HIF1-α or NF-κB activation. In addition, a decrease of glucose uptake in the context of concomitant gastrointestinal toxicity cannot be excluded. Glycaemic control should be carefully evaluated in diabetic patients treated with sunitinib, and routine monitoring is warranted. PMID:18841151

  9. Assessment of metabolic status in young Japanese females using postprandial glucose and insulin levels.

    PubMed

    Sakuma, Masae; Sasaki, Megumi; Katsuda, Sayaka; Kobayashi, Kana; Takaya, Chiaki; Umeda, Minako; Arai, Hidekazu

    2014-05-01

    Lifestyle-related diseases develop through the accumulation of undesirable lifestyle habits both prior to the onset of disease as well as during normal healthy life. Accordingly, early detection of, and intervention in, metabolic disorders is desirable, but is hampered by the lack of an established evaluation index for young individuals. The purpose of this study was to investigate the utility of a biomarker of health in young female subjects. The subjects were young healthy Japanese females in whom energy expenditure was measured for a period of 210 min after a test meal. In addition, Δplasma glucose and Δserum insulin were calculated from the fasting and 30 min values. ΔPlasma glucose and Δserum insulin levels varied widely compared to fasting levels. Both the area under the curve of carbohydrate oxidation rate and serum free fatty acid levels were higher in individuals in the high Δplasma glucose group. Moreover, Δplasma glucose was higher in individuals in the high Δserum insulin group than in the low Δserum insulin group. We conclude that nutritional balanced liquid loading test using Δplasma glucose and Δserum insulin as the evaluation index is useful for the detection of primary metabolic disorders in young females.

  10. Changes in blood glucose and plasma insulin levels induced by bradykinin in anaesthetized rats

    PubMed Central

    Damas, Jacques; Hallet, Claude; Lefebvre, Pierre J

    2001-01-01

    The influence of bradykinin (BK) on blood glucose and plasma insulin levels was investigated in anaesthetized rats. Blood glucose level was dose-dependently increased by intravenous infusion of BK. This effect of BK was enhanced by captopril, an inhibitor of angiotensin-converting enzyme (ACE). Des-Arg9-bradykinin (DABK), a kinin B1 receptor agonist, did not modify blood glucose levels while the effect of BK was inhibited by Hoe-140, a kinin B2 receptor antagonist. The effect of BK was reduced by the NO-synthase inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME), and by the cyclo-oxygenase inhibitor, indomethacin. The effect of BK was suppressed by the association of propranolol with phentolamine or phenoxybenzamine. It was also reduced by hexamethonium, a ganglion-blocking drug. In adrenalectomized rats, the infusion of BK slightly decreased blood glucose levels. The hyperglycaemic effect of adrenaline was suppressed by propranolol associated with phentolamine or phenoxybenzamine, but it was not modified by L-NAME. Infusion of BK did not modify plasma insulin levels. However, after phentolamine and propranolol, BK induced a transient 2 fold rise in plasma insulin levels. The release of insulin was dose-dependent and inhibited by Hoe-140. We conclude that infusion of BK induces, via a stimulation of B2 receptors, the release of NO and of prostanoids. The latter agents activate through a reflex pathway the release of catecholamines from the adrenal medulla. This release increases blood glucose levels and reduces plasma insulin levels. After adrenoceptor inhibition, BK induces a secretion of insulin, via the stimulation of B2 receptors. PMID:11704652

  11. Melatonin Signaling Controls the Daily Rhythm in Blood Glucose Levels Independent of Peripheral Clocks.

    PubMed

    Owino, Sharon; Contreras-Alcantara, Susana; Baba, Kenkichi; Tosini, Gianluca

    2016-01-01

    Melatonin is rhythmically secreted by both the pineal gland and retina in a circadian fashion, with its peak synthesis occurring during the night. Once synthesized, melatonin exerts its effects by binding to two specific G-protein coupled receptors-melatonin receptor type 1(MT1) and melatonin receptor type 2(MT2). Recent studies suggest the involvement of MT1 and MT2 in the regulation of glucose homeostasis; however the ability of melatonin signaling to impart timing cues on glucose metabolism remains poorly understood. Here we report that the removal of MT1 or MT2 in mice abolishes the daily rhythm in blood glucose levels. Interestingly, removal of melatonin receptors produced small effects on the rhythmic expression patterns of clock genes within skeletal muscle, liver, and adipose tissue. Taken together, our data suggest that the loss of the daily rhythm in blood glucose observed in MT1(-/-) and MT2(-/-) mice does not occur as a consequence of 'disrupted' clocks within insulin sensitive tissues. Finally our results highlight a diurnal contribution of melatonin receptor signaling in the daily regulation of blood glucose levels.

  12. Diurnal Variation in Oral Glucose Tolerance: Blood Sugar and Plasma Insulin Levels Morning, Afternoon, and Evening

    PubMed Central

    Jarrett, R. J.; Baker, I. A.; Keen, H.; Oakley, N. W.

    1972-01-01

    Twenty-four subjects received three oral glucose tolerance tests, in the morning, afternoon, and evening of separate days. The mean blood sugar levels in the afternoon and evening tests were similar, and they were both significantly higher than those in the morning test. Plasma immunoreactive insulin levels, however, were highest in the morning test. The pattern of insulin levels during the afternoon and evening tests resembled that described as typical of maturity-onset diabetes. PMID:5058728

  13. Multi-Isotope Secondary Ion Mass Spectrometry Combining Heavy Water 2H with 15N Labeling As Complementary Tracers for Metabolic Heterogeneity at the Single-Cell Level

    NASA Astrophysics Data System (ADS)

    Kopf, S.; McGlynn, S.; Cowley, E.; Green, A.; Newman, D. K.; Orphan, V. J.

    2014-12-01

    measurements of 2H/1H, 13C/12C and 15N/14N and apply it to study of microbial metabolic heterogeneity and nitrogen metabolism in a continuous culture case study. Our data provide insight into both the diversity of microbial activity rates, as well as patterns of ammonium utilization at the single cell level.

  14. Ultrasound-triggered regulation of blood glucose levels using injectable nano-network.

    PubMed

    Di, Jin; Price, Jennifer; Gu, Xiao; Jiang, Xiaoning; Jing, Yun; Gu, Zhen

    2014-06-01

    The integration of an injectable insulin-encapsulated nano-network with a focused ultrasound system (FUS) can remotely regulate insulin release both in vitro and in vivo. A single subcutaneous injection of the nano-network with intermittent FUS administration facilitates reduction of the blood glucose levels in type 1 diabetic mice for up to 10 d. PMID:24255016

  15. Steroid injection for shoulder pain causes prolonged increased glucose level in type 1 diabetics

    PubMed Central

    Povlsen, Bo; Povlsen, Sebastian D

    2014-01-01

    Shoulder pain is very common in diabetic patients and often treated with steroid injections, with subsequent increases in blood glucose levels or the need for additional insulin being questioned. We report a case of significant and prolonged elevation of blood glucose levels and resultant insulin requirement in a type 1 diabetic man after a single 40 mg injection of triamcinolone for shoulder pain. Within 48 h, the shoulder pain as assessed by a visual analogue scale (0–10) was reduced to zero, but the elevated insulin requirements continued for 4 weeks after the injection. This finding suggests that steroid injections for shoulder pain in diabetics may not always be as safe as previously thought. We propose that medical practitioners advise their patients to monitor their glucose levels more carefully after such injections and that caution is exercised when considering administrating these injections to those who have poorly controlled blood glucose levels preinjection to avoid ketoacidosis. PMID:25199186

  16. Systemic Glucose Level Changes with a Carbohydrate-Restricted and Higher Protein Diet Combined with Exercise

    ERIC Educational Resources Information Center

    Bowden, Rodney G.; Lanning, Beth A.; Doyle, Eva I.; Slonaker, Becky; Johnston, Holly M.; Scanes, Georgene

    2007-01-01

    Objective: The authors' purpose in this study was to compare the effects of macronutrient intake on systemic glucose levels in previously sedentary participants who followed 1 of 4 diets that were either higher protein or high carbohydrate, while initiating an exercise program. Participants and Methods: The authors randomly assigned 94 sedentary…

  17. SERUM LEPTIN, ATHEROGENIC LIPIDS AND GLUCOSE LEVELS IN PATIENTS WITH SKIN TAGS

    PubMed Central

    Gorpelioglu, Canan; Erdal, Emel; Ardicoglu, Yasemin; Adam, Bahattin; Sarifakioglu, Evren

    2009-01-01

    Aim: To investigate the relationship between serum leptin, atherogenic lipid and glucose levels in patients with skin tags and healthy controls. Materials and Methods: A total of 58 patients, with at least three skin tags, aged 24 to 85 years, and 31 healthy controls aged 30 to 70 years, were examined in the present study. The subjects in all the groups were selected with statistically similar Body Mass Index (BMI). Fasting concentrations of plasma glucose, serum lipids including triglyceride, total cholesterol, and high-density lipoprotein cholesterol (HDL) and low-density lipoprotein cholesterol (LDL), HbA1c, and leptin were measured by enzyme-linked immunosorbent assay (ELISA). In addition, serum LDL level was calculated using Friedewald's formula. Results: There was no significant difference in age, sex, BMI, HbA1c, triglyceride, HDL and leptin levels between the groups. Skin tags group showed significantly higher levels of total cholesterol and LDL, when compared with the healthy controls groups (P < 0.01). In addition, regression analysis showed that leptin level was positively correlated to serum triglyceride level (r = 0.265, P = 0.044). Conclusion: Total cholesterol and LDL serum levels should be controlled in patients with skin tags. On the other hand, glucose, leptin and HbA1c serum levels may not be as important as is being considered in recent times. PMID:20049263

  18. Monitoring of glucose levels in mouse blood with noninvasive optical methods

    NASA Astrophysics Data System (ADS)

    Ullah, H.; Ahmed, E.; Ikram, M.

    2014-02-01

    We report the quantification/monitoring of glucose levels in a blood sample using optical diffuse reflectance (ODR) underlying variations in optical parameters with a white light source (at peak wavelength ˜600 nm and range 450-850 nm) and in blood in vivo using M-mode optical coherence tomography (OCT) in terms of the translational diffusion coefficient (DT). In the ODR experiments, we have investigated two types of mono-dispersive particles, i.e. polystyrene microspheres (PMSs) with diameters of 1.4 μm (variable concentrations) and 2.6 μm (fixed concentration) in a water phantom by observing changes in the reduced scattering coefficient. We believe that these differences in optical properties will be helpful for the understanding and optimal use of laser applications in blood glucometry without piercing the skin. In the OCT experiments, this idea of glucose monitoring was applied on an in vivo normal mouse without injection of glucose intravenously to provide the threshold levels by envisioning/identifying a blood vessel by speckle variance (SV-OCT) using a dorsal skinfold mouse windows chamber model. We report an average value of translation decorrelation time τT = 41.18 ± 1.92 ms and DT = 8.90 × 10-14 m2 s-1 underlying the dynamic light scattering (DLS). Our results have a potential application in the quantification of higher glucose levels in vivo administrated intravenously.

  19. The effect of dietary starch level on postprandial glucose and insulin concentrations in cats and dogs.

    PubMed

    Hewson-Hughes, Adrian K; Gilham, Matthew S; Upton, Sarah; Colyer, Alison; Butterwick, Richard; Miller, Andrew T

    2011-10-01

    A charge made against feeding dry foods to cats is that the high carbohydrate (i.e. starch) content results in high blood glucose levels which over time may have detrimental health effects. The present study determined the post-meal concentrations of plasma glucose and insulin in adult cats (seven males and four females) and dogs (Labrador retrievers; four males and five females) fed dry diets with low-starch (LS), moderate-starch (MS) or high-starch (HS) levels. In a cross-over design with at least 7 d between the test meals, plasma glucose and insulin concentrations were measured following a single meal of a LS, MS and HS diet (209 kJ/kg bodyweight). Only the HS diet resulted in significant post-meal increases in plasma glucose concentration in cats and dogs although the time-course profiles were different between the species. In cats, plasma glucose concentration was significantly increased above the pre-meal concentration from 11 h until 19 h after the meal, while in dogs, a significant increase above baseline was seen only at the 7 h time point. Plasma insulin was significantly elevated in dogs 4-8 h following the MS diet and 2-8 h after the HS diet. In cats, plasma insulin was significantly greater than baseline from 3-7 and 11-17 h after the HS diet. The time lag (approximately 11 h) between eating the HS diet and the subsequent prolonged elevation of plasma glucose concentration seen in cats may reflect metabolic adaptations that result in a slower digestive and absorptive capacity for complex carbohydrate. PMID:22005401

  20. Changes in glucose, insulin, and growth hormone levels associated with bedrest

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, J.; Leach, C. S.; Winget, C. M.; Goodwin, A. L.; Rambaut, P. C.

    1976-01-01

    Changes in plasma glucose, insulin, and growth hormone (HGH) resulting from exposure to 56 d of bedrest were determined in five healthy young male subjects. Changes in the daily levels of these factors for each subject were expressed as the mean of six blood samples per 24-h period. The level of HGH dropped after 10 d of bedrest, then showed a 1.5-fold increase at 20 d and subsequently decreased gradually reaching levels of 2.5 mg/ml/24 h, well below pre-bedrest controls of 4.2 mg/ml/24 h, by the 54th d. In spite of a marked increase in the daily plasma insulin levels during the first 30 d of bedrest, glucose levels remained unchanged. Beyond 30 d of bedrest, insulin began decreasing toward pre-bedrest levels and glucose followed with a similar reduction to below the control levels of 75 mg/100 ml/24 h on day 54. The daily mean changes reflect a change in the amplitude of the diurnal variation. The daily peak in plasma insulin shifted progressively to the late evening during the bedrest period.

  1. The effect of 6-aminonicotinamide on the levels of brain amino acids and glucose, and their labeling with 14C after injection of (U-14C) glucose

    SciTech Connect

    Gaitonde, M.K.; Lewis, L.P.; Evans, G.; Clapp, A.

    1981-10-01

    The brains of rats paralysed at 4 hr after the administration of 6-aminonicotinamide were found to contain decreased levels of glutamate and gamma-aminobutyrate. The glucose content of the brain of the treated rats was several fold higher than in controls. The incorporation of 14C into brain amino acids at 30 min after the injection of (U-14C)glucose was decreased by 16%: this was attributed to mainly decreased labeling of glutamate and associated amino acids. The results are discussed in the light of previous findings that the administration of 6-aminonicotinamide resulted in the blockade of the direct oxidation of glucose by the pentose phosphate pathway.

  2. Blood optical properties at various glucose level values in THz frequency range

    NASA Astrophysics Data System (ADS)

    Gusev, S. I.; Borovkova, M. A.; Strepitov, M. A.; Khodzitsky, M. K.

    2015-07-01

    The number of diabetics is rapidly growing every day in all parts of the world. By the year 2010, the number of patients suffering from diabetes had amounted to more than 230 million people, which is estimated as 3.5% of the whole world adult population [1]. According to expert forecasts, this number is projected to double by the year 2025, which is going to be 7% of whole Earth population. It was calculated that every 10 seconds someone in the world dies due to diabetes and its complications, which is 3 million people per year. The average life expectancy of children with diabetes is less than 28.3 years of onset. Diabetes is considered to be the fourth most common cause of death in industrialized countries. Vascular complications due to diabetes cause early disability and high mortality. Mortality from heart diseases and strokes is 2-3 times more likely for patients suffering from diabetes, whereas blindness, nephropathy and lower limbs gangrene happen respectively 10, 12-15 times, and almost 20 times more often for diabetics than general population. The number and strength of complications depend directly on the blood glucose level control quality. At the moment, the blood glucose level measurements are performed by glucometers [2,3]. This method requires that a patient makes a finger puncture for every measurement. About five punctures per day should be done for proper glucose monitoring, which is about 1,800 punctures per year. Besides, each measurement by glucometer requires a distinct test strip. Expenses for 1,800 test strips could be estimated as about 450 euros per year. It is also necessary to take into account that each puncture has a risk of blood poisoning. Using non-invasive techniques for glucose level control could reduce the amount of possible risky manipulations by 1800 per year. Moreover, it is worth mentioning that only eight of ten fingers are suitable for puncturing, and the constant skin damage which cannot be avoided is quite annoying for

  3. Exposure to low levels of hydrogen sulfide elevates circulating glucose in maternal rats

    SciTech Connect

    Hayden, L.J.; Goeden, H.; Roth, S.H. )

    1990-09-01

    Although the lethal effect of hydrogen sulfide (H{sub 2}S) has long been known, the results of exposure to low levels of H{sub 2}S have not been well documented. Rat dams and pups were exposed to low levels of H{sub 2}S (less than or equal to 75 ppm) from d 1 of gestation until d 21 postpartum and analyzed for changes in circulating enzymatic activity and metabolites. Blood glucose was significantly elevated in maternal blood on d 21 postpartum at all exposure levels. This increase in glucose was accompanied by a possible decrease in serum triglyceride in the pups and in the dams on d 21 postpartum. There was no evidence of alterations in serum alkaline phosphatase, lactate dehydrogenase, or serum glutamate oxaloacetate transaminase.

  4. Xerostomia and salivary levels of glucose and urea in patients with diabetes.

    PubMed

    Ivanovski, K; Naumovski, V; Kostadinova, M; Pesevska, S; Drijanska, K; Filipce, V

    2012-01-01

    Examination of the composition of saliva in patients with diabetes may be useful for understanding why oral manifestations occur and how they should be treated. The purpose of this study was to determine the degree of severity of xerostomia, salivary concentrations of glucose and urea in patients with insulin-dependent diabetes, and to determine the correlation between xerostomia and salivary glucose levels. For the realization of this goal, the study included 60 patients of both sexes aged 30-70 years. The sample was divided into two groups. The first, experimental, group consisted of 30 patients who had insulin-dependent diabetes mellitus. The control group consisted of 30 subjects who were not suffering from diabetes. To determine the degree of severity of xerostomia among all respondents a questionnaire recommended by Carda was used. From all patients in both the control and experimental group, total saliva was collected for 10 minutes for biochemical analysis in accordance with the recommendations of Navazesh. Salivary glucose was determined by using the enzymatic method with a hexokinase (mmol/l), and salivary urea by using the kinetic method with urease and glutamate dehydrogenase (mmol/l). Varying degrees of xerostomia were noticed in 80% of the experimental group and only 10% of the control group. In diabetics, we found significantly higher levels of urea (2.36 mmol/l) and glucose (0.022 mmol/l) in the saliva compared with the values of these parameters (1.48 mmol/l, 0017 mmol/l) in the control group. Based on these results, we concluded that diabetes is a disease that causes xerostomia and there is a significant correlation between the degree of xerostomia and the salivary level of glucose.

  5. Daily walking decreases casual glucose level among pregnant women in the second trimester.

    PubMed

    Hayashi, Ayako; Matsuzaki, Masayo; Kusaka, Momoko; Shiraishi, Mie; Haruna, Megumi

    2016-01-01

    The objective of this study was to explore the relationship between carbohydrate metabolism and the number of steps walked daily, as evaluated by accelerometer, among Japanese women in the second trimester of pregnancy. This longitudinal study was conducted at a university hospital in Tokyo, Japan, from August 2012 to January 2013. Healthy pregnant women at 14 to 18 gestational weeks were recruited. Participants wore accelerometers on the waist for 4 weeks. Casual glucose and hemoglobin A1c (HbA1c) levels were compared between two groups based on whether participants habitually walked ≥ 6,000 steps/day or < 6,000 steps/day. Fifty-one pregnant women were included in the present study; data from 35 were analyzed. There were 22 women in the group that habitually walked ≥ 6,000 steps/day and 13 in the group habitually walking < 6,000 steps/day. Although the median serum casual glucose level at the end of the investigation was 90.0 mg/dL in the group walking < 6,000 steps/day, the level in the group walking ≥ 6000 steps/day was 83.5 mg/dL (p = 0.01). HbA1c levels were not significantly different between the two groups. Our results suggest that walking as a daily habitual physical activity is effective for controlling casual glucose levels in the second trimester of pregnancy. PMID:27594297

  6. Δ(9)-THC modulation of fatty acid 2-hydroxylase (FA2H) gene expression: possible involvement of induced levels of PPARα in MDA-MB-231 breast cancer cells.

    PubMed

    Takeda, Shuso; Ikeda, Eriko; Su, Shengzhong; Harada, Mari; Okazaki, Hiroyuki; Yoshioka, Yasushi; Nishimura, Hajime; Ishii, Hiroyuki; Kakizoe, Kazuhiro; Taniguchi, Aya; Tokuyasu, Miki; Himeno, Taichi; Watanabe, Kazuhito; Omiecinski, Curtis J; Aramaki, Hironori

    2014-12-01

    We recently reported that Δ(9)-tetrahydrocannabinol (Δ(9)-THC), a major cannabinoid component in Cannabis Sativa (marijuana), significantly stimulated the expression of fatty acid 2-hydroxylase (FA2H) in human breast cancer MDA-MB-231 cells. Peroxisome proliferator-activated receptor α (PPARα) was previously implicated in this induction. However, the mechanisms mediating this induction have not been elucidated in detail. We performed a DNA microarray analysis of Δ(9)-THC-treated samples and showed the selective up-regulation of the PPARα isoform coupled with the induction of FA2H over the other isoforms (β and γ). Δ(9)-THC itself had no binding/activation potential to/on PPARα, and palmitic acid (PA), a PPARα ligand, exhibited no stimulatory effects on FA2H in MDA-MB-231 cells; thus, we hypothesized that the levels of PPARα induced were involved in the Δ(9)-THC-mediated increase in FA2H. In support of this hypothesis, we herein demonstrated that; (i) Δ(9)-THC activated the basal transcriptional activity of PPARα in a concentration-dependent manner, (ii) the concomitant up-regulation of PPARα/FA2H was caused by Δ(9)-THC, (iii) PA could activate PPARα after the PPARα expression plasmid was introduced, and (iv) the Δ(9)-THC-induced up-regulation of FA2H was further stimulated by the co-treatment with L-663,536 (a known PPARα inducer). Taken together, these results support the concept that the induced levels of PPARα may be involved in the Δ(9)-THC up-regulation of FA2H in MDA-MB-231 cells.

  7. Correlation of hemoglobin A1C level with surgical outcomes: Can tight perioperative glucose control reduce infection and cardiac events?

    PubMed

    Shaw, Palma; Saleem, Taimur; Gahtan, Vivian

    2014-12-01

    "Optimal" control of serum glucose levels is an important principle in the successful management of diabetes mellitus. Conversely, poorly controlled serum glucose levels are associated with negative sequelae, including accelerated progression of cardiovascular disease, increased mortality, and increased perioperative complications. The importance of glycemic control as a part of appropriate perioperative management is reviewed and target values are recommended. PMID:26073825

  8. Effects of cabergoline on blood glucose levels in type 2 diabetic patients

    PubMed Central

    Bahar, Adele; Kashi, Zahra; Daneshpour, Ezzatossadat; Akha, Ozra; Ala, Shahram

    2016-01-01

    Abstract Background: Cabergoline is a long-acting agonist of dopamine, which has a high affinity to dopamine receptors (type 2). Treatment using a dopaminergic agonist reduces hypothalamic stimulation that increases during liver gluconeogenesis, lipids synthesis, and insulin resistance. Our aim was to evaluate the effects of cabergoline on blood glucose levels in patients with type 2 diabetes mellitus (DM). Methods: This study was a double-blind, controlled clinical trial in patients with type 2 DM. The patients received treatments of a placebo (control group; n = 20) or cabergoline 0.5 mg (cabergoline group; n = 20) using the sequential method, once per week for 3 months, while using previously prescribed glucose-lowering drugs. All tests, such as levels of fasting blood glucose, 2-hour post-prandial glucose, complete lipid profile, prolactin, alanine amino transferase, aspartate amino transferase, creatinine, blood urea nitrogen, and serum insulin, and homeostasis model assessment insulin resistance were measured at baseline and at 3-month follow-up. Results: The fasting blood sugar levels were significantly different between placebo and cabergoline groups after 3 months of treatment (P = 0.004). The prolactin levels were significantly different from beginning of the treatment to 6 months later (P = 0.001). In the cabergoline group, there was a significant decrease in glycosylated hemoglobin (HbA1C) levels after 3 months (P = 0.003). Overall, 65%and 45% patients in the cabergoline and control groups, respectively, responded to treatment (HbA1C<7%). Conclusion: Cabergoline may be useful as a long-acting antidiabetic agent in patients with type 2 diabetes mellitus. PMID:27749534

  9. The five glucose-6-phosphatase paralogous genes are differentially regulated by insulin alone or combined with high level of amino acids and/or glucose in trout hepatocytes.

    PubMed

    Lucie, Marandel; Weiwei, Dai; Stéphane, Panserat; Sandrine, Skiba-Cassy

    2016-04-01

    A recent analysis of the newly sequenced rainbow trout (Oncorhynchus mykiss) genome suggested that duplicated gluconeogenic g6pc paralogues, fixed in this genome after the salmonid-specific 4th whole genome duplication, may have a role in the setting up of the glucose-intolerant phenotype in this carnivorous species. This should be due to the sub- or neo-functionalization of their regulation. In the present short communication we thus addressed the question of the regulation of these genes by insulin, hormone involved in the glucose homeostasis, and its interaction with glucose and amino acids in vitro. The stimulation of trout hepatocytes with insulin revealed an atypical up-regulation of g6pcb2 ohnologues and confirmed the sub- or neo-functionalization of the five g6pc genes at least at the regulatory level. Intriguingly, when hepatocytes were cultured with high levels of glucose and/or AAs in presence of insulin, most of the g6pc paralogues were up-regulated. It strongly suggested a cross-talk between insulin and nutrients for the regulation of these genes. Moreover these results strengthened the idea that g6pc duplicated genes may significantly contribute to the setting up of the glucose-intolerant phenotype in trout via their atypical regulation by insulin alone or in interaction with nutrients. These findings open new perspectives to better understand in vivo glucose-intolerant phenotype in trout fed a high carbohydrate diet.

  10. Colorimetric visualization of glucose at the submicromole level in serum by a homogenous silver nanoprism-glucose oxidase system.

    PubMed

    Xia, Yunsheng; Ye, Jingjing; Tan, Kanghui; Wang, Jiajing; Yang, Guang

    2013-07-01

    In this study, we design a homogeneous system consisting of Ag nanoprisms and glucose oxidase (GOx) for simple, sensitive, and low-cost colorimetric sensing of glucose in serum. The unmodified Ag nanoprisms and GOx are first mixed with each other. Glucose is then added in the homogeneous mixture. Finally, the nanoplates are etched from triangle to round by H2O2 produced by the enzymatic oxidation, which leads to a more than 120 nm blue shift of the surface plasmon resonance (SPR) absorption band of the Ag nanoplates. This large wavelength shift can be used not only for visual detection (from blue to mauve) of glucose by naked eyes but for reliable and convenient glucose quantification in the range from 2.0 × 10(-7) to 1.0 × 10(-4) M. The detection limit is as low as 2.0 × 10(-7) M, because the used Ag nanoprisms possess (1) highly reactive edges/tips and (2) strongly tip sharpness and aspect ratio dependent SPR absorption. Owing to ultrahigh sensitivity, only 10-20 μL of serum is enough for a one-time determination. The proposed glucose sensor has great potential in the applications of point-of-care diagnostics, especially for third-world countries where high-tech diagnostics aids are inaccessible to the bulk of the population. PMID:23706061

  11. Plasma Lactate Levels Increase during Hyperinsulinemic Euglycemic Clamp and Oral Glucose Tolerance Test.

    PubMed

    Berhane, Feven; Fite, Alemu; Daboul, Nour; Al-Janabi, Wissam; Msallaty, Zaher; Caruso, Michael; Lewis, Monique K; Yi, Zhengping; Diamond, Michael P; Abou-Samra, Abdul-Badi; Seyoum, Berhane

    2015-01-01

    Insulin resistance, which plays a central role in the pathogenesis of type 2 diabetes (T2D), is an early indicator that heralds the occurrence of T2D. It is imperative to understand the metabolic changes that occur at the cellular level in the early stages of insulin resistance. The objective of this study was to determine the pattern of circulating lactate levels during oral glucose tolerance test (OGTT) and hyperinsulinemic euglycemic clamp (HIEC) study in normal nondiabetic subjects. Lactate and glycerol were determined every 30 minutes during OGTT and HIEC on 22 participants. Lactate progressively increased throughout the HIEC study period (P < 0.001). Participants with BMI < 30 had significantly higher mean M-values compared to those with BMI ≥ 30 at baseline (P < 0.05). This trend also continued throughout the OGTT. In addition, those with impaired glucose tolerance test (IGT) had significantly higher mean lactate levels compared to those with normal glucose tolerance (P < 0.001). In conclusion, we found that lactate increased during HIEC study, which is a state of hyperinsulinemia similar to the metabolic milieu seen during the early stages in the development of T2D. PMID:25961050

  12. Morning cortisol levels and glucose metabolism parameters in moderate and severe obstructive sleep apnea patients.

    PubMed

    Bozic, Josko; Galic, Tea; Supe-Domic, Daniela; Ivkovic, Natalija; Ticinovic Kurir, Tina; Valic, Zoran; Lesko, Josip; Dogas, Zoran

    2016-09-01

    Obstructive sleep apnea (OSA) has been associated with dysregulation of the hypothalamic-pituitary-adrenal axis and alterations in glucose metabolism with increased risk for type 2 diabetes. The aim of the current study was to compare morning plasma cortisol levels and glucose metabolism parameters between moderate (apnea-hypopnea index (AHI): 15-30 events/h) and severe OSA patients (AHI >30 events/h), with respective controls. A total of 56 male OSA patients, 24 moderate (AHI = 21.1 ± 5.3) and 32 severe (AHI = 49.7 ± 18.1), underwent a full-night polysomnography, oral glucose tolerance test (OGTT), and measurement of morning plasma cortisol levels. These groups were compared to 20 matched subjects in a control group. Morning plasma cortisol levels were statistically lower in severe OSA group than in moderate OSA and control groups (303.7 ± 93.5 vs. 423.9 ± 145.1 vs. 417.5 ± 99.8 pmol/L, P < 0.001). Significant negative correlations were found between morning plasma cortisol levels and AHI (r = -0.444, P = 0.002), as well as oxygen desaturation index (r = -0.381, P = 0.011). Fasting plasma glucose (5.0 ± 0.5 vs. 5.4 ± 0.7 vs. 4.9 ± 0.6 mmol/L, P = 0.009) was higher in the severe OSA group compared to moderate OSA and controls. Homeostasis model assessment insulin resistance (HOMA-IR) was higher in the severe OSA group compared to moderate OSA and controls (4.6 ± 3.7 vs. 2.7 ± 2.0 and 2.2 ± 1.8, respectively, P = 0.006). In conclusion, our study showed that morning plasma cortisol levels measured at 8 a.m. were significantly lower in severe OSA patients than those in moderate OSA group and controls. Morning plasma cortisol levels showed a negative correlation with AHI and oxygen desaturation index. Additionally, this study confirmed the evidence of glucose metabolism impairment in moderate and severe OSA patients, with more pronounced effect in the severe OSA patients group. PMID:27000083

  13. Plasma glucose, lactate, sodium, and potassium levels in children hospitalized with acute alcohol intoxication.

    PubMed

    Tõnisson, Mailis; Tillmann, Vallo; Kuudeberg, Anne; Väli, Marika

    2010-09-01

    The aim of our research was to study prevalence of changes in plasma levels of lactate, potassium, glucose, and sodium in relation to alcohol concentration in children hospitalized with acute alcohol intoxication (AAI). Data from 194 under 18-year-old children hospitalized to the two only children's hospital in Estonia over a 2-year period were analyzed. The pediatrician on call filled in a special form on the clinical symptoms of AAI; a blood sample was drawn for biochemical tests, and a urine sample taken to exclude narcotic intoxication. The most common finding was hyperlactinemia occurring in 66% of the patients (n=128) followed by hypokalemia (<3.5 mmol/L) in 50% (n=97), and glucose above of reference value (>6.1 mmol/L) in 40.2% of the children (n=78). Hypernatremia was present in five children. In conclusion, hyperlactinemia, hypokalemia, and glucose levels above of reference value are common biochemical findings in children hospitalized with acute AAI. PMID:20846615

  14. Conditioning causes an increase in glucose transporter-4 levels in mononuclear cells in sled dogs.

    PubMed

    Schnurr, Theresia M; Reynolds, Arleigh J; Gustafson, Sally J; Duffy, Lawrence K; Dunlap, Kriya L

    2014-10-01

    This study was designed to investigate the effects of physical conditioning on the expression of the insulin sensitive glucose transporter-4 protein (GLUT4) on mononuclear cells and HOMA-IR levels in dogs and compared to results reported in human skeletal muscle and the skeletal muscle of rodent models. Blood was sampled from conditioned dogs (n = 8) and sedentary dogs (n = 8). The conditioned dogs were exercised four months prior the experiment and were following a uniform training protocol, whereas the sedentary dogs were not. GLUT4 expression in mononuclear cells and plasma insulin levels were measured using commercially available enzyme-linked immunosorbent assay (ELISA). Blood glucose levels were determined using blood plasma. HOMA-IR was calculated using plasma insulin and blood glucose levels using the linear approximation formula. Our results indicate that the state of conditioning had a significant effect on the GLUT4 expression at the surface of mononuclear cells. HOMA-IR was also affected by conditioning in dogs. GLUT4 levels in mononuclear cells of sled dogs were inversely correlated with the homeostasis model assessment of insulin sensitivity. This study demonstrates that conditioning increases GLUT4 levels in mononuclear cells of sled dogs as it has been previously reported in skeletal muscle. Our results support the potential of white blood cells as a proxy tissue for studying insulin signaling and may lead to development of a minimally invasive and direct marker of insulin resistance. This may be the first report of GLUT4 in mononuclear cells in response to exercise and measured with ELISA.

  15. Conditioning causes an increase in Glucose Transporter-4 levels in mononuclear cells in sled dogs

    PubMed Central

    Schnurr, Theresia M.; Reynolds, Arleigh J.; Gustafson, Sally J.; Duffy, Lawrence K.; Dunlap, Kriya L.

    2014-01-01

    This study was designed to investigate the effects of physical conditioning on the expression of the insulin sensitive glucose transporter 4 protein (GLUT4) on mononuclear cells and HOMA-IR levels in dogs and compared to results reported in human skeletal muscle and the skeletal muscle of rodent models. Blood was sampled from conditioned dogs (n=8) and sedentary dogs (n=8). The conditioned dogs were exercised four months prior the experiment and were following a uniform training protocol, whereas the sedentary dogs were not. GLUT4 expression in mononuclear cells and plasma insulin levels were measured using commercially available enzyme-linked immunosorbent assay (ELISA). Blood glucose levels were determined using blood plasma. HOMA-IR was calculated using plasma insulin and blood glucose levels using the linear approximation formula. Our results indicate that the state of conditioning had a significant effect on the GLUT4 expression at the surface of mononuclear cells. HOMA-IR was also affected by conditioning in dogs. GLUT4 levels in mononuclear cells of sled dogs were inversely correlated with the homeostasis model assessment of insulin sensitivity. This study demonstrates that conditioning increases GLUT4 levels in mononuclear cells of sled dogs as it has been previously reported in skeletal muscle. Our results support the potential of white blood cells as a proxy tissue for studying insulin signaling and may lead to development of a minimally invasive and direct marker of insulin resistance. This may be the first report of GLUT4 in mononuclear cells in response to exercise and measured with ELISA. PMID:25236492

  16. Inverse relationship between serum osteocalcin levels and nonalcoholic fatty liver disease in postmenopausal Chinese women with normal blood glucose levels

    PubMed Central

    Luo, Yu-qi; Ma, Xiao-jing; Hao, Ya-ping; Pan, Xiao-ping; Xu, Yi-ting; Xiong, Qin; Bao, Yu-qian; Jia, Wei-ping

    2015-01-01

    Aim: Osteocalcin is involved in the progression of nonalcoholic fatty liver disease (NAFLD) in animal models and humans. In this study we investigated the relationship between serum osteocalcin levels and NAFLD in postmenopausal Chinese women. Methods: A total of 733 postmenopausal women (age range: 41–78 years) with normal blood glucose levels were enrolled in this cross-sectional study. Women taking lipid-lowering or anti-hypertensive drugs were excluded. Serum osteocalcin levels were assessed using an electrochemiluminescence immunoassay. The degree of NAFLD progression for each subject was assessed through ultrasonography. The fatty liver index (FLI) of each subject was calculated to quantify the degree of liver steatosis. Results: The median level of serum osteocalcin for all subjects enrolled was 21.99 ng/mL (interquartile range: 17.84–26.55 ng/mL). Subjects with NAFLD had significantly lower serum osteocalcin levels (18.39 ng/mL; range: 16.03–23.64 ng/mL) compared with those without NAFLD (22.31 ng/mL; range: 18.55–27.06 ng/mL; P<0.01). Serum osteocalcin levels decreased with incre¬mental changes in the FLI value divided by the quartile (P-value for trend<0.01). The serum osteocalcin levels showed a negative correlation with the FLI values, even after adjusting for confounding factors (standardized β=−0.124; P<0.01). Binary logistic regression analysis identified an individual's serum osteocalcin level as an independent risk factor for NAFLD (odds ratio: 0.951; 95% confidence interval: 0.911–0.992; P=0.02). Conclusion: Serum osteocalcin levels are inversely correlated with NAFLD in postmenopausal Chinese women with normal blood glucose levels. PMID:26567728

  17. One-Hour Postload Plasma Glucose Levels Are Associated with Kidney Dysfunction

    PubMed Central

    Succurro, Elena; Arturi, Franco; Lugarà, Marina; Grembiale, Alessandro; Fiorentino, Teresa Vanessa; Caruso, Vittoria; Andreozzi, Francesco; Sciacqua, Angela; Hribal, Marta Letizia; Perticone, Francesco

    2010-01-01

    Background and objectives: A cutoff of 155 mg/dl for 1-hour postload plasma glucose (1hPG) during the oral glucose tolerance test (OGTT) is able to identify patients who are at high risk for type 2 diabetes and vascular atherosclerosis. We aimed to examine whether individuals with 1hPG ≥155 mg/dl are also at increased risk for chronic kidney disease (CKD). Design, setting, participants, & measurements: Atherosclerosis risk factors, OGTT, and estimated GFR by Chronic Kidney Disease Epidemiology Collaboration equation were analyzed in 1075 white individuals without diabetes. Results: The area under the receiver operating characteristic curve for 1hPG was the highest (0.700) compared with the areas under the receiver operating characteristic curve of 0, 30-minute, and 2-hour glucose concentrations. Individuals with 1hPG ≥155 mg/dl had a worse cardiometabolic risk profile, exhibiting significantly higher body mass index, BP, triglycerides, and fasting insulin levels and lower HDL, IGF-1 levels, and insulin sensitivity, than individuals with 1hPG <155 mg/dl. Estimated GFR was significantly lower in individuals with 1hPG ≥155 mg/dl. In a logistic regression model adjusted for age and gender, individuals with 1hPG ≥155 mg/dl showed an increased risk for CKD compared with individuals with 1hPG <155 mg/dl. When the logistic regression analysis was restricted to individuals who had normal glucose tolerance, those with 1hPG ≥155 mg/dl showed a higher risk for CKD compared with individuals with 1hPG <155 mg/dl. Conclusions: These data suggest that a cutoff point of 155 mg/dl for the 1hPG during OGTT may be helpful in the identification of individuals who are at increased risk for CKD. PMID:20595688

  18. Fasting Glucose Levels Correlate with Disease Severity of Guillain-Barré Syndrome

    PubMed Central

    Wang, Ying; Guan, Yun; Press, Rayomand; Zhu, Jie; Zhang, Hong-Liang

    2015-01-01

    Objective A potential association between diabetes and Guillain-Barré syndrome (GBS) has been indicated by a few case studies. We retrospectively analyzed the clinical features of a large cohort of GBS patients to explore the relationship between the level of fasting plasma glucose (FPG) obtained in the acute phase at admission and the severity of GBS. Methods Three hundred and four GBS patients were divided into two groups, one with normal FPG and the other with high FPG levels according to the international standards of FPG. Results The GBS disability scale score was positively, the Medical Research Council (MRC) sum score was negatively correlated to the level of FPG, but not to blood HBA1c or CSF glucose concentrations. A relatively higher FPG level was observed in older and younger GBS patients, and more often in those with cranial nerve involvement, autonomic deficit, dyspnea and ventilator dependence than in patients without these clinical characteristics. Importantly, higher levels of FPG at admission were associated with poorer short-term prognosis measured by the MRC sum score and the GBS disability scale at discharge. Conclusions Our data demonstrates that FPG in the acute phase of GBS correlates with the severity of GBS and may predict the short-term prognosis of GBS. PMID:26684748

  19. Response of lactate metabolism in brain glucosensing areas of rainbow trout (Oncorhynchus mykiss) to changes in glucose levels.

    PubMed

    Otero-Rodiño, Cristina; Librán-Pérez, Marta; Velasco, Cristina; Álvarez-Otero, Rosa; López-Patiño, Marcos A; Míguez, Jesús M; Soengas, José L

    2015-12-01

    There is no evidence in fish brain demonstrating the existence of changes in lactate metabolism in response to alterations in glucose levels. We induced in rainbow trout through intraperitoneal (IP) treatments, hypoglycaemic or hyperglycaemic changes to assess the response of parameters involved in lactate metabolism in glucosensing areas like hypothalamus and hindbrain. To distinguish those effects from those induced by peripheral changes in the levels of metabolites or hormones, we also carried out intracerebroventricular (ICV) treatments with 2-deoxy-D-glucose (2-DG, a non-metabolizable glucose analogue thus inducing local glucopenia) or glucose. Finally, we also incubated hypothalamus and hindbrain in vitro in the presence of increased glucose concentrations. The changes in glucose availability were in general correlated to changes in the amount of lactate in both areas. However, when we assessed in these areas the response of parameters related to lactate metabolism, the results obtained were contradictory. The increase in glucose levels did not produce in general the expected changes in those pathways with only a minor increase in their capacity of lactate production. The decrease in glucose levels was, however, more clearly related to a decreased capacity of the pathways involved in the production and use of lactate, and this was especially evident after ICV treatment with 2-DG in both areas. In conclusion, the present results while addressing the existence of changes in lactate metabolism after inducing changes in glucose levels in brain glucosensing areas only partially support the possible existence of an astrocyte-neuron lactate shuttle in hypothalamus and hindbrain of rainbow trout relating glucose availability to lactate production and use.

  20. Meta-analysis investigating associations between healthy diet and fasting glucose and insulin levels and modification by loci associated with glucose homeostasis in data from 15 cohorts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whether loci that influence fasting glucose (FG) and fasting insulin (FI) levels, as identified by genome-wide association studies, modify associations of diet with FG or FI is unknown. We utilized data from 15 US and European cohort studies comprising 51,289 persons without diabetes to test whether...

  1. An inverse U-shaped association of late and peak insulin levels during an oral glucose load with glucose intolerance in a Japanese population: a cross-sectional study.

    PubMed

    Takahara, Mitsuyoshi; Katakami, Naoto; Matsuoka, Taka-Aki; Noguchi, Midori; Shimomura, Iichiro

    2015-01-01

    The current study investigated the association of post-load insulin levels with glucose tolerance in a Japanese population. A total of 1450 Japanese employees who underwent a 75-g oral glucose tolerance test (OGTT) were included. Glucose tolerance was assessed by 120-min glucose levels during a 75-g OGTT. A penalized cubic regression spline model analysis revealed that the 60- and 120-min insulin levels, but not 0- or 30-min insulin levels, had an inverse U-shaped relationship to the 120-min glucose level. Furthermore, peak insulin level followed an inverse U shape in relation to the 120-min glucose level, whereas the peak of insulin appeared at a later point in time as the 120-min glucose level increased. These associations were similarly observed in both obese and non-obese subgroups, although obesity was associated with higher insulin levels. Peak insulin levels also demonstrated an inverse U shape in association with 0-min glucose levels and indices of β cell function, assessed by the disposition index and the β-cell function index. In conclusion, peak insulin levels followed an inverse U shape in relation to glucose intolerance in a Japanese population, whereas the impairment of glucose tolerance was associated with a delay in the time to reach peak insulin levels.

  2. Effect of moderate level x-radiation to brain on cerebral glucose utilization

    SciTech Connect

    Ito, M.; Patronas, N.J.; Di Chiro, G.; Mansi, L.; Kennedy, C.

    1986-07-01

    The effect of x-radiation in doses used in treatment of brain malignancies has previously been established largely by histologic examination of the tissue or by observation of a deficit in function. At moderate dose levels such effects are usually delayed and are vascular in origin. We have used the 2-(/sup 14/C)deoxyglucose method for the quantitative measurement of local cerebral glucose utilization to learn whether x-radiation administered to rat brain in a dose below that which is known to result in any histologic change may nevertheless affect the brain's local rates of glucose utilization. Measurements were made 4 days and 4 weeks after exposure of groups of rats to 1500 rad. Rates of glucose utilization in 54 gray and eight white matter structures in both groups were compared with rates in sham-irradiated controls. Statistically significantly lower rates were found in 16 structures in rats 4 days after radiation and in 25 structures 4 weeks after radiation exposure. A weighted average rate for the brain as a whole was approximately 15% below that of the controls for both radiated groups, but this difference was short of being of statistical significance. It is clear from this study that the metabolic rates of some brain structures are reduced following moderate doses of x-radiation.

  3. The Effect of Abelmoschus Esculentus on Blood Levels of Glucose in Diabetes Mellitus

    PubMed Central

    Khosrozadeh, Maryam; Heydari, Naval; Abootalebi, Malihe

    2016-01-01

    Background: Diabetes mellitus is a metabolic disorder that results in hyperglycemia. According to the statistics of the International Diabetes Federation (IDF), this problem has a fast growing prevalence and, unfortunately, leaves permanent complications on different body systems. For this reasons, nowadays attentions has been paid to the traditional medicine such as Okra (Abelmoscus esculentus). The aim of this study was the evaluation of the effect of Okra (Abelmoscus esculentus) on blood levels of glucose in diabetes. Methods: This is a review article, which was obtained by a search in databases such as PubMed, Google Scholar, and Magiran by using keywords such as diabetes, Okra, and hypoglycemic effect. Results: Various studies on Okra (Abelmoscus esculentus) showed that Abelmoscus esculentus (AE)/Okra extract has a hypoglycemic effect that helps decrease blood glucose level. Its properties can be a useful remedy to manage diabetes mellitus. In addition, it leads to inhibition of cholesterol absorption and subsequently decreases the level of lipid and fat in the blood. The results of an investigation on diabetic mice by using this material has shown the same effect and confirmed this conclusion. Conclusion: Based on the positive effects of Okra on reducing blood sugar level, the widespread use of this plant is recommended. Clearly, further research is required. PMID:27516694

  4. Interleukin-1β (IL-1β) increases pain behavior and the blood glucose level: possible involvement of glucocorticoid system.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Choi, Seong-Soo; Suh, Hong-Won

    2013-10-01

    The possible involvement of glucocorticoid system in interleukin-1β (IL-1β)-induced nociception and the blood glucose level was studied in ICR mice. In the first experiment, mice were treated intrathecally (i.t.) with IL-1β (100 pg). Corticotrophin releasing hormone (CRH) mRNA (hypothalamus) and c-Fos mRNA (pituitary gland, spinal cord, and the adrenal gland) levels were measured at 30, 60 and 120 min after IL-1β administration. We found that i.t. injection with IL-1β increased CRH mRNA level in the hypothalamus. The IL-1β administered i.t. elevated c-Fos mRNA levels in the spinal cord, pituitary and adrenal glands. Furthermore, i.t. administration of IL-1β significantly increased the plasma corticosterone level up to 60 min. In addition, the adrenalectomy caused the reductions of the blood glucose level and pain behavior induced by IL-1β injected i.t. in normal and D-glucose-fed groups. Furthermore, intraperitoneal (i.p.) pretreatment with RU486 (100mg/kg) attenuated the blood glucose level and pain behavior induced by IL-1β administered i.t. in normal and D-glucose-fed groups. Our results suggest that IL-1β administered i.t. increases the blood glucose level and pain behavior via an activation of the glucocorticoid system. PMID:23773309

  5. Involvement of α(2)-adrenergic receptor in the regulation of the blood glucose level induced by immobilization stress.

    PubMed

    Kang, Yu-Jung; Sim, Yun-Beom; Park, Soo-Hyun; Sharma, Naveen; Suh, Hong-Won

    2015-01-01

    The blood glucose profiles were characterized after mice were forced into immobilization stress with various exposure durations. The blood glucose level was significantly enhanced by immobilization stress for 30 min or 1 h, respectively. On the other hand, the blood glucose level was not affected in the groups which were forced into immobilization stress for 2 or 4 h. We further examined the effect of yohimbine (an α2-adrenergic receptor antagonist) administered systemically or centrally in the immobilization stress model. Mice were pretreated intraperitoneally (i.p.; from 0.5 to 5 mg/kg), intracerebroventricularly (i.c.v.; from 1 to 10 µg/5 µl), or intrathecally (i.t.; from 1 to 10 µg/5 µl) with yohimbine for 10 min and then, forced into immobilization stress for 30 min. The blood glucose level was measured right after immobilization stress. We found that up-regulation of the blood glucose level induced by immobilization stress was abolished by i.p. pretreatment with yohimbine. And the immobilization stress-induced blood glucose level was not inhibited by i.c.v. or i.t. pretreatment with yohimbine at a lower dose (1 µg/5 µl). However, immobilization stress-induced blood glucose level was significantly inhibited by i.c.v. or i.t. pretreatment with yohimbine at higher doses (5 and 10 µg/5 µl). In addition, the i.p. (5 mg/kg), i.c.v. (10 µg/5 µl), or i.t. (10 µg/5 µl) pretreatment with yohimbine reduced hypothalamic glucose transporter 4 expression. The involvement of α2-adrenergic receptor in regulation of immobilization stress- induced blood glucose level was further confirmed by the i.p, i.c.v, or i.t pretreatment with idazoxan, another specific α2-adrenergic receptor antagonist. Finally, i.p., i.c.v., or i.t. pretreatment with yohimbine attenuated the blood glucose level in D-glucose-fed model. We suggest that α2-adrenergic receptors located at the peripheral, the brain and the spinal cord play important roles in the up

  6. The association between glucose levels and hospital outcomes in patients with acute exacerbations of chronic obstructive pulmonary disease

    PubMed Central

    Islam, Ebtesam A.; Limsuwat, Chok; Nantsupawat, Teerapat; Berdine, Gilbert G.; Nugent, Kenneth M.

    2015-01-01

    BACKGROUND: Corticosteroids used for chronic obstructive pulmonary disease (COPD) exacerbations can cause hyperglycemia in hospitalized patients, and hyperglycemia may be associated with increased mortality, length of stay (LOS), and re-admissions in these patients. MATERIALS AND METHODS: We did three retrospective studies using charts from July 2008 through June 2009, January 2006 through December 2010, and October 2010 through March 2011. We collected demographic and clinical information, laboratory results, radiographic results, and information on LOS, mortality, and re-admission. RESULTS: Glucose levels did not predict outcomes in any of the studied cohorts, after adjustment for covariates in multivariable analysis. The first database included 30 patients admitted to non-intensive care unit (ICU) hospital beds. Six of 20 non-diabetic patients had peak glucoses above 200 mg/dl. Nine of the ten diabetic patients had peak glucoses above 200 mg/dl. The maximum daily corticosteroid dose had no apparent effect on the glucose levels. The second database included 217 patients admitted to ICUs. The initial blood glucose was higher in patients who died than those who survived using bivariate analysis (P = 0.015; odds ratio, OR, 1.01) but not in multivariable analysis. Multivariable logistic regression analysis also demonstrated that glucose levels did not affect LOS. The third database analyzing COPD re-admission rates included 81 patients; the peak glucose levels were not associated with re-admission. CONCLUSIONS: Our data demonstrate that COPD patients treated with corticosteroids developed significant hyperglycemia, but the increase in blood glucose levels did not correlate with the maximum dose of corticosteroids. Blood glucose levels were not associated with mortality, LOS, or re-admission rates. PMID:25829959

  7. Priming effect in agricultural and forest soils depending on glucose level and N addition

    NASA Astrophysics Data System (ADS)

    Splettstoesser, Thomas; Kumar, Amit; Sun, Yue

    2015-04-01

    Growing plants continuously release easily available organic compounds into the rhizosphere. By their interactions with soil microbial biomass (MB) these compounds result in changes of organic matter turnover rates. The understanding of this priming effect (PE) is important for the estimation of climate change impacts on different land use systems. In order to investigate the PE, we conducted a soil incubation experiment under laboratory conditions with two loamy soils: one under cropland and the second under a deciduous forest near Göttingen. 13C and 14C Glucose were added in four levels reaching from 10% to 300% of MB-C. Furthermore two nitrogen levels were established in order to investigate the effects of fertilization on PE. During the whole experiment CO2 release was monitored by trapping in a NaOH solution. Nitrogen mineralization rate, activity of enzymes, and composition of MB were analyzed at the start, after one day, after one week and at the end of the experiment. The results on priming effects induced in agricultural and forest soils depending on N and glucose levels will be presented.

  8. Nicotine, acetanilide and urea multi-level 2H-, 13C- and 15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry.

    PubMed

    Schimmelmann, Arndt; Albertino, Andrea; Sauer, Peter E; Qi, Haiping; Molinie, Roland; Mesnard, François

    2009-11-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the delta values of these reference materials should bracket the isotopic range of samples with unknown delta values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for delta13C and delta15N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: delta2H(nicotine) -162 to -45 per thousand, delta13C(nicotine) -30.05 to +7.72 per thousand, delta15N(nicotine) -6.03 to +33.62 per thousand; delta15N(acetanilide) +1.18 to +40.57 per thousand; delta13C(urea) -34.13 to +11.71 per thousand, delta15N(urea) +0.26 to +40.61 per thousand (recommended delta values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as

  9. Iris as a reflector for differential absorption low-coherence interferometry to measure glucose level in the anterior chamber

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Zeng, Nan; Ji, Yanhong; Li, Yao; Dai, Xiangsong; Li, Peng; Duan, Lian; Ma, Hui; He, Yonghong

    2011-01-01

    We present a method of glucose concentration detection in the anterior chamber with a differential absorption optical low-coherent interferometry (LCI) technique. Back-reflected light from the iris, passing through the anterior chamber twice, was selectively obtained with the LCI technique. Two light sources, one centered within (1625 nm) and the other centered outside (1310 nm) of a glucose absorption band were used for differential absorption measurement. In the eye model and pig eye experiments, we obtained a resolution glucose level of 26.8 mg/dL and 69.6 mg/dL, respectively. This method has a potential application for noninvasive detection of glucose concentration in aqueous humor, which is related to the glucose concentration in blood.

  10. Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels

    PubMed Central

    Anton, Stephen D.; Martin, Corby K.; Han, Hongmei; Coulon, Sandra; Cefalu, William T.; Geiselman, Paula; Williamson, Donald A.

    2010-01-01

    Consumption of sugar-sweetened beverages may be one of the dietary causes of metabolic disorders, such as obesity. Therefore, substituting sugar with low-calorie sweeteners may be an efficacious weight management strategy. We tested the effect of preloads containing stevia, aspartame, or sucrose on food intake, satiety, and postprandial glucose and insulin levels. Design: 19 healthy lean (BMI = 20.0 – 24.9) and 12 obese (BMI = 30.0 – 39.9) individuals 18 to 50 years old completed three separate food test days during which they received preloads containing stevia (290 kcal), aspartame (290 kcal), or sucrose (493 kcal) before the lunch and dinner meal. The preload order was balanced, and food intake (kcal) was directly calculated. Hunger and satiety levels were reported before and after meals, and every hour throughout the afternoon. Participants provided blood samples immediately before and 20 minutes after the lunch preload. Despite the caloric difference in preloads (290 vs. 493 kcals), participants did not compensate by eating more at their lunch and dinner meals when they consumed stevia and aspartame versus sucrose in preloads (mean differences in food intake over entire day between sucrose and stevia = 301 kcal, p < .01; aspartame = 330 kcal, p < .01). Self-reported hunger and satiety levels did not differ by condition. Stevia preloads significantly lowered postprandial glucose levels compared to sucrose preloads (p < .01), and postprandial insulin levels compared to both aspartame and sucrose preloads (p < .05). When consuming stevia and aspartame preloads, participants did not compensate by eating more at either their lunch or dinner meal and reported similar levels of satiety compared to when they consumed the higher calorie sucrose preload. PMID:20303371

  11. Bronchial aspirates glucose level as indicator for methicillin-resistant Staphylococcus aureus (MRSA) in intubated mechanically ventilated patients.

    PubMed

    Alsayed, Sherif; Marzouk, Samar; Mousa, Essam; Ragab, Ashraf

    2014-08-01

    This study evaluated if the level of glucose in bronchial aspirate serves as indicator for the risk of MRSA infection in intubated mechanically ventilated ICU patients. A total of 50 critically ill patients was enrolled and were under tight glycemic control to abolish the effect of hyperglycemia on bronchial secretion, if they were expected to require mechanical ventilation for more than 48 hours. Bronchial aspirates were detected for glucose and sent twice weekly for microbiological analysis and whenever an MRSA was expected. The results showed that all the patients had glucose tested in bronchial aspirates. Glucose was detected in bronchial aspirates of 28 of the 50 patients. Glucose in bronchial aspirates in these patients ranged between (2.9-5.1 mmol/l). MRSA was detected in 22 patients where 28 were MRSA free of the MRSA patients 19 had positive glucose where glucose was positive in 28 patients of them 19 (86.4%) where MRSA positive to 9 with no MRSA (32.1%).The risk of having MRSA present markedly increased significantly in the presence of glucose: (p value .001). PMID:25597152

  12. Hunger games: fluctuations in blood glucose levels influence support for social welfare.

    PubMed

    Aarøe, Lene; Petersen, Michael Bang

    2013-12-01

    Social-welfare policies are a modern instantiation of a phenomenon that has pervaded human evolutionary history: resource sharing. Ancestrally, food was a key shared resource in situations of temporary hunger. If evolved human psychology continues to shape how individuals think about current, evolutionarily novel conditions, this invites the prediction that attitudes regarding welfare politics are influenced by short-term fluctuations in hunger. Using blood glucose levels as a physiological indicator of hunger, we tested this prediction in a study in which participants were randomly assigned to conditions in which they consumed soft drinks containing either carbohydrates or an artificial sweetener. Analyses showed that participants with experimentally induced low blood glucose levels expressed stronger support for social welfare. Using an incentivized measure of actual sharing behavior (the dictator game), we further demonstrated that this increased support for social welfare does not translate into genuinely increased sharing motivations. Rather, we suggest that it is "cheap talk" aimed at increasing the sharing efforts of other individuals.

  13. Protective Pleiotropic Effect of Flavonoids on NAD+ Levels in Endothelial Cells Exposed to High Glucose

    PubMed Central

    Boesten, Daniëlle M. P. H. J.; von Ungern-Sternberg, Saskia N. I.; den Hartog, Gertjan J. M.; Bast, Aalt

    2015-01-01

    NAD+ is important for oxidative metabolism by serving as an electron transporter. Hyperglycemia decreases NAD+ levels by activation of the polyol pathway and by overactivation of poly(ADP-ribose)-polymerase (PARP). We examined the protective role of three structurally related flavonoids (rutin, quercetin, and flavone) during high glucose conditions in an in vitro model using human umbilical vein endothelial cells (HUVECs). Additionally we assessed the ability of these flavonoids to inhibit aldose reductase enzyme activity. We have previously shown that flavonoids can inhibit PARP activation. Extending these studies, we here provide evidence that flavonoids are also able to protect endothelial cells against a high glucose induced decrease in NAD+. In addition, we established that flavonoids are able to inhibit aldose reductase, the key enzyme in the polyol pathway. We conclude that this protective effect of flavonoids on NAD+ levels is a combination of the flavonoids ability to inhibit both PARP activation and aldose reductase enzyme activity. This study shows that flavonoids, by a combination of effects, maintain the redox state of the cell during hyperglycemia. This mode of action enables flavonoids to ameliorate diabetic complications. PMID:26180598

  14. Glucose test (image)

    MedlinePlus

    ... person with diabetes constantly manages their blood's sugar (glucose) levels. After a blood sample is taken and tested, it is determined whether the glucose levels are low or high. If glucose levels ...

  15. Effect of Cnidoscolus aconitifolius leaf extract on the blood glucose and insulin levels of inbred type 2 diabetic mice.

    PubMed

    Oladeinde, F O; Kinyua, A M; Laditan, A A; Michelin, R; Bryant, J L; Denaro, F; Makinde, J M; Williams, A L; Kennedy, A P; Bronner, Y

    2007-01-01

    The effects of Cnidoscolus aconitifolius (CA) leaf extract and chlorpropamide on blood glucose and insulin levels in the inbred type 2 diabetic mice are reported. After treatment with CA, the glucose levels were measured at 0 and 2-hour intervals in experimental groups and controls. Group I received no treatment and served as control; Group II was the reference and it received chlorpropamide; Groups I-III were moderately diabetic, 100-300 mg/dL blood glucose levels while Group IV were severely diabetic (> 300 mg/dL). Groups III and IV received CA and served as test groups. There was no significant difference between the blood glucose levels at 0 and 2 hours for the control group, (P>0.23) but there were statistically significant differences for Group II (P<0.0002); Group III (P<0.002) and Group IV (P<0.0001). For moderately diabetic mice, CA and chlorpropamide decreased the glucose levels by 25.6% and 16.3% respectively while for the severely diabetic mice CA decreased the blood glucose by 43.7%. It is proposed that CA has an insulinogenic property that possibly stimulated dormant beta-cells to secrete insulin. The histopathology of several organs in the treated animals was found to differ from the expected. The islets of Langerhans for example were found to be preserved in the time frame examined. Also the liver and kidney were found to display milder pathology in the treated groups. PMID:17531147

  16. Effect of Fasting Blood Glucose Level on Heart Rate Variability of Healthy Young Adults

    PubMed Central

    Lutfi, Mohamed Faisal; Elhakeem, Ramaze Farouke

    2016-01-01

    Background Previous studies reported increased risk of cardiac events in subjects with fasting blood glucose (FBG) levels lower than the diagnostic threshold of diabetes mellitus. However, whether increased cardiac events in those with upper normal FBG is secondary to the shift of their cardiac sympathovagal balance towards sympathetic predominance is unknown. Aims To assess the association between FBG levels and cardiac autonomic modulation (CAM) in euglycaemic healthy subjects based on heart rate variability (HRV) derived indices. Subjects and Methods The study enrolled 42 healthy young adults. Following sociodemographic and clinical assessment, blood samples were collected to measure FBG levels. Five minutes ECG recordings were performed to all participants to obtain frequency domain HRV measurements, namely the natural logarithm (Ln) of total power (LnTP), very low frequency (LnVLF), low frequency (LnLF) and high frequency (LnHF), low frequency/ high frequency ratio (LnLF/HF), normalized low frequency (LF Norm) and high frequency (HF Norm). Results FBG levels correlated positively with LnHF (r = 0.33, P = 0.031) and HF Norm (r = 0.35, P = 0.025) and negatively with LF Norm (r = -0.35, P = 0.025) and LnLF/HF (r = -0.33, P = 0.035). LnHF and HF Norm were significantly decreased in subjects with the lower (4.00 (1.34) ms2/Hz and 33.12 (11.94) n.u) compared to those with the upper FBG quartile (5.64 (1.63) ms2/Hz and 49.43 (17.73) n.u, P = 0.013 and 0.032 respectively). LF Norm and LnLF/HF were significantly increased in subjects with the lower (66.88 (11.94) n.u and 0.73 (0.53)) compared to those with the higher FBG quartile (50.58 (17.83) n.u and 0.03 (0.79), P = 0.032 and 0.038 respectively). Conclusion The present study is the first to demonstrate that rise of blood glucose concentration, within physiological range, is associated with higher parasympathetic, but lower sympathetic CAM. Further researches are needed to set out the glycemic threshold beyond which

  17. Effects of sauna and glucose intake on TSH and thyroid hormone levels in plasma of euthyroid subjects.

    PubMed

    Strbák, V; Tatár, P; Angyal, R; Strec, V; Aksamitová, K; Vigas, M; Jánosová, H

    1987-05-01

    The effect of sauna on thyroid function parameters and its modification by glucose was studied in young euthyroid male volunteers. A 30-minute stay in sauna resulted in an increase in plasma TSH; the response was exaggerated if glycemia had been increased by oral glucose intake at the beginning of the experiment. Plasma rT3 also increased in sauna, this response was, however, blunted by the higher glycemia. TSH response to sauna was definitely present in young men (aged 20 to 25) and absent in middle-aged ones (50 to 55). To explore the mechanism of the effect of increased glycemia, TRH tests were performed and dopamine infusions were administered with and without glucose pretreatment. Increased glycemia did not affect TSH and T3 response to TRH in young volunteers; however, 90 minutes after the administration, plasma rT3 levels were significantly lower in glucose pretreated subjects than in those receiving TRH injections after water pretreatment. Simultaneous infusion of glucose prevented the inhibitory effect of dopamine infusion on plasma TSH. It was concluded that glucose directly modulates the effect of sauna on plasma TSH at a suprapituitary level, while the inhibiting effect of glucose on plasma rT3 response to sauna and TRH is probably mediated by the insulin effect on thyroid hormone metabolism. PMID:3106755

  18. Impact of time since last caloric intake on blood glucose levels.

    PubMed

    Moebus, Susanne; Göres, Laura; Lösch, Christian; Jöckel, Karl-Heinz

    2011-09-01

    Blood glucose (BG) is usually measured after a caloric restriction of at least 8 h; however evidence-based recommendations for the duration of a fasting status are missing. Here we analyze the effect of fasting duration on levels of BG to determine the minimal fasting duration to achieve comparable BG levels to conventional fasting measurements. We used data of a cross-sectional study on primary care patients, performed in October 2005. We included 28,024 individuals (age-range 18-99 years; 63% women) without known diabetes mellitus and without missing data for BG and fasting status. We computed general linear models, adjusting for age, sex, time of blood withdrawal, systolic blood pressure, waist circumference, total- and HDL-cholesterol, physical activity, smoking, intake of beta-blocker and alcohol. We tested the intra-individual variability with respect to fasting status. Overall, the mean BG differed only slightly between individuals fasting ≥ 8 h and those fasting <8 h (men: 5.1 ± 0.8 mmol/L versus 5.2 ± 1.2 mmol/L; women: 4.9 ± 0.7 mmol/L, 5.0 ± 1.0 mmol/L). After 3 h of fasting differences of BG diminished in men to -0.08 mmol/L (95%-CI: -0.15; -0.01 mmol/L), in women to -0.07 mmol/L (-0.12; -0.03 mmol/L) compared to individuals fasting ≥ 8 h. Noteworthy, age, time of day of blood withdrawal, physical activity, and intake of hard liquor influenced BG levels considerably. Our data challenge the necessity for a fasting duration of ≥ 8 h when measuring blood glucose, suggesting a random sampling or a fasting duration of 3 h as sufficient. Rather, our study indicates that essentially more effort on the assessment of additional external/internal factors on BG levels is necessary. PMID:21822717

  19. Quantitative analysis of drug effects at the whole-body level: a case study for glucose metabolism in malaria patients.

    PubMed

    Snoep, Jacky L; Green, Kathleen; Eicher, Johann; Palm, Daniel C; Penkler, Gerald; du Toit, Francois; Walters, Nicolas; Burger, Robert; Westerhoff, Hans V; van Niekerk, David D

    2015-12-01

    We propose a hierarchical modelling approach to construct models for disease states at the whole-body level. Such models can simulate effects of drug-induced inhibition of reaction steps on the whole-body physiology. We illustrate the approach for glucose metabolism in malaria patients, by merging two detailed kinetic models for glucose metabolism in the parasite Plasmodium falciparum and the human red blood cell with a coarse-grained model for whole-body glucose metabolism. In addition we use a genome-scale metabolic model for the parasite to predict amino acid production profiles by the malaria parasite that can be used as a complex biomarker. PMID:26614654

  20. In a sweet mood? Effects of experimental modulation of blood glucose levels on mood-induction during fMRI.

    PubMed

    Kohn, N; Toygar, T; Weidenfeld, C; Berthold-Losleben, M; Chechko, N; Orfanos, S; Vocke, S; Durst, A; Laoutidis, Z G; Karges, W; Schneider, F; Habel, U

    2015-06-01

    Glucose is the primary source of energy for the human brain. Previous literature has shown that varying blood glucose levels may have a strong impact on behaviour, subjective mood, and the intensity of the BOLD signal measured in fMRI. Therefore, blood glucose levels varying even within the normal range may interact with cognitive and emotional processing as well as BOLD signal. Here, in a placebo-controlled, double-blind crossover study on 20 healthy women, we show that overnight fasting, compared to an elevated glucose condition, influences brain activation and the affective state during mood induction. Results indicate that our brain may compensate for low glucose levels during fasting by stronger recruitment of the brain areas relevant to the task at hand. Additionally, we systematically tested the effect of prior cognitive effort on behavioural and neural patterns and found that elevated activation is only associated with maintained performance as long as no prior cognitively challenging task is administered. Prior cognitive effort leads to deteriorated performance and a further increase in emotion-associated brain activation in the pregenual anterior and posterior cingulate, the superior frontal gyrus, and the pre-SMA. These results are in line with the strength model of self-regulation. Our results corroborate the strength model of self-regulation and extend it to affect regulation processes. Additionally, our observations suggest that experimentally controlling for fasting state or glucose levels may be beneficial, especially when studying processes that involve self-regulation. PMID:25795339

  1. Outcomes of clinical nurse specialist-initiated system-level standardized glucose management.

    PubMed

    Custer, Marvis L

    2010-01-01

    The purpose of this quality improvement project was to determine if the use of standardized insulin orders versus the use of nonstandardized insulin orders improved glucose results in a hospital's critical care unit. A clinical nurse specialist-led interdisciplinary team developed standardized insulin orders with the goal of improving glucose control. Of the 570 patients admitted from July to September 2006, 124 met glucose criteria to use standardized insulin orders. A total of 331 individual glucose results from 16 patients reviewed demonstrated a difference in mean and median when standardized orders were used versus when they were not used to control glucose. A mean glucose of 175 mg/dL and median glucose of 149 mg/dL were the outcomes when standardized insulin orders were used versus a mean glucose of 206 mg/dL and median glucose of 190 mg/dL when standardized orders were not used. System change efforts to improve glucose control resulted in improved staff nurse empowerment, improved provider knowledge of glucose control methods, and improved patient glucose control in this Midwestern hospital.

  2. Fish protein intake induces fast-muscle hypertrophy and reduces liver lipids and serum glucose levels in rats.

    PubMed

    Kawabata, Fuminori; Mizushige, Takafumi; Uozumi, Keisuke; Hayamizu, Kohsuke; Han, Li; Tsuji, Tomoko; Kishida, Taro

    2015-01-01

    In our previous study, fish protein was proven to reduce serum lipids and body fat accumulation by skeletal muscle hypertrophy and enhancing basal energy expenditure in rats. In the present study, we examined the precise effects of fish protein intake on different skeletal muscle fiber types and metabolic gene expression of the muscle. Fish protein increased fast-twitch muscle weight, reduced liver triglycerides and serum glucose levels, compared with the casein diet after 6 or 8 weeks of feeding. Furthermore, fish protein upregulated the gene expressions of a fast-twitch muscle-type marker and a glucose transporter in the muscle. These results suggest that fish protein induces fast-muscle hypertrophy, and the enhancement of basal energy expenditure by muscle hypertrophy and the increase in muscle glucose uptake reduced liver lipids and serum glucose levels. The present results also imply that fish protein intake causes a slow-to-fast shift in muscle fiber type.

  3. Temporal effects of infused corticosterone and aldosterone on plasma glucose levels in the American bullfrog (Rana catesbeiana).

    PubMed

    Broughton, R E; deRoos, R

    1984-02-01

    The effects of a single infusion of corticosterone or aldosterone on plasma glucose levels were compared in the American bullfrog (Rana catesbeiana). The corticoids were administered, and serial blood samples were collected, via a cannula placed in the common iliac artery. Plasma glucose was estimated by the glucose oxidase method. Plasma glucose levels were essentially unchanged from the time-zero levels at 3 hr after the infusion of 1.0 mg/100 g body wt of corticosterone. The levels subsequently increased to maxima that were approximately 45% greater than the time-zero levels at 9 through 24 hr and then declined to approximately the initial levels by 48 hr after treatment. Infusion of 0.24 mg/100 g body wt of aldosterone did not significantly alter plasma glucose levels. The results suggest that elevated circulating corticosterone is not involved in the primary hyperglycemic response to a stress, but may function synergistically and sequentially with elevated circulating catecholamines in subsequent compensatory adjustments.

  4. Prediction of glucose intolerance at 24-28 weeks of gestation by glucose and insulin level measurements in the first trimester

    PubMed Central

    Fahami, Fariba; Torabi, Sahar; Abdoli, Samereh

    2015-01-01

    Background: Gestational diabetes is the second common disorder in pregnancy period, which is detected in 24-28 weeks of gestational age through screening tests in low-risk women. The women with gestational diabetes are prone to prenatal mortality and development of future diabetes. Therefore, detection of these individuals in the first trimester and conducting preventive interventions is of great importance. This study aimed to define the predictive value of fasting plasma glucose (FPG) and fasting plasma insulin (FPI) test in first trimester concerning the positive result of oral glucose challenge test (OGCT). Materials and Methods: This is a prospective and observational study conducted on 88 pregnant women in Tehran. After FPG and FPI measurements in these women in the first trimester, a screening test of GCT with 50 g oral glucose was conducted in 24-28 weeks of gestational age. Diagnostic value of FPG and in these two groups of positive and normal GCT results was evaluated through receiver operator characteristic (ROC) curve. P < 0.05 was considered significant. Results: In this study, 15 subjects (17%) were detected with a positive GCT result. The sub-curve area of ROC diagram for FPG and FPI was calculated to be 0.573and 0.592, respectively, which reveals that FPG and FPI cannot have a proper predictive value for the positive result of GCT. Based on the results, the best cutoff points for FPG and FPI are 79.5 mg/dl and 7.55 μIU/ml, with accuracy of 60-67% and specificity of 45.2-47%. Conclusions: Only higher fasting glucose levels in early pregnancy, within the normoglycemic range, would predict the development of glucose intolerance with limited sensitivity and specificity. PMID:25709695

  5. Interstitial lactate levels in human skin at rest and during an oral glucose load: a microdialysis study.

    PubMed

    Petersen, L J

    1999-05-01

    In vitro data have suggested that the skin is a significant lactate source. The purpose of the present study was to measure lactate and glucose concentrations in intact human skin in vivo using the microdialysis technique. Microdialysis fibres of 216 microns were inserted intradermally and perfused at a rate of 3 microliters min-1. In the first experimental protocol, dialysis fibres were calibrated by the method of no net flux in eight subjects. Skin lactate concentrations of 2.48 +/- 0.17 mmol l-1 were significantly greater than lactate concentrations of 0.84 +/- 0.15 mmol l-1 in venous plasma (P < 0.01). Glucose concentrations in skin and venous plasma were similar (5.49 +/- 0.18 vs. 5.26 +/- 0.24 mmol l-1). In the second experimental protocol, changes in lactate and glucose levels were studied in 10 subjects after an oral glucose tolerance test (OGTT). After the OGTT, plasma glucose and lactate levels increased by 54% and 39% to peak levels at 30 and 60 min respectively. In comparison, skin glucose and lactate increased by 41% and 18% at 60 and 90 min. No changes in skin blood flow were observed during the OGTT. The data suggest that resting skin is a significant lactate source with no significant lactate production during OGTT. The cellular source of lactate in the skin remains undetermined to date.

  6. Human monocytes and macrophages undergo M1-type inflammatory polarization in response to high levels of glucose.

    PubMed

    Torres-Castro, Israel; Arroyo-Camarena, Úrsula D; Martínez-Reyes, Camilo P; Gómez-Arauz, Angélica Y; Dueñas-Andrade, Yareth; Hernández-Ruiz, Joselín; Béjar, Yadira L; Zaga-Clavellina, Verónica; Morales-Montor, Jorge; Terrazas, Luis I; Kzhyshkowska, Julia; Escobedo, Galileo

    2016-08-01

    Emerging data suggest that elevated glucose may promote inflammatory activation of monocytic lineage cells with the ability to injure vascular endothelial tissue of diabetic patients, however evidence in primary human monocytes and macrophages is still insufficient. We investigated the effect of high glucose concentration on the inflammatory capacity of human macrophages in vitro and examined whether similar responses were detectable in circulating monocytes from prediabetic patients. Primary monocytes were isolated from healthy blood donors and differentiated into macrophages. Differentiated macrophages were exposed to normal levels of glucose (NG), high glucose (HG) or high mannitol as osmotic pressure control (OP) for three days. Using PCR, ELISA and flow cytometry, we found that HG macrophages showed overexpression of CD11c and inducible nitric oxide synthase as well as down-regulation of arginase-1 and interleukin (IL)-10 with respect to NG and OP macrophages. Consistent with in vitro results, circulating monocytes from hyperglycemic patients exhibited higher levels of CD11c and lower expression of CD206 than monocytes from normoglycemic controls. In subjects with hyperglycemia, elevation in CD11c(+) monocytes was associated with increased obesity, insulin resistance, and triglyceridemia as well as low serum IL-10. Our data suggest that human monocytes and macrophages undergo M1-like inflammatory polarization when exposed to high levels of glucose on in vitro culture conditions and in patients with hyperglycemia. These results demonstrate that excess glucose has direct effects on macrophage activation though the molecular mechanisms mediating such a response remain to be elucidated. PMID:27269375

  7. Effects of insulin-like growth factor-I on glucose tolerance, insulin levels, and insulin secretion.

    PubMed Central

    Zenobi, P D; Graf, S; Ursprung, H; Froesch, E R

    1992-01-01

    Insulin-like growth factor-I (IGF-I) and insulin interact with related receptors to lower plasma glucose and to exert mitogenic effects. Recombinant human IGF-I (rhIGF-I) was recently shown to decrease serum levels of insulin and C-peptide in fasted normal subjects without affecting plasma glucose levels. In this study we have investigated in six healthy volunteers the responses of glucose, insulin, and C-peptide levels to intravenous rhIGF-I infusions (7 and 14 micrograms/kg.h) during standard oral glucose tolerance tests (oGTT) and meal tolerance tests (MTT), respectively. Glucose tolerance remained unchanged during the rhIGF-I infusions in the face of lowered insulin and C-peptide levels. The decreased insulin/glucose-ratio presumably is caused by an enhanced tissue sensitivity to insulin. The lowered area under the insulin curve during oGTT and MTT as a result of the administration of rhIGF-I were related to the fasting insulin levels during saline infusion (oGTT: r = 0.825, P less than 0.05; MTT: r = 0.895, P less than 0.02). RhIGF-I, however, did not alter the ratio between C-peptide and insulin, suggesting that the metabolic clearance of endogenous insulin remained unchanged. In conclusion, rhIGF-I increased glucose disposal and directly suppressed insulin secretion. RhIGF-I probably increased insulin sensitivity as a result of decreased insulin levels and suppressed growth hormone secretion. RhIGF-I, therefore, may be therapeutically useful in insulin resistance of type 2 diabetes, obesity, and hyperlipidemia. PMID:1601998

  8. Discovery of a Plasmodium falciparum glucose-6-phosphate dehydrogenase 6- phosphogluconolactonase inhibitor (R,Z)-N-((1-ethylpyrrolidin-2-yl)methyl)-2-(2-fluorobenzylidene)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide (ML276) that reduces parasite growth in vitro

    PubMed Central

    Preuss, Janina; Maloney, Patrick; Peddibhotla, Satyamaheshwar; Hedrick, Michael P.; Hershberger, Paul; Gosalia, Palak; Milewski, Monika; Li, Yujie Linda; Sugarman, Eliot; Hood, Becky; Suyama, Eigo; Nguyen, Kevin; Vasile, Stefan; Sergienko, Eduard; Mangravita-Novo, Arianna; Vicchiarelli, Michael; McAnally, Danielle; Smith, Layton H.; Roth, Gregory P.; Diwan, Jena; Chung, Thomas D.Y.; Jortzik, Esther; Rahlfs, Stefan; Becker, Katja; Pinkerton, Anthony B.; Bode, Lars

    2012-01-01

    A high throughput screen of the NIH’s MLSMR collection of ~340,000 compounds was undertaken to identify compounds that inhibit Plasmodium falciparum glucose-6-phosphate dehydrogenase (PfG6PD). PfG6PD is essential for proliferating and propagating P. falciparum and differs structurally and mechanistically from the human ortholog. The reaction catalyzed by glucose-6-phosphate dehydrogenase (G6PD) is the first, rate-limiting step in the pentose phosphate pathway (PPP), a key metabolic pathway sustaining anabolic needs in reductive equivalents and synthetic materials in fastgrowing cells. In P. falciparum the bifunctional enzyme glucose-6-phosphate dehydrogenase-6- phosphogluconolactonase (PfGluPho) catalyzes the first two steps of the PPP. Because P. falciparum and infected host red blood cells rely on accelerated glucose flux, they depend on the G6PD activity of PfGluPho. The lead compound identified from this effort, (R,Z)-N-((1-ethylpyrrolidin-2-yl)methyl)-2- (2-fluorobenzylidene)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide, 11, (ML276), is a submicromolar inhibitor of PfG6PD (IC50 = 889 nM). It is completely selective for the enzyme’s human isoform, displays micromolar potency (IC50 = 2.6 μM) against P. falciparum in culture, and has good drug-like properties, including high solubility and moderate microsomal stability. Studies testing the potential advantage of inhibiting PfG6PD in vivo are in progress. PMID:22813531

  9. Effect of altered eating pattern on serum fructosamine: total protein ratio and plasma glucose level.

    PubMed

    Ch'ng, S L; Cheah, S H; Husain, R; Duncan, M T

    1989-05-01

    The effect of alteration of eating pattern during Ramadan on body mass index (BMI), serum fructosamine: total protein ratio (F/TP), and glucose level in 18 healthy male Asiatic Moslems were studied. The results showed a significant decrease (p less than 0.025) in F/TP at the second week of Ramadan in 11 subjects who experienced continuous decrease in BMI throughout Ramadan. The remaining 7 subjects showed no significant changes in BMI and F/TP. No evidence of hypoglycaemia was observed in the subjects during the study. Serum fructosamine: total protein ratio in subjects with altered eating pattern preferably should be interpreted along with the change in body mass index.

  10. Association between maternal diet factors and hemoglobin levels, glucose tolerance, blood pressure and gestational age in a Hispanic population.

    PubMed

    Soto, Roxana; Guilloty, Natacha; Anzalota, Liza; Rosario, Zaira; Cordero, José F; Palacios, Cristina

    2015-06-01

    The aim of this study was to describe the dietary patterns of pregnant women in northern Puerto Rico and explore associations between diet factors with pregnancy related measurements. This analysis is based on the Puerto Rico Testsite for Exploring Contamination Threats (PROTECT), a prospective cohort that is studying environmental risk factors for preterm births in PR. Participants completed a food frequency questionnaire (FFQ) around 20-28 weeks of gestation. The following pregnancy related measures were collected from the medical records: hemoglobin, blood glucose, blood pressure and gestational age. Potential associations between diet factors and pregnancy measures were assessed using chi square analysis with SPSS. A total of 180 participants completed the FFQ; low hemoglobin levels was found in 19.2%, high blood glucose levels was found in 21.1% by fasting blood glucose test and 24.6%by 1-hour 50 g oral glucose screening test, high blood pressure was found in 2.9% (systolic) and 6.5% (diastolic), and pre-term birth was found in 10.4% of the participants. High consumption of rice, desserts and sweets was associated with higher levels of fasting blood glucose levels (p < 0.05), while high consumption of vegetables was associated with higher 1-hour glucose challenge test (p < 0.05).No other significant associations were found. In conclusion, consumption of high dense energy food diets in pregnancy, such as rice, sweets and desserts, can lead to high levels of blood glucose and can be a potential predictor of other pregnancy complications during pregnancy in these study participants, such as gestational diabetes. PMID:26817380

  11. The usefulness of point-of-care (POC) tests in screening elevated glucose and ketone body levels postmortem.

    PubMed

    Walta, Anna-Mari; Keltanen, Terhi; Lindroos, Katarina; Sajantila, Antti

    2016-09-01

    The aim was to evaluate the performance of point-of-care (POC) tests in detecting glucose and ketone bodies in postmortem (PM) samples and to assess the usefulness of POC tests in sample screening for more precise analyses. Glucose and ketone body, β-hydroxybutyrate (BHB), were measured from vitreous humor (VH) in 52 autopsy cases with a POC blood glucose monitoring device (BGMD). In addition glucose and ketone bodies, acetone (Ac) and acetoacetate (AcAc), were measured from urine samples in another set of 59 cases with semi-quantitative stick tests. The results were compared to the concentration in VH measured with validated methods (values ≥ 7mmol/l indicate possible hyperglycemia and total ketone body levels ≥ 3mmol/l ketoacidosis). The sensitivity for glucose with the BGMD was 1.0 and specificity 0.94 when the threshold value for the meter to predict elevated glucose was set to ≥ 10mmol/l. The correlation between the BGMD and the validated method was strong (R(2)=0.89). For detecting ketoacidosis, the BGMD had a sensitivity of 1.0 and specificity of 0.73, when the threshold value was set to 2.5mmol/l. The urine stick test presented a sensitivity of 0.89 and specificity of 0.90 for detecting elevated VH glucose concentration. The sensitivity and specificity for the stick test to detect cases with possible ketoacidosis were 0.84 and 0.68, respectively. According to the results, BGMD can be reliably applied for sample screening, although more samples need to be analyzed for delineating the correct threshold values. In the case of glucose, the urine stick tests could be indicative in detecting cases with VH glucose ≥ 10mmol/l. For predicting possible ketoacidosis with elevated VH total ketone bodies, the stick test is not reliable as the test presented both false-positive and -negative results. PMID:27348467

  12. [Dose-dependent effects of intracisternally administered insulin on rat's behavior and glucose level].

    PubMed

    Shestakova, S A; Stepanov, I I; Eliseeva, A P; Shatik, S V; Fedorova, N V; Klimenko, V M

    2007-03-01

    Rat behavior in the open field and elevated plus-maze as well as glycaemia level were analyzed in rats after intracisternal administration of 2.5, 25, 50 and 200 ng of insulin. Dose-dependent changes were found in both behavioral tests: insulin in low doses (2.5 and 25 ng) increased probability of locomotion and investigative activity in open field, while insulin in high doses (50 and 200 ng) did not alter locomotor activity and showed tendency to weakening of the investigative behavior (especially in the dose of 50 ng). Significant decrease of rat anxiety level during the first 5 minutes of testing was found after administration of 2.5 and 200 ng of insulin and during the next 5 minutes after administration of 2.5 and 25 ng of insulin in elevated plus-maze. The glucose level in rats was increased in 1-2 hours after insulin administration, though glycaemia level did not exceed normal values. Thus revealed alterations of behavior are supposed to be the result of direct insulin influence on central mechanisms of activation and/or suppression of underlying behavioral characteristics of animals. PMID:17598469

  13. Low Blood Glucose (Hypoglycemia)

    MedlinePlus

    ... Other Dental Problems Diabetic Eye Disease Low Blood Glucose (Hypoglycemia) What is hypoglycemia? Hypoglycemia, also called low ... actions can also help prevent hypoglycemia: Check blood glucose levels Knowing your blood glucose level can help ...

  14. Hydroxycitric acid delays intestinal glucose absorption in rats.

    PubMed

    Wielinga, Peter Y; Wachters-Hagedoorn, Renate E; Bouter, Brenda; van Dijk, Theo H; Stellaard, Frans; Nieuwenhuizen, Arie G; Verkade, Henkjan J; Scheurink, Anton J W

    2005-06-01

    In this study, we investigated in rats if hydroxycitric acid (HCA) reduces the postprandial glucose response by affecting gastric emptying or intestinal glucose absorption. We compared the effect of regulator HCA (310 mg/kg) and vehicle (control) on the glucose response after an intragastric or intraduodenal glucose load to investigate the role of altered gastric emptying. Steele's one-compartment model was used to investigate the effect of HCA on systemic glucose appearance after an intraduodenal glucose load, using [U-(13)C]-labeled glucose and d-[6,6-(2)H(2)]-labeled glucose. Because an effect on postabsorptive glucose clearance could not be excluded, the effect of HCA on the appearance of enterally administered glucose in small intestinal tissue, liver, and portal and systemic circulation was determined by [U-(14)C]glucose infusion. Data show that HCA treatment delays the intestinal absorption of enterally administered glucose at the level of the small intestinal mucosa in rats. HCA strongly attenuated postprandial blood glucose levels after both intragastric (P < 0.01) and intraduodenal (P < 0.001) glucose administration, excluding a major effect of HCA on gastric emptying. HCA delayed the systemic appearance of exogenous glucose but did not affect the total fraction of glucose absorbed over the study period of 150 min. HCA treatment decreased concentrations of [U-(14)C]glucose in small intestinal tissue at 15 min after [U-(14)C]glucose administration (P < 0.05), in accordance with the concept that HCA delays the enteral absorption of glucose. These data support a possible role for HCA as food supplement in lowering postprandial glucose profiles. PMID:15604199

  15. Hollow optical-fiber based infrared spectroscopy for measurement of blood glucose level by using multi-reflection prism.

    PubMed

    Kino, Saiko; Omori, Suguru; Katagiri, Takashi; Matsuura, Yuji

    2016-02-01

    A mid-infrared attenuated total reflection (ATR) spectroscopy system employing hollow optical fibers and a trapezoidal multi-reflection ATR prism has been developed to measure blood glucose levels. Using a multi-reflection prism brought about higher sensitivity, and the flat and wide contact surface of the prism resulted in higher measurement reproducibility. An analysis of in vivo measurements of human inner lip mucosa revealed clear signatures of glucose in the difference spectra between ones taken during the fasting state and ones taken after ingestion of glucose solutions. A calibration plot based on the absorption peak at 1155 cm(-1) that originates from the pyranose ring structure of glucose gave measurement errors less than 20%.

  16. Hollow optical-fiber based infrared spectroscopy for measurement of blood glucose level by using multi-reflection prism

    PubMed Central

    Kino, Saiko; Omori, Suguru; Katagiri, Takashi; Matsuura, Yuji

    2016-01-01

    A mid-infrared attenuated total reflection (ATR) spectroscopy system employing hollow optical fibers and a trapezoidal multi-reflection ATR prism has been developed to measure blood glucose levels. Using a multi-reflection prism brought about higher sensitivity, and the flat and wide contact surface of the prism resulted in higher measurement reproducibility. An analysis of in vivo measurements of human inner lip mucosa revealed clear signatures of glucose in the difference spectra between ones taken during the fasting state and ones taken after ingestion of glucose solutions. A calibration plot based on the absorption peak at 1155 cm−1 that originates from the pyranose ring structure of glucose gave measurement errors less than 20%. PMID:26977373

  17. Hollow optical-fiber based infrared spectroscopy for measurement of blood glucose level by using multi-reflection prism.

    PubMed

    Kino, Saiko; Omori, Suguru; Katagiri, Takashi; Matsuura, Yuji

    2016-02-01

    A mid-infrared attenuated total reflection (ATR) spectroscopy system employing hollow optical fibers and a trapezoidal multi-reflection ATR prism has been developed to measure blood glucose levels. Using a multi-reflection prism brought about higher sensitivity, and the flat and wide contact surface of the prism resulted in higher measurement reproducibility. An analysis of in vivo measurements of human inner lip mucosa revealed clear signatures of glucose in the difference spectra between ones taken during the fasting state and ones taken after ingestion of glucose solutions. A calibration plot based on the absorption peak at 1155 cm(-1) that originates from the pyranose ring structure of glucose gave measurement errors less than 20%. PMID:26977373

  18. A Randomized Clinical Trial of an Intensive Behavior Education Program in Gestational Diabetes Mellitus Women Designed to Improve Glucose Levels on the 2-Hour Oral Glucose Tolerance Test.

    PubMed

    Durnwald, Celeste P; Kallan, Michael J; Allison, Kelly C; Sammel, Mary D; Wisch, Susan; Elovitz, Michal; Parry, Samuel

    2016-10-01

    Objective To evaluate whether women with gestational diabetes mellitus (GDM) enrolled in an intensive behavior education program (IBEP) demonstrate lower mean fasting glucose levels on the 2-hour 75 g oral glucose tolerance test (2-hour OGTT) at 6 to 12 weeks postpartum compared with women who undergo routine GDM management. Study Design A prospective randomized controlled trial of women diagnosed with GDM was conducted. Exclusion criteria were GDM diagnosis ≥ 33 weeks or < 20 weeks. Women were randomly assigned to one of two treatment arms: (1) routine GDM management or (2) an IBEP. Women underwent a 2-hour OGTT at 6 to 12 weeks postpartum. Fisher exact test, t-test, and Wilcoxon rank sum test were used as appropriate. Results Of the 101 women randomized, 49 were assigned to IBEP and 52 received routine GDM management. There was no difference in mean fasting and 2-hour glucose levels on the postpartum 2-hour OGTT between the IBEP and routine management group (88.5 ± 22.9 mg/dL vs. 85.2 ± 13.3 mg/dL, p = 0.49 and 109.8 ± 38.5 mg/dL vs. 109.4 ± 40.8 mg/dL, p = 0.97, respectively). Conclusion GDM women enrolled in a healthy lifestyle intervention program did not demonstrate lower glucose values on the postpartum 2-hour OGTT.

  19. Effects of aspartame and glucose administration on brain and plasma levels of large neutral amino acids and brain 5-hydroxyindoles.

    PubMed

    Yokogoshi, H; Roberts, C H; Caballero, B; Wurtman, R J

    1984-07-01

    Administration of the artificial sweetener aspartame (L-aspartylphenylalanylmethyl ester; 200 mg/kg) by gavage to rats caused large increments in brain and plasma levels of phenylalanine and its product tyrosine. Glucose administration (3 g/kg, by gavage, a dose sufficient to cause insulin-mediated reductions in plasma levels of the large neutral amino acids leucine, isoleucine, and valine) also elevated brain phenylalanine and tyrosine, and enhanced the increments caused by the aspartame, nearly doubling the rise in brain phenylalanine. Each animal's brain phenylalanine or tyrosine levels were highly correlated (r = 0.97 and 0.99, respectively) with its plasma phenylalanine or tyrosine ratios, affirming that aspartame's effects on the brain amino acids result from the changes it produces in plasma composition. As described previously, glucose consumption increased brain tryptophan levels, and consequently, brain levels of the 5-hydroxyindoles serotonin and 5-hydroxyindoleacetic acid. Aspartame alone had no effect on these compounds but completely blocked the changes in 5-hydroxyindoles caused by glucose. Each animal's brain level of tryptophan (r = 0.89) and 5-hydroxyindoles (r = 0.74) was also significantly correlated with its plasma tryptophan ratio, affirming that the effects of glucose or aspartame on these brain constituents also result from the changes they produce in plasma composition. The aspartame-glucose combination also reduced brain levels of leucine, isoleucine, and valine to a significantly greater extent than aspartame or glucose alone. These observations indicate that high aspartame doses can generate major neurochemical changes in rats, especially when consumed along with carbohydrate-containing foods. However, they should not in any way be interpreted as demonstrating that aspartame significantly affects the human brain.

  20. Effects of pH and elevated glucose levels on the electrochemical behavior of dental implants.

    PubMed

    Tamam, Evsen; Turkyilmaz, Ilser

    2014-04-01

    Implant failure is more likely to occur in persons with medically compromising systemic conditions, such as diabetes related to high blood glucose levels and inflammatory diseases related to pH levels lower than those in healthy people. The aim of this study was to investigate the effects of lower pH level and simulated- hyperglycemia on implant corrosion as these effects are critical to biocompatibility and osseointegration. The electrochemical corrosion properties of titanium implants were studied in four different solutions: Ringer's physiological solution at pH = 7.0 and pH = 5.5 and Ringer's physiological solution containing 15 mM dextrose at pH = 7 and pH = 5.5. Corrosion behaviors of dental implants were determined by cyclic polarization test and electrochemical impedance spectroscopy. Surface alterations were studied using a scanning electron microscope. All test electrolytes led to apparent differences in corrosion behavior of the implants. The implants under conditions of test exhibited statistically significant increases in I(corr) from 0.2372 to 1.007 μAcm(-2), corrosion rates from 1.904 to 8.085 mpy, and a decrease in polarization resistances from 304 to 74 Ω. Implants in dextrose-containing solutions were more prone to corrosion than those in Ringer's solutions alone. Increasing the acidity also yielded greater corrosion rates for the dextrose-containing solutions and the solutions without dextrose.

  1. Effects of pH and elevated glucose levels on the electrochemical behavior of dental implants.

    PubMed

    Tamam, Evsen; Turkyilmaz, Ilser

    2014-04-01

    Implant failure is more likely to occur in persons with medically compromising systemic conditions, such as diabetes related to high blood glucose levels and inflammatory diseases related to pH levels lower than those in healthy people. The aim of this study was to investigate the effects of lower pH level and simulated- hyperglycemia on implant corrosion as these effects are critical to biocompatibility and osseointegration. The electrochemical corrosion properties of titanium implants were studied in four different solutions: Ringer's physiological solution at pH = 7.0 and pH = 5.5 and Ringer's physiological solution containing 15 mM dextrose at pH = 7 and pH = 5.5. Corrosion behaviors of dental implants were determined by cyclic polarization test and electrochemical impedance spectroscopy. Surface alterations were studied using a scanning electron microscope. All test electrolytes led to apparent differences in corrosion behavior of the implants. The implants under conditions of test exhibited statistically significant increases in I(corr) from 0.2372 to 1.007 μAcm(-2), corrosion rates from 1.904 to 8.085 mpy, and a decrease in polarization resistances from 304 to 74 Ω. Implants in dextrose-containing solutions were more prone to corrosion than those in Ringer's solutions alone. Increasing the acidity also yielded greater corrosion rates for the dextrose-containing solutions and the solutions without dextrose. PMID:24779948

  2. Impact of Glucose Tolerance Status, Sex, and Body Size on Glucose Absorption Patterns During OGTTs

    PubMed Central

    Færch, Kristine; Pacini, Giovanni; Nolan, John J.; Hansen, Torben; Tura, Andrea; Vistisen, Dorte

    2013-01-01

    OBJECTIVE We studied whether patterns of glucose absorption during oral glucose tolerance tests (OGTTs) were abnormal in individuals with impaired glucose regulation and whether they were related to sex and body size (height and fat-free mass). We also examined how well differences in insulin sensitivity and β-cell function measured by gold-standard tests were reflected in the corresponding OGTT-derived estimates. RESEARCH DESIGN AND METHODS With validated methods, various aspects of glucose absorption were estimated from 12-point, 3-h, 75-g OGTTs in 66 individuals with normal glucose tolerance (NGT), isolated impaired fasting glucose (i-IFG), or isolated impaired glucose tolerance (i-IGT). Insulin sensitivity and β-cell function were measured with the euglycemic-hyperinsulinemic clamp and intravenous glucose tolerance tests, respectively. Surrogate markers of both conditions were calculated from OGTTs. RESULTS More rapid glucose absorption (P ≤ 0.036) and reduced late glucose absorption (P ≤ 0.039) were observed in the i-IFG group relative to NGT and i-IGT groups. Women with i-IGT had a lower early glucose absorption than did men with i-IGT (P = 0.041); however, this difference did not persist when differences in body size were taken into account (P > 0.28). Faster glucose absorption was related to higher fasting (P = 0.001) and lower 2-h (P = 0.001) glucose levels and to greater height and fat-free mass (P < 0.001). All OGTT-derived measures of insulin sensitivity, but only one of three measures of β-cell function, reflected the differences for these parameters between those with normal and impaired glucose regulation as measured by gold-standard tests. CONCLUSIONS Glucose absorption patterns during an OGTT are significantly related to plasma glucose levels and body size, which should be taken into account when estimating β-cell function from OGTTs in epidemiological studies. PMID:24062321

  3. Alteration of blood glucose levels in the rat following exposure to hyperbaric oxygen.

    PubMed

    Eynan, Mirit; Mullokandov, Michael; Krinsky, Nitzan; Biram, Adi; Arieli, Yehuda

    2015-09-01

    Findings regarding blood glucose level (BGL) on exposure to hyperbaric oxygen (HBO) are contradictory. We investigated the influence of HBO on BGL, and of BGL on latency to central nervous system oxygen toxicity (CNS-OT). The study was conducted on five groups of rats: Group 1, exposure to oxygen at 2.5 atmospheres absolute (ATA), 90 min/day for 7 days; Group 2, exposure to oxygen once a week from 2 to 6 ATA in increments of 1 ATA/wk, for a period of time calculated as 60% of the latency to CNS-OT (no convulsions); Group 3, exposure to 6 ATA breathing a gas mixture with a pO2 of 0.21; Group 4, received 10 U/kg insulin to induce hypoglycemia before exposure to HBO; Group 5, received 33% glucose to induce hyperglycemia before exposure to HBO. Blood samples were drawn before and after exposures for measurement of BGL. No change was observed in BGL after exposure to oxygen at 2.5 ATA, 90 min/day for 7 days. BGL was significantly elevated after exposure to oxygen at 6 ATA until the appearance of convulsions, and following exposure to 4, 5, and 6 ATA without convulsions (P < 0.01). No change was observed in BGL after exposure to 6 ATA breathing a gas mixture with a pO2 of 0.21. Hypoglycemia shortened latency to CNS oxygen toxicity, whereas hyperglycemia had no effect. Our results demonstrate an influence of HBO exposure on elevation of BGL, starting at 4 ATA. This implies that BGL may serve as a marker for the generation of CNS-OT.

  4. Glucose metabolism in the amygdala in depression: relationship to diagnostic subtype and plasma cortisol levels.

    PubMed

    Drevets, Wayne C; Price, Joseph L; Bardgett, Mark E; Reich, Theodore; Todd, Richard D; Raichle, Marcus E

    2002-03-01

    In a previous positron emission tomography (PET) study of major depression, we demonstrated that cerebral blood flow was increased in the left amygdala in unipolar depressives with familial pure depressive disease (FPDD) relative to healthy controls [J. Neurosci. 12 (1992) 3628.]. These measures were obtained from relatively low-resolution PET images using a stereotaxic method based upon skull X-ray landmarks. The current experiments aimed to replicate and extend these results using higher-resolution glucose metabolism images and magnetic resonance imaging (MRI)-based region-of-interest (ROI) analysis. The specificity of this finding to FPDD was also investigated by assessing depressed samples with bipolar disorder (BD-D) and depression spectrum disease (DSD). Finally, the relationship between amygdala metabolism and plasma cortisol levels obtained during the scanning procedure was assessed. Glucose metabolism was measured using PET and 18F-fluorodeoxyglucose (18FDG) in healthy control (n=12), FPDD (n=12), DSD (n=9) and BD-D (n=7) samples in the amygdala and the adjacent hippocampus. The left amygdala metabolism differed across groups (P<.001), being increased in both the FPDD and BD-D groups relative to the control group. The left amygdala metabolism was positively correlated with stressed plasma cortisol levels in both the unipolar (r=.69; P<.005) and the bipolar depressives (r=0.68;.1

  5. Starch source influences dietary glucose generation at the mucosal alpha-glucosidase level

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The quality of starch digestion, related to the rate and extent of release of dietary glucose, is associated with glycemia-related problems such as diabetes and other metabolic syndrome conditions. Here, we found that the rate of glucose generation from starch is unexpectedly associated with mucosal...

  6. Specific biomarkers for stochastic division patterns and starvation-induced quiescence under limited glucose levels in fission yeast

    PubMed Central

    Pluskal, Tomáš; Hayashi, Takeshi; Saitoh, Shigeaki; Fujisawa, Asuka; Yanagida, Mitsuhiro

    2011-01-01

    Glucose as a source of energy is centrally important to our understanding of life. We investigated the cell division–quiescence behavior of the fission yeast Schizosaccharomyces pombe under a wide range of glucose concentrations (0–111 mm). The mode of S. pombe cell division under a microfluidic perfusion system was surprisingly normal under highly diluted glucose concentrations (5.6 mm, 1/20 of the standard medium, within human blood sugar levels). Division became stochastic, accompanied by a curious division-timing inheritance, in 2.2–4.4 mm glucose. A critical transition from division to quiescence occurred within a narrow range of concentrations (2.2–1.7 mm). Under starvation (1.1 mm) conditions, cells were mostly quiescent and only a small population of cells divided. Under fasting (0 mm) conditions, division was immediately arrested with a short chronological lifespan (16 h). When cells were first glucose starved prior to fasting, they possessed a substantially extended lifespan (∼14 days). We employed a quantitative metabolomic approach for S. pombe cell extracts, and identified specific metabolites (e.g. biotin, trehalose, ergothioneine, S-adenosyl methionine and CDP-choline), which increased or decreased at different glucose concentrations, whereas nucleotide triphosphates, such as ATP, maintained high concentrations even under starvation. Under starvation, the level of S-adenosyl methionine increased sharply, accompanied by an increase in methylated amino acids and nucleotides. Under fasting, cells rapidly lost antioxidant and energy compounds, such as glutathione and ATP, but, in fasting cells after starvation, these and other metabolites ensuring longevity remained abundant. Glucose-starved cells became resistant to 40 mm H2O2 as a result of the accumulation of antioxidant compounds. PMID:21306563

  7. Low-level subchronic arsenic exposure from prenatal developmental stages to adult life results in an impaired glucose homeostasis.

    PubMed

    Dávila-Esqueda, M E; Morales, J M V; Jiménez-Capdeville, M E; De la Cruz, E; Falcón-Escobedo, R; Chi-Ahumada, E; Martin-Pérez, S

    2011-11-01

    We evaluated how low-level (3 ppm) subchronic inorganic arsenic (iAs) exposure from prenatal developmental stages until adult life affects glucose homeostasis. Biochemical parameters of glucose and lipid metabolism, pancreatic insulin and glycosylated haemoglobin were determined in 4-month-old female offspring of adult Wistar rats. Pancreatic histology was also performed. Statistical comparisons between control and iAs-treated groups were performed by unpaired two-tailed Student's t-test. Statistical significance was set at p<0.05. We found that iAs treatment resulted in an impaired glucose tolerance test, suggestive of impaired glucose metabolism. This group was found to have hyperglycaemia and high levels of HOMA-IR, glycosylated haemoglobin, cholesterol and pancreatic insulin compared to control rats. However, plasma insulin, triglycerides and high-density lipoprotein cholesterol were not different from control rats. Moreover, β-cell damage found in iAs-treated rats consisted of cells with a nucleus with dense chromatin and predominance of eosinophilic cytoplasm, as well as changes in the pancreatic vasculature. The current study provided evidence that subchronic iAs exposure at 3 ppm from prenatal developmental stages to adult life resulted in damage to pancreatic β cells, affected insulin secretion and demonstrated altered glucose homeostasis, thus supporting a causal association between iAs exposure and diabetes.

  8. Elevation of plasma glucose, alanine, and urea levels by mammalian ACTH in the American bullfrog (Rana catesbeiana).

    PubMed

    Rosenthal, E J; deRoos, R

    1985-08-01

    The effects of a single infusion of mammalian ACTH on plasma glucose, alanine, urea, and lactate were determined in the American bullfrog (Rana catesbeiana). The ACTH (10 U/250 g body wt) was administered, and serial blood samples were collected via a nonocclusive cannula chronically placed in the right truncus arteriosus. Plasma metabolite levels were estimated by standard enzymatic techniques. The plasma metabolites declined following the surgery to levels that were relatively stable by postoperative Day 2. The levels did not vary significantly for the remainder of the 3- or 4-day pretreatment period and in the control bullfrogs during the 48-hr experiments. Plasma glucose levels were essentially unchanged from the time-zero levels at 6 hr following ACTH infusion. Plasma glucose levels subsequently increased to levels that were approximately 24% greater than the control levels by 24 hr and then declined to near control levels by 48 hr. Plasma alanine increased to levels that were approximately 60% greater than the control levels by 12 hr after ACTH treatment and returned to essentially the time-zero levels by 24 hr. Plasma urea rose to levels that were approximately 110% greater than the control levels by 45 min after ACTH infusion, but urea returned to essentially the time-zero levels by 1.5 through 3 hr. Plasma urea increased again to levels that were approximately 90% greater than the control levels by 6 hr and returned to essentially the initial levels by 24 hr. Plasma lactate levels were not significantly influenced by ACTH treatment. The results suggest that a function of the bullfrog hypothalamic-pituitary-adrenocortical axis is to regulate gluconeogenesis from alanine, and probably other glucogenic amino acids.

  9. Xenin-25 delays gastric emptying and reduces postprandial glucose levels in humans with and without type 2 diabetes.

    PubMed

    Chowdhury, Sara; Reeds, Dominic N; Crimmins, Dan L; Patterson, Bruce W; Laciny, Erin; Wang, Songyan; Tran, Hung D; Griest, Terry A; Rometo, David A; Dunai, Judit; Wallendorf, Michael J; Ladenson, Jack H; Polonsky, Kenneth S; Wice, Burton M

    2014-02-15

    Xenin-25 (Xen) is a neurotensin-related peptide secreted by a subset of glucose-dependent insulinotropic polypeptide (GIP)-producing enteroendocrine cells. In animals, Xen regulates gastrointestinal function and glucose homeostasis, typically by initiating neural relays. However, little is known about Xen action in humans. This study determines whether exogenously administered Xen modulates gastric emptying and/or insulin secretion rates (ISRs) following meal ingestion. Fasted subjects with normal (NGT) or impaired (IGT) glucose tolerance and Type 2 diabetes mellitus (T2DM; n = 10-14 per group) ingested a liquid mixed meal plus acetaminophen (ACM; to assess gastric emptying) at time zero. On separate occasions, a primed-constant intravenous infusion of vehicle or Xen at 4 (Lo-Xen) or 12 (Hi-Xen) pmol · kg(-1) · min(-1) was administered from zero until 300 min. Some subjects with NGT received 30- and 90-min Hi-Xen infusions. Plasma ACM, glucose, insulin, C-peptide, glucagon, Xen, GIP, and glucagon-like peptide-1 (GLP-1) levels were measured and ISRs calculated. Areas under the curves were compared for treatment effects. Infusion with Hi-Xen, but not Lo-Xen, similarly delayed gastric emptying and reduced postprandial glucose levels in all groups. Infusions for 90 or 300 min, but not 30 min, were equally effective. Hi-Xen reduced plasma GLP-1, but not GIP, levels without altering the insulin secretory response to glucose. Intense staining for Xen receptors was detected on PGP9.5-positive nerve fibers in the longitudinal muscle of the human stomach. Thus Xen reduces gastric emptying in humans with and without T2DM, probably via a neural relay. Moreover, endogenous GLP-1 may not be a major enhancer of insulin secretion in healthy humans under physiological conditions. PMID:24356886

  10. Xenin-25 delays gastric emptying and reduces postprandial glucose levels in humans with and without Type 2 diabetes

    PubMed Central

    Chowdhury, Sara; Reeds, Dominic N.; Crimmins, Dan L.; Patterson, Bruce W.; Laciny, Erin; Wang, Songyan; Tran, Hung D.; Griest, Terry A.; Rometo, David A.; Dunai, Judit; Wallendorf, Michael J.; Ladenson, Jack H.; Polonsky, Kenneth S.

    2013-01-01

    Xenin-25 (Xen) is a neurotensin-related peptide secreted by a subset of glucose-dependent insulinotropic polypeptide (GIP)-producing enteroendocrine cells. In animals, Xen regulates gastrointestinal function and glucose homeostasis, typically by initiating neural relays. However, little is known about Xen action in humans. This study determines whether exogenously administered Xen modulates gastric emptying and/or insulin secretion rates (ISRs) following meal ingestion. Fasted subjects with normal (NGT) or impaired (IGT) glucose tolerance and Type 2 diabetes mellitus (T2DM; n = 10–14 per group) ingested a liquid mixed meal plus acetaminophen (ACM; to assess gastric emptying) at time zero. On separate occasions, a primed-constant intravenous infusion of vehicle or Xen at 4 (Lo-Xen) or 12 (Hi-Xen) pmol·kg−1·min−1 was administered from zero until 300 min. Some subjects with NGT received 30- and 90-min Hi-Xen infusions. Plasma ACM, glucose, insulin, C-peptide, glucagon, Xen, GIP, and glucagon-like peptide-1 (GLP-1) levels were measured and ISRs calculated. Areas under the curves were compared for treatment effects. Infusion with Hi-Xen, but not Lo-Xen, similarly delayed gastric emptying and reduced postprandial glucose levels in all groups. Infusions for 90 or 300 min, but not 30 min, were equally effective. Hi-Xen reduced plasma GLP-1, but not GIP, levels without altering the insulin secretory response to glucose. Intense staining for Xen receptors was detected on PGP9.5-positive nerve fibers in the longitudinal muscle of the human stomach. Thus Xen reduces gastric emptying in humans with and without T2DM, probably via a neural relay. Moreover, endogenous GLP-1 may not be a major enhancer of insulin secretion in healthy humans under physiological conditions. PMID:24356886

  11. Improving Effect of the Acute Administration of Dietary Fiber-Enriched Cereals on Blood Glucose Levels and Gut Hormone Secretion

    PubMed Central

    2016-01-01

    Dietary fiber improves hyperglycemia in patients with type 2 diabetes through its physicochemical properties and possible modulation of gut hormone secretion, such as glucagon-like peptide 1 (GLP-1). We assessed the effect of dietary fiber-enriched cereal flakes (DC) on postprandial hyperglycemia and gut hormone secretion in patients with type 2 diabetes. Thirteen participants ate isocaloric meals based on either DC or conventional cereal flakes (CC) in a crossover design. DC or CC was provided for dinner, night snack on day 1 and breakfast on day 2, followed by a high-fat lunch. On day 2, the levels of plasma glucose, GLP-1, glucose-dependent insulinotropic polypeptide (GIP), and insulin were measured. Compared to CC, DC intake exhibited a lower post-breakfast 2-hours glucose level (198.5±12.8 vs. 245.9±15.2 mg/dL, P<0.05) and a lower incremental peak of glucose from baseline (101.8±9.1 vs. 140.3±14.3 mg/dL, P<0.001). The incremental area under the curve (iAUC) of glucose after breakfast was lower with DC than with CC (P<0.001). However, there were no differences in the plasma insulin, glucagon, GLP-1, and GIP levels. In conclusion, acute administration of DC attenuates postprandial hyperglycemia without any significant change in the representative glucose-regulating hormones in patients with type 2 diabetes (ClinicalTrials.gov. NCT 01997281). PMID:26839476

  12. Non-invasive detection of fasting blood glucose level via electrochemical measurement of saliva.

    PubMed

    Malik, Sarul; Khadgawat, Rajesh; Anand, Sneh; Gupta, Shalini

    2016-01-01

    Machine learning techniques such as logistic regression (LR), support vector machine (SVM) and artificial neural network (ANN) were used to detect fasting blood glucose levels (FBGL) in a mixed population of healthy and diseased individuals in an Indian population. The occurrence of elevated FBGL was estimated in a non-invasive manner from the status of an individual's salivary electrochemical parameters such as pH, redox potential, conductivity and concentration of sodium, potassium and calcium ions. The samples were obtained from 175 randomly selected volunteers comprising half healthy and half diabetic patients. The models were trained using 70 % of the total data, and tested upon the remaining set. For each algorithm, data points were cross-validated by randomly shuffling them three times prior to implementing the model. The performance of the machine learning technique was reported in terms of four statistically significant parameters-accuracy, precision, sensitivity and F1 score. SVM using RBF kernel showed the best performance for classifying high FBGLs with approximately 85 % accuracy, 84 % precision, 85 % sensitivity and 85 % F1 score. This study has been approved by the ethical committee of All India Institute of Medical Sciences, New Delhi, India with the reference number: IEC/NP-278/01-08-2014, RP-29/2014. PMID:27350930

  13. Cinnamon extract improves fasting blood glucose and glycosylated hemoglobin level in Chinese patients with type 2 diabetes.

    PubMed

    Lu, Ting; Sheng, Hongguang; Wu, Johnna; Cheng, Yuan; Zhu, Jianming; Chen, Yan

    2012-06-01

    For thousands of years, cinnamon has been used as a traditional treatment in China. However, there are no studies to date that investigate whether cinnamon supplements are able to aid in the treatment of type 2 diabetes in Chinese subjects. We hypothesized cinnamon should be effective in improving blood glucose control in Chinese patients with type 2 diabetes. To address this hypothesis, we performed a randomized, double-blinded clinical study to analyze the effect of cinnamon extract on glycosylated hemoglobin A(1c) and fasting blood glucose levels in Chinese patients with type 2 diabetes. A total of 66 patients with type 2 diabetes were recruited and randomly divided into 3 groups: placebo and low-dose and high-dose supplementation with cinnamon extract at 120 and 360 mg/d, respectively. Patients in all 3 groups took gliclazide during the entire 3 months of the study. Both hemoglobin A(1c) and fasting blood glucose levels were significantly reduced in patients in the low- and high-dose groups, whereas they were not changed in the placebo group. The blood triglyceride levels were also significantly reduced in the low-dose group. The blood levels of total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and liver transaminase remained unchanged in the 3 groups. In conclusion, our study indicates that cinnamon supplementation is able to significantly improve blood glucose control in Chinese patients with type 2 diabetes.

  14. Effect of 2 month controlled green tea intervention on lipoprotein cholesterol, glucose, and hormone levels in healthy postmenopausal women

    PubMed Central

    Wu, Anna H.; Spicer, Darcy; Stanczyk, Frank Z.; Tseng, Chiu-chen; Yang, Chung S.; Pike, Malcolm C.

    2013-01-01

    There have been no controlled intervention studies to investigate the effects of green tea on circulating hormone levels, an established breast cancer risk factor. We conducted a randomized, double-blind, placebo-controlled intervention study to investigate the effect of the main green tea catechin, epigallocatechin gallate (EGCG), taken in a green tea extract, Polyphenon E (PPE). Postmenopausal women (n=103) were randomized into three arms: placebo, 400 mg EGCG as PPE, or 800 mg EGCG as PPE as capsules per day for 2 months. Urinary tea catechin and serum estrogen, androgen, lipid, glucose-related markers, adiponectin, and growth factor levels were measured at baseline and at the end of months 1 and 2 of intervention. Based on urinary tea catechin concentrations, compliance was excellent. Supplementation with PPE did not produce consistent patterns of changes in estradiol (E2), estrone (E1), or testosterone (T) levels. Low density lipoprotein (LDL)-cholesterol decreased significantly in both PPE groups but was unchanged in the placebo group; the change in LDL-cholesterol differed between the placebo and PPE groups (P=0.02). Glucose and insulin levels decreased nonsignificantly in the PPE groups but increased in the placebo group; statistically significant differences in changes in glucose (P=0.008) and insulin (P=0.01) were found. In summary, green tea (400 and 800 mg EGCG as PPE; ~5–10 cups) supplementation for 2 months had suggestive beneficial effects on LDL cholesterol concentrations and glucose-related markers. PMID:22246619

  15. Effect of 2-month controlled green tea intervention on lipoprotein cholesterol, glucose, and hormone levels in healthy postmenopausal women.

    PubMed

    Wu, Anna H; Spicer, Darcy; Stanczyk, Frank Z; Tseng, Chiu-Chen; Yang, Chung S; Pike, Malcolm C

    2012-03-01

    There have been no controlled intervention studies to investigate the effects of green tea on circulating hormone levels, an established breast cancer risk factor. We conducted a double-blind, randomized, placebo-controlled intervention study to investigate the effect of the main green tea catechin, epigallocatechin gallate (EGCG), taken in a green tea extract, polyphenon E (PPE). Postmenopausal women (n = 103) were randomized into three arms: placebo, 400-mg EGCG as PPE, or 800-mg EGCG as PPE as capsules per day for 2 months. Urinary tea catechin and serum estrogen, androgen, lipid, glucose-related markers, adiponectin, and growth factor levels were measured at baseline and at the end of months 1 and 2 of intervention. On the basis of urinary tea catechin concentrations, compliance was excellent. Supplementation with PPE did not produce consistent patterns of changes in estradiol (E2), estrone (E1), or testosterone (T) levels. Low-density lipoprotein (LDL)-cholesterol decreased significantly in both PPE groups but was unchanged in the placebo group; the change in LDL-cholesterol differed between the placebo and PPE groups (P = 0.02). Glucose and insulin levels decreased nonsignificantly in the PPE groups but increased in the placebo group; statistically significant differences in changes in glucose (P = 0.008) and insulin (P = 0.01) were found. In summary, green tea (400- and 800-mg EGCG as PPE; ∼5-10 cups) supplementation for 2 months had suggestive beneficial effects on LDL-cholesterol concentrations and glucose-related markers.

  16. Impact of hypertension, overall obesity and abdominal obesity on diabetes incidence in Shanghai residents with different glucose levels.

    PubMed

    Qian, Qiaohui; Li, Xu; Feng, Bo

    2012-06-01

    The impact of hypertension, overall obesity and abdominal obesity, individually or collectively, on diabetes incidence over a period of 5 years in residents with different glucose levels is diverse, with abdominal obesity having an impact in both non-diabetic hyperglycaemia and normal groups.

  17. Overexpression of Rad in muscle worsens diet-induced insulin resistance and glucose intolerance and lowers plasma triglyceride level

    NASA Astrophysics Data System (ADS)

    Ilany, Jacob; Bilan, Philip J.; Kapur, Sonia; Caldwell, James S.; Patti, Mary-Elizabeth; Marette, Andre; Kahn, C. Ronald

    2006-03-01

    Rad is a low molecular weight GTPase that is overexpressed in skeletal muscle of some patients with type 2 diabetes mellitus and/or obesity. Overexpression of Rad in adipocytes and muscle cells in culture results in diminished insulin-stimulated glucose uptake. To further elucidate the potential role of Rad in vivo, we have generated transgenic (tg) mice that overexpress Rad in muscle using the muscle creatine kinase (MCK) promoter-enhancer. Rad tg mice have a 6- to 12-fold increase in Rad expression in muscle as compared to wild-type littermates. Rad tg mice grow normally and have normal glucose tolerance and insulin sensitivity, but have reduced plasma triglyceride levels. On a high-fat diet, Rad tg mice develop more severe glucose intolerance than the wild-type mice; this is due to increased insulin resistance in muscle, as exemplified by a rightward shift in the dose-response curve for insulin stimulated 2-deoxyglucose uptake. There is also a unexpected further reduction of the plasma triglyceride levels that is associated with increased levels of lipoprotein lipase in the Rad tg mice. These results demonstrate a potential synergistic interaction between increased expression of Rad and high-fat diet in creation of insulin resistance and altered lipid metabolism present in type 2 diabetes. diabetes mellitus | glucose transport | RGK GTPase | transgenic mouse

  18. Determining diabetes prevalence: a rational basis for the use of fasting plasma glucose concentrations?

    PubMed

    Finch, C F; Zimmet, P Z; Alberti, K G

    1990-08-01

    The World Health Organization and the National Diabetes Data Group each recommend a diagnostic cut-off point for diabetes of 7.8 mmol l-1 for fasting plasma glucose concentrations as part of the diagnostic criteria for epidemiological studies. However, this cut-off has been shown to be insensitive compared with a screening test based on 2-h plasma glucose levels. In thirteen Pacific populations, from four ethnic groups (Asian Indian, Melanesian, Micronesian, and Polynesian), we have examined whether a different cut-off point for fasting plasma glucose would be more accurate for obtaining an estimate of the prevalence of diabetes when compared with 2-h levels. A fasting plasma glucose diagnostic cut-off of 7.0 mmol l-1 gave an estimate of prevalence not significantly different from that based on the 2-h plasma glucose in 12 of the 13 populations (mean difference 0.27, range -1.51 to +2.44,%). On the other hand, when a cut-off of 7.8 mmol l-1 for fasting plasma glucose was used, the resulting prevalence over-estimated the 2-h glucose prevalence in all populations (mean difference 1.91, range 0.14-5.80,%). Thus for Pacific populations, a fasting plasma glucose cut-off of 7.0 mmol l-1 provides estimates of prevalence that are equivalent to those based on 2-h plasma glucose levels. In epidemiological studies designed to estimate diabetes prevalence, we recommend use of a fasting plasma glucose cut-off of 7.0 mmol l-1 in preference to a detection level of 7.8 mmol l-1, if glucose loading is not possible.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Increased glucose metabolism and ATP level in brain tissue of Huntington's disease transgenic mice.

    PubMed

    Oláh, Judit; Klivényi, Péter; Gardián, Gabriella; Vécsei, László; Orosz, Ferenc; Kovacs, Gabor G; Westerhoff, Hans V; Ovádi, Judit

    2008-10-01

    Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by multifarious dysfunctional alterations including mitochondrial impairment. In the present study, the formation of inclusions caused by the mutation of huntingtin protein and its relationship with changes in energy metabolism and with pathological alterations were investigated both in transgenic and 3-nitropropionic acid-treated mouse models for HD. The HD and normal mice were characterized clinically; the affected brain regions were identified by immunohistochemistry and used for biochemical analysis of the ATP-producing systems in the cytosolic and the mitochondrial compartments. In both HD models, the activities of some glycolytic enzymes were somewhat higher. By contrast, the activity of glyceraldehyde-3-phosphate dehydrogenase was much lower in the affected region of the brain compared to that of the control. Paradoxically, at the system level, glucose conversion into lactate was enhanced in cytosolic extracts from the HD brain tissue, and the level of ATP was higher in the tissue itself. The paradox could be resolved by taking all the observed changes in glycolytic enzymes into account, ensuing an experiment-based detailed mathematical model of the glycolytic pathway. The mathematical modelling using the experimentally determined kinetic parameters of the individual enzymes and the well-established rate equations predicted the measured flux and concentrations in the case of the control. The same mathematical model with the experimentally determined altered V(max) values of the enzymes did account for an increase of glycolytic flux in the HD sample, although the extent of the increase was not predicted quantitatively. This suggested a somewhat altered regulation of this major metabolic pathway in HD tissue. We then used the mathematical model to develop a hypothesis for a new regulatory interaction that might account for the observed changes; in HD, glyceraldehyde-3-phosphate

  20. Bats: Body mass index, forearm mass index, blood glucose levels and SLC2A2 genes for diabetes.

    PubMed

    Meng, Fanxing; Zhu, Lei; Huang, Wenjie; Irwin, David M; Zhang, Shuyi

    2016-01-01

    Bats have an unusually large volume of endocrine tissue, with a large population of beta cells, and an elevated sensitivity to glucose and insulin. This makes them excellent animal models for studying diabetes mellitus. We evaluated bats as models for diabetes in terms of lifestyle and genetic factors. For lifestyle factors, we generated data sets of 149 body mass index (BMI) and 860 forearm mass index (FMI) measurements for different species of bats. Both showed negative inter-species correlations with blood glucose levels in sixteen bats examined. The negative inter-species correlations may reflect adaptation of a small insectivorous ancestor to a larger frugivore. We identified an 11 bp deletion in the proximal promoter of SLC2A2 that we predicted would disrupt binding sites for the transcription repressor ZNF354C. In frugivorous bats this could explain the relatively high expression of this gene, resulting in a better capacity to absorb glucose and decrease blood glucose levels. PMID:27439361

  1. Bats: Body mass index, forearm mass index, blood glucose levels and SLC2A2 genes for diabetes

    PubMed Central

    Meng, Fanxing; Zhu, Lei; Huang, Wenjie; Irwin, David M.; Zhang, Shuyi

    2016-01-01

    Bats have an unusually large volume of endocrine tissue, with a large population of beta cells, and an elevated sensitivity to glucose and insulin. This makes them excellent animal models for studying diabetes mellitus. We evaluated bats as models for diabetes in terms of lifestyle and genetic factors. For lifestyle factors, we generated data sets of 149 body mass index (BMI) and 860 forearm mass index (FMI) measurements for different species of bats. Both showed negative inter-species correlations with blood glucose levels in sixteen bats examined. The negative inter-species correlations may reflect adaptation of a small insectivorous ancestor to a larger frugivore. We identified an 11 bp deletion in the proximal promoter of SLC2A2 that we predicted would disrupt binding sites for the transcription repressor ZNF354C. In frugivorous bats this could explain the relatively high expression of this gene, resulting in a better capacity to absorb glucose and decrease blood glucose levels. PMID:27439361

  2. Syntheses of D-Glucose Derivatives Emitting Blue Fluorescence through Pd-Catalyzed C-N Coupling.

    PubMed

    Otsuka, Yuji; Sasaki, Ayako; Teshima, Tadashi; Yamada, Katsuya; Yamamoto, Toshihiro

    2016-03-18

    Green fluorescence-emitting D-glucose derivatives such as 2-NBDG have been effectively used to monitor D-glucose uptake through glucose transporters GLUTs at the single cell level. By contrast, GLUT-permeable D-glucose derivatives emitting blue fluorescence have been long awaited. A glucose tracer, 2-deoxy-2-(2-oxo-2H-chromen-7-yl)amino-D-glucose (CDG) (1), together with related compounds have been synthesized by Pd-catalyzed C-N coupling. Of these, CDG (1) is a promising blue fluorescence-emitting candidate molecule that may enter into mammalian cells through GLUTs.

  3. Glucose level determination with a multi-enzymatic cascade reaction in a functionalized glass chip.

    PubMed

    Costantini, Francesca; Tiggelaar, Roald; Sennato, Simona; Mura, Francesco; Schlautmann, Stefan; Bordi, Federico; Gardeniers, Han; Manetti, Cesare

    2013-09-01

    In this work we show the functionalization of the interior of microfluidic glass chips with poly(2-hydroxyethyl methacrylate) polymer brushes as anchors for co-immobilization of the enzymes glucose-oxidase and horseradish peroxidase. The formation of the brush layer and subsequent immobilization of these enzymes have been characterized on flat surfaces by atomic force microscopy and Fourier transform infrared spectroscopy, and studied inside glass chips by field emission scanning microscopy. Enzyme-functionalized glass chips have been applied for performing a multi-enzymatic cascade reaction for the fast (20 s) determination of glucose in human blood samples and the result is in excellent agreement with values obtained from the conventional hospital laboratory. The limit of detection of this bi-enzymatic method is 60 μM. With the advantages of high selectivity and reproducibility, this functionalization method can be used for improving the efficiency of glucose sensors. PMID:23831561

  4. Fasting and 2-Hour Plasma Glucose and Insulin

    PubMed Central

    Libman, Ingrid M.; Barinas-Mitchell, Emma; Bartucci, Andrea; Chaves-Gnecco, Diego; Robertson, Robert; Arslanian, Silva

    2010-01-01

    OBJECTIVE To determine whether elevated fasting or 2-h plasma glucose and/or insulin better reflects the presence of cardiovascular disease (CVD) risk markers in an overweight pediatric population with normal glucose tolerance. RESEARCH DESIGN AND METHODS A total of 151 overweight youths (8–17 years old) were evaluated with oral glucose tolerance tests and measurement of CVD risk factors. The study population was categorized according to quartiles of fasting and 2-h glucose and insulin levels. ANCOVA, adjusted for age, sex, race, Tanner stage, and percent body fat (measured by dual-energy X-ray absorptiometry), was used to compare metabolic variables between the quartiles of glucose and insulin groups. RESULTS Increasing quartiles of fasting and 2-h insulin were associated with increasing CVD risk factors. Glucose quartiles on the other hand, either fasting or at 2 h, were not. CONCLUSIONS These data suggest that hyperinsulinemia may be the earliest and/or primary metabolic alteration in childhood associated with risk markers for CVD. Prospective studies are needed. PMID:21115769

  5. CSF glucose test

    MedlinePlus

    Glucose test - CSF; Cerebrospinal fluid glucose test ... The glucose level in the CSF should be 50 to 80 mg/100 mL (or greater than 2/3 ... Abnormal results include higher and lower glucose levels. Abnormal ... or fungus) Inflammation of the central nervous system Tumor

  6. Resistin disrupts glycogen synthesis under high insulin and high glucose levels by down-regulating the hepatic levels of GSK3β.

    PubMed

    Song, Rongjing; Wang, Xi; Mao, Yiqing; Li, Hui; Li, Zhixin; Xu, Wei; Wang, Rong; Guo, Tingting; Jin, Ling; Zhang, Xiaojing; Zhang, Yizhuang; Zhou, Na; Hu, Ruobi; Jia, Jianwei; Lei, Zhen; Irwin, David M; Niu, Gang; Tan, Huanran

    2013-10-15

    The effect of mouse resistin on hepatic insulin resistance in vivo and in vitro, and its possible molecular mechanism were examined. Focusing on liver glycogen metabolism and gluconeogenesis, which are important parts of glucose metabolism, in primary cultures of rat hepatocytes we found that glycogen content was significantly lower (P<0.05) after treatment with recombinant murine resistin only in the presence of insulin plus glucose stimulation. Protein levels of factors in the insulin signaling pathway involved in glycogen synthesis were examined by Western blot analysis, with the only significant change observed being the level of phosphorylated (at Ser 9) glycogen synthase kinase-3β (GSK-3β) (P<0.001). No differences in the protein levels for the insulin receptor β (IRβ), insulin receptor substrates (IRS1 and IRS2), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt) or their phosphorylated forms were observed between control and resistin treated primary rat hepatocytes. In a mouse model with high liver-specific expression of resistin, fasting blood glucose levels and liver glycogen content changed. Fasting blood glucose levels were significantly higher (P<0.001) in the model mice, compared to the control mice, while the glycogen content of the liver tissue was about 60% of that of the control mice (P<0.05). The gluconeogenic response was not altered between the experimental and control mice. The level of phosphorylated GSK-3β in the liver tissue was also decreased (P<0.05) in the model mice, consistent with the results from the primary rat hepatocytes. Our results suggest that resistin reduces the levels of GSK-3β phosphorylated at Ser 9 leading to impaired hepatic insulin action in primary rat hepatocytes and in a mouse model with high liver-specific expression of resistin. PMID:23860320

  7. Pentavalent vanadium at concentration of the underground water level enhances the sweet taste sense to glucose in college students.

    PubMed

    Nagai, Masanori; Saitoh, Junko; Ohno, Hiromi; Hitomi, Chiaki; Wada, Maki

    2006-02-01

    Underground water in volcanic areas contains vanadium when the basalt layer exists among igneous rocks. The concentration of vanadium in drinking water sometimes exceeds 0.8 microM in these areas, however, the physiological effects of vanadium, especially non-toxic effects, at concentrations lower than 1 microM are unknown. In the present experiments, we examined the effect of pentavalent vanadium and tetravalent vanadium at 0.8 and 8.0 microM concentrations on the recognition threshold to taste substances in healthy college students. Pentavalent vanadium, ammonium vanadate, lowered the sweet taste threshold to glucose at 0.8 and 8.0 microM as well. Tetravalent vanadium, vanadium sulfate, did not alter the threshold to glucose either at 8.0 microM or at 0.8 microM. Ammonium vanadate also decreased the sweet taste threshold to L-proline at 8.0 microM. Ammonium vanadate did not influence the sour taste threshold to hydrogen chloride. Neither ammonium sulfate nor ammonium bicarbonate altered the sweet taste threshold to glucose. Therefore, the effect of ammonium vanadate on the sweet taste threshold is attained by vanadium but not by ammonium. It was concluded that pentavalent vanadium at 0.8 microM intensifies the sweet taste sense to glucose rather specifically. We have first shown the physiological effect of vanadium at the concentration of the underground water level.

  8. In-situ monitoring of blood glucose level for dialysis machine by AAA-battery-size ATR Fourier spectroscopy

    NASA Astrophysics Data System (ADS)

    Hosono, Satsuki; Sato, Shun; Ishida, Akane; Suzuki, Yo; Inohara, Daichi; Nogo, Kosuke; Abeygunawardhana, Pradeep K.; Suzuki, Satoru; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2015-07-01

    For blood glucose level measurement of dialysis machines, we proposed AAA-battery-size ATR (Attenuated total reflection) Fourier spectroscopy in middle infrared light region. The proposed one-shot Fourier spectroscopic imaging is a near-common path and spatial phase-shift interferometer with high time resolution. Because numerous number of spectral data that is 60 (= camera frame rare e.g. 60[Hz]) multiplied by pixel number could be obtained in 1[sec.], statistical-averaging improvement realize high-accurate spectral measurement. We evaluated the quantitative accuracy of our proposed method for measuring glucose concentration in near-infrared light region with liquid cells. We confirmed that absorbance at 1600[nm] had high correlations with glucose concentrations (correlation coefficient: 0.92). But to measure whole-blood, complex light phenomenon caused from red blood cells, that is scattering and multiple reflection or so, deteriorate spectral data. Thus, we also proposed the ultrasound-assisted spectroscopic imaging that traps particles at standing-wave node. Thus, if ATR prism is oscillated mechanically, anti-node area is generated around evanescent light field on prism surface. By elimination complex light phenomenon of red blood cells, glucose concentration in whole-blood will be quantify with high accuracy. In this report, we successfully trapped red blood cells in normal saline solution with ultrasonic standing wave (frequency: 2[MHz]).

  9. Pentavalent vanadium at concentration of the underground water level enhances the sweet taste sense to glucose in college students.

    PubMed

    Nagai, Masanori; Saitoh, Junko; Ohno, Hiromi; Hitomi, Chiaki; Wada, Maki

    2006-02-01

    Underground water in volcanic areas contains vanadium when the basalt layer exists among igneous rocks. The concentration of vanadium in drinking water sometimes exceeds 0.8 microM in these areas, however, the physiological effects of vanadium, especially non-toxic effects, at concentrations lower than 1 microM are unknown. In the present experiments, we examined the effect of pentavalent vanadium and tetravalent vanadium at 0.8 and 8.0 microM concentrations on the recognition threshold to taste substances in healthy college students. Pentavalent vanadium, ammonium vanadate, lowered the sweet taste threshold to glucose at 0.8 and 8.0 microM as well. Tetravalent vanadium, vanadium sulfate, did not alter the threshold to glucose either at 8.0 microM or at 0.8 microM. Ammonium vanadate also decreased the sweet taste threshold to L-proline at 8.0 microM. Ammonium vanadate did not influence the sour taste threshold to hydrogen chloride. Neither ammonium sulfate nor ammonium bicarbonate altered the sweet taste threshold to glucose. Therefore, the effect of ammonium vanadate on the sweet taste threshold is attained by vanadium but not by ammonium. It was concluded that pentavalent vanadium at 0.8 microM intensifies the sweet taste sense to glucose rather specifically. We have first shown the physiological effect of vanadium at the concentration of the underground water level. PMID:16502326

  10. A reusable robust radio frequency biosensor using microwave resonator by integrated passive device technology for quantitative detection of glucose level.

    PubMed

    Kim, N Y; Dhakal, R; Adhikari, K K; Kim, E S; Wang, C

    2015-05-15

    A reusable robust radio frequency (RF) biosensor with a rectangular meandered line (RML) resonator on a gallium arsenide substrate by integrated passive device (IPD) technology was designed, fabricated and tested to enable the real-time identification of the glucose level in human serum. The air-bridge structure fabricated by an IPD technology was applied to the RML resonator to improve its sensitivity by increasing the magnitude of the return loss (S21). The resonance behaviour, based on S21 characteristics of the biosensor, was analysed at 9.20 GHz with human serum containing different glucose concentration ranging from 148-268 mg dl(-1), 105-225 mg dl(-1) and at a deionised (D) water glucose concentration in the range of 25- 500 mg dl(-1) for seven different samples. A calibration analysis was performed for the human serum from two different subjects and for D-glucose at a response time of 60 s; the reproducibility, the minimum shift in resonance frequency and the long-term stability of the signal were investigated. The feature characteristics based on the resonance concept after the use of serum as an analyte are modelled as an inductor, capacitor and resistor. The findings support the development of resonance-based sensing with an excellent sensitivity of 1.08 MHz per 1 mg dl(-1), a detection limit of 8.01 mg dl(-1), and a limit of quantisation of 24.30 mg dl(-1).

  11. Rapid fluctuations in extracellular brain glucose levels induced by natural arousing stimuli and intravenous cocaine: fueling the brain during neural activation

    PubMed Central

    Lenoir, Magalie

    2012-01-01

    Glucose, a primary energetic substrate for neural activity, is continuously influenced by two opposing forces that tend to either decrease its extracellular levels due to enhanced utilization in neural cells or increase its levels due to entry from peripheral circulation via enhanced cerebral blood flow. How this balance is maintained under physiological conditions and changed during neural activation remains unclear. To clarify this issue, enzyme-based glucose sensors coupled with high-speed amperometry were used in freely moving rats to evaluate fluctuations in extracellular glucose levels induced by brief audio stimulus, tail pinch (TP), social interaction with another rat (SI), and intravenous cocaine (1 mg/kg). Measurements were performed in nucleus accumbens (NAcc) and substantia nigra pars reticulata (SNr), which drastically differ in neuronal activity. In NAcc, where most cells are powerfully excited after salient stimulation, glucose levels rapidly (latency 2–6 s) increased (30–70 μM or 6–14% over baseline) by all stimuli; the increase differed in magnitude and duration for each stimulus. In SNr, where most cells are transiently inhibited by salient stimuli, TP, SI, and cocaine induced a biphasic glucose response, with the initial decrease (−20–40 μM or 5–10% below baseline) followed by a reboundlike increase. The critical role of neuronal activity in mediating the initial glucose response was confirmed by monitoring glucose currents after local microinjections of glutamate (GLU) or procaine (PRO). While intra-NAcc injection of GLU transiently increased glucose levels in this structure, intra-SNr PRO injection resulted in rapid, transient decreases in SNr glucose. Therefore, extracellular glucose levels in the brain change very rapidly after physiological and pharmacological stimulation, the response is structure specific, and the pattern of neuronal activity appears to be a critical factor determining direction and magnitude of physiological

  12. GlpR Represses Fructose and Glucose Metabolic Enzymes at the Level of Transcription in the Haloarchaeon Haloferax volcanii▿ †

    PubMed Central

    Rawls, Katherine S.; Yacovone, Shalane K.; Maupin-Furlow, Julie A.

    2010-01-01

    In this study, a DeoR/GlpR-type transcription factor was investigated for its potential role as a global regulator of sugar metabolism in haloarchaea, using Haloferax volcanii as a model organism. Common to a number of haloarchaea and Gram-positive bacterial species, the encoding glpR gene was chromosomally linked with genes of sugar metabolism. In H. volcanii, glpR was cotranscribed with the downstream phosphofructokinase (PFK; pfkB) gene, and the transcript levels of this glpR-pfkB operon were 10- to 20-fold higher when cells were grown on fructose or glucose than when they were grown on glycerol alone. GlpR was required for repression on glycerol based on significant increases in the levels of PFK (pfkB) transcript and enzyme activity detected upon deletion of glpR from the genome. Deletion of glpR also resulted in significant increases in both the activity and the transcript (kdgK1) levels of 2-keto-3-deoxy-d-gluconate kinase (KDGK), a key enzyme of haloarchaeal glucose metabolism, when cells were grown on glycerol, compared to the levels obtained for media with glucose. Promoter fusions to a β-galactosidase bgaH reporter revealed that transcription of glpR-pfkB and kdgK1 was modulated by carbon source and GlpR, consistent with quantitative reverse transcription-PCR (qRT-PCR) and enzyme activity assays. The results presented here provide genetic and biochemical evidence that GlpR controls both fructose and glucose metabolic enzymes through transcriptional repression of the glpR-pfkB operon and kdgK1 during growth on glycerol. PMID:20935102

  13. Glucose levels and hemodynamic changes in patients submitted to routine dental treatment with and without local anesthesia

    PubMed Central

    Bortoluzzi, Marcelo Carlos; Manfro, Rafael; Nardi, Anderson

    2010-01-01

    OBJECTIVE: The aim of this study was to (1) observe the extent to which hemodynamic and glucose measurements change in patients submitted to a dental procedure with and without a local anesthetic and a vasoconstrictor (LAVA; 2% mepivacaine with adrenaline 1∶100,000) and (2) correlate those parameters with the patients' anxiety levels. METHOD: This was an unblinded, random, prospective, and observational study with paired groups. Patients were evaluated during two different consultations during which they either did or did not receive a local anesthetic/vasoconstrictor. RESULTS: Thirty‐seven patients ranging in age from 18 to 45 years (mean 30.4 ± 5.5 years) were evaluated. Hemodynamic parameters, including systolic blood pressure, diastolic blood pressure, heart rate, and glucose levels, did not change significantly in healthy patients, regardless of whether a LAVA was administered during the dental treatment. CONCLUSION: The patients' anxiety statuses neither varied significantly nor showed any correlation with the studied hemodynamic parameters and glucose levels, regardless of whether local anesthetics were used. PMID:21120297

  14. Bio-enhancing Effect of Piperine with Metformin on Lowering Blood Glucose Level in Alloxan Induced Diabetic Mice

    PubMed Central

    Atal, Shubham; Atal, Sarjana; Vyas, Savita; Phadnis, Pradeep

    2016-01-01

    Background: Diabetes mellitus is the most rampant metabolic pandemic of the 21st century. Piperine, the chief alkaloid of Piper nigrum (black pepper) is widely used in alternative and complementary therapies has been extensively studied for its bio-enhancing property. Objective: To evaluate the bio-enhancing effect of piperine with metformin in lowering blood glucose levels in alloxan-induced diabetic mice. Materials and Methods: Piperine was isolated from an extract of fruits of P. nigrum. Alloxan-induced (150 mg/kg intraperitoneal) diabetic mice were divided into four groups. Group I (control 2% gum acacia 2 g/100 mL), Group II (metformin 250 mg/kg), Group III (metformin and piperine 250 mg/kg + 10 mg/kg), and Group IV (metformin and piperine 125 mg/kg + 10 mg/kg). All the drugs were administered orally once daily for 28 days. Blood glucose levels were estimated at day 0, day 14, and end of the study (day 28). Results: The combination of piperine with therapeutic dose of metformin (10 mg/kg + 250 mg/kg) showed significantly more lowering of blood glucose level as compared to metformin alone on both 14th and 28th day (P < 0.05). Piperine in combination with sub-therapeutic dose of metformin (10 mg/kg + 125 mg/kg) showed significantly more lowering of blood glucose as compared to control group and also showed greater lowering of blood glucose as compared to metformin (250 mg/kg) alone. Conclusion: Piperine has the potential to be used as a bio-enhancing agent in combination with metformin which can help reduce the dose of metformin and its adverse effects. SUMMARY Piperine is known for its bioenhancing property. This study evaluates the effect of piperine in combination with oral antidiabetic drug metformin. Drugs were administered for 28 days in alloxan induced diabetic mice and blood glucose lowering effect was seen. Results showed significantly better effect of combination of piperine with therapeutic dose of metformin in comparison to metformin alone. Piperine

  15. Effects of Noise Exposure on Systemic and Tissue-Level Markers of Glucose Homeostasis and Insulin Resistance in Male Mice

    PubMed Central

    Liu, Lijie; Wang, Fanfan; Lu, Haiying; Cao, Shuangfeng; Du, Ziwei; Wang, Yongfang; Feng, Xian; Gao, Ye; Zha, Mingming; Guo, Min; Sun, Zilin; Wang, Jian

    2016-01-01

    Background: Epidemiological studies have indicated that noise exposure is associated with an increased risk of type 2 diabetes mellitus (T2DM). However, the nature of the connection between noise exposure and T2DM remains to be explored. Objectives: We explored whether and how noise exposure affects glucose homeostasis in mice as the initial step toward T2DM development. Methods: Male ICR mice were randomly assigned to one of four groups: the control group and three noise groups (N20D, N10D, and N1D), in which the animals were exposed to white noise at 95 decibel sound pressure level (dB SPL) for 4 hr per day for 20 successive days, 10 successive days, or 1 day, respectively. Glucose tolerance and insulin sensitivity were evaluated 1 day, 1 week, and 1 month after the final noise exposure (1DPN, 1WPN, and 1MPN). Standard immunoblots, immunohistochemical methods, and enzyme-linked immunosorbent assays (ELISA) were performed to assess insulin signaling in skeletal muscle, the morphology of β cells, and plasma corticosterone levels. Results: Noise exposure for 1 day caused transient glucose intolerance and insulin resistance, whereas noise exposure for 10 and 20 days had no effect on glucose tolerance but did cause prolonged insulin resistance and an increased insulin response to glucose challenge. Akt phosphorylation and GLUT4 translocation in response to exogenous insulin were decreased in the skeletal muscle of noise-exposed animals. Conclusions: Noise exposure at 95 dB SPL caused insulin resistance in male ICR mice, which was prolonged with longer noise exposure and was likely related to the observed blunted insulin signaling in skeletal muscle. Citation: Liu L, Wang F, Lu H, Cao S, Du Z, Wang Y, Feng X, Gao Y, Zha M, Guo M, Sun Z, Wang J. 2016. Effects of noise exposure on systemic and tissue-level markers of glucose homeostasis and insulin resistance in male mice. Environ Health Perspect 124:1390–1398; http://dx.doi.org/10.1289/EHP162 PMID:27128844

  16. Serum Glucose and Malondialdehyde Levels in Alloxan Induced Diabetic Rats Supplemented with Methanolic Extract of Tacazzea Apiculata

    PubMed Central

    Gwarzo, M. Y.; Ahmadu, J. H.; Ahmad, M. B.; Dikko, A. U. A.

    2014-01-01

    Tacazzea apiculata is used by traditional medical practitioners for the treatment of wide range of diseases. The current work investigated the hypoglycemic and antioxidant properties of Tacazzea apiculata Oliv. on alloxan induced diabetes mellitus. Five groups (n=10) of rats were fed on commercial diet. The rats were divided into Group 1 (NUT) as non-diabetic and untreated, group 2 (NDT) as non-diabetic and treated, group 3 (DT) diabetic and treated. Group 4 (DUT) as diabetic and untreated. Group five (CP) were diabetic treated with Chlorpropamide, a drug used in the management of diabetic mellitus, with no known antioxidant property. Diabetic induction was done by intra-peritoneal injection of 100 mg/kg b. wt with alloxan. Fasting blood glucose was estimated seven days after induction to determine the severity of glucose elevation among the induced groups. Methanolic extract of T. apiculata leaf was administered to alloxan induced diabetic and non-diabetic control rats at 100mg/kg body weight for four weeks and blood glucose estimated on weekly basis. Malondialdehyde level was also estimated in the sera of the rats. Blood glucose level was monitored for additional 2 weeks post treatment. The results indicated that the extracts possess significant hypoglycemic effect on the diabetic rats (DT) having the mean glucose of (95.2 ± 9.12 mg/dl) compared to the diabetic untreated control group (DUT) with a mean glucose of (238.91 ± 4.42 mg/dl, p<0.05). The effect was sustained even on withdrawal of the extracts for two weeks. This was accompanied by a progressive increase in weight among all treated diabetic rats and non diabetic treated (DT and NDT) compared with diabetic untreated control rat (DUT) (p<0.05). A raised level in malondialdehyde was also observed among the diabetic rat prior to treatment and significantly decreased after the treatment. In conclusion the research demonstrated the hypoglycaemic and antioxidant potential of methanolic leaf extract of T

  17. Short-Term Stability in Refractive Status Despite Large Fluctuations in Glucose Levels in Diabetes Mellitus Type 1 and 2

    PubMed Central

    Huntjens, Byki; Charman, W. Neil; Workman, Helena; Hosking, Sarah L.; O’Donnell, Clare

    2012-01-01

    Purpose This work investigates how short-term changes in blood glucose concentration affect the refractive components of the diabetic eye in patients with long-term Type 1 and Type 2 diabetes. Methods Blood glucose concentration, refractive error components (mean spherical equivalent MSE, J0, J45), central corneal thickness (CCT), anterior chamber depth (ACD), crystalline lens thickness (LT), axial length (AL) and ocular aberrations were monitored at two-hourly intervals over a 12-hour period in: 20 T1DM patients (mean age ± SD) 38±14 years, baseline HbA1c 8.6±1.9%; 21 T2DM patients (mean age ± SD) 56±11 years, HbA1c 7.5±1.8%; and in 20 control subjects (mean age ± SD) 49±23 years, HbA1c 5.5±0.5%. The refractive and biometric results were compared with the corresponding changes in blood glucose concentration. Results Blood glucose concentration at different times was found to vary significantly within (p<0.0005) and between groups (p<0.0005). However, the refractive error components and ocular aberrations were not found to alter significantly over the day in either the diabetic patients or the control subjects (p>0.05). Minor changes of marginal statistical or optical significance were observed in some biometric parameters. Similarly there were some marginally significant differences between the baseline biometric parameters of well-controlled and poorly-controlled diabetic subjects. Conclusion This work suggests that normal, short-term fluctuations (of up to about 6 mM/l on a timescale of a few hours) in the blood glucose levels of diabetics are not usually associated with acute changes in refractive error or ocular wavefront aberrations. It is therefore possible that factors other than refractive error fluctuations are sometimes responsible for the transient visual problems often reported by diabetic patients. PMID:23285232

  18. Elevated glucose levels impair the WNT/β-catenin pathway via the activation of the hexosamine biosynthesis pathway in endometrial cancer.

    PubMed

    Zhou, Fuxing; Huo, Junwei; Liu, Yu; Liu, Haixia; Liu, Gaowei; Chen, Ying; Chen, Biliang

    2016-05-01

    Endometrial cancer (EC) is one of the most common gynecological malignancies in the world. Associations between fasting glucose levels (greater than 5.6mmol/L) and the risk of cancer fatality have been reported. However, the underlying link between glucose metabolic disease and EC remains unclear. In the present study, we explored the influence of elevated glucose levels on the WNT/β-catenin pathway in EC. Previous studies have suggested that elevated concentrations of glucose can drive the hexosamine biosynthesis pathway (HBP) flux, thereby enhancing the O-GlcNAc modification of proteins. Here, we cultured EC cell lines, AN3CA and HEC-1-B, with various concentrations of glucose. Results showed that when treated with high levels of glucose, both lines showed increased expression of β-catenin and O-GlcNAcylation levels; however, these effects could be abolished by the HBP inhibitors, Azaserine and 6-Diazo-5-oxo-l-norleucine, and be restored by glucosamine. Moreover the AN3CA and HEC-1-B cells that were cultured with or without PUGNAc, an inhibitor of the O-GlcNAcase, showed that PUGNAc increased β-catenin levels. The results suggest that elevated glucose levels increase β-catenin expression via the activation of the HBP in EC cells. Subcellular fractionation experiments showed that AN3CA cells had a higher expression of intranuclear β-catenin in high glucose medium. Furthermore, TOP/FOP-Flash and RT-PCR results showed that glucose-induced increased expression of β-catenin triggered the transcription of target genes. In conclusion, elevated glucose levels, via HBP, increase the O-GlcNAcylation level, thereby inducing the over expression of β-catenin and subsequent transcription of the target genes in EC cells.

  19. Fraction SX of maitake mushroom favorably influences blood glucose levels and blood pressure in streptozotocin-induced diabetic rats.

    PubMed

    Preuss, Harry G; Echard, Bobby; Fu, Jia; Perricone, Nicholas V; Bagchi, Debasis; Kaylor, Mark; Zhuang, Cun

    2012-10-01

    We assessed whether fraction SX derived from maitake mushroom could play a beneficial role in the treatment of a laboratory model of type-1 diabetes by decreasing circulating glucose levels and lowering blood pressure (BP). We injected 50 mg/kg body weight (BW) streptozotocin (STZ) intraperitoneally (i.p.) into 48 male Sprague-Dawley rats (SD) to produce a laboratory model of type-1 diabetes. SD were divided into four groups of 12 SD. A control group ate straight pulverized rat chow. To three treatment groups, we added into the pulverized rat chow: gliclazide (10 mg/kg), pioglitazone (10-30 mg/kg), or maitake SX (2.5 g/kg). In addition to measuring BW, circulating glucose level, and BP, the following procedures were also carried out: insulin challenge (insulin sensitivity), losartan challenge (renin-angiotensin system activity), Nw-nitro-L arginine-methyl ester hydrochloride (LNAME) challenge (nitric oxide [NO] system activity), and evaluation of serum angiotensin converting enzyme (ACE) activity. All treatments compared with control generally decreased circulating glucose levels, but only the maitake SX consistently enhanced measured insulin sensitivity. We found that maitake SX could significantly lower systolic blood pressure (SBP) in diabetic SD. In general, only SD receiving maitake SX, not the two drugs, showed decreased activity of the renin-angiotensin system and increased NO system activity compared with control under the conditions examined. Our results suggest that maitake SX may be useful for treating perturbations in glucose-insulin metabolism and elevated BP in type-1 diabetes.

  20. MAPK14/p38α-dependent modulation of glucose metabolism affects ROS levels and autophagy during starvation

    PubMed Central

    Desideri, Enrico; Vegliante, Rolando; Cardaci, Simone; Nepravishta, Ridvan; Paci, Maurizio; Ciriolo, Maria Rosa

    2014-01-01

    Increased glycolytic flux is a common feature of many cancer cells, which have adapted their metabolism to maximize glucose incorporation and catabolism to generate ATP and substrates for biosynthetic reactions. Indeed, glycolysis allows a rapid production of ATP and provides metabolic intermediates required for cancer cells growth. Moreover, it makes cancer cells less sensitive to fluctuations of oxygen tension, a condition usually occurring in a newly established tumor environment. Here, we provide evidence for a dual role of MAPK14 in driving a rearrangement of glucose metabolism that contributes to limiting reactive oxygen species (ROS) production and autophagy activation in condition of nutrient deprivation. We demonstrate that MAPK14 is phosphoactivated during nutrient deprivation and affects glucose metabolism at 2 different levels: on the one hand, it increases SLC2A3 mRNA and protein levels, resulting in a higher incorporation of glucose within the cell. This event involves the MAPK14-mediated enhancement of HIF1A protein stability. On the other hand, MAPK14 mediates a metabolic shift from glycolysis to the pentose phosphate pathway (PPP) through the modulation of PFKFB3 (6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase 3) degradation by the proteasome. This event requires the presence of 2 distinct degradation sequences, KEN box and DSG motif Ser273, which are recognized by 2 different E3 ligase complexes. The mutation of either motif increases PFKFB3 resistance to starvation-induced degradation. The MAPK14-driven metabolic reprogramming sustains the production of NADPH, an important cofactor for many reduction reactions and for the maintenance of the proper intracellular redox environment, resulting in reduced levels of ROS. The final effect is a reduced activation of autophagy and an increased resistance to nutrient deprivation. PMID:25046111

  1. Antihyperglycemic effect of Persea duthieion blood glucose levels and body weight in alloxan induced diabetic rabbits.

    PubMed

    Sultan, Khushbakht; Zakir, Muhammad; Khan, Haroon; Khan, Ihsaan Ullah; Ayaz, Sultan; Khan, Iqbal; Khan, Jafar; Khan, Murad Ali

    2016-05-01

    The present study was designed to investigate the antihyperglycemic effect of Persea duthieion blood glucose concentration and body weight in alloxan induced diabetic hyperglycemic rabbits. The results illustrated significant antihyperglycemic activity of crude extract with 17.44% and 28.02% amelioration at 25 and 50mg/kg p.o. respectively after 24th day of drug treatment; equally supported by body weight recovery. Upon fractionation, most dominant antihyperglycemic effect was displayed by aqueous fraction with 22.12% and 34.43% effect followed by ethyl acetate fraction with 24.32% and 32.05% effect at 25 and 50mg/kg p.o. respectively after 24th day of drug treatment. The effect on blood glucose was also reflected on body weight of animals. In conclusion, our study documented marked antihyperglycemic activity of extract/fractions of P. duthiei. PMID:27166552

  2. Antihyperglycemic effect of Persea duthieion blood glucose levels and body weight in alloxan induced diabetic rabbits.

    PubMed

    Sultan, Khushbakht; Zakir, Muhammad; Khan, Haroon; Khan, Ihsaan Ullah; Ayaz, Sultan; Khan, Iqbal; Khan, Jafar; Khan, Murad Ali

    2016-05-01

    The present study was designed to investigate the antihyperglycemic effect of Persea duthieion blood glucose concentration and body weight in alloxan induced diabetic hyperglycemic rabbits. The results illustrated significant antihyperglycemic activity of crude extract with 17.44% and 28.02% amelioration at 25 and 50mg/kg p.o. respectively after 24th day of drug treatment; equally supported by body weight recovery. Upon fractionation, most dominant antihyperglycemic effect was displayed by aqueous fraction with 22.12% and 34.43% effect followed by ethyl acetate fraction with 24.32% and 32.05% effect at 25 and 50mg/kg p.o. respectively after 24th day of drug treatment. The effect on blood glucose was also reflected on body weight of animals. In conclusion, our study documented marked antihyperglycemic activity of extract/fractions of P. duthiei.

  3. Development of diagnotors based on time-average values of plasma glucose and immunoreactive insulin levels during intravenous glucose tolerance testing

    NASA Astrophysics Data System (ADS)

    Denisova, Tatyana P.; Malinov, Igor A.; Malinova, Lidia I.; Brook, Sergey B.

    2000-04-01

    The diagnostic algorithm of glucose-insulinic violations for the patients with a clinically obvious atherosclerosis of coronary arteries, non-insulin dependent diabetes mellitus and persons with the heritable predisposition to these forms of pathology was designed. The realization of intravenous glucose tolerance test in specially fitted groups of patients served as basis of the algorithm.

  4. No Effect of Added Sugar Consumed at Median American Intake Level on Glucose Tolerance or Insulin Resistance.

    PubMed

    Lowndes, Joshua; Sinnett, Stephanie S; Rippe, James M

    2015-10-23

    Excess sugar consumption may promote adverse changes in hepatic and total body insulin resistance. Debate continues over the effects of sugars at more typically consumed levels and whether the identity of the sugar consumed is important. In the present study participants (20-60 years old) were randomly assigned to one of five groups, three that consumed low fat milk with added fructose containing sugars in amounts equivalent to the 50th percentile of fructose consumption (US), one which consumed low-fat milk sweetened with glucose, and one unsweetened low-fat milk control group. The intervention lasted ten weeks. In the entire study population there was less than 1 kg increase in weight (73.6 ±13.0 vs. 74.5 ± 13.3 kg, p < 0.001), but the change in weight was comparable among groups (p > 0.05). There were no changes in fasting glucose (49 ± 0.4 vs. 5.0 ± 0.5 mmol/L), insulin (56.9 ± 38.9 vs. 61.8 ± 50.0 pmol/L), or insulin resistance, as measured by the Homeostasis Model Assessment method (1.8 ± 1.3 vs. 2.0 ± 1.5, all p > 0.05). These data suggest that added sugar consumed at the median American intake level does not produce changes in measures of insulin sensitivity or glucose tolerance and that no sugar has more deleterious effects than others.

  5. Self-monitoring of blood glucose levels and intensified insulin therapy. Acceptability and efficacy in childhood diabetes.

    PubMed

    Geffner, M E; Kaplan, S A; Lippe, B M; Scott, M L

    1983-06-01

    Prospective studies have shown that children and adolescents with diabetes have a high prevalence of serious complications and a sharp reduction in life expectancy. Recently, self-monitoring of blood glucose levels has become available and, for the first time, provides a method for determining the concentration of blood glucose with considerable accuracy. We have introduced this method of control assessment to our pediatric diabetic patient population in conjunction with a program of intensified insulin administration (two or more injections per day). This is a report of the ready acceptance of these methods by children and adolescents and their parents (53/63, or 84%). The effectiveness of this program is evidenced by a progressive and significant reduction in the percentage of glycosylated hemoglobin during a period of 18 months in a majority of the subjects. These observations suggest that improved glycemic control can be achieved in young diabetics by using multiple insulin injections and self-monitoring of blood glucose levels. Whether such control can lead to a better long-term outlook for diabetics remains to be seen.

  6. The effect of music on the level of cortisol, blood glucose and physiological variables in patients undergoing spinal anesthesia

    PubMed Central

    Mottahedian Tabrizi, Elaheh; Sahraei, Hedayat; Movahhedi Rad, Saeid; Hajizadeh, Ebrahim; Lak, Marziyeh

    2012-01-01

    Surgical procedures performed using spinal anesthetic techniques present a special challenge to anesthesiologists, because patients are awake and are exposed to multiple anxiety provoking visual and auditory stimuli. Therefore, this study was carried out to define the effect of music on the level of cortisol, blood glucose and physiological variables in patients under spinal anesthesia. In this semi-experimental research, 90 men aging from 18-48 years with ASA (acetylsalicylic acid) class I, who underwent urological and abdominal surgery, were investigated. Patients were divided randomly into three groups of thirty subjects. Music group (headphone with music), Silence group (headphone without music) and the control group (without interference). The level of cortisol and blood sugar was measured half an hour before and after the operation. Moreover, the physiological indicators in each of these three groups were monitored and recorded from ten minutes before getting spinal anesthesia to ten minutes after the operation. The level of blood cortisol didn't have any increase in the music group after operation compared to the time before that. However, in the groups of silence and control this level had risen (p< 0.05). The level of blood glucose in music group had declined and in the other two groups it had increased. Our data showed that listening to music during surgery under regional anesthesia has effects on cortisol levels and some of the physiological variables. Therefore the researcher offers to be used music therapy as a complementary method in patients on the reduce anxiety. PMID:27350774

  7. Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol.

    PubMed

    Kay, Jennifer E; Jewett, Michael C

    2015-11-01

    Cell-free metabolic engineering (CFME) is emerging as a powerful approach for the production of target molecules and pathway debugging. Unfortunately, high cofactor costs, limited cofactor and energy regeneration, and low volumetric productivities hamper the widespread use and practical implementation of CFME technology. To address these challenges, we have developed a cell-free system that harnesses ensembles of catalytic proteins prepared from crude lysates, or extracts, of cells to fuel highly active heterologous metabolic conversions. As a model pathway, we selected conversion of glucose to 2,3-butanediol (2,3-BD), a medium level commodity chemical with many industrial applications. Specifically, we engineered a single strain of Escherichia coli to express three pathway enzymes necessary to make meso-2,3-BD (m2,3-BD). We then demonstrated that lysates from this strain, with addition of glucose and catalytic amounts of cofactors NAD+ and ATP, can produce m2,3-BD. Endogenous glycolytic enzymes convert glucose to pyruvate, the starting intermediate for m2,3-BD synthesis. Strikingly, with no strain optimization, we observed a maximal synthesis rate of m2,3-BD of 11.3 ± 0.1 g/L/h with a theoretical yield of 71% (0.36 g m2,3-BD/g glucose) in batch reactions. Titers reached 82 ± 8 g/L m2,3-BD in a 30 h fed-batch reaction. Our results highlight the ability for high-level co-factor regeneration in cell-free lysates. Further, they suggest exciting opportunities to use lysate-based systems to rapidly prototype metabolic pathways and carry out molecular transformations when bioconversion yields (g product/L), productivities (g product/L/h), or cellular toxicity limit commercial feasibility of whole-cell fermentation.

  8. Aqueous extract of tamarind seeds selectively increases glucose transporter-2, glucose transporter-4, and islets' intracellular calcium levels and stimulates β-cell proliferation resulting in improved glucose homeostasis in rats with streptozotocin-induced diabetes mellitus.

    PubMed

    Sole, Sushant Shivdas; Srinivasan, B P

    2012-08-01

    Tamarindus indica Linn. has been in use for a long time in Asian food and traditional medicine for different diseases including diabetes and obesity. However, the molecular mechanisms of these effects have not been fully understood. In view of the multidimensional activity of tamarind seeds due to their having high levels of polyphenols and flavonoids, we hypothesized that the insulin mimetic effect of aqueous tamarind seed extract (TSE) might increase glucose uptake through improvement in the expression of genes of the glucose transporter (GLUT) family and sterol regulatory element-binding proteins (SREBP) 1c messenger RNA (mRNA) in the liver. Daily oral administration of TSE to streptozotocin (STZ)-induced (90 mg/kg intraperitoneally) type 2 diabetic male Wistar rats at different doses (120 and 240 mg/kg body weight) for 4 weeks showed positive correlation with intracellular calcium and insulin release in isolated islets of Langerhans. Tamarind seed extract supplementation significantly improved the GLUT-2 protein and SREBP-1c mRNA expression in the liver and GLUT-4 protein and mRNA expression in the skeletal muscles of diabetic rats. The elevated levels of serum nitric oxide (NO), glycosylated hemoglobin level (hemoglobin (A1c)) and tumor necrosis factor α (TNF-α) decreased after TSE administration. Immunohistochemical findings revealed that TSE abrogated STZ-induced apoptosis and increased β-cell neogenesis, indicating its effect on islets and β-cell mass. In conclusion, it was found that the antidiabetic effect of TSE on STZ-induced diabetes resulted from complex mechanisms of β-cell neogenesis, calcium handling, GLUT-2, GLUT-4, and SREBP-1c. These findings show the scope for formulating a new herbal drug for diabetes therapy.

  9. Aqueous extract of tamarind seeds selectively increases glucose transporter-2, glucose transporter-4, and islets' intracellular calcium levels and stimulates β-cell proliferation resulting in improved glucose homeostasis in rats with streptozotocin-induced diabetes mellitus.

    PubMed

    Sole, Sushant Shivdas; Srinivasan, B P

    2012-08-01

    Tamarindus indica Linn. has been in use for a long time in Asian food and traditional medicine for different diseases including diabetes and obesity. However, the molecular mechanisms of these effects have not been fully understood. In view of the multidimensional activity of tamarind seeds due to their having high levels of polyphenols and flavonoids, we hypothesized that the insulin mimetic effect of aqueous tamarind seed extract (TSE) might increase glucose uptake through improvement in the expression of genes of the glucose transporter (GLUT) family and sterol regulatory element-binding proteins (SREBP) 1c messenger RNA (mRNA) in the liver. Daily oral administration of TSE to streptozotocin (STZ)-induced (90 mg/kg intraperitoneally) type 2 diabetic male Wistar rats at different doses (120 and 240 mg/kg body weight) for 4 weeks showed positive correlation with intracellular calcium and insulin release in isolated islets of Langerhans. Tamarind seed extract supplementation significantly improved the GLUT-2 protein and SREBP-1c mRNA expression in the liver and GLUT-4 protein and mRNA expression in the skeletal muscles of diabetic rats. The elevated levels of serum nitric oxide (NO), glycosylated hemoglobin level (hemoglobin (A1c)) and tumor necrosis factor α (TNF-α) decreased after TSE administration. Immunohistochemical findings revealed that TSE abrogated STZ-induced apoptosis and increased β-cell neogenesis, indicating its effect on islets and β-cell mass. In conclusion, it was found that the antidiabetic effect of TSE on STZ-induced diabetes resulted from complex mechanisms of β-cell neogenesis, calcium handling, GLUT-2, GLUT-4, and SREBP-1c. These findings show the scope for formulating a new herbal drug for diabetes therapy. PMID:22935346

  10. Crystal-field energy level analysis for Nd(3+) ions at the low symmetry C(1) site in [Nd(hfa)(4)(H(2)O)](N(C(2)H(5))(4)) single crystals.

    PubMed

    Mech, Agnieszka; Gajek, Zbigniew; Karbowiak, Mirosław; Rudowicz, Czesław

    2008-09-24

    Optical absorption measurements of Nd(3+) ions in single crystals of [Nd(hfa)(4)(H(2)O)](N(C(2)H(5))(4)) (hfa = hexafluoroacetyloacetonate), denoted Nd(hfa) for short, have been carried out at 4.2 and 298 K. This compound crystallizes in the monoclinic system (space group P 2(1)/n). Each Nd ion is coordinated to eight oxygen atoms that originate from the hexafluoroacetylacetonate ligands and one oxygen atom from the water molecule. A total of 85 experimental crystal-field (CF) energy levels arising from the Nd(3+) (4f(3)) electronic configuration were identified in the optical spectra and assigned. A three-step CF analysis was carried out in terms of a parametric Hamiltonian for the actual C(1) symmetry at the Nd(3+) ion sites. In the first step, a total of 27 CF parameters (CFPs) in the Wybourne notation B(kq), admissible by group theory, were determined in a preliminary fitting constrained by the angular overlap model predictions. The resulting CFP set was reduced to 24 specific independent CFPs using appropriate standardization transformations. Optimizations of the second-rank CFPs and extended scanning of the parameter space were employed in the second step to improve reliability of the CFP sets, which is rather a difficult task in the case of no site symmetry. Finally, seven free-ion parameters and 24 CFPs were freely varied, yielding an rms deviation between the calculated energy levels and the 85 observed ones of 11.1 cm(-1). Our approach also allows prediction of the energy levels of Nd(3+) ions that are hidden in the spectral range overlapping with strong ligand absorption, which is essential for understanding the inter-ionic energy transfer. The orientation of the axis system associated with the fitted CF parameters w.r.t. the crystallographic axes is established. The procedure adopted in our calculations may be considered as a general framework for analysis of CF levels of lanthanide ions at low (triclinic) symmetry sites.

  11. The effect of different alcoholic beverages on blood alcohol levels, plasma insulin and plasma glucose in humans.

    PubMed

    Nogueira, L C; Couri, S; Trugo, N F; Lollo, P C B

    2014-09-01

    In the present work we studied the effects of four alcoholic beverages on blood alcohol levels, plasma insulin concentrations and plasma glucose concentrations in men and women. The volunteers were healthy non-smokers and they were divided according to sex into two groups of ten individuals. The alcoholic beverages used in the study were beer, red wine, whisky and "cachaça". In men, ingestion of the distilled drinks promoted a spike in blood alcohol levels more quickly than ingestion of the fermented drinks. In women, beer promoted the lowest blood alcohol levels over the 6h of the experiment. Whisky promoted highest blood alcohol levels in both sexes. The ingestion of wine promoted a significant difference in relation to the blood alcohol concentration (BAC) as a function of gender. The ingestion of cachaça by women produced BAC levels significantly smaller than those obtained for wine.

  12. Meta-analysis investigating associations between healthy diet and fasting glucose and insulin levels and modification by loci associated with glucose homeostasis in data from 15 cohorts.

    PubMed

    Nettleton, Jennifer A; Hivert, Marie-France; Lemaitre, Rozenn N; McKeown, Nicola M; Mozaffarian, Dariush; Tanaka, Toshiko; Wojczynski, Mary K; Hruby, Adela; Djoussé, Luc; Ngwa, Julius S; Follis, Jack L; Dimitriou, Maria; Ganna, Andrea; Houston, Denise K; Kanoni, Stavroula; Mikkilä, Vera; Manichaikul, Ani; Ntalla, Ioanna; Renström, Frida; Sonestedt, Emily; van Rooij, Frank J A; Bandinelli, Stefania; de Koning, Lawrence; Ericson, Ulrika; Hassanali, Neelam; Kiefte-de Jong, Jessica C; Lohman, Kurt K; Raitakari, Olli; Papoutsakis, Constantina; Sjogren, Per; Stirrups, Kathleen; Ax, Erika; Deloukas, Panos; Groves, Christopher J; Jacques, Paul F; Johansson, Ingegerd; Liu, Yongmei; McCarthy, Mark I; North, Kari; Viikari, Jorma; Zillikens, M Carola; Dupuis, Josée; Hofman, Albert; Kolovou, Genovefa; Mukamal, Kenneth; Prokopenko, Inga; Rolandsson, Olov; Seppälä, Ilkka; Cupples, L Adrienne; Hu, Frank B; Kähönen, Mika; Uitterlinden, André G; Borecki, Ingrid B; Ferrucci, Luigi; Jacobs, David R; Kritchevsky, Stephen B; Orho-Melander, Marju; Pankow, James S; Lehtimäki, Terho; Witteman, Jacqueline C M; Ingelsson, Erik; Siscovick, David S; Dedoussis, George; Meigs, James B; Franks, Paul W

    2013-01-15

    Whether loci that influence fasting glucose (FG) and fasting insulin (FI) levels, as identified by genome-wide association studies, modify associations of diet with FG or FI is unknown. We utilized data from 15 U.S. and European cohort studies comprising 51,289 persons without diabetes to test whether genotype and diet interact to influence FG or FI concentration. We constructed a diet score using study-specific quartile rankings for intakes of whole grains, fish, fruits, vegetables, and nuts/seeds (favorable) and red/processed meats, sweets, sugared beverages, and fried potatoes (unfavorable). We used linear regression within studies, followed by inverse-variance-weighted meta-analysis, to quantify 1) associations of diet score with FG and FI levels and 2) interactions of diet score with 16 FG-associated loci and 2 FI-associated loci. Diet score (per unit increase) was inversely associated with FG (β = -0.004 mmol/L, 95% confidence interval: -0.005, -0.003) and FI (β = -0.008 ln-pmol/L, 95% confidence interval: -0.009, -0.007) levels after adjustment for demographic factors, lifestyle, and body mass index. Genotype variation at the studied loci did not modify these associations. Healthier diets were associated with lower FG and FI concentrations regardless of genotype at previously replicated FG- and FI-associated loci. Studies focusing on genomic regions that do not yield highly statistically significant associations from main-effect genome-wide association studies may be more fruitful in identifying diet-gene interactions.

  13. Meta-Analysis Investigating Associations Between Healthy Diet and Fasting Glucose and Insulin Levels and Modification by Loci Associated With Glucose Homeostasis in Data From 15 Cohorts

    PubMed Central

    Nettleton, Jennifer A.; Hivert, Marie-France; Lemaitre, Rozenn N.; McKeown, Nicola M.; Mozaffarian, Dariush; Tanaka, Toshiko; Wojczynski, Mary K.; Hruby, Adela; Djoussé, Luc; Ngwa, Julius S.; Follis, Jack L.; Dimitriou, Maria; Ganna, Andrea; Houston, Denise K.; Kanoni, Stavroula; Mikkilä, Vera; Manichaikul, Ani; Ntalla, Ioanna; Renström, Frida; Sonestedt, Emily; van Rooij, Frank J. A.; Bandinelli, Stefania; de Koning, Lawrence; Ericson, Ulrika; Hassanali, Neelam; Kiefte-de Jong, Jessica C.; Lohman, Kurt K.; Raitakari, Olli; Papoutsakis, Constantina; Sjogren, Per; Stirrups, Kathleen; Ax, Erika; Deloukas, Panos; Groves, Christopher J.; Jacques, Paul F.; Johansson, Ingegerd; Liu, Yongmei; McCarthy, Mark I.; North, Kari; Viikari, Jorma; Zillikens, M. Carola; Dupuis, Josée; Hofman, Albert; Kolovou, Genovefa; Mukamal, Kenneth; Prokopenko, Inga; Rolandsson, Olov; Seppälä, Ilkka; Cupples, L. Adrienne; Hu, Frank B.; Kähönen, Mika; Uitterlinden, André G.; Borecki, Ingrid B.; Ferrucci, Luigi; Jacobs, David R.; Kritchevsky, Stephen B.; Orho-Melander, Marju; Pankow, James S.; Lehtimäki, Terho; Witteman, Jacqueline C. M.; Ingelsson, Erik; Siscovick, David S.; Dedoussis, George; Meigs, James B.; Franks, Paul W.

    2013-01-01

    Whether loci that influence fasting glucose (FG) and fasting insulin (FI) levels, as identified by genome-wide association studies, modify associations of diet with FG or FI is unknown. We utilized data from 15 US and European cohort studies comprising 51,289 persons without diabetes to test whether genotype and diet interact to influence FG or FI concentration. We constructed a diet score using study-specific quartile rankings for intakes of whole grains, fish, fruits, vegetables, and nuts/seeds (favorable) and red/processed meats, sweets, sugared beverages, and fried potatoes (unfavorable). We used linear regression within studies, followed by inverse-variance-weighted meta-analysis, to quantify 1) associations of diet score with FG and FI levels and 2) interactions of diet score with 16 FG-associated loci and 2 FI-associated loci. Diet score (per unit increase) was inversely associated with FG (β = −0.004 mmol/L, 95% confidence interval: −0.005, −0.003) and FI (β = −0.008 ln-pmol/L, 95% confidence interval: −0.009, −0.007) levels after adjustment for demographic factors, lifestyle, and body mass index. Genotype variation at the studied loci did not modify these associations. Healthier diets were associated with lower FG and FI concentrations regardless of genotype at previously replicated FG- and FI-associated loci. Studies focusing on genomic regions that do not yield highly statistically significant associations from main-effect genome-wide association studies may be more fruitful in identifying diet-gene interactions. PMID:23255780

  14. Corynebacterium parvum pleurodesis and survival is not significantly influenced by pleural pH and glucose level.

    PubMed

    Bilaçeroğlu, S; Cağirici, U; Perim, K; Ozacar, R

    1998-02-01

    This study was carried out in the pulmonary department of a referral training hospital for thoracic medicine and surgery, with the aim of assessing the effects of pH and glucose level of a pleural effusion (PE) on survival and the response to pleurodesis (PD) with Corynebacterium parvum. A prospective study was carried out in 204 patients with recurrent, symptomatic PEs (73 benign, 131 malignant). Fifty eight per cent of 204 PEs had low pH (< 7.20; 7.01 +/- 0.14) nd glucose levels (< 60 mg.dL-1; 36 +/- 14 mg.dL-1), whereas the remaining 42% had higher pH (> or = 7.20; 7.36 +/- 0.07 and glucose levels (> or = 60 mg.dL-1; 79 +/- 16 mg.dL-1). PD was attempted twice with 7 mg of C. parvum injected through chest tube in all patients, who were then followed up for the outcome of PD and for survival from the time of PD until death or the closure of the study (August 1996). Of 204 cases, 201 were evaluable for survival and outcome of PD. In 91% of the low-and 82% of the high-pH/glucose benign PEs, complete PD was achieved while the corresponding values for the malignant PEs were 79% and 87%, respectively (p > 0.05). Six per cent of low-and 8% of high-pH benign PEs, and 13% of low- and 9% of high-pH malignant PEs were palliated with partial PD. Failures were 3% and 10% in the low- versus high-pH benign groups, and 8% and 4% in the low- versus high-pH malignancies, respectively. All 201 cases maintained the immediate post-PD outcome throughout the follow-up. Average survival was 21.8 months in high-pH benign PEs versus 21.1 months in low-pH benign PEs, and 9.9 versus 8.7 months, in high- and low-pH malignant PEs, respectively (p > 0.05). We deduce that, regarding survival and the response to pleurodesis with Corynebacterium parvum, there is no significant difference between low- and high-pH/glucose pleural effusions in malignant, or benign cases. PMID:9632902

  15. Comprehensive investigation of postmortem glucose levels in blood and body fluids with regard to the cause of death in forensic autopsy cases.

    PubMed

    Chen, Jian-Hua; Michiue, Tomomi; Inamori-Kawamoto, Osamu; Ikeda, Sayuko; Ishikawa, Takaki; Maeda, Hitoshi

    2015-11-01

    The serum glucose level is regulated within a narrow range by multiple factors under physiological conditions, but is greatly modified in the death process and after death. The present study comprehensively investigated glucose levels in blood and body fluids, including pericardial fluid (PCF), cerebrospinal fluid (CSF) and vitreous humor, reviewing forensic autopsy cases (n=672). Right heart blood glucose level was often higher than at other sites, and the CSF glucose level was the lowest, showing greater dissociation in acute/subacute death cases. The glucose level was higher in the diabetic (high HbA1c) than in the non-diabetic (low HbA1c) group at each site (p<0.01-0.0001). Fatal diabetic ketoacidosis cases had evidently high glucose levels at each site; whereas in the non-diabetic group, blood glucose level was higher in fatal alcohol abuse, saltwater drowning, electrocution, cerebrovascular disease and sudden cardiac death due to ischemic heart disease. Fatal methamphetamine (MA) abuse, sepsis, malnutrition (starvation) and hypoglycemia due to antidiabetics showed markedly lower blood glucose levels. Ketones in bilateral cardiac blood and PCF were increased in diabetic ketoacidosis and fatal alcohol abuse as well as in most cases of hyperthermia (heatstroke), hypothermia (cold exposure) and malnutrition. These findings suggest that combined analysis of glucose, HbA1c and ketones in blood and body fluids is useful to investigate not only fatal diabetic metabolic disorders but also death processes due to other causes, including alcohol and MA abuse, as well as thermal disorders, sepsis and malnutrition.

  16. Basal and glucose-suppressed GH levels less than 1 microg/L in newly diagnosed acromegaly.

    PubMed

    Freda, Pamela U; Reyes, Carlos M; Nuruzzaman, Abu T; Sundeen, Robert E; Bruce, Jeffrey N

    2003-01-01

    The development of highly sensitive and specific GH assays has necessitated a critical re-evaluation of the biochemical criteria needed for the diagnosis of acromegaly. Use of these assays has revealed that GH levels after oral glucose in healthy subjects and postoperative patients with active acromegaly can be significantly less than previously recognized with older GH assays. In order to assess GH criteria for newly diagnosed acromegaly with a modern assay we have evaluated GH levels in 25 patients referred to our Neuroendocrine Unit for evaluation of untreated acromegaly. All patients underwent measurement of basal GH and IGF-I levels and 15 of these patients also underwent oral glucose tolerance testing for GH suppression (OGTT). Basal GH levels were < 1.0 microg/L at diagnosis in 5 of these 25 patients. Nadir GH levels were less than 1 microg/L also in 5 of 15 patients, and as low as 0.42 microg/L. All patients had elevated IGF-I levels preoperatively and pathological confirmation of a GH secreting pituitary tumor at the time of transsphenoidal surgery. The clinical presentations of these patients was variable. Most patients presented with classical manifestations of acromegaly, but 3 of the 5 patients with low nadir GH values had only very subtle signs of acromegaly. Although most newly diagnosed patients have classically elevated GH levels and obvious clinical features of acromegaly, early recognition of disease may uncover patients with milder biochemical and clinical abnormalities. The diagnosis should not be discounted in patients who have elevated IGF-I levels, but have basal or nadir GH levels less than 1 microg/L. Conventional GH criteria for the diagnosis of acromegaly cannot be applied to the use of modern sensitive and specific GH assays. PMID:15237928

  17. Does sugar content matter? Blood plasma glucose levels in an occasional and a specialist avian nectarivore.

    PubMed

    Witteveen, Minke; Brown, Mark; Downs, Colleen T

    2014-01-01

    Nectar composition within a plant pollinator group can be variable, and bird pollinated plants can be segregated into two groups based on their adaptations to either a specialist or an occasional bird pollination system. Specialist nectarivores rely primarily on nectar for their energy requirements, while occasional nectarivores meet their energy requirements from nectar as well as from seeds, fruit and insects. Avian blood plasma glucose concentration (PGlu) is generally high compared with mammals. It is also affected by a range of factors including species, gender, age, ambient temperature, feeding pattern, reproductive status, circadian rhythm and moult status, among others. We examined whether sugar content affected PGlu of two avian nectarivores, a specialist nectarivore the Amethyst Sunbird Chalcomitra amethystina, and an occasional nectarivore the Cape White-eye Zosterops virens, when fed sucrose-hexose sugar solution diets of varying concentrations (5%-35%). Both species regulated PGlu within a range which was affected by sampling time (fed or fasted) and not dietary sugar concentration. The range in mean PGlu was broader in Amethyst Sunbirds (11.52-16.51mmol/L) compared with Cape White-eyes (14.33-15.85mmol/L). This suggests that these birds are not constrained by dietary sugar concentration with regard to PGlu regulation, and consequently selective pressure on plants for their nectar characteristics is due to reasons other than glucose regulation. PMID:24095723

  18. Does sugar content matter? Blood plasma glucose levels in an occasional and a specialist avian nectarivore.

    PubMed

    Witteveen, Minke; Brown, Mark; Downs, Colleen T

    2014-01-01

    Nectar composition within a plant pollinator group can be variable, and bird pollinated plants can be segregated into two groups based on their adaptations to either a specialist or an occasional bird pollination system. Specialist nectarivores rely primarily on nectar for their energy requirements, while occasional nectarivores meet their energy requirements from nectar as well as from seeds, fruit and insects. Avian blood plasma glucose concentration (PGlu) is generally high compared with mammals. It is also affected by a range of factors including species, gender, age, ambient temperature, feeding pattern, reproductive status, circadian rhythm and moult status, among others. We examined whether sugar content affected PGlu of two avian nectarivores, a specialist nectarivore the Amethyst Sunbird Chalcomitra amethystina, and an occasional nectarivore the Cape White-eye Zosterops virens, when fed sucrose-hexose sugar solution diets of varying concentrations (5%-35%). Both species regulated PGlu within a range which was affected by sampling time (fed or fasted) and not dietary sugar concentration. The range in mean PGlu was broader in Amethyst Sunbirds (11.52-16.51mmol/L) compared with Cape White-eyes (14.33-15.85mmol/L). This suggests that these birds are not constrained by dietary sugar concentration with regard to PGlu regulation, and consequently selective pressure on plants for their nectar characteristics is due to reasons other than glucose regulation.

  19. Effect of Carthamus tinctorius (Safflower) on fasting blood glucose and insulin levels in alloxan induced diabetic rabbits.

    PubMed

    Qazi, Nasreen; Khan, Rafeeq Alam; Rizwani, Ghazala H; Feroz, Zeeshan

    2014-03-01

    Diabetes mellitus is a major threat to present and future generations. The role of herbal medication has emerged as a safe alternative to currently available medication due to its decreased potential to produce side effects, hence effect of Carthamus tinctorius was observed on fasting blood glucose and insulin levels in alloxan induced diabetic rabbits. Thirty five healthy male rabbits were divided into 5 groups with 7 rabbits in each (Normal control, diabetic control, diabetic treated with glibenclamide, diabetic treated with Carthamus tinctorius extract at doses of 200 and 300mg/kg of body weight). Drug and extract were given orally for 30 days and the values for blood glucose levels were observed after 15(th) and 30(th) day of treatment by using standard reagent kits provided by Human Germany. While insulin levels were checked at the end of the study by using Architect i1000 by Abbott Diagnostics USA. Animals were also observed for any gross toxicity during the study. Results revealed that Carthamus tinctorius has significant hypoglycemic effect at 200mg/kg and 300mg/kg doses as compared to diabetic control group. Insulin levels were significantly increased in Glibenclamide treated as well as Carthamus tinctorius treated groups as compared to diabetic control.

  20. Regulation of glucose and lipid metabolism by dietary carbohydrate levels and lipid sources in gilthead sea bream juveniles.

    PubMed

    Castro, Carolina; Corraze, Geneviève; Firmino-Diógenes, Alexandre; Larroquet, Laurence; Panserat, Stéphane; Oliva-Teles, Aires

    2016-07-01

    The long-term effects on growth performance, body composition, plasma metabolites, liver and intestine glucose and lipid metabolism were assessed in gilthead sea bream juveniles fed diets without carbohydrates (CH-) or carbohydrate-enriched (20 % gelatinised starch, CH+) combined with two lipid sources (fish oil; or vegetable oil (VO)). No differences in growth performance among treatments were observed. Carbohydrate intake was associated with increased hepatic transcripts of glucokinase but not of 6-phosphofructokinase. Expression of phosphoenolpyruvate carboxykinase was down-regulated by carbohydrate intake, whereas, unexpectedly, glucose 6-phosphatase was up-regulated. Lipogenic enzyme activities (glucose-6-phosphate dehydrogenase, malic enzyme, fatty acid synthase) and ∆6 fatty acyl desaturase (FADS2) transcripts were increased in liver of fish fed CH+ diets, supporting an enhanced potential for lipogenesis and long-chain PUFA (LC-PUFA) biosynthesis. Despite the lower hepatic cholesterol content in CH+ groups, no influence on the expression of genes related to cholesterol efflux (ATP-binding cassette G5) and biosynthesis (lanosterol 14 α-demethylase, cytochrome P450 51 cytochrome P450 51 (CYP51A1); 7-dehydrocholesterol reductase) was recorded at the hepatic level. At the intestinal level, however, induction of CYP51A1 transcripts by carbohydrate intake was recorded. Dietary VO led to decreased plasma phospholipid and cholesterol concentrations but not on the transcripts of proteins involved in phospholipid biosynthesis (glycerol-3-phosphate acyltransferase) and cholesterol metabolism at intestinal and hepatic levels. Hepatic and muscular fatty acid profiles reflected that of diets, despite the up-regulation of FADS2 transcripts. Overall, this study demonstrated that dietary carbohydrates mainly affected carbohydrate metabolism, lipogenesis and LC-PUFA biosynthesis, whereas effects of dietary lipid source were mostly related with tissue fatty acid composition

  1. D-Xylose as a sugar complement regulates blood glucose levels by suppressing phosphoenolpyruvate carboxylase (PEPCK) in streptozotocin-nicotinamide-induced diabetic rats and by enhancing glucose uptake in vitro

    PubMed Central

    Kim, Eunju; Kim, Yoo-Sun; Kim, Kyung-Mi; Jung, Sangwon; Yoo, Sang-Ho

    2016-01-01

    BACKGROUND/OBJECTIVES Type 2 diabetes (T2D) is more frequently diagnosed and is characterized by hyperglycemia and insulin resistance. D-Xylose, a sucrase inhibitor, may be useful as a functional sugar complement to inhibit increases in blood glucose levels. The objective of this study was to investigate the anti-diabetic effects of D-xylose both in vitro and stretpozotocin (STZ)-nicotinamide (NA)-induced models in vivo. MATERIALS/METHODS Wistar rats were divided into the following groups: (i) normal control; (ii) diabetic control; (iii) diabetic rats supplemented with a diet where 5% of the total sucrose content in the diet was replaced with D-xylose; and (iv) diabetic rats supplemented with a diet where 10% of the total sucrose content in the diet was replaced with D-xylose. These groups were maintained for two weeks. The effects of D-xylose on blood glucose levels were examined using oral glucose tolerance test, insulin secretion assays, histology of liver and pancreas tissues, and analysis of phosphoenolpyruvate carboxylase (PEPCK) expression in liver tissues of a STZ-NA-induced experimental rat model. Levels of glucose uptake and insulin secretion by differentiated C2C12 muscle cells and INS-1 pancreatic β-cells were analyzed. RESULTS In vivo, D-xylose supplementation significantly reduced fasting serum glucose levels (P < 0.05), it slightly reduced the area under the glucose curve, and increased insulin levels compared to the diabetic controls. D-Xylose supplementation enhanced the regeneration of pancreas tissue and improved the arrangement of hepatocytes compared to the diabetic controls. Lower levels of PEPCK were detected in the liver tissues of D-xylose-supplemented rats (P < 0.05). In vitro, both 2-NBDG uptake by C2C12 cells and insulin secretion by INS-1 cells were increased with D-xylose supplementation in a dose-dependent manner compared to treatment with glucose alone. CONCLUSIONS In this study, D-xylose exerted anti-diabetic effects in vivo by

  2. Effect of oral administration of bark extracts of Pterocarpus santalinus L. on blood glucose level in experimental animals.

    PubMed

    Kameswara Rao, B; Giri, R; Kesavulu, M M; Apparao, C

    2001-01-01

    The effect of administration of different doses of Pterocarpus santalinus L. bark extracts in normal and diabetic rats, on blood glucose levels was evaluated in this study. Among the three fractions (aqueous, ethanol and hexane), ethanolic fraction at the dose of 0.25 g/kg body weight showed maximum antihyperglycemic activity. The same dose did not cause any hypoglycemic activity in normal rats. The results were compared with the diabetic rats treated with glibenclamide and the antihyperglycemic activity of ethanolic extract of PS bark at the dose of 0.25 g/kg b.w. was found to be more effective than that of glibenclamide. PMID:11137350

  3. Dietary Betaine Supplementation Increases Fgf21 Levels to Improve Glucose Homeostasis and Reduce Hepatic Lipid Accumulation in Mice.

    PubMed

    Ejaz, Asma; Martinez-Guino, Laura; Goldfine, Allison B; Ribas-Aulinas, Francesc; De Nigris, Valeria; Ribó, Sílvia; Gonzalez-Franquesa, Alba; Garcia-Roves, Pablo M; Li, Elizabeth; Dreyfuss, Jonathan M; Gall, Walt; Kim, Jason K; Bottiglieri, Teodoro; Villarroya, Francesc; Gerszten, Robert E; Patti, Mary-Elizabeth; Lerin, Carles

    2016-04-01

    Identifying markers of human insulin resistance may permit development of new approaches for treatment and prevention of type 2 diabetes. To this end, we analyzed the fasting plasma metabolome in metabolically characterized human volunteers across a spectrum of insulin resistance. We demonstrate that plasma betaine levels are reduced in insulin-resistant humans and correlate closely with insulin sensitivity. Moreover, betaine administration to mice with diet-induced obesity prevents the development of impaired glucose homeostasis, reduces hepatic lipid accumulation, increases white adipose oxidative capacity, and enhances whole-body energy expenditure. In parallel with these beneficial metabolic effects, betaine supplementation robustly increased hepatic and circulating fibroblast growth factor (Fgf)21 levels. Betaine administration failed to improve glucose homeostasis and liver fat content in Fgf21(-/-) mice, demonstrating that Fgf21 is necessary for betaine's beneficial effects. Together, these data indicate that dietary betaine increases Fgf21 levels to improve metabolic health in mice and suggest that betaine supplementation merits further investigation as a supplement for treatment or prevention of type 2 diabetes in humans. PMID:26858359

  4. Effect of feeding Murraya koeingii and Brassica juncea diet on [correction] kidney functions and glucose levels in streptozotocin diabetic mice.

    PubMed

    Grover, J K; Yadav, S P; Vats, V

    2003-03-01

    Purpose of the study was to investigate the effects of daily oral feeding 15% of powdered leaves of Murraya koeingii (MK) (commonly called as Curry patta) and 10% powder of seeds of Brassica juncea (BJ) (commonly called as Rai) for 60 days on serum glucose concentrations and kidney functions in streptozotocin (STZ; 100mg/kg) diabetic rats. Serum glucose levels, body weight, urine volume, serum creatinine, and urinary albumin (UAE) levels were monitored on day 0, 10, 25, 40, and 70 of the experiment. After 60 days of STZ administration, urine volume per day and UAE levels were significantly higher (P<0.0005) in diabetic controls (DC) as compared to normal controls (NC). Although feeding of the MK/BJ showed a trend towards improvement in most of the parameters, results were not statistically different from the DC except in serum creatinine values in BJ-fed rats on day 70. Thus, these plants can be best utilized by promoting them as preferable food adjuvants for diabetic patients.

  5. Transfer between the cesium 62P1/2 and 62P3/2 levels induced by collisions with H2, HD, D2, CH4, C2H6, CF4, and C2F6

    NASA Astrophysics Data System (ADS)

    Pitz, Greg A.; Fox, Charles D.; Perram, Glen P.

    2011-09-01

    The cross sections of spin-orbit energy exchange between the cesium 62P1/2↔62P3/2 states induced by collisions with N2, H2, HD, D2, CH4, C2H6, CF4, and C2F6 were obtained for pressures less than 100 Torr at room temperature by means of steady-state laser-induced fluorescence techniques. The spin-orbit energy exchange rate with N2, H2, HD, D2, CH4, C2H6, CF4, and C2F6, have been measured as σ21(62P3/2→62P1/2)= 16.3, 34.1, 30.0, 22.7, 21.4, 65.6, 64.8, and 137 Å2 and σ12(62P1/2→62P3/2)= 1.8, 4.4, 4.1, 3.0, 2.9, 13.3, 9.7, and 16.3 Å2, respectively. Correlations of the spin-orbit transfer probabilities with rotational-energy defect and vibrational-energy defect have been shown.

  6. Quantitation of methadone enantiomers in humans using stable isotope-labeled (2H3)-, (2H5)-, and (2H8)Methadone

    SciTech Connect

    Nakamura, K.; Hachey, D.L.; Kreek, M.J.; Irving, C.S.; Klein, P.D.

    1982-01-01

    A new technique for simultaneous stereoselective kinetic studies of methadone enantiomers was developed using three deuterium-labeled forms of methadone and GLC-chemical-ionization mass spectrometry. A racemic mixture (1:1) of (R)-(-)-(2H5)methadone (l-form) and (S)-(R)-(2H3)methadone (d-form) was administered orally in place of a single daily dose of unlabeled (+/-)-(2H0)methadone in long-term maintenance patients. Racemic (+/-)-(2H8)methadone was used as an internal standard for the simultaneous quantitation of (2H0)-, (2H3)-, and (2H5)methadone in plasma and urine. A newly developed extraction procedure, using a short, disposable C18 reversed-phase cartridge and improved chemical-ionization procedures employing ammonia gas, resulted in significant reduction of the background impurities contributing to the ions used for isotopic abundance measurements. These improvements enabled the measurement of labeled plasma methadone levels for 120 hr following a single dose. This methodology was applied to the study of methadone kinetics in two patients; in both patients, the analgesically active l-enantiomer of the drug had a longer plasma elimination half-life and a smaller area under the plasma disappearance curve than did the inactive d-form.

  7. No Effect of Added Sugar Consumed at Median American Intake Level on Glucose Tolerance or Insulin Resistance.

    PubMed

    Lowndes, Joshua; Sinnett, Stephanie S; Rippe, James M

    2015-10-01

    Excess sugar consumption may promote adverse changes in hepatic and total body insulin resistance. Debate continues over the effects of sugars at more typically consumed levels and whether the identity of the sugar consumed is important. In the present study participants (20-60 years old) were randomly assigned to one of five groups, three that consumed low fat milk with added fructose containing sugars in amounts equivalent to the 50th percentile of fructose consumption (US), one which consumed low-fat milk sweetened with glucose, and one unsweetened low-fat milk control group. The intervention lasted ten weeks. In the entire study population there was less than 1 kg increase in weight (73.6 ±13.0 vs. 74.5 ± 13.3 kg, p < 0.001), but the change in weight was comparable among groups (p > 0.05). There were no changes in fasting glucose (49 ± 0.4 vs. 5.0 ± 0.5 mmol/L), insulin (56.9 ± 38.9 vs. 61.8 ± 50.0 pmol/L), or insulin resistance, as measured by the Homeostasis Model Assessment method (1.8 ± 1.3 vs. 2.0 ± 1.5, all p > 0.05). These data suggest that added sugar consumed at the median American intake level does not produce changes in measures of insulin sensitivity or glucose tolerance and that no sugar has more deleterious effects than others. PMID:26512691

  8. No Effect of Added Sugar Consumed at Median American Intake Level on Glucose Tolerance or Insulin Resistance

    PubMed Central

    Lowndes, Joshua; Sinnett, Stephanie S.; Rippe, James M.

    2015-01-01

    Excess sugar consumption may promote adverse changes in hepatic and total body insulin resistance. Debate continues over the effects of sugars at more typically consumed levels and whether the identity of the sugar consumed is important. In the present study participants (20–60 years old) were randomly assigned to one of five groups, three that consumed low fat milk with added fructose containing sugars in amounts equivalent to the 50th percentile of fructose consumption (US), one which consumed low-fat milk sweetened with glucose, and one unsweetened low-fat milk control group. The intervention lasted ten weeks. In the entire study population there was less than 1 kg increase in weight (73.6 ± 13.0 vs. 74.5 ± 13.3 kg, p < 0.001), but the change in weight was comparable among groups (p > 0.05). There were no changes in fasting glucose (49 ± 0.4 vs. 5.0 ± 0.5 mmol/L), insulin (56.9 ± 38.9 vs. 61.8 ± 50.0 pmol/L), or insulin resistance, as measured by the Homeostasis Model Assessment method (1.8 ± 1.3 vs. 2.0 ± 1.5, all p > 0.05). These data suggest that added sugar consumed at the median American intake level does not produce changes in measures of insulin sensitivity or glucose tolerance and that no sugar has more deleterious effects than others. PMID:26512691

  9. Serum Galanin Levels in Young Healthy Lean and Obese Non-Diabetic Men during an Oral Glucose Tolerance Test

    PubMed Central

    Sandoval-Alzate, Héctor Fabio; Agudelo-Zapata, Yessica; González-Clavijo, Angélica María; Poveda, Natalia E.; Espinel-Pachón, Cristian Felipe; Escamilla-Castro, Jorge Augusto; Márquez-Julio, Heidy Lorena; Alvarado-Quintero, Hernando; Rojas-Rodríguez, Fabián Guillermo; Arteaga-Díaz, Juan Manuel; Eslava-Schmalbach, Javier Hernando; Garcés-Gutiérrez, Maria Fernanda; Vrontakis, Maria; Castaño, Justo P.; Luque, Raul M.; Diéguez, Carlos; Nogueiras, Rubén; Caminos, Jorge E.

    2016-01-01

    Galanin (GAL) is a neuropeptide involved in the homeostasis of energy metabolism. The objective of this study was to investigate the serum levels of GAL during an oral glucose tolerance test (OGTT) in lean and obese young men. This cross-sectional study included 30 obese non-diabetic young men (median 22 years; mean BMI 37 kg/m2) and 30 healthy lean men (median 23 years; mean BMI 22 kg/m2). Serum GAL was determined during OGTT. The results of this study include that serum GAL levels showed a reduction during OGTT compared with basal levels in the lean subjects group. Conversely, serum GAL levels increased significantly during OGTT in obese subjects. Serum GAL levels were also higher in obese non-diabetic men compared with lean subjects during fasting and in every period of the OGTT (p < 0.001). Serum GAL levels were positively correlated with BMI, total fat, visceral fat, HOMA–IR, total cholesterol, triglycerides and Leptin. A multiple regression analysis revealed that serum insulin levels at 30, 60 and 120 minutes during the OGTT is the most predictive variable for serum GAL levels (p < 0.001). In conclusion, serum GAL levels are significantly higher in the obese group compared with lean subjects during an OGTT. PMID:27550417

  10. Serum Galanin Levels in Young Healthy Lean and Obese Non-Diabetic Men during an Oral Glucose Tolerance Test.

    PubMed

    Sandoval-Alzate, Héctor Fabio; Agudelo-Zapata, Yessica; González-Clavijo, Angélica María; Poveda, Natalia E; Espinel-Pachón, Cristian Felipe; Escamilla-Castro, Jorge Augusto; Márquez-Julio, Heidy Lorena; Alvarado-Quintero, Hernando; Rojas-Rodríguez, Fabián Guillermo; Arteaga-Díaz, Juan Manuel; Eslava-Schmalbach, Javier Hernando; Garcés-Gutiérrez, Maria Fernanda; Vrontakis, Maria; Castaño, Justo P; Luque, Raul M; Diéguez, Carlos; Nogueiras, Rubén; Caminos, Jorge E

    2016-01-01

    Galanin (GAL) is a neuropeptide involved in the homeostasis of energy metabolism. The objective of this study was to investigate the serum levels of GAL during an oral glucose tolerance test (OGTT) in lean and obese young men. This cross-sectional study included 30 obese non-diabetic young men (median 22 years; mean BMI 37 kg/m(2)) and 30 healthy lean men (median 23 years; mean BMI 22 kg/m(2)). Serum GAL was determined during OGTT. The results of this study include that serum GAL levels showed a reduction during OGTT compared with basal levels in the lean subjects group. Conversely, serum GAL levels increased significantly during OGTT in obese subjects. Serum GAL levels were also higher in obese non-diabetic men compared with lean subjects during fasting and in every period of the OGTT (p < 0.001). Serum GAL levels were positively correlated with BMI, total fat, visceral fat, HOMA-IR, total cholesterol, triglycerides and Leptin. A multiple regression analysis revealed that serum insulin levels at 30, 60 and 120 minutes during the OGTT is the most predictive variable for serum GAL levels (p < 0.001). In conclusion, serum GAL levels are significantly higher in the obese group compared with lean subjects during an OGTT. PMID:27550417

  11. The potential of Internet of m-health Things "m-IoT" for non-invasive glucose level sensing.

    PubMed

    Istepanian, R S H; Hu, S; Philip, N Y; Sungoor, A

    2011-01-01

    An amalgamated concept of Internet of m-health Things (m-IoT) has been introduced recently and defined as a new concept that matches the functionalities of m-health and IoT for a new and innovative future (4G health) applications. It is well know that diabetes is a major chronic disease problem worldwide with major economic and social impact. To-date there have not been any studies that address the potential of m-IoT for non-invasive glucose level sensing with advanced opto-physiological assessment technique and diabetes management. In this paper we address the potential benefits of using m-IoT in non-invasive glucose level sensing and the potential m-IoT based architecture for diabetes management. We expect to achieve intelligent identification and management in a heterogeneous connectivity environment from the mobile healthcare perspective. Furthermore this technology will enable new communication connectivity routes between mobile patients and care services through innovative IP based networking architectures.

  12. Sucrose regulation of ADP-glucose pyrophosphorylase subunit genes transcript levels in leaves and fruits

    NASA Technical Reports Server (NTRS)

    Li, Xiangyang; Xing, Jinpeng; Gianfagna, Thomas J.; Janes, Harry W.

    2002-01-01

    ADP-glucose pyrophosphorylase (AGPase, EC2.7.7.27) is a key regulatory enzyme in starch biosynthesis. The enzyme is a heterotetramer with two S and two B subunits. In tomato, there are three multiple forms of the S subunit gene. Agp S1, S2 and B are highly expressed in fruit from 10 to 25 days after anthesis. Agp S3 is only weakly expressed in fruit. Sucrose significantly elevates expression of Agp S1, S2 and B in both leaves and fruits. Agp S1 exhibits the highest degree of regulation by sucrose. In fact, sucrose may be required for Agp S1 expression. For excised leaves incubated in water, no transcripts for Agp S1 could be detected in the absence of sucrose, whereas it took up to 16 h in water before transcripts were no longer detectable for Agp S2 and B. Neither Agp S3 nor the tubulin gene is affected by sucrose, demonstrating that this response is specifically regulated by a carbohydrate metabolic signal, and is not due to a general increase in metabolism caused by sucrose treatment. Truncated versions of the promoter for Agp S1 indicate that a specific region 1.3-3.0 kb upstream from the transcription site is responsible for sucrose sensitivity. This region of the S1 promoter contains several cis-acting elements present in the promoters of other genes that are also regulated by sucrose. c2002 Elsevier Science Ireland Ltd. All rights reserved.

  13. Haplotype analysis of Apo AI-CIII-AIV gene cluster and lipids level: Tehran Lipid and Glucose Study.

    PubMed

    Daneshpour, Maryam S; Faam, Bita; Mansournia, Mohamad Ali; Hedayati, Mehdi; Halalkhor, Sohrab; Mesbah-Namin, Seyed Alireza; Shojaei, Shahla; Zarkesh, Maryam; Azizi, Fereidoun

    2012-02-01

    Iranian populations show an increased tendency for abnormal lipid levels and high risk of Coronary artery disease. Considering the important role played by the ApoAI-CIII-AIV gene cluster in the regulation of the level and metabolism of lipids, this study aimed at elucidating the association between five single nucleotide polymorphisms on the Apo11q cluster gene and lipid levels. A cross-sectional study of 823 subjects (340 males and 483 females) from the Tehran lipid and glucose study (TLGS) was conducted. Levels of TG, Chol, HDL-C, Apo AI, Apo AIV, Apo B, and Apo CIII were measured, and the selected segments of the APOAI-CIII-AIV gene cluster were amplified by PCR and the polymorphisms were revealed by RFLP using restriction enzymes. The allele frequencies for each SNP between males and females were not significantly different. The distribution of Genotypes and alleles was in Hardy-Weinberg equilibrium except for Apo AI (+83C>T). The results showed a significant association between TG, HDL-C, HDL(2), Apo AI, and Apo B levels and the presence of some alleles in the polymorphisms studied. After haplotype analysis not only did the association between these variables and SNPs remain but also levels of Chol and LDL-C were added. This study demonstrates that the level of lipids such as TG, HDL-C, HDL(2), Apo AI, and Apo B, maybe regulated partly by genetic factors and their haplotype within the Apo11q gene cluster.

  14. Proglucagon Promoter Cre-Mediated AMPK Deletion in Mice Increases Circulating GLP-1 Levels and Oral Glucose Tolerance

    PubMed Central

    Sayers, Sophie R.; Reimann, Frank; Gribble, Fiona M.; Parker, Helen; Zac-Varghese, Sagen; Bloom, Stephen R.; Foretz, Marc; Viollet, Benoit; Rutter, Guy A.

    2016-01-01

    Background Enteroendocrine L-cells synthesise and release the gut hormone glucagon-like peptide-1 (GLP-1) in response to food transit. Deletion of the tumour suppressor kinase LKB1 from proglucagon-expressing cells leads to the generation of intestinal polyps but no change in circulating GLP-1 levels. Here, we explore the role of the downstream kinase AMP-activated protein kinase (AMPK) in these cells. Method Loss of AMPK from proglucagon-expressing cells was achieved using a preproglucagon promoter-driven Cre (iGluCre) to catalyse recombination of floxed alleles of AMPKα1 and α2. Oral and intraperitoneal glucose tolerance were measured using standard protocols. L-cell mass was measured by immunocytochemistry. Hormone and peptide levels were measured by electrochemical-based luminescence detection or radioimmunoassay. Results Recombination with iGluCre led to efficient deletion of AMPK from intestinal L- and pancreatic alpha-cells. In contrast to mice rendered null for LKB1 using the same strategy, mice deleted for AMPK displayed an increase (WT: 0.05 ± 0.01, KO: 0.09±0.02%, p<0.01) in L-cell mass and elevated plasma fasting (WT: 5.62 ± 0.800 pg/ml, KO: 14.5 ± 1.870, p<0.01) and fed (WT: 15.7 ± 1.48pg/ml, KO: 22.0 ± 6.62, p<0.01) GLP-1 levels. Oral, but not intraperitoneal, glucose tolerance was significantly improved by AMPK deletion, whilst insulin and glucagon levels were unchanged despite an increase in alpha to beta cell ratio (WT: 0.23 ± 0.02, KO: 0.33 ± 0.03, p<0.01). Conclusion AMPK restricts L-cell growth and GLP-1 secretion to suppress glucose tolerance. Targeted inhibition of AMPK in L-cells may thus provide a new therapeutic strategy in some forms of type 2 diabetes. PMID:27010458

  15. High-level extracellular production of glucose oxidase by recombinant Pichia pastoris using a combined strategy.

    PubMed

    Gu, Lei; Zhang, Juan; Liu, Baihong; Du, Guocheng; Chen, Jian

    2015-02-01

    In this work, a combined strategy was developed to improve the production of glucose oxidase (GOD) (EC 1.1.3.4) in Pichia pastoris. One of the main challenges facing protein production by the high-density fermentation of P. pastoris is the high demand for oxygen. Another challenge is how to balance a reduction in oxygen consumption and its effects on protein production. Herein, a combined strategy involving mannitol co-feeding, two-stage methanol induction, and the co-expression of the transcriptional activator general control non-derepressible 4 (GCN4) from P. pastoris was used. A two-stage, co-feeding strategy, based on a mannitol/methanol mixture in a 3-L fermentor was used to enhance cell viability and protein production. This resulted in an increased GOD yield of 1208.2 U/mL compared with a control strain (427.6 U/mL). An increase in the copy number of the GCN4 gene enhanced the GOD yield (1634.7 U/mL) by 2.8-fold and the protein concentration (19.55 g/L) by 1.58-fold compared with the control (7.59 g/L). This strategy illustrates a way to overcome the high oxygen requirement during high-density fermentation of P. pastoris and balances the reduction of oxygen consumption and protein production. Moreover, the series of strategies presented in this work provide valuable and novel information for the industrial production of GOD.

  16. Effects of short-term nocturnal and diurnal food deprivation on subsequent feeding in intact and VMH lesioned rats: relation to blood glucose level.

    PubMed

    Larue-Achagiotis, C; Le Magnen, J

    1982-02-01

    Ad lib feeding responses were studied in VMH lesioned rats, following 2 to 6 hours of food deprivation during the dark and the light phases of the diurnal cycle. The correlation between glucose level at the time of restoration of food and these feeding responses was examined. At night, VMH as well as intact rats increased their food intake significantly following 2 to 6 hours of food deprivation. In both groups, the responses were correlated with a decrease in blood glucose which was dependent on the duration of previous food deprivation. During the day, in normal rats, food deprivation did not induce a change either in subsequent food intake or in blood glucose level. On the contrary, VMH lesioned rats increased their food intake following diurnal food deprivation as they did at night. But, surprisingly, this increase was not associated with a fall of blood glucose.

  17. Elevation of Glucose 6-Phosphate Dehydrogenase Activity Induced by Amplified Insulin Response in Low Glutathione Levels in Rat Liver

    PubMed Central

    Taniguchi, Misako; Mori, Nobuko; Iramina, Chizuru

    2016-01-01

    Weanling male Wistar rats were fed on a 10% soybean protein isolate (SPI) diet for 3 weeks with or without supplementing 0.3% sulfur-containing amino acids (SAA; methionine or cystine) to examine relationship between glutathione (GSH) levels and activities of NADPH-producing enzymes, glucose 6-phosphate dehydrogenase (G6PD) and malic enzyme (ME), in the liver. Of rats on the 10% SPI diet, GSH levels were lower and the enzyme activities were higher than of those fed on an SAA-supplemented diet. Despite the lower GSH level, γ-glutamylcysteine synthetase (γ-GCS) activity was higher in the 10% SPI group than other groups. Examination of mRNAs of G6PD and ME suggested that the GSH-suppressing effect on enzyme induction occurred prior to and/or at transcriptional levels. Gel electrophoresis of G6PD indicated that low GSH status caused a decrease in reduced form and an increase in oxidized form of the enzyme, suggesting an accelerated turnover rate of the enzyme. In primary cultured hepatocytes, insulin response to induce G6PD activity was augmented in low GSH levels manipulated in the presence of buthionine sulfoximine. These findings indicated that elevation of the G6PD activity in low GSH levels was caused by amplified insulin response for expression of the enzyme and accelerated turnover rate of the enzyme molecule. PMID:27597985

  18. Elevation of Glucose 6-Phosphate Dehydrogenase Activity Induced by Amplified Insulin Response in Low Glutathione Levels in Rat Liver

    PubMed Central

    Taniguchi, Misako; Mori, Nobuko; Iramina, Chizuru

    2016-01-01

    Weanling male Wistar rats were fed on a 10% soybean protein isolate (SPI) diet for 3 weeks with or without supplementing 0.3% sulfur-containing amino acids (SAA; methionine or cystine) to examine relationship between glutathione (GSH) levels and activities of NADPH-producing enzymes, glucose 6-phosphate dehydrogenase (G6PD) and malic enzyme (ME), in the liver. Of rats on the 10% SPI diet, GSH levels were lower and the enzyme activities were higher than of those fed on an SAA-supplemented diet. Despite the lower GSH level, γ-glutamylcysteine synthetase (γ-GCS) activity was higher in the 10% SPI group than other groups. Examination of mRNAs of G6PD and ME suggested that the GSH-suppressing effect on enzyme induction occurred prior to and/or at transcriptional levels. Gel electrophoresis of G6PD indicated that low GSH status caused a decrease in reduced form and an increase in oxidized form of the enzyme, suggesting an accelerated turnover rate of the enzyme. In primary cultured hepatocytes, insulin response to induce G6PD activity was augmented in low GSH levels manipulated in the presence of buthionine sulfoximine. These findings indicated that elevation of the G6PD activity in low GSH levels was caused by amplified insulin response for expression of the enzyme and accelerated turnover rate of the enzyme molecule.

  19. Elevation of Glucose 6-Phosphate Dehydrogenase Activity Induced by Amplified Insulin Response in Low Glutathione Levels in Rat Liver.

    PubMed

    Taniguchi, Misako; Mori, Nobuko; Iramina, Chizuru; Yasutake, Akira

    2016-01-01

    Weanling male Wistar rats were fed on a 10% soybean protein isolate (SPI) diet for 3 weeks with or without supplementing 0.3% sulfur-containing amino acids (SAA; methionine or cystine) to examine relationship between glutathione (GSH) levels and activities of NADPH-producing enzymes, glucose 6-phosphate dehydrogenase (G6PD) and malic enzyme (ME), in the liver. Of rats on the 10% SPI diet, GSH levels were lower and the enzyme activities were higher than of those fed on an SAA-supplemented diet. Despite the lower GSH level, γ-glutamylcysteine synthetase (γ-GCS) activity was higher in the 10% SPI group than other groups. Examination of mRNAs of G6PD and ME suggested that the GSH-suppressing effect on enzyme induction occurred prior to and/or at transcriptional levels. Gel electrophoresis of G6PD indicated that low GSH status caused a decrease in reduced form and an increase in oxidized form of the enzyme, suggesting an accelerated turnover rate of the enzyme. In primary cultured hepatocytes, insulin response to induce G6PD activity was augmented in low GSH levels manipulated in the presence of buthionine sulfoximine. These findings indicated that elevation of the G6PD activity in low GSH levels was caused by amplified insulin response for expression of the enzyme and accelerated turnover rate of the enzyme molecule. PMID:27597985

  20. Effects of a soybean nutrition bar on the postprandial blood glucose and lipid levels in patients with diabetes mellitus.

    PubMed

    Urita, Yoshihisa; Noda, Tsuneyuki; Watanabe, Daisuke; Iwashita, Soh; Hamada, Koichiro; Sugimoto, Motonobu

    2012-12-01

    We investigated the influence of a soybean nutrition bar made from whole soy powder on the blood glucose, insulin and lipid levels in comparison with a test cookie with the same amount of energy in patients with diabetes mellitus. In the cross-over designed study, meal tolerance tests using the soybean nutrition bar and test cookie were performed. Two kinds of test meals were used: Study 1 80 kcal, Study 2 592 kcal. The blood glucose response was significantly lower in the soybean nutrition bar trial than in the cookie trial (Studies 1 and 2, p < 0.001). The blood insulin response was also significantly lower in the soybean nutrition bar trial than in the cookie trial (Study 2, p < 0.001). The blood triglyceride and non-esterified fatty acid responses were not significantly different between the two trials, nor were the changes in breath H₂ enrichment (Study 2). The soybean nutrition bar did not induce postprandial hyperglycaemia in diabetic patients unlike the isoenergetic test cookies.

  1. Glucose control.

    PubMed

    Preiser, Jean-Charles

    2013-01-01

    Stress-related hyperglycemia is a common finding in acutely ill patients, and is related to the severity and outcome of the critical illness. The pathophysiology of stress hyperglycemia includes hormonal and neural signals, leading to increased production of glucose by the liver and peripheral insulin resistance mediated by the translocation of transmembrane glucose transporters. In one pioneering study, tight glycemic control by intensive insulin therapy in critically ill patients was associated with improved survival. However, this major finding was not confirmed in several other prospective randomized controlled trials. The reasons underlying the discrepancy between the first and the subsequent studies could include nutritional strategy (amount of calories provided, use of parenteral nutrition), case-mix, potential differences in the optimal blood glucose level (BG) in different types of patients, hypoglycemia and its correction, and the magnitude of glucose variability. Therefore, an improved understanding of the physiology and pathophysiology of glycemic regulation during acute illness is needed. Safe and effective glucose control will need improvement in the definition of optimal BG and in the measurement techniques, perhaps including continuous monitoring of insulin algorithms and closed-loop systems. PMID:23075589

  2. Impact of different intravenous fluids on blood glucose levels in nondiabetic patients undergoing elective major noncardiac surgeries

    PubMed Central

    Khetarpal, Ranjana; Chatrath, Veena; Kaur, Jagjit; Bala, Anju; Singh, Harjeet

    2016-01-01

    Background: Intravenous (IV) fluids are an integral part of perioperative management. Intraoperative hyperglycemia is associated with poor clinical outcomes in patients undergoing major surgeries even in nondiabetics. Aim: This study was conducted to observe the effect of different maintenance fluid regimens on intraoperative blood glucose levels in nondiabetic patients undergoing major surgeries under general anesthesia. Settings and Design: Randomized double-blind study. Materials and Methods: One hundred nondiabetic patients of either sex were divided randomly into two Groups I and II of 50 each undergoing elective major surgeries of more than 90 min duration under general anesthesia. Both groups were given calculated dosage of IV fluids accordingly 4-2-1 formula while Group I was given Ringer lactate (RL) and Group II was given 0.45% dextrose normal saline and potassium chloride 20 mmol/L. Changes in vital parameters, % oxygen saturation, and urine output were monitored at regular intervals. Capillary blood glucose (CBG) was measured half-hourly until end of surgery. If CBG level was more than 150 mg%, then calculated dose of human insulin (CBG/100) was given as IV bolus dose. Statistical Analysis: Statistical analysis was done using SPSS 22.0 software (IBM Corporation, Armonk, New York, USA), paired t-test and Chi-square test. Results: A significant increase of CBG level and was observed during intraoperative and immediate postoperative period (P < 0.001) in Group II. Conclusion: RL solution is probably the alternative choice of IV fluid for perioperative maintenance and can be used as replacement fluid in nondiabetic patients undergoing major surgeries. PMID:27746527

  3. The effect of anti-emetic doses of dexamethasone on postoperative blood glucose levels in non-diabetic and diabetic patients: a prospective randomised controlled study.

    PubMed

    Tien, M; Gan, T J; Dhakal, I; White, W D; Olufolabi, A J; Fink, R; Mishriky, B M; Lacassie, H J; Habib, A S

    2016-09-01

    There are few data regarding postoperative hyperglycaemia in non-diabetic compared with diabetic patients following postoperative nausea and vomiting prophylaxis with dexamethasone. Eighty-five non-diabetic patients and patients with type-2 diabetes were randomly allocated to receive intravenous dexamethasone (8 mg) or ondansetron (4 mg). Blood glucose levels were measured at baseline and then 2, 4 and 24 h following induction of anaesthesia. In non-diabetic patients, the mean (SD) maximum blood glucose was higher in those who received dexamethasone compared with ondansetron (9.1 (2.2) mmol.l(-1) vs. 7.8 (1.4) mmol.l(-1) , p = 0.04). In diabetic patients, the mean (SD) maximum blood glucose was also higher in those who received dexamethasone compared with ondansetron (14.0 (2.5) mmol.l(-1) vs. 10.7 (2.4) mmol.l(-1) , p < 0.01). Multivariate analysis demonstrated that dexamethasone administration was a significant predictor of maximum postoperative blood glucose increase (p < 0.01) after adjusting for potential confounders. There was no interaction between baseline blood glucose level, or presence or absence of diabetes, and dexamethasone administration. We conclude that dexamethasone increases postoperative blood glucose levels in both non-diabetics and diabetics. PMID:27523051

  4. Association of fasting glucose with subclinical cerebrovascular disease in older adults without Type 2 diabetes

    PubMed Central

    Sims, R. C.; Katzel, L. I.; Lefkowitz, D. M.; Siegel, E.L.; Rosenberger, W.F.; Manukyan, Z.; Whitfield, K.E.; Waldstein, S.R.

    2014-01-01

    Aims To examine how fasting glucose and glucose tolerance are related to magnetic resonance imaging-assessed indicators of subclinical cerebrovascular disease and brain atrophy and their variation according to age, sex and education. Methods Participants in the present study were 172 healthy, community-dwelling older adults. An oral glucose tolerance test was administered and magnetic resonance imaging performed. Fasting, 2-h, and 2-h area-under-the-curve glucose levels, their associations with subclinical cerebrovascular disease and brain atrophy, and their respective interactions with age, sex and education were examined. Results A positive association between fasting glucose and subclinical cerebrovascular disease (but not brain atrophy) emerged; this association was more pronounced for participants with < 12 years of education; however, glucose tolerance was not related to subclinical cerebrovascular disease or brain atrophy. Conclusions Findings revealed a potential link between fasting glucose levels and the presence of subclinical cerebrovascular disease indicators — white matter hyperintensities and silent brain infarction — in older adults without diabetes and with an education level below high school. Additional research is needed to confirm these associations and to determine the need for interventions aimed at closely monitoring and preventing elevated glucose levels in this population to reduce the prevalence of subclinical cerebrovascular disease. PMID:24344757

  5. Effect of vanadate administration on blood glucose and insulin levels as well as on the exocrine pancreatic function in streptozotocin-diabetic rats.

    PubMed

    Bendayan, M; Gingras, D

    1989-08-01

    In the present study, streptozotocin-induced diabetic rats with their corresponding controls, were treated orally with sodium metavanadate. A gradual increase of the vanadate concentration up to 0.8 mg/ml in the drinking water, lowered the blood glucose levels of the diabetic animals to normal values without changing the insulin levels. On the other hand, vanadate did not affect the blood glucose levels of the non-diabetic animals; it did however induce lower levels of circulating insulin in these animals. The lowering of the glycaemic values of the diabetic animals was closely related to the consumption of vanadate. When the treatment was ceased, the blood glucose levels rose rapidly. The diabetic animals responded to the vanadate treatment with two sensitivities; while the large majority of the diabetic animals displayed stable normoglycaemic values, others had fluctuating values. Amylase content in the exocrine pancreas of these two subgroups of animals was studied separately and compared to that from the non-treated control and diabetic animals. The presence of amylase in the pancreatic acinar cells was assessed by the protein A-gold immunocytochemical approach and biochemical determinations. Amylase was found to be very low in the non-treated diabetic animals. Lowering of the blood glucose levels induced by the vanadate treatment restored the amylase to levels similar to those of the controls. However, vanadate-treated diabetic animals with fluctuating levels of blood glucose, demonstrated only a partial recovery of amylase. Thus, vanadate treatment was found to have a normalizing effect on blood glucose levels in diabetic animals as well as restoring amylase content in the pancreas of diabetic animals.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Hypothalamic neuron projection to autonomic preganglionic levels related with glucose metabolism: a fluorescent labelling study in the rat.

    PubMed

    Portillo, F; Carrasco, M; Vallo, J J

    1996-06-01

    The location of hypothalamic paraventricular neurons projecting to sympathetic preganglionic levels and related to the autonomic regulation of various organs involved in glucose metabolism (OGM) was determined by ipsilateral injections of two fluorescent tracers, Diamidino Yellow into the left dorsal motor nucleus of the vagus and Fast Blue into the left intermediolateral cell column of the T8-T9 spinal cord. Hypothalamospinal neurons were mainly located in the dorsal part of the paraventricular hypothalamic nucleus (PVH) and the hypothalamobulbar neurons were most abundant in the ventral, medial and extreme lateral parts of the PVH. No double-labelled neurons were found in the hypothalamus. These results can help the knowledge of the neural hypothalamic network related with the autonomic hypothalamic control.

  7. Mammary arteriovenous differences of glucose, insulin, prolactin and IGF-I in lactating sows under different protein intake levels.

    PubMed

    Farmer, Chantal; Guan, Xinfu; Trottier, Nathalie L

    2008-01-01

    Mammary uptake of nutrients is dependent on their availability in the circulation but the role of hormones in that process is not known. Arteriovenous differences (AVD) of glucose and key hormones across the mammary glands were therefore determined in sows fed varying levels of protein. Sixteen lactating sows (four/dietary treatment) were fed a 7.8, 13.0, 18.2 or 23.5% crude protein (CP) isocaloric diet throughout lactation and their litters were standardized to 11 pigs within 48 h of birth. The anterior main mammary vein and a carotid artery were cannulated on day 4+/-1 of lactation and blood samples were collected every 30 min over 6h on days 10, 14, 18 and 22 of lactation to measure glucose, insulin, IGF-I, and prolactin (PRL) concentrations. Amino acid data from these sows were previously published and used here to determine residual correlations. Dietary treatments had no effect on any of the insulin or PRL variables measured (P>0.1) and, on day 18 only, IGF-I AVD was greater (P=0.05) for sows on the 23.5% compared to the 18.2% diet. On days 18 and 22, sows fed the 13% CP diet had greater arterial, venous and AVD glucose concentrations than sows fed other diets (P<0.05). Total arterial amino acid concentrations were correlated to arterial insulin (P<0.001) and PRL (P<0.05) concentrations, but not to those of IGF-I (P>0.1). Mammary AVD for total (P<0.001) and essential amino acids (P<0.05) were correlated to arterial concentrations of insulin, but not to those of IGF-I (P>0.1) or PRL (P>0.1). Mammary AVD of both total (P<0.01) and essential (P<0.05) amino acids were also correlated to mammary PRL AVD. In conclusion, dietary protein level did not affect mammary AVD and circulating lactogenic hormone concentrations. Yet, amino acid utilization by the sow mammary gland seems to be regulated via both circulating insulin concentrations and PRL binding to and uptake by porcine mammary cells.

  8. High levels of glucose-6-phosphatase gene and protein expression reflect an adaptive response in proliferating liver and diabetes.

    PubMed Central

    Haber, B A; Chin, S; Chuang, E; Buikhuisen, W; Naji, A; Taub, R

    1995-01-01

    The regenerating liver after partial hepatectomy is one of the few physiologic models of cellular proliferation in the adult animal. During hepatic regeneration, the animal is able to maintain metabolic homeostasis despite the acute loss of two thirds of hepatic tissue. In examining the molecular mechanisms regulating hepatic regeneration, we isolated novel immediate-early genes that are rapidly induced as the remnant liver undergoes the transition from its normal quiescent state into the G1 phase of the cell cycle. One of the most rapidly and highly induced genes which we initially termed RL-1, encodes rat glucose-6-phosphatase (rG6Pase). G6Pase mRNA peaks at 30 min and 36-48 h after hepatectomy correlating with the first and second rounds of cell division. This finding is compatible with studies that showed that G6Pase enzyme activity increases during liver regeneration. However, the increase in G6Pase mRNA is much more dramatic, indicating that it is a more sensitive indicator of this regulation. G6Pase gene expression peaks in the perinatal time period in the liver and remains elevated during the first month of life. The expression of the G6Pase gene is also dramatically elevated in BB diabetic rats, again higher than the enzyme elevation, and its relative induction after partial hepatectomy is blunted in these animals. Insulin treatment of partially hepatectomized diabetic animals downregulates the expression of G6Pase mRNA. Using specific antibodies against G6Pase, we detect a 36-kD G6Pase protein, and its level is elevated in regenerating and diabetic livers. The pattern of G6Pase mRNA expression appears to reflect similar changes in insulin and glucagon levels which accompany diabetes and hepatic proliferation. The elevation of G6Pase expression in these conditions is indicative of its importance as a regulator of glucose homeostasis in normal and abnormal physiologic states. Images PMID:7860767

  9. Combined genome-wide linkage and association analyses of fasting glucose level in healthy twins and families of Korea.

    PubMed

    Suh, Young Ju; Kim, Sunghwan; Kim, So Hun; Park, Jia; Lim, Hyun Ae; Park, Hyun Ju; Choi, Hangseok; Ng, Daniel; Lee, Mi Kyeong; Nam, Moonsuk

    2013-03-01

    This study was undertaken to identify genetic polymorphisms that are associated with the risk of an elevated fasting glucose (FG) level using genome-wide analyses. We explored a quantitative trait locus (QTL) for FG level in a genome-wide study from a Korean twin-family cohort (the Healthy Twin Study) using a combined linkage and family-based association analysis approach. We investigated 1,754 individuals, which included 432 families and 219 pairs of monozygotic twins. Regions of chromosomes 2q23.3-2q31.1, 15q26.1-15q26.3, 16p12.1, and 20p13-20p12.2, were found to show evidence of linkage with FG level, and several markers in these regions were found to be significantly associated with FG level using family-based or general association tests. In particular, a single-nucleotide polymorphism (rs6138953) on the PTPRA gene in the 20p13 region (combined P = 1.8 × 10(-6)) was found to be associated with FG level, and the PRKCB1 gene (in 16p12.1) to be possibly associated with FG level. In conclusion, multiple regions of chromosomes 2q23.3-2q31.1, 15q26.1-15q26.3, 16p12.1, and 20p13-20p12.2 are associated with FG level in our Korean twin-family cohort. The combined approach of genome-wide linkage and family-based association analysis is useful to identify novel or known genetic regions concerning FG level in a family cohort study.

  10. The effects of low-level laser irradiation on cellular viability and proliferation of human skin fibroblasts cultured in high glucose mediums.

    PubMed

    Esmaeelinejad, Mohammad; Bayat, Mohammad; Darbandi, Hasan; Bayat, Mehrnoush; Mosaffa, Nariman

    2014-01-01

    Delayed wound healing is one of the most challenging complications of diabetes mellitus (DM) in clinical medicine. This study has aimed to evaluate the effects of low-level laser therapy (LLLT) on human skin fibroblasts (HSFs) cultured in a high glucose concentration. HSFs were cultured either in a concentration of physiologic glucose (5.5 mM/l) or high glucose media (11.1 and 15 mM/l) for either 1 or 2 weeks after which they were subsequently cultured in either the physiologic glucose or high concentration glucose media during laser irradiation. LLLT was carried out with a helium-neon (He-Ne) laser unit at energy densities of 0.5, 1, and 2 J/cm(2), and power density of 0.66 mW/cm(2) on 3 consecutive days. HSFs' viability and proliferation rate were evaluated with the dimethylthiazol-diphenyltetrazolium bromide (MTT) assay. The LLLT at densities of 0.5 and 1 J/cm(2) had stimulatory effects on the viability and proliferation rate of HSFs cultured in physiologic glucose (5.5 mM/l) medium compared to their control cultures (p = 0.002 and p = 0.046, respectively). All three doses of 0.5, 1, and 2 J/cm(2) had stimulatory effects on the proliferation rate of HSFs cultured in high glucose concentrations when compared to their control cultures (p = 0.042, p = 0.000, and p = 0.000, respectively). This study showed that HSFs originally cultured for 2 weeks in high glucose concentration followed by culture in physiologic glucose during laser irradiation showed enhanced cell viability and proliferation. Thus, LLLT had a stimulatory effect on these HSFs. PMID:23455657

  11. Voice-activated phone system improves diabetes self-care, cuts blood glucose levels.

    PubMed

    1998-06-01

    Automated telephone monitoring can be significantly cheaper and actually more "user friendly" than the one-to-one nurse-patient phone call. Find out how one system is using monitoring technology to achieve superior compliance rates for diabetes testing while bringing down NbA1c levels.

  12. Voice-activated phone system improves diabetes self-care, cuts blood glucose levels.

    PubMed

    1998-06-01

    Automated telephone monitoring can be significantly cheaper and actually more "user friendly" than the one-to-one nurse-patient phone call. Find out how one system is using monitoring technology to achieve superior compliance rates for diabetes testing while bringing down NbA1c levels. PMID:10180832

  13. Effect of gum arabic on glucose levels and microbial short-chain fatty acid production in white rice porridge model and mixed grain porridge model.

    PubMed

    Hu, Jie-Lun; Nie, Shao-Ping; Li, Na; Min, Fang-Fang; Li, Chang; Gong, Deming; Xie, Ming-Yong

    2014-07-01

    White rice porridge and mixed grain porridge, which are often consumed in many countries, were used as two models to evaluate the effects of gum arabic on glucose levels and microbial short-chain fatty acids (SCFA). Gum arabic was incorporated into the two porridges individually. Apparent viscosity of the two porridges was significantly increased, and their glucose productions during gastrointestinal digestion were notably lowered (p < 0.05). Diffused glucose amount was significantly decreased after gum arabic addition (p < 0.05). Furthermore, blood glucose rise after oral administration of porridges in mice was considerably lowered after fortified with gum arabic (p < 0.05). Microbial SCFA production during in vitro fermentation of porridges was significantly increased after gum arabic addition, which may also have beneficial effects on reducing postprandial glycemic response. Therefore, gum arabic may be a helpful ingredient, which could be added in porridges to have benefits for the reduction of postprandial glycemic response.

  14. Physical and mathematical aspects of blood-glucose- and insulin-level kinetics in patients with coronary heart disease and high risk of its development

    NASA Astrophysics Data System (ADS)

    Denisova, Tatyana P.; Malinova, Lidia I.; Malinov, Igor A.

    2001-05-01

    The intravenous glucose tolerance test was performed to estimate the kinetics of blood glucose and insulin levels. Glucose was injected in individual standardized dose (0.5 g. per 1 kg of body weight). Three groups of patients were checked up: 1) patients with coronary heart disease verified by cicatricial alterations in myocardium found by electrocardiographic and echocardiographic methods; 2) children of patients with transmural myocardial infarction practically healthy at the moment of study; 3) persons practically healthy at the moment of study without any indications on cardiovascular diseases and non-insulin dependent diabetes mellitus among all ancestors and relatives who frequently were long-livers. Last groups didn't differ by age and sex. Peripheral blood glucose level, immunoreactive and free insulin (tested by muscular tissue) were studied just before glucose injection (on an empty stomach) and 4 times after it. The received discrete data were approximated by high degree polynomials, the estimation of blood glucose and insulin time functions symmetric was performed. The deceleration of degradation of insulin circulating in peripheral blood and the time decrease of second phase of insulin secretion were analytically established. This fact proves the complicated mechanism of insulin alterations in atherosclerosis, consisting not only of insulin resistance of peripheral tissues but of decrease of plastic processes in insulin- generating cells.

  15. [Influence of age on blood glucose levels: percentile reference intervals determined on ambulatory patients].

    PubMed

    Sapigni, T; Astolfi, G; Cavallini, L; Cremonini, F

    1981-06-15

    Data of routine chemical and hematological laboratory tests regarding outpatients were collected in four different hospitals of the provinces of Ferrara, Rovigo and Bologna. Data of about 1500 subjects per hospital were cumulated without preliminary selection of patients; sex, age and pregnancy status were also recorded. At the end of the collection, the second (and third) record of the same patient was discarded; only those referring to the first examination were retained. In this report we consider only the values of the blood sugar level which were obtained by enzymatic methods. Descriptive statistics and regression analysis were performed utilizing a CDC CYBER 70/76 computer. The means and the variances of the data collected at the four hospital laboratories were very similar (Tab 1). The interlaboratory analysis of variance was poorly significant. All frequency distributions were leptocurtic and skewed to the right (Fig. 1). The blood sugar level tend to increase with age (Tab. 2). This correlation is graphically depicted in a two-dimensional plot (Fig 2) in which the regression line and the 2, 5 and 97,5 percentile levels corrected for age were also reported. We think that this diagram may be more helpful to the clinicians interpreting laboratory results than the usual "normal values". PMID:7284101

  16. Liver glucose-6-phosphatase proteins in suckling and weaned grey seal pups: structural similarities to other mammals and relationship to nutrition, insulin signalling and metabolite levels.

    PubMed

    Bennett, K A; Hammill, M; Currie, S

    2013-12-01

    Phocid seals have been proposed as models for diabetes because they exhibit limited insulin response to glucose, high blood glucose and increasing insulin resistance when fasting. Liver glucose-6-phosphatase (G6Pase) catalyses the final step in glucose production and is central to glucose regulation in other animals. G6Pase comprises a translocase (SLC37A4) and a catalytic subunit (G6PC). G6PC and SLC37A4 expression and activity are normally regulated by nutritional state and glucostatic hormones, particularly insulin, and are elevated in diabetes. We tested the hypotheses that (1) grey seal G6PC and SLC37A4 cDNA and predicted protein sequences differ from other species' at functional sites, (2) relative G6Pase protein abundances are lower during feeding than fasting and (3) relative G6Pase protein abundances are related to insulin, insulin receptor phosphorylation and key metabolite levels. We show that G6PC and partial SLC37A4 cDNA sequences encode proteins sharing 82-95 % identity with other mammals. Seal G6PC contained no differences in sites responsible for activity, stability or subcellular location. Several substitutions in seal SLC37A4 were predicted to be tolerated with low probability, which could affect glucose production. Suckling pups had higher relative abundance of both subunits than healthy, postweaned fasting pups. Furthermore, relative G6PC abundance was negatively related to glucose levels. These findings contrast markedly with the response of relative hepatic G6Pase abundance to feeding, fasting, insulin, insulin sensitivity and key metabolites in other animals, and highlight the need to understand the regulation of enzymes involved in glucose control in phocids if these animals are to be informative models of diabetes. PMID:23743798

  17. Liver glucose-6-phosphatase proteins in suckling and weaned grey seal pups: structural similarities to other mammals and relationship to nutrition, insulin signalling and metabolite levels.

    PubMed

    Bennett, K A; Hammill, M; Currie, S

    2013-12-01

    Phocid seals have been proposed as models for diabetes because they exhibit limited insulin response to glucose, high blood glucose and increasing insulin resistance when fasting. Liver glucose-6-phosphatase (G6Pase) catalyses the final step in glucose production and is central to glucose regulation in other animals. G6Pase comprises a translocase (SLC37A4) and a catalytic subunit (G6PC). G6PC and SLC37A4 expression and activity are normally regulated by nutritional state and glucostatic hormones, particularly insulin, and are elevated in diabetes. We tested the hypotheses that (1) grey seal G6PC and SLC37A4 cDNA and predicted protein sequences differ from other species' at functional sites, (2) relative G6Pase protein abundances are lower during feeding than fasting and (3) relative G6Pase protein abundances are related to insulin, insulin receptor phosphorylation and key metabolite levels. We show that G6PC and partial SLC37A4 cDNA sequences encode proteins sharing 82-95 % identity with other mammals. Seal G6PC contained no differences in sites responsible for activity, stability or subcellular location. Several substitutions in seal SLC37A4 were predicted to be tolerated with low probability, which could affect glucose production. Suckling pups had higher relative abundance of both subunits than healthy, postweaned fasting pups. Furthermore, relative G6PC abundance was negatively related to glucose levels. These findings contrast markedly with the response of relative hepatic G6Pase abundance to feeding, fasting, insulin, insulin sensitivity and key metabolites in other animals, and highlight the need to understand the regulation of enzymes involved in glucose control in phocids if these animals are to be informative models of diabetes.

  18. The Association Between Food Prices and the Blood Glucose Level of US Adults With Type 2 Diabetes

    PubMed Central

    Anekwe, Tobenna D.; Rahkovsky, Ilya

    2014-01-01

    Objectives. We estimated the association between the price of healthy and less-healthy food groups and blood sugar among US adults with type 2 diabetes. Methods. We linked 1999–2006 National Health and Nutrition Examination Survey health information to food prices contained in the Quarterly Food-at-Home Price Database. We regressed blood sugar levels on food prices from the previous calendar quarter, controlling for market region and a range of other covariates. We also examined whether the association between food prices and blood sugar varies among different income groups. Results. The prices of produce and low-fat dairy foods were associated with blood sugar levels of people with type 2 diabetes. Specifically, higher prices for produce and low-fat dairy foods were associated with higher levels of glycated hemoglobin and fasting plasma glucose 3 months later. Food prices had a greater association with blood sugar for low-income people than for higher-income people, and in the expected direction. Conclusions. Higher prices of healthy foods were associated with increased blood sugar among people with type 2 diabetes. The association was especially pronounced among low-income people with type 2 diabetes. PMID:24524504

  19. MAINTAINING PHYSIOLOGICAL STATE FOR EXCEPTIONAL SURVIVAL: WHAT IS THE NORMAL LEVEL OF BLOOD GLUCOSE AND DOES IT CHANGE WITH AGE?

    PubMed Central

    Yashin, Anatoli I.; Ukraintseva, Svetlana V.; Arbeev, Konstantin G; Akushevich, Igor; Arbeeva, Liubov S.; Kulminski, Alexander M.

    2009-01-01

    The levels of blood glucose (BG) in humans tend to increase with age deviating from the norm specified for the young adults. Such elevation is often considered as a factor contributing to an increase in risks of disease and death. The proper use of intervention strategies coping with or preventing consequences of BG elevation requires understanding the roles of external forces and intrinsic senescence in this process. To address these issues, we performed analyses of longitudinal data on BG collected in the Framingham Heart Study using methods of descriptive statistics and statistical modeling. The approach allows us to separate effects of persistent external disturbances from “normal” aging related changes due to the senescence process. We found that the BG level corresponding to the lowest mortality risk tends to increase with age. The changes in the shape of the mortality risk with age indicate the aging related decline in resistance to stresses affecting the BG level. The results show that analyzing longitudinal data using advanced methods may substantially increase our knowledge on factors and mechanisms responsible for aging related changes in humans. PMID:19635493

  20. Estimating insulin sensitivity from glucose levels only: Use of a non-linear mixed effects approach and maximum a posteriori (MAP) estimation.

    PubMed

    Yates, James W T; Watson, Edmund M

    2013-02-01

    Insulin Sensitivity is an important parameter for the management of Diabetes. It can be derived for a particular patient using data derived from some glucose challenge tests using measured glucose and insulin levels at various times. Whilst a useful approach, deriving insulin sensitivities to inform insulin dosing in other settings such as Intensive Care Units can be more challenging - especially as insulin levels have to be assayed in a laboratory, not at the bedside. This paper investigates an approach to measure insulin sensitivity from glucose levels only. Estimates of mean and between individual parameter variances are used to derive conditional estimates of insulin sensitivity. The method is demonstrated to perform reasonably well, with conditional estimates comparing well with estimates derived from insulin data as well. PMID:22244505

  1. Estimating insulin sensitivity from glucose levels only: Use of a non-linear mixed effects approach and maximum a posteriori (MAP) estimation.

    PubMed

    Yates, James W T; Watson, Edmund M

    2013-02-01

    Insulin Sensitivity is an important parameter for the management of Diabetes. It can be derived for a particular patient using data derived from some glucose challenge tests using measured glucose and insulin levels at various times. Whilst a useful approach, deriving insulin sensitivities to inform insulin dosing in other settings such as Intensive Care Units can be more challenging - especially as insulin levels have to be assayed in a laboratory, not at the bedside. This paper investigates an approach to measure insulin sensitivity from glucose levels only. Estimates of mean and between individual parameter variances are used to derive conditional estimates of insulin sensitivity. The method is demonstrated to perform reasonably well, with conditional estimates comparing well with estimates derived from insulin data as well.

  2. Alcohol Intake and Serum Glucose Levels from the Perspective of a Mendelian Randomization Design: The KCPS-II Biobank

    PubMed Central

    Jee, Yon Ho; Lee, Sun Ju; Jee, Sun Ha

    2016-01-01

    Background Previous studies have suggested that alcohol intake is associated with increased fasting serum glucose (FSG), but the nature of the relationship remains unknown. We used Mendelian randomization analysis to assess the causal effect of alcohol intake on FSG in a middle-aged Korean population. Methods Clinical data including FSG and alcohol intake were collected from 156,386 Koreans aged 20 years or older who took part in the Korean Cancer Prevention Study-II (KCPS-II) Biobank Cohort. The single nucleotide polymorphism rs671 in ALDH2 was genotyped among 2,993 men and 1,374 women in 2016. This was a randomly selected subcohort of KCPS-II Biobank participants. Results Alcohol consumption was positively associated with FSG level in men, but not in women. The rs671 major G allele was associated with increased alcohol intake (F-statistic = 302.62) and an increase in FSG in men. Using Mendelian randomization analysis, alcohol intake increased FSG by 1.78 mg/dL per alcohol unit (10 g ethanol) per day (95% CI: 0.97–2.59) in men. The associations became stronger when we excluded heavy drinkers and the elderly. However, in women, no significant association between rs671 and alcohol or serum glucose was found. Conclusion Using Mendelian randomization analysis, we suggest a causal relationship between alcohol intake and FSG among Korean men. Moreover, we found that the ALDH2 variant rs671 was not associated with FSG among Korean women. PMID:27632197

  3. Plasma levels of glucose, ketone bodies, lactate, and alanine in the vascular supply to and from the brain of the adult American bullfrog (Rana catesbeiana).

    PubMed

    Gibbs, S R; deRoos, R M

    1991-04-01

    Serial, paired blood samples were collected via cannulae chronically placed in the common carotid artery (A) to and the internal jugular vein (V) from the brain of the fasted adult American bullfrog (Rana catesbeiana). Plasma glucose, beta-hydroxybutyrate, acetoacetate, lactate, and alanine levels were measured by standard enzymatic procedures. Cannula failure ended sampling after 1-2 days in most animals. The common carotid artery plasma metabolite levels were greatest at the time of surgery and subsequently declined to relatively stable levels. The summarized data indicated glucose uptake and alanine release by the brain, but no significant beta-hydroxybutyrate or lactate A-V percentage changes. Initially, acetoacetate levels also were measured, but were discontinued in favor of continued beta-hydroxybutyrate determinations when no significant A-V percentage changes occurred. Separate analysis of the metabolite levels during the surgery and recovery period (less than or equal to 24 hr) and the "normal" under the experimental conditions period (greater than 24 hr) revealed that summarizing the data masked important A-V percentage changes during the two different physiological conditions. Glucose was the only metabolite extracted by the brain during the less than or equal to 24 hr period of elevated and subsequently declining metabolite levels. In contrast, glucose uptake did not occur during the greater than 24 hr period of stable levels, but there was lactate release. If the bullfrog brain stores substantial glycogen as do the other ectothermic vertebrates studied, glucose uptake when plasma levels are elevated, for example after feeding, may serve both to fuel the brain and to replenish endogenous glycogen reserves that may be mobilized to provide glucose for the brain after plasma glucose levels return to normal. Assuming that mammalian and bullfrog metabolic pathways are the same, the release of lactate and alanine by the brain, possibly to remove excess

  4. Angiotensin IV and LVV-haemorphin 7 enhance spatial working memory in rats: effects on hippocampal glucose levels and blood flow.

    PubMed

    De Bundel, Dimitri; Smolders, Ilse; Yang, Rui; Albiston, Anthony L; Michotte, Yvette; Chai, Siew Yeen

    2009-07-01

    The IRAP ligands Angiotensin IV (Ang IV) and LVV-haemorphin 7 (LVV-H7) enhance performance in a range of memory paradigms in normal rats and ameliorate memory deficits in rat models for amnesia. The mechanism by which these peptides facilitate memory remains to be elucidated. In recent in vitro experiments, we demonstrated that Ang IV and LVV-H7 potentiate activity-evoked glucose uptake into hippocampal neurons. This raises the possibility that IRAP ligands may facilitate memory in hippocampus-dependent tasks through enhancement of hippocampal glucose uptake. Acute intracerebroventricular (i.c.v.) administration of 1nmol Ang IV or 0.1nmol LVV-H7 in 3 months-old Sprague-Dawley rats enhanced spatial working memory in the plus maze spontaneous alternation task. Extracellular hippocampal glucose levels were monitored before, during and after behavioral testing using in vivo microdialysis. Extracellular hippocampal glucose levels decreased significantly to about 70% of baseline when the animals explored the plus maze, but remained constant when the animals were placed into a novel control chamber. Ang IV and LVV-H7 did not significantly alter hippocampal glucose levels compared to control animals in the plus maze or control chamber. Both peptides had no effect on hippocampal blood flow as determined by laser Doppler flowmetry, excluding that either peptide increased the hippocampal supply of glucose. We demonstrated for the first time that Ang IV and LVV-H7 enhance spatial working memory in the plus maze spontaneous alternation task but no in vivo evidence was found for enhanced hippocampal glucose uptake or blood flow. PMID:19233301

  5. Glucose and lipid metabolism in the pancreas of rainbow trout is regulated at the molecular level by nutritional status and carbohydrate intake.

    PubMed

    Polakof, Sergio; Skiba-Cassy, Sandrine; Kaushik, Sadasivam; Seiliez, Iban; Soengas, Jose Luis; Panserat, Stephane

    2012-05-01

    Glucose and lipid metabolism in pancreatic islet organs is poorly characterized. In the present study, using as a model the carnivorous rainbow trout, a glucose-intolerant fish, we assessed mRNA expression levels of several genes involved in glucose and lipid metabolism (including ATP-citrate lyase; carnitine palmitoyltransferase-1 isoforms, CPT; the mitochondrial isoform of the phosphoenolpyrutave carboxykinase, mPEPCK and pyruvate kinase, PK) and glucosensing (glucose transporter type 2, Glut2; glucokinase, GK and the potassium channel, K(ATP)) in Brockmann bodies. We evaluated the response of these parameters to changes in feeding status (food deprived vs. fed fish) as well as to changes in the amount of carbohydrate (dextrin) in the diet. A general inhibition of the glycolytic (including the glucosensing marker GK) and β-oxidation pathways was found when comparing fed versus food-deprived fish. When comparing fish feeding on either low- or high-carbohydrate diets, we found that some genes related to lipid metabolism were more controlled by the feeding status than by the carbohydrate content (fatty acid synthase, CPTs). Findings are discussed in the context of pancreatic regulation of glucose and lipid metabolism in fish, and show that while trout pancreatic metabolism can partially adapt to a high-carbohydrate diet, some of the molecular actors studied seem to be poorly regulated (K(ATP)) and may contribute to the glucose intolerance observed in this species when fed high-carbohydrate diets.

  6. Lower Maternal Body Condition During Pregnancy Affects Skeletal Muscle Structure and Glut-4 Protein Levels But Not Glucose Tolerance in Mature Adult Sheep

    PubMed Central

    Costello, Paula M.; Hollis, Lisa J.; Cripps, Roselle L.; Bearpark, Natasha; Patel, Harnish P.; Sayer, Avan Aihie; Cooper, Cyrus; Hanson, Mark A.; Ozanne, Susan E.

    2013-01-01

    Suboptimal maternal nutrition and body composition are implicated in metabolic disease risk in adult offspring. We hypothesized that modest disruption of glucose homeostasis previously observed in young adult sheep offspring from ewes of a lower body condition score (BCS) would deteriorate with age, due to changes in skeletal muscle structure and insulin signaling mechanisms. Ewes were fed to achieve a lower (LBCS, n = 10) or higher (HBCS, n = 14) BCS before and during pregnancy. Baseline plasma glucose, glucose tolerance and basal glucose uptake into isolated muscle strips were similar in male offspring at 210 ± 4 weeks. Vastus total myofiber density (HBCS, 343 ± 15; LBCS, 294 ± 14 fibers/mm2, P < .05) and fast myofiber density (HBCS, 226 ± 10; LBCS 194 ± 10 fibers/mm2, P < .05), capillary to myofiber ratio (HBCS, 1.5 ± 0.1; LBCS 1.2 ± 0.1 capillary:myofiber, P < .05) were lower in LBCS offspring. Vastus protein levels of Akt1 were lower (83% ± 7% of HBCS, P < .05), and total glucose transporter 4 was increased (157% ± 6% of HBCS, P < .001) in LBCS offspring, Despite the reduction in total myofiber density in LBCS offspring, glucose tolerance was normal in mature adult life. However, such adaptations may lead to complications in metabolic control in an overabundant postnatal nutrient environment. PMID:23420826

  7. Glucose becomes one of the worst carbon sources for E.coli on poor nitrogen sources due to suboptimal levels of cAMP

    PubMed Central

    Bren, Anat; Park, Junyoung O.; Towbin, Benjamin D.; Dekel, Erez; Rabinowitz, Joshua D.; Alon, Uri

    2016-01-01

    In most conditions, glucose is the best carbon source for E. coli: it provides faster growth than other sugars, and is consumed first in sugar mixtures. Here we identify conditions in which E. coli strains grow slower on glucose than on other sugars, namely when a single amino acid (arginine, glutamate, or proline) is the sole nitrogen source. In sugar mixtures with these nitrogen sources, E. coli still consumes glucose first, but grows faster rather than slower after exhausting glucose, generating a reversed diauxic shift. We trace this counterintuitive behavior to a metabolic imbalance: levels of TCA-cycle metabolites including α-ketoglutarate are high, and levels of the key regulatory molecule cAMP are low. Growth rates were increased by experimentally increasing cAMP levels, either by adding external cAMP, by genetically perturbing the cAMP circuit or by inhibition of glucose uptake. Thus, the cAMP control circuitry seems to have a ‘bug’ that leads to slow growth under what may be an environmentally rare condition. PMID:27109914

  8. L-asparaginase-induced abnormality in plasma glucose level in patients of acute lymphoblastic leukemia admitted to a tertiary care hospital of Odisha

    PubMed Central

    Panigrahi, Mousumee; Swain, Trupti Rekha; Jena, Rabindra Kumar; Panigrahi, Ashutosh

    2016-01-01

    Objectives: The objective of this study was to evaluate any abnormal change in plasma glucose levels in patients treated with L-asparaginase (L-Asp)-based chemotherapy regimen in patients of acute lymphoblastic leukemia (ALL). Materials and Methods: This retrospective, hospital-based study was conducted in patients of ALL, admitted to the Clinical Haematology Department of a tertiary care hospital of Odisha from August 2014 to July 2015. Indoor records of 146 patients on multi-centered protocol-841 were evaluated for any alteration in plasma glucose level, time of onset of hypo/hyperglycemia, and persistence of plasma glucose alteration. Results: Twenty-one percent of patients showed abnormal plasma glucose level. Most of these patients developed hypoglycemia and were of lower age group. Most of these patients developed hypoglycemia and were of lower age group, whereas a majority of higher age group patients developed hyperglycemia. In majority of the cases, abnormal glucose developed after three doses of L-Asp. Hypoglycemia subsided whereas hyperglycemia persisted till the end of our observation period. Conclusions: L-Asp produces more incidences of hypoglycemia than hyperglycemia in a good number of ALL patients towards which clinicians should be more vigilant. However, hyperglycemia persists for a longer duration than hypoglycemia. PMID:27721550

  9. The Involvement of the T1R3 Receptor Protein in the Control of Glucose Metabolism in Mice at Different Levels of Glycemia

    PubMed Central

    Murovets, V. O.; Bachmanov, A. A.; Travnikov, S. V.; Churikova, A. A.; Zolotarev, V. A.

    2015-01-01

    The heterodimeric protein T1R2/T1R3 is a chemoreceptor mediating taste perception of sugars, several amino acids, and non-caloric sweeteners in humans and many other vertebrate species. The T1R2 and T1R3 proteins are expressed not only in the oral cavity, but also in the intestine, pancreas, liver, adipose tissue, and in structures of the central nervous system, which suggests their involvement in functions other than gustatory perception. In this study, we analyzed the role of the T1R3 protein in regulation of glucose metabolism in experiments with the gene-knockout mouse strain C57BL/6J–Tas1r3tm1Rfm (Tas1r3−/−), with a deletion of the Tas1r3 gene encoding T1R3, and the control strain C57BL/6ByJ with the intact gene. Glucose tolerance was measured in euglycemic or food-deprived mice after intraperitoneal or intragastric glucose administration. We have shown that in the Tas1r3−/− strain, in addition to the disappearance of taste preference for sucrose, glucose tolerance is also substantially reduced, and insulin resistance is observed. The effect of the Tas1r3 gene knockout on glucose utilization was more pronounced in the euglycemic state than after food deprivation. The baseline glucose level after food deprivation was lower in the Tas1r3−/− strain than in the control strain, which suggests that T1R3 is involved in regulation of endogenous glucose production. These data suggest that the T1R3-mediated glucoreception interacts with the KATP-dependent mechanisms of regulation of the glucose metabolism, and that the main role is likely played by T1R3 expressed in the pancreas and possibly in the central nervous system, but not in the intestinal mucosa, as it was suggested earlier. PMID:25983343

  10. Comparative effects of epinephrine, norepinephrine, and a gentle handling stress on plasma lactate, glucose, and hematocrit levels in the American bullfrog (Rana catesbeiana).

    PubMed

    MbangKollo, D; deRoos, R

    1983-02-01

    The effects of a single infusion of epinephrine or norepinephrine and of a 2-min handling stress on plasma lactate, glucose, and hematocrit levels were compared in the American bullfrog (Rana catesbeiana). The catecholamines were administered, and serial blood samples were collected, via a cannula placed in the truncus arteriosus. Plasma lactate was estimated by the lactate dehydrogenase method and glucose by the glucose oxidase method. Dose-dependent increases occurred in plasma lactate, glucose, and hematocrit levels after the infusion of 50 and 500 micrograms/kg body weight of epinephrine. Norepinephrine infusion resulted in dose-dependent increases in hematocrit levels, but plasma lactate and glucose levels were not increased significantly by 50 micrograms/kg body weight of norepinephrine. The infusion of 500 micrograms/kg body weight of norepinephrine caused a lactacidemia that was similar to that which occurred with the same dose of epinephrine, but the hyperglycemia was less. The plasma lactate increases after handling were similar to those that occurred after treatment with 500 micrograms/kg body weight of the catecholamines; however, the hematocrit elevations were less and the glucose levels were not increased significantly. In addition, the plasma lactate and hematocrit responses to handling were more rapid than those that occurred after the catecholamines. The results suggest that immediate physiological adjustments to a sudden threat are mediated in the bullfrog by direct nervous stimulation of the relevant organs. Catecholamines and corticoids secreted by the adrenal glands probably function synergistically and sequentially when a stress is more severe and/or more prolonged than the brief, gentle handling employed in this study.

  11. Investment choice and perceived mating intentions regulated by external resource cues and internal fluctuation in blood glucose levels.

    PubMed

    Rao, Li-Lin; Wang, Xiao-Tian; Li, Shu

    2014-01-01

    We examined resource allocation priorities in the framework of an updated Maslow hierarchy of fundamental human needs. In Experiment 1, the participants in the food abundance priming condition viewing photos of high-calorie food allocated more money to savings than to spending. However, the participants preferred spending to savings under the condition of mating availability priming with romantic photographs. In Experiment 2, before and after drinking either water or a sugary beverage, fasting participants rated photos of a conversation between a man and a woman. Water drinking lowered the rating scores of mating intentions as well as blood glucose (BG) levels. The sugary drink buffered this decline in sexual perceptivity. Overall, the change in BG levels was positively associated with changes in the ratings of mating intentions but was not associated with other likelihood ratings. These results suggest that both external cues of food and mating resources and internal BG fluctuation regulate the cognitive priority of physiological needs vs. mate acquisition and retention. PMID:25610412

  12. PDK2 and ABCG2 genes polymorphisms are correlated with blood glucose levels and uric acid in Tibetan gout patients.

    PubMed

    Ren, Y C; Jin, T B; Sun, X D; Geng, T T; Zhang, M X; Wang, L; Feng, T; Kang, L L; Chen, C

    2016-01-01

    Previous studies have shown that the PDK2 and ABCG2 genes play important roles in many aspects of gout development in European populations. However, a detailed genotype-phenotype analysis was not performed. The aim of the present study was to investigate the potential association between variants in these two genes and metabolism-related quantitative phenotypes relevant to gout in a Chinese Tibetan population. In total, 316 Chinese Tibetan gout patients were recruited from rheumatology outpatient clinics and 6 single nucleotide polymorphisms in PDK2 and ABCG2 were genotyped, which were possible etiologic variants as identified in the HapMap Chinese Han Beijing population. A significant difference in blood glucose levels was detected between different genotypes of rs2728109 (P = 0.005) in the PDK2 gene. We also detected a significant difference in the mean serum uric levels between different genotypes of rs3114018 (P = 0.004) in the ABCG2 gene. All P values remained significant after Bonferroni's correction for multiple testing. Our data demonstrate potential roles for PDK2 and ABCG2 polymorphisms in the metabolic phenotypes of Tibetan gout patients, which may provide new insights into the etiology of gout. Further studies are required to confirm these findings. PMID:26909964

  13. Investment choice and perceived mating intentions regulated by external resource cues and internal fluctuation in blood glucose levels

    PubMed Central

    Rao, Li-Lin; Wang, Xiao-Tian; Li, Shu

    2015-01-01

    We examined resource allocation priorities in the framework of an updated Maslow hierarchy of fundamental human needs. In Experiment 1, the participants in the food abundance priming condition viewing photos of high-calorie food allocated more money to savings than to spending. However, the participants preferred spending to savings under the condition of mating availability priming with romantic photographs. In Experiment 2, before and after drinking either water or a sugary beverage, fasting participants rated photos of a conversation between a man and a woman. Water drinking lowered the rating scores of mating intentions as well as blood glucose (BG) levels. The sugary drink buffered this decline in sexual perceptivity. Overall, the change in BG levels was positively associated with changes in the ratings of mating intentions but was not associated with other likelihood ratings. These results suggest that both external cues of food and mating resources and internal BG fluctuation regulate the cognitive priority of physiological needs vs. mate acquisition and retention. PMID:25610412

  14. P2X7R-Panx1 Complex Impairs Bone Mechanosignaling under High Glucose Levels Associated with Type-1 Diabetes.

    PubMed

    Seref-Ferlengez, Zeynep; Maung, Stephanie; Schaffler, Mitchell B; Spray, David C; Suadicani, Sylvia O; Thi, Mia M

    2016-01-01

    Type 1 diabetes (T1D) causes a range of skeletal problems, including reduced bone density and increased risk for bone fractures. However, mechanisms underlying skeletal complications in diabetes are still not well understood. We hypothesize that high glucose levels in T1D alters expression and function of purinergic receptors (P2Rs) and pannexin 1 (Panx1) channels, and thereby impairs ATP signaling that is essential for proper bone response to mechanical loading and maintenance of skeletal integrity. We first established a key role for P2X7 receptor-Panx1 in osteocyte mechanosignaling by showing that these proteins are co-expressed to provide a major pathway for flow-induced ATP release. To simulate in vitro the glucose levels to which bone cells are exposed in healthy vs. diabetic bones, we cultured osteoblast and osteocyte cell lines for 10 days in medium containing 5.5 or 25 mM glucose. High glucose effects on expression and function of P2Rs and Panx1 channels were determined by Western Blot analysis, quantification of Ca2+ responses to P2R agonists and oscillatory fluid shear stress (± 10 dyne/cm2), and measurement of flow-induced ATP release. Diabetic C57BL/6J-Ins2Akita mice were used to evaluate in vivo effects of high glucose on P2R and Panx1. Western blotting indicated altered P2X7R, P2Y2R and P2Y4R expression in high glucose exposed bone cells, and in diabetic bone tissue. Moreover, high glucose blunted normal P2R- and flow-induced Ca2+ signaling and ATP release from osteocytes. These findings indicate that T1D impairs load-induced ATP signaling in osteocytes and affects osteoblast function, which are essential for maintaining bone health. PMID:27159053

  15. P2X7R-Panx1 Complex Impairs Bone Mechanosignaling under High Glucose Levels Associated with Type-1 Diabetes

    PubMed Central

    Maung, Stephanie; Schaffler, Mitchell B.; Spray, David C.; Suadicani, Sylvia O.; Thi, Mia M.

    2016-01-01

    Type 1 diabetes (T1D) causes a range of skeletal problems, including reduced bone density and increased risk for bone fractures. However, mechanisms underlying skeletal complications in diabetes are still not well understood. We hypothesize that high glucose levels in T1D alters expression and function of purinergic receptors (P2Rs) and pannexin 1 (Panx1) channels, and thereby impairs ATP signaling that is essential for proper bone response to mechanical loading and maintenance of skeletal integrity. We first established a key role for P2X7 receptor-Panx1 in osteocyte mechanosignaling by showing that these proteins are co-expressed to provide a major pathway for flow-induced ATP release. To simulate in vitro the glucose levels to which bone cells are exposed in healthy vs. diabetic bones, we cultured osteoblast and osteocyte cell lines for 10 days in medium containing 5.5 or 25 mM glucose. High glucose effects on expression and function of P2Rs and Panx1 channels were determined by Western Blot analysis, quantification of Ca2+ responses to P2R agonists and oscillatory fluid shear stress (± 10 dyne/cm2), and measurement of flow-induced ATP release. Diabetic C57BL/6J-Ins2Akita mice were used to evaluate in vivo effects of high glucose on P2R and Panx1. Western blotting indicated altered P2X7R, P2Y2R and P2Y4R expression in high glucose exposed bone cells, and in diabetic bone tissue. Moreover, high glucose blunted normal P2R- and flow-induced Ca2+ signaling and ATP release from osteocytes. These findings indicate that T1D impairs load-induced ATP signaling in osteocytes and affects osteoblast function, which are essential for maintaining bone health. PMID:27159053

  16. TCA Cycle Turnover And Serum Glucose Sources By Automated Bayesian Analysis Of NMR Spectra

    SciTech Connect

    Merritt, Matthew E.; Burgess, Shawn; Jeffrey, F. Mark; Sherry, A. Dean; Malloy, Craig; Bretthorst, G. Larry

    2004-04-21

    Changes in sources of serum glucose are indicative of a variety of pathological metabolic states. It is possible to measure the sources of serum glucose by the administration of deuterated water to a subject followed by analysis of the 2H enrichment levels in glucose extracted from plasma from a single blood draw by 2H NMR. Markov Chain Monte Carlo simulations of the posterior probability densities may then be used to evaluate the contribution of glycogenolysis, glycerol, and the Kreb's cycle to serum glucose. Experiments with simulated NMR spectra show that in spectra with a S/N of 20 to 1, the resulting metabolic information may be evaluated with an accuracy of about 4 percent.

  17. TCA Cycle Turnover And Serum Glucose Sources By Automated Bayesian Analysis Of NMR Spectra

    NASA Astrophysics Data System (ADS)

    Merritt, Matthew E.; Burgess, Shawn; Jeffrey, F. Mark; Sherry, A. Dean; Malloy, Craig; Bretthorst, G. Larry

    2004-04-01

    Changes in sources of serum glucose are indicative of a variety of pathological metabolic states. It is possible to measure the sources of serum glucose by the administration of deuterated water to a subject followed by analysis of the 2H enrichment levels in glucose extracted from plasma from a single blood draw by 2H NMR. Markov Chain Monte Carlo simulations of the posterior probability densities may then be used to evaluate the contribution of glycogenolysis, glycerol, and the Kreb's cycle to serum glucose. Experiments with simulated NMR spectra show that in spectra with a S/N of 20 to 1, the resulting metabolic information may be evaluated with an accuracy of about 4 percent.

  18. [Activity of Vegetative Nervous System and Levels of Inflammatory Cytokines During Glucose Tolerance Test in Subjects With Optimal and High Normal Blood Pressure].

    PubMed

    Mangileva, T A

    2015-01-01

    Fourteen patients with high normal (main group) and 15 subjects with optimal (control group) blood pressure (BP) were examined. Fasting and postprandial (60 and 120 min after oral intake of glucose) levels of glucose, insulin, interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and C-reactive protein were measured. At the same time spectral analysis of heart rate variability (HRV) was done. Body mass index (BMI) and insulin resistance index (as HOMA-IR) were calculated. In patients with high normal BP total power of HRV was decreased (p < 0.05) and dynamic changes of HRV after glucose loading were blunted. In persons with optimal BP transient elevation of low frequency component and low/high ratio in 60 min after onset of glucose tolerance test (GTT) were registered; values of both parameters were higher than in the main group (p < 0.05). Changes in vegetative nervous system activity in control group were accompanied by transient elevations of levels of inflammatory cytokines: IL-10 and TNF-α in 60 min, IL-6 in 120 min after GTT onset (p < 0.05), which at that moment were higher than in patients with high normal BP (p < 0.05). Fasting and postprandial insulin concentrations and glucose level 60 min after glucose intake were higher in patients from the main group (p < 0.05). In both groups positive correlations between BMI and HOMA-IR were observed (r1 = 0.70 & r2 = 0.78). Subjects with optimal and high normal BP have different variants of vegetative nervous system reactions to pulsatile hyperglycemia which is accompanied by changes of levels of inflammatory cytokines and worsening of carbohydrate metabolism in patients with high normal BP. PMID:26320287

  19. Synthesis of [2H7]indatraline.

    PubMed

    Allmendinger, L; Wanner, K T

    2014-11-01

    Deuterium-labelled indatraline was synthesized in high efficiency employing a Friedel-Crafts alkylation of [(2)H6]benzene with (E)-3-(3,4-dichlorophenyl)acrylic acid as a key step. The desired labelling of the final compound was ascertained in two ways, by incorporation of [(2)H6]benzene in the target molecule and additionally by deuterium transfer to the non-deuterated aryl moiety of the Friedel-Crafts alkylation product from [(2)H6]benzene, the latter thus serving as reagent and solvent. PMID:25382822

  20. Suppressive effect of the hot-water extract of Ficus pseudopalma Blanco leaves on the postprandial increase in blood glucose level in mice.

    PubMed

    Salonga, Reginald B; Hisaka, Shinsuke; Mendoza, Jasmin S; Takaya, Yoshiaki; Niwa, Masatake; Binag, Christina A; Nose, Mitsuhiko

    2013-10-01

    The use of medicinal plants with anti-diabetic properties continues because of the high cost of diabetes mellitus treatment. In the Bicol region of the Philippines, one local source is the leaves of Ficus pseudopalma Blanco (Philippine fig), which is utilized as an ingredient of their cuisine, and the decoction of its leaves is believed to have a blood-glucose lowering effect. The aim of this study was to evaluate the blood-glucose lowering effect of F. pseudoplama using sugar/carbohydrate-loaded and normoglycemic mice. The results showed that the hot-water extract of the leaves significantly suppressed the increase of blood glucose levels after glucose, maltose and starch loading. On the other hand, the extract did not show any hypoglycemic activity in either fasted or non-fasted mice as compared to the positive control drugs. These results suggest that F. pseudopalma is potentially useful for the management of blood glucose levels in the postprandial condition, as believed in the Bicol region of the Philippines.

  1. The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: Role of NADH and consequences for insulin secretion

    SciTech Connect

    Heart, Emma; Palo, Meridith; Womack, Trayce; Smith, Peter J.S.; Gray, Joshua P.

    2012-01-15

    Pancreatic β-cells release insulin in response to elevation of glucose from basal (4–7 mM) to stimulatory (8–16 mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H{sub 2}O{sub 2}), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H{sub 2}O{sub 2} inhibit insulin secretion. Menadione, which produces H{sub 2}O{sub 2} via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H{sub 2}O{sub 2} production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1–10 μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H{sub 2}O{sub 2} formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H{sub 2}O{sub 2} and menadione on insulin secretion. -- Highlights: ► Menadione stimulation or inhibition of insulin secretion is dependent upon applied glucose levels. ► Menadione-dependent H{sub 2}O{sub 2} production is proportional to applied glucose levels. ► Quinone-mediated redox cycling

  2. Exposure to low level of arsenic and lead in drinking water from Antofagasta city induces gender differences in glucose homeostasis in rats.

    PubMed

    Palacios, Javier; Roman, Domingo; Cifuentes, Fredi

    2012-08-01

    Populations chronically exposed to arsenic in drinking water often have increased prevalence of diabetes mellitus. The purpose of this study was to compare the glucose homeostasis of male and female rats exposed to low levels of heavy metals in drinking water. Treated groups were Sprague-Dawley male and female rats exposed to drinking water from Antofagasta city, with total arsenic of 30 ppb and lead of 53 ppb for 3 months; control groups were exposed to purified water by reverse osmosis. The two treated groups in both males and females showed arsenic and lead in the hair of rats. The δ-aminolevulinic acid dehydratase was used as a sensitive biomarker of arsenic toxicity and lead. The activity of δ-aminolevulinic acid dehydratase was reduced only in treated male rats, compared to the control group. Treated males showed a significantly sustained increase in blood glucose and plasma insulin levels during oral glucose tolerance test compared to control group. The oral glucose tolerance test and the homeostasis model assessment of insulin resistance demonstrated that male rats were insulin resistant, and females remained sensitive to insulin after treatment. The total cholesterol and LDL cholesterol increased in treated male rats vs. the control, and triglyceride increased in treated female rats vs. the control. The activity of intestinal Na+/glucose cotransporter in male rats increased compared to female rats, suggesting a significant increase in intestinal glucose absorption. The findings indicate that exposure to low levels of arsenic and lead in drinking water could cause gender differences in insulin resistance.

  3. Prevalence of Diabetes and Impaired Fasting Glucose in Hypertensive Adults in Rural China: Far from Leveling-Off.

    PubMed

    Yu, Shasha; Sun, Zhaoqing; Zheng, Liqiang; Guo, Xiaofan; Yang, Hongmei; Sun, Yingxian

    2015-11-01

    In recent years data from many investigations has shown a leveling-off trend in diabetes incidence. In order to explain the diabetes epidemic in rural China during the past ten years, we conducted a survey from July 2012 to August 2013. Data from comprehensive questionnaires, physical examinations, and blood tests were obtained from 5919 residents with hypertension, aged ≥ 35 years. Diabetes and impaired fasting glucose (IFG) were defined according to the American Diabetes Association (ADA) criteria. The overall prevalence of diabetes and IFG were 15.3% (13.6% in men, 16.8% in women) and 40.7% (44.1% in men, 34.7% in women) in the hypertensive rural Chinese population. The prevalence of previously diagnosed diabetes was 6.5% (4.6% in men, 8.4% in women). The prevalence of undiagnosed diabetes was 8.7% (9.0% in men, 8.5% in women). Multivariate logistic regression revealed that increasing age, drinking, overweight or obesity, systolic blood pressure, low HDL-C, high total cholesterol and triglycerides increased the risk of diabetes (p < 0.05). Diabetes is thus still prevalent in rural areas of China and is manifesting an accelerating trend. It remains an important public health problem in China, especially in rural areas and routine assessment for the early detection and treatment of diabetes should be emphasized. PMID:26610531

  4. Effect of Betula pendula Leaf Extract on α-Glucosidase and Glutathione Level in Glucose-Induced Oxidative Stress

    PubMed Central

    Bljajić, Kristina; Šoštarić, Nina; Petlevski, Roberta; Vujić, Lovorka; Brajković, Andrea; Fumić, Barbara; de Carvalho, Isabel Saraiva

    2016-01-01

    B. pendula leaf is a common ingredient in traditional herbal combinations for treatment of diabetes in southeastern Europe. Present study investigated B. pendula ethanolic and aqueous extract as inhibitors of carbohydrate hydrolyzing enzymes, as well as their ability to restore glutathione concentration in Hep G2 cells subjected to glucose-induced oxidative stress. Phytochemical analysis revealed presence of rutin and other quercetin derivatives, as well as chlorogenic acid. In general, ethanolic extract was richer in phenolic substances than the aqueous extract. Furthermore, a comprehensive analysis of antioxidant activity of two extracts (determined by DPPH and ABTS radical scavenging activity, total antioxidant activity, and chelating activity as well as ferric-reducing antioxidant power) has shown that ethanolic extract was better radical scavenger and metal ion reductant. In addition, ethanolic extract effectively increased cellular glutathione levels caused by hyperglycemia and inhibited α-glucosidase with the activity comparable to that of acarbose. Therefore, in vitro research using B. pendula plant extracts has confirmed their antidiabetic properties.

  5. Effect of Betula pendula Leaf Extract on α-Glucosidase and Glutathione Level in Glucose-Induced Oxidative Stress

    PubMed Central

    Bljajić, Kristina; Šoštarić, Nina; Petlevski, Roberta; Vujić, Lovorka; Brajković, Andrea; Fumić, Barbara; de Carvalho, Isabel Saraiva

    2016-01-01

    B. pendula leaf is a common ingredient in traditional herbal combinations for treatment of diabetes in southeastern Europe. Present study investigated B. pendula ethanolic and aqueous extract as inhibitors of carbohydrate hydrolyzing enzymes, as well as their ability to restore glutathione concentration in Hep G2 cells subjected to glucose-induced oxidative stress. Phytochemical analysis revealed presence of rutin and other quercetin derivatives, as well as chlorogenic acid. In general, ethanolic extract was richer in phenolic substances than the aqueous extract. Furthermore, a comprehensive analysis of antioxidant activity of two extracts (determined by DPPH and ABTS radical scavenging activity, total antioxidant activity, and chelating activity as well as ferric-reducing antioxidant power) has shown that ethanolic extract was better radical scavenger and metal ion reductant. In addition, ethanolic extract effectively increased cellular glutathione levels caused by hyperglycemia and inhibited α-glucosidase with the activity comparable to that of acarbose. Therefore, in vitro research using B. pendula plant extracts has confirmed their antidiabetic properties. PMID:27668005

  6. β-Glucans (Saccharomyces cereviseae) Reduce Glucose Levels and Attenuate Alveolar Bone Loss in Diabetic Rats with Periodontal Disease

    PubMed Central

    2015-01-01

    The objective of this study was to assess the effects of oral ingestion of β-glucans isolated from Saccharomyces cereviseae on the metabolic profile, expression of gingival inflammatory markers and amount of alveolar bone loss in diabetic rats with periodontal disease. Diabetes mellitus was induced in 48 Wistar rats by intraperitoneal injection of streptozotocin (80 mg/kg). After confirming the diabetes diagnosis, the animals were treated with β-glucans (by gavage) for 28 days. On the 14th day of this period, periodontal disease was induced using a ligature protocol. β-glucans reduced the amount of alveolar bone loss in animals with periodontal disease in both the diabetic and non-diabetic groups (p < 0.05). β-glucans reduced blood glucose, cholesterol and triacylglycerol levels in diabetic animals, both with and without periodontal disease (p < 0.05). Furthermore, treatment with β-glucans reduced the expression of cyclooxygenase-2 and receptor activator of nuclear factor kappa-B ligand and increased osteoprotegerin expression in animals with diabetes and periodontal disease (p < 0.05). It was concluded that treatment with β-glucans has beneficial metabolic and periodontal effects in diabetic rats with periodontal disease. PMID:26291983

  7. Effect of Betula pendula Leaf Extract on α-Glucosidase and Glutathione Level in Glucose-Induced Oxidative Stress.

    PubMed

    Bljajić, Kristina; Šoštarić, Nina; Petlevski, Roberta; Vujić, Lovorka; Brajković, Andrea; Fumić, Barbara; de Carvalho, Isabel Saraiva; Končić, Marijana Zovko

    2016-01-01

    B. pendula leaf is a common ingredient in traditional herbal combinations for treatment of diabetes in southeastern Europe. Present study investigated B. pendula ethanolic and aqueous extract as inhibitors of carbohydrate hydrolyzing enzymes, as well as their ability to restore glutathione concentration in Hep G2 cells subjected to glucose-induced oxidative stress. Phytochemical analysis revealed presence of rutin and other quercetin derivatives, as well as chlorogenic acid. In general, ethanolic extract was richer in phenolic substances than the aqueous extract. Furthermore, a comprehensive analysis of antioxidant activity of two extracts (determined by DPPH and ABTS radical scavenging activity, total antioxidant activity, and chelating activity as well as ferric-reducing antioxidant power) has shown that ethanolic extract was better radical scavenger and metal ion reductant. In addition, ethanolic extract effectively increased cellular glutathione levels caused by hyperglycemia and inhibited α-glucosidase with the activity comparable to that of acarbose. Therefore, in vitro research using B. pendula plant extracts has confirmed their antidiabetic properties. PMID:27668005

  8. Effect of Betula pendula Leaf Extract on α-Glucosidase and Glutathione Level in Glucose-Induced Oxidative Stress.

    PubMed

    Bljajić, Kristina; Šoštarić, Nina; Petlevski, Roberta; Vujić, Lovorka; Brajković, Andrea; Fumić, Barbara; de Carvalho, Isabel Saraiva; Končić, Marijana Zovko

    2016-01-01

    B. pendula leaf is a common ingredient in traditional herbal combinations for treatment of diabetes in southeastern Europe. Present study investigated B. pendula ethanolic and aqueous extract as inhibitors of carbohydrate hydrolyzing enzymes, as well as their ability to restore glutathione concentration in Hep G2 cells subjected to glucose-induced oxidative stress. Phytochemical analysis revealed presence of rutin and other quercetin derivatives, as well as chlorogenic acid. In general, ethanolic extract was richer in phenolic substances than the aqueous extract. Furthermore, a comprehensive analysis of antioxidant activity of two extracts (determined by DPPH and ABTS radical scavenging activity, total antioxidant activity, and chelating activity as well as ferric-reducing antioxidant power) has shown that ethanolic extract was better radical scavenger and metal ion reductant. In addition, ethanolic extract effectively increased cellular glutathione levels caused by hyperglycemia and inhibited α-glucosidase with the activity comparable to that of acarbose. Therefore, in vitro research using B. pendula plant extracts has confirmed their antidiabetic properties.

  9. Ambient glucose levels qualify the potency of insulin myogenic actions by regulating SIRT1 and FoxO3a in C2C12 myocytes.

    PubMed

    Nedachi, Taku; Kadotani, Akito; Ariga, Miyako; Katagiri, Hideki; Kanzaki, Makoto

    2008-04-01

    Nutrition availability is one of the major environmental signals influencing cell fate, such as proliferation, differentiation, and apoptosis, often functioning in concert with other humoral factors, including insulin. Herein, we show that low-serum-induced differentiation of C(2)C(12) myocytes is significantly hampered under low glucose (LG; 5 mM) compared with high glucose (HG; 22.5 mM) conditions, concurrently with nuclear accumulation of SIRT1, an NAD(+)-dependent deacetylase, and FoxO3a, both of which are implicated in the negative regulation of myogenesis. Intriguingly, insulin appears to exert opposite actions, depending on glucose availability, with regard to the regulation of SIRT1 and FoxO3a abundance, which apparently contributes to modulating the potency of insulin's myogenic action. Namely, insulin exerts a potent myogenic effect in the presence of sufficient glucose, whereas insulin is unable to exert its myogenic action under LG conditions, since insulin evokes massive upregulation of both SIRT1 and FoxO3a in the absence of sufficient ambient glucose. In addition, the hampered differentiation state under LG is significantly restored by sirtinol, a SIRT1 inhibitor, whereas insulin abolished this sirtinol-dependent restoration, indicating that insulin can function as a negative as well as a positive myogenic factor depending on glucose availability. Taken together, our data reveal the importance of ambient glucose levels in the regulation of myogenesis and also in the determination of insulin's myogenic potency, which is achieved, at least in part, through regulation of the cellular contents and localization of SIRT1 and FoxO3a in differentiating C(2)C(12) myocytes.

  10. Glucose levels affect LL-37 expression in monocyte-derived macrophages altering the Mycobacterium tuberculosis intracellular growth control.

    PubMed

    Montoya-Rosales, Alejandra; Castro-Garcia, Pamela; Torres-Juarez, Flor; Enciso-Moreno, Jose Antonio; Rivas-Santiago, Bruno

    2016-08-01

    Diabetes mellitus (DM)-2 patients have an increased susceptibility to develop pulmonary tuberculosis; this is partly due to the impairment of the innate immunity because of their higher glucose concentrations. In the present study, we determined the effect of the glucose concentrations in the LL-37 expression in infected and non-infected macrophages. Our results showed that the increasing glucose concentrations correlates with the low cathelicidin expression in non-infected cells, however in Mycobacterium tuberculosis infected cells, LL-37 expression was substantially increased in higher glucose concentrations, nevertheless the mycobacterial burden also increased, this phenomena can be associated with the cathelicidin immunomodulatory activity. Further evaluation for LL-37 needs to be done to determine whether this peptide can be used as a biomarker of tuberculosis progression in DM2 patients.

  11. Diacylglycerol kinase δ phosphorylates phosphatidylcholine-specific phospholipase C-dependent, palmitic acid-containing diacylglycerol species in response to high glucose levels.

    PubMed

    Sakai, Hiromichi; Kado, Sayaka; Taketomi, Akinobu; Sakane, Fumio

    2014-09-19

    Decreased expression of diacylglycerol (DG) kinase (DGK) δ in skeletal muscles is closely related to the pathogenesis of type 2 diabetes. To identify DG species that are phosphorylated by DGKδ in response to high glucose stimulation, we investigated high glucose-dependent changes in phosphatidic acid (PA) molecular species in mouse C2C12 myoblasts using a newly established liquid chromatography/MS method. We found that the suppression of DGKδ2 expression by DGKδ-specific siRNAs significantly inhibited glucose-dependent increases in 30:0-, 32:0-, and 34:0-PA and moderately attenuated 30:1-, 32:1-, and 34:1-PA. Moreover, overexpression of DGKδ2 also enhanced the production of these PA species. MS/MS analysis revealed that these PA species commonly contain palmitic acid (16:0). D609, an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), significantly inhibited the glucose-stimulated production of the palmitic acid-containing PA species. Moreover, PC-PLC was co-immunoprecipitated with DGKδ2. These results strongly suggest that DGKδ preferably metabolizes palmitic acid-containing DG species supplied from the PC-PLC pathway, but not arachidonic acid (20:4)-containing DG species derived from the phosphatidylinositol turnover, in response to high glucose levels. PMID:25112873

  12. Diacylglycerol kinase δ phosphorylates phosphatidylcholine-specific phospholipase C-dependent, palmitic acid-containing diacylglycerol species in response to high glucose levels.

    PubMed

    Sakai, Hiromichi; Kado, Sayaka; Taketomi, Akinobu; Sakane, Fumio

    2014-09-19

    Decreased expression of diacylglycerol (DG) kinase (DGK) δ in skeletal muscles is closely related to the pathogenesis of type 2 diabetes. To identify DG species that are phosphorylated by DGKδ in response to high glucose stimulation, we investigated high glucose-dependent changes in phosphatidic acid (PA) molecular species in mouse C2C12 myoblasts using a newly established liquid chromatography/MS method. We found that the suppression of DGKδ2 expression by DGKδ-specific siRNAs significantly inhibited glucose-dependent increases in 30:0-, 32:0-, and 34:0-PA and moderately attenuated 30:1-, 32:1-, and 34:1-PA. Moreover, overexpression of DGKδ2 also enhanced the production of these PA species. MS/MS analysis revealed that these PA species commonly contain palmitic acid (16:0). D609, an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), significantly inhibited the glucose-stimulated production of the palmitic acid-containing PA species. Moreover, PC-PLC was co-immunoprecipitated with DGKδ2. These results strongly suggest that DGKδ preferably metabolizes palmitic acid-containing DG species supplied from the PC-PLC pathway, but not arachidonic acid (20:4)-containing DG species derived from the phosphatidylinositol turnover, in response to high glucose levels.

  13. Changes in Denitrifier Abundance, Denitrification Gene mRNA Levels, Nitrous Oxide Emissions, and Denitrification in Anoxic Soil Microcosms Amended with Glucose and Plant Residues▿

    PubMed Central

    Henderson, Sherri L.; Dandie, Catherine E.; Patten, Cheryl L.; Zebarth, Bernie J.; Burton, David L.; Trevors, Jack T.; Goyer, Claudia

    2010-01-01

    In agricultural cropping systems, crop residues are sources of organic carbon (C), an important factor influencing denitrification. The effects of red clover, soybean, and barley plant residues and of glucose on denitrifier abundance, denitrification gene mRNA levels, nitrous oxide (N2O) emissions, and denitrification rates were quantified in anoxic soil microcosms for 72 h. nosZ gene abundances and mRNA levels significantly increased in response to all organic carbon treatments over time. In contrast, the abundance and mRNA levels of Pseudomonas mandelii and closely related species (nirSP) increased only in glucose-amended soil: the nirSP guild abundance increased 5-fold over the 72-h incubation period (P < 0.001), while the mRNA level significantly increased more than 15-fold at 12 h (P < 0.001) and then subsequently decreased. The nosZ gene abundance was greater in plant residue-amended soil than in glucose-amended soil. Although plant residue carbon-to-nitrogen (C:N) ratios varied from 15:1 to 30:1, nosZ gene and mRNA levels were not significantly different among plant residue treatments, with an average of 3.5 × 107 gene copies and 6.9 × 107 transcripts g−1 dry soil. Cumulative N2O emissions and denitrification rates increased over 72 h in both glucose- and plant-tissue-C-treated soil. The nirSP and nosZ communities responded differently to glucose and plant residue amendments. However, the targeted denitrifier communities responded similarly to the different plant residues under the conditions tested despite changes in the quality of organic C and different C:N ratios. PMID:20154105

  14. Temperature and pressure dependent rate coefficients for the reaction of C2H4 + HO2 on the C2H4O2H potential energy surface.

    PubMed

    Guo, JunJiang; Xu, JiaQi; Li, ZeRong; Tan, NingXin; Li, XiangYuan

    2015-04-01

    The potential energy surface (PES) for reaction C2H4 + HO2 was examined by using the quantum chemical methods. All rates were determined computationally using the CBS-QB3 composite method combined with conventional transition state theory(TST), variational transition-state theory (VTST) and Rice-Ramsberger-Kassel-Marcus/master-equation (RRKM/ME) theory. The geometries optimization and the vibrational frequency analysis of reactants, transition states, and products were performed at the B3LYP/CBSB7 level. The composite CBS-QB3 method was applied for energy calculations. The major product channel of reaction C2H4 + HO2 is the formation C2H4O2H via an OH(···)π complex with 3.7 kcal/mol binding energy which exhibits negative-temperature dependence. We further investigated the reactions related to this complex, which were ignored in previous studies. Thermochemical properties of the species involved in the reactions were determined using the CBS-QB3 method, and enthalpies of formation of species were compared with literature values. The calculated rate constants are in good agreement with those available from literature and given in modified Arrhenius equation form, which are serviceable in combustion modeling of hydrocarbons. Finally, in order to illustrate the effect for low-temperature ignition of our new rate constants, we have implemented them into the existing mechanisms, which can predict ethylene ignition in a shock tube with better performance.

  15. Temperature and pressure dependent rate coefficients for the reaction of C2H4 + HO2 on the C2H4O2H potential energy surface.

    PubMed

    Guo, JunJiang; Xu, JiaQi; Li, ZeRong; Tan, NingXin; Li, XiangYuan

    2015-04-01

    The potential energy surface (PES) for reaction C2H4 + HO2 was examined by using the quantum chemical methods. All rates were determined computationally using the CBS-QB3 composite method combined with conventional transition state theory(TST), variational transition-state theory (VTST) and Rice-Ramsberger-Kassel-Marcus/master-equation (RRKM/ME) theory. The geometries optimization and the vibrational frequency analysis of reactants, transition states, and products were performed at the B3LYP/CBSB7 level. The composite CBS-QB3 method was applied for energy calculations. The major product channel of reaction C2H4 + HO2 is the formation C2H4O2H via an OH(···)π complex with 3.7 kcal/mol binding energy which exhibits negative-temperature dependence. We further investigated the reactions related to this complex, which were ignored in previous studies. Thermochemical properties of the species involved in the reactions were determined using the CBS-QB3 method, and enthalpies of formation of species were compared with literature values. The calculated rate constants are in good agreement with those available from literature and given in modified Arrhenius equation form, which are serviceable in combustion modeling of hydrocarbons. Finally, in order to illustrate the effect for low-temperature ignition of our new rate constants, we have implemented them into the existing mechanisms, which can predict ethylene ignition in a shock tube with better performance. PMID:25774424

  16. Insulin and glucose regulation.

    PubMed

    Ralston, Sarah L

    2002-08-01

    Abnormally high or low blood glucose and insulin concentrations after standardized glucose tolerance tests can reflect disorders such as pituitary dysfunction, polysaccharide storage myopathies, and other clinical disorders. Glucose and insulin responses, however, are modified by the diet to which the animal has adapted, time since it was last fed, and what it was fed. Body fat (obesity), fitness level, physiologic status, and stress also alter glucose and insulin metabolism. Therefore, it is important to consider these factors when evaluating glucose and insulin tests, especially if only one sample it taken. This article describes the factors affecting glucose and insulin metabolism in horses and how they might influence the interpretation of standardized tests of glucose tolerance.

  17. Plasma Periostin Levels Are Increased in Chinese Subjects with Obesity and Type 2 Diabetes and Are Positively Correlated with Glucose and Lipid Parameters

    PubMed Central

    Luo, Yuanyuan; Qu, Hua; Wang, Hang; Wei, Huili; Wu, Jing; Duan, Yang; Liu, Dan; Deng, Huacong

    2016-01-01

    The purpose of this study is to examine the relations among plasma periostin, glucose and lipid metabolism, insulin resistance and inflammation in Chinese patients with obesity (OB), and type 2 diabetes mellitus (T2DM). Plasma periostin levels in the T2DM group were significantly higher than the NGT group (P < 0.01). Patients with both OB and T2DM had the highest periostin levels. Correlation analysis showed that plasma periostin levels were positively correlated with weight, waist circumference (WC), body mass index (BMI), waist-hip ratio (WHR), fasting plasma glucose (FPG), 2 h postchallenge plasma glucose (2 h PG), glycated hemoglobin (HbA1c), triglyceride (TG), total cholesterol (TC), fasting insulin (FINS), homeostasis model assessment of insulin resistance (HOMA-IR), TNF-α, and IL-6 (P < 0.05 or 0.001) and negatively correlated with high-density lipoprotein cholesterol (HDL-C) (P < 0.001). Multiple linear regression analysis showed that TG, TNF-α, and HOMA-IR were independent related factors in influencing the levels of plasma periostin (P < 0.001). These results suggested that Chinese patients with obesity and T2DM had significantly higher plasma periostin levels. Plasma periostin levels were strongly associated with plasma TG, chronic inflammation, and insulin resistance. PMID:27313402

  18. Insulin-sensitive glucose transporter transcript levels in calf muscles assessed with a bovine GLUT4 cDNA fragment.

    PubMed

    Hocquette, J F; Graulet, B; Castiglia-Delavaud, C; Bornes, F; Lepetit, N; Ferre, P

    1996-07-01

    Previous studies have shown that the expression of the insulin-sensitive glucose transporter (GLUT4) is lower in oxidative muscles than in glycolytic muscles in bovines and goats in contrast to observations in rats. Additional experiments in this work provide very strong arguments that the immunoreactive band detected does represent GLUT4 protein, which further validates our previous results. Therefore, to determine the level of regulation, the main objective of the present study was to measure GLUT4 mRNA amounts in various bovine muscles. A 241-bp fragment of the bovine GLUT4 cDNA was cloned by polymerase chain reaction (PCR). It shares 80-90% sequence identity with related sequences in other species. This PCR-amplified bovine GLUT4 probe was used to determine the distribution of GLUT4 mRNA in bovine tissues in comparison with that of GLUT1 mRNA. Moreover, GLUT4 mRNA amounts were quantified by Northern-blot analysis in heart and seven skeletal muscles with various oxidative and glycolytic activities from seven ruminant calves. GLUT4 mRNA was detected by Northern-blot analysis only in calf insulin-sensitive tissues. In contrast, GLUT1 mRNA was detected in all tissues studied except liver. GLUT4 mRNA amount was the highest in masseter and heart, which are oxidative muscles (1.67 +/- 0.16 and 1.53 +/- 0.19 units/g wet tissue weight, respectively) and the lowest in glycolytic or oxido-glycolytic muscles (0.31 +/- 0.04 to 1.00 +/- 0.09 units/g wet tissue weight; SEM, n = 7). These data and our previous results provide evidence for translational and/or post-translational control mechanisms of bovine GLUT4 protein expression in a muscle type-specific manner.

  19. Development of a photon-cell interactive monte carlo simulation for non-invasive measurement of blood glucose level by Raman spectroscopy.

    PubMed

    Sakota, Daisuke; Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu

    2015-01-01

    Turbidity variation is one of the major limitations in Raman spectroscopy for quantifying blood components, such as glucose, non-invasively. To overcome this limitation, we have developed a Raman scattering simulation using a photon-cell interactive Monte Carlo (pciMC) model that tracks photon migration in both the extra- and intracellular spaces without relying on the macroscopic scattering phase function and anisotropy factor. The interaction of photons at the plasma-cell boundary of randomly oriented three-dimensionally biconcave red blood cells (RBCs) is modeled using geometric optics. The validity of the developed pciMCRaman was investigated by comparing simulation and experimental results of Raman spectroscopy of glucose level in a bovine blood sample. The scattering of the excitation laser at a wavelength of 785 nm was simulated considering the changes in the refractive index of the extracellular solution. Based on the excitation laser photon distribution within the blood, the Raman photon derived from the hemoglobin and glucose molecule at the Raman shift of 1140 cm(-1) = 862 nm was generated, and the photons reaching the detection area were counted. The simulation and experimental results showed good correlation. It is speculated that pciMCRaman can provide information about the ability and limitations of the measurement of blood glucose level.

  20. Limitations in the use of indices using glucose and insulin levels to predict insulin sensitivity: impact of race and gender and superiority of the indices derived from oral glucose tolerance test in African Americans.

    PubMed

    Pisprasert, Veeradej; Ingram, Katherine H; Lopez-Davila, Maria F; Munoz, A Julian; Garvey, W Timothy

    2013-04-01

    OBJECTIVE To examine the utility of commonly used insulin sensitivity indices in nondiabetic European Americans (EAs) and African Americans (AAs). RESEARCH DESIGN AND METHODS Two-hundred forty nondiabetic participants were studied. Euglycemic-hyperinsulinemic clamp was the gold standard approach to assess glucose disposal rates (GDR) normalized by lean body mass. The homeostatic model assessment for insulin resistance (HOMA-IR) and the quantitative insulin sensitivity check index (QUICKI) were calculated from fasting plasma glucose and insulin (FIL). Oral glucose tolerance test (OGTT) was performed to determine Matsuda index, the simple index assessing insulin sensitivity (SI(is)OGTT), Avignon index, and Stomvoll index. Relationships among these indices with GDR were analyzed by multiple regression. RESULTS GDR values were similar in EA and AA subgroups; even so, AA exhibited higher FIL and were insulin-resistant compared with EA, as assessed by HOMA-IR, QUICKI, Matsuda index, SI(is)OGTT, Avignon index, and Stumvoll index. In the overall study population, GDR was significantly correlated with all studied insulin sensitivity indices (/r/ = 0.381-0.513); however, these indices were not superior to FIL in predicting GDR. Race and gender affected the strength of this relationship. In AA males, FIL and HOMA-IR were not correlated with GDR. In contrast, Matsuda index and SI(is)OGTT were significantly correlated with GDR in AA males, and Matsuda index was superior to HOMA-IR and QUICKI in AAs overall. CONCLUSIONS Insulin sensitivity indices based on glucose and insulin levels should be used cautiously as measures of peripheral insulin sensitivity when comparing mixed gender and mixed race populations. Matsuda index and SI(is)OGTT are reliable in studies that include AA males.

  1. Pongamol from Pongamia pinnata stimulates glucose uptake by increasing surface GLUT4 level in skeletal muscle cells.

    PubMed

    Tamrakar, Akhilesh K; Jaiswal, Natasha; Yadav, Prem P; Maurya, Rakesh; Srivastava, Arvind K

    2011-06-01

    Skeletal muscle is the major site of postprandial glucose disposal and augmenting glucose uptake into this tissue may attenuate insulin resistance that precedes type 2 diabetes mellitus. Here, we investigated the effect of pongamol, an identified lead molecule from the fruits of Pongamia pinnata, on glucose uptake and GLUT4 translocation in skeletal muscle cells. In L6-GLUT4myc myotubes treatment with pongamol significantly promoted both glucose transport and GLUT4 translocation to the cell surface in a concentration-dependent manner, without changing the total amount of GLUT4 protein and GLUT4 mRNA, effects that were also additive with insulin. Cycloheximide treatment inhibited the effect of pongamol on GLUT4 translocation suggesting the requirement of new protein synthesis. The pongamol-induced increase in GLUT4 translocation was completely abolished by wortmannin, and pongamol significantly potentiated insulin-mediated phosphorylation of AKT (Ser-473). We conclude that pongamol-induced increase in glucose uptake in L6 myotubes is the result of an increased translocation of GLUT4 to plasma membrane, driven by a PI-3-K/AKT dependent mechanism. PMID:21497640

  2. Protein kinase Ymr291w/Tda1 is essential for glucose signaling in saccharomyces cerevisiae on the level of hexokinase isoenzyme ScHxk2 phosphorylation*.

    PubMed

    Kaps, Sonja; Kettner, Karina; Migotti, Rebekka; Kanashova, Tamara; Krause, Udo; Rödel, Gerhard; Dittmar, Gunnar; Kriegel, Thomas M

    2015-03-01

    The enzyme ScHxk2 of Saccharomyces cerevisiae is a dual-function hexokinase that besides its catalytic role in glycolysis is involved in the transcriptional regulation of glucose-repressible genes. Relief from glucose repression is accompanied by the phosphorylation of the nuclear fraction of ScHxk2 at serine 15 and the translocation of the phosphoenzyme into the cytosol. Different studies suggest different serine/threonine protein kinases, Ymr291w/Tda1 or Snf1, to accomplish ScHxk2-S15 phosphorylation. The current paper provides evidence that Ymr291w/Tda1 is essential for that modification, whereas protein kinases Ydr477w/Snf1, Ynl307c/Mck1, Yfr014c/Cmk1, and Ykl126w/Ypk1, which are co-purified during Ymr291w/Tda1 tandem affinity purification, as well as protein kinase PKA and PKB homolog Sch9 are dispensable. Taking into account the detection of a significantly higher amount of the Ymr291w/Tda1 protein in cells grown in low-glucose media as compared with a high-glucose environment, Ymr291w/Tda1 is likely to contribute to glucose signaling in S. cerevisiae on the level of ScHxk2-S15 phosphorylation in a situation of limited external glucose availability. The evolutionary conservation of amino acid residue serine 15 in yeast hexokinases and its phosphorylation is illustrated by the finding that YMR291W/TDA1 of S. cerevisiae and the homologous KLLA0A09713 gene of Kluyveromyces lactis allow for cross-complementation of the respective protein kinase single-gene deletion strains.

  3. Protein Kinase Ymr291w/Tda1 Is Essential for Glucose Signaling in Saccharomyces cerevisiae on the Level of Hexokinase Isoenzyme ScHxk2 Phosphorylation*

    PubMed Central

    Kaps, Sonja; Kettner, Karina; Migotti, Rebekka; Kanashova, Tamara; Krause, Udo; Rödel, Gerhard; Dittmar, Gunnar; Kriegel, Thomas M.

    2015-01-01

    The enzyme ScHxk2 of Saccharomyces cerevisiae is a dual-function hexokinase that besides its catalytic role in glycolysis is involved in the transcriptional regulation of glucose-repressible genes. Relief from glucose repression is accompanied by the phosphorylation of the nuclear fraction of ScHxk2 at serine 15 and the translocation of the phosphoenzyme into the cytosol. Different studies suggest different serine/threonine protein kinases, Ymr291w/Tda1 or Snf1, to accomplish ScHxk2-S15 phosphorylation. The current paper provides evidence that Ymr291w/Tda1 is essential for that modification, whereas protein kinases Ydr477w/Snf1, Ynl307c/Mck1, Yfr014c/Cmk1, and Ykl126w/Ypk1, which are co-purified during Ymr291w/Tda1 tandem affinity purification, as well as protein kinase PKA and PKB homolog Sch9 are dispensable. Taking into account the detection of a significantly higher amount of the Ymr291w/Tda1 protein in cells grown in low-glucose media as compared with a high-glucose environment, Ymr291w/Tda1 is likely to contribute to glucose signaling in S. cerevisiae on the level of ScHxk2-S15 phosphorylation in a situation of limited external glucose availability. The evolutionary conservation of amino acid residue serine 15 in yeast hexokinases and its phosphorylation is illustrated by the finding that YMR291W/TDA1 of S. cerevisiae and the homologous KLLA0A09713 gene of Kluyveromyces lactis allow for cross-complementation of the respective protein kinase single-gene deletion strains. PMID:25593311

  4. Dynamic Changes in Cytosolic ATP Levels in Cultured Glutamatergic Neurons During NMDA-Induced Synaptic Activity Supported by Glucose or Lactate.

    PubMed

    Lange, Sofie C; Winkler, Ulrike; Andresen, Lars; Byhrø, Mathilde; Waagepetersen, Helle S; Hirrlinger, Johannes; Bak, Lasse K

    2015-12-01

    We have previously shown that synaptic transmission fails in cultured neurons in the presence of lactate as the sole substrate. Thus, to test the hypothesis that the failure of synaptic transmission is a consequence of insufficient energy supply, ATP levels were monitored employing the ATP biosensor Ateam1.03YEMK. While inducing synaptic activity by subjecting cultured neurons to two 30 s pulses of NMDA (30 µM) with a 4 min interval, changes in relative ATP levels were measured in the presence of lactate (1 mM), glucose (2.5 mM) or the combination of the two. ATP levels reversibly declined following NMDA-induced neurotransmission activity, as indicated by a reversible 10-20 % decrease in the response of the biosensor. The responses were absent when the NMDA receptor antagonist memantine was present. In the presence of lactate alone, the ATP response dropped significantly more than in the presence of glucose following the 2nd pulse of NMDA (approx. 10 vs. 20 %). Further, cytosolic Ca(2+) homeostasis during NMDA-induced synaptic transmission is partially inhibited by verapamil indicating that voltage-gated Ca(2+) channels are activated. Lastly, we showed that cytosolic Ca(2+) homeostasis is supported equally well by both glucose and lactate, and that a pulse of NMDA causes accumulation of Ca(2+) in the mitochondrial matrix. In summary, we have shown that ATP homeostasis during neurotransmission activity in cultured neurons is supported by both glucose and lactate. However, ATP homeostasis seems to be negatively affected by the presence of lactate alone, suggesting that glucose is needed to support neuronal energy metabolism during activation.

  5. Postprandial Differences in the Amino Acid and Biogenic Amines Profiles of Impaired Fasting Glucose Individuals after Intake of Highland Barley

    PubMed Central

    Liu, Liyan; Wang, Xinyang; Li, Ying; Sun, Changhao

    2015-01-01

    The aim of this study was to measure the postprandial changes in amino acid and biogenic amine profiles in individuals with impaired fasting glucose (IFG) and to investigate the changes of postprandial amino acid and biogenic amine profiles after a meal of highland barley (HB). Firstly, 50 IFG and 50 healthy individuals were recruited for the measurement of 2 h postprandial changes of amino acid and biogenic amine profiles after a glucose load. Secondly, IFG individuals received three different loads: Glucose (GL), white rice (WR) and HB. Amino acid and biogenic amine profiles, glucose and insulin were assayed at time zero and 30, 60, 90 and 120 min after the test load. The results showed fasting and postprandial amino acid and biogenic amine profiles were different between the IFG group and the controls. The level of most amino acids and their metabolites decreased after an oral glucose tolerance test, while the postprandial level of γ-aminobutyric acid (GABA) increased significantly in IFG individuals. After three different test loads, the area under the curve for glucose, insulin, lysine and GABA after a HB load decreased significantly compared to GL and WR loads. Furthermore, the postprandial changes in the level of GABA between time zero and 120 min during a HB load were associated positively with 2 h glucose and fasting insulin secretion in the IFG individuals. Thus, the HB load produced low postprandial glucose and insulin responses, which induced changes in amino acid and biogenic amine profiles and improved insulin sensitivity. PMID:26184292

  6. Postprandial Differences in the Amino Acid and Biogenic Amines Profiles of Impaired Fasting Glucose Individuals after Intake of Highland Barley.

    PubMed

    Liu, Liyan; Wang, Xinyang; Li, Ying; Sun, Changhao

    2015-07-01

    The aim of this study was to measure the postprandial changes in amino acid and biogenic amine profiles in individuals with impaired fasting glucose (IFG) and to investigate the changes of postprandial amino acid and biogenic amine profiles after a meal of highland barley (HB). Firstly, 50 IFG and 50 healthy individuals were recruited for the measurement of 2 h postprandial changes of amino acid and biogenic amine profiles after a glucose load. Secondly, IFG individuals received three different loads: Glucose (GL), white rice (WR) and HB. Amino acid and biogenic amine profiles, glucose and insulin were assayed at time zero and 30, 60, 90 and 120 min after the test load. The results showed fasting and postprandial amino acid and biogenic amine profiles were different between the IFG group and the controls. The level of most amino acids and their metabolites decreased after an oral glucose tolerance test, while the postprandial level of γ-aminobutyric acid (GABA) increased significantly in IFG individuals. After three different test loads, the area under the curve for glucose, insulin, lysine and GABA after a HB load decreased significantly compared to GL and WR loads. Furthermore, the postprandial changes in the level of GABA between time zero and 120 min during a HB load were associated positively with 2 h glucose and fasting insulin secretion in the IFG individuals. Thus, the HB load produced low postprandial glucose and insulin responses, which induced changes in amino acid and biogenic amine profiles and improved insulin sensitivity.

  7. Age- and Gender-Specific Reference Intervals for Fasting Blood Glucose and Lipid Levels in School Children Measured With Abbott Architect c8000 Chemistry Analyzer.

    PubMed

    Tamimi, Waleed; Albanyan, Esam; Altwaijri, Yasmin; Tamim, Hani; Alhussein, Fahad

    2012-04-01

    Reference intervals for pubertal characteristics are influenced by genetic, geographic, dietary and socioeconomic factors. Therefore, the aim of this study was to establish age-specific reference intervals of glucose and lipid levels among local school children. This was cross-sectional study, conducted among Saudi school children. Fasting blood samples were collected from 2149 children, 1138 (53%) boys and 1011 (47%) girls, aged 6 to 18 years old. Samples were analyzed on the Architect c8000 Chemistry System (Abbott Diagnostics, USA) for glucose, cholesterol, triglycerides, HDL and LDL. Reference intervals were established by nonparametric methods between the 2.5th and 97.5th percentiles. Significant differences were observed between boys and girls for cholesterol and triglycerides levels in all age groups (P < 0.02). Only at age 6-7 years and at adolescents, HDL and LDL levels were found to be significant (P < 0.001). No significant differences were seen in glucose levels except at age 12 to 13 years. Saudi children have comparable serum cholesterol levels than their Western counterparts. This may reflect changing dietary habits and increasing affluence in Saudi Arabia. Increased lipid screening is anticipated, and these reference intervals will aid in the early assessment of cardiovascular and diabetes risk in Saudi pediatric populations.

  8. Alterations in glucose kinetics induced by pentobarbital anesthesia

    SciTech Connect

    Lang, C.H.; Bagby, G.J.; Hargrove, D.M.; Hyde, P.M.; Spitzer, J.J. )

    1987-12-01

    Because pentobarbital is often used in investigations related to carbohydrate metabolism, the in vivo effect of this drug on glucose homeostasis was studied. Glucose kinetics assessed by the constant intravenous infusion of (6-{sup 3}H)- and (U-{sup 14}C)glucose, were determined in three groups of catheterized fasted rats: conscious, anesthetized and body temperature maintained, and anesthetized but body temperature not maintained. After induction of anesthesia, marked hypothermia developed in rats not provided with external heat. Anesthetized rats that developed hypothermia showed a decrease in mean arterial blood pressure (25%) and heart rate (40%). Likewise, the plasma lactate concentration and the rates of glucose appearance, recycling, and metabolic clearance were reduced by 30-50% in the hypothermic anesthetized rats. Changes in whole-body carbohydrate metabolism were prevented when body temperature was maintained. Because plasma pentobarbital levels were similar between the euthermic and hypothermic rats during the first 2 h of the experiment, the rapid reduction in glucose metabolism in this latter group appears related to the decrease in body temperature. The continuous infusion of epinephrine produced alterations in glucose kinetics that were not different between conscious animals and anesthetized rats with body temperature maintained. Thus pentobarbital-anesthetized rats became hypothermic when kept at room temperature and exhibited marked decreases in glucose metabolism. Such changes were absent when body temperature was maintained during anesthesia.

  9. Availability of phosphate for phytoplankton and bacteria and of glucose for bacteria at different pCO2 levels in a mesocosm study

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Thingstad, T. F.; Løvdal, T.; Grossart, H.-P.; Larsen, A.; Allgaier, M.; Meyerhöfer, M.; Schulz, K. G.; Wohlers, J.; Zöllner, E.; Riebesell, U.

    2008-05-01

    Availability of phosphate for phytoplankton and bacteria and of glucose for bacteria at different pCO2 levels were studied in a mesocosm experiment (PeECE III). Using nutrient-depleted SW Norwegian fjord waters, three different levels of pCO2 (350 μatm: 1×CO2; 700 μatm: 2×CO2; 1050 μatm: 3×CO2) were set up, and nitrate and phosphate were added at the start of the experiment in order to induce a phytoplankton bloom. Despite similar responses of total particulate P concentration and phosphate turnover time at the three different pCO2 levels, the size distribution of particulate P and 33PO4 uptake suggested that phosphate transferred to the >10 μm fraction was greater in the 3×CO2 mesocosm during the first 6-10 days when phosphate concentration was high. During the period of phosphate depletion (after Day 12), specific phosphate affinity and specific alkaline phosphatase activity (APA) suggested a P-deficiency (i.e. suboptimal phosphate supply) rather than a P-limitation for the phytoplankton and bacterial community at the three different pCO2 levels. Specific phosphate affinity and specific APA tended to be higher in the 3×CO2 than in the 2×CO2 and 1×CO2 mesocosms during the phosphate depletion period, although no statistical differences were found. Glucose turnover time was correlated significantly and negatively with bacterial abundance and production but not with the bulk DOC concentration. This suggests that even though constituting a small fraction of the bulk DOC, glucose was an important component of labile DOC for bacteria. Specific glucose affinity of bacteria behaved similarly at the three different pCO2 levels with measured specific glucose affinities being consistently much lower than the theoretical maximum predicted from the diffusion-limited model. This suggests that bacterial growth was not severely limited by the glucose availability. Hence, it seems that the lower availability of inorganic nutrients after the phytoplankton bloom reduced

  10. The effect of a dietary carbohydrase enzyme system on blood glucose levels when combined with foods of varying glycemic index in male Sprague-Dawley rats.

    PubMed

    Anderson, Mark L

    2012-01-01

    Extensive research has shown that physical performance and recovery can be improved by maintaining or enhancing glucose availability. Carbogen(®) (Triarco Industries, Wayne, NJ, USA), a patented dietary fungal carbohydrase enzyme system, converts complex carbohydrates and fiber into simpler carbohydrates when ingested. Supplementing the enzymatic digestion of complex carbohydrates and fiber that may be digested very slowly or not at all in vivo may increase the availability of glucose. This may be reflected by increased absorption rates and higher measurable levels of whole blood glucose (WBG) that may be bioavailable for extended energy production. These preliminary investigations evaluate the ability of Carbogen to produce a rapid and more sustained increase in WBG levels when combined with a variety of food substrates commonly used by athletes and non-athletes to increase levels of physical activity. To investigate this, food substrates having a low, moderate, or high glycemic index (GI) with various amounts of total carbohydrates and dietary fiber were used. The individually tested substrates include soy nuts, cooked pasta, meal replacement bars, a nutrition shake, and a carbohydrate sports supplement. The investigations presented here consist of seven separate preclinical rat feasibility studies conducted over a period of approximately 12 months. The collective results presented here identify specific attributes of a category of food substrates common to sports nutrition enthusiasts that may significantly increase WBG levels over an extended time when dosed with Carbogen. Specifically, using Carbogen with a food substrate having a low or moderate GI and containing dietary fiber may increase the rate of glucose absorption and maintain significant increases in WBG levels.

  11. Effects of short term changes in the blood glucose level on the autofluorescence lifetime of the human retina in healthy volunteers

    NASA Astrophysics Data System (ADS)

    Klemm, Matthias; Nagel, Edgar; Schweitzer, Dietrich; Schramm, Stefan; Haueisen, Jens

    2016-03-01

    Purpose: Fluorescence lifetime imaging ophthalmoscopy (FLIO) provides in vivo metabolic mapping of the ocular fundus. Changes in FLIO have been found in e.g. diabetes patients. The influence of short term metabolic changes caused by blood glucose level changes on is unknown. Aim of this work is the detection of short-term changes in fundus autofluorescence lifetime during an oral glucose tolerance test. Methods: FLIO was performed in 10 healthy volunteers (29+/-4 years, fasting for 12h) using a scanning laser ophthalmoscope (30° fundus, 34μm resolution, excitation with 473nm diode laser with 70 ps pulses at 80 MHz repetition rate, detection in two spectral channels 500-560nm (ch1) and 560-720nm (ch2) using the timecorrelated single photon counting method). The blood glucose level (BGL) was measured by an Accu-Chek® Aviva self-monitoring device. Before and after a glucose drink (300ml solution, containing 75g of glucose (Accu-Chek® Dextrose O.G.T.), BGL and FLIO were measured every 15min. The FLIMX software package was applied to compute the average fluorescence lifetime τ on the inner ring of the ETDRS grid using a modified 3-exponential approach. Results: The results are given as mean +/- standard deviation over all volunteers in ch1. Baseline measurement: BGL: 5.3+/-0.4 mmol/l, τ1: 49+/-6ps. A significant reduction (α=5% Wilcoxon rank-sum test) in τ1 is detected after 15min (BGL: 8.4+/-1.1 mmol/l, τ1: 44+/-5ps) and after 90min (BGL: 6.3+/-1.4 mmol/l, τ1: 41+/-5ps). Results of ch2 show smaller reductions in the fluorescence lifetimes over time.

  12. Hyperosmolar sodium chloride is toxic to cultured neurons and causes reduction of glucose metabolism and ATP levels, an increase in glutamate uptake, and a reduction in cytosolic calcium.

    PubMed

    Morland, Cecilie; Pettersen, Mi Nguyen; Hassel, Bjørnar

    2016-05-01

    Elevation of serum sodium, hypernatremia, which may occur during dehydration or treatment with sodium chloride, may cause brain dysfunction and damage, but toxic mechanisms are poorly understood. We found that exposure to excess NaCl, 10-100mmol/L, for 20h caused cell death in cultured cerebellar granule cells (neurons). Toxicity was due to Na(+), since substituting excess Na(+) with choline reduced cell death to control levels, whereas gluconate instead of excess Cl(-) did not. Prior to cell death from hyperosmolar NaCl, glucose consumption and lactate formation were reduced, and intracellular aspartate levels were elevated, consistent with reduced glycolysis or glucose uptake. Concomitantly, the level of ATP became reduced. Pyruvate, 10mmol/L, reduced NaCl-induced cell death. The extracellular levels of glutamate, taurine, and GABA were concentration-dependently reduced by excess NaCl; high-affinity glutamate uptake increased. High extracellular [Na(+)] caused reduction in intracellular free [Ca(2+)], but a similar effect was seen with mannitol, which was not neurotoxic. We suggest that inhibition of glucose metabolism with ensuing loss of ATP is a neurotoxic mechanism of hyperosmolar sodium, whereas increased uptake of extracellular neuroactive amino acids and reduced intracellular [Ca(2+)] may, if they occur in vivo, contribute to the cerebral dysfunction and delirium described in hypernatremia. PMID:26994581

  13. Hyperosmolar sodium chloride is toxic to cultured neurons and causes reduction of glucose metabolism and ATP levels, an increase in glutamate uptake, and a reduction in cytosolic calcium.

    PubMed

    Morland, Cecilie; Pettersen, Mi Nguyen; Hassel, Bjørnar

    2016-05-01

    Elevation of serum sodium, hypernatremia, which may occur during dehydration or treatment with sodium chloride, may cause brain dysfunction and damage, but toxic mechanisms are poorly understood. We found that exposure to excess NaCl, 10-100mmol/L, for 20h caused cell death in cultured cerebellar granule cells (neurons). Toxicity was due to Na(+), since substituting excess Na(+) with choline reduced cell death to control levels, whereas gluconate instead of excess Cl(-) did not. Prior to cell death from hyperosmolar NaCl, glucose consumption and lactate formation were reduced, and intracellular aspartate levels were elevated, consistent with reduced glycolysis or glucose uptake. Concomitantly, the level of ATP became reduced. Pyruvate, 10mmol/L, reduced NaCl-induced cell death. The extracellular levels of glutamate, taurine, and GABA were concentration-dependently reduced by excess NaCl; high-affinity glutamate uptake increased. High extracellular [Na(+)] caused reduction in intracellular free [Ca(2+)], but a similar effect was seen with mannitol, which was not neurotoxic. We suggest that inhibition of glucose metabolism with ensuing loss of ATP is a neurotoxic mechanism of hyperosmolar sodium, whereas increased uptake of extracellular neuroactive amino acids and reduced intracellular [Ca(2+)] may, if they occur in vivo, contribute to the cerebral dysfunction and delirium described in hypernatremia.

  14. Application of time gating in the measurement of glucose level in a three-layer biotissue model by using ultrashort laser pulses

    SciTech Connect

    Kirillin, M Yu; Bykov, A V; Priezzhev, A V; Myllylae, R

    2008-05-31

    The efficiency of using the time-of-flight (TOF) method at a wavelength of 820 nm for detecting the changes in the optical properties of multilayer light scattering medium in connection with the problem of the glucose level detection in the human tissue is discussed. Pulses scattered from a three-layer biotissue phantom consisting of two skin layers and a blood layer between them, are calculated with the help of a program code based on the Monte Carlo algorithm for different glucose concentrations. Relative changes in the recorded signals caused by variations in the glucose content are analysed for different source - detector separations. It is shown that the maximum relative change in the total pulse energy is 7.2% and 4.8% for the anisotropy factor of the layer mimicking skin g = 0.9 and 0.7, respectively, and the change in the glucose concentration from 0 up to 500 mg dL{sup -1}. The use of time gating leads to the increase in these values up to 12% and 8.5%, respectively. The sensitivity maps are obtained which can be used to determine the optimal duration and the time delay of the time gate relative to the probe pulse for five values of the source - detector separations. (biophotonics)

  15. Blood glucose levels and performance in a sports cAMP for adolescents with type 1 diabetes mellitus: a field study.

    PubMed

    Kelly, Dylan; Hamilton, Jill K; Riddell, Michael C

    2010-01-01

    Background. Acute hypo- and hyperglycemia causes cognitive and psychomotor impairment in individuals with type 1 diabetes mellitus (T1DM) that may affect sports performance. Objective. To quantify the effect of concurrent and antecedent blood glucose concentrations on sports skills and cognitive performance in youth with T1DM attending a sports camp. Design/Methods. 28 youth (ages 6-17 years) attending a sports camp carried out multiple skill-based tests (tennis, basketball, or soccer skills) with glucose monitoring over 4 days. Glucose levels at the time of testing were categorized as (a) hypoglycemic (<3.6 mM); (b) within an acceptable glycemic range (3.6-13.9 mM); or (c) hyperglycemic (>13.9 mM). Results. Overall, sports performance skill was approximately 20% lower when glucose concentrations were hypoglycemic compared to either acceptable or hyperglycemic at the time of skill testing (P < .05). During Stroop testing, "reading" and "color recognition" also degraded during hypoglycemia, while "interference" scores improved (P < .05). Nocturnal hypoglycemia was present in 66% of subjects, lasting an average of 84 minutes, but this did not affect sports skill performance the following day. Conclusions. Mild hypoglycemia markedly reduces sports skill performance and cognition in young athletes with T1DM.

  16. Theoretical study of the C-H bond dissociation energies of CH4, C2H2, C2H4, and H2C2O

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    The successive C-H bond dissociation energies of CH4, C2H2, C2H4, and H2C2O (ketene) are determined using large-basis sets and a high level of correlation treatment. For CH4, C2H2, and C2H4 the computed values are in excellent agreement with experiment. Using these results, the values 107.9 + or - 2.0 and 96.7 + or - 2.0 kcal/mol are recommended for the C-H bond dissociation energies of H2C2O and HC2O, respectively.

  17. Serum glucose level at hospital admission correlates with left ventricular systolic dysfunction in nondiabetic, acute coronary patients: the Hellenic Heart Failure Study.

    PubMed

    Chrysohoou, Christina; Pitsavos, Christos; Aggelopoulos, Panagiotis; Skoumas, John; Tsiamis, Eleftherios; Panagiotakos, Demosthenes B; Stefanadis, Christodoulos

    2010-05-01

    The purpose of this work was to evaluate the relation between serum glucose levels at hospital admission and left ventricular systolic function in nondiabetic patients with an acute coronary syndrome (ACS). Of the 1000 ACS patients who were consecutively enrolled during 2007-2008, 583 (63 +/- 13 years, 20% females) nondiabetic patients were studied in this work. Of these, 254 presented left ventricular systolic dysfunction (ejection fraction <40%). Biochemical measurements and detailed medical information were recorded in all participants. Patients having glucose levels at hospital admission in the highest tertile (>155 mg/dl) had lower left ventricular ejection fraction (40% vs 45%, P = 0.003), were older (66 +/- 11 vs 61 +/- 13, P = 0.004) and less physically active (49% vs 63%, P = 0.02), had higher troponin (14.7 +/- 39.7 vs 5.6 +/- 13.5, P = 0.03), higher brain natriuretic peptide (510.39 +/- 932.33 vs 213.4 +/- 301.14, P = 0.008), higher C-RP (42.26 +/- 55.26 vs 26.46 +/- 38.18, P = 0.04), lower creatinine clearance levels (68 +/- 33 vs.81 +/- 31, P = 0.009), higher white blood cell count (13 416 +/- 16 420 vs 9310 +/- 3020, P = 0.001), and lower body mass index (26.8 +/- 4 vs 27.2 +/- 4.4, P = 0.07), compared to those in the lowest tertile (<114 mg/dl). The multiadjusted logistic regression analysis revealed that a 10 mg/dl difference in glucose levels was independently associated with 8% (95% confidence interval 2%-14%) higher likelihood of left ventricular systolic dysfunction. Low glucose concentrations at hospital admission in nondiabetic post-ACS patients is a predictor for the appearance of left ventricular dysfunction, and could be a target marker for risk stratification.

  18. D-sorbose inhibits disaccharidase activity and demonstrates suppressive action on postprandial blood levels of glucose and insulin in the rat.

    PubMed

    Oku, Tsuneyuki; Murata-Takenoshita, Yoko; Yamazaki, Yuko; Shimura, Fumio; Nakamura, Sadako

    2014-11-01

    In an attempt to develop D-sorbose as a new sweetener that could help in preventing lifestyle-related diseases, we investigated the inhibitory effect of D-sorbose on disaccharidase activity, using the brush border membrane vesicles of rat small intestines. The inhibitory effect was compared with that of L-sorbose and other rare sugars, and the small intestinal disaccharidases in rats was compared with that of humans as well. In humans and the small intestines of rats, d-sorbose strongly inhibited sucrase activity and weakly inhibited maltase activity. Inhibition by D-sorbose of sucrase activity was similar to that of L-arabinose, and the K(i) of D-sorbose was 7.5 mM. Inhibition by D-sorbose was very strong in comparison with that of L-sorbose (K(i), 60.8 mM), whereas inhibition of d-tagatose was between that of D-sorbose and L-sorbose. The inhibitory mode of D-sorbose for sucrose and maltase was uncompetitive, and that of L-sorbose was competitive. To determine a suppressive effect on postprandial blood levels of glucose and insulin via inhibition of sucrase activity, sucrose solution with or without D-sorbose was administered to rats. Increments in the blood levels of glucose and insulin were suppressed significantly after administration of sucrose solution with D-sorbose to rats, in comparison to administration of sucrose solution without D-sorbose. In contrast, the suppressive effect of L-sorbose on postprandial blood levels of glucose and insulin was very weak. These results suggest that D-sorbose may have an inhibitory effect on disaccharidase activity and could be used as a sweetener to suppress the postprandial elevation of blood levels of glucose and insulin. The use of D-sorbose as a sweetener may contribute to the prevention of lifestyle-related diseases, such as type 2 diabetes mellitus.

  19. Environmental, trophic, and ecological factors influencing bone collagen δ2H

    NASA Astrophysics Data System (ADS)

    Topalov, Katarina; Schimmelmann, Arndt; David Polly, P.; Sauer, Peter E.; Lowry, Mark

    2013-06-01

    Organic deuterium/hydrogen stable isotope ratios (i.e., 2H/1H, expressed as δ2H value in ‰) in animal tissues are related to the 2H/1H in diet and ingested water. Bone collagen preserves the biochemical 2H/1H isotopic signal in the δ2H value of collagen's non-exchangeable hydrogen. Therefore, δ2H preserved in bone collagen has the potential to constrain environmental and trophic conditions, which is of interest to researchers studying of both living and fossil vertebrates. Our data examine the relationship of δ2H values of collagen with geographic variation in δ2H of meteoric waters, with local variations in the ecology and trophic level of species, and with the transition from mother's milk to adult diet. Based on 97 individuals from 22 marine and terrestrial vertebrates (predominately mammals), we found the relationships of collagen δ2H to both geographic variation in meteoric water δ2H (R2 = 0.55) and to δ15N in bone collagen (R2 = 0.17) statistically significant but weaker than previously reported. The second strongest control on collagen δ2H in our data is dietary, with nearly 50 percent of the variance in δ2H explained by trophic level (R2 = 0.47). Trophic level effects potentially confound the local meteoric signal if not held constant: herbivores tend to have the lowest δ2H values, omnivores have intermediate ones, and carnivores have the highest values. Body size (most likely related to mass-specific metabolic rates) has a strong influence on collagen δ2H (R2 = 0.30), by causing greater sensitivity in smaller animals to seasonal climate variations and/or high evapotranspiration leading to 2H-enrichment in tissues. In marine mammals weaning produces a dramatic effect on collagen δ2H with adult values being universally higher than pup values (R2 = 0.79). Interestingly, the shift in δ15N at weaning is downward, even though normally hydrogen and nitrogen isotope ratios are positively correlated with one another in respect to trophic level. Our

  20. An Observational Study of Blood Glucose Levels during Admission and 24 Hours Post-Operation in a Sample of Patients with Traumatic Injury in a Hospital in Kuala Lumpur

    PubMed Central

    Harun @ Haron, Rahmat; Imran, Musa Kamarul; Haspani, Mohammed Saffari Mohammed

    2011-01-01

    Background: Traumatic brain injury (TBI) has been associated with an acute stress response mediated by the sympathoadrenomedullary axis, which can be assessed by measuring blood glucose level. Methods: This prospective observational study was conducted for a year in 2007 among 294 patients who had been treated for TBI in Hospital Kuala Lumpur. Patients fulfilling the set criteria were recruited into the study and data, including blood glucose level and Glasgow Outcome Score at 3-month follow-up, were collected. Results: 294 patients were included in the study: 50 females (17.0%) and 244 males (83.0%). The majority of cases were young adult patients (mean age of 34.2 years, SD 13.0). The mean blood glucose level during admission and post-surgery were 6.26 mmol/L (SD 1.30, n = 294) and 6.66 mmol/L (SD 1.44, n = 261), respectively. Specifically, the mean admission glucose level associated with mild TBI was 5.04 mmol/L (SD 0.71); moderate TBI, 5.78 mmol/L (SD 1.02); and severe TBI, 7.04 mmol/L (SD 1.18). The mean admission glucose level associated with a poor outcome in patients with isolated TBI was 6.98 mmol/L (SD 1.21). Patients with admission glucose of 5.56 mmol/L (SD 1.21) were more likely to have a favourable outcome. Conclusion: Mild, moderate, and severe TBI were associated with an increase in blood glucose levels during admission, and the mean increase in glucose levels is based on the severity of the isolated TBI. Surgical intervention did not cause further significant changes in blood glucose levels. Patients with isolated TBI and minimal increases in blood glucose levels were more likely to have a favourable outcome. PMID:22589675

  1. Observations of CH4, C2H6, and C2H2 in the stratosphere of Jupiter.

    PubMed

    Sada, P V; Bjoraker, G L; Jennings, D E; McCabe, G H; Romani, P N

    1998-12-01

    We have performed high-resolution spectral observations at mid-infrared wavelengths of CH4 (8.14 micrometers), C2H6 (12.16 micrometers), and C2H2 (13.45 micrometers) on Jupiter. These emission features probe the stratosphere of the planet and provide information on the carbon-based photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer CELESTE, in conjunction with the McMath-Pierce 1.5-m solar telescope between November 1994 and February 1995. We used the methane observations to derive the temperature profile of the jovian atmosphere in the 1-10 mbar region of the stratosphere. This profile was then used in conjunction with height-dependent mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. The resulting mixing ratios are 3.9(+1.9)(-1.3) x 10(-6) for C2H6 (5 mbar pressure level), and 2.3 +/- 0.5 x 10(-8) for C2H2 (8 mbar pressure level), where the quoted uncertainties are derived from model variations in the temperature profile which match the methane observation uncertainties. PMID:11878354

  2. Activating Brown Adipose Tissue for Weight Loss and Lowering of Blood Glucose Levels: A MicroPET Study Using Obese and Diabetic Model Mice

    PubMed Central

    Wu, Chenxi; Cheng, Wuying; Sun, Yi; Dang, Yonghong; Gong, Fengying; Zhu, Huijuan; Li, Naishi; Li, Fang; Zhu, Zhaohui

    2014-01-01

    Purpose This study aims at using 18F-FDG microPET to monitor the brown adipose tissue (BAT) glucose metabolism in obese and diabetic mouse models under different interventions, and study the therapeutic potential of BAT activation for weight loss and lowering of blood glucose in these models. Methods Obese mice were established by a high-fat diet for eight weeks, and diabetes mellitus(DM) models were induced with Streptozocin in obese mice. 18F-FDG microPET was used to monitor BAT function during obese and DM modeling, and also after BRL37344 (a β3-adrenergic receptor agonist) or levothyroxine treatment. The BAT function was correlated with the body weight and blood glucose levels. Results Compared with the controls, the obese mice and DM mice showed successively lower 18F-FDG uptake in the interscapular BAT (P = 0.036 and <0.001, respectively). After two-week BRL37344 treatment, the BAT uptake was significantly elevated in both obese mice (P = 0.010) and DM mice (P = 0.004), accompanied with significantly decreased blood glucose levels (P = 0.023 and 0.036, respectively). The BAT uptake was negatively correlated with the blood glucose levels in both obese mice (r = −0.71, P = 0.003) and DM mice (r = −0.74, P = 0.010). BRL37344 treatment also caused significant weight loss in the obese mice (P = 0.001). Levothyroxine treatment increased the BAT uptake in the control mice (P = 0.025) and obese mice (P = 0.013), but not in the DM mice (P = 0.45). Conclusion The inhibited BAT function in obese and DM mice can be re-activated by β3-adrenergic receptor agonist or thyroid hormone, and effective BAT activation may lead to weight loss and blood glucose lowering. Activating BAT can provide a new treatment strategy for obesity and DM. PMID:25462854

  3. Chronic hyperglycemia but not glucose variability determines HbA1c levels in well-controlled patients with type 2 diabetes.

    PubMed

    Kohnert, Klaus-Dieter; Augstein, Petra; Heinke, Peter; Zander, Eckhard; Peterson, Karolina; Freyse, Ernst-Joachim; Salzsieder, Eckhard

    2007-09-01

    To determine the relationships between HbA1c, characteristics of hyperglycemia and glycemic variability in well-controlled type 2 diabetes (HbA1c<7.0%), we studied 63 primary-care patients (36 men and 27 women), aged 34-75 years, with type 2 diabetes for 2-32 years using a continuous glucose monitoring system (CGMS) and standardized meal test (MMT). Duration of hyperglycemia (>8.0 mmol/l), standard deviation score (S.D.-score) and mean amplitude of glycemic excursions (MAGE) were analyzed from CGMS data and postprandial glucose during MMT (PPG(MMT)). Patients were hyperglycemic for 5.7h/day (median), experienced 4.1 hyperglycemic episodes/day, and 78% exceeded PPG levels of 8.0 mmol/l. HbA1c, though associated with the extent of hyperglycemia (r=0.40, p<0.001), failed to correlate with S.D.-score and MAGE. Multiple regression analysis demonstrated that HbA1c was predicted only by fasting glucose (R(2)=0.24, p<0.001) but neither by PPG(MMT), duration of hyperglycemia, S.D.-score nor MAGE. CGMS and meal test provide the tools for complete characterization of glycemia in type 2 diabetes. In well-controlled type 2 diabetes, HbA1c correlates with chronic hyperglycemia but not with glucose variability. Our data suggest that chronic sustained hyperglycemia and glucose fluctuations are two independent components of dysglycemia in diabetes.

  4. A glucose-centric perspective of hyperglycemia.

    PubMed

    Ramasarma, T; Rafi, M

    2016-02-01

    Digestion of food in the intestines converts the compacted storage carbohydrates, starch and glycogen, to glucose. After each meal, a flux of glucose (> 200 g) passes through the blood pool (4-6 g) in a short period of 2 h, keeping its concentration ideally in the range of 80-120 mg/100 mL. Tissue-specific glucose transporters (GLUTs) aid in the distribution of glucose to all tissues. The balance glucose after meeting the immediate energy needs is converted into glycogen and stored in liver (up to 100 g) and skeletal muscle (up to 300 g) for later use. High blood glucose gives the signal for increased release of insulin from pancreas. Insulin binds to insulin receptor on the plasma membrane and activates its autophosphorylation. This initiates the post-insulin-receptor signal cascade that accelerates synthesis of glycogen and triglyceride. Parallel control by phos-dephos and redox regulation of proteins exists for some of these steps. A major action of insulin is to inhibit gluconeogensis in the liver decreasing glucose output into blood. Cases with failed control of blood glucose have alarmingly increased since 1960 coinciding with changed life-styles and large scale food processing. Many of these turned out to be resistant to insulin, usually accompanied by dysfunctional glycogen storage. Glucose has an extended stay in blood at 8 mM and above and then indiscriminately adds on to surface protein-amino groups. Fructose in common sugar is 10-fold more active. This random glycation process interferes with the functions of many proteins (e.g., hemoglobin, eye lens proteins) and causes progressive damage to heart, kidneys, eyes and nerves. Some compounds are known to act as insulin mimics. Vanadium-peroxide complexes act at post-receptor level but are toxic. The fungus-derived 2,5-dihydroxybenzoquinone derivative is the first one known to act on the insulin receptor. The safe herbal products in use for centuries for glucose control have multiple active principles and

  5. A glucose-centric perspective of hyperglycemia.

    PubMed

    Ramasarma, T; Rafi, M

    2016-02-01

    Digestion of food in the intestines converts the compacted storage carbohydrates, starch and glycogen, to glucose. After each meal, a flux of glucose (> 200 g) passes through the blood pool (4-6 g) in a short period of 2 h, keeping its concentration ideally in the range of 80-120 mg/100 mL. Tissue-specific glucose transporters (GLUTs) aid in the distribution of glucose to all tissues. The balance glucose after meeting the immediate energy needs is converted into glycogen and stored in liver (up to 100 g) and skeletal muscle (up to 300 g) for later use. High blood glucose gives the signal for increased release of insulin from pancreas. Insulin binds to insulin receptor on the plasma membrane and activates its autophosphorylation. This initiates the post-insulin-receptor signal cascade that accelerates synthesis of glycogen and triglyceride. Parallel control by phos-dephos and redox regulation of proteins exists for some of these steps. A major action of insulin is to inhibit gluconeogensis in the liver decreasing glucose output into blood. Cases with failed control of blood glucose have alarmingly increased since 1960 coinciding with changed life-styles and large scale food processing. Many of these turned out to be resistant to insulin, usually accompanied by dysfunctional glycogen storage. Glucose has an extended stay in blood at 8 mM and above and then indiscriminately adds on to surface protein-amino groups. Fructose in common sugar is 10-fold more active. This random glycation process interferes with the functions of many proteins (e.g., hemoglobin, eye lens proteins) and causes progressive damage to heart, kidneys, eyes and nerves. Some compounds are known to act as insulin mimics. Vanadium-peroxide complexes act at post-receptor level but are toxic. The fungus-derived 2,5-dihydroxybenzoquinone derivative is the first one known to act on the insulin receptor. The safe herbal products in use for centuries for glucose control have multiple active principles and

  6. Effect of acute inspiratory muscle exercise on blood flow of resting and exercising limbs and glucose levels in type 2 diabetes.

    PubMed

    Corrêa, Ana Paula dos Santos; Antunes, Cristiano Fetter; Figueira, Franciele Ramos; de Castro, Marina Axmann; Ribeiro, Jorge Pinto; Schaan, Beatriz D'Agord

    2015-01-01

    To evaluate the effects of inspiratory loading on blood flow of resting and exercising limbs in patients with diabetic autonomic neuropathy. Ten diabetic patients without cardiovascular autonomic neuropathy (DM), 10 patients with cardiovascular autonomic neuropathy (DM-CAN) and 10 healthy controls (C) were randomly assigned to inspiratory muscle load of 60% or 2% of maximal inspiratory pressure (PImax) for approximately 5 min, while resting calf blood flow (CBF) and exercising forearm blood flow (FBF) were measured. Reactive hyperemia was also evaluated. From the 20 diabetic patients initially allocated, 6 wore a continuous glucose monitoring system to evaluate the glucose levels during these two sessions (2%, placebo or 60%, inspiratory muscle metaboreflex). Mean age was 58 ± 8 years, and mean HbA1c, 7.8% (62 mmol/mol) (DM and DM-CAN). A PImax of 60% caused reduction of CBF in DM-CAN and DM (P<0.001), but not in C, whereas calf vascular resistance (CVR) increased in DM-CAN and DM (P<0.001), but not in C. The increase in FBF during forearm exercise was blunted during 60% of PImax in DM-CAN and DM, and augmented in C (P<0.001). Glucose levels decreased by 40 ± 18.8% (P<0.001) at 60%, but not at 2%, of PImax. A negative correlation was observed between reactive hyperemia and changes in CVR (Beta coefficient = -0.44, P = 0.034). Inspiratory muscle loading caused an exacerbation of the inspiratory muscle metaboreflex in patients with diabetes, regardless of the presence of neuropathy, but influenced by endothelial dysfunction. High-intensity exercise that recruits the diaphragm can abruptly reduce glucose levels.

  7. Antiretroviral drug levels and interactions affect lipid, lipoprotein and glucose metabolism in HIV-1 seronegative subjects: A pharmacokinetic-pharmacodynamic analysis

    PubMed Central

    Rosenkranz, Susan L.; Yarasheski, Kevin E.; Para, Michael F.; Reichman, Richard C.; Morse, Gene D.

    2007-01-01

    Background: HIV-infected patients treated with antiretroviral medications (ARVs) develop undesirable changes in lipid and glucose metabolism that mimic the metabolic syndrome and may be proatherogenic. Antiretroviral drug levels and their interactions may contribute to these metabolic alterations. Methods: Fifty-six HIV-seronegative adults were enrolled in an open-label, randomized, pharmacokinetic interaction study, and received a non-nucleoside reverse transcriptase inhibitor (efavirenz on days 1-21) plus a protease inhibitor (PI; amprenavir on days 11-21), with a second PI on days 15-21 (saquinavir, nelfinavir, indinavir, or ritonavir). Fasting triglycerides, total, LDL- and HDL-cholesterol, glucose, insulin and C-peptide levels were measured on days 0, 14, 21, and 2-3 weeks after discontinuing drugs. Regression models were used to estimate changes in these parameters and associations between these changes and circulating levels of study drugs. Results: Short-term efavirenz and amprenavir administration significantly increased cholesterol, triglycerides and glucose levels. Addition of a second protease inhibitor further increased triglycerides, total- and LDL-cholesterol levels. Higher amprenavir levels predicted larger increases in triglycerides, total and LDL-cholesterol. Two weeks after all study drugs were stopped, total, LDL- and HDL-cholesterol remained elevated above baseline. Conclusions: ARV regimens that include a non-nucleoside reverse transcriptase inhibitor plus single or boosted PIs are becoming more common, but the pharmacodynamic interactions associated with these regimens can result in persistent, undesirable alterations in serum lipid/lipoprotein levels. Additional pharmacodynamic studies are needed to examine the metabolic effects of ritonavir-boosted regimens, with and without efavirenz. PMID:18007962

  8. Dissociative recombination of N2H+

    NASA Astrophysics Data System (ADS)

    dos Santos, S. Fonseca; Ngassam, V.; Orel, A. E.; Larson, Å.

    2016-08-01

    The direct and indirect mechanisms of dissociative recombination of N2H+ are theoretically studied. At low energies, the electron capture is found to be driven by recombination into bound Rydberg states, while at collision energies above 0.1 eV, the direct capture and dissociation along electronic resonant states becomes important. Electron-scattering calculations using the complex Kohn variational method are performed to obtain the scattering matrix as well as energy positions and autoionization widths of resonant states. Potential-energy surfaces of electronic bound states of N2H and N2H+ are computed using structure calculations with the multireference configuration interaction method. The cross section for the indirect mechanism is calculated using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Here vibrational excitations of the ionic core from v =0 to v =1 and v =2 for all three normal modes are considered and autoionization is neglected. The cross section for the direct dissociation along electronic resonant states is computed with wave-packet calculations using the multiconfiguration time-dependent Hartree method, where all three internal degrees of freedom are considered. The calculated cross sections are compared to measurements.

  9. Inflammatory Mediators and Glucose in Pregnancy: Results from a Subset of the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study

    PubMed Central

    Lowe, Lynn P.; Metzger, Boyd E.; Lowe, William L.; Dyer, Alan R.; McDade, Thomas W.; McIntyre, H. David

    2010-01-01

    Context: Inflammatory mediators are associated with type 2 and gestational diabetes. It is unknown whether there are associations with glucose in pregnant women with lesser degrees of hyperglycemia. Objective: The objective of the study was to examine associations of inflammatory mediators with maternal glucose levels and neonatal size in a subset of participants in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. Design: Eligible pregnant women underwent a 75-g oral glucose tolerance test between 24 and 32 wk gestation, and levels of C-peptide, adiponectin, plasminogen activator inhibitor type 1 (PAI-1), C-reactive protein (CRP), and resistin were measured in fasting serum samples. Associations of inflammatory mediators with maternal glucose and with birth size were assessed using multiple linear regression analyses, adjusting for maternal body mass index (BMI), fasting C-peptide, and other potential confounders. Results: Mean levels of adiponectin declined, and PAI-1 and CRP increased across increasing levels of maternal glucose, BMI, and C-peptide. For example, for fasting plasma glucose less than 75 mg/dl and fasting plasma glucose of 90 mg/dl or greater, adiponectin was 22.5 and 17.4 μg/ml and PAI-1 was 30.9 and 34.2 ng/ml, respectively. Associations with 1- and 2-h plasma glucose remained significant for adiponectin (P < 0.001), PAI-1 (P < 0.05), and CRP (P < 0.01) after adjustment for BMI and C-peptide. Adiponectin and CRP were inversely associated with birth weight, sum of skinfolds and percent body fat, and PAI-1 with sum of skinfolds (all P < 0.05) after adjustment for confounders. Resistin was not associated with 1- or 2-h glucose or birth size. Conclusion: Levels of inflammatory mediators are associated with levels of maternal glucose in pregnant women without overt diabetes. PMID:20843942

  10. Nigerian propolis improves blood glucose, glycated hemoglobin A1c, very low-density lipoprotein, and high-density lipoprotein levels in rat models of diabetes

    PubMed Central

    Oladayo, Mustafa Ibrahim

    2016-01-01

    Objective: According to our previous studies, propolis of Nigerian origin showed some evidence of hypoglycemic and hypolipidemic activities in addition to its ability to ameliorate oxidative-stress-induced organ dysfunction. This study was carried out to determine whether an ethanolic extract of Nigerian propolis (EENP) improves glycated hemoglobin A1c (HbA1c), fasting plasma glucose, very low-density lipoprotein (VLDL), and high-density lipoprotein (HDL) concentrations in rats that have alloxan diabetes. Materials and Methods: Diabetes was induced with alloxan (110 mg/kg). Animals were divided into 5 groups (n = 5); Group 1 was non-diabetic receiving normal saline and Group 2 was diabetic but also received only normal saline. Groups 3, 4, and 5 were diabetic receiving 200 mg/kg propolis, 300 mg/kg propolis, and 150 mg/kg metformin, respectively, for 42 days. Results: Hyperglycemia, elevated serum level of VLDL, elevated plasma level of HbA1c, and decreased levels of HDL were observed in the diabetic untreated animals. Nigerian propolis decreased blood glucose level and serum level of VLDL but elevated HDL level. These changes were significant (P < 0.05). The levels of plasma HbA1c were also reduced in the propolis-treated groups, and the reduction was significant (P < 0.05). Conclusion: Nigerian propolis contains compounds exhibiting hypoglycemic, antihyperlipidemic, and HbA1c reducing activities. PMID:27366348

  11. Age as independent determinant of glucose tolerance.

    PubMed

    Shimokata, H; Muller, D C; Fleg, J L; Sorkin, J; Ziemba, A W; Andres, R

    1991-01-01

    It has been proposed that the decline in glucose tolerance with age is not a primary aging effect but is secondary to a combination of other age-associated characteristics, i.e., disease, medication, obesity, central and upper-body fat deposition, and inactivity. To test this hypothesis, we first eliminated from analysis the Baltimore Longitudinal Study of Aging participants with identifiable diseases or medications known to influence glucose tolerance. Seven hundred forty-three men and women, aged 17-92 yr, remained for analysis. As indices of fatness, body mass index and percent body fat were determined. As indices of body fat distribution, waist-hip ratio and subscapular triceps skin-fold ratio were calculated. As indices of fitness, physical activity level, determined by detailed questionnaire, and maximum 02 consumption were calculated. We tested whether the effect of age on glucose tolerance remains when data were adjusted for fatness, fitness, and fat distribution; 2-h glucose values were 6.61, 6.78, and 7.83 mM for young (17-39 yr), middle-aged (40-59 yr), and old (60-92 yr) men and 6.22, 6.22, and 7.28 mM for the three groups of women, respectively. The differences between the young and middle-aged groups were not significant, but the old groups had significantly higher values than young or middle-aged groups. Fatness, fitness, and fat distribution can account for the decline in glucose tolerance from the young adult to the middle-aged years. However, age remains a significant determinant of the further decline in glucose tolerance of healthy old subjects.

  12. Blood glucose regulation mechanism in depressive disorder animal model during hyperglycemic states.

    PubMed

    Lim, Su-Min; Park, Soo-Hyun; Sharma, Naveen; Kim, Sung-Su; Lee, Jae-Ryeong; Jung, Jun-Sub; Suh, Hong-Won

    2016-06-01

    Depression is more common among diabetes people than in the general population. In the present study, blood glucose change in depression animal model was characterized by various types of hyperglycemia models such as d-glucose-fed-, immobilization stress-, and drug-induced hyperglycemia models. First, the ICR mice were enforced into chronic restraint stress for 2h daily for 2 weeks to produce depression animal model. The animals were fed with d-glucose (2g/kg), forced into restraint stress for 30min, or administered with clonidine (5μg/5μl) supraspinally or spinally to produce hyperglycemia. The blood glucose level in depression group was down-regulated compared to that observed in the normal group in d-glucose-fed-, restraint stress-, and clonidine-induced hyperglycemia models. The up-regulated corticosterone level induced by d-glucose feeding or restraint stress was reduced in the depression group while the up-regulation of plasma corticosterone level is further elevated after i.t. or i.c.v. clonidine administration in the depression group. The up-regulated insulin level induced by d-glucose feeding or restraint stress was reduced in the depression group. On the other hand, blood corticosterone level in depression group was up-regulated compared to the normal group after i.t. or i.c.v. clonidine administration. Whereas the insulin level in depression group was not altered when mice were administered clonidine i.t. or i.c.v. Our results suggest that the blood glucose level in depression group is down-regulated compared to the normal group during d-glucose-fed-, immobilization stress-, and clonidine-induced hyperglycemia in mice. The down-regulation of the blood glucose level might be one of the important pathophysiologic changes in depression.

  13. Blood glucose regulation mechanism in depressive disorder animal model during hyperglycemic states.

    PubMed

    Lim, Su-Min; Park, Soo-Hyun; Sharma, Naveen; Kim, Sung-Su; Lee, Jae-Ryeong; Jung, Jun-Sub; Suh, Hong-Won

    2016-06-01

    Depression is more common among diabetes people than in the general population. In the present study, blood glucose change in depression animal model was characterized by various types of hyperglycemia models such as d-glucose-fed-, immobilization stress-, and drug-induced hyperglycemia models. First, the ICR mice were enforced into chronic restraint stress for 2h daily for 2 weeks to produce depression animal model. The animals were fed with d-glucose (2g/kg), forced into restraint stress for 30min, or administered with clonidine (5μg/5μl) supraspinally or spinally to produce hyperglycemia. The blood glucose level in depression group was down-regulated compared to that observed in the normal group in d-glucose-fed-, restraint stress-, and clonidine-induced hyperglycemia models. The up-regulated corticosterone level induced by d-glucose feeding or restraint stress was reduced in the depression group while the up-regulation of plasma corticosterone level is further elevated after i.t. or i.c.v. clonidine administration in the depression group. The up-regulated insulin level induced by d-glucose feeding or restraint stress was reduced in the depression group. On the other hand, blood corticosterone level in depression group was up-regulated compared to the normal group after i.t. or i.c.v. clonidine administration. Whereas the insulin level in depression group was not altered when mice were administered clonidine i.t. or i.c.v. Our results suggest that the blood glucose level in depression group is down-regulated compared to the normal group during d-glucose-fed-, immobilization stress-, and clonidine-induced hyperglycemia in mice. The down-regulation of the blood glucose level might be one of the important pathophysiologic changes in depression. PMID:27034116

  14. Comparison of several insulin sensitivity indices derived from basal plasma insulin and glucose levels with minimal model indices.

    PubMed

    García-Estévez, D A; Araújo-Vilar, D; Fiestras-Janeiro, G; Saavedra-González, A; Cabezas-Cerrato, J

    2003-01-01

    Some techniques for the evaluation of insulin resistance (IR), such as the clamp technique, are not viable for the study of large populations; and for this reason, alternative approaches based on fasting plasma glucose (FPG) and plasma insulin (FPI) have been proposed. The aim of this study was to compare the IR calculations obtained from FPI and FPG values with the insulin sensitivity (IS) index derived from the minimal model. Eighty-seven healthy subjects with a wide range of body mass index (18 - 44 kg x m -2) and 16 DM2 non-obese patients were included in the study. All of the patients underwent a frequently sampled intravenous glucose tolerance test (FSIGTT), and the minimal model of glucose was used for the estimation of insulin sensitivity (IS MINIMAL ). The HOMA-IR index, the Avignon index, and the quotient FPG/FPI were used to calculate basal steady-state IR. The basal IR value that best correlated with IS was Log (1/HOMA-IR) (r = 0.70, p < 0.001). All of the basal indices showed a high correlation with each other. In conclusions, insulin sensitivity indices as determined from the basal glycaemia and insulinemia values are not good estimators for metabolic reality from the perspective of the minimal model. Nevertheless, they might well have an IR screening value for epidemiological studies, as long as there is no pancreatic beta-cell dysfunction. PMID:12669265

  15. Glucose and fructose to platform chemicals: understanding the thermodynamic landscapes of acid-catalysed reactions using high-level ab initio methods.

    PubMed

    Assary, Rajeev S; Kim, Taejin; Low, John J; Greeley, Jeff; Curtiss, Larry A

    2012-12-28

    Molecular level understanding of acid-catalysed conversion of sugar molecules to platform chemicals such as hydroxy-methyl furfural (HMF), furfuryl alcohol (FAL), and levulinic acid (LA) is essential for efficient biomass conversion. In this paper, the high-level G4MP2 method along with the SMD solvation model is employed to understand detailed reaction energetics of the acid-catalysed decomposition of glucose and fructose to HMF. Based on protonation free energies of various hydroxyl groups of the sugar molecule, the relative reactivity of gluco-pyranose, fructo-pyranose and fructo-furanose are predicted. Calculations suggest that, in addition to the protonated intermediates, a solvent assisted dehydration of one of the fructo-furanosyl intermediates is a competing mechanism, indicating the possibility of multiple reaction pathways for fructose to HMF conversion in aqueous acidic medium. Two reaction pathways were explored to understand the thermodynamics of glucose to HMF; the first one is initiated by the protonation of a C2-OH group and the second one through an enolate intermediate involving acyclic intermediates. Additionally, a pathway is proposed for the formation of furfuryl alcohol from glucose initiated by the protonation of a C2-OH position, which includes a C-C bond cleavage, and the formation of formic acid. The detailed free energy landscapes predicted in this study can be used as benchmarks for further exploring the sugar decomposition reactions, prediction of possible intermediates, and finally designing improved catalysts for biomass conversion chemistry in the future. PMID:22932938

  16. Alterations in local cerebral glucose metabolism and endogenous thyrotropin-releasing hormone levels in rolling mouse Nagoya and effect of thyrotropin-releasing hormone tartrate.

    PubMed

    Nakayama, T; Nagai, Y

    1996-11-01

    To identify the brain region(s) responsible for the expression of ataxic gaits in an ataxic mutant mouse model, Rolling mouse Nagoya (RMN), changes in local cerebral glucose metabolism in various brain regions and the effect of thyrotropin-releasing hormone tartrate (TRH-T), together with alterations in endogenous thyrotropin-releasing hormone (TRH) levels in the brains of RMN, were investigated. Ataxic mice [RMN (rol/rol)] showed significant decreases in glucose metabolism in regions of the diencephalon: thalamic dorsomedial nucleus, lateral geniculate body and superior colliculus; brain stem: substantia nigra, raphe nucleus and vestibular nucleus; and cerebellar nucleus as compared with normal controls [RMN (+/+)]. When RMN (rol/rol) was treated with TRH-T (10 mg/kg, equivalent to 7 mg/kg free TRH), glucose metabolism was significantly increased in these regions. These results suggest that these regions may be responsible for ataxia. We also found that TRH levels in the cerebellum and brain stem of RMN (rol/rol) were significantly higher than those of RMN (+/+). These results suggest that ataxic symptoms in RMN (rol/rol) may relate to the abnormal metabolism of TRH and energy metabolism in the cerebellum and/or brain stem and that exogenously given TRH normalizes them.

  17. A Fall in Plasma Free Fatty Acid (FFA) Level Activates the Hypothalamic-Pituitary-Adrenal Axis Independent of Plasma Glucose: Evidence for Brain Sensing of Circulating FFA

    PubMed Central

    Oh, Young Taek; Oh, Ki-Sook; Kang, Insug

    2012-01-01

    The brain responds to a fall in blood glucose by activating neuroendocrine mechanisms for its restoration. It is unclear whether the brain also responds to a fall in plasma free fatty acids (FFA) to activate mechanisms for its restoration. We examined whether lowering plasma FFA increases plasma corticosterone or catecholamine levels and, if so, whether the brain is involved in these responses. Plasma FFA levels were lowered in rats with three independent antilipolytic agents: nicotinic acid (NA), insulin, and the A1 adenosine receptor agonist SDZ WAG 994 with plasma glucose clamped at basal levels. Lowering plasma FFA with these agents all increased plasma corticosterone, but not catecholamine, within 1 h, accompanied by increases in plasma ACTH. These increases in ACTH or corticosterone were abolished when falls in plasma FFA were prevented by Intralipid during NA or insulin infusion. In addition, the NA-induced increases in plasma ACTH were completely prevented by administration of SSR149415, an arginine vasopressin receptor antagonist, demonstrating that the hypothalamus is involved in these responses. Taken together, the present data suggest that the brain may sense a fall in plasma FFA levels and activate the hypothalamic-pituitary-adrenal axis to increase plasma ACTH and corticosterone, which would help restore FFA levels. Thus, the brain may be involved in the sensing and control of circulating FFA levels. PMID:22669895

  18. Full-dimensional quantum dynamics study of the H2 + C2H → H + C2H2 reaction on an ab initio potential energy surface.

    PubMed

    Chen, Liuyang; Shao, Kejie; Chen, Jun; Yang, Minghui; Zhang, Dong H

    2016-05-21

    This work performs a time-dependent wavepacket study of the H2 + C2H → H + C2H2 reaction on a new ab initio potential energy surface (PES). The PES is constructed using neural network method based on 68 478 geometries with energies calculated at UCCSD(T)-F12a/aug-cc-pVTZ level and covers H2 + C2H↔H + C2H2, H + C2H2 → HCCH2, and HCCH2 radial isomerization reaction regions. The reaction dynamics of H2 + C2H → H + C2H2 are investigated using full-dimensional quantum dynamics method. The initial-state selected reaction probabilities are calculated for reactants in eight vibrational states. The calculated results showed that the H2 vibrational excitation predominantly enhances the reactivity while the excitation of bending mode of C2H slightly inhibits the reaction. The excitations of two stretching modes of C2H molecule have negligible effect on the reactivity. The integral cross section is calculated with J-shift approximation and the mode selectivity in this reaction is discussed. The rate constants over 200-2000 K are calculated and agree well with the experimental measured values.

  19. Fetal rat metabonome alteration by prenatal caffeine ingestion probably due to the increased circulatory glucocorticoid level and altered peripheral glucose and lipid metabolic pathways

    SciTech Connect

    Liu, Yansong; Xu, Dan; Feng, Jianghua; Kou, Hao; Liang, Gai; Yu, Hong; He, Xiaohua; Zhang, Baifang; Chen, Liaobin; Magdalou, Jacques; Wang, Hui

    2012-07-15

    The aims of this study were to clarify the metabonome alteration in fetal rats after prenatal caffeine ingestion and to explore the underlying mechanism pertaining to the increased fetal circulatory glucocorticoid (GC). Pregnant Wistar rats were daily intragastrically administered with different doses of caffeine (0, 20, 60 and 180 mg/kg) from gestational days (GD) 11 to 20. Metabonome of fetal plasma and amniotic fluid on GD20 were analyzed by {sup 1}H nuclear magnetic resonance-based metabonomics. Gene and protein expressions involved in the GC metabolism, glucose and lipid metabolic pathways in fetal liver and gastrocnemius were measured by real-time RT-PCR and immunohistochemistry. Fetal plasma metabonome were significantly altered by caffeine, which presents as the elevated α- and β‐glucose, reduced multiple lipid contents, varied apolipoprotein contents and increased levels of a number of amino acids. The metabonome of amniotic fluids showed a similar change as that in fetal plasma. Furthermore, the expressions of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD-2) were decreased, while the level of blood GC and the expressions of 11β-HSD-1 and glucocorticoid receptor (GR) were increased in fetal liver and gastrocnemius. Meanwhile, the expressions of insulin-like growth factor 1 (IGF-1), IGF-1 receptor and insulin receptor were decreased, while the expressions of adiponectin receptor 2, leptin receptors and AMP-activated protein kinase α2 were increased after caffeine treatment. Prenatal caffeine ingestion characteristically change the fetal metabonome, which is probably attributed to the alterations of glucose and lipid metabolic pathways induced by increased circulatory GC, activated GC metabolism and enhanced GR expression in peripheral metabolic tissues. -- Highlights: ► Prenatal caffeine ingestion altered the metabonome of IUGR fetal rats. ► Caffeine altered the glucose and lipid metabolic pathways of IUGR fetal rats. ► Prenatal caffeine

  20. Effects of Cyclo-His-Pro-enriched yeast hydrolysate on blood glucose levels and lipid metabolism in obese diabetic ob/ob mice

    PubMed Central

    Jung, Eun Young; Hong, Yang Hee; Park, Chung

    2016-01-01

    BACKGROUND/OBJECTIVES We examined the hypoglycemic and anti-hyperlipidemic effect of yeast hydrolysate (YH) enriched with Cyclo-His-Pro (CHP) in the C57BL/6J ob/ob mouse model. MATERIALS/METHODS Mice were separated into 4 groups (8 mice/group) on the basis of blood glucose and body weight: WT control, lean mice given vehicle; ob/ob control, ob/ob mice given vehicle; YH-1, ob/ob mice given 0.5 g/kg of YH; YH-2, ob/ob mice given 1 g/kg of YH. YH in saline or vehicle was administered orally in the same volume every day for 3 weeks. RESULTS Mice treated with YH (0.5 and 1 g/kg) for 3 weeks displayed a significant reduction in overall body weight gain and perirenal and epididymal adipose tissue weight compared to the ob/ob control group. Additionally, high-density lipoprotein (HDL) cholesterol, glucose, and atherogenic indexes were significantly decreased in the blood of YH-1 and YH-2 groups compared to the ob/ob control. In ob/ob mice, YH administration significantly improved glucose tolerance and blood insulin levels. These data indicate that YH treatment produces potent hypoglycemic and anti-hyperlipidemic effects by controlling body weight, fat mass, blood lipid, insulin levels, and glucose tolerance. CONCLUSION YH could potentially be used as a treatment option for diabetes and hyperlipidemia. The CHP-enriched YH may be a promising strategy in the development of hypoglycemic peptide nutraceuticals. PMID:27087898

  1. Nutrient Excess and AMPK Downregulation in Incubated Skeletal Muscle and Muscle of Glucose Infused Rats

    PubMed Central

    Valentine, Rudy J.; Petrocelli, Robert; Schultz, Vera; Brandon, Amanda; Cooney, Gregory J.; Kraegen, Edward W.; Ruderman, Neil B.; Saha, Asish K.

    2015-01-01

    We have previously shown that incubation for 1h with excess glucose or leucine causes insulin resistance in rat extensor digitorum longus (EDL) muscle by inhibiting AMP-activated protein kinase (AMPK). To examine the events that precede and follow these changes, studies were performed in rat EDL incubated with elevated levels of glucose or leucine for 30min-2h. Incubation in high glucose (25mM) or leucine (100μM) significantly diminished AMPK activity by 50% within 30min, with further decreases occurring at 1 and 2h. The initial decrease in activity at 30min coincided with a significant increase in muscle glycogen. The subsequent decreases at 1h were accompanied by phosphorylation of αAMPK at Ser485/491, and at 2h by decreased SIRT1 expression and increased PP2A activity, all of which have previously been shown to diminish AMPK activity. Glucose infusion in vivo, which caused several fold increases in plasma glucose and insulin, produced similar changes but with different timing. Thus, the initial decrease in AMPK activity observed at 3h was associated with changes in Ser485/491 phosphorylation and SIRT1 expression and increased PP2A activity was a later event. These findings suggest that both ex vivo and in vivo, multiple factors contribute to fuel-induced decreases in AMPK activity in skeletal muscle and the insulin resistance that accompanies it. PMID:25996822

  2. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  3. Rapid rehydration and moderate plasma glucose elevation by fluid containing enzymatically synthesized glycogen.

    PubMed

    Inagaki, Kei; Ishihara, Kengo; Ishida, Mariko; Watanabe, Ai; Fujiwara, Mika; Komatsu, Yuko; Shirai, Mika; Kato, Yoshiho; Takanezawa, Ami; Furuyashiki, Takashi; Takata, Hiroki; Seyama, Yousuke

    2011-01-01

    Enzymatically synthesized glycogen (ESG) has high solubility and its solution has low osmotic pressure. Therefore ESG solution could be rapidly absorbed and could be adequate for water rehydration and carbohydrate supplementation during exercise. The object of this study was to evaluate the gastric emptying time and plasma glucose elevation after an administration of ESG solution in comparison with another carbohydrate solution by using a laboratory animal. Male BALB/c mice were administered 10% w/v solution of glucose, maltodextrin, starch, naturally synthesized glycogen (NSG) and ESG at a dose of 20 µL/g body weight for the measurement of gastric emptying rate (Experiment 1) and 10 µL/g body weight for the measurement of plasma glucose elevation (Experiment 2). The osmolarity of gastric content was lower in the ESG and maltodextrin group than the other carbohydrate group. Weight of gastric fluid was significantly lower in the ESG and water group than the glucose group (p<0.01). Plasma glucose level was significantly lower in the ESG group than the glucose group from 0 to 60 min after administration (p<0.01), whereas plasma glucose level was same from 60 to 120 min for the ESG and glucose group (p=0.948). In Experiment 3, BALB/c mice ran on a treadmill for 2 h and were administered 8% of ESG or glucose solution (1.75, 3.5 or 7.0 µL/g body weight) every 20 min during running. There was no difference in post-exercise muscle glycogen level. These data suggest that 1) ESG beverage does not disturb water absorption because of its short gastric emptying time and 2) ESG slowly elevates plasma glucose level and maintains it for a prolonged time compared to the glucose solution.

  4. Effect of exogenous leptin on serum levels of lipids, glucose, renal and hepatic variables in both genders of obese and streptozotocin-induced diabetic rats

    PubMed Central

    Hayatdavoudi, Parichehr; Ghasemi, Mohsen; Zendehbad, Bamdad; Soukhtanloo, Mohammad; Golshan, Alireza; Hadjzadeh, Mousa Al-Reza

    2015-01-01

    Objective(s): Leptin exerts various effects on appetite and body weight. Disruption of the obesity gene is precedent to fatness. Insulin or glucose elevates leptin, but streptozotocin reduces it. However, controversial data exist for the effects of leptin on diabetes and leptin level in each gender. Leptin can damage the kidney function but little evidence exists for its hepatic effects. The aim of this study was to investigate the probable sex-dependent differences in blood sugar levels, lipid profile, and renal and hepatic biochemical factors in the obesity and streptozotocin-induced diabetic rats after leptin administration. Materials and Methods: Wistar rats of both sexes were randomly divided into two groups, namely obese and diabetic rats. Each group was further divided into male and female subgroups. Extra fat and carbohydrate was added to the diet to induce obesity. Furthermore, streptozotocin (55 mg/kg, IP) was injected to induce diabetes. The treatment groups received leptin (0.1 mg/kg SC) for 10 days, and then, blood samples were taken from the orbital sinus for laboratory evaluations. Results: Leptin resulted in a significant weight loss in both sexes (P<0.001), food intake reduction in male rats (P<0.05), LDL reduction in female rats (obese (P<0.05) and diabetic (P<0.001)), and glucose level decline in the female diabetic rats (P<0.001). However, total protein concentration, LFT (liver function tests), urea and creatinin concentrations among different groups did not show any significant changes. Conclusion: Leptin caused some discrepant results, especially regarding the LDL and glucose levels in diabetic female rats. PMID:26949493

  5. Simultaneous assay of glucose, lactate, L-glutamate and hypoxanthine levels in a rat striatum using enzyme electrodes based on neutral red-doped silica nanoparticles.

    PubMed

    Zhang, Fen-Fen; Wan, Qiao; Li, Chen-Xin; Wang, Xiao-Li; Zhu, Zi-Qiang; Xian, Yue-Zhong; Jin, Li-Tong; Yamamoto, Katsunobu

    2004-10-01

    An electrochemical method suitable for the simultaneous measurement of cerebral glucose, lactate, L-glutamate and hypoxanthine concentrations from in vivo microdialysis sampling has been successfully performed for the first time using a neutral red-doped silica (NRDS) nanoparticle-derived enzyme sensor system. These uniform NRDS nanoparticles (about 50 +/- 3 nm) were prepared by a water-in-oil (W/O) microemulsion method, and characterized by a TEM technique. The neutral red-doped interior maintained its high electron-activity, while the exterior nano-silica surface prevented the mediator from leaching out into the aqueous solution, and showed high biocompability. These nanoparticles were then mixing with the glucose oxidase (GOD), lactate oxidase (LOD), L-glutamate oxidase (L-GLOD) or xanthine oxidase (XOD), and immobilized on four glassy carbon electrodes, respectively. A thin Nafion film was coated on the enzyme layer to prevent interference from molecules such as ascorbic acid and uric acid in the dialysate. The high sensitivity of the NRDS modified enzyme electrode system enables the simultaneous monitoring of trace levels of glucose, L-glutamate, lactate and hypoxanthine in diluted dialysate samples from a rat striatum. PMID:15517210

  6. Thz Spectroscopy of D_2H^+

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Pearson, John; Amano, Takayoshi

    2015-06-01

    Pure rotational transitions of D_2H^+ observed by high-resolution spectroscopy have been limited so far to the J = 110-101 transition at 691.7 GHz, J=220-211 at 1.370 THz, and J=111-000 at 1.477 THz. As this ion is a light asymmetric-top molecule, spectroscopic characterization and prediction of other rotational transition frequencies are not straightforward. In this presentation, we extended the measurements up to 2 THz by using the JPL frequency multiplier chains, and observed three new THz lines and re-measured the three known transitions. D_2H^+ was generated in an extended negative glow discharge cell cooled to liquid nitrogen temperature. Six rotational transition frequencies together with the combination differences derived from three fundamental bands were subject to least square analysis to determine the molecular constants. New THz measurements are definitely useful for better characterization of spectroscopic properties. The improved molecular constants provide better predictions of other unobserved rotational transitions. T. Hirao and T. Amano, Ap. J.,597, L85 (2003) K. M. Evenson et al cited by O. L. Polyansky and A. R. W. McKellar, J. Chem. Phys., 92, 4039 (1990) O. Asvany et al, Phys. Rev. Lett., 100, 233004 (2008)

  7. A novel AMPK-dependent FoxO3A-SIRT3 intramitochondrial complex sensing glucose levels.

    PubMed

    Peserico, Alessia; Chiacchiera, Fulvio; Grossi, Valentina; Matrone, Antonio; Latorre, Dominga; Simonatto, Marta; Fusella, Aurora; Ryall, James G; Finley, Lydia W S; Haigis, Marcia C; Villani, Gaetano; Puri, Pier Lorenzo; Sartorelli, Vittorio; Simone, Cristiano

    2013-06-01

    Reduction of nutrient intake without malnutrition positively influences lifespan and healthspan from yeast to mice and exerts some beneficial effects also in humans. The AMPK-FoxO axis is one of the evolutionarily conserved nutrient-sensing pathways, and the FOXO3A locus is associated with human longevity. Interestingly, FoxO3A has been reported to be also a mitochondrial protein in mammalian cells and tissues. Here we report that glucose restriction triggers FoxO3A accumulation into mitochondria of fibroblasts and skeletal myotubes in an AMPK-dependent manner. A low-glucose regimen induces the formation of a protein complex containing FoxO3A, SIRT3, and mitochondrial RNA polymerase (mtRNAPol) at mitochondrial DNA-regulatory regions causing activation of the mitochondrial genome and a subsequent increase in mitochondrial respiration. Consistently, mitochondrial transcription increases in skeletal muscle of fasted mice, with a mitochondrial DNA-bound FoxO3A/SIRT3/mtRNAPol complex detectable also in vivo. Our results unveil a mitochondrial arm of the AMPK-FoxO3A axis acting as a recovery mechanism to sustain energy metabolism upon nutrient restriction.

  8. Hypoxia and glucose independently regulate the beta-adrenergic receptor-adenylate cyclase system in cardiac myocytes.

    PubMed Central

    Rocha-Singh, K J; Honbo, N Y; Karliner, J S

    1991-01-01

    We explored the effects of two components of ischemia, hypoxia and glucose deprivation, on the beta-adrenergic receptor (beta AR)-adenylate cyclase system in a model of hypoxic injury in cultured neonatal rat ventricular myocytes. After 2 h of hypoxia in the presence of 5 mM glucose, cell surface beta AR density (3H-CGP-12177) decreased from 54.8 +/- 8.4 to 39 +/- 6.3 (SE) fmol/mg protein (n = 10, P less than 0.025), while cytosolic beta AR density (125I-iodocyanopindolol [ICYP]) increased by 74% (n = 5, P less than 0.05). Upon reexposure to oxygen cell surface beta AR density returned toward control levels. Cells exposed to hypoxia and reoxygenation without glucose exhibited similar alterations in beta AR density. In hypoxic cells incubated with 5 mM glucose, the addition of 1 microM (-)-norepinephrine (NE) increased cAMP generation from 29.3 +/- 10.6 to 54.2 +/- 16.1 pmol/35 mm plate (n = 5, P less than 0.025); upon reoxygenation cAMP levels remained elevated above control (n = 5, P less than 0.05). In contrast, NE-stimulated cAMP content in glucose-deprived hypoxic myocytes fell by 31% (n = 5, P less than 0.05) and did not return to control levels with reoxygenation. beta AR-agonist affinity assessed by (-)-isoproterenol displacement curves was unaltered after 2 h of hypoxia irrespective of glucose content. Addition of forskolin (100 microM) to glucose-supplemented hypoxic cells increased cAMP generation by 60% (n = 5; P less than 0.05), but in the absence of glucose this effect was not seen. In cells incubated in glucose-containing medium, the decline in intracellular ATP levels was attenuated after 2 h of hypoxia (21 vs. 40%, P less than 0.05). Similarly, glucose supplementation prevented LDH release in hypoxic myocytes. We conclude that (a) oxygen and glucose independently regulate beta AR density and agonist-stimulated cAMP accumulation; (b) hypoxia has no effect on beta AR-agonist or antagonist affinity; (c) 5 mM glucose attenuates the rate of decline in

  9. The relationship between glycan structures and expression levels of an endoplasmic reticulum-resident glycoprotein, UDP-glucose: Glycoprotein glucosyltransferase 1.

    PubMed

    Daikoku, Shusaku; Seko, Akira; Son, Sang-Hyun; Suzuki, Katsuhiko; Ito, Yukishige; Kanie, Osamu

    2015-06-19

    In this article, we report a relationship between glycan structures and expression levels of a recombinant ER-resident glycoprotein, uridine 5'-diphosphate-glucose: glycoprotein glucosyltransferase (UGGT1). The function of glycan structures attached to a glycoprotein is actively studied; however, the glycan structures of recombinant, and not endogenous, glycoproteins have not been examined. In this study, we indicate a relationship between the glycan structure and the level of protein expression. Expression levels were controlled utilizing a series of vectors (pFN21K, pFN22K, pFN23K, and pFN24K HaloTag CMV Flexi Vectors). Qualitative and semi-quantitative confirmation of glycan structures was achieved with tandem mass spectrometry. The results of this study indicate that glycan structures are similar to endogenous glycans at low expression levels.

  10. Effects of combined dietary supplementation with fenofibrate and Schisandrae Fructus pulp on lipid and glucose levels and liver function in normal and hypercholesterolemic mice

    PubMed Central

    Zhu, Pei-Li; Pan, Si-Yuan; Zhou, Shu-Feng; Zhang, Yi; Wang, Xiao-Yan; Sun, Nan; Chu, Zhu-Sheng; Yu, Zhi-Ling; Ko, Kam-Ming

    2015-01-01

    Background Currently, combined therapy using herbs and synthetic drugs has become a feasible therapeutic intervention against some diseases. The purpose of this study was to assess the effects of supplementation with fenofibrate (FF), a chemical drug used for the treatment of hyperlipidemia, and the aqueous extract of Schisandrae Fructus (SF, a Chinese herb) pulp (AqSF-P) or an SF-related synthetic analog, bicyclol (BY), on serum/hepatic lipid levels and liver status in normal and hypercholesterolemic (HCL) mice. Methods Male mice obtained from the Institute of Cancer Research (ICR) were fed on a normal diet (ND) or high cholesterol/bile salt (0.5%/0.15%, w/w) diet (HCBD) containing FF (0.03% or 0.1%, w/w) with or without AqSF-P (0.3%−9.0%, based on crude herbal material, w/w) or BY (0.025%, w/w) for 10 days. Then serum lipid levels and alanine aminotransferase (ALT) activity, as well as hepatic triglyceride (TG), total cholesterol (TC), and glucose levels, were measured. Results Oral supplementation with FF significantly reduced serum and hepatic TG, TC, and hepatic glucose levels (approximately 79%) in mice fed with ND or HCBD. FF supplementation combined with AqSF-P or BY increased FF-induced reduction in hepatic TC and TG contents in ND-fed mice (up to 67%) and in HCBD-fed mice (up to 54%), when compared with FF supplementation alone. Hepatic glucose-lowering effect of FF was enhanced (up to 19%) by AqSF-P cosupplementation in both normal and HCL mice. FF supplementation enhanced the excretion of fecal TC (by 75%) in mice fed with HCBD. Fecal TC contents were increased by 14%/9% in the combination therapy with FF and AqSF-P in ND-/HCBD-fed mice. Serum ALT activity was elevated by 45% in HCBD-fed mice. FF caused a significant increase in ALT activity by 198% and 120% in normal and HCL mice, respectively. BY markedly attenuated the ALT activity by 54% in mice fed with ND supplemented with 0.1% FF and by 42% in mice fed with HCBD supplemented with 0.03% FF

  11. C(2)H(4) metabolism in morning glory flowers.

    PubMed

    Beyer, E M; Sundin, O

    1978-06-01

    Flowers of Ipomoea tricolor Cav. (cv. Heavenly Blue) were cut at various stages of development and evaluated for their ability to metabolize ethylene. Freshly cut buds or flowers were treated in glass containers for 8 hours with 6 mul/liter of highly purified (14)C(2)H(4). Following removal of dissolved (14)C(2)H(4), radioactivity was determined for the different flower tissues and trappd CO(2). (14)C(2)H(4) oxidation to (14)CO(2) and tissue incorporation occurred at very low to nondetectable levels 2 to 3 days prior to flower opening. About 1 day prior to full bloom, just at the time when mature buds become responsive to ethylene (Kende and Hanson, Plant Physiol 1976, 57: 523-527), there was a dramatic increase in the capacity of the buds to oxidize (14)C(2)H(4) to (14)CO(2). This activity continued to increase until the flower was fully opened reaching a peak activity of 2,500 dpm per three flowers per 8 hours. It then declined as the flower closed and rapidly senesced. A similar but smaller peak occurred in tissue incorporation and it was followed by a second peak during late flower senescence. This first peak in tissue incorporation and the dramatic peak in ethylene oxidation slightly preceded a large peak of natural ethylene production which accompanied flower senescence. The ethylene metabolism observed was clearly dependent on cellular metabolism and did not involve microorganisms since heat killing destroyed this activity and badly contaminated heat-killed flowers were unable to metabolize ethylene.

  12. Glucose and Fructose to Platform Chemicals: Understanding the Thermodynamic Landscapes of Acid-Catalysed Reactions Using High-Level ab Initio Methods

    SciTech Connect

    Assary, Rajeev S.; Kim, Taijin; Low, John; Greeley, Jeffrey P.; Curtiss, Larry A.

    2012-12-28

    Molecular level understanding of acid-catalysed conversion of sugar molecules to platform chemicals such as hydroxy-methyl furfural (HMF), furfuryl alcohol (FAL), and levulinic acid (LA) is essential for efficient biomass conversion. In this paper, the high-level G4MP2 method along with the SMD solvation model is employed to understand detailed reaction energetics of the acid-catalysed decomposition of glucose and fructose to HMF. Based on protonation free energies of various hydroxyl groups of the sugar molecule, the relative reactivity of gluco-pyranose, fructo-pyranose and fructo-furanose are predicted. Calculations suggest that, in addition to the protonated intermediates, a solvent assisted dehydration of one of the fructo-furanosyl intermediates is a competing mechanism, indicating the possibility of multiple reaction pathways for fructose to HMF conversion in aqueous acidic medium. Two reaction pathways were explored to understand the thermodynamics of glucose to HMF; the first one is initiated by the protonation of a C2–OH group and the second one through an enolate intermediate involving acyclic intermediates. Additionally, a pathway is proposed for the formation of furfuryl alcohol from glucose initiated by the protonation of a C2–OH position, which includes a C–C bond cleavage, and the formation of formic acid. The detailed free energy landscapes predicted in this study can be used as benchmarks for further exploring the sugar decomposition reactions, prediction of possible intermediates, and finally designing improved catalysts for biomass conversion chemistry in the future.

  13. A comparative analysis of industrial Escherichia coli K-12 and B strains in high-glucose batch cultivations on process-, transcriptome- and proteome level.

    PubMed

    Marisch, Karoline; Bayer, Karl; Scharl, Theresa; Mairhofer, Juergen; Krempl, Peter M; Hummel, Karin; Razzazi-Fazeli, Ebrahim; Striedner, Gerald

    2013-01-01

    Escherichia coli K-12 and B strains are among the most frequently used bacterial hosts for production of recombinant proteins on an industrial scale. To improve existing processes and to accelerate bioprocess development, we performed a detailed host analysis. We investigated the different behaviors of the E. coli production strains BL21, RV308, and HMS174 in response to high-glucose concentrations. Tightly controlled cultivations were conducted under defined environmental conditions for the in-depth analysis of physiological behavior. In addition to acquisition of standard process parameters, we also used DNA microarray analysis and differential gel electrophoresis (Ettan(TM) DIGE). Batch cultivations showed different yields of the distinct strains for cell dry mass and growth rate, which were highest for BL21. In addition, production of acetate, triggered by excess glucose supply, was much higher for the K-12 strains compared to the B strain. Analysis of transcriptome data showed significant alteration in 347 of 3882 genes common among all three hosts. These differentially expressed genes included, for example, those involved in transport, iron acquisition, and motility. The investigation of proteome patterns additionally revealed a high number of differentially expressed proteins among the investigated hosts. The subsequently selected 38 spots included proteins involved in transport and motility. The results of this comprehensive analysis delivered a full genomic picture of the three investigated strains. Differentially expressed groups for targeted host modification were identified like glucose transport or iron acquisition, enabling potential optimization of strains to improve yield and process quality. Dissimilar growth profiles of the strains confirm different genotypes. Furthermore, distinct transcriptome patterns support differential regulation at the genome level. The identified proteins showed high agreement with the transcriptome data and suggest

  14. Improvement of blood glucose levels and obesity in mice given aronia juice by inhibition of dipeptidyl peptidase IV and α-glucosidase.

    PubMed

    Yamane, Takuya; Kozuka, Miyuki; Konda, Daisuke; Nakano, Yoshihisa; Nakagaki, Takenori; Ohkubo, Iwao; Ariga, Hiroyoshi

    2016-05-01

    Aronia berries have many potential effects on health. Previous human studies have shown that aronia juice may be useful for treatment of obesity disorders. Recently, we have reported that aronia juice has an inhibitory effect on dipeptidyl peptidase (DPP IV) activity and that the DPP IV inhibitor in aronia juice was identified as cyanidin 3,5-diglucoside. In this study, we found that body weights and blood glucose levels were reduced in diabetes model KK-Ay mice given aronia juice. We also found that weights of white adipose tissues were reduced in KK-Ay mice given aronia juice. Furthermore, levels of DPP IV activity in the serum and liver from KK-Ay mice were lower than those in the serum and liver from C57BL/6JmsSlc mice. Interestingly, although levels of DPP IV activity were not changed in the serum and liver from aronia-juice-administered KK-Ay mice, levels of DPP IV activity were increased in those from aronia-juice-administered C57BL/6JmsSlc mice. Furthermore, α-glucosidase activity was inhibited in the upper region of the small intestine from aronia-juice-administered KK-Ay mice but not in the lower region. Inhibition of α-glucosidase activity in the upper portion of the small intestine induced a reduction of glucose-dependent insulinotropic polypeptide (GIP) level. The results suggest that DPP IV activity in diabetic mice is inhibited by aronia juice, that the GIP level in the upper region of the small intestine is reduced by inhibition of α-glucosidase activity and that weights of adipose tissues are reduced by aronia juice.

  15. Identifying glucose thresholds for incident diabetes by physiological analysis: a mathematical solution.

    PubMed

    Ferrannini, Ele; Manca, Maria Laura

    2015-04-01

    Plasma glucose thresholds for diagnosis of type 2 diabetes are currently based on outcome data (risk of retinopathy), an inherently ill-conditioned approach. A radically different approach is to consider the mechanisms that control plasma glucose, rather than its relation to an outcome. We developed a constraint optimization algorithm to find the minimal glucose levels associated with the maximized combination of insulin sensitivity and β-cell function, the two main mechanisms of glucose homeostasis. We used a training cohort of 1,474 subjects (22% prediabetic, 7.7% diabetic) in whom insulin sensitivity was measured by the clamp technique and β-cell function was determined by mathematical modeling of an oral glucose tolerance test. Optimized fasting glucose levels were ≤ 87 and ≤ 89 mg/dl in ≤ 45-yr-old women and men, respectively, and ≤ 92 and ≤ 95 mg/dl in >45-yr-old women and men, respectively; the corresponding optimized 2-h glucose levels were ≤ 96, ≤ 98, ≤ 103, and ≤ 105 mg/dl. These thresholds were validated in three prospective cohorts of nondiabetic subjects (Relationship Between Insulin Sensitivity and Cardiovascular Disease Study, Botnia Study, and Mexico City Diabetes Study) with baseline and follow-up oral glucose tolerance tests. Of 5,593 participants, 452 progressed to diabetes. Similarly, in the three cohorts, subjects with glucose levels above the estimated thresholds had an odds ratio of 3.74 (95% confidence interval = 2.64-5.48) of progressing, substantially higher than the risk carried by baseline conventionally defined prediabetes [odds ratio = 2.32 (95% confidence interval = 1.91-2.81)]. The concept that optimization of glucose concentrations by direct measures of insulin sensitivity and β-cell function identifies gender- and age-specific thresholds that bear on disease progression is proven in a physiologically sound, quantifiable manner.

  16. Identifying glucose thresholds for incident diabetes by physiological analysis: a mathematical solution.

    PubMed

    Ferrannini, Ele; Manca, Maria Laura

    2015-04-01

    Plasma glucose thresholds for diagnosis of type 2 diabetes are currently based on outcome data (risk of retinopathy), an inherently ill-conditioned approach. A radically different approach is to consider the mechanisms that control plasma glucose, rather than its relation to an outcome. We developed a constraint optimization algorithm to find the minimal glucose levels associated with the maximized combination of insulin sensitivity and β-cell function, the two main mechanisms of glucose homeostasis. We used a training cohort of 1,474 subjects (22% prediabetic, 7.7% diabetic) in whom insulin sensitivity was measured by the clamp technique and β-cell function was determined by mathematical modeling of an oral glucose tolerance test. Optimized fasting glucose levels were ≤ 87 and ≤ 89 mg/dl in ≤ 45-yr-old women and men, respectively, and ≤ 92 and ≤ 95 mg/dl in >45-yr-old women and men, respectively; the corresponding optimized 2-h glucose levels were ≤ 96, ≤ 98, ≤ 103, and ≤ 105 mg/dl. These thresholds were validated in three prospective cohorts of nondiabetic subjects (Relationship Between Insulin Sensitivity and Cardiovascular Disease Study, Botnia Study, and Mexico City Diabetes Study) with baseline and follow-up oral glucose tolerance tests. Of 5,593 participants, 452 progressed to diabetes. Similarly, in the three cohorts, subjects with glucose levels above the estimated thresholds had an odds ratio of 3.74 (95% confidence interval = 2.64-5.48) of progressing, substantially higher than the risk carried by baseline conventionally defined prediabetes [odds ratio = 2.32 (95% confidence interval = 1.91-2.81)]. The concept that optimization of glucose concentrations by direct measures of insulin sensitivity and β-cell function identifies gender- and age-specific thresholds that bear on disease progression is proven in a physiologically sound, quantifiable manner. PMID:25552659

  17. Effect of Imipramine, Paroxetine, and Lithium Carbonate on Neurobehavioral Changes of Streptozotocin in Rats: Impact on Glycogen Synthase Kinase-3 and Blood Glucose Level.

    PubMed

    Nadeem, Rania I; Ahmed, Hebatalla I; El-Denshary, Ezz-El-Din S

    2015-09-01

    Recent studies have demonstrated a scrutinized association of diabetes mellitus with depressive symptoms and major depression. Glycogen synthase kinase-3 (GSK-3) is a protein kinase enzyme constitutively active in non-stimulated cells and in multiple signalings. Independent lines of research provide a converging evidence for an involvement of GSK-3 in the regulation of behavior and hyperglycemia. The present study revealed that streptozotocin (STZ)-induced diabetic rats were found to show lengthened duration of immobility in the forced-swimming test (FST) and reduced locomotor and exploratory activities in the open-field test (OFT). Imipramine (15 mg/kg), Paroxetine (10 mg/kg) and lithium carbonate (36.94 mg/kg) for 14 days reduced immobility behavior in FST. Paroxetine and lithium carbonate increased the locomotor and exploratory activities, while imipramine decreased the locomotor activity in the OFT. Imipramine and lithium carbonate reduced the blood glucose level while paroxetine didn't alter it. STZ-induced diabetes increased GSK-3 gene expression which was determined using the reverse transcription-quantitative polymerase chain reaction test, while the three drugs decreased its expression. It can be concluded that lithium carbonate and imipramine can control both hyperglycemia and the associated symptoms of depression at the same time by inhibiting GSK-3 activity. On the other hand, paroxetine may only manage the depressive-like symptoms associated with diabetes through modulating the enzyme GSK-3, without changing blood glucose levels. PMID:26216050

  18. Common variants in the LAMA5 gene associate with fasting plasma glucose and serum triglyceride levels in a cohort of pre- and early pubertal children.

    PubMed

    De Luca, Maria; Chandler-Laney, Paula C; Wiener, Howard; Fernandez, Jose R

    2012-12-01

    Laminins are glycoproteins found in basement membranes where they play a vital role in tissue architecture and cell behavior. Previously, we reported the association of two polymorphisms (rs659822 and rs944895) in the laminin alpha5 (LAMA5) gene with anthropometric traits, fasting lipid profile, and glucose levels in pre-menopausal women and elderly subjects. Furthermore, studies in mice showed that Lama5 is involved in organogenesis and placental function during pregnancy. The objective of this study was to investigate whether rs659822 and/or rs944895 are associated with inter-individual variability in birth weight as well as anthropometric traits and metabolic phenotypes in children. Two hundred and eighty nine healthy children aged 7-12 yr of European, Hispanic, and African-American ancestry were studied. Co-dominant models adjusted for genetic admixture, age, gender, and stages of puberty were used to test for the association of the polymorphisms with each trait. Our analysis showed significant associations of rs659822 with fasting plasma glucose levels (P = 0.0004) and of rs944895 with fasting serum triglycerides (P = 0.004) after Bonferroni correction for multiple testing. Our results corroborate our previous findings that genetic variants in LAMA5 contribute to variation in metabolic phenotypes and provide evidence that this may occur early in life. PMID:27625828

  19. Common variants in the LAMA5 gene associate with fasting plasma glucose and serum triglyceride levels in a cohort of pre- and early pubertal children

    PubMed Central

    De Luca, Maria; Chandler-Laney, Paula C.; Wiener, Howard; Fernandez, Jose R.

    2012-01-01

    Laminins are glycoproteins found in basement membranes where they play a vital role in tissue architecture and cell behavior. Previously, we reported the association of two polymorphisms (rs659822 and rs944895) in the laminin alpha5 (LAMA5) gene with anthropometric traits, fasting lipid profile, and glucose levels in pre-menopausal women and elderly subjects. Furthermore, studies in mice showed that Lama5 is involved in organogenesis and placental function during pregnancy. The objective of this study was to investigate whether rs659822 and/or rs944895 are associated with inter-individual variability in birth weight as well as anthropometric traits and metabolic phenotypes in children. Two hundred and eighty nine healthy children aged 7–12 yr of European, Hispanic, and African-American ancestry were studied. Co-dominant models adjusted for genetic admixture, age, gender, and stages of puberty were used to test for the association of the polymorphisms with each trait. Our analysis showed significant associations of rs659822 with fasting plasma glucose levels (P = 0.0004) and of rs944895 with fasting serum triglycerides (P = 0.004) after Bonferroni correction for multiple testing. Our results corroborate our previous findings that genetic variants in LAMA5 contribute to variation in metabolic phenotypes and provide evidence that this may occur early in life.

  20. Differential effects of "Advanced glycation endproducts" and beta-amyloid peptide on glucose utilization and ATP levels in the neuronal cell line SH-SY5Y.

    PubMed

    Kuhla, B; Loske, C; Garcia De Arriba, S; Schinzel, R; Huber, J; Münch, G

    2004-03-01

    Beta-amyloid peptide (Abeta) and "Advanced glycation endproducts" (AGEs) are components of the senile plaques in Alzheimer's disease patients. It has been proposed that both AGEs and Abeta exert many of their effects, which include the upregulation of pro-inflammatory cytokines, through RAGE ("receptor for advanced glycation endproducts"). To investigate whether Abeta and AGEs cause similar or identical effects on cell survival and energy metabolism, we have compared the effects of a model-AGE and Abeta on cell viability, ATP level, glucose consumption and lactate production in the neuroblastoma cell line SH-SY5Y. The results show that AGEs and Abeta increase glucose consumption and decrease ATP levels in a dose dependent manner. Furthermore, both compounds decrease mitochondrial activity measured by the MTT assay. However, only AGEs decrease the number of cells and significantly increase lactate production. These data indicate that both AGEs and Abeta can cause differential disturbances in neuronal metabolism, which may contribute to the pathophysiological findings in Alzheimer's disease. However, their signalling pathways are apparently quite distinct, a fact which should stimulate a more detailed investigation in this field, e.g. for the purpose of a rational design of potential "neuroprotective" RAGE antagonists. PMID:14991463

  1. An improved technique for the 2H/1H analysis of urines from diabetic volunteers

    USGS Publications Warehouse

    Coplen, T.B.; Harper, I.T.

    1994-01-01

    The H2-H2O ambient-temperature equilibration technique for the determination of 2H/1H ratios in urinary waters from diabetic subjects provides improved accuracy over the conventional Zn reduction technique. The standard deviation, ~ 1-2???, is at least a factor of three better than that of the Zn reduction technique on urinary waters from diabetic volunteers. Experiments with pure water and solutions containing glucose, urea and albumen indicate that there is no measurable bias in the hydrogen equilibration technique.The H2-H2O ambient-temperature equilibration technique for the determination of 2H/1H ratios in urinary waters from diabetic subjects provides improved accuracy over the conventional Zn reduction technique. The standard deviation, approximately 1-2%, is at least a factor of three better than that of the Zn reduction technique on urinary waters from diabetic volunteers. Experiments with pure water and solutions containing glucose, urea and albumen indicate that there is no measurable bias in the hydrogen equilibration technique.

  2. Blood glucose level and lipid profile of alloxan-induced hyperglycemic rats treated with single and combinatorial herbal formulations

    PubMed Central

    Ojiako, Okey A.; Chikezie, Paul C.; Ogbuji, Agomuo C.

    2015-01-01

    The current study sought to investigate the capacities of single and combinatorial herbal formulations of leaf extracts of Acanthus montanus, Asystasia gangetica, Emilia coccinea, and Hibiscus rosasinensis to reverse hyperglycemia and dyslipidemia in alloxan-induced diabetic male rats. Phytochemical composition of the herbal extracts, fasting plasma glucose concentration (FPGC), and serum lipid profile (SLP) of the rats were measured by standard methods. The relative abundance of phytochemicals in the four experimental leaf extracts was in the following order: flavonoids > alkaloids > saponins > tannins. Hyperglycemic rats (HyGR) treated with single and combinatorial herbal formulations showed evidence of reduced FPGC compared with the untreated HyGR and were normoglycemic (FPGC < 110.0 mg/dL). Similarly, HyGR treated with single and combinatorial herbal formulations showed evidence of readjustments in their SLPs. Generally, HyGR treated with triple herbal formulations (THfs) exhibited the highest atherogenic index compared with HyGR treated with single herbal formulations (SHfs), double herbal formulations (DHfs), and quadruple herbal formulation (QHf). The display of synergy or antagonism by the composite herbal extracts in ameliorating hyperglycemia and dyslipidemia depended on the type and number of individual herbal extract used in constituting the experimental herbal formulations. Furthermore, the capacities of the herbal formulations (SHfs, DHfs, THfs, and QHf) to exert glycemic control and reverse dyslipidemia did not follow predictable patterns in the animal models. PMID:27114943

  3. Blood glucose level and lipid profile of alloxan-induced hyperglycemic rats treated with single and combinatorial herbal formulations.

    PubMed

    Ojiako, Okey A; Chikezie, Paul C; Ogbuji, Agomuo C

    2016-04-01

    The current study sought to investigate the capacities of single and combinatorial herbal formulations of leaf extracts of Acanthus montanus, Asystasia gangetica, Emilia coccinea, and Hibiscus rosasinensis to reverse hyperglycemia and dyslipidemia in alloxan-induced diabetic male rats. Phytochemical composition of the herbal extracts, fasting plasma glucose concentration (FPGC), and serum lipid profile (SLP) of the rats were measured by standard methods. The relative abundance of phytochemicals in the four experimental leaf extracts was in the following order: flavonoids > alkaloids > saponins > tannins. Hyperglycemic rats (HyGR) treated with single and combinatorial herbal formulations showed evidence of reduced FPGC compared with the untreated HyGR and were normoglycemic (FPGC < 110.0 mg/dL). Similarly, HyGR treated with single and combinatorial herbal formulations showed evidence of readjustments in their SLPs. Generally, HyGR treated with triple herbal formulations (THfs) exhibited the highest atherogenic index compared with HyGR treated with single herbal formulations (SHfs), double herbal formulations (DHfs), and quadruple herbal formulation (QHf). The display of synergy or antagonism by the composite herbal extracts in ameliorating hyperglycemia and dyslipidemia depended on the type and number of individual herbal extract used in constituting the experimental herbal formulations. Furthermore, the capacities of the herbal formulations (SHfs, DHfs, THfs, and QHf) to exert glycemic control and reverse dyslipidemia did not follow predictable patterns in the animal models. PMID:27114943

  4. Blood levels of pro-inflammatory and anti-inflammatory cytokines during an oral glucose tolerance test in patients with symptoms suggesting reactive hypoglycemia

    PubMed Central

    Eik, W.; Marcon, S.S.; Krupek, T.; Previdelli, I.T.S.; Pereira, O.C.N.; Silva, M.A.R.C.P.; Bazotte, R.B.

    2016-01-01

    We evaluated the impact of postprandial glycemia on blood levels of pro-inflammatory and anti-inflammatory cytokines during an oral glucose tolerance test in non-diabetic patients with symptoms suggesting reactive hypoglycemia. Eleven patients with clinical symptoms suggesting reactive hypoglycemia received an oral glucose solution (75 g) Blood was collected at 0 (baseline), 30, 60, 120 and 180 min after glucose ingestion and the plasma concentrations of interferon-α (IFN-α), interferon-γ (IFN-γ), interleukin-1 receptor antagonist (IL-1RA), interleukin 2 (IL-2), interleukin-2 receptor (IL-2R), interleukin 4 (IL-4), interleukin 6 (IL-6), interleukin 8 (IL-8), interleukin 10 (IL-10), interleukin-12 (IL-12), interleukin 13 (IL-13), interleukin 15 (IL-15), interleukin 17 (IL-17), IFN-γ inducible protein 10 (IP-10), monocyte chemotactic protein 1 (MCP1), monokine induced by IFN-γ (MIG), macrophage inflammatory protein-1α (MIP-1α), interleukin-1β (IL-1β), colony stimulating factor (G-CSF), granulocyte-macrophage CSF (GM-CSF), basic fibroblast growth factor (FGF-basic), eotaxin, tumor necrosis factor α (TNFα), epidermal growth factor (EGF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), macrophage inflammatory protein-1α (MIP-1α), and 1β (MIP-1β) were evaluated. Overall, glycemic levels increased, reached its maximum at 30 min (phase 1), returned to baseline levels at 120 min (phase 2), followed by a mild hypoglycemia at 180 min (phase 3). During phase 1, cytokine blood levels were maintained. However, we observed a synchronous fall (P<0.05) in the concentrations of pro-inflammatory (IL-15, IL-17, MCP-1) and anti-inflammatory cytokines (FGF-basic, IL-13, IL-1RA) during phase 2. Furthermore, a simultaneous rise (P<0.05) of pro-inflammatory (IL-2, IL-5, IL-17) and anti-inflammatory cytokines (IL-4, IL-1RA, IL-2R, IL-13, FGF-basic) occurred during phase 3. Thus, mild acute hypoglycemia but not a physiological increase of glycemia

  5. Blood levels of pro-inflammatory and anti-inflammatory cytokines during an oral glucose tolerance test in patients with symptoms suggesting reactive hypoglycemia.

    PubMed

    Eik, W; Marcon, S S; Krupek, T; Previdelli, I T S; Pereira, O C N; Silva, M A R C P; Bazotte, R B

    2016-07-11

    We evaluated the impact of postprandial glycemia on blood levels of pro-inflammatory and anti-inflammatory cytokines during an oral glucose tolerance test in non-diabetic patients with symptoms suggesting reactive hypoglycemia. Eleven patients with clinical symptoms suggesting reactive hypoglycemia received an oral glucose solution (75 g) Blood was collected at 0 (baseline), 30, 60, 120 and 180 min after glucose ingestion and the plasma concentrations of interferon-α (IFN-α), interferon-γ (IFN-γ), interleukin-1 receptor antagonist (IL-1RA), interleukin 2 (IL-2), interleukin-2 receptor (IL-2R), interleukin 4 (IL-4), interleukin 6 (IL-6), interleukin 8 (IL-8), interleukin 10 (IL-10), interleukin-12 (IL-12), interleukin 13 (IL-13), interleukin 15 (IL-15), interleukin 17 (IL-17), IFN-γ inducible protein 10 (IP-10), monocyte chemotactic protein 1 (MCP1), monokine induced by IFN-γ (MIG), macrophage inflammatory protein-1α (MIP-1α), interleukin-1β (IL-1β), colony stimulating factor (G-CSF), granulocyte-macrophage CSF (GM-CSF), basic fibroblast growth factor (FGF-basic), eotaxin, tumor necrosis factor α (TNFα), epidermal growth factor (EGF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), macrophage inflammatory protein-1α (MIP-1α), and 1β (MIP-1β) were evaluated. Overall, glycemic levels increased, reached its maximum at 30 min (phase 1), returned to baseline levels at 120 min (phase 2), followed by a mild hypoglycemia at 180 min (phase 3). During phase 1, cytokine blood levels were maintained. However, we observed a synchronous fall (P<0.05) in the concentrations of pro-inflammatory (IL-15, IL-17, MCP-1) and anti-inflammatory cytokines (FGF-basic, IL-13, IL-1RA) during phase 2. Furthermore, a simultaneous rise (P<0.05) of pro-inflammatory (IL-2, IL-5, IL-17) and anti-inflammatory cytokines (IL-4, IL-1RA, IL-2R, IL-13, FGF-basic) occurred during phase 3. Thus, mild acute hypoglycemia but not a physiological increase of glycemia

  6. Clinical implication of elevated CA 19-9 level and the relationship with glucose control state in patients with type 2 diabetes.

    PubMed

    Kim, Sun Hee; Baek, Cho-Ok; Lee, Kyung Ae; Park, Tae Sun; Baek, Hong Sun; Jin, Heung Yong

    2014-06-01

    The aim is to investigate whether there is a difference in CA 19-9 levels between diabetes and healthy subjects except malignancies and associated factors with CA 19-9 in diabetes. We performed a retrospective analysis in 146 type 2 diabetes and 154 healthy subjects who visited our medical institution from 2005 to 2009. We compared the CA 19-9 in each group, and analyzed clinical and biochemical variables in diabetes. The average value of CA 19-9 in diabetes was higher than that of healthy subjects significantly (14.1 vs 8.1 U/mL, p < 0.01). CA 19-9 had a positive correlation with HbA1c (r = 0.22), fasting plasma glucose (r = 0.24), and C-reactive protein (r = 0.38) in diabetes (p < 0.05). 48 type 2 diabetes who showed decreased CA 19-9 during follow-up of 1.8 ± 1.0 years were also improved in glucose control state. The proportion of insulin use for glucose control was significantly higher in the group of CA 19-9 ≥ 37 U/mL (75.0 %) as compared with the group of CA 19-9 < 37 U/mL (34.0 %). CA 19-9 was significantly higher in the patients with diabetic peripheral neuropathy (DPN) as compared with those without DPN (p = 0.02). However, after excluding the influences from glycemic control state, significant difference was not observed. Our results indicate not only that CA 19-9 is influenced by glycemic control state but also can be elevated irrespective of any malignancy in diabetes. Therefore, CA 19-9 should be interpreted carefully in diabetic patients when CA 19-9 is used as the tool for malignancy screening.

  7. Influence of meal frequency on diurnal lipid, glucose and insulin levels in normal subjects on a high fat diet; comparison with data obtained on a high carbohydrate diet.

    PubMed

    van Gent, C M; Pagano Mirani-Oostdijk, C; van Reine, P H; Frölich, M; Hessel, L W; Terpstra, J

    1979-12-01

    Diurnal levels of serum triglyceride (TG) were measured in six normal persons consuming a fixed solid 65% fat diet under steady state conditions in a metabolic unit. The food was divided into either three or eight similar portions, differently spaced over the day and night. The diurnal TG-profiles on this diet were practically identical to those found under comparable conditions on a 65% carbohydrate diet [1]. Mean diurnal TG values did not significantly differ with varying meal frequency. Free fatty acid levels, however, were significantly higher on a high fat diet. Post-prandial glucose and insulin reponses did not significantly differ whether a high fat diet or a high carbohydrate diet was consumed. We conclude that the composition of the diet is of little importance in determining diurnal TG patterns when the diet consists of normal food stuffs, but that these patterns are dependent on meal frequency and distribution.

  8. Diagnosis of prediabetes in cats: glucose concentration cut points for impaired fasting glucose and impaired glucose tolerance.

    PubMed

    Reeve-Johnson, M K; Rand, J S; Vankan, D; Anderson, S T; Marshall, R; Morton, J M

    2016-10-01

    Diabetes is typically diagnosed in cats once clinical signs are evident. Diagnostic criteria for prediabetes in cats have not been defined. The objective of the study was to establish methodology and cut points for fasting and 2-h blood glucose concentrations in healthy client-owned senior cats (≥8 yr) using ear/paw samples and a portable glucose meter calibrated for feline blood. Of the 78 cats, 27 were ideal (body condition score [BCS] 4 or 5 of 9), 31 overweight (BCS 6 or 7), and 20 obese (BCS 8 or 9); 19 were Burmese and 59 non-Burmese. After an 18-24-h fast and an ear/paw blood glucose measurement using a portable glucose meter, glucose (0.5 g/kg bodyweight) was administered intravenous and blood glucose measured at 2 min and 2 h. Cut points for fasting and 2-h glucose concentrations were defined as the upper limits of 95% reference intervals using cats with BCS 4 or 5. The upper cut point for fasting glucose was 6.5 mmol/L. Of the overweight and obese cats, 1 (BCS 7) was above this cut point indicating evidence of impaired fasting glucose. The cut point for 2-h glucose was 9.8 mmol/L. A total of 7 cats (4 with BCS 8 or 9 including 1 Burmese; 3 with BCS 6 or 7, non-Burmese) were above this cut point and thus had evidence of impaired glucose tolerance. In conclusion, the methodology and cutpoints for diagnosis of prediabetes are defined for use in healthy cats 8 yr and older with a range of BCSs. PMID:27565231

  9. Multiple Functional Polymorphisms in the G6PC2 Gene Contribute to the Association with Higher Fasting Plasma Glucose Levels

    PubMed Central

    Baerenwald, D. A.; Bonnefond, A.; Bouatia-Naji, N.; Flemming, B. P.; Umunakwe, O. C.; Oeser, J. K.; Pound, L. D.; Conley, N. L.; Cauchi, S.; Lobbens, S.; Eury, E.; Balkau, B.; Lantieri, O.; Dadi, P. K.; Jacobson, D. A.; Froguel, P.; O’Brien, R. M.

    2014-01-01

    Aims We previously identified the G6PC2 locus as a strong determinant of fasting plasma glucose (FPG) and showed that a common G6PC2 intronic single nucleotide polymorphism (SNP) (rs560887) and two common G6PC2 promoter SNPs (rs573225 and rs13431652) are highly associated with FPG. However, these promoter SNPs have complex effects on G6PC2 fusion gene expression, and our data suggested that only rs13431652 is a potentially causative SNP. Here we examine the effect of rs560887 on G6PC2 pre-mRNA splicing and the contribution of an additional common G6PC2 promoter SNP, rs2232316, to the association signal. Methods Mini-gene analyzes characterized the effect of rs560887 on G6PC2 pre-mRNA splicing. Fusion gene and gel retardation analyses characterized the effect of rs2232316 on G6PC2 promoter activity and transcription factor binding. The genetic association of rs2232316 with FPG variation was assessed using regression adjusted for age, gender and body mass index in 4,220 Europeans with normal FPG. Results & Conclusions The rs560887-G allele was shown to enhance G6PC2 pre-mRNA splicing while the rs2232316-A allele enhanced G6PC2 transcription by promoting Foxa2 binding. Genetic analyses provide evidence for association of the rs2232316-A allele with increased FPG (β=0.04 mmol/l; P=4.3×10−3) as part of the same signal as rs560887, rs573225 and rs13431652. As with rs13431652 the in situ functional data with rs560887 and rs2232316 are in accord with the putative function of G6PC2 in pancreatic islets and suggest that all three are potentially causative SNPs that contribute to the association between G6PC2 and FPG. PMID:23508304

  10. Acute consumption of organic and conventional tropical grape juices (Vitis labrusca L.) increases antioxidants in plasma and erythrocytes, but not glucose and uric acid levels, in healthy individuals.

    PubMed

    Toaldo, Isabela Maia; Cruz, Fernanda Alves; da Silva, Edson Luiz; Bordignon-Luiz, Marilde T

    2016-08-01

    Bioactive polyphenols in grapes are influenced by grape variety and cultivation conditions. The Vitis labrusca L. varieties are cultivated in tropical regions and used for grape juice production. We hypothesized that polyphenols from tropical grape juices would beneficially affect redox homeostasis in humans. Therefore, the effects of acute consumption of organic and conventional grape juices from V labrusca L. on antioxidants biomarkers were investigated in healthy individuals. In a controlled, randomized, crossover, intervention trial, 24 individuals were assigned to drink 400 mL of conventional juice, organic juice, or water. Each intervention was followed by a 14-day washout period. Blood samples were obtained before and 1 hour after acute intake and analyzed for erythrocyte reduced glutathione, serum total antioxidant capacity, antioxidant enzymes in erythrocytes, and glucose and uric acid in serum. The ingestion of both grape juices resulted in elevated levels of reduced glutathione (P< .001) and serum total antioxidant capacity (P< .05) and increased activity of catalase (P< .001), superoxide dismutase (P< .001), and glutathione peroxidase (P< .05) compared with the control intervention, with no significant differences between grape juices (P< .05). The intake of juices did not affect significantly the concentrations of glucose or uric acid. Grape juice polyphenols were associated with increased antioxidants, and the chemical differences between organic and conventional juices were not predictive of the observed responses. The results suggest a bioactive potential of V labrusca L. juices to improve redox homeostasis, which is involved in defense against oxidative stress in humans. PMID:27440535

  11. Temperature-dependent quality characteristics of pre-dehydrated cookies: structure, browning, texture, in vitro starch digestibility, and the effect on blood glucose levels in mice.

    PubMed

    Kawai, Kiyoshi; Matsusaki, Keiko; Hando, Kana; Hagura, Yoshio

    2013-11-01

    The purpose of this study was to elucidate the physical and biochemical properties of pre-dehydrated cookies baked at various temperatures. Cookie dough was vacuum-dried, and then baked at 120-180°C for 18 min. All samples showed lower spread ratio than non-dehydrated cookie baked at 180°C (control). Browning of the samples baked at 180°C and 160°C was higher than that of the control. In contrast, little browning was observed in the sample baked at 120°C. The fracture force of samples baked at 140°C and 120°C agreed well with the control. From these results, the sample baked at 140°C was employed for subsequent studies. In vitro starch digestibility suggested that the sample baked at 140°C had higher slowly digestible starch content than the control. From postprandial blood glucose levels in mice, it was found that the sample significantly reduced the blood glucose peak observed at 30 min post-administration.

  12. Acute consumption of organic and conventional tropical grape juices (Vitis labrusca L.) increases antioxidants in plasma and erythrocytes, but not glucose and uric acid levels, in healthy individuals.

    PubMed

    Toaldo, Isabela Maia; Cruz, Fernanda Alves; da Silva, Edson Luiz; Bordignon-Luiz, Marilde T

    2016-08-01

    Bioactive polyphenols in grapes are influenced by grape variety and cultivation conditions. The Vitis labrusca L. varieties are cultivated in tropical regions and used for grape juice production. We hypothesized that polyphenols from tropical grape juices would beneficially affect redox homeostasis in humans. Therefore, the effects of acute consumption of organic and conventional grape juices from V labrusca L. on antioxidants biomarkers were investigated in healthy individuals. In a controlled, randomized, crossover, intervention trial, 24 individuals were assigned to drink 400 mL of conventional juice, organic juice, or water. Each intervention was followed by a 14-day washout period. Blood samples were obtained before and 1 hour after acute intake and analyzed for erythrocyte reduced glutathione, serum total antioxidant capacity, antioxidant enzymes in erythrocytes, and glucose and uric acid in serum. The ingestion of both grape juices resulted in elevated levels of reduced glutathione (P< .001) and serum total antioxidant capacity (P< .05) and increased activity of catalase (P< .001), superoxide dismutase (P< .001), and glutathione peroxidase (P< .05) compared with the control intervention, with no significant differences between grape juices (P< .05). The intake of juices did not affect significantly the concentrations of glucose or uric acid. Grape juice polyphenols were associated with increased antioxidants, and the chemical differences between organic and conventional juices were not predictive of the observed responses. The results suggest a bioactive potential of V labrusca L. juices to improve redox homeostasis, which is involved in defense against oxidative stress in humans.

  13. Effect of chromium-enriched yeast on fasting plasma glucose, glycated haemoglobin and serum lipid levels in patients with type 2 diabetes mellitus treated with insulin.

    PubMed

    Racek, Jaroslav; Sindberg, C D; Moesgaard, S; Mainz, Josef; Fabry, Jaroslav; Müller, Luděk; Rácová, Katarína

    2013-10-01

    Chromium is required for a normal insulin function, and low levels have been linked with insulin resistance. The aim of this study was to follow the effect of chromium supplementation on fasting plasma glucose (FPG), glycated haemoglobin (HbA1c) and serum lipids in patients with type 2 diabetes mellitus (DM2) on insulin therapy. Eleven randomly selected patients with DM2 on insulin therapy were supplemented with a daily dose of 100 μg chromium yeast for the first supplementation period of 2 weeks. In the second supplementation period, the chromium dose was doubled and continued for the next 6 weeks. The third phase was a 6-week washout period. After each period, the levels of FPG and HbA1c were compared with the corresponding values at the end of the previous period. Serum triglycerides, total HDL and LDL cholesterol values after supplementation were compared with the baseline values. FPG decreased significantly after the first period of chromium supplementation (p < 0.001), and a tendency to a further reduction was observed after the second supplementation period. Similarly, HbA1c decreased significantly in both periods (p < 0.02 and p < 0.002, respectively). Eight weeks after withdrawal of chromium supplementation, both FPG and HbA1c levels returned to their pre-intervention values. The serum lipid concentrations were not significantly influenced by chromium supplementation. Chromium supplementation could be beneficial in patients with DM2 treated with insulin, most likely due to lowered insulin resistance leading to improved glucose tolerance. This finding needs to be confirmed in a larger study.

  14. Near-Infrared Spectroscopy of Ethynyl Radical, C2H

    NASA Astrophysics Data System (ADS)

    Le, Anh T.; Hall, Gregory; Sears, Trevor

    2016-06-01

    The ethynyl radical, C_2H, is a reactive intermediate important in various combustion processes and also widely observed in the interstellar medium. In spite of extensive previous spectroscopic studies, the characterization of the near infrared transitions from the tilde{X}2Σ+ state to the mixed vibrational overtone and tilde{A}2Π states is incomplete. A strong band of C_2H at 7064 cm-1 was first observed in a neon matrix and assigned as the tilde{A}2Π(002)1 - tilde{X}2Σ+ transition by Forney et al. Subsequent theoretical work of Tarroni and Carter attributed the strong absorptions in this region to transitions terminating in two upper states, each a mixture of vibrationally excited tilde{X} states and different zero-order tilde{A}-state bending levels: a 2Σ+ symmetry combination of tilde{X}(0,20,3) and tilde{A}(0,3,0)0κ and a 2Π symmetry combination of tilde{X}(0,31,3) and tilde{A}(0,0,2)1. Transitions to them from the zero point level of the tilde{X} state are calculated to differ in energy by less than 10 cm-1 and to be within a factor of two in intensity. Diode laser transient absorption was used to record Doppler-limited spectra between 7020 and 7130 cm-1, using 193 nm photolysis of CF_3C_2H as a source of C_2H. Two interleaved, rotationally resolved bands were observed, consistent with a 2Σ - 2Σ transition at 7088 cm-1 and a 2Π - 2Σ transition at 7108 cm-1, in good accord with the Tarroni and Carter calculation. Progress on the assignment and fitting of the spectra will be reported. Acknowledgements: Work at Brookhaven National Laboratory was carried out under Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences, and Biosciences. D. Forney, M.E. Jacox, and W.E. Thompson, J. Mol. Spectrosc. 170, 178 (1995). R. Tarroni and S. Carter, Mol. Phys. 102, 2167 (2004)

  15. Brain glucose metabolism is associated with hormone level in Cushing's disease: A voxel-based study using FDG-PET.

    PubMed

    Liu, Shuai; Wang, Yinyan; Xu, Kaibin; Ping, Fan; Wang, Renzhi; Li, Fang; Cheng, Xin

    2016-01-01

    Chronic exposure to elevated levels of glucocorticoids can exert a neurotoxic effect in patients, possibly manifesting as molecular imaging alterations in patients. The aim of this study was to investigate the potential association between brain metabolism and elevated hormone level using (18)F-fluorodeoxyglucose positron emission tomography. We retrospectively enrolled 92 consecutive patients with confirmed diagnosis of Cushing's disease. A voxel-based analysis was performed to investigate the association between cerebral (18)F-fluorodeoxyglucose uptake and serum cortisol level. Relatively impaired metabolism of specific brain regions correlated with serum cortisol level was found. Specifically, notable correlations were found in the hippocampus, amygdala, and cerebellum, regions considered to be involved in the regulation and central action of glucocorticoids. Moreover, some hormone-associated regions were found in the frontal and occipital cortex, possibly mediating the cognitive changes seen in Cushing's disease. Our findings link patterns of perturbed brain metabolism relates to individual hormone level, thus presenting a substrate for cognitive disturbances seen in Cushing's disease patients, as well as in other conditions with abnormal cortisol levels.

  16. Brain glucose metabolism is associated with hormone level in Cushing's disease: A voxel-based study using FDG-PET.

    PubMed

    Liu, Shuai; Wang, Yinyan; Xu, Kaibin; Ping, Fan; Wang, Renzhi; Li, Fang; Cheng, Xin

    2016-01-01

    Chronic exposure to elevated levels of glucocorticoids can exert a neurotoxic effect in patients, possibly manifesting as molecular imaging alterations in patients. The aim of this study was to investigate the potential association between brain metabolism and elevated hormone level using (18)F-fluorodeoxyglucose positron emission tomography. We retrospectively enrolled 92 consecutive patients with confirmed diagnosis of Cushing's disease. A voxel-based analysis was performed to investigate the association between cerebral (18)F-fluorodeoxyglucose uptake and serum cortisol level. Relatively impaired metabolism of specific brain regions correlated with serum cortisol level was found. Specifically, notable correlations were found in the hippocampus, amygdala, and cerebellum, regions considered to be involved in the regulation and central action of glucocorticoids. Moreover, some hormone-associated regions were found in the frontal and occipital cortex, possibly mediating the cognitive changes seen in Cushing's disease. Our findings link patterns of perturbed brain metabolism relates to individual hormone level, thus presenting a substrate for cognitive disturbances seen in Cushing's disease patients, as well as in other conditions with abnormal cortisol levels. PMID:27622138

  17. Methanolic leaf extract of Gymnema sylvestre augments glucose uptake and ameliorates insulin resistance by upregulating glucose transporter-4, peroxisome proliferator-activated receptor-gamma, adiponectin, and leptin levels in vitro

    PubMed Central

    Kumar, Puttanarasaiah Mahesh; Venkataranganna, Marikunte V.; Manjunath, Kirangadur; Viswanatha, Gollapalle L.; Ashok, Godavarthi

    2016-01-01

    Aims: The present study was undertaken to evaluate the effect of methanolic leaf extract of Gymnema sylvestre (MLGS) on glucose transport (GLUT) and insulin resistance in vitro. Materials and Methods: Peroxisome proliferator-activated receptor-gamma (PPAR-γ) and GLUT-4 expression were assessed in L6 myotubes for concluding the GLUT activity, and adiponectin and leptin expression was studied in 3T3 L1 murine adipocyte cell line to determine the effect of MLGS (250-750 μg/ml) on insulin resistance. Results: The findings of the experiments have demonstrated a significant and dose-dependent increase in glucose uptake in all the tested concentrations of MLGS, further the glucose uptake activity of MLGS (750 μg/ml) was at par with rosiglitazone (50 μg/ml). Concomitantly, MLGS has shown enhanced GLUT-4 and PPAR-γ gene expressions in L6 myotubes. Furthermore, cycloheximide (CHX) had completely abolished the glucose uptake activity of MLGS when co-incubated, which further confirmed that glucose uptake activity of MLGS was linked to enhanced expression of GLUT-4 and PPAR-γ. In addition, in another experimental set, MLGS showed enhanced expression of adiponectin and leptin, thus confirms the ameliorative effect of MLGS on insulin resistance. Conclusion: These findings suggest that MLGS has an enhanced glucose uptake activity in L6 myotubes, and ameliorate the insulin resistance in 3T3 L1 murine adipocyte cell line in vitro. PMID:27104035

  18. Glucose Tolerance and Hyperkinesis.

    ERIC Educational Resources Information Center

    Langseth, Lillian; Dowd, Judith

    Examined were medical records of 265 hyperkinetic children (7-9 years old). Clinical blood chemistries, hematology, and 5-hour glucose tolerance test (GTT) results indicated that hematocrit levels were low in 27% of the Ss, eosinophil levels were abnormally high in 86% of the Ss, and GTT results were abnormal in a maority of Ss. (CL)

  19. Reducing blood glucose levels in TIDM mice with an orally administered extract of sericin from hIGF-I-transgenic silkworm cocoons.

    PubMed

    Song, Zuowei; Zhang, Mengyao; Xue, Renyu; Cao, Guangli; Gong, Chengliang

    2014-05-01

    In previous studies, we reported that the blood glucose levels of mice with type I diabetes mellitus (TIDM) was reduced with orally administered silk gland powder from silkworms transgenic for human insulin-like growth factor-I (hIGF-I). However, potential safety hazards could not be eliminated because the transgenic silk gland powder contained heterologous DNA, including the green fluorescent protein (gfp) and neomycin resistance (neo) genes. These shortcomings might be overcome if the recombinant hIGF-I were secreted into the sericin layer of the cocoon. In this study, silkworm eggs were transfected with a novel piggyBac transposon vector, pigA3GFP-serHS-hIGF-I-neo, containing the neo, gfp, and hIGF-I genes controlled by the sericin-1 (ser-1) promoter with the signal peptide DNA sequence of the fibrin heavy chain (Fib-H) and a helper plasmid containing the piggyBac transposase sequence under the control of the Bombyx mori actin 3 (A3) promoter, using sperm-mediated gene transfer to generate the transformed silkworms. The hIGF-I content estimated by enzyme-linked immunosorbent assay was approximately 162.7 ng/g. To estimate the biological activity of the expressed hIGF-I, streptozotocin-induced TIDM mice were orally administered sericin from the transgenic silkworm. The blood glucose levels of the mice were significantly reduced, suggesting that the extract from the transgenic hIGF-I silkworm cocoons can be used as an orally administered drug.

  20. HBK-14 and HBK-15 Do Not Influence Blood Pressure, Lipid Profile, Glucose Level, or Liver Enzymes Activity after Chronic Treatment in Rats

    PubMed Central

    Głuch-Lutwin, Monika; Knutelska, Joanna; Jakubczyk, Magdalena; Waszkielewicz, Anna; Kotańska, Magdalena

    2016-01-01

    Older and even new antidepressants cause adverse effects, such as orthostatic hypotension, hyper- or hypoglycemia, liver injury or lipid disorders. In our previous experiments we showed significant antidepressant- and anxiolytic-like activities of dual 5-HT1A and 5-HT7 antagonists with α1-adrenolitic properties i.e. 1-[(2,6-dimethylphenoxy)ethoxyethyl]-4-(2-methoxyphenyl)piperazine hydrochloride (HBK-14) and 1-[(2-chloro-6-methylphenoxy)ethoxyethyl]-4-(2-methoxyphenyl)piperazine hydrochloride (HBK-15). Here, we evaluated the influence of chronic administration of HBK-14 and HBK-15 on blood pressure (non-invasive blood pressure measurement system for rodents), lipid profile (total cholesterol, low density lipoproteins—LDL, high density lipoproteins—HDL, triglycerides), glucose level, and liver enzymes activity (aspartate aminotransferase, alanine aminotransferase, γ-glutamyl transferase). We determined potential antihistaminic (isolated guinea pig ileum) and antioxidant properties (ferric reducing ability of plasma–FRAP, non-protein thiols–NPSH, stable free radical diphenylpicrylhydrazyl—DPPH) cytotoxicity. Our experiments revealed that HBK-14 and HBK-15 did not influence blood pressure, lipid profile, glucose level or liver enzymes activity in rats after 2-week treatment. We also showed that none of the compounds possessed antioxidant or cytotoxic properties at antidepressant- and anxiolytic-like doses. HBK-14 and HBK-15 very weakly blocked H1 receptors in guinea pig ileum. Positive results of our preliminary experiments on the safety of HBK-14 and HBK-15 encourage further studies concerning their effectiveness in the treatment of depression and/or anxiety disorders. PMID:27788267

  1. CO2/H(+) sensing: peripheral and central chemoreception.

    PubMed

    Lahiri, Sukhamay; Forster, Robert E

    2003-10-01

    the peripheral chemoreceptors (PC) increasing ventilation, the endogenous CO2 is blown off, making the internal milieu alkaline. With acclimatization however ventilation increases. This alkalinity is compensated in the course of time by the kidney and the acidity tends to be restored, but the acidification is not great enough to increase ventilation further. The question is what drives ventilation during acclimatization when the central pH is alkaline? The peripheral chemoreceptor came to the rescue. Its sensitivity to P(O2) is increased which continues to drive ventilation further during acclimatization at high altitude even when pH is alkaline. This link of CO2 through the O2 chemoreceptor is described in Section 4 which led to hypoxia-inducible factor (HIF-1). HIF-1 is stabilized during hypoxia, including the carotid body (CB) and brain cells, the seat of CO2 chemoreception. The cells are always hypoxic even at sea level. But how CO2 can affect the HIF-1 in the brain is considered in this section. CO2 sensing in the central chemoreceptors (CC) is given in Section 5. CO(2)/H(+) is sensed by the various structures in the central nervous system but its respiratory and cardiovascular responses are restricted only to some areas. How the membranes are depolarized by CO2 or how it works through Na(+)/Ca(2+) exchange are discussed in this section. It is obvious, however, that CO2 is not maintained constant, decreasing with altitude as alveolar P(O2) decreases and ventilation increases. Rather, it is the [H(+)] that the organism strives to maintain at the expense of CO2. But then again, [H(+)] where? Perhaps it is in the intracellular environment. Gap junctions in the carotid body and in the brain are ubiquitous. What functions they perform have been considered in Section 6. CO2 changes take place in lung alveoli where inspired air mixes with the CO2 from the returning venous blood. It is the interface between the inspired and expired air in the lungs where CO2 change is

  2. The effects of catechin isolated from green tea GMB-4 on NADPH and nitric oxide levels in endothelial cells exposed to high glucose

    PubMed Central

    Peristiowati, Yuly; Indasah, Indasah; Ratnawati, Retty

    2015-01-01

    Aim: This study aimed to investigate whether a catechin isolated from GMB-4 green tea is able to increase the reducing equivalent system and nitric oxide (NO) level in endothelial cells exposed to high glucose (HG) level. Materials and Methods: Endothelial cells were obtained from human umbilical vascular tissues. At confluent, human endothelial cells were divided into five groups, which included control (untreated), endothelial cells exposed to HG (30 mM), endothelial cells exposed to HG in the presence of green tea catechin (HG + C) at the following three doses: 0.03; 0.3; and 3 mg/ml. Analysis of NADP+, NADPH, and NO levels were performed colorimetrically. Results: This decrease in NADPH was significantly (P < 0.05) attenuated by both the 0.3 and 3 mg/ml treatments of catechin. HG level significantly decreased NO compared with untreated cells. This increase in NO was significantly attenuated by the 0.3 mg/ml dose of the catechin. Conclusion: In conclusion, catechin isolated from GMB-4 green tea prohibits the decrease in NADPH and NO in endothelial cells induced by HG. Therefore this may provide a natural therapy for attenuating the endothelial dysfunction found in diabetes mellitus. PMID:26401396

  3. Comparison of the enhancement of plasma glucose levels in type 2 diabetes Otsuka Long-Evans Tokushima Fatty rats by oral administration of sucrose or maple syrup.

    PubMed

    Nagai, Noriaki; Ito, Yoshimasa; Taga, Atsushi

    2013-01-01

    Maple syrup is used as a premium natural sweeter, and is known for being good for human health. In the present study, we investigate whether maple syrup is suitable as a sweetener in the management of type 2 diabetes using Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model of type 2 diabetes mellitus. OLETF rats develop type 2 diabetes mellitus by 30 weeks of age, and 60-week-old OLETF rats show hyperglycemia and hypoinsulinemia via pancreatic β-cell dysfunction. The administration of sucrose or maple syrup following an OGT test increased plasma glucose (PG) levels in OLETF rats, but the enhancement in PG following the oral administration of maple syrup was lower than in the case of sucrose administration in both 30- and 60-week-old OLETF rats. Although, the insulin levels in 30-week-old OLETF rats also increased following the oral administration of sucrose or maple syrup, no increase in insulin levels was seen in 60-week-old OLETF rats following the oral administration of either sucrose or maple syrup. No significant differences were observed in insulin levels between sucrose- and maple syrup-administered OLETF rats at either 30 or 60 weeks of age. The present study strongly suggests that the maple syrup may have a lower glycemic index than sucrose, which may help in the prevention of type 2 diabetes.

  4. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitor Increases Circulating Zinc-Α2-Glycoprotein Levels in Patients with Type 2 Diabetes.

    PubMed

    Liao, Xin; Wang, Xuemei; Li, Haopeng; Li, Ling; Zhang, Guohao; Yang, Mengliu; Yuan, Lei; Liu, Hua; Yang, Gangyi; Gao, Lin

    2016-01-01

    ZAG has recently been characterized as a potent metabolic regulator, but the effect of anti-diabetic agents on ZAG in humans remains unknown. Our aim was to study the effects of SGLT2 inhibitor on circulating ZAG and ADI in nT2DM. 162 subjects with nT2DM were treated by a placebo or DAPA. After 3-months of DAPA therapy, HbA1c, FBG, 2h-PBG, FFA, TG, blood pressure, BMI, WHR, body weight, FAT%, FINS, and HOMA-IR in T2DM patients decreased significantly, whereas HDL-C was significantly increased. Importantly, circulating ZAG and ADI levels in these patients were also significantly increased after DAPA therapy. Basal ZAG levels were associated with changes in BMI, FAT%, TC, HbA1c, HDL-C and ADI at post-treatment, whereas basal ADI levels were associated with changes in FAT%, TC, HbA1c, FFA and HDL-c. In vitro, DAPA treatment showed increased ZAG expression and secretion in HepG2 cells. When combined with a PPAR-γinhibitor GW9662, the effect of DAPA on ZAG was abrogated. These findings suggest that circulating ZAG can be regulated by DAPA, and DAPA promotes the expression and secretion of ZAG in the liver via the activation of PPAR-γ. The changes in ZAG induced by DAPA may play a physiologic role in enhancing insulin sensitivity. PMID:27611858

  5. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitor Increases Circulating Zinc-Α2-Glycoprotein Levels in Patients with Type 2 Diabetes

    PubMed Central

    Liao, Xin; Wang, Xuemei; Li, Haopeng; Li, Ling; Zhang, Guohao; Yang, Mengliu; Yuan, Lei; Liu, Hua; Yang, Gangyi; Gao, Lin

    2016-01-01

    ZAG has recently been characterized as a potent metabolic regulator, but the effect of anti-diabetic agents on ZAG in humans remains unknown. Our aim was to study the effects of SGLT2 inhibitor on circulating ZAG and ADI in nT2DM. 162 subjects with nT2DM were treated by a placebo or DAPA. After 3-months of DAPA therapy, HbA1c, FBG, 2h-PBG, FFA, TG, blood pressure, BMI, WHR, body weight, FAT%, FINS, and HOMA-IR in T2DM patients decreased significantly, whereas HDL-C was significantly increased. Importantly, circulating ZAG and ADI levels in these patients were also significantly increased after DAPA therapy. Basal ZAG levels were associated with changes in BMI, FAT%, TC, HbA1c, HDL-C and ADI at post-treatment, whereas basal ADI levels were associated with changes in FAT%, TC, HbA1c, FFA and HDL-c. In vitro, DAPA treatment showed increased ZAG expression and secretion in HepG2 cells. When combined with a PPAR-γinhibitor GW9662, the effect of DAPA on ZAG was abrogated. These findings suggest that circulating ZAG can be regulated by DAPA, and DAPA promotes the expression and secretion of ZAG in the liver via the activation of PPAR-γ. The changes in ZAG induced by DAPA may play a physiologic role in enhancing insulin sensitivity. PMID:27611858

  6. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitor Increases Circulating Zinc-Α2-Glycoprotein Levels in Patients with Type 2 Diabetes.

    PubMed

    Liao, Xin; Wang, Xuemei; Li, Haopeng; Li, Ling; Zhang, Guohao; Yang, Mengliu; Yuan, Lei; Liu, Hua; Yang, Gangyi; Gao, Lin

    2016-01-01

    ZAG has recently been characterized as a potent metabolic regulator, but the effect of anti-diabetic agents on ZAG in humans remains unknown. Our aim was to study the effects of SGLT2 inhibitor on circulating ZAG and ADI in nT2DM. 162 subjects with nT2DM were treated by a placebo or DAPA. After 3-months of DAPA therapy, HbA1c, FBG, 2h-PBG, FFA, TG, blood pressure, BMI, WHR, body weight, FAT%, FINS, and HOMA-IR in T2DM patients decreased significantly, whereas HDL-C was significantly increased. Importantly, circulating ZAG and ADI levels in these patients were also significantly increased after DAPA therapy. Basal ZAG levels were associated with changes in BMI, FAT%, TC, HbA1c, HDL-C and ADI at post-treatment, whereas basal ADI levels were associated with changes in FAT%, TC, HbA1c, FFA and HDL-c. In vitro, DAPA treatment showed increased ZAG expression and secretion in HepG2 cells. When combined with a PPAR-γinhibitor GW9662, the effect of DAPA on ZAG was abrogated. These findings suggest that circulating ZAG can be regulated by DAPA, and DAPA promotes the expression and secretion of ZAG in the liver via the activation of PPAR-γ. The changes in ZAG induced by DAPA may play a physiologic role in enhancing insulin sensitivity.

  7. Acute elevation of endogenous prolactin does not influence glucose homeostasis in healthy men.

    PubMed

    Vigas, M; Klimes, I; Jurcovicová, J; Jezová, D

    1993-01-01

    The diabetogenic effect of prolactin observed in patients with pathological hyperprolactinaemia was verified in healthy subjects. Plasma prolactin elevation was induced by administration of a dopamine antagonist drug domperidone (Motilium 10 mg orally, 9 subjects) and 2 h later the oral glucose tolerance test was performed. The influence of dopamine receptor stimulation on glucose homeostasis was tested by dopamine infusion (0.3 mg in saline or 20% glucose, 1 g/min for 60 min, 11 subjects). After the blockade of dopamine receptors, a significant and prolonged increase of prolactin concentration was found. However, the levels of glucose, insulin, and C-peptide either before or after the glucose load were not different from control ones. The decreased number of insulin receptors (1.97 +/- 0.41 vs 0.51 +/- 0.14 pmol per 2.10(9) red blood cells) was compensated by increased affinity (0.51 +/- 0.17 vs 1.00 +/- 0.22 Ke 10(8) mol.-1 per l]) of insulin receptors. The stimulation of dopamine receptors showed a negligible effect on glucose regulation. It may be suggested that an endogenous increase of prolactin concentration in the physiological range does not participate in the regulation of glucose homeostasis in healthy subjects. PMID:8130181

  8. Microwave Spectra and Geometries of C2H2\\cdots AuI and C2H4\\cdots AuI

    NASA Astrophysics Data System (ADS)

    Stephens, Susanna Louise; Mullaney, John Connor; Sprawling, Matt John; Tew, David Peter; Walker, Nick; Legon, Anthony

    2014-06-01

    A chirped-pulse Fourier transform microwave spectrometer has been used to measure the microwave spectra of both C2H2\\cdots AuI and C2H4\\cdots AuI. These complexes are generated via laser ablation at 532 nm of a gold surface in the presence of CF3I and either C2H2 or C2H4 and argon and are stabilized by a supersonic expansion. Rotational (A0, B0, C0) and centrifugal distortion constants (ΔJ, ΔJK and δJ) of each molecule have been determined as well the nuclear electric quadrupole coupling constants of gold and iodine atoms (χaa(Au}, χbb-χcc(Au), χaa(I) and χbb-χcc(I)). The spectrum of each molecule is consistent with a C2v structure in which the metal atom interacts with the π-orbital of the ethene or ethyne molecule. Isotopic substitutions of atoms within the C2H2 or C2H4 subunits are in progress and in conjunction with high level ab initio calculations will allow for accurate determination of the geometry of each molecule.

  9. Regulation of Blood Glucose by Hypothalamic Pyruvate Metabolism

    NASA Astrophysics Data System (ADS)

    Lam, Tony K. T.; Gutierrez-Juarez, Roger; Pocai, Alessandro; Rossetti, Luciano

    2005-08-01

    The brain keenly depends on glucose for energy, and mammalians have redundant systems to control glucose production. An increase in circulating glucose inhibits glucose production in the liver, but this negative feedback is impaired in type 2 diabetes. Here we report that a primary increase in hypothalamic glucose levels lowers blood glucose through inhibition of glucose production in rats. The effect of glucose requires its conversion to lactate followed by stimulation of pyruvate metabolism, which leads to activation of adenosine triphosphate (ATP)-sensitive potassium channels. Thus, interventions designed to enhance the hypothalamic sensing of glucose may improve glucose homeostasis in diabetes.

  10. Optical monitoring of glucose concentration

    NASA Astrophysics Data System (ADS)

    Ross, I. N.; Mbanu, A.

    1985-02-01

    A device for the monitoring of blood glucose levels is investigated. It measures the sugar concentration using the effect of the glucose on the optical refractive index. Light is transmitted along an optical fibre, and, as most of the internal rays are incident at the fibre surface at an angle less than the critical angle, the refractive index of the surrounding liquid can be calculated. The device can measure glucose concentrations with a sensitivity of better than 0.1%.

  11. Primary branching ratios for the low-temperature reaction of state-prepared N2+ with CH4, C2H2, and C2H4.

    PubMed

    Gichuhi, Wilson K; Suits, Arthur G

    2011-06-30

    Product branching ratios (BRs) are reported for ion-molecule reactions of state-prepared nitrogen cation (N(2)(+)) with methane (CH(4)), acetylene (C(2)H(2)). and ethylene (C(2)H(4)) at low temperature using a modified ion imaging apparatus. These reactions are performed in a supersonic nozzle expansion characterized by a rotational temperature of 40 ± 5K. For the N(2)(+) + CH(4) reaction, a BR of 0.83:0.17 is obtained for the dissociative charge-transfer (CT) reaction that gives rise to the formation of CH(3)(+) and CH(2)(+) product ions, respectively. The N(2)(+) + C(2)H(2) ion-molecule reaction proceeds through a nondissociative CT process that results in the sole formation of C(2)H(2)(+) product ions. The reaction of N(2)(+) with C(2)H(4) leads to the formation of C(2)H(3)(+) and C(2)H(2)(+) product ions with a BR of 0.74:0.26, respectively. The reported BR for the N(2)(+) + C(2)H(4) reaction is supportive of a nonresonant dissociative CT mechanism similar to the one that accompanies the N(2)(+) + CH(4) reaction. No dependence of the branching ratios on N(2)(+) rotational level was observed. In addition to providing direct insight into the dynamics of the state-prepared N(2)(+) ion-molecule reactions with the target neutral hydrocarbon molecules, the reported low-temperature BRs are also important for accurate modeling of the nitrogen-dominated upper atmosphere of Saturn's moon, Titan.

  12. Analysis of glucose metabolism in farmed European sea bass (Dicentrarchus labrax L.) using deuterated water.

    PubMed

    Viegas, Ivan; Mendes, Vera M; Leston, Sara; Jarak, Ivana; Carvalho, Rui A; Pardal, Miguel Â; Manadas, Bruno; Jones, John G

    2011-11-01

    Glucose metabolism in free-swimming fasted and fed seabass was studied using deuterated water ((2)H(2)O). After transfer to seawater enriched with 4.9% (2)H(2)O for 6-h or for 72-h, positional and mole percent enrichment (MPE) of plasma glucose and water were quantified by (2)H NMR and ESI-MS/MS. Plasma water (2)H-enrichment reached that of seawater within 6h. In both fasted and fed fish, plasma glucose MPE increased asymptotically attaining ~55% of plasma water enrichment by 72 h. The distribution of (2)H-enrichment between the different glucose positions was relatively uniform. The gluconeogenic contribution to glucose that was synthesized during (2)H(2)O administration was estimated from the ratio of position 5 and 2 glucose enrichments. For both fed and fasted fish, gluconeogenesis accounted for 98±1% of the glucose that was produced during the 72-h (2)H(2)O administration period. For fasted fish, gluconeogenic contributions measured after 6h were identical to 72-h values (94±3%). For fed fish, the apparent gluconeogenic contribution at 6-h was significantly lower compared to 72-h (79±5% versus 98±1%, p<0.05). This may reflect a brief augmentation of gluconeogenic flux by glycogenolysis after feeding and/or selective enrichment of plasma glucose position 2 via futile glucose-glucose-6-phosphate cycling. PMID:21777686

  13. Rate Coefficients of C2H with C2H4, C2H6, and H2 from 150 to 359 K

    NASA Technical Reports Server (NTRS)

    Opansky, Brian J.; Leone, Stephen R.

    1996-01-01

    Rate coefficients for the reactions C2H with C2H4, C2H6, and H2 are measured over the temperature range 150-359 K using transient infrared laser absorption spectroscopy. The ethynyl radical is formed by photolysis of C2H2 with a pulsed excimer laser at 193 nm, and its transient absorption is monitored with a color center laser on the Q(sub 11)(9) line of the A(sup 2) Pi-Chi(sup 2) Sigma transition at 3593.68 cm(exp -1). Over the experimental temperature range 150-359 K the rate constants of C2H with C2H4, C2H6, and H2 can be fitted to the Arrhenius expressions k(sub C2H4) = (7.8 +/- 0.6) x 10(exp -11) exp[(134 +/- 44)/T], k(sub C2H6) = (3.5 +/- 0.3) x 10(exp -11) exp[(2.9 +/- 16)/T], and k(sub H2) = (1.2 +/- 0.3) x 10(exp -11) exp[(-998 +/- 57)]/T cm(exp 3) molecule(exp -1) sec(exp -1). The data for C2H with C2H4 and C2H6 indicate a negligible activation energy to product formation shown by the mild negative temperature dependence of both reactions. When the H2 data are plotted together with the most recent high-temperature results from 295 to 854 K, a slight curvature is observed. The H2 data can be fit to the non-Arrhenius form k(sub H2) = 9.2 x 10(exp -18) T(sup 2.17 +/- 0.50) exp[(-478 +/- 165)/T] cm(exp 3) molecules(exp -1) sec(exp -1). The curvature in the Arrhenius plot is discussed in terms of both quantum mechanical tunneling of the H atom from H2 to the C2H radical and bending mode contributions to the partition function.

  14. An XPS investigation of the interaction of CH 4, C 2H 2, C 2H 4 and C 2H 6 with a barium surface

    NASA Astrophysics Data System (ADS)

    Verhoeven, J. A. Th.; Van Doveren, H.

    1982-12-01

    The generation and pumping of hydrocarbon gases by a barium getter layer in electronic vacuum devices has been investigated by characterizing a barium film in an ultra high vacuum equipment by means of XPS before, during and after exposures to respectively CH 4, C 2H 2, C 2H 4 and C 2H 6. The reaction conditions (temperatures and pretreatment of the surface, background pressure and exposure doses) closely resemble those in electronic vacuum devices. The probability that a barium layer will react with CH 4 and C 2H 6 was below the detection limit. C 2H 2 and C 2H 4 give rise to the formation of barium carbide compounds and with a high reaction probability. In addition, the interaction with C 2H 2 reveals the formation of carbon-containing surface complexes. Investigations by means of XPS on the C Is spectral features show the presence of at least two groups of carbon-containing surface complexes, which behave differently in response to moderate heating and to an exposure to water vapour. In cases where oxygen is present at the surface, oxygen-containing (hydro) carbon adsorbates are present too. XPS observations of the behaviour of these surface complexes show similarities with reaction steps in the mechanisms proposed for the hydrogenation of CO in the Fischer-Tropsch synthesis of hydrocarbons. Low-pressure hydrogenation of these adsorbates containing hydrocarbons and oxygen can led to the formation of hydrocarbon gases in electronic vacuum devices.

  15. Vibrational and Rotational Spectroscopy of CD_2H^+

    NASA Astrophysics Data System (ADS)

    Asvany, Oskar; Jusko, Pavol; Brünken, Sandra; Schlemmer, Stephan

    2016-06-01

    The lowest rotational levels (J=0-5) of the CD_2H^+ ground state have been probed by high-resolution rovibrational and pure rotational spectroscopy in a cryogenic 22-pole ion trap. For this, the ν_1 rovibrational band has been revisited, detecting 107 transitions, among which 35 are new. The use of a frequency comb system allowed to measure the rovibrational transitions with high precision and accuracy, typically better than 1 MHz. The high precision has been confirmed by comparing combination differences in the ground and vibrationally excited state. For the ground state, this allowed for equally precise predictions of pure rotational transitions, 24 of which have been measured directly by a novel IR - mm-wave double resonance method. M.-F. Jagod et al, J. Molec. Spectrosc. 153, 666, 1992 S. Gartner et al, J. Phys. Chem. A 117, 9975, 2013

  16. Doping dependent plasmon dispersion in 2 H -transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Müller, Eric; Büchner, Bernd; Habenicht, Carsten; König, Andreas; Knupfer, Martin; Berger, Helmuth; Huotari, Simo

    2016-07-01

    We report the behavior of the charge carrier plasmon of 2 H -transition metal dichalcogenides (TMDs) as a function of intercalation with alkali metals. Intercalation and concurrent doping of the TMD layers have a substantial impact on plasmon energy and dispersion. While the plasmon energy shifts are related to the intercalation level as expected within a simple homogeneous electron gas picture, the plasmon dispersion changes in a peculiar manner independent of the intercalant and the TMD materials. Starting from a negative dispersion, the slope of the plasmon dispersion changes sign and grows monotonously upon doping. Quantitatively, the increase of this slope depends on the orbital character (4 d or 5 d ) of the conduction bands, which indicates a decisive role of band structure effects on the plasmon behavior.

  17. Leptin Gene Epigenetic Adaptation to Impaired Glucose Metabolism During Pregnancy

    PubMed Central

    Bouchard, Luigi; Thibault, Stéphanie; Guay, Simon-Pierre; Santure, Marta; Monpetit, Alexandre; St-Pierre, Julie; Perron, Patrice; Brisson, Diane

    2010-01-01

    OBJECTIVE To verify whether the leptin gene epigenetic (DNA methylation) profile is altered in the offspring of mothers with gestational impaired glucose tolerance (IGT). RESEARCH DESIGN AND METHODS Placental tissues and maternal and cord blood samples were obtained from 48 women at term including 23 subjects with gestational IGT. Leptin DNA methylation, gene expression levels, and circulating concentration were measured using the Sequenom EpiTYPER system, quantitative real-time RT-PCR, and enzyme-linked immunosorbent assay, respectively. IGT was assessed after a 75-g oral glucose tolerance test (OGTT) at 24–28 weeks of gestation. RESULTS We have shown that placental leptin gene DNA methylation levels were correlated with glucose levels (2-h post-OGTT) in women with IGT (fetal side: ρ = −0.44, P ≤ 0.05; maternal side: ρ = 0.53, P ≤ 0.01) and with decreased leptin gene expression (n = 48; ρ ≥ −0.30, P ≤ 0.05) in the whole cohort. Placental leptin mRNA levels accounted for 16% of the variance in maternal circulating leptin concentration (P < 0.05). CONCLUSIONS IGT during pregnancy was associated with leptin gene DNA methylation adaptations with potential functional impacts. These epigenetic changes provide novel mechanisms that could contribute to explaining the detrimental health effects associated with fetal programming, such as long-term increased risk of developing obesity and type 2 diabetes. PMID:20724651

  18. Glucose repression in Saccharomyces cerevisiae.

    PubMed

    Kayikci, Ömur; Nielsen, Jens

    2015-09-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression.

  19. Glucose repression in Saccharomyces cerevisiae

    PubMed Central

    Kayikci, Ömur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. PMID:26205245

  20. Diagnostic value of fasting capillary glucose, fructosamine and glycosylated haemoglobin in detecting diabetes and other glucose tolerance abnormalities compared to oral glucose tolerance test.

    PubMed

    Herdzik, E; Safranow, K; Ciechanowski, K

    2002-04-01

    New diagnostic criteria for diabetes mellitus recommend lowering of the fasting plasma glucose to 7.0 mmol/l. In contrast to recommendations of the American Diabetes Association (ADA), WHO recommends using the oral glucose tolerance test (OGTT) in clinical practice. In this study. based on OGTT results and WHO 1998 criteria, we determined if measuring fasting capillary glycaemia (FCG) along with fructosamine and/or glycosylated haemoglobin allows the detection of glucose tolerance abnormalities better than FCG alone. OGTT was performed in 538 patients. Serum fructosamine was determined in 480 of the patients, and glycosylated haemoglobin in 234 of the patients. According to WHO 1998 criteria, the patients were divided into groups due to glucose tolerance abnormalities. Fructosamine correlated stronger with 2-h post-load glucose concentrations than with FCG. HbAlc correlated stronger with FCG than with 2-h post-load glucose. Combined use of fructosamine and FCG predicted 2-h post-load glucose better than combined use of FCG and HbA1c. Receiver operating characteristic curve analyses showed that FCG was the best criterion in discriminating diabetes. Combined use of FCG and fructosamine slightly improved the ability to discriminate glucose tolerance abnormalities from normal glucose tolerance. FCG is the most effective predictor of 2-h post-load glucose and the best criterion for discriminating diabetes and other glucose tolerance abnormalities from normal glucose tolerance. Fructosamine is a potentially useful post-load glycaemia index. OGTT is irreplaceable in identification of patients with high post-load glycaemia.

  1. Increased Serum Levels of Anti-Carbamylated 78-kDa Glucose-Regulated Protein Antibody in Patients with Rheumatoid Arthritis.

    PubMed

    Yu, Hui-Chun; Lai, Pei-Hsuan; Lai, Ning-Sheng; Huang, Hsien-Bin; Koo, Malcolm; Lu, Ming-Chi

    2016-01-01

    The objective of this study was to investigate the presence and titer of anti-carbamylated 78-kDa glucose-regulated protein (anti-CarGRP78) antibody in serum from controls, and patients with rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and primary Sjögren syndrome (pSS). Thirty-three RA patients, 20 SLE patients, 20 pSS patients, and 20 controls were enrolled from our outpatient clinic. GRP78 was cloned and carbamylated. Serum titers of anti- cyclic citrullinated peptides (anti-CCP), anti-GRP78, and anti-CarGRP78 were measured with an enzyme-linked immunosorbent assay. No differences in serum titers of anti-GRP78 antibody in patients with RA, SLE, or pSS compared with the controls were observed. Serum levels of anti-carGRP78 antibody in patients with RA, but not SLE or pSS, were significantly higher compared with the controls (OD405 0.15 ± 0.08 versus 0.11 ± 0.03, p = 0.033). There was a positive correlation between the serum levels of anti-GRP78 antibody, but not anti-CarGRP78 antibody, with the levels of anti-CCP antibody in patients with RA. Both anti-GRP78 and anti-carGRP78 antibodies failed to correlate with C-reactive protein levels in patients with RA. In conclusion, we demonstrated the presence of anti-CarGRP78 antibody in patients with RA. In addition, the serum titer of anti-CarGRP78 antibody was significantly elevated in patients with RA compared with the controls. Anti-CarGRP78 antibody could also be detected in patients with SLE or pSS. PMID:27618024

  2. Increased Serum Levels of Anti-Carbamylated 78-kDa Glucose-Regulated Protein Antibody in Patients with Rheumatoid Arthritis

    PubMed Central

    Yu, Hui-Chun; Lai, Pei-Hsuan; Lai, Ning-Sheng; Huang, Hsien-Bin; Koo, Malcolm; Lu, Ming-Chi

    2016-01-01

    The objective of this study was to investigate the presence and titer of anti-carbamylated 78-kDa glucose-regulated protein (anti-CarGRP78) antibody in serum from controls, and patients with rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and primary Sjögren syndrome (pSS). Thirty-three RA patients, 20 SLE patients, 20 pSS patients, and 20 controls were enrolled from our outpatient clinic. GRP78 was cloned and carbamylated. Serum titers of anti- cyclic citrullinated peptides (anti-CCP), anti-GRP78, and anti-CarGRP78 were measured with an enzyme-linked immunosorbent assay. No differences in serum titers of anti-GRP78 antibody in patients with RA, SLE, or pSS compared with the controls were observed. Serum levels of anti-carGRP78 antibody in patients with RA, but not SLE or pSS, were significantly higher compared with the controls (OD405 0.15 ± 0.08 versus 0.11 ± 0.03, p = 0.033). There was a positive correlation between the serum levels of anti-GRP78 antibody, but not anti-CarGRP78 antibody, with the levels of anti-CCP antibody in patients with RA. Both anti-GRP78 and anti-carGRP78 antibodies failed to correlate with C-reactive protein levels in patients with RA. In conclusion, we demonstrated the presence of anti-CarGRP78 antibody in patients with RA. In addition, the serum titer of anti-CarGRP78 antibody was significantly elevated in patients with RA compared with the controls. Anti-CarGRP78 antibody could also be detected in patients with SLE or pSS. PMID:27618024

  3. Correlations of fasting and postprandial blood glucose increments to the overall diurnal hyperglycemic status in type 2 diabetic patients: variations with levels of HbA1c.

    PubMed

    Kikuchi, Kaori; Nezu, Uru; Shirakawa, Jun; Sato, Koichiro; Togashi, Yu; Kikuchi, Taisuke; Aoki, Kazutaka; Ito, Yuzuru; Kimura, Mari; Terauchi, Yasuo

    2010-01-01

    Studies from overseas have indicated that postprandial glucose excursions are predominant in subjects with moderate hyperglycemia, while fasting hyperglycemia become the predominant abnormality with worsening of hyperglycemia; however, few studies have yet investigated the correlation between HbA1c and fasting and/or postprandial hyperglycemia in Japanese subjects. We investigated the correlation between fasting and postprandial hyperglycemia and the overall diabetic status, as assessed by measurement of HbA1c, in Japanese patients with type 2 diabetes. Blood glucose (BG) concentrations were determined in the fasting state (8:00 A.M.), during the postprandial phases (at 10:30 A.M., 2:30 P.M. and 8:30 P.M.) and during the postabsorptive periods (at 11:30 A.M. and 17:30 P.M.) in 66 patients with type 2 diabetes who were not being treated with prandial/premixed insulins or alpha-glucosidase inhibitors. The areas under the curve above the fasting BG concentrations (AUC1) and over 110 mg/dl (AUC2) were calculated for further evaluation of the correlations of the postprandial (AUC1) and fasting (AUC2 - AUC1) BG increments to the overall diurnal hyperglycemic status. Subjects were separated into two groups using the HbA1c cutoff value of 8%. The fasting BG was not correlated with the HbA1c in the group with a HbA1c values of less than 8% (r = 0.125, p = 0.473). On the other hand, fasting hyperglycemia was strongly correlated with the HbA1c level in the group with HbA1c values of over 8.0% (r = 0.406, p = 0.023). Furthermore, postprandial hyperglycemia was strongly correlated with the HbA1c in the group with HbA1c levels less than 8.0% (r = 0.524, p = 0.001). Thus, there existed a progressive shift in the contribution of fasting and postprandial hyperglycemia to the overall hyperglycemic status with progression from moderate to severe diabetes mellitus in Japanese type 2 diabetic patients.

  4. Hematological indices and their correlation with fasting blood glucose level and anthropometric measurements in type 2 diabetes mellitus patients in Gondar, Northwest Ethiopia

    PubMed Central

    Biadgo, Belete; Melku, Mulugeta; Abebe, Solomon Mekonnen; Abebe, Molla

    2016-01-01

    Background Diabetes mellitus is (DM) a global public health problem and a complex disease characterized by chronic hyperglycemia that leads to long-term macrovascular and microvascular complications. Recent studies have reported the role of hematological indices in contributing to the vascular injury in diabetic patients. Thus, the aim of this study was to determine hematological indices and their correlation with fasting blood glucose level and anthropometric measurement in type 2 DM patients in comparison with healthy controls. Methods A comparative cross-sectional study was conducted at the chronic illness clinic of Gondar University Hospital from February to April 2015. A total of 296 participants (148 cases and 148 healthy controls) were selected using systematic random sampling technique. Data were collected using a pretested structured questionnaire. Fasting blood glucose levels and hematological indices were determined by using Bio Systems A25 and Sysmex-KX 21N analyzers, respectively. Independent sample t-test, Mann–Whitney U-test, and correlation statistics were used. A P-value <0.05 was considered as statistically significant. Result There was significant difference in red blood cell distribution width (47.3±2.6 fL vs 45.2±3 fL) between diabetic patients and controls. Total white blood cells in 103/µL (6.59±1.42 vs 5.56±1.38), absolute lymphocyte count in 103/µL (2.60±0.70 vs 2.04±0.63), and absolute neutrophil count in 103/µL (3.57±1.46 vs 3.11±1.04) increased significantly in diabetic patients compared with controls, respectively. Among platelet indices, mean platelet volume (10.4±1.1 fL vs 9.9±1.1 fL) and platelet distribution width (14.5±2.1 fL vs 13.4 ±2.1 fL) were found to be significantly increased in the diabetic patients (P<0.05). Anthropometric measurements significantly correlated with white blood cell and platelet indices. Conclusion The study showed statistically significant difference in some hematological parameters of

  5. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  6. Comparison of Plasma Glucose and Gut Hormone Levels Between Drinking Enteral Formula Over a Period of 5 and 20 Minutes in Japanese Patients With Type 2 Diabetes: A Pilot Study

    PubMed Central

    Kamiko, Kazunari; Aoki, Kazutaka; Kamiyama, Hiroshi; Taguri, Masataka; Terauchi, Yasuo

    2016-01-01

    Background A fast eating speed is reportedly associated with obesity, fatty liver, and metabolic syndrome. As a comparison of postprandial glucose levels after eating quickly or slowly has not been previously reported for Japanese patients with type 2 diabetes, we evaluated the impact of the fast or slow ingestion of an enteral formula (liquid meal) on glucose metabolism. Methods Ten Japanese patients with type 2 diabetes who had been hospitalized at our hospital were enrolled. All the subjects received an enteral formula for breakfast. The study was performed over a 2-day period in each subject (day 1: enteral formula was consumed over a 5-minute period; day 2: enteral formula was consumed over a 20-minute period). The subjects were requested to fast for at least 12 hours before eating breakfast, and blood samples were collected at 0, 30, 60, and 120 min after the start of breakfast. Results The areas under the curve (AUCs) of the plasma glucose, serum insulin, plasma active ghrelin, glucagon-like peptide-1 (GLP-1), plasma total glucose-dependent insulinotropic polypeptide (GIP), and serum total peptide YY (PYY) levels were not significantly changed by intake over a 5-minute or 20-minute period. Conclusions Eating quickly per se probably does not affect postprandial glucose excursions, but the increased energy intake resulting from eating quickly may increase the body weight and increase insulin resistance. Eating quickly may increase energy intake and worsen long-term metabolic parameters.

  7. Comparison of Plasma Glucose and Gut Hormone Levels Between Drinking Enteral Formula Over a Period of 5 and 20 Minutes in Japanese Patients With Type 2 Diabetes: A Pilot Study

    PubMed Central

    Kamiko, Kazunari; Aoki, Kazutaka; Kamiyama, Hiroshi; Taguri, Masataka; Terauchi, Yasuo

    2016-01-01

    Background A fast eating speed is reportedly associated with obesity, fatty liver, and metabolic syndrome. As a comparison of postprandial glucose levels after eating quickly or slowly has not been previously reported for Japanese patients with type 2 diabetes, we evaluated the impact of the fast or slow ingestion of an enteral formula (liquid meal) on glucose metabolism. Methods Ten Japanese patients with type 2 diabetes who had been hospitalized at our hospital were enrolled. All the subjects received an enteral formula for breakfast. The study was performed over a 2-day period in each subject (day 1: enteral formula was consumed over a 5-minute period; day 2: enteral formula was consumed over a 20-minute period). The subjects were requested to fast for at least 12 hours before eating breakfast, and blood samples were collected at 0, 30, 60, and 120 min after the start of breakfast. Results The areas under the curve (AUCs) of the plasma glucose, serum insulin, plasma active ghrelin, glucagon-like peptide-1 (GLP-1), plasma total glucose-dependent insulinotropic polypeptide (GIP), and serum total peptide YY (PYY) levels were not significantly changed by intake over a 5-minute or 20-minute period. Conclusions Eating quickly per se probably does not affect postprandial glucose excursions, but the increased energy intake resulting from eating quickly may increase the body weight and increase insulin resistance. Eating quickly may increase energy intake and worsen long-term metabolic parameters. PMID:27635181

  8. Glucose-sensing neurons of the hypothalamus

    PubMed Central

    Burdakov, Denis; Luckman, Simon M; Verkhratsky, Alexei

    2005-01-01

    Specialized subgroups of hypothalamic neurons exhibit specific excitatory or inhibitory electrical responses to changes in extracellular levels of glucose. Glucose-excited neurons were traditionally assumed to employ a ‘β-cell’ glucose-sensing strategy, where glucose elevates cytosolic ATP, which closes KATP channels containing Kir6.2 subunits, causing depolarization and increased excitability. Recent findings indicate that although elements of this canonical model are functional in some hypothalamic cells, this pathway is not universally essential for excitation of glucose-sensing neurons by glucose. Thus glucose-induced excitation of arcuate nucleus neurons was recently reported in mice lacking Kir6.2, and no significant increases in cytosolic ATP levels could be detected in hypothalamic neurons after changes in extracellular glucose. Possible alternative glucose-sensing strategies include electrogenic glucose entry, glucose-induced release of glial lactate, and extracellular glucose receptors. Glucose-induced electrical inhibition is much less understood than excitation, and has been proposed to involve reduction in the depolarizing activity of the Na+/K+ pump, or activation of a hyperpolarizing Cl− current. Investigations of neurotransmitter identities of glucose-sensing neurons are beginning to provide detailed information about their physiological roles. In the mouse lateral hypothalamus, orexin/hypocretin neurons (which promote wakefulness, locomotor activity and foraging) are glucose-inhibited, whereas melanin-concentrating hormone neurons (which promote sleep and energy conservation) are glucose-excited. In the hypothalamic arcuate nucleus, excitatory actions of glucose on anorexigenic POMC neurons in mice have been reported, while the appetite-promoting NPY neurons may be directly inhibited by glucose. These results stress the fundamental importance of hypothalamic glucose-sensing neurons in orchestrating sleep-wake cycles, energy expenditure and

  9. Chlorophytum borivilianum Root Extract Maintains near Normal Blood Glucose, Insulin and Lipid Profile Levels and Prevents Oxidative Stress in the Pancreas of Streptozotocin-Induced Adult Male Diabetic Rats

    PubMed Central

    Giribabu, Nelli; Kumar, Kilari Eswar; Rekha, Somesula Swapna; Muniandy, Sekaran; Salleh, Naguib

    2014-01-01

    The effect of C. borivilianum root on blood glucose, glycated hemoglobin (HbAIc), insulin and lipid profile levels in diabetes mellitus are not fully understood. This study therefore investigated the effect of C. borivilianum root on the above parameters and oxidative stress of the pancreas in diabetes. Methods: C. borivilianum root aqueous extract (250 and 500 mg/kg/day) was administered to streptozotocin (STZ)-induced male diabetic rats for 28 days. Body weight, blood glucose, HbA1c, insulin, lipid profile levels and glucose homeostasis indices were determined. Histopathological changes and oxidative stress parameters i.e. lipid peroxidation (LPO) and antioxidant enzymes activity levels of the pancreas were investigated. Results: C. borivilianum root extract treatment to diabetic rats maintained near normal body weight, blood glucose, HbA1c, lipid profile and insulin levels with higher HOMA-β cell functioning index, number of Islets/pancreas, number of β-cells/Islets however with lower HOMA-insulin resistance (IR) index as compared to non-treated diabetic rats. Negative correlations between serum insulin and blood glucose, HbA1c, triglyceride (TG) and total cholesterol (TC) levels were observed. C. borivilianum root extract administration prevented the increase in lipid peroxidation and the decrease in activity levels of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) with mild histopathological changes in the pancreas of diabetic rats. Conclusions: C. borivilianum root maintains near normal levels of these metabolites and prevented oxidative stress-induced damage to the pancreas in diabetes. PMID:25249786

  10. Secular trends in serum lipid levels of a Middle Eastern adult population; 10 years follow up in Tehran lipid and glucose study

    PubMed Central

    2014-01-01

    Background To examine trends in the population levels of serum lipids among a Middle-Eastern adult population with high prevalence of dyslipidemia. Methods A population-based cohort of adult Iranian participants, aged ≥20 years underwent four consecutive examinations between 1999–2001 and 2008–2011. Trends in age and multivariate-adjusted mean lipid levels were calculated using generalized estimating equations. Results At each of the 4 assessments, there were significant decreases in levels of total cholesterol (TC) (multivariate-adjusted means, 5.21 vs. 4.88 mmol/L in men; 5.42 vs. 5.07 mmol/L in women), triglycerides (TGs) (2.11 vs. 1.94 mmol/L in men; 1.88 vs. 1.74 mmol/L in women), and an increase in HDL-C level in both genders (0.95 vs. 1.058 mmol/L in men; 1.103 vs. 1.246 mmol/L in women) in multivariate analyses (all Ps <0.001); however, body mass index (BMI) significantly increased simultaneously (25.92 vs. 27.45 kg/m2 in men; 27.76 vs. 30.02 kg/m2 in women) (P < 0.001). There were significant (P < 0.001) increases in fasting plasma glucose (FPG) levels only among men (5.35 vs. 5.73 mmol/L). Results did not change after excluding participants that had cardiovascular disease or used lipid lowering drugs during follow-up. There were significant decreases in the prevalence of hypercholesterolemia, low HDL-C, hypertriglyceridemia (all Ps <0.001) during follow-up. Furthermore, the consumption of lipid lowering drugs significantly increased (P <0.001). Conclusion During a 10 years follow-up, favorable trends were observed in the population levels of TC, triglycerides, HDL-C, which could not be fully accounted for by the increase observed in the consumption of lipid lowering drugs. These favorable trends were counterbalanced by the progressive increase in general obesity and FPG level. PMID:24456699

  11. The effects of Low Level LASER Therapy (LLLT) on blood glucose levels in patients with Diabetes Mellitus type I : a case report

    NASA Astrophysics Data System (ADS)

    Longo, Leonardo; Postiglione, Marco; Buccioni, Tommaso; Longo, Diego

    2009-06-01

    Diabetes Mellitus (DM) is a widespread disease and a serious public health problem. Low Level LASER Therapy (LLLT) has been found to reduce glycaemia on DM type 1 patients, an observation requiring further research especially as regards characteristics of treatment protocol. The purpose of this work is to continue the line of research and propose a specific protocol for LLLT use. In spring 2008 a 48 year old man, DM type 1 insulin dependent patient has been submitted to 810 nm wavelength LLLT treatment in specific body areas daily for 3 weeks and then once a week for 4 weeks until normalization of glycaemia. Medical supervision was present before, during and after application. Insulin was reduced progressively and then stopped. A gradual reduction of glycaemia was noted during the course of treatment. In successive follow-ups a reduction in HbA1c was noted. Results confirm previous observations and need for further research on large cohorts. The indication that LASER may become a valuable addition to DM type 1 treatment is confirmed and the proposed protocol appears to be effective. The case presented merits review since it reports a therapeutic challenge, contributes to advance in medical science and spawns research.

  12. 14C2H4: Its Incorporation and Metabolism by Pea Seedlings under Aseptic Conditions 1

    PubMed Central

    Beyer, Elmo M.

    1975-01-01

    The effects of various treatments on the recently reported system in pea (Pisum sativum cv. Alaska), which results in (a) the incorporation of 14C2H4 into the tissue and (b) the conversion of 14C2H4 to 14CO2, was investigated using 2-day-old etiolated seedlings which exhibit a maximum response. Heat treatment (80 C, 1 min) completely inhibited both a and b, whereas homogenization completely inhibited b but only partially inhibited a. Detaching the cotyledons from the root-shoot axis immediately before exposing the detached cotyledons together with the root-shoot axis to 14C2H4 markedly reduced both a and b. Increasing the 14C2H4 concentration from 0.14 to over 100 μl/l progressively increased the rate of a and b with tissue incorporation being greater than 14C2H4 to 14CO2 conversion only below 0.3 μl/l 14C2H4. Reduction of the O2 concentration reduced both a and b, with over 99% inhibition occurring under anaerobic conditions. The addition of CO2 (5%) severely inhibited 14C2H4 to 14CO2 conversion without significantly affecting tissue incorporation. Exposure of etiolated seedlings to fluorescent light during 14C2H4 treatment was without effect. Similarly, indoleacetic acid, gibberellic acid, benzyladenine, abscisic acid, and dibutyryl cyclic adenosine monophosphate had no significant effect on either a or b. The possibilities that the incorporation of 14C2H4 into pea tissues and its conversion to 14CO2 is linked to ethylene action, or that it represents a means of reducing the endogenous ethylene level, are discussed. Several problems encountered with the use of polyethylene vials, rubber serum stoppers, Clorox, and microbial contamination are also described. Images PMID:16659286

  13. C(2)H(4): Its Incorporation and Metabolism by Pea Seedlings under Aseptic Conditions.

    PubMed

    Beyer, E M

    1975-08-01

    The effects of various treatments on the recently reported system in pea (Pisum sativum cv. Alaska), which results in (a) the incorporation of (14)C(2)H(4) into the tissue and (b) the conversion of (14)C(2)H(4) to (14)CO(2), was investigated using 2-day-old etiolated seedlings which exhibit a maximum response. Heat treatment (80 C, 1 min) completely inhibited both a and b, whereas homogenization completely inhibited b but only partially inhibited a. Detaching the cotyledons from the root-shoot axis immediately before exposing the detached cotyledons together with the root-shoot axis to (14)C(2)H(4) markedly reduced both a and b. Increasing the (14)C(2)H(4) concentration from 0.14 to over 100 mul/l progressively increased the rate of a and b with tissue incorporation being greater than (14)C(2)H(4) to (14)CO(2) conversion only below 0.3 mul/l (14)C(2)H(4). Reduction of the O(2) concentration reduced both a and b, with over 99% inhibition occurring under anaerobic conditions. The addition of CO(2) (5%) severely inhibited (14)C(2)H(4) to (14)CO(2) conversion without significantly affecting tissue incorporation. Exposure of etiolated seedlings to fluorescent light during (14)C(2)H(4) treatment was without effect. Similarly, indoleacetic acid, gibberellic acid, benzyladenine, abscisic acid, and dibutyryl cyclic adenosine monophosphate had no significant effect on either a or b.The possibilities that the incorporation of (14)C(2)H(4) into pea tissues and its conversion to (14)CO(2) is linked to ethylene action, or that it represents a means of reducing the endogenous ethylene level, are discussed.Several problems encountered with the use of polyethylene vials, rubber serum stoppers, Clorox, and microbial contamination are also described. PMID:16659286

  14. Hyperfine excitation of N2H+ by H2: towards a revision of N2H+ abundance in cold molecular clouds

    NASA Astrophysics Data System (ADS)

    Lique, François; Daniel, Fabien; Pagani, Laurent; Feautrier, Nicole

    2015-01-01

    The modelling of emission spectra of molecules seen in interstellar clouds requires the knowledge of collisional rate coefficients. Among the commonly observed species, N2H+ is of particular interest since it was shown to be a good probe of the physical conditions of cold molecular clouds. Thus, we have calculated hyperfine-structure-resolved excitation rate coefficients of N2H+(X1Σ+) by H2(j = 0), the most abundant collisional partner in the cold interstellar medium. The calculations are based on a new potential energy surface, obtained from highly correlated ab initio calculations. State-to-state rate coefficients between the first hyperfine levels were calculated, for temperatures ranging from 5 to 70 K. By comparison with previously published N2H+-He rate coefficients, we found significant differences which cannot be reproduced by a simple scaling relationship. As a first application, we also performed radiative transfer calculations, for physical conditions typical of cold molecular clouds. We found that the simulated line intensities significantly increase when using the new H2 rate coefficients, by comparison with the predictions based on the He rate coefficients. In particular, we revisited the modelling of the N2H+ emission in the LDN 183 core, using the new collisional data, and found that all three of the density, gas kinetic temperature and N2H+ abundance had to be revised.

  15. Heterogeneous reconstitution of the PQQ-dependent glucose dehydrogenase immobilized on an electrode: a sensitive strategy for PQQ detection down to picomolar levels.

    PubMed

    Zhang, Ling; Miranda-Castro, Rebeca; Stines-Chaumeil, Claire; Mano, Nicolas; Xu, Guobao; Mavré, François; Limoges, Benoît

    2014-02-18

    A highly sensitive electroanalytical method for determination of PQQ in solution down to subpicomolar concentrations is proposed. It is based on the heterogeneous reconstitution of the PQQ-dependent glucose dehydrogenase (PQQ-GDH) through the specific binding of its pyrroloquinoline quinone (PQQ) cofactor to the apoenzyme anchored on an electrode surface. It is shown from kinetics analysis of both the enzyme catalytic responses and enzyme surface-reconstitution process (achieved by cyclic voltammetry under redox-mediated catalysis) that the selected immobilization strategy (i.e., through an avidin/biotin linkage) is well-suited to immobilize a nearly saturated apoenzyme monolayer on the electrode surface with an almost fully preserved PQQ binding properties and catalytic activity. From measurement of the overall rate constants controlling the steady-state catalytic current responses of the surface-reconstituted PQQ-GDH and determination of the PQQ equilibrium binding (Kb = 2.4 × 10(10) M(-1)) and association rate (kon = 2 × 10(6) M(-1) s(-1)) constants with the immobilized apoenzyme, the analytical performances of the method could be rationally evaluated, and the signal amplification for PQQ detection down to the picomolar levels is well-predicted. These performances outperform by several orders of magnitude the direct electrochemical detection of PQQ in solution and by 1 to 2 orders the detection limits previously achieved by UV-vis spectroscopic detection of the homogeneous PQQ-GDH reconstitution.

  16. Effects of extracts of lupine seed on blood glucose levels in glucose resistant mice: antihyperglycemic effects of Lupinus albus (white lupine, Egypt) and Lupinus caudatus (tailcup lupine, Mesa Verde National Park).

    PubMed

    Knecht, Kathryn T; Nguyen, Hoa; Auker, Adrienne D; Kinder, David H

    2006-01-01

    Lupine is a medicinal food plant with potential value in the management of diabetes. In white mice, extracts of seeds of the white lupine [Lupinus albus (L. termis L.)] were associated with increased tolerance to an oral glucose bolus. Antihyperglycemic activity was present in extracts of the whole seed but not extracts of the seed coat, and was not detected when glucose was administered intraperitoneally rather than orally. However, in contrast to results seen with the prescription drug, acarbose, lupine extract did not appear to increase the bulk or carbohydrate content of the feces. Antihyperglycemic activity was also seen in extracts of the tailcup lupine (L. caudatus) found in the Four Corners Region of the United States. PMID:17317651

  17. Production of a mouse strain with impaired glucose tolerance by systemic heterozygous knockout of the glucokinase gene and its feasibility as a prediabetes model.

    PubMed

    Saito, Mikako; Kaneda, Asako; Sugiyama, Tae; Iida, Ryousuke; Otokuni, Keiko; Kaburagi, Misako; Matsuoka, Hideaki

    2015-01-01

    Exon II of glucokinase (Gk) was deleted to produce a systemic heterozygous Gk knockout (Gk(+/-)) mouse. The relative expression levels of Gk in the heart, lung, liver, stomach, and pancreas in Gk(+/-) mice ranged from 0.41-0.68 versus that in wild (Gk(+/+)) mice. On the other hand, its expression levels in the brain, adipose tissue, and muscle ranged from 0.95-1.03, and its expression levels in the spleen and kidney were nearly zero. Gk knockout caused no remarkable off-target effect on the expression of 7 diabetes causing genes (Shp, Hnf1a, Hnf1b, Irs1, Irs2, Kir6.2, and Pdx1) in 10 organs. The glucose tolerance test was conducted to determine the blood glucose concentrations just after fasting for 24 h (FBG) and at 2 h after high-glucose application (GTT2h). The FBG-GTT2h plots obtained with the wild strain fed the control diet (CD), Gk(+/-) strain fed the CD, and Gk(+/-) strain fed the HFD were distributed in separate areas in the FBG-GTT2h diagram. The respective areas could be defined as the normal state, prediabetes state, and diabetes state, respectively. Based on the results, the criteria for prediabetes could be defined for the Gk(+/-) strain developed in this study. PMID:25765873

  18. Production of a mouse strain with impaired glucose tolerance by systemic heterozygous knockout of the glucokinase gene and its feasibility as a prediabetes model

    PubMed Central

    SAITO, Mikako; KANEDA, Asako; SUGIYAMA, Tae; IIDA, Ryousuke; OTOKUNI, Keiko; KABURAGI, Misako; MATSUOKA, Hideaki

    2015-01-01

    Exon II of glucokinase (Gk) was deleted to produce a systemic heterozygous Gk knockout (Gk+/−) mouse. The relative expression levels of Gk in the heart, lung, liver, stomach, and pancreas in Gk+/− mice ranged from 0.41–0.68 versus that in wild (Gk+/+) mice. On the other hand, its expression levels in the brain, adipose tissue, and muscle ranged from 0.95–1.03, and its expression levels in the spleen and kidney were nearly zero. Gk knockout caused no remarkable off-target effect on the expression of 7 diabetes causing genes (Shp, Hnf1a, Hnf1b, Irs1, Irs2, Kir6.2, and Pdx1) in 10 organs. The glucose tolerance test was conducted to determine the blood glucose concentrations just after fasting for 24 h (FBG) and at 2 h after high-glucose application (GTT2h). The FBG-GTT2h plots obtained with the wild strain fed the control diet (CD), Gk+/− strain fed the CD, and Gk+/− strain fed the HFD were distributed in separate areas in the FBG-GTT2h diagram. The respective areas could be defined as the normal state, prediabetes state, and diabetes state, respectively. Based on the results, the criteria for prediabetes could be defined for the Gk+/− strain developed in this study. PMID:25765873

  19. Low density lipoprotein receptor-related protein 1 is upregulated in epicardial fat from type 2 diabetes mellitus patients and correlates with glucose and triglyceride plasma levels.

    PubMed

    Nasarre, L; Juan-Babot, O; Gastelurrutia, P; Llucia-Valldeperas, A; Badimon, L; Bayes-Genis, A; Llorente-Cortés, V

    2014-02-01

    Lipoprotein receptor expression plays a crucial role in the pathophysiology of adipose tissue in in vivo models of diabetes. However, there are no studies in diabetic patients. The aims of this study were to analyze (a) low-density lipoprotein receptor-related protein 1 (LRP1) and very low-density lipoprotein receptor (VLDLR) expression in epicardial and subcutaneous fat from type 2 diabetes mellitus compared with nondiabetic patients and (b) the possible correlation between the expression of these receptors and plasmatic parameters. Adipose tissue biopsy samples were obtained from diabetic (n = 54) and nondiabetic patients (n = 22) undergoing cardiac surgery before the initiation of cardiopulmonary bypass. Adipose LRP1 and VLDLR expression was analyzed at mRNA level by real-time PCR and at protein level by Western blot analysis. Adipose samples were also subjected to lipid extraction, and fat cholesterol ester, triglyceride, and free cholesterol contents were analyzed by thin-layer chromatography. LRP1 expression was higher in epicardial fat from diabetic compared with nondiabetic patients (mRNA 17.63 ± 11.37 versus 7.01 ± 4.86; P = 0.02; protein 11.23 ± 7.23 versus 6.75 ± 5.02, P = 0.04). VLDLR expression was also higher in epicardial fat from diabetic patients but only at mRNA level (231.25 ± 207.57 versus 56.64 ± 45.64, P = 0.02). No differences were found in the expression of LRP1 or VLDLR in the subcutaneous fat from diabetic compared with nondiabetic patients. Epicardial LRP1 and VLDLR mRNA overexpression positively correlated with plasma triglyceride levels (R(2) = 0.50, P = 0.01 and R(2) = 0.44, P = 0.03, respectively) and epicardial LRP1 also correlated with plasma glucose levels (R(2) = 0.33, P = 0.03). These results suggest that epicardial overexpression of certain lipoprotein receptors such as LRP1 and VLDLR expression may play a key role in the alterations of lipid metabolism associated with type 2 diabetes mellitus.

  20. Long-term pancreatic beta cell exposure to high levels of glucose but not palmitate induces DNA methylation within the insulin gene promoter and represses transcriptional activity.

    PubMed

    Ishikawa, Kota; Tsunekawa, Shin; Ikeniwa, Makoto; Izumoto, Takako; Iida, Atsushi; Ogata, Hidetada; Uenishi, Eita; Seino, Yusuke; Ozaki, Nobuaki; Sugimura, Yoshihisa; Hamada, Yoji; Kuroda, Akio; Shinjo, Keiko; Kondo, Yutaka; Oiso, Yutaka

    2015-01-01

    Recent studies have implicated epigenetics in the pathophysiology of diabetes. Furthermore, DNA methylation, which irreversibly deactivates gene transcription, of the insulin promoter, particularly the cAMP response element, is increased in diabetes patients. However, the underlying mechanism remains unclear. We aimed to investigate insulin promoter DNA methylation in an over-nutrition state. INS-1 cells, the rat pancreatic beta cell line, were cultured under normal-culture-glucose (11.2 mmol/l) or experimental-high-glucose (22.4 mmol/l) conditions for 14 days, with or without 0.4 mmol/l palmitate. DNA methylation of the rat insulin 1 gene (Ins1) promoter was investigated using bisulfite sequencing and pyrosequencing analysis. Experimental-high-glucose conditions significantly suppressed insulin mRNA and increased DNA methylation at all five CpG sites within the Ins1 promoter, including the cAMP response element, in a time-dependent and glucose concentration-dependent manner. DNA methylation under experimental-high-glucose conditions was unique to the Ins1 promoter; however, palmitate did not affect DNA methylation. Artificial methylation of Ins1 promoter significantly suppressed promoter-driven luciferase activity, and a DNA methylation inhibitor significantly improved insulin mRNA suppression by experimental-high-glucose conditions. Experimental-high-glucose conditions significantly increased DNA methyltransferase activity and decreased ten-eleven-translocation methylcytosine dioxygenase activity. Oxidative stress and endoplasmic reticulum stress did not affect DNA methylation of the Ins1 promoter. High glucose but not palmitate increased ectopic triacylglycerol accumulation parallel to DNA methylation. Metformin upregulated insulin gene expression and suppressed DNA methylation and ectopic triacylglycerol accumulation. Finally, DNA methylation of the Ins1 promoter increased in isolated islets from Zucker diabetic fatty rats. This study helps to clarify the

  1. First-pass uptake and oxidation of glucose by the splanchnic tissue in young goats fed soy protein-based milk diets with or without amino acid supplementation: glucose metabolism in goat kids after soy feeding.

    PubMed

    Schönhusen, U; Junghans, P; Flöter, A; Steinhoff-Wagner, J; Görs, S; Schneider, F; Metges, C C; Hammon, H M

    2013-04-01

    The study was designed to examine whether feeding soy protein isolate as partial replacement of casein (CN) affects glucose metabolism in young goats and whether effects may be ameliorated by supplementation of those AA known to be lower concentrated in soy than in CN. Goat kids (d 20 of age) were fed comparable milk protein diets, in which 50% of the crude protein was either CN (control, CON), soy protein isolate (SPI), or soy protein isolate supplemented with AA (SPIA) for 43 d (n=8 per group). On d 62 of age, a single bolus dose of d-[(13)C6]glucose (10mg/kg of BW) was given with the morning diet, and simultaneously, a single bolus dose of d-[6,6-(2)H2]glucose (5mg/kg of BW) was injected into a jugular vein. Blood samples were collected between -30 and +420 min relative to the tracer administration to measure the (13)C and (2)H enrichments of plasma glucose and the (13)C enrichment of blood CO2. Glucose first-pass uptake by the splanchnic tissues was calculated from the rate of appearance of differentially labeled glucose tracer in plasma. Glucose oxidation was calculated from (13)C enrichment in blood CO2. In addition, plasma concentrations of triglycerides, nonesterified fatty acids, glucose, insulin, and glucagon were measured. On d 63 of age, kids were killed and jejunal mucosa and liver samples were collected to measure lactase mRNA levels and lactase and maltase activities in the jejunum and activities of pyruvate carboxylase and phosphoenolpyruvate carboxykinase (PEPCK) in the liver. Basal plasma glucose concentration tended to be higher in the CON than the SPIA group, whereas basal insulin was higher in the CON group than the SPI and SPIA groups, and glucagon was higher in the CON than the SPIA group. Plasma glucose and insulin concentrations increased during the first hour after feeding, whereas plasma glucagon increased immediately after feeding and after 1h of feeding. First-pass uptake and glucose oxidation were not affected by diet. Maltase

  2. Plasma levels of sex hormone-binding globulin, corticosteroid-binding globulin and cortisol in overweight subjects who develop impaired fasting glucose: a 3-year prospective study.

    PubMed

    Lewis, J G; Shand, B I; Frampton, C M; Elder, P A; Scott, R S

    2009-03-01

    Circulating sex hormone-binding globulin (SHBG), corticosteroid-binding globulin (CBG), and total and calculated free cortisol were measured in 206 overweight subjects to investigate whether or not they were markers of insulin resistance. Measurements were carried out on two occasions 36 months apart and subjects were grouped according to fasting plasma glucose. Fifty-one subjects, with a normal basal fasting glucose (<5.6 mmol/l) developed impaired fasting glucose 3 years later (> or = 5.6 mmol/l). Analysis either in toto or based on gender showed a highly significant increase in fasting insulin and insulin resistance, a modest increase in body mass index (BMI), but importantly no change in plasma SHBG, CBG, or cortisol concentrations. Subjects (n=101) with a normal fasting glucose both at baseline (<5.6 mmol/l) and at 36 months showed no significant change in fasting insulin, insulin resistance, SHBG, CBG, cortisol, or BMI. Cross-sectional analysis of the study population showed that plasma SHBG correlated negatively with insulin resistance both in men and women. Overall SHBG at baseline was not predictive of changes in fasting glucose. In females, plasma CBG correlated negatively with BMI. The major finding is that overweight subjects who developed impaired fasting glucose showed no significant change in plasma SHBG, CBG or cortisol, and therefore these indices are probably not early markers of insulin resistance in overweight subjects.

  3. Spontaneous subarachnoid hemorrhage and glucose management.

    PubMed

    Schmutzhard, Erich; Rabinstein, Alejandro A

    2011-09-01

    Although metabolic abnormalities have been linked with poor outcome after subarachnoid hemorrhage, there are limited data addressing the impact of glycemic control or benefits of glucose management after aneurysmal subarachnoid hemorrhage. A systematic literature search was conducted of English-language articles describing original research on glycemic control in patients with subarachnoid hemorrhage. Case reports and case series were excluded. A total of 22 publications were selected for this review. Among the 17 studies investigating glucose as an outcome predictor, glucose levels during hospitalization were more likely to predict outcome than admission glucose. In general, hyperglycemia was linked to worse outcome. While insulin therapy in subarachnoid hemorrhage patients was shown to effectively control plasma glucose levels, plasma glucose control was not necessarily reflective of cerebral glucose such that very tight glucose control may lead to neuroglycopenia. Furthermore, tight glycemic control was associated with an increased risk for hypoglycemia which was linked to worse outcome. PMID:21850563

  4. Glucose sensing by means of silicon photonics

    NASA Astrophysics Data System (ADS)

    Bockstaele, Ronny; Ryckeboer, Eva; Hattasan, Nannicha; De Koninck, Yannick; Muneeb, Muhammad; Verstuyft, Steven; Delbeke, Danaë; Bogaerts, Wim; Roelkens, Gunther; Baets, Roel

    2014-03-01

    Diabetes is a fast growing metabolic disease, where the patients suffer from disordered glucose blood levels. Monitoring the blood glucose values in combination with extra insulin injection is currently the only therapy to keep the glucose concentration in diabetic patients under control, minimizing the long-term effects of elevated glucose concentrations and improving quality of life of the diabetic patients. Implantable sensors allow continuous glucose monitoring, offering the most reliable data to control the glucose levels. Infrared absorption spectrometers offer a non-chemical measurement method to determine the small glucose concentrations in blood serum. In this work, a spectrometer platform based on silicon photonics is presented, allowing the realization of very small glucose sensors suitable for building implantable sensors. A proof-of-concept of a spectrometer with integrated evanescent sample interface is presented, and the route towards a fully implantable spectrometer is discussed.

  5. Carotid Intima Media Thickness in Nondiabetic Hypertensive Nigerians: Role of Fasting and Postprandial Blood Glucose

    PubMed Central

    Okeahialam, B. N.; Muoneme, S. A.; Kolade-Yunusa, H. O.

    2016-01-01

    Background/Aims. Carotid intima media thickness (CIMT) tracks atherosclerotic vascular disease. Hypertension and diabetes chiefly contribute to atherosclerosis with 75% of symptomatic cardiovascular disease cases having dysglycaemia even in normal cases. Hypothesising that postprandial hyperglycaemia contributes to cardiovascular morbidity, we sought to determine if any relationship existed between glycaemic profile in nondiabetic hypertensives and atherosclerosis. Methods. In a study of CIMT in nondiabetic, statin-naïve hypertensives, we evaluated fasting blood glucose (FBG) and 2-hour postprandial sugar (2hPPBG) in the patients and compared them with the CIMT. CIMT was measured on both sides, 1 cm proximal to the carotid bulb using a 7.5 mHz transducer of ALOKA SSD-3500 ultrasound machine. Results. The subjects with complete data were 86 (63 F). The mean (SD) of CIMT was 0.89 (0.15) mm, FBG 4.8 (0.097) mmol/L, and 2hPPBG 6.5 (1.81) mmol/L. There was no significant correlation between FBG and 2hPPBG with CIMT. Blood pressure had no bearing on this. When blood glucose data were divided into quartiles and post hoc multiple comparison was done, there was significant difference in CIMT for the different ranges. This was not so for 2hPPBG. Conclusion. Though expected from other studies, we did not show any significant correlation between FBG and 2hPPBG status and CIMT. This may be our pattern as the degree of excursion of 2hPPBG was low. There may be a threshold level above which PPBG starts to impact CIMT. PMID:27144025

  6. Carotid Intima Media Thickness in Nondiabetic Hypertensive Nigerians: Role of Fasting and Postprandial Blood Glucose.

    PubMed

    Okeahialam, B N; Muoneme, S A; Kolade-Yunusa, H O

    2016-01-01

    Background/Aims. Carotid intima media thickness (CIMT) tracks atherosclerotic vascular disease. Hypertension and diabetes chiefly contribute to atherosclerosis with 75% of symptomatic cardiovascular disease cases having dysglycaemia even in normal cases. Hypothesising that postprandial hyperglycaemia contributes to cardiovascular morbidity, we sought to determine if any relationship existed between glycaemic profile in nondiabetic hypertensives and atherosclerosis. Methods. In a study of CIMT in nondiabetic, statin-naïve hypertensives, we evaluated fasting blood glucose (FBG) and 2-hour postprandial sugar (2hPPBG) in the patients and compared them with the CIMT. CIMT was measured on both sides, 1 cm proximal to the carotid bulb using a 7.5 mHz transducer of ALOKA SSD-3500 ultrasound machine. Results. The subjects with complete data were 86 (63 F). The mean (SD) of CIMT was 0.89 (0.15) mm, FBG 4.8 (0.097) mmol/L, and 2hPPBG 6.5 (1.81) mmol/L. There was no significant correlation between FBG and 2hPPBG with CIMT. Blood pressure had no bearing on this. When blood glucose data were divided into quartiles and post hoc multiple comparison was done, there was significant difference in CIMT for the different ranges. This was not so for 2hPPBG. Conclusion. Though expected from other studies, we did not show any significant correlation between FBG and 2hPPBG status and CIMT. This may be our pattern as the degree of excursion of 2hPPBG was low. There may be a threshold level above which PPBG starts to impact CIMT. PMID:27144025

  7. The effects of graded levels of calorie restriction: II. Impact of short term calorie and protein restriction on circulating hormone levels, glucose homeostasis and oxidative stress in male C57BL/6 mice

    PubMed Central

    Mitchell, Sharon E.; Delville, Camille; Konstantopedos, Penelope; Hurst, Jane; Derous, Davina; Green, Cara; Chen, Luonan; Han, Jackie J.D.; Wang, Yingchun; Promislow, Daniel E.L.; Lusseau, David; Douglas, Alex; Speakman, John R.

    2015-01-01

    Limiting food intake attenuates many of the deleterious effects of aging, impacting upon healthspan and leading to an increased lifespan. Whether it is the overall restriction of calories (calorie restriction: CR) or the incidental reduction in macronutrients such as protein (protein restriction: PR) that mediate these effects is unclear. The impact of 3 month CR or PR, (10 to 40%), on C57BL/6 mice was compared to controls fed ad libitum. Reductions in circulating leptin, tumor necrosis factor-α and insulin-like growth factor-1 (IGF-1) were relative to the level of CR and individually associated with morphological changes but remained unchanged following PR. Glucose tolerance and insulin sensitivity were improved following CR but not affected by PR. There was no indication that CR had an effect on oxidative damage, however CR lowered antioxidant activity. No biomarkers of oxidative stress were altered by PR. CR significantly reduced levels of major urinary proteins suggesting lowered investment in reproduction. Results here support the idea that reduced adipokine levels, improved insulin/IGF-1 signaling and reduced reproductive investment play important roles in the beneficial effects of CR while, in the short-term, attenuation of oxidative damage is not applicable. None of the positive effects were replicated with PR. PMID:26061745

  8. The sweet potato ADP-glucose pyrophosphorylase gene (ibAGP1) promoter confers high-level expression of the GUS reporter gene in the potato tuber.

    PubMed

    Kim, Tae-Won; Goo, Young-Min; Lee, Cheol-Ho; Lee, Byung-Hyun; Bae, Jung-Myung; Lee, Shin-Woo

    2009-10-01

    Molecular farming refers to the process of creating bioengineered plants with the capability of producing potentially valuable products, such as drugs, vaccines, and chemicals. We have investigated the potential of the sweet potato ADP-glucose pyrophosphorylase gene (ibAGP1) promoter and its transit peptide (TP) as an expression system for the mass production of foreign proteins in potato. The ibAGP1 promoter and its TP sequence were transformed into potato along with beta-glucuronidase (GUS) as a reporter gene, and GUS activity was subsequently analyzed in the transgenic potato plants. In tuber tissues, GUS activity in transgenic plants carrying only the ibAGP1 promoter (ibAGP1::GUS) increased up to 15.6-fold compared with that of transgenic plants carrying only the CaMV35S promoter (CaMV35S::GUS). GUS activity in transgenic plants was further enhanced by the addition of the sweetpotato TP to the recombinant vector (ibAGP1::TP::GUS), with tuber tissues showing a 26-fold increase in activity compared with that in the CaMV35S::GUS-transgenic lines. In leaf tissues, the levels of GUS activity found in ibAGP1::GUS-transgenic lines were similar to those in CaMV35S::GUS-lines, but they were significantly enhanced in ibAGP1::TP::GUS-lines. GUS activity gradually increased with increasing tuber diameter in ibAGP1::GUS-transgenic plants, reaching a maximum level when the tuber was 35 mm in diameter. In contrast, extremely elevated levels of GUS activity - up to about 10-fold higher than that found in CaMV35S::GUS-lines - were found in ibAGP1::TP::GUS-transgenic lines at a much earlier stage of tuber development (diameter 4 mm), and these higher levels were maintained throughout the entire tuber developmental stage. These results suggest that the sweetpotato ibAGP1 promoter and its TP are a potentially strong foreign gene expression system that can be used for molecular farming in potato plants.

  9. The sweet potato ADP-glucose pyrophosphorylase gene (ibAGP1) promoter confers high-level expression of the GUS reporter gene in the potato tuber.

    PubMed

    Kim, Tae-Won; Goo, Young-Min; Lee, Cheol-Ho; Lee, Byung-Hyun; Bae, Jung-Myung; Lee, Shin-Woo

    2009-10-01

    Molecular farming refers to the process of creating bioengineered plants with the capability of producing potentially valuable products, such as drugs, vaccines, and chemicals. We have investigated the potential of the sweet potato ADP-glucose pyrophosphorylase gene (ibAGP1) promoter and its transit peptide (TP) as an expression system for the mass production of foreign proteins in potato. The ibAGP1 promoter and its TP sequence were transformed into potato along with beta-glucuronidase (GUS) as a reporter gene, and GUS activity was subsequently analyzed in the transgenic potato plants. In tuber tissues, GUS activity in transgenic plants carrying only the ibAGP1 promoter (ibAGP1::GUS) increased up to 15.6-fold compared with that of transgenic plants carrying only the CaMV35S promoter (CaMV35S::GUS). GUS activity in transgenic plants was further enhanced by the addition of the sweetpotato TP to the recombinant vector (ibAGP1::TP::GUS), with tuber tissues showing a 26-fold increase in activity compared with that in the CaMV35S::GUS-transgenic lines. In leaf tissues, the levels of GUS activity found in ibAGP1::GUS-transgenic lines were similar to those in CaMV35S::GUS-lines, but they were significantly enhanced in ibAGP1::TP::GUS-lines. GUS activity gradually increased with increasing tuber diameter in ibAGP1::GUS-transgenic plants, reaching a maximum level when the tuber was 35 mm in diameter. In contrast, extremely elevated levels of GUS activity - up to about 10-fold higher than that found in CaMV35S::GUS-lines - were found in ibAGP1::TP::GUS-transgenic lines at a much earlier stage of tuber development (diameter 4 mm), and these higher levels were maintained throughout the entire tuber developmental stage. These results suggest that the sweetpotato ibAGP1 promoter and its TP are a potentially strong foreign gene expression system that can be used for molecular farming in potato plants. PMID:19819408

  10. Comparative analysis of glucose-6-phosphate dehydrogenase levels in pre-term and term babies delivered at University of Ilorin Teaching Hospital

    PubMed Central

    Obasa, Temitope Olorunsola; Adesiyun, Omotayo Olukemi; Mokuolu, Olugbenga Ayodeji; Ojuawo, Ayodele Isaac

    2012-01-01

    Glucose-6-phosphate (G6P) is an enzyme in the hexose monophosphate shunt required for the production of reducing equivalents needed to mop up free radicals. thereby keeping hemoglobin in its free state. Deficiency of the enzyme can cause severe neonatal jaundice. The aim of this study was to compare G6PD levels in pre-term and term babies, and evaluate the extent to which G6PD deficiency determines the severity of jaundice in various gestational age groups. Samples of cord blood collected from consecutively delivered babies in the University of Ilorin Teaching Hospital, Nigeria, were assayed for G6PD levels, and the babies were observed for jaundice during the first week of life. Those who developed jaundice had serial serum bilirubin measured. Nine hundred and thirty-three babies had G6PD assayed, with 348 being G6PD deficient, giving a hospital based prevalence of 37.3%. Of the 644 who were followed up, 143 (22.2%) were pre-term and 501(77.8%) were term babies. Babies with gestational age (GA) 27–29 weeks had the highest G6PD levels. However, there was no significant variation among the different gestational age groups (F=0.64, P=0.64). Jaundice occurred more in pre-term compared to term babies with a relative risk of 2.41 (χ2=60.95, P=0.00001). Occurrence of jaundice in pre-term babies was irrespective of G6PD status (χ2=0.2, P=0.66, RR=1.09, CI=0.83levels, but occurrence of jaundice in pre-term babies is irrespective of G6PD status. More severe jaundice (especially for gestational age) occurring in pre-term babies requires critical care. PMID:22690313

  11. Green tea (-)-epigallocatechin gallate suppresses IGF-I and IGF-II stimulation of 3T3-L1 adipocyte glucose uptake via the glucose transporter 4, but not glucose transporter 1 pathway.

    PubMed

    Ku, Hui-Chen; Tsuei, Yi-Wei; Kao, Chung-Cheng; Weng, Jueng-Tsueng; Shih, Li-Jane; Chang, Hsin-Huei; Liu, Chi-Wei; Tsai, Shu-Wei; Kuo, Yow-Chii; Kao, Yung-Hsi

    2014-04-01

    This study investigated the pathways involved in EGCG modulation of insulin-like growth factor (IGF)-stimulated glucose uptake in 3T3-L1 adipocytes. EGCG inhibited IGF-I and IGF-II stimulation of adipocyte glucose uptake with dose and time dependencies. EGCG at 20μM for 2h decreased IGF-I- and IGF-II-stimulated glucose uptake by 59% and 64%, respectively. Pretreatment of adipocytes with antibody against the EGCG receptor (also known as the 67-kDa laminin receptor; 67LR), prevented the effects of EGCG on IGF-increased glucose uptake, but pretreatment with normal rabbit immunoglobulin did not. This suggests that the 67LR mediates the anti-IGF effect of EGCG on adipocyte glucose uptake. Further analysis indicated EGCG, IGF-I, and IGF-II did not alter total levels of GLUT1 or GLUT4 protein. However, EGCG prevented the IGF-increased GLUT4 levels in the plasma membrane and blocked the IGF-decreased GLUT4 levels in low-density microsomes. Neither EGCG nor its combination with IGF altered GLUT1 protein levels in the plasma membrane and low-density microsomes. EGCG also suppressed the IGF-stimulated phosphorylation of IGF signaling molecules, PKCζ/λ, but not AKT and ERK1/2, proteins. This study suggests that EGCG suppresses IGF stimulation of 3T3-L1 adipocyte glucose uptake through inhibition of the GLUT4 translocation, but not through alterations of the GLUT1 pathway.

  12. MICROWAVE SPECTRA AND GEOMETRIES OF C2H_{2\\cdots AgI} and C2H_{4\\cdots AgI}

    NASA Astrophysics Data System (ADS)

    Stephens, Susanna L.; Tew, David Peter; Walker, Nick; Legon, Anthony

    2015-06-01

    A chirped-pulse Fourier transform microwave spectrometer has been used to measure the microwave spectra of both C2H_{2\\cdots AgI} and C2H_{4\\cdots AgI}. These complexes are generated via laser ablation at 532 nm of a silver surface in the presence of CF3I and either C2H_{2} or C2H_{4} and argon and are stabilized by a supersonic expansion. Rotational (A0, B0, C0) and centrifugal distortion constants (ΔJ and ΔJK) of each molecule have been determined as well the nuclear electric quadrupole coupling constants the iodine atom (χaa(I) and χbb-χcc(I)). The spectrum of each molecule is consistent with a C2v structure in which the metal atom interacts with the π-orbital of the ethene or ethyne molecule. Isotopic substitutions of atoms within the C2H_{2} or C2H_{4} subunits are in progress and in conjunction with high level ab initio calculations will allow for accurate determination of the geometry of each molecule. These to complexes are put in the context of the recently studied H2S\\cdots AgI, OC\\cdotsAgI, H3N\\cdots AgI and (CH3)_{3N\\cdots AgI}. S.Z. Riaz, S.L. Stephens, W. Mizukami, D.P. Tew, N.R. Walker, A.C. Legon, Chem. Phys. Let., 531, 1-12 (2012) S.L. Stephens, W. Mizukami, D.P. Tew, N.R. Walker, A.C. Legon, J. Chem. Phys., 136(6), 064306 (2012) D.M. Bittner, D.P. Zaleski, S.L. Stephens, N.R. Walker, A.C. Legon, Study in progress.

  13. Involvement of plant C(2)H(2)-type zinc finger transcription factors in stress responses.

    PubMed

    Kiełbowicz-Matuk, Agnieszka

    2012-04-01

    Abiotic and biotic stresses frequently impose constraints on plant distribution and affect agricultural productivity. Various aspects of the multiplicity and the complexity of stress responsive gene networks have been previously studied. Many of individual transcription factors in plants and their family classes that regulate the expression of several genes in responses to environmental stresses have been identified. One such class of transcription regulators is the C(2)H(2) class of zinc finger proteins. Numerous members of the C(2)H(2)-type zinc finger family have been shown to play diverse roles in the plant stress response and the hormone signal transduction. Transcription profiling analyses have demonstrated that the transcript level of many C(2)H(2)-type zinc finger proteins is elevated under different abiotic stress conditions such as low temperature, salt, drought, osmotic stress and oxidative stress. Some C(2)H(2)-type proteins are additionally involved in the biotic stress signaling pathway. Moreover, it has been reported that overexpression of some C(2)H(2)-type zinc finger protein genes resulted in both the activation of some stress-related genes and enhanced tolerance to various stresses. Current genetic studies have focused on possible interactions between different zinc finger transcription factors during stresses to regulate transcription. This review highlights the role of the C(2)H(2) class of the zinc finger proteins in regulating abiotic and biotic stress tolerance in the plants.

  14. Transition of metabolisms in living popular bark from growing to wintering stages and vice versa: changes in glucose 6-phosphate and 6-phosphogluconate dehydrogenase activities and in the levels of sugar phosphates.

    PubMed

    Sagisaka, S

    1974-10-01

    Activities of glucose 6-phosphate, 6-phosphogluconate, and isocitrate dehydrogenases, together with intermediate levels of the glycolytic pathway and the pentose phosphate cycle, were measured throughout a year in the living bark of poplar (Populus gelrica). Shoots, immediately after budding (early May), contained very high levels of the three enzyme activities, which fell gradually by early or mid-July to a level, roughly equivalent to budding (May) or growing (July) 2-year-old twigs. In September, the former two dehydrogenase activities of the new shoots and 2-year-old twigs began to rise, while the latter activity started to decrease. The rise of the two dehydrogenase activities continued until late November (or early December). The high level of the two dehydrogenase activities lasted until early in April of the following year and then the decrease in the activities began prior to the onset of budding, reaching a low, basal level in early May. The profile of changes in the two dehydrogenase activities appeared to coincide with the increase and decrease of soluble proteins.Normal concentrations of total hexose phosphates in the glycolytic pathway plus 6-phosphogluconate were found to be 288 to 895 mumoles/kilogram dry weight. During the metabolism transition (September and April), a transient and striking increase of 6-phosphogluconate was observed. In September, 6-phosphogluconate reached a level on the order of 10(-4)m and was 4 times that of fructose 6-phosphate. The increase in 6-phosphogluconate coincided with the increase in the glucose 6-phosphate dehydrogenase activity. Coincidentally, with the change of 6-phosphogluconate level, a large deviation of the in vivo ratio of fructose 6-phosphate to glucose 6-phosphate from the known equilibrium constant was observed, showing the relation of pentose phosphate cycle enzyme activity to the control of glycolysis. The ratio of glucose 6-phosphate to glucose 1-phosphate deviated from that predicted. These ratios

  15. Transition of metabolisms in living popular bark from growing to wintering stages and vice versa: changes in glucose 6-phosphate and 6-phosphogluconate dehydrogenase activities and in the levels of sugar phosphates.

    PubMed

    Sagisaka, S

    1974-10-01

    Activities of glucose 6-phosphate, 6-phosphogluconate, and isocitrate dehydrogenases, together with intermediate levels of the glycolytic pathway and the pentose phosphate cycle, were measured throughout a year in the living bark of poplar (Populus gelrica). Shoots, immediately after budding (early May), contained very high levels of the three enzyme activities, which fell gradually by early or mid-July to a level, roughly equivalent to budding (May) or growing (July) 2-year-old twigs. In September, the former two dehydrogenase activities of the new shoots and 2-year-old twigs began to rise, while the latter activity started to decrease. The rise of the two dehydrogenase activities continued until late November (or early December). The high level of the two dehydrogenase activities lasted until early in April of the following year and then the de