Science.gov

Sample records for 2-h plasma glucose

  1. Simultaneous quantification of labeled (2)H5-glycerol, (13)C6-glucose, and endogenous D-glucose in mouse plasma using liquid chromatography tandem mass spectrometry.

    PubMed

    Jahouh, Farid; Wang, Rong

    2015-11-01

    Monitoring the level of glucose and glycerol or their labeled derivatives in biological fluid for kinetic studies has always been challenging, especially in mice, because of the limited volume in addition to the complexity of plasma. For such application, we developed a simple, fast, and sensitive method for the simultaneous measurement of absolute concentrations of labeled (2)H5-glycerol and (13)C6-glucose as well as endogenous D-glucose using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). In our study, 15.0 μL of mouse plasma was processed by a one-step protein precipitation, followed by LC-MS/MS analysis. The quantification of the analytes was carried out by monitoring the product ion scan of their corresponding deprotonated molecular ions and constructing the extracted ion fragmentogram by choosing a specific product ion for each analyte (equivalent to precursor ion to product ion transitions). The limit of detection (LOD) was evaluated to be 1.0 μM for both (2)H5-glycerol and (13)C6-glucose, and the limit of quantitation (LOQ) was observed to be 5.0 μM for both (2)H5-glycerol and (13)C6-glucose in diluted mice plasma that corresponds to 50 μM in plasma or 4.60 and 9.01 mg/dL of glycerol and glucose in plasma, respectively. The extraction recoveries are 81.9 % (CV = 8.1 %) for (2)H5-glycerol and 26.2 % (CV = 13.6 %) for (13)C6-glucose.

  2. Mass spectrometry-based microassay of 2H and 13C plasma glucose labeling to quantify liver metabolic fluxes in vivo

    PubMed Central

    Hasenour, Clinton M.; Wall, Martha L.; Ridley, D. Emerson; Hughey, Curtis C.; James, Freyja D.; Wasserman, David H.

    2015-01-01

    Mouse models designed to examine hepatic metabolism are critical to diabetes and obesity research. Thus, a microscale method to quantitatively assess hepatic glucose and intermediary metabolism in conscious, unrestrained mice was developed. [13C3]propionate, [2H2]water, and [6,6-2H2]glucose isotopes were delivered intravenously in short- (9 h) and long-term-fasted (19 h) C57BL/6J mice. GC-MS and mass isotopomer distribution (MID) analysis were performed on three 40-μl arterial plasma glucose samples obtained during the euglycemic isotopic steady state. Model-based regression of hepatic glucose and citric acid cycle (CAC)-related fluxes was performed using a comprehensive isotopomer model to track carbon and hydrogen atom transitions through the network and thereby simulate the MIDs of measured fragment ions. Glucose-6-phosphate production from glycogen diminished, and endogenous glucose production was exclusively gluconeogenic with prolonged fasting. Gluconeogenic flux from phosphoenolpyruvate (PEP) remained stable, whereas that from glycerol modestly increased from short- to long-term fasting. CAC flux [i.e., citrate synthase (VCS)] was reduced with long-term fasting. Interestingly, anaplerosis and cataplerosis increased with fast duration; accordingly, pyruvate carboxylation and the conversion of oxaloacetate to PEP were severalfold higher than VCS in long-term fasted mice. This method utilizes state-of-the-art in vivo methodology and comprehensive isotopomer modeling to quantify hepatic glucose and intermediary fluxes during physiological stress in mice. The small plasma requirements permit serial sampling without stress and the affirmation of steady-state glucose kinetics. Furthermore, the approach can accommodate a broad range of modeling assumptions, isotope tracers, and measurement inputs without the need to introduce ad hoc mathematical approximations. PMID:25991647

  3. Accumulation of 2H2O in plasma and eccrine sweat during exercise-heat stress.

    PubMed

    Armstrong, Lawrence E; Klau, Jennifer F; Ganio, Matthew S; McDermott, Brendon P; Yeargin, Susan W; Lee, Elaine C; Maresh, Carl M

    2010-02-01

    The purpose of this research was to characterize the movement of ingested water through body fluids, during exercise-heat stress. Deuterium oxide ((2)H(2)O) accumulation in plasma and eccrine sweat was measured at two sites (back and forehead). The exercise of 14 males was controlled via cycle ergometry in a warm environment (60 min; 28.7 degrees C, 51%rh). Subjects consumed (2)H(2)O (0.15 mg kg(-1), 99.9% purity) mixed in flavored, non-caloric, colored water before exercise, then consumed 3.0 ml kg(-1) containing no (2)H(2)O every 15 min during exercise. We hypothesized that water transit from mouth to skin would occur before 15 min. (2)H(2)O appeared rapidly in both plasma and sweat (P < 0.05), within 10 min of water consumption. The ratio (2)H(2)O/H(2)O (D:H) was 47.3-55.0 times greater in plasma than in back sweat at minutes 10, 20, and 30 (DeltaD:H relative to baseline). At elapsed minute 20, the mean rate of deuterium accumulation (DeltaD:H min(-1)) in plasma was 14.9 and 23.7 times greater than in forehead and back sweat samples, respectively. Mean (+/-SE) whole-body sweat rate was 1.04 +/- 0.05 L h(-1) and subjects with the greatest whole-body sweat rate exhibited the greatest peak deuterium enrichment in sweat (r(2) = 0.87, exponential function); the peak (2)H(2)O enrichment in sweat was not proportional (P > 0.05) to body mass, volume of the deuterium dose, or total volume of fluid consumed. These findings clarify the time course of fluid movement from mouth to eccrine sweat glands, and demonstrate considerable differences of (2)H(2)O enrichment in plasma versus sweat.

  4. Plasma Efavirenz Concentrations Are Associated With Lipid and Glucose Concentrations

    PubMed Central

    Sinxadi, Phumla Zuleika; McIlleron, Helen Margaret; Dave, Joel Alex; Smith, Peter John; Levitt, Naomi Sharlene; Haas, David William; Maartens, Gary

    2016-01-01

    Abstract Efavirenz-based antiretroviral therapy (ART) has been associated with dyslipidemia and dysglycemia, risk factors for cardiovascular disease. However, the pathogenesis is not well understood. We characterized relationships between plasma efavirenz concentrations and lipid and glucose concentrations in HIV-infected South Africans. Participants on efavirenz-based ART were enrolled into a cross-sectional study. The oral glucose tolerance test was performed after an overnight fast, and plasma drawn for mid-dosing interval efavirenz, fasting total cholesterol, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol, and triglycerides concentrations. Among 106 participants (77 women), median age was 38 years, median CD4 + T-cell count was 322 cells/μL, median duration on ART was 18 months, and median (interquartile range) efavirenz concentration was 2.23 (1.66 to 4.10) μg/mL. On multivariable analyses (adjusting for age, sex, body mass index, and ART duration) doubling of efavirenz concentrations resulted in mean changes in mmol/L (95%CI) of: total cholesterol (0.40 [0.22 to 0.59]), LDL cholesterol (0.19 [0.04 to 0.30]), HDL cholesterol (0.14 [0.07 to 0.20]), triglycerides (0.17 [0.03 to 0.33]), fasting glucose (0.18 [0.03 to 0.33]), and 2-h glucose concentrations (0.33 [0.08 to 0.60]). Among 57 participants with CYP2B6 genotype data, associations between slow metabolizer genotypes and metabolic profiles were generally consistent with those for measured efavirenz concentrations. Higher plasma efavirenz concentrations are associated with higher plasma lipid and glucose concentrations. This may have implications for long-term cardiovascular complications of efavirenz-based ART, particularly among populations with high prevalence of CYP2B6 slow metabolizer genotypes. PMID:26765416

  5. Second-meal effects of pulses on blood glucose and subjective appetite following a standardized meal 2 h later.

    PubMed

    Mollard, Rebecca C; Wong, Christina L; Luhovyy, Bohdan L; Cho, France; Anderson, G Harvey

    2014-07-01

    This study investigated whether pulses (chickpeas, yellow peas, navy beans, lentils) have an effect on blood glucose (BG) and appetite following a fixed-size meal 2 h later. Over the following 2 h, all pulses lowered BG area under the curve (AUC) and lentils reduced appetite AUC compared with white bread (p < 0.05). Following the meal, BG was lower after lentils and chickpeas at 150 and 165 min, and AUC was lower after lentils compared with white bread (p < 0.05).

  6. Plasma glucose kinetics and response of insulin and GIP following a cereal breakfast in female subjects: effect of starch digestibility

    PubMed Central

    Péronnet, F; Meynier, A; Sauvinet, V; Normand, S; Bourdon, E; Mignault, D; St-Pierre, D H; Laville, M; Rabasa-Lhoret, R; Vinoy, S

    2015-01-01

    Background/Objectives: Foods with high contents of slowly digestible starch (SDS) elicit lower glycemic responses than foods with low contents of SDS but there has been debate on the underlying changes in plasma glucose kinetics, that is, respective contributions of the increase in the rates of appearance and disappearance of plasma glucose (RaT and RdT), and of the increase in the rate of appearance of exogenous glucose (RaE) and decrease in endogenous glucose production (EGP). Subjects/Methods: Sixteen young healthy females ingested in random order four types of breakfasts: an extruded cereal (0.3% SDS: Lo-SDS breakfast) or one of three biscuits (39–45% SDS: Hi-SDS breakfasts). The flour in the cereal products was labeled with 13C, and plasma glucose kinetics were measured using [6,6-2H2]glucose infusion, along with the response of plasma glucose, insulin and glucose-dependent insulinotropic peptide (GIP) concentrations. Results: When compared with the Lo-SDS breakfast, after the three Hi-SDS breakfasts, excursions in plasma glucose, the response of RaE, RaT and RdT, and the reduction in EGP were significantly lower (P<0.05). The amount of exogenous glucose absorbed over the 4.5-h postprandial period was also significantly lower by ~31% (P<0.001). These differences were associated with lower responses of GIP and insulin concentrations. Conclusions: Substituting extruded cereals with biscuits slows down the availability of glucose from the breakfast and its appearance in peripheral circulation, blunts the changes in plasma glucose kinetics and homeostasis, reduces excursions in plasma glucose, and possibly distributes the glucose ingested over a longer period following the meal. PMID:25852025

  7. Dynamics of the formation and loss of boron atoms in a H2/B2H6 microwave plasma

    NASA Astrophysics Data System (ADS)

    Duluard, C. Y.; Aubert, X.; Sadeghi, N.; Gicquel, A.

    2016-09-01

    For further improvements in doped-diamond deposition technology, an understanding of the complex chemistry in H2/CH4/B2H6 plasmas is of general importance. In this context, a H2/B2H6 plasma ignited by microwave power in a near resonant cavity at high pressure (100-200 mbar) is studied to measure the B-atom density in the ground state. The discharge is ignited in the gas mixture (0-135 ppm B2H6 in H2) by a 2.45 GHz microwave generator, leading to the formation of a hemispheric plasma core, surrounded by a faint discharge halo filling the remaining reactor volume. Measurements with both laser induced fluorescence and resonant absoption with a boron hollow cathode lamp indicate that the B-atom density is higher in the halo than in the plasma core. When the absorption line-of-sight is positioned in the halo, the absorption is so strong that the upper detection limit is reached. To understand the mechanisms of creation and loss of boron atoms, time-resolved absorption measurements have been carried out in a pulsed plasma regime (10 Hz, duty cycle 50%). The study focuses on the influence of the total pressure, the partial pressure of B2H6, as well as the source power, on the growth and decay rates of boron atoms when the plasma is turned off.

  8. Correlation between plasma and urine glucose in diabetes.

    PubMed

    Morris, L R; McGee, J A; Kitabchi, A E

    1981-04-01

    To determine whether semiquantitative glucose measurements of spot urine specimens accurately reflect prevailing plasma glucose levels, we compared reported levels from 400 second-voided urines to simultaneous plasma determinations from 246 adult diabetics. Quantitative urine levels and plasma glucose levels correlated. However, when semiquantitative urinary determinations were compared to plasma glucose stratified into 0 to 149, 150 to 199, and greater than 200 mg/dL, 75% of the urine samples associated with plasma levels from 150 to 199 mg/dL were negative by Diastix, and 16.5% of samples negative by Diastix were in the 200+ mg/dL plasma range. Only 9% of samples from 0 to 149 mg/dL showed any positive Diastix readings. Because of the low sensitivity of semiquantitative methods, we fell that, except for detection of marked hyperglycemia, spot urine glucose determinations are inadequate as the sole means of clinical assessment for management of diabetic patients. Home glucose monitoring may be a better alternative for follow-up of these patients.

  9. Distribution of fasting plasma glucose and prevalence of impaired fasting glucose, impaired glucose tolerance and type 2 diabetes in the Mexican paediatric population.

    PubMed

    Guerrero-Romero, Fernando; Violante, Rafael; Rodríguez-Morán, Martha

    2009-07-01

    Published data on the distribution of fasting plasma glucose (FPG) in children are scarce. We therefore set out to examine the distribution of FPG and determine the prevalence of impaired fasting glucose (IFG), impaired glucose tolerance (IGT) and type 2 diabetes (T2-DM) in Mexican children aged 6-18 years in a community-based cross-sectional study. A total of 1534 apparently healthy children were randomly enrolled and underwent an oral glucose tolerance test. IFG was defined by an FPG value between >or=100 and <126 mg/dL, IGT by glucose concentration 2-h post-load between >or=140 and <200 mg/dL, and T2-DM by glucose concentration 2-h post-load >or=200 mg/dL. The FPG level at the 75(th) percentile of distribution was 98.0, 100.0 and 99.0 mg/dL for children aged 6-9, 10-14 and 15-18 years, respectively; the 95(th) percentile of FPG was greater than 100 mg/dL for all the age strata. In the population overall, the prevalences of IFG, IGT, and T2-DM were 18.3%, 5.2% and 0.6%, respectively. Among obese children and adolescents, the prevalences of IFG, IGT, IFG + IGT and T2-DM were 19.1%, 5.7%, 2.5% and 1.3%. Our study shows a high prevalence of prediabetes and is the first that reports the distribution of FPG in Mexican children and adolescents.

  10. Sourdough-leavened bread improves postprandial glucose and insulin plasma levels in subjects with impaired glucose tolerance.

    PubMed

    Maioli, Mario; Pes, Giovanni Mario; Sanna, Manuela; Cherchi, Sara; Dettori, Mariella; Manca, Elena; Farris, Giovanni Antonio

    2008-06-01

    Sourdough bread has been reported to improve glucose metabolism in healthy subjects. In this study postprandial glycaemic and insulinaemic responses were evaluated in subjects with impaired glucose tolerance (IGT) who had a meal containing sourdough bread leavened with lactobacilli, in comparison to a reference meal containing bread leavened with baker yeast. Sixteen IGT subjects (age range 52-75, average BMI 29.9 +/- 4.2 kg/ m2) were randomly given a meal containing sourdough bread (A) and a meal containing the reference bread (B) in two separate occasions at the beginning of the study and after 7 days. Sourdough bread was leavened for 8 h using a starter containing autochthonous Saccharomyces cerevisiae and several bacilli able to produce a significant amount of D-and L-lactic acid, whereas the reference bread was leavened for 2 h with commercial baker yeast containing Saccharomyces cerevisiae. Plasma glucose and insulin levels were measured at time 0, 30, 60, 120, and 180 min. In IGT subjects sourdough bread induced a significantly lower plasma glucose response at 30 minutes (p = 0.048) and a smaller incremental area under curve (AUC) delta 0-30 and delta 0-60 min (p = 0.020 and 0.018 respectively) in comparison to the bread leavened with baker yeast. Plasma insulin response to this type of bread showed lower values at 30 min (p = 0.045) and a smaller AUC delta 0-30 min (p = 0.018). This study shows that in subjects with IGT glycaemic and insulinaemic responses after the consumption of sourdough bread are lower than after the bread leavened with baker yeast. This effect is likely due to the lactic acid produced during dough leavening as well as the reduced availability of simple carbohydrates. Thus, sour-dough bread may potentially be of benefit in subjects with impaired glucose metabolism.

  11. Effects of fasting on plasma glucose and prolonged tracer measurement of hepatic glucose output in NIDDM

    SciTech Connect

    Glauber, H.; Wallace, P.; Brechtel, G.

    1987-10-01

    We studied the measurement of hepatic glucose output (HGO) with prolonged (3-/sup 3/H)glucose infusion in 14 patients with non-insulin-dependent diabetes mellitus (NIDDM). Over the course of 10.5 h, plasma glucose concentration fell with fasting by one-third, from 234 +/- 21 to 152 +/- 12 mg/dl, and HGO fell from 2.35 +/- 0.18 to 1.36 +/- 0.07 mg . kg-1 . min-1 (P less than .001). In the basal state, HGO and glucose were significantly correlated (r = 0.68, P = .03), and in individual patients, HGO and glucose were closely correlated as both fell with fasting (mean r = 0.79, P less than .01). Plasma (3-/sup 3/H)glucose radioactivity approached a steady state only 5-6 h after initiation of the primed continuous infusion, and a 20% overestimate of HGO was demonstrated by not allowing sufficient time for tracer labeling of the glucose pool. Assumption of steady-state instead of non-steady-state kinetics in using Steele's equations to calculate glucose turnover resulted in a 9-24% overestimate of HGO. Stimulation of glycogenolysis by glucagon injection demonstrated no incorporation of (3-/sup 3/H)glucose in hepatic glycogen during the prolonged tracer infusion. In a separate study, plasma glucose was maintained at fasting levels (207 +/- 17 mg/dl) for 8 h with the glucose-clamp technique. Total glucose turnover rates remained constant during this prolonged tracer infusion. However, HGO fell to 30% of the basal value simply by maintaining fasting hyperglycemia in the presence of basal insulin levels.

  12. Whole body glucose kinetics in type I diabetes studied with (6,6-/sup 2/H) and (U-/sup 13/C)-glucose and the artificial B-cell

    SciTech Connect

    Darmaun, D.; Cirillo, D.; Koziet, J.; Chauvet, D.; Young, V.R.; Robert, J.J.

    1988-05-01

    Dynamic aspects of whole body glucose metabolism were assessed in ten young adult insulin-dependent (type I) diabetic men. Using a primed, continuous intravenous infusion of (6,6-/sup 2/H)glucose and (U-/sup 13/C)glucose, endogenous production, tissue uptake, carbon recycling, and oxidation of glucose were measured in the postabsorptive state. These studies were undertaken after blood glucose had been maintained overnight at 5.9 +/- 0.4 mmol/L (n = 10), and on another night at 10.5 +/- 0.4 mmol/L (n = 4) or 15.2 +/- 0.6 mmol/L (n = 6). In the normoglycemic state, endogenous glucose production averaged 2.15 +/- 0.13 mg x kg-1 x min-1. This value, as well as the rate of glucose carbon recycling (0.16 +/- 0.04 mg x kg-1 x min-1) and glucose oxidation (1.52 +/- 0.16 mg x kg-1 x min-1) are comparable to those found in nondiabetic controls. In the hyperglycemic states at 10 or 15 mmol/L, endogenous glucose production was increased by 11% (P less than .01) and 60% (P less than .01) compared to the normoglycemic states, respectively. Glucose carbon recycling contributed only a small percentage to this variation in glucose production (15% at the 15 mmol/L glucose level). This suggests that if gluconeogenesis participates in the increased glucose output, it is not dependent on a greater systemic supply of three-carbon precursors. The increased rate of glucose production in the hyperglycemic state was quantitatively offset by a rise in urinary glucose excretion. Glucose tissue uptake, as well as glucose oxidation, did not vary between normoglycemic and hyperglycemic states.

  13. Microwave Plasma-Activated Chemical Vapor Deposition of Nitrogen-Doped Diamond. II: CH4/N2/H2 Plasmas

    PubMed Central

    2016-01-01

    We report a combined experimental and modeling study of microwave-activated dilute CH4/N2/H2 plasmas, as used for chemical vapor deposition (CVD) of diamond, under very similar conditions to previous studies of CH4/H2, CH4/H2/Ar, and N2/H2 gas mixtures. Using cavity ring-down spectroscopy, absolute column densities of CH(X, v = 0), CN(X, v = 0), and NH(X, v = 0) radicals in the hot plasma have been determined as functions of height, z, source gas mixing ratio, total gas pressure, p, and input power, P. Optical emission spectroscopy has been used to investigate, with respect to the same variables, the relative number densities of electronically excited species, namely, H atoms, CH, C2, CN, and NH radicals and triplet N2 molecules. The measurements have been reproduced and rationalized from first-principles by 2-D (r, z) coupled kinetic and transport modeling, and comparison between experiment and simulation has afforded a detailed understanding of C/N/H plasma-chemical reactivity and variations with process conditions and with location within the reactor. The experimentally validated simulations have been extended to much lower N2 input fractions and higher microwave powers than were probed experimentally, providing predictions for the gas-phase chemistry adjacent to the diamond surface and its variation across a wide range of conditions employed in practical diamond-growing CVD processes. The strongly bound N2 molecule is very resistant to dissociation at the input MW powers and pressures prevailing in typical diamond CVD reactors, but its chemical reactivity is boosted through energy pooling in its lowest-lying (metastable) triplet state and subsequent reactions with H atoms. For a CH4 input mole fraction of 4%, with N2 present at 1–6000 ppm, at pressure p = 150 Torr, and with applied microwave power P = 1.5 kW, the near-substrate gas-phase N atom concentration, [N]ns, scales linearly with the N2 input mole fraction and exceeds the concentrations [NH]ns, [NH2]ns

  14. Ceylon cinnamon does not affect postprandial plasma glucose or insulin in subjects with impaired glucose tolerance.

    PubMed

    Wickenberg, Jennie; Lindstedt, Sandra; Berntorp, Kerstin; Nilsson, Jan; Hlebowicz, Joanna

    2012-06-01

    Previous studies on healthy subjects have shown that the intake of 6 g Cinnamomum cassia reduces postprandial glucose and that the intake of 3 g C. cassia reduces insulin response, without affecting postprandial glucose concentrations. Coumarin, which may damage the liver, is present in C. cassia, but not in Cinnamomum zeylanicum. The aim of the present study was to study the effect of C. zeylanicum on postprandial concentrations of plasma glucose, insulin, glycaemic index (GI) and insulinaemic index (GII) in subjects with impaired glucose tolerance (IGT). A total of ten subjects with IGT were assessed in a crossover trial. A standard 75 g oral glucose tolerance test (OGTT) was administered together with placebo or C. zeylanicum capsules. Finger-prick capillary blood samples were taken for glucose measurements and venous blood for insulin measurements, before and at 15, 30, 45, 60, 90, 120, 150 and 180 min after the start of the OGTT. The ingestion of 6 g C. zeylanicum had no significant effect on glucose level, insulin response, GI or GII. Ingestion of C. zeylanicum does not affect postprandial plasma glucose or insulin levels in human subjects. The Federal Institute for Risk Assessment in Europe has suggested the replacement of C. cassia by C. zeylanicum or the use of aqueous extracts of C. cassia to lower coumarin exposure. However, the positive effects seen with C. cassia in subjects with poor glycaemic control would then be lost.

  15. Impact of reductive N2/H2 plasma on porous low-dielectric constant SiCOH thin films

    NASA Astrophysics Data System (ADS)

    Cui, Hao; Carter, Richard J.; Moore, Darren L.; Peng, Hua-Gen; Gidley, David W.; Burke, Peter A.

    2005-06-01

    Porous low-dielectric constant (low-κ) SiCOH thin films deposited using a plasma-enhanced chemical-vapor deposition have been comprehensively characterized before and after exposure to a reactive-ion-etch-type plasma of N2 and H2 chemistry. The low-κ film studied in this work is a carbon-doped silicon oxide film with a dielectric constant (κ) of 2.5. Studies show that a top dense layer is formed as a result of significant surface film densification after exposure to N2/H2 plasma while the underlying bulk layer remains largely unchanged. The top dense layer is found to seal the porous bulk SiCOH film. SiCOH films experienced significant thickness reduction, κ increase, and leakage current degradation after plasma exposure, accompanied by density increase, pore collapse, carbon depletion, and moisture content increase in the top dense layer. Both film densification and removal processes during N2/H2 plasma treatment were found to play important roles in the thickness reduction and κ increase of this porous low-κ SiCOH film. A model based upon mutually limiting film densification and removal processes is proposed for the continuous thickness reduction during plasma exposure. A combination of surface film densification, thickness ratio increase of top dense layer to bulk layer, and moisture content increase results in the increase in κ value of this SiCOH film.

  16. Ammonia formation in N2/H2 plasmas on ITER-relevant plasma facing materials: Surface temperature and N2 plasma content effects

    NASA Astrophysics Data System (ADS)

    de Castro, A.; Alegre, D.; Tabarés, F. L.

    2015-08-01

    Ammonia production in N2/H2 direct current glow discharge plasmas, with nitrogen concentrations from 1.5% to 33%, different wall materials (tungsten, stainless steel and aluminium as a proxy for beryllium) and surface temperatures up to 350 °C has been investigated. Ammonia yields on the exposed materials have been deduced, resulting in different values depending on the wall material, its temperature and N2 plasma content. The results indicate weak wall temperature dependence in tungsten and stainless steel. However, wall temperatures above 300 °C have a very clear influence on aluminium walls, as almost all the molecular N2 depleted from the gas phase is converted into ammonia. The amount of implanted N seems to have a direct impact on the ammonia formation yield, pointing to the competition between N implantation and N/H-N/N recombination on the walls as the key mechanism of the ammonia formation.

  17. Gestational diabetes mellitus: Screening with fasting plasma glucose

    PubMed Central

    Agarwal, Mukesh M

    2016-01-01

    Fasting plasma glucose (FPG) as a screening test for gestational diabetes mellitus (GDM) has had a checkered history. During the last three decades, a few initial anecdotal reports have given way to the recent well-conducted studies. This review: (1) traces the history; (2) weighs the advantages and disadvantages; (3) addresses the significance in early pregnancy; (4) underscores the benefits after delivery; and (5) emphasizes the cost savings of using the FPG in the screening of GDM. It also highlights the utility of fasting capillary glucose and stresses the value of the FPG in circumventing the cumbersome oral glucose tolerance test. An understanding of all the caveats is crucial to be able to use the FPG for investigating glucose intolerance in pregnancy. Thus, all health professionals can use the patient-friendly FPG to simplify the onerous algorithms available for the screening and diagnosis of GDM - thereby helping each and every pregnant woman. PMID:27525055

  18. NO Removal in High Pressure Plasmas of N_2/H_2O/NO Mixtures

    NASA Astrophysics Data System (ADS)

    Fresnet, F.; Baravian, G.; Magne, L.; Pasquiers, S.; Postel, C.; Puech, V.; Rousseau, A.

    2001-10-01

    Influence of H_2O on NO removal has been studied using a homogeneous photo-triggered discharge with a time resolved LIF measurement of the NO density, in N_2/H_2O/NO mixtures at 460 mbar. The H_2O maximum concentration was 2.5 was between 70 and 160 J/l. Measurement of NO density has been performed up to 180 µs after the current pulse excitation of short duration, 50 ns. Kinetic analysis has been made using a self-consistent 0D-discharge model. NO is in great part dissociated, in N_2/NO, through collisions with the excited singlet states of N_2. We have previously shown that addition of ethene induces de-excitation of these states, leading to a decrease of the NO removal ( F. Fresnet, G. Baravian, L. Magne, S. Pasquiers, C. Postel, V. Puech, A. Rousseau, Appl. Phys. Lett., 77 (2000) 4118.). Similar processes take place when C_2H4 is replaced by H_2O. The value of the rate constant for collision of singlet states with water, 3.10-10 cm^3 s-1, is obtained from our study.

  19. Modeling Plasma-to-Interstitium Glucose Kinetics from Multitracer Plasma and Microdialysis Data

    PubMed Central

    Schiavon, Michele; Dalla Man, Chiara; Dube, Simmi; Slama, Michael; Kudva, Yogish C.; Peyser, Thomas; Basu, Ananda; Basu, Rita

    2015-01-01

    Abstract Background: Quantitative assessment of the dynamic relationship between plasma and interstitial fluid (ISF) glucose and the estimation of the plasma-to-ISF delay are of major importance to determine the accuracy of subcutaneous glucose sensors, an essential component of open- and closed-loop therapeutic systems for type 1 diabetes mellitus (T1DM). The goal of this work is to develop a model of plasma-to-ISF glucose kinetics from multitracer plasma and interstitium data, obtained by microdialysis, in healthy and T1DM subjects, under fasting conditions. Materials and Methods: A specific experimental design, combining administration of multiple tracers with the microdialysis technique, was used to simultaneously frequently collect plasma and ISF data. Linear time-invariant compartmental modeling was used to describe glucose kinetics from the tracer data because the system is in steady state. Results: A two-compartment model was shown accurate and was identified from both plasma and ISF data. An “equilibration time” between plasma and ISF of 9.1 and 11.0 min (median) in healthy and T1DM subjects, respectively, was calculated. Conclusions: We have demonstrated that, in steady-state condition, the glucose plasma-to-ISF kinetics can be modeled with a linear two-compartment model and that the “equilibration time” between the two compartments can be estimated with precision. Future studies will assess plasma-to-interstitium glucose kinetics during glucose and insulin perturbations in both healthy and T1DM subjects. PMID:26313215

  20. Kinetic of the OH-radical in high pressure plasmas of N_2/H_2O/hydrocarbons mixtures

    NASA Astrophysics Data System (ADS)

    Baravian, G.; Fresnet, F.; Magne, L.; Pasquiers, S.; Postel, C.; Puech, V.; Rousseau, A.

    2001-10-01

    Kinetic of the OH-radical has been studied in homogeneous plasmas achieved in a photo-triggered discharge device, in N_2/H_2O with C_2H4 or C_3H_6, at 460 mbar with 1.2 concentration and a deposited energy in the plasma equal to 92 J/l. Hydrocarbon concentration ranged from 50 ppm up to 1000 ppm. Using the same technique as for NO kinetic studies ( F. Fresnet, G. Baravian, L. Magne, S. Pasquiers, C. Postel, V. Puech, A. Rousseau, Appl. Phys. Lett., 77 (2000) 4118.), a time resolved LIF diagnostic has been performed to measure the OH-radical density up to 180 µs after the short current pulse excitation, 50 ns. At fixed deposited energy, the LIF signal rapidly decreases when hydrocarbon concentration increases. Measurements have been compared to predictions of a self-consistent 0D-model which takes into account a detailed kinetic scheme, including oxidation reactions of hydrocarbons by the radical which are important processes in flue gas non-thermal plasma treatment. Results are discussed.

  1. Characteristics and anticoagulation behavior of polyethylene terephthalate modified by C2H2 plasma immersion ion implantation-deposition

    NASA Astrophysics Data System (ADS)

    Wang, J.; Pan, C. J.; Kwok, S. C. H.; Yang, P.; Chen, J. Y.; Wan, G. J.; Huang, N.; Chu, P. K.

    2004-01-01

    Acetylene (C2H2) plasma immersion ion implantation-deposition (PIII-D) is conducted on polyethylene terephthalate (PET) to improve its blood compatibility. The structural and physicochemical properties of the modified surface are characterized by, Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), and static contact angle measurement. Atomic force microscopy discloses that the average roughness (Ra) of film surface decreases from 58.9 nm to 11.4 nm after C2H2 PIII-D treats PET. Attenuated total reflection Fourier transform infrared spectroscopy shows that the specfic adsorption peaks for PET decrease after ion implantation and deposition. Raman spectroscopy indicates that a thin amorphous polymerlike carbon (PLC) film is formed in the PET. The effects of the surface modification on the chemical bonding of C, H, and O are examined by XPS and the results show that the ratio of sp3 C-C to sp2 C=C is 0.25. After C2H2 PIII-D, the polar component γp of surface energy increases from 2.4 mN/m to 12.3 mN/m and γp/γd increases from 0.06 to 0.35. The wettability of the modified surfaces is improved. Scanning electron microscopy and optical microscopy reveal that the amounts of adhered, aggregated and morphologically changed platelets are reduced by the deposition of an amorphous polymer-like carbon film. The thrombin time, prothrombin time, and activated partial thromboplastin time of the modified PET are longer than those of the untreated PET. Our result thus shows that the amorphous PLC film deposited on the PET surface by C2H2 PIII-D improves platelet adhesion and activation. .

  2. Intake of kale suppresses postprandial increases in plasma glucose: A randomized, double-blind, placebo-controlled, crossover study

    PubMed Central

    Kondo, Sumio; Suzuki, Asahi; Kurokawa, Mihoko; Hasumi, Keiji

    2016-01-01

    Kale (Brassica oleracea var. acephala), a vegetable in the family Brassicaceae, has beneficial effects on health, including hypoglycemic effects. In our previous study with a limited number of subjects, intake of kale-containing food at a dose of 14 g decreased postprandial plasma glucose levels. In the present study, the effective dose of kale-containing food was investigated in a randomized, double-blind, placebo-controlled, crossover trial. The trial was conducted on 42 Japanese subjects aged 21–64 years with fasting plasma glucose levels of ≤125 mg/dl and 30-min postprandial plasma glucose levels of 140–187 mg/dl. The subjects consumed placebo or kale-containing food [7 or 14 g; low-dose (active-L) or high-dose (active-H) kale, respectively] together with a high-carbohydrate meal. At 30–120 min after the test meal intake, the plasma levels of glucose and insulin were determined. The postprandial plasma glucose levels in subjects with intake of active-L or active-H were significantly lower than those in subjects with intake of placebo, with the maximum plasma concentration (Cmax; 163±24 mg/dl for active-L and 162±23 mg/dl for active-H compared with 176±26 mg/dl for placebo [values presented as means ± standard deviation (SD); P<0.01]. The area under the plasma glucose concentration-time curve for 0–2 h (AUC0–2 h) values (means ± SD) were significantly lower for active-L (268±43 mg/h/dl) and active-H (266±42 mg/h/dl) than for the placebo (284±43 mg/h/dl; P<0.05). No significant differences were identified in the postprandial plasma insulin levels between the three conditions. No adverse events associated with intake of either dose of kale were observed. Our findings suggest that intake of kale suppresses postprandial increases in plasma glucose levels at a single dose of 7 g, and that a dose as high as 14 g is safe. PMID:27882216

  3. Intake of kale suppresses postprandial increases in plasma glucose: A randomized, double-blind, placebo-controlled, crossover study.

    PubMed

    Kondo, Sumio; Suzuki, Asahi; Kurokawa, Mihoko; Hasumi, Keiji

    2016-11-01

    Kale (Brassica oleracea var. acephala), a vegetable in the family Brassicaceae, has beneficial effects on health, including hypoglycemic effects. In our previous study with a limited number of subjects, intake of kale-containing food at a dose of 14 g decreased postprandial plasma glucose levels. In the present study, the effective dose of kale-containing food was investigated in a randomized, double-blind, placebo-controlled, crossover trial. The trial was conducted on 42 Japanese subjects aged 21-64 years with fasting plasma glucose levels of ≤125 mg/dl and 30-min postprandial plasma glucose levels of 140-187 mg/dl. The subjects consumed placebo or kale-containing food [7 or 14 g; low-dose (active-L) or high-dose (active-H) kale, respectively] together with a high-carbohydrate meal. At 30-120 min after the test meal intake, the plasma levels of glucose and insulin were determined. The postprandial plasma glucose levels in subjects with intake of active-L or active-H were significantly lower than those in subjects with intake of placebo, with the maximum plasma concentration (Cmax; 163±24 mg/dl for active-L and 162±23 mg/dl for active-H compared with 176±26 mg/dl for placebo [values presented as means ± standard deviation (SD); P<0.01]. The area under the plasma glucose concentration-time curve for 0-2 h (AUC0-2 h) values (means ± SD) were significantly lower for active-L (268±43 mg/h/dl) and active-H (266±42 mg/h/dl) than for the placebo (284±43 mg/h/dl; P<0.05). No significant differences were identified in the postprandial plasma insulin levels between the three conditions. No adverse events associated with intake of either dose of kale were observed. Our findings suggest that intake of kale suppresses postprandial increases in plasma glucose levels at a single dose of 7 g, and that a dose as high as 14 g is safe.

  4. Ordered and Disordered Phases Coexist in Plasma Membrane Vesicles of RBL-2H3 Mast Cells. An ESR Study

    PubMed Central

    Ge, Mingtao; Gidwani, Arun; Brown, H. Alex; Holowka, David; Baird, Barbara; Freed, Jack H.

    2003-01-01

    Four chain spin labels and a spin-labeled cholestane were used to study the dynamic structure of plasma membrane vesicles (PMV) prepared from RBL-2H3 mast cells at temperatures ranging from 22°C to 45°C. Analysis shows that the spectra from most labels consist of two components. The abundant spectral components exhibit substantial ordering that is intermediate between that of a liquid-ordered (Lo) phase, and that of a liquid-crystalline (Lc) phase as represented by model membranes. Also, rotational diffusion rates of the spin labels are comparable to those in the Lo phase. In contrast, the ordering for the less abundant components is much lower. These results indicate that a Lo-like region or phase (the abundant component) and an Lc-like region or phase (the less abundant component) coexist in the PMV. In contrast, membranes reconstituted from extracted lipids exhibit the more ordered phase only. This suggests that membrane-associated proteins are important for the coexistence of Lo-like and Lc-like regions in the plasma membrane. In addition, binding of the myristoylated protein, ARF6 to PMV, leads to a new spectral component for a headgroup lipid spin label that indicates the formation of plasma membrane defects by this low molecular weight GTPase. PMID:12885671

  5. Characteristics of NOx removal combining dielectric barrier discharge plasma with selective catalytic reduction by C2H5OH

    NASA Astrophysics Data System (ADS)

    Wang, Xing-Quan; Chen, Wei; Guo, Qi-Pei; Li, Yi; Lv, Guo-Hua; Sun, Xiu-Ping; Zhang, Xian-Hui; Feng, Ke-Cheng; Yang, Si-Ze

    2009-07-01

    With the assistance of dielectric barrier discharge (DBD) plasma, selective catalytic reduction of NOx by ethanol over Ag/Al2O3 catalysts was studied. Experimental results show that NOx conversion was greatly enhanced due to the presence of DBD plasma at lower temperature. By varying the DBD voltages or power in 13 kHz frequency at different temperatures, NOx conversion was increased to 40.7% from 6.4% at 176 °C, even to 66.8% from 17.3% at 200 °C. NOx conversion could even be improved to 90% at temperature above 255 °C. It was proposed that nonthermal plasma generated by dielectric barrier discharge reactor was very effective for oxidizing NO to NO2 under excess O2 conditions, which possesses high reactivity with C2H5OH to yield CxHyNzO compound. By reacting with CxHyNzO compound and oxygen, NOx is converted to N2 at low temperatures.

  6. Detailed study of the plasma-activated catalytic generation of ammonia in N2-H2 plasmas

    NASA Astrophysics Data System (ADS)

    van Helden, J. H.; Wagemans, W.; Yagci, G.; Zijlmans, R. A. B.; Schram, D. C.; Engeln, R.; Lombardi, G.; Stancu, G. D.; Röpcke, J.

    2007-02-01

    We investigated the efficiency and formation mechanism of ammonia generation in recombining plasmas generated from mixtures of N2 and H2 under various plasma conditions. In contrast to the Haber-Bosch process, in which the molecules are dissociated on a catalytic surface, under these plasma conditions the precursor molecules, N2 and H2, are already dissociated in the gas phase. Surfaces are thus exposed to large fluxes of atomic N and H radicals. The ammonia production turns out to be strongly dependent on the fluxes of atomic N and H radicals to the surface. By optimizing the atomic N and H fluxes to the surface using an atomic nitrogen and hydrogen source ammonia can be formed efficiently, i.e., more than 10% of the total background pressure is measured to be ammonia. The results obtained show a strong similarity with results reported in literature, which were explained by the production of ammonia at the surface by stepwise addition reactions between adsorbed nitrogen and hydrogen containing radicals at the surface and incoming N and H containing radicals. Furthermore, our results indicate that the ammonia production is independent of wall material. The high fluxes of N and H radicals in our experiments result in a passivated surface, and the actual chemistry, leading to the formation of ammonia, takes place in an additional layer on top of this passivated surface.

  7. Dynamin 2 regulates biphasic insulin secretion and plasma glucose homeostasis

    PubMed Central

    Fan, Fan; Ji, Chen; Wu, Yumei; Ferguson, Shawn M.; Tamarina, Natalia; Philipson, Louis H.; Lou, Xuelin

    2015-01-01

    Alterations in insulin granule exocytosis and endocytosis are paramount to pancreatic β cell dysfunction in diabetes mellitus. Here, using temporally controlled gene ablation specifically in β cells in mice, we identified an essential role of dynamin 2 GTPase in preserving normal biphasic insulin secretion and blood glucose homeostasis. Dynamin 2 deletion in β cells caused glucose intolerance and substantial reduction of the second phase of glucose-stimulated insulin secretion (GSIS); however, mutant β cells still maintained abundant insulin granules, with no signs of cell surface expansion. Compared with control β cells, real-time capacitance measurements demonstrated that exocytosis-endocytosis coupling was less efficient but not abolished; clathrin-mediated endocytosis (CME) was severely impaired at the step of membrane fission, which resulted in accumulation of clathrin-coated endocytic intermediates on the plasma membrane. Moreover, dynamin 2 ablation in β cells led to striking reorganization and enhancement of actin filaments, and insulin granule recruitment and mobilization were impaired at the later stage of GSIS. Together, our results demonstrate that dynamin 2 regulates insulin secretory capacity and dynamics in vivo through a mechanism depending on CME and F-actin remodeling. Moreover, this study indicates a potential pathophysiological link between endocytosis and diabetes mellitus. PMID:26413867

  8. The effect of short-term metformin treatment on plasma prolactin levels in bromocriptine-treated patients with hyperprolactinaemia and impaired glucose tolerance: a pilot study.

    PubMed

    Krysiak, Robert; Okrzesik, Joanna; Okopien, Boguslaw

    2015-05-01

    Metformin was found to affect plasma levels of some pituitary hormones. This study was aimed at investigating whether metformin treatment has an impact on plasma prolactin levels in bromocriptine-treated patients with hyperprolactinaemia and impaired glucose tolerance. The study included 27 patients with hyperprolactinaemia, who had been treated for at least 6 months with bromocriptine. Based on prolactin levels, bromocriptine-treated patients were divided into two groups: patients with elevated (group A, n = 12) and patients with normal (group B, n = 15) prolactin levels. The control group included 16 age-, sex- and weight-matched hyperprolactinaemia-free individuals with impaired glucose tolerance (group C).The lipid profile, fasting plasma glucose levels, the homeostatic model assessment of insulin resistance ratio (HOMA-IR), glycated haemoglobin, as well as plasma levels of prolactin, thyrotropin and insulin-like growth factor-1 (IGF-1) were assessed at baseline and after 4 months of metformin treatment (2.55-3 g daily). In all treatment groups, metformin reduced HOMA-IR, plasma triglycerides and 2-h postchallenge plasma glucose. In patients with hyperprolactinaemia, but not in the other groups of patients, metformin slightly reduced plasma levels of prolactin, and this effect correlated weakly with the metabolic effects of this drug. Our study shows that metformin decreases plasma prolactin levels only in patients with elevated levels of this hormone. The obtained results suggest that metformin treatment may bring some benefits to hyperprolactinaemic patients with coexisting glucose metabolism disturbances already receiving dopamine agonist therapy.

  9. Effect of hydrogen ratio on plasma parameters of N{sub 2}-H{sub 2} gas mixture glow discharge

    SciTech Connect

    El-Brulsy, R. A.; Abd Al-Halim, M. A.; Abu-Hashem, A.; Rashed, U. M.; Hassouba, M. A.

    2012-05-15

    A dc plane glow discharge in a nitrogen-hydrogen (N{sub 2}-H{sub 2}) gas mixture has been operated at discharge currents of 10 and 20 mA. The electron energy distribution function (EEDF) at different hydrogen concentrations is measured. A Maxwellian EEDF is found in the positive column region, while in both cathode fall and negative glow regions, a non-Maxwellian one is observed. Langmuir electric probes are used at different axial positions, gas pressures, and hydrogen concentrations to measure the electron temperature and plasma density. The electron temperature is found to increase with increasing H{sub 2} concentration and decrease with increasing both the axial distance from the cathode and the mixture pressure. At first, with increasing distance from the cathode, the ion density decreases, while the electron density increases; then, as the anode is further approached, they remain nearly constant. At different H{sub 2} concentrations, the electron and ion densities decrease with increasing the mixture pressure. Both the electron and ion densities slightly decrease with increasing H{sub 2} concentration.

  10. Spectroscopic and modeling investigations of the gas-phase chemistry and composition in microwave plasma activated B2H6/Ar/H2 mixtures.

    PubMed

    Ma, Jie; Richley, James C; Davies, David R W; Cheesman, Andrew; Ashfold, Michael N R; Mankelevich, Yuri A

    2010-02-25

    This paper describes a three-pronged study of microwave (MW) activated B(2)H(6)/Ar/H(2) plasmas as a precursor to diagnosis of the B(2)H(6)/CH(4)/Ar/H(2) plasmas used for the chemical vapor deposition of B-doped diamond. Absolute column densities of B atoms and BH radicals have been determined by cavity ring-down spectroscopy as a function of height (z) above a molybdenum substrate and of the plasma process conditions (B(2)H(6) and Ar partial pressures, total pressure, and supplied MW power). Optical emission spectroscopy has been used to explore variations in the relative densities of electronically excited BH, H, and H(2) species as a function of the same process conditions and of time after introducing B(2)H(6) into a pre-existing Ar/H(2) plasma. The experimental measurements are complemented by extensive 2-D(r, z) modeling of the plasma chemistry, which results in refinements to the existing B/H chemistry and thermochemistry and demonstrates the potentially substantial loss of gas-phase BH(x) species through reaction with trace quantities of air/O(2) in the process gas mixture and heterogeneous processes occurring at the reactor wall.

  11. The quenching effect of hydrogen on the nitrogen in metastable state in atmospheric-pressure N{sub 2}-H{sub 2} microwave plasma torch

    SciTech Connect

    Li, Shou-Zhe Zhang, Xin; Chen, Chuan-Jie; Zhang, Jialiang; Wang, Yong-Xing; Xia, Guang-Qing

    2014-07-15

    The atmospheric-pressure microwave N{sub 2}-H{sub 2} plasma torch is generated and diagnosed by optical emission spectroscopy. It is found that a large amount of N atoms and NH radicals are generated in the plasma torch and the emission intensity of N{sub 2}{sup +} first negative band is the strongest over the spectra. The mixture of hydrogen in nitrogen plasma torch causes the morphology of the plasma discharge to change with appearance that the afterglow shrinks greatly and the emission intensity of N{sub 2}{sup +} first negative band decreases with more hydrogen mixed into nitrogen plasma. In atmospheric-pressure microwave-induced plasma torch, the hydrogen imposes a great influence on the characteristics of nitrogen plasma through the quenching effect of the hydrogen on the metastable state of N{sub 2}.

  12. A mechanistic study to increase understanding of titanium dioxide nanoparticles-increased plasma glucose in mice.

    PubMed

    Hu, Hailong; Li, Li; Guo, Qian; Jin, Sanli; Zhou, Ying; Oh, Yuri; Feng, Yujie; Wu, Qiong; Gu, Ning

    2016-09-01

    Titanium dioxide nanoparticle (TiO2 NP) is an authorized food additive. Previous studies determined oral administration of TiO2 NPs increases plasma glucose in mice via inducing insulin resistance. An increase in reactive oxygen species (ROS) has been considered the possible mechanism of increasing plasma glucose. However, persistently high plasma glucose is also a mechanism of increasing ROS. This study aims to explore whether TiO2 NPs increase plasma glucose via ROS. We found after oral administration of TiO2 NPs, an increase in ROS preceded an increase in plasma glucose. Subsequently, mice were treated with two antioxidants (resveratrol and vitamin E) at the same time as oral administration of TiO2 NPs. Results showed resveratrol and vitamin E reduced TiO2 NPs-increased ROS. An increase in plasma glucose was also inhibited. Further research showed resveratrol and vitamin E inhibited the secretion of TNF-α and IL-6, and the phosphorylation of JNK and p38 MAPK, resulting in improved insulin resistance. These results suggest TiO2 NPs increased ROS levels, and then ROS activated inflammatory cytokines and phosphokinases, and thus induced insulin resistance, resulting in an increase in plasma glucose. Resveratrol and vitamin E can reduce TiO2 NPs-increased ROS and thereby inhibit an increase in plasma glucose in mice.

  13. Change in fasting plasma glucose and incident type 2 diabetes mellitus: results from a prospective cohort study

    PubMed Central

    Mozaffary, Amirhossein; Asgari, Samaneh; Tohidi, Maryam; Kazempour-Ardebili, Sara; Azizi, Fereidoun; Hadaegh, Farzad

    2016-01-01

    Objective To investigate the association between changes in fasting plasma glucose (FPG) values and incident type 2 diabetes (T2D) in a cohort of the Iranian population. Design Prospective cohort study. Setting This study was conducted within the framework of the Tehran Lipid and Glucose Study (TLGS) to investigate the association between change in FPG between baseline examination (1999–2001) and the second visit (2002–2005) with incident T2D. Participants A total of 3981 non-diabetic participants aged ≥20 years. Outcome measure T2D was defined if the participant was using antidiabetic drugs or if FPG was ≥7 mmol/L or if the 2 h post-challenge plasma glucose (2-hPCG) was ≥11.1 mmol/L. Results During a median follow-up of 6.17 years, after the second examination, 288 new cases of T2D were identified. In a multivariate Cox proportional hazard analysis using age as timescale, we presented a simple model including FPG change (HR 1.19, 95% CI 1.07 to 1.33) and baseline waist circumference (WC) (HR 1.004, 95% CI 1.001 to 1.008) with a discriminative power (C-index) of 72%. Furthermore, we showed that the highest quartile of FPG change enhanced the T2D risk to 1.65 (95% CI 1.2 to 2.27) compared with the lowest quartile (p for trend=0.004).The independent risk of FPG change resisted further adjustment with 2-hPCG change. Adding the 2-hPCG change only slightly increased the discriminative power of the model including FPG change and baseline value of WC (0.73% vs 0.72%). After the study population had been limited to those with normal fasting glucose/normal glucose tolerance, FPG change remained an independent predictor (HR 1.57, 95% CI 1.31 to 1.88). Conclusions Two measurements of FPG obtained about 3 years apart can help to identify populations at risk of incident T2D independently of important traditional risk factors and their changes, including 2-hPCG change. PMID:27217283

  14. Etching of low-k materials for microelectronics applications by means of a N2/H2 plasma: modeling and experimental investigation

    NASA Astrophysics Data System (ADS)

    Van Laer, K.; Tinck, S.; Samara, V.; de Marneffe, J. F.; Bogaerts, A.

    2013-04-01

    In this paper, we investigate the etch process of so-called low-k organic material by means of a N2/H2 capacitively coupled plasma, as applied in the micro-electronics industry for the manufacturing of computer chips. In recent years, such an organic material has emerged as a possible alternative for replacing bulk SiO2 as a dielectric material in the back-end-of-line, because of the smaller parasitic capacity between adjacent conducting lines, and thus a faster propagation of the electrical signals throughout the chip. Numerical simulations with a hybrid plasma model, using an extensive plasma and surface chemistry set, as well as experiments are performed, focusing on the plasma properties as well as the actual etching process, to obtain a better insight into the underlying mechanisms. Furthermore, the effects of gas pressure, applied power and gas composition are investigated to try to optimize the etch process. In general, the plasma density reaches a maximum near the wafer edge due to the so-called ‘edge effect’. As a result, the etch rate is not uniform but will also reach its maximum near the wafer edge. The pressure seems not to have a big effect. A higher power increases the etch rate, but the uniformity becomes (slightly) worse. The gas mixing ratio has no significant effect on the etch process, except when a pure H2 or N2 plasma is used, illustrating the synergistic effects of a N2/H2 plasma. In fact, our calculations reveal that the N2/H2 plasma entails an ion-enhanced etch process. The simulation results are in reasonable agreement with the experimental values. The microscopic etch profile shows the desired anisotropic shape under all conditions under study.

  15. Effect of the gas temperature and pressure on the nucleation time of particles in low pressure Ar-C2H2 rf plasmas

    NASA Astrophysics Data System (ADS)

    Lin, Jiashu; Henault, Marie; Orazbayev, Sagi; Boufendi, Laïa; Takahashi, Kazuo; Al Farabi Kazakh National University Collaboration; Kyoto Institute Of Technology Team; Gremi Team

    2016-09-01

    Particle formation in low pressure plasmas is a 3-step process. The first one corresponds to the nucleation and growth of nano-crystallites by ion-molecular reactions, the agglomeration phase to form large particles, and the growth by radical deposition on the particle surface. The nucleation phase was demonstrated to be sensitive to gas temperature and pressure. In this work, time of nucleation phase of particles formation in low pressure cold rf C2H2/Ar plasmas studied by varying gas temperature from 265 K to 375 K, gas pressure from 0.4 mbar to 0.8 mbar and rf power from 6 W to 20 W. The ratio of C2H2/Ar is fixed to 2/98 in terms of pressure. Several previous works reported that particle formation takes a few sec at room temperature in C2 H2 plasmas and the time is much shorter than 0.1 s in SiH4 plasmas. Time evolution of self-bias voltage was mainly used to determine nucleation time. The self-bias voltage was modified by phase transition between the steps from nucleation to coagulation. The experimental results showed that the nucleation time increased with gas temperature, decreased with gas pressure and discharge power. At constant gas pressure of 0.4 mbar and discharge power of 6 W, for example, the nucleation time increased from 5 sec to 30 sec with increas

  16. Comparison of the Current Diagnostic Criterion of HbA1c with Fasting and 2-Hour Plasma Glucose Concentration

    PubMed Central

    Karnchanasorn, Rudruidee; Huang, Jean; Feng, Wei; Chuang, Lee-Ming

    2016-01-01

    To determine the effectiveness of hemoglobin A1c (HbA1c) ≥ 6.5% in diagnosing diabetes compared to fasting plasma glucose (FPG) ≥ 126 mg/dL and 2-hour plasma glucose (2hPG) ≥ 200 mg/dL in a previously undiagnosed diabetic cohort, we included 5,764 adult subjects without established diabetes for whom HbA1c, FPG, 2hPG, and BMI measurements were collected. Compared to the FPG criterion, the sensitivity of HbA1c ≥ 6.5% was only 43.3% (106 subjects). Compared to the 2hPG criterion, the sensitivity of HbA1c ≥ 6.5% was only 28.1% (110 subjects). Patients who were diabetic using 2hPG criterion but had HbA1c < 6.5% were more likely to be older (64 ± 15 versus 60 ± 15 years old, P = 0.01, mean ± STD), female (53.2% versus 38.2%, P = 0.008), leaner (29.7 ± 6.1 versus 33.0 ± 6.6 kg/m2, P = 0.000005), and less likely to be current smokers (18.1% versus 29.1%, P = 0.02) as compared to those with HbA1c ≥ 6.5%. The diagnostic agreement in the clinical setting revealed the current HbA1c ≥ 6.5% is less likely to detect diabetes than those defined by FPG and 2hPG. HbA1c ≥ 6.5% detects less than 50% of diabetic patients defined by FPG and less than 30% of diabetic patients defined by 2hPG. When the diagnosis of diabetes is in doubt by HbA1c, FPG and/or 2hPG should be obtained. PMID:27597979

  17. Plasma cortisol and glucose concentrations in the striped mullet ( Mugil cephalus L.) subjected to intense handling stress

    NASA Astrophysics Data System (ADS)

    Hong, Wanshu

    1992-03-01

    The plasma cortisol and glucose concentrations were determined in mature female striped mullet ( Mugil cephalus L.) subjected to short term intense handling stress. The results indicated that plasma cortisol levels reached a peak 20 min after stress and declined gradually afterwards. The highest concentration of plasma glucose was observed 30 min after stress. The present study showed that the rise of plasma glucose was associated with the plasma cortisol levels.

  18. Elevated Fasting Plasma Glucose before Liver Transplantation is Associated with Lower Post-Transplant Survival

    PubMed Central

    Katsura, Emi; Ichikawa, Tatsuki; Taura, Naota; Miyaaki, Hisamitsu; Miuma, Satoshi; Shibata, Hidetaka; Honda, Takuya; Hidaka, Masaaki; Soyama, Akihiko; Takeshima, Fuminao; Eguchi, Susumu; Nakao, Kazuhiko

    2016-01-01

    Background The risk of liver cirrhosis is higher among individuals with diabetes mellitus, and a cirrhotic patient with diabetes may have a poorer prognosis after liver transplantation compared to a patient without diabetes. Thus, we evaluated whether fasting plasma glucose prior to receiving a liver transplant was a prognostic factor for post-transplant survival. Material/Methods Ninety-one patients received a living donor liver transplant between November 2005 and December 2012. Patients were considered diabetic if they were prescribed diabetes medications or had impaired glucose tolerance as measured by an oral glucose tolerance test. Each patient was monitored through December 31, 2013, to evaluate prognosis. Results Fasting plasma glucose of at least 100 mg/dL significantly decreased survival following transplant (52% in the high FPG group compared to 78% in the control group, p=0.04), while postprandial hyperglycemia had no effect on survival. Additionally, overall mortality and the incidence of vascular disease were significantly higher among patients with uncontrolled plasma glucose. Impaired fasting plasma glucose was significantly and inversely associated with overall survival in the univariate and multivariate analyses, while creatinine (at least 1 mg/dL) was inversely associated with survival in the univariate analysis. Conclusions Elevated fasting plasma glucose prior to liver transplantation was inversely associated with post-transplant survival. This effect may be due to underlying microangiopathy as a result of uncontrolled diabetes before transplantation. Our data demonstrated the importance of controlled blood glucose prior to liver transplantation. PMID:27909287

  19. Improvement in surface hydrophilicity and resistance to deformation of natural leather through O2/H2O low-temperature plasma treatment

    NASA Astrophysics Data System (ADS)

    You, Xuewei; Gou, Li; Tong, Xingye

    2016-01-01

    The natural leather was modified through O2/H2O low-temperature plasma treatment. Surface morphology was characterized by scanning electron microscopy (SEM) and the results showed that the pores on the leather surface became deeper and larger with enhanced permeability of water and vapor. XPS and FTIR-ATR was performed to determine the chemical composition of natural leather surface. Oxygen-containing groups were successfully grafted onto the surface of natural leather and oxygen content increased with longer treatment time. After O2/H2O plasma treatment, initial water contact angle was about 21° and water contact angles were not beyond 55° after being stored for 3 days. Furthermore, the tensile test indicated that the resistance to deformation had a prominent transform without sacrificing the tensile strength.

  20. Influence of Ar/O2/H2O Feed Gas and N2/O2/H2O Environment on the Interaction of Time Modulated MHz Atmospheric Pressure Plasma Jet (APPJ) with Model Polymers

    NASA Astrophysics Data System (ADS)

    Oehrlein, Gottlieb; Luan, Pingshan; Knoll, Andrew; Kondeti, Santosh; Bruggeman, Peter

    2016-09-01

    An Ar/O2/H2O fed time modulated MHz atmospheric pressure plasma jet (APPJ) in a sealed chamber was used to study plasma interaction with model polymers (polystyrene, poly-methyl methacrylate, etc.). The amount of H2O in the feed gas and/or present in the N2, O2, or N2/O2 environment was controlled. Short lived species such as O atoms and OH radicals play a crucial role in polymer etching and surface modifications (obtained from X-ray photoelectron spectroscopy of treated polymers without additional atmospheric exposure). Polymer etching depth for Ar/air fed APPJ mirrors the decay of gas phase O atoms with distance from the APPJ nozzle in air and is consistent with the estimated O atom flux at the polymer surface. Furthermore, whereas separate O2 or H2O admixture to Ar enhances polymer etching, simultaneous addition of O2 and H2O to Ar quenches polymer etching. This can be explained by the mutual quenching of O with OH, H and HO2 in the gas phase. Results where O2 and/or H2O in the environment were varied are consistent with these mechanisms. All results will be compared with measured and simulated species densities reported in the literature. We gratefully acknowledge funding from US Department of Energy (DE-SC0001939) and National Science Foundation (PHY-1415353).

  1. Effect of acipimox on plasma lipids and glucose/insulin in pregnant rats.

    PubMed

    Sánchez-Vera, I; Bonet, B; Viana, M; Herrera, E; Indart, A

    2002-01-01

    To determine how a reduction in maternal hypertriglyceridemia during late pregnancy may affect glucose/insulin relationships, pregnant and virgin rats were orally treated with acipimox, a potent antilipolytic agent. In 20-day pregnant rats receiving 80 mg of acipimox, plasma triglycerides (TG), free fatty acids (FFA), and glycerol decreased more than in virgin rats shortly after the drug (up to 7 hours), when compared with animals treated with distilled water, whereas plasma glucose level was unaffected by the treatment in either group of rats. When acipimox was given every 12 hours from day 17 to day 20 of pregnancy, plasma TG, FFA, and glycerol levels progressively increased, whereas they either decreased or did not change in virgin rats receiving the same treatment, with no effect in plasma glucose levels in either group. Fetal body weight was lower than in controls in 20-day pregnant rats that received acipimox for 3 days. On day 20 of pregnancy, 3 hours after receiving acipimox or distilled water, rats received a 2 g glucose/kg oral load and it was found that the change in plasma glucose was similar in both groups, whereas the increase in plasma insulin was greater in pregnant rats treated with acipimox. However, no difference was found in either variable after the oral glucose load in virgin rats receiving acipimox or distilled water. No differences in plasma glucose levels were found after intravenous (i.v.) administration of insulin in pregnant rats treated or not treated with acipimox. In conclusion, present results show that administration of acipimox during the last days of gestation inhibited lipolysis and decreased fetal weight. Over a short period of time, in pregnant rats, reductions of plasma FFA and TG after acipimox treatment improved the glucose-induced insulin release, but did not seem to have any effect in peripheral insulin resistance.

  2. Effects of oral administration of titanium dioxide fine-sized particles on plasma glucose in mice.

    PubMed

    Gu, Ning; Hu, Hailong; Guo, Qian; Jin, Sanli; Wang, Changlin; Oh, Yuri; Feng, Yujie; Wu, Qiong

    2015-12-01

    Titanium dioxide (TiO2) is an authorized additive used as a food colorant, is composed of nano-sized particles (NP) and fine-sized particles (FP). Previous study reported that oral administration of TiO2 NPs triggers an increase in plasma glucose of mice. However, no previous studies have focused on toxic effects of TiO2 FPs on plasma glucose homeostasis following oral administration. In the current study, mice were orally administered TiO2 FPs greater than 100 nm in size (64 mg/kg body weight per day), and effects on plasma glucose levels examined. Our results showed that titanium levels was not changed in mouse blood, livers and pancreases after mice were orally administered TiO2 FPs. Biochemical analyzes showed that plasma glucose and ROS levels were not affected by TiO2 FPs. Histopathological results showed that TiO2 FPs did not induce pathology changes in organs, especially plasma glucose homeostasis regulation organs, such as pancreas and liver. Western blotting showed that oral administration of TiO2 FPs did not induce insulin resistance (IR) in mouse liver. These results showed that, TiO2 FPs cannot be absorbed via oral administration and affect plasma glucose levels in mice.

  3. Effect of glucose ingestion in plasma markers of inflammation and oxidative stress: analysis of 16 plasma markers from oral glucose tolerance test samples of normal and diabetic patients.

    PubMed

    Choi, Hyung Jin; Jeon, Soon Young; Hong, Won Kyung; Jung, Seung Eun; Kang, Hyun Ju; Kim, Jun-Woo; Jeon, Jae-Pil; Han, Bok-Ghee

    2013-02-01

    Sixteen plasma markers of inflammation and oxidative stress were measured during OGTT in 54 subjects. Leptin, RBP4, CRP, OPN, ANG, MDC, and MCSF concentrations significantly decreased during OGTT (P<0.05). IL6, IL8, and MCP3 concentrations significantly increased during OGTT (P<0.05). These results provide evidence that glucose ingestion affects systemic inflammation and oxidative stress.

  4. The effect of glycemic index on plasma glucose and lactate levels during incremental exercise.

    PubMed

    Stannard, S R; Constantini, N W; Miller, J C

    2000-03-01

    Consumption of low glycemic index (GI) foods before submaximal endurance exercise may be beneficial to performance. To test whether this may also be true for high intensity exercise, 10 trained cyclists began an incremental exercise test to exhaustion 65 min after consuming equal carbohydrate portions of glucose (HGI), pasta (LGI), and a noncarbohydrate control (PL). Time to fatigue did not differ significantly (p = 0.05) between treatments. Plasma glucose concentration was significantly lower after LGI vs. HGI from 15 to 45 min of rest postprandial. During exercise, plasma glucose concentration was significantly lower after HGI vs. LGI from 200 W until exhaustion. Plasma lactate concentration following HGI was significantly higher than PL from 30 min of rest postprandial through to the end of the 200-W workload. Plasma lactate concentration following LGI was significantly lower than after HGI from 45 min of rest postprandial through to the end of the 100-W workload. At higher exercise intensities, there was no significant difference in plasma lactate levels between treatments. These findings suggest that a high GI carbohydrate meal (1 g/kg body wt) 65 min prior to exercise decreases plasma glucose and increases plasma lactate levels compared to a low GI meal, but not enough to be detrimental to incremental exercise performance.

  5. Effect of glycemia on plasma incretins and the incretin effect during oral glucose tolerance test.

    PubMed

    Salehi, Marzieh; Aulinger, Benedict; D'Alessio, David A

    2012-11-01

    The incretin effect, reflecting the enhancement of postprandial insulin secretion by factors including the intestinal hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide, increases in proportion to meal size. However, it is unknown whether the incretin effect is dependent on ambient glucose. The goal of this study was to determine the effect of plasma glycemia on the incretin effect. Thirteen healthy subjects consumed 50 g oral glucose solution mixed with d-xylose during fixed hyperglycemia at 8 and 10.5 mmol/L, on 3 separate days, twice at lower glycemia (LOW) and once at higher values (HIGH). The relative increase in insulin release after glucose ingestion at fixed hyperglycemia, a surrogate for the incretin effect, was similar among all three studies. The GLP-1 response to oral glucose was significantly lower at higher plasma glycemia, as was the appearance of d-xylose after the meal. Between the two LOW studies, the reproducibility of insulin release in response to intravenous glucose alone and intravenous plus ingested glucose was similar. These findings indicate that the incretin contribution to postprandial insulin release is independent of glycemia in healthy individuals, despite differences in GLP-1 secretion. The incretin effect is a reproducible trait among humans with normal glucose tolerance.

  6. Key insights into the reacting kinetics of atmospheric pressure plasmas using He +N2 /O2 /CO2 /H2 O/Air mixtures

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki

    2015-09-01

    A zero dimensional kinetic chemistry computational modeling to identify the important collisional mechanisms and the dominant species in atmospheric pressure plasmas has been developed. This modeling provides an enhanced capability to tailor wide variety of reactive intermediates/species in atmospheric pressure plasmas using He +N2 /O2 /CO2 /H2 O/Air mixtures. The influence of the gas constituent, the gas temperature and the excitation frequency (kHz-, RF-, Pulsed-working) on the complex reacting chemical kinetics is clarified. This work also focuses on the benchmarking between the predictive outputs of this computer-based simulations and the diverse experimental diagnostics with particular emphasis on reactive oxygen/nitrogen intermediates/species. This work was partly supported by KAKENHI Grant Number 24561054.

  7. Plasma Glucose Levels for Red Drum Sciaenops Ocellatus in a Florida Estuarine Fisheries Reserve

    NASA Technical Reports Server (NTRS)

    Bourtis, Carla M.; Francis-Floyd, Ruth; Boggs, Ashley S P.; Reyier, Eric A.; Stolen, Eric D.; Yanong, Roy P.; Guillette, Louis J., Jr.

    2015-01-01

    Despite the significant value of the southeastern United States' red drum (Sciaenops ocellatus) fishery, there is a lack of clinical blood chemistry data. This was the first study to assess plasma glucose values as an indicator of stress response to evaluate variation and the effect of reproductive activity for wild adult red drum in Florida. Red drum (n=126) were collected from NASA's Kennedy Space Center waters during three reproductive periods in 2011. Samples were obtained from the branchial vessels of the gill arch. Plasma glucose levels were significantly different among reproductive periods, with the highest mean values recorded during the spawning period, September- October (38.23 mg / dL +/- 10.0). The glucose range was 17 - 69 mg / dL. Glucose values were lower during all three periods than previous values recorded for cultured or captive red drum studies. This may indicate that fish from this population were under less stress than other populations previously sampled.

  8. Investigation of InP etching mechanisms in a Cl{sub 2}/H{sub 2} inductively coupled plasma by optical emission spectroscopy

    SciTech Connect

    Gatilova, L.; Bouchoule, S.; Guilet, S.; Chabert, P.

    2009-03-15

    Optical emission spectroscopy (OES) has been used in order to investigate the InP etching mechanisms in a Cl{sub 2}-H{sub 2} inductively coupled plasma. The authors have previously shown that anisotropic etching of InP could be achieved for a H{sub 2} percentage in the 35%-45% range where the InP etch rate also presents a local maximum [J. Vac. Sci. Technol. B 24, 2381 (2006)], and that anisotropic etching was due to an enhanced passivation of the etched sidewalls by a silicon oxide layer [J. Vac. Sci. Technol. B 26, 666 (2008)]. In this work, it is shown that this etching behavior is related to a maximum in the H atom concentration in the plasma. The possible enhancement of the sidewall passivation process in the presence of H is investigated by comparing OES measurements and etching results obtained for Cl{sub 2}-H{sub 2} and Cl{sub 2}-Ar gas mixtures.

  9. Effect of fluoridated water on plasma insulin levels and glucose homeostasis in rats with renal deficiency.

    PubMed

    Lupo, Maela; Buzalaf, Marília Afonso Rabelo; Rigalli, Alfredo

    2011-05-01

    Glucose intolerance in fluorosis areas and when fluoride is administered for the treatment of osteoporosis has been reported. Controlled fluoridation of drinking water is regarded as a safe and effective measure to control dental caries. However, the effect on glucose homeostasis was not studied so far. The aim of this study was to evaluate the effect of the intake of fluoridated water supply on glucose metabolism in rats with normal and deficient renal function. Male Sprague-Dawley rats were divided into eight groups of four rats. Renal insufficiency was induced in four groups (NX) which received drinking water containing 0, 1, 5, and 15 ppm F (NaF) for 60 days. Four groups with simulated surgery acted as controls. There were no differences in plasma glucose concentration after a glucose tolerance test between controls and NX rats and among rats with different intakes of fluoride. However, plasma insulin level increased as a function of fluoride concentration in drinking water, both in controls and in NX rats. It is concluded that the consumption of fluoridated water from water supply did not affect plasma glucose levels even in cases of animals with renal disease. However, a resistance to insulin action was demonstrated.

  10. Serial plasma glucose changes in dogs suffering from severe dog bite wounds.

    PubMed

    Schoeman, J P; Kitshoff, A M; du Plessis, C J; Thompson, P N

    2011-03-01

    The objective of this study was to describe the changes in plasma glucose concentration in 20 severely injured dogs suffering from dog bite wounds over a period of 72 hours from the initiation of trauma. Historical, signalment, clinical and haematological factors were investigated for their possible effect on plasma glucose concentration. Haematology was repeated every 24 hours and plasma glucose concentrations were measured at 8-hourly intervals post-trauma. On admission, 1 dog was hypoglycaemic, 8 were normoglycaemic and 11 were hyperglycaemic. No dogs showed hypoglycaemia at any other stage during the study period. The median blood glucose concentrations at each of the 10 collection points, excluding the 56-hour and 64-hour collection points, were in the hyperglycaemic range (5.8- 6.2 mmol/l). Puppies and thin dogs had significantly higher median plasma glucose concentrations than adult and fat dogs respectively (P < 0.05 for both). Fifteen dogs survived the 72-hour study period. Overall 13 dogs (81.3 %) made a full recovery after treatment. Three of 4 dogs that presented in a collapsed state died, whereas all dogs admitted as merely depressed or alert survived (P = 0.004). The high incidence of hyperglycaemia can possibly be explained by the "diabetes of injury" phenomenon. However, hyperglycaemia in this group of dogs was marginal and potential benefits of insulin therapy are unlikely to outweigh the risk of adverse effects such as hypoglycaemia.

  11. Interrelations between cerebrospinal fluid and plasma inorganic ions and glucose in patients with chronic renal failure.

    PubMed Central

    Pye, I F; Aber, G M

    1982-01-01

    The concentrations of inorganic ions and glucose in the plasma and CSF of 11 patients with "steady-state" chronic renal failure have been measured and their CSF: plasma interrelations studied. The results have been compared with the corresponding data from 34 control subjects. In the patients with renal failure, there was a positive correlation between raised CSF and plasma potassium concentrations. In contrast to the impaired potassium homeostasis, normal CSF magnesium and calcium concentrations were observed despite wide variations in the plasma concentrations of these ions. PMID:7085915

  12. Effects of rice bran oil on plasma lipid concentrations, lipoprotein composition, and glucose dynamics in mares.

    PubMed

    Frank, N; Andrews, F M; Elliott, S B; Lew, J; Boston, R C

    2005-11-01

    Plasma lipid concentrations, lipoprotein composition, and glucose dynamics were measured and compared between mares fed diets containing added water, corn oil (CO), refined rice bran oil (RR), or crude rice bran oil (CR) to test the hypothesis that rice bran oil lowers plasma lipid concentrations, alters lipoprotein composition, and improves insulin sensitivity in mares. Eight healthy adult mares received a basal diet fed at 1.5 times the DE requirement for maintenance and each of the four treatments according to a repeated 4 x 4 Latin square design consisting of four 5-wk feeding periods. Blood samples were collected for lipid analysis after mares were deprived of feed overnight at 0 and 5 wk. Glucose dynamics were assessed at 0 and 4 wk in fed mares by combined intravenous glucose-insulin tolerance tests. Plasma glucose and insulin concentrations were measured, and estimated values of insulin sensitivity (SI), glucose effectiveness, and net insulin response were obtained using the minimal model. Mean BW increased (P = 0.014) by 29 kg (range = 10 to 50 kg) over 5 wk. Mean plasma concentrations of NEFA, triglyceride (TG), and very low-density lipoprotein (VLDL) decreased (P < 0.001) by 55, 30, and 39%, respectively, and plasma high-density lipoprotein and total cholesterol (TC) concentrations increased (P < 0.001) by 15 and 12%, respectively, over 5 wk. Changes in plasma NEFA (r = 0.58; P < 0.001) and TC (r = 0.44; P = 0.013) concentrations were positively correlated with weight gain over 5 wk. Lipid components of VLDL decreased (P < 0.001) in abundance over 5 wk, whereas the relative protein content of VLDL increased by 39% (P < 0.001). Addition of oil to the basal diet instead of water lowered plasma NEFA and TG concentrations further (P = 0.002 and 0.020, respectively) and increased plasma TC concentrations by a greater magnitude (P = 0.072). However, only plasma TG concentrations and VLDL free cholesterol content were affected (P = 0.024 and 0.009, respectively

  13. Difference between 2 h and 3 h 75 g glucose tolerance test in the diagnosis of gestational diabetes mellitus (GDM): results from a national survey on prevalence of GDM.

    PubMed

    Gao, Xue-Lian; Wei, Yu-Mei; Yang, Hui-Xia; Xu, Xian-Ming; Fan, Ling; He, Jing; Liu, Ning; Zhao, San-Cun; Hu, Ya-Li; Yang, Zi; Zhang, Yun-Ping; Liu, Xing-Hui; Chen, Xu; Zhang, Jian-Ping; Gou, Wen-Li; Xiao, Mei; Wu, Hai-Rong; Zhang, Mei-Hua

    2010-09-01

    The possibility of the 2 h oral glucose tolerance test (OGTT) as an alternative to the 3 h OGTT was investigated based on data from a national survey on pregnancy-associated diabetes. Data were retrieved from 4179 pregnant women who had OGTT performed after an abnormal 50 g glucose challenge test (GCT). All of the 4 glucose levels during their OGTT were collected and analyzed. According to American Diabetes Association (ADA) gestational diabetes mellitus (GDM) diagnostic criteria, among the 4179 pregnant women who required OGTT, 3429 (82.1%) were normal and 750 (17.9%) were diagnosed as GDM. If the 3rd h glucose levels were omitted from OGTT, 79 cases of GDM (10.5%) would be overlooked. No trend was shown where women with more risk factors were more likely to be overlooked if the 3rd h test was omitted (χ2 for trend=0.038, P>0.05). No significant differences were found in the rate of cesarean section (CS), preterm births or macrosomia between the 79 cases and those with normal OGTT results and in the gestational weeks when OGTT was performed. It shows that in order to diagnose one woman with GDM, another 52 pregnant women would have an innocent 3rd h glucose test. Omission of the 3rd h glucose test in OGTT might be reasonable due to its convenience, better compliance and a small number of possibly miss-diagnosed cases, and their pregnancy outcomes have no significant difference from those of normal pregnant women.

  14. The Unscented Kalman Filter estimates the plasma insulin from glucose measurement.

    PubMed

    Eberle, Claudia; Ament, Christoph

    2011-01-01

    Understanding the simultaneous interaction within the glucose and insulin homeostasis in real-time is very important for clinical treatment as well as for research issues. Until now only plasma glucose concentrations can be measured in real-time. To support a secure, effective and rapid treatment e.g. of diabetes a real-time estimation of plasma insulin would be of great value. A novel approach using an Unscented Kalman Filter that provides an estimate of the current plasma insulin concentration is presented, which operates on the measurement of the plasma glucose and Bergman's Minimal Model of the glucose insulin homeostasis. We can prove that process observability is obtained in this case. Hence, a successful estimator design is possible. Since the process is nonlinear we have to consider estimates that are not normally distributed. The symmetric Unscented Kalman Filter (UKF) will perform best compared to other estimator approaches as the Extended Kalman Filter (EKF), the simplex Unscented Kalman Filter (UKF), and the Particle Filter (PF). The symmetric UKF algorithm is applied to the plasma insulin estimation. It shows better results compared to the direct (open loop) estimation that uses a model of the insulin subsystem.

  15. Decrease of Plasma Glucose by Hibiscus taiwanensis in Type-1-Like Diabetic Rats

    PubMed Central

    Wang, Lin-Yu; Chung, Hsien-Hui

    2013-01-01

    Hibiscus taiwanensis (Malvaceae) is widely used as an alternative herb to treat disorders in Taiwan. In the present study, it is used to screen the effect on diabetic hyperglycemia in streptozotocin-induced diabetic rats (STZ-diabetic rats). The extract of Hibiscus taiwanensis showed a significant plasma glucose-lowering action in STZ-diabetic rats. Stems of Hibiscus taiwanensis are more effective than other parts to decrease the plasma glucose in a dose-dependent manner. Oral administration of Hibiscus taiwanensis three times daily for 3 days into STZ-diabetic rats increased the sensitivity to exogenous insulin showing an increase in insulin sensitivity. Moreover, similar repeated administration of Hibiscus taiwanensis for 3 days in STZ-diabetic rats produced a marked reduction of phosphoenolpyruvate carboxykinase (PEPCK) expression in liver and an increased expression of glucose transporter subtype 4 (GLUT 4) in skeletal muscle. Taken together, our results suggest that Hibiscus taiwanensis has the ability to lower plasma glucose through an increase in glucose utilization via elevation of skeletal GLUT 4 and decrease of hepatic PEPCK in STZ-diabetic rats. PMID:23690841

  16. Bandgap measurements and the peculiar splitting of E2H phonon modes of InxAl1-xN nanowires grown by plasma assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tangi, Malleswararao; Mishra, Pawan; Janjua, Bilal; Ng, Tien Khee; Anjum, Dalaver H.; Prabaswara, Aditya; Yang, Yang; Albadri, Abdulrahman M.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2016-07-01

    The dislocation free InxAl1-xN nanowires (NWs) are grown on Si(111) by nitrogen plasma assisted molecular beam epitaxy in the temperature regime of 490 °C-610 °C yielding In composition ranges over 0.50 ≤ x ≤ 0.17. We study the optical properties of these NWs by spectroscopic ellipsometry (SE), photoluminescence, and Raman spectroscopies since they possesses minimal strain with reduced defects comparative to the planar films. The optical bandgap measurements of InxAl1-xN NWs are demonstrated by SE where the absorption edges of the NW samples are evaluated irrespective of substrate transparency. A systematic Stoke shift of 0.04-0.27 eV with increasing x was observed when comparing the micro-photoluminescence spectra with the Tauc plot derived from SE. The micro-Raman spectra in the NWs with x = 0.5 showed two-mode behavior for A1(LO) phonons and single mode behavior for E2H phonons. As for x = 0.17, i.e., high Al content, we observed a peculiar E2H phonon mode splitting. Further, we observe composition dependent frequency shifts. The 77 to 600 K micro-Raman spectroscopy measurements show that both AlN- and InN-like modes of A1(LO) and E2H phonons in InxAl1-xN NWs are redshifted with increasing temperature, similar to that of the binary III group nitride semiconductors. These studies of the optical properties of the technologically important InxAl1-xN nanowires will path the way towards lasers and light-emitting diodes in the wavelength of the ultra-violet and visible range.

  17. Changes of the plasma metabolome during an oral glucose tolerance test: is there more than glucose to look at?

    PubMed

    Zhao, Xinjie; Peter, Andreas; Fritsche, Jens; Elcnerova, Michaela; Fritsche, Andreas; Häring, Hans-Ulrich; Schleicher, Erwin D; Xu, Guowang; Lehmann, Rainer

    2009-02-01

    The oral glucose tolerance test (oGTT) is a common tool to provoke a metabolic challenge for scientific purposes, as well as for diagnostic reasons, to monitor the kinetics of glucose and insulin. Here, we aimed to follow the variety of physiological changes of the whole metabolic pattern in plasma during an oGTT in healthy subjects in a nontargeted reversed-phase ultra performance liquid chromatography coupled to electrospray ionization quadrupole time of flight mass spectrometric metabolomics approach. We detected 11,500 metabolite ion masses/individual. Applying multivariate data analysis, four major groups of metabolites have been detected as the most discriminating oGTT biomarkers: free fatty acids (FFA), acylcarnitines, bile acids, and lysophosphatidylcholines. We found in detail 1) a strong decrease of all saturated and monounsaturated FFA studied during the oGTT; 2) a significant faster decline of palmitoleate (C16:1) and oleate (C18:1) FFA levels than their saturated counterparts; 3) a strong relative increase of polyunsaturated fatty acids in the fatty acid pattern at 120 min; and 4) a clear decrease in plasma C10:0, C12:0, and C14:1 acylcarnitine levels. These data reflect the switch from beta-oxidation to glycolysis and fat storage during the oGTT. Moreover, the bile acids glycocholic acid, glycochenodeoxycholic acid, and glycodeoxycholic acid were highly discriminative, showing a biphasic kinetic with a maximum of a 4.5- to 6-fold increase at 30 min after glucose ingestion, a significant decrease over the next 60 min followed by an increase until the end of the oGTT. Lysophosphatidylcholines were also increased significantly. The findings of our metabolomics study reveal detailed insights in the complex physiological regulation of the metabolism during an oGTT offering novel perspectives of this widely used procedure.

  18. Glucose-independent inhibition of yeast plasma-membrane H+-ATPase by calmodulin antagonists.

    PubMed Central

    Romero, I; Maldonado, A M; Eraso, P

    1997-01-01

    Glucose metabolism causes activation of the yeast plasma-membrane H+-ATPase. The molecular mechanism of this regulation is not known, but it is probably mediated by phosphorylation of the enzyme. The involvement in this process of several kinases has been suggested but their actual role has not been proved. The physiological role of a calmodulin-dependent protein kinase in glucose-induced activation was investigated by studying the effect of specific calmodulin antagonists on the glucose-induced ATPase kinetic changes in wild-type and two mutant strains affected in the glucose regulation of the enzyme. Preincubation of the cells with calmidazolium or compound 48/80 impeded the increase in ATPase activity by reducing the Vmax of the enzyme without modifying the apparent affinity for ATP in the three strains. In one mutant, pma1-T912A, the putative calmodulin-dependent protein kinase-phosphorylatable Thr-912 was eliminated, and in the other, pma1-P536L, H+-ATPase was constitutively activated, suggesting that the antagonistic effect was not mediated by a calmodulin-dependent protein kinase and not related to glucose regulation. This was corroborated when the in vitro effect of the calmodulin antagonists on H+-ATPase activity was tested. Purified plasma membranes from glucose-starved or glucose-fermenting cells from both pma1-P890X, another constitutively activated ATPase mutant, and wild-type strains were preincubated with calmidazolium or melittin. In all cases, ATP hydrolysis was inhibited with an IC50 of approximately 1 microM. This inhibition was reversed by calmodulin. Analysis of the calmodulin-binding protein pattern in the plasma-membrane fraction eliminates ATPase as the calmodulin target protein. We conclude that H+-ATPase inhibition by calmodulin antagonists is mediated by an as yet unidentified calmodulin-dependent membrane protein. PMID:9148755

  19. Clofibrate-induced reduction of plasma branched-chain amino acid concentrations impairs glucose tolerance in rats.

    PubMed

    Kadota, Yoshihiro; Kazama, Shunsuke; Bajotto, Gustavo; Kitaura, Yasuyuki; Shimomura, Yoshiharu

    2012-05-01

    It has been reported that branched-chain amino acid (BCAA) administration stimulates glucose uptake into muscles and whole body glucose oxidation in rats. The authors examined the effect of decreased plasma BCAA concentrations induced by clofibrate treatment on glucose tolerance in rats. Since clofibrate, a drug for hyperlipidemia (high serum triglyceride concentration), is a potent inhibitor of the branched-chain α-keto acid dehydrogenase kinase, clofibrate treatment (0.2 g/kg body weight) activated the hepatic branched-chain α-keto acid dehydrogenase complex, resulting in decreased plasma BCAA concentrations by 30% to 50% from the normal level. An intraperitoneal glucose tolerance test was conducted after clofibrate administration, and the results showed that peak plasma glucose concentration and the area under the curve of glucose concentration during the intraperitoneal glucose tolerance test were significantly higher in clofibrate-treated rats than in control rats. This impaired glucose tolerance in the clofibrate-treated rats was ameliorated by administration of BCAAs (0.45 g/kg body weight, leucine:isoleucine:valine = 2:1:1), which kept plasma BCAA concentrations at normal levels during the intraperitoneal glucose tolerance test. These results suggest that plasma BCAAs play an important role in maintaining normal glucose tolerance in rats.

  20. Dietary flaxseed lignan extract lowers plasma cholesterol and glucose concentrations in hypercholesterolaemic subjects.

    PubMed

    Zhang, Wei; Wang, Xiaobing; Liu, Yi; Tian, Haimei; Flickinger, Brent; Empie, Mark W; Sun, Sam Z

    2008-06-01

    Lignans, derived from flaxseed, are phyto-oestrogens being increasingly studied for their health benefits. An 8-week, randomised, double-blind, placebo-controlled study was conducted in fifty-five hypercholesterolaemic subjects, using treatments of 0 (placebo), 300 or 600 mg/d of dietary secoisolariciresinol diglucoside (SDG) from flaxseed extract to determine the effect on plasma lipids and fasting glucose levels. Significant treatment effects were achieved (P < 0.05 to < 0.001) for the decrease of total cholesterol (TC), LDL-cholesterol (LDL-C) and glucose concentrations, as well as their percentage decrease from baseline. At weeks 6 and 8 in the 600 mg SDG group, the decreases of TC and LDL-C concentrations were in the range from 22.0 to 24.38 % respectively (all P < 0.005 compared with placebo). For the 300 mg SDG group, only significant differences from baseline were observed for decreases of TC and LDL-C. A substantial effect on lowering concentrations of fasting plasma glucose was also noted in the 600 mg SDG group at weeks 6 and 8, especially in the subjects with baseline glucose concentrations > or = 5.83 mmol/l (lowered 25.56 and 24.96 %; P = 0.015 and P = 0.012 compared with placebo, respectively). Plasma concentrations of secoisolariciresinol (SECO), enterodiol (ED) and enterolactone were all significantly raised in the groups supplemented with flaxseed lignan. The observed cholesterol-lowering values were correlated with the concentrations of plasma SECO and ED (r 0.128-0.302; P < 0.05 to < 0.001). In conclusion, dietary flaxseed lignan extract decreased plasma cholesterol and glucose concentrations in a dose-dependent manner.

  1. Effects of O 2 and N 2/H 2 plasma treatments on the neuronal cell growth on single-walled carbon nanotube paper scaffolds

    NASA Astrophysics Data System (ADS)

    Yoon, Ok Ja; Lee, Hyun Jung; Jang, Yeong Mi; Kim, Hyun Woo; Lee, Won Bok; Kim, Sung Su; Lee, Nae-Eung

    2011-08-01

    The O 2 and N 2/H 2 plasma treatments of single-walled carbon nanotube (SWCNT) papers as scaffolds for enhanced neuronal cell growth were conducted to functionalize their surfaces with different functional groups and to roughen their surfaces. To evaluate the effects of the surface roughness and functionalization modifications of the SWCNT papers, we investigated the neuronal morphology, mitochondrial membrane potential, and acetylcholine/acetylcholinesterase levels of human neuroblastoma during SH-SY5Y cell growth on the treated SWCNT papers. Our results demonstrated that the plasma-chemical functionalization caused changes in the surface charge states with functional groups with negative and positive charges and then the increased surface roughness enhanced neuronal cell adhesion, mitochondrial membrane potential, and the level of neurotransmitter in vitro. The cell adhesion and mitochondrial membrane potential on the negatively charged SWCNT papers were improved more than on the positively charged SWCNT papers. Also, measurements of the neurotransmitter level showed an enhanced acetylcholine level on the negatively charged SWCNT papers compared to the positively charged SWCNT papers.

  2. In vitro study of the antioxidative properties of the glucose derivatives against oxidation of plasma components.

    PubMed

    Kolodziejczyk, Joanna; Saluk-Juszczak, Joanna; Wachowicz, Barbara

    2011-06-01

    Oxidative stress has been implicated in the pathogenesis of variety of diseases. Since the endogenous antioxidant defense may be not adequate to counteract the enhanced generation of oxidants, a growing interest in research for exogenous nutrients has been observed. The present study was designed to assess in vitro the antioxidative properties of the glucose derivatives: calcium D-glucarate, D-gluconic acid lactone, and sodium D-gluconate (0.5-3 mM) in the protection of plasma proteins and lipids, against the damage caused by 0.1 mM peroxynitrite (ONOO⁻). Exposure of plasma to ONOO⁻ resulted in carbonyl groups increase, 3-nitrotyrosine (3-NT) formation, reduction in thiol groups, and enhanced lipid peroxidation. D-gluconic acid lactone and sodium D-gluconate effectively decreased 3-NT formation; the antinitrative action of calcium D-glucarate was less effective. In plasma samples incubated with ONOO⁻ and tested compounds, the level of carbonyl groups was decreased in comparison to plasma samples treated only with ONOO⁻. The level of protein -SH groups and glutathione was significantly higher in the presence of glucose derivatives than in plasma samples treated with ONOO⁻ only. All the tested compounds had the inhibitory effect on the peroxynitrite-induced plasma lipids peroxidation. The results obtained from our work indicate that calcium D-glucarate, D-gluconic acid lactone, and sodium D-gluconate may partly protect plasma proteins and lipids against peroxynitrite-induced damages.

  3. Noninvasive measurement of plasma glucose from exhaled breath in healthy and type 1 diabetic subjects.

    PubMed

    Minh, Timothy D C; Oliver, Stacy R; Ngo, Jerry; Flores, Rebecca; Midyett, Jason; Meinardi, Simone; Carlson, Matthew K; Rowland, F Sherwood; Blake, Donald R; Galassetti, Pietro R

    2011-06-01

    Effective management of diabetes mellitus, affecting tens of millions of patients, requires frequent assessment of plasma glucose. Patient compliance for sufficient testing is often reduced by the unpleasantness of current methodologies, which require blood samples and often cause pain and skin callusing. We propose that the analysis of volatile organic compounds (VOCs) in exhaled breath can be used as a novel, alternative, noninvasive means to monitor glycemia in these patients. Seventeen healthy (9 females and 8 males, 28.0 ± 1.0 yr) and eight type 1 diabetic (T1DM) volunteers (5 females and 3 males, 25.8 ± 1.7 yr) were enrolled in a 240-min triphasic intravenous dextrose infusion protocol (baseline, hyperglycemia, euglycemia-hyperinsulinemia). In T1DM patients, insulin was also administered (using differing protocols on 2 repeated visits to separate the effects of insulinemia on breath composition). Exhaled breath and room air samples were collected at 12 time points, and concentrations of ~100 VOCs were determined by gas chromatography and matched with direct plasma glucose measurements. Standard least squares regression was used on several subsets of exhaled gases to generate multilinear models to predict plasma glucose for each subject. Plasma glucose estimates based on two groups of four gases each (cluster A: acetone, methyl nitrate, ethanol, and ethyl benzene; cluster B: 2-pentyl nitrate, propane, methanol, and acetone) displayed very strong correlations with glucose concentrations (0.883 and 0.869 for clusters A and B, respectively) across nearly 300 measurements. Our study demonstrates the feasibility to accurately predict glycemia through exhaled breath analysis over a broad range of clinically relevant concentrations in both healthy and T1DM subjects.

  4. Plasma glucose, insulin and catecholamine responses to a Wingate test in physically active women and men.

    PubMed

    Vincent, Sophie; Berthon, Phanélie; Zouhal, Hassane; Moussa, Elie; Catheline, Michel; Bentué-Ferrer, Danièle; Gratas-Delamarche, Arlette

    2004-01-01

    The influence of gender on the glucose response to exercise remains contradictory. Moreover, to our knowledge, the glucoregulatory responses to anaerobic sprint exercise have only been studied in male subjects. Hence, the aim of the present study was to compare glucoregulatory metabolic (glucose and lactate) and hormonal (insulin, catecholamines and estradiol only in women) responses to a 30-s Wingate test, in physically active students. Eight women [19.8 (0.7) years] and eight men [22.0 (0.6) years] participated in a 30-s Wingate test on a bicycle ergometer. Plasma glucose, insulin, and catecholamine concentrations were determined at rest, at the end of both the warm-up and the exercise period and during the recovery (5, 10, 20, and 30 min). Results showed that the plasma glucose increase in response to a 30-s Wingate test was significantly higher in women than in men [0.99 (0.15) versus 0.33 (0.20) mmol l(-1) respectively, P<0.05]. Plasma insulin concentrations peaked at 10 min post-exercise and the increase between this time of recovery and the end of the warm-up was also significantly higher in women than in men [14.7 (2.9) versus 2.3 (1.9) pmol l(-1) respectively, P<0.05]. However, there was no gender difference concerning the catecholamine response. The study indicates a gender-related difference in post-exercise plasma glucose and insulin responses after a supramaximal exercise.

  5. Mechanism of glucose and maltose transport in plasma-membrane vesicles from the yeast Candida utilis.

    PubMed Central

    van den Broek, P J; van Gompel, A E; Luttik, M A; Pronk, J T; van Leeuwen, C C

    1997-01-01

    Transport of glucose and maltose was studied in plasma-membrane vesicles from Candida utilis. The yeast was grown on a mixture of glucose and maltose in aerobic carbon-limited continuous cultures which enabled transport to be studied for both sugars with the same vesicles. Vesicles were prepared by fusion of isolated plasma membranes with proteoliposomes containing bovine heart cytochrome c oxidase as a proton-motive-force-generating system. Addition of reduced cytochrome c generated a proton-motive force, consisting of a membrane potential, negative inside, and a pH gradient, alkaline inside. Energization led to accumulation of glucose and maltose in these vesicles, reaching accumulation ratios of about 40-50. Accumulation also occurred in the presence of valinomycin or nigericin, but was prevented by a combination of the two ionophores or by uncoupler, showing that glucose and maltose transport are dependent on the proton-motive force. Comparison of sugar accumulation with quantitative data on the proton-motive force indicated a 1:1 H+/sugar stoichiometry for both transport systems. Efflux of accumulated glucose was observed on dissipation of the proton-motive force. Exchange and counterflow experiments confirmed the reversible character of the H+-glucose symporter. In contrast, uncoupler or a mixture of valinomycin plus nigericin induced only a slow efflux of accumulated maltose. Moreover under counterflow conditions, the expected transient accumulation was small. Thus the H+-maltose symporter has some characteristics of a carrier that is not readily reversible. It is concluded that in C. utilis the transport systems for glucose and maltose are both driven by the proton-motive force, but the mechanisms are different. PMID:9020885

  6. The effect of insulin on plasma glucose concentrations, expression of hepatic glucose transporters and key gluconeogenic enzymes during the perinatal period in broiler chickens.

    PubMed

    Franssens, Lies; Lesuisse, Jens; Wang, Yufeng; Willems, Els; Willemsen, Hilke; Koppenol, Astrid; Guo, Xiaoquan; Buyse, Johan; Decuypere, Eddy; Everaert, Nadia

    2016-06-01

    Chickens have blood glucose concentrations that are twofold higher than those observed in mammals. Moreover, the insulin sensitivity seems to decrease with postnatal age in both broiler and layer chickens. However, little is known about the response of insulin on plasma glucose concentrations and mRNA abundance of hepatic glucose transporters 1, 2, 3, 8, 9 and 12 (GLUT1, 2, 3, 8, 9 and 12) and three regulatory enzymes of the gluconeogenesis, phosphoenolpyruvate carboxykinase 1 and 2 (PCK1 and 2) or fructose-1,6-biphosphatase 1 (FBP1) in chicks during the perinatal period. In the present study, broiler embryos on embryonic day (ED)16, ED18 or newly-hatched broiler chicks were injected intravenously with bovine insulin (1μg/g body weight (BW)) to examine plasma glucose response and changes in hepatic mRNA abundance of the GLUTs, PCK1 and 2 and FBP1. Results were compared with a non-treated control group and a saline-injected sham group. Plasma glucose levels of insulin-treated ED18 embryos recovered faster from their minimum level than those of insulin-treated ED16 embryos or newly-hatched chicks. In addition, at the minimum plasma glucose level seven hours post-injection (PI), hepatic GLUT2, FBP1 and PCK2 mRNA abundance was decreased in insulin-injected embryos, compared to sham and control groups, being most pronounced when insulin injection occurred on ED16.

  7. Preliminary validation of an exercise program suitable for pregnant women with abnormal glucose metabolism: inhibitory effects of Tai Chi Yuttari-exercise on plasma glucose elevation

    PubMed Central

    Yamamoto, Sachina; Kagawa, Kyoko; Hori, Naohi; Akezaki, Yoshiteru; Mori, Kohei; Nomura, Takuo

    2016-01-01

    [Purpose] There is insufficient evidence related to exercise programs that are safe and efficacious for pregnant women with abnormal glucose metabolism. Tai Chi Yuttari-exercise is an exercise program with validated safety and efficacy in improving physical function in the elderly. In this study, we investigated this program’s inhibitory effects on plasma glucose elevation when it was adapted to a pregnancy model. [Subjects and Methods] Twelve 18- to 19-year-old females without a history of pregnancy were randomly assorted into two groups: an intervention group, for which six subjects were outfitted with mock-pregnancy suits and asked to perform Tai Chi Yuttari-exercise, and a control group who did not perform exercise. The intervention group had a mean Borg Scale score of 11.1 ± 0.9 during the exercise. [Results] No significant intragroup differences were observed in fasting, baseline, or post-intervention/observation plasma glucose levels. On the other hand, the intergroup change in plasma glucose levels after intervention/observation was significant when comparing the intervention and control groups: −1.66 ± 7.0 and 9.42 ± 6.57 mg/dl, respectively. [Conclusion] Tai Chi Yuttari-exercise appears to effectively inhibit plasma glucose elevation at intensity and movement levels that can be safely applied to pregnant women with abnormal glucose metabolism. PMID:28174463

  8. Associations between plasma glucose and DSM-III-R cluster B personality traits in psychiatric outpatients.

    PubMed

    Svanborg, P; Mattila-Evenden, M; Gustavsson, P J; Uvnäs-Moberg, K; Asberg, M

    2000-01-01

    Associations between personality traits, measured with the Karolinska Scales of Personality, the Impulsiveness subscale from the Impulsiveness, Venturesomeness and Empathy (IVE) Inventory, and with self-assessed personality traits and disorders (SCID-II Screen Questionnaire), and plasma insulin, glucagon and glucose, respectively, were explored in a sample of 101 psychiatric outpatients of both sexes. No relationships between the peptide hormones and personality measures were found. However, fasting glucose values, which were all essentially within the normal biological variation, were significantly related to several personality measures. For males, a low blood glucose was associated with low stable general level of functioning, with high IVE Impulsiveness, and with self-assessed histrionic and narcissistic traits. High number of self-assessed personality traits for all cluster B personality disorders was strongly associated with high IVE Impulsiveness. The results of the present study support the generalizability of earlier findings from alcoholic impulsive offenders: in males, low blood glucose is associated with an extrovert and impulsive, acting-out behavior that includes the breaking of societal norms and rules. In contrast, for females a positive relationship between fasting glucose and self-assessed histrionic personality traits was found. Because no association between global level of functioning and glucose was found in women, these personality traits may not necessarily be maladaptive, as was the case for males.

  9. The validation of the Z-Scan technique for the determination of plasma glucose

    NASA Astrophysics Data System (ADS)

    Alves, Sarah I.; Silva, Elaine A. O.; Costa, Simone S.; Sonego, Denise R. N.; Hallack, Maira L.; Coppini, Ornela L.; Rowies, Fernanda; Azzalis, Ligia A.; Junqueira, Virginia B. C.; Pereira, Edimar C.; Rocha, Katya C.; Fonseca, Fernando L. A.

    2013-11-01

    Glucose is the main energy source for the human body. The concentration of blood glucose is regulated by several hormones including both antagonists: insulin and glucagon. The quantification of glucose in the blood is used for diagnosing metabolic disorders of carbohydrates, such as diabetes, idiopathic hypoglycemia and pancreatic diseases. Currently, the methodology used for this determination is the enzymatic colorimetric with spectrophotometric. This study aimed to validate the use of measurements of nonlinear optical properties of plasma glucose via the Z-Scan technique. For this we used samples of calibrator patterns that simulate commercial samples of patients (ELITech ©). Besides calibrators, serum glucose levels within acceptable reference values (normal control serum - Brazilian Society of Clinical Pathology and Laboratory Medicine) and also overestimated (pathological control serum - Brazilian Society of Clinical Pathology and Laboratory Medicine) were used in the methodology proposal. Calibrator dilutions were performed and determined by the Z-Scan technique for the preparation of calibration curve. In conclusion, Z-Scan method can be used to determinate glucose levels in biological samples with enzymatic colorimetric reaction and also to apply the same quality control parameters used in biochemistry clinical.

  10. Carob pulp preparation rich in insoluble dietary fibre and polyphenols increases plasma glucose and serum insulin responses in combination with a glucose load in humans.

    PubMed

    Gruendel, Sindy; Otto, Baerbel; Garcia, Ada L; Wagner, Karen; Mueller, Corinna; Weickert, Martin O; Heldwein, Walter; Koebnick, Corinna

    2007-07-01

    Dietary fibre consumption is associated with improved glucose homeostasis. In contrast, dietary polyphenols have been suggested to exert both beneficial and detrimental effects on glucose and insulin metabolism. Recently, we reported that a polyphenol-rich insoluble dietary fibre preparation from carob pulp (carob fibre) resulted in lower postprandial acylated ghrelin levels after a liquid meal challenge test compared with a control meal without supplementation. The effects may, however, differ when a different food matrix is used. Thus, we investigated the effects of carob fibre on glucose, insulin and ghrelin responses in healthy humans in combination with a glucose load. In a randomized single-blind cross-over study involving twenty healthy subjects (aged 22-62 years), plasma glucose, total and acylated ghrelin, and serum insulin were repeatedly assessed before and after the ingestion of 200 ml water with 50 g glucose and 0, 5, 10 or 20 g carob fibre over a period of 180 min. The intake of 5 and 10 g carob fibre increased the plasma glucose by 47 % and 64 % (P < 0.001), and serum insulin by 19.9 and 24.8 % (P < 0.001), compared with the control. Plasma acylated ghrelin concentrations did not change significantly after the consumption of carob-enriched glucose solution. Total ghrelin decreased only after 10 g carob fibre (P < 0.001) compared with control. In conclusion, we showed that polyphenol-rich carob fibre, administered within a water-glucose solution, increases postprandial glucose and insulin responses, suggesting a deterioration in glycaemic control.

  11. Xanthohumol lowers body weight and fasting plasma glucose in obese male Zucker fa/fa rats.

    PubMed

    Legette, Leecole L; Luna, Arlyn Y Moreno; Reed, Ralph L; Miranda, Cristobal L; Bobe, Gerd; Proteau, Rosita R; Stevens, Jan F

    2013-07-01

    Obesity contributes to increased risk for several chronic diseases including cardiovascular disease and type 2 diabetes. Xanthohumol, a prenylated flavonoid from hops (Humulus lupulus), was tested for efficacy on biomarkers of metabolic syndrome in 4 week old Zucker fa/fa rats, a rodent model of obesity. Rats received daily oral doses of xanthohumol at 0, 1.86, 5.64, and 16.9 mg/kg BW for 6 weeks. All rats were maintained on a high fat (60% kcal) AIN-93G diet for 3 weeks to induce severe obesity followed by a normal AIN-93G (15% kcal fat) diet for the last 3 weeks of the study. Weekly food intake and body weight were recorded. Plasma cholesterol, glucose, insulin, triglyceride, and monocyte chemoattractant protein-1 (MCP-1) levels were assessed using commercial assay kits. Plasma and liver tissue levels of XN and its metabolites were determined by liquid-chromatography tandem mass spectrometry. Plasma and liver tissue levels of xanthohumol were similar between low and medium dose groups and significantly (p<0.05) elevated in the highest dose group. There was a dose-dependent effect on body weight and plasma glucose levels. The highest dose group (n=6) had significantly lower plasma glucose levels compared to the control group (n=6) in male but not female rats. There was also a significant decrease in body weight for male rats in the highest dose group (16.9 mg/kg BW) compared to rats that received no xanthohumol, which was also not seen for female rats. Plasma cholesterol, insulin, triglycerides, and MCP-1 as well as food intake were not affected by treatment. The findings suggest that xanthohumol has beneficial effects on markers of metabolic syndrome.

  12. Effect of malnutrition during the first year of life on adult plasma insulin and glucose tolerance.

    PubMed

    González-Barranco, J; Ríos-Torres, J M; Castillo-Martínez, L; López-Alvarenga, J C; Aguilar-Salinas, C A; Bouchard, C; Deprès, J P; Tremblay, A

    2003-08-01

    There is evidence linking intrauterine growth retardation with increased cardiovascular risk and diabetes mellitus (DM) later in life. However, little is known about the association between malnutrition during the first year of life and metabolic abnormalities in adulthood. The objective of this study was to assess the effect of documented malnutrition during the first year of life on glucose tolerance, plasma insulin, lipid profile, and blood pressure in early adulthood, as well as to assess the interaction between body mass index (BMI) and malnutrition on these variables. A study group of young men with a documented history of malnutrition during their first year of life was recruited from 4 pediatric hospitals in Mexico City and compared with a control group. Subjects included were 52 men, aged 20.2 +/- 3.6 years, with a mean birth weight of 3.0 +/- 0.7 kg and documented malnutrition in their first year of life; controls were 50 men, aged 23.3 +/- 1.8 years, with a mean birth weight of 3.2 +/- 0.5 kg. Insulin and glucose concentrations, fasting and in response to an oral glucose load, plasma lipids, blood pressure, and an insulin sensitivity index (ISI) were measured. The areas under the curves of glucose (AUCG) and insulin (AUCI) were significantly higher in cases (P =.012 and <.002, respectively), independent of birth weight, BMI, or age. BMI was significantly associated with fasting plasma insulin (FPI), AUCI, ISI, triglyceride, and high-density lipoprotein (HDL)-cholesterol concentrations in cases, but not in controls. These data suggest that early malnutrition in extrauterine life, independently of birth weight, has an adverse effect on insulin metabolism and glucose tolerance in young men, and it worsens as body mass increases even within the normal range of BMI. Therefore, it is advisable to prevent obesity in individuals exposed to early malnutrition.

  13. Glucose-induced activation of the plasma membrane H(+)-ATPase in Fusarium oxysporum.

    PubMed

    Brandão, R L; Castro, I M; Passos, J B; Nicoli, J R; Thevelein, J M

    1992-08-01

    Addition of glucose and other sugars to derepressed cells of the fungus Fusarium oxysporum var. lini triggered activation of the plasma membrane H(+)-ATPase within 5 min. Glucose was the best activator while galactose and lactose had a lesser effect. The activation was not prevented by previous addition of cycloheximide and it was fully reversible when the glucose was removed. The activation process in vivo also caused changes in the kinetic properties of the enzyme. The non-activated enzyme had an apparent Km of about 3.2 mM for ATP whereas the activated enzyme showed an apparent Km of 0.26 mM. In addition, the pH optimum of the H(+)-ATPase changed from 6.0 to 7.5 upon activation. The activated enzyme was more sensitive to inhibition by vanadate. When F. oxysporum was cultivated in media containing glucose as the major carbon source, enhanced H(+)-ATPase activity was largely confined to the period corresponding to the lag phase, i.e. just before the start of acidification of the medium. This suggests that the activation process might play a role in the onset of extracellular acidification. Addition of glucose to F. oxysporum var. lini cells also caused an increase in the cAMP level. No reliable increase could be demonstrated for the other sugars. Addition of proton ionophores such as DNP and CCCP at pH 5.0 caused both a large increase in the intracellular level of cAMP and in the activity of the plasma membrane H(+)-ATPase. Inhibition of the DNP-induced increase in the cAMP level by acridine orange also resulted in inhibition of the activation of plasma membrane H(+)-ATPase.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Spectral analysis of time functions of plasma glucose and immunoreactive insulin during intravenous glucose tolerance testing on atherosclerosis and noninsulin-dependent diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Malinov, Igor A.; Denisova, Tatyana P.; Malinova, Lidia I.; Brook, Sergey B.

    2000-04-01

    The time functions of plasma glucose and insulin obtained during intravenous glucose tolerance test were approximated by sections of Fourier series. The convincing quantitative and quality distinctions of amplitudes both phases of the first and second harmonics of decomposition of the indicated time functions are obtained. These distinctions were used as a basis of diagnostic algorithm of metabolic violations appropriate for atherosclerosis and non-insulin dependent diabetes mellitus in clinically obvious and preclinical stages.

  15. Diurnal Variation in Oral Glucose Tolerance: Blood Sugar and Plasma Insulin Levels Morning, Afternoon, and Evening

    PubMed Central

    Jarrett, R. J.; Baker, I. A.; Keen, H.; Oakley, N. W.

    1972-01-01

    Twenty-four subjects received three oral glucose tolerance tests, in the morning, afternoon, and evening of separate days. The mean blood sugar levels in the afternoon and evening tests were similar, and they were both significantly higher than those in the morning test. Plasma immunoreactive insulin levels, however, were highest in the morning test. The pattern of insulin levels during the afternoon and evening tests resembled that described as typical of maturity-onset diabetes. PMID:5058728

  16. Determinants of plasma glucose level and diabetic status in a northern Canadian Indian population.

    PubMed Central

    Young, T K; Sevenhuysen, G P; Ling, N; Moffatt, M E

    1990-01-01

    We conducted a cross-sectional survey of 704 Indians aged 20 to 64 years in six remote communities in northern Ontario and Manitoba to determine the factors associated with the fasting plasma glucose and glycosylated hemoglobin levels and diabetic status, defined by past history and current fasting plasma glucose level. Multivariate analyses for the 671 subjects with complete data showed that triglyceride level, age and body mass index (BMI) were significant predictors of the log fasting plasma glucose level and the log glycosylated hemoglobin level; for the latter, waist/hip ratio, history of diabetes mellitus among first-degree relatives and low level of education were additional predictors. Significant risk factors for diabetes as a dichotomous variable included triglyceride level, age, BMI and family history of diabetes. Although energy intake per unit of body weight was lower among subjects with diabetes than those without diabetes, possibly reflecting the lower physical activity level of diabetic subjects, the former consumed significantly more "calorie-adjusted" protein and less carbohydrate than the latter. The findings are consistent with studies in other populations. Further study is needed to determine the natural history of diabetes and its metabolic consequences and to assess the effect of dietary alteration and promotion of physical activity on the incidence of the disease. PMID:2322914

  17. Risk Factors and Plasma Glucose Profile of Gestational Diabetes in Omani Women

    PubMed Central

    Chitme, Havagiray R; Al Shibli, Sumaiya Abdallah Said; Al-Shamiry, Raya Mahmood

    2016-01-01

    Objectives We sought to conduct a detailed study on the risk factors of gestational diabetes mellitus (GDM) in Omani women to determine the actual and applicable risk factors and glucose profile in this population. Methods We conducted a cross-sectional case-control study using pregnant women diagnosed with GDM. Pregnant women without GDM were used as a control group. We collected information related to age, family history, prior history of pregnancy complications, age of marriage, age of first pregnancy, fasting glucose level, and oral glucose tolerance test (OGTT) results from three hospitals in Oman through face-to-face interviews and hospital records. Results The median age of women with GDM was 33 years old (p < 0.050). A significant risk was noted in women with a history of diabetes (p < 0.001), and those with mothers’ with a history of GDM. A significant (p < 0.010) relationship with a likelihood ratio of 43.9 was observed between the incidence of GDM in women with five or six pregnancies, a history of > 3 deliveries, height < 155 cm, and pregnancy or marriage at age < 18 years (p < 0.010). The mean difference in random plasma glucose, one-hour OGTT, and two-hour OGTT was significantly higher in GDM cases compared to control. Conclusions Glucose profile, family history, anthropometric profile, and age of first pregnancy and marriage should be considered while screening for GDM and determining the care needs of Omani women with GDM. PMID:27602192

  18. Titanium dioxide nanoparticles increase plasma glucose via reactive oxygen species-induced insulin resistance in mice.

    PubMed

    Hu, Hailong; Guo, Qian; Wang, Changlin; Ma, Xiao; He, Hongjuan; Oh, Yuri; Feng, Yujie; Wu, Qiong; Gu, Ning

    2015-10-01

    There have been few reports about the possible toxic effects of titanium dioxide (TiO2 ) nanoparticles on the endocrine system. We explored the endocrine effects of oral administration to mice of anatase TiO2 nanoparticles (0, 64 and 320 mg kg(-1) body weight per day to control, low-dose and high-dose groups, respectively, 7 days per week for 14 weeks). TiO2 nanoparticles were characterized by scanning and transmission electron microscopy (TEM) and dynamic light scattering (DLS), and their physiological distribution was investigated by inductively coupled plasma. Biochemical analyzes included plasma glucose, insulin, heart blood triglycerides (TG), free fatty acid (FFA), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6 and reactive oxygen species (ROS)-related markers (total SOD, GSH and MDA). Phosphorylation of IRS1, Akt, JNK1, and p38 MAPK were analyzed by western blotting. Increased titanium levels were found in the liver, spleen, small intestine, kidney and pancreas. Biochemical analyzes showed that plasma glucose significantly increased whereas there was no difference in plasma insulin secretion. Increased ROS levels were found in serum and the liver, as evidenced by reduced total SOD activity and GSH level and increased MDA content. Western blotting showed that oral administration of TiO2 nanoparticles induced insulin resistance (IR) in mouse liver, shown by increased phosphorylation of IRS1 (Ser307) and reduced phosphorylation of Akt (Ser473). The pathway by which TiO2 nanoparticles increase ROS-induced IR were included in the inflammatory response and phosphokinase, as shown by increased serum levels of TNF-α and IL-6 and increased phosphorylation of JNK1 and p38 MAPK in liver. These results show that oral administration of TiO2 nanoparticles increases ROS, resulting in IR and increasing plasma glucose in mice.

  19. Plasma-Generating Glucose Monitor Accuracy Demonstrated in an Animal Model

    PubMed Central

    Magarian, Peggy; Sterling, Bernhard

    2009-01-01

    Introduction Four randomized controlled trials have compared mortality and morbidity of tight glycemic control versus conventional glucose for intensive care unit (ICU) patients. Two trials showed a positive outcome. However, one single-center trial and a large multicenter trial had negative results. The positive trials used accurate portable lab analyzers. The negative trial allowed the use of meters. The portable analyzer measures in filtered plasma, minimizing the interference effects. OptiScan Biomedical Corporation is developing a continuous glucose monitor using centrifuged plasma and mid-infrared spectroscopy for use in ICU medicine. The OptiScanner draws approximately 0.1 ml of blood every 15 min and creates a centrifuged plasma sample. Internal quality control minimizes sample preparation error. Interference adjustment using this technique has been presented at the Society of Critical Care Medicine in separate studies since 2006. Method A good laboratory practice study was conducted on three Yorkshire pigs using a central venous catheter over 6 h while performing a glucose challenge. Matching Yellow Springs Instrument glucose readings were obtained. Results Some 95.7% of the predicted values were in the Clarke Error Grid A zone and 4.3% in the B zone. Of those in the B zone, all were within 3.3% of the A zone boundaries. The coefficient of determination (R2) was 0.993. The coefficient of variance was 5.02%. Animal necropsy and blood panels demonstrated safety. Conclusion The OptiScanner investigational device performed safely and accurately in an animal model. Human studies using the device will begin soon. PMID:20144396

  20. The effect of different alcoholic beverages on blood alcohol levels, plasma insulin and plasma glucose in humans.

    PubMed

    Nogueira, L C; Couri, S; Trugo, N F; Lollo, P C B

    2014-09-01

    In the present work we studied the effects of four alcoholic beverages on blood alcohol levels, plasma insulin concentrations and plasma glucose concentrations in men and women. The volunteers were healthy non-smokers and they were divided according to sex into two groups of ten individuals. The alcoholic beverages used in the study were beer, red wine, whisky and "cachaça". In men, ingestion of the distilled drinks promoted a spike in blood alcohol levels more quickly than ingestion of the fermented drinks. In women, beer promoted the lowest blood alcohol levels over the 6h of the experiment. Whisky promoted highest blood alcohol levels in both sexes. The ingestion of wine promoted a significant difference in relation to the blood alcohol concentration (BAC) as a function of gender. The ingestion of cachaça by women produced BAC levels significantly smaller than those obtained for wine.

  1. Seasonal variations in plasma glucose and insulin concentrations after glucose loading in the edible dormouse (Glis glis L.).

    PubMed

    Castex, C; Donnio, R; Sutter, B C

    1979-01-01

    Glucose tolerance tests made in the Edible dormouse showed annual variations in B cell secretory capacity, associated with glucose tolerance changes. 1. During autumn and winter, the B cell is sensitive to glucose, and insulin regulates the high peripheral consumption of this hexose. 2. At the beginning of spring, insulin secretion decreases and glucose tolerance is impaired. In June, the B cell response si low or absent and a poor tolerance to glucose still persists. 3. The variations in B cell activity can be related to changing energy requirements during the year.

  2. Dietary glucose increases plasma insulin and decreases brown adipose tissue thermogenic activity in adrenalectomized ob/ob mice.

    PubMed

    Nei, Y M; Romsos, D R

    1991-09-01

    The purpose of this study was to determine whether consumption of a high glucose diet would increase plasma insulin concentrations and decrease brown adipose tissue metabolism in adrenalectomized ob/ob mice previously fed a high starch diet. Male sham-operated and adrenalectomized ob/ob and lean mice were fed a high starch diet for 12 d, then switched to a high glucose diet for the last 2 or 4 d of the 14- or 16-d feeding trials. Adrenalectomized ob/ob mice consumed 16% more energy and gained 50% more weight without an increase in oxygen consumption when switched from a high starch diet to a high glucose diet. Within 2 d after the switch to the high glucose diet, plasma insulin concentrations increased by 70% without any change in plasma glucose concentrations; brown adipose tissue metabolism, as assessed by GDP binding to brown adipose tissue mitochondria, was decreased by 26% 4 d after the diet switch. Sham-operated ob/ob and lean mice and adrenalectomized lean mice were minimally affected by the switch to the high glucose diet. The increase in plasma insulin concentrations in adrenalectomized ob/ob mice induced by the high glucose diet may contribute to the observed depression in brown adipose tissue metabolism.

  3. Diagnosing Impaired Glucose Tolerance Using Direct Infusion Mass Spectrometry of Blood Plasma

    PubMed Central

    Lokhov, Petr G.; Trifonova, Oxana P.; Maslov, Dmitry L.; Balashova, Elena E.; Archakov, Alexander I.; Shestakova, Ekaterina A.; Shestakova, Marina V.; Dedov, Ivan I.

    2014-01-01

    The goal of this study was to evaluate the capacity for mass spectrometry of blood plasma to diagnose impaired glucose tolerance (IGT). For this study, blood plasma samples from control subjects (n = 30) and patients with IGT (n = 20) were treated with methanol and low molecular weight fraction were then analyzed by direct infusion mass spectrometry. A total of 51 metabolite ions strongly associated with IGT were detected. The area under a receiver operating characteristic (ROC) curve (AUC) for diagnosing IGT that was based on an analysis of all these metabolites was 0.93 (accuracy 90%, specificity 90%, and sensitivity 90%). The associated reproducibility was 85%. The metabolites identified were also consistent with risk factors previously associated with the development of diabetes. Thus, direct infusion mass spectrometry of blood plasma metabolites represents a rapid, single-step, and reproducible method for the analysis of metabolites. Moreover, this method has the potential to serve as a prototype for clinical analyses that could replace the currently used glucose tolerance test with a more patient-friendly assay. PMID:25202985

  4. Diagnosing impaired glucose tolerance using direct infusion mass spectrometry of blood plasma.

    PubMed

    Lokhov, Petr G; Trifonova, Oxana P; Maslov, Dmitry L; Balashova, Elena E; Archakov, Alexander I; Shestakova, Ekaterina A; Shestakova, Marina V; Dedov, Ivan I

    2014-01-01

    The goal of this study was to evaluate the capacity for mass spectrometry of blood plasma to diagnose impaired glucose tolerance (IGT). For this study, blood plasma samples from control subjects (n = 30) and patients with IGT (n = 20) were treated with methanol and low molecular weight fraction were then analyzed by direct infusion mass spectrometry. A total of 51 metabolite ions strongly associated with IGT were detected. The area under a receiver operating characteristic (ROC) curve (AUC) for diagnosing IGT that was based on an analysis of all these metabolites was 0.93 (accuracy 90%, specificity 90%, and sensitivity 90%). The associated reproducibility was 85%. The metabolites identified were also consistent with risk factors previously associated with the development of diabetes. Thus, direct infusion mass spectrometry of blood plasma metabolites represents a rapid, single-step, and reproducible method for the analysis of metabolites. Moreover, this method has the potential to serve as a prototype for clinical analyses that could replace the currently used glucose tolerance test with a more patient-friendly assay.

  5. Hydrogen concentration in expired air analyzed with a new hydrogen sensor, plasma glucose rise, and symptoms of lactose intolerance after oral administration of 100 gram lactose.

    PubMed

    Berg, A; Eriksson, M; Bárány, F; Einarsson, K; Sundgren, H; Nylander, C; Lundström, I; Blomstrand, R

    1985-09-01

    A rapid breath hydrogen analyzer to detect lactose malabsorption is described. After ingestion of a lactose solution the patient expires into a mouthpiece attached to a hydrogen sensor at 30-min intervals for 3 1/2 h. The hydrogen of the expired air causes a voltage change that can be transformed into ppm from a calibration curve. A tolerance test with a load of 100 g lactose was performed in 43 consecutive patients with various gastrointestinal disturbances, referred to the laboratory for the commonly used lactose tolerance test based on plasma glucose measurements. Eleven patients developed symptoms of lactose intolerance during the test. Biopsy specimens from the distal duodenum or proximal jejunum showed partial villous atrophy in one, in whom celiac disease with lactose intolerance was diagnosed; the other 10 had normal specimens. In nine of them lactose intolerance was diagnosed and confirmed by observation for months on a lactose-poor diet. The 10th patient (H.P.L.) did not improve on such a diet. He also showed pronounced symptoms of intolerance during a test with monosaccharides (glucose + galactose). His intestinal disease remained undiagnosed. The 11 patients with symptoms of intolerance and 3 patients without symptoms during the lactose load showed a flat plasma glucose curve after drinking the lactose solution--that is, a maximum rise of the glucose concentration of 1.5 mmol/l. One of the symptom-free patients dropped out and could not be observed, another did not improve on a lactose-poor diet, and the third noticed a favorable effect of the diet on stool consistency but not on other abdominal symptoms.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Comparison of jet injector and insulin pen in controlling plasma glucose and insulin concentrations in type 2 diabetic patients.

    PubMed

    Guo, Lixin; Xiao, Xinhua; Sun, Xue; Qi, Cuijuan

    2017-01-01

    This study is conducted to investigate efficacy of an insulin jet injector and an insulin pen in treatment of type 2 diabetic patients. Sixty patients with type 2 diabetes were treated with rapid-acting insulin (regular insulin) and insulin analog (insulin aspart) using the jet injector and the pen in 4 successive test cycles. Postprandial glucose and insulin concentrations in blood were measured over time. Areas under curves of glucose and the insulin were calculated, and efficacy of 2 injection methods in treatment of the diabetes was compared. Regular insulin and insulin aspart administration by the jet injector showed significant decreases in plasma glucose levels as compared to the pen injection (P < 0.05). Postprandial plasma glucose excursions at the time points of 0.5 to 3 hours were obviously lower in the jet-treated patients than the pen-treated ones (P < 0.05). Postprandial plasma insulin levels were markedly higher in the jet-treated patients than the pen-treated ones (P < 0.05). Area under the glucose curve in the pen-treated patients was significantly increased as compared to the jet-treated ones (P < 0.01). Efficacy of the insulin jet injector in treatment of type 2 diabetic patients is obviously superior to the insulin pen in regulating plasma glucose and insulin levels.

  7. Comparison of jet injector and insulin pen in controlling plasma glucose and insulin concentrations in type 2 diabetic patients

    PubMed Central

    Guo, Lixin; Xiao, Xinhua; Sun, Xue; Qi, Cuijuan

    2017-01-01

    Abstract This study is conducted to investigate efficacy of an insulin jet injector and an insulin pen in treatment of type 2 diabetic patients. Sixty patients with type 2 diabetes were treated with rapid-acting insulin (regular insulin) and insulin analog (insulin aspart) using the jet injector and the pen in 4 successive test cycles. Postprandial glucose and insulin concentrations in blood were measured over time. Areas under curves of glucose and the insulin were calculated, and efficacy of 2 injection methods in treatment of the diabetes was compared. Regular insulin and insulin aspart administration by the jet injector showed significant decreases in plasma glucose levels as compared to the pen injection (P < 0.05). Postprandial plasma glucose excursions at the time points of 0.5 to 3 hours were obviously lower in the jet-treated patients than the pen-treated ones (P < 0.05). Postprandial plasma insulin levels were markedly higher in the jet-treated patients than the pen-treated ones (P < 0.05). Area under the glucose curve in the pen-treated patients was significantly increased as compared to the jet-treated ones (P < 0.01). Efficacy of the insulin jet injector in treatment of type 2 diabetic patients is obviously superior to the insulin pen in regulating plasma glucose and insulin levels. PMID:28072690

  8. Effects of nutrient restriction of bovine dams during early gestation on postnatal growth and regulation of plasma glucose.

    PubMed

    Long, N M; Prado-Cooper, M J; Krehbiel, C R; Wettemann, R P

    2010-10-01

    Angus x Hereford heifers (15 mo and AI to a single sire) were used to evaluate the effect of prenatal nutritional restriction on postnatal growth and regulation of glucose in plasma. Dams (d 32 of gestation) were stratified by BW and BCS and allotted to low [LN, 55% of NRC (1996) requirements, n = 7] or moderate nutrition [MN, 100% of NRC (1996) requirements, n = 7]. After 83 d of feeding, dams were commingled and received a diet in excess of requirements. Dams were allowed to calve naturally, and bull calves were castrated at birth. Dams and calves were maintained as a group until weaning, and calves were maintained as a group after weaning. Calves (15 mo of age) were adapted to a similar diet during 2 wk; catheters were placed in both jugular veins; and calves were confined in stalls. Two days later, calves were subjected to an intravenous glucose challenge and the next day to an insulin challenge. Dams had similar (P = 0.31) BW at the beginning of the experiment. At the end of restriction, LN dams weighed less (P ≤ 0.01) and had less BCS (P < 0.001) compared with MN dams. Length of gestation was not affected by prenatal nutritional treatment. Nutrient restriction during gestation did not influence birth weight or postnatal growth. Concentrations of glucose (P = 0.49) and insulin (P = 0.29) were not different in plasma of LN and MN calves before glucose infusion. Plasma concentrations of glucose, after intravenous administration of glucose, decreased more rapidly (P = 0.05) in LN compared with MN calves. Concentrations of glucose (P = 0.68) and insulin (P = 0.55) in plasma of LN and MN calves were similar after infusion of insulin. Nutritional restriction of dams during early gestation did not influence postnatal growth, but altered clearance of glucose after a bolus infusion of glucose.

  9. Effects of Cr methionine on glucose metabolism, plasma metabolites, meat lipid peroxidation, and tissue chromium in Mahabadi goat kids.

    PubMed

    Emami, A; Ganjkhanlou, M; Zali, A

    2015-03-01

    This study was designed to investigate the effects of chromium methionine (Cr-Met) on glucose metabolism, blood metabolites, meat lipid peroxidation, and tissue chromium (Cr) in Mahabadi goat kids. Thirty-two male kids (16.5 ± 2.8 kg BW, 4-5 months of age) were fed for 90 days in a completely randomized design with four treatments. Treatments were supplemented with 0 (control), 0.5, 1, and 1.5 mg Cr as Cr-Met/animal/daily. Blood samples were collected via heparin tubes from the jugular vein on 0, 21, 42, 63, and 90 days of experiment. On day 70, an intravenous glucose tolerance test (IVGTT) was conducted. At the end of the feeding trial, the kids were slaughtered, and the liver, kidney, and longissimus dorsi (LD) muscle samples were collected. Plasma glucose, insulin, and triglyceride concentrations were decreased by Cr supplementation (P < 0.05). LD muscle malondialdehyde (MDA) decreased, and plasma and tissue Cr contents increased with increasing supplemental Cr levels (P < 0.05). Plasma glucose concentrations at 30 and 60 min after glucose infusion were lower in the kids fed 1.5 mg Cr diet than the kids fed control diet (P < 0.05). The IVGTT indicated that the kids supplemented with 1.5 mg Cr had higher glucose clearance rate (K) and lower glucose half-life (T½; P < 0.05). Glucose area under the response curve (AUC) from 0 to 180 min after glucose infusion was decreased linearly (P < 0.01) by supplemental Cr. The results suggested that supplemental Cr may improve glucose utilization and lipid oxidation of meat in fattening kid.

  10. Plasma glucose, lactate, sodium, and potassium levels in children hospitalized with acute alcohol intoxication.

    PubMed

    Tõnisson, Mailis; Tillmann, Vallo; Kuudeberg, Anne; Väli, Marika

    2010-09-01

    The aim of our research was to study prevalence of changes in plasma levels of lactate, potassium, glucose, and sodium in relation to alcohol concentration in children hospitalized with acute alcohol intoxication (AAI). Data from 194 under 18-year-old children hospitalized to the two only children's hospital in Estonia over a 2-year period were analyzed. The pediatrician on call filled in a special form on the clinical symptoms of AAI; a blood sample was drawn for biochemical tests, and a urine sample taken to exclude narcotic intoxication. The most common finding was hyperlactinemia occurring in 66% of the patients (n=128) followed by hypokalemia (<3.5 mmol/L) in 50% (n=97), and glucose above of reference value (>6.1 mmol/L) in 40.2% of the children (n=78). Hypernatremia was present in five children. In conclusion, hyperlactinemia, hypokalemia, and glucose levels above of reference value are common biochemical findings in children hospitalized with acute AAI.

  11. Early advancing age alters plasma glucose and glucoregulatory hormones in response to supramaximal exercise.

    PubMed

    Zouhal, Hassane; Vincent, Sophie; Moussa, Elie; Botcazou, Maïtel; Delamarche, Paul; Gratas-Delamarche, Arlette

    2009-11-01

    After the age of 60, the decrease in physical activity and the increase in fat mass (FM) are two essential factors contributing to the alteration of glucose, insulin, and catecholamines responses induced by exercise. To discard these two factors, we compared the glucoregulatory responses in three different groups of men between the ages 21 and 34, and matched pairs: trained groups (T34 and T21) were matched for training level; T21 and U21 (U for untrained) were matched for age; T34 and U21 were matched for FM. The glucoregulatory responses were determined by venous plasma concentrations of glucose ([GLU]), insulin ([INS]), and catecholamines (adrenaline: [A], noradrenaline: [NA]) before and after a Wingate test. [GLU], [INS], and [A] did not differ between T21 and U21, indicating that high-level training had no effects on these parameters. On the other hand, T34 compared to T21 and U21, had higher GLU associated with lower INS post-exercise concentrations. Moreover, [A(max)] was significantly lower in this group. Consequently, T34 only exhibited a significant alteration in glucose and glucoregulatory responses after a Wingate test, which could not be explained by the usual decrease in physical activity and/or the increase in FM. Therefore, aging alone seems to be one main factor of this deterioration.

  12. Reducing dietary fat from a meal increases the bioavailability of exogenous carbohydrate without altering plasma glucose concentration

    PubMed Central

    Knuth, Nicolas D.; Shrivastava, Cara R.; Horowitz, Jeffrey F.

    2009-01-01

    The primary goal of this study was to determine the acute glycemic and endocrine responses to the reduction of fat content from a meal. On three separate occasions, nine overweight subjects (body mass index = 30 ± 1 kg/m2; 5 men, 4 women) consumed 1) a control meal (∼800 kcal; 100 g of carbohydrate, 31 g of fat, and 30 g of protein), 2) a low-fat meal (∼530 kcal; 100 g of carbohydrate, 1 g of fat, and 30 g of protein), or 3) a low-fat meal plus lipid infusion [same meal as low-fat meal, but the total energy provided was the same as control (800 kcal), with the “missing” fat (∼30 g) provided via an intravenous lipid infusion]. All three meals contained [13C]glucose (3 mg/kg body wt) to assess the bioavailability of ingested glucose. During the 5-h period after each meal, we measured the recovery of [13C]glucose in plasma, plasma glucose, and insulin concentrations. We also measured plasma concentration of the gastrointestinal peptides: glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and peptide YY3-36 (PYY3-36). The recovery of the ingested [13C]glucose in the hour after ingestion was greater (P < 0.05) after the low-fat than after the control meal [area under the curve (AUC): 1,206 ± 252 and 687 ± 161 μM·h, respectively]. However, removing dietary fat from the meal did not affect the plasma concentration of glucose or insulin. Importantly, [13C]glucose recovery was not different during the low-fat and lipid infusion trials (AUC: 1,206 ± 252 and 1,134 ± 247 μM·h, respectively), indicating that the accelerated delivery of exogenous glucose found after removing fat from the meal is due exclusively to the reduction of fat in the gastrointestinal tract. In parallel with these findings, the reduction in fat calories from the meal reduced plasma concentration of GIP, GLP-1, and PYY3-36. In summary, these data suggest that removing fat from the diet expedited exogenous glucose delivery into the systemic circulation

  13. Engineered glucagon-like peptide-1-producing hepatocytes lower plasma glucose levels in mice.

    PubMed

    Riedel, Michael J; Lee, Corinna Wai Kwan; Kieffer, Timothy J

    2009-04-01

    Glucagon-like peptide (GLP)-1 is an incretin hormone with well-characterized antidiabetic properties, including glucose-dependent stimulation of insulin secretion and enhancement of beta-cell mass. GLP-1 agonists have recently been developed and are now in clinical use for the treatment of type 2 diabetes. Rapid degradation of GLP-1 by enzymes including dipeptidyl-peptidase (DPP)-IV and neutral endopeptidase (NEP) 24.11, along with renal clearance, contribute to a short biological half-life, necessitating frequent injections to maintain therapeutic efficacy. Gene therapy may represent a promising alternative approach for achieving long-term increases in endogenous release of GLP-1. We have developed a novel strategy for glucose-regulated production of GLP-1 in hepatocytes by expressing a DPP-IV-resistant GLP-1 peptide in hepatocytes under control of the liver-type pyruvate kinase promoter. Adenoviral delivery of this construct to hepatocytes in vitro resulted in production and secretion of bioactive GLP-1 as measured by a luciferase-based bioassay developed to detect the NH2-terminally modified GLP-1 peptide engineered for this study. Transplantation of encapsulated hepatocytes into CD-1 mice resulted in an increase in plasma GLP-1 levels that was accompanied by a significant reduction in fasting plasma glucose levels. The results from this study demonstrate that a gene therapy approach designed to induce GLP-1 production in hepatocytes may represent a novel strategy for long-term secretion of bioactive GLP-1 for the treatment of type 2 diabetes.

  14. One-Hour Postload Plasma Glucose Levels Are Associated with Kidney Dysfunction

    PubMed Central

    Succurro, Elena; Arturi, Franco; Lugarà, Marina; Grembiale, Alessandro; Fiorentino, Teresa Vanessa; Caruso, Vittoria; Andreozzi, Francesco; Sciacqua, Angela; Hribal, Marta Letizia; Perticone, Francesco

    2010-01-01

    Background and objectives: A cutoff of 155 mg/dl for 1-hour postload plasma glucose (1hPG) during the oral glucose tolerance test (OGTT) is able to identify patients who are at high risk for type 2 diabetes and vascular atherosclerosis. We aimed to examine whether individuals with 1hPG ≥155 mg/dl are also at increased risk for chronic kidney disease (CKD). Design, setting, participants, & measurements: Atherosclerosis risk factors, OGTT, and estimated GFR by Chronic Kidney Disease Epidemiology Collaboration equation were analyzed in 1075 white individuals without diabetes. Results: The area under the receiver operating characteristic curve for 1hPG was the highest (0.700) compared with the areas under the receiver operating characteristic curve of 0, 30-minute, and 2-hour glucose concentrations. Individuals with 1hPG ≥155 mg/dl had a worse cardiometabolic risk profile, exhibiting significantly higher body mass index, BP, triglycerides, and fasting insulin levels and lower HDL, IGF-1 levels, and insulin sensitivity, than individuals with 1hPG <155 mg/dl. Estimated GFR was significantly lower in individuals with 1hPG ≥155 mg/dl. In a logistic regression model adjusted for age and gender, individuals with 1hPG ≥155 mg/dl showed an increased risk for CKD compared with individuals with 1hPG <155 mg/dl. When the logistic regression analysis was restricted to individuals who had normal glucose tolerance, those with 1hPG ≥155 mg/dl showed a higher risk for CKD compared with individuals with 1hPG <155 mg/dl. Conclusions: These data suggest that a cutoff point of 155 mg/dl for the 1hPG during OGTT may be helpful in the identification of individuals who are at increased risk for CKD. PMID:20595688

  15. Plasma kinetics of an LDL-like nanoemulsion and lipid transfer to HDL in subjects with glucose intolerance

    PubMed Central

    Bertato, Marina P; Oliveira, Carolina P; Wajchenberg, Bernardo L; Lerario, Antonio C; Maranhão, Raul C

    2012-01-01

    OBJECTIVE: Glucose intolerance is frequently associated with an altered plasma lipid profile and increased cardiovascular disease risk. Nonetheless, lipid metabolism is scarcely studied in normolipidemic glucose-intolerant patients. The aim of this study was to investigate whether important lipid metabolic parameters, such as the kinetics of LDL free and esterified cholesterol and the transfer of lipids to HDL, are altered in glucose-intolerant patients with normal plasma lipids. METHODS: Fourteen glucose-intolerant patients and 15 control patients were studied; none of the patients had cardiovascular disease manifestations, and they were paired for age, sex, race and co-morbidities. A nanoemulsion resembling a LDL lipid composition (LDE) labeled with 14C-cholesteryl ester and 3H-free cholesterol was intravenously injected, and blood samples were collected over a 24-h period to determine the fractional clearance rate of the labels by compartmental analysis. The transfer of free and esterified cholesterol, triglycerides and phospholipids from the LDE to HDL was measured by the incubation of the LDE with plasma and radioactivity counting of the supernatant after chemical precipitation of non-HDL fractions. RESULTS: The levels of LDL, non-HDL and HDL cholesterol, triglycerides, apo A1 and apo B were equal in both groups. The 14C-esterified cholesterol fractional clearance rate was not different between glucose-intolerant and control patients, but the 3H-free- cholesterol fractional clearance rate was greater in glucose-intolerant patients than in control patients. The lipid transfer to HDL was equal in both groups. CONCLUSION: In these glucose-intolerant patients with normal plasma lipids, a faster removal of LDE free cholesterol was the only lipid metabolic alteration detected in our study. This finding suggests that the dissociation of free cholesterol from lipoprotein particles occurs in normolipidemic glucose intolerance and may participate in atherogenic

  16. [The titration of double bonds in fatty acids of blood plasma in patients in testing of glucose tolerance].

    PubMed

    Titov, V N; Sazhina, N N; Evteeva, N M; Aripovskiĭ, A V; Tkhagalizhokova, E M

    2015-01-01

    The article deals with per oral glucose tolerance test applied to 20 patients with arterial hypertension. The blood plasma was analyzed to detect content of individual fatty acids, double bounds, glucose, insulin and metabolites of fatty acids. In patients with different resistance to insulin content of non-etherized fatty acids decreased approximatively up to 3 times. Without insulin resistance secretion of insulin in 2 hours after glucose load increased up to 3 times and content of individual fatty acids decreases in greater extent. Under insulin resistance secretion of insulin increases up to 8 times and decreasing of content of fatty acids is less expressed. The decrease in blood plasma of content of oleic and linoleic fatty acids and double bounds reflects effectiveness of effect of insulin--blockade of hydrolysis of triglycerides in subcutaneous adipocytes. The concentration of insulin positively correlates with initial content of palmitic fatty acid in the pool of lipids of blood plasma.

  17. Effects of a sodium glucose co-transporter 2 selective inhibitor, ipragliflozin, on the diurnal profile of plasma glucose in patients with type 2 diabetes: A study using continuous glucose monitoring

    PubMed Central

    Yamada, Kentaro; Nakayama, Hitomi; Yoshinobu, Satoko; Kawano, Seiko; Tsuruta, Munehisa; Nohara, Masayuki; Hasuo, Rika; Akasu, Shoko; Tokubuchi, Ichiro; Wada, Nobuhiko; Hirao, Saori; Iwata, Shinpei; Kaku, Hiroo; Tajiri, Yuji

    2015-01-01

    Aims/Introduction To assess the effects of sodium glucose co-transporter 2 inhibitor therapy on the pathophysiology of type 2 diabetes. Materials and Methods We administered ipragliflozin to 21 inpatients with type 2 diabetes for 7 days, and analyzed the diurnal profiles of plasma glucose and 3-hydroxybutyrate. A total of 21 age-, sex- and body mass index-matched diabetic patients served as controls. Results Continuous glucose monitoring showed that the 24-h glucose curve was shifted downward without hypoglycemia by the administration of ipragliflozin. The average glucose level was reduced from 182 ± 54 mg/dL to 141 ± 33 mg/dL (P < 0.0001). The magnitude of the reduction was highly correlated with the baseline average glucose level. Homeostasis model assessment of insulin resistance was decreased, and homeostasis model assessment of β-cell function was increased during the treatment. Urinary glucose excretion was correlated with the average glucose level both on day 0 and on day 7, although the regression line was steeper and shifted leftward on day 7. The ipragliflozin-treated patients lost more weight than the control patients (1.4 ± 0.5 vs 0.5 ± 0.6 kg, P < 0.0001). Plasma levels of 3-hydroxybutyrate were significantly increased with peaks before breakfast and before dinner. Patient age and bodyweight loss were negatively and positively correlated with the peak levels of 3-hydroxybutyrate on day 7, respectively. Conclusions The ipragliflozin treatment improved the 24-h glucose curve without causing hypoglycemia. The close correlation between the magnitude of glucose reduction and the baseline plasma glucose concentration suggests that the risk of hypoglycemia is likely low. It might be prudent to monitor ketone body levels in younger patients and in patients with rapid weight loss. PMID:26543545

  18. Changes in plasma glucose in Otsuka Long-Evans Tokushima Fatty rats after oral administration of maple syrup.

    PubMed

    Nagai, Noriaki; Yamamoto, Tetsushi; Tanabe, Wataru; Ito, Yoshimasa; Kurabuchi, Satoshi; Mitamura, Kuniko; Taga, Atsushi

    2015-01-01

    We investigate whether maple syrup is a suitable sweetener in the management of type 2 diabetes using the Otsuka Long-Evans Tokushima Fatty (OLETF) rat. The enhancement in plasma glucose (PG) and glucose absorption in the small intestine were lower after the oral administration of maple syrup than after sucrose administration in OLETF rats, and no significant differences were observed in insulin levels. These data suggested that maple syrup might inhibit the absorption of glucose from the small intestine and preventing the enhancement of PG in OLETF rats. Therefore, maple syrup might help in the prevention of type 2 diabetes.

  19. The Relationship between Physical Activity and Plasma Glucose Level amongst Ellisras Rural Young Adult Males and Females: Ellisras Longitudinal Study

    PubMed Central

    Matshipi, Moloko; Monyeki, Kotsedi Daniel; Kemper, Han

    2017-01-01

    Unhealthy lifestyle characteristics such as low physical activity (PA) and high plasma glucose levels (PGLs) may lead to the development of type 2 diabetes mellitus in adulthood. The aim of this study was to investigate (i) the level of physical activity; (ii) the prevalence of pre-diabetes and (iii) the relationship between PA and plasma glucose level in a rural Ellisras adult population aged 18 to 28 years. A total of 713 young adults (349 males and 364 females) who took part in the Ellisras Longitudinal Study participated in the study. Fasting plasma glucose levels were analysed using Accutrend glucose meters. Physical activity data was collected using a validated questionnaire. Linear regression was used to assess the relationship between PA and pre-diabetes. The prevalence of pre-diabetes was between 45.7% and 50.2% and that of physical inactivity was 67.3% and 71.0% for males and females, respectively. There was no significant (p > 0.05) relationship between PA and pre-diabetes (beta = 1.016; 95% Confidence Interval from 0.352 to 2.777). The health benefits of PA increased with the increasing frequency, duration and intensity of exercise. The prevalence of pre-diabetes was found to be very high in this population. Our results suggest that greater physical activity is associated with low plasma glucose levels. PMID:28212346

  20. The Relationship between Physical Activity and Plasma Glucose Level amongst Ellisras Rural Young Adult Males and Females: Ellisras Longitudinal Study.

    PubMed

    Matshipi, Moloko; Monyeki, Kotsedi Daniel; Kemper, Han

    2017-02-16

    Unhealthy lifestyle characteristics such as low physical activity (PA) and high plasma glucose levels (PGLs) may lead to the development of type 2 diabetes mellitus in adulthood. The aim of this study was to investigate (i) the level of physical activity; (ii) the prevalence of pre-diabetes and (iii) the relationship between PA and plasma glucose level in a rural Ellisras adult population aged 18 to 28 years. A total of 713 young adults (349 males and 364 females) who took part in the Ellisras Longitudinal Study participated in the study. Fasting plasma glucose levels were analysed using Accutrend glucose meters. Physical activity data was collected using a validated questionnaire. Linear regression was used to assess the relationship between PA and pre-diabetes. The prevalence of pre-diabetes was between 45.7% and 50.2% and that of physical inactivity was 67.3% and 71.0% for males and females, respectively. There was no significant (p > 0.05) relationship between PA and pre-diabetes (beta = 1.016; 95% Confidence Interval from 0.352 to 2.777). The health benefits of PA increased with the increasing frequency, duration and intensity of exercise. The prevalence of pre-diabetes was found to be very high in this population. Our results suggest that greater physical activity is associated with low plasma glucose levels.

  1. Effects of miglitol, sitagliptin or their combination on plasma glucose, insulin and incretin levels in non-diabetic men.

    PubMed

    Aoki, Kazutaka; Masuda, Kiyomi; Miyazaki, Takashi; Togashi, Yu; Terauchi, Yasuo

    2010-01-01

    alpha-glucosidase inhibitors (alphaGIs) increase active glucagon-like peptide-1 (GLP-1) and reduce the total glucosedependent insulinotropic polypeptide (GIP) levels, but their ability to prevent diabetes remains uncertain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as sitagliptin, increase active GLP-1 and GIP levels and improve hyperglycemia in a glucose-dependent fashion. However, the effectiveness of their combination in subjects with normal glucose tolerance (NGT) or impaired glucose tolerance (IGT) is uncertain. The present study evaluated the effect of miglitol, sitagliptin, and their combination on glucose, insulin and incretin levels in non-diabetic men. Miglitol and sitagliptin were administered according to four different intake schedules (C: no drug, M: miglitol; S: sitagliptin, M+S: miglitol and sitagliptin). The plasma glucose levels were significantly lower for M, S and M+S than for the control. The areas under the curve (AUCs) of the plasma active GLP-1 level in the M, S, and M+S groups were significantly greater than that in the control group. The AUC of the plasma active GLP-1 level was significantly greater for M+S group than for the M and S groups. The AUC of the plasma total GIP level was significantly smaller for M+S group than for the control and M and S groups. The results of our study suggest that miglitol, sitagliptin, or their combination contributes to the prevention of type 2 diabetes.

  2. Impact of maternal chromium restriction on glucose tolerance, plasma insulin and oxidative stress in WNIN rat offspring.

    PubMed

    Padmavathi, Inagadapa J N; Rao, Kalashikam Rajender; Raghunath, Manchala

    2011-12-01

    Robust evidence suggests that nutritional insult during fetal development could program the offspring to glucose intolerance, impaired insulin response and insulin resistance (IR). Considering the importance of chromium (Cr) in maintaining carbohydrate metabolism, this study determined the effect of maternal Cr restriction (CrR) on glucose metabolism and plasma insulin in Wistar/NIN (WNIN) rat offspring and the associated biochemical and/or molecular mechanisms. Female, weanling WNIN rats received ad libitum for 12 weeks, a control diet or the same with 65% restriction of Cr and mated with control males. Some of the Cr-restricted dams were rehabilitated from conception or parturition and their pups weaned on to control diet. At the time of weaning, half of the Cr restricted offspring were rehabilitated to control diet while others continued on Cr-restricted diet. Maternal CrR increased fasting plasma glucose, fasting insulin, homeostasis model assessment of IR, and area under the curve of glucose and insulin during oral glucose tolerance test in the offspring. Expression and activity of rate-limiting enzymes of glucose metabolism were comparable among different groups and expression of genes involved in insulin secretion was increased albeit in male offspring whereas antioxidant enzyme activities were decreased in offspring of both genders. Rehabilitation, in general, corrected the changes albeit partially. Maternal dietary CrR induced IR, impaired glucose tolerance in WNIN rat offspring and was associated with increased oxidative stress, which may predispose them to type 2 diabetes in their later life.

  3. Impaired increase of plasma abscisic Acid in response to oral glucose load in type 2 diabetes and in gestational diabetes.

    PubMed

    Ameri, Pietro; Bruzzone, Santina; Mannino, Elena; Sociali, Giovanna; Andraghetti, Gabriella; Salis, Annalisa; Ponta, Monica Laura; Briatore, Lucia; Adami, Giovanni F; Ferraiolo, Antonella; Venturini, Pier Luigi; Maggi, Davide; Cordera, Renzo; Murialdo, Giovanni; Zocchi, Elena

    2015-01-01

    The plant hormone abscisic acid (ABA) is present and active in humans, regulating glucose homeostasis. In normal glucose tolerant (NGT) human subjects, plasma ABA (ABAp) increases 5-fold after an oral glucose load. The aim of this study was to assess the effect of an oral glucose load on ABAp in type 2 diabetes (T2D) subjects. We chose two sub-groups of patients who underwent an oral glucose load for diagnostic purposes: i) 9 treatment-naive T2D subjects, and ii) 9 pregnant women with gestational diabetes (GDM), who underwent the glucose load before and 8-12 weeks after childbirth. Each group was compared with matched NGT controls. The increase of ABAp in response to glucose was found to be abrogated in T2D patients compared to NGT controls. A similar result was observed in the women with GDM compared to pregnant NGT controls; 8-12 weeks after childbirth, however, fasting ABAp and ABAp response to glucose were restored to normal in the GDM subjects, along with glucose tolerance. We also retrospectively compared fasting ABAp before and after bilio-pancreatic diversion (BPD) in obese, but not diabetic subjects, and in obese T2D patients, in which BPD resulted in the resolution of diabetes. Compared to pre-BPD values, basal ABAp significantly increased 1 month after BPD in T2D as well as in NGT subjects, in parallel with a reduction of fasting plasma glucose. These results indicate an impaired hyperglycemia-induced ABAp increase in T2D and in GDM and suggest a beneficial effect of elevated ABAp on glycemic control.

  4. Dexamethasone increases glucose cycling, but not glucose production, in healthy subjects

    SciTech Connect

    Wajngot, A.; Khan, A.; Giacca, A.; Vranic, M.; Efendic, S. )

    1990-11-01

    We established that measurement of glucose fluxes through glucose-6-phosphatase (G-6-Pase; hepatic total glucose output, HTGO), glucose cycling (GC), and glucose production (HGP), reveals early diabetogenic changes in liver metabolism. To elucidate the mechanism of the diabetogenic effect of glucocorticoids, we treated eight healthy subjects with oral dexamethasone (DEX; 15 mg over 48 h) and measured HTGO with (2-3H)glucose and HGP with (6-3H)glucose postabsorptively and during a 2-h glucose infusion (11.1 mumol.kg-1.min-1). (2-3H)- minus (6-3H)glucose equals GC. DEX significantly increased plasma glucose, insulin, C peptide, and HTGO, while HGP was unchanged. In controls and DEX, glucose infusion suppressed HTGO (82 vs. 78%) and HGP (87 vs. 91%). DEX increased GC postabsorptively (three-fold) P less than 0.005 and during glucose infusion (P less than 0.05) but decreased metabolic clearance and glucose uptake (Rd), which eventually normalized, however. Because DEX increased HTGO (G-6-Pase) and not HGP (glycogenolysis + gluconeogenesis), we assume that DEX increases HTGO and GC in humans by activating G-6-Pase directly, rather than by expanding the glucose 6-phosphate pool. Hyperglycemia caused by peripheral effects of DEX can also contribute to an increase in GC by activating glucokinase. Therefore, measurement of glucose fluxes through G-6-Pase and GC revealed significant early effects of DEX on hepatic glucose metabolism, which are not yet reflected in HGP.

  5. Quantum cascade laser investigations of CH4 and C2H2 interconversion in hydrocarbon/H2 gas mixtures during microwave plasma enhanced chemical vapor deposition of diamond

    NASA Astrophysics Data System (ADS)

    Ma, Jie; Cheesman, Andrew; Ashfold, Michael N. R.; Hay, Kenneth G.; Wright, Stephen; Langford, Nigel; Duxbury, Geoffrey; Mankelevich, Yuri A.

    2009-08-01

    CH4 and C2H2 molecules (and their interconversion) in hydrocarbon/rare gas/H2 gas mixtures in a microwave reactor used for plasma enhanced diamond chemical vapor deposition (CVD) have been investigated by line-of-sight infrared absorption spectroscopy in the wavenumber range of 1276.5-1273.1 cm-1 using a quantum cascade laser spectrometer. Parameters explored include process conditions [pressure, input power, source hydrocarbon, rare gas (Ar or Ne), input gas mixing ratio], height (z) above the substrate, and time (t) after addition of hydrocarbon to a pre-existing Ar/H2 plasma. The line integrated absorptions so obtained have been converted to species number densities by reference to the companion two-dimensional (r ,z) modeling of the CVD reactor described in Mankelevich et al. [J. Appl. Phys. 104, 113304 (2008)]. The gas temperature distribution within the reactor ensures that the measured absorptions are dominated by CH4 and C2H2 molecules in the cool periphery of the reactor. Nonetheless, the measurements prove to be of enormous value in testing, tensioning, and confirming the model predictions. Under standard process conditions, the study confirms that all hydrocarbon source gases investigated (methane, acetylene, ethane, propyne, propane, and butane) are converted into a mixture dominated by CH4 and C2H2. The interconversion between these two species is highly dependent on the local gas temperature and the H atom number density, and thus on position within the reactor. CH4→C2H2 conversion occurs most efficiently in an annular shell around the central plasma (characterized by 14002H2→CH4 is favored in the more distant regions where Tgas<1400 K. Analysis of the multistep interconversion mechanism reveals substantial net consumption of H atoms accompanying the CH4→C2H2 conversion, whereas the reverse C2H2→CH4 process only requires H atoms to drive the reactions; H atoms are not consumed by the overall

  6. Quantum cascade laser investigations of CH{sub 4} and C{sub 2}H{sub 2} interconversion in hydrocarbon/H{sub 2} gas mixtures during microwave plasma enhanced chemical vapor deposition of diamond

    SciTech Connect

    Ma Jie; Cheesman, Andrew; Ashfold, Michael N. R.; Hay, Kenneth G.; Wright, Stephen; Langford, Nigel; Duxbury, Geoffrey; Mankelevich, Yuri A.

    2009-08-01

    CH{sub 4} and C{sub 2}H{sub 2} molecules (and their interconversion) in hydrocarbon/rare gas/H{sub 2} gas mixtures in a microwave reactor used for plasma enhanced diamond chemical vapor deposition (CVD) have been investigated by line-of-sight infrared absorption spectroscopy in the wavenumber range of 1276.5-1273.1 cm{sup -1} using a quantum cascade laser spectrometer. Parameters explored include process conditions [pressure, input power, source hydrocarbon, rare gas (Ar or Ne), input gas mixing ratio], height (z) above the substrate, and time (t) after addition of hydrocarbon to a pre-existing Ar/H{sub 2} plasma. The line integrated absorptions so obtained have been converted to species number densities by reference to the companion two-dimensional (r,z) modeling of the CVD reactor described in Mankelevich et al. [J. Appl. Phys. 104, 113304 (2008)]. The gas temperature distribution within the reactor ensures that the measured absorptions are dominated by CH{sub 4} and C{sub 2}H{sub 2} molecules in the cool periphery of the reactor. Nonetheless, the measurements prove to be of enormous value in testing, tensioning, and confirming the model predictions. Under standard process conditions, the study confirms that all hydrocarbon source gases investigated (methane, acetylene, ethane, propyne, propane, and butane) are converted into a mixture dominated by CH{sub 4} and C{sub 2}H{sub 2}. The interconversion between these two species is highly dependent on the local gas temperature and the H atom number density, and thus on position within the reactor. CH{sub 4}->C{sub 2}H{sub 2} conversion occurs most efficiently in an annular shell around the central plasma (characterized by 14002}H{sub 2}->CH{sub 4} is favored in the more distant regions where T{sub gas}<1400 K. Analysis of the multistep interconversion mechanism reveals substantial net consumption of H atoms accompanying the CH{sub 4}->C{sub 2}H{sub 2

  7. Oral green tea catechins transiently lower plasma glucose concentrations in female db/db mice.

    PubMed

    Wein, Silvia; Schrader, Eva; Rimbach, Gerald; Wolffram, Siegfried

    2013-04-01

    Polyphenols, including green tea catechins, are secondary plant compounds often discussed in the context of health-promoting potential. Evidence for such effects is mainly derived from epidemiological and cell culture studies. The aim of the present study was to investigate antidiabetic, antiadipogenic, and anti-inflammatory effects at nonpharmacological doses in an obese diabetic mouse model that exerts early relevant clinical signs of non-insulin-dependent diabetes mellitus. Female db/db mice received a flavonoid-poor diet either without additive, with rosiglitazone (RSG, 0.02 g/kg diet), or with green tea extract (low-dose green tea extract [LGTE] and high-dose green tea extract [HGTE], 0.1 and 1 g/kg diet). Food and water were freely available. The body weight was monitored weekly. Blood was sampled (12-h fasted) from the tail vein on day 28 and analyzed for glucose, cholesterol, triacylglycerol, nonesterified fatty acids, insulin, adiponectin, and soluble intercellular adhesion molecule-1 (sICAM-1). Blood glucose was also analyzed on day 14. Furthermore, sICAM-1 release was investigated in tumor necrosis factor alpha-stimulated EAhy926 cells. After 14 days, fasting glycemia was improved by RSG or HGTE supplementation compared to controls. However, at the end of the study (day 28), only RSG exhibited glucose-lowering effects and induced plasma adiponectin concentrations, paralleled by higher body weight gain and reduced periuterine fat pads compared to controls. However, only GTE treatment reduced sICAM-1 release in vitro and in vivo. Nonpharmacological HGTE supplementation in db/db mice caused (1) no adiponectin-inducing or antiadipogenic effects, (2) reduced sICAM-1 release, thereby potentially exerting anti-inflammatory effects in the progressive diabetic state, and (3) a transient improvement in glycemia.

  8. Native fluorescence spectroscopy of blood plasma of rats with experimental diabetes: identifying fingerprints of glucose-related metabolic pathways.

    PubMed

    Shirshin, Evgeny; Cherkasova, Olga; Tikhonova, Tatiana; Berlovskaya, Elena; Priezzhev, Alexander; Fadeev, Victor

    2015-05-01

    We present the results of a native fluorescence spectroscopy study of blood plasma of rats with experimental diabetes. It was shown that the fluorescence emission band shape at 320 nm excitation is the most indicative of hyperglycemia in the blood plasma samples. We provide the interpretation of this fact based on the changes in reduced nicotinamide adenine dinucleotide phosphate concentration due to glucose-related metabolic pathways and protein fluorescent cross-linking formation following nonenzymatic glycation.

  9. Native fluorescence spectroscopy of blood plasma of rats with experimental diabetes: identifying fingerprints of glucose-related metabolic pathways

    NASA Astrophysics Data System (ADS)

    Shirshin, Evgeny; Cherkasova, Olga; Tikhonova, Tatiana; Berlovskaya, Elena; Priezzhev, Alexander; Fadeev, Victor

    2015-05-01

    We present the results of a native fluorescence spectroscopy study of blood plasma of rats with experimental diabetes. It was shown that the fluorescence emission band shape at 320 nm excitation is the most indicative of hyperglycemia in the blood plasma samples. We provide the interpretation of this fact based on the changes in reduced nicotinamide adenine dinucleotide phosphate concentration due to glucose-related metabolic pathways and protein fluorescent cross-linking formation following nonenzymatic glycation.

  10. Does sugar content matter? Blood plasma glucose levels in an occasional and a specialist avian nectarivore.

    PubMed

    Witteveen, Minke; Brown, Mark; Downs, Colleen T

    2014-01-01

    Nectar composition within a plant pollinator group can be variable, and bird pollinated plants can be segregated into two groups based on their adaptations to either a specialist or an occasional bird pollination system. Specialist nectarivores rely primarily on nectar for their energy requirements, while occasional nectarivores meet their energy requirements from nectar as well as from seeds, fruit and insects. Avian blood plasma glucose concentration (PGlu) is generally high compared with mammals. It is also affected by a range of factors including species, gender, age, ambient temperature, feeding pattern, reproductive status, circadian rhythm and moult status, among others. We examined whether sugar content affected PGlu of two avian nectarivores, a specialist nectarivore the Amethyst Sunbird Chalcomitra amethystina, and an occasional nectarivore the Cape White-eye Zosterops virens, when fed sucrose-hexose sugar solution diets of varying concentrations (5%-35%). Both species regulated PGlu within a range which was affected by sampling time (fed or fasted) and not dietary sugar concentration. The range in mean PGlu was broader in Amethyst Sunbirds (11.52-16.51mmol/L) compared with Cape White-eyes (14.33-15.85mmol/L). This suggests that these birds are not constrained by dietary sugar concentration with regard to PGlu regulation, and consequently selective pressure on plants for their nectar characteristics is due to reasons other than glucose regulation.

  11. Modification of a traditional breakfast leads to increased satiety along with attenuated plasma increments of glucose, C-peptide, insulin, and glucose-dependent insulinotropic polypeptide in humans.

    PubMed

    Ohlsson, Bodil; Höglund, Peter; Roth, Bodil; Darwiche, Gassan

    2016-04-01

    Our hypothesis was that carbohydrate, fat, and protein contents of meals affect satiety, glucose homeostasis, and hormone secretion. The objectives of this crossover trial were to examine satiety, glycemic-insulinemic response, and plasma peptide levels in response to 2 different recommended diabetes diets with equivalent energy content. One traditional reference breakfast and one test breakfast, with lower carbohydrate and higher fat and protein content, were randomly administered to healthy volunteers (8 men, 12 women). Blood samples were collected, and satiety was scored on a visual analog scale before and 3 hours after meals. Plasma glucose was measured, and levels of C-peptide, ghrelin, glucagon, glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide (GIP), insulin, plasminogen activator inhibitor-1, and adipokines were analyzed by Luminex. Greater satiety, visual analog scale, and total and delta area under the curve (P < .001), and lower glucose postprandial peak (max) and change from baseline (dmax; P < .001) were observed after test meal compared with reference meal. Postprandial increments of C-peptide, insulin, and GIP were suppressed after test meal compared with reference meal (total delta area under the curve [P = .03, .006, and .004], delta area under the curve [P = .006, .003, and .02], max [P = .01, .007, and .002], and dmax [P = .004, .008, and .007], respectively). Concentrations of other peptides were similar between meals. A lower carbohydrate and higher fat and protein content provides greater satiety and attenuation of C-peptide, glucose, insulin, and GIP responses compared with the reference breakfast but does not affect adipokines, ghrelin, glucagon, glucagon-like peptide-1, and plasminogen activator inhibitor-1.

  12. Plasma myeloperoxidase is inversely associated with endothelium-dependent vasodilation in elderly subjects with abnormal glucose metabolism.

    PubMed

    van der Zwan, Leonard P; Teerlink, Tom; Dekker, Jacqueline M; Henry, Ronald M A; Stehouwer, Coen D A; Jakobs, Cornelis; Heine, Robert J; Scheffer, Peter G

    2010-12-01

    Myeloperoxidase (MPO), a biomarker related to inflammation, oxidative stress, and nitric oxide scavenging, has been shown to impair endothelium-dependent vasodilation. Because elevated hydrogen peroxide concentrations in diabetic vessels may enhance MPO activity, we hypothesized that a stronger association of MPO with flow-mediated dilation (FMD) may be found in subjects with abnormal glucose metabolism. Myeloperoxidase concentrations were measured in EDTA plasma samples from participants of a population-based cohort study, including 230 subjects with normal glucose metabolism and 386 with abnormal glucose metabolism. Vascular function was expressed as FMD and nitroglycerin-mediated dilation of the brachial artery. In subjects with abnormal glucose metabolism, MPO was negatively associated with FMD (-20.9 [95% confidence interval {CI}, -41.7 to -0.2] -μm change in FMD per SD increment of MPO). This association remained significant after adjustment for nitroglycerin-mediated dilation (-31.1 [95% CI, -50.0 to -12.3]) and was not attenuated after further adjustment for established risk factors. In subjects with normal glucose metabolism, MPO was not significantly associated with FMD (2.0 [95% CI, -16.0 to 20.0]). In conclusion, in subjects with abnormal glucose metabolism, plasma levels of MPO are inversely associated with endothelium-dependent vasodilation, possibly reflecting enhancement of MPO activity by vascular oxidative stress.

  13. Dietary Japanese millet protein ameliorates plasma levels of adiponectin, glucose, and lipids in type 2 diabetic mice.

    PubMed

    Nishizawa, Naoyuki; Togawa, Tubasa; Park, Kyung-Ok; Sato, Daiki; Miyakoshi, Yo; Inagaki, Kazuya; Ohmori, Norimasa; Ito, Yoshiaki; Nagasawa, Takashi

    2009-02-01

    Millet is an important food crop in Asia and Africa, but the health benefits of dietary millet are little known. This study defined the effects of dietary Japanese millet on diabetic mice. Feeding of a high-fat diet containing Japanese millet protein concentrate (JMP, 20% protein) to type 2 diabetic mice for 3 weeks significantly increased plasma levels of adiponectin and high-density lipoprotein cholesterol (HDL cholesterol) and decreased the levels of glucose and triglyceride as compared to control. The starch fraction of Japanese millet had no effect on glucose or adiponectin levels, but the prolamin fraction beneficially modulated plasma glucose and insulin concentrations as well as adiponectin and tumor necrosis factor-alpha gene expression. Considering the physiological significance of adiponectin and HDL cholesterol levels in type 2 diabetes, insulin resistance, and cardiovascular disease, our findings imply that dietary JMP has the potential to ameliorate these diseases.

  14. The effect of low zinc (Zn) intake on the plasma Zn response to a meal or glucose load

    SciTech Connect

    Hambidge, K.M.; Mellman, D.; Westcott, J.L. )

    1991-03-15

    The objective of this study was to test the hypothesis that the post-prandial net efflux of Zn from the plasma compartment is greater following a period of acute Zn deprivation. For 8 days, 5 healthy adults received their normal diet plus a 15 mg Zn supplement, following which they were fed a liquid synthetic egg albumin, high phytate diet providing less than 1 mg Zn per day for 8 days. On the 7th day on each diet, subjects were fed the low Zn liquid breakfast providing 240-400 kcal according to body weight. On the 8th day on each diet, subjects received an isocaloric quantity of glucose. Blood samples were collected before and for 6 hrs after both the test breakfast and glucose load. Post-prandial changes in plasma Zn were analyzed by a two-factor analysis of variance with repeated measures. Mean fasting plasma Zn did not change after a week of severe dietary Zn restriction. Post glucose decline in plasma Zn did not change significantly, but post-breakfast decline in plasma Zn was consistently greater across the 6 hr period. The maximal post-prandial decline was 11.6 {plus minus} 6.1 ug/dl in the control period and 19.3 {plus minus} 2.6 ug/dl in the Zn restricted period. It is concluded that the plasma Zn response is greater with a meal than with an equicaloric glucose load and that plasma Zn is more sensitive to a Zn restricted diet post-prandially than in the fasting state.

  15. Stable isotope models of sugar intake using hair, red blood cells, and plasma, but not fasting plasma glucose, predict sugar intake in a Yup'ik study population.

    PubMed

    Nash, Sarah H; Kristal, Alan R; Hopkins, Scarlett E; Boyer, Bert B; O'Brien, Diane M

    2014-01-01

    Objectively measured biomarkers will help to resolve the controversial role of sugar intake in the etiology of obesity and related chronic diseases. We recently validated a dual-isotope model based on RBC carbon (δ(13)C) and nitrogen (δ(15)N) isotope ratios that explained a large percentage of the variation in self-reported sugar intake in a Yup'ik study population. Stable isotope ratios can easily be measured from many tissues, including RBCs, plasma, and hair; however, it is not known how isotopic models of sugar intake compare among these tissues. Here, we compared self-reported sugar intake with models based on RBCs, plasma, and hair δ(13)C and δ(15)N in Yup'ik people. We also evaluated associations of sugar intake with fasting plasma glucose δ(13)C. Finally, we evaluated relations between δ(13)C and δ(15)N values in hair, plasma, RBCs, and fasting plasma glucose to allow comparison of isotope ratios across tissue types. Models using RBCs, plasma, or hair isotope ratios explained similar amounts of variance in total sugar, added sugar, and sugar-sweetened beverage intake (∼53%, 48%, and 34%, respectively); however, the association with δ(13)C was strongest for models based on RBCs and hair. There were no associations with fasting plasma glucose δ(13)C (R(2) = 0.03). The δ(13)C and δ(15)N values of RBCs, plasma, and hair showed strong, positive correlations; the slopes of these relations did not differ from 1. This study demonstrates that RBC, plasma, and hair isotope ratios predict sugar intake and provides data that will allow comparison of studies using different sample types.

  16. Responses of plasma glucose metabolism to exogenous insulin infusion in sheep-fed forage herb plantain and exposed to heat.

    PubMed

    Al-Mamun, M; Shibuya, K; Kajita, M; Tamura, Y; Sano, H

    2017-01-16

    The use of herbal plants as traditional medicines has a century long history. Plantain (Plantago lanceolata L.) is a perennial herb containing bioactive components with free radical scavenging activities. An isotope dilution technique using [U-13C]glucose was conducted to determine the effect of plantain on the responses of plasma glucose metabolism to exogenous insulin infusion in sheep. Six crossbred sheep (three wethers and three ewes; mean initial BW=40±2 kg) were fed either a mixed hay of orchardgrass (Dactylis glomerata) and reed canarygrass (Phalaris arundinacea) (MH-diet) or mixed hay and fresh plantain (1 : 1 ratio, dry matter basis, PL-diet) and exposed to a thermoneutral (TN, 20°C; 70% relative humidity (RH)) environment or a heat exposure (HE, 30°C; 70% RH) for 5 days using a crossover design for two 23-day periods. The isotope dilution was conducted on days 18 and 23 of the experimental period during TN and HE, respectively. Plasma concentration of α-tocopherol was greater (P<0.0001) for the PL-diet than the MH-diet and remained comparable between environmental treatments. Plasma glucose concentration before isotope dilution technique was reduced for sheep (P=0.05) during HE compared with TN and remained comparable between diets. Plasma glucose turnover rate during the preinfusion period of insulin did not differ (P=0.10) between dietary treatments and between environments (P=0.65). The response of plasma glucose utilization to exogenous insulin administration was lower (P=0.04) for the PL-diet than the MH-diet. Under present experimental conditions, the plantain group was found to be resistant to the effects of insulin infusion.

  17. Effects of endurance training on reduction of plasma glucose during high intensity constant and incremental speed tests in Wistar rats

    PubMed Central

    Abreu, P.; Vitzel, K.F.; Monteiro, I.C.C.R.; Lima, T.I.; Queiroz, A.N.; Leal-Cardoso, J.H.; Hirabara, S.M.; Ceccatto, V.M.

    2016-01-01

    The aim of this research was to investigate the effects of endurance training on reduction of plasma glucose during high intensity constant and incremental speed tests in Wistar rats. We hypothesized that plasma glucose might be decreased in the exercised group during heavy (more intense) exercise. Twenty-four 10-week-old male Wistar rats were randomly assigned to sedentary and exercised groups. The prescription of endurance exercise training intensity was determined as 60% of the maximum intensity reached at the incremental speed test. The animals were trained by running on a motorized treadmill, five days/week for a total period of 67 weeks. Plasma glucose during the constant speed test in the exercised group at 20 m/min was reduced at the 14th, 21st and 28th min compared to the sedentary group, as well at 25 m/min at the 21st and 28th min. Plasma glucose during the incremental speed test was decreased in the exercised group at the moment of exhaustion (48th min) compared to the sedentary group (27th min). Endurance training positively modulates the mitochondrial activity and capacity of substrate oxidation in muscle and liver. Thus, in contrast to other studies on high load of exercise, the effects of endurance training on the decrease of plasma glucose during constant and incremental speed tests was significantly higher in exercised than in sedentary rats and associated with improved muscle and hepatic oxidative capacity, constituting an important non-pharmacological intervention tool for the prevention of insulin resistance, including type 2 diabetes mellitus. PMID:27783805

  18. Canagliflozin Lowers Postprandial Glucose and Insulin by Delaying Intestinal Glucose Absorption in Addition to Increasing Urinary Glucose Excretion

    PubMed Central

    Polidori, David; Sha, Sue; Mudaliar, Sunder; Ciaraldi, Theodore P.; Ghosh, Atalanta; Vaccaro, Nicole; Farrell, Kristin; Rothenberg, Paul; Henry, Robert R.

    2013-01-01

    OBJECTIVE Canagliflozin, a sodium glucose cotransporter (SGLT) 2 inhibitor, is also a low-potency SGLT1 inhibitor. This study tested the hypothesis that intestinal canagliflozin levels postdose are sufficiently high to transiently inhibit intestinal SGLT1, thereby delaying intestinal glucose absorption. RESEARCH DESIGN AND METHODS This two-period, crossover study evaluated effects of canagliflozin on intestinal glucose absorption in 20 healthy subjects using a dual-tracer method. Placebo or canagliflozin 300 mg was given 20 min before a 600-kcal mixed-meal tolerance test. Plasma glucose, 3H-glucose, 14C-glucose, and insulin were measured frequently for 6 h to calculate rates of appearance of oral glucose (RaO) in plasma, endogenous glucose production, and glucose disposal. RESULTS Compared with placebo, canagliflozin treatment reduced postprandial plasma glucose and insulin excursions (incremental 0- to 2-h area under the curve [AUC0–2h] reductions of 35% and 43%, respectively; P < 0.001 for both), increased 0- to 6-h urinary glucose excretion (UGE0–6h, 18.2 ± 5.6 vs. <0.2 g; P < 0.001), and delayed RaO. Canagliflozin reduced AUC RaO by 31% over 0 to 1 h (geometric means, 264 vs. 381 mg/kg; P < 0.001) and by 20% over 0 to 2 h (576 vs. 723 mg/kg; P = 0.002). Over 2 to 6 h, canagliflozin increased RaO such that total AUC RaO over 0 to 6 h was <6% lower versus placebo (960 vs. 1,018 mg/kg; P = 0.003). A modest (∼10%) reduction in acetaminophen absorption was observed over the first 2 h, but this difference was not sufficient to explain the reduction in RaO. Total glucose disposal over 0 to 6 h was similar across groups. CONCLUSIONS Canagliflozin reduces postprandial plasma glucose and insulin by increasing UGE (via renal SGLT2 inhibition) and delaying RaO, likely due to intestinal SGLT1 inhibition. PMID:23412078

  19. Surface modification of polyvinyl alcohol/malonic acid nanofibers by gaseous dielectric barrier discharge plasma for glucose oxidase immobilization

    NASA Astrophysics Data System (ADS)

    Afshari, Esmail; Mazinani, Saeedeh; Ranaei-Siadat, Seyed-Omid; Ghomi, Hamid

    2016-11-01

    Polymeric nanofiber prepares a suitable situation for enzyme immobilization for variety of applications. In this research, we have fabricated polyvinyl alcohol (PVA)/malonic acid nanofibers using electrospinning. After fabrication of nanofibers, the effect of air, nitrogen, CO2, and argon DBD (dielectric barrier discharge) plasmas on PVA/malonic acid nanofibers were analysed. Among them, air plasma had the most significant effect on glucose oxidase (GOx) immobilization. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum analysis and X-ray photoelectron spectroscopy (XPS) results revealed that in case of air plasma modified nanofibers, the carboxyl groups on the surface are increased. The scanning electron microscopy (SEM) images showed that, after GOx immobilization, the modified nanofibers with plasma has retained its nanofiber structure. Finally, we analysed reusability and storage stability of GOx immobilized on plasma modified and unmodified nanofibers. The results were more satisfactory for modified nanofibers with respect to unmodified ones.

  20. Quantitative determination of glucose in blood plasma and in fruit juices by combined WATR-CPMG 1H NMR spectroscopy.

    PubMed

    Fan, S; Choy, W Y; Lam, S L; Au-Yeung, S C; Tsang, L; Cockram, C S

    1992-11-01

    The quantitative analysis of pure glucose solution < or = 225 mM (< or = 40.8 mg/mL) in 90/10 H2O/D2O was successfully completed in dilute aqueous solution by the WATR-CPMG method whereby the T2 of the water resonance is manipulated by the WATR method followed by elimination of the water peak by the CPMG pulse sequence. The method was applied to the quantitative analysis of total glucose in blood plasma from human subjects undergoing the oral glucose tolerance test in the teaching hospital, and the results were compared to those obtained using a standard glucose oxidase method in a hospital chemical pathology laboratory. The accuracy of the results obtained using the WATR-CPMG method were generally within 5% of the glucose oxidase method. The coefficient of variation was determined to be better than 4% using plasma samples of diabetic subjects. Application to the quantitative analysis of orange and guava juice was also successfully demonstrated.

  1. The Prevalence and Associated Factors of Periodontitis According to Fasting Plasma Glucose in the Korean Adults

    PubMed Central

    Hong, Jae Won; Noh, Jung Hyun; Kim, Dong-Jun

    2016-01-01

    Abstract Although the relationship between diabetes and periodontitis is well established, the association between periodontitis and prediabetes has been investigated less extensively. Furthermore, there has been little research on the prevalence of periodontitis among individuals with prediabetes and diabetes as well as in the overall population using nationally representative data. Among 12,406 adults (≥19 years’ old) who participated in the 2012–2013 Korea National Health and Nutrition Examination Survey, a total of 9977 subjects completed oral and laboratory examinations and were included in this analysis. Periodontitis was defined as a community periodontal index score of ≥3 according to the World Health Organization criteria. The fasting plasma glucose level was categorized into the following 5 groups: normal fasting glucose (NFG) 1 (<90 mg/dL), NFG 2 (90–99 mg/dL), impaired fasting glucose (IFG) 1 (100–110 mg/dL), IFG 2 (111–125 mg/dL), and diabetes (≥126 mg/dL). Overall, the weighted prevalence of periodontitis among the Korean adult population was 24.8% (23.3–26.4%) (weight n = 8,455,952/34,086,014). The unadjusted weighted prevalences of periodontitis were 16.7%, 22.8%, 29.6%, 40.7%, and 46.7% in the NFG 1, NFG 2, IFG 1, IFG 2, and diabetes groups, respectively (P < 0.001). After adjusting for age, sex, smoking history, heavy alcohol drinking, college graduation, household income, waist circumference, serum triglyceride level, serum high-density lipoprotein cholesterol level, and the presence of hypertension, the adjusted weighted prevalence of periodontitis increased to 29.7% in the IFG 2 group (P = 0.045) and 32.5% in the diabetes group (P < 0.001), compared with the NFG 1 group (24%). The odds ratios for periodontitis with the above-mentioned variables as covariates were 1.42 (95% confidence interval [CI] 1.14–1.77, P = 0.002) in the diabetes group and 1.33 (95% CI 1.01–1.75, P = 0.044) in the IFG

  2. Effect of lithium on plasma glucose, insulin and glucagon in normal and streptozotocin-diabetic rats: role of glucagon in the hyperglycaemic response.

    PubMed Central

    Hermida, O. G.; Fontela, T.; Ghiglione, M.; Uttenthal, L. O.

    1994-01-01

    1. Lithium salts, used in the treatment of affective disorders, may have adverse effects on glucose tolerance in man, and suppress glucose-stimulated insulin secretion in rats. 2. To study the interaction of these effects with pre-existing diabetes mellitus, plasma glucose and insulin responses to lithium chloride were measured in male Wistar rats made diabetic with intraperitoneal streptozotocin, and in normal controls. 3. In both normal and diabetic anaesthetized rats, intravenous lithium (4 mEq kg-1) caused a rise in plasma glucose. In absolute terms, the rise was greater in diabetic (5.2 mmol l-1) than in normal rats (2.3 mmol l-1). 4. Plasma insulin concentrations were reduced by lithium in normal rats, but the low insulin concentrations measured in the diabetic rats were not significantly changed. 5. After intravenous glucose (0.5 g kg-1), lithium-treated diabetic rats showed a second rise in plasma glucose at 60-90 min without any insulin response, while normal rats showed typically reduced insulin responses and initial glucose disappearance rates. 6. Intravenous glucose reduced plasma glucagon concentrations to a greater extent in normal than in diabetic rats, but lithium induced an equal rise in plasma glucagon in both groups, with a time-course similar to that of the hyperglycaemic effect. 7. The hyperglycaemic action of lithium is greater in the hypoinsulinaemic diabetic rats and appears to involve a stimulation of glucagon secretion in both normal and diabetic animals. PMID:8019763

  3. Effects of dietary D-psicose on diurnal variation in plasma glucose and insulin concentrations of rats.

    PubMed

    Matsuo, Tatsuhiro; Izumori, Ken

    2006-09-01

    The effects of supplemental D-psicose in the diet on diurnal variation in plasma glucose and insulin concentrations were investigated in rats. Forty-eight male Wistar rats were divided into four groups. Each group except for the control group was fed a diet of 5% D-fructose, D-psicose, or psico-rare sugar (3:1 mixture of D-fructose and D-psicose) for 8 weeks. Plasma glucose levels were lower and plasma insulin levels were higher at all times of day in the psicose and psico-rare sugar groups than in the control and fructose groups. Weight gain was significantly lower in the psicose group than in the control and fructose groups. Liver glycogen content, both before and after meals was higher in the psicose group than in the control and fructose groups. These results suggest that supplemental D-psicose can lower plasma glucose levels and reduce body fat accumulation. Hence, D-psicose might be useful in preventing postprandial hyperglycemia in diabetic patients.

  4. Calcium oxalate syntheses in a solution containing glucose by the atmospheric pressure plasma irradiation

    NASA Astrophysics Data System (ADS)

    Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Nakamura, Kae; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Mizuno, Masaaki; Yamanishi, Yoko; Hori, Masaru

    2016-09-01

    The non-equilibrium atmospheric pressure plasma (NEAPP) has been attracted attention because of its characteristic high reactivity even in a low temperature so that various phenomena by the NEAPP such as a sterilization, growth promotion and so forth have been reported around the world. Previously, we reported the NEAPP irradiation generated the calcium oxalate crystals in the medium, which contains 31 kinds of organics and inorganics. The Dulbecco's Modified Eagle Medium (DMEM) which was used in previous study is composed of no oxalate. Interestingly, not only crystallization but also synthesis of the oxalate was occurred by the NEAPP irradiation. Also the crystallization details were analyzed with the X-ray diffraction (XRD). In this study, we have clarified the mechanism on the crystallization due that D-glucose, calcium ion and bicarbonate ions are minimum essential components. The oxalate synthesis was proved by the gas chromatography and mass spectrometer (GC-MS). Finally, we conclude that a supersaturation of oxalic acid synthesized in those 3 species by the NEAPP.

  5. Digestibility, fecal characteristics, and plasma glucose and urea in dogs fed a commercial dog food once or three times daily

    PubMed Central

    Brambillasca, Sebastián; Purtscher, Frederick; Britos, Alejandro; Repetto, José L.; Cajarville, Cecilia

    2010-01-01

    Digestibility, fecal characteristics, and levels of glucose and urea in the plasma were determined in 8 dogs that received 2 different dog foods once or 3 times daily. One dog food (A) was 5 times more expensive than the other (B). Fecal pH and consistency, digestibility of dry matter (DM), organic matter (OM), crude protein (CP), and crude fiber (CF) were determined. Blood samples were taken from 30 min before to 60 min after a meal. Digestibilities of DM, OM, and CP, and fecal consistency were higher, and daily fecal excretion and fecal pH were lower when dogs were fed food A (P < 0.001). The feeding schedule had no effect on plasma glucose and urea. Neither feeding frequency nor food × frequency interactions was significant for the parameters studied. PMID:20440906

  6. The Saccharomyces cerevisiae start mutant carrying the cdc25 mutation is defective in activation of plasma membrane ATPase by glucose.

    PubMed Central

    Portillo, F; Mazón, M J

    1986-01-01

    Activation of plasma membrane ATPase by the addition of glucose was examined in several cell division cycle mutants of Saccharomyces cerevisiae. The start mutant carrying the cdc25 mutation was shown to be defective in ATPase activation at the restrictive temperature. Genetic analysis showed that lack of growth and defective activation of ATPase at the restrictive temperature were caused by the same mutation. It was also found that CDC25 does not map at the same locus as the structural gene of plasma membrane ATPase (PMA1). We conclude that the product of CDC25 controls the activation of ATPase. PMID:2877973

  7. Overexpression of Rad in muscle worsens diet-induced insulin resistance and glucose intolerance and lowers plasma triglyceride level

    NASA Astrophysics Data System (ADS)

    Ilany, Jacob; Bilan, Philip J.; Kapur, Sonia; Caldwell, James S.; Patti, Mary-Elizabeth; Marette, Andre; Kahn, C. Ronald

    2006-03-01

    Rad is a low molecular weight GTPase that is overexpressed in skeletal muscle of some patients with type 2 diabetes mellitus and/or obesity. Overexpression of Rad in adipocytes and muscle cells in culture results in diminished insulin-stimulated glucose uptake. To further elucidate the potential role of Rad in vivo, we have generated transgenic (tg) mice that overexpress Rad in muscle using the muscle creatine kinase (MCK) promoter-enhancer. Rad tg mice have a 6- to 12-fold increase in Rad expression in muscle as compared to wild-type littermates. Rad tg mice grow normally and have normal glucose tolerance and insulin sensitivity, but have reduced plasma triglyceride levels. On a high-fat diet, Rad tg mice develop more severe glucose intolerance than the wild-type mice; this is due to increased insulin resistance in muscle, as exemplified by a rightward shift in the dose-response curve for insulin stimulated 2-deoxyglucose uptake. There is also a unexpected further reduction of the plasma triglyceride levels that is associated with increased levels of lipoprotein lipase in the Rad tg mice. These results demonstrate a potential synergistic interaction between increased expression of Rad and high-fat diet in creation of insulin resistance and altered lipid metabolism present in type 2 diabetes. diabetes mellitus | glucose transport | RGK GTPase | transgenic mouse

  8. Capillary flow of blood in a microchannel with differential wetting for blood plasma separation and on-chip glucose detection.

    PubMed

    Maria, M Sneha; Rakesh, P E; Chandra, T S; Sen, A K

    2016-09-01

    We report capillary flow of blood in a microchannel with differential wetting for the separation of a plasma from sample blood and subsequent on-chip detection of glucose present in a plasma. A rectangular polydimethylsiloxane microchannel with hydrophilic walls (on three sides) achieved by using oxygen plasma exposure enables capillary flow of blood introduced at the device inlet through the microchannel. A hydrophobic region (on all four sides) in the microchannel impedes the flow of sample blood, and the accumulated blood cells at the region form a filter to facilitate the separation of a plasma. The modified wetting property of the walls and hence the device performance could be retained for a few weeks by covering the channels with deionised water. The effects of the channel cross-section, exposure time, waiting time, and location and length of the hydrophobic region on the volume of the collected plasma are studied. Using a channel cross-section of 1000 × 400 μm, an exposure time of 2 min, a waiting time of 10 min, and a hydrophobic region of width 1.0 cm located at 10 mm from the device inlet, 450 nl of plasma was obtained within 15 min. The performance of the device was found to be unaffected (provides 450 nl of plasma in 15 min) even after 15 days. The purification efficiency and plasma recovery of the device were measured and found to be comparable with that obtained using the conventional centrifugation process. Detection of glucose at different concentrations in whole blood of normal and diabetic patients was performed (using 5 μl of sample blood within 15 min) to demonstrate the compatibility of the device with integrated detection modules.

  9. Plasma-enhanced CVD of functional coatings in Ar/maleic anhydride/C2H2 homogeneous dielectric barrier discharges at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Zajíčková, Lenka; Jelínek, Petr; Obrusník, Adam; Vodák, Jiří; Nečas, David

    2017-03-01

    In this contribution, we focus on the general problems of plasma-enhanced chemical vapor deposition in atmospheric pressure dielectric barrier discharges, i.e. deposition uniformity, film roughness and the formation of dust particles, and demonstrate them on the example of carboxyl coatings prepared by co-polymerization of acetylene and maleic anhydride. Since the transport of monomers at atmospheric pressure is advection-driven, special attention is paid to the gas dynamics simulations, gas flow patterns, velocity and residence time. By using numerical simulations, we design an optimized gas supply geometry capable of synthesizing uniform layers. The selection of the gas mixture containing acetylene was motivated by two of its characteristics: (i) suppression of filaments in dielectric barrier discharges, and (ii) improved film cross-linking, keeping the amount of functional groups high. However, acetylene discharges are prone to the formation of nanoparticles that can be incorporated into the deposited films, leading to their high roughness. Therefore, we also discuss the role of the gas composition, the spatial position of the substrate with respect to gas flow and the deposition time on the topography of the deposited films.

  10. Acute and Chronic Kudzu Improves Plasma Glucose Tolerance in Non-Diabetic CD-1 Mice.

    PubMed

    Carlson, Scott; Prasain, Jeevan K; Peng, Ning; Dai, Yanying; Wyss, J Michael

    2014-01-01

    Previous studies demonstrate that kudzu root extract and its major isoflavone (puerarin) improve glucose metabolism in animal models of insulin resistance and type 2 diabetes; however, these beneficial effects have not been investigated in normal glycemic mice. The present study investigates the effect of acute and chronic kudzu root extract supplementation on glucose tolerance in normoglycemic CD-1 mice. Male, adult CD-1 mice were fed a phytoestrogen-free diet containing 0.2% or 0.0% kudzu root extract for 6 weeks. Thereafter, they were acutely administered kudzu root extract (75 mg/kg BW; oral) or vehicle followed by a glucose challenge (2 g/kg BW; oral). In control fed mice, the acute glucose challenge increased blood glucose ~300% after 30 minutes, and acute kudzu root extract administration significantly blunted this response by ~50%. In mice chronically fed a kudzu-supplemented diet, glucose tolerance was improved, and acute treatment caused no additional improvement. Irrespective of treatment, all mice were normoglycemic at the start of each glucose challenge. Administration of insulin resulted in a larger decrease in blood glucose in chronic kudzu-supplemented compared to control mice. Co-administration of phloridzin (a specific inhibitor of SGLT-mediated glucose uptake), improved glucose tolerance in acutely kudzu-treated mice but had no significant effect on glucose tolerance in chronically treated mice. These results indicate that both acute and chronic administration of kudzu root extract improves glucose tolerance in a normal glycemic mouse strain and that the effects of chronic kudzu feeding may be mediated, in part, by enhanced insulin sensitivity (chronic) and inhibition of sodium dependent glucose transport.

  11. Acute and Chronic Kudzu Improves Plasma Glucose Tolerance in Non-Diabetic CD-1 Mice

    PubMed Central

    Carlson, Scott; Prasain, Jeevan K.; Peng, Ning; Dai, Yanying; Wyss, J. Michael

    2016-01-01

    Previous studies demonstrate that kudzu root extract and its major isoflavone (puerarin) improve glucose metabolism in animal models of insulin resistance and type 2 diabetes; however, these beneficial effects have not been investigated in normal glycemic mice. The present study investigates the effect of acute and chronic kudzu root extract supplementation on glucose tolerance in normoglycemic CD-1 mice. Male, adult CD-1 mice were fed a phytoestrogen-free diet containing 0.2% or 0.0% kudzu root extract for 6 weeks. Thereafter, they were acutely administered kudzu root extract (75 mg/kg BW; oral) or vehicle followed by a glucose challenge (2 g/kg BW; oral). In control fed mice, the acute glucose challenge increased blood glucose ~300% after 30 minutes, and acute kudzu root extract administration significantly blunted this response by ~50%. In mice chronically fed a kudzu-supplemented diet, glucose tolerance was improved, and acute treatment caused no additional improvement. Irrespective of treatment, all mice were normoglycemic at the start of each glucose challenge. Administration of insulin resulted in a larger decrease in blood glucose in chronic kudzu-supplemented compared to control mice. Co-administration of phloridzin (a specific inhibitor of SGLT-mediated glucose uptake), improved glucose tolerance in acutely kudzu-treated mice but had no significant effect on glucose tolerance in chronically treated mice. These results indicate that both acute and chronic administration of kudzu root extract improves glucose tolerance in a normal glycemic mouse strain and that the effects of chronic kudzu feeding may be mediated, in part, by enhanced insulin sensitivity (chronic) and inhibition of sodium dependent glucose transport.

  12. The Impact of Different Plasma Glucose Levels on Heart Rate in Experimental Rats With Acute Myocardial Infarction

    PubMed Central

    Pan, Guo-Zhong; Xie, Jing; Tian, Xiao-Fang; Yang, Shi-Wei; Zhou, Yu-Jie

    2016-01-01

    Background The aim of the study was to evaluate the impact of different plasma glucose levels on heart rate (HR) in experimental rats with acute myocardial infarction (AMI). Methods One hundred and twenty-one male Wistar rats were randomly divided into AMI group (n = 70) and sham-operation group (n = 51). Both groups had low, normal and high glucose levels, respectively. In the former group, hypertonic glucose was injected into the rats to make their blood glucose levels above 16 mmol/L and insulin below 3.3 mmol/L; then, the left anterior descending artery was ligated. In the later group, the models of different blood glucose levels were the same as the former ones, but false operations, thread without ligating, were given to the rats. Electrocardiogram and troponin I (TnI) confirmed that the models were prepared successfully. Electrocardiogram expression of AMI was the formation of Q-wave in over three adjacent leads and abnormal elevation of TnI. Results The HR of the rats in the hypoglycemic group is higher than that of the hyperglycemic group and normal blood glucose group before AMI (P < 0.05). The HR of the hyperglycemic rats is higher than that of the hypoglycemic group and normal blood glucose group after AMI (P < 0.05). In the hypoglycemic group, the HR of the rats who suffered from AMI was lower than that of the rats of the sham group (P < 0.05). Conclusion Hypoglycemia allows faster HR and the HR in the rats with hyperglycemia is higher than that in the rats with hypoglycemia among the AMI rats. PMID:28197283

  13. Neuroscience of glucose homeostasis.

    PubMed

    La Fleur, S E; Fliers, E; Kalsbeek, A

    2014-01-01

    Plasma glucose concentrations are homeostatically regulated and maintained within strict boundaries. Several mechanisms are in place to increase glucose output when glucose levels in the circulation drop as a result of glucose utilization, or to decrease glucose output and increase tissue glucose uptake to prevent hyperglycemia. Although the term homeostasis mostly refers to stable levels, the blood glucose concentrations fluctuate over the day/night cycle, with the highest concentrations occurring just prior to the activity period in anticipation of increased caloric need. In this chapter we describe how the brain, particularly the hypothalamus, is involved in both the daily rhythm of plasma glucose concentrations and acute glucose challenges.

  14. Influence of Glucose Deprivation on Membrane Potentials of Plasma Membranes, Mitochondria and Synaptic Vesicles in Rat Brain Synaptosomes.

    PubMed

    Hrynevich, Sviatlana V; Pekun, Tatyana G; Waseem, Tatyana V; Fedorovich, Sergei V

    2015-06-01

    Hypoglycemia can cause neuronal cell death similar to that of glutamate-induced cell death. In the present paper, we investigated the effect of glucose removal from incubation medium on changes of mitochondrial and plasma membrane potentials in rat brain synaptosomes using the fluorescent dyes DiSC3(5) and JC-1. We also monitored pH gradients in synaptic vesicles and their recycling by the fluorescent dye acridine orange. Glucose deprivation was found to cause an inhibition of K(+)-induced Ca(2+)-dependent exocytosis and a shift of mitochondrial and plasma membrane potentials to more positive values. The sensitivity of these parameters to the energy deficit caused by the removal of glucose showed the following order: mitochondrial membrane potential > plasma membrane potential > pH gradient in synaptic vesicles. The latter was almost unaffected by deprivation compared with the control. The pH-dependent dye acridine orange was used to investigate synaptic vesicle recycling. However, the compound's fluorescence was shown to be enhanced also by the mixture of mitochondrial toxins rotenone (10 µM) and oligomycin (5 µg/mL). This means that acridine orange can presumably be partially distributed in the intermembrane space of mitochondria. Glucose removal from the incubation medium resulted in a 3.7-fold raise of acridine orange response to rotenone + oligomycin suggesting a dramatic increase in the mitochondrial pH gradient. Our results suggest that the biophysical characteristics of neuronal presynaptic endings do not favor excessive non-controlled neurotransmitter release in case of hypoglycemia. The inhibition of exocytosis and the increase of the mitochondrial pH gradient, while preserving the vesicular pH gradient, are proposed as compensatory mechanisms.

  15. Effects of Rice Straw Supplemented with Urea and Molasses on Intermediary Metabolism of Plasma Glucose and Leucine in Sheep

    PubMed Central

    Alam, Mohammad Khairul; Ogata, Yasumichi; Sato, Yukari; Sano, Hiroaki

    2016-01-01

    An isotope dilution method using [U-13C]glucose and [1-13C]leucine (Leu) was conducted to evaluate the effects of rice straw supplemented with urea and molasses (RSUM-diet) on plasma glucose and Leu turnover rates in sheep. Nitrogen (N) balance, rumen fermentation characteristics and blood metabolite concentrations were also determined. Four sheep were fed either mixed hay (MH-diet), or a RSUM-diet with a crossover design for two 21 days period. Feed allowance was computed on the basis of metabolizable energy at maintenance level. The isotope dilution method was performed as the primed-continuous infusion on day 21 of each dietary period. Nitrogen intake was lower (p = 0.01) for the RSUM-diet and N digestibility did not differ (p = 0.57) between diets. Concentrations of rumen total volatile fatty acids tended to be higher (p = 0.09) for the RSUM-diet than the MH-diet. Acetate concentration in the rumen did not differ (p = 0.38) between diets, whereas propionate concentration was higher (p = 0.01) for the RSUM-diet compared to the MH-diet. Turnover rates as well as concentrations of plasma glucose and Leu did not differ between diets. It can be concluded that kinetics of plasma glucose and Leu metabolism were comparable between the RSUM-diet and the MH-diet, and rumen fermentation characteristics were improved in sheep fed the RSUM-diet compared to the MH-diet. PMID:26949953

  16. Sustaining Effect of Intensive Nutritional Intervention Combined with Health Education on Dietary Behavior and Plasma Glucose in Type 2 Diabetes Mellitus Patients

    PubMed Central

    Fan, Rui; Xu, Meihong; Wang, Junbo; Zhang, Zhaofeng; Chen, Qihe; Li, Ye; Gu, Jiaojiao; Cai, Xiaxia; Guo, Qianying; Bao, Lei; Li, Yong

    2016-01-01

    Diabetes mellitus is very common in elderly Chinese individuals. Although nutritional intervention can provide a balanced diet, the sustaining effect on at-home dietary behavior and long-term plasma glucose control is not clear. Consequently, we conducted a long-term survey following one month of experiential nutritional intervention combined with health education. Based on the Dietary Guidelines for a Chinese Resident, we found that the food items met the recommended values, the percentages of energy provided from fat, protein, and carbohydrate were more reasonable after one year. The newly formed dietary patterns were “Healthy”, “Monotonous”, “Vegetarian”, “Japanese”, “Low energy”, and “Traditional” diets. The 2h-PG of female participants as well as those favoring the “Japanese diet” decreased above 12 mmol/L. Participants who selected “Japanese” and “Healthy” diets showed an obvious reduction in FPG while the FPG of participants from Group A declined slightly. “Japanese” and “Healthy” diets also obtained the highest DDP scores, and thus can be considered suitable for T2DM treatment in China. The results of the newly formed dietary patterns, “Japanese” and “Healthy” diets, confirmed the profound efficacy of nutritional intervention combined with health education for improving dietary behavior and glycemic control although health education played a more important role. The present study is encouraging with regard to further exploration of comprehensive diabetes care. PMID:27649232

  17. Sustaining Effect of Intensive Nutritional Intervention Combined with Health Education on Dietary Behavior and Plasma Glucose in Type 2 Diabetes Mellitus Patients.

    PubMed

    Fan, Rui; Xu, Meihong; Wang, Junbo; Zhang, Zhaofeng; Chen, Qihe; Li, Ye; Gu, Jiaojiao; Cai, Xiaxia; Guo, Qianying; Bao, Lei; Li, Yong

    2016-09-13

    Diabetes mellitus is very common in elderly Chinese individuals. Although nutritional intervention can provide a balanced diet, the sustaining effect on at-home dietary behavior and long-term plasma glucose control is not clear. Consequently, we conducted a long-term survey following one month of experiential nutritional intervention combined with health education. Based on the Dietary Guidelines for a Chinese Resident, we found that the food items met the recommended values, the percentages of energy provided from fat, protein, and carbohydrate were more reasonable after one year. The newly formed dietary patterns were "Healthy", "Monotonous", "Vegetarian", "Japanese", "Low energy", and "Traditional" diets. The 2h-PG of female participants as well as those favoring the "Japanese diet" decreased above 12 mmol/L. Participants who selected "Japanese" and "Healthy" diets showed an obvious reduction in FPG while the FPG of participants from Group A declined slightly. "Japanese" and "Healthy" diets also obtained the highest DDP scores, and thus can be considered suitable for T2DM treatment in China. The results of the newly formed dietary patterns, "Japanese" and "Healthy" diets, confirmed the profound efficacy of nutritional intervention combined with health education for improving dietary behavior and glycemic control although health education played a more important role. The present study is encouraging with regard to further exploration of comprehensive diabetes care.

  18. Glucose kinetics during prolonged exercise in highly trained human subjects: effect of glucose ingestion

    PubMed Central

    Jeukendrup, Asker E; Raben, Anne; Gijsen, Annemie; Stegen, Jos H C H; Brouns, Fred; Saris, Wim H M; Wagenmakers, Anton J M

    1999-01-01

    The objectives of this study were (1) to investigate whether glucose ingestion during prolonged exercise reduces whole body muscle glycogen oxidation, (2) to determine the extent to which glucose disappearing from the plasma is oxidized during exercise with and without carbohydrate ingestion and (3) to obtain an estimate of gluconeogenesis. After an overnight fast, six well-trained cyclists exercised on three occasions for 120 min on a bicycle ergometer at 50% maximum velocity of O2 uptake and ingested either water (Fast), or a 4% glucose solution (Lo-Glu) or a 22% glucose solution (Hi-Glu) during exercise. Dual tracer infusion of [U-13C]-glucose and [6,6-2H2]-glucose was given to measure the rate of appearance (Ra) of glucose, muscle glycogen oxidation, glucose carbon recycling, metabolic clearance rate (MCR) and non-oxidative disposal of glucose. Glucose ingestion markedly increased total Ra especially with Hi-Glu. After 120 min Ra and rate of disappearance (Rd) of glucose were 51-52 μmol kg−1 min−1 during Fast, 73-74 μmol kg−1 min−1 during Lo-Glu and 117–119 μmol kg−1 min−1 during Hi-Glu. The percentage of Rd oxidized was between 96 and 100% in all trials. Glycogen oxidation during exercise was not reduced by glucose ingestion. The vast majority of glucose disappearing from the plasma is oxidized and MCR increased markedly with glucose ingestion. Glucose carbon recycling was minimal suggesting that gluconeogenesis in these conditions is negligible. PMID:10050023

  19. Genome-wide association meta-analysis identifies novel variants associated with fasting plasma glucose in East Asians.

    PubMed

    Hwang, Joo-Yeon; Sim, Xueling; Wu, Ying; Liang, Jun; Tabara, Yasuharu; Hu, Cheng; Hara, Kazuo; Tam, Claudia H T; Cai, Qiuyin; Zhao, Qi; Jee, Sunha; Takeuchi, Fumihiko; Go, Min Jin; Ong, Rick Twee Hee; Ohkubo, Takayoshi; Kim, Young Jin; Zhang, Rong; Yamauchi, Toshimasa; So, Wing Yee; Long, Jirong; Gu, Dongfeng; Lee, Nanette R; Kim, Soriul; Katsuya, Tomohiro; Oh, Ji Hee; Liu, Jianjun; Umemura, Satoshi; Kim, Yeon-Jung; Jiang, Feng; Maeda, Shiro; Chan, Juliana C N; Lu, Wei; Hixson, James E; Adair, Linda S; Jung, Keum Ji; Nabika, Toru; Bae, Jae-Bum; Lee, Mi Hee; Seielstad, Mark; Young, Terri L; Teo, Yik Ying; Kita, Yoshikuni; Takashima, Naoyuki; Osawa, Haruhiko; Lee, So-Hyun; Shin, Min-Ho; Shin, Dong Hoon; Choi, Bo Youl; Shi, Jiajun; Gao, Yu-Tang; Xiang, Yong-Bing; Zheng, Wei; Kato, Norihiro; Yoon, Miwuk; He, Jiang; Shu, Xiao Ou; Ma, Ronald C W; Kadowaki, Takashi; Jia, Weiping; Miki, Tetsuro; Qi, Lu; Tai, E Shyong; Mohlke, Karen L; Han, Bok-Ghee; Cho, Yoon Shin; Kim, Bong-Jo

    2015-01-01

    Fasting plasma glucose (FPG) has been recognized as an important indicator for the overall glycemic state preceding the onset of metabolic diseases. So far, most indentified genome-wide association loci for FPG were derived from populations with European ancestry, with a few exceptions. To extend a thorough catalog for FPG loci, we conducted meta-analyses of 13 genome-wide association studies in up to 24,740 nondiabetic subjects with East Asian ancestry. Follow-up replication analyses in up to an additional 21,345 participants identified three new FPG loci reaching genome-wide significance in or near PDK1-RAPGEF4, KANK1, and IGF1R. Our results could provide additional insight into the genetic variation implicated in fasting glucose regulation.

  20. Plasma glucose levels after prolonged strenuous exercise correlate inversely with glycemic response to food consumed before exercise.

    PubMed

    Thomas, D E; Brotherhood, J R; Miller, J B

    1994-12-01

    It was hypothesized that slowly digested carbohydrates, that is, low glycemic index (GI) foods, eaten before prolonged strenuous exercise would increase the blood glucose concentration toward the end of exercise. Six trained cyclists pedaled on a cycle ergometer at 65-70% VO2max 60 min after ingestion of each of four test meals: a low-GI and a high-GI powdered food and a low-GI and a high-GI breakfast cereal, all providing 1 g of available carbohydrate per kilogram of body mass. Plasma glucose levels after more that 90 min of exercise were found to correlate inversely with the observed GI of the foods (p < .01). Free fatty acid levels during the last hour of exercise also correlated inversely with the GI (p < .05). The findings suggest that the slow digestion of carbohydrate in the prevent food favors higher concentrations of fuels in the blood toward the end of exercise.

  1. Fasting modifies Aroclor 1254 impact on plasma cortisol, glucose and lactate responses to a handling disturbance in Arctic charr

    USGS Publications Warehouse

    Jorgensen, E.H.; Vijayan, M.M.; Aluru, N.; Maule, A.G.

    2002-01-01

    Integrated effects of polychlorinated biphenyl (PCB) and nutritional status on responses to handling disturbance were investigated in the Arctic charr (Salvelinus alpinus). The fish were orally contaminated with Aroclor 1254 and held either with or without food for 5 months before they were subjected to a 10-min handling disturbance. Food-deprived fish were given 0, 1, 10 or 100 mg PCB kg-1 and the fed fish 0 or 100 mg PCB kg-1. Plasma cortisol, glucose and lactate levels were measured at 0 (pre-handling), 1, 3, 6 and 23 h after the handling disturbance. Food-deprived control fish had elevated plasma cortisol levels compared with fed fish before handling. These basal cortisol levels were suppressed by PCB in food-deprived fish, and elevated by PCB in fed fish. The immediate cortisol and glucose responses to handling disturbance were suppressed by PCB in a dose-dependent way in food-deprived fish. Although these responses were also lowered by PCB in the fed fish, the effect was much less pronounced than in food-deprived fish. There were only minor effects on plasma lactate responses. Our findings suggest that the stress responses of the Arctic charr are compromised by PCB and that the long-term fasting, typical of high-latitude fish, makes these species particularly sensitive to organochlorines such as PCB. ?? 2002 Elsevier Science Inc. All rights reserved.

  2. The immediate effects of a single bout of aerobic exercise on oral glucose tolerance across the glucose tolerance continuum

    PubMed Central

    Knudsen, Sine H.; Karstoft, Kristian; Pedersen, Bente K.; van Hall, Gerrit; Solomon, Thomas P. J.

    2014-01-01

    Abstract We investigated glucose tolerance and postprandial glucose fluxes immediately after a single bout of aerobic exercise in subjects representing the entire glucose tolerance continuum. Twenty‐four men with normal glucose tolerance (NGT), impaired glucose tolerance (IGT), or type 2 diabetes (T2D; age: 56 ± 1 years; body mass index: 27.8 ± 0.7 kg/m2, P > 0.05) underwent a 180‐min oral glucose tolerance test (OGTT) combined with constant intravenous infusion of [6,6‐2H2]glucose and ingestion of [U‐13C]glucose, following 1 h of exercise (50% of peak aerobic power) or rest. In both trials, plasma glucose concentrations and kinetics, insulin, C‐peptide, and glucagon were measured. Rates (mg kg−1 min−1) of glucose appearance from endogenous (RaEndo) and exogenous (oral glucose; RaOGTT) sources, and glucose disappearance (Rd) were determined. We found that exercise increased RaEndo, RaOGTT, and Rd (all P < 0.0001) in all groups with a tendency for a greater (~20%) peak RaOGTT value in NGT subjects when compared to IGT and T2D subjects. Accordingly, following exercise, the plasma glucose concentration during the OGTT was increased in NGT subjects (P < 0.05), while unchanged in subjects with IGT and T2D. In conclusion, while a single bout of moderate‐intensity exercise increased the postprandial glucose response in NGT subjects, glucose tolerance following exercise was preserved in the two hyperglycemic groups. Thus, postprandial plasma glucose responses immediately following exercise are dependent on the underlying degree of glycemic control. PMID:25168869

  3. Plasma 25-Hydroxyvitamin D Is Related to Protein Signaling Involved in Glucose Homeostasis in a Tissue-Specific Manner

    PubMed Central

    Parker, Lewan; Levinger, Itamar; Mousa, Aya; Howlett, Kirsten; de Courten, Barbora

    2016-01-01

    Vitamin D has been suggested to play a role in glucose metabolism. However, previous findings are contradictory and mechanistic pathways remain unclear. We examined the relationship between plasma 25-hydroxyvitamin D (25(OH)D), insulin sensitivity, and insulin signaling in skeletal muscle and adipose tissue. Seventeen healthy adults (Body mass index: 26 ± 4; Age: 30 ± 12 years) underwent a hyperinsulinemic-euglycemic clamp, and resting skeletal muscle and adipose tissue biopsies. In this cohort, the plasma 25(OH)D concentration was not associated with insulin sensitivity (r = 0.19, p = 0.56). However, higher plasma 25(OH)D concentrations correlated with lower phosphorylation of glycogen synthase kinase-3 (GSK-3) αSer21 and βSer9 in skeletal muscle (r = −0.66, p = 0.015 and r = −0.53, p = 0.06, respectively) and higher GSK-3 αSer21 and βSer9 phosphorylation in adipose tissue (r = 0.82, p < 0.01 and r = 0.62, p = 0.042, respectively). Furthermore, higher plasma 25(OH)D concentrations were associated with greater phosphorylation of both protein kinase-B (AktSer473) (r = 0.78, p < 0.001) and insulin receptor substrate-1 (IRS-1Ser312) (r = 0.71, p = 0.01) in adipose tissue. No associations were found between plasma 25(OH)D concentration and IRS-1Tyr612 phosphorylation in skeletal muscle and adipose tissue. The divergent findings between muscle and adipose tissue with regard to the association between 25(OH)D and insulin signaling proteins may suggest a tissue-specific interaction with varying effects on glucose homeostasis. Further research is required to elucidate the physiological relevance of 25(OH)D in each tissue. PMID:27754361

  4. Chromium yeast supplementation improves fasting plasma glucose and LDL-cholesterol in streptozotocin-induced diabetic rats.

    PubMed

    Lai, Ming-Hoang; Chen, Ya-Yen; Cheng, Hsing-Hsien

    2006-11-01

    Chromium yeast supplementation has been studied for its ability to improve carbohydrate and lipid abnormalities. There have been some earlier literature-reported studies involving chromium supplementation amongst patients suffering diabetes, but the results would appear to be somewhat varied. Forty male Wistar rats (ten weeks old, 300 g in average body mass) were divided into one of four groups, namely (i) controls; (ii) controls treated with chromium yeast; (iii) diabetic controls; and (iv) diabetic rats treated with chromium yeast. In the present investigation, the effect of a four-week oral administration of chromium yeast (600 microg of Cr/kg body mass/day, by gavage) upon the glucose and lipid metabolism in streptozotocin (STZ)-induced diabetic rats was assessed. Supplemental Cr yeast decreased the fasting blood glucose amongst the STZ-diabetic rats. No significant difference was observed in plasma fructosamine levels of rats treated with chromium yeast compared to control rats. Supplemental Cr yeast did decrease the plasma low-density lipoprotein (LDL)-cholesterol level for the STZ-diabetic rats as compared to controls. We noted no significant effect of chromium supplementation upon plasma high-density lipoprotein (HDL)-cholesterol or triglycerides compared to controls. Treatment with chromium yeast significantly increased the blood and urine chromium levels for both the diabetic and normal rats compared to respective control groups. The results of these studies suggest that Cr yeast decreased the fasting blood glucose and LDL-cholesterol levels in STZ-induced diabetic rats. This raises the possibility that Cr yeast supplementation can be considered to improve carbohydrate and lipid metabolism amongst human patients featuring type 2 diabetes mellitus.

  5. Rutin ameliorates diabetic neuropathy by lowering plasma glucose and decreasing oxidative stress via Nrf2 signaling pathway in rats.

    PubMed

    Tian, Ruifeng; Yang, Wenqing; Xue, Qiang; Gao, Liang; Huo, Junli; Ren, Dongqing; Chen, Xiaoyan

    2016-01-15

    Rutin exhibits antidiabetic, antioxidant and anti-inflammatory properties, which makes rutin an attractive candidate for diabetic complications. The present study was designed to investigate the potential effect of rutin on diabetic neuropathy. After induction of diabetic neuropathy, rutin (5mg/kg, 25mg/kg and 50mg/kg) were daily given to the diabetic rats for 2 weeks. At the end of rutin administration, rutin produced a significant inhibition of mechanical hyperalgesia, thermal hyperalgesia and cold allodynia, as well as partial restoration of nerve conduction velocities in diabetic rats. Furthermore, rutin significantly increased Na(+), K(+)-ATPase activities in sciatic nerves and decreased caspase-3 expression in dorsal root ganglions (DRG). In addition, rutin significantly decreased plasma glucose, attenuated oxidative stress and neuroinflammation. Further studies showed that rutin significantly increased hydrogen sulfide (H2S) level, up-regulated the expression of nuclear factor-E2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1) in DRG. The evidences suggest the beneficial effect of rutin on diabetic neuropathy. Additionally, insulin (2 IU) and BG-12 (15mg/kg) were used to investigate the mechanisms underlying the beneficial effect of rutin on diabetic neuropathy. Insulin achieved lower plasma glucose and BG-12 achieved comparable Nrf2 expression than/to rutin (50mg/kg), respectively. In contrast, the beneficial effect of insulin and BG-12 was inferior to that of rutin (50mg/kg), suggesting that both lowered plasma glucose and Nrf2 signaling contribute to the beneficial effect of rutin on diabetic neuropathy. In conclusion, rutin produces significant protection in diabetic neuropathy, which makes it an attractive candidate for the treatment of diabetic neuropathy.

  6. Plasma Periostin Levels Are Increased in Chinese Subjects with Obesity and Type 2 Diabetes and Are Positively Correlated with Glucose and Lipid Parameters

    PubMed Central

    Luo, Yuanyuan; Qu, Hua; Wang, Hang; Wei, Huili; Wu, Jing; Duan, Yang; Liu, Dan; Deng, Huacong

    2016-01-01

    The purpose of this study is to examine the relations among plasma periostin, glucose and lipid metabolism, insulin resistance and inflammation in Chinese patients with obesity (OB), and type 2 diabetes mellitus (T2DM). Plasma periostin levels in the T2DM group were significantly higher than the NGT group (P < 0.01). Patients with both OB and T2DM had the highest periostin levels. Correlation analysis showed that plasma periostin levels were positively correlated with weight, waist circumference (WC), body mass index (BMI), waist-hip ratio (WHR), fasting plasma glucose (FPG), 2 h postchallenge plasma glucose (2 h PG), glycated hemoglobin (HbA1c), triglyceride (TG), total cholesterol (TC), fasting insulin (FINS), homeostasis model assessment of insulin resistance (HOMA-IR), TNF-α, and IL-6 (P < 0.05 or 0.001) and negatively correlated with high-density lipoprotein cholesterol (HDL-C) (P < 0.001). Multiple linear regression analysis showed that TG, TNF-α, and HOMA-IR were independent related factors in influencing the levels of plasma periostin (P < 0.001). These results suggested that Chinese patients with obesity and T2DM had significantly higher plasma periostin levels. Plasma periostin levels were strongly associated with plasma TG, chronic inflammation, and insulin resistance. PMID:27313402

  7. Rotation of the anatomic regions used for insulin injections and day-to-day variability of plasma glucose in type I diabetic subjects.

    PubMed

    Bantle, J P; Weber, M S; Rao, S M; Chattopadhyay, M K; Robertson, R P

    1990-04-04

    Treatment of type I diabetes mellitus is hindered by the often large fluctuations in blood glucose concentration experienced by affected individuals. To determine to what extent day-to-day variation in blood glucose levels can be reduced if insulin is injected in the same anatomic region rather than in different regions using a rotational scheme, as is commonly recommended, 12 type I diabetic subjects were studied. Insulin injections were given in the abdomen for 3 days and rotated among arms, abdomen, and thighs for 3 days using a crossover design with random assignment of treatment order. Blood samples for measurement of plasma glucose levels were obtained at nine scheduled times on each day. Insulin dose, diet, and physical activity were held constant for each subject. During the abdominal injection period, the mean SD of plasma glucose levels and the mean variance of plasma glucose levels were both less at all nine time points than during the rotating injection period. Overall values for the SD of plasma glucose levels were 2.7 +/- 0.2 mmol/L for the abdominal injection period and 3.7 +/- 0.3 mmol/L for the rotating injection period. Overall values for the variance of plasma glucose levels were 9.2 +/- 1.4 mmol2/L2 for the abdominal injection period and 17.4 +/- 2.2 mmol2/L2 for the rotating injection period. We conclude that the common clinical practice of rotating the anatomic regions used for insulin injections increases day-to-day variation in blood glucose concentration. Use of a single anatomic region, eg, the abdomen, for all insulin injections may reduce this variation and allow greater precision in the adjustment of insulin doses.

  8. High-fiber foods at breakfast: influence on plasma glucose and insulin responses to lunch.

    PubMed

    Shaheen, S M; Fleming, S E

    1987-11-01

    This study evaluates acute effects of red kidney bean consumption on postprandial glucose and insulin responses in six healthy young men. Comparisons were made among three mixed-food breakfast meals comprised predominantly of either red kidney beans, bran cereal, or white bread. These meals provided equivalent levels of digestible carbohydrate, protein, and fat. The bean and bran meals contained equivalent levels of fiber while the white-bread meal contained a lower level. The postprandial glucose and insulin responses to the three meals were similar and responses also were similar after a standard whole-wheat-bread meal 4 h later. There appeared to be a reciprocal relationship between glucose and insulin responses after the lunch meal. This would influence interpretation of data regarding second-meal response.

  9. Study of the LTE departure in a low pressure supersonic plasma jet in Ar-H{sub 2} and in Ar-N{sub 2}-H{sub 2} mixture

    SciTech Connect

    Rajabian, M.; Vacquie, S.; Gravelle, D.V.

    1999-07-01

    Plasma torches at low pressure and controlled atmosphere are used in major applications for the production and processing of materials due to their potential for high performance, and low contamination. A good knowledge of the plasma parameters is necessary, particularly for the design of high-performance mathematical models that avoid the building of expensive prototypes for performance assessment. The present work is undertaken on a DC plasma torch operating over a wide pressure range (8 kPa to 100 kPa) at an arc power fixed at 17.5 kW. Emission spectroscopy diagnostics was carried out for determining temperature, electron and particle density profiles in two gas mixtures: Ar-N{sub 2}-H{sub 2} with flow rates of 40, 10, and 1 slpm respectively, and Ar-H{sub 2} with input flow rates of 35 and 7 slpm respectively. For the gas mixtures used, the supersonic shock occurs at a distance from the nozzle exit growing when the pressure decreases (8, 10, and 13 mm for pressures of 13, 20 and 26 kPa). For pressures of 100 kPa and 53 kPa, they observe a good agreement between the values of electron density Ne experimentally measured independently of local thermodynamic equilibrium (LTE) and the values obtained by calculation using the temperature obtained with Boltzmann diagram. Local thermodynamic equilibrium conditions prevail at these values of pressure. For the lower values of the pressure, the experimental value of N{sub 2}{sup {minus}} ion density are higher than the calculated values, using the rotational temperature T{sub h}, or the Boltzmann temperature T{sub e}. The discrepancy is lower with the use of T{sub e}. That shows the importance of the collisions between electrons and heavy particles, due to the high values of the electron density (4.10{sup 16} cm{sup {minus}3} in the supersonic shock wave for 13 kPa). For pressure lower than 26 kPa important deviation from LTE conditions are observed.

  10. Quantitation of methadone enantiomers in humans using stable isotope-labeled (2H3)-, (2H5)-, and (2H8)Methadone

    SciTech Connect

    Nakamura, K.; Hachey, D.L.; Kreek, M.J.; Irving, C.S.; Klein, P.D.

    1982-01-01

    A new technique for simultaneous stereoselective kinetic studies of methadone enantiomers was developed using three deuterium-labeled forms of methadone and GLC-chemical-ionization mass spectrometry. A racemic mixture (1:1) of (R)-(-)-(2H5)methadone (l-form) and (S)-(R)-(2H3)methadone (d-form) was administered orally in place of a single daily dose of unlabeled (+/-)-(2H0)methadone in long-term maintenance patients. Racemic (+/-)-(2H8)methadone was used as an internal standard for the simultaneous quantitation of (2H0)-, (2H3)-, and (2H5)methadone in plasma and urine. A newly developed extraction procedure, using a short, disposable C18 reversed-phase cartridge and improved chemical-ionization procedures employing ammonia gas, resulted in significant reduction of the background impurities contributing to the ions used for isotopic abundance measurements. These improvements enabled the measurement of labeled plasma methadone levels for 120 hr following a single dose. This methodology was applied to the study of methadone kinetics in two patients; in both patients, the analgesically active l-enantiomer of the drug had a longer plasma elimination half-life and a smaller area under the plasma disappearance curve than did the inactive d-form.

  11. The antipsychotics clozapine and olanzapine increase plasma glucose and corticosterone levels in rats: comparison with aripiprazole, ziprasidone, bifeprunox and F15063.

    PubMed

    Assié, Marie-Bernadette; Carilla-Durand, Elisabeth; Bardin, Laurent; Maraval, Mireille; Aliaga, Monique; Malfètes, Nathalie; Barbara, Michèle; Newman-Tancredi, Adrian

    2008-09-11

    Several novel antipsychotics activate serotonin 5-HT1A receptors as well as antagonising dopamine D2/3 receptors. Such a pharmacological profile is associated with a lowered liability to produce extrapyramidal side effects and enhanced efficacy in treating negative and cognitive symptoms of schizophrenia. However, 5-HT1A receptor agonists increase plasma corticosterone and many antipsychotics disturb the regulation of glucose. Here, we compared the influence on plasma glucose and corticosterone of acute treatments with 'new generation' antipsychotics which target dopamine D2/3 receptors and 5-HT1A receptors, with that of atypical antipsychotics, and with haloperidol. Olanzapine and clozapine, antipsychotics that are known to produce weight gain and diabetes in humans, both at 10 mg/kg p.o., substantially increased plasma glucose (from 0.8 to 1.7 g/l) at 1 h after administration, an effect that returned to control levels after 4 h. In comparison, F15063 (40 mg/kg p.o.) was without effect at any time point. Olanzapine and clozapine dose-dependently increased plasma glucose concentrations as did SLV313 and SSR181507. Haloperidol and risperidone had modest effects whereas aripiprazole, ziprasidone and bifeprunox, antipsychotics that are not associated with metabolic dysfunction in humans, and F15063 had little or no influence on plasma glucose. The same general pattern of response was found for plasma corticosterone levels. The present data provide the first comparative study of conventional, atypical and 'new generation' antipsychotics on glucose and corticosterone levels in rats. A variety of mechanisms likely underlie the hyperglycemia and corticosterone release observed with clozapine and olanzapine, whilst the balance of dopamine D2/3/5-HT1A interaction may contribute to the less favourable impact of SLV313 and SSR181507 compared with that of bifeprunox and F15063.

  12. Enhancement of glucose uptake in skeletal muscle L6 cells and insulin secretion in pancreatic hamster-insulinoma-transfected cells by application of non-thermal plasma jet

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Kaushik, Nagendra K.; Park, Gyungsoon; Choi, Eun H.; Uhm, Han S.

    2013-11-01

    Type-II diabetes Mellitus is characterized by defects in insulin action on peripheral tissues, such as skeletal muscle, adipose tissue, and liver and pancreatic beta cells. Since the skeletal muscle accounts for approximately 75% of insulin-stimulated glucose-uptake in our body, impaired insulin secretion from defected beta cell plays a major role in the afflicted glucose homoeostasis. It was shown that the intracellular reactive oxygen species and nitric oxide level was increased by non-thermal-plasma treatment in ambient air. These increased intracellular reactive species may enhance glucose uptake and insulin secretion through the activation of intracellular calcium (Ca+) and cAMP production.

  13. Discovery of a Plasmodium falciparum glucose-6-phosphate dehydrogenase 6- phosphogluconolactonase inhibitor (R,Z)-N-((1-ethylpyrrolidin-2-yl)methyl)-2-(2-fluorobenzylidene)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide (ML276) that reduces parasite growth in vitro

    PubMed Central

    Preuss, Janina; Maloney, Patrick; Peddibhotla, Satyamaheshwar; Hedrick, Michael P.; Hershberger, Paul; Gosalia, Palak; Milewski, Monika; Li, Yujie Linda; Sugarman, Eliot; Hood, Becky; Suyama, Eigo; Nguyen, Kevin; Vasile, Stefan; Sergienko, Eduard; Mangravita-Novo, Arianna; Vicchiarelli, Michael; McAnally, Danielle; Smith, Layton H.; Roth, Gregory P.; Diwan, Jena; Chung, Thomas D.Y.; Jortzik, Esther; Rahlfs, Stefan; Becker, Katja; Pinkerton, Anthony B.; Bode, Lars

    2012-01-01

    A high throughput screen of the NIH’s MLSMR collection of ~340,000 compounds was undertaken to identify compounds that inhibit Plasmodium falciparum glucose-6-phosphate dehydrogenase (PfG6PD). PfG6PD is essential for proliferating and propagating P. falciparum and differs structurally and mechanistically from the human ortholog. The reaction catalyzed by glucose-6-phosphate dehydrogenase (G6PD) is the first, rate-limiting step in the pentose phosphate pathway (PPP), a key metabolic pathway sustaining anabolic needs in reductive equivalents and synthetic materials in fastgrowing cells. In P. falciparum the bifunctional enzyme glucose-6-phosphate dehydrogenase-6- phosphogluconolactonase (PfGluPho) catalyzes the first two steps of the PPP. Because P. falciparum and infected host red blood cells rely on accelerated glucose flux, they depend on the G6PD activity of PfGluPho. The lead compound identified from this effort, (R,Z)-N-((1-ethylpyrrolidin-2-yl)methyl)-2- (2-fluorobenzylidene)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide, 11, (ML276), is a submicromolar inhibitor of PfG6PD (IC50 = 889 nM). It is completely selective for the enzyme’s human isoform, displays micromolar potency (IC50 = 2.6 μM) against P. falciparum in culture, and has good drug-like properties, including high solubility and moderate microsomal stability. Studies testing the potential advantage of inhibiting PfG6PD in vivo are in progress. PMID:22813531

  14. The effects of wild blueberry consumption on plasma markers and gene expression related to glucose metabolism in the obese Zucker rat.

    PubMed

    Vendrame, Stefano; Zhao, Alice; Merrow, Thomas; Klimis-Zacas, Dorothy

    2015-06-01

    Impaired fasting blood glucose is one of the landmark signs of metabolic syndrome, together with hyperinsulinemia, dyslipidemia, hypertension, and a chronic proinflammatory, pro-oxidative, and prothrombotic environment. This study investigates the effect of wild blueberry (WB) consumption on blood glucose levels and other parameters involved in glucose metabolism in the obese Zucker rat (OZR), an experimental model of metabolic syndrome. Sixteen OZRs and 16 lean littermate controls (lean Zucker rat [LZR]) were fed an 8% enriched WB diet or a control (C) diet for 8 weeks. Plasma concentrations of glucose, insulin, glycated hemoglobin GHbA1c, resistin, and retinol-binding protein 4 (RBP4) were measured. Expression of the resistin, RBP4, and glucose transporter GLUT4 genes was also determined both in the liver and the abdominal adipose tissue (AAT). Plasma glycated hemoglobin HbA1c, RBP4, and resistin concentrations were significantly lower in OZRs following the WB diet (-20%, -22%, and -27%, respectively, compared to C diet, P<.05). Following WB consumption, resistin expression was significantly downregulated in the liver of both OZRs and LZRs (-28% and -61%, respectively, P<.05), while RBP4 expression was significantly downregulated in the AAT of both OZRs and LZRs (-87% and -43%, respectively, P<.05). All other markers were not significantly affected following WB consumption. In conclusion, WB consumption normalizes some markers related to glucose metabolism in the OZR model of metabolic syndrome, but has no effect on fasting blood glucose or insulin concentrations.

  15. Effects of exogenous hormones and glucose on plasma levels and hepatic metabolism of amino acids in the fetus and in the newborn rat.

    PubMed

    Girard, J R; Guillet, I; Marty, J; Assan, R; Marliss, E B

    1976-08-01

    The present study examines the role of insulin, glucagon and cortisol in the regulation of gluconeogenesis from lactate and amino acids in fetal and newborn rats. Injection of glucagon in the full-term fetal rat caused a rise in glucose (and insulin) and a fall in blood levels of most individual amino acids, stimulated hepatic accumulation of 14C-amino isobutyric acid and 14C-cycloleucine and increased the conversion of 14C lactate, alanine and serine to glucose in vivo and in vitro (liver slices). Such changes were equivalent to the changes seen in 4 h old newborn rats. When glucagon was administered at birth, little difference was observed between control and treated animals in plasma amino acids and a smaller increment in conversion of 14C substrate to glucose occurred. By contrast, insulin injection at birth caused hypoglycemia, suppression of levels of certain amino acids and inhibition of conversion of 14C substrates into glucose. Glucose injection at birth caused elevated glycemia and plasma insulin and suppression of most amino acid levels and of conversion of 14C substrate into glucose. Cortisol injection at birth caused a marked, generalized by hyperaminoacidemia, a stimulation of glucagon secretion and of conversion of 14C substrates into glucose. These observations support the thesis that glucagon plays a major role in the induction of hepatic gluconeogenesis and that insulin acts as an antagonist hormone.

  16. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk.

    PubMed

    Bouatia-Naji, Nabila; Bonnefond, Amélie; Cavalcanti-Proença, Christine; Sparsø, Thomas; Holmkvist, Johan; Marchand, Marion; Delplanque, Jérôme; Lobbens, Stéphane; Rocheleau, Ghislain; Durand, Emmanuelle; De Graeve, Franck; Chèvre, Jean-Claude; Borch-Johnsen, Knut; Hartikainen, Anna-Liisa; Ruokonen, Aimo; Tichet, Jean; Marre, Michel; Weill, Jacques; Heude, Barbara; Tauber, Maithé; Lemaire, Katleen; Schuit, Frans; Elliott, Paul; Jørgensen, Torben; Charpentier, Guillaume; Hadjadj, Samy; Cauchi, Stéphane; Vaxillaire, Martine; Sladek, Robert; Visvikis-Siest, Sophie; Balkau, Beverley; Lévy-Marchal, Claire; Pattou, François; Meyre, David; Blakemore, Alexandra I F; Jarvelin, Marjo-Riita; Walley, Andrew J; Hansen, Torben; Dina, Christian; Pedersen, Oluf; Froguel, Philippe

    2009-01-01

    In genome-wide association (GWA) data from 2,151 nondiabetic French subjects, we identified rs1387153, near MTNR1B (which encodes the melatonin receptor 2 (MT2)), as a modulator of fasting plasma glucose (FPG; P = 1.3 x 10(-7)). In European populations, the rs1387153 T allele is associated with increased FPG (beta = 0.06 mmol/l, P = 7.6 x 10(-29), N = 16,094), type 2 diabetes (T2D) risk (odds ratio (OR) = 1.15, 95% CI = 1.08-1.22, P = 6.3 x 10(-5), cases N = 6,332) and risk of developing hyperglycemia or diabetes over a 9-year period (hazard ratio (HR) = 1.20, 95% CI = 1.06-1.36, P = 0.005, incident cases N = 515). RT-PCR analyses confirm the presence of MT2 transcripts in neural tissues and show MT2 expression in human pancreatic islets and beta cells. Our data suggest a possible link between circadian rhythm regulation and glucose homeostasis through the melatonin signaling pathway.

  17. Plasma amino acid profiles in preterm infants receiving Vamin 9 glucose or Vamin infant.

    PubMed

    Mitton, S G; Burston, D; Brueton, M J; Kovar, I Z

    1993-02-01

    Amino acid profiles were measured in 29 low-birth-weight infants receiving either Vamin 9 glucose (n = 18, group A) or Vamin Infant (n = 11, group B) as the amino acid source in parenteral nutrition; intake was otherwise identical. Infants were sampled when receiving 430 mgN/kg per day (3.2 g/kg per day amino acids) and 90 non-protein kcal/kg per day. There was no difference between groups in birth weight, gestational or postnatal age. The percentage N retention was similar in both (68 and 60%, groups A and B respectively). Phenylalanine and tyrosine levels were higher in those who received Vamin 9 glucose but 55% of infants given Vamin Infant had tyrosine levels below the lower limit of the target range. Cysteine levels were low in both groups. Further modification of the amino acid composition of parenteral solutions for the newborn is necessary. If sufficient non-protein energy can be provided the risk of abnormally high amino acid levels is reduced.

  18. Development of diagnotors based on time-average values of plasma glucose and immunoreactive insulin levels during intravenous glucose tolerance testing

    NASA Astrophysics Data System (ADS)

    Denisova, Tatyana P.; Malinov, Igor A.; Malinova, Lidia I.; Brook, Sergey B.

    2000-04-01

    The diagnostic algorithm of glucose-insulinic violations for the patients with a clinically obvious atherosclerosis of coronary arteries, non-insulin dependent diabetes mellitus and persons with the heritable predisposition to these forms of pathology was designed. The realization of intravenous glucose tolerance test in specially fitted groups of patients served as basis of the algorithm.

  19. Exenatide Regulates Cerebral Glucose Metabolism in Brain Areas Associated With Glucose Homeostasis and Reward System.

    PubMed

    Daniele, Giuseppe; Iozzo, Patricia; Molina-Carrion, Marjorie; Lancaster, Jack; Ciociaro, Demetrio; Cersosimo, Eugenio; Tripathy, Devjit; Triplitt, Curtis; Fox, Peter; Musi, Nicolas; DeFronzo, Ralph; Gastaldelli, Amalia

    2015-10-01

    Glucagon-like peptide 1 receptors (GLP-1Rs) have been found in the brain, but whether GLP-1R agonists (GLP-1RAs) influence brain glucose metabolism is currently unknown. The study aim was to evaluate the effects of a single injection of the GLP-1RA exenatide on cerebral and peripheral glucose metabolism in response to a glucose load. In 15 male subjects with HbA1c of 5.7 ± 0.1%, fasting glucose of 114 ± 3 mg/dL, and 2-h glucose of 177 ± 11 mg/dL, exenatide (5 μg) or placebo was injected in double-blind, randomized fashion subcutaneously 30 min before an oral glucose tolerance test (OGTT). The cerebral glucose metabolic rate (CMRglu) was measured by positron emission tomography after an injection of [(18)F]2-fluoro-2-deoxy-d-glucose before the OGTT, and the rate of glucose absorption (RaO) and disposal was assessed using stable isotope tracers. Exenatide reduced RaO0-60 min (4.6 ± 1.4 vs. 13.1 ± 1.7 μmol/min ⋅ kg) and decreased the rise in mean glucose0-60 min (107 ± 6 vs. 138 ± 8 mg/dL) and insulin0-60 min (17.3 ± 3.1 vs. 24.7 ± 3.8 mU/L). Exenatide increased CMRglu in areas of the brain related to glucose homeostasis, appetite, and food reward, despite lower plasma insulin concentrations, but reduced glucose uptake in the hypothalamus. Decreased RaO0-60 min after exenatide was inversely correlated to CMRglu. In conclusion, these results demonstrate, for the first time in man, a major effect of a GLP-1RA on regulation of brain glucose metabolism in the absorptive state.

  20. Relationships between glucose excursion and the activation of oxidative stress in patients with newly diagnosed type 2 diabetes or impaired glucose regulation.

    PubMed

    Zheng, Fenping; Lu, Weina; Jia, Chengfang; Li, Hong; Wang, Zhou; Jia, Weiping

    2010-02-01

    The effect of glucose excursions on oxidative stress is an important topic in diabetes research. We investigated this relationship by analyzing markers of oxidative stress and glycemic data from a continuous glucose monitoring system (CGMS) in 30 individuals with normal glucose regulation (NGR), 27 subjects with impaired glucose regulation (IGR), and 27 patients with newly diagnosed type 2 diabetes (T2DM). We compared the mean amplitude of glycemic excursion (MAGE), mean postprandial glucose excursion (MPPGE), and mean postprandial incremental area under the curve (IAUC) with plasma levels of oxidative stress markers 8-iso-PGF2α, 8-OH-dG, and protein carbonyl content in the study subjects. Patients with T2DM or IGR had significantly higher glucose excursions and plasma levels of oxidative stress markers compared to normal controls (P < 0.01 or 0.05). Multiple linear regression analyses showed significant relationships between MAGE and plasma 8-iso-PGF2α, and between MPPGE and plasma 8-OH-dG in patients with IGR or T2DM (P < 0.01 or 0.05). Furthermore, 2h-postprandial glucose level and IAUC were related to plasma protein carbonyl content in the study cohort including T2DM and IGR (P < 0.01). We demonstrate that glucose excursions in subjects with IGR and T2DM trigger the activation of oxidative stress.

  1. Effects of pentobarbital on plasma glucose and free fatty acids in the rat.

    NASA Technical Reports Server (NTRS)

    Furner, R. L.; Neville, E. D.; Talarico, K. S.; Feller, D. D.

    1972-01-01

    Hyperglycemia and hypolipemia were observed in rats after the injection of sodium pentobarbital. The observed changes were independent of whether the blood was collected by decapitation or by needle puncture of the aorta. The hyperglycemic response was caused by two factors including the stress of the injection per se and the pharmacological action of the drug. Hyperlipemia was observed at 5 min postinjection. However, pentobarbital decreased plasma free fatty acids by 15 min postinjection. Both the hyperglycemia and hypolipemia responses were dose dependent.

  2. Glucose regulates lipid metabolism in fasting king penguins.

    PubMed

    Bernard, Servane F; Orvoine, Jord; Groscolas, René

    2003-08-01

    This study aims to determine whether glucose intervenes in the regulation of lipid metabolism in long-term fasting birds, using the king penguin as an animal model. Changes in the plasma concentration of various metabolites and hormones, and in lipolytic fluxes as determined by continuous infusion of [2-3H]glycerol and [1-14C]palmitate, were examined in vivo before, during, and after a 2-h glucose infusion under field conditions. All the birds were in the phase II fasting status (large fat stores, protein sparing) but differed by their metabolic and hormonal statuses, being either nonstressed (NSB; n = 5) or stressed (SB; n = 5). In both groups, glucose infusion at 5 mg.kg-1.min-1 induced a twofold increase in glycemia. In NSB, glucose had no effect on lipolysis (maintenance of plasma concentrations and rates of appearance of glycerol and nonesterified fatty acids) and no effect on the plasma concentrations of triacylglycerols (TAG), glucagon, insulin, or corticosterone. However, it limited fatty acid (FA) oxidation, as indicated by a 25% decrease in the plasma level of beta-hydroxybutyrate (beta-OHB). In SB, glucose infusion induced an approximately 2.5-fold decrease in lipolytic fluxes and a large decrease in FA oxidation, as reflected by a 64% decrease in the plasma concentration of beta-OHB. There were also a 35% decrease in plasma TAG, a 6.5- and 2.8-fold decrease in plasma glucagon and corticosterone, respectively, and a threefold increase in insulinemia. These data show that in fasting king penguins, glucose regulates lipid metabolism (inhibition of lipolysis and/or of FA oxidation) and affects hormonal status differently in stressed vs. nonstressed individuals. The results also suggest that in birds, as in humans, the availability of glucose, not of FA, is an important determinant of the substrate mix (glucose vs. FA) that is oxidized for energy production.

  3. Effects of abomasal infusions of histidine, glucose, and leucine on milk production and plasma metabolites of dairy cows fed grass silage diets.

    PubMed

    Huhtanen, P; Vanhatalo, A; Varvikko, T

    2002-01-01

    Our previous study showed that His was the first-limiting amino acid (AA) for milk protein production in cows fed grass silage and cereal-based supplement. The aim of this study was to identify the second-limiting AA and determine whether glucose was limiting responses to His. Abomasal infusion of His (6.5 g/d), glucose (250 g/d), His (6.5 g/d) + glucose (250 g/d), His 6.5 g/d) + Leu (12 g/d) and His (6.5 g/d) + Leu (12 g/d) + glucose (250 g/d) on milk production and utilization of amino acids by mammary gland was in an incomplete 5 x 6 Latin square design with 14-d periods. The diet was based on restrictively fermented grass silage fed ad libitum and 8 kg/d of concentrate comprised of barley, oats, unmolassed sugar beet pulp, urea, and minerals. The infusions did not affect feed intake, diet digestibility, or rumen fermentation pattern. The molar proportion of propionate in rumen VFA was low (15.5%), suggesting that glucose supply from the basal diet could be limiting. Milk and milk protein yields were increased by His infusion. Infusion of His increased plasma His concentration from 19 to 52 microM but decreased extraction efficiency of His. Infusion of glucose increased plasma glucose concentration, milk lactose concentration, and yield and tended to increase milk protein yield. Responses in milk protein yield to combined infusions of His and glucose were additive, suggesting that the utilization of the first-limiting AA His was limited by glucose supply. Infusion of Leu increased plasma Leu concentration but did not produce any further milk protein yield response compared with the infusions without Leu. It was concluded that the efficiency of utilization of the first-limiting AA His could be improved by increasing the supply of glucose, when the basal diet produces a rumen fermentation pattern low in propionate. Leu was not the second-limiting AA in cows fed grass silage-based diets.

  4. Serum calcium is positively correlated with fasting plasma glucose and insulin resistance, independent of parathyroid hormone, in male patients with type 2 diabetes mellitus.

    PubMed

    Yamaguchi, Toru; Kanazawa, Ippei; Takaoka, Shin; Sugimoto, Toshitsugu

    2011-09-01

    Patients with primary hyperparathyroidism have impaired glucose tolerance more often than do controls, and parathyroid resection sometimes improves this derangement. However, it is unclear whether serum calcium (Ca) or parathyroid hormone (PTH) is more strongly related to impaired glucose metabolism in subjects without primary hyperparathyroidism. In this cross-sectional study, we examined patients with type 2 diabetes mellitus (DM) (271 men and 209 women) and analyzed the relationships between serum concentrations of Ca or intact PTH and DM-related variables. Simple regression analyses showed that the level of serum Ca was significantly and positively correlated with the levels of fasting plasma glucose, immunoreactive insulin, and homeostasis model assessment insulin resistance in men (P < .05), but not in women. In contrast, intact PTH was not significantly correlated with DM-related parameters in either sex. Multiple regression analyses showed that the significant and positive correlations between serum Ca vs fasting plasma glucose and homeostasis model assessment insulin resistance in men still remained after adjustment for intact PTH as well as age, body weight, height, creatinine, albumin, phosphate, bone metabolic markers, and estradiol (P < .05). Serum Ca level is positively associated with impaired glucose metabolism, independent of PTH or bone metabolism, in men with type 2 DM.

  5. A probing dose of phenylacetate does not affect glucose production and gluconeogenesis in humans.

    PubMed

    Wajngot, A; Chandramouli, V; Schumann, W C; Brunengraber, H; Efendic, S; Landau, B R

    2000-09-01

    Phenylacetate ingestion has been used to probe Krebs cycle metabolism and to augment waste nitrogen excretion in urea cycle disorders. Phenylalkanoic acids, including phenylacetate, have been proposed as potential therapeutic agents in the treatment of diabetes. They inhibit gluconeogenesis in the liver in vitro and reduce the blood glucose concentration in diabetic rats. The effect of sodium phenylacetate ingestion on blood glucose and the contribution of gluconeogenesis to glucose production have now been studied in 7 type 2 diabetic patients. The study was not designed to test whether the changes in glucose metabolism observed in the rat could be reproduced in humans. After an overnight fast, over a period of 1 hour, 4.8 g phenylacetate was ingested, which is the highest dose used to probe Krebs cycle metabolism. Glucose production was measured by tracer kinetics using [6,6-(2)H2]glucose and gluconeogenesis by the labeling of the hydrogens of blood glucose on (2)H20 ingestion. The concentration of phenylacetate in plasma peaked by 2 hours after its ingestion, and about 40% of the dose was excreted in 5 hours. The plasma glucose concentration and production, and the contribution of gluconeogenesis to glucose production, were unaffected by phenylacetate ingestion at the highest dose used to probe Krebs cycle metabolism.

  6. Changes in Plasma Levels of N-Arachidonoyl Ethanolamine and N-Palmitoylethanolamine following Bariatric Surgery in Morbidly Obese Females with Impaired Glucose Homeostasis

    PubMed Central

    Mallipedhi, Akhila; Prior, Sarah L.; Dunseath, Gareth; Bracken, Richard M.; Barry, Jonathan; Caplin, Scott; Eyre, Nia; Morgan, James; Baxter, John N.; O'Sullivan, Saoirse E.; Sarmad, Sarir; Barrett, David A.; Bain, Stephen C.; Luzio, Steve D.

    2015-01-01

    Aim. We examined endocannabinoids (ECs) in relation to bariatric surgery and the association between plasma ECs and markers of insulin resistance. Methods. A study of 20 participants undergoing bariatric surgery. Fasting and 2-hour plasma glucose, lipids, insulin, and C-peptide were recorded preoperatively and 6 months postoperatively with plasma ECs (AEA, 2-AG) and endocannabinoid-related lipids (PEA, OEA). Results. Gender-specific analysis showed differences in AEA, OEA, and PEA preoperatively with reductions in AEA and PEA in females postoperatively. Preoperatively, AEA was correlated with 2-hour glucose (r = 0.55, P = 0.01), HOMA-IR (r = 0.61, P = 0.009), and HOMA %S (r = −0.71, P = 0.002). OEA was correlated with weight (r = 0.49, P = 0.03), waist circumference (r = 0.52, P = 0.02), fasting insulin (r = 0.49, P = 0.04), and HOMA-IR (r = 0.48, P = 0.05). PEA was correlated with fasting insulin (r = 0.49, P = 0.04). 2-AG had a negative correlation with fasting glucose (r = −0.59, P = 0.04). Conclusion. Gender differences exist in circulating ECs in obese subjects. Females show changes in AEA and PEA after bariatric surgery. Specific correlations exist between different ECs and markers of obesity and insulin and glucose homeostasis. PMID:25874237

  7. Intensive lifestyle intervention including high-intensity interval training program improves insulin resistance and fasting plasma glucose in obese patients☆

    PubMed Central

    Marquis-Gravel, Guillaume; Hayami, Douglas; Juneau, Martin; Nigam, Anil; Guilbeault, Valérie; Latour, Élise; Gayda, Mathieu

    2015-01-01

    Objectives To analyze the effects of a long-term intensive lifestyle intervention including high-intensity interval training (HIIT) and Mediterranean diet (MedD) counseling on glycemic control parameters, insulin resistance and β-cell function in obese subjects. Methods The glycemic control parameters (fasting plasma glucose, glycated hemoglobin), insulin resistance, and β-cell function of 72 obese subjects (54 women; mean age = 53 ± 9 years) were assessed at baseline and upon completion of a 9-month intensive lifestyle intervention program conducted at the cardiovascular prevention and rehabilitation center of the Montreal Heart Institute, from 2009 to 2012. The program included 2–3 weekly supervised exercise training sessions (HIIT and resistance exercise), combined to MedD counseling. Results Fasting plasma glucose (FPG) (mmol/L) (before: 5.5 ± 0.9; after: 5.2 ± 0.6; P < 0.0001), fasting insulin (pmol/L) (before: 98 ± 57; after: 82 ± 43; P = 0.003), and insulin resistance, as assessed by the HOMA-IR score (before: 3.6 ± 2.5; after: 2.8 ± 1.6; P = 0.0008) significantly improved, but not HbA1c (%) (before: 5.72 ± 0.55; after: 5.69 ± 0.39; P = 0.448), nor β-cell function (HOMA-β, %) (before: 149 ± 78; after: 144 ± 75; P = 0.58). Conclusion Following a 9-month intensive lifestyle intervention combining HIIT and MedD counseling, obese subjects experienced significant improvements of FPG and insulin resistance. This is the first study to expose the effects of a long-term program combining HIIT and MedD on glycemic control parameters among obese subjects. PMID:26844086

  8. Modification of sodium, glucose, potassium, and osmolarity in packed red blood cells and fresh frozen plasma using a desktop hemoconcentrator setup.

    PubMed

    Striker, Carrie Whittaker; Woldorf, Stacia; Holt, David

    2012-06-01

    Massive transfusion with packed blood cells (PRBCs) or fresh frozen plasma (FFP) can result in dangerous complications including stroke, kidney failure, and cardiac arrest. A simple, bench top technique using a hemoconcentrator and dialysate solution is described to correct critical values of sodium, glucose, potassium, and osmolarity in PRBCs and FFP. Sodium, glucose, and osmolarity were corrected to normal or near normal values. Elevated potassium was reduced by 65%, but not completely normalized. A simple, bench top method for correcting dangerous abnormalities with PRBCs and FFP can be used to improve the safety of massive blood transfusion.

  9. Development of glucose biosensors based on plasma polymerization-assisted nanocomposites of polyaniline, tin oxide, and three-dimensional reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Wu, Shide; Su, Fangfang; Dong, Xiaodong; Ma, Chuang; Pang, Long; Peng, Donglai; Wang, Minghua; He, Linghao; Zhang, Zhihong

    2017-04-01

    A biosensor based on the plasma polyaniline (pPANI)-modified tin oxide and 3D reduced graphene oxide (SnO2@3D-rGO) nanocomposite was fabricated to detect glucose. The SnO2@3D-rGO nanocomposite was synthesized by simultaneously reducing 3D graphene oxide (3D-GO) and translating SnCl4 into SnO2, followed by pPANI modification. The content of amino groups in the SnO2@3D-rGO@pPANI nanocomposites depended on the plasma input powers used in plasma deposition. The SnO2@3D-rGO nanocomposite was important in the electrochemical biosensor to detect glucose. The fabricated biosensor exhibited a much higher sensitivity than that formed from individual components, namely, SnO2@3D-rGO and pPANI. This biosensor demonstrated a low detection limit of 0.047 ng mL-1 (0.26 nM) (S/N = 3) within the concentration range of 0.1 ng mL-1 to 5 μg mL-1. The selectivity, stability, and practicality of the SnO2@3D-rGO@pPANI-based biosensor were observed. In conclusion, the plasma surface-modified nanocomposite is a promising candidate as biosensor for glucose detection and biological diagnosis.

  10. The Effects of Hyperhydrating Supplements Containing Creatine and Glucose on Plasma Lipids and Insulin Sensitivity in Endurance-Trained Athletes

    PubMed Central

    Polyviou, Thelma P.; Pitsiladis, Yannis P.; Celis-Morales, Carlos; Brown, Benjamin; Speakman, John R.; Malkova, Dalia

    2015-01-01

    The addition of carbohydrate (CHO) in the form of simple sugars to creatine (Cr) supplements is central. The study aimed to determine whether ingestion of glucose (Glu) simultaneously with Cr and glycerol (Cr/Gly) supplement is detrimental to plasma lipids of endurance-trained individuals and find out whether modification arising can be attenuated by replacing part of the Glu with alpha lipoic acid (Ala). Twenty-two endurance-trained cyclists were randomized to receive Cr/Gly/Glu (11.4 g Cr-H2O, 1 g Gly/kg BM, and 150 g Glu) or Cr/Gly/Glu/Ala (11.4 g Cr-H2O, 1 g Gly/kg BM, 100 g Glu, and 1 g Ala) for 7 days. Fasting concentration of TAG increased significantly (P < 0.01) after supplementation with Cr/Gly/Glu (before: 0.9 ± 0.2 mmol/L; after: 1.3 ± 0.4 mmol/L) and Cr/Gly/Glu/Ala (before: 0.8 ± 0.2 mmol/L; after: 1.2 ± 0.5 mmol/L) but changes were not different between the groups. Supplementation significantly (P < 0.05) increased the TAG to HDL-cholesterol ratio but had no effect on fasting concentration of total, HDL-, and LDL-cholesterol and insulin resistance. Thus, addition of Glu to Cr containing supplements enhances plasma TAG concentration and the TAG to HDL-cholesterol ratio and this enhancement cannot be attenuated by partial replacement of Glu with Ala. PMID:26167296

  11. Activation of the gut calcium-sensing receptor by peptide agonists reduces rapid elevation of plasma glucose in response to oral glucose load in rats.

    PubMed

    Muramatsu, Maya; Hira, Tohru; Mitsunaga, Arimi; Sato, Eri; Nakajima, Shingo; Kitahara, Yoshiro; Eto, Yuzuru; Hara, Hiroshi

    2014-06-15

    The calcium-sensing receptor (CaSR) is expressed in various tissues, including the gastrointestinal tract. To investigate the role of gut CaSR on glycemic control, we examined whether single oral administration of CaSR agonist peptides affected the glycemic response in rats. Glucose tolerance tests were performed under oral or duodenal administration of various CaSR agonist peptides (γGlu-Cys, protamine, and poly-d-lysine hydrobromide) in conscious rats. Involvement of CaSR was determined by using a CaSR antagonist. Signaling pathways underlying CaSR agonist-modified glycemia were investigated using gut hormone receptor antagonists. The gastric emptying rate after the administration of CaSR agonist peptides was measured by the phenol red recovery method. Oral and duodenal administration of CaSR agonist peptides attenuated glycemic responses under the oral glucose tolerance test, but the administration of casein did not. The promotive effect on glucose tolerance was weakened by luminal pretreatment with a CaSR antagonist. Treatment with a 5-HT3 receptor antagonist partially diminished the glucose-lowering effect of peptides. Furthermore, the gastric emptying rate was decreased by duodenal administration of CaSR agonist peptides. These results demonstrate that activation of the gut CaSR by peptide agonists promotes glucose tolerance in conscious rats. 5-HT3 receptor and the delayed gastric emptying rate appear to be involved in the glucose-lowering effect of CaSR agonist peptides. Thus, activation of gut CaSR by dietary peptides reduces glycemic responses so that gut CaSR may be a potential target for the improvement of postprandial glycemia.

  12. Changes in plasma lipid and glucose levels during the onset of fatty liver and kidney syndrome in chics.

    PubMed

    Evans, A J; Bannister, D W; Whitehead, C C; Siller, W G; Wight, P A

    1977-11-01

    Plasma glucose, free fatty acid and triglyceride levels were measured during the onset of fatty liver and kidney syndrome in chicks. Intial studies indicated that behavioural and clinical changes characteristically associated with the syndrome were observed only during the 24 h preceding death. A more detailed examination of the blood changes was made on fasted birds. Typically, affected birds could be distinguished from healthy fasted birds by a hypoglycaemia which developed within 2.5 h of the removal of food, and a slightly higher and more sustained elevation of free fatty acid levels. Triglyceride values were not generally different from those found in normal birds. Although moderate to large amounts of lipid were occasionally observed in the kidneys of healthy fasted birds, only in affected birds was significant lipid infiltration of the kidneys associated with a similar level of lipid infiltration of the liver. In extreme cases death from fatty liver and kidney syndrome could occur within 4 h of the removal of food.

  13. Evaluating the transferability of 15 European-derived fasting plasma glucose SNPs in Mexican children and adolescents

    PubMed Central

    Langlois, Christine; Abadi, Arkan; Peralta-Romero, Jesus; Alyass, Akram; Suarez, Fernando; Gomez-Zamudio, Jaime; Burguete-Garcia, Ana I.; Yazdi, Fereshteh T.; Cruz, Miguel; Meyre, David

    2016-01-01

    Genome wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNPs) that are associated with fasting plasma glucose (FPG) in adult European populations. The contribution of these SNPs to FPG in non-Europeans and children is unclear. We studied the association of 15 GWAS SNPs and a genotype score (GS) with FPG and 7 metabolic traits in 1,421 Mexican children and adolescents from Mexico City. Genotyping of the 15 SNPs was performed using TaqMan Open Array. We used multivariate linear regression models adjusted for age, sex, body mass index standard deviation score, and recruitment center. We identified significant associations between 3 SNPs (G6PC2 (rs560887), GCKR (rs1260326), MTNR1B (rs10830963)), the GS and FPG level. The FPG risk alleles of 11 out of the 15 SNPs (73.3%) displayed significant or non-significant beta values for FPG directionally consistent with those reported in adult European GWAS. The risk allele frequencies for 11 of 15 (73.3%) SNPs differed significantly in Mexican children and adolescents compared to European adults from the 1000G Project, but no significant enrichment in FPG risk alleles was observed in the Mexican population. Our data support a partial transferability of European GWAS FPG association signals in children and adolescents from the admixed Mexican population. PMID:27782183

  14. Meal feeding improves oral glucose tolerance in male rats and causes adaptations in postprandial islet hormone secretion that are independent of plasma incretins or glycemia

    PubMed Central

    P., Torsten; Aulinger, Benedikt A.; Smith, Eric P.; Drazen, Deborah L.; Ulrich-Lai, Yve; Seeley, Randy J.; Woods, Stephen C.

    2014-01-01

    Meal-fed (MF) rats with access to food for only 4 consecutive hours during the light cycle learn to eat large meals to maintain energy balance. MF animals develop behavioral and endocrine changes that permit glucose tolerance despite increased meal size. We hypothesized that enhanced activity of the enteroinsular axis mediates glucose homeostasis during MF. Cohorts of rats were allocated to MF or ad libitum (AL) regimens for 2–4 wk. Insulin secretion and glucose tolerance were determined after oral carbohydrate and intraperitoneal (ip) and intravenous (iv) glucose. MF rats ate less than AL in the first week but maintained a comparable weight trajectory thereafter. MF rats had decreased glucose excursions after a liquid mixed meal (AUC: MF 75 ± 7, AL 461 ± 28 mmol·l−1·min, P < 0.001), with left-shifted insulin secretion (AUC0–15: MF 31.0 ± 4.9, AL 9.6 ± 4.4 pM·min, P < 0.02), which peaked before a significant rise in blood glucose. Both groups had comparable fasting glucagon levels, but postprandial responses were lower with MF. However, neither intestinal expression of proGIP and proglucagon mRNA nor plasma incretin levels differed between MF and AL groups. There were no differences in the insulin response to ip or iv glucose between MF and AL rats. These findings demonstrate that MF improves oral glucose tolerance and is associated with significant changes in postprandial islet hormone secretion. Because MF enhanced β-cell function during oral but not parenteral carbohydrate administration, and was not accounted for by changes in circulating incretins, these results support a neural mechanism of adaptive insulin secretion. PMID:25159330

  15. Quantitative analysis of methylglyoxal, glyoxal and free advanced glycation end-products in the plasma of Wistar rats during the oral glucose tolerance test.

    PubMed

    Chen, Si Jing; Aikawa, Chiwa; Matsui, Toshiro

    2015-01-01

    The purpose of this study was to gain insight into the production behavior of free adducts of advanced glycation end-products (AGEs) in Wistar rats under acute hyperglycemic conditions. Five AGE-free adducts as well as their precursors (i.e., highly reactive carbonyl intermediates of methylglyoxal and glyoxal) in rat plasma were quantitatively determined at greater than nanomolar levels using the liquid chromatography/tandem mass spectrometry method coupled with 2,4,6-trinitrobenzene sulfonate and 2,3-diaminonaphthalene derivatization techniques. An oral glucose (2 g/kg dose) tolerance test to 10-week-old Wistar rats provided evidence that the plasma levels of diabetes-related metabolites did not change acutely within 120 min, irrespective of increasing blood glucose levels.

  16. Alterations in blood glucose and plasma glucagon concentrations during deep brain stimulation in the shell region of the nucleus accumbens in rats.

    PubMed

    Diepenbroek, Charlene; van der Plasse, Geoffrey; Eggels, Leslie; Rijnsburger, Merel; Feenstra, Matthijs G P; Kalsbeek, Andries; Denys, Damiaan; Fliers, Eric; Serlie, Mireille J; la Fleur, Susanne E

    2013-01-01

    Deep brain stimulation (DBS) of the nucleus accumbens (NAc) is an effective therapy for obsessive compulsive disorder (OCD) and is currently under investigation as a treatment for eating disorders. DBS of this area is associated with altered food intake and pharmacological treatment of OCD is associated with the risk of developing type 2 diabetes. Therefore we examined if DBS of the NAc-shell (sNAc) influences glucose metabolism. Male Wistar rats were subjected to DBS, or sham stimulation, for a period of 1 h. To assess the effects of stimulation on blood glucose and glucoregulatory hormones, blood samples were drawn before, during and after stimulation. Subsequently, all animals were used for quantitative assessment of Fos immunoreactivity in the lateral hypothalamic area (LHA) using computerized image analysis. DBS of the sNAc rapidly increased plasma concentrations of glucagon and glucose while sham stimulation and DBS outside the sNAc were ineffective. In addition, the increase in glucose was dependent on DBS intensity. In contrast, the DBS-induced increase in plasma corticosterone concentrations was independent of intensity and region, indicating that the observed DBS-induced metabolic changes were not due to corticosterone release. Stimulation of the sNAc with 200 μA increased Fos immunoreactivity in the LHA compared to sham or 100 μA stimulated animals. These data show that DBS of the sNAc alters glucose metabolism in a region- and intensity- dependent manner in association with neuronal activation in the LHA. Moreover, these data illustrate the need to monitor changes in glucose metabolism during DBS-treatment of OCD patients.

  17. Glucose-β-CD interaction assisted ACN field-amplified sample stacking in CZE for determination of trace amlodipine in beagle dog plasma.

    PubMed

    Li, Ji; Li, You; Zhang, Wenting; Chen, Zhao; Fan, Guorong

    2013-06-01

    A simple, sensitive and low-cost method using CE coupled with glucose-β-CD interaction assisted ACN stacking technique has been developed for quantification of trace amlodipine in dog plasma. The plasma samples were extracted with methyl tert-butyl ether. The separation was performed at 25°C in a 31.2 cm × 75 μm fused-silica capillary with an applied voltage of 15 kV. The BGE was composed of 6.25 mM borate/25 mM phosphate (pH 2.5) and 5 mg/mL glucose-β-CD. The detection wavelength was 200 nm. Because CD could diminish the interaction between drugs and matrix, and derivation groups of CD play an important role in separation performance, the effects of β-CD, and its derivatives on the separation were studied at several concentrations (0, 2.5, 5.0, 10.0 mg/mL). In this study, organic solvent field-amplified sample stacking technique in combination with glucose-β-CD enhanced the sensitivity about 60-70 folds and glucose-β-CD could effectively improve the peak shape. All the validation data, such as accuracy, precision extraction recovery, and stability, were within the required limits. The calibration curve was linear for amlodipine from 1 to 200 ng/mL. The method developed was successfully applied to the pharmacokinetic studies of amlodipine besylate in beagle dogs.

  18. Early prediction of new-onset diabetes mellitus by fifth-day fasting plasma glucose, pulse pressure, and proteinuria.

    PubMed

    Rodrigo, E; Santos, L; Piñera, C; Quintanar, J A; Ruiz, J C; Fernández-Fresnedo, G; Palomar, R; Gómez-Alamillo, C; Arias, M

    2011-01-01

    Renal transplant recipients are at high risk of cardiovascular disease (CVD). New-onset diabetes mellitus after transplantation (NODAT) contributes to the risk of CVD, reducing graft and patient survival. To improve outcome of kidney transplant recipients, it is of great interest to identify those patients who will develop NODAT. The aim of our study was to explore the predictive value of fifth-day fasting plasma glucose (FPG), third-month proteinuria, and pulse pressure (PP) for NODAT development. We analyzed 282 non-previously-diabetic kidney transplants in our center. Fifth-day FPG, PP, and third-month 24-hour proteinuria were collected. NODAT was defined at month 12 according to the "consensus guidelines": symptoms of diabetes plus casual glucose concentrations ≥ 200 mg/dL or FPG ≥ 126 mg/dL. Some 46 patients (16.3%) developed NODAT at month 12. Fifth-day FPG (133 ± 35 vs 108 ± 16 mg/dL, P < .001) and PP (57 ± 17 vs 49 ± 15 mm Hg, P = .007) were significantly higher in patients at risk for NODAT, but there was no difference in third-month proteinuria (652 ± 959 vs 472 ± 1336 mg, P = .390). A multivariate regression model showed an increased risk for NODAT associated with recipient age, body mass index, smoking habit, and a fifth-day FPG ≥ 126 mg/dL (relative risk 4.784, 95% confidence interval 2.121-10.788, P = .0002). The negative predictive value of a fifth-day FPG ≥ 126 mg/dL for predicting 1-year NODAT was 89.4%. Fifth-day FPG was independently related to NODAT development. The detection of a fifth-day FPG ≥ 126 mg/dL increases the risk of suffering NODAT more than 4 times. Fifth-day FPG < 126 mg/dL allows us to identify a transplant population with a low risk (near 10%) for NODAT.

  19. Improvement of fasting plasma glucose level after ingesting moderate amount of dietary fiber in Japanese men with mild hyperglycemia and visceral fat obesity.

    PubMed

    Kobayakawa, Akira; Suzuki, Tomoo; Ikami, Takao; Saito, Morio; Yabe, Daisuke; Seino, Yutaka

    2013-06-01

    A double-blind, randomized, controlled study was conducted to evaluate the effects of a moderate amount of dietary fiber intake on fasting plasma glucose level and physical characteristics in Japanese men with mild hyperglycemia and visceral fat obesity. Thirty men with mild hyperglycemia (>5.6 mmol/L) and visceral fat accumulation (>100 cm²) ingested 7.5 g/day of dietary fiber for 12 weeks. An abdominal computed tomography scan was performed at baseline and at week 12. Blood was drawn every 4 weeks. In the test food group, fasting plasma glucose level was reduced with time, and the difference between the test food group and placebo group was statistically significant at week 12. Body weight and body mass index were also reduced with time, but visceral and subcutaneous fat areas did not change significantly during the study period. The results suggest that even a moderate amount of dietary fiber intake may be beneficial for managing the fasting plasma glucose level concomitant with insulin resistance, body weight, and body mass index in Japanese men with mild hyperglycemia and visceral fat obesity.

  20. A comparison of insulin binding by liver plasma membranes of rats fed a high glucose diet or a high fat diet.

    PubMed

    Sun, J V; Tepperman, H M; Tepperman, J

    1977-07-01

    The interaction of (125)I-labeled insulin with purified liver plasma membrane from rats fed a high fat (L) diet or a high glucose (G) diet was studied with respect to specific binding, insulin degradation, binding site degradation, and rate of hormone association and dissociation. Scatchard analysis suggested the presence of high and low affinity binding sites for membranes of both G and L diet-adapted rats. However, liver plasma membrane from rats fed the high glucose diet bound 50% more insulin than did membrane from rats fed the high fat diet. Diet did not change insulin binding site degradation. The results suggested that an apparently reduced number of insulin binding sites (G = 10.2 +/- 2.45 x 10(-12) mol/mg membrane protein, L = 4.5 +/- 1.73 x 10(-12) mol/mg membrane protein) associated with fat feeding as compared to glucose feeding was responsible for the reduced insulin binding by membrane from rats fed the high fat diet. The effects of concanavalin A (Con A) on insulin binding to liver plasma membranes were also investigated. Con A enhanced the specific binding of insulin to liver plasma membranes from rats fed either diet at concentrations lower than 50 micro g/ml, whereas at concentrations higher than 50 micro g/ml Con A inhibited insulin binding to these membranes. The stimulatory effect of Con A on insulin binding at low concentrations was greater and inhibition of binding at high concentration was less in the case of membrane prepared from L diet-adapted animals. These results suggested that diet can modify the plasma membrane glycoproteins.

  1. Glucose tolerance during pregnancy in Asian women.

    PubMed

    Samanta, A; Burden, M L; Burden, A C; Jones, G R

    1989-08-01

    The present study was aimed at examining differences in gestational diabetes mellitus (GDM) between two ethnic populations (immigrant Asians and indigenous White Caucasians) residing in Leicester, U.K. The study was divided into two parts: to determine the prevalence of GDM and to determine the level at which glycaemia may impose a risk to the mother and the foetus. Of a total of 12,005 pregnancies (4561 Asian and 7444 White Caucasian), over a 3-year period, 314 (6.8%) Asian and 504 (6.7%) White Caucasian were given a 75-g oral glucose tolerance test (OGTT) at 28-32 weeks for indications of 'large for date' pregnancies, hydramnios, glycosuria, a history of previous abortions, stillbirths, congenital abnormalities or glucose intolerance, and family history of diabetes. Abnormal glucose tolerance (AGT) was taken as a 2-h venous plasma glucose greater than or equal to 7.8 mmol/l which reverted to normal when formally tested during the puerperium (WHO criteria, 1985). AGT was found in 1.38% Asian and 0.87% White Caucasian pregnancies (P less than 0.01). This was further divided into impaired glucose tolerance (IGT) (2-h value 7.8-11.1 mmol/l) and gestational diabetes mellitus (GDM) (2-h value greater than or equal to 11.1 mmol/l). IGT was found in 1.2% Asian and 0.84% White Caucasian pregnancies (P less than 0.01), and GDM in 0.18% and 0.02% respectively (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Effects of miglitol, vildagliptin, or their combination on serum insulin and peptide YY levels and plasma glucose, cholecystokinin, ghrelin, and obestatin levels.

    PubMed

    Aoki, Kazutaka; Kamiyama, Hiroshi; Masuda, Kiyomi; Kamiko, Kazunari; Noguchi, Yoshihiko; Tajima, Kazuki; Terauchi, Yasuo

    2014-01-01

    We previously reported that combination therapy with an α-glucosidase inhibitor (αGI) and a dipeptidyl peptidase-4 (DPP-4) inhibitor increased active glucagon-like peptide-1 (GLP-1) levels and decreased total glucose-dependent insulinotropic polypeptide (GIP) levels, compared with monotherapy, in non-diabetic men. However, the peptide YY (PYY), cholecystokinin (CCK), ghrelin, and obestatin levels in patients receiving a combination of αGIs and DPP-4 inhibitors have not been previously reported. We evaluated the effect of miglitol, vildagliptin, or their combination on these parameters. Miglitol and/or vildagliptin were administered according to four different intake schedules in eleven non-diabetic men (C: no drug, M: miglitol; V: vildagliptin, M+V: miglitol+vildagliptin). Blood samples were collected at 0, 30, 60, and 120 min after the start of breakfast. The plasma glucose, serum insulin, serum total PYY (PYY1-36 and PYY3-36), plasma CCK, plasma active ghrelin, and plasma obestatin levels were measured. The area under the curve (AUC) of the serum total PYY level in the M group was significantly greater than that in the C group, and the AUC of the serum total PYY level in the M+V group was significantly lower than that in the M group. The combination therapy did not change the AUC of the plasma CCK, plasma active ghrelin, plasma obestatin, and ghrelin/obestatin levels, compared with the control. The results of our study suggested that combination therapy with miglitol and vildagliptin had no effect on appetite regulation hormones, such as total PYY, CCK, active ghrelin, and obestatin, compared with the levels in the control group.

  3. Usefulness of combined white blood cell count and plasma glucose for predicting in-hospital outcomes after acute myocardial infarction.

    PubMed

    Ishihara, Masaharu; Kojima, Sunao; Sakamoto, Tomohiro; Asada, Yujiro; Kimura, Kazuo; Miyazaki, Shunichi; Yamagishi, Masakazu; Tei, Chuwa; Hiraoka, Hisatoyo; Sonoda, Masahiro; Tsuchihashi, Kazufumi; Shinoyama, Nobuo; Honda, Takashi; Ogata, Yasuhiro; Ogawa, Hisao

    2006-06-01

    Admission white blood cell (WBC) count and plasma glucose (PG) have been associated with adverse outcomes after acute myocardial infarction (AMI). This study investigated the joint effect of WBC count and PG on predicting in-hospital outcomes in patients with AMI. WBC count and PG were measured at the time of hospital admission in 3,665 patients with AMI. Patients were stratified into tertiles (low, medium, and high) based on WBC count and PG. Patients with a high WBC count had a 2.0-fold increase in in-hospital mortality compared with those with a low WBC count. Patients with a high PG level had a 2.7-fold increase in mortality compared with those with a low PG level. When a combination of different strata for each variable was analyzed, a stepwise increase in mortality was seen. There was a considerable number of patients with a high WBC count and low PG level or with a low WBC count and high PG level. These patients had an intermediate risk, whereas those with a high WBC count and high PG level had the highest risk, i.e., 4.8-fold increase in mortality, compared with those with a low WBC count and low PG level. Multivariate analysis was performed to assess the predictor for in-hospital mortality using WBC count and PG level as continuous variables and showed that WBC count and PG level were independently associated with in-hospital mortality. These findings suggested that a simple combination of WBC count and PG level might provide further information for predicting outcomes in patients with AMI.

  4. Alterations in glucose kinetics induced by pentobarbital anesthesia

    SciTech Connect

    Lang, C.H.; Bagby, G.J.; Hargrove, D.M.; Hyde, P.M.; Spitzer, J.J. )

    1987-12-01

    Because pentobarbital is often used in investigations related to carbohydrate metabolism, the in vivo effect of this drug on glucose homeostasis was studied. Glucose kinetics assessed by the constant intravenous infusion of (6-{sup 3}H)- and (U-{sup 14}C)glucose, were determined in three groups of catheterized fasted rats: conscious, anesthetized and body temperature maintained, and anesthetized but body temperature not maintained. After induction of anesthesia, marked hypothermia developed in rats not provided with external heat. Anesthetized rats that developed hypothermia showed a decrease in mean arterial blood pressure (25%) and heart rate (40%). Likewise, the plasma lactate concentration and the rates of glucose appearance, recycling, and metabolic clearance were reduced by 30-50% in the hypothermic anesthetized rats. Changes in whole-body carbohydrate metabolism were prevented when body temperature was maintained. Because plasma pentobarbital levels were similar between the euthermic and hypothermic rats during the first 2 h of the experiment, the rapid reduction in glucose metabolism in this latter group appears related to the decrease in body temperature. The continuous infusion of epinephrine produced alterations in glucose kinetics that were not different between conscious animals and anesthetized rats with body temperature maintained. Thus pentobarbital-anesthetized rats became hypothermic when kept at room temperature and exhibited marked decreases in glucose metabolism. Such changes were absent when body temperature was maintained during anesthesia.

  5. TCA Cycle Turnover And Serum Glucose Sources By Automated Bayesian Analysis Of NMR Spectra

    NASA Astrophysics Data System (ADS)

    Merritt, Matthew E.; Burgess, Shawn; Jeffrey, F. Mark; Sherry, A. Dean; Malloy, Craig; Bretthorst, G. Larry

    2004-04-01

    Changes in sources of serum glucose are indicative of a variety of pathological metabolic states. It is possible to measure the sources of serum glucose by the administration of deuterated water to a subject followed by analysis of the 2H enrichment levels in glucose extracted from plasma from a single blood draw by 2H NMR. Markov Chain Monte Carlo simulations of the posterior probability densities may then be used to evaluate the contribution of glycogenolysis, glycerol, and the Kreb's cycle to serum glucose. Experiments with simulated NMR spectra show that in spectra with a S/N of 20 to 1, the resulting metabolic information may be evaluated with an accuracy of about 4 percent.

  6. Inflammatory Properties of Diet and Glucose-Insulin Homeostasis in a Cohort of Iranian Adults

    PubMed Central

    Moslehi, Nazanin; Ehsani, Behnaz; Mirmiran, Parvin; Shivappa, Nitin; Tohidi, Maryam; Hébert, James R.; Azizi, Fereidoun

    2016-01-01

    We aimed to investigate associations of the dietary inflammatory index (DII) with glucose-insulin homeostasis markers, and the risk of glucose intolerance. This cross-sectional study included 2975 adults from the Tehran Lipid and Glucose Study. Fasting plasma glucose (FPG), 2-h post-load glucose (2h-PG), and fasting serum insulin were measured. Homeostatic model assessment of insulin resistance index (HOMA-IR) and β-cell function (HOMA-B), and the quantitative insulin sensitivity check index (QUICKI) were calculated. Glucose tolerance abnormalities included impaired fasting glucose (IFG), impaired glucose tolerance (IGT), and type 2 diabetes (T2DM). DII scores were positively associated with 2h-PG (β = 0.04; p = 0.05). There was no significant linear trend across quartiles of DII for adjusted means of glucose-insulin homeostasis markers. Participants in the highest quartile of DII score tended to have higher FPG compared to those in the second quartile of DII score (5.46 vs. 5.38 mmol/L, p = 0.07) and higher fasting insulin and HOMA-IR compared to those in the lowest quartile (8.52 vs. 8.12 µU/mL for fasting insulin, p = 0.07; 2.06 vs. 1.96 for HOMA-IR, p = 0.08). No significant associations were observed between DII and risk of IFG, IGT, T2DM, and insulin resistance. Among glucose-insulin homeostasis markers, DII had a positive weak association only with 2h-PG. PMID:27869717

  7. Diabetes, plasma glucose and incidence of pancreatic cancer: A prospective study of 0.5 million Chinese adults and a meta-analysis of 22 cohort studies.

    PubMed

    Pang, Yuanjie; Kartsonaki, Christiana; Guo, Yu; Bragg, Fiona; Yang, Ling; Bian, Zheng; Chen, Yiping; Iona, Andri; Millwood, Iona Y; Lv, Jun; Yu, Canqing; Chen, Junshi; Li, Liming; Holmes, Michael V; Chen, Zhengming

    2017-04-15

    Diabetes is associated with an increased risk of pancreatic cancer (PC) in Western populations. Uncertainty remains, however, about the relevance of plasma glucose for PC among people without diabetes and about the associations of diabetes and high blood glucose with PC in China where the increase in diabetes prevalence has been very recent. The prospective China Kadoorie Biobank (CKB) study recruited 512,000 adults aged 30-79 years from 10 diverse areas of China during 2004-2008, recording 595 PC cases during 8 years of follow-up. Cox regression yielded adjusted hazard ratios (HRs) for PC associated with diabetes (previously diagnosed or screen-detected) and, among those without previously diagnosed diabetes, with levels of random plasma glucose (RPG). These were further meta-analysed with 22 published prospective studies. Overall 5.8% of CKB participants had diabetes at baseline. Diabetes was associated with almost twofold increased risk of PC (adjusted HR = 1.87, 95% CI 1.48-2.37), with excess risk higher in those with longer duration since diagnosis (p for trend = 0.01). Among those without previously diagnosed diabetes, each 1 mmol/L higher usual RPG was associated with a HR of 1.12 (1.04-1.21). In meta-analysis of CKB and 22 other studies, previously diagnosed diabetes was associated with a 52% excess risk (1.52, 1.43-1.63). Among those without diabetes, each 1 mmol/L higher blood glucose was associated with a 15% (1.15, 1.09-1.21) excess risk. In Chinese and non-Chinese populations, diabetes and higher blood glucose levels among those without diabetes are associated with an increased risk of PC.

  8. Effects of dehulled adlay on plasma glucose and lipid concentrations in streptozotocin-induced diabetic rats fed a diet enriched in cholesterol.

    PubMed

    Yeh, Pao-Hua; Chiang, Wenchang; Chiang, Meng-Tsan

    2006-09-01

    Adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) is a cereal food for humans and has been also used as a superior medical herb substance and functional food for traditional treatment of diabetes in China. However, its scientific basis as a functional food is still unclear. The purpose of this study was to investigate the effect of dietary dehulled adlay on plasma lipid and glucose concentrations in diabetic rats. The diabetic male Sprague-Dawley (SD) rats, induced by injection of streptozotocin (60 mg/kg subcutaneously), were fed a cholesterol-rich diet (0.5% cholesterol) containing corn starch or dehulled adlay for four weeks. After completion of the experimental period, the abdominal adipose tissue and liver of rats were excised and weighed, and the plasma glucose, triglyceride, and lipoprotein cholesterol concentrations were assayed. The results showed that diabetic rats fed a dehulled adlay diet exhibited a greater adipose tissue weight (9.36 +/- 3.43 vs. 5.39 +/- 3.04 g, p < 0.05) and a reduced food intake (39.3 +/- 5.9 vs. 61.0 +/- 11.7 g/day, p < 0.05) when compared with animals fed a cornstarch diet. Significantly decreased plasma glucose (261.6 +/- 96.6 vs. 422.1 +/- 125.4 mg/dL, p < 0.05), total cholesterol (289.4 +/- 140.6 vs. 627.3 +/- 230.5 mg/dL, p < 0.05), and triglyceride (52.3 +/- 14.4 vs. 96.5 +/- 36.6 mg/dL, p < 0.05) levels were observed in rats fed the dehulled adlay diet. In addition, the ingestion of dehulled adlay appears to significantly decrease plasma low-density lipoprotein (LDL) plus very low-density lipoprotein (VLDL) cholesterol concentrations. Rats fed a dehulled adlay diet showed an increase in fecal weight and cholesterol contents of stools. Although a significantly decreased plasma thiobarbituric reactive substances (TBARS) value was observed in diabetic rats fed the dehulled adlay diet (6.2 +/- 3.4 vs. 11.0 +/- 3.8 nmol malondialdehyde (MDA)/mL, p < 0.05), no significant difference in the hepatic TBARS value was observed between

  9. Glucose intolerance following cis-platinum treatment in rats.

    PubMed

    Goldstein, R S; Mayor, G H; Rosenbaum, R W; Hook, J B; Santiago, J V; Bond, J T

    1982-01-01

    cis-Dichlorodiammineplatinum (cis-Pt) is a heavy metal complex used in cancer chemotherapy. Since this drug has been shown to induce hyperglycemia in rats, these studies were initiated to elucidate the effects of cis-Pt on carbohydrate tolerance and insulin and glucagon secretion. Two days following i.v. cis-Pt (2.5 or 7.5 mg/kg, 5 ml/kg) or vehicle administration to male F-344 rats, plasma glucose, immunoreactive insulin (IRI) and glucagon (IRG) concentrations were determined in the basal state and serially following a glucose load (2 g/kg, i.p.). Since cis-Pt induces a dose-related anorexia, a pair-fed control group was also studied. Administration of 7.5 mg/kg cis-Pt was associated with plasma glucose concentrations 2.5-5 times greater than ad-libitum and pair-fed controls at every time point during the 2-h glucose tolerance test. Although basal plasma IRI concentrations of the 7.5-mg/kg group were comparable to ad-libitum fed controls, they were significantly greater than those of pair-fed partners. Furthermore, the appropriate IRI response to a glucose stimulus observed in both controls and the 2.5-mg/kg group was absent in the 7.5-mg/kg group. Basal plasma IRG concentrations of the 7.5-mg/kg group were approximately 3-4 times greater than ad-libitum and pair-fed controls and were not suppressed following a glucose load. These results suggest that cis-Pt induces marked glucose intolerance in association with an impaired IRI response and abnormal glucagon response to a glucose stimulus.

  10. Interactions between zinc transporter-8 gene (SLC30A8) and plasma zinc concentrations for impaired glucose regulation and type 2 diabetes.

    PubMed

    Shan, Zhilei; Bao, Wei; Zhang, Yan; Rong, Ying; Wang, Xia; Jin, Yilin; Song, Yadong; Yao, Ping; Sun, Changhao; Hu, Frank B; Liu, Liegang

    2014-05-01

    Although both SLC30A8 rs13266634 single nucleotide polymorphism and plasma zinc concentrations have been associated with impaired glucose regulation (IGR) and type 2 diabetes (T2D), their interactions for IGR and T2D remain unclear. Therefore, to assess zinc-SLC30A8 interactions, we performed a case-control study in 1,796 participants: 218 newly diagnosed IGR patients, 785 newly diagnosed T2D patients, and 793 individuals with normal glucose tolerance. After adjustment for age, sex, BMI, family history of diabetes, and hypertension, the multivariable odds ratio (OR) of T2D associated with a 10 µg/dL higher plasma zinc level was 0.87 (95% CI 0.85-0.90). Meanwhile, the OR of SLC30A8 rs13266634 homozygous genotypes CC compared with TT was 1.53 (1.11-2.09) for T2D. Similar associations were found in IGR and IGR&T2D groups. Each 10 µg/dL increment of plasma zinc was associated with 22% (OR 0.78 [0.72-0.85]) lower odds of T2D in TT genotype carriers, 17% (0.83 [0.80-0.87]) lower odds in CT genotype carriers, and 7% (0.93 [0.90-0.97]) lower odds in CC genotype carriers (P for interaction = 0.01). Our study suggested that the C allele of rs13266634 was associated with higher odds of T2D, and higher plasma zinc was associated with lower odds. The inverse association of plasma zinc concentrations with T2D was modified by SLC30A8 rs13266634. Further studies are warranted to confirm our findings and clarify the mechanisms underlying the interaction between plasma zinc and the SLC30A8 gene in relation to T2D.

  11. Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells

    NASA Astrophysics Data System (ADS)

    Kaushik, Neha; Lee, Su Jae; Choi, Tae Gyu; Baik, Ku Youn; Uhm, Han Sup; Kim, Chung Hyeok; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-03-01

    In this study, we show the selective and efficient anti-cancer effects of plasma (at a low dose) when cell metabolic modifiers are also included. 2-deoxy-D-glucose (2-DG), a glycolytic inhibitor, was used with effective doses of non-thermal plasma, synergistically attenuating cell metabolic viability and inducing caspase-dependent and independent cell death. The combination treatment decreased the intracellular ATP and lactate production in various types of blood cancer cells in vitro. Taken together, our findings suggest that 2-DG enhances the efficacy and selectivity of plasma and induces the synergistic inhibition of cancer cell growth by targeting glycolysis and apoptosis. Specifically, this treatment strategy demonstrated an enhanced growth inhibitory effect of plasma in the presence of a metabolic modifier that was selective against cancer cells, not non-malignant cells. This is the first study to report the advantage of combining plasma with 2-DG to eradicate blood cancer cells. Finally, we conclude that 2-DG with non-thermal plasma may be used as a combination treatment against blood cancer cells.

  12. Effect of acacia polyphenol on glucose homeostasis in subjects with impaired glucose tolerance: A randomized multicenter feeding trial

    PubMed Central

    OGAWA, SOSUKE; MATSUMAE, TOMOYUKI; KATAOKA, TAKESHI; YAZAKI, YOSHIKAZU; YAMAGUCHI, HIDEYO

    2013-01-01

    Numerous in vitro and animal studies, as well as clinical trials have indicated that plant-derived polyphenols exert beneficial effects on glucose intolerance or type 2 diabetes. This clinical study aimed to investigate the effects of acacia polyphenol (AP) on glucose and insulin responses to an oral glucose tolerance test (OGTT) in non-diabetic subjects with impaired glucose tolerance (IGT). A randomized, double-blind, placebo-controlled trial was conducted in a total of 34 enrolled subjects. The subjects were randomly assigned to the AP-containing dietary supplement (AP supplement; in a daily dose of 250 mg as AP; n=17) or placebo (n=17) and the intervention was continued for 8 weeks. Prior to the start of the intervention (baseline) and after 4 and 8 weeks of intervention, plasma glucose and insulin were measured during a two-hour OGTT. Compared with the baseline, plasma glucose and insulin levels at 90 and/or 120 min, as well as the total area under the curve values during the OGTT (AUC0→2h) for glucose and insulin, were significantly reduced in the AP group, but not in the placebo group after intervention for 8 weeks. The decline from baseline in plasma glucose and insulin at 90 or 120 min of the OGTT for the AP group was significantly greater compared with that of the placebo group after 8 weeks of intervention. No AP supplement-related adverse side-effects nor any abnormal changes in routine laboratory tests and anthropometric parameters were observed throughout the study period. The AP supplement may have the potential to improve glucose homeostasis in subjects with IGT. PMID:23837032

  13. Adrenergic blockade does not abolish elevated glucose turnover during bacterial infection

    SciTech Connect

    Hargrove, D.M.; Bagby, G.J.; Lang, C.H.; Spitzer, J.J. )

    1988-01-01

    Infusions of adrenergic antagonists were used to investigate the role of catecholamines in infection-induced elevations of glucose kinetics. Infection was produced in conscious catheterized rats by repeated subcutaneous injections of live Escherichia coli over 24 h. Glucose kinetics were measured by the constant intravenous infusion of (6-{sup 3}H)- and (U-{sup 14}C)glucose. Compared with noninfected rats, infected animals were hyperthermic and showed increased rates of glucose appearance, clearance, and recycling as well as mild hyperlacticacidemia. Plasma catecholamine concentrations were increased by 50-70% in the infected rats, but there were no differences in plasma glucagon, corticosterone, and insulin levels. Adrenergic blockade was produced by primed constant infusion of both propranolol ({beta}-blocker) and phentolamine ({alpha}-blocker). A 2-h administration of adrenergic antagonists did not attenuate the elevated glucose kinetics or plasma lactate concentration in the infected rats, although it abolished the hyperthermia. In a second experiment, animals were infused with propranolol and phentolamine beginning 1 h before the first injection of E. coli and throughout the course of infection. Continuous adrenergic blockade failed to attenuate infection-induced elevations in glucose kinetics and plasma lactate. These results indicate that the adrenergic system does not mediate the elevated glucose metabolism observed in this mild model of infection.

  14. Epitaxial growth of GaN by radical-enhanced metalorganic chemical vapor deposition (REMOCVD) in the downflow of a very high frequency (VHF) N2/H2 excited plasma - effect of TMG flow rate and VHF power

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Kondo, Hiroki; Ishikawa, Kenji; Oda, Osamu; Takeda, Keigo; Sekine, Makoto; Amano, Hiroshi; Hori, Masaru

    2014-04-01

    Gallium nitride (GaN) films have been grown by using our newly developed Radical-Enhanced Metalorganic Chemical Vapor Deposition (REMOCVD) system. This system has three features: (1) application of very high frequency (60 MHz) power in order to increase the plasma density, (2) introduction of H2 gas together with N2 gas in the plasma discharge region to generate not only nitrogen radicals but also active NHx molecules, and (3) radical supply under remote plasma arrangement with suppression of charged ions and photons by employing a Faraday cage. Using this new system, we have studied the effect of the trimethylgallium (TMG) source flow rate and of the plasma generation power on the GaN crystal quality by using scanning electron microscopy (SEM) and double crystal X-ray diffraction (XRD). We found that this REMOCVD allowed the growth of epitaxial GaN films of the wurtzite structure of (0001) orientation on sapphire substrates with a high growth rate of 0.42 μm/h at a low temperature of 800 °C. The present REMOCVD is a promising method for GaN growth at relatively low temperature and without using costly ammonia gas.

  15. Palm olein and olive oil cause a higher increase in postprandial lipemia compared with lard but had no effect on plasma glucose, insulin and adipocytokines.

    PubMed

    Teng, Kim-Tiu; Nagapan, Gowri; Cheng, Hwee Ming; Nesaretnam, Kalanithi

    2011-04-01

    Postprandial lipemia impairs insulin sensitivity and triggers the pro-inflammatory state which may lead to the progression of cardiovascular diseases. A randomized, crossover single-blind study (n = 10 healthy men) was designed to compare the effects of a high-fat load (50 g fat), rich in palmitic acid from both plant (palm olein) or animal source (lard) versus an oleic acid-rich fat (virgin olive oil) on lipemia, plasma glucose, insulin and adipocytokines. Serum triacylglycerol (TAG) concentrations were significantly lower after the lard meal than after the olive oil and palm olein meals (meal effect P = 0.003; time effect P < 0.001). The greater reduction in the plasma non-esterified free fatty acids levels in the lard group compared to the olive oil meal was mirrored by the changes observed for serum TAG levels (P < 0.05). The magnitude of response for plasma glucose, insulin and adipocytokines [interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and leptin] were not altered by the type of dietary fats. A significant difference in plasma IL-1β was found over time following the three high fat loads (time effect P = 0.036). The physical characteristics and changes in TAG structure of lard may contribute to the smaller increase in postprandial lipemia compared with palm olein. A high fat load but not the type of fats influences concentrations of plasma IL-1β over time but had no effect on other pro-inflammatory markers tested in the postprandial state.

  16. Mosapride, a selective serotonin 5-HT4 receptor agonist, and alogliptin, a selective dipeptidyl peptidase-4 inhibitor, exert synergic effects on plasma active GLP-1 levels and glucose tolerance in mice.

    PubMed

    Nonogaki, Katsunori; Kaji, Takao

    2015-12-01

    Pharmacologic stimulation of serotonin 5-HT4 receptors increased plasma active glucagon-like-peptide-1 (GLP-1) levels independent of feeding, and that pharmacologic stimulation of 5-HT4 receptors and pharmacologic inhibition of dipeptidyl peptidase-4 exerted synergic effects on plasma active GLP-1 levels and glucose tolerance in mice.

  17. Nitriding of titanium and its alloys by N2, NH3 or mixtures of N2 + H2 in a dc arc plasma at low pressures ( or = to torr)

    NASA Technical Reports Server (NTRS)

    Avni, R.

    1984-01-01

    The dc glow discharges in different gas mixtures of Ar + N2, Ar + NH3 or Ar + N2 + H2 result in the surface nitriding of Ti metal and its alloy (Ti6Al4V). Various gas mixtures were used in order to establish the main active species governing the nitriding process, i.e., N, N2, NH, or NH2 as excited or ionized particles. The dc discharge was sampled and analyzed by quadruple mass spectrometry (QPMS) and optical emission spectroscopy (OES), and the nitrided samples were analyzed by scanning electron microscopy (SEM) with an EDAX attachment, microhardness, and Fourier transform infrared reflectance spectrometry (FTIR). It was found that the excited and ionized nitrogen and hydrogen atoms are the main species responsible for the nitriding process in a dc glow discharge.

  18. Adverse effects of a high-glucose diet on body weight and plasma calcium and 1,25-dihydroxyvitamin D3 levels in calcium-deficient growing rats.

    PubMed

    Clark, S A; Boass, A; Toverud, S U

    1989-03-01

    We tested the hypothesis that dietary calcium would lead to greater impairment of body weight gain and calcium homeostasis if rats are fed a diet with a high glucose content compared with our standard diet in which the carbohydrate is supplied by whole wheat flour. Groups of female rats at 21 days of age were given either of two equivalent calcium-deficient diets with carbohydrate supplied either by glucose (LCaG) or by wheat flour (LCaW). Control rats were fed the wheat-flour diet containing 0.4% calcium. Since previous studies indicated divergent effects of glucose-based and flour-based diets on body weight in vitamin D-deficient rats, we designed a parallel study with vitamin D-deprived rats. Compared with rats fed the LCaW diet, the rats fed the LCaG diet had inferior body weight gain and more severe hypocalcemia (1-2 mg/ml lower) over a 40-day period, and no significant elevation of the plasma 1,25(OH)2D3 level at 61 days of age. Rats fed the LCaW diet maintained a 3-fold elevation of plasma 1,25(OH)2D3 relative to the level of control rats fed the 0.4% calcium diet. The dry weight and percent ash of tibias were similarly reduced in the two calcium-restricted groups compared to the control group. Among the vitamin D-deprived rats, those fed the glucose diet had poorer weight gain than those fed the wheat flour diet. However, both groups had similarly depressed serum calcium level, tibia ash content and 1,25(OH)2D3 level. Thus, a glucose diet combined with calcium restriction or vitamin D deprivation appears to accentuate the impairment of body weight gain and, when combined with calcium restriction, it also accentuates the impairment of calcium homeostasis and interferes with the adaptive increase in plasma 1,25(OH)2D3.

  19. Association between the rs4753426 polymorphism in MTNR1B with fasting plasma glucose level and pancreatic β-cell function in gestational diabetes mellitus.

    PubMed

    Zhan, Y; Li, C; Gao, Q; Chen, J; Yu, S; Liu, S G

    2015-08-03

    We investigated the association between rs4753426 single nucleotide polymorphisms in the melatonin receptor 1B (MTNR1B) gene and the risk of developing gestational diabetes mellitus (GDM). A total of 516 gravidas (186 with GDM and 330 non-diabetic controls) were enrolled in the study. Genotype and allele frequencies of rs4753426 in the MTNR1B gene were detected by DNA sequencing. Fasting plasma glucose and fasting insulin levels were measured to calculate the homeostasis model assessment for insulin resistance (HOMA-IR) and for β-cell function. Three genotypes (CC, CT, and TT) were found in both groups. The frequencies of CC, CT, and TT genotypes for the GDM group were 70.97, 22.58, and 6.45% vs 53.03, 39.70, and 7.27% in the control group, respectively. Significant differences were observed in genotype frequencies between groups (P < 0.05). T and C allele frequencies in the GDM group were 17.74 and 82.26%, respectively, and in the control group were 27.12 and 72.88%, respectively. Significant differences in T and C allele frequencies were found between groups (P < 0.05). In the GDM group, the C allele was associated with increased fasting plasma glucose level and reduced pancreatic β-cell function (P < 0.05). There were no significant differences in total cholesterol, triglyceride, low-density lipoprotein, high-density lipoprotein concentration, or HOMA-IR between groups (P > 0.05). The single nucleotide polymorphism rs4753426 in MTNR1B may be a susceptibility gene locus for GDM, and the C allele may contribute to the increased fasting plasma glucose level and reduced pancreatic β-cell function.

  20. Fasting Plasma Glucose as Initial Screening for Diabetes and Prediabetes in Irish Adults: The Diabetes Mellitus and Vascular Health Initiative (DMVhi)

    PubMed Central

    Sinnott, Margaret; Kinsley, Brendan T.; Jackson, Abaigeal D.; Walsh, Cathal; O’Grady, Tony; Nolan, John J.; Gaffney, Peter; Boran, Gerard; Kelleher, Cecily; Carr, Bernadette

    2015-01-01

    Objective Type 2 diabetes has a long pre clinical asymptomatic phase. Early detection may delay or arrest disease progression. The Diabetes Mellitus and Vascular health initiative (DMVhi) was initiated as a prospective longitudinal cohort study on the prevalence of undiagnosed Type 2 diabetes and prediabetes, diabetes risk and cardiovascular risk in a cohort of Irish adults aged 45-75 years. Research Design and Methods Members of the largest Irish private health insurance provider aged 45 to 75 years were invited to participate in the study. Exclusion criteria: already diagnosed with diabetes or taking oral hypoglycaemic agents. Participants completed a detailed medical questionnaire, had weight, height, waist and hip circumference and blood pressure measured. Fasting blood samples were taken for fasting plasma glucose (FPG). Those with FPG in the impaired fasting glucose (IFG) range had a 75gm oral glucose tolerance test performed. Results 122,531 subjects were invited to participate. 29,144 (24%) completed the study. The prevalence of undiagnosed diabetes was 1.8%, of impaired fasting glucose (IFG) was 7.1% and of impaired glucose tolerance (IGT) was 2.9%. Dysglycaemia increased among those aged 45-54, 55-64 and 65-75 years in both males (10.6%, 18.5%, 21.7% respectively) and females (4.3%, 8.6%, 10.9% respectively). Undiagnosed T2D, IFG and IGT were all associated with gender, age, blood pressure, BMI, abdominal obesity, family history of diabetes and triglyceride levels. Using FPG as initial screening may underestimate the prevalence of T2D in the study population. Conclusions This study is the largest screening study for diabetes and prediabetes in the Irish population. Follow up of this cohort will provide data on progression to diabetes and on cardiovascular outcomes. PMID:25874867

  1. Effects of rosglitazone on plasma adiponectin, insulin sensitivity, and insulin secretion in high-risk African Americans with impaired glucose tolerance test and type 2 diabetes.

    PubMed

    Osei, Kwame; Gaillard, Trudy; Kaplow, June; Bullock, Matthew; Schuster, Dara

    2004-12-01

    We examined the metabolic effects of rosiglitazone therapy on glucose control, insulin sensitivity, insulin secretion, and adiponectin in first-degree relatives of African Americans with type 2 diabetes (DM) with impaired glucose tolerance (IGT) and DM for 3 months. The study was comprised of 12 first-degree relatives with IGT, 17 newly diagnosed DM, and 19 healthy relatives with normal glucose tolerance (NGT). Oral glucose tolerance test (OGTT) was performed before and after 3 months of rosiglitazone therapy (4 to 8 mg/d) in patients with IGT and DM. Serum glucose, insulin, C-peptide, and adiponectin levels were measured before and 2 hours during OGTT in the NGT and patients with IGT and DM. Insulin resistance index (HOMA-IR) and beta-cell function (HOMA-%B) were calculated in each subject using homeostasis model assessment (HOMA). Rosglitazone improved the overall glycemic control in the IGT and DM groups. Following rosiglitazone, the beta-cell secretion remained unchanged, while HOMR-IR was reduced in DM by 30% (4.12 +/- 1.95 v 6.33 +/- 3.54, P < .05) and the IGT group (3.78 +/- 2.45 v 4.81 +/- 3.49, P = not significant [NS]). Mean plasma adiponectin levels were significantly (P < .05) lower in the DM (6.74 +/- 1.95 microg/mL) when compared with the NGT group(9.61 +/- 5.09). Rosiglitazone significantly (P < .001) increased adiponectin levels by 2-fold in patients with IGT (22.2 +/- 10.97 microg/mL) and 2.5-fold greater in DM (15.68 +/- 8.23 microg/mL) at 3 months when compared with the 0 month. We conclude that adiponectin could play a significant role (1) in the pathogenesis of IGT and DM and (2) the beneficial metabolic effects of thiazolidinediones (TZDs) in high-risk African American patients.

  2. Mecanismos cinéticos y distribuciones energéticas de iones (H3+, N2H+, CH3+...) en plasmas fríos de H2/N2/CH4

    NASA Astrophysics Data System (ADS)

    Tanarro, I.; Herrero, V. J.; Islyaikin, A.; Tabarés, F. L.; Tafalla, D.

    En este trabajo se presenta el estudio espectrométrico de los plasmas levemente ionizados generados en una descarga continua a baja presión de H2 con trazas de N2 y CH4, orientado principalmente a identificar la naturaleza y distribución energética de los iones que en ella se producen, y a asignar algunos de los mecanismos cinéticos elementales de formación y destrucción de tales especies. Alguno de los iones mayoritarios de estos plasmas, como el H3+, presenta gran interés desde el punto de vista de la Astrofísica por su prevista intervención en la química de las ionosferas planetarias y del medio interestelar, al actuar como sustancia intermedia en la formación de gran variedad de especies moleculares; si bien, dada su pequeña concentración, su observación real en el espacio se demoró hasta la pasada década de los años 90, cuando fue detectado por primera vez en la atmósfera de Júpiter y en otros objetos estelares. Del mismo modo que los trabajos espectroscópicos de laboratorio resultan indispensables para la posterior identificación de las especies observadas en el espacio, es de esperar que la asignación de los procesos cinéticos más importantes que tienen lugar en los plasmas generados en reactores de descarga, como los aquí presentados, permitan extrapolar los resultados así obtenidos al esclarecimiento de los mecanismos fisico-químicos participantes en otros medios observables únicamente a larga distancia.

  3. [The content of individual fatty acids and numbers of double bonds, insulin, C-peptide and unesterified fatty acids in blood plasma in testing tolerance to glucose].

    PubMed

    Titov, V N; Sazhina, N N; Aripovskiĭ, A V; Evteeva, N M; Tkhagalizhokova, É M; Parkhimovich, R M

    2014-10-01

    The glucose tolerance test demonstrates that content of unesterified fatty acids in blood plasma decreases up to three times and the content of oleic and linoleic acids is more decreased in the pool of fatty acids lipids. Out of resistance to insulin, hormone secretion increases up to three times. The decreasing of level of individual fatty acids occurs in a larger extent. Under resistance to insulin secretion of insulin is increasing up to eight times. The decreasing of level of each fatty acid is less expressed. The effect of insulin reflects decreasing of content of double bonds in blood plasma. The number of double bonds characterizes the degree of unsaturation of fatty acids in lipids of blood plasma. The higher number of double bonds is in the pool of unesterified fatty acids the more active is the effect of insulin. The hyper-secretion of insulin is directly proportional to content of palmitic fatty acid in lipids of blood plasma on fasting. According the phylogenetic theory of general pathology, the effect of insulin on metabolism of glucose is mediated by fatty acids. The insulin is blocking lipolysis in insulin-depended subcutaneous adipocytes and decreases content of unesterified fatty acids in blood plasma. The insulin is depriving all cells of possibility to absorb unesterified fatty acids and "forces" them to absorb glucose increasing hereby number of GLUT4 on cell membrane. The resistance to insulin is manifested in high concentration of unesterfied fatty acids, hyperinsulinemia, hyperalbuminemia and increasing of concentration of C-reactive protein-monomer. The resistance to insulin is groundlessly referred to as a symptom of diabetes mellitus type II. The resistance to insulin is only a functional disorder lasting for years. It can be successfully arrested. The diabetes mellitus is developed against the background of resistance to insulin only after long-term hyper-secretion of insulin and under emaciation and death of β-cells. The diabetes

  4. The Phytocomplex from Fucus vesiculosus and Ascophyllum nodosum Controls Postprandial Plasma Glucose Levels: An In Vitro and In Vivo Study in a Mouse Model of NASH.

    PubMed

    Gabbia, Daniela; Dall'Acqua, Stefano; Di Gangi, Iole Maria; Bogialli, Sara; Caputi, Valentina; Albertoni, Laura; Marsilio, Ilaria; Paccagnella, Nicola; Carrara, Maria; Giron, Maria Cecilia; De Martin, Sara

    2017-02-15

    Edible seaweeds have been consumed by Asian coastal communities since ancient times. Fucus vesiculosus and Ascophyllum nodosum extracts have been traditionally used for the treatment of obesity and several gastrointestinal diseases. We evaluated the ability of extracts obtained from these algae to inhibit the digestive enzymes α-amylase and α-glucosidase in vitro, and control postprandial plasma glucose levels in a mouse model of non-alcoholic steatohepatitis (NASH); a liver disease often preceding the development of Type 2 diabetes (T2DM). This model was obtained by the administration of a high-fat diet. Our results demonstrate that these algae only delayed and reduced the peak of blood glucose (p < 0.05) in mice fed with normal diet, without changing the area under the blood glucose curve (AUC). In the model of NASH, the phytocomplex was able to reduce both the postprandial glycaemic peak, and the AUC. The administration of the extract in a diet particularly rich in fat is associated with a delay in carbohydrate digestion, but also with a decrease in its assimilation. In conclusion, our results indicate that this algal extract may be useful in the control of carbohydrate digestion and absorption. This effect may be therapeutically exploited to prevent the transition of NASH to T2DM.

  5. The Phytocomplex from Fucus vesiculosus and Ascophyllum nodosum Controls Postprandial Plasma Glucose Levels: An In Vitro and In Vivo Study in a Mouse Model of NASH

    PubMed Central

    Gabbia, Daniela; Dall’Acqua, Stefano; Di Gangi, Iole Maria; Bogialli, Sara; Caputi, Valentina; Albertoni, Laura; Marsilio, Ilaria; Paccagnella, Nicola; Carrara, Maria; Giron, Maria Cecilia; De Martin, Sara

    2017-01-01

    Edible seaweeds have been consumed by Asian coastal communities since ancient times. Fucus vesiculosus and Ascophyllum nodosum extracts have been traditionally used for the treatment of obesity and several gastrointestinal diseases. We evaluated the ability of extracts obtained from these algae to inhibit the digestive enzymes α-amylase and α-glucosidase in vitro, and control postprandial plasma glucose levels in a mouse model of non-alcoholic steatohepatitis (NASH); a liver disease often preceding the development of Type 2 diabetes (T2DM). This model was obtained by the administration of a high-fat diet. Our results demonstrate that these algae only delayed and reduced the peak of blood glucose (p < 0.05) in mice fed with normal diet, without changing the area under the blood glucose curve (AUC). In the model of NASH, the phytocomplex was able to reduce both the postprandial glycaemic peak, and the AUC. The administration of the extract in a diet particularly rich in fat is associated with a delay in carbohydrate digestion, but also with a decrease in its assimilation. In conclusion, our results indicate that this algal extract may be useful in the control of carbohydrate digestion and absorption. This effect may be therapeutically exploited to prevent the transition of NASH to T2DM. PMID:28212301

  6. Improved tolerance to sequential glucose loading (Staub-Traugott effect): size and mechanisms.

    PubMed

    Bonuccelli, Sandra; Muscelli, Elza; Gastaldelli, Amalia; Barsotti, Elisabetta; Astiarraga, Brenno D; Holst, Jens J; Mari, Andrea; Ferrannini, Ele

    2009-08-01

    Improved glucose tolerance to sequential glucose loading (Staub-Traugott effect) is an important determinant of day-to-day glycemic exposure. Its mechanisms have not been clearly established. We recruited 17 healthy volunteers to receive two sequential oral glucose tolerance tests (OGTTs), at time 0 min and 180 min (Study I). The protocol was repeated on a separate day (Study II) except that plasma glucose was clamped at 8.3 mmol/l between 60 and 180 min. beta-Cell function was analyzed by mathematical modeling of C-peptide concentrations. In a subgroup, glucose kinetics were measured by a triple-tracer technique (infusion of [6,6-(2)H(2)]glucose and labeling of the 2 glucose loads with [1-(2)H]glucose and [U-(13)C]glucose). In both Studies I and II, the plasma glucose response to the second OGTT equaled 84 +/- 2% (P = 0.003) of the response to the first OGTT. Absolute insulin secretion was lower (37.8 +/- 4.3 vs. 42.8 +/- 5.1 nmol/m(2), P = 0.02), but glucose potentiation (i.e., higher secretion at the same glycemia) was stronger (1.08 +/- 0.02- vs. 0.92 +/- 0.02-fold, P = 0.006), the increment being higher in Study II (+36 +/- 5%) than Study I (+19 +/- 6%, P < 0.05). In pooled data, a higher glucose area during the first OGTT was associated with a higher potentiation during the second OGTT (rho=0.60, P = 0.002). Neither insulin clearance nor glucose clearance differed between loads, and appearance of glucose over 3 h totalled 60 +/- 6 g for the first load and 52 +/- 5 g for the second load (P = not significant). Fasting endogenous glucose production [13.3 +/- 0.6 micromol x min(-1) x kg fat-free mass (FFM)(-1)] averaged 6.0 +/- 3.8 micromol x min(-1) x kg FFM(-1) between 0 and 180 min and 1.7 +/- 2.6 between 180 and 360 min (P < 0.03). Glucose potentiation and stronger suppression of endogenous glucose release are the main mechanisms underlying the Staub-Traugott effect.

  7. Associations between meal size, gastric emptying and post-prandial plasma glucose, insulin and lactate concentrations in meal-fed cats.

    PubMed

    Coradini, M; Rand, J S; Filippich, L J; Morton, J M; O'Leary, C A

    2015-08-01

    Plasma glucose and insulin concentrations are increased for 12-24 h in healthy cats following moderate- to high-carbohydrate meals. This study investigated associations between gastric emptying time and post-prandial plasma glucose, insulin and lactate concentrations in cats fed an extruded dry, high-carbohydrate, moderate-fat, low-protein diet (51, 28, 21% metabolizable energy, respectively) once daily by varying meal volume. Eleven healthy, non-obese, neutered adult cats were enrolled in a prospective study and fed to maintain body weight. Ultrasound examinations were performed for up to 26 h, and blood collections over 24 h after eating meals containing approximately 100% and 50% of the cats' daily caloric intake (209 and 105 kJ/kg BW, respectively). Gastric emptying time was increased after a meal of 209 kJ/kg BW compared with 105 kJ/kg BW (median gastric emptying times 24 and 14 h, respectively; p = 0.03). Time for glucose to return to fasting was longer after the 209 kJ/kg BW meal (median 20 h; 25th and 75th percentiles 15 and 23 h, respectively) than the 105 kJ/kg BW meal (13, 12 and 14 h; p < 0.01); however, peak glucose was not higher after the 209 kJ/kg BW meal compared with the 105 kJ/kg BW meal [(mean ± SD) 6.6 ± 0.6 and 7.8 ± 1.2 mmol/l, respectively, p = 0.07]. Times for insulin to return to fasting were not significantly longer after the 209 kJ/kg BW meal than the 105 kJ/kg BW meal (p = 0.29). d- and l-lactate concentrations were not associated with gastric emptying time or post-prandial blood glucose and insulin. Based on results obtained, prolonged gastric emptying contributes to prolonged post-prandial hyperglycemia in cats meal fed a high-carbohydrate, low-protein, dry diet and fasting times for cats' meal-fed diets of similar composition should be 14-26 h, depending on meal size.

  8. Sugar alters the level of serum insulin and plasma glucose and the serum cortisol:DHEAS ratio in female migraine sufferers.

    PubMed

    Kokavec, Anna; Crebbin, Susan J

    2010-12-01

    Early work has highlighted that a large percentage of migraineurs may have an altered glucidic methabolis due to carbohydrate-induced hyperinsulinism. The aim of this study was to assess the effect of sucrose on biomarkers of energy metabolism and utilization in migraineous females. A total of 16 participants (8 = Migraine, 8 = Non-migraine) at the mid-point of their menstrual cycle underwent a 15-h fast prior to ingesting 75 g sucrose dissolved in 175 g water. Blood sampling for the assessment of serum insulin, serum cortisol and serum dehydroepiandrosterone sulfate (DHEAS) and plasma glucose was conducted upon arrival at 09:00 h and then at regular 15-min intervals across a 150-min experimental period. The results showed a significant alteration in serum insulin and plasma glucose following sucrose ingestion in the migraine and non-migraine groups. In addition, significant group differences were observed in the level of serum insulin, serum DHEAS, and the cortisol:DHEAS ratio with migraine participants on average recording a higher sucrose-induced serum insulin level and lower DHEAS level and cortisol:DHEAS ratio when group data was compared. It was concluded that while sucrose consumption may potentiate serum insulin in migraineurs this does not result in the development of sucrose-induced hypoglycemia in migraine or non-migraine participants.

  9. A Simple and Easy Process for the Determination of Estimated Plasma Glucose Level in Patients Presenting to Hospital: An Example of Multicentric Data Mining.

    PubMed

    Serdar, Muhittin A; Koldaş, Macit; Serteser, Mustafa; Akın, Okhan; Sonmez, Cigdem; Gülbahar, Ozlem; Akbıyık, Filiz; Ünsal, Ibrahim

    2016-12-01

    The aim of the present study was to determine the relation between the simultaneous fasting plasma glucose level and HbA1c in a large population of patients presenting to the hospital, based on various measurement methods available for HbA1c. HbA1c levels of 162,210 patients presenting to various hospitals and laboratories were measured based on seven different systems, and at the same time, eAG levels were calculated based on HbA1c levels. The correlation coefficients (r) between serum plasma glucose and HbA1c levels were found to be 0.809, 0.774, 0.779, 0.817, 0.704, 0.796, and 0.747 in Bio-Rad Variant II, Tosoh G8, ADAMS A1c, Trinity Boronate Affinity, Chromsystems HPLC, Roche Tina-quant, and Abbott Architect, respectively. The concordance correlation coefficients between the eAG levels as calculated with the formulas provided in the text and the eAG levels as calculated according to NGSP directions (where eAG = (28.7*HbA1c) - 46.7) were found to be between 0.9339 and 0.9866. Despite the progress made for the standardization of HbA1c measurements, the relation between serum glucose and HbA1c still demonstrated certain discrepancies pertaining to the differences in measurement methodologies. As a conclusion, each laboratory could determine different eAG levels depending on the data originated by their individual analyzer.

  10. Glucose ingestion during exercise blunts exercise-induced gene expression of skeletal muscle fat oxidative genes.

    PubMed

    Civitarese, Anthony E; Hesselink, Matthijs K C; Russell, Aaron P; Ravussin, Eric; Schrauwen, Patrick

    2005-12-01

    Ingestion of carbohydrate during exercise may blunt the stimulation of fat oxidative pathways by raising plasma insulin and glucose concentrations and lowering plasma free fatty acid (FFA) levels, thereby causing a marked shift in substrate oxidation. We investigated the effects of a single 2-h bout of moderate-intensity exercise on the expression of key genes involved in fat and carbohydrate metabolism with or without glucose ingestion in seven healthy untrained men (22.7 +/- 0.6 yr; body mass index: 23.8 +/- 1.0 kg/m(2); maximal O(2) consumption: 3.85 +/- 0.21 l/min). Plasma FFA concentration increased during exercise (P < 0.01) in the fasted state but remained unchanged after glucose ingestion, whereas fat oxidation (indirect calorimetry) was higher in the fasted state vs. glucose feeding (P < 0.05). Except for a significant decrease in the expression of pyruvate dehydrogenase kinase-4 (P < 0.05), glucose ingestion during exercise produced minimal effects on the expression of genes involved in carbohydrate utilization. However, glucose ingestion resulted in a decrease in the expression of genes involved in fatty acid transport and oxidation (CD36, carnitine palmitoyltransferase-1, uncoupling protein 3, and 5'-AMP-activated protein kinase-alpha(2); P < 0.05). In conclusion, glucose ingestion during exercise decreases the expression of genes involved in lipid metabolism rather than increasing genes involved in carbohydrate metabolism.

  11. Plasma glucose and insulin response to two oral nutrition supplements in adults with type 2 diabetes mellitus

    PubMed Central

    Huhmann, Maureen B; Smith, Kristen N; Schwartz, Sherwyn L; Haller, Stacie K; Irvin, Sarah; Cohen, Sarah S

    2016-01-01

    Objective The purpose of this clinical trial was to compare the glucose usage of two oral nutritional supplement (ONS) products and to assess whether a diabetes-specific formulation provides improved glucose stabilization and management compared with a standard formula. Research design and methods A total of 12 subjects with type 2 diabetes (7 males and 5 females) completed a randomized, cross-over design trial. Each subject consumed isocaloric amounts of either the standard ONS or the diabetes-specific formula ONS on different dates, 1 week apart. Glucose and insulin measures were recorded at baseline, and 10, 20, 30, 60, 90, 120, 150, 180, 210 and 240 min after the beverage was consumed and then used to calculate area under the curve (AUC) for each subject. Results The mean glucose AUC was lower in the diabetes-specific ONS group than in the standard group (p<0.0001), but there was not a significant difference observed for mean insulin AUC (p=0.068). A sensitivity analysis of the mean insulin AUC measures was performed by removing a potential outlier from the analysis, and this resulted in a significant difference between the groups (p=0.012). First-phase insulin measures and an insulinogenic index calculated for the beverages showed no significant differences. Conclusions On the basis of the results of this trial of 12 subjects, the diabetes-specific ONS appears to provide better glucose maintenance in persons with type 2 diabetes when compared to the standard formula ONS. Trial registration number NCT02612675. PMID:27648290

  12. Effect of glucose, independent of changes in insulin and glucagon secretion, on alanine metabolism in the conscious dog.

    PubMed Central

    Shulman, G I; Lacy, W W; Liljenquist, J E; Keller, U; Williams, P E; Cherrington, A D

    1980-01-01

    To study the effects of hyperglycemia on the metabolism of alanine and lactate independent of changes in plasma insulin and glucagon, glucose was infused into five 36-h-fasted dogs along with somatostatin and constant replacement amounts of both insulin and glucagon. Hepatic uptakes of alanine and lactate were calculated using the arteriovenous difference technique. [14C]Alanine was infused to measure the conversion of alanine and lactate into glucose. Hyperglycemia (delta 115 mg/dl) of 2 h duration caused the plasma alanine level to increase by over 50%. This change was caused by an increase in the inflow of alanine into plasma since the net hepatic uptake of the amino acid did not change. Taken together, the above findings indicate that glucose per se can significantly impair the fractional extraction of alanine by the liver. Hepatic extraction of lactate was also affected by hyperglycemia and had fallen to zero within 90 min of starting the glucose infusion. This fall was associated with a doubling of arterial lactate level. Conversion of [14C]-alanine and [14C]lactate into [14C]glucose was suppressed by 60 +/- 11% after 2 h of hyperglycemia, and because this fall could not be entirely accounted for by decreased lactate extraction an inhibitory effect of glucose on gluconeogenesis within the liver is suggested. These studies indicate that the plasma glucose level per se can be an important determinant of the level of alanine and lactate in plasma as well as the rate at which they are converted to glucose. PMID:7356691

  13. Synergistic influence of inorganic oxides (ZrO2 and SiO2) with N2H4 to protect composite coatings obtained via plasma electrolyte oxidation on Mg alloy.

    PubMed

    Zoubi, Wail Al; Kamil, Muhammad Prisla; Ko, Young Gun

    2017-01-18

    Different electrochemical approaches were proposed in this study to introduce nanoparticles to the coating layers, aiming at their in situ incorporation into the coating layers fabricated via plasma electrolytic oxidation (PEO). The addition of nanoparticles to the coating layers provided an electrochemical pathway to generate the functionalized coatings with a wide range of compositions and constituent phases as well giving the appearance of sealing the pores. In this study, the microstructure, chemical composition, and electrochemical response of the composite coating formed via one-stage PEO were compared with those obtained by means of structural modification of PEO coatings together with either impregnation or pre-deposition. For the combination of PEO and pre-deposition, the coating layer demonstrated less porous and better corrosion performance in the conditions used in this study, which were attributed to the denser and/or thicker layer resulting after incorporating the nanoparticles, such as SiO2 and ZrO2. In these methods, the nanoparticles were detected mainly not only near the coating surface, but also within the micro-defects inside the coating layers. Accordingly, the electrochemical analysis based on potentiodynamic polarization tests in 3.5 wt% NaCl solution clearly showed that the corrosion resistance of Mg alloy would be enhanced significantly due to the incorporation of SiO2 and ZrO2 or ZrO2 nanoparticles.

  14. Synergistic sterilization effect of microwave-excited nonthermal Ar plasma, H2O2, H2O and TiO2, and a global modeling of the interactions

    NASA Astrophysics Data System (ADS)

    Lee, H. Wk; Lee, H. W.; Kang, S. K.; Y Kim, H.; Won, I. H.; Jeon, S. M.; Lee, J. K.

    2013-10-01

    A microwave-excited atmospheric-pressure plasma jet (uAPPJ) exhibited a synergistic sterilization effect when combined with hydrogen peroxide (H2O2), distilled water (DW) and titanium dioxide (TiO2) photocatalysis. The sterilization efficacy of H2O2-uAPPJ increased as the H2O2 concentration increased. The addition of TiO2 also remarkably increased the sterilization efficacy. To find the main factor for the sterilization effect, optical emission spectra and the degradation rate of a methylene blue solution were measured. Numerical analysis, a newly developed global modeling, was also conducted to discover the mechanisms. Both experimental measurements and global modeling results suggested that combinations of H2O2, DW and TiO2 increased the generation of hydroxyl radicals (·OH), which are known to be strong bactericidal agents. It was revealed that charged species, especially electrons, have a dominant role in the increase of ·OH.

  15. First-pass uptake and oxidation of glucose by the splanchnic tissue in young goats fed soy protein-based milk diets with or without amino acid supplementation: glucose metabolism in goat kids after soy feeding.

    PubMed

    Schönhusen, U; Junghans, P; Flöter, A; Steinhoff-Wagner, J; Görs, S; Schneider, F; Metges, C C; Hammon, H M

    2013-04-01

    The study was designed to examine whether feeding soy protein isolate as partial replacement of casein (CN) affects glucose metabolism in young goats and whether effects may be ameliorated by supplementation of those AA known to be lower concentrated in soy than in CN. Goat kids (d 20 of age) were fed comparable milk protein diets, in which 50% of the crude protein was either CN (control, CON), soy protein isolate (SPI), or soy protein isolate supplemented with AA (SPIA) for 43 d (n=8 per group). On d 62 of age, a single bolus dose of d-[(13)C6]glucose (10mg/kg of BW) was given with the morning diet, and simultaneously, a single bolus dose of d-[6,6-(2)H2]glucose (5mg/kg of BW) was injected into a jugular vein. Blood samples were collected between -30 and +420 min relative to the tracer administration to measure the (13)C and (2)H enrichments of plasma glucose and the (13)C enrichment of blood CO2. Glucose first-pass uptake by the splanchnic tissues was calculated from the rate of appearance of differentially labeled glucose tracer in plasma. Glucose oxidation was calculated from (13)C enrichment in blood CO2. In addition, plasma concentrations of triglycerides, nonesterified fatty acids, glucose, insulin, and glucagon were measured. On d 63 of age, kids were killed and jejunal mucosa and liver samples were collected to measure lactase mRNA levels and lactase and maltase activities in the jejunum and activities of pyruvate carboxylase and phosphoenolpyruvate carboxykinase (PEPCK) in the liver. Basal plasma glucose concentration tended to be higher in the CON than the SPIA group, whereas basal insulin was higher in the CON group than the SPI and SPIA groups, and glucagon was higher in the CON than the SPIA group. Plasma glucose and insulin concentrations increased during the first hour after feeding, whereas plasma glucagon increased immediately after feeding and after 1h of feeding. First-pass uptake and glucose oxidation were not affected by diet. Maltase

  16. Inflammatory Mediators and Glucose in Pregnancy: Results from a Subset of the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study

    PubMed Central

    Lowe, Lynn P.; Metzger, Boyd E.; Lowe, William L.; Dyer, Alan R.; McDade, Thomas W.; McIntyre, H. David

    2010-01-01

    Context: Inflammatory mediators are associated with type 2 and gestational diabetes. It is unknown whether there are associations with glucose in pregnant women with lesser degrees of hyperglycemia. Objective: The objective of the study was to examine associations of inflammatory mediators with maternal glucose levels and neonatal size in a subset of participants in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. Design: Eligible pregnant women underwent a 75-g oral glucose tolerance test between 24 and 32 wk gestation, and levels of C-peptide, adiponectin, plasminogen activator inhibitor type 1 (PAI-1), C-reactive protein (CRP), and resistin were measured in fasting serum samples. Associations of inflammatory mediators with maternal glucose and with birth size were assessed using multiple linear regression analyses, adjusting for maternal body mass index (BMI), fasting C-peptide, and other potential confounders. Results: Mean levels of adiponectin declined, and PAI-1 and CRP increased across increasing levels of maternal glucose, BMI, and C-peptide. For example, for fasting plasma glucose less than 75 mg/dl and fasting plasma glucose of 90 mg/dl or greater, adiponectin was 22.5 and 17.4 μg/ml and PAI-1 was 30.9 and 34.2 ng/ml, respectively. Associations with 1- and 2-h plasma glucose remained significant for adiponectin (P < 0.001), PAI-1 (P < 0.05), and CRP (P < 0.01) after adjustment for BMI and C-peptide. Adiponectin and CRP were inversely associated with birth weight, sum of skinfolds and percent body fat, and PAI-1 with sum of skinfolds (all P < 0.05) after adjustment for confounders. Resistin was not associated with 1- or 2-h glucose or birth size. Conclusion: Levels of inflammatory mediators are associated with levels of maternal glucose in pregnant women without overt diabetes. PMID:20843942

  17. Inactivation of the plasma membrane ATPase of Schizosaccharomyces pombe by hydrogen peroxide and by the Fenton reagent (Fe2+/H2O2): nonradical vs. radical-induced oxidation.

    PubMed

    Sigler, K; Gille, G; Vacata, V; Stadler, N; Höfer, M

    1998-01-01

    In the absence of added Fe2+, the ATPase activity of isolated Schizosaccharomyces pombe plasma membranes (5-7 mumol P(i) per mg protein per min) is moderately inhibited by H2O2 in a concentration-dependent manner. Sizable inactivation occurs only at 50-80 mmol/L H2O2. The process, probably a direct oxidative action of H2O2 on the enzyme, is not induced by the indigenous membrane-bound iron (19.3 nmol/mg membrane protein), is not affected by the radical scavengers mannitol and Tris, and involves a decrease of both the K(m) of the enzyme for ATP and the V of ATP splitting. On exposing the membranes to the Fenton reagent (50 mumol/L Fe2+ + 20 mmol/L H2O2), which causes a fast production of HO. radicals, the ATPase is 50-60% inactivated and 90% of added Fe2+ is oxidized to Fe3+ within 1 min. The inactivation occurs only when Fe2+ is added before H2O2 and can thus bind to the membranes. The lack of effect of radical scavengers (mannitol, Tris) indicates that HO. radicals produced in the bulk phase play no role in inactivation. Blockage of the inactivation by the iron chelator deferrioxamine implies that the process requires the presence of Fe2+ ions bound to binding sites on the enzyme molecules. Added catalase, which competes with Fe2+ for H2O2, slows down the inactivation but in some cases increases its total extent, probably due to the formation of the superoxide radical that gives rise to delayed HO. production.

  18. Mango modulates body fat and plasma glucose and lipids in mice fed a high-fat diet.

    PubMed

    Lucas, Edralin A; Li, Wenjia; Peterson, Sandra K; Brown, Angela; Kuvibidila, Solo; Perkins-Veazie, Penny; Clarke, Stephen L; Smith, Brenda J

    2011-11-01

    Consumption of fruits and vegetables has been investigated for their role in the prevention of many chronic conditions. Among the fruits, mango provides numerous bioactive compounds such as carotenoids, vitamin C and phenolic compounds, which have been shown to have antioxidant and anti-inflammatory properties. The present study examined the effects of dietary supplementation of freeze-dried mango pulp, in comparison with the hypolipidaemic drug, fenofibrate, and the hypoglycaemic drug, rosiglitazone, in reducing adiposity and alterations in glucose metabolism and lipid profile in mice fed a high-fat (HF) diet. Male C57BL/6J mice were randomly divided into six treatment groups (eight to nine/group): control (10 % energy from fat); HF (60 % energy from fat); HF+1 or 10 % freeze-dried mango (w/w); HF+fenofibrate (500 mg/kg diet); HF+rosiglitazone (50 mg/kg diet). After 8 weeks of treatment, mice receiving the HF diet had a higher percentage body fat (P = 0·0205) and epididymal fat mass (P = 0·0037) compared with the other treatment groups. Both doses of freeze-dried mango, similar to fenofibrate and rosiglitazone, prevented the increase in epididymal fat mass and the percentage of body fat. Freeze-dried mango supplementation at the 1 % dose improved glucose tolerance as shown by approximately 35 % lower blood glucose area under the curve compared with the HF group. Moreover, freeze-dried mango lowered insulin resistance, as indicated by the homeostasis model assessment of insulin resistance, to a similar extent as rosiglitazone and modulated NEFA. The present findings demonstrate that incorporation of freeze-dried mango in the diet of mice improved glucose tolerance and lipid profile and reduced adiposity associated with a HF diet.

  19. Regional cerebral incorporation of plasma (/sup 14/C)palmitate, and cerebral glucose utilization, in water-deprived Long-Evans and Brattleboro rats

    SciTech Connect

    Noronha, J.G.; Larson, D.M.; Rapoport, S.I.

    1989-03-01

    Regional rates of incorporation into brain of intravenously administered (/sup 14/C)palmitate and regional cerebral metabolic rates for glucose (rCMRglc) were measured in water-provided (WP) and water-deprived (WD) homozygous (DI) and heterozygous (HZ) Brattleboro rats, a mutant strain unable to synthesize vasopressin, and in the parent Long-Evans (LE) strain. Following 15 h or 4 days of water deprivation, rCMRglc was elevated threefold in the pituitary neural lobe of LE-WD and DI-WD as compared with LE-WP rats, and in the paraventricular nucleus of LE-WD, and the supraoptic nucleus of DI-WD rats. However, incorporation of (/sup 14/C)palmitate into these regions was not specifically altered. The results indicate that water deprivation for up to 4 days increases rCMRglc in some brain regions involved with vasopressin, but does not alter (/sup 14/C)palmitate incorporation into these regions. Incorporation of plasma (/sup 14/C)palmitate is independent of unlabeled plasma palmitate at brain regions which have an intact blood-brain barrier, but at nonbarrier regions falls according to saturation kinetics as cold plasma concentration rises, with a mean half-saturation constant (Km) equal to 0.136 mumol.ml-1.

  20. Measurement of insulin sensitivity indices using 13C-glucose and gas chromatography/combustion/isotope ratio mass spectrometry.

    PubMed

    Clapperton, Allan T; Coward, W Andrew; Bluck, Leslie J C

    2002-01-01

    Important aspects of glucose metabolism can be quantified by using the minimal model of glucose kinetics to interpret the results of intravenous glucose tolerance tests. The power of this methodology can be greatly increased by the addition of stable isotopically labelled tracer to the glucose bolus dose. This allows the separation of glucose disposal from endogenous glucose production and also increases the precision of the estimates of the physiological parameters measured. Until now the tracer of choice has been deuteriated glucose and the analytical technique has been gas chromatography/mass spectrometry (GC/MS). The consequence of this choice is that nearly 2 g of labelled material are needed and this makes the test expensive. We have investigated the use of (13)C-labelled glucose as the tracer in combination with gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) as the analytical technique. This methodology offers superior analytical precision when compared with the conventional method and so the amount of tracer used, and hence the cost, can be reduced considerably. Healthy non-obese male volunteers were recruited for a standard intravenous glucose tolerance test (IVGTT) protocol but 6,6-(2)H-glucose and 1-(13)C-glucose were administered simultaneously. Tracer/tracee ratios were derived from isotope ratio measurements of plasma glucose using both GC/MS and GC/C/IRMS. The results of these determinations indicated that the two tracers behaved identically under the test protocol. The combination of these results with plasma glucose and insulin concentration data allowed determination of the minimal model parameters S*g and S*i. The parameter relating to insulin-assisted glucose disposal, S*i, was found to be the same in the two techniques, but this was not the case for the non-insulin-dependent parameter S*g.

  1. Blood plasma magnesium, potassium, glucose, and immunoreactive insulin changes in cows moved abruptly from barn feeding to early spring pasture

    SciTech Connect

    Miller, J.K.; Madsen, F.C.; Lentz, D.E.; Wong, W.O.; Ramsey, N.; Tysinger, C.E.; Hansard, S.L.

    1980-07-01

    Cations and immunoreactive insulin in plasma were measured in 35 lactating cows moved abruptly to early spring pasture. After change of cows from grass-clover hay to fescue-bluegrass pasture containing 22 to 31 g potassium/kg dry matter, immunoreactive insulin of 5 Holstein cows increased 30% in 5 days and averaged 45% above prepasture concentrations for 40 days. Magnesium averaged 44% below prepasture content of plasma during this period and was correlated negatively with potassium -.17 and immunoreactive insulin -.37. Thirty Hereford cows were changed from corn silage and grass-clover hay to wheat-rye pasture containing 3.06% potassium in the dry matter. Each day on pasture, 10 cows each were fed 2.3 kg cornmeal, 10 were given 30 g magnesium oxide by capsule, and 10 were given no supplement. After unsupplemented cows were moved to pasture, immunoreactive insulin rose 51% in 8 days and plasma magnesium fell 24%. Both supplements reduced immunoreactive insulin, but magnesium was maintained higher by magnesium oxide than by cornmeal. Injection of two Holstein cows with insulin (2 IU/kg body weight) reduced plasma concentrations of both potassium and mgnesium 20% below that of two cows injected with only physiological saline. Whether elevated plasma insulin may accelerate development of hypomagnesemia in cattle on spring pasture with relatively high potassium content has not been established.

  2. Blood plasma magnesium, potassium, glucose, and immunoreactive insulin changes in cows moved abruptly from barn feeding to early spring pasture.

    PubMed

    Miller, J K; Madsen, F C; Lentz, D E; Wong, W O; Ramsey, N; Tysinger, C E; Hansard, S L

    1980-07-01

    Cations and immunoreactive insulin in plasma were measured in 35 lactating cows moved abruptly to early spring pasture. After change of cows from grass-clover hay to fescue-bluegrass pasture containing 22 to 31 g potassium/kg dry matter, immunoreactive insulin of 5 Holstein cows increased 30% in 5 days and averaged 45% above prepasture concentrations for 40 days. Magnesium averaged 44% below prepasture content of plasma during this period and was correlated negatively with potassium -.17 and immunoreactive insulin -.37. Thirty Herford cows were changed from corn silage and grass-clover hay to wheat-rye pasture containing 3.06% potassium in the dry matter. Each day on pasture, 10 cows each were fed 2.3 kg cornmeal, 10 were given 30 g magnesium oxide by capsule, and 10 were given no supplement. After unsupplemented cows were moved to pasture, immunoreactive insulin rose 51% in 8 days and plasma magnesium fell 24%. Both supplements reduced immunoreactive insulin, but magnesium was maintained higher by magnesium oxide than by cornmeal. Injection of two Holstein cows with insulin (2 IU/kg body weight) reduced plasma concentrations of both potassium and magnesium 20% below that of two cows injected with only physiological saline. Whether elevated plasma insulin may accelerate development of hypomagnesemia in cattle on spring pasture with relatively high potassium content has not been established.

  3. Effect of pertussis toxin pretreated centrally on blood glucose level induced by stress

    PubMed Central

    Suh, Hong-Won; Sim, Yun-Beom; Park, Soo-Hyun; Sharma, Naveen; Im, Hyun-Ju

    2016-01-01

    In the present study, we examined the effect of pertussis toxin (PTX) administered centrally in a variety of stress-induced blood glucose level. Mice were exposed to stress after the pretreatment of PTX (0.05 or 0.1 µg) i.c.v. or i.t. once for 6 days. Blood glucose level was measured at 0, 30, 60 and 120 min after stress stimulation. The blood glucose level was increased in all stress groups. The blood glucose level reached at maximum level after 30 min of stress stimulation and returned to a normal level after 2 h of stress stimulation in restraint stress, physical, and emotional stress groups. The blood glucose level induced by cold-water swimming stress was gradually increased up to 1 h and returned to the normal level. The intracerebroventricular (i.c.v.) or intrathecal (i.t.) pretreatment with PTX, a Gi inhibitor, alone produced a hypoglycemia and almost abolished the elevation of the blood level induced by stress stimulation. The central pretreatment with PTX caused a reduction of plasma insulin level, whereas plasma corticosterone level was further up-regulated in all stress models. Our results suggest that the hyperglycemia produced by physical stress, emotional stress, restraint stress, and the cold-water swimming stress appear to be mediated by activation of centrally located PTX-sensitive G proteins. The reduction of blood glucose level by PTX appears to due to the reduction of plasma insulin level. The reduction of blood glucose level by PTX was accompanied by the reduction of plasma insulin level. Plasma corticosterone level up-regulation by PTX in stress models may be due to a blood glucose homeostatic mechanism. PMID:27610033

  4. Carotid artery intima-media thickness is associated with insulin-mediated glucose disposal in nondiabetic normotensive offspring of type 2 diabetic patients.

    PubMed

    Cardellini, Marina; Marini, Maria Adelaide; Frontoni, Simona; Hribal, Marta Letizia; Andreozzi, Francesco; Perticone, Francesco; Federici, Massimo; Lauro, Davide; Sesti, Giorgio

    2007-01-01

    The aim of this study was to investigate whether insulin resistance is independently associated with early manifestations of atherosclerosis. To this end, 176 normotensive offspring of type 2 diabetic patients were subjected to euglycemic hyperinsulinemic clamp to assess insulin sensitivity. Early atherosclerosis was studied by ultrasonography of the common carotid artery. Of the total 176 subjects, 145 were glucose tolerant, 18 had impaired fasting glucose, and 13 had impaired glucose tolerance. Univariate correlations showed that age, body mass index, waist, blood pressure, 2-h postchallenge glucose, fasting insulin, triglycerides, interleukin-6, fibrinogen, and white blood cell count were significantly correlated with carotid intima-media thickness (IMT), whereas HDL cholesterol and glucose disposal showed a negative correlation. A stepwise multivariate regression analysis including sex, age, waist circumference, smoking status, systolic blood pressure, diastolic blood pressure, triglyceride, HDL cholesterol, 2-h postchallenge glucose, plasma IL-6, fibrinogen, white blood cell count, insulin-stimulated glucose disposal, and fasting insulin showed that the four variables that remained significantly associated with carotid IMT were waist circumference, insulin-stimulated glucose disposal, white blood cell count, and diastolic blood pressure, accounting for 33.7% of its variation. These findings support the concept that insulin sensitivity, rather than plasma insulin levels, is associated with early atherosclerosis in nondiabetic normotensive offspring of type 2 diabetic patients.

  5. Effects of Canarium odontophyllum leaves on plasma glucose and T lymphocyte population in streptozotocin-induced diabetic rats.

    PubMed

    Saari, Shafikha Mohd; Basri, Dayang Fredalina; Budin, Siti Balkis; Warif, Nor Malia Abd

    2017-02-01

    Type 1 diabetes mellitus is a chronic disease characterized by lack of insulin production. Immune mechanisms are implicated in the pathogenesis of Type 1 diabetes. Canarium odontophyllum (CO) fruits and leaves have been shown to possess high antioxidant activity. This study was conducted to evaluate the effects of CO leaves aqueous extract on the blood glucose and T lymphocyte population in the spleen of streptozotocin (STZ)-induced diabetic rats. Nineteen male Sprague-Dawley rats were randomly divided into three groups: normal, diabetic control and CO treated diabetic groups. Diabetes was induced by a single intraperitoneal injection of 65 mg STZ/kg body weight. The extract of CO leaves was administered orally by force feeding daily at the dose of 300 mg/kg for 28 days. The rats were sacrificed at the end of the study and the spleen was harvested for flow cytometry analysis. The results showed a significant decrease in body weight of diabetic and CO treated diabetic groups compared with the normal group (p < 0.05). The fasting blood glucose level of CO treated diabetic group was significantly lower than the diabetic group (p < 0.05). Diabetic and CO treated diabetic groups showed a significant increase in the percentage of spleen CD3(+) CD4(+) T lymphocytes (p < 0.05) when compared with the normal group. However, there was no significant difference in the percentage of spleen CD3(+) CD8(+) T lymphocytes among all experimental groups. The finding suggested that an aqueous extract of CO leaves has the ability to reduce blood glucose levels in diabetic rats.

  6. Inhibition of Intestinal Bile Acid Transporter Slc10a2 Improves Triglyceride Metabolism and Normalizes Elevated Plasma Glucose Levels in Mice

    PubMed Central

    Snaith, Michael; Lindmark, Helena; Lundberg, Johanna; Östlund-Lindqvist, Ann-Margret; Angelin, Bo; Rudling, Mats

    2012-01-01

    Interruption of the enterohepatic circulation of bile acids increases cholesterol catabolism, thereby stimulating hepatic cholesterol synthesis from acetate. We hypothesized that such treatment should lower the hepatic acetate pool which may alter triglyceride and glucose metabolism. We explored this using mice deficient of the ileal sodium-dependent BA transporter (Slc10a2) and ob/ob mice treated with a specific inhibitor of Slc10a2. Plasma TG levels were reduced in Slc10a2-deficient mice, and when challenged with a sucrose-rich diet, they displayed a reduced response in hepatic TG production as observed from the mRNA levels of several key enzymes in fatty acid synthesis. This effect was paralleled by a diminished induction of mature sterol regulatory element-binding protein 1c (Srebp1c). Unexpectedly, the SR-diet induced intestinal fibroblast growth factor (FGF) 15 mRNA and normalized bile acid synthesis in Slc10a2−/− mice. Pharmacologic inhibition of Slc10a2 in diabetic ob/ob mice reduced serum glucose, insulin and TGs, as well as hepatic mRNA levels of Srebp1c and its target genes. These responses are contrary to those reported following treatment of mice with a bile acid binding resin. Moreover, when key metabolic signal transduction pathways in the liver were investigated, those of Mek1/2 - Erk1/2 and Akt were blunted after treatment of ob/ob mice with the Slc10a2 inhibitor. It is concluded that abrogation of Slc10a2 reduces hepatic Srebp1c activity and serum TGs, and in the diabetic ob/ob model it also reduces glucose and insulin levels. Hence, targeting of Slc10a2 may be a promising strategy to treat hypertriglyceridemia and diabetes. PMID:22662222

  7. [Diagnostic value of fasting glucose, fructosamine, and glycated haemoglobin HbA(1c) with regard to ADA 1997 and who 1998 criteria for detecting diabetes and other glucose tolerance abnormalities].

    PubMed

    Gołembiewska, Edyta

    2004-01-01

    New diagnostic criteria for diabetes mellitus proposed by the American Diabetes Association in 1997 and the World Heath Organization Consultation Report in 1998 recommend lowering of the fasting plasma glucose (FPG) to 7.0 mmol/L. This change in the diagnostic FPG cut-off point was based on the results of well-documented epidemiological studies showing that increased risk of microangiopathy starts at values closer to 7.0 than 7.8 mmol/L used in the past. To facilitate the diagnosis, ADA Expert Committee recommends using FPG as the main diagnostic tool and eliminating OGTT from routine clinical practice. In contrast to ADA, WHO Consultation Group strongly recommended keeping OGTT in routine use. Due to the inconvenience, poor reproducibility, non-physiological character and labour-intensiveness of OGTT, an alternative test has been sought. The aim of this study was to determine whether fasting capillary glucose (FCG) along with fructosamine and glycated haemoglobin (HbA(1c)) perform better for the detection of glucose tolerance abnormalities than FCG alone. OGTT was performed in 1528 patients. Serum fructosamine was determined in 480 and glycated haemoglobin in 234 of these patients. To assess the value of FCG, fructosamine and glycated haemoglobin in predicting post-load glycaemia and detecting glucose tolerance abnormalities, multiple linear regression analysis and Receiver Operating Characteristics analysis were done. Fructosamine correlated stronger with 2h-postload glucose concentrations than with fasting glucose. HbA(1c) correlated stronger with FCG than with 2h-postload glucose. Combined use of fructosamine and FCG predicted 2h-postload glucose better than combined use of FCG and HbA(1c). Receiver Operating Characteristics curve analysis showed that FCG was the best criterion in discriminating diabetes. Combined use of FCG and fructosamine slightly improved the ability to discriminate glucose tolerance abnormalities from normal glucose tolerance. The

  8. Effects of Beak Trimming, Stocking Density and Sex on Carcass Yield, Carcass Components, Plasma Glucose and Triglyceride Levels in Large White Turkeys.

    PubMed

    Sengul, Turgay; Inci, Hakan; Sengul, Ahmet Y; Sogut, Bunyamin; Kiraz, Selahattin

    2015-01-01

    This study was conducted to determine the effects of beak trimming, stocking density (D) and sex (S) on live weight (LW), carcass yield and its component, and plasma glucose (PG) and triglyceride levels in Large White turkeys. To accomplish this aims, totally 288 d old large white turkey chicks (144 in each sex) were used. Beaks of 77 male and female poults were trimmed when 8 d old with an electrical beak trimmer. The birds were fed by commercial turkey rasion. Experiment was designed as 2 × 2 × 2 factorial arrangement with 3 replications in each group. Beak trimming and stocking density did not affect live weight, carcass composition and its components. The higher LW and carcass weight observed in trimmed groups. As expected, male birds are heavier than female, and carcass percentage (CP) would be adverse. However, in this study, CP of male was higher in trimmed, in 0.25 m(2)/bird. (D) × sex (S) interaction had an effect on both CP and thigh weights (p<0.05). Significantly D × S was observed in LW, CP and PG. The weight of carcass and its some components were higher in male. S × D interaction had an effect on plasma glucose level (p<0.05). Triglyceride level was affected (p<0.05) by sex. Significant relationships were found between percentage of thighs (r=0.447, p<0.01) and percentage of breast (r=0.400, p<0.01). According to this study, it can be said that trimming is useful with density of 0.25 m(2)/bird in turkey fattening.

  9. Role of exercise intensity on GLUT4 content, aerobic fitness and fasting plasma glucose in type 2 diabetic mice.

    PubMed

    Cunha, Verusca Najara; de Paula Lima, Mérica; Motta-Santos, Daisy; Pesquero, Jorge Luiz; de Andrade, Rosangela Vieira; de Almeida, Jeeser Alves; Araujo, Ronaldo Carvalho; Grubert Campbell, Carmen Silvia; Lewis, John E; Simões, Herbert Gustavo

    2015-10-01

    Type 2 diabetes mellitus (T2D) results in several metabolic and cardiovascular dysfunctions, clinically characterized by hyperglycaemia due to lower glucose uptake and oxidation. Physical exercise is an effective intervention for glycaemic control. However, the effects of exercising at different intensities have not yet been addressed. The present study analysed the effects of 8 weeks of training performed at different exercise intensities on type 4 glucose transporters (GLUT4) content and glycaemic control of T2D (ob/ob) and non-diabetic mice (ob/OB). The animals were divided into six groups, with four groups being subjected either to low-intensity (ob/obL and ob/OBL: 3% body weight, three times/week/40 min) or high-intensity (ob/obH and ob/OBH: 6% body weight, three times per week per 20 min) swimming training. An incremental swimming test was performed to measure aerobic fitness. After the training intervention period, glycaemia and the content of GLUT4 were quantified. Although both training intensities were beneficial, the high-intensity regimen induced a more significant improvement in GLUT4 levels and glycaemic profile compared with sedentary controls (p < 0.05). Only animals in the high-intensity exercise group improved aerobic fitness. Thus, our study shows that high-intensity training was more effective for increasing GLUT4 content and glycaemia reduction in insulin-resistant mice, perhaps because of a higher metabolic demand imposed by this form of exercise.

  10. Plasma concentrations of cortisol, testosterone, glucose and blood gases in male goats during anaesthesia with pentobarbitone sodium.

    PubMed

    Sanhouri, A A; Jones, R S; Dobson, H

    1990-01-01

    Fasting for 24 h had no statistically significant effect on cortisol, glucose or testosterone concentrations. A dose of pentobarbitone sodium which induced light anaesthesia resulted in an immediate decrease in cortisol values from 5.0-11.1 ng/ml to 2.2-3.6 ng/ml until waking-this latter event was accompanied by an excessive release of cortisol (up to 16.6 ng/ml). In two out of three goats testosterone concentrations decreased from 4.0-9.0 ng/ml to less than 0.5 ng/ml after pentobarbitone; low values were maintained for 4.5-6 hours. Glucose concentrations were unaffected. Precise doses of pentobarbitone (20 mg/kg or 30 mg/kg) resulted in similar cortisol profiles as above but with higher concentrations achieved upon waking from the higher dose of pentobarbitone. On two out of nine occasions increased PCO2 values were recorded concurrently with increased cortisol concentrations during the period of anaesthesia, suggesting that a sufficiently strong stressful stimulus can break through the pentobarbitone blockade.

  11. Comparison of Plasma Glucose and Gut Hormone Levels Between Drinking Enteral Formula Over a Period of 5 and 20 Minutes in Japanese Patients With Type 2 Diabetes: A Pilot Study

    PubMed Central

    Kamiko, Kazunari; Aoki, Kazutaka; Kamiyama, Hiroshi; Taguri, Masataka; Terauchi, Yasuo

    2016-01-01

    Background A fast eating speed is reportedly associated with obesity, fatty liver, and metabolic syndrome. As a comparison of postprandial glucose levels after eating quickly or slowly has not been previously reported for Japanese patients with type 2 diabetes, we evaluated the impact of the fast or slow ingestion of an enteral formula (liquid meal) on glucose metabolism. Methods Ten Japanese patients with type 2 diabetes who had been hospitalized at our hospital were enrolled. All the subjects received an enteral formula for breakfast. The study was performed over a 2-day period in each subject (day 1: enteral formula was consumed over a 5-minute period; day 2: enteral formula was consumed over a 20-minute period). The subjects were requested to fast for at least 12 hours before eating breakfast, and blood samples were collected at 0, 30, 60, and 120 min after the start of breakfast. Results The areas under the curve (AUCs) of the plasma glucose, serum insulin, plasma active ghrelin, glucagon-like peptide-1 (GLP-1), plasma total glucose-dependent insulinotropic polypeptide (GIP), and serum total peptide YY (PYY) levels were not significantly changed by intake over a 5-minute or 20-minute period. Conclusions Eating quickly per se probably does not affect postprandial glucose excursions, but the increased energy intake resulting from eating quickly may increase the body weight and increase insulin resistance. Eating quickly may increase energy intake and worsen long-term metabolic parameters. PMID:27635181

  12. Determinants of Glycated Hemoglobin in Subjects With Impaired Glucose Tolerance: Subanalysis of the Japan Diabetes Prevention Program

    PubMed Central

    Sakane, Naoki; Sato, Juichi; Tsushita, Kazuyo; Tsujii, Satoru; Kotani, Kazuhiko; Tominaga, Makoto; Kawazu, Shoji; Sato, Yuzo; Usui, Takeshi; Kamae, Isao; Yoshida, Toshihide; Kiyohara, Yutaka; Sato, Shigeaki; Tsuzaki, Kokoro; Nirengi, Shinsuke; Takahashi, Kaoru; Kuzuya, Hideshi; Group, JDPP Research

    2017-01-01

    Background Limited evidence is available about the relationship of lifestyle factors with glycated hemoglobin (HbA1c) in subjects with impaired glucose tolerance. The aim of study was to identify such determinant factors of HbA1c in subjects with impaired glucose tolerance. Methods This cross-sectional study included 121 men and 124 women with impaired glucose tolerance, who were diagnosed based on a 75-g oral glucose tolerance test. Demographic and biochemical parameters, including the body mass index (BMI), fasting plasma glucose (FPG), 2-h post-load glucose (2-h PG), and HbA1c, were measured. The pancreatic β-cell function and insulin resistance were assessed using homeostasis model assessment (HOMA-β). Dietary intake was assessed by a food frequency questionnaire. Results The levels of FPG, 2-h PG, and carbohydrate intake were correlated with the HbA1c level in men, while the FPG and 2-h PG levels were correlated with the HbA1c level in women. In multiple regression analyses, BMI, FPG, 2-h PG, and white rice intake were associated with HbA1c levels in men, while BMI, FPG, HOMA-β, and bread intake were associated with HbA1c levels in women. Conclusions The present findings suggest that a substantial portion of HbA1c may be composed of not only glycemic but also several lifestyle factors in men with impaired glucose tolerance. These factors can be taken into consideration as modifiable determinants in assessing the HbA1c level for the diagnosis and therapeutic monitoring of the disease course. PMID:28270897

  13. Abnormal antioxidant status in impaired glucose tolerance and non-insulin-dependent diabetes mellitus.

    PubMed

    Vijayalingam, S; Parthiban, A; Shanmugasundaram, K R; Mohan, V

    1996-08-01

    A total of 105 subjects with impaired glucose tolerance were classified into two groups, 51 subjects with plasma glucose > 11.1 mmol l-1 in one of the blood samplings during OGTT, but at 2 h being less than < 11.1 mmol l-1 were classified as early hyperglycaemics. Fifty-four cases were classified as true IGT, with fasting plasma glucose < 7.8 mmol l-1 and post plasma glucose level between 7.8 and 11.1 mmol l-1. Age and sex matched groups of normals (healthy adults) and NIDDM cases without symptomatic secondary complications were also included in the study. Lipid peroxidation (LPO) product in plasma, erythrocyte, and erythrocyte cell membrane were found to be significantly elevated (p < 0.001) in IGT, early hyperglycaemia and diabetes mellitus while glycosylated haemoglobin was also higher. Antioxidant enzymes superoxide dismutase and catalase were significantly lower in red blood cells obtained from IGT and early hyperglycaemic groups. They were closer to the levels showed in NIDDM confirming that antioxidant deficiency is already present in subjects classified as impaired glucose tolerant. Among the antioxidant scavengers, reduced glutathione (GSH) and ascorbic acid are reduced by 15% and 20% in IGT and NIDDM, respectively. We conclude that antioxidant status is poor in both IGT and NIDDM, suggesting an overlap of frank diabetic state in those classified as IGT. It is possible that antioxidant therapy might retard progression from IGT to NIDDM.

  14. Does hyperketonemia affect protein or glucose kinetics in postabsorptive or traumatized man

    SciTech Connect

    Crowe, P.J.; Royle, G.T.; Wagner, D.; Burke, J.F. )

    1989-10-01

    Leucine and glucose turnover were measured using simultaneous infusions of (13C)leucine and (2H)glucose before and during an infusion of Na DL-hydroxybutyrate (Na DL-HB) in overnight-fasted patients the day before and 3 days after total hip replacement. The ketone body infusion before surgery resulted in a significant increase in plasma leucine concentration and leucine turnover, while glucose concentration and turnover decreased. Surgery increased leucine turnover. Ketone body infusion after surgery caused a further increased leucine turnover while turnover fell as before surgery. We suggest that exogenous ketone bodies decrease hepatic glucose production and probably stimulate a rise in protein synthesis above breakdown leading to a decreased nitrogen excretion as observed by other investigators. Despite the metabolic adaptation to trauma, this response was not affected by surgery.

  15. Phenotype and Age Differences in Blood Gas Characteristics, Electrolytes, Hemoglobin, Plasma Glucose and Cortisol in Female Squirrel Monkeys

    NASA Technical Reports Server (NTRS)

    Brizzee, K. R.; Ordy, J. M.; Dunlap, W. P.; Kendrick, R.; Wengenack, T. M.

    1988-01-01

    Due to its small size, lower cost, tractable nature, successful breeding in captivity and its status near the middle of the primate phylogenetic scale, the squirrel monkey has become an attractive primate model for basic and biomedical research. Although the squirrel monkey now is being used more extensively in many laboratories with diverse interests, only fragmentary reports have been published regarding basic physiological characteristics, or baseline blood reference values of different phenotypes, particularly blood gases, hematology and serum chemical constituents. It is becoming recognized increasingly that these baseline blood reference values are important not only in the care and maintenance of the squirrel monkey, but are critical for assessing normal physiological status, as well as the effects of various experimental treatments. The purpose of this study was to compare differences in blood gases, electrolytes, hematology, blood glucose and cortisol among young and old Bolivian (Roman type) and Colombian (Gothic type) phenotypes of the squirrel monkey.

  16. Comparative effects of quinine and quinidine on glucose metabolism in healthy volunteers.

    PubMed Central

    Davis, T M; Karbwang, J; Looareesuwan, S; Turner, R C; White, N J

    1990-01-01

    1. To investigate the relative effects of quinine and quinidine on glucose metabolism, 11 healthy males aged 17-32 years were given three separate 1 h intravenous infusions; normal saline alone, quinine dihydrochloride 10 mg base kg-1 body weight (BW) in normal saline, and quinidine dihydrochloride 10 mg base kg-1 BW in normal saline. A constant infusion of 5 mg glucose kg-1 ideal BW min-1 was given for 1 h before and during each study. 2. Assessment of pancreatic beta cell function and tissue insulin sensitivity from plasma glucose and insulin concentrations at the end of the first hour using the Continuous Infusion of Glucose with Model Assessment (CIGMA) technique confirmed normal glucose tolerance for each subject on each test day. 3. Plasma glucose concentrations at 1 h were similar to those at 2 h. There was no significant difference between the plasma glucose profiles during the three infusion regimes (P greater than 0.05). Plasma insulin rose significantly during the second hour (P less than 0.0001); increments after quinine (geometric mean [-1 s.d- +1 s.d.]; 47.0 [27.8-79.4] mu l-1) were significantly greater than those after quinidine (19.8 [6.1-65.2] mu l-1) and saline (7.5 [0-21.5] mu l-1; P less than 0.05). Plasma quinine concentrations at the end of the infusion (6.5 +/- 4.4 mg l-1) correlated with insulin increments during the second hour (r = 0.662, P = 0.028) and were significantly greater than those of quinidine (3.0 +/- 0.8 mg l-1; P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2223418

  17. Fat Distribution and Glucose Intolerance Among Greenland Inuit

    PubMed Central

    Jørgensen, Marit Eika; Borch-Johnsen, Knut; Stolk, Ronald; Bjerregaard, Peter

    2013-01-01

    OBJECTIVE A high amount of subcutaneous fat is suggested to explain the observation of lower obesity-associated metabolic risk among Inuit than among Europeans. We examined the association between measures of obesity (visceral adipose tissue [VAT], subcutaneous adipose tissue [SAT], BMI, waist circumference [WC], and percentage of body fat) and the indices of glucose metabolism (fasting and 2-h glucose levels, insulin resistance per homeostasis model assessment [HOMA-IR], and the insulin sensitivity index [ISI0,120]) among Greenland Inuit. RESEARCH DESIGN AND METHODS A total of 3,108 adult Inuit participated in a population-based study. The examination included a 75-g oral glucose tolerance test and anthropometric measurements. VAT and SAT were measured by ultrasound according to a validated protocol. Information on sociodemographic characteristics and health behaviors was obtained by interview. RESULTS Mean SATs were 1.8 and 3.5 cm in men and women, respectively. Mean VATs were 7.0 and 6.3 cm in men and women, respectively. The total prevalence of type 2 diabetes was 9%. Percentage of body fat generally was most strongly associated with all outcomes. Both SAT and VAT were significantly associated with glucose intolerance, fasting and 2-h plasma glucose levels, HOMA-IR, and ISI0,120. VAT was more strongly associated with all outcomes than was SAT. After further adjustment for BMI or WC, VAT was associated with glucose intolerance and insulin resistance, whereas there was a trend toward a negative or no association with SAT. CONCLUSIONS High mean values of SAT may to a large extent explain the high WC in Inuit populations, and this is suggested to contribute to the lower observed metabolic risk for a given level of obesity. PMID:23656981

  18. Evidence that the oral glucose-tolerance test does not provide a uniform stimulus to pancreatic islets in pregnancy.

    PubMed

    de Leacy, E A; Cowley, D M

    1989-07-01

    Fifty consecutive pregnant patients referred for a glucose-tolerance test were classified on the basis of increasing (n = 20) or decreasing (n = 28) hematocrit after an oral 75-g glucose load. (The hematocrit did not change in the other two patients.) Patients with increasing hematocrit, a response previously seen in patients with the dumping syndrome, showed significantly flatter increases in glucose concentrations in plasma after the load. The mean decrease in the concentration of phosphate in plasma, measured as an index of glucose uptake by cells, was significantly less (P less than 0.05) 2 h after the load in the group with flatter glucose responses, suggesting that the flat response is ascribable to poor glucose absorption rather than to an exaggerated insulin response. These results indicate that the oral glucose-tolerance test stresses the pancreatic islets differently in different pregnant subjects, owing to individual variations in the gastrointestinal handling of the glucose load. Consequently, patients may give a "normal" result who might otherwise become hyperglycemic after normal meals. We suggest that alternative screening procedures be investigated to assess pregnant patients postprandially.

  19. The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Preserves Endothelial Function in Mesenteric Arteries from Type 1 Diabetic Rats without Decreasing Plasma Glucose.

    PubMed

    Salheen, Salheen M; Panchapakesan, Usha; Pollock, Carol A; Woodman, Owen L

    2015-01-01

    The aim of the study was to investigate the effect of the DPP-4 inhibitor linagliptin on the mechanism(s) of endothelium-dependent relaxation in mesenteric arteries from STZ-induced diabetic rats. Both normal and diabetic animals received linagliptin (2 mg/kg) daily by oral gavage for a period of 4 weeks. To measure superoxide generation in mesenteric arteries, lucigenin-enhanced chemiluminescence was used. ACh-induced relaxation of mesenteric arteries was assessed using organ bath techniques and Western blotting was used to investigate protein expression. Pharmacological tools (1 μM TRAM-34, 1 μM apamin, 100 nM Ibtx, 100 μM L-NNA, 10 μM ODQ) were used to distinguish between NO and EDH-mediated relaxation. Linagliptin did not affect plasma glucose, but did decrease vascular superoxide levels. Diabetes reduced responses to ACh but did not affect endothelium-independent responses to SNP. Linagliptin improved endothelial function indicated by a significant increase in responses to ACh. Diabetes impaired the contribution of both nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) to endothelium-dependent relaxation and linagliptin treatment significantly enhanced the contribution of both relaxing factors. Western blotting demonstrated that diabetes also increased expression of Nox2 and decreased expression and dimerization of endothelial NO synthase, effects that were reversed by linagliptin. These findings demonstrate treatment of type 1 diabetic rats with linagliptin significantly reduced vascular superoxide levels and preserved both NO and EDH-mediated relaxation indicating that linagliptin can improve endothelial function in diabetes independently of any glucose lowering activity.

  20. Combined use of fasting plasma glucose and glycated hemoglobin A1c in a stepwise fashion to detect undiagnosed diabetes mellitus.

    PubMed

    Nakagami, Tomoko; Tominaga, Makoto; Nishimura, Rimei; Daimon, Makoto; Oizumi, Toshihide; Yoshiike, Nobuo; Tajima, Naoko

    2007-09-01

    Type 2 diabetes mellitus (DM) is a common and serious condition related with considerable morbidity. Screening for DM is one strategy for reducing this burden. In Japan National Diabetes Screening Program (JNDSP) guideline, the combined use of fasting plasma glucose (FPG) and glycated hemoglobin A1c (HbA1c) in a stepwise fashion has been recommended to identify the group of people needing life-style counseling or medical care. However, the efficacy of this program has not been fully evaluated, as an oral glucose tolerance test (OGTT) is not mandatory in the guideline. The aim of this study was to assess the validity of the screening test scenario, in which an OGTT would be applied to people needing life-style counseling or medical care on this guideline: FPG 110-125 mg/dl and HbA1c over 5.5%. Subjects were 1,726 inhabitants without a previous history of DM in the Funagata study, which is a population-based survey conducted in Yamagata prefecture to clarify the risk factors, related conditions, and consequences of DM. DM was diagnosed according to the 1999 World Health Organization criteria. The prevalence of undiagnosed DM was 6.6%. The tested screening scenario gave a sensitivity of 55.3%, a specificity of 98.4%, a positive predictive value of 70.8%, and a negative predictive value of 96.9% for undiagnosed DM. In conclusion, the screening test scenario, in which an OGTT would be followed by the combined use of FPG and HbA1c in a stepwise fashion according to the JNDSP guideline, was not effective in identifying people with undiagnosed DM.

  1. Effect of chromium-enriched yeast on fasting plasma glucose, glycated haemoglobin and serum lipid levels in patients with type 2 diabetes mellitus treated with insulin.

    PubMed

    Racek, Jaroslav; Sindberg, C D; Moesgaard, S; Mainz, Josef; Fabry, Jaroslav; Müller, Luděk; Rácová, Katarína

    2013-10-01

    Chromium is required for a normal insulin function, and low levels have been linked with insulin resistance. The aim of this study was to follow the effect of chromium supplementation on fasting plasma glucose (FPG), glycated haemoglobin (HbA1c) and serum lipids in patients with type 2 diabetes mellitus (DM2) on insulin therapy. Eleven randomly selected patients with DM2 on insulin therapy were supplemented with a daily dose of 100 μg chromium yeast for the first supplementation period of 2 weeks. In the second supplementation period, the chromium dose was doubled and continued for the next 6 weeks. The third phase was a 6-week washout period. After each period, the levels of FPG and HbA1c were compared with the corresponding values at the end of the previous period. Serum triglycerides, total HDL and LDL cholesterol values after supplementation were compared with the baseline values. FPG decreased significantly after the first period of chromium supplementation (p < 0.001), and a tendency to a further reduction was observed after the second supplementation period. Similarly, HbA1c decreased significantly in both periods (p < 0.02 and p < 0.002, respectively). Eight weeks after withdrawal of chromium supplementation, both FPG and HbA1c levels returned to their pre-intervention values. The serum lipid concentrations were not significantly influenced by chromium supplementation. Chromium supplementation could be beneficial in patients with DM2 treated with insulin, most likely due to lowered insulin resistance leading to improved glucose tolerance. This finding needs to be confirmed in a larger study.

  2. Impact of in vivo fatty acid oxidation blockade on glucose turnover and muscle glucose metabolism during low-dose AICAR infusion.

    PubMed

    Christopher, Michael; Rantzau, Christian; Chen, Zhi-Ping; Snow, Rodney; Kemp, Bruce; Alford, Frank P

    2006-11-01

    AMPK plays a central role in influencing fuel usage and selection. The aim of this study was to analyze the impact of low-dose AMP analog 5-aminoimidazole-4-carboxamide-1-beta-d-ribosyl monophosphate (ZMP) on whole body glucose turnover and skeletal muscle (SkM) glucose metabolism. Dogs were restudied after prior 48-h fatty acid oxidation (FA(OX)) blockade by methylpalmoxirate (MP; 5 x 12 hourly 10 mg/kg doses). During the basal equilibrium period (0-150 min), fasting dogs (n = 8) were infused with [3-(3)H]glucose followed by either 2-h saline or AICAR (1.5-2.0 mg x kg(-1) x min(-1)) infusions. SkM was biopsied at completion of each study. On a separate day, the same protocol was undertaken after 48-h in vivo FA(OX) blockade. The AICAR and AICAR + MP studies were repeated in three chronic alloxan-diabetic dogs. AICAR produced a transient fall in plasma glucose and increase in insulin and a small decline in free fatty acid (FFA). Parallel increases in hepatic glucose production (HGP), glucose disappearance (R(d tissue)), and glycolytic flux (GF) occurred, whereas metabolic clearance rate of glucose (MCR(g)) did not change significantly. Intracellular SkM glucose, glucose 6-phosphate, and glycogen were unchanged. Acetyl-CoA carboxylase (ACC approximately pSer(221)) increased by 50%. In the AICAR + MP studies, the metabolic responses were modified: the glucose was lower over 120 min, only minor changes occurred with insulin and FFA, and HGP and R(d tissue) responses were markedly attenuated, but MCR(g) and GF increased significantly. SkM substrates were unchanged, but ACC approximately pSer(221) rose by 80%. Thus low-dose AICAR leads to increases in HGP and SkM glucose uptake, which are modified by prior FA(ox) blockade.

  3. Identifying glucose thresholds for incident diabetes by physiological analysis: a mathematical solution.

    PubMed

    Ferrannini, Ele; Manca, Maria Laura

    2015-04-01

    Plasma glucose thresholds for diagnosis of type 2 diabetes are currently based on outcome data (risk of retinopathy), an inherently ill-conditioned approach. A radically different approach is to consider the mechanisms that control plasma glucose, rather than its relation to an outcome. We developed a constraint optimization algorithm to find the minimal glucose levels associated with the maximized combination of insulin sensitivity and β-cell function, the two main mechanisms of glucose homeostasis. We used a training cohort of 1,474 subjects (22% prediabetic, 7.7% diabetic) in whom insulin sensitivity was measured by the clamp technique and β-cell function was determined by mathematical modeling of an oral glucose tolerance test. Optimized fasting glucose levels were ≤ 87 and ≤ 89 mg/dl in ≤ 45-yr-old women and men, respectively, and ≤ 92 and ≤ 95 mg/dl in >45-yr-old women and men, respectively; the corresponding optimized 2-h glucose levels were ≤ 96, ≤ 98, ≤ 103, and ≤ 105 mg/dl. These thresholds were validated in three prospective cohorts of nondiabetic subjects (Relationship Between Insulin Sensitivity and Cardiovascular Disease Study, Botnia Study, and Mexico City Diabetes Study) with baseline and follow-up oral glucose tolerance tests. Of 5,593 participants, 452 progressed to diabetes. Similarly, in the three cohorts, subjects with glucose levels above the estimated thresholds had an odds ratio of 3.74 (95% confidence interval = 2.64-5.48) of progressing, substantially higher than the risk carried by baseline conventionally defined prediabetes [odds ratio = 2.32 (95% confidence interval = 1.91-2.81)]. The concept that optimization of glucose concentrations by direct measures of insulin sensitivity and β-cell function identifies gender- and age-specific thresholds that bear on disease progression is proven in a physiologically sound, quantifiable manner.

  4. Fasting and diet content affect stress-induced changes in plasma glucose and cortisol in Juvenile chinook salmon. [Oncorhynchus tshawytscha

    SciTech Connect

    Barton, B.A.; Schreck, C.B. ); Fowler, L.G. )

    1988-01-01

    Juvenile chinook salmon (Oncorhynchus tshawytscha) reared on low-, medium-, or high-lipid diets for 18 weeks were either kept on their respective diets or fasted for 20 d; then they were subjected to a 30-s handling stress or to handling plus continuous confinement. In fish that were handled but not confined, poststress hyperglycemia was greatest in fed fish that received the high-lipid diet and was generally lower in fasted than in fed fish. Plasma cortisol elevations in response to handling or handling plus confinement stress were not appreciably affected by diet type or fasting. The result indicated that prior feeding regimes and the types of diet fed should be considered when one is interpreting the magnitude of hyperglycemic stress responses in juvenile chinook salmon.

  5. The Prevalence and Associated Factors of Periodontitis According to Fasting Plasma Glucose in the Korean Adults: The 2012-2013 Korea National Health and Nutrition Examination Survey.

    PubMed

    Hong, Jae Won; Noh, Jung Hyun; Kim, Dong-Jun

    2016-04-01

    Although the relationship between diabetes and periodontitis is well established, the association between periodontitis and prediabetes has been investigated less extensively. Furthermore, there has been little research on the prevalence of periodontitis among individuals with prediabetes and diabetes as well as in the overall population using nationally representative data.Among 12,406 adults (≥19 years' old) who participated in the 2012-2013 Korea National Health and Nutrition Examination Survey, a total of 9977 subjects completed oral and laboratory examinations and were included in this analysis. Periodontitis was defined as a community periodontal index score of ≥ 3 according to the World Health Organization criteria. The fasting plasma glucose level was categorized into the following 5 groups: normal fasting glucose (NFG) 1 (<90  mg/dL), NFG 2 (90-99  mg/dL), impaired fasting glucose (IFG) 1 (100-110  mg/dL), IFG 2 (111-125  mg/dL), and diabetes (≥126  mg/dL).Overall, the weighted prevalence of periodontitis among the Korean adult population was 24.8% (23.3-26.4%) (weight n = 8,455,952/34,086,014). The unadjusted weighted prevalences of periodontitis were 16.7%, 22.8%, 29.6%, 40.7%, and 46.7% in the NFG 1, NFG 2, IFG 1, IFG 2, and diabetes groups, respectively (P < 0.001). After adjusting for age, sex, smoking history, heavy alcohol drinking, college graduation, household income, waist circumference, serum triglyceride level, serum high-density lipoprotein cholesterol level, and the presence of hypertension, the adjusted weighted prevalence of periodontitis increased to 29.7% in the IFG 2 group (P = 0.045) and 32.5% in the diabetes group (P < 0.001), compared with the NFG 1 group (24%). The odds ratios for periodontitis with the above-mentioned variables as covariates were 1.42 (95% confidence interval [CI] 1.14-1.77, P = 0.002) in the diabetes group and 1.33 (95% CI 1.01-1.75, P = 0.044) in the IFG 2 group

  6. A study of the effect of diet on glycosylated haemoglobin and albumin levels and glucose tolerance in normal subjects.

    PubMed

    Ryle, A J; Davie, S; Gould, B J; Yudkin, J S

    1990-12-01

    As factors other than the degree of glucose tolerance or ambient blood glucose may determine glycosylated haemoglobin levels, we have investigated the effects of dietary glucose and soluble fibre supplementation on glucose tolerance, glycosylated haemoglobin and glycosylated albumin in non-diabetic subjects. Eleven non-diabetic subjects (7 M, 4 F; age 26.5 +/- 6.5 (+/- SD) yr; BMI 21.6 +/- 3.1 kg m-2) followed a high-soluble-fibre (5 g guar gum thrice daily)/low-glucose diet, or a low-soluble-fibre/high-glucose (500 ml glucose drink providing 100 g glucose per day) diet, each for 6 weeks, in randomized order. A 75 g oral glucose tolerance test was performed at recruitment and after each diet period, and fasting blood was assayed for glycosylated albumin by affinity chromatography, and glycosylated haemoglobin by four different methods. Adherence to guar and glucose supplementation was assessed at 89.5 +/- 7.5% and 97.1 +/- 3.5%, respectively. There was no significant effect of either diet on mean fasting, 1-h or 2-h plasma glucose concentration, or glycosylated haemoglobin levels by any assay. Glycosylated albumin was 1.71 +/- 0.35% at entry, fell to 1.33 +/- 0.30% (p less than 0.01) with high-fibre and rose to 1.95 +/- 0.23% (p less than 0.02) after a high-glucose diet. Insulin, total- and HDL-cholesterol and triglyceride levels were unaffected by either diet. A high-glucose diet increases, and a high-soluble-fibre diet decreases, levels of glycosylated albumin without effects on glucose tolerance or glycosylated haemoglobin.

  7. THz spectroscopy of D2H+

    NASA Astrophysics Data System (ADS)

    Yu, S.; Pearson, J. C.; Amano, T.; Matsushima, F.

    2017-01-01

    We extended the measurements of the rotational transitions of D2H+ up to 3 THz by using the JPL frequency multiplier chains and a TuFIR system at Toyama. D2H+ was generated in an extended negative glow discharge cell cooled to liquid nitrogen temperature. We observed five new THz lines. All the available rotational transition frequencies together with the combination differences derived from the three fundamental bands were subject to least square analysis to determine the molecular constants. New THz measurements are definitely useful for better characterization of spectroscopic properties. The improved molecular constants provide better predictions of other unobserved rotational transitions.

  8. Synchronization to light and mealtime of daily rhythms of locomotor activity, plasma glucose and digestive enzymes in the Nile tilapia (Oreochromis niloticus).

    PubMed

    Guerra-Santos, Bartira; López-Olmeda, José Fernando; de Mattos, Bruno Olivetti; Baião, Alice Borba; Pereira, Denise Soledade Peixoto; Sánchez-Vázquez, Francisco Javier; Cerqueira, Robson Bahia; Albinati, Ricardo Castelo Branco; Fortes-Silva, Rodrigo

    2017-02-01

    The light-dark cycle and feeding can be the most important factors acting as synchronizers of biological rhythms. In this research we aimed to evaluate synchronization to feeding schedule of daily rhythms of locomotor activity and digestive enzymes of tilapia. For that purpose, 120 tilapias (65.0±0.6g) were distributed in 12 tanks (10 fish per tank) and divided into two groups. One group was fed once a day at 11:00h (zeitgeber time, ZT6) (ML group) and the other group was fed at 23:00h (ZT18) (MD group). The fish were anesthetized to collect samples of blood, stomach and midgut at 4-hour intervals over a period of 24h. Fish fed at ML showed a diurnal locomotor activity (74% of the total daily activity occurring during the light phase) and synchronization to the feeding schedule, as this group showed anticipation to the feeding time. Fish fed at MD showed a disruption in the pattern of locomotor activity and became less diurnal (59%). Alkaline protease activity in the midgut showed daily rhythm with the achrophase at the beginning of the dark phase in both ML and MD groups. Acid protease and amylase did not show significant daily rhythms. Plasma glucose showed a daily rhythm with the achrophase shifted by 12h in the ML and MD groups. These results revealed that the feeding time and light cycle synchronize differently the daily rhythms of behavior, digestive physiology and plasma metabolites in the Nile tilapia, which indicate the plasticity of the circadian system and its synchronizers.

  9. A Comparison of hs-CRP Levels in New Diabetes Groups Diagnosed Based on FPG, 2-hPG, or HbA1c Criteria.

    PubMed

    Tutuncu, Yildiz; Satman, Ilhan; Celik, Selda; Dinccag, Nevin; Karsidag, Kubilay; Telci, Aysegul; Genc, Sema; Issever, Halim; Tuomilehto, Jaakko; Omer, Beyhan

    2016-01-01

    Fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) have been used to diagnose new-onset diabetes mellitus (DM) in order to simplify the diagnostic tests compared with the 2-hour oral glucose tolerance test (OGTT; 2-hPG). We aimed to identify optimal cut-off points of high sensitive C-reactive protein (hs-CRP) in new-onset DM people based on FPG, 2-hPG, or HbA1c methods. Data derived from recent population-based survey in Turkey (TURDEP-II). The study included 26,499 adult people (63% women, response rate 85%). The mean serum concentration of hs-CRP in women was higher than in men (p < 0.001). The people with new-onset DM based on HbA1c had higher mean hs-CRP level than FPG based and 2-hPG based DM cases. In HbA1c, 2-hPG, and FPG based new-onset DM people, cut-off levels of hs-CRP in women were 2.9, 2.1, and 2.5 mg/L [27.5, 19.7, and 23.5 nmol/L] and corresponding values in men were 2.0, 1.8, and 1.8 mg/L (19.0, 16.9, and 16.9 nmol/L), respectively (sensitivity 60-65% and specificity 54-64%). Our results revealed that hs-CRP may not further strengthen the diagnosis of new-onset DM. Nevertheless, the highest hs-CRP level observed in new-onset DM people diagnosed with HbA1c criterion supports the general assumption that this method might recognize people in more advanced diabetic stage compared with other diagnostic methods.

  10. Impact of estrus expression and conceptus presence on plasma and uterine glucose concentrations up until maternal recognition of pregnancy in beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucose is an essential component of uterine luminal fluid (ULF), it is a major energy source utilized by the conceptus for growth and development. Previously we reported increased concentrations of glucose in the ULF of cows that exhibited estrus, and observed differences in glucose transporter tr...

  11. Effect of a high glucose diet on insulin binding and insulin action in rat adipocytes. A longitudinal study.

    PubMed

    Oka, Y; Akanuma, Y; Kasuga, M; Kosaka, K

    1980-11-01

    To elucidate the mechanisms whereby changes in dietary composition affect the action of insulin on glucose metabolism, insulin binding and glucose uptake and oxidation have been studied in epididymal fat pad adipocytes from rats fed high glucose diets for 5 and 10 days. After 5 days, insulin binding was increased, the mainly to an increased number of receptors (3.4 X 10(5) vs. 2.4 X 10(5) sites per cell) in spite of increased plasma insulin levels (3.0 +/- 0.2 vs. 2.1 +/- 0.1 microgram/l; P < 0.05). The maximal response of glucose oxidation to insulin was increased (925 +/- 55 vs. 510 +/- 58 n moles/2 X 10(5) cells/2h; P < 0.01) and the dose-response curve of glucose uptake was shifted to the left. After 10 days, receptor number decreased to the control level and the effect of insulin on glucose uptake and oxidation (% basal) were similar to controls. Thus, in the early stage of high glucose feeding, insulin receptor number, and insulin sensitivity of glucose uptake, and insulin responsiveness of glucose oxidation were increased.

  12. Biosynthesis of α-Glucosidase Inhibitors by a Newly Isolated Bacterium, Paenibacillus sp. TKU042 and Its Effect on Reducing Plasma Glucose in a Mouse Model.

    PubMed

    Nguyen, Van Bon; Nguyen, Anh Dzung; Kuo, Yao-Haur; Wang, San-Lang

    2017-03-25

    Paenibacillus sp. TKU042, a bacterium isolated from Taiwanese soil, produced α-glucosidase inhibitors (aGIs) in the culture supernatant when commercial nutrient broth (NB) was used as the medium for fermentation. The supernatant of fermented NB (FNB) showed stronger inhibitory activities than acarbose, a commercial anti-diabetic drug. The IC50 and maximum α-glucosidase inhibitory activities (aGIA) of FNB and acarbose against α-glucosidase were 81 μg/mL, 92% and 1395 μg/mL, 63%, respectively. FNB was found to be strongly thermostable, retaining 95% of its relative activity, even after heating at 100 °C for 30 min. FNB was also stable at various pH values. Furthermore, FNB demonstrated antioxidant activity (IC50 = 2.23 mg/mL). In animal tests, FNB showed remarkable reductions in the plasma glucose of ICR (Institute of Cancer Research) mice at a concentration of 200 mg/kg. Combining FNB and acarbose enhanced the effect even more, with an added advantage of eliminating diarrhea. According to HPLC (High-performance liquid chromatography) fingerprinting, the Paenibacillus sp. TKU042 aGIs were not acarbose. All of the results suggest that Paenibacillus sp. TKU042 FNB could have potential use as a health food or to treat type 2 diabetes.

  13. Comparison of the enhancement of plasma glucose levels in type 2 diabetes Otsuka Long-Evans Tokushima Fatty rats by oral administration of sucrose or maple syrup.

    PubMed

    Nagai, Noriaki; Ito, Yoshimasa; Taga, Atsushi

    2013-01-01

    Maple syrup is used as a premium natural sweeter, and is known for being good for human health. In the present study, we investigate whether maple syrup is suitable as a sweetener in the management of type 2 diabetes using Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model of type 2 diabetes mellitus. OLETF rats develop type 2 diabetes mellitus by 30 weeks of age, and 60-week-old OLETF rats show hyperglycemia and hypoinsulinemia via pancreatic β-cell dysfunction. The administration of sucrose or maple syrup following an OGT test increased plasma glucose (PG) levels in OLETF rats, but the enhancement in PG following the oral administration of maple syrup was lower than in the case of sucrose administration in both 30- and 60-week-old OLETF rats. Although, the insulin levels in 30-week-old OLETF rats also increased following the oral administration of sucrose or maple syrup, no increase in insulin levels was seen in 60-week-old OLETF rats following the oral administration of either sucrose or maple syrup. No significant differences were observed in insulin levels between sucrose- and maple syrup-administered OLETF rats at either 30 or 60 weeks of age. The present study strongly suggests that the maple syrup may have a lower glycemic index than sucrose, which may help in the prevention of type 2 diabetes.

  14. Are the Same Clinical Risk Factors Relevant for Incident Diabetes Defined by Treatment, Fasting Plasma Glucose, and HbA1c?

    PubMed Central

    Balkau, Beverley; Soulimane, Soraya; Lange, Céline; Gautier, Alain; Tichet, Jean; Vol, Sylviane

    2011-01-01

    OBJECTIVE To compare incidences and risk factors for diabetes using seven definitions, with combinations of pharmacological treatment, fasting plasma glucose (FPG) ≥7.0 mmol/L, and HbA1c ≥6.5%. RESEARCH DESIGN AND METHODS Participants aged 30–65 years from the Data from an Epidemiological Study on the Insulin Resistance Syndrome (DESIR) cohort were followed for 9 years. RESULTS More men had incident diabetes as defined by FPG ≥7.0 mmol/L and/or treatment than by HbA1c ≥6.5% and/or treatment: 7.5% (140/1,867) and 5.3% (99/1,874), respectively (P < 0.009); for women incidences were similar: 3.2% (63/1,958) and 3.4% (66/1,954). Known risk factors predicted diabetes for almost all definitions. Among those with incident diabetes by FPG alone versus HbA1c alone, there were more men (78 vs. 35%), case patients were 8 years younger, and fewer were alcohol abstainers (12 vs. 35%) (all P < 0.005). A diabetes risk score discriminated well between those with and without incident diabetes for all definitions. CONCLUSIONS In men, FPG definitions yielded more incident cases of diabetes than HbA1c definitions, in contrast with women. An FPG-derived risk score remained relevant for HbA1c-defined diabetes. PMID:21346181

  15. Corticosterone, but not Glucose, Treatment Enables Fasted Adrenalectomized Rats to Survive Moderate Hemorrhage

    NASA Technical Reports Server (NTRS)

    Darlington, Daniel N.; Chew, Gordon; Ha, Taryn; Keil, Lanny C.; Dallman, Mary F.

    1990-01-01

    Fed adrenalectomized rats survive the stress of hemorrhage and hypovolemia, whereas fasted adrenalectomized rats become hypotensive and hypoglycemic after the first 90 min and die within 4 hours (h). We have studied the effects of glucose and corticosterone (B) infusions after hemorrhage as well as treatment with B at the time of adrenalectomy on the capacity of chronically prepared, conscious, fasted, adrenalectomized rats to survive hemorrhage. We have also measured the magnitudes of vasoactive hormone responses to hemorrhage. Maintenance of plasma glucose concentrations did not sustain life; however, treatment of rats at the time of adrenalectomy with B allowed 100 percent survival, and acute treatment of adrenalectomized rats at the time of hemorrhage allowed about 50 percent survival during the 5-h posthemorrhage observation period. Rats in the acute B infusion group that died exhibited significantly increased plasma B and significantly decreased plasma glucose concentrations by 2 h compared to the rats that lived. Plasma vasopressin, renin, and norepinephrine responses to hemorrhage were markedly augmented in the adrenalectomized rats not treated with B, and plasma vasopressin concentrations were significantly elevated at 1 and 2 h in all of the rats that subsequently died compared to values in those that lived. We conclude that: 1) death after hemorrhage in fasted adrenalectomized rats is not a result of lack of glucose; 2) chronic and, to an extent, acute treatment of fasted adrenalectomized rats with B enables survival; 3) fasted adrenalectomized rats exhibit strong evidence of hepatic insufficiency which is not apparent in either fed adrenalectomized rats or B-treated fasted adrenalectomized rats; 4) death after hemorrhage in fasted adrenalectomized rats may result from hepatic failure as a consequence of marked splanchnic vasoconstriction mediated bv the actions of extraordinarily high levels of vasoactive hormones after hemorrhage; and 5) B appears to

  16. Glucose Variability

    PubMed Central

    Le Floch, Jean-Pierre; Kessler, Laurence

    2016-01-01

    Background: Glucose variability has been suspected to be a major factor of diabetic complications. Several indices have been proposed for measuring glucose variability, but their interest remains discussed. Our aim was to compare different indices. Methods: Glucose variability was studied in 150 insulin-treated diabetic patients (46% men, 42% type 1 diabetes, age 52 ± 11 years) using a continuous glucose monitoring system (668 ± 564 glucose values; mean glucose value 173 ± 38 mg/dL). Results from the mean, the median, different indices (SD, MAGE, MAG, glucose fluctuation index (GFI), and percentages of low [<60 mg/dL] and high [>180 mg/dL] glucose values), and ratios (CV = SD/m, MAGE/m, MAG/m, and GCF = GFI/m) were compared using Pearson linear correlations and a multivariate principal component analysis (PCA). Results: CV, MAGE/m (ns), GCF and GFI (P < .05), MAG and MAG/m (P < .01) were not strongly correlated with the mean. The percentage of high glucose values was mainly correlated with indices. The percentage of low glucose values was mainly correlated with ratios. PCA showed 3 main axes; the first was associated with descriptive data (mean, SD, CV, MAGE, MAGE/m, and percentage of high glucose values); the second with ratios MAG/m and GCF and with the percentage of low glucose values; and the third with MAG, GFI, and the percentage of high glucose values. Conclusions: Indices and ratios provide complementary pieces of information associated with high and low glucose values, respectively. The pairs MAG+MAG/m and GFI+GCF appear to be the most reliable markers of glucose variability in diabetic patients. PMID:26880391

  17. High incidence of abnormal glucose metabolism in acute coronary syndrome patients at a moderate altitude: A sub-Himalayan study

    PubMed Central

    Mokta, Jitender; Kumar, Subash; Ganju, Neeraj; Mokta, Kiran; Panda, Prashant Kumar; Gupta, Swatantra

    2017-01-01

    Background: Abnormal glucose metabolic status at admission is an important marker of future cardiovascular events and long-term mortality after acute coronary syndrome (ACS), whether or not they are known diabetics. Objective: The aims were to study the prevalence of abnormal glucose metabolism in ACS patients and to compare the different methods of diagnosing diabetes in ACS patients. Methods: We did a prospective study. About 250 consecutive nondiabetic patients (200 men and 50 women) with ACS admitted to a tertiary care institute of Himachal Pradesh in 1 year were enrolled. Admission plasma glucose, next morning fasting plasma glucose (FPG), A1C, and a standardized 75-g oral glucose tolerance test (OGTT) 72 h after admission were done. Glucose metabolism was categorized as normal glucose metabolism, impaired glucose metabolism (impaired fasting glucose or impaired glucose tolerance [IGT]), and diabetes. Diabetes was arbitrarily classified further as undiagnosed (HBA1c ≥6.5%) or possibly stress diabetes (HBA1c <6.5%). A repeat OGTT after 3 months in objects with IGT and stress hyperglycemia at a time of admission was done. Results: The mean age was 54 ± 12.46 years. The mean plasma glucose at admission was 124 ± 53.96 mg/dL, and the mean FPG was 102 ± 27.07 mg/dL. The mean 2-h postglucose load concentration was 159.5 ± 56.58 mg/dL. At baseline, 95 (38%) had normal glucose metabolism, 95 (38%) had impaired glucose metabolism (IGT and or IGT) and 60 (24%) had diabetes; 48 (19.2%) were undiagnosed diabetes and 12 (4.8%) had stress hyperglycemia. At follow up 58.66% and 55.55% of patients with impaired glucose tolerance and stress hyperglycemia continued to have impaired glucose tolerance respectively. About 75 gm OGTT has highest sensitivity and specificity to diagnose diabetes, whereas A1C most specific to rule out stress hyperglycemia. Conclusions: In this small hilly state of India, abnormal glucose metabolism (previously undiagnosed diabetes and IGT) is

  18. A randomised crossover placebo-controlled trial investigating the effect of brown seaweed (Ascophyllum nodosum and Fucus vesiculosus) on postchallenge plasma glucose and insulin levels in men and women.

    PubMed

    Paradis, Marie-Eve; Couture, Patrick; Lamarche, Benoît

    2011-12-01

    This study examined the impact of brown seaweed on post-load plasma glucose and insulin concentrations in men and women. Twenty-three participants (11 men, 12 women) aged 19-59 years were recruited in this double-blind, randomized, placebo-controlled crossover study. The test product consisted of a commercially available blend of brown seaweed (Ascophyllum nodosum and Fucus vesiculosus) with known inhibitory action on α-amylase and α-glucosidase activities (InSea²). Two 250 mg seaweed capsules and 2 placebo capsules were consumed on each occasion 30 min prior to the consumption of 50 g of carbohydrates from bread. Plasma glucose and insulin concentrations were measured over a period of 3 h postcarbohydrate ingestion at predetermined time points. Both treatments were separated by a 1-week washout period. Data were analysed using mixed models for repeated measures. Compared with placebo, consumption of seaweed was associated with a 12.1% reduction in the insulin incremental area under the curve (p = 0.04, adjusted for baseline) and a 7.9% increase in the Cederholm index of insulin sensitivity (p < 0.05). The single ingestion of 500 mg of brown seaweed had no significant effect on the glucose response (p = 0.24, adjusted for baseline). Glucose and insulin responses were similar between men and women. Consumption of the seaweed capsules was not associated with any adverse event. These data suggest that brown seaweed may alter the insulin homeostasis in response to carbohydrate ingestion.

  19. Acute elevation of endogenous prolactin does not influence glucose homeostasis in healthy men.

    PubMed

    Vigas, M; Klimes, I; Jurcovicová, J; Jezová, D

    1993-01-01

    The diabetogenic effect of prolactin observed in patients with pathological hyperprolactinaemia was verified in healthy subjects. Plasma prolactin elevation was induced by administration of a dopamine antagonist drug domperidone (Motilium 10 mg orally, 9 subjects) and 2 h later the oral glucose tolerance test was performed. The influence of dopamine receptor stimulation on glucose homeostasis was tested by dopamine infusion (0.3 mg in saline or 20% glucose, 1 g/min for 60 min, 11 subjects). After the blockade of dopamine receptors, a significant and prolonged increase of prolactin concentration was found. However, the levels of glucose, insulin, and C-peptide either before or after the glucose load were not different from control ones. The decreased number of insulin receptors (1.97 +/- 0.41 vs 0.51 +/- 0.14 pmol per 2.10(9) red blood cells) was compensated by increased affinity (0.51 +/- 0.17 vs 1.00 +/- 0.22 Ke 10(8) mol.-1 per l]) of insulin receptors. The stimulation of dopamine receptors showed a negligible effect on glucose regulation. It may be suggested that an endogenous increase of prolactin concentration in the physiological range does not participate in the regulation of glucose homeostasis in healthy subjects.

  20. Lactation Intensity and Postpartum Maternal Glucose Tolerance and Insulin Resistance in Women With Recent GDM

    PubMed Central

    Gunderson, Erica P.; Hedderson, Monique M.; Chiang, Vicky; Crites, Yvonne; Walton, David; Azevedo, Robert A.; Fox, Gary; Elmasian, Cathie; Young, Stephen; Salvador, Nora; Lum, Michael; Quesenberry, Charles P.; Lo, Joan C.; Sternfeld, Barbara; Ferrara, Assiamira; Selby, Joseph V.

    2012-01-01

    OBJECTIVE To examine the association between breastfeeding intensity in relation to maternal blood glucose and insulin and glucose intolerance based on the postpartum 2-h 75-g oral glucose tolerance test (OGTT) results at 6–9 weeks after a pregnancy with gestational diabetes mellitus (GDM). RESEARCH DESIGN AND METHODS We selected 522 participants enrolled into the Study of Women, Infant Feeding, and Type 2 Diabetes (SWIFT), a prospective observational cohort study of Kaiser Permanente Northern California members diagnosed with GDM using the 3-h 100-g OGTT by the Carpenter and Coustan criteria. Women were classified as normal, prediabetes, or diabetes according to American Diabetes Association criteria based on the postpartum 2-h 75-g OGTT results. RESULTS Compared with exclusive or mostly formula feeding (>17 oz formula per 24 h), exclusive breastfeeding and mostly breastfeeding (≤6 oz formula per 24 h) groups, respectively, had lower adjusted mean (95% CI) group differences in fasting plasma glucose (mg/dL) of −4.3 (−7.4 to −1.3) and −5.0 (−8.5 to −1.4), in fasting insulin (μU/mL) of −6.3 (−10.1 to −2.4) and −7.5 (−11.9 to −3.0), and in 2-h insulin of −21.4 (−41.0 to −1.7) and −36.5 (−59.3 to −13.7) (all P < 0.05). Exclusive or mostly breastfeeding groups had lower prevalence of diabetes or prediabetes (P = 0.02). CONCLUSIONS Higher intensity of lactation was associated with improved fasting glucose and lower insulin levels at 6–9 weeks’ postpartum. Lactation may have favorable effects on glucose metabolism and insulin sensitivity that may reduce diabetes risk after GDM pregnancy. PMID:22011407

  1. Combined prognostic utility of white blood cell count, plasma glucose, and glomerular filtration rate in patients undergoing primary stent placement for acute myocardial infarction.

    PubMed

    Kosuge, Masami; Kimura, Kazuo; Morita, Satoshi; Kojima, Sunao; Sakamoto, Tomohiro; Ishihara, Masaharu; Asada, Yujiro; Tei, Chuwa; Miyazaki, Shunichi; Sonoda, Masahiro; Tsuchihashi, Kazufumi; Yamagishi, Masakazu; Shirai, Mutsunori; Hiraoka, Hisatoyo; Honda, Takashi; Ogata, Yasuhiro; Ogawa, Hisao

    2009-02-01

    Although high white blood cell (WBC) count and plasma glucose (PG) and low glomerular filtration rate (GFR) on admission have been associated with poor outcomes after acute myocardial infarction (AMI), the combined prognostic utility of these 3 variables was unclear. The association of WBC count, PG, and GFR on admission to in-hospital outcomes was examined in 2,633 patients who underwent primary stent placement for ST-segment elevation AMI within 48 hours after symptom onset. In-hospital mortality progressively increased as the number of the variables of high WBC count (> or =11,120/microl; upper tertile), high PG (> or =10.4 mmol/L; upper tertile), and low GFR (< or =60 ml/min/1.73 m(2); lower tertile) increased. Patients with all 3 variables had a strikingly higher in-hospital mortality rate (25.9%). After adjusting for baseline characteristics, multivariate analysis showed that compared with patients who had none of these variables, odds ratios for in-hospital mortality were 1.63 (95% confidence interval [CI] 0.88 to 3.03, p = 0.12) in patients with only 1 variable, 2.33 (95% CI 1.28 to 3.96, p = 0.047) in those with 2 variables, and 6.16 (95% CI 2.98 to 12.6, p <0.001) in those with all 3 variables. In conclusion, combined evaluation of WBC count, PG, and GFR on admission was a simple and useful method for the early prediction of risk of in-hospital death in patients undergoing primary stent placement for ST-segment elevation AMI.

  2. Association of Postbreakfast Triglyceride and Visit-to-Visit Annual Variation of Fasting Plasma Glucose with Progression of Diabetic Nephropathy in Patients with Type 2 Diabetes

    PubMed Central

    Kitaoka, Kaori; Takenouchi, Akiko; Tsuboi, Ayaka; Fukuo, Keisuke

    2016-01-01

    Urinary albumin/creatinine ratio (ACR) was measured at baseline and after a median follow-up of 6.0 years in 161 patients with type 2 diabetes. Intrapersonal means and SD of HbA1c, systolic BP, fasting, and postmeal plasma glucose (FPG and PMPG, resp.) and serum triglycerides (FTG and PMTG, resp.) were calculated in each patient during the first 12 months after enrollment. Associations of these variables with nephropathy progression (15 patients with progression of albuminuric stages and 5 with ACR doubling within the microalbuminuric range) were determined by multivariate logistic regression analysis providing odds ratio with 95% confidential interval. Patients with nephropathy progression, compared with those without nephropathy progression, had higher HbA1c (p < 0.01). They also had higher means and SD of FPG (both p < 0.05), FTG (both p < 0.05), and PMTG (p = 0.001). Multivariate logistic regression analysis demonstrated that SD-FPG (1.036, 1.001–1.073, p = 0.04) and PMTG (1.013, 1.008–1.040, p = 0.001) were significant predictors of progression of nephropathy even after adjustment for mean FPG and SD-FTG, age, sex, BMI, waist circumference, diabetes duration and therapy, means and SDs of HbA1c, PPG, FTG and systolic BP, baseline ACR, smoking status, and uses of antihypertensive and lipid-lowering medications. Consistency of glycemic control and management of postmeal TG may be important to prevent nephropathy progression in type 2 diabetic patients. PMID:27975066

  3. Changes in body weight are significantly associated with changes in fasting plasma glucose and HDL cholesterol in Japanese men without abdominal obesity (waist circumference < 85 cm).

    PubMed

    Oda, Eiji; Kawai, Ryu

    2011-06-01

    The aims are to examine whether changes in body weight (dBW) are associated with changes in cardiovascular risk factors in Japanese men without abdominal obesity (waist circumference (WC) < 85 cm) and which anthropometric index, dBW or changes in WC (dWC), is more strongly associated with changes in cardiovascular risk factors in men without abdominal obesity. It is a retrospective study in 692 Japanese men without abdominal obesity who took annual health screening tests consecutively over one year. Standardized linear regression coefficients (SRCs) of dBW and dWC were calculated for changes in systolic blood pressure (dSBP), diastolic blood pressure (dDBP), fasting plasma glucose (dFPG), triglycerides (dTG), HDL cholesterol (dHDL), and high-sensitivity C-reactive protein (dCRP). The SRCs of dBW for dFPG and dHDL were significant in all men and in men with each risk factor corresponding to the component of metabolic syndrome (MetS). The SRCs of dWC for dTG and dCRP were significant in all men but not in men with each risk factor corresponding to the MetS component. In conclusions, dBW were significantly associated with dFPG and dHDL in Japanese men without abdominal obesity. Therefore, abdominal obesity should not be considered as a necessary component of MetS in Japanese men. dBW may be more useful than dWC as a marker of changes in cardiovascular risk factors in lifestyle intervention programs.

  4. An acute oral dose of caffeine does not alter glucose kinetics during prolonged dynamic exercise in trained endurance athletes.

    PubMed

    Roy, B D; Bosman, M J; Tarnopolsky, M A

    2001-08-01

    This study investigated the possible influence of oral caffeine administration on endogenous glucose production and energy substrate metabolism during prolonged endurance exercise. Twelve trained endurance athletes [seven male, five female; peak oxygen consumption (VO2peak) = 65.5 ml.kg-1.min-1] performed 60 min of cycle ergometry at 65% VO2peak twice, once after oral caffeine administration (6 mg.kg-1) (CAF) and once following consumption of a placebo (PLA). CAF and PLA were administered in a randomized double-blind manner 75 min prior to exercise. Plasma glucose kinetics were determined with a primed-continuous infusion of [6,6-2H]glucose. No differences in oxygen consumption (VO2), and carbon dioxide production (VCO2) were observed between CAF and PLA, at rest or during exercise. Blood glucose concentrations were similar between the two conditions at rest and also during exercise. Exercise did lead to an increase in serum free fatty acid (FFA) concentrations for both conditions; however, no differences were observed between CAF and PLA. Both the plasma glucose rate of appearance (Ra) and disappearance (Rd) increased at the onset of exercise (P < 0.05), but were not affected by CAF, as compared to PLA. CAF did lead to a higher plasma lactate concentration during exercise (P < 0.05). It was concluded that an acute oral dose of caffeine does not influence plasma glucose kinetics or energy substrate oxidation during prolonged exercise in trained endurance athletes. However, CAF did lead to elevated plasma lactate concentrations. The exact mechanism of the increase in plasma lactate concentrations remains to be determined.

  5. Fasting adaptation in idiopathic ketotic hypoglycemia: a mismatch between glucose production and demand.

    PubMed

    Huidekoper, Hidde H; Duran, Marinus; Turkenburg, Marjolein; Ackermans, Mariëtte T; Sauerwein, Hans P; Wijburg, Frits A

    2008-08-01

    In order to study the pathophysiology of hypoglycemia in idiopathic ketotic hypoglycemia (KH), glucose kinetics during fasting in patients with KH were determined. A fasting test was performed in 12 children with previously documented KH. Besides determination of glucoregulatory hormones, plasma ketones, FFA and alanine, the rates of endogenous glucose production (EGP), glucose uptake, gluconeogenesis (GNG) and glycogenolysis (GGL) were quantified using the [6,6-(2)H(2)] glucose isotope dilution method and the deuterated water method. The five youngest subjects (age 2.5-3.9 years) became hypoglycemic (glucose <3.0 mmol/l) during the test. Mean differences in glucose kinetics between overnight fasting and the end of the test in the hypoglycemic vs. the normoglycemic subjects were: EGP: -31.9% vs. -17.9% (p = 0.007), GGL: -66.2% vs. -50.8% (p = 0.465) and GNG 6.8% vs. 19.5% (p = 0.465). Plasma alanine levels were significantly lower (p = 0.028) at the end of the test in the hypoglycemic subjects. Plasma ketones and FFA levels were in the normal range for fasting duration in all subjects. We conclude that hypoglycemia in KH is caused by the inability to sustain an adequate EGP during fasting in view of the higher glucose requirement in young children. The decrease in GGL is not accompanied by a significant increase in GNG, possibly because of a limitation in the supply of alanine. Our results support the hypothesis that KH represents the lower tail of the Gaussian distribution of fasting tolerance in children.

  6. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  7. Blood glucose regulation mechanism in depressive disorder animal model during hyperglycemic states.

    PubMed

    Lim, Su-Min; Park, Soo-Hyun; Sharma, Naveen; Kim, Sung-Su; Lee, Jae-Ryeong; Jung, Jun-Sub; Suh, Hong-Won

    2016-06-01

    Depression is more common among diabetes people than in the general population. In the present study, blood glucose change in depression animal model was characterized by various types of hyperglycemia models such as d-glucose-fed-, immobilization stress-, and drug-induced hyperglycemia models. First, the ICR mice were enforced into chronic restraint stress for 2h daily for 2 weeks to produce depression animal model. The animals were fed with d-glucose (2g/kg), forced into restraint stress for 30min, or administered with clonidine (5μg/5μl) supraspinally or spinally to produce hyperglycemia. The blood glucose level in depression group was down-regulated compared to that observed in the normal group in d-glucose-fed-, restraint stress-, and clonidine-induced hyperglycemia models. The up-regulated corticosterone level induced by d-glucose feeding or restraint stress was reduced in the depression group while the up-regulation of plasma corticosterone level is further elevated after i.t. or i.c.v. clonidine administration in the depression group. The up-regulated insulin level induced by d-glucose feeding or restraint stress was reduced in the depression group. On the other hand, blood corticosterone level in depression group was up-regulated compared to the normal group after i.t. or i.c.v. clonidine administration. Whereas the insulin level in depression group was not altered when mice were administered clonidine i.t. or i.c.v. Our results suggest that the blood glucose level in depression group is down-regulated compared to the normal group during d-glucose-fed-, immobilization stress-, and clonidine-induced hyperglycemia in mice. The down-regulation of the blood glucose level might be one of the important pathophysiologic changes in depression.

  8. The metabolic syndrome of fructose-fed rats: effects of long-chain polyunsaturated ω3 and ω6 fatty acids. II. Time course of changes in food intake, body weight, plasma glucose and insulin concentrations and insulin resistance.

    PubMed

    Mellouk, Zoheir; Hachimi Idrissi, Tarek; Louchami, Karim; Hupkens, Emeline; Sener, Abdullah; Yahia, Dalila Ait; Malaisse, Willy J

    2012-01-01

    The time course for changes in food intake, body weight, plasma glucose and insulin concentrations and HOMA index was monitored over a period of 8 weeks in rats exposed from the 8th week after birth to diets containing either starch or fructose and sunflower oil. In two further groups of rats exposed to the fructose-rich diet part of the sunflower oil was substituted by either salmon oil rich in long-chain polyunsaturated ω3 fatty acids or safflower oil rich in long-chain polyunsaturated ω6 fatty acids. Despite lower food intake, the gain in body weight was higher in fructose-fed rats than in starch-fed rats. The supplementation of the fructose-rich diet by either ω3 or ω6 fatty acids lowered both food intake and body weight gain. The measurements of plasma glucose and insulin concentrations, HOMA index and insulinogenic index performed after overnight starvation were in fair agreement with those recorded at the occasion of an intraperitoneal glucose tolerance test, with higher values for plasma glucose concentration and HOMA index in the fructose-fed rats exposed to the sunflower oil (with or without enrichment with ω6 fatty acids) than in the starch-fed rats exposed to the sunflower oil or fructose-fed rats exposed to a diet enriched with ω3 fatty acids. Such was also the case for the measurements of glycated albumin at sacrifice. Moreover, the insulinogenic index was lower in the fructose-fed rats with or without dietary enrichment in ω6 fatty acids than in the fructose-fed rats with dietary enrichment in ω3 fatty acids. The elucidation of the biochemical determinants of the later difference requires further investigations in isolated pancreatic islets.

  9. Modelling the Relative Contribution of Fasting and Post-Prandial Plasma Glucose to HbA1c in Healthy and Type 2 Diabetic Subjects

    ERIC Educational Resources Information Center

    Ollerton, Richard L.; Luzio, Steven D.; Owens, David R.

    2004-01-01

    Glycated haemoglobin (HbA1c) is regarded as the gold standard of glucose homeostasis assessment in diabetes. There has been much discussion in recent medical literature of experimental results concerning the relative contribution of fasting and post-prandial glucose levels to the value of HbA1c. A mathematical model of haemoglobin glycation is…

  10. Effect of ovarian suppression with gonadotropin-releasing hormone agonist on glucose disposal and insulin secretion.

    PubMed

    Toth, Michael J; Cooper, Brian C; Pratley, Richard E; Mari, Andrea; Matthews, Dwight E; Casson, Peter R

    2008-06-01

    Several lines of evidence suggest that ovarian hormones influence glucose homeostasis, although their exact role in humans has not been clearly defined. In the present study, we sought to test the hypothesis that ovarian hormones regulate glucose homeostasis by examining the effect of pharmacologically induced ovarian hormone deficiency on glucose disposal and insulin secretion. Young, healthy women with regular menstrual patterns were studied during the follicular and luteal phases of their cycle at baseline and after 2 mo of treatment with gonadotropin-releasing hormone agonist (GnRHa; n = 7) or placebo (n = 6). Using hyperglycemic clamps, in combination with stable isotope-labeled (i.e., (13)C and (2)H) glucose tracers, we measured glucose disposal and insulin secretion. Additionally, we assessed body composition and regional fat distribution using radiologic imaging techniques as well as glucoregulatory hormones. Ovarian hormone suppression with GnRHa did not alter body composition, abdominal fat distribution, or thigh tissue composition. There was no effect of ovarian suppression on total, oxidative, or nonoxidative glucose disposal expressed relative to plasma insulin level. Similarly, no effect of ovarian hormone deficiency was observed on first- or second-phase insulin secretion or insulin clearance. Finally, ovarian hormone deficiency was associated with an increase in circulating adiponectin levels but no change in leptin concentration. Our findings suggest that a brief period of ovarian hormone deficiency in young, healthy, eugonadal women does not alter glucose disposal index or insulin secretion, supporting the conclusion that ovarian hormones play a minimal role in regulating glucose homeostasis. Our data do, however, support a role for ovarian hormones in the regulation of plasma adiponectin levels.

  11. The 13C-Glucose Breath Test for Insulin Resistance Assessment in Adolescents: Comparison with Fasting and Post-Glucose Stimulus Surrogate Markers of Insulin Resistance

    PubMed Central

    Maldonado-Hernández, Jorge; Martínez-Basila, Azucena; Salas-Fernández, Alejandra; Navarro-Betancourt, José R.; Piña-Aguero, Mónica I.; Bernabe-García, Mariela

    2016-01-01

    Objective: To evaluate the use of the 13C-glucose breath test (13C-GBT) for insulin resistance (IR) detection in adolescents through comparison with fasting and post-glucose stimulus surrogates. Methods: One hundred thirty-three adolescents aged between 10 and 16 years received an oral glucose load of 1.75 g per kg of body weight dissolved in 150 mL of water followed by an oral dose of 1.5 mg/kg of U-13C-Glucose, without a specific maximum dose. Blood samples were drawn at baseline and 120 minutes, while breath samples were obtained at baseline and at 30, 60, 90, 120, 150, and 180 minutes. The 13C-GBT was compared to homeostasis model assessment (HOMA) IR (≥p95 adjusted by gender and age), fasting plasma insulin (≥p90 adjusted by gender and Tanner stage), results of 2-h oral glucose tolerance test (OGTT), insulin levels (≥65 μU/mL) in order to determine the optimal cut-off point for IR diagnosis. Results: 13C-GBT data, expressed as adjusted cumulative percentage of oxidized dose (A% OD), correlated inversely with fasting and post-load IR surrogates. Sexual development alters A% OD results, therefore individuals were stratified into pubescent and post-pubescent. The optimal cut-off point for the 13C-GBT in pubescent individuals was 16.3% (sensitivity=82.8% & specificity=60.6%) and 13.0% in post-pubescents (sensitivity=87.5% & specificity=63.6%), when compared to fasting plasma insulin. Similar results were observed against HOMA and 2-h OGTT insulin. Conclusion: The 13C-GBT is a practical and non-invasive method to screen for IR in adolescents with reasonable sensitivity and specificity. PMID:27354200

  12. Glucose metabolism and hyperglycemia.

    PubMed

    Giugliano, Dario; Ceriello, Antonio; Esposito, Katherine

    2008-01-01

    Islet dysfunction and peripheral insulin resistance are both present in type 2 diabetes and are both necessary for the development of hyperglycemia. In both type 1 and type 2 diabetes, large, prospective clinical studies have shown a strong relation between time-averaged mean values of glycemia, measured as glycated hemoglobin (HbA1c), and vascular diabetic complications. These studies are the basis for the American Diabetes Association's current recommended treatment goal that HbA1c should be <7%. The measurement of the HbA1c concentration is considered the gold standard for assessing long-term glycemia; however, it does not reveal any information on the extent or frequency of blood glucose excursions, but provides an overall mean value only. Postprandial hyperglycemia occurs frequently in patients with diabetes receiving active treatment and can occur even when metabolic control is apparently good. Interventional studies indicate that reducing postmeal glucose excursions is as important as controlling fasting plasma glucose in persons with diabetes and impaired glucose tolerance. Evidence exists for a causal relation between postmeal glucose increases and microvascular and macrovascular outcomes; therefore, it is not surprising that treatment with different compounds that have specific effects on postprandial glucose regulation is accompanied by a significant improvement of many pathways supposed to be involved in diabetic complications, including oxidative stress, endothelial dysfunction, inflammation, and nuclear factor-kappaB activation. The goal of therapy should be to achieve glycemic status as near to normal as safely possible in all 3 components of glycemic control: HbA1c, fasting glucose, and postmeal glucose peak.

  13. GC-MS and GC-MS/MS measurement of ibuprofen in 10-μL aliquots of human plasma and mice serum using [α-methylo-(2)H3]ibuprofen after ethyl acetate extraction and pentafluorobenzyl bromide derivatization: Discovery of a collision energy-dependent H/D isotope effect and pharmacokinetic application to inhaled ibuprofen-arginine in mice.

    PubMed

    Tsikas, Dimitrios; Kayacelebi, Arslan Arinc; Hanff, Erik; Mitschke, Anja; Beckmann, Bibiana; Tillmann, Hanns-Christian; Gutzki, Frank-Mathias; Müller, Meike; Bernasconi, Corrado

    2017-02-01

    GC-MS and GC-MS/MS methods were developed and validated for the quantitative determination of ibuprofen (d0-ibuprofen), a non-steroidal anti-inflammatory drug (NSAID), in human plasma using α-methyl-(2)H3-4-(isobutyl)phenylacetic acid (d3-ibuprofen) as internal standard. Plasma (10μL) was diluted with acetate buffer (80μL, 1M, pH 4.9) and d0- and d3-ibuprofen were extracted with ethyl acetate (2×500μL). After solvent evaporation d0- and d3-ibuprofen were derivatized in anhydrous acetonitrile by using pentafluorobenzyl (PFB) bromide and N,N-diisopropylethylamine as the base catalyst. Under electron-capture negative-ion chemical ionization (ECNICI), the PFB esters of d0- and d3-ibuprofen readily ionize to form their carboxylate anions [M-PFB](-) at m/z 205 and m/z 208, respectively. Collision-induced dissociation (CID) of m/z 205 and m/z 208 resulted in the formation of the anions at m/z 161 and m/z 164, respectively, due to neutral loss of CO2 (44 Da). A collision energy-dependent H/D isotope effect was observed, which involves abstraction/elimination of H(-) from d0-ibuprofen and D(-) from d3-ibuprofen and is minimum at a CE value of 5eV. Quantitative GC-MS determination was performed by selected-ion monitoring of m/z 205 and m/z 208. Quantitative GC-MS/MS determination was performed by selected-reaction monitoring of the mass transitions m/z 205 to m/z 161 for d0-ibuprofen and m/z 208 to m/z 164 for d3-ibuprofen. In a therapeutically relevant concentration range (0-1000μM) d0-ibuprofen added to human plasma was determined with accuracy (recovery, %) and imprecision (relative standard deviation, %) ranging between 93.7 and 110%, and between 0.8 and 4.9%, respectively. GC-MS (y) and GC-MS/MS (x) yielded almost identical results (y=4.00+0.988x, r(2)=0.9991). In incubation mixtures of arachidonic acid (10μM), d3-ibuprofen (10μM) or d0-ibuprofen (10μM) with ovine cyclooxygenase (COX) isoforms 1 and 2, the concentration of d3-ibuprofen and d0-ibuprofen did not

  14. Normal fasting plasma glucose levels and type 2 diabetes: the high-risk and population strategy for occupational health promotion (HIPOP-OHP) [corrected] study.

    PubMed

    Hayashino, Y; Fukuhara, S; Suzukamo, Y; Okamura, T; Tanaka, T; Ueshima, H

    2007-09-01

    The objective of this study is to ascertain if higher normal fasting glucose levels are also an independent risk of developing diabetes in an Asian population, and we thus analysed data from a cohort of healthy Japanese workers. We used data from the non-randomised trial on health promotion intervention, High-risk and Population Strategy for Occupational Health Promotion (HIPOP-OHP) Study. Diabetes cases and those who had fasting blood glucose levels equal to or greater than 100 mg/dl at baseline were excluded, and the Cox proportional-hazards model was used for the analysis. During the four-year follow-up of 2212 participants, we found 37 diabetes cases. In the multivariable model, people with blood glucose levels in the 4th quartile had a higher risk of diabetes than those in the bottom quartile; the multivariable-adjusted odds ratio was 2.52. The risk of diabetes abruptly rose in persons with blood glucose levels higher than 94 mg/dl (fourth quartile). A significant linear trend was not observed in the 1st to 3rd quartiles (p=0.726). In conclusion, higher fasting glucose level was associated with the risk of diabetes, and we found a threshold in the association between fasting blood glucose levels and risk of diabetes in an Asian population.

  15. Serum leptin concentrations are not related to dietary patterns but are related to sex, age, body mass index, serum triacylglycerol, serum insulin, and plasma glucose in the US population

    PubMed Central

    Ganji, Vijay; Kafai, Mohammad R; McCarthy, Erin

    2009-01-01

    Background Leptin is known to play a role in food intake regulation. The aim of this study was to investigate the relation between serum leptin concentrations and dietary patterns and demographic, lifestyle, and health factors in the US population. Methods Data from the third National Health and Nutrition Examination Survey, 1988–1994 were used to study the association between fasting serum leptin and dietary patterns, sex, race-ethnicity, smoking, age, energy and alcohol intakes, body mass index (BMI), plasma glucose, serum triacylglycerol, and serum insulin in 4009 individuals. Factor analysis was used to derive three principle factors and these were labeled as Vegetable, Fruit, and Lean Meat, Western, and Mixed dietary patterns. Results Serum leptin concentrations were significantly higher in Vegetable, Fruit, and Lean Meat (8.5 fg/L) and Mixed patterns (8.0 fg/L) compared to Western pattern (6.29 fg/L) (P < 0.0001). When analysis was adjusted for confounding variables, no significant association was observed between serum leptin and dietary patterns (P = 0.22). Multivariate adjusted serum leptin concentrations were significantly associated with sex (higher in women than in men; β = -1.052; P < 0.0001), age (direct relation, β = 0.006, P < 0.0001), BMI, (direct relation, β = 0.082, P < 0.0001), fasting plasma glucose (inverse relation, β = -0.024, P = 0.0146), serum triacylglycerol (direct relation, β = 0.034, P = 0.0022), and serum insulin (direct relation, β = 0.003, P < 0.0001) but not with race-ethnicity (P = 0.65), smoking (P = 0.20), energy intake (P = 0.42), and alcohol intake (P = 0.73). Conclusion In this study, serum leptin was not independently associated with dietary patterns. Sex, age, BMI, serum triacylglycerol, plasma glucose, and serum insulin are independent predictors of serum leptin concentrations. PMID:19144201

  16. Effect of dry- versus wet-autoclaving of spray-dried egg albumen compared with casein as protein sources on apparent nitrogen and energy balance, plasma urea nitrogen and glucose concentrations, and growth performance of neonatal swine.

    PubMed

    Watkins, K L; Veum, T L

    2010-08-01

    Forty crossbred neonatal pigs with an average initial age of 4 d and BW of 2.16 kg were used in a 28-d experiment to evaluate the nutritional effects of autoclaving a commercial sugar-free, spray-dried egg albumen (EA) compared with casein. Basal diet protein sources were lactic acid casein and EA. Two more dietary treatments were made by replacing the EA with dry-autoclaved EA (DAEA) or wet-autoclaved EA (WAEA, EA and water mixed in a 1.0:1.2 ratio before autoclaving). The DAEA and WAEA were autoclaved at 121 degrees C and 1.75 kg/cm(2) pressure for 30 min, and WAEA was oven-dried after autoclaving. Analyzed trypsin inhibitor units/mg of EA, DAEA, and WAEA were 535.0, 9.0, and 6.5, respectively. Pigs were fed the diets in gruel form to appetite in individual metabolism cages every 2 h during the experiment. Blood samples were taken on d 7, 14, and 21, and total urine and fecal grab-samples were collected from d 14 to 21 of the experiment. Response criteria were N and energy balance, plasma urea N (PUN) and glucose concentrations, and growth performance. The WAEA was a higher quality protein source for neonatal pigs than DAEA. Pigs fed the diet containing WAEA absorbed and retained more (P < 0.05) grams of N/d, had higher (P < 0.05) percentages of N and energy that were absorbed and retained/intake, had lower (P < 0.05) concentrations of PUN overall, and had higher (P < 0.05) ADG and G:F than pigs fed the diet containing DAEA. Most response criteria of pigs fed the diets containing DAEA or EA were not different, although pigs fed the diet containing DAEA had lower (P < 0.05) overall PUN concentrations, and pigs fed the diet containing EA had higher (P < 0.05) percentages of energy absorbed and retained/intake, and higher ADG and G:F than pigs fed the diet containing DAEA. Growth performance was not different for pigs fed the diets containing WAEA or casein. However, pigs fed the diet containing casein excreted less (P < 0.05) fecal N, retained more (P < 0/05) grams

  17. Effect of Glycemic Control on Chylomicron Metabolism and Correlation between Postprandial Metabolism of Plasma Glucose and Chylomicron in Patients with Type 2 Diabetes Treated with Basal-bolus Insulin Therapy with or without Vildagliptin

    PubMed Central

    Emoto, Naoya; Kato, Katsuhito; Sugihara, Hitoshi

    2017-01-01

    Aim: Glucagon-like peptide-1 can reduce both postprandial plasma glucose (PG) and chylomicron (CM) levels in patients with type 2 diabetes. However, there have been no reports regarding the relationship between the postprandial metabolism of PG and CM. Methods: Patients with type 2 diabetes who were admitted for glycemic control were randomized to insulin alone (Ins; n = 16) or insulin plus vildagliptin 100 mg (InsV; n = 16) groups. The insulin dose was adjusted to maintain normal blood glucose levels. The daily profiles of serum TG, remnant lipoprotein cholesterol (RemL-C), and apolipoprotein B48 (ApoB48) were estimated by frequent blood collection on admission and before discharge, and the daily glucose fluctuation profile was also estimated using continuous glucose monitoring (CGM) before discharge. Results: The daily profiles of serum TG and RemL-C indicated a significant decrease before discharge compared with on admission; however, no significant changes in serum ApoB48 levels were observed in either group. At discharge, daily glucose fluctuation profile and the change in the serum ApoB48 level from fasting to the peak of the daily profile was significantly smaller in the InsV group than in the Ins group. The increment of serum ApoB48 level was significantly correlated with the mean amplitude of glycemic excursions calculated using CGM data only in the Ins group (R2 = 0.5242, P <0.001). Conclusions: Short-term glycemic control decreased serum TG and RemL-C levels, but not ApoB48 levels, and the postprandial metabolism of PG and CM might be regulated by the same mechanism except GLP-1 effect. PMID:27397060

  18. Continuous glucose monitoring, oral glucose tolerance, and insulin - glucose parameters in adolescents with simple obesity.

    PubMed

    El Awwa, A; Soliman, A; Al-Ali, M; Yassin, M; De Sanctis, V

    2012-09-01

    In obese adolescents pancreatic beta-cells may not be able to cope with insulin resistance leading to hyperglycemia and type2 diabetes (T2DM To assess oral glucose tolerance, 72-h continuous blood glucose concentrations (CGM) and calculate homeostatic model assessment (HOMA), and the quantitative insulin sensitivity check index (QUICKI) in 13 adolescents with simple obesity (BMI SDS=4 ± 1.06). OGTT performed in 13 obese adolescents (13.47 ± 3 years) revealed 3 cases (23%) with impaired fasting glucose (IFG: fasting glucose >5.6 mmol/L), 4 cases (30%) with impaired glucose tolerance (IGT: 2h blood glucose >7.8 <11.1 mmol/L), and none with diabetes. Using the continuous glucose monitoring system ( CGMS), IFG was detected in 4 cases, the maximum serum blood glucose (BG : 2h or more after meal) was >7.8 and <11.1 mmol/L (IGT) in 9 children (69%) and >11.1 mmol/L (diabetes) in one case (7.6%). Five cases had a minimum BG recorded of <2.7 mmol/L (hypoglycemia). No glycemic abnormality was detected using HbA1C (5.7 ± 0.3%). 11/13 patients had HOMA values >2.6 and QUICKI values <0.35 denoting insulin resistance. Beta cell mass percent (B %) = 200 ± 94.8% and insulin sensitivity values (IS)=50.4 ± 45.5% denoted insulin resistance with hyper-insulinaemia and preserved beta cell mass. In obese adolescents, CGMS is superior to OGTT and HbA1C in detecting glycemic abnormalities, which appears to be secondary to insulin resistance.

  19. An improved technique for the 2H/1H analysis of urines from diabetic volunteers

    USGS Publications Warehouse

    Coplen, T.B.; Harper, I.T.

    1994-01-01

    The H2-H2O ambient-temperature equilibration technique for the determination of 2H/1H ratios in urinary waters from diabetic subjects provides improved accuracy over the conventional Zn reduction technique. The standard deviation, ~ 1-2???, is at least a factor of three better than that of the Zn reduction technique on urinary waters from diabetic volunteers. Experiments with pure water and solutions containing glucose, urea and albumen indicate that there is no measurable bias in the hydrogen equilibration technique.The H2-H2O ambient-temperature equilibration technique for the determination of 2H/1H ratios in urinary waters from diabetic subjects provides improved accuracy over the conventional Zn reduction technique. The standard deviation, approximately 1-2%, is at least a factor of three better than that of the Zn reduction technique on urinary waters from diabetic volunteers. Experiments with pure water and solutions containing glucose, urea and albumen indicate that there is no measurable bias in the hydrogen equilibration technique.

  20. Is a family history of diabetes associated with an increased level of cardiovascular risk factors? Studies in healthy people and in subjects with different degree of glucose intolerance.

    PubMed

    Quatraro, A; Giugliano, D; De Rosa, N; Minei, A; Ettorre, M; Donzella, C; Saccomanno, F; Ceriello, A

    1993-01-01

    In order to evaluate whether the presence of a positive family history of diabetes (PFH) may have a negative impact on both glucose metabolism and cardiovascular risk factors, we studied parameters of carbohydrate metabolism (fasting and 2h-plasma glucose, HbA1c) and beta-cell function (fasting insulin and C-peptide), as well as the levels of some established cardiovascular risk factors (total cholesterol and triglycerides, HDL-cholesterol, blood pressure) in 729 subjects who were seen within the frame of a Regional Health Program in Taranto, South Italy. According to the NDDG criteria, 147 men and 235 women had normal glucose tolerance, 54 men and 66 women non-diagnostic OGTT, 65 men and 79 women impaired glucose tolerance, and 45 men and 58 women newly-diagnosed Type 2 diabetes. There was a continuous increase of PFH across the categories of glucose intolerance (p < 0.001). Subjects with PFH were younger (4 years on the average) than subjects without PFH. After adjustment for age, there was no difference in the clinical and metabolic parameters considered across the categories of glucose tolerance between subjects with or without PFH. Only in OGTT-diagnosed diabetics, was the presence of PFH associated with significantly greater levels of total cholesterol and 2h-plasma glucose, as well as a trend for triglycerides and HbA1c to be higher. There was a continuous increase in fasting glucose, HbA1c, insulin and C-peptide across the categories; however, the C-peptide/insulin molar ratio was lowest in OGTT-diagnosed diabetics. There was a graded and significant increase in the levels of cardiovascular risk factors across the categories.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. A Dietary Supplement Containing Cinnamon, Chromium and Carnosine Decreases Fasting Plasma Glucose and Increases Lean Mass in Overweight or Obese Pre-Diabetic Subjects: A Randomized, Placebo-Controlled Trial

    PubMed Central

    Liu, Yuejun; Cotillard, Aurélie; Vatier, Camille; Bastard, Jean-Philippe; Fellahi, Soraya; Stévant, Marie; Allatif, Omran; Langlois, Clotilde; Bieuvelet, Séverine; Brochot, Amandine; Guilbot, Angèle; Clément, Karine; Rizkalla, Salwa W.

    2015-01-01

    Background Preventing or slowing the progression of prediabetes to diabetes is a major therapeutic issue. Objectives Our aim was to evaluate the effects of 4-month treatment with a dietary supplement containing cinnamon, chromium and carnosine in moderately obese or overweight pre-diabetic subjects, the primary outcome being change in fasting plasma glucose (FPG) level. Other parameters of plasma glucose homeostasis, lipid profile, adiposity and inflammatory markers were also assessed. Methods In a randomized, double-blind, placebo-controlled study, 62 subjects with a FPG level ranging from 5.55 to 7 mmol/L and a body mass index ≥25 kg/m2, unwilling to change their dietary and physical activity habits, were allocated to receive a 4-month treatment with either 1.2 g/day of the dietary supplement or placebo. Patients were followed up until 6 months post-randomization. Results Four-month treatment with the dietary supplement decreased FPG compared to placebo (-0.24±0.50 vs +0.12±0.59 mmol/L, respectively, p = 0.02), without detectable significant changes in HbA1c. Insulin sensitivity markers, plasma insulin, plasma lipids and inflammatory markers did not differ between the treatment groups. Although there were no significant differences in changes in body weight and energy or macronutrient intakes between the two groups, fat-free mass (%) increased with the dietary supplement compared to placebo (p = 0.02). Subjects with a higher FPG level and a milder inflammatory state at baseline benefited most from the dietary supplement. Conclusions Four-month treatment with a dietary supplement containing cinnamon, chromium and carnosine decreased FPG and increased fat-free mass in overweight or obese pre-diabetic subjects. These beneficial effects might open up new avenues in the prevention of diabetes. Trial Registration ClinicalTrials.gov NCT01530685 PMID:26406981

  2. Impact of diabetes duration on achieved reductions in glycated haemoglobin, fasting plasma glucose and body weight with liraglutide treatment for up to 28 weeks: a meta‐analysis of seven phase III trials

    PubMed Central

    Bailey, T.; Barkholt Christensen, S.; Nauck, M. A.

    2016-01-01

    This meta‐analysis of seven randomized, placebo‐controlled studies (total 3222 patients) evaluated whether type 2 diabetes (T2D) duration affects the changes in blood glucose control and body weight that can be achieved with liraglutide and placebo. With liraglutide 1.2 mg, shorter diabetes duration was associated with a significantly greater, but clinically non‐relevant, difference in glycated haemoglobin (HbA1c) reduction (p < 0.05), i.e. a 0.18% (1.96 mmol/mol) reduction in HbA1c per 10 years shorter diabetes duration. With liraglutide 1.8 mg, shorter diabetes duration was associated with a small but statistically significant trend for greater fasting plasma glucose (FPG) reduction (p < 0.05), i.e. a 0.38 mmol/l reduction in FPG per 10 years shorter diabetes duration. Neither the liraglutide 1.8 mg nor placebo results showed a significant association between HbA1c and diabetes duration and neither the liraglutide 1.2 mg nor placebo results showed a significant association between FPG and diabetes duration. Likewise, neither liraglutide nor placebo showed a significant association between change in weight and diabetes duration. These results suggest diabetes duration has a clinically negligible effect on achievable blood glucose control and weight outcomes with liraglutide and placebo in patients with T2D. PMID:26679282

  3. Effect of dietary polyphenols from hop (Humulus lupulus L.) pomace on adipose tissue mass, fasting blood glucose, hemoglobin A1c, and plasma monocyte chemotactic protein-1 levels in OLETF rats.

    PubMed

    Yui, Kazuki; Uematsu, Hiroki; Muroi, Keisuke; Ishii, Kazuhiro; Baba, Minako; Osada, Kyoichi

    2013-01-01

    Hop (Humulus lupulus L.) pomace contains procyanidin-rich polyphenols, which are large oligomeric compounds of catechin. We studied the effect of high dose (1%) of dietary hop pomace polyphenols (HPs) in Otsuka Long-EvansTokushima Fatty (OLETF) rats, an animal model of type 2 diabetes. By 70 days, the rats fed HPs tended to have a lower body weight and reduced mesenteric white adipose tissue weight than the rats fed a control diet. Triglyceride levels in both plasma and liver tended to be lower in the HPs-fed group than in the control group. Dietary HPs substantially suppressed the activities of hepatic fatty acid synthetase, glucose-6-phosphate dehydrogenase, and malic enzyme, through the suppression of SREBP1c mRNA expression in OLETF rats. Moreover, in the HPs-fed group, monocyte chemotactic protein-1 (MCP-1) expression and fasting blood glucose levels at 40 days, and hemoglobin A1c (HbA1c) levels at 70 days were significantly lower than those in the control group. Thus, dietary HPs may exert an ameliorative function on hepatic fatty acid metabolism, glucose metabolism, and inflammatory response accompanying the increase of the adipose tissue mass in OLETF rats.

  4. Elevated white blood cell count is associated with higher risk of glucose metabolism disorders in middle-aged and elderly Chinese people.

    PubMed

    Jiang, Hua; Yan, Wen-Hua; Li, Chan-Juan; Wang, An-Ping; Dou, Jing-Tao; Mu, Yi-Ming

    2014-05-20

    White blood cell (WBC) count has been associated with diabetic risk, but whether the correlation is independent of other risk factors has hardly been studied. Moreover, very few such studies with large sample sizes have been conducted in Chinese. Therefore, we investigated the relationship between WBC count and glucose metabolism in China. We also examined the relevant variables of WBC count. A total of 9,697 subjects (mean age, 58.0 ± 9.1 years) were recruited. The subjects were classified into four groups, including subjects with normal glucose tolerance, isolated impaired fasting glucose, impaired glucose tolerance and type 2 diabetes mellitus (T2DM). We found that WBC count increased as glucose metabolism disorders exacerbated. WBC count was also positively correlated with waist hip ratio, body mass index, smoking, triglycerides, glycosylated haemoglobin A1c (HbA1c) and 2-h postprandial glucose. In addition, high density lipoprotein and the female gender were inversely correlated with WBC levels. In patients with previously diagnosed T2DM, the course of T2DM was not correlated with WBC count. Our findings indicate that elevated WBC count is independently associated with worsening of glucose metabolism in middle-aged and elderly Chinese. In addition, loss of weight, smoking cessation, lipid-modifying therapies, and control of postprandial plasma glucose and HbA1c may ameliorate the chronic low-grade inflammation.

  5. Association reactions at low pressure. III. The C2H2+/C2H2 system.

    PubMed

    Anicich, V G; Sen, A D; Huntress, W T; McEwan, M J

    1990-11-15

    The association reactions, C4H2(+) + C2H2 and C4H3(+) + C2H2 have been examined at pressures between 8 x 10(-8) and 1 x 10(-4) Torr at 298 K in an ion cyclotron resonance mass spectrometer. Association occurred via two different mechanisms. At pressures below approximately 2 x 10(-6) Torr, the association was bimolecular having rate coefficients k2 = 2.7 x 10(-10) cm3 s-1 and 2.0 x 10(-10) cm3 s-1 for C4H2+ and C4H3+, respectively. At pressures above approximately 2 x 10(-6) Torr, termolecular association was observed with rate coefficients, k3 = 5.7 x 10(-23) cm6 s-1 and 1.3 x 10(-23) cm6 s-1 for C4H2+ and C4H3+, respectively, when M = C2H2. The termolecular rate constants with N2, Ar, Ne, and He as the third body, M, are also reported. We propose that the low pressure bimolecular association process was the result of radiative stabilization of the complex and the termolecular association process was the result of collisional stabilization. Elementary rate coefficients were obtained and the lifetime of the collision complex was > or = 57 microseconds for (C6H4+)* and > or = 18 microseconds for (C6H5+)*. At pressures below 1 x 10(-6) Torr, approximately 11% of the (C6H4+)* were stabilized by photon emission and the remaining approximately 89% reverted back to reactants, while approximately 24% of the (C6H5+)* were stabilized by photon emission and the remaining approximately 76% reverted back to reactants. The ionic products of the C2H2(+) + C2H2 reaction, C4H2+ and C4H3+, were found to be formed with enough internal energy that they did not react by the radiative association channel until relaxed by several nonreactive collisions with the bath gas.

  6. Effects of ruminal casein and glucose on forage digestion and urea kinetics in beef cattle.

    PubMed

    Bailey, E A; Titgemeyer, E C; Olson, K C; Brake, D W; Jones, M L; Anderson, D E

    2012-10-01

    Effects of supplemental glucose and degradable intake protein on nutrient digestion and urea kinetics in steers (Bos taurus) given ad libitum access to prairie hay (4.7% CP) were quantified. Six ruminally and duodenally cannulated steers (initial BW 391 kg) were used in a 4 × 4 Latin square with 2 extra steers. Treatments were arranged as a 2 × 2 factorial and included 0 or 1.2 kg of glucose and 240 or 480 g of casein dosed ruminally once daily. Each period included 9 d for adaptation, 4 d for total fecal and urine collections, and 1 d for ruminal and duodenal sampling. Jugular infusion of (15)N(15)N-urea with measurement of enrichment in urine was used to measure urea kinetics. Glucose reduced forage intake by 18% (P < 0.01), but casein did not affect forage intake (P = 0.69). Glucose depressed (P < 0.01) total tract NDF digestion. Glucose supplementation decreased ruminal pH 2 h after dosing, but the effect was negligible by 6 h (treatment × time; P = 0.01). Providing additional casein increased the ruminal concentration of NH(3), but the increase was less when glucose was supplemented (casein × glucose; P < 0.01). Plasma urea-N was increased (P < 0.01) by additional casein but was reduced (P < 0.01) by glucose. Microbial N flow to the duodenum and retained N increased (P ≤ 0.01) as casein increased, but neither was affected by glucose supplementation. Urea-N entry rate increased (P = 0.03) 50% with increasing casein. Urinary urea-N excretion increased (P < 0.01) as casein increased. The proportion of urea production that was recycled to the gut decreased (P < 0.01) as casein increased. Glucose supplementation decreased (P < 0.01) urinary urea excretion but did not change (P ≥ 0.70) urea production or recycling. The amount of urea-N transferred to the gut and captured by ruminal microbes was less for steers receiving 480 g/d casein with no glucose than for the other 3 treatments (casein × glucose interaction, P = 0.05), which can be attributed to an

  7. Insulin Signaling in the Control of Glucose and Lipid Homeostasis.

    PubMed

    Saltiel, Alan R

    2016-01-01

    A continuous supply of glucose is necessary to ensure proper function and survival of all organs. Plasma glucose levels are thus maintained in a narrow range around 5 mM, which is considered the physiological set point. Glucose homeostasis is controlled primarily by the liver, fat, and skeletal muscle. Following a meal, most glucose disposals occur in the skeletal muscle, whereas fasting plasma glucose levels are determined primarily by glucose output from the liver. The balance between the utilization and production of glucose is primarily maintained at equilibrium by two opposing hormones, insulin and glucagon. In response to an elevation in plasma glucose and amino acids (after consumption of a meal), insulin is released from the beta cells of the islets of Langerhans in the pancreas. When plasma glucose falls (during fasting or exercise), glucagon is secreted by α cells, which surround the beta cells in the pancreas. Both cell types are extremely sensitive to glucose concentrations, can regulate hormone synthesis, and are released in response to small changes in plasma glucose levels. At the same time, insulin serves as the major physiological anabolic agent, promoting the synthesis and storage of glucose, lipids, and proteins and inhibiting their degradation and release back into the circulation. This chapter will focus mainly on signal transduction mechanisms by which insulin exerts its plethora of effects in liver, muscle, and fat cells, focusing on those pathways that are crucial in the control of glucose and lipid homeostasis.

  8. Effect of Chinese Herbal Medicine Jinlida Granule in Treatment of Patients with Impaired Glucose Tolerance

    PubMed Central

    Shi, Ya-Lin; Liu, Wen-Juan; Zhang, Xiao-Fang; Su, Wei-Juan; Chen, Ning-Ning; Lu, Shu-Hua; Wang, Li-Ying; Shi, Xiu-Lin; Li, Zhi-Bin; Yang, Shu-Yu

    2016-01-01

    Background: Diabetes mellitus (DM) remains a major health problem worldwide. Several clinical trials have shown the superiority of the Traditional Chinese Medicine in delaying or reversing the development and progression of DM. This study aimed to evaluate the efficacy of Jinlida (JLD) granule, a Chinese herbal recipe, in the treatment of impaired glucose tolerance (IGT) and its effect on the prevention of DM. Methods: Sixty-five IGT patients were randomized to receive one bag of JLD granules three times daily (JLD group, n = 34) or no drug intervention (control group, n = 31) for 12 weeks. Oral glucose tolerance test, glycated hemoglobin A1c (HbA1c), body mass index, blood lipids levels, fasting insulin, and insulin resistance calculated using homeostatic model assessment (HOMA-IR) of all the patients were observed and compared before and after the treatment. Results: Sixty-one participants completed the trial (32 in JLD group and 29 in the control group). There were statistically significant decreases in HbA1c (P < 0.001), 2-h plasma glucose (P < 0.001), and HOMA-IR (P = 0.029) in JLD group compared with the control group after 12 weeks of treatment. After 12 weeks of treatment, two (6.9%) patients returned to normal blood glucose, and five (17.2%) patients turned into DM in control group, while in the JLD group, 14 (43.8%) returned to normal blood glucose and 2 (6.2%) turned into DM. There was a significant difference in the number of subjects who had normal glucose at the end of the study between two groups (P = 0.001). Conclusions: JLD granule effectively improved glucose control, increased the conversion of IGT to normal glucose, and improved the insulin resistance in patients with IGT. This Chinese herbal medicine may have a clinical value for IGT. PMID:27647185

  9. Assessment of postprandial glucose metabolism: conventional dual- vs. triple-tracer method.

    PubMed

    Toffolo, Gianna; Basu, Rita; Dalla Man, Chiara; Rizza, Robert; Cobelli, Claudio

    2006-10-01

    The dual-tracer method has been used conventionally for assessment of postprandial fluxes, i.e., appearance in plasma of ingested glucose (R(a meal)), endogenous glucose production (EGP), and disposal (R(d)). To quantify the magnitude of errors affecting the calculations and their dependence on model assumptions, this method was assessed and compared with the triple-tracer method, which provides model-independent estimates. For this purpose, the dual-tracer protocol was performed twice in eight normal subjects, with [1-(13)C]glucose to trace ingested glucose and [6,6-(2)H(2)]glucose constantly infused. A third tracer, [6-(3)H]glucose, was infused at variable rates to render the calculation of R(a meal) and EGP virtually model independent. The dual-tracer method analyzed with a one-compartment model performed poorly, since R(a meal) peak was significantly lower and delayed compared with triple-tracer reference, resulting in a significantly lower estimation of the amount of absorbed glucose (9,036 +/- 558 vs. 11,316 +/- 823 micromol/kg, P = 0.0117). EGP showed a paradoxical pattern, with an initial overshoot followed by a rapid decay to negative values, resulting in a significant underestimation of EGP suppression (57 +/- 3 vs. 65 +/- 4%, P = 0.0117). A two-compartment model performed better but did not overcome the limitations of the dual-tracer approach, since the amount of absorbed glucose was still significantly underestimated (10,231 +/- 661 vs. 12,169 +/- 838 micromol/kg, P = 0.0117) and EGP still showed a paradoxical behavior. R(d), estimated from R(a meal) and EGP, was significantly underestimated with the dual-tracer method, irrespective of adopted model. We conclude that three suitably infused tracers are required for accurate assessment of postprandial R(a meal), EGP, and R(d).

  10. Effects of Exercise Intensity on Postprandial Improvement in Glucose Disposal and Insulin Sensitivity in Prediabetic Adults

    PubMed Central

    Rynders, Corey A.; Weltman, Judy Y.; Jiang, Boyi; Breton, Marc; Patrie, James; Barrett, Eugene J.

    2014-01-01

    Background: A single bout of exercise improves postprandial glycemia and insulin sensitivity in prediabetic patients; however, the impact of exercise intensity is not well understood. The present study compared the effects of acute isocaloric moderate (MIE) and high-intensity (HIE) exercise on glucose disposal and insulin sensitivity in prediabetic adults. Methods: Subjects (n = 18; age 49 ± 14 y; fasting glucose 105 ± 11 mg/dL; 2 h glucose 170 ± 32 mg/dL) completed a peak O2 consumption/lactate threshold (LT) protocol plus three randomly assigned conditions: 1) control, 1 hour of seated rest, 2) MIE (at LT), and 3) HIE (75% of difference between LT and peak O2 consumption). One hour after exercise, subjects received an oral glucose tolerance test (OGTT). Plasma glucose, insulin, and C-peptide concentrations were sampled at 5- to 10-minute intervals at baseline, during exercise, after exercise, and for 3 hours after glucose ingestion. Total, early-phase, and late-phase area under the glucose and insulin response curves were compared between conditions. Indices of insulin sensitivity (SI) were derived from OGTT data using the oral minimal model. Results: Compared with control, SI improved by 51% (P = .02) and 85% (P < .001) on the MIE and HIE days, respectively. No differences in SI were observed between the exercise conditions (P = .62). Improvements in SI corresponded to significant reductions in the glucose, insulin, and C-peptide area under the curve values during the late phase of the OGTT after HIE (P < .05), with only a trend for reductions after MIE. Conclusion: These results suggest that in prediabetic adults, acute exercise has an immediate and intensity-dependent effect on improving postprandial glycemia and insulin sensitivity. PMID:24243632

  11. Effect of ruminal fill on foraging behavior, intake rate, and plasma ghrelin, serum insulin and glucose levels of cattle grazing a vegetative micro-sward

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of ruminal fill (RF) on foraging behavior, intake rate and levels of circulating ghrelin, insulin and glucose was measured with four rumen-cannulated lactating dairy cows foraging micro-swards of vegetative orchardgrass. The treatments compared were removal of 1.00 (RF0), 0.66 (RF33), 0....

  12. Novel fluorescent conjugate containing glucose and NBD and its carrier-mediated uptake by tobacco cells.

    PubMed

    Hu, An-Long; Yang, Wen; Xu, Han-Hong

    2010-12-02

    Some compounds that contain glucose groups can be transported across the plasma membrane into the cells through hexose transporters. To test the hypothesis that glucose-conjugated insecticides also have similar uptake and translocation properties, a novel fluorescent conjugate (12) was prepared by conjugating glucose and 7-nitrobenz-2-oxa-1,3-diazole with 4-iodo-1-phenylpyrazoles. Its fluorescence spectra and uptake by suspension-cultured tobacco (Nicotiana tabacum L.cv.) cells were studied. The fluorescence spectra showed long wavelengths with maximum emission at 530nm. After incubating tobacco cell suspensions in 10μM conjugate for 0.5h, green fluorescence of 12 was clearly visible in the cells under fluorescence microscopy. After 2h of incubation, more than 70% of 12 was absorbed. Carbonyl cyanide m-chlorophenylhydrazone, phloridzin and glucose drastically inhibited uptake. In concentration-dependent uptakes, the uptake rate of 12 showed a saturable component and was in accordance with Michaelis-Menten kinetics. The results proved that the glucose moiety can guide 12 into tobacco cells and that hexose transporters mediated the uptake.

  13. Tandem phosphorylation of Ser-911 and Thr-912 at the C terminus of yeast plasma membrane H+-ATPase leads to glucose-dependent activation.

    PubMed

    Lecchi, Silvia; Nelson, Clark J; Allen, Kenneth E; Swaney, Danielle L; Thompson, Katie L; Coon, Joshua J; Sussman, Michael R; Slayman, Carolyn W

    2007-12-07

    In recent years there has been growing interest in the post-translational regulation of P-type ATPases by protein kinase-mediated phosphorylation. Pma1 H(+)-ATPase, which is responsible for H(+)-dependent nutrient uptake in yeast (Saccharomyces cerevisiae), is one such example, displaying a rapid 5-10-fold increase in activity when carbon-starved cells are exposed to glucose. Activation has been linked to Ser/Thr phosphorylation in the C-terminal tail of the ATPase, but the specific phosphorylation sites have not previously been mapped. The present study has used nanoflow high pressure liquid chromatography coupled with electrospray electron transfer dissociation tandem mass spectrometry to identify Ser-911 and Thr-912 as two major phosphorylation sites that are clearly related to glucose activation. In carbon-starved cells with low Pma1 activity, peptide 896-918, which was derived from the C terminus upon Lys-C proteolysis, was found to be singly phosphorylated at Thr-912, whereas in glucose-metabolizing cells with high ATPase activity, the same peptide was doubly phosphorylated at Ser-911 and Thr-912. Reciprocal (14)N/(15)N metabolic labeling of cells was used to measure the relative phosphorylation levels at the two sites. The addition of glucose to carbon-starved cells led to a 3-fold reduction in the singly phosphorylated form and an 11-fold increase in the doubly phosphorylated form. These results point to a mechanism in which the stepwise phosphorylation of two tandemly positioned residues near the C terminus mediates glucose-dependent activation of the H(+)-ATPase.

  14. Ketones suppress brain glucose consumption.

    PubMed

    LaManna, Joseph C; Salem, Nicolas; Puchowicz, Michelle; Erokwu, Bernadette; Koppaka, Smruta; Flask, Chris; Lee, Zhenghong

    2009-01-01

    The brain is dependent on glucose as a primary energy substrate, but is capable of utilizing ketones such as beta-hydroxybutyrate (beta HB) and acetoacetate (AcAc), as occurs with fasting, prolonged starvation or chronic feeding of a high fat/low carbohydrate diet (ketogenic diet). In this study, the local cerebral metabolic rate of glucose consumption (CMRglu; microM/min/100g) was calculated in the cortex and cerebellum of control and ketotic rats using Patlak analysis. Rats were imaged on a rodent PET scanner and MRI was performed on a 7-Tesla Bruker scanner for registration with the PET images. Plasma glucose and beta HB concentrations were measured and 90-minute dynamic PET scans were started simultaneously with bolus injection of 2-Deoxy-2[18F]Fluoro-D-Glucose (FDG). The blood radioactivity concentration was automatically sampled from the tail vein for 3 min following injection and manual periodic blood samples were taken. The calculated local CMRGlu decreased with increasing plasma BHB concentration in the cerebellum (CMRGlu = -4.07*[BHB] + 61.4, r2 = 0.3) and in the frontal cortex (CMRGlu = -3.93*[BHB] + 42.7, r2 = 0.5). These data indicate that, under conditions of ketosis, glucose consumption is decreased in the cortex and cerebellum by about 10% per each mM of plasma ketone bodies.

  15. The effect of short-term dietary supplementation with glucose on gastric emptying of glucose and fructose and oral glucose tolerance in normal subjects.

    PubMed

    Horowitz, M; Cunningham, K M; Wishart, J M; Jones, K L; Read, N W

    1996-04-01

    Recent observations indicate that gastric emptying may be influenced by patterns of previous nutrient intake. The aims of this study were to determine the effects of a high glucose diet on gastric emptying of glucose and fructose, and the impact of any changes in gastric emptying on plasma concentrations of glucose, insulin and gastric inhibitory polypeptide in response to glucose and fructose loads. Gastric emptying of glucose and fructose (both 75 g dissolved in 350 ml water) were measured in seven normal volunteers on separate days while each was on a "standard' diet and an identical diet supplemented with 440 g/day of glucose for 4-7 days. Venous blood samples for measurement of plasma glucose, insulin and gastric inhibitory polypeptide levels were taken immediately before and for 180 min after ingestion of glucose and fructose loads. Dietary glucose supplementation accelerated gastric emptying of glucose (50% emptying time 82 +/- 8 vs 106 +/- 10 min, p = 0.004) and fructose (73 +/- 9 vs 106 +/- 9 min, p = 0.001). After ingestion of glucose, plasma concentrations of insulin (p < 0.05) and gastric inhibitory polypeptide (p < 0.05) were higher during the glucose-supplemented diet. In contrast, plasma glucose concentrations at 60 min and 75 min were lower (p < 0.05) on the glucose-supplemented diet. We conclude that short-term supplementation of the diet with glucose accelerates gastric emptying of glucose and fructose, presumably as a result of reduced feedback inhibition of gastric emptying from small intestinal luminal receptors. More rapid gastric emptying of glucose has a significant impact on glucose tolerance.

  16. Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei.

    PubMed Central

    Vercesi, A E; Moreno, S N; Docampo, R

    1994-01-01

    The use of digitonin to permeabilize the plasma membrane of Trypanosoma brucei procyclic and bloodstream trypomastigotes allowed the identification of a non-mitochondrial nigericin-sensitive Ca2+ compartment. The proton ionophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) was able to cause Ca2+ release from this compartment, which was also sensitive to sodium orthovanadate. Preincubation of the cells with the vacuolar H(+)-ATPase inhibitor bafilomycin A1 greatly reduced the nigericin-sensitive Ca2+ compartment. Bafilomycin A1 inhibited the initial rate of ATP-dependent non-mitochondrial Ca2+ uptake and stimulated the initial rate of nigericin-induced Ca2+ release by permeabilized procyclic trypomastigotes. ATP-dependent and bafilomycin A1- and 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl)-sensitive Acridine Orange uptake was demonstrated in permeabilized cells. Under these conditions Acridine Orange was concentrated in abundant cytoplasmic round vacuoles by a process inhibited by bafilomycin A1, NBD-Cl, nigericin, and Ca2+. Vanadate or EGTA significantly increased Acridine Orange uptake, while Ca2+ released Acridine Orange from these preparations, thus suggesting that the dye and Ca2+ were being accumulated in the same acidic vacuole. Acridine Orange uptake was reversed by nigericin, bafilomycin A1 and NH4Cl. The results are consistent with the presence of a Ca2+/H(+)-ATPase system pumping Ca2+ into an acidic vacuole, that we tentatively named the acidocalcisome. Images Figure 5 PMID:7998937

  17. Reactions of Fe+ and FeO+ with C2H2, C2H4, and C2H6: temperature-dependent kinetics.

    PubMed

    Ard, Shaun G; Melko, Joshua J; Fournier, Joseph A; Shuman, Nicholas S; Viggiano, Albert A

    2013-10-10

    We present the first temperature-dependent rate constants and branching ratios for the reactions of Fe(+) and FeO(+) with C2H2, C2H4, and C2H6 from 170 to 700 K. Fe(+) is observed to react only by association with the three hydrocarbons, with temperature dependencies of T(-2) to T(-3). FeO(+) reacts with C2H2 and C2H4 at the collision rate over the temperature range, and their respective product branchings show similar temperature dependences. In contrast, the reaction with ethane is collisional at 170 K but varies as T(-0.5), while the product branching remains essentially flat with temperature. These variations in reactivity are discussed in terms of the published reactive potential surfaces. The effectiveness of Fe(+) as an oxygen-transfer catalyst toward the three hydrocarbons is also discussed.

  18. Effects of lifestyle intervention and meal replacement on glycaemic and body-weight control in Chinese subjects with impaired glucose regulation: a 1-year randomised controlled trial.

    PubMed

    Xu, Dan-Feng; Sun, Jian-Qin; Chen, Min; Chen, Yan-Qiu; Xie, Hua; Sun, Wei-Jia; Lin, Yi-Fan; Jiang, Jing-Jing; Sun, Wei; Chen, Ai-Fang; Tang, Qian-Ru

    2013-02-14

    The purpose of the present study was to evaluate the impact of a lifestyle intervention programme, combined with a daily low-glycaemic index meal replacement, on body-weight and glycaemic control in subjects with impaired glucose regulation (IGR). Subjects with IGR were randomly assigned to an intervention group (n 46) and a control group (n 42). Both groups received health counselling at baseline. The intervention group also received a daily meal replacement and intensive lifestyle intervention to promote healthy eating habits during the first 3 months of the study, and follow-up visits performed monthly until the end of the 1-year study. Outcome measurements included changes in plasma glucose, glycated Hb (HbA1c), plasma lipids, body weight, blood pressure and body composition (such as body fat mass and visceral fat area). The results showed that body-weight loss after 1 year was significant in the intervention group compared with the control group (-1·8 (SEM 0·35) v. -0·6 (SEM 0·40) 2·5 kg, P<0·05). The 2 h plasma glucose concentration decreased 1·24 mmol/l in the intervention group and increased 0·85 mmol/l in the control group (P<0·05) compared with their baseline, respectively. A 5 kg body-weight loss at 1 year was associated with a decrease of 1·49 mmol/l in 2 h plasma glucose (P<0·01). The incidence of normal glucose regulation (NGR) in the two groups was significantly different (P=0·001). In conclusion, the combination of regular contact, lifestyle advice and meal replacement is beneficial in promoting IGR to NGR.

  19. Rate constant for the reaction C2H5 + HBr → C2H6 + Br.

    PubMed

    Golden, David M; Peng, Jingping; Goumri, A; Yuan, J; Marshall, Paul

    2012-06-21

    RRKM theory has been employed to analyze the kinetics of the title reaction, in particular, the once-controversial negative activation energy. Stationary points along the reaction coordinate were characterized with coupled cluster theory combined with basis set extrapolation to the complete basis set limit. A shallow minimum, bound by 9.7 kJ mol(-1) relative to C(2)H(5) + HBr, was located, with a very small energy barrier to dissociation to Br + C(2)H(6). The transition state is tight compared to the adduct. The influence of vibrational anharmonicity on the kinetics and thermochemistry of the title reaction were explored quantitatively. With adjustment of the adduct binding energy by ∼4 kJ mol(-1), the computed rate constants may be brought into agreement with most experimental data in the literature, including new room-temperature results described here. There are indications that at temperatures above those studied experimentally, the activation energy may switch from negative to positive.

  20. The role of physical activity in the management of impaired glucose tolerance: a systematic review

    PubMed Central

    Khunti, K.; Bull, F.; Gorely, T.; Davies, M. J.

    2007-01-01

    Although physical activity is widely reported to reduce the risk of type 2 diabetes in individuals with prediabetes, few studies have examined this issue independently of other lifestyle modifications. The aim of this review is to conduct a systematic review of controlled trials to determine the independent effect of exercise on glucose levels and risk of type 2 diabetes in people with prediabetes (IGT and/or IFG). A detailed search of MEDLINE (1966–2006) and EMBASE (1980–2006) found 279 potentially relevant studies, eight of which met the inclusion criteria for this review. All eight studies were controlled trials in individuals with impaired glucose tolerance. Seven studies used a multi-component lifestyle intervention that included exercise, diet and weight loss goals and one used a structured exercise training intervention. Four studies used the incidence of diabetes over the course of the study as an outcome variable and four relied on 2-h plasma glucose as an outcome measure. In the four studies that measured the incidence of diabetes as an outcome, the risk of diabetes was reduced by approximately 50% (range 42–63%); as these studies reported only small changes in physical activity levels, the reduced risk of diabetes is likely to be attributable to factors other than physical activity. In the remaining four studies, only one reported significant improvements in 2-h plasma glucose even though all but one reported small to moderate increases in maximal oxygen uptake. These results indicate that the contribution of physical activity independent of dietary or weight loss changes to the prevention of type 2 diabetes in people with prediabetes is equivocal. PMID:17415549

  1. Rate Coefficients of C2H with C2H4, C2H6, and H2 from 150 to 359 K

    NASA Technical Reports Server (NTRS)

    Opansky, Brian J.; Leone, Stephen R.

    1996-01-01

    Rate coefficients for the reactions C2H with C2H4, C2H6, and H2 are measured over the temperature range 150-359 K using transient infrared laser absorption spectroscopy. The ethynyl radical is formed by photolysis of C2H2 with a pulsed excimer laser at 193 nm, and its transient absorption is monitored with a color center laser on the Q(sub 11)(9) line of the A(sup 2) Pi-Chi(sup 2) Sigma transition at 3593.68 cm(exp -1). Over the experimental temperature range 150-359 K the rate constants of C2H with C2H4, C2H6, and H2 can be fitted to the Arrhenius expressions k(sub C2H4) = (7.8 +/- 0.6) x 10(exp -11) exp[(134 +/- 44)/T], k(sub C2H6) = (3.5 +/- 0.3) x 10(exp -11) exp[(2.9 +/- 16)/T], and k(sub H2) = (1.2 +/- 0.3) x 10(exp -11) exp[(-998 +/- 57)]/T cm(exp 3) molecule(exp -1) sec(exp -1). The data for C2H with C2H4 and C2H6 indicate a negligible activation energy to product formation shown by the mild negative temperature dependence of both reactions. When the H2 data are plotted together with the most recent high-temperature results from 295 to 854 K, a slight curvature is observed. The H2 data can be fit to the non-Arrhenius form k(sub H2) = 9.2 x 10(exp -18) T(sup 2.17 +/- 0.50) exp[(-478 +/- 165)/T] cm(exp 3) molecules(exp -1) sec(exp -1). The curvature in the Arrhenius plot is discussed in terms of both quantum mechanical tunneling of the H atom from H2 to the C2H radical and bending mode contributions to the partition function.

  2. The influence of nutrition on the insulin-like growth factor system and the concentrations of growth hormone, glucose, insulin, gonadotropins and progesterone in ovarian follicular fluid and plasma from adult female horses (Equus caballus)

    PubMed Central

    2014-01-01

    Background Feed intake affects the GH-IGF system and may be a key factor in determining the ovarian follicular growth rate. In fat mares, the plasma IGF-1 concentration is high with low GH and a quick follicular growth rate, in contrast to values observed in thin mares. Nothing is known regarding the long-term effects of differential feed intake on the IGF system. The objective of this experiment was to quantify IGFs, IGFBPs, GH, glucose, insulin, gonadotropin and progesterone (P4) in blood and in preovulatory follicular fluid (FF) in relation to feeding levels in mares. Methods Three years prior to the experiment, Welsh Pony mares were assigned to a restricted diet group (R, n = 10) or a well-fed group (WF, n = 9). All mares were in good health and exhibited differences in body weight and subcutaneous fat thickness. Follicular development was scanned daily and plasma was also collected daily. Preovulatory FF was collected by ultrasound-guided follicular aspiration. Hormone levels were assayed in FF and plasma with a validated RIA. Results According to scans, the total number of follicles in group R was 53% lower than group WF. Insulin and IGF-1 concentrations were higher in WF than in R mares. GH and IGF-2 concentrations were lower in plasma from WF mares than from R mares, but the difference was not significant in FF. The IGFBP-2/IGFBP-3 ratio in FF was not affected by feeding but was dramatically increased in R mare plasma. No difference in gonadotropin concentration was found with the exception of FSH, which was higher in the plasma of R mares. On the day of puncture, P4 concentrations were not affected by feeding but were higher in preovulatory FF than in plasma. Conclusions The bioavailability of IGF-1 or IGF-2, represented by the IGFBP2/IGFBP3 ratio, is modified by feed intake in plasma but not in FF. These differences partially explain the variability in follicular growth observed between well-fed mares and mares on restricted diets. PMID:25078409

  3. Endocrine (plasma cortisol and glucose) and behavioral (locomotor and self-feeding activity) circadian rhythms in Senegalese sole (Solea senegalensis Kaup 1858) exposed to light/dark cycles or constant light.

    PubMed

    Oliveira, Catarina C V; Aparício, Rocio; Blanco-Vives, Borja; Chereguini, Olvido; Martín, Ignacio; Javier Sánchez-Vazquez, F

    2013-06-01

    The existence of daily rhythms under light/dark (LD) cycles in plasma cortisol, blood glucose and locomotor and self-feeding activities, as well as their persistence (circadian nature) under constant light (LL), was investigated in Senegalese sole (Solea senegalensis). For the cortisol and glucose rhythms study, 48 soles were equally distributed in 8 tanks and exposed to a 12:12 LD cycle and natural water temperature (experiment 1). After an acclimation period, blood was sampled every 3 h until a 24-h cycle was completed. Blood glucose levels were measured immediately after sampling, while plasma cortisol was measured later by ELISA. In experiment 2, the fish were exposed to LL for 11 days, and after this period, the same sampling procedure was repeated. For the study of locomotor and self-feeding rhythms (experiment 3), two groups of sole were used: one exposed to LD and the other to LL. Each group was distributed within 3 tanks equipped with infrared photocells for the record of locomotor activity, and self-feeders for feeding behavior characterization. The results revealed a marked oscillation in cortisol concentrations during the daily cycle under LD, with a peak (35.65 ± 3.14 ng/ml) in the afternoon (15:00 h) and very low levels during the night (5.30 ± 1.09 ng/ml). This cortisol rhythm persisted under LL conditions, with lower values (mean cortisol concentration = 7.12 ± 1.11 ng/ml) and with the peak shifted by 3 h. Both rhythms were confirmed by COSINOR analysis (p < 0.05). The synchronizing role of temperature and feeding schedule, in addition to light, is also discussed. Diel rhythms of glucose were not evident in LD or LL. As to locomotor and self-feeding activity, a very marked rhythm was observed under LD, with higher activity observed during the night, with acrophases located at 2:14 and 3:37 h, respectively. The statistical significance of daily rhythms was confirmed by COSINOR analysis. Under LL, both feeding and locomotor

  4. Synthesis of 2-Alkenyl-2H-indazoles from 2-(2-Carbonylmethyl)-2H-indazoles.

    PubMed

    Lin, Mei-Huey; Liang, Kung-Yu; Tsai, Chang-Hsien; Chen, Yu-Chun; Hsiao, Hung-Chang; Li, Yi-Syuan; Chen, Chung-Hao; Wu, Hau-Chun

    2016-02-19

    A procedure has been developed for synthesis of 2-alkenyl-2H-indazoles starting from 2-(2-carbonylmethyl)-2H-indazoles, which are prepared by gallium/aluminium- and aluminium-mediated, direct, regioselective alkylation of indazoles with α-bromocarbonyl compounds. The structure of 3-(2H-indazol-2-yl)-2H-chromen-2-one was proven by X-ray crystallography. The styrene- and coumarin-2H-indazoles produced by using the new method were found to have interesting fluorescence properties.

  5. Detection of glycemic abnormalities in adolescents with beta thalassemia using continuous glucose monitoring and oral glucose tolerance in adolescents and young adults with β-thalassemia major: Pilot study

    PubMed Central

    Soliman, Ashraf T.; Yasin, Mohamed; El-Awwa, Ahmed; De Sanctis, Vincenzo

    2013-01-01

    Background: Both insulin deficiency and resistance are reported in patients with β-thalassemia major (BTM). The use of continuous blood glucose monitoring (CGM), among the different methods for early detection of glycemic abnormalities, has not been studied thoroughly in these adolescents. Materials and Methods: To assess the oralglucose tolerance (OGT) and 72-h continuous glucose concentration by the continuous glucose monitoring system (CGMS) and calculate homeostatic model assessment (HOMA), and the quantitative insulin sensitivity check index (QUICKI) was conducted in 16 adolescents with BTM who were receiving regular blood transfusions every 2-4 weeks and iron-chelation therapy since early childhood. Results: Sixteen adolescents with BTM (age: 19.75 ± 3 years) were investigated. Using OGTT, (25%) had impaired fasting blood (plasma) glucose concentration (BG) (>5.6 mmol/L). 2-h after the glucose load, one of them had BG = 16.2 mmol/L (diabetic) and two had impaired glucose tolerance (IGT) (BG > 7.8 and <11.1 mmol/L). Monitoring the maximum (postprandial) BG using CGMS,4 adolescents were diagnosed with diabetes (25%) (BG >11.1 mmol/L) and 9 with IGT (56%). HOMA and QUICKI revealed levels <2.6 (1.6 ± 0.8) and >0.33 (0.36 ± 0.03), respectively, ruling out significant insulin resistance in these adolescents. There was a significant negative correlation between the β-cell function (B%) on one hand and the fasting and the 2-h BG (r=−0.6, and − 0.48, P < 0.01, respectively) on the other hand. Neither fasting serum insulin nor c-peptide concentrations were correlated with fasting BG or ferritin levels. The average and maximum blood glucose levels during CGM were significantly correlated with the fasting BG (r = 0.68 and 0.39, respectively, with P < 0.01) and with the BG at 2-hour after oral glucose intake (r = 0.87 and 0.86 respectively, with P < 0.001). Ferritin concentrations were correlated with the fasting BG and the 2-h blood glucose levels in the OGTT (r

  6. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  7. Contribution of galactose and fructose to glucose homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine the contributions of galactose and fructose to glucose formation, 6 subjects (26 +/- 2 years old; body mass index, 22.4 +/-0.2 kg/m2) (mean +/- SE) were studied during fasting conditions. Three subjects received a primed constant intravenous infusion of[6,6-2H2] glucose for 3 hours foll...

  8. Oxytocin increases extrapancreatic glucagon secretion and glucose production in pancreatectomized dogs

    SciTech Connect

    Altszuler, N.; Puma, F.; Winkler, B.; Fontan, N.; Saudek, C.D.

    1986-05-01

    Infusion of oxytocin into normal dogs increases plasma levels of insulin and glucagon and glucose production and uptake. To determine whether infused oxytocin also increases glucagon secretion from extrapancreatic sites, pancreatectomized dogs, off insulin of 18 hr, were infused with oxytocin and plasma glucagon, and glucose production and uptake were measured using the (6-/sup 3/H)glucose primer-infusion technique. The diabetic dogs, in the control period, had elevated plasma glucose and glucagon levels, an increased rate of glucose production, and a relative decrease in glucose uptake (decreased clearance). Infusion of oxytocin (500 ..mu..U/kg/min) caused a rise in plasma glucagon and glucose levels, increased glucose production, and further decreased glucose clearance. it is concluded that oxytocin can stimulate secretion of extrapancreatic glucagon, which contributes to the increased glucose production.

  9. Noninvasive glucose sensing by transcutaneous Raman spectroscopy

    PubMed Central

    Shih, Wei-Chuan; Bechtel, Kate L.; Rebec, Mihailo V.

    2015-01-01

    Abstract. We present the development of a transcutaneous Raman spectroscopy system and analysis algorithm for noninvasive glucose sensing. The instrument and algorithm were tested in a preclinical study in which a dog model was used. To achieve a robust glucose test system, the blood levels were clamped for periods of up to 45 min. Glucose clamping and rise/fall patterns have been achieved by injecting glucose and insulin into the ear veins of the dog. Venous blood samples were drawn every 5 min and a plasma glucose concentration was obtained and used to maintain the clamps, to build the calibration model, and to evaluate the performance of the system. We evaluated the utility of the simultaneously acquired Raman spectra to be used to determine the plasma glucose values during the 8-h experiment. We obtained prediction errors in the range of ∼1.5−2  mM. These were in-line with a best-case theoretical estimate considering the limitations of the signal-to-noise ratio estimates. As expected, the transition regions of the clamp study produced larger predictive errors than the stable regions. This is related to the divergence of the interstitial fluid (ISF) and plasma glucose values during those periods. Two key contributors to error beside the ISF/plasma difference were photobleaching and detector drift. The study demonstrated the potential of Raman spectroscopy in noninvasive applications and provides areas where the technology can be improved in future studies. PMID:25688542

  10. Noninvasive glucose sensing by transcutaneous Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Shih, Wei-Chuan; Bechtel, Kate L.; Rebec, Mihailo V.

    2015-05-01

    We present the development of a transcutaneous Raman spectroscopy system and analysis algorithm for noninvasive glucose sensing. The instrument and algorithm were tested in a preclinical study in which a dog model was used. To achieve a robust glucose test system, the blood levels were clamped for periods of up to 45 min. Glucose clamping and rise/fall patterns have been achieved by injecting glucose and insulin into the ear veins of the dog. Venous blood samples were drawn every 5 min and a plasma glucose concentration was obtained and used to maintain the clamps, to build the calibration model, and to evaluate the performance of the system. We evaluated the utility of the simultaneously acquired Raman spectra to be used to determine the plasma glucose values during the 8-h experiment. We obtained prediction errors in the range of ˜1.5-2 mM. These were in-line with a best-case theoretical estimate considering the limitations of the signal-to-noise ratio estimates. As expected, the transition regions of the clamp study produced larger predictive errors than the stable regions. This is related to the divergence of the interstitial fluid (ISF) and plasma glucose values during those periods. Two key contributors to error beside the ISF/plasma difference were photobleaching and detector drift. The study demonstrated the potential of Raman spectroscopy in noninvasive applications and provides areas where the technology can be improved in future studies.

  11. A Common Missense Variant in the Glucokinase Regulatory Protein Gene (GCKR) Is Associated with Increased Plasma Triglyceride and C-Reactive Protein but Lower Fasting Glucose Concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    OBJECTIVE-Using the genome-wide-association approach, we recently identified the glucokinase regulatory protein gene (GCKR, rs780094) region as a novel quantitative trait locus for plasma triglyceride concentration in Europeans. Here, we sought to study the association of GCKR variants with metaboli...

  12. Acute consumption of organic and conventional tropical grape juices (Vitis labrusca L.) increases antioxidants in plasma and erythrocytes, but not glucose and uric acid levels, in healthy individuals.

    PubMed

    Toaldo, Isabela Maia; Cruz, Fernanda Alves; da Silva, Edson Luiz; Bordignon-Luiz, Marilde T

    2016-08-01

    Bioactive polyphenols in grapes are influenced by grape variety and cultivation conditions. The Vitis labrusca L. varieties are cultivated in tropical regions and used for grape juice production. We hypothesized that polyphenols from tropical grape juices would beneficially affect redox homeostasis in humans. Therefore, the effects of acute consumption of organic and conventional grape juices from V labrusca L. on antioxidants biomarkers were investigated in healthy individuals. In a controlled, randomized, crossover, intervention trial, 24 individuals were assigned to drink 400 mL of conventional juice, organic juice, or water. Each intervention was followed by a 14-day washout period. Blood samples were obtained before and 1 hour after acute intake and analyzed for erythrocyte reduced glutathione, serum total antioxidant capacity, antioxidant enzymes in erythrocytes, and glucose and uric acid in serum. The ingestion of both grape juices resulted in elevated levels of reduced glutathione (P< .001) and serum total antioxidant capacity (P< .05) and increased activity of catalase (P< .001), superoxide dismutase (P< .001), and glutathione peroxidase (P< .05) compared with the control intervention, with no significant differences between grape juices (P< .05). The intake of juices did not affect significantly the concentrations of glucose or uric acid. Grape juice polyphenols were associated with increased antioxidants, and the chemical differences between organic and conventional juices were not predictive of the observed responses. The results suggest a bioactive potential of V labrusca L. juices to improve redox homeostasis, which is involved in defense against oxidative stress in humans.

  13. Supplementation with a new trypsin inhibitor from peanut is associated with reduced fasting glucose, weight control, and increased plasma CCK secretion in an animal model.

    PubMed

    Serquiz, Alexandre C; Machado, Richele J A; Serquiz, Raphael P; Lima, Vanessa C O; de Carvalho, Fabiana Maria C; Carneiro, Marcella A A; Maciel, Bruna L L; Uchôa, Adriana F; Santos, Elizeu A; Morais, Ana H A

    2016-12-01

    Ingestion of peanuts may have a beneficial effect on weight control, possibly due to the satietogenic action of trypsin inhibitors. The aim of this study was to isolate a new trypsin inhibitor in a typical Brazilian peanut sweet (paçoca) and evaluate its effect in biochemical parameters, weight gain and food intake in male Wistar rats. The trypsin inhibitor in peanut paçoca (AHTI) was isolated. Experimental diets were prepared with AIN-93G supplemented with AHTI. Animals had their weight and food intake monitored. Animals were anesthetized, euthanized, and their bloods collected by cardiac puncture for dosage of cholecystokinin (CCK) and other biochemical parameters. Supplementation with AHTI significantly decreased fasting glucose, body weight gain, and food intake. These effects may be attributed to increased satiety, once supplemented animals showed no evidence of impaired nutritional status and also because AHTI increased CCK production. Thus, our results indicate that AHTI, besides reducing fasting glucose, can reduce weight gain via food intake reduction.

  14. Effects of glucose and insulin administration on glucose transporter expression in the North Pacific spiny dogfish (Squalus suckleyi).

    PubMed

    Deck, Courtney A; Gary Anderson, W; Walsh, Patrick J

    2017-01-16

    Elasmobranchs (sharks, skates, and rays) are a primarily carnivorous group of fish, consuming few carbohydrates. Further, they tend to exhibit delayed responses to glucose and insulin administration in vivo relative to mammals, leading to a presumption of glucose-intolerance. To investigate the glucoregulatory capabilities of the spiny dogfish (Squalus suckleyi), plasma glucose concentration, muscle and liver glycogen content, and glucose transporter (glut1 and 4) mRNA levels were measured following intra-arterial administration of bovine insulin (10ngkg(-1)) or an approximate doubling of fasting plasma glucose concentration. Within 6h, following glucose administration, approximately half of the introduced glucose load had been cleared, with control levels being restored by 24h post-injection. It was determined that plasma clearance was due in part to increased uptake by the tissues as muscle and liver glycogen content increased significantly, correlating with an upregulation of glut mRNA levels. Following administration of bovine insulin, plasma glucose steadily decreased through 18h before returning toward control levels. Observed decreases in plasma glucose following insulin injection were, however, relatively minor, and no increases in tissue glycogen content were observed. glut4 and glycogen synthase mRNA levels did significantly increase in the muscle in response to insulin, but no changes occurred in the liver. The responses observed mimic what occurs in mammals and teleosts, thus suggesting a conserved mechanism for glucose homeostasis in vertebrates and a high degree of glucose tolerance in these predominantly carnivorous fish.

  15. Preexercise carbohydrate ingestion, glucose kinetics, and muscle glycogen use: effect of the glycemic index.

    PubMed

    Febbraio, M A; Keenan, J; Angus, D J; Campbell, S E; Garnham, A P

    2000-11-01

    Eight trained men cycled at 70% peak oxygen uptake for 120 min followed by a 30-min performance cycle after ingesting either a high-glycemic index (HGI), low-glycemic index (LGI), or placebo (Con) meal 30 min before exercise. Ingestion of HGI resulted in an elevated (P<0.01) blood glucose concentration compared with LGI and Con. At the onset of exercise, blood glucose fell (P<0.05) such that it was lower (P<0.05) in HGI compared with LGI and Con at 15 and 30 min during exercise. Plasma insulin concentration was higher (P<0.01) throughout the rest period after ingestion of HGI compared with LGI and Con. Plasma free fatty acid concentrations were lower (P<0.05) throughout exercise in HGI compared with LGI and Con. The rates of [6,6-(2)H]glucose appearance and disappearance were higher (P<0.05) at rest after ingestion and throughout exercise in HGI compared with LGI and Con. Carbohydrate oxidation was higher (P<0.05) throughout exercise, whereas glycogen use tended (P = 0.07) to be higher in HGI compared with LGI and Con. No differences were observed in work output during the performance cycle when comparing the three trials. These results demonstrate that preexercise carbohydrate feeding with a HGI, but not a LGI, meal augments carbohydrate utilization during exercise but does not effect exercise performance.

  16. Synthesis and properties of 3-nitro-2H-chromenes

    NASA Astrophysics Data System (ADS)

    Korotaev, V. Yu; Sosnovskikh, V. Ya; Barkov, A. Yu

    2013-12-01

    Methods of synthesis and chemical properties of 3-nitro-2H-chromenes, including reactions with nucleophiles, cycloaddition, oxidation and reduction, have been reviewed. Enantioselective reactions involving 3-nitro-2H-chromenes, as well as the stereochemistry of the products, are discussed. The ways of practical use of these compounds are shown. The bibliography includes 115 references.

  17. Variations of δ2H in an idealised extratropical cyclone

    NASA Astrophysics Data System (ADS)

    Dütsch, Marina; Pfahl, Stephan; Wernli, Heini

    2016-04-01

    Numerical model simulations of stable water isotopes help to improve our understanding of the complex processes driving isotopic variability in atmospheric waters. We use the isotope-enabled COSMO model to study the governing mechanisms of δ2H variations in an idealised extratropical cyclone. A set of experiments with differing initial conditions of δ2H in vapour and partially deactivated isotopic fractionation allows us to quantify the relative roles of cloud fractionation and vertical and horizontal advection for the simulated δ2H signals associated with the cyclone and fronts. Horizontal transport determines the large-scale pattern of δ2H in both vapour and precipitation, while fractionation and vertical transport are more important on a smaller scale, near the fronts. During the passage of the cold front fractionation leads to a V-shaped trend of δ2H in precipitation and vapour, which is, for vapour, superimposed on a gradual decrease caused by horizontal advection.

  18. Aerobic exercise improves cognition for older adults with glucose intolerance, a risk factor for Alzheimer's disease.

    PubMed

    Baker, Laura D; Frank, Laura L; Foster-Schubert, Karen; Green, Pattie S; Wilkinson, Charles W; McTiernan, Anne; Cholerton, Brenna A; Plymate, Stephen R; Fishel, Mark A; Watson, G Stennis; Duncan, Glen E; Mehta, Pankaj D; Craft, Suzanne

    2010-01-01

    Impaired glucose regulation is a defining characteristic of type 2 diabetes mellitus (T2DM) pathology and has been linked to increased risk of cognitive impairment and dementia. Although the benefits of aerobic exercise for physical health are well-documented, exercise effects on cognition have not been examined for older adults with poor glucose regulation associated with prediabetes and early T2DM. Using a randomized controlled design, twenty-eight adults (57-83 y old) meeting 2-h tolerance test criteria for glucose intolerance completed 6 months of aerobic exercise or stretching, which served as the control. The primary cognitive outcomes included measures of executive function (Trails B, Task Switching, Stroop, Self-ordered Pointing Test, and Verbal Fluency). Other outcomes included memory performance (Story Recall, List Learning), measures of cardiorespiratory fitness obtained via maximal-graded exercise treadmill test, glucose disposal during hyperinsulinemic-euglycemic clamp, body fat, and fasting plasma levels of insulin, cortisol, brain-derived neurotrophic factor, insulin-like growth factor-1, amyloid-β (Aβ40 and Aβ42). Six months of aerobic exercise improved executive function (MANCOVA, p=0.04), cardiorespiratory fitness (MANOVA, p=0.03), and insulin sensitivity (p=0.05). Across all subjects, 6-month changes in cardiorespiratory fitness and insulin sensitivity were positively correlated (p=0.01). For Aβ42, plasma levels tended to decrease for the aerobic group relative to controls (p=0.07). The results of our study using rigorous controlled methodology suggest a cognition-enhancing effect of aerobic exercise for older glucose intolerant adults. Although replication in a larger sample is needed, our findings potentially have important therapeutic implications for a growing number of adults at increased risk of cognitive decline.

  19. Effect of low-carbohydrate diets high in either fat or protein on thyroid function, plasma insulin, glucose, and triglycerides in healthy young adults.

    PubMed

    Ullrich, I H; Peters, P J; Albrink, M J

    1985-01-01

    A low-carbohydrate diet, frequently used for treatment of reactive hypoglycemia, hypertriglyceridemia, and obesity may affect thyroid function. We studied the effects of replacing the deleted carbohydrate with either fat or protein in seven healthy young adults. Subjects were randomly assigned to receive seven days of each of two isocaloric liquid-formula, low-carbohydrate diets consecutively. One diet was high in polyunsaturated fat (HF), with 10%, 55%, and 35% of total calories derived from protein, fat, and carbohydrate, respectively. The other was high in protein (HP) with 35%, 30%, and 35% of total calories derived from protein, fat, and carbohydrate. Fasting blood samples were obtained at baseline and on day 8 of each diet. A meal tolerance test representative of each diet was given on day 7. The triiodothyronine (T3) declined more (P less than .05) following the HF diet than the HP diet (baseline 198 micrograms/dl, HP 138, HF 113). Thyroxine (T4) and reverse T3 (rT3) did not change significantly. Thyroid-stimulating hormone (TSH) declined equally after both diets. The insulin level was significantly higher 30 minutes after the HP meal (148 microU/ml) than after the HF meal (90 microU/ml). The two-hour glucose level for the HP meal was less, 85 mg/dl, than after the HF meal (103 mg/dl). Serum triglycerides decreased more after the HF diet (HF 52 mg/dl, HP 67 mg/dl). Apparent benefits of replacing carbohydrate with polyunsaturated fat rather than protein are less insulin response and less postpeak decrease in blood glucose and lower triglycerides. The significance of the lower T3 level is unknown.

  20. Breaking up of prolonged sitting over three days sustains, but does not enhance, lowering of postprandial plasma glucose and insulin in overweight and obese adults.

    PubMed

    Larsen, Robyn N; Kingwell, Bronwyn A; Robinson, Carol; Hammond, Louise; Cerin, Ester; Shaw, Jonathan E; Healy, Genevieve N; Hamilton, Marc T; Owen, Neville; Dunstan, David W

    2015-07-01

    To compare the cumulative (3-day) effect of prolonged sitting on metabolic responses during a mixed meal tolerance test (MTT), with sitting that is regularly interrupted with brief bouts of light-intensity walking. Overweight/obese adults (n=19) were recruited for a randomized, 3-day, outpatient, cross-over trial involving: (1) 7-h days of uninterrupted sitting (SIT); and (2) 7-h days of sitting with light-intensity activity breaks [BREAKS; 2-min of treadmill walking (3.2 km/h) every 20 min (total: 17 breaks/day)]. On days 1 and 3, participants underwent a MTT (75 g of carbohydrate, 50 g of fat) and the incremental area under the curve (iAUC) was calculated from hourly blood samples. Generalized estimating equation (GEE) models were adjusted for gender, body mass index (BMI), energy intake, treatment order and pre-prandial values to determine effects of time, condition and time × condition. The glucose iAUC was 1.3 ± 0.5 and 1.5 ± 0.5 mmol·h·l(-1) (mean differences ± S.E.M.) higher in SIT compared with BREAKS on days 1 and 3 respectively (condition effect: P=0.001), with no effect of time (P=0.48) or time × condition (P=0.8). The insulin iAUC was also higher on both days in SIT (day 1: ∆151 ± 73, day 3: ∆91 ± 73 pmol·h·l(-1), P=0.01), with no effect of time (P=0.52) or time × condition (P=0.71). There was no between-treatment difference in triglycerides (triacylglycerols) iAUC. There were significant between-condition effects but no temporal change in metabolic responses to MTT, indicating that breaking up of sitting over 3 days sustains, but does not enhance, the lowering of postprandial glucose and insulin.

  1. The effect of diet fat on rat adipocyte glucose transport.

    PubMed

    Ip, C; Tepperman, H M; De Witt, J; Tepperman, J

    1977-05-01

    Rats were fed either a high fat diet (67% of calories as lard) or high glucose diet (67% of calories as glucose) for 7-8 days. Basal and insulin stimulated net uptake of D glucose (D-L) and 2 deoxy D glucose uptake by free fat cells of fat rats were depressed. Net transport of D glucose (D-L) by purified adipocyte plasma membranes of fat red rats was also diminished. Incubation of fat cells from glucose fed rats with insulin before homogenization for membrane preparation increased net D glucose transport by subsequently purified membranes in two experiments to a greater extent than in similar preparations from rat fed rats. These experiments suggest that fat feeding modifies the plasma membranes of fat cells so that both glucose transport and the stimulatory effect of insulin on the process are decreased.

  2. Is fructose sweeter than glucose for rats?

    PubMed

    Ramirez, I

    1996-11-01

    Because it is generally thought that the intensity of the taste of fructose is greater than that of glucose for rats, it seemed surprising when sham-fed rats drank substantially less of a mixture of 6% fructose plus saccharin than of a mixture of 6% glucose plus saccharin. At least 3 different factors contribute to this effect. First, the taste of fructose is less attractive to rats than is the taste of glucose; sham-fed rats strongly preferred glucose over fructose (no saccharin was used in this experiment). The second factor is experience. Rats having substantial previous experience with glucose, but not with fructose, consistently preferred glucose over fructose. Conversely, rats having substantial previous experience with fructose, but not with glucose, initially showed no consistent preference but subsequently tended to prefer glucose. The third factor is an interaction between saccharin and the type of sugar. Rats given only one solution at a time drink approximately as much fructose as glucose when the solutions contain no saccharin. The addition of 0.25% saccharin to 6% glucose stimulated intake, whereas the addition of the same amount of saccharin to 6% fructose did not stimulate intake. As a result, rats ingested substantially more of a mixture of 0.25% saccharin plus 6% glucose than they did of a comparable mixture of saccharin and fructose, even though rats ingest similar amounts of fructose and glucose without saccharin in single-bottle tests. Because the differential effect of saccharin on intake appeared within 2 h in naive rats, and did not greatly change over a 3-day period, it is probably not attributable to conditioning. These results suggest that these sugars have qualitatively different tastes.

  3. A validated LC-MS/MS method for the determination of canagliflozin, a sodium-glucose co-transporter 2 (SGLT-2) inhibitor, in a lower volume of rat plasma: application to pharmacokinetic studies in rats.

    PubMed

    Kobuchi, Shinji; Yano, Kyoka; Ito, Yukako; Sakaeda, Toshiyuki

    2016-10-01

    Canagliflozin is a novel, orally selective inhibitor of sodium-dependent glucose co-transporter-2 (SGLT2) for the treatment of patients with type 2 diabetes mellitus. In this study, a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantitative analysis of canagliflozin in a lower volume of rat plasma (0.1 mL) was established and applied to a pharmacokinetic study in rats. Following liquid-liquid extraction by tert-butyl methyl ether, chromatographic separation of canagliflozin was performed on a Quicksorb ODS (2.1 mm i.d. × 150 mm, 5 µm size) using acetonitrile-0.1% formic acid (90:10, v/v) as the mobile phase at a flow rate of 0.2 mL/min. The detection was carried out using an API 3200 triple-quadrupole mass spectrometer operating in the positive electrospray ionization mode. Selected ion monitoring transitions of m/z = 462.0 [M + NH4 ](+)  → 191.0 for canagliflozin and m/z = 451.2 [M + H](+)  → 71.0 for empagliflozin (internal standard) were obtained. The validation of the method was investigated, and it was found to be of sufficient specificity, accuracy and precision. Canagliflozin in rat plasma was stable under the analytical conditions used. This validated method was successfully applied to assess the pharmacokinetics of canagliflozin in rats using 0.1 mL rat plasma. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Effect of transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: a pilot randomized study

    PubMed Central

    2014-01-01

    Background Impaired glucose tolerance (IGT) is a pre-diabetic state of hyperglycemia that is associated with insulin resistance, increased risk of type II diabetes, and cardiovascular pathology. Recently, investigators hypothesized that decreased vagus nerve activity may be the underlying mechanism of metabolic syndrome including obesity, elevated glucose levels, and high blood pressure. Methods In this pilot randomized clinical trial, we compared the efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) and sham taVNS on patients with IGT. 72 participants with IGT were single-blinded and were randomly allocated by computer-generated envelope to either taVNS or sham taVNS treatment groups. In addition, 30 IGT adults were recruited as a control population and not assigned treatment so as to monitor the natural fluctuation of glucose tolerance in IGT patients. All treatments were self-administered by the patients at home after training at the hospital. Patients were instructed to fill in a patient diary booklet each day to describe any side effects after each treatment. The treatment period was 12 weeks in duration. Baseline comparison between treatment and control group showed no difference in weight, BMI, or measures of systolic blood pressure, diastolic blood pressure, fasting plasma glucose (FPG), 2-hour plasma glucose (2hPG), or glycosylated hemoglobin (HbAlc). Results 100 participants completed the study and were included in data analysis. Two female patients (one in the taVNS group, one in the sham taVNS group) dropped out of the study due to stimulation-evoked dizziness. The symptoms were relieved after stopping treatment. Compared with sham taVNS, taVNS significantly reduced the two-hour glucose tolerance (F(2) = 5.79, p = 0.004). In addition, we found that taVNS significantly decreased (F(1) = 4.21, p = 0.044) systolic blood pressure over time compared with sham taVNS. Compared with the no-treatment control group, patients

  5. Acetate and glucose incorporation into subcutaneous, intramuscular, and visceral fat of finishing steers.

    PubMed

    Nayananjalie, W A D; Wiles, T R; Gerrard, D E; McCann, M A; Hanigan, M D

    2015-05-01

    The objectives of this study were to assess the effects of early grain feeding on acetate and glucose turnover rates and acetate and glucose preference for palmitate synthesis by subcutaneous fat (SCF), intramuscular fat (IMF), and visceral fat (VF) in finishing steers. Sixteen Angus × Simmental steers were used in the study; 8 were early weaned (EW) and fed a high-grain diet immediately after weaning for 100 or 148 d, and 8 remained with their dams on pasture until weaning at 202 ± 5 or 253 ± 5 d of age. Normal weaned (NW) and EW animals were combined and grazed to 374 ± 5 or 393 ± 5 d of age, when they were placed on a corn silage-based finishing ration until they achieved a SCF thickness of 1.0 to 1.2 cm (494 ± 17 d of age for EW steers and 502 ± 12 d of age for NW steers). Immediately before harvest, steers were continuously infused for 12 h with [2H3] acetate (1.63 mmol/min; n = 8) or [U-13C6] glucose (0.07 mmol/min; n = 8). Blood samples were collected before initiation of infusions and at the end of the infusion from 8 animals or at 1-h intervals for the first 11 h and at 15-min intervals for the last hour of infusion for the other 8 animals. Adipose tissue samples from SCF, IMF, and VF depots were collected at harvest, and lipids were extracted. Plasma enrichments of acetate and glucose and palmitate enrichment in each depot were used to calculate plasma turnover rates and fractional synthesis rates (FSR; % per h) of palmitate from each isotope. Early weaned steers had greater marbling scores compared to NW steers ( P< 0.05). Plasma turnover rates and FSR for EW and NW steers were similar except for SCF, where a greater FSR from acetate was observed for EW steers. It is possible the greater FSR for SCF was due to harvesting the animals at a slightly more advanced stage of conditioning as evidenced by the trend for greater 12th rib fat (P = 0.07). Plasma acetate turnover and palmitate FSR from acetate were much greater (P < 0.05) than the

  6. The human brain produces fructose from glucose

    PubMed Central

    Hwang, Janice J.; Jiang, Lihong; Hamza, Muhammad; Dai, Feng; Cline, Gary; Rothman, Douglas L.; Mason, Graeme; Sherwin, Robert S.

    2017-01-01

    Fructose has been implicated in the pathogenesis of obesity and type 2 diabetes. In contrast to glucose, CNS delivery of fructose in rodents promotes feeding behavior. However, because circulating plasma fructose levels are exceedingly low, it remains unclear to what extent fructose crosses the blood-brain barrier to exert CNS effects. To determine whether fructose can be endogenously generated from glucose via the polyol pathway (glucose → sorbitol → fructose) in human brain, 8 healthy subjects (4 women/4 men; age, 28.8 ± 6.2 years; BMI, 23.4 ± 2.6; HbA1C, 4.9% ± 0.2%) underwent 1H magnetic resonance spectroscopy scanning to measure intracerebral glucose and fructose levels during a 4-hour hyperglycemic clamp (plasma glucose, 220 mg/dl). Using mixed-effects regression model analysis, intracerebral glucose rose significantly over time and differed from baseline at 20 to 230 minutes. Intracerebral fructose levels also rose over time, differing from baseline at 30 to 230 minutes. The changes in intracerebral fructose were related to changes in intracerebral glucose but not to plasma fructose levels. Our findings suggest that the polyol pathway contributes to endogenous CNS production of fructose and that the effects of fructose in the CNS may extend beyond its direct dietary consumption. PMID:28239653

  7. Bed Rest Worsens Impairments in Fat and Glucose Metabolism in Older, Overweight Adults

    PubMed Central

    2014-01-01

    Background. The effects of bed rest on the dysregulation of fatty acid and glucose metabolism have not been addressed in the older population. Objective. We examined the effect of 10 days of bed rest on fatty acid kinetics and hepatic and peripheral insulin resistance in aging. Methods. We utilized an octreotide, basal glucagon replacement, multistage insulin infusion, and the concomitant infusion of [6,6 2H2]glucose to derive insulin-mediated suppression of glucose production and insulin-stimulated glucose disposal in nine older, overweight individuals (body mass index 28.1 ± 1.7 kg m−2; 39.9% ± 1.9% fat). During the multistage insulin infusion, we also infused [1-13C]palmitate to examine free fatty acid rate of appearance (R a). Results. Body weight, % body fat, and energy metabolism did not change with bed rest. There was a significant decrease (−2291 ± 316cm3) in visceral fat, and no change in abdominal subcutaneous fat with bed rest. Insulin-mediated suppression of glucose production was modest prior to bed rest and was further reduced (>15% ± 2%) by bed rest. There was also a minor decrease in the insulin-mediated suppression of free fatty acid R a after bed rest and, as a consequence, a small variation in plasma free fatty acid from pre- to post-bed rest in the first stage of the multistage insulin infusion. There was also a significant bed rest–induced decline (>2.0 ± 0.6 mg kg FFM−1 min− 1) in insulin-stimulated glucose disposal. Conclusions. Preexisting impairments in insulin sensitivity are worsened by bed rest and seem linked to alterations in the regulation of free fatty acid in older, overweight individuals. PMID:23902932

  8. Temperature and pressure dependent rate coefficients for the reaction of C2H4 + HO2 on the C2H4O2H potential energy surface.

    PubMed

    Guo, JunJiang; Xu, JiaQi; Li, ZeRong; Tan, NingXin; Li, XiangYuan

    2015-04-02

    The potential energy surface (PES) for reaction C2H4 + HO2 was examined by using the quantum chemical methods. All rates were determined computationally using the CBS-QB3 composite method combined with conventional transition state theory(TST), variational transition-state theory (VTST) and Rice-Ramsberger-Kassel-Marcus/master-equation (RRKM/ME) theory. The geometries optimization and the vibrational frequency analysis of reactants, transition states, and products were performed at the B3LYP/CBSB7 level. The composite CBS-QB3 method was applied for energy calculations. The major product channel of reaction C2H4 + HO2 is the formation C2H4O2H via an OH(···)π complex with 3.7 kcal/mol binding energy which exhibits negative-temperature dependence. We further investigated the reactions related to this complex, which were ignored in previous studies. Thermochemical properties of the species involved in the reactions were determined using the CBS-QB3 method, and enthalpies of formation of species were compared with literature values. The calculated rate constants are in good agreement with those available from literature and given in modified Arrhenius equation form, which are serviceable in combustion modeling of hydrocarbons. Finally, in order to illustrate the effect for low-temperature ignition of our new rate constants, we have implemented them into the existing mechanisms, which can predict ethylene ignition in a shock tube with better performance.

  9. Theoretical study of the bonding of Nb(2+) to CH2, C2H2, and C2H4

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry

    1991-01-01

    The bonding of Nb(2+) with CH2, C2H2, and C2H4 is studied by using electronic structure calculations that include high levels of electron correlation. The binding energy for NbCH2(2+) is in good agreement with the lower bound determined from the reaction with CH4 but is significantly smaller than the value determined from the binding energy and ionization potential of NbCH2(+). The calculations and a new interpretation of the experiment indicate that the larger value is in error primarily because the ionization potential of NbCH2(+) determined from bracketing charge-exchange reactions is too small. The computed binding energy of NbC2H2(2+) is in good agreement with experiment. The calculations show that the bonding is predominantly covalent in character for both NbCH2(2+) and NbC2H2(2+), whereas for NbC2H4(2+) the electronic states that are predominantly ionic and covalent are nearly degenerate. The trend in binding energies, CH2 greater than C2H2 greater than C2H4, is consistent with the energy required to prepare the ligands for bonding.

  10. Efficient C2 functionalisation of 2H-2-imidazolines.

    PubMed

    Bon, Robin S; Sprenkels, Nanda E; Koningstein, Manoe M; Schmitz, Rob F; de Kanter, Frans J J; Dömling, Alexander; Groen, Marinus B; Orru, Romano V A

    2008-01-07

    Alkylation and oxidation of 2H-2-imidazolines, followed by regioselective deprotection, thionation and microwave-assisted Liebeskind-Srogl reaction, efficiently led to 2-aryl-2-imidazolines as new analogues of p53-hdm2 interaction inhibitors (Nutlins).

  11. Correspondence of continuous interstitial glucose measurement against arterialised and capillary glucose following an oral glucose tolerance test in healthy volunteers.

    PubMed

    Dye, Louise; Mansfield, Michael; Lasikiewicz, Nicola; Mahawish, Lena; Schnell, Rainer; Talbot, Duncan; Chauhan, Hitesh; Croden, Fiona; Lawton, Clare

    2010-01-01

    The aim of the present study was to validate the Glucoday continuous interstitial ambulatory glucose-monitoring device (AGD) against plasma glucose measured from arterialised venous (AV) and glucose from capillary whole blood (finger prick, FP) in non-diabetic subjects in response to an oral glucose tolerance test. Fifteen healthy overweight men (age 30-49 years, BMI 26-31 kg/m2) participated. Glucose levels were measured before, during and after consumption of an oral 75 g glucose load using twelve FP samples and forty-four 1 ml AV blood samples during 180 min. Interstitial glucose was measured via the AGD. Three venous samples for fasting insulin were taken to estimate insulin resistance. Profiles of AGD, AV and FP glucose were generated for each participant. Glucose values for each minute of the measurement period were interpolated using a locally weighted scatterplot smoother. Data were compared using Bland-Altman plots that showed good correspondence between all pairs of measurements. Concordance between the three methods was 0.8771 (Kendall's W, n 15, P < 0.001). Concordance was greater between AV and FP (W = 0.9696) than AGD and AV (W = 0.8770) or AGD and FP (W = 0.8764). Analysis of time to peak glucose indicated that AGD measures lagged approximately 15 min behind FP and AV measures. Percent body fat was significantly correlated with time to peak glucose levels for each measure, while BMI and estimated insulin resistance (homeostatic model assessment, HOMA) were not. In conclusion, AGD shows good correspondence with FP and AV glucose measures in response to a glucose load with a 15 min time lag. Taking this into account, AGD has potential application in nutrition and behaviour studies.

  12. High-solids biphasic CO2-H2O pretreatment of lignocellulosic biomass.

    PubMed

    Luterbacher, Jeremy S; Tester, Jefferson W; Walker, Larry P

    2010-10-15

    A high pressure (200 bar) CO(2)-H(2)O process was developed for pretreating lignocellulosic biomass at high-solid contents, while minimizing chemical inputs. Hardwood was pretreated at 20 and 40 (wt.%) solids. Switchgrass, corn stover, big bluestem, and mixed perennial grasses (a co-culture of big bluestem and switchgrass) were pretreated at 40 (wt.%) solids. Operating temperatures ranged from 150 to 250 degrees C, and residence times from 20 s to 60 min. At these conditions a biphasic mixture of an H(2)O-rich liquid (hydrothermal) phase and a CO(2)-rich supercritical phase coexist. Following pretreatment, samples were then enzymatically hydrolyzed. Total yields, defined as the fraction of the theoretical maximum, were determined for glucose, hemicellulose sugars, and two degradation products: furfural and 5-hydroxymethylfurfural. Response surfaces of yield as a function of temperature and residence time were compared for different moisture contents and biomass species. Pretreatment at 170 degrees C for 60 min gave glucose yields of 77%, 73%, and 68% for 20 and 40 (wt.%) solids mixed hardwood and mixed perennial grasses, respectively. Pretreatment at 160 degrees C for 60 min gave glucan to glucose yields of 81% for switchgrass and 85% for corn stover.

  13. C2H observations toward the Orion Bar

    NASA Astrophysics Data System (ADS)

    Nagy, Z.; Ossenkopf, V.; Van der Tak, F. F. S.; Faure, A.; Makai, Z.; Bergin, E. A.

    2015-06-01

    Context. The ethynyl radical (C2H) is one of the first radicals to be detected in the interstellar medium. Its higher rotational transitions have recently become available with the Herschel Space Observatory. Aims: We aim to constrain the physical parameters of the C2H emitting gas toward the Orion Bar. Methods: We analyze the C2H line intensities measured toward the Orion Bar CO+ Peak and Herschel/HIFI maps of C2H, CH, and HCO+ and a NANTEN map of [Ci]. We interpret the observed C2H emission using the combination of Herschel/HIFI and NANTEN data with radiative transfer and PDR models. Results: Five rotational transitions of C2H (from N = 6-5 up to N = 10-9) have been detected in the HIFI frequency range toward the CO+ peak of the Orion Bar. Based on the five detected C2H transitions, a single component rotational diagram analysis gives a rotation temperature of ~64 K and a beam-averaged C2H column density of 4 × 1013 cm-2. The rotational diagram is also consistent with a two-component fit, resulting in rotation temperatures of 43 ± 0.2 K and 123 ± 21 K and in beam-averaged column densities of ~8.3 × 1013 cm-2 and ~2.3 × 1013 cm-2 for the three lower-N and for the three higher-N transitions, respectively. The measured five rotational transitions cannot be explained by any single parameter model. According to a non-LTE model, most of the C2H column density produces the lower-N C2H transitions and traces a warm (Tkin ~ 100-150 K) and dense (n(H2) ~ 105-106 cm-3) gas. A small fraction of the C2H column density is required to reproduce the intensity of the highest-N transitions (N = 9-8 and N = 10-9) originating in a high-density (n(H2) ~5 × 106 cm-3) hot (Tkin ~ 400 K) gas. The total beam-averaged C2H column density in the model is 1014 cm-2. A comparison of the spatial distribution of C2H to those of CH, HCO+, and [Ci] shows the best correlation with CH. Conclusions: Both the non-LTE radiative transfer model and a simple PDR model representing the Orion Bar

  14. Intermittent hypoxia and diet-induced obesity: effects on oxidative status, sympathetic tone, plasma glucose and insulin levels, and arterial pressure.

    PubMed

    Olea, Elena; Agapito, Maria Teresa; Gallego-Martin, Teresa; Rocher, Asuncion; Gomez-Niño, Angela; Obeso, Ana; Gonzalez, Constancio; Yubero, Sara

    2014-10-01

    Obstructive sleep apnea (OSA) consists of sleep-related repetitive obstructions of upper airways that generate episodes of recurrent or intermittent hypoxia (IH). OSA commonly generates cardiovascular and metabolic pathologies defining the obstructive sleep apnea syndrome (OSAS). Literature usually links OSA-associated pathologies to IH episodes that would cause an oxidative status and a carotid body-mediated sympathetic hyperactivity. Because cardiovascular and metabolic pathologies in obese patients and those with OSAS are analogous, we used models (24-wk-old Wistar rats) of IH (applied from weeks 22 to 24) and diet-induced obesity (O; animals fed a high-fat diet from weeks 12 to 24) to define the effect of each individual maneuver and their combination on the oxidative status and sympathetic tone of animals, and to quantify cardiovascular and metabolic parameters and their deviation from normality. We found that IH and O cause an oxidative status (increased lipid peroxides and diminished activities of superoxide dismutases), an inflammatory status (augmented C-reactive protein and nuclear factor kappa-B activation), and sympathetic hyperactivity (augmented plasma and renal artery catecholamine levels and synthesis rate); combined treatments worsened those alterations. IH and O augmented liver lipid content and plasma cholesterol, triglycerides, leptin, glycemia, insulin levels, and HOMA index, and caused hypertension; most of these parameters were aggravated when IH and O were combined. IH diminished ventilatory response to hypoxia, and hypercapnia and O created a restrictive ventilatory pattern; a combination of treatments led to restrictive hypoventilation. Data demonstrate that IH and O cause comparable metabolic and cardiovascular pathologies via misregulation of the redox status and sympathetic hyperactivity.

  15. Glucose-dependent insulinotropic polypeptide directly induces glucose transport in rat skeletal muscle.

    PubMed

    Snook, Laelie A; Nelson, Emery M; Dyck, David J; Wright, David C; Holloway, Graham P

    2015-08-01

    Several gastrointestinal proteins have been identified to have insulinotropic effects, including glucose-dependent insulinotropic polypeptide (GIP); however, the direct effects of incretins on skeletal muscle glucose transport remain largely unknown. Therefore, the purpose of the current study was to examine the role of GIP on skeletal muscle glucose transport and insulin signaling in rats. Relative to a glucose challenge, a mixed glucose+lipid oral challenge increased circulating GIP concentrations, skeletal muscle Akt phosphorylation, and improved glucose clearance by ∼35% (P < 0.05). These responses occurred without alterations in serum insulin concentrations. In an incubated soleus muscle preparation, GIP directly stimulated glucose transport and increased GLUT4 accumulation on the plasma membrane in the absence of insulin. Moreover, the ability of GIP to stimulate glucose transport was mitigated by the addition of the PI 3-kinase (PI3K) inhibitor wortmannin, suggesting that signaling through PI3K is required for these responses. We also provide evidence that the combined stimulatory effects of GIP and insulin on soleus muscle glucose transport are additive. However, the specific GIP receptor antagonist (Pro(3))GIP did not attenuate GIP-stimulated glucose transport, suggesting that GIP is not signaling through its classical receptor. Together, the current data provide evidence that GIP regulates skeletal muscle glucose transport; however, the exact signaling mechanism(s) remain unknown.

  16. In vivo metabolic response of glucose to dichloroacetate in humans.

    PubMed

    Brown, J A; Gore, D C

    1996-03-01

    Hyperglycemia is common in severely ill patients and is related principally to an increase in glucose production. Dichloroacetate (DCA), which is known to increase the rate of pyruvate oxidation, has been shown to lower plasma glucose concentrations in normal fasting subjects and in diabetics and thus may be efficacious in treating stress induced hyperglycemia. However, the mechanism by which DCA lowers the plasma glucose concentration in humans has not been elucidated. To examine the human in vivo metabolic alterations induced by DCA, six fasting volunteers were infused with 6,6-D2-glucose and indirect calorimetry was performed prior to and following DCA administration. Glucose, lactate, and alanine net balance across the leg were also quantitated. Following DCA administration, plasma glucose concentrations decreased by 9% due to a proportional decrease in the rate of glucose production (P < 0.05). DCA had no affect on glucose clearance or leg net balance; however, the rate of glucose oxidation increased by 24% from baseline (P < 0.05). This increase in glucose oxidation without a compensatory change in peripheral glucose consumption suggests an improved efficiency in peripheral glucose utilization induced by DCA. Plasma concentrations of lactate and alanine were also lowered by DCA (56% for lactate, 66% for alanine, P < 0.05) without a significant alteration in leg net balance. These results suggest that DCA may decrease gluconeogenesis by limiting the availability of the precursor substrates lactate and alanine. Thus dichloroacetate may be an appropriate alternative to insulin in correcting mild elevations in plasma glucose concentrations. Furthermore, DCA may be especially effective in severely ill patients where hyperglycemia is largely due to increases in gluconeogenesis.

  17. General aspects of muscle glucose uptake.

    PubMed

    Alvim, Rafael O; Cheuhen, Marcel R; Machado, Silmara R; Sousa, André Gustavo P; Santos, Paulo C J L

    2015-03-01

    Glucose uptake in peripheral tissues is dependent on the translocation of GLUT4 glucose transporters to the plasma membrane. Studies have shown the existence of two major signaling pathways that lead to the translocation of GLUT4. The first, and widely investigated, is the insulin activated signaling pathway through insulin receptor substrate-1 and phosphatidylinositol 3-kinase. The second is the insulin-independent signaling pathway, which is activated by contractions. Individuals with type 2 diabetes mellitus have reduced insulin-stimulated glucose uptake in skeletal muscle due to the phenomenon of insulin resistance. However, those individuals have normal glucose uptake during exercise. In this context, physical exercise is one of the most important interventions that stimulates glucose uptake by insulin-independent pathways, and the main molecules involved are adenosine monophosphate-activated protein kinase, nitric oxide, bradykinin, AKT, reactive oxygen species and calcium. In this review, our main aims were to highlight the different glucose uptake pathways and to report the effects of physical exercise, diet and drugs on their functioning. Lastly, with the better understanding of these pathways, it would be possible to assess, exactly and molecularly, the importance of physical exercise and diet on glucose homeostasis. Furthermore, it would be possible to assess the action of drugs that might optimize glucose uptake and consequently be an important step in controlling the blood glucose levels in diabetic patients, in addition to being important to clarify some pathways that justify the development of drugs capable of mimicking the contraction pathway.

  18. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Romani, P. N.; Abbas, M.; LeClair, A.; Strobel, D.

    2004-01-01

    Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10-1400 cm(sup -1) (1000-7 microns). In this paper we analyze a zonally-averaged set of CIRS spectra taken at the highest (0.5 cm(sup -1)) resolution, to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm(sup -1). Simultaneously, we retrieve the abundances of C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIRS resolution, introducing a non-uniqueness into the retrievals, such that vertical gradient and column abundance cannot both be found without additional constraints. Assuming profile gradients from photochemical calculations, we show that the column abundance of C2H2 decreases sharply towards the poles by a factor approximately 4, while C2H6 is unchanged in the north and increasing in the south, by a factor approximately 1.8. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors 2.7 and 3.5 respectively at a latitude 70 deg. However, the lifetime of C2H6 in the stratosphere (5 x 10(exp 9)) is much longer than the dynamical timescale for meridional motions inferred from SL-9 debris (5 x 10(exp 8 s)), and therefore the constant or rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite

  19. Glucose determination with fiber optic spectrometers

    NASA Astrophysics Data System (ADS)

    Starke, Eva; Kemper, Ulf; Barschdorff, Dieter

    1999-05-01

    Noninvasive blood glucose monitoring is the aim of research activities concerning the detection of small glucose concentrations dissolved in water and blood plasma. One approach for these measurements is the exploitation of absorption bands in the near infrared. However, the strong absorption of water represents a major difficulty. Transmission measurements of glucose dissolved in water and in blood plasma in the spectral region around 1600 nm with one- beam spectrometers and a FT-IR spectrometer are discussed. The evaluation of the data is carried out using a two-layer Lambert-Beer model and neural networks. In order to reduce the dimensions of a potential measuring device, an integrated acousto-optic tunable filter (AOTF) with an Erbium doped fiber amplifier as a radiation source is used. The fiber optic components are examined concerning their suitability. The smallest concentrations of glucose dissolved in water that can be separated are approximately 50 mg/dl. In the range of 50 mg/dl to 1000 mg/dl a correlation coefficient of 0.98 between real and estimated glucose concentrations is achieved using neural networks. In blood plasma so far glucose concentrations of about 100 mg/dl can be distinguished with good accuracy.

  20. Diurnal Variation in Response to Intravenous Glucose*

    PubMed Central

    Whichelow, Margaret J.; Sturge, R. A.; Keen, H.; Jarrett, R. J.; Stimmler, L.; Grainger, Susan

    1974-01-01

    Intravenous glucose tolerance tests (25 g) were performed in the morning and afternoon on 13 apparently normal persons. The individual K values (rate of decline of blood sugar) were all higher in the morning tests, and the mean values were significantly higher in the morning. Fasting blood sugar levels were slightly lower in the afternoon. There was no difference between the fasting morning and afternoon plasma insulin levels, but the levels after glucose were lower in the afternoon. Growth hormone levels were low at all times in non-apprehensive subjects and unaffected by glucose. The results suggest that the impaired afternoon intravenous glucose tolerance, like oral glucose tolerance, is associated with impaired insulin release and insulin resistance. PMID:4817160

  1. A novel test for IGT utilizing metabolite markers of glucose tolerance.

    PubMed

    Cobb, Jeff; Eckhart, Andrea; Perichon, Regis; Wulff, Jacob; Mitchell, Matthew; Adam, Klaus-Peter; Wolfert, Robert; Button, Eric; Lawton, Kay; Elverson, Robert; Carr, Bernadette; Sinnott, Margaret; Ferrannini, Ele

    2015-01-01

    The oral glucose tolerance test (OGTT) is the only method to diagnose patients having impaired glucose tolerance (IGT), but its use has diminished considerably in recent years. Metabolomic profiling studies have identified a number of metabolites whose fasting levels are associated with dysglycemia and type 2 diabetes. These metabolites may serve as the basis of an alternative test for IGT. Using the stable isotope dilution technique, quantitative assays were developed for 23 candidate biomarker metabolites. These metabolites were measured in fasting plasma samples taken just prior to an OGTT from 1623 nondiabetic subjects: 955 from the Relationship between Insulin Sensitivity and Cardiovascular Disease Study (RISC Study; 11.7% IGT) and 668 subjects from the Diabetes Mellitus and Vascular Health Initiative (DMVhi) cohort from the DEXLIFE project (11.8% IGT). The associations between metabolites, anthropometric, and metabolic parameters and 2hPG values were assessed by Pearson correlation coefficients and Random Forest classification analysis to rank variables for their ability to distinguish IGT from normal glucose tolerance (NGT). Multivariate logistic regression models for estimating risk of IGT were developed and evaluated using AUCs calculated from the corresponding ROC curves. A model based on the fasting plasma levels of glucose, α-hydroxybutyric acid, β-hydroxybutyric acid, 4-methyl-2-oxopentanoic acid, linoleoylglycerophosphocholine, oleic acid, serine and vitamin B5 was optimized in the RISC cohort (AUC = 0.82) and validated in the DMVhi cohort (AUC = 0.83). A novel, all-metabolite-based test is shown to be a discriminate marker of IGT. It requires only a single fasted blood draw and may serve as a more convenient surrogate for the OGTT or as a means of identifying subjects likely to be IGT.

  2. Effects of alpha and beta adrenergic blockade on hepatic glucose balance before and after oral glucose. Role of insulin and glucagon.

    PubMed Central

    Chap, Z; Ishida, T; Chou, J; Michael, L; Hartley, C; Entman, M; Field, J B

    1986-01-01

    In conscious dogs, phentolamine infusion significantly increased fasting portal vein insulin, glucagon, and decreased net hepatic glucose output and plasma glucose. Propranolol significantly decreased portal vein insulin, portal flow, and increased hepatic glucose production and plasma glucose. Phentolamine, propranolol, and combined blockade reduced glucose absorption after oral glucose. alpha, beta, and combined blockade abolished the augmented fractional hepatic insulin extraction after oral glucose. Despite different absolute amounts of glucose absorbed and different amounts of insulin reaching the liver, the percent of the absorbed glucose retained by the liver was similar for control and with alpha- or beta blockade, but markedly decreased with combined blockade. Our conclusions are: (a) phentolamine and propranolol effects on basal hepatic glucose production may predominantly reflect their action on insulin and glucagon secretion; (b) after oral glucose, alpha- and beta-blockers separately or combined decrease glucose release into the portal system; (c) net hepatic glucose uptake is predominantly determined by hyperglycemia but can be modulated by insulin and glucagon; (d) direct correlation does not exist between hepatic delivery and uptake of insulin and net hepatic glucose uptake; (e) alterations in oral glucose tolerance due to adrenergic blockers, beyond their effects on glucose absorption, can be, to a large extent, mediated by their effects on insulin and glucagon secretion reflecting both hepatic and peripheral glucose metabolism. PMID:2870078

  3. In treating diabetes, what is important? Glucose levels or outcome measures?

    PubMed Central

    Mandal, Anil K

    2015-01-01

    Gaps in knowledge prevail in recognizing which glycemic parameters to order and in determining glycemic control. However glycosylated hemoglobin (HbA1c) is most commonly ordered to determine glycemic control. HbA1c provides information of overtime glycemic control but does not inform post meal glycemic excusions. The latter may be significant in outcome measure such as cardiovascular disorder (CVD), renal failure or amputation in diabetes. In order to obviate the dilemma in the importance between fasting blood glucose (FBG) and 2-h post prandial glucose (2hPPG), we innovated delta (d) which is the difference between 2hPPG minus FBG. There is much information available relating 2hPPG or postprandial hyperglycemia to CVD and some information relating 2hPPG to renal failure or amputation. Thus much emphasis is laid upon glycemic control with little or no emphasis on the complications of diabetes or the outcome measures. The focus of this editorial is to draw attention to outcome measures by ordering fasting and 2-h postprandial (2hPP) basic metabolic panel (BMP) which provides glucose levels, renal function test and electrolytes. HbA1c significantly relates to 2hPPG, thus by ordering F and 2hPP BMP instead of HbA1c alone will serve both purposes: Glycemic control and outcome measure. Delta (d) glucose (dhPPG-FBG) is a stronger predictor than 2hPPG of renal function deterioration. PMID:26468340

  4. Infrared spectroscopy of V2+(H2O) complexes

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, B.; Duncan, M. A.

    2012-03-01

    Doubly charged vanadium-water complexes are produced by laser vaporization in a pulsed supersonic expansion. Size-selected ions are studied with infrared photodissociation spectroscopy in the O-H stretch region using argon complex predissociation. Density functional theory calculations provide structures and vibrational spectra of these ions. The O-H stretches of V2+(H2O) appear at lower frequencies than those of the free water molecule or V+(H2O). The symmetric stretch is more intense than the asymmetric stretch in both V+(H2O) and V2+(H2O) complexes. Spectra of V2+(H2O)Arn (n = 2-7) show that the coordination of the V2+ is filled with six ligands, i.e. one water and five argon atoms.

  5. CSF glucose test

    MedlinePlus

    Glucose test - CSF; Cerebrospinal fluid glucose test ... The glucose level in the CSF should be 50 to 80 mg/100 mL (or greater than 2/3 ... Abnormal results include higher and lower glucose levels. Abnormal ... or fungus) Inflammation of the central nervous system Tumor

  6. Blood Test: Glucose

    MedlinePlus

    ... Your 1- to 2-Year-Old Blood Test: Glucose KidsHealth > For Parents > Blood Test: Glucose A A A What's in this article? What ... de sangre: glucosa What It Is A blood glucose test measures the amount of glucose (the main ...

  7. Glucose turnover and recycling in colorectal carcinoma.

    PubMed

    Kokal, W A; McCulloch, A; Wright, P D; Johnston, I D

    1983-11-01

    Glucose metabolism is affected by various pathologic states including tumors. In this project, glucose turnover and recycling rates in 11 patients with colorectal carcinoma were measured using a double-labelled 3-3H and 1-14C glucose injection technique. Fasting blood glucose, lactate, pyruvate, alanine, glycerol, 3-hydroxybutyrate, acetoacetate, plasma cortisol, and plasma insulin concentrations were also measured. No patient in the study had a history of diabetes mellitus or endocrine disorders, nor any abnormal liver function tests. The findings demonstrated a significantly elevated glucose turnover rate in patients with Dukes C and D lesions in comparison to patients with Dukes B lesions. Cori recycling rates were not significantly different between Dukes B vs. Dukes C and D patients. There were no differences between Dukes B and Dukes C and D patients in any of the metabolites measured. Furthermore, there were no significant differences in glucose turnover or recycling rates as a function of pre-illness weight loss. These data suggest that, when colorectal carcinoma extends beyond the limits of the bowel wall, glucose metabolism is significantly altered.

  8. Direct vs. indirect pathway of hepatic glycogen synthesis as a function of glucose infusion rate

    SciTech Connect

    Bagby, G.J.; Lang, C.H.; Johnson, J.L.; Blakesly, H.L.; Spitzer, J.J.

    1986-03-05

    This study was initiated to determine the influence of the rate of exogenous glucose administration on liver glycogen synthesis by the direct (glucose uptake and incorporation into glycogen) vs the indirect pathway (glucose degradation to 3-carbon intermediates, e.g., lactate, prior to incorporation into glycogen). Catheterized rats were fasted 2 days prior to receiving a 3 hr infusion of glucose at rates of 0 to 230 ..mu..mol/min/kg containing tracer (6-/sup 3/H)- and (U-/sup 14/C)-glucose. Plasma glucose (r = 0.80), insulin (r = 0.90) and lactate (r = 0.84) were correlated with glucose infusion rate. The rate of liver glycogen deposition (0.46 +/- 0.03 ..mu..mol/min/g) did not differ between a glucose infusion rate of 20 and 230 ..mu..mol/min/kg. At the lowest and highest glucose infusion rates hepatic glycogenesis accounted for 87 +/- 6 and 9 +/- 1% of the total glucose load, respectively. The percent contribution of the direct pathways to glycogen deposition ((/sup 3/H) specific activity in hepatic glycogen/(/sup 3/H) specific activity in plasma glucose) increased from 16 +/- 3 to 83 +/- 5% from lowest to highest glucose infusion rates (prevailing plasma glucose concentrations: 9 +/- 1 and 21 +/- 2 mM, respectively). The results indicate that the relative contribution of the direct and indirect pathways of glucogen synthesis are dependent upon the glucose load or plasma glucose concentration.

  9. Accuracy of Continuous Glucose Monitoring During Exercise in Type 1 Diabetes Pregnancy

    PubMed Central

    Elleri, Daniela; Allen, Janet M.; Caldwell, Karen; Nodale, Marianna; Wilinska, Malgorzata E.; Amiel, Stephanie A.; Hovorka, Roman; Murphy, Helen R.

    2013-01-01

    Abstract Background Performance of continuous glucose monitors (CGMs) may be lower when glucose levels are changing rapidly, such as occurs during physical activity. Our aim was to evaluate accuracy of a current-generation CGM during moderate-intensity exercise in type 1 diabetes (T1D) pregnancy. Subjects and Methods As part of a study of 24-h closed-loop insulin delivery in 12 women with T1D (disease duration, 17.6 years; glycosylated hemoglobin, 6.4%) during pregnancy (gestation, 21 weeks), we evaluated the Freestyle Navigator® sensor (Abbott Diabetes Care, Alameda, CA) during afternoon (15:00–18:00 h) and morning (09:30–12:30 h) exercise (55 min of brisk walking on a treadmill followed by a 2-h recovery), compared with sedentary conditions (18:00–09:00 h). Plasma (reference) glucose, measured at regular 15–30-min intervals with the YSI Ltd. (Fleet, United Kingdom) model YSI 2300 analyzer, was used to assess CGM performance. Results Sensor accuracy, as indicated by the larger relative absolute difference (RAD) between paired sensor and reference glucose values, was lower during exercise compared with rest (median RAD, 11.8% vs. 18.4%; P<0.001). These differences remained significant when correcting for plasma glucose relative rate of change (P<0.001). Analysis by glucose range showed lower accuracy during hypoglycemia for both sedentary (median RAD, 24.4%) and exercise (median RAD, 32.1%) conditions. Using Clarke error grid analysis, 96% of CGM values were clinically safe under resting conditions compared with only 87% during exercise. Conclusions Compared with sedentary conditions, accuracy of the Freestyle Navigator CGM was lower during moderate-intensity exercise in pregnant women with T1D. This difference was particularly marked in hypoglycemia and could not be solely explained by the glucose rate of change associated with physical activity. PMID:23445170

  10. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production.

    PubMed

    Merovci, Aurora; Solis-Herrera, Carolina; Daniele, Giuseppe; Eldor, Roy; Fiorentino, Teresa Vanessa; Tripathy, Devjit; Xiong, Juan; Perez, Zandra; Norton, Luke; Abdul-Ghani, Muhammad A; DeFronzo, Ralph A

    2014-02-01

    Chronic hyperglycemia impairs insulin action, resulting in glucotoxicity, which can be ameliorated in animal models by inducing glucosuria with renal glucose transport inhibitors. Here, we examined whether reduction of plasma glucose with a sodium-glucose cotransporter 2 (SGLT2) inhibitor could improve insulin-mediated tissue glucose disposal in patients with type 2 diabetes. Eighteen diabetic men were randomized to receive either dapagliflozin (n = 12) or placebo (n = 6) for 2 weeks. We measured insulin-mediated whole body glucose uptake and endogenous glucose production (EGP) at baseline and 2 weeks after treatment using the euglycemic hyperinsulinemic clamp technique. Dapagliflozin treatment induced glucosuria and markedly lowered fasting plasma glucose. Insulin-mediated tissue glucose disposal increased by approximately 18% after 2 weeks of dapagliflozin treatment, while placebo-treated subjects had no change in insulin sensitivity. Surprisingly, following dapagliflozin treatment, EGP increased substantially and was accompanied by an increase in fasting plasma glucagon concentration. Together, our data indicate that reduction of plasma glucose with an agent that works specifically on the kidney to induce glucosuria improves muscle insulin sensitivity. However, glucosuria induction following SGLT2 inhibition is associated with a paradoxical increase in EGP. These results provide support for the glucotoxicity hypothesis, which suggests that chronic hyperglycemia impairs insulin action in individuals with type 2 diabetes.

  11. Brain areas and pathways in the regulation of glucose metabolism.

    PubMed

    Diepenbroek, Charlene; Serlie, Mireille J; Fliers, Eric; Kalsbeek, Andries; la Fleur, Susanne E

    2013-01-01

    Glucose is the most important source of fuel for the brain and its concentration must be kept within strict boundaries to ensure the organism's optimal fitness. To maintain glucose homeostasis, an optimal balance between glucose uptake and glucose output is required. Besides managing acute changes in plasma glucose concentrations, the brain controls a daily rhythm in glucose concentrations. The various nuclei within the hypothalamus that are involved in the control of both these processes are well known. However, novel studies indicate an additional role for brain areas that are originally appreciated in other processes than glucose metabolism. Therefore, besides the classic hypothalamic pathways, we will review cortico-limbic brain areas and their role in glucose metabolism.

  12. Hepatic glucose sensing is required to preserve β cell glucose competence.

    PubMed

    Seyer, Pascal; Vallois, David; Poitry-Yamate, Carole; Schütz, Frédéric; Metref, Salima; Tarussio, David; Maechler, Pierre; Staels, Bart; Lanz, Bernard; Grueter, Rolf; Decaris, Julie; Turner, Scott; da Costa, Anabela; Preitner, Frédéric; Minehira, Kaori; Foretz, Marc; Thorens, Bernard

    2013-04-01

    Liver glucose metabolism plays a central role in glucose homeostasis and may also regulate feeding and energy expenditure. Here we assessed the impact of glucose transporter 2 (Glut2) gene inactivation in adult mouse liver (LG2KO mice). Loss of Glut2 suppressed hepatic glucose uptake but not glucose output. In the fasted state, expression of carbohydrate-responsive element-binding protein (ChREBP) and its glycolytic and lipogenic target genes was abnormally elevated. Feeding, energy expenditure, and insulin sensitivity were identical in LG2KO and control mice. Glucose tolerance was initially normal after Glut2 inactivation, but LG2KO mice exhibited progressive impairment of glucose-stimulated insulin secretion even though β cell mass and insulin content remained normal. Liver transcript profiling revealed a coordinated downregulation of cholesterol biosynthesis genes in LG2KO mice that was associated with reduced hepatic cholesterol in fasted mice and reduced bile acids (BAs) in feces, with a similar trend in plasma. We showed that chronic BAs or farnesoid X receptor (FXR) agonist treatment of primary islets increases glucose-stimulated insulin secretion, an effect not seen in islets from Fxr(-/-) mice. Collectively, our data show that glucose sensing by the liver controls β cell glucose competence and suggest BAs as a potential mechanistic link.

  13. The role of pancreatic insulin secretion in neonatal glucoregulation. II. Infants with disordered blood glucose homoeostasis.

    PubMed Central

    Hawdon, J M; Aynsley-Green, A; Bartlett, K; Ward Platt, M P

    1993-01-01

    Some neonates, such as those who are preterm or small for dates, become hypoglycaemic or hyperglycaemic. These disorders represent a failure of neonatal metabolic adaptation, but the underlying mechanisms are unclear. Data from studies of hypoglycaemic and hyperglycaemic infants were reviewed in the light of new data from studies of healthy neonates. Data from 28 neonates, who had disordered blood glucose homoeostasis, were analysed to determine the interrelationships between circulating concentrations of glucose, intermediary metabolites, glucagon and insulin, and glucose production rates. Blood glucose concentrations ranged from 2.5 to 26.1 mmol/l, and glucose production rates from 0 to 19.2 mg/kg/min. Blood glucose concentrations were positively related to intravenous glucose infusion rates and to glucose production rates. A negative relationship existed between plasma glucagon and blood glucose concentrations, but there was a wide variation in plasma insulin levels at all blood glucose concentrations. No relationship between either plasma insulin or glucagon concentration and glucose production rate was shown. It is concluded that in neonates with disordered blood glucose homoeostasis, blood glucose concentration is influenced by the rate of administration of glucose, with less precise internal control mechanisms than older subjects. This emphasises the importance of blood glucose monitoring and careful prescribing of exogenous glucose by clinicians caring for such infants. PMID:8466263

  14. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Abbas, M.; LeClaire, A.; Romani, P. N.; Simon-Miller, A. A.

    2004-01-01

    The abundances of hydrocarbons such as acetylene (C2H2) and ethane (C2H6) in Jupiter's atmosphere are important physical quantities, constraining our models of the chemical and dynamical processes. However, our knowledge of these quantities and their vertical and latitudinal variations has remained sparse. The flyby of the Cassini spacecraft with Jupiter at the end of 2000 provided an excellent opportunity to observe the infrared spectrum with the Composite Infrared Spectrometer (CIRS) instrument, mapping the spatial variation of emissions from 10-1400 cm-1. CIRS spectra taken at the highest resolution (0.5 cm-1) in early December 2000 have been analysed to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 of CH4, and in the troposphere at 100-400 mbar, via the hydrogen collision-induced continuum absorption at 600-800 cm. Simultaneously, we have searched for meridional abundance variations in C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIM resolution, introducing a non-uniqueness into the retrievals, which means that vertical gradient and column abundance cannot be simultaneously found without additional constraints. If we assume the profile shapes from photochemical model calculations, we show that the column abundance of C2H2 must decrease sharply towards the poles, while C2H6 is constant or slightly increasing. The relevance of these results to current photochemical and dynamical knowledge of Jupiter's atmosphere is discussed.

  15. The distribution and abundance of interstellar C2H

    NASA Technical Reports Server (NTRS)

    Huggins, P. J.; Carlson, W. J.; Kinney, A. L.

    1984-01-01

    C2H(N = 1-0) emission has been extensively observed in a variety of molecular clouds, including: 12 hot, dense, cloud cores, 3 bright-rimmed clouds (in NGC 1977, IC 1396, and IC 1848), and across the extended OMC - 1 cloud. It has also been observed in the circumstellar envelopes IRC + 10216 and AFGL 2688. Abundance analyses of the molecular clouds yield C2H/(C-13)O abundance ratios of about 0.01, with little variation (less than about a factor of 4) either between clouds or across individual clouds. In the Orion plateau source, the C2H abundance is enhanced by less than a factor of 4, relative to the extended cloud. The generally high levels of C2H found in the molecular clouds are not readily accounted for by simple, steady-state chemical models, and suggest, as do earlier observations of atomic carbon, that the carbon chemistry in dense clouds is more active than is commonly assumed.

  16. Evaluation of an electrochemical N2/H2 gas separator

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Wynveen, R. A.; Carlson, J. N.

    1973-01-01

    A program was successfully completed to evaluate an electrochemical nitrogen/hydrogen (N2/H2) separator for use in a spacecraft nitrogen (N2) generator. Based on the technical data obtained a N2/H2 separator subsystem consisting of an organic polymer gas permeator first stage and an electrochemical second and third stage was estimated to have the lowest total spared equivalent weight, 257 kg (566 lb), for a 15 lb/day N2 generation rate. A pre-design analysis of the electrochemical N2/H2 separator revealed that its use as a first stage resulted in too high a power requirement to be competitive with the organic polymer membrane and the palladium-silver membrane separation methods. As a result, program emphasis was placed on evaluating the electrochemical. A parametric test program characterized cell performance and established second- and third-stage electrochemical N2/H2 separator operating conditions. A design verification test was completed on the second and third stages. The second stage was then successfully endurance tested for 200 hours.

  17. Atorvastatin delays the glucose clearance rate in hypercholesterolemic rabbits.

    PubMed

    Cheng, Daxin; Wang, Yanli; Gao, Shoucui; Wang, Xiaojing; Sun, Wentao; Bai, Liang; Cheng, Gong; Chu, Yonglie; Zhao, Sihai; Liu, Enqi

    2015-05-01

    The administration of statin might increase the risk of new-onset diabetes in hypercholesterolemic patients based on the recent clinical evidence. However, the causal relationship must be clarified and confirmed in animal experiments. Therefore, we mimicked hypercholesterolemia by feeding rabbits a high-cholesterol diet (HCD) and performed 16 weeks of atorvastatin administration to investigate the effect of statin on glucose metabolism. The intravenous glucose tolerance test showed that plasma glucose levels in the statin-treated rabbits were consistently higher and that there was a slower rate of glucose clearance from the blood than in HCD rabbits. The incremental area under the curve for glucose in the statin-treated rabbits was also significantly larger than in the HCD rabbits. However, there was no significant difference between the two groups in the intravenous insulin tolerance test. The glucose-lowering ability of exogenous insulin was not impaired by statin treatment in hypercholesterolemic rabbits. The administration of a single dose of statin did not affect glucose metabolism in normal rabbits. The statin also significantly increased the levels of high-density lipoprotein cholesterol, alanine aminotransferase and aspartate transaminase and decreased plasma levels of total cholesterol, triglycerides and low-density lipoprotein cholesterol in the hypercholesterolemic rabbits, whereas it did not affect plasma levels of glucose and insulin. The current results showed that atorvastatin treatment resulted in a significant delay of glucose clearance in hypercholesterolemic rabbits, and this rabbit model could be suitable for studying the effects of statin on glucose metabolism.

  18. Search for the isomers of C2H3NO and C2H3NS in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel; Chakrabarti, Sandip Kumar; Das, Ankan; Gorai, Prasanta; Arunan, Elangannan

    2016-07-01

    With about 40% of all the known interstellar and circumstellar molecules having their isomeric analogues as known astromolecules, isomerism remains one of the leading themes in interstellar chemistry. In this regard, the recent detection of methyl isocyanate (with a number of isomeric analogues) in the Sgr B2(N) giant molecular cloud opens a new window for the possible astronomical detection of other C_2H_3NO isomers. The present work looks at the possibility of detecting other isomers of methyl isocyanate by considering different factors such as thermodynamic stability of the different isomers with respect to the Energy, Stability and Abundance (ESA) relationship, effect of interstellar hydrogen bonding with respect to the formation these isomers on the surface of the interstellar dust grains, possible formation routes for these isomers, spectroscopic parameters for potential astromolecules among these isomers, chemical modeling among other studies. The same studies are repeated for the C_2H_3NS isomers which are the isoelectroninc analogues of the C_2H_3NO isomers taking into account the unique chemistry of S and O-containing interstellar molecular species. Among the C_2H_3NS isomers, methyl isothiocyanate remains the most potential candidate for astronomical observation.

  19. Observations of CH4, C2H6, and C2H2 in the stratosphere of Jupiter.

    PubMed

    Sada, P V; Bjoraker, G L; Jennings, D E; McCabe, G H; Romani, P N

    1998-12-01

    We have performed high-resolution spectral observations at mid-infrared wavelengths of CH4 (8.14 micrometers), C2H6 (12.16 micrometers), and C2H2 (13.45 micrometers) on Jupiter. These emission features probe the stratosphere of the planet and provide information on the carbon-based photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer CELESTE, in conjunction with the McMath-Pierce 1.5-m solar telescope between November 1994 and February 1995. We used the methane observations to derive the temperature profile of the jovian atmosphere in the 1-10 mbar region of the stratosphere. This profile was then used in conjunction with height-dependent mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. The resulting mixing ratios are 3.9(+1.9)(-1.3) x 10(-6) for C2H6 (5 mbar pressure level), and 2.3 +/- 0.5 x 10(-8) for C2H2 (8 mbar pressure level), where the quoted uncertainties are derived from model variations in the temperature profile which match the methane observation uncertainties.

  20. Sodium salicylate restores the impaired insulin response to glucose and improves glucose tolerance in heroin addicts.

    PubMed

    Giugliano, D; Quatraro, A; Consoli, G; Stante, A; Simeone, V; Ceriello, A; Paolisso, G; Torella, R

    1987-01-01

    Plasma glucose, insulin, C-peptide, glucagon and growth hormone responses to intravenous glucose were evaluated in 10 heroin addicts in the basal state and during an infusion of sodium salicylate, an inhibitor of endogenous prostaglandin synthesis. Ten normal subjects, matched for age, sex and weight served as controls. In the basal state, the heroin addicts had markedly reduced insulin responses to intravenous glucose and low glucose disappearance rates (p less than 0.01 vs controls). The infusion of sodium salicylate caused a striking increase of the acute insulin response to intravenous glucose (from 14.5 +/- 4 microU/ml to 88 +/- 11 microU/ml, p less than 0.001) and restored to normal the reduced glucose tolerance (KG from 1.10 +/- 0.1% min-1 to 2.04 +/- 0.19% min-1). Hypoglycemic values were found in all addicts at the end of the test during salicylate infusion. Indomethacin pretreatment in five additional addicts also caused normalization of the impaired insulin responses to the intravenous glucose challenge and restored to normal the reduced glucose disappearance rate. Plasma glucagon and growth hormone levels were normally suppressed by glucose in addicts in basal conditions; sodium salicylate infusion completely overturned these hormonal responses which became positive in the first 15 min following the glucose challenge. These results demonstrate that the two prostaglandin synthesis inhibitors can restore the impaired B-cell response to glucose in heroin addicts to normal, indicating that this response is not lost but is inhibited by heroin itself or by other substances, perhaps by the endogenous prostaglandins.

  1. Clean conversion of cellulose into fermentable glucose.

    PubMed

    Sun, Yong; Zhuang, Junping; Lin, Lu; Ouyang, Pingkai

    2009-01-01

    We studied the process of conversion of microcrystalline-cellulose into fermentable glucose in the formic acid reaction system using cross polarization/magic angle spinning (13)C-nuclear magnetic resonance, X-ray diffraction and Fourier transform infrared spectroscopy. The results indicated that formic acid as an active agent was able to effectively penetrate into the interior space of the cellulose molecules, thus collapsing the rigid crystalline structure and allowing hydrolysis to occur easily in the amorphous zone as well as in the crystalline zone. The microcrystalline-cellulose was hydrolyzed using formic acid and 4% hydrochloric acid under mild conditions. The effects of hydrochloric acid concentration, the ratio of solid to liquid, temperature (55-75 degrees C) and retention time (0-9 h), and the concentration of glucose were analyzed. The hydrolysis velocities of microcrystalline-cellulose were 6.14 x 10(-3) h(-1) at 55 degrees C, 2.94 x 10(-2) h(-1) at 65 degrees C, and 6.84x10(-2) h(-1) at 75 degrees C. The degradation velocities of glucose were 0.01 h(-1) at 55 degrees C, 0.14 h(-1) at 65 degrees C, 0.34 h(-1) at 75 degrees C. The activation energy of microcrystalline-cellulose hydrolysis was 105.61 kJ/mol, and the activation energy of glucose degradation was 131.37 kJ/mol.

  2. Plasma catecholamine and corticosterone and their in vitro effects on lizard skeletal muscle lactate metabolism.

    PubMed

    Gleeson, T T; Dalessio, P M; Carr, J A; Wickler, S J; Mazzeo, R S

    1993-09-01

    Lizard skeletal muscles utilize primarily lactate as a gluconeogenic substrate for glycogen replenishment following exercise. To understand the influence of selected hormones on this process, we measured changes in plasma catecholamines and corticosterone resulting from exercise in the lizard Dipsosaurus dorsalis and then investigated the physiological effects of those hormones on skeletal muscle lactate and glucose metabolism in vitro. Plasma epinephrine (Epi), norepinephrine, and corticosterone (Cort) increased 5.8, 10.2, and 2.2 times, respectively, after 5 min of exhaustive exercise. Epi and Cort levels remained elevated after 2 h of recovery. Skeletal muscle fiber bundles isolated from the red and white regions of the iliofibularis muscle were incubated 2 h at 40 degrees C in the presence of postexercise concentrations of [14C]lactate (15 mM) and glucose (8.5 mM) in the presence and absence of Epi or Cort. Red muscle oxidized both substrates at 2-3 times the rate of white muscle, and both red and white fibers oxidized lactate at 5-10 times the rate of glucose oxidation. Epi had a stimulatory effect on lactate oxidation by white muscle. Lactate incorporation into glycogen proceeded at 2-3 times the rate of glucose incorporation in both muscle types, with rates in red muscle again 2-3 times that for white muscle. Epi stimulated lactate carbon incorporation into glycogen by 50-140% in both red and white muscle but had no effect on glucose incorporation into glycogen in either tissue. We interpret these data as evidence that epinephrine stimulates lactate removal by skeletal muscle. Cort had no effect on lactate metabolism in either muscle type.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. CN and C2H in IRC +10216

    NASA Technical Reports Server (NTRS)

    Huggins, P. J.; Glassgold, A. E.; Morris, M.

    1984-01-01

    The effects of the production of the radicals CN and C2H from the dissociation of HCN and C2H2 by ambient UV photons in the outer envelope of IRC +10216 are investigated. The spatial distribution of the radicals and their observable millimeter emission-line characteristics are calculated from the inferred abundances of the progenitor species in the envelope of IRC +10216 using photochemical and radiative transfer models. These are compared with available observations to examine whether photoproduction is a possible explanation of the observed emission from these species. The results suggest that the variable abundances induced by photodestruction of their progenitors do affect the observed emission from the radicals.

  4. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge

    PubMed Central

    Saxena, Richa; Hivert, Marie-France; Langenberg, Claudia; Tanaka, Toshiko; Pankow, James S; Vollenweider, Peter; Lyssenko, Valeriya; Bouatia-Naji, Nabila; Dupuis, Josée; Jackson, Anne U; Kao, W H Linda; Li, Man; Glazer, Nicole L; Manning, Alisa K; Luan, Jian’an; Stringham, Heather M; Prokopenko, Inga; Johnson, Toby; Grarup, Niels; Boesgaard, Trine W; Lecoeur, Cécile; Shrader, Peter; O’Connell, Jeffrey; Ingelsson, Erik; Couper, David J; Rice, Kenneth; Song, Kijoung; Andreasen, Camilla H; Dina, Christian; Köttgen, Anna; Le Bacquer, Olivier; Pattou, François; Taneera, Jalal; Steinthorsdottir, Valgerdur; Rybin, Denis; Ardlie, Kristin; Sampson, Michael; Qi, Lu; van Hoek, Mandy; Weedon, Michael N; Aulchenko, Yurii S; Voight, Benjamin F; Grallert, Harald; Balkau, Beverley; Bergman, Richard N; Bielinski, Suzette J; Bonnefond, Amelie; Bonnycastle, Lori L; Borch-Johnsen, Knut; Böttcher, Yvonne; Brunner, Eric; Buchanan, Thomas A; Bumpstead, Suzannah J; Cavalcanti-Proença, Christine; Charpentier, Guillaume; Chen, Yii-Der Ida; Chines, Peter S; Collins, Francis S; Cornelis, Marilyn; Crawford, Gabriel J; Delplanque, Jerome; Doney, Alex; Egan, Josephine M; Erdos, Michael R; Firmann, Mathieu; Forouhi, Nita G; Fox, Caroline S; Goodarzi, Mark O; Graessler, Jürgen; Hingorani, Aroon; Isomaa, Bo; Jørgensen, Torben; Kivimaki, Mika; Kovacs, Peter; Krohn, Knut; Kumari, Meena; Lauritzen, Torsten; Lévy-Marchal, Claire; Mayor, Vladimir; McAteer, Jarred B; Meyre, David; Mitchell, Braxton D; Mohlke, Karen L; Morken, Mario A; Narisu, Narisu; Palmer, Colin N A; Pakyz, Ruth; Pascoe, Laura; Payne, Felicity; Pearson, Daniel; Rathmann, Wolfgang; Sandbaek, Annelli; Sayer, Avan Aihie; Scott, Laura J; Sharp, Stephen J; Sijbrands, Eric; Singleton, Andrew; Siscovick, David S; Smith, Nicholas L; Sparsø, Thomas; Swift, Amy J; Syddall, Holly; Thorleifsson, Gudmar; Tönjes, Anke; Tuomi, Tiinamaija; Tuomilehto, Jaakko; Valle, Timo T; Waeber, Gérard; Walley, Andrew; Waterworth, Dawn M; Zeggini, Eleftheria; Zhao, Jing Hua; Illig, Thomas; Wichmann, H Erich; Wilson, James F; van Duijn, Cornelia; Hu, Frank B; Morris, Andrew D; Frayling, Timothy M; Hattersley, Andrew T; Thorsteinsdottir, Unnur; Stefansson, Kari; Nilsson, Peter; Syvänen, Ann-Christine; Shuldiner, Alan R; Walker, Mark; Bornstein, Stefan R; Schwarz, Peter; Williams, Gordon H; Nathan, David M; Kuusisto, Johanna; Laakso, Markku; Cooper, Cyrus; Marmot, Michael; Ferrucci, Luigi; Mooser, Vincent; Stumvoll, Michael; Loos, Ruth J F; Altshuler, David; Psaty, Bruce M; Rotter, Jerome I; Boerwinkle, Eric; Hansen, Torben; Pedersen, Oluf; Florez, Jose C; McCarthy, Mark I; Boehnke, Michael; Barroso, Inês; Sladek, Robert; Froguel, Philippe; Meigs, James B; Groop, Leif; Wareham, Nicholas J; Watanabe, Richard M

    2010-01-01

    Glucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6,958–30,620). We identify variants at the GIPR locus associated with 2-h glucose level (rs10423928, β (s.e.m.) = 0.09 (0.01) mmol/l per A allele, P = 2.0 × 10−15). The GIPR A-allele carriers also showed decreased insulin secretion (n = 22,492; insulinogenic index, P = 1.0 × 10−17; ratio of insulin to glucose area under the curve, P = 1.3 × 10−16) and diminished incretin effect (n = 804; P = 4.3 × 10−4). We also identified variants at ADCY5 (rs2877716, P = 4.2 × 10−16), VPS13C (rs17271305, P = 4.1 × 10−8), GCKR (rs1260326, P = 7.1 × 10−11) and TCF7L2 (rs7903146, P = 4.2 × 10−10) associated with 2-h glucose. Of the three newly implicated loci (GIPR, ADCY5 and VPS13C), only ADCY5 was found to be associated with type 2 diabetes in collaborating studies (n = 35,869 cases, 89,798 controls, OR = 1.12, 95% CI 1.09–1.15, P = 4.8 × 10−18). PMID:20081857

  5. Response of incretins (GIP and GLP-1) to an oral glucose load in female and male subjects with normal glucose tolerance.

    PubMed

    Matsuo, Toshihiro; Kusunoki, Yoshiki; Katsuno, Tomoyuki; Ikawa, Takashi; Akagami, Takafumi; Murai, Kazuki; Miuchi, Masayuki; Miyagawa, Jun-ichiro; Namba, Mitsuyoshi

    2014-11-01

    The aim of this study was to analyze the blood glucose profile and the response of incretins in healthy young subjects by the 75 g oral glucose tolerance test (OGTT). We first reported that plasma glucose and GIP levels were higher in males during the early phase of the OGTT.

  6. Dosing obese cats based on body weight spuriously affects some measures of glucose tolerance.

    PubMed

    Reeve-Johnson, M K; Rand, J S; Anderson, S T; Appleton, D J; Morton, J M; Vankan, D

    2016-10-01

    The primary objective was to investigate whether dosing glucose by body weight results in spurious effects on measures of glucose tolerance in obese cats because volume of distribution does not increase linearly with body weight. Healthy research cats (n = 16; 6 castrated males, 10 spayed females) were used. A retrospective study was performed using glucose concentration data from glucose tolerance and insulin sensitivity tests before and after cats were fed ad libitum for 9 to 12 mo to promote weight gain. The higher dose of glucose (0.5 vs 0.3 g/kg body weight) in the glucose tolerance tests increased 2-min glucose concentrations (P < 0.001), and there was a positive correlation between 2-min and 2-h glucose (r = 0.65, P = 0.006). Two-min (P = 0.016 and 0.019, respectively), and 2-h (P = 0.057 and 0.003, respectively) glucose concentrations, and glucose half-life (T1/2; P = 0.034 and <0.001 respectively) were positively associated with body weight and body condition score. Glucose dose should be decreased by 0.05 g for every kg above ideal body weight. Alternatively, for every unit of body condition score above 5 on a 9-point scale, observed 2-h glucose concentration should be adjusted down by 0.1 mmol/L. Dosing glucose based on body weight spuriously increases glucose concentrations at 2 h in obese cats and could lead to cats being incorrectly classified as having impaired glucose tolerance. This has important implications for clinical studies assessing the effect of interventions on glucose tolerance when lean and obese cats are compared.

  7. Glucose test (image)

    MedlinePlus

    ... person with diabetes constantly manages their blood's sugar (glucose) levels. After a blood sample is taken and tested, it is determined whether the glucose levels are low or high. Following your health ...

  8. Blood Glucose Monitoring Devices

    MedlinePlus

    ... the Bar for Blood Glucose Meter Performance Recalls & Alerts Shasta Technologies GenStrip Blood Glucose Test Strips May ... Latest Recalls Report an Adverse Event MedWatch Safety Alerts News Releases Consumer Updates About FDA Contact FDA ...

  9. Mechanisms of CO2/H+ Sensitivity of Astrocytes

    PubMed Central

    Turovsky, Egor; Theparambil, Shefeeq M.; Kasymov, Vitaliy; Deitmer, Joachim W.; del Arroyo, Ana Gutierrez; Ackland, Gareth L.; Corneveaux, Jason J.; Allen, April N.; Huentelman, Matthew J.; Kasparov, Sergey; Marina, Nephtali

    2016-01-01

    Ventral regions of the medulla oblongata of the brainstem are populated by astrocytes sensitive to physiological changes in PCO2/[H+]. These astrocytes respond to decreases in pH with elevations in intracellular Ca2+ and facilitated exocytosis of ATP-containing vesicles. Released ATP propagates Ca2+ excitation among neighboring astrocytes and activates neurons of the brainstem respiratory network triggering adaptive increases in breathing. The mechanisms linking increases in extracellular and/or intracellular PCO2/[H+] with Ca2+ responses in chemosensitive astrocytes remain unknown. Fluorescent imaging of changes in [Na+]i and/or [Ca2+]i in individual astrocytes was performed in organotypic brainstem slice cultures and acute brainstem slices of adult rats. It was found that astroglial [Ca2+]i responses triggered by decreases in pH are preceded by Na+ entry, markedly reduced by inhibition of Na+/HCO3− cotransport (NBC) or Na+/Ca2+ exchange (NCX), and abolished in Na+-free medium or by combined NBC/NCX blockade. Acidification-induced [Ca2+]i responses were also dramatically reduced in brainstem astrocytes of mice deficient in the electrogenic Na+/HCO3− cotransporter NBCe1. Sensitivity of astrocytes to changes in pH was not affected by inhibition of Na+/H+ exchange or blockade of phospholipase C. These results suggest that in pH-sensitive astrocytes, acidification activates NBCe1, which brings Na+ inside the cell. Raising [Na+]i activates NCX to operate in a reverse mode, leading to Ca2+ entry followed by activation of downstream signaling pathways. Coupled NBC and NCX activities are, therefore, suggested to be responsible for functional CO2/H+ sensitivity of astrocytes that contribute to homeostatic regulation of brain parenchymal pH and control of breathing. SIGNIFICANCE STATEMENT Brainstem astrocytes detect physiological changes in pH, activate neurons of the neighboring respiratory network, and contribute to the development of adaptive respiratory responses to

  10. Identification of Glucose Transporters in Aspergillus nidulans

    PubMed Central

    dos Reis, Thaila Fernanda; Menino, João Filipe; Bom, Vinícius Leite Pedro; Brown, Neil Andrew; Colabardini, Ana Cristina; Savoldi, Marcela; Goldman, Maria Helena S.; Rodrigues, Fernando; Goldman, Gustavo Henrique

    2013-01-01

    To characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and –E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose. PMID:24282591

  11. All about Blood Glucose

    MedlinePlus

    Toolkit No. 15 All About Blood Glucose Keeping your blood glucose (sugar)in your target range can prevent or delay the health problems ... Diabetes Association, Inc. 1/15 Toolkit No.15: All About Blood Glucose continued team about when and ...

  12. Measurement of regional cerebral blood flow in cat brain using intracarotid 2H2O and 2H NMR imaging

    SciTech Connect

    Detre, J.A.; Subramanian, V.H.; Mitchell, M.D.; Smith, D.S.; Kobayashi, A.; Zaman, A.; Leigh, J.S. Jr. )

    1990-05-01

    Cerebral blood flow (CBF) was measured in cat brain in vivo at 2.7 T using 2H NMR to monitor the washout of deuterated saline injected into both carotid arteries via the lingual arteries. In anesthetized cats, global CBF varied directly with PaCO{sub 2} over a range of 20-50 mm Hg, and the corresponding global CBF values ranged from 25 to 125 ml.100 g-1.min-1. Regional CBF was measured in a 1-cm axial section of cat brain using intracarotid deuterated saline and gradient-echo 2H NMR imaging. Blood flow images with a maximum pixel resolution of 0.3 x 0.3 x 1.0 cm were generated from the deuterium signal washout at each pixel. Image derived values for CBF agreed well with other determinations, and decreased significantly with hypocapnia.

  13. Exogenous amino acids suppress glucose oxidation and potentiate hepatic glucose production in late gestation fetal sheep.

    PubMed

    Brown, Laura D; Kohn, Jaden R; Rozance, Paul J; Hay, William W; Wesolowski, Stephanie R

    2017-02-08

    Acute amino acid (AA) infusion increases AA oxidation rates in normal late gestation fetal sheep. Because fetal oxygen consumption rate does not change with increased AA oxidation, we hypothesized that AA infusion would suppress glucose oxidation pathways and that the additional carbon supply from AA would activate hepatic glucose production. To test this, late gestation fetal sheep were infused intravenously for 3h with saline or exogenous AA (AA). Glucose tracer metabolic studies were performed and skeletal muscle and liver tissues samples were collected. AA infusion increased fetal arterial plasma branched chain AA, cortisol, and glucagon concentrations. Fetal glucose utilization rates were similar between basal and AA periods, yet the fraction of glucose oxidized and glucose oxidation rate were decreased by 40% in the AA period. AA infusion increased expression of PDK4, an inhibitor of glucose oxidation, nearly 2-fold in muscle and liver. In liver, AA infusion tended to increase PCK1 gluconeogenic gene and PCK1 correlated with plasma cortisol concentrations. AA infusion also increased liver mRNA expression of lactate transporter gene (MCT1), protein expression of GLUT2 and LDHA, and phosphorylation of AMPK, 4EBP1, and S6 proteins. In isolated fetal hepatocytes, AA supplementation increased glucose production and PCK1, LDHA, and MCT1 gene expression. These results demonstrate that AA infusion into fetal sheep competitively suppresses glucose oxidation and potentiates hepatic glucose production. These metabolic patterns support flexibility in fetal metabolism in response to increased nutrient substrate supply while maintaining a relatively stable rate of oxidative metabolism.

  14. Hydrogenation and Deuteration of C2H2 and C2H4 on Cold Grains: A Clue to the Formation Mechanism of C2H6 with Astronomical Interest

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hitomi; Hidaka, Hiroshi; Lamberts, Thanja; Hama, Tetsuya; Kawakita, Hideyo; Kästner, Johannes; Watanabe, Naoki

    2017-03-01

    We quantitatively investigated the hydrogen addition reactions of acetylene (C2H2) and ethylene (C2H4) on amorphous solid water (ASW) at 10 and 20 K relevant to the formation of ethane (C2H6) on interstellar icy grains. We found that the ASW surface enhances the reaction rates for C2H2 and C2H4 by approximately a factor of 2 compared to those on the pure-solid C2H2 and C2H4 at 10 K, probably due to an increase in the sticking coefficient and adsorption energy of the H atoms on ASW. In contrast to the previous proposal that the hydrogenation rate of C2H4 is orders of magnitude larger than that of C2H2, the present results show that the difference in hydrogenation rates of C2H2 and C2H4 is only within a factor of 3 on both the surfaces of pure solids and ASW. In addition, we found the small kinetic isotope effect for hydrogenation/deuteration of C2H2 and C2H4 at 10 K, despite the requirement of quantum tunneling. At 20 K, the reaction rate of deuteration becomes even larger than that of hydrogenation. These unusual isotope effects might originate from a slightly larger number density of D atoms than H atoms on ASW at 20 K. The hydrogenation of C2H2 is four times faster than CO hydrogenation and can produce C2H6 efficiently through C2H4 even in the environment of a dark molecular cloud.

  15. Theoretical study on the rate constants for the C2H5 + HBr --> C2H6 + Br reaction.

    PubMed

    Sheng, Li; Li, Ze-Sheng; Liu, Jing-Yao; Xiao, Jing-Fa; Sun, Chia-Chung

    2004-02-01

    The reaction C(2)H(5) + HBr --> C(2)H(6) + Br has been theoretically studied over the temperature range from 200 to 1400 K. The electronic structure information is calculated at the BHLYP/6-311+G(d,p) and QCISD/6-31+G(d) levels. With the aid of intrinsic reaction coordinate theory, the minimum energy paths (MEPs) are obtained at the both levels, and the energies along the MEP are further refined by performing the single-point calculations at the PMP4(SDTQ)/6-311+G(3df,2p)//BHLYP and QCISD(T)/6-311++G(2df,2pd)//QCISD levels. The calculated ICVT/SCT rate constants are in good agreement with available experimental values, and the calculate results further indicate that the C(2)H(5) + HBr reaction has negative temperature dependence at T < 850 K, but clearly shows positive temperature dependence at T > 850 K. The current work predicts that the kinetic isotope effect for the title reaction is inverse in the temperature range from 200 to 482 K, i.e., k(HBr)/k(DBr) < 1.

  16. Ambulatory glucose profile: Flash glucose monitoring.

    PubMed

    Kalra, Sanjay; Gupta, Yashdeep

    2015-12-01

    Ambulatory glucose profile (AGP) is a novel way of assessing glycaemic levels on a 24 hour basis, through a minimally invasive method, known as flash glucose monitoring. This review describes the unique features of AGP, differentiates it from existing methods of glucose monitoring, and explains how it helps pursue the glycaemic pentad. The review suggests pragmatic usage of this technology, including pre-test, intra-test, and post-test counselling, and lists specific clinical scenarios where the investigation seems to be of immense benefit.

  17. Glucose metabolic gene expression in growth hormone transgenic coho salmon.

    PubMed

    Panserat, Stéphane; Kamalam, Biju Sam; Fournier, Jeanne; Plagnes-Juan, Elisabeth; Woodward, Krista; Devlin, Robert H

    2014-04-01

    Salmonids are generally known to be glucose intolerant. However, previous studies have shown that growth hormone (GH) transgenic coho salmon display modified nutritional regulation of glycolysis and lipogenesis compared to non-transgenic fish, suggesting the potential for better use of glucose in GH transgenic fish. To examine this in detail, GH transgenic and non-transgenic coho salmon were subjected to glucose tolerance test and subsequent metabolic assessments. After intra-peritoneal injection of 250mg/kg glucose, we analysed post-injection kinetics of glycaemia and expression of several key target genes highly involved in glucose homeostasis in muscle and liver tissues. Our data show no significant differences in plasma glucose levels during peak hyperglycaemia (3-6h after injection), demonstrating a similar glucose tolerance between transgenic and non transgenic. However, and unrelated to the hyperglycaemic episode, GH transgenic fish return to a slightly lower basal glycaemia values 24h after injection. Correspondingly, GH transgenic fish exhibited higher mRNA levels of glucokinase (GK) and glucose-6-phosphate dehydrogenase (G6PDH) in liver, and glucose transporter (GLUT4) in muscle. These data suggest that these metabolic actors may be involved in different glucose use in GH transgenic fish, which would be expected to influence the glucose challenge response. Overall, our data demonstrate that GH transgenic coho salmon may be a pertinent animal model for further study of glucose metabolism in carnivorous fish.

  18. Studies of glucose turnover and renal function in an unusual case of hereditary fructose intolerance.

    PubMed

    Steiner, G; Wilson, D; Vranic, M

    1977-01-01

    Examination of glucose kinetics, pancreatic alpha and beta cell function, plasma lipids, urinary acidification and calcium excretion has been undertaken in a patient with hereditary fructose intolerance. This case was unusual as it was associated with insulin-requiring diabetes, type IV hyperlipemia, hypercalciuria and renal calculi. He also demonstrated the previously described fructose-induced defect of urine acidification. Glucagon and C-peptide assays showed that the pancreatic alpha cells were stimulated by fructose and that the beta cells did not respond to fructose. It is not known whether the latter was due to his diabetes or to the lack of a beta cell response to this sugar. Primed 14C-glucose infusions were used for the first time to study nonsteady state glucose kinetics in man. They showed that, 24 hours after the last insulin injection and under basal conditions, the glucose concentrations increased because glucose production exceeded glucose utilization. However, after the administration of sorbitol the plasma glucose concentration decreased because glucose production decreased. After the administration of sorbitol there was no change in the metabolic clearance of glucose. This reflects the lack of a peripheral insulin effect and is consistent with the lack of any measurable C-peptide. Glucose utilization also decreased, but this decrease was less than the decrease in glucose production. Because the metabolic clearance of glucose remained unchanged, it was concluded that the change in glucose utilization was solely due to the decrease in glucose concentration. The absence of C-peptide in the plasma indicated that changes in glucose turnover were not related to any changes in endogenous plasma insulin. Furthermore, the plasma glucagon concentration increased and, hence, changes in this hormone could not account for the decrease in glucose production. Therefore, it was concluded that the sorbitol-induced decline in glucose production was due to a direct

  19. Glucose screening tests during pregnancy

    MedlinePlus

    Oral glucose tolerance test - pregnancy; OGTT - pregnancy; Glucose challenge test - pregnancy; Gestational diabetes - glucose screening ... first step, you will have a glucose screening test: You DO NOT need to prepare or change ...

  20. Theoretical kinetics of O + C2H4

    DOE PAGES

    Li, Xiaohu; Jasper, Ahren W.; Zádor, Judit; ...

    2016-06-01

    The reaction of atomic oxygen with ethylene is a fundamental oxidation step in combustion and is prototypical of reactions in which oxygen adds to double bonds. For 3O+C2H4 and for this class of reactions generally, decomposition of the initial adduct via spin-allowed reaction channels on the triplet surface competes with intersystem crossing (ISC) and a set of spin-forbidden reaction channels on the ground-state singlet surface. The two surfaces share some bimolecular products but feature different intermediates, pathways, and transition states. In addition, the overall product branching is therefore a sensitive function of the ISC rate. The 3O+C2H4 reaction has beenmore » extensively studied, but previous experimental work has not provided detailed branching information at elevated temperatures, while previous theoretical studies have employed empirical treatments of ISC. Here we predict the kinetics of 3O+C2H4 using an ab initio transition state theory based master equation (AITSTME) approach that includes an a priori description of ISC. Specifically, the ISC rate is calculated using Landau–Zener statistical theory, consideration of the four lowest-energy electronic states, and a direct classical trajectory study of the product branching immediately after ISC. The present theoretical results are largely in good agreement with existing low-temperature experimental kinetics and molecular beam studies. Good agreement is also found with past theoretical work, with the notable exception of the predicted product branching at elevated temperatures. Above ~1000 K, we predict CH2CHO+H and CH2+CH2O as the major products, which differs from the room temperature preference for CH3+HCO (which is assumed to remain at higher temperatures in some models) and from the prediction of a previous detailed master equation study.« less

  1. Mechanisms of CO2/H+ Sensitivity of Astrocytes.

    PubMed

    Turovsky, Egor; Theparambil, Shefeeq M; Kasymov, Vitaliy; Deitmer, Joachim W; Del Arroyo, Ana Gutierrez; Ackland, Gareth L; Corneveaux, Jason J; Allen, April N; Huentelman, Matthew J; Kasparov, Sergey; Marina, Nephtali; Gourine, Alexander V

    2016-10-19

    Ventral regions of the medulla oblongata of the brainstem are populated by astrocytes sensitive to physiological changes in PCO2/[H(+)]. These astrocytes respond to decreases in pH with elevations in intracellular Ca(2+) and facilitated exocytosis of ATP-containing vesicles. Released ATP propagates Ca(2+) excitation among neighboring astrocytes and activates neurons of the brainstem respiratory network triggering adaptive increases in breathing. The mechanisms linking increases in extracellular and/or intracellular PCO2/[H(+)] with Ca(2+) responses in chemosensitive astrocytes remain unknown. Fluorescent imaging of changes in [Na(+)]i and/or [Ca(2+)]i in individual astrocytes was performed in organotypic brainstem slice cultures and acute brainstem slices of adult rats. It was found that astroglial [Ca(2+)]i responses triggered by decreases in pH are preceded by Na(+) entry, markedly reduced by inhibition of Na(+)/HCO3(-) cotransport (NBC) or Na(+)/Ca(2+) exchange (NCX), and abolished in Na(+)-free medium or by combined NBC/NCX blockade. Acidification-induced [Ca(2+)]i responses were also dramatically reduced in brainstem astrocytes of mice deficient in the electrogenic Na(+)/HCO3(-) cotransporter NBCe1. Sensitivity of astrocytes to changes in pH was not affected by inhibition of Na(+)/H(+) exchange or blockade of phospholipase C. These results suggest that in pH-sensitive astrocytes, acidification activates NBCe1, which brings Na(+) inside the cell. Raising [Na(+)]i activates NCX to operate in a reverse mode, leading to Ca(2+) entry followed by activation of downstream signaling pathways. Coupled NBC and NCX activities are, therefore, suggested to be responsible for functional CO2/H(+) sensitivity of astrocytes that contribute to homeostatic regulation of brain parenchymal pH and control of breathing.

  2. Synthesis of 2H- and 13C-substituted dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2003-01-01

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  3. Synthesis Of 2h- And 13c-Substituted Dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-05-04

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  4. Evaluation of systematic and random factors in measurements of fasting plasma glucose as the basis for analytical quality specifications in the diagnosis of diabetes. 3. Impact of the new WHO and ADA recommendations on diagnosis of diabetes mellitus.

    PubMed

    Hyltoft Petersen, P; Brandslund, I; Jørgensen, L; Stahl, M; de Fine Olivarius, N; Borch-Johnsen, K

    2001-05-01

    On behalf of the Danish Society of Clinical Endocrinology and the Danish Society of Clinical Chemistry we were commissioned to evaluate the influence of analytical and pre-analytical systematic and random factors on the diagnosis of diabetes, in order to provide a tool for conclusions on the analytical quality specifications needed to diagnose diabetes. A systems analysis was performed in accordance with the principles for evaluation of analytical quality specifications. The clinical setting was defined--diagnosis of diabetes in accordance with the WHO and ADA criteria with determination of fasting plasma glucose concentration (FPG) > or =7.0 mmol/L in two independent samples--with well-documented data on In (loge)-Gaussian distribution of reference values from a low-risk population and values for within-subject biological variation taken from the literature. An investigation was made of the consequences for the clinical setting of assumed errors related to the measurement of FPG. Four approaches were investigated for a single sampling and measurement and also for two independent samples: one showing the percentage of healthy individuals who had values > or = 7.0 mmol/L, one illustrating the origin of biological set-points for results > or = 7.0 mmol/L, one showing the risk of being measured > or =7.0 mmol/L when the biological set-point is known, and one showing the combined bias and imprecision for assumed percentages of false-positive (FP), defined as measurements > or = 7.0 mmol/L for the low-risk population and false-negative (FN), defined as measurements <6.4 mmol/L (the upper reference limit) for diabetics. This leaves a "grey zone" which includes the upper part of low-risk individuals, and defined by ADA and WHO as "impaired fasting glucose" (IFG). In the analysis, increasing systematic and random errors (combined analytical and pre-analytical) were assumed, and for each error condition the fractions of FP and FN were calculated. This gave plots from which

  5. Brain processing of duodenal and portal glucose sensing.

    PubMed

    Boubaker, J; Val-Laillet, D; Guérin, S; Malbert, C-H

    2012-08-01

    Peripheral and central glucose sensing play a major role in the regulation of food intake. Peripheral sensing occurs at duodenal and portal levels, although the importance of these sensing sites is still controversial. The present study aimed to compare the respective influence of these sensing pathways on the eating patterns; plasma concentrations of glucose, insulin and glucagon-like peptide-1 (GLP-1); and brain activity in juvenile pigs. In Experiment 1, we characterised the changes in the microstructure as a result of a 30-min meal in eight conscious animals after duodenal or portal glucose infusion in comparison with saline infusion. In Experiment 2, glucose, insulin and GLP-1 plasma concentrations were measured during 2 h after duodenal or portal glucose infusions in four anaesthetised animals. In Experiment 3, single photon emission computed tomography brain imaging was performed in five anaesthetised animals receiving duodenal or portal glucose or saline infusions. Both duodenal and portal glucose decreased the amount of food consumed, as well as the ingestion speed, although this effect appeared earlier with the portal infusion. Significant differences of glucose and GLP-1 plasma concentrations between treatments were found at the moment of brain imaging. Both duodenal and portal glucose infusions activated the dorsolateral prefrontal cortex and primary somatosensory cortex. Only duodenal glucose infusion was able to induce activation of the prepyriform area, orbitofrontal cortex, caudate and putamen, as well as deactivation of the anterior prefrontal cortex and anterior entorhinal cortex, whereas only portal glucose infusion induced a significant activation of the insular cortex. We demonstrated that duodenal and portal glucose infusions led to the modulation of brain areas that are known to regulate eating behaviour, which probably explains the decrease of food intake after both stimulations. These stimulation pathways induced specific systemic and

  6. Photodissociation spectroscopy of Ca+(C2H4)

    NASA Astrophysics Data System (ADS)

    Holmes, J. H.; Kleiber, P. D.; Olsgaard, D. A.; Yang, K.-H.

    2000-04-01

    We have studied Ca+(C2H4) by photodissociation spectroscopy in a reflectron time-of-flight mass spectrometer over the spectral range 440-790 nm. Ca+ is the only photofragment observed. We find four absorption bands of the complex and assign them to metal-centered transitions correlating with excitation of Ca+(3d and 4p). Spectral assignment is supported by ab initio electronic structure calculations of the complex and isotope substitution experiments. Calculations find a weakly bound ground state equilibrium structure with C2V π-bonding geometry and a dissociation energy of De″=0.506 eV. Theoretical and experimental results show the 4pπ(2 2B2 & 2 2B1) excited states to be relatively weakly bound at long range. Spectral analysis gives vibrational constants for the Ca+--C2H4 intermolecular a1-stretch in the 1 2A1, 2 2B1, and 2 2B2 states, and for the CH2-CH2 a1-wag and the HCH a1-bend in 2 2B2. The results offer an interesting comparison with previous studies of similar weakly bound bimolecular complexes of light metal ions with alkene or alkane hydrocarbons.

  7. Multiphasic Absorption of Glucose and 3-O-Methyl Glucose by Aged Potato Slices 1

    PubMed Central

    Linask, Juri; Laties, George G.

    1973-01-01

    The isotherm for glucose absorption by aged potato (Solanum tuberosum var. Russet Burbank) discs shows four distinct phases in the concentration ranges 1.0 to 75 μm, 75 μm to 1.5 mm, 1.5 to 15 mm, and 15 to 100 mm, respectively. Each segment of the multiphasic isotherm, when plotted reciprocally by the method of Lineweaver and Burk or of Hofstee, without regard for uptake in earlier phases, indicates absorption rate to be a hyperbolic function of concentration. The observations suggest that glucose uptake is carrier-mediated, and that the transport barrier undergoes a series of all-or-none transformations at critical external concentrations, yielding successive new and higher values for the parameters Km and Vmax 3-O-Methyl glucose, a nonmetabolizable analogue of glucose, shows the same multiphasic absorption isotherm, with Km values essentially similar to those for glucose uptake, and Vmax values somewhat lower than those for glucose absorption. Whereas the first three phases of the absorption isotherm are taken to reflect passage across the plasma membrane, the fourth phase may reflect kinetics of glucose or 3-O-methyl glucose transport to the vacuole. PMID:16658317

  8. A global study of the unmet need for glycemic control and predictor factors among patients with type 2 diabetes mellitus who have achieved optimal fasting plasma glucose control on basal insulin

    PubMed Central

    Chou, Engels; Colagiuri, Stephen; Gaàl, Zsolt; Lavalle, Fernando; Mkrtumyan, Ashot; Nikonova, Elena; Tentolouris, Nikolaos; Vidal, Josep; Davies, Melanie

    2016-01-01

    Abstract Background This study used data from different sources to identify the extent of the unmet need for postprandial glycemic control in patients with type 2 diabetes mellitus (T2DM) after the initiation of basal insulin therapy in Europe, Asia Pacific, the United States, and Latin America. Methods Different levels of evidence were used as available for each country/region, with data extracted from seven randomized controlled trials (RCTs), three clinical trial registries (CTRs), and three electronic medical record (EMR) databases. Glycemic status was categorized as “well controlled” (glycated hemoglobin [HbA1c] at target [<7%]), “residual hyperglycemia” (fasting plasma glucose [FPG] but not HbA1c at target [FPG <7.2/7.8 mmol/L, <130/140 mg/dL, depending on country‐specific recommendations]), or “uncontrolled” (both FPG and HbA1c above target). Predictor factors were identified from the RCT data set using logistic regression analysis. Results RCT data showed that 16.9% to 28.0%, 42.7% to 54.4%, and 16.9% to 38.1% of patients with T2DM had well‐controlled glycemia, residual hyperglycemia, and uncontrolled hyperglycemia, respectively. In CTRs, respective ranges were 21.8% to 33.6%, 31.5% to 35.6%, and 30.7% to 46.8%, and in EMR databases were 4.4% to 21.0%, 23.9% to 31.8%, and 53.6% to 63.8%. Significant predictor factors of residual hyperglycemia identified from RCT data included high baseline HbA1c (all countries/regions except Brazil), high baseline FPG (United Kingdom/Japan), longer duration of diabetes (Brazil), and female sex (Europe/Latin America). Conclusions Irrespective of intrinsic differences between data sources, 24% to 54% of patients with T2DM globally had residual hyperglycemia with HbA1c not at target, despite achieving FPG control, indicating a significant unmet need for postprandial glycemic control. PMID:27606888

  9. Glucose-6-phosphate dehydrogenase-dependent hydrogen peroxide production is involved in the regulation of plasma membrane H+-ATPase and Na+/H+ antiporter protein in salt-stressed callus from Carex moorcroftii.

    PubMed

    Li, Jisheng; Chen, Guichen; Wang, Xiaomin; Zhang, Yanli; Jia, Honglei; Bi, Yurong

    2011-03-01

    Glucose-6-phosphate dehydrogenase (G6PDH) is important for the activation of plant resistance to environmental stresses, and ion homeostasis is the physiological foundation for living cells. In this study, we investigated G6PDH roles in modulating ion homeostasis under salt stress in Carex moorcroftii callus. G6PDH activity increased to its maximum in 100 mM NaCl treatment and decreased with further increased NaCl concentrations. K+/Na+ ratio in 100 mM NaCl treatment did not exhibit significant difference compared with the control; however, in 300 mM NaCl treatment, it decreased. Low-concentration NaCl (100 mM) stimulated plasma membrane (PM) H+-ATPase and NADPH oxidase activities as well as Na+/H+ antiporter protein expression, whereas high-concentration NaCl (300 mM) decreased their activity and expression. When G6PDH activity and expression were reduced by glycerol treatments, PM H+-ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio dramatically decreased. Simultaneously, NaCl-induced hydrogen peroxide (H₂O₂) accumulation was abolished. Exogenous application of H₂O₂ increased G6PDH, PM H+-ATPase and NADPH oxidase activities, Na+/H+ antiporter protein expression and K+/Na+ ratio in the control and glycerol treatments. Diphenylene iodonium (DPI), the NADPH oxidase inhibitor, which counteracted NaCl-induced H₂O₂ accumulation, decreased G6PDH, PM H+-ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio. Western blot result showed that G6PDH expression was stimulated by NaCl and H₂O₂, and blocked by DPI. Taken together, G6PDH is involved in H₂O₂ accumulation under salt stress. H₂O₂, as a signal, upregulated PM H+-ATPase activity and Na+/H+ antiporter protein level, which subsequently resulted in the enhanced K+/Na+ ratio. G6PDH played a central role in the process.

  10. Glucose turnover in 48-hour-fasted running rats

    SciTech Connect

    Sonne, B.; Mikines, K.J.; Galbo, H.

    1987-03-01

    In fed rats, hyperglycemia develops during exercise. This contrasts with the view based on studies of fasted human and dog that euglycemia is maintained in exercise and glucose production (R/sub a/) controlled by feedback mechanisms. Forty-eight-hour-fasted rats (F) were compared to fed rats (C) and overnight food-restricted (FR) rats. (3-/sup 3/H)- and (U-/sup 14/C)glucose were infused and blood and tissue sampled. During running (21 m/min, 0% grade) R/sub a/ increased most in C and least in F and only in F did R/sub a/ not significantly exceed glucose disappearance. Plasma glucose increased more in C (3.3 mmol/1) than in FR (1.6 mmol/l) and only modestly (0.6 mmol/l) and transiently in F. Resting liver glycogen and exercise glycogenolysis were highest in C and similar in FR and F. Resting muscle glycogen and exercise glycogenolysis were highest in C and lowest in F. During running, lactate production and gluconeogenesis were higher in FR than in F. At least in rats, responses of production and plasma concentration of glucose to exercise depend on size of liver and muscle glycogen stores; glucose production matches increase in clearance better in fasted than in fed states. Probably glucose production is stimulated by feedforward mechanisms and feedback mechanisms are added if plasma glucose decreases.

  11. Daily rhythms in glucose metabolism: suprachiasmatic nucleus output to peripheral tissue.

    PubMed

    La Fleur, S E

    2003-03-01

    The body has developed several control mechanisms to maintain plasma glucose concentrations within strict boundaries. Within those physiological boundaries, a clear daily rhythm in plasma glucose concentrations is present; this rhythm depends on the biological clock, which is located in the hypothalamic suprachiasmatic nucleus (SCN), and is independent of the daily rhythm in food intake. Interestingly, there is also a daily rhythm in glucose uptake, which also depends on the SCN and follows the same pattern as the daily rhythm in plasma glucose concentrations; both rise before the onset of activity. Thus, the SCN prepares the individual for the upcoming activity period in two different ways: by increasing plasma glucose concentrations and by facilitating tissue glucose uptake. In addition to this anticipation of glucose metabolism to expected glucose demands, the SCN also influences, depending on the time of the day, the responses of pancreas and liver to abrupt glucose changes (such as a glucose rise after a meal or hypoglycaemia). This review presents the view that the SCN uses different routes to (i) maintain daily glucose balance and (ii) set the level of the endocrine response to abrupt blood glucose changes.

  12. Kinetics of the hydrogen abstraction C2H3* + alkane --> C2H4 + alkyl radical reaction class.

    PubMed

    Muszyńska, Marta; Ratkiewicz, Artur; Huynh, Lam K; Truong, Thanh N

    2009-07-23

    This paper presents an application of the reaction class transition state theory (RC-TST) to predict thermal rate constants for hydrogen abstraction reactions of the type C(2)H(3) + alkane --> C(2)H(4) + alkyl radical. The linear energy relationship (LER) was proven to hold for both noncyclic and cyclic hydrocarbons. We have derived all parameters for the RC-TST method from rate constants of 19 representative reactions, coupling with LER and the barrier height grouping (BHG) approach. Both the RC-TST/LER, where only reaction energy is needed, and the RC-TST/BHG, where no other information is needed, can predict rate constants for any reaction in this reaction class with satisfactory accuracy for combustion modeling. Our analysis indicates that less than 90% systematic errors on the average exist in the predicted rate constants using the RC-TST/LER or RC-TST/BHG method, while in comparison to explicit rate calculations, the differences are within a factor of 2 on the average.

  13. Physical and spectroscopic properties of pure C2H4 and CH4:C2H4 ices

    NASA Astrophysics Data System (ADS)

    Molpeceres, Germán; Satorre, Miguel Angel; Ortigoso, Juan; Zanchet, Alexandre; Luna, Ramón; Millán, Carlos; Escribano, Rafael; Tanarro, Isabel; Herrero, Víctor J.; Maté, Belén

    2017-04-01

    Physical and spectroscopic properties of ices of C2H4 and CH4:C2H4 mixtures with 3:1, 1:1 and 1:3 ratios have been investigated at 30 K. Two laboratories are involved in this work. In one of them, the density and refractive index of the samples have been measured by using a cryogenic quartz microbalance and laser interferometric techniques. In the other one, IR spectra have been recorded in the near- and mid-infrared regions, and band shifts with respect to the pure species, band strengths of the main bands, and the optical constants in both regions have been determined. Previous data on ethylene and the mixtures studied here were scarce. For methane, both the wavenumbers and band strengths have been found to follow a regular pattern of decrease with increasing dilution, but no pattern has been detected for ethylene vibrations. The method employed for the preparation of the samples, by vapour deposition under vacuum, is thought to be adequate to mimic the structure of astrophysical ices. Possible astrophysical implications, especially by means of the optical constants reported here, have been discussed.

  14. Renal function in sick very low birthweight infants: 4. Glucose excretion.

    PubMed Central

    Wilkins, B H

    1992-01-01

    Renal glucose excretion was measured on 239 occasions in a sample of 36 infants of 25.5-33 weeks' gestation, birth weight 720-2000 g, between the ages of 0.5 and 32 days. Glucose was invariably present in urine from the first day. Fractional glucose excretion varied widely from 0.1% to 90% of filtered glucose and glucose excretion rate was up to 15.5 mmol/kg/day and was higher in the most immature infants, especially below 28 weeks' gestation. The highest values were in association with hyperglycaemia between 5 and 15 days but there was no consistent plasma glucose threshold with frequent glucose spillage at normal blood glucose concentrations. There was some correlation with sodium excretion in the first week suggesting that in the absence of hyperglycaemia with a normal filtered glucose load, glucose excretion is caused by proximal tubular immaturity. PMID:1444549

  15. 2H NMR studies of supercooled and glassy aspirin

    NASA Astrophysics Data System (ADS)

    Nath, R.; Nowaczyk, A.; Geil, B.; Bohmer, R.

    2007-11-01

    Acetyl salicylic acid, deuterated at the methyl group, was investigated using 2H-NMR in its supercooled and glassy states. Just above the glass transition temperature the molecular reorientations were studied using stimulated-echo spectroscopy and demonstrated a large degree of similarity with other glass formers. Deep in the glassy phase the NMR spectra look similar to those reported for the crystal [A. Detken, P. Focke, H. Zimmermann, U. Haeberlen, Z. Olejniczak, Z. T. Lalowicz, Z. Naturforsch. A 50 (1995) 95] and below 20 K they are indicative for rotational tunneling with a relatively large tunneling frequency. Measurements of the spin-lattice relaxation times for temperatures below 150 K reveal a broad distribution of correlation times in the glass. The dominant energy barrier characterizing the slow-down of the methyl group is significantly smaller than the well defined barrier in the crystal.

  16. One dimensional 1H, 2H and 3H

    NASA Astrophysics Data System (ADS)

    Vidal, A. J.; Astrakharchik, G. E.; Vranješ Markić, L.; Boronat, J.

    2016-05-01

    The ground-state properties of one-dimensional electron-spin-polarized hydrogen 1H, deuterium 2H, and tritium 3H are obtained by means of quantum Monte Carlo methods. The equations of state of the three isotopes are calculated for a wide range of linear densities. The pair correlation function and the static structure factor are obtained and interpreted within the framework of the Luttinger liquid theory. We report the density dependence of the Luttinger parameter and use it to identify different physical regimes: Bogoliubov Bose gas, super-Tonks-Girardeau gas, and quasi-crystal regimes for bosons; repulsive, attractive Fermi gas, and quasi-crystal regimes for fermions. We find that the tritium isotope is the one with the richest behavior. Our results show unambiguously the relevant role of the isotope mass in the properties of this quantum system.

  17. Vibrational and Rotational Spectroscopy of CD_2H^+

    NASA Astrophysics Data System (ADS)

    Asvany, Oskar; Jusko, Pavol; Brünken, Sandra; Schlemmer, Stephan

    2016-06-01

    The lowest rotational levels (J=0-5) of the CD_2H^+ ground state have been probed by high-resolution rovibrational and pure rotational spectroscopy in a cryogenic 22-pole ion trap. For this, the ν_1 rovibrational band has been revisited, detecting 107 transitions, among which 35 are new. The use of a frequency comb system allowed to measure the rovibrational transitions with high precision and accuracy, typically better than 1 MHz. The high precision has been confirmed by comparing combination differences in the ground and vibrationally excited state. For the ground state, this allowed for equally precise predictions of pure rotational transitions, 24 of which have been measured directly by a novel IR - mm-wave double resonance method. M.-F. Jagod et al, J. Molec. Spectrosc. 153, 666, 1992 S. Gartner et al, J. Phys. Chem. A 117, 9975, 2013

  18. Alterations in glucose kinetics induced by pentobarbital anesthesia

    SciTech Connect

    Lang, C.H.; Bagby, G.J.; Spitzer, J.J.

    1986-03-05

    Pentobarbital is a common anesthetic agent used in animal research that is known to alter sympathetic function and may also affect carbohydrate metabolism. The in vivo effects of iv pentobarbital on glucose homeostasis were studied in chronically catheterized fasted rats. Whole body glucose kinetics, assessed by the constant iv infusion of (6-/sup 3/H)- and (U-/sup 14/C)-glucose, were determined in all rats in the conscious state. Thereafter, glucose metabolism was followed over the next 4 hr in 3 subgroups of rats; conscious, anesthetized with body temperature maintained, and anesthetized with body temperature not maintained. Hypothermia (a 5/sup 0/C decrease) developed spontaneously in anesthetized rats kept at ambient temperature (22/sup 0/C). No differences were seen in MABP and heart rate between conscious and normothermic anesthetized rats; however, hypothermic anesthetized rats showed a decrease in MABP (20%) and heart rate (35%). Likewise, plasma glucose and lactate concentrations, the rate of glucose appearance (Ra), recycling and metabolic clearance (MCR) did not differ between conscious and normothermic anesthetized animals. In contrast, hypothermic anesthetized rats showed a 50% reduction in plasma lactate, a 40% drop in glucose Ra, and a 30-40% decrease in glucose recycling and MCR. Thus, pentobarbital does not appear to alter in vivo glucose kinetics, compared to unanesthetized controls, provided that body temperature is maintained.

  19. Application of chirally-deuterated (S)-D-(6-2H1)glucose to conformational studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Deuterated sugars are widely used to elucidate mechanisms of biosynthesis and of chemical reactions, and to confirm assignments of complex NMR or mass spectra. To date, however, there are few reported syntheses for regio and stereospecifically deuterated pyranoses. Chirally-deuterated (S)-D-(6-**2...

  20. 2H and 18O Freshwater Isoscapes of Scotland

    NASA Astrophysics Data System (ADS)

    Meier-Augenstein, Wolfram; Hoogewerff, Jurian; Kemp, Helen; Frew, Danny

    2013-04-01

    Scotland's freshwater lochs and reservoirs provide a vital resource for sustaining biodiversity, agriculture, food production as well as for human consumption. Regular monitoring of freshwaters by the Scottish Environment Protection Agency (SEPA) fulfils legislative requirements with regards to water quality but new scientific methods involving stable isotope analysis present an opportunity combining these mandatory monitoring schemes with fundamental research to inform and deliver on current and nascent government policies [1] through gaining a greater understanding of Scottish waters and their importance in the context of climate change, environmental sustainability and food security. For example, 2H and 18O isoscapes of Scottish freshwater could be used to underpin research and its applications in: • Climate change - Using longitudinal changes in the characteristic isotope composition of freshwater lochs and reservoirs as proxy, isoscapes will provide a means to assess if and how changes in temperature and weather patterns might impact on precipitation patterns and amount. • Scottish branding - Location specific stable isotope signatures of Scottish freshwater have the potential to be used as a tool for provenancing and thus protecting premium Scottish produce such as Scottish beef, Scottish soft fruit and Scottish Whisky. During 2011 and 2012, with the support of SEPA more than 110 samples from freshwater lochs and reservoirs were collected from 127 different locations across Scotland including the Highlands and Islands. Here we present the results of this sampling and analysis exercise isotope analyses in form of 2H and 18O isoscapes with an unprecedented grid resolution of 26.5 × 26.5 km (or 16.4 × 16.4 miles). [1] Adaptation Framework - Adapting Our Ways: Managing Scotland's Climate Risk (2009): Scotland's Biodiversity: It's in Your Hands - A strategy for the conservation and enhancement of biodiversity in Scotland (2005); Recipe For Success - Scotland

  1. Hypoxia causes glucose intolerance in humans.

    PubMed

    Oltmanns, Kerstin M; Gehring, Hartmut; Rudolf, Sebastian; Schultes, Bernd; Rook, Stefanie; Schweiger, Ulrich; Born, Jan; Fehm, Horst L; Peters, Achim

    2004-06-01

    Hypoxic respiratory diseases are frequently accompanied by glucose intolerance. We examined whether hypoxia is a cause of glucose intolerance in healthy subjects. In a double-blind within-subject crossover design, hypoxic versus normoxic conditions were induced in 14 healthy men for 30 minutes by decreasing oxygen saturation to 75% (versus 96% in control subjects) under the conditions of a euglycemic clamp. The rate of dextrose infusion needed to maintain stable blood glucose levels was monitored. Neurohormonal stress response was evaluated by measuring catecholamine and cortisol concentrations as well as cardiovascular parameters, and symptoms of anxiety. To differentiate between the effects of stress hormonal response, and hypoxia itself, on glucose intolerance, we performed hypoglycemic clamps as a nonspecific control. We found a significant decrease in dextrose infusion rate over a period of 150 minutes after the start of hypoxia (p < 0.01). Hypoxia also increased plasma epinephrine concentration (p < 0.01), heart rate (p < 0.01), and symptoms of anxiety (p < 0.05), whereas the other parameters remained unaffected. Glucose intolerance was closely comparable between hypoxic and hypoglycemic conditions (p < 0.9) despite clear differences in stress hormonal responses. Hypoxia acutely causes glucose intolerance. One of the factors mediating this effect could be an elevated release of epinephrine.

  2. Quantifying the contribution of the liver to glucose homeostasis: a detailed kinetic model of human hepatic glucose metabolism.

    PubMed

    König, Matthias; Bulik, Sascha; Holzhütter, Hermann-Georg

    2012-01-01

    Despite the crucial role of the liver in glucose homeostasis, a detailed mathematical model of human hepatic glucose metabolism is lacking so far. Here we present a detailed kinetic model of glycolysis, gluconeogenesis and glycogen metabolism in human hepatocytes integrated with the hormonal control of these pathways by insulin, glucagon and epinephrine. Model simulations are in good agreement with experimental data on (i) the quantitative contributions of glycolysis, gluconeogenesis, and glycogen metabolism to hepatic glucose production and hepatic glucose utilization under varying physiological states. (ii) the time courses of postprandial glycogen storage as well as glycogen depletion in overnight fasting and short term fasting (iii) the switch from net hepatic glucose production under hypoglycemia to net hepatic glucose utilization under hyperglycemia essential for glucose homeostasis (iv) hormone perturbations of hepatic glucose metabolism. Response analysis reveals an extra high capacity of the liver to counteract changes of plasma glucose level below 5 mM (hypoglycemia) and above 7.5 mM (hyperglycemia). Our model may serve as an important module of a whole-body model of human glucose metabolism and as a valuable tool for understanding the role of the liver in glucose homeostasis under normal conditions and in diseases like diabetes or glycogen storage diseases.

  3. The low affinity glucose transporter HxtB is also involved in glucose signalling and metabolism in Aspergillus nidulans.

    PubMed

    Dos Reis, Thaila Fernanda; Nitsche, Benjamin M; de Lima, Pollyne Borborema Almeida; de Assis, Leandro José; Mellado, Laura; Harris, Steven D; Meyer, Vera; Dos Santos, Renato A Corrêa; Riaño-Pachón, Diego M; Ries, Laure Nicolas Annick; Goldman, Gustavo H

    2017-03-31

    One of the drawbacks during second-generation biofuel production from plant lignocellulosic biomass is the accumulation of glucose, the preferred carbon source of microorganisms, which causes the repression of hydrolytic enzyme secretion by industrially relevant filamentous fungi. Glucose sensing, subsequent transport and cellular signalling pathways have been barely elucidated in these organisms. This study therefore characterized the transcriptional response of the filamentous fungus Aspergillus nidulans to the presence of high and low glucose concentrations under continuous chemostat cultivation with the aim to identify novel factors involved in glucose sensing and signalling. Several transcription factor- and transporter-encoding genes were identified as being differentially regulated, including the previously characterized glucose and xylose transporter HxtB. HxtB was confirmed to be a low affinity glucose transporter, localizing to the plasma membrane under low- and high-glucose conditions. Furthermore, HxtB was shown to be involved in conidiation-related processes and may play a role in downstream glucose signalling. A gene predicted to encode the protein kinase PskA was also identified as being important for glucose metabolism. This study identified several proteins with predicted roles in glucose metabolic processes and provides a foundation for further investigation into the response of biotechnologically important filamentous fungi to glucose.

  4. The low affinity glucose transporter HxtB is also involved in glucose signalling and metabolism in Aspergillus nidulans

    PubMed Central

    dos Reis, Thaila Fernanda; Nitsche, Benjamin M.; de Lima, Pollyne Borborema Almeida; de Assis, Leandro José; Mellado, Laura; Harris, Steven D.; Meyer, Vera; dos Santos, Renato A. Corrêa; Riaño-Pachón, Diego M.; Ries, Laure Nicolas Annick; Goldman, Gustavo H.

    2017-01-01

    One of the drawbacks during second-generation biofuel production from plant lignocellulosic biomass is the accumulation of glucose, the preferred carbon source of microorganisms, which causes the repression of hydrolytic enzyme secretion by industrially relevant filamentous fungi. Glucose sensing, subsequent transport and cellular signalling pathways have been barely elucidated in these organisms. This study therefore characterized the transcriptional response of the filamentous fungus Aspergillus nidulans to the presence of high and low glucose concentrations under continuous chemostat cultivation with the aim to identify novel factors involved in glucose sensing and signalling. Several transcription factor- and transporter-encoding genes were identified as being differentially regulated, including the previously characterized glucose and xylose transporter HxtB. HxtB was confirmed to be a low affinity glucose transporter, localizing to the plasma membrane under low- and high-glucose conditions. Furthermore, HxtB was shown to be involved in conidiation-related processes and may play a role in downstream glucose signalling. A gene predicted to encode the protein kinase PskA was also identified as being important for glucose metabolism. This study identified several proteins with predicted roles in glucose metabolic processes and provides a foundation for further investigation into the response of biotechnologically important filamentous fungi to glucose. PMID:28361917

  5. No effect of acute beetroot juice ingestion on oxygen consumption, glucose kinetics, or skeletal muscle metabolism during submaximal exercise in males.

    PubMed

    Betteridge, Scott; Bescós, Raúl; Martorell, Miquel; Pons, Antoni; Garnham, Andrew P; Stathis, Christos C; McConell, Glenn K

    2016-02-15

    Beetroot juice, which is rich in nitrate (NO3 (-)), has been shown in some studies to decrease oxygen consumption (V̇o2) for a given exercise workload, i.e., increasing efficiency and exercise tolerance. Few studies have examined the effect of beetroot juice or nitrate supplementation on exercise metabolism. Eight healthy recreationally active males participated in three trials involving ingestion of either beetroot juice (Beet; ∼8 mmol NO3 (-)), Placebo (nitrate-depleted Beet), or Beet + mouthwash (Beet+MW), all of which were performed in a randomized single-blind crossover design. Two-and-a-half hours later, participants cycled for 60 min on an ergometer at 65% of V̇o2 peak. [6,6-(2)H]glucose was infused to determine glucose kinetics, blood samples obtained throughout exercise, and skeletal muscle biopsies that were obtained pre- and postexercise. Plasma nitrite [NO2 (-)] increased significantly (∼130%) with Beet, and this was attenuated in MW+Beet. Beet and Beet+MW had no significant effect on oxygen consumption, blood glucose, blood lactate, plasma nonesterified fatty acids, or plasma insulin during exercise. Beet and Beet+MW also had no significant effect on the increase in glucose disposal during exercise. In addition, Beet and Beet+MW had no significant effect on the decrease in muscle glycogen and phosphocreatine and the increase in muscle creatine, lactate, and phosphorylated acetyl CoA carboxylase during exercise. In conclusion, at the dose used, acute ingestion of beetroot juice had little effect on skeletal muscle metabolism during exercise.

  6. Glucose tolerance and pancreatic hormones in thyroidectomized and thyroid hormone-injected cockerels.

    PubMed

    Klandorf, H

    1988-02-01

    The effect of surgical thyroidectomy and of T4/T3 injections on basal and glucose-induced concentrations of plasma insulin and glucagon has been investigated in 20-week-old domestic chickens. Birds injected daily (im) for 2 weeks with T4/T3 (50 micrograms/day) had marginally lower fasting glucose concentrations whereas thyroidectomy had no effect. Glucose tolerance to an intravenous injection of glucose (0.5 g/kg) was impaired in T4/T3 injected animals although the peak hyperglycemia was identical with sham-operated animals. This was associated with significantly reduced basal and glucose-induced insulin concentrations. However, fasting plasma glucagon concentrations were significantly elevated in this group as was the magnitude of the glucose-induced suppression of glucagon release 10 min after injection (48% decline vs 34% in sham-operated animals). Basal concentrations of plasma insulin were markedly elevated in thyroidectomized animals and were associated with only mildly depressed plasma glucagon levels. The absolute concentrations of plasma insulin remained higher in the thyroidectomized birds as compared with those of sham-operated or T4/T3 injected animals after the glucose challenge, although within 30 min after glucose injection they had significantly declined below preinjection levels. This was associated both with significantly reduced plasma glucose concentrations 30 min after injection and the lowest absolute levels of plasma glucagon. The rebound in plasma glucagon in sham-operated animals in response to the rapid decline in glucose concentrations was not as pronounced in either thyroidectomized or T4/T3 injected animals. In conclusion these studies illustrate the secretory dynamics of avian pancreatic endocrine islets in response to both absolute glucose levels and glucose requirements as affected by the thyroid state of the bird.

  7. GLUT2, glucose sensing and glucose homeostasis.

    PubMed

    Thorens, Bernard

    2015-02-01

    The glucose transporter isoform GLUT2 is expressed in liver, intestine, kidney and pancreatic islet beta cells, as well as in the central nervous system, in neurons, astrocytes and tanycytes. Physiological studies of genetically modified mice have revealed a role for GLUT2 in several regulatory mechanisms. In pancreatic beta cells, GLUT2 is required for glucose-stimulated insulin secretion. In hepatocytes, suppression of GLUT2 expression revealed the existence of an unsuspected glucose output pathway that may depend on a membrane traffic-dependent mechanism. GLUT2 expression is nevertheless required for the physiological control of glucose-sensitive genes, and its inactivation in the liver leads to impaired glucose-stimulated insulin secretion, revealing a liver-beta cell axis, which is likely to be dependent on bile acids controlling beta cell secretion capacity. In the nervous system, GLUT2-dependent glucose sensing controls feeding, thermoregulation and pancreatic islet cell mass and function, as well as sympathetic and parasympathetic activities. Electrophysiological and optogenetic techniques established that Glut2 (also known as Slc2a2)-expressing neurons of the nucleus tractus solitarius can be activated by hypoglycaemia to stimulate glucagon secretion. In humans, inactivating mutations in GLUT2 cause Fanconi-Bickel syndrome, which is characterised by hepatomegaly and kidney disease; defects in insulin secretion are rare in adult patients, but GLUT2 mutations cause transient neonatal diabetes. Genome-wide association studies have reported that GLUT2 variants increase the risks of fasting hyperglycaemia, transition to type 2 diabetes, hypercholesterolaemia and cardiovascular diseases. Individuals with a missense mutation in GLUT2 show preference for sugar-containing foods. We will discuss how studies in mice help interpret the role of GLUT2 in human physiology.

  8. The glucose oxidase-peroxidase assay for glucose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The glucose oxidase-peroxidase assay for glucose has served as a very specific, sensitive, and repeatable assay for detection of glucose in biological samples. It has been used successfully for analysis of glucose in samples from blood and urine, to analysis of glucose released from starch or glycog...

  9. Ab initio study of {sup 2}H(d,{gamma}){sup 4}He, {sup 2}H(d,p){sup 3}H, and {sup 2}H(d,n){sup 4}He reactions and the tensor force

    SciTech Connect

    Arai, K.; Aoyama, S.; Suzuki, Y.; Descouvemont, P.; Baye, D.

    2012-11-12

    The {sup 2}H(d,p){sup 3}H, {sup 2}H(d,n){sup 3}He, and {sup 2}H(d,{gamma}){sup 4}He reactions at low energies are studied with realistic nucleon-nucleon interactions in an ab initio approach. The obtained astrophysical S-factors are all in very good agreement with experiment. The most important channels for both transfer and radiative capture are all found to dominate thanks to the tensor force.

  10. Human organic cation transporter 2 (hOCT2): Inhibitor studies using S2-hOCT2 cells.

    PubMed

    Chiba, Shoetsu; Ikawa, Toru; Takeshita, Hiroshi; Kanno, Sanae; Nagai, Tomonori; Takada, Meri; Mukai, Toshiji; Wempe, Michael F

    2013-08-09

    Highly expressed in kidney and located on the basolateral membrane, human organic cation transporter 2 (hOCT2) can transport various compounds (i.e. drugs and toxins) into the proximal tubular cell. Using cultured proximal tubule cells stably expressing hOCT2 (i.e. S2-hOCT2 cells), we sought to probe different compound classes (e.g. analgesics, anti-depressants, anti-psychotics, disinfectant, herbicides, insecticides, local anesthetic, muscarinic acetylcholine receptor antagonist, sedatives, steroid hormone, stimulants and toxins) for their ability to inhibit (14)C-TEA uptake, a prototypical OCT2 substrate. Aconitine, amitriptyline, atropine, chlorpyrifos, diazepam, fenitrothion, haloperidol, lidocaine, malathion, mianserin, nicotine and triazolam significantly inhibited (14)C-TEA uptake; IC50 values were 59.2, 2.4, 2.0, 20.7, 32.3, 13.2, 32.5, 104.6, 71.1, 17.7, 52.8 and 65.5μM, respectively. In addition, aconitine, amitriptyline, atropine, chlorpyrifos, fenitrothion, haloperidol, lidocaine, and nicotine displayed competitive inhibition with Ki values of 145.6, 2.5, 2.4, 24.8, 16.9, 51.6, 86.8 and 57.7μM, respectively. These in vitro data support the notion that compounds pertaining to a wide variety of different drug classes have the potential to decrease renal clearance of drugs transported via hOCT2. Consequently, these data warrant additional studies to probe hOCT2 and its role to influence drug pharmacokinetics.

  11. Glucose: detection and analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucose is an aldosic monosaccharide that is centrally entrenched in the processes of photosynthesis and respiration, serving as an energy reserve and metabolic fuel in most organisms. As both a monomer and as part of more complex structures such as polysaccharides and glucosides, glucose also pla...

  12. Platelet-activating factor-induced increases in glucose kinetics

    SciTech Connect

    Lang, C.H.; Dobrescu, C.; Hargrove, D.M.; Bagby, G.J.; Spitzer, J.J. )

    1988-02-01

    Platelet-activating factor (PAF) is a postulated mediator of many of the early hemodynamic effects of endotoxin. The aim of the present study was to determine whether in vivo administration of PAF could produce alterations in whole-body glucose metabolism that would mimic those seen during endotoxemia. Glucose kinetics were assessed in chronically catheterized conscious rats by the constant infusion of (6-{sup 3}H)- and (U-{sup 14}C)glucose before and for 4 h after either a bolus injection or a constant infusion of PAF. The bolus injection of PAF elevated the rate of glucose appearance (R{sub a}; 44%) for 1.5 h. The lower PAF infusion rate decreased blood pressure 11% to 104 mmHg, whereas the higher infusion rate decreased pressure 34% to 77 mmHg. Both PAF infusion rates produced elevations in plasma glucose and glucose R{sub a} throughout the 4-h infusion period in a dose-related manner. The PAF infusions also induced dose-related increases in plasma glucagon and catecholamine levels throughout the infusion period. Because the constant infusion of PAF did stimulate many of the hemodynamic and metabolic alterations produced by endotoxin, this study provides additional support for the potential importance of PAF as a mediator of the early hemodynamic and metabolic sequela of endotoxin shock. Furthermore, the PAF-induced changes in glucose metabolism appear to be mediated by the resultant elevation in plasma catecholamines.

  13. Thermal decomposition of (UO2)O2(H2O)2·2H2O: Influence on structure, microstructure and hydrofluorination

    NASA Astrophysics Data System (ADS)

    Thomas, R.; Rivenet, M.; Berrier, E.; de Waele, I.; Arab, M.; Amaraggi, D.; Morel, B.; Abraham, F.

    2017-01-01

    The thermal decomposition of uranyl peroxide tetrahydrate, (UO2)O2(H2O)2.2H2O, was studied by combining high temperature powder X-ray diffraction, scanning electron microscopy, thermal analyses and spectroscopic techniques (Raman, IR and 1H NMR). In situ analyses reveal that intermediates and final uranium oxides obtained upon heating are different from that obtained after cooling at room temperature and that the uranyl precursor used to synthesize (UO2)O2(H2O)2·2H2O, sulfate or nitrate, has a strong influence on the peroxide thermal behavior and morphology. The decomposition of (UO2)O2(H2O)2·2H2O ex sulfate is pseudomorphic and leads to needle-like shaped particles of metastudtite, (UO2)O2(H2O)2, and UO3-x(OH)2x·zH2O, an amorphous phase found in air in the following of (UO2)O2(H2O)2 dehydration. (UO2)O2(H2O)2·2H2O and the compounds resulting from its thermal decomposition are very reactive towards hydrofluorination as long as their needle-like morphology is kept.

  14. Contributions of gluconeogenesis to glucose production in the fasted state.

    PubMed Central

    Landau, B R; Wahren, J; Chandramouli, V; Schumann, W C; Ekberg, K; Kalhan, S C

    1996-01-01

    Healthy subjects ingested 2H2O and after 14, 22, and 42 h of fasting the enrichments of deuterium in the hydrogens bound to carbons 2, 5, and 6 of blood glucose and in body water were determined. The hydrogens bound to the carbons were isolated in formaldehyde which was converted to hexamethylenetetramine for assay. Enrichment of the deuterium bound to carbon 5 of glucose to that in water or to carbon 2 directly equals the fraction of glucose formed by gluconeogenesis. The contribution of gluconeogenesis to glucose production was 47 +/- 49% after 14 h, 67 +/- 41% after 22 h, and 93 +/- 2% after 42 h of fasting. Glycerol's conversion to glucose is included in estimates using the enrichment at carbon 5, but not carbon 6. Equilibrations with water of the hydrogens bound to carbon 3 of pyruvate that become those bound to carbon 6 of glucose and of the hydrogen at carbon 2 of glucose produced via glycogenolysis are estimated from the enrichments to be approximately 80% complete. Thus, rates of gluconeogenesis can be determined without corrections required in other tracer methodologies. After an overnight fast gluconeogenesis accounts for approximately 50% and after 42 h of fasting for almost all of glucose production in healthy subjects. PMID:8755648

  15. Effect of anesthesia on glucose production and utilization in rats

    SciTech Connect

    Penicaud, L.; Ferre, P.; Kande, J.; Leturque, A.; Issad, T.; Girard, J.

    1987-03-01

    This study was undertaken to determine the effects of pentobarbital anesthesia (50 mg/kg ip) on glucose kinetics and individual tissue glucose utilization in vivo, in chronically catheterized rats. Glucose turnover studies were carried out using (3-/sup 3/H) glucose as tracer. A transient hyperglycemia and an increased glucose production were observed 3 min after induction of anesthesia. However, 40 min after induction of anesthesia, glycemia returned to the level observed in awake animals, whereas glucose turnover was decreased by 30% as compared with unanesthetized rats. These results are discussed with regard to the variations observed in plasma insulin, glucagon, and catecholamine levels. Glucose utilization by individual tissues was studied by the 2-(1-/sup 3/H) deoxyglucose technique. A four- to fivefold decrease in glucose utilization was observed in postural muscles (soleus and adductor longus), while in other nonpostural muscles (epitrochlearis, tibialis anterior, extensor digitorum longus, and diaphragm) and other tissues (white and brown adipose tissues) anesthesia did not modify the rate of glucose utilization. A decrease in glucose utilization was also observed in the brain.

  16. Computational modeling of glucose transport in pancreatic β-cells identifies metabolic thresholds and therapeutic targets in diabetes.

    PubMed

    Luni, Camilla; Marth, Jamey D; Doyle, Francis J

    2012-01-01

    Pancreatic β-cell dysfunction is a diagnostic criterion of Type 2 diabetes and includes defects in glucose transport and insulin secretion. In healthy individuals, β-cells maintain plasma glucose concentrations within a narrow range in concert with insulin action among multiple tissues. Postprandial elevations in blood glucose facilitate glucose uptake into β-cells by diffusion through glucose transporters residing at the plasma membrane. Glucose transport is essential for glycolysis and glucose-stimulated insulin secretion. In human Type 2 diabetes and in the mouse model of obesity-associated diabetes, a marked deficiency of β-cell glucose transporters and glucose uptake occurs with the loss of glucose-stimulated insulin secretion. Recent studies have shown that the preservation of glucose transport in β-cells maintains normal insulin secretion and blocks the development of obesity-associated diabetes. To further elucidate the underlying mechanisms, we have constructed a computational model of human β-cell glucose transport in health and in Type 2 diabetes, and present a systems analysis based on experimental results from human and animal studies. Our findings identify a metabolic threshold or "tipping point" whereby diminished glucose transport across the plasma membrane of β-cells limits intracellular glucose-6-phosphate production by glucokinase. This metabolic threshold is crossed in Type 2 diabetes and results in β-cell dysfunction including the loss of glucose stimulated insulin secretion. Our model further discriminates among molecular control points in this pathway wherein maximal therapeutic intervention is achieved.

  17. Effects of D-allulose on glucose metabolism after the administration of sugar or food in healthy dogs

    PubMed Central

    NISHII, Naohito; NOMIZO, Toru; TAKASHIMA, Satoshi; MATSUBARA, Tatsuya; TOKUDA, Masaaki; KITAGAWA, Hitoshi

    2016-01-01

    D-allulose is a C-3 epimer of D-fructose and has recently been investigated for its hypoglycemic effects. In the present study, the effects of D-allulose on glucose metabolism were evaluated in healthy dogs administrated sugar or food. The oral administrations of D-allulose decreased plasma glucose concentrations after oral glucose or maltose administration, with a diminished plasma insulin rise. The glucose suppressive effect of D-allulose was also observed after intravenous glucose administrations without increase in plasma insulin concentration. In contrast, D-allulose showed no effect on plasma glucose and insulin concentrations after feeding. The present results suggest that D-allulose administration may be beneficial in dogs with impaired glucose tolerance. Further studies investigating the therapeutic efficacy of D-allulose in diabetic dogs are required. PMID:27452736

  18. SY 10-1 RENAL GLUCOSE HANDLING AND SGLT2.

    PubMed

    Poudel, Resham

    2016-09-01

    The kidneys maintain glucose homeostasis through its utilization, gluconeogenesis, and reabsorption. Glucose is freely filtered and reabsorbed in order to retain energy essential between meals. The amount of glucose reabsorbed by the kidneys is equivalent to the amount entering the filtration system. With a daily glomerular filtration rate of 180 L, approximately 180 g (180 L/day × 100 mg/dL) of glucose must be reabsorbed each day to maintain an average fasting plasma glucose concentration of 5.6 mmol/L (100 mg/dL). The reabsorption increases with increase in plasma glucose concentration up to approximately 11 mmol/L (198 mg/dL). At this threshold level, the system becomes saturated and the maximal resabsorption rate-the glucose transport maximum (Tm G ) is reached. No more glucose can be absorbed, and the kidneys begin excreting it in the urine-the beginning of glycosuria. Reabsorption of glucose occurs mainly in the proximal tubule and is mediated by 2 different transport proteins, Sodium Glucose Cotransporter (SGLT)1 and SGLT2. SGLT1, which are found in the straight section of the proximal tubule (S3), are responsible for approximately 10% of glucose reabsorption. The other 90% of filtered glucose is reabsorbed through by SGLT2, which are located in the convoluted section on the proximal tubule (S1). The SGLT2 are located on the luminal side of the early proximal tubule S1 segment. Absorption of sodium across the cell membrane creates an energy gradient that in turn allows glucose to be absorbed. On the other side of the cell, sodium is reabsorbed through sodium-potassium ATPase pump into the bloodstream. The concentration gradient within the cell, resulting from this exchange drives glucose reabsorption into the bloodstream via the Glucose transporter (GLUT) 2. The role of kidneys in glucose regulation has been well recognized in the recent years, and inhibition of glucose reabsorption by SGLT2 inhibitors has evolved as a promising target for

  19. Ketosis proportionately spares glucose utilization in brain.

    PubMed

    Zhang, Yifan; Kuang, Youzhi; Xu, Kui; Harris, Donald; Lee, Zhenghong; LaManna, Joseph; Puchowicz, Michelle A

    2013-08-01

    The brain is dependent on glucose as a primary energy substrate, but is capable of utilizing ketones such as β-hydroxybutyrate and acetoacetate, as occurs with fasting, starvation, or chronic feeding of a ketogenic diet. The relationship between changes in cerebral metabolic rates of glucose (CMRglc) and degree or duration of ketosis remains uncertain. To investigate if CMRglc decreases with chronic ketosis, 2-[(18)F]fluoro-2-deoxy-D-glucose in combination with positron emission tomography, was applied in anesthetized young adult rats fed 3 weeks of either standard or ketogenic diets. Cerebral metabolic rates of glucose (μmol/min per 100 g) was determined in the cerebral cortex and cerebellum using Gjedde-Patlak analysis. The average CMRglc significantly decreased in the cerebral cortex (23.0±4.9 versus 32.9±4.7) and cerebellum (29.3±8.6 versus 41.2±6.4) with increased plasma ketone bodies in the ketotic rats compared with standard diet group. The reduction of CMRglc in both brain regions correlates linearly by ∼9% for each 1 mmol/L increase of total plasma ketone bodies (0.3 to 6.3 mmol/L). Together with our meta-analysis, these data revealed that the degree and duration of ketosis has a major role in determining the corresponding change in CMRglc with ketosis.

  20. Measurement of glucose concentration in interstitial fluid by surface plasmon resonance with D-galactose/D-glucose binding protein

    NASA Astrophysics Data System (ADS)

    Li, D. C.; Zhang, J. X.; Wu, P.; Huang, F. X.; Song, B.; Xu, K. X.

    2009-08-01

    A novel minimally invasive way to measure blood glucose concentration is proposed by combining interstitial fluid transdermal extraction and surface plasma resonance (SPR) detecting. 55K Hz low-frequency ultrasound pulse is applied for less than 30 seconds to enhance the skin permeability and then interstitial fluid is extracted out of skin by vacuum. The mathematical model to express the correlation between interstitial fluid glucose and blood glucose is also developed by considering the changes of the skin conductivity. The glucose concentration in the interstitial fluid is determined using an optical SPR biological sensor that measures the refractive index. A protein-glucose binding technology using Dgalactose/ D-glucose Binding Protein for specific absorption of glucose is employed to increase SPR measurement precision. By immobilizing GGBP onto the surface of the SPR sensor, the experimental result indicates the detecting resolution of glucose rises to 1mg/L, the system succeeds in distinguishing glucose from other components in mixture. The feasibility of this method is validated for clinical application with the requirements of bloodless, painless, continuous glucose monitoring and a prototype microfluidic diabetes-monitoring device is under development.

  1. High/variable mixture ratio O2/H2 engine

    NASA Technical Reports Server (NTRS)

    Adams, A.; Parsley, R. C.

    1988-01-01

    Vehicle/engine analysis studies have identified the High/Dual Mixture Ratio O2/H2 Engine cycle as a leading candidate for an advanced Single Stage to Orbit (SSTO) propulsion system. This cycle is designed to allow operation at a higher than normal O/F ratio of 12 during liftoff and then transition to a more optimum O/F ratio of 6 at altitude. While operation at high mixture ratios lowers specific impulse, the resultant high propellant bulk density and high power density combine to minimize the influence of atmospheric drag and low altitude gravitational forces. Transition to a lower mixture ratio at altitude then provides improved specific impulse relative to a single mixture ratio engine that must select a mixture ratio that is balanced for both low and high altitude operation. This combination of increased altitude specific impulse and high propellant bulk density more than offsets the compromised low altitude performance and results in an overall mission benefit. Two areas of technical concern relative to the execution of this dual mixture ratio cycle concept are addressed. First, actions required to transition from high to low mixture ratio are examined, including an assessment of the main chamber environment as the main chamber mixture ratio passes through stoichiometric. Secondly, two approaches to meet a requirement for high turbine power at high mixture ratio condition are examined. One approach uses high turbine temperature to produce the power and requires cooled turbines. The other approach incorporates an oxidizer-rich preburner to increase turbine work capability via increased turbine mass flow.

  2. 2H NMR studies of glycerol dynamics in protein matrices.

    PubMed

    Herbers, C R; Sauer, D; Vogel, M

    2012-03-28

    We use (2)H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids.

  3. 2H NMR studies of glycerol dynamics in protein matrices

    NASA Astrophysics Data System (ADS)

    Herbers, C. R.; Sauer, D.; Vogel, M.

    2012-03-01

    We use 2H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids.

  4. Ion-neutral reaction of the C2H2N+ cation with C2H2: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Fathi, P.; Geppert, W. D.; Kaiser, A.; Ascenzi, D.

    2016-03-01

    The ion-neutral reactions of the C2H2N+ cation with C2