Science.gov

Sample records for 2-h post-ogtt plasma

  1. Accumulation of 2H2O in plasma and eccrine sweat during exercise-heat stress.

    PubMed

    Armstrong, Lawrence E; Klau, Jennifer F; Ganio, Matthew S; McDermott, Brendon P; Yeargin, Susan W; Lee, Elaine C; Maresh, Carl M

    2010-02-01

    The purpose of this research was to characterize the movement of ingested water through body fluids, during exercise-heat stress. Deuterium oxide ((2)H(2)O) accumulation in plasma and eccrine sweat was measured at two sites (back and forehead). The exercise of 14 males was controlled via cycle ergometry in a warm environment (60 min; 28.7 degrees C, 51%rh). Subjects consumed (2)H(2)O (0.15 mg kg(-1), 99.9% purity) mixed in flavored, non-caloric, colored water before exercise, then consumed 3.0 ml kg(-1) containing no (2)H(2)O every 15 min during exercise. We hypothesized that water transit from mouth to skin would occur before 15 min. (2)H(2)O appeared rapidly in both plasma and sweat (P < 0.05), within 10 min of water consumption. The ratio (2)H(2)O/H(2)O (D:H) was 47.3-55.0 times greater in plasma than in back sweat at minutes 10, 20, and 30 (DeltaD:H relative to baseline). At elapsed minute 20, the mean rate of deuterium accumulation (DeltaD:H min(-1)) in plasma was 14.9 and 23.7 times greater than in forehead and back sweat samples, respectively. Mean (+/-SE) whole-body sweat rate was 1.04 +/- 0.05 L h(-1) and subjects with the greatest whole-body sweat rate exhibited the greatest peak deuterium enrichment in sweat (r(2) = 0.87, exponential function); the peak (2)H(2)O enrichment in sweat was not proportional (P > 0.05) to body mass, volume of the deuterium dose, or total volume of fluid consumed. These findings clarify the time course of fluid movement from mouth to eccrine sweat glands, and demonstrate considerable differences of (2)H(2)O enrichment in plasma versus sweat.

  2. Dynamics of the formation and loss of boron atoms in a H2/B2H6 microwave plasma

    NASA Astrophysics Data System (ADS)

    Duluard, C. Y.; Aubert, X.; Sadeghi, N.; Gicquel, A.

    2016-09-01

    For further improvements in doped-diamond deposition technology, an understanding of the complex chemistry in H2/CH4/B2H6 plasmas is of general importance. In this context, a H2/B2H6 plasma ignited by microwave power in a near resonant cavity at high pressure (100-200 mbar) is studied to measure the B-atom density in the ground state. The discharge is ignited in the gas mixture (0-135 ppm B2H6 in H2) by a 2.45 GHz microwave generator, leading to the formation of a hemispheric plasma core, surrounded by a faint discharge halo filling the remaining reactor volume. Measurements with both laser induced fluorescence and resonant absoption with a boron hollow cathode lamp indicate that the B-atom density is higher in the halo than in the plasma core. When the absorption line-of-sight is positioned in the halo, the absorption is so strong that the upper detection limit is reached. To understand the mechanisms of creation and loss of boron atoms, time-resolved absorption measurements have been carried out in a pulsed plasma regime (10 Hz, duty cycle 50%). The study focuses on the influence of the total pressure, the partial pressure of B2H6, as well as the source power, on the growth and decay rates of boron atoms when the plasma is turned off.

  3. Microwave Plasma-Activated Chemical Vapor Deposition of Nitrogen-Doped Diamond. II: CH4/N2/H2 Plasmas

    PubMed Central

    2016-01-01

    We report a combined experimental and modeling study of microwave-activated dilute CH4/N2/H2 plasmas, as used for chemical vapor deposition (CVD) of diamond, under very similar conditions to previous studies of CH4/H2, CH4/H2/Ar, and N2/H2 gas mixtures. Using cavity ring-down spectroscopy, absolute column densities of CH(X, v = 0), CN(X, v = 0), and NH(X, v = 0) radicals in the hot plasma have been determined as functions of height, z, source gas mixing ratio, total gas pressure, p, and input power, P. Optical emission spectroscopy has been used to investigate, with respect to the same variables, the relative number densities of electronically excited species, namely, H atoms, CH, C2, CN, and NH radicals and triplet N2 molecules. The measurements have been reproduced and rationalized from first-principles by 2-D (r, z) coupled kinetic and transport modeling, and comparison between experiment and simulation has afforded a detailed understanding of C/N/H plasma-chemical reactivity and variations with process conditions and with location within the reactor. The experimentally validated simulations have been extended to much lower N2 input fractions and higher microwave powers than were probed experimentally, providing predictions for the gas-phase chemistry adjacent to the diamond surface and its variation across a wide range of conditions employed in practical diamond-growing CVD processes. The strongly bound N2 molecule is very resistant to dissociation at the input MW powers and pressures prevailing in typical diamond CVD reactors, but its chemical reactivity is boosted through energy pooling in its lowest-lying (metastable) triplet state and subsequent reactions with H atoms. For a CH4 input mole fraction of 4%, with N2 present at 1–6000 ppm, at pressure p = 150 Torr, and with applied microwave power P = 1.5 kW, the near-substrate gas-phase N atom concentration, [N]ns, scales linearly with the N2 input mole fraction and exceeds the concentrations [NH]ns, [NH2]ns

  4. Impact of reductive N2/H2 plasma on porous low-dielectric constant SiCOH thin films

    NASA Astrophysics Data System (ADS)

    Cui, Hao; Carter, Richard J.; Moore, Darren L.; Peng, Hua-Gen; Gidley, David W.; Burke, Peter A.

    2005-06-01

    Porous low-dielectric constant (low-κ) SiCOH thin films deposited using a plasma-enhanced chemical-vapor deposition have been comprehensively characterized before and after exposure to a reactive-ion-etch-type plasma of N2 and H2 chemistry. The low-κ film studied in this work is a carbon-doped silicon oxide film with a dielectric constant (κ) of 2.5. Studies show that a top dense layer is formed as a result of significant surface film densification after exposure to N2/H2 plasma while the underlying bulk layer remains largely unchanged. The top dense layer is found to seal the porous bulk SiCOH film. SiCOH films experienced significant thickness reduction, κ increase, and leakage current degradation after plasma exposure, accompanied by density increase, pore collapse, carbon depletion, and moisture content increase in the top dense layer. Both film densification and removal processes during N2/H2 plasma treatment were found to play important roles in the thickness reduction and κ increase of this porous low-κ SiCOH film. A model based upon mutually limiting film densification and removal processes is proposed for the continuous thickness reduction during plasma exposure. A combination of surface film densification, thickness ratio increase of top dense layer to bulk layer, and moisture content increase results in the increase in κ value of this SiCOH film.

  5. Ammonia formation in N2/H2 plasmas on ITER-relevant plasma facing materials: Surface temperature and N2 plasma content effects

    NASA Astrophysics Data System (ADS)

    de Castro, A.; Alegre, D.; Tabarés, F. L.

    2015-08-01

    Ammonia production in N2/H2 direct current glow discharge plasmas, with nitrogen concentrations from 1.5% to 33%, different wall materials (tungsten, stainless steel and aluminium as a proxy for beryllium) and surface temperatures up to 350 °C has been investigated. Ammonia yields on the exposed materials have been deduced, resulting in different values depending on the wall material, its temperature and N2 plasma content. The results indicate weak wall temperature dependence in tungsten and stainless steel. However, wall temperatures above 300 °C have a very clear influence on aluminium walls, as almost all the molecular N2 depleted from the gas phase is converted into ammonia. The amount of implanted N seems to have a direct impact on the ammonia formation yield, pointing to the competition between N implantation and N/H-N/N recombination on the walls as the key mechanism of the ammonia formation.

  6. NO Removal in High Pressure Plasmas of N_2/H_2O/NO Mixtures

    NASA Astrophysics Data System (ADS)

    Fresnet, F.; Baravian, G.; Magne, L.; Pasquiers, S.; Postel, C.; Puech, V.; Rousseau, A.

    2001-10-01

    Influence of H_2O on NO removal has been studied using a homogeneous photo-triggered discharge with a time resolved LIF measurement of the NO density, in N_2/H_2O/NO mixtures at 460 mbar. The H_2O maximum concentration was 2.5 was between 70 and 160 J/l. Measurement of NO density has been performed up to 180 µs after the current pulse excitation of short duration, 50 ns. Kinetic analysis has been made using a self-consistent 0D-discharge model. NO is in great part dissociated, in N_2/NO, through collisions with the excited singlet states of N_2. We have previously shown that addition of ethene induces de-excitation of these states, leading to a decrease of the NO removal ( F. Fresnet, G. Baravian, L. Magne, S. Pasquiers, C. Postel, V. Puech, A. Rousseau, Appl. Phys. Lett., 77 (2000) 4118.). Similar processes take place when C_2H4 is replaced by H_2O. The value of the rate constant for collision of singlet states with water, 3.10-10 cm^3 s-1, is obtained from our study.

  7. Kinetic of the OH-radical in high pressure plasmas of N_2/H_2O/hydrocarbons mixtures

    NASA Astrophysics Data System (ADS)

    Baravian, G.; Fresnet, F.; Magne, L.; Pasquiers, S.; Postel, C.; Puech, V.; Rousseau, A.

    2001-10-01

    Kinetic of the OH-radical has been studied in homogeneous plasmas achieved in a photo-triggered discharge device, in N_2/H_2O with C_2H4 or C_3H_6, at 460 mbar with 1.2 concentration and a deposited energy in the plasma equal to 92 J/l. Hydrocarbon concentration ranged from 50 ppm up to 1000 ppm. Using the same technique as for NO kinetic studies ( F. Fresnet, G. Baravian, L. Magne, S. Pasquiers, C. Postel, V. Puech, A. Rousseau, Appl. Phys. Lett., 77 (2000) 4118.), a time resolved LIF diagnostic has been performed to measure the OH-radical density up to 180 µs after the short current pulse excitation, 50 ns. At fixed deposited energy, the LIF signal rapidly decreases when hydrocarbon concentration increases. Measurements have been compared to predictions of a self-consistent 0D-model which takes into account a detailed kinetic scheme, including oxidation reactions of hydrocarbons by the radical which are important processes in flue gas non-thermal plasma treatment. Results are discussed.

  8. Characteristics and anticoagulation behavior of polyethylene terephthalate modified by C2H2 plasma immersion ion implantation-deposition

    NASA Astrophysics Data System (ADS)

    Wang, J.; Pan, C. J.; Kwok, S. C. H.; Yang, P.; Chen, J. Y.; Wan, G. J.; Huang, N.; Chu, P. K.

    2004-01-01

    Acetylene (C2H2) plasma immersion ion implantation-deposition (PIII-D) is conducted on polyethylene terephthalate (PET) to improve its blood compatibility. The structural and physicochemical properties of the modified surface are characterized by, Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), and static contact angle measurement. Atomic force microscopy discloses that the average roughness (Ra) of film surface decreases from 58.9 nm to 11.4 nm after C2H2 PIII-D treats PET. Attenuated total reflection Fourier transform infrared spectroscopy shows that the specfic adsorption peaks for PET decrease after ion implantation and deposition. Raman spectroscopy indicates that a thin amorphous polymerlike carbon (PLC) film is formed in the PET. The effects of the surface modification on the chemical bonding of C, H, and O are examined by XPS and the results show that the ratio of sp3 C-C to sp2 C=C is 0.25. After C2H2 PIII-D, the polar component γp of surface energy increases from 2.4 mN/m to 12.3 mN/m and γp/γd increases from 0.06 to 0.35. The wettability of the modified surfaces is improved. Scanning electron microscopy and optical microscopy reveal that the amounts of adhered, aggregated and morphologically changed platelets are reduced by the deposition of an amorphous polymer-like carbon film. The thrombin time, prothrombin time, and activated partial thromboplastin time of the modified PET are longer than those of the untreated PET. Our result thus shows that the amorphous PLC film deposited on the PET surface by C2H2 PIII-D improves platelet adhesion and activation. .

  9. Ordered and Disordered Phases Coexist in Plasma Membrane Vesicles of RBL-2H3 Mast Cells. An ESR Study

    PubMed Central

    Ge, Mingtao; Gidwani, Arun; Brown, H. Alex; Holowka, David; Baird, Barbara; Freed, Jack H.

    2003-01-01

    Four chain spin labels and a spin-labeled cholestane were used to study the dynamic structure of plasma membrane vesicles (PMV) prepared from RBL-2H3 mast cells at temperatures ranging from 22°C to 45°C. Analysis shows that the spectra from most labels consist of two components. The abundant spectral components exhibit substantial ordering that is intermediate between that of a liquid-ordered (Lo) phase, and that of a liquid-crystalline (Lc) phase as represented by model membranes. Also, rotational diffusion rates of the spin labels are comparable to those in the Lo phase. In contrast, the ordering for the less abundant components is much lower. These results indicate that a Lo-like region or phase (the abundant component) and an Lc-like region or phase (the less abundant component) coexist in the PMV. In contrast, membranes reconstituted from extracted lipids exhibit the more ordered phase only. This suggests that membrane-associated proteins are important for the coexistence of Lo-like and Lc-like regions in the plasma membrane. In addition, binding of the myristoylated protein, ARF6 to PMV, leads to a new spectral component for a headgroup lipid spin label that indicates the formation of plasma membrane defects by this low molecular weight GTPase. PMID:12885671

  10. Characteristics of NOx removal combining dielectric barrier discharge plasma with selective catalytic reduction by C2H5OH

    NASA Astrophysics Data System (ADS)

    Wang, Xing-Quan; Chen, Wei; Guo, Qi-Pei; Li, Yi; Lv, Guo-Hua; Sun, Xiu-Ping; Zhang, Xian-Hui; Feng, Ke-Cheng; Yang, Si-Ze

    2009-07-01

    With the assistance of dielectric barrier discharge (DBD) plasma, selective catalytic reduction of NOx by ethanol over Ag/Al2O3 catalysts was studied. Experimental results show that NOx conversion was greatly enhanced due to the presence of DBD plasma at lower temperature. By varying the DBD voltages or power in 13 kHz frequency at different temperatures, NOx conversion was increased to 40.7% from 6.4% at 176 °C, even to 66.8% from 17.3% at 200 °C. NOx conversion could even be improved to 90% at temperature above 255 °C. It was proposed that nonthermal plasma generated by dielectric barrier discharge reactor was very effective for oxidizing NO to NO2 under excess O2 conditions, which possesses high reactivity with C2H5OH to yield CxHyNzO compound. By reacting with CxHyNzO compound and oxygen, NOx is converted to N2 at low temperatures.

  11. Detailed study of the plasma-activated catalytic generation of ammonia in N2-H2 plasmas

    NASA Astrophysics Data System (ADS)

    van Helden, J. H.; Wagemans, W.; Yagci, G.; Zijlmans, R. A. B.; Schram, D. C.; Engeln, R.; Lombardi, G.; Stancu, G. D.; Röpcke, J.

    2007-02-01

    We investigated the efficiency and formation mechanism of ammonia generation in recombining plasmas generated from mixtures of N2 and H2 under various plasma conditions. In contrast to the Haber-Bosch process, in which the molecules are dissociated on a catalytic surface, under these plasma conditions the precursor molecules, N2 and H2, are already dissociated in the gas phase. Surfaces are thus exposed to large fluxes of atomic N and H radicals. The ammonia production turns out to be strongly dependent on the fluxes of atomic N and H radicals to the surface. By optimizing the atomic N and H fluxes to the surface using an atomic nitrogen and hydrogen source ammonia can be formed efficiently, i.e., more than 10% of the total background pressure is measured to be ammonia. The results obtained show a strong similarity with results reported in literature, which were explained by the production of ammonia at the surface by stepwise addition reactions between adsorbed nitrogen and hydrogen containing radicals at the surface and incoming N and H containing radicals. Furthermore, our results indicate that the ammonia production is independent of wall material. The high fluxes of N and H radicals in our experiments result in a passivated surface, and the actual chemistry, leading to the formation of ammonia, takes place in an additional layer on top of this passivated surface.

  12. Effect of hydrogen ratio on plasma parameters of N{sub 2}-H{sub 2} gas mixture glow discharge

    SciTech Connect

    El-Brulsy, R. A.; Abd Al-Halim, M. A.; Abu-Hashem, A.; Rashed, U. M.; Hassouba, M. A.

    2012-05-15

    A dc plane glow discharge in a nitrogen-hydrogen (N{sub 2}-H{sub 2}) gas mixture has been operated at discharge currents of 10 and 20 mA. The electron energy distribution function (EEDF) at different hydrogen concentrations is measured. A Maxwellian EEDF is found in the positive column region, while in both cathode fall and negative glow regions, a non-Maxwellian one is observed. Langmuir electric probes are used at different axial positions, gas pressures, and hydrogen concentrations to measure the electron temperature and plasma density. The electron temperature is found to increase with increasing H{sub 2} concentration and decrease with increasing both the axial distance from the cathode and the mixture pressure. At first, with increasing distance from the cathode, the ion density decreases, while the electron density increases; then, as the anode is further approached, they remain nearly constant. At different H{sub 2} concentrations, the electron and ion densities decrease with increasing the mixture pressure. Both the electron and ion densities slightly decrease with increasing H{sub 2} concentration.

  13. Spectroscopic and modeling investigations of the gas-phase chemistry and composition in microwave plasma activated B2H6/Ar/H2 mixtures.

    PubMed

    Ma, Jie; Richley, James C; Davies, David R W; Cheesman, Andrew; Ashfold, Michael N R; Mankelevich, Yuri A

    2010-02-25

    This paper describes a three-pronged study of microwave (MW) activated B(2)H(6)/Ar/H(2) plasmas as a precursor to diagnosis of the B(2)H(6)/CH(4)/Ar/H(2) plasmas used for the chemical vapor deposition of B-doped diamond. Absolute column densities of B atoms and BH radicals have been determined by cavity ring-down spectroscopy as a function of height (z) above a molybdenum substrate and of the plasma process conditions (B(2)H(6) and Ar partial pressures, total pressure, and supplied MW power). Optical emission spectroscopy has been used to explore variations in the relative densities of electronically excited BH, H, and H(2) species as a function of the same process conditions and of time after introducing B(2)H(6) into a pre-existing Ar/H(2) plasma. The experimental measurements are complemented by extensive 2-D(r, z) modeling of the plasma chemistry, which results in refinements to the existing B/H chemistry and thermochemistry and demonstrates the potentially substantial loss of gas-phase BH(x) species through reaction with trace quantities of air/O(2) in the process gas mixture and heterogeneous processes occurring at the reactor wall.

  14. The quenching effect of hydrogen on the nitrogen in metastable state in atmospheric-pressure N{sub 2}-H{sub 2} microwave plasma torch

    SciTech Connect

    Li, Shou-Zhe Zhang, Xin; Chen, Chuan-Jie; Zhang, Jialiang; Wang, Yong-Xing; Xia, Guang-Qing

    2014-07-15

    The atmospheric-pressure microwave N{sub 2}-H{sub 2} plasma torch is generated and diagnosed by optical emission spectroscopy. It is found that a large amount of N atoms and NH radicals are generated in the plasma torch and the emission intensity of N{sub 2}{sup +} first negative band is the strongest over the spectra. The mixture of hydrogen in nitrogen plasma torch causes the morphology of the plasma discharge to change with appearance that the afterglow shrinks greatly and the emission intensity of N{sub 2}{sup +} first negative band decreases with more hydrogen mixed into nitrogen plasma. In atmospheric-pressure microwave-induced plasma torch, the hydrogen imposes a great influence on the characteristics of nitrogen plasma through the quenching effect of the hydrogen on the metastable state of N{sub 2}.

  15. Etching of low-k materials for microelectronics applications by means of a N2/H2 plasma: modeling and experimental investigation

    NASA Astrophysics Data System (ADS)

    Van Laer, K.; Tinck, S.; Samara, V.; de Marneffe, J. F.; Bogaerts, A.

    2013-04-01

    In this paper, we investigate the etch process of so-called low-k organic material by means of a N2/H2 capacitively coupled plasma, as applied in the micro-electronics industry for the manufacturing of computer chips. In recent years, such an organic material has emerged as a possible alternative for replacing bulk SiO2 as a dielectric material in the back-end-of-line, because of the smaller parasitic capacity between adjacent conducting lines, and thus a faster propagation of the electrical signals throughout the chip. Numerical simulations with a hybrid plasma model, using an extensive plasma and surface chemistry set, as well as experiments are performed, focusing on the plasma properties as well as the actual etching process, to obtain a better insight into the underlying mechanisms. Furthermore, the effects of gas pressure, applied power and gas composition are investigated to try to optimize the etch process. In general, the plasma density reaches a maximum near the wafer edge due to the so-called ‘edge effect’. As a result, the etch rate is not uniform but will also reach its maximum near the wafer edge. The pressure seems not to have a big effect. A higher power increases the etch rate, but the uniformity becomes (slightly) worse. The gas mixing ratio has no significant effect on the etch process, except when a pure H2 or N2 plasma is used, illustrating the synergistic effects of a N2/H2 plasma. In fact, our calculations reveal that the N2/H2 plasma entails an ion-enhanced etch process. The simulation results are in reasonable agreement with the experimental values. The microscopic etch profile shows the desired anisotropic shape under all conditions under study.

  16. Effect of the gas temperature and pressure on the nucleation time of particles in low pressure Ar-C2H2 rf plasmas

    NASA Astrophysics Data System (ADS)

    Lin, Jiashu; Henault, Marie; Orazbayev, Sagi; Boufendi, Laïa; Takahashi, Kazuo; Al Farabi Kazakh National University Collaboration; Kyoto Institute Of Technology Team; Gremi Team

    2016-09-01

    Particle formation in low pressure plasmas is a 3-step process. The first one corresponds to the nucleation and growth of nano-crystallites by ion-molecular reactions, the agglomeration phase to form large particles, and the growth by radical deposition on the particle surface. The nucleation phase was demonstrated to be sensitive to gas temperature and pressure. In this work, time of nucleation phase of particles formation in low pressure cold rf C2H2/Ar plasmas studied by varying gas temperature from 265 K to 375 K, gas pressure from 0.4 mbar to 0.8 mbar and rf power from 6 W to 20 W. The ratio of C2H2/Ar is fixed to 2/98 in terms of pressure. Several previous works reported that particle formation takes a few sec at room temperature in C2 H2 plasmas and the time is much shorter than 0.1 s in SiH4 plasmas. Time evolution of self-bias voltage was mainly used to determine nucleation time. The self-bias voltage was modified by phase transition between the steps from nucleation to coagulation. The experimental results showed that the nucleation time increased with gas temperature, decreased with gas pressure and discharge power. At constant gas pressure of 0.4 mbar and discharge power of 6 W, for example, the nucleation time increased from 5 sec to 30 sec with increas

  17. Simultaneous quantification of labeled (2)H5-glycerol, (13)C6-glucose, and endogenous D-glucose in mouse plasma using liquid chromatography tandem mass spectrometry.

    PubMed

    Jahouh, Farid; Wang, Rong

    2015-11-01

    Monitoring the level of glucose and glycerol or their labeled derivatives in biological fluid for kinetic studies has always been challenging, especially in mice, because of the limited volume in addition to the complexity of plasma. For such application, we developed a simple, fast, and sensitive method for the simultaneous measurement of absolute concentrations of labeled (2)H5-glycerol and (13)C6-glucose as well as endogenous D-glucose using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). In our study, 15.0 μL of mouse plasma was processed by a one-step protein precipitation, followed by LC-MS/MS analysis. The quantification of the analytes was carried out by monitoring the product ion scan of their corresponding deprotonated molecular ions and constructing the extracted ion fragmentogram by choosing a specific product ion for each analyte (equivalent to precursor ion to product ion transitions). The limit of detection (LOD) was evaluated to be 1.0 μM for both (2)H5-glycerol and (13)C6-glucose, and the limit of quantitation (LOQ) was observed to be 5.0 μM for both (2)H5-glycerol and (13)C6-glucose in diluted mice plasma that corresponds to 50 μM in plasma or 4.60 and 9.01 mg/dL of glycerol and glucose in plasma, respectively. The extraction recoveries are 81.9 % (CV = 8.1 %) for (2)H5-glycerol and 26.2 % (CV = 13.6 %) for (13)C6-glucose.

  18. Improvement in surface hydrophilicity and resistance to deformation of natural leather through O2/H2O low-temperature plasma treatment

    NASA Astrophysics Data System (ADS)

    You, Xuewei; Gou, Li; Tong, Xingye

    2016-01-01

    The natural leather was modified through O2/H2O low-temperature plasma treatment. Surface morphology was characterized by scanning electron microscopy (SEM) and the results showed that the pores on the leather surface became deeper and larger with enhanced permeability of water and vapor. XPS and FTIR-ATR was performed to determine the chemical composition of natural leather surface. Oxygen-containing groups were successfully grafted onto the surface of natural leather and oxygen content increased with longer treatment time. After O2/H2O plasma treatment, initial water contact angle was about 21° and water contact angles were not beyond 55° after being stored for 3 days. Furthermore, the tensile test indicated that the resistance to deformation had a prominent transform without sacrificing the tensile strength.

  19. Influence of Ar/O2/H2O Feed Gas and N2/O2/H2O Environment on the Interaction of Time Modulated MHz Atmospheric Pressure Plasma Jet (APPJ) with Model Polymers

    NASA Astrophysics Data System (ADS)

    Oehrlein, Gottlieb; Luan, Pingshan; Knoll, Andrew; Kondeti, Santosh; Bruggeman, Peter

    2016-09-01

    An Ar/O2/H2O fed time modulated MHz atmospheric pressure plasma jet (APPJ) in a sealed chamber was used to study plasma interaction with model polymers (polystyrene, poly-methyl methacrylate, etc.). The amount of H2O in the feed gas and/or present in the N2, O2, or N2/O2 environment was controlled. Short lived species such as O atoms and OH radicals play a crucial role in polymer etching and surface modifications (obtained from X-ray photoelectron spectroscopy of treated polymers without additional atmospheric exposure). Polymer etching depth for Ar/air fed APPJ mirrors the decay of gas phase O atoms with distance from the APPJ nozzle in air and is consistent with the estimated O atom flux at the polymer surface. Furthermore, whereas separate O2 or H2O admixture to Ar enhances polymer etching, simultaneous addition of O2 and H2O to Ar quenches polymer etching. This can be explained by the mutual quenching of O with OH, H and HO2 in the gas phase. Results where O2 and/or H2O in the environment were varied are consistent with these mechanisms. All results will be compared with measured and simulated species densities reported in the literature. We gratefully acknowledge funding from US Department of Energy (DE-SC0001939) and National Science Foundation (PHY-1415353).

  20. Key insights into the reacting kinetics of atmospheric pressure plasmas using He +N2 /O2 /CO2 /H2 O/Air mixtures

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki

    2015-09-01

    A zero dimensional kinetic chemistry computational modeling to identify the important collisional mechanisms and the dominant species in atmospheric pressure plasmas has been developed. This modeling provides an enhanced capability to tailor wide variety of reactive intermediates/species in atmospheric pressure plasmas using He +N2 /O2 /CO2 /H2 O/Air mixtures. The influence of the gas constituent, the gas temperature and the excitation frequency (kHz-, RF-, Pulsed-working) on the complex reacting chemical kinetics is clarified. This work also focuses on the benchmarking between the predictive outputs of this computer-based simulations and the diverse experimental diagnostics with particular emphasis on reactive oxygen/nitrogen intermediates/species. This work was partly supported by KAKENHI Grant Number 24561054.

  1. Investigation of InP etching mechanisms in a Cl{sub 2}/H{sub 2} inductively coupled plasma by optical emission spectroscopy

    SciTech Connect

    Gatilova, L.; Bouchoule, S.; Guilet, S.; Chabert, P.

    2009-03-15

    Optical emission spectroscopy (OES) has been used in order to investigate the InP etching mechanisms in a Cl{sub 2}-H{sub 2} inductively coupled plasma. The authors have previously shown that anisotropic etching of InP could be achieved for a H{sub 2} percentage in the 35%-45% range where the InP etch rate also presents a local maximum [J. Vac. Sci. Technol. B 24, 2381 (2006)], and that anisotropic etching was due to an enhanced passivation of the etched sidewalls by a silicon oxide layer [J. Vac. Sci. Technol. B 26, 666 (2008)]. In this work, it is shown that this etching behavior is related to a maximum in the H atom concentration in the plasma. The possible enhancement of the sidewall passivation process in the presence of H is investigated by comparing OES measurements and etching results obtained for Cl{sub 2}-H{sub 2} and Cl{sub 2}-Ar gas mixtures.

  2. Bandgap measurements and the peculiar splitting of E2H phonon modes of InxAl1-xN nanowires grown by plasma assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tangi, Malleswararao; Mishra, Pawan; Janjua, Bilal; Ng, Tien Khee; Anjum, Dalaver H.; Prabaswara, Aditya; Yang, Yang; Albadri, Abdulrahman M.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2016-07-01

    The dislocation free InxAl1-xN nanowires (NWs) are grown on Si(111) by nitrogen plasma assisted molecular beam epitaxy in the temperature regime of 490 °C-610 °C yielding In composition ranges over 0.50 ≤ x ≤ 0.17. We study the optical properties of these NWs by spectroscopic ellipsometry (SE), photoluminescence, and Raman spectroscopies since they possesses minimal strain with reduced defects comparative to the planar films. The optical bandgap measurements of InxAl1-xN NWs are demonstrated by SE where the absorption edges of the NW samples are evaluated irrespective of substrate transparency. A systematic Stoke shift of 0.04-0.27 eV with increasing x was observed when comparing the micro-photoluminescence spectra with the Tauc plot derived from SE. The micro-Raman spectra in the NWs with x = 0.5 showed two-mode behavior for A1(LO) phonons and single mode behavior for E2H phonons. As for x = 0.17, i.e., high Al content, we observed a peculiar E2H phonon mode splitting. Further, we observe composition dependent frequency shifts. The 77 to 600 K micro-Raman spectroscopy measurements show that both AlN- and InN-like modes of A1(LO) and E2H phonons in InxAl1-xN NWs are redshifted with increasing temperature, similar to that of the binary III group nitride semiconductors. These studies of the optical properties of the technologically important InxAl1-xN nanowires will path the way towards lasers and light-emitting diodes in the wavelength of the ultra-violet and visible range.

  3. Mass spectrometry-based microassay of 2H and 13C plasma glucose labeling to quantify liver metabolic fluxes in vivo

    PubMed Central

    Hasenour, Clinton M.; Wall, Martha L.; Ridley, D. Emerson; Hughey, Curtis C.; James, Freyja D.; Wasserman, David H.

    2015-01-01

    Mouse models designed to examine hepatic metabolism are critical to diabetes and obesity research. Thus, a microscale method to quantitatively assess hepatic glucose and intermediary metabolism in conscious, unrestrained mice was developed. [13C3]propionate, [2H2]water, and [6,6-2H2]glucose isotopes were delivered intravenously in short- (9 h) and long-term-fasted (19 h) C57BL/6J mice. GC-MS and mass isotopomer distribution (MID) analysis were performed on three 40-μl arterial plasma glucose samples obtained during the euglycemic isotopic steady state. Model-based regression of hepatic glucose and citric acid cycle (CAC)-related fluxes was performed using a comprehensive isotopomer model to track carbon and hydrogen atom transitions through the network and thereby simulate the MIDs of measured fragment ions. Glucose-6-phosphate production from glycogen diminished, and endogenous glucose production was exclusively gluconeogenic with prolonged fasting. Gluconeogenic flux from phosphoenolpyruvate (PEP) remained stable, whereas that from glycerol modestly increased from short- to long-term fasting. CAC flux [i.e., citrate synthase (VCS)] was reduced with long-term fasting. Interestingly, anaplerosis and cataplerosis increased with fast duration; accordingly, pyruvate carboxylation and the conversion of oxaloacetate to PEP were severalfold higher than VCS in long-term fasted mice. This method utilizes state-of-the-art in vivo methodology and comprehensive isotopomer modeling to quantify hepatic glucose and intermediary fluxes during physiological stress in mice. The small plasma requirements permit serial sampling without stress and the affirmation of steady-state glucose kinetics. Furthermore, the approach can accommodate a broad range of modeling assumptions, isotope tracers, and measurement inputs without the need to introduce ad hoc mathematical approximations. PMID:25991647

  4. Effects of O 2 and N 2/H 2 plasma treatments on the neuronal cell growth on single-walled carbon nanotube paper scaffolds

    NASA Astrophysics Data System (ADS)

    Yoon, Ok Ja; Lee, Hyun Jung; Jang, Yeong Mi; Kim, Hyun Woo; Lee, Won Bok; Kim, Sung Su; Lee, Nae-Eung

    2011-08-01

    The O 2 and N 2/H 2 plasma treatments of single-walled carbon nanotube (SWCNT) papers as scaffolds for enhanced neuronal cell growth were conducted to functionalize their surfaces with different functional groups and to roughen their surfaces. To evaluate the effects of the surface roughness and functionalization modifications of the SWCNT papers, we investigated the neuronal morphology, mitochondrial membrane potential, and acetylcholine/acetylcholinesterase levels of human neuroblastoma during SH-SY5Y cell growth on the treated SWCNT papers. Our results demonstrated that the plasma-chemical functionalization caused changes in the surface charge states with functional groups with negative and positive charges and then the increased surface roughness enhanced neuronal cell adhesion, mitochondrial membrane potential, and the level of neurotransmitter in vitro. The cell adhesion and mitochondrial membrane potential on the negatively charged SWCNT papers were improved more than on the positively charged SWCNT papers. Also, measurements of the neurotransmitter level showed an enhanced acetylcholine level on the negatively charged SWCNT papers compared to the positively charged SWCNT papers.

  5. Quantum cascade laser investigations of CH4 and C2H2 interconversion in hydrocarbon/H2 gas mixtures during microwave plasma enhanced chemical vapor deposition of diamond

    NASA Astrophysics Data System (ADS)

    Ma, Jie; Cheesman, Andrew; Ashfold, Michael N. R.; Hay, Kenneth G.; Wright, Stephen; Langford, Nigel; Duxbury, Geoffrey; Mankelevich, Yuri A.

    2009-08-01

    CH4 and C2H2 molecules (and their interconversion) in hydrocarbon/rare gas/H2 gas mixtures in a microwave reactor used for plasma enhanced diamond chemical vapor deposition (CVD) have been investigated by line-of-sight infrared absorption spectroscopy in the wavenumber range of 1276.5-1273.1 cm-1 using a quantum cascade laser spectrometer. Parameters explored include process conditions [pressure, input power, source hydrocarbon, rare gas (Ar or Ne), input gas mixing ratio], height (z) above the substrate, and time (t) after addition of hydrocarbon to a pre-existing Ar/H2 plasma. The line integrated absorptions so obtained have been converted to species number densities by reference to the companion two-dimensional (r ,z) modeling of the CVD reactor described in Mankelevich et al. [J. Appl. Phys. 104, 113304 (2008)]. The gas temperature distribution within the reactor ensures that the measured absorptions are dominated by CH4 and C2H2 molecules in the cool periphery of the reactor. Nonetheless, the measurements prove to be of enormous value in testing, tensioning, and confirming the model predictions. Under standard process conditions, the study confirms that all hydrocarbon source gases investigated (methane, acetylene, ethane, propyne, propane, and butane) are converted into a mixture dominated by CH4 and C2H2. The interconversion between these two species is highly dependent on the local gas temperature and the H atom number density, and thus on position within the reactor. CH4→C2H2 conversion occurs most efficiently in an annular shell around the central plasma (characterized by 14002H2→CH4 is favored in the more distant regions where Tgas<1400 K. Analysis of the multistep interconversion mechanism reveals substantial net consumption of H atoms accompanying the CH4→C2H2 conversion, whereas the reverse C2H2→CH4 process only requires H atoms to drive the reactions; H atoms are not consumed by the overall

  6. Quantum cascade laser investigations of CH{sub 4} and C{sub 2}H{sub 2} interconversion in hydrocarbon/H{sub 2} gas mixtures during microwave plasma enhanced chemical vapor deposition of diamond

    SciTech Connect

    Ma Jie; Cheesman, Andrew; Ashfold, Michael N. R.; Hay, Kenneth G.; Wright, Stephen; Langford, Nigel; Duxbury, Geoffrey; Mankelevich, Yuri A.

    2009-08-01

    CH{sub 4} and C{sub 2}H{sub 2} molecules (and their interconversion) in hydrocarbon/rare gas/H{sub 2} gas mixtures in a microwave reactor used for plasma enhanced diamond chemical vapor deposition (CVD) have been investigated by line-of-sight infrared absorption spectroscopy in the wavenumber range of 1276.5-1273.1 cm{sup -1} using a quantum cascade laser spectrometer. Parameters explored include process conditions [pressure, input power, source hydrocarbon, rare gas (Ar or Ne), input gas mixing ratio], height (z) above the substrate, and time (t) after addition of hydrocarbon to a pre-existing Ar/H{sub 2} plasma. The line integrated absorptions so obtained have been converted to species number densities by reference to the companion two-dimensional (r,z) modeling of the CVD reactor described in Mankelevich et al. [J. Appl. Phys. 104, 113304 (2008)]. The gas temperature distribution within the reactor ensures that the measured absorptions are dominated by CH{sub 4} and C{sub 2}H{sub 2} molecules in the cool periphery of the reactor. Nonetheless, the measurements prove to be of enormous value in testing, tensioning, and confirming the model predictions. Under standard process conditions, the study confirms that all hydrocarbon source gases investigated (methane, acetylene, ethane, propyne, propane, and butane) are converted into a mixture dominated by CH{sub 4} and C{sub 2}H{sub 2}. The interconversion between these two species is highly dependent on the local gas temperature and the H atom number density, and thus on position within the reactor. CH{sub 4}->C{sub 2}H{sub 2} conversion occurs most efficiently in an annular shell around the central plasma (characterized by 14002}H{sub 2}->CH{sub 4} is favored in the more distant regions where T{sub gas}<1400 K. Analysis of the multistep interconversion mechanism reveals substantial net consumption of H atoms accompanying the CH{sub 4}->C{sub 2}H{sub 2

  7. Plasma-enhanced CVD of functional coatings in Ar/maleic anhydride/C2H2 homogeneous dielectric barrier discharges at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Zajíčková, Lenka; Jelínek, Petr; Obrusník, Adam; Vodák, Jiří; Nečas, David

    2017-03-01

    In this contribution, we focus on the general problems of plasma-enhanced chemical vapor deposition in atmospheric pressure dielectric barrier discharges, i.e. deposition uniformity, film roughness and the formation of dust particles, and demonstrate them on the example of carboxyl coatings prepared by co-polymerization of acetylene and maleic anhydride. Since the transport of monomers at atmospheric pressure is advection-driven, special attention is paid to the gas dynamics simulations, gas flow patterns, velocity and residence time. By using numerical simulations, we design an optimized gas supply geometry capable of synthesizing uniform layers. The selection of the gas mixture containing acetylene was motivated by two of its characteristics: (i) suppression of filaments in dielectric barrier discharges, and (ii) improved film cross-linking, keeping the amount of functional groups high. However, acetylene discharges are prone to the formation of nanoparticles that can be incorporated into the deposited films, leading to their high roughness. Therefore, we also discuss the role of the gas composition, the spatial position of the substrate with respect to gas flow and the deposition time on the topography of the deposited films.

  8. Study of the LTE departure in a low pressure supersonic plasma jet in Ar-H{sub 2} and in Ar-N{sub 2}-H{sub 2} mixture

    SciTech Connect

    Rajabian, M.; Vacquie, S.; Gravelle, D.V.

    1999-07-01

    Plasma torches at low pressure and controlled atmosphere are used in major applications for the production and processing of materials due to their potential for high performance, and low contamination. A good knowledge of the plasma parameters is necessary, particularly for the design of high-performance mathematical models that avoid the building of expensive prototypes for performance assessment. The present work is undertaken on a DC plasma torch operating over a wide pressure range (8 kPa to 100 kPa) at an arc power fixed at 17.5 kW. Emission spectroscopy diagnostics was carried out for determining temperature, electron and particle density profiles in two gas mixtures: Ar-N{sub 2}-H{sub 2} with flow rates of 40, 10, and 1 slpm respectively, and Ar-H{sub 2} with input flow rates of 35 and 7 slpm respectively. For the gas mixtures used, the supersonic shock occurs at a distance from the nozzle exit growing when the pressure decreases (8, 10, and 13 mm for pressures of 13, 20 and 26 kPa). For pressures of 100 kPa and 53 kPa, they observe a good agreement between the values of electron density Ne experimentally measured independently of local thermodynamic equilibrium (LTE) and the values obtained by calculation using the temperature obtained with Boltzmann diagram. Local thermodynamic equilibrium conditions prevail at these values of pressure. For the lower values of the pressure, the experimental value of N{sub 2}{sup {minus}} ion density are higher than the calculated values, using the rotational temperature T{sub h}, or the Boltzmann temperature T{sub e}. The discrepancy is lower with the use of T{sub e}. That shows the importance of the collisions between electrons and heavy particles, due to the high values of the electron density (4.10{sup 16} cm{sup {minus}3} in the supersonic shock wave for 13 kPa). For pressure lower than 26 kPa important deviation from LTE conditions are observed.

  9. Quantitation of methadone enantiomers in humans using stable isotope-labeled (2H3)-, (2H5)-, and (2H8)Methadone

    SciTech Connect

    Nakamura, K.; Hachey, D.L.; Kreek, M.J.; Irving, C.S.; Klein, P.D.

    1982-01-01

    A new technique for simultaneous stereoselective kinetic studies of methadone enantiomers was developed using three deuterium-labeled forms of methadone and GLC-chemical-ionization mass spectrometry. A racemic mixture (1:1) of (R)-(-)-(2H5)methadone (l-form) and (S)-(R)-(2H3)methadone (d-form) was administered orally in place of a single daily dose of unlabeled (+/-)-(2H0)methadone in long-term maintenance patients. Racemic (+/-)-(2H8)methadone was used as an internal standard for the simultaneous quantitation of (2H0)-, (2H3)-, and (2H5)methadone in plasma and urine. A newly developed extraction procedure, using a short, disposable C18 reversed-phase cartridge and improved chemical-ionization procedures employing ammonia gas, resulted in significant reduction of the background impurities contributing to the ions used for isotopic abundance measurements. These improvements enabled the measurement of labeled plasma methadone levels for 120 hr following a single dose. This methodology was applied to the study of methadone kinetics in two patients; in both patients, the analgesically active l-enantiomer of the drug had a longer plasma elimination half-life and a smaller area under the plasma disappearance curve than did the inactive d-form.

  10. Epitaxial growth of GaN by radical-enhanced metalorganic chemical vapor deposition (REMOCVD) in the downflow of a very high frequency (VHF) N2/H2 excited plasma - effect of TMG flow rate and VHF power

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Kondo, Hiroki; Ishikawa, Kenji; Oda, Osamu; Takeda, Keigo; Sekine, Makoto; Amano, Hiroshi; Hori, Masaru

    2014-04-01

    Gallium nitride (GaN) films have been grown by using our newly developed Radical-Enhanced Metalorganic Chemical Vapor Deposition (REMOCVD) system. This system has three features: (1) application of very high frequency (60 MHz) power in order to increase the plasma density, (2) introduction of H2 gas together with N2 gas in the plasma discharge region to generate not only nitrogen radicals but also active NHx molecules, and (3) radical supply under remote plasma arrangement with suppression of charged ions and photons by employing a Faraday cage. Using this new system, we have studied the effect of the trimethylgallium (TMG) source flow rate and of the plasma generation power on the GaN crystal quality by using scanning electron microscopy (SEM) and double crystal X-ray diffraction (XRD). We found that this REMOCVD allowed the growth of epitaxial GaN films of the wurtzite structure of (0001) orientation on sapphire substrates with a high growth rate of 0.42 μm/h at a low temperature of 800 °C. The present REMOCVD is a promising method for GaN growth at relatively low temperature and without using costly ammonia gas.

  11. Nitriding of titanium and its alloys by N2, NH3 or mixtures of N2 + H2 in a dc arc plasma at low pressures ( or = to torr)

    NASA Technical Reports Server (NTRS)

    Avni, R.

    1984-01-01

    The dc glow discharges in different gas mixtures of Ar + N2, Ar + NH3 or Ar + N2 + H2 result in the surface nitriding of Ti metal and its alloy (Ti6Al4V). Various gas mixtures were used in order to establish the main active species governing the nitriding process, i.e., N, N2, NH, or NH2 as excited or ionized particles. The dc discharge was sampled and analyzed by quadruple mass spectrometry (QPMS) and optical emission spectroscopy (OES), and the nitrided samples were analyzed by scanning electron microscopy (SEM) with an EDAX attachment, microhardness, and Fourier transform infrared reflectance spectrometry (FTIR). It was found that the excited and ionized nitrogen and hydrogen atoms are the main species responsible for the nitriding process in a dc glow discharge.

  12. Mecanismos cinéticos y distribuciones energéticas de iones (H3+, N2H+, CH3+...) en plasmas fríos de H2/N2/CH4

    NASA Astrophysics Data System (ADS)

    Tanarro, I.; Herrero, V. J.; Islyaikin, A.; Tabarés, F. L.; Tafalla, D.

    En este trabajo se presenta el estudio espectrométrico de los plasmas levemente ionizados generados en una descarga continua a baja presión de H2 con trazas de N2 y CH4, orientado principalmente a identificar la naturaleza y distribución energética de los iones que en ella se producen, y a asignar algunos de los mecanismos cinéticos elementales de formación y destrucción de tales especies. Alguno de los iones mayoritarios de estos plasmas, como el H3+, presenta gran interés desde el punto de vista de la Astrofísica por su prevista intervención en la química de las ionosferas planetarias y del medio interestelar, al actuar como sustancia intermedia en la formación de gran variedad de especies moleculares; si bien, dada su pequeña concentración, su observación real en el espacio se demoró hasta la pasada década de los años 90, cuando fue detectado por primera vez en la atmósfera de Júpiter y en otros objetos estelares. Del mismo modo que los trabajos espectroscópicos de laboratorio resultan indispensables para la posterior identificación de las especies observadas en el espacio, es de esperar que la asignación de los procesos cinéticos más importantes que tienen lugar en los plasmas generados en reactores de descarga, como los aquí presentados, permitan extrapolar los resultados así obtenidos al esclarecimiento de los mecanismos fisico-químicos participantes en otros medios observables únicamente a larga distancia.

  13. Synergistic influence of inorganic oxides (ZrO2 and SiO2) with N2H4 to protect composite coatings obtained via plasma electrolyte oxidation on Mg alloy.

    PubMed

    Zoubi, Wail Al; Kamil, Muhammad Prisla; Ko, Young Gun

    2017-01-18

    Different electrochemical approaches were proposed in this study to introduce nanoparticles to the coating layers, aiming at their in situ incorporation into the coating layers fabricated via plasma electrolytic oxidation (PEO). The addition of nanoparticles to the coating layers provided an electrochemical pathway to generate the functionalized coatings with a wide range of compositions and constituent phases as well giving the appearance of sealing the pores. In this study, the microstructure, chemical composition, and electrochemical response of the composite coating formed via one-stage PEO were compared with those obtained by means of structural modification of PEO coatings together with either impregnation or pre-deposition. For the combination of PEO and pre-deposition, the coating layer demonstrated less porous and better corrosion performance in the conditions used in this study, which were attributed to the denser and/or thicker layer resulting after incorporating the nanoparticles, such as SiO2 and ZrO2. In these methods, the nanoparticles were detected mainly not only near the coating surface, but also within the micro-defects inside the coating layers. Accordingly, the electrochemical analysis based on potentiodynamic polarization tests in 3.5 wt% NaCl solution clearly showed that the corrosion resistance of Mg alloy would be enhanced significantly due to the incorporation of SiO2 and ZrO2 or ZrO2 nanoparticles.

  14. Synergistic sterilization effect of microwave-excited nonthermal Ar plasma, H2O2, H2O and TiO2, and a global modeling of the interactions

    NASA Astrophysics Data System (ADS)

    Lee, H. Wk; Lee, H. W.; Kang, S. K.; Y Kim, H.; Won, I. H.; Jeon, S. M.; Lee, J. K.

    2013-10-01

    A microwave-excited atmospheric-pressure plasma jet (uAPPJ) exhibited a synergistic sterilization effect when combined with hydrogen peroxide (H2O2), distilled water (DW) and titanium dioxide (TiO2) photocatalysis. The sterilization efficacy of H2O2-uAPPJ increased as the H2O2 concentration increased. The addition of TiO2 also remarkably increased the sterilization efficacy. To find the main factor for the sterilization effect, optical emission spectra and the degradation rate of a methylene blue solution were measured. Numerical analysis, a newly developed global modeling, was also conducted to discover the mechanisms. Both experimental measurements and global modeling results suggested that combinations of H2O2, DW and TiO2 increased the generation of hydroxyl radicals (·OH), which are known to be strong bactericidal agents. It was revealed that charged species, especially electrons, have a dominant role in the increase of ·OH.

  15. Inactivation of the plasma membrane ATPase of Schizosaccharomyces pombe by hydrogen peroxide and by the Fenton reagent (Fe2+/H2O2): nonradical vs. radical-induced oxidation.

    PubMed

    Sigler, K; Gille, G; Vacata, V; Stadler, N; Höfer, M

    1998-01-01

    In the absence of added Fe2+, the ATPase activity of isolated Schizosaccharomyces pombe plasma membranes (5-7 mumol P(i) per mg protein per min) is moderately inhibited by H2O2 in a concentration-dependent manner. Sizable inactivation occurs only at 50-80 mmol/L H2O2. The process, probably a direct oxidative action of H2O2 on the enzyme, is not induced by the indigenous membrane-bound iron (19.3 nmol/mg membrane protein), is not affected by the radical scavengers mannitol and Tris, and involves a decrease of both the K(m) of the enzyme for ATP and the V of ATP splitting. On exposing the membranes to the Fenton reagent (50 mumol/L Fe2+ + 20 mmol/L H2O2), which causes a fast production of HO. radicals, the ATPase is 50-60% inactivated and 90% of added Fe2+ is oxidized to Fe3+ within 1 min. The inactivation occurs only when Fe2+ is added before H2O2 and can thus bind to the membranes. The lack of effect of radical scavengers (mannitol, Tris) indicates that HO. radicals produced in the bulk phase play no role in inactivation. Blockage of the inactivation by the iron chelator deferrioxamine implies that the process requires the presence of Fe2+ ions bound to binding sites on the enzyme molecules. Added catalase, which competes with Fe2+ for H2O2, slows down the inactivation but in some cases increases its total extent, probably due to the formation of the superoxide radical that gives rise to delayed HO. production.

  16. THz spectroscopy of D2H+

    NASA Astrophysics Data System (ADS)

    Yu, S.; Pearson, J. C.; Amano, T.; Matsushima, F.

    2017-01-01

    We extended the measurements of the rotational transitions of D2H+ up to 3 THz by using the JPL frequency multiplier chains and a TuFIR system at Toyama. D2H+ was generated in an extended negative glow discharge cell cooled to liquid nitrogen temperature. We observed five new THz lines. All the available rotational transition frequencies together with the combination differences derived from the three fundamental bands were subject to least square analysis to determine the molecular constants. New THz measurements are definitely useful for better characterization of spectroscopic properties. The improved molecular constants provide better predictions of other unobserved rotational transitions.

  17. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  18. GC-MS and GC-MS/MS measurement of ibuprofen in 10-μL aliquots of human plasma and mice serum using [α-methylo-(2)H3]ibuprofen after ethyl acetate extraction and pentafluorobenzyl bromide derivatization: Discovery of a collision energy-dependent H/D isotope effect and pharmacokinetic application to inhaled ibuprofen-arginine in mice.

    PubMed

    Tsikas, Dimitrios; Kayacelebi, Arslan Arinc; Hanff, Erik; Mitschke, Anja; Beckmann, Bibiana; Tillmann, Hanns-Christian; Gutzki, Frank-Mathias; Müller, Meike; Bernasconi, Corrado

    2017-02-01

    GC-MS and GC-MS/MS methods were developed and validated for the quantitative determination of ibuprofen (d0-ibuprofen), a non-steroidal anti-inflammatory drug (NSAID), in human plasma using α-methyl-(2)H3-4-(isobutyl)phenylacetic acid (d3-ibuprofen) as internal standard. Plasma (10μL) was diluted with acetate buffer (80μL, 1M, pH 4.9) and d0- and d3-ibuprofen were extracted with ethyl acetate (2×500μL). After solvent evaporation d0- and d3-ibuprofen were derivatized in anhydrous acetonitrile by using pentafluorobenzyl (PFB) bromide and N,N-diisopropylethylamine as the base catalyst. Under electron-capture negative-ion chemical ionization (ECNICI), the PFB esters of d0- and d3-ibuprofen readily ionize to form their carboxylate anions [M-PFB](-) at m/z 205 and m/z 208, respectively. Collision-induced dissociation (CID) of m/z 205 and m/z 208 resulted in the formation of the anions at m/z 161 and m/z 164, respectively, due to neutral loss of CO2 (44 Da). A collision energy-dependent H/D isotope effect was observed, which involves abstraction/elimination of H(-) from d0-ibuprofen and D(-) from d3-ibuprofen and is minimum at a CE value of 5eV. Quantitative GC-MS determination was performed by selected-ion monitoring of m/z 205 and m/z 208. Quantitative GC-MS/MS determination was performed by selected-reaction monitoring of the mass transitions m/z 205 to m/z 161 for d0-ibuprofen and m/z 208 to m/z 164 for d3-ibuprofen. In a therapeutically relevant concentration range (0-1000μM) d0-ibuprofen added to human plasma was determined with accuracy (recovery, %) and imprecision (relative standard deviation, %) ranging between 93.7 and 110%, and between 0.8 and 4.9%, respectively. GC-MS (y) and GC-MS/MS (x) yielded almost identical results (y=4.00+0.988x, r(2)=0.9991). In incubation mixtures of arachidonic acid (10μM), d3-ibuprofen (10μM) or d0-ibuprofen (10μM) with ovine cyclooxygenase (COX) isoforms 1 and 2, the concentration of d3-ibuprofen and d0-ibuprofen did not

  19. Association reactions at low pressure. III. The C2H2+/C2H2 system.

    PubMed

    Anicich, V G; Sen, A D; Huntress, W T; McEwan, M J

    1990-11-15

    The association reactions, C4H2(+) + C2H2 and C4H3(+) + C2H2 have been examined at pressures between 8 x 10(-8) and 1 x 10(-4) Torr at 298 K in an ion cyclotron resonance mass spectrometer. Association occurred via two different mechanisms. At pressures below approximately 2 x 10(-6) Torr, the association was bimolecular having rate coefficients k2 = 2.7 x 10(-10) cm3 s-1 and 2.0 x 10(-10) cm3 s-1 for C4H2+ and C4H3+, respectively. At pressures above approximately 2 x 10(-6) Torr, termolecular association was observed with rate coefficients, k3 = 5.7 x 10(-23) cm6 s-1 and 1.3 x 10(-23) cm6 s-1 for C4H2+ and C4H3+, respectively, when M = C2H2. The termolecular rate constants with N2, Ar, Ne, and He as the third body, M, are also reported. We propose that the low pressure bimolecular association process was the result of radiative stabilization of the complex and the termolecular association process was the result of collisional stabilization. Elementary rate coefficients were obtained and the lifetime of the collision complex was > or = 57 microseconds for (C6H4+)* and > or = 18 microseconds for (C6H5+)*. At pressures below 1 x 10(-6) Torr, approximately 11% of the (C6H4+)* were stabilized by photon emission and the remaining approximately 89% reverted back to reactants, while approximately 24% of the (C6H5+)* were stabilized by photon emission and the remaining approximately 76% reverted back to reactants. The ionic products of the C2H2(+) + C2H2 reaction, C4H2+ and C4H3+, were found to be formed with enough internal energy that they did not react by the radiative association channel until relaxed by several nonreactive collisions with the bath gas.

  20. Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei.

    PubMed Central

    Vercesi, A E; Moreno, S N; Docampo, R

    1994-01-01

    The use of digitonin to permeabilize the plasma membrane of Trypanosoma brucei procyclic and bloodstream trypomastigotes allowed the identification of a non-mitochondrial nigericin-sensitive Ca2+ compartment. The proton ionophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) was able to cause Ca2+ release from this compartment, which was also sensitive to sodium orthovanadate. Preincubation of the cells with the vacuolar H(+)-ATPase inhibitor bafilomycin A1 greatly reduced the nigericin-sensitive Ca2+ compartment. Bafilomycin A1 inhibited the initial rate of ATP-dependent non-mitochondrial Ca2+ uptake and stimulated the initial rate of nigericin-induced Ca2+ release by permeabilized procyclic trypomastigotes. ATP-dependent and bafilomycin A1- and 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl)-sensitive Acridine Orange uptake was demonstrated in permeabilized cells. Under these conditions Acridine Orange was concentrated in abundant cytoplasmic round vacuoles by a process inhibited by bafilomycin A1, NBD-Cl, nigericin, and Ca2+. Vanadate or EGTA significantly increased Acridine Orange uptake, while Ca2+ released Acridine Orange from these preparations, thus suggesting that the dye and Ca2+ were being accumulated in the same acidic vacuole. Acridine Orange uptake was reversed by nigericin, bafilomycin A1 and NH4Cl. The results are consistent with the presence of a Ca2+/H(+)-ATPase system pumping Ca2+ into an acidic vacuole, that we tentatively named the acidocalcisome. Images Figure 5 PMID:7998937

  1. Reactions of Fe+ and FeO+ with C2H2, C2H4, and C2H6: temperature-dependent kinetics.

    PubMed

    Ard, Shaun G; Melko, Joshua J; Fournier, Joseph A; Shuman, Nicholas S; Viggiano, Albert A

    2013-10-10

    We present the first temperature-dependent rate constants and branching ratios for the reactions of Fe(+) and FeO(+) with C2H2, C2H4, and C2H6 from 170 to 700 K. Fe(+) is observed to react only by association with the three hydrocarbons, with temperature dependencies of T(-2) to T(-3). FeO(+) reacts with C2H2 and C2H4 at the collision rate over the temperature range, and their respective product branchings show similar temperature dependences. In contrast, the reaction with ethane is collisional at 170 K but varies as T(-0.5), while the product branching remains essentially flat with temperature. These variations in reactivity are discussed in terms of the published reactive potential surfaces. The effectiveness of Fe(+) as an oxygen-transfer catalyst toward the three hydrocarbons is also discussed.

  2. Rate constant for the reaction C2H5 + HBr → C2H6 + Br.

    PubMed

    Golden, David M; Peng, Jingping; Goumri, A; Yuan, J; Marshall, Paul

    2012-06-21

    RRKM theory has been employed to analyze the kinetics of the title reaction, in particular, the once-controversial negative activation energy. Stationary points along the reaction coordinate were characterized with coupled cluster theory combined with basis set extrapolation to the complete basis set limit. A shallow minimum, bound by 9.7 kJ mol(-1) relative to C(2)H(5) + HBr, was located, with a very small energy barrier to dissociation to Br + C(2)H(6). The transition state is tight compared to the adduct. The influence of vibrational anharmonicity on the kinetics and thermochemistry of the title reaction were explored quantitatively. With adjustment of the adduct binding energy by ∼4 kJ mol(-1), the computed rate constants may be brought into agreement with most experimental data in the literature, including new room-temperature results described here. There are indications that at temperatures above those studied experimentally, the activation energy may switch from negative to positive.

  3. Rate Coefficients of C2H with C2H4, C2H6, and H2 from 150 to 359 K

    NASA Technical Reports Server (NTRS)

    Opansky, Brian J.; Leone, Stephen R.

    1996-01-01

    Rate coefficients for the reactions C2H with C2H4, C2H6, and H2 are measured over the temperature range 150-359 K using transient infrared laser absorption spectroscopy. The ethynyl radical is formed by photolysis of C2H2 with a pulsed excimer laser at 193 nm, and its transient absorption is monitored with a color center laser on the Q(sub 11)(9) line of the A(sup 2) Pi-Chi(sup 2) Sigma transition at 3593.68 cm(exp -1). Over the experimental temperature range 150-359 K the rate constants of C2H with C2H4, C2H6, and H2 can be fitted to the Arrhenius expressions k(sub C2H4) = (7.8 +/- 0.6) x 10(exp -11) exp[(134 +/- 44)/T], k(sub C2H6) = (3.5 +/- 0.3) x 10(exp -11) exp[(2.9 +/- 16)/T], and k(sub H2) = (1.2 +/- 0.3) x 10(exp -11) exp[(-998 +/- 57)]/T cm(exp 3) molecule(exp -1) sec(exp -1). The data for C2H with C2H4 and C2H6 indicate a negligible activation energy to product formation shown by the mild negative temperature dependence of both reactions. When the H2 data are plotted together with the most recent high-temperature results from 295 to 854 K, a slight curvature is observed. The H2 data can be fit to the non-Arrhenius form k(sub H2) = 9.2 x 10(exp -18) T(sup 2.17 +/- 0.50) exp[(-478 +/- 165)/T] cm(exp 3) molecules(exp -1) sec(exp -1). The curvature in the Arrhenius plot is discussed in terms of both quantum mechanical tunneling of the H atom from H2 to the C2H radical and bending mode contributions to the partition function.

  4. Synthesis of 2-Alkenyl-2H-indazoles from 2-(2-Carbonylmethyl)-2H-indazoles.

    PubMed

    Lin, Mei-Huey; Liang, Kung-Yu; Tsai, Chang-Hsien; Chen, Yu-Chun; Hsiao, Hung-Chang; Li, Yi-Syuan; Chen, Chung-Hao; Wu, Hau-Chun

    2016-02-19

    A procedure has been developed for synthesis of 2-alkenyl-2H-indazoles starting from 2-(2-carbonylmethyl)-2H-indazoles, which are prepared by gallium/aluminium- and aluminium-mediated, direct, regioselective alkylation of indazoles with α-bromocarbonyl compounds. The structure of 3-(2H-indazol-2-yl)-2H-chromen-2-one was proven by X-ray crystallography. The styrene- and coumarin-2H-indazoles produced by using the new method were found to have interesting fluorescence properties.

  5. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  6. Synthesis and properties of 3-nitro-2H-chromenes

    NASA Astrophysics Data System (ADS)

    Korotaev, V. Yu; Sosnovskikh, V. Ya; Barkov, A. Yu

    2013-12-01

    Methods of synthesis and chemical properties of 3-nitro-2H-chromenes, including reactions with nucleophiles, cycloaddition, oxidation and reduction, have been reviewed. Enantioselective reactions involving 3-nitro-2H-chromenes, as well as the stereochemistry of the products, are discussed. The ways of practical use of these compounds are shown. The bibliography includes 115 references.

  7. Variations of δ2H in an idealised extratropical cyclone

    NASA Astrophysics Data System (ADS)

    Dütsch, Marina; Pfahl, Stephan; Wernli, Heini

    2016-04-01

    Numerical model simulations of stable water isotopes help to improve our understanding of the complex processes driving isotopic variability in atmospheric waters. We use the isotope-enabled COSMO model to study the governing mechanisms of δ2H variations in an idealised extratropical cyclone. A set of experiments with differing initial conditions of δ2H in vapour and partially deactivated isotopic fractionation allows us to quantify the relative roles of cloud fractionation and vertical and horizontal advection for the simulated δ2H signals associated with the cyclone and fronts. Horizontal transport determines the large-scale pattern of δ2H in both vapour and precipitation, while fractionation and vertical transport are more important on a smaller scale, near the fronts. During the passage of the cold front fractionation leads to a V-shaped trend of δ2H in precipitation and vapour, which is, for vapour, superimposed on a gradual decrease caused by horizontal advection.

  8. Temperature and pressure dependent rate coefficients for the reaction of C2H4 + HO2 on the C2H4O2H potential energy surface.

    PubMed

    Guo, JunJiang; Xu, JiaQi; Li, ZeRong; Tan, NingXin; Li, XiangYuan

    2015-04-02

    The potential energy surface (PES) for reaction C2H4 + HO2 was examined by using the quantum chemical methods. All rates were determined computationally using the CBS-QB3 composite method combined with conventional transition state theory(TST), variational transition-state theory (VTST) and Rice-Ramsberger-Kassel-Marcus/master-equation (RRKM/ME) theory. The geometries optimization and the vibrational frequency analysis of reactants, transition states, and products were performed at the B3LYP/CBSB7 level. The composite CBS-QB3 method was applied for energy calculations. The major product channel of reaction C2H4 + HO2 is the formation C2H4O2H via an OH(···)π complex with 3.7 kcal/mol binding energy which exhibits negative-temperature dependence. We further investigated the reactions related to this complex, which were ignored in previous studies. Thermochemical properties of the species involved in the reactions were determined using the CBS-QB3 method, and enthalpies of formation of species were compared with literature values. The calculated rate constants are in good agreement with those available from literature and given in modified Arrhenius equation form, which are serviceable in combustion modeling of hydrocarbons. Finally, in order to illustrate the effect for low-temperature ignition of our new rate constants, we have implemented them into the existing mechanisms, which can predict ethylene ignition in a shock tube with better performance.

  9. Theoretical study of the bonding of Nb(2+) to CH2, C2H2, and C2H4

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry

    1991-01-01

    The bonding of Nb(2+) with CH2, C2H2, and C2H4 is studied by using electronic structure calculations that include high levels of electron correlation. The binding energy for NbCH2(2+) is in good agreement with the lower bound determined from the reaction with CH4 but is significantly smaller than the value determined from the binding energy and ionization potential of NbCH2(+). The calculations and a new interpretation of the experiment indicate that the larger value is in error primarily because the ionization potential of NbCH2(+) determined from bracketing charge-exchange reactions is too small. The computed binding energy of NbC2H2(2+) is in good agreement with experiment. The calculations show that the bonding is predominantly covalent in character for both NbCH2(2+) and NbC2H2(2+), whereas for NbC2H4(2+) the electronic states that are predominantly ionic and covalent are nearly degenerate. The trend in binding energies, CH2 greater than C2H2 greater than C2H4, is consistent with the energy required to prepare the ligands for bonding.

  10. Efficient C2 functionalisation of 2H-2-imidazolines.

    PubMed

    Bon, Robin S; Sprenkels, Nanda E; Koningstein, Manoe M; Schmitz, Rob F; de Kanter, Frans J J; Dömling, Alexander; Groen, Marinus B; Orru, Romano V A

    2008-01-07

    Alkylation and oxidation of 2H-2-imidazolines, followed by regioselective deprotection, thionation and microwave-assisted Liebeskind-Srogl reaction, efficiently led to 2-aryl-2-imidazolines as new analogues of p53-hdm2 interaction inhibitors (Nutlins).

  11. C2H observations toward the Orion Bar

    NASA Astrophysics Data System (ADS)

    Nagy, Z.; Ossenkopf, V.; Van der Tak, F. F. S.; Faure, A.; Makai, Z.; Bergin, E. A.

    2015-06-01

    Context. The ethynyl radical (C2H) is one of the first radicals to be detected in the interstellar medium. Its higher rotational transitions have recently become available with the Herschel Space Observatory. Aims: We aim to constrain the physical parameters of the C2H emitting gas toward the Orion Bar. Methods: We analyze the C2H line intensities measured toward the Orion Bar CO+ Peak and Herschel/HIFI maps of C2H, CH, and HCO+ and a NANTEN map of [Ci]. We interpret the observed C2H emission using the combination of Herschel/HIFI and NANTEN data with radiative transfer and PDR models. Results: Five rotational transitions of C2H (from N = 6-5 up to N = 10-9) have been detected in the HIFI frequency range toward the CO+ peak of the Orion Bar. Based on the five detected C2H transitions, a single component rotational diagram analysis gives a rotation temperature of ~64 K and a beam-averaged C2H column density of 4 × 1013 cm-2. The rotational diagram is also consistent with a two-component fit, resulting in rotation temperatures of 43 ± 0.2 K and 123 ± 21 K and in beam-averaged column densities of ~8.3 × 1013 cm-2 and ~2.3 × 1013 cm-2 for the three lower-N and for the three higher-N transitions, respectively. The measured five rotational transitions cannot be explained by any single parameter model. According to a non-LTE model, most of the C2H column density produces the lower-N C2H transitions and traces a warm (Tkin ~ 100-150 K) and dense (n(H2) ~ 105-106 cm-3) gas. A small fraction of the C2H column density is required to reproduce the intensity of the highest-N transitions (N = 9-8 and N = 10-9) originating in a high-density (n(H2) ~5 × 106 cm-3) hot (Tkin ~ 400 K) gas. The total beam-averaged C2H column density in the model is 1014 cm-2. A comparison of the spatial distribution of C2H to those of CH, HCO+, and [Ci] shows the best correlation with CH. Conclusions: Both the non-LTE radiative transfer model and a simple PDR model representing the Orion Bar

  12. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Romani, P. N.; Abbas, M.; LeClair, A.; Strobel, D.

    2004-01-01

    Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10-1400 cm(sup -1) (1000-7 microns). In this paper we analyze a zonally-averaged set of CIRS spectra taken at the highest (0.5 cm(sup -1)) resolution, to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm(sup -1). Simultaneously, we retrieve the abundances of C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIRS resolution, introducing a non-uniqueness into the retrievals, such that vertical gradient and column abundance cannot both be found without additional constraints. Assuming profile gradients from photochemical calculations, we show that the column abundance of C2H2 decreases sharply towards the poles by a factor approximately 4, while C2H6 is unchanged in the north and increasing in the south, by a factor approximately 1.8. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors 2.7 and 3.5 respectively at a latitude 70 deg. However, the lifetime of C2H6 in the stratosphere (5 x 10(exp 9)) is much longer than the dynamical timescale for meridional motions inferred from SL-9 debris (5 x 10(exp 8 s)), and therefore the constant or rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite

  13. Infrared spectroscopy of V2+(H2O) complexes

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, B.; Duncan, M. A.

    2012-03-01

    Doubly charged vanadium-water complexes are produced by laser vaporization in a pulsed supersonic expansion. Size-selected ions are studied with infrared photodissociation spectroscopy in the O-H stretch region using argon complex predissociation. Density functional theory calculations provide structures and vibrational spectra of these ions. The O-H stretches of V2+(H2O) appear at lower frequencies than those of the free water molecule or V+(H2O). The symmetric stretch is more intense than the asymmetric stretch in both V+(H2O) and V2+(H2O) complexes. Spectra of V2+(H2O)Arn (n = 2-7) show that the coordination of the V2+ is filled with six ligands, i.e. one water and five argon atoms.

  14. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Abbas, M.; LeClaire, A.; Romani, P. N.; Simon-Miller, A. A.

    2004-01-01

    The abundances of hydrocarbons such as acetylene (C2H2) and ethane (C2H6) in Jupiter's atmosphere are important physical quantities, constraining our models of the chemical and dynamical processes. However, our knowledge of these quantities and their vertical and latitudinal variations has remained sparse. The flyby of the Cassini spacecraft with Jupiter at the end of 2000 provided an excellent opportunity to observe the infrared spectrum with the Composite Infrared Spectrometer (CIRS) instrument, mapping the spatial variation of emissions from 10-1400 cm-1. CIRS spectra taken at the highest resolution (0.5 cm-1) in early December 2000 have been analysed to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 of CH4, and in the troposphere at 100-400 mbar, via the hydrogen collision-induced continuum absorption at 600-800 cm. Simultaneously, we have searched for meridional abundance variations in C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIM resolution, introducing a non-uniqueness into the retrievals, which means that vertical gradient and column abundance cannot be simultaneously found without additional constraints. If we assume the profile shapes from photochemical model calculations, we show that the column abundance of C2H2 must decrease sharply towards the poles, while C2H6 is constant or slightly increasing. The relevance of these results to current photochemical and dynamical knowledge of Jupiter's atmosphere is discussed.

  15. The distribution and abundance of interstellar C2H

    NASA Technical Reports Server (NTRS)

    Huggins, P. J.; Carlson, W. J.; Kinney, A. L.

    1984-01-01

    C2H(N = 1-0) emission has been extensively observed in a variety of molecular clouds, including: 12 hot, dense, cloud cores, 3 bright-rimmed clouds (in NGC 1977, IC 1396, and IC 1848), and across the extended OMC - 1 cloud. It has also been observed in the circumstellar envelopes IRC + 10216 and AFGL 2688. Abundance analyses of the molecular clouds yield C2H/(C-13)O abundance ratios of about 0.01, with little variation (less than about a factor of 4) either between clouds or across individual clouds. In the Orion plateau source, the C2H abundance is enhanced by less than a factor of 4, relative to the extended cloud. The generally high levels of C2H found in the molecular clouds are not readily accounted for by simple, steady-state chemical models, and suggest, as do earlier observations of atomic carbon, that the carbon chemistry in dense clouds is more active than is commonly assumed.

  16. Evaluation of an electrochemical N2/H2 gas separator

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Wynveen, R. A.; Carlson, J. N.

    1973-01-01

    A program was successfully completed to evaluate an electrochemical nitrogen/hydrogen (N2/H2) separator for use in a spacecraft nitrogen (N2) generator. Based on the technical data obtained a N2/H2 separator subsystem consisting of an organic polymer gas permeator first stage and an electrochemical second and third stage was estimated to have the lowest total spared equivalent weight, 257 kg (566 lb), for a 15 lb/day N2 generation rate. A pre-design analysis of the electrochemical N2/H2 separator revealed that its use as a first stage resulted in too high a power requirement to be competitive with the organic polymer membrane and the palladium-silver membrane separation methods. As a result, program emphasis was placed on evaluating the electrochemical. A parametric test program characterized cell performance and established second- and third-stage electrochemical N2/H2 separator operating conditions. A design verification test was completed on the second and third stages. The second stage was then successfully endurance tested for 200 hours.

  17. Search for the isomers of C2H3NO and C2H3NS in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel; Chakrabarti, Sandip Kumar; Das, Ankan; Gorai, Prasanta; Arunan, Elangannan

    2016-07-01

    With about 40% of all the known interstellar and circumstellar molecules having their isomeric analogues as known astromolecules, isomerism remains one of the leading themes in interstellar chemistry. In this regard, the recent detection of methyl isocyanate (with a number of isomeric analogues) in the Sgr B2(N) giant molecular cloud opens a new window for the possible astronomical detection of other C_2H_3NO isomers. The present work looks at the possibility of detecting other isomers of methyl isocyanate by considering different factors such as thermodynamic stability of the different isomers with respect to the Energy, Stability and Abundance (ESA) relationship, effect of interstellar hydrogen bonding with respect to the formation these isomers on the surface of the interstellar dust grains, possible formation routes for these isomers, spectroscopic parameters for potential astromolecules among these isomers, chemical modeling among other studies. The same studies are repeated for the C_2H_3NS isomers which are the isoelectroninc analogues of the C_2H_3NO isomers taking into account the unique chemistry of S and O-containing interstellar molecular species. Among the C_2H_3NS isomers, methyl isothiocyanate remains the most potential candidate for astronomical observation.

  18. Observations of CH4, C2H6, and C2H2 in the stratosphere of Jupiter.

    PubMed

    Sada, P V; Bjoraker, G L; Jennings, D E; McCabe, G H; Romani, P N

    1998-12-01

    We have performed high-resolution spectral observations at mid-infrared wavelengths of CH4 (8.14 micrometers), C2H6 (12.16 micrometers), and C2H2 (13.45 micrometers) on Jupiter. These emission features probe the stratosphere of the planet and provide information on the carbon-based photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer CELESTE, in conjunction with the McMath-Pierce 1.5-m solar telescope between November 1994 and February 1995. We used the methane observations to derive the temperature profile of the jovian atmosphere in the 1-10 mbar region of the stratosphere. This profile was then used in conjunction with height-dependent mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. The resulting mixing ratios are 3.9(+1.9)(-1.3) x 10(-6) for C2H6 (5 mbar pressure level), and 2.3 +/- 0.5 x 10(-8) for C2H2 (8 mbar pressure level), where the quoted uncertainties are derived from model variations in the temperature profile which match the methane observation uncertainties.

  19. CN and C2H in IRC +10216

    NASA Technical Reports Server (NTRS)

    Huggins, P. J.; Glassgold, A. E.; Morris, M.

    1984-01-01

    The effects of the production of the radicals CN and C2H from the dissociation of HCN and C2H2 by ambient UV photons in the outer envelope of IRC +10216 are investigated. The spatial distribution of the radicals and their observable millimeter emission-line characteristics are calculated from the inferred abundances of the progenitor species in the envelope of IRC +10216 using photochemical and radiative transfer models. These are compared with available observations to examine whether photoproduction is a possible explanation of the observed emission from these species. The results suggest that the variable abundances induced by photodestruction of their progenitors do affect the observed emission from the radicals.

  20. Mechanisms of CO2/H+ Sensitivity of Astrocytes

    PubMed Central

    Turovsky, Egor; Theparambil, Shefeeq M.; Kasymov, Vitaliy; Deitmer, Joachim W.; del Arroyo, Ana Gutierrez; Ackland, Gareth L.; Corneveaux, Jason J.; Allen, April N.; Huentelman, Matthew J.; Kasparov, Sergey; Marina, Nephtali

    2016-01-01

    Ventral regions of the medulla oblongata of the brainstem are populated by astrocytes sensitive to physiological changes in PCO2/[H+]. These astrocytes respond to decreases in pH with elevations in intracellular Ca2+ and facilitated exocytosis of ATP-containing vesicles. Released ATP propagates Ca2+ excitation among neighboring astrocytes and activates neurons of the brainstem respiratory network triggering adaptive increases in breathing. The mechanisms linking increases in extracellular and/or intracellular PCO2/[H+] with Ca2+ responses in chemosensitive astrocytes remain unknown. Fluorescent imaging of changes in [Na+]i and/or [Ca2+]i in individual astrocytes was performed in organotypic brainstem slice cultures and acute brainstem slices of adult rats. It was found that astroglial [Ca2+]i responses triggered by decreases in pH are preceded by Na+ entry, markedly reduced by inhibition of Na+/HCO3− cotransport (NBC) or Na+/Ca2+ exchange (NCX), and abolished in Na+-free medium or by combined NBC/NCX blockade. Acidification-induced [Ca2+]i responses were also dramatically reduced in brainstem astrocytes of mice deficient in the electrogenic Na+/HCO3− cotransporter NBCe1. Sensitivity of astrocytes to changes in pH was not affected by inhibition of Na+/H+ exchange or blockade of phospholipase C. These results suggest that in pH-sensitive astrocytes, acidification activates NBCe1, which brings Na+ inside the cell. Raising [Na+]i activates NCX to operate in a reverse mode, leading to Ca2+ entry followed by activation of downstream signaling pathways. Coupled NBC and NCX activities are, therefore, suggested to be responsible for functional CO2/H+ sensitivity of astrocytes that contribute to homeostatic regulation of brain parenchymal pH and control of breathing. SIGNIFICANCE STATEMENT Brainstem astrocytes detect physiological changes in pH, activate neurons of the neighboring respiratory network, and contribute to the development of adaptive respiratory responses to

  1. Measurement of regional cerebral blood flow in cat brain using intracarotid 2H2O and 2H NMR imaging

    SciTech Connect

    Detre, J.A.; Subramanian, V.H.; Mitchell, M.D.; Smith, D.S.; Kobayashi, A.; Zaman, A.; Leigh, J.S. Jr. )

    1990-05-01

    Cerebral blood flow (CBF) was measured in cat brain in vivo at 2.7 T using 2H NMR to monitor the washout of deuterated saline injected into both carotid arteries via the lingual arteries. In anesthetized cats, global CBF varied directly with PaCO{sub 2} over a range of 20-50 mm Hg, and the corresponding global CBF values ranged from 25 to 125 ml.100 g-1.min-1. Regional CBF was measured in a 1-cm axial section of cat brain using intracarotid deuterated saline and gradient-echo 2H NMR imaging. Blood flow images with a maximum pixel resolution of 0.3 x 0.3 x 1.0 cm were generated from the deuterium signal washout at each pixel. Image derived values for CBF agreed well with other determinations, and decreased significantly with hypocapnia.

  2. Hydrogenation and Deuteration of C2H2 and C2H4 on Cold Grains: A Clue to the Formation Mechanism of C2H6 with Astronomical Interest

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hitomi; Hidaka, Hiroshi; Lamberts, Thanja; Hama, Tetsuya; Kawakita, Hideyo; Kästner, Johannes; Watanabe, Naoki

    2017-03-01

    We quantitatively investigated the hydrogen addition reactions of acetylene (C2H2) and ethylene (C2H4) on amorphous solid water (ASW) at 10 and 20 K relevant to the formation of ethane (C2H6) on interstellar icy grains. We found that the ASW surface enhances the reaction rates for C2H2 and C2H4 by approximately a factor of 2 compared to those on the pure-solid C2H2 and C2H4 at 10 K, probably due to an increase in the sticking coefficient and adsorption energy of the H atoms on ASW. In contrast to the previous proposal that the hydrogenation rate of C2H4 is orders of magnitude larger than that of C2H2, the present results show that the difference in hydrogenation rates of C2H2 and C2H4 is only within a factor of 3 on both the surfaces of pure solids and ASW. In addition, we found the small kinetic isotope effect for hydrogenation/deuteration of C2H2 and C2H4 at 10 K, despite the requirement of quantum tunneling. At 20 K, the reaction rate of deuteration becomes even larger than that of hydrogenation. These unusual isotope effects might originate from a slightly larger number density of D atoms than H atoms on ASW at 20 K. The hydrogenation of C2H2 is four times faster than CO hydrogenation and can produce C2H6 efficiently through C2H4 even in the environment of a dark molecular cloud.

  3. Theoretical study on the rate constants for the C2H5 + HBr --> C2H6 + Br reaction.

    PubMed

    Sheng, Li; Li, Ze-Sheng; Liu, Jing-Yao; Xiao, Jing-Fa; Sun, Chia-Chung

    2004-02-01

    The reaction C(2)H(5) + HBr --> C(2)H(6) + Br has been theoretically studied over the temperature range from 200 to 1400 K. The electronic structure information is calculated at the BHLYP/6-311+G(d,p) and QCISD/6-31+G(d) levels. With the aid of intrinsic reaction coordinate theory, the minimum energy paths (MEPs) are obtained at the both levels, and the energies along the MEP are further refined by performing the single-point calculations at the PMP4(SDTQ)/6-311+G(3df,2p)//BHLYP and QCISD(T)/6-311++G(2df,2pd)//QCISD levels. The calculated ICVT/SCT rate constants are in good agreement with available experimental values, and the calculate results further indicate that the C(2)H(5) + HBr reaction has negative temperature dependence at T < 850 K, but clearly shows positive temperature dependence at T > 850 K. The current work predicts that the kinetic isotope effect for the title reaction is inverse in the temperature range from 200 to 482 K, i.e., k(HBr)/k(DBr) < 1.

  4. Theoretical kinetics of O + C2H4

    DOE PAGES

    Li, Xiaohu; Jasper, Ahren W.; Zádor, Judit; ...

    2016-06-01

    The reaction of atomic oxygen with ethylene is a fundamental oxidation step in combustion and is prototypical of reactions in which oxygen adds to double bonds. For 3O+C2H4 and for this class of reactions generally, decomposition of the initial adduct via spin-allowed reaction channels on the triplet surface competes with intersystem crossing (ISC) and a set of spin-forbidden reaction channels on the ground-state singlet surface. The two surfaces share some bimolecular products but feature different intermediates, pathways, and transition states. In addition, the overall product branching is therefore a sensitive function of the ISC rate. The 3O+C2H4 reaction has beenmore » extensively studied, but previous experimental work has not provided detailed branching information at elevated temperatures, while previous theoretical studies have employed empirical treatments of ISC. Here we predict the kinetics of 3O+C2H4 using an ab initio transition state theory based master equation (AITSTME) approach that includes an a priori description of ISC. Specifically, the ISC rate is calculated using Landau–Zener statistical theory, consideration of the four lowest-energy electronic states, and a direct classical trajectory study of the product branching immediately after ISC. The present theoretical results are largely in good agreement with existing low-temperature experimental kinetics and molecular beam studies. Good agreement is also found with past theoretical work, with the notable exception of the predicted product branching at elevated temperatures. Above ~1000 K, we predict CH2CHO+H and CH2+CH2O as the major products, which differs from the room temperature preference for CH3+HCO (which is assumed to remain at higher temperatures in some models) and from the prediction of a previous detailed master equation study.« less

  5. Mechanisms of CO2/H+ Sensitivity of Astrocytes.

    PubMed

    Turovsky, Egor; Theparambil, Shefeeq M; Kasymov, Vitaliy; Deitmer, Joachim W; Del Arroyo, Ana Gutierrez; Ackland, Gareth L; Corneveaux, Jason J; Allen, April N; Huentelman, Matthew J; Kasparov, Sergey; Marina, Nephtali; Gourine, Alexander V

    2016-10-19

    Ventral regions of the medulla oblongata of the brainstem are populated by astrocytes sensitive to physiological changes in PCO2/[H(+)]. These astrocytes respond to decreases in pH with elevations in intracellular Ca(2+) and facilitated exocytosis of ATP-containing vesicles. Released ATP propagates Ca(2+) excitation among neighboring astrocytes and activates neurons of the brainstem respiratory network triggering adaptive increases in breathing. The mechanisms linking increases in extracellular and/or intracellular PCO2/[H(+)] with Ca(2+) responses in chemosensitive astrocytes remain unknown. Fluorescent imaging of changes in [Na(+)]i and/or [Ca(2+)]i in individual astrocytes was performed in organotypic brainstem slice cultures and acute brainstem slices of adult rats. It was found that astroglial [Ca(2+)]i responses triggered by decreases in pH are preceded by Na(+) entry, markedly reduced by inhibition of Na(+)/HCO3(-) cotransport (NBC) or Na(+)/Ca(2+) exchange (NCX), and abolished in Na(+)-free medium or by combined NBC/NCX blockade. Acidification-induced [Ca(2+)]i responses were also dramatically reduced in brainstem astrocytes of mice deficient in the electrogenic Na(+)/HCO3(-) cotransporter NBCe1. Sensitivity of astrocytes to changes in pH was not affected by inhibition of Na(+)/H(+) exchange or blockade of phospholipase C. These results suggest that in pH-sensitive astrocytes, acidification activates NBCe1, which brings Na(+) inside the cell. Raising [Na(+)]i activates NCX to operate in a reverse mode, leading to Ca(2+) entry followed by activation of downstream signaling pathways. Coupled NBC and NCX activities are, therefore, suggested to be responsible for functional CO2/H(+) sensitivity of astrocytes that contribute to homeostatic regulation of brain parenchymal pH and control of breathing.

  6. Synthesis of 2H- and 13C-substituted dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2003-01-01

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  7. Synthesis Of 2h- And 13c-Substituted Dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-05-04

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  8. Photodissociation spectroscopy of Ca+(C2H4)

    NASA Astrophysics Data System (ADS)

    Holmes, J. H.; Kleiber, P. D.; Olsgaard, D. A.; Yang, K.-H.

    2000-04-01

    We have studied Ca+(C2H4) by photodissociation spectroscopy in a reflectron time-of-flight mass spectrometer over the spectral range 440-790 nm. Ca+ is the only photofragment observed. We find four absorption bands of the complex and assign them to metal-centered transitions correlating with excitation of Ca+(3d and 4p). Spectral assignment is supported by ab initio electronic structure calculations of the complex and isotope substitution experiments. Calculations find a weakly bound ground state equilibrium structure with C2V π-bonding geometry and a dissociation energy of De″=0.506 eV. Theoretical and experimental results show the 4pπ(2 2B2 & 2 2B1) excited states to be relatively weakly bound at long range. Spectral analysis gives vibrational constants for the Ca+--C2H4 intermolecular a1-stretch in the 1 2A1, 2 2B1, and 2 2B2 states, and for the CH2-CH2 a1-wag and the HCH a1-bend in 2 2B2. The results offer an interesting comparison with previous studies of similar weakly bound bimolecular complexes of light metal ions with alkene or alkane hydrocarbons.

  9. Kinetics of the hydrogen abstraction C2H3* + alkane --> C2H4 + alkyl radical reaction class.

    PubMed

    Muszyńska, Marta; Ratkiewicz, Artur; Huynh, Lam K; Truong, Thanh N

    2009-07-23

    This paper presents an application of the reaction class transition state theory (RC-TST) to predict thermal rate constants for hydrogen abstraction reactions of the type C(2)H(3) + alkane --> C(2)H(4) + alkyl radical. The linear energy relationship (LER) was proven to hold for both noncyclic and cyclic hydrocarbons. We have derived all parameters for the RC-TST method from rate constants of 19 representative reactions, coupling with LER and the barrier height grouping (BHG) approach. Both the RC-TST/LER, where only reaction energy is needed, and the RC-TST/BHG, where no other information is needed, can predict rate constants for any reaction in this reaction class with satisfactory accuracy for combustion modeling. Our analysis indicates that less than 90% systematic errors on the average exist in the predicted rate constants using the RC-TST/LER or RC-TST/BHG method, while in comparison to explicit rate calculations, the differences are within a factor of 2 on the average.

  10. Physical and spectroscopic properties of pure C2H4 and CH4:C2H4 ices

    NASA Astrophysics Data System (ADS)

    Molpeceres, Germán; Satorre, Miguel Angel; Ortigoso, Juan; Zanchet, Alexandre; Luna, Ramón; Millán, Carlos; Escribano, Rafael; Tanarro, Isabel; Herrero, Víctor J.; Maté, Belén

    2017-04-01

    Physical and spectroscopic properties of ices of C2H4 and CH4:C2H4 mixtures with 3:1, 1:1 and 1:3 ratios have been investigated at 30 K. Two laboratories are involved in this work. In one of them, the density and refractive index of the samples have been measured by using a cryogenic quartz microbalance and laser interferometric techniques. In the other one, IR spectra have been recorded in the near- and mid-infrared regions, and band shifts with respect to the pure species, band strengths of the main bands, and the optical constants in both regions have been determined. Previous data on ethylene and the mixtures studied here were scarce. For methane, both the wavenumbers and band strengths have been found to follow a regular pattern of decrease with increasing dilution, but no pattern has been detected for ethylene vibrations. The method employed for the preparation of the samples, by vapour deposition under vacuum, is thought to be adequate to mimic the structure of astrophysical ices. Possible astrophysical implications, especially by means of the optical constants reported here, have been discussed.

  11. 2H NMR studies of supercooled and glassy aspirin

    NASA Astrophysics Data System (ADS)

    Nath, R.; Nowaczyk, A.; Geil, B.; Bohmer, R.

    2007-11-01

    Acetyl salicylic acid, deuterated at the methyl group, was investigated using 2H-NMR in its supercooled and glassy states. Just above the glass transition temperature the molecular reorientations were studied using stimulated-echo spectroscopy and demonstrated a large degree of similarity with other glass formers. Deep in the glassy phase the NMR spectra look similar to those reported for the crystal [A. Detken, P. Focke, H. Zimmermann, U. Haeberlen, Z. Olejniczak, Z. T. Lalowicz, Z. Naturforsch. A 50 (1995) 95] and below 20 K they are indicative for rotational tunneling with a relatively large tunneling frequency. Measurements of the spin-lattice relaxation times for temperatures below 150 K reveal a broad distribution of correlation times in the glass. The dominant energy barrier characterizing the slow-down of the methyl group is significantly smaller than the well defined barrier in the crystal.

  12. One dimensional 1H, 2H and 3H

    NASA Astrophysics Data System (ADS)

    Vidal, A. J.; Astrakharchik, G. E.; Vranješ Markić, L.; Boronat, J.

    2016-05-01

    The ground-state properties of one-dimensional electron-spin-polarized hydrogen 1H, deuterium 2H, and tritium 3H are obtained by means of quantum Monte Carlo methods. The equations of state of the three isotopes are calculated for a wide range of linear densities. The pair correlation function and the static structure factor are obtained and interpreted within the framework of the Luttinger liquid theory. We report the density dependence of the Luttinger parameter and use it to identify different physical regimes: Bogoliubov Bose gas, super-Tonks-Girardeau gas, and quasi-crystal regimes for bosons; repulsive, attractive Fermi gas, and quasi-crystal regimes for fermions. We find that the tritium isotope is the one with the richest behavior. Our results show unambiguously the relevant role of the isotope mass in the properties of this quantum system.

  13. Vibrational and Rotational Spectroscopy of CD_2H^+

    NASA Astrophysics Data System (ADS)

    Asvany, Oskar; Jusko, Pavol; Brünken, Sandra; Schlemmer, Stephan

    2016-06-01

    The lowest rotational levels (J=0-5) of the CD_2H^+ ground state have been probed by high-resolution rovibrational and pure rotational spectroscopy in a cryogenic 22-pole ion trap. For this, the ν_1 rovibrational band has been revisited, detecting 107 transitions, among which 35 are new. The use of a frequency comb system allowed to measure the rovibrational transitions with high precision and accuracy, typically better than 1 MHz. The high precision has been confirmed by comparing combination differences in the ground and vibrationally excited state. For the ground state, this allowed for equally precise predictions of pure rotational transitions, 24 of which have been measured directly by a novel IR - mm-wave double resonance method. M.-F. Jagod et al, J. Molec. Spectrosc. 153, 666, 1992 S. Gartner et al, J. Phys. Chem. A 117, 9975, 2013

  14. 2H and 18O Freshwater Isoscapes of Scotland

    NASA Astrophysics Data System (ADS)

    Meier-Augenstein, Wolfram; Hoogewerff, Jurian; Kemp, Helen; Frew, Danny

    2013-04-01

    Scotland's freshwater lochs and reservoirs provide a vital resource for sustaining biodiversity, agriculture, food production as well as for human consumption. Regular monitoring of freshwaters by the Scottish Environment Protection Agency (SEPA) fulfils legislative requirements with regards to water quality but new scientific methods involving stable isotope analysis present an opportunity combining these mandatory monitoring schemes with fundamental research to inform and deliver on current and nascent government policies [1] through gaining a greater understanding of Scottish waters and their importance in the context of climate change, environmental sustainability and food security. For example, 2H and 18O isoscapes of Scottish freshwater could be used to underpin research and its applications in: • Climate change - Using longitudinal changes in the characteristic isotope composition of freshwater lochs and reservoirs as proxy, isoscapes will provide a means to assess if and how changes in temperature and weather patterns might impact on precipitation patterns and amount. • Scottish branding - Location specific stable isotope signatures of Scottish freshwater have the potential to be used as a tool for provenancing and thus protecting premium Scottish produce such as Scottish beef, Scottish soft fruit and Scottish Whisky. During 2011 and 2012, with the support of SEPA more than 110 samples from freshwater lochs and reservoirs were collected from 127 different locations across Scotland including the Highlands and Islands. Here we present the results of this sampling and analysis exercise isotope analyses in form of 2H and 18O isoscapes with an unprecedented grid resolution of 26.5 × 26.5 km (or 16.4 × 16.4 miles). [1] Adaptation Framework - Adapting Our Ways: Managing Scotland's Climate Risk (2009): Scotland's Biodiversity: It's in Your Hands - A strategy for the conservation and enhancement of biodiversity in Scotland (2005); Recipe For Success - Scotland

  15. Ab initio study of {sup 2}H(d,{gamma}){sup 4}He, {sup 2}H(d,p){sup 3}H, and {sup 2}H(d,n){sup 4}He reactions and the tensor force

    SciTech Connect

    Arai, K.; Aoyama, S.; Suzuki, Y.; Descouvemont, P.; Baye, D.

    2012-11-12

    The {sup 2}H(d,p){sup 3}H, {sup 2}H(d,n){sup 3}He, and {sup 2}H(d,{gamma}){sup 4}He reactions at low energies are studied with realistic nucleon-nucleon interactions in an ab initio approach. The obtained astrophysical S-factors are all in very good agreement with experiment. The most important channels for both transfer and radiative capture are all found to dominate thanks to the tensor force.

  16. Human organic cation transporter 2 (hOCT2): Inhibitor studies using S2-hOCT2 cells.

    PubMed

    Chiba, Shoetsu; Ikawa, Toru; Takeshita, Hiroshi; Kanno, Sanae; Nagai, Tomonori; Takada, Meri; Mukai, Toshiji; Wempe, Michael F

    2013-08-09

    Highly expressed in kidney and located on the basolateral membrane, human organic cation transporter 2 (hOCT2) can transport various compounds (i.e. drugs and toxins) into the proximal tubular cell. Using cultured proximal tubule cells stably expressing hOCT2 (i.e. S2-hOCT2 cells), we sought to probe different compound classes (e.g. analgesics, anti-depressants, anti-psychotics, disinfectant, herbicides, insecticides, local anesthetic, muscarinic acetylcholine receptor antagonist, sedatives, steroid hormone, stimulants and toxins) for their ability to inhibit (14)C-TEA uptake, a prototypical OCT2 substrate. Aconitine, amitriptyline, atropine, chlorpyrifos, diazepam, fenitrothion, haloperidol, lidocaine, malathion, mianserin, nicotine and triazolam significantly inhibited (14)C-TEA uptake; IC50 values were 59.2, 2.4, 2.0, 20.7, 32.3, 13.2, 32.5, 104.6, 71.1, 17.7, 52.8 and 65.5μM, respectively. In addition, aconitine, amitriptyline, atropine, chlorpyrifos, fenitrothion, haloperidol, lidocaine, and nicotine displayed competitive inhibition with Ki values of 145.6, 2.5, 2.4, 24.8, 16.9, 51.6, 86.8 and 57.7μM, respectively. These in vitro data support the notion that compounds pertaining to a wide variety of different drug classes have the potential to decrease renal clearance of drugs transported via hOCT2. Consequently, these data warrant additional studies to probe hOCT2 and its role to influence drug pharmacokinetics.

  17. Thermal decomposition of (UO2)O2(H2O)2·2H2O: Influence on structure, microstructure and hydrofluorination

    NASA Astrophysics Data System (ADS)

    Thomas, R.; Rivenet, M.; Berrier, E.; de Waele, I.; Arab, M.; Amaraggi, D.; Morel, B.; Abraham, F.

    2017-01-01

    The thermal decomposition of uranyl peroxide tetrahydrate, (UO2)O2(H2O)2.2H2O, was studied by combining high temperature powder X-ray diffraction, scanning electron microscopy, thermal analyses and spectroscopic techniques (Raman, IR and 1H NMR). In situ analyses reveal that intermediates and final uranium oxides obtained upon heating are different from that obtained after cooling at room temperature and that the uranyl precursor used to synthesize (UO2)O2(H2O)2·2H2O, sulfate or nitrate, has a strong influence on the peroxide thermal behavior and morphology. The decomposition of (UO2)O2(H2O)2·2H2O ex sulfate is pseudomorphic and leads to needle-like shaped particles of metastudtite, (UO2)O2(H2O)2, and UO3-x(OH)2x·zH2O, an amorphous phase found in air in the following of (UO2)O2(H2O)2 dehydration. (UO2)O2(H2O)2·2H2O and the compounds resulting from its thermal decomposition are very reactive towards hydrofluorination as long as their needle-like morphology is kept.

  18. High/variable mixture ratio O2/H2 engine

    NASA Technical Reports Server (NTRS)

    Adams, A.; Parsley, R. C.

    1988-01-01

    Vehicle/engine analysis studies have identified the High/Dual Mixture Ratio O2/H2 Engine cycle as a leading candidate for an advanced Single Stage to Orbit (SSTO) propulsion system. This cycle is designed to allow operation at a higher than normal O/F ratio of 12 during liftoff and then transition to a more optimum O/F ratio of 6 at altitude. While operation at high mixture ratios lowers specific impulse, the resultant high propellant bulk density and high power density combine to minimize the influence of atmospheric drag and low altitude gravitational forces. Transition to a lower mixture ratio at altitude then provides improved specific impulse relative to a single mixture ratio engine that must select a mixture ratio that is balanced for both low and high altitude operation. This combination of increased altitude specific impulse and high propellant bulk density more than offsets the compromised low altitude performance and results in an overall mission benefit. Two areas of technical concern relative to the execution of this dual mixture ratio cycle concept are addressed. First, actions required to transition from high to low mixture ratio are examined, including an assessment of the main chamber environment as the main chamber mixture ratio passes through stoichiometric. Secondly, two approaches to meet a requirement for high turbine power at high mixture ratio condition are examined. One approach uses high turbine temperature to produce the power and requires cooled turbines. The other approach incorporates an oxidizer-rich preburner to increase turbine work capability via increased turbine mass flow.

  19. 2H NMR studies of glycerol dynamics in protein matrices.

    PubMed

    Herbers, C R; Sauer, D; Vogel, M

    2012-03-28

    We use (2)H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids.

  20. 2H NMR studies of glycerol dynamics in protein matrices

    NASA Astrophysics Data System (ADS)

    Herbers, C. R.; Sauer, D.; Vogel, M.

    2012-03-01

    We use 2H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids.

  1. Ion-neutral reaction of the C2H2N+ cation with C2H2: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Fathi, P.; Geppert, W. D.; Kaiser, A.; Ascenzi, D.

    2016-03-01

    The ion-neutral reactions of the C2H2N+ cation with C2H2 have been investigated using a Guided Ion Beam Mass Spectrometer (GIB-MS). The following ionic products were observed: CH3+, C2H2+, C2H3+, HNC+ /HCN+ , HCNH+, C3H+ , C2N+ , C3H3+, HCCN+ and C4H2N+ . Theoretical calculations have been carried out to propose reaction pathways leading to the observed products. These processes are of relevance for the generation of long chain nitrogen-containing species and they may be of interest for the chemistry of Titan's ionosphere or circumstellar envelopes.

  2. Remarkably efficient synthesis of 2H-indazole 1-oxides and 2H-indazoles via tandem carbon-carbon followed by nitrogen-nitrogen bond formation.

    PubMed

    Bouillon, Isabelle; Zajícek, Jaroslav; Pudelová, Nadĕzda; Krchnák, Viktor

    2008-11-21

    Base-catalyzed tandem carbon-carbon followed by nitrogen-nitrogen bond formations quantitatively converted N-alkyl-2-nitro-N-(2-oxo-2-aryl-ethyl)-benzenesulfonamides to 2H-indazoles 1-oxides under mild conditions. Triphenylphosphine or mesyl chloride/triethylamine-mediated deoxygenation afforded 2H-indazoles.

  3. Particle-in-Cell Simulations of Atmospheric Pressure He/2%H2O Discharges

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.; Graves, D. B.; Gopalakrishnan, R.

    2015-09-01

    Atmospheric pressure micro-discharges in contact with liquid surfaces are of increasing interest, especially in the bio-medical field. We conduct 1D3v particle-in-cell (PIC) simulations of a voltage-driven 1 mm width atmospheric pressure He/2% H2O plasma discharge in series with an 0.5 mm width liquid H2O layer and a 1mm width quartz dielectric layer. A previously developed two-temperature hybrid global model of atmospheric pressure He/H2O discharges was used to determine the most important species and collisional reactions to use in the PIC simulations. We found that H13O6+, H5O3-, and electrons were the most prominent charged species, while most of the metastable helium He* was quenched via Penning ionization. The ion-induced secondary emission coefficient γi was assumed to be 0.15 at all surfaces. A series of simulations were conducted at 27.12 MHz with Jrf ~ 800-2200 A/m2. The H2O rotational and vibrational excitation losses were so high that electrons reached the walls at thermal temperatures. We also simulated a much lower frequency case of 50 kHz with Vrf = 10 kV. In this case, the discharge ran in a pure time-varying γ-mode. This work was supported by the Department of Energy Office of Fusion Energy Science Contract DE-SC0001939.

  4. Production of C2H4Cl+ by dissociative photoionization of weak molecular complexes in C2H4 + HCl mixtures

    NASA Astrophysics Data System (ADS)

    Walters, E. A.; Grover, J. R.; Arneberg, D. L.; Santandrea, C. J.; White, M. G.

    1990-12-01

    The photoionization efficiency (PIE) spectrum from 600 to 1200 Å for the production of the ion C2H4Cl+ by dissociative photoionization of the products of room-temperature jet expansions of a 1:4 mixture of C2H4 and HCl was measured at several nozzle pressures. The results were resolved into the PIE yield curve for the heterodimer process C2H4·HCl+ hv→C2H4Cl++H+ e. This reaction is necessarily characterized by a large change in geometry between neutral complex and ionic product. The observed spectrum exhibits an unusual and conspicuous peak at 15.2 eV that is characterized by a sharp cutoff to the high energy side. This feature points to the onset of strongly nonstatistical channels for the production of C2H4Cl+ at this energy such that product formation proceeds through very few states. The observed onset of C2H4Cl+ at 11.92±0.24 eV is 17±6 kcal mol-1 above the true threshold. An important conclusion is that at all energies above the onset the yield of dissociative ionization of the heterodimer to the cation C2H4Cl+ is determined by dynamical factors.

  5. Synthesis of (R)-[2-2H]isopentenyl diphosphate and determination of its enantiopurity by 2H NMR spectroscopy in a lyotropic medium.

    PubMed

    Leyes, A E; Poulter, C D

    1999-10-07

    [formula: see text] The synthesis of (R)-[2-2H]isopentenyl diphosphate from D-mannitol 1,2:5,6-bis-acetonide in 10 steps is reported. Stereospecific incorporation of the label is achieved by a BF3-catalyzed NaCNBD3 reduction of the enantiomerically pure (S)-isopropylidene oxirane intermediate. The enantiomeric excess of the penultimate precursor [2-2H]isopentenyl tosylate (> 95% ee) was determined by 2H NMR spectroscopy in a poly-gamma-benzyl-L-glutamate/CH2Cl2 liquid crystal at -50 degrees C.

  6. Environmental, trophic, and ecological factors influencing bone collagen δ2H

    NASA Astrophysics Data System (ADS)

    Topalov, Katarina; Schimmelmann, Arndt; David Polly, P.; Sauer, Peter E.; Lowry, Mark

    2013-06-01

    Organic deuterium/hydrogen stable isotope ratios (i.e., 2H/1H, expressed as δ2H value in ‰) in animal tissues are related to the 2H/1H in diet and ingested water. Bone collagen preserves the biochemical 2H/1H isotopic signal in the δ2H value of collagen's non-exchangeable hydrogen. Therefore, δ2H preserved in bone collagen has the potential to constrain environmental and trophic conditions, which is of interest to researchers studying of both living and fossil vertebrates. Our data examine the relationship of δ2H values of collagen with geographic variation in δ2H of meteoric waters, with local variations in the ecology and trophic level of species, and with the transition from mother's milk to adult diet. Based on 97 individuals from 22 marine and terrestrial vertebrates (predominately mammals), we found the relationships of collagen δ2H to both geographic variation in meteoric water δ2H (R2 = 0.55) and to δ15N in bone collagen (R2 = 0.17) statistically significant but weaker than previously reported. The second strongest control on collagen δ2H in our data is dietary, with nearly 50 percent of the variance in δ2H explained by trophic level (R2 = 0.47). Trophic level effects potentially confound the local meteoric signal if not held constant: herbivores tend to have the lowest δ2H values, omnivores have intermediate ones, and carnivores have the highest values. Body size (most likely related to mass-specific metabolic rates) has a strong influence on collagen δ2H (R2 = 0.30), by causing greater sensitivity in smaller animals to seasonal climate variations and/or high evapotranspiration leading to 2H-enrichment in tissues. In marine mammals weaning produces a dramatic effect on collagen δ2H with adult values being universally higher than pup values (R2 = 0.79). Interestingly, the shift in δ15N at weaning is downward, even though normally hydrogen and nitrogen isotope ratios are positively correlated with one another in respect to trophic level. Our

  7. Dehydrocoupling of dimethylamine borane catalyzed by Rh(PCy3)2H2Cl.

    PubMed

    Sewell, Laura J; Huertos, Miguel A; Dickinson, Molly E; Weller, Andrew S; Lloyd-Jones, Guy C

    2013-04-15

    The Rh(III) species Rh(PCy3)2H2Cl is an effective catalyst (2 mol %, 298 K) for the dehydrogenation of H3B·NMe2H (0.072 M in 1,2-F2C6H4 solvent) to ultimately afford the dimeric aminoborane [H2BNMe2]2. Mechanistic studies on the early stages in the consumption of H3B·NMe2H, using initial rate and H/D exchange experiments, indicate possible dehydrogenation mechanisms that invoke turnover-limiting N-H activation, which either precedes or follows B-H activation, to form H2B═NMe2, which then dimerizes to give [H2BNMe2]2. An additional detail is that the active catalyst Rh(PCy3)2H2Cl is in rapid equilibrium with an inactive dimeric species, [Rh(PCy3)H2Cl]2. The reaction of Rh(PCy3)2H2Cl with [Rh(PCy3)H2(H2)2][BAr(F)4] forms the halide-bridged adduct [Rh(PCy3)2H2(μ-Cl)H2(PCy3)2Rh][BAr(F)4] (Ar(F) = 3,5-(CF3)2C6H3), which has been crystallographically characterized. This dinuclear cation dissociates on addition of H3B·NMe2H to re-form Rh(PCy3)2H2Cl and generate [Rh(PCy3)2H2(η(2)-H3B·NMe2H)][BAr(F)4]. The fate of the catalyst at low catalyst loadings (0.5 mol %) is also addressed, with the formation of an inactive borohydride species, Rh(PCy3)2H2(η(2)-H2BH2), observed. On addition of H3B·NMe2H to Ir(PCy3)2H2Cl, the Ir congener Ir(PCy3)2H2(η(2)-H2BH2) is formed, with concomitant generation of the salt [H2B(NMe2H)2]Cl.

  8. Probing the aromaticity of the [(HtAc)3(μ2-H)6], [(HtTh)3(μ2-H)6],+, and [(HtPa)3(μ2-H)6] clusters

    NASA Astrophysics Data System (ADS)

    Ramírez-Tagle, Rodrigo; Alvarado-Soto, Leonor; Arratia-Perez, Ramiro; Bast, Radovan; Alvarez-Thon, Luis

    2011-09-01

    In this study we report about the aromaticity of the prototypical [(HtAc)3(μ2-H)6], [(HtTh)3(μ2-H)6]+, and [(HtPa)3(μ2-H)6] clusters via two magnetic criteria: nucleus-independent chemical shifts (NICS) and the magnetically induced current density. All-electron density functional theory calculations were carried out using the two-component zeroth-order regular approach and the four-component Dirac-Coulomb Hamiltonian, including scalar and spin-orbit relativistic effects. Four-component current density maps and the integration of induced ring-current susceptibilities clearly show that the clusters [(HtAc)3(μ2-H)6] and [(HtTh)3(μ2-H)6]+ are non-aromatic whereas [(HtPa)3(μ2-H)6] is anti-aromatic. However, for the thorium cluster we find a discrepancy between the current density plots and the classification through the NICS index. Our results also demonstrate the increasing influence of f orbitals, on bonding and magnetic properties, with increasing atomic number in these clusters. We think that the enhanced electron mobility in [(HtPa)3(μ2-H)6] is due the significant 5f character of its valence shell. Also the participation of f orbitals in bonding is the reason why the protactinium cluster has the shortest bond lengths of the three clusters. This study provides another example showing that the magnetically induced current density approach can give more reliable results than the NICS index.

  9. Probing the aromaticity of the [(H(t)Ac)3(μ2-H)6], [(H(t)Th)3(μ2-H)6],(+), and [(H(t)Pa)3(μ2-H)6] clusters.

    PubMed

    Ramírez-Tagle, Rodrigo; Alvarado-Soto, Leonor; Arratia-Perez, Ramiro; Bast, Radovan; Alvarez-Thon, Luis

    2011-09-14

    In this study we report about the aromaticity of the prototypical [(H(t)Ac)(3)(μ(2)-H)(6)], [(H(t)Th)(3)(μ(2)-H)(6)](+), and [(H(t)Pa)(3)(μ(2)-H)(6)] clusters via two magnetic criteria: nucleus-independent chemical shifts (NICS) and the magnetically induced current density. All-electron density functional theory calculations were carried out using the two-component zeroth-order regular approach and the four-component Dirac-Coulomb Hamiltonian, including scalar and spin-orbit relativistic effects. Four-component current density maps and the integration of induced ring-current susceptibilities clearly show that the clusters [(H(t)Ac)(3)(μ(2)-H)(6)] and [(H(t)Th)(3)(μ(2)-H)(6)](+) are non-aromatic whereas [(H(t)Pa)(3)(μ(2)-H)(6)] is anti-aromatic. However, for the thorium cluster we find a discrepancy between the current density plots and the classification through the NICS index. Our results also demonstrate the increasing influence of f orbitals, on bonding and magnetic properties, with increasing atomic number in these clusters. We think that the enhanced electron mobility in [(H(t)Pa)(3)(μ(2)-H)(6)] is due the significant 5f character of its valence shell. Also the participation of f orbitals in bonding is the reason why the protactinium cluster has the shortest bond lengths of the three clusters. This study provides another example showing that the magnetically induced current density approach can give more reliable results than the NICS index.

  10. First Observation of the nu(17)-nu(4) Difference Bands of Diborane (10)B(2)H(6) and (11)B(2)H(6).

    PubMed

    Flaud; Lafferty; Bürger; Pawelke; Domenech; Bermejo

    2000-10-01

    An analysis of the nu(17)-nu(4) difference bands near 800 cm(-1) of two isotopic species, (10)B(2)H(6) and (11)B(2)H(6), of diborane has been carried out using infrared spectra recorded with a resolution of ca. 0.003 cm(-1). In addition, the nu(17) band of (10)B(2)H(6) has been recorded and assigned. Since this band in (11)B(2)H(6) had already been studied (R. L. Sams, T. A. Blake, S. W. Sharpe, J.-M. Flaud, and W. J. Lafferty, J. Mol. Spectrosc. 191, 331-342 (1998)), it was possible to derive precise energy levels and Hamiltonian constants for the 4(1) vibrational states of both isotopic species. Copyright 2000 Academic Press.

  11. First-principles studies of complex hydride YMn2H6 and its synthesis from metal hydride YMn2H4.5

    NASA Astrophysics Data System (ADS)

    Matsuo, Motoaki; Miwa, Kazutoshi; Semboshi, Satoshi; Li, Hai-Wen; Kano, Mika; Orimo, Shin-ichi

    2011-05-01

    First-principles calculations were performed for a complex hydride YMn2H6 to investigate its electronic structure and thermodynamic stability. The results indicated that an Y atom and one of two Mn atoms were ionized as Y3+ and Mn2+, respectively, and another Mn atom bound covalently to H atoms to form a [MnH6]5- complex anion. Based on the enthalpy change of -65 kJ/mol estimated from the calculation, we experimentally verified a possible low-pressure synthesis of YMn2H6 from a metal hydride YMn2H4.5. X-ray diffractometry confirmed the formation of YMn2H6 after hydrogenation below 5 MPa, much lower than the previously reported value of 170 MPa.

  12. Strong enhancement of superconductivity at high pressures within the charge-density-wave states of 2 H -TaS2 and 2 H -TaSe2

    NASA Astrophysics Data System (ADS)

    Freitas, D. C.; Rodière, P.; Osorio, M. R.; Navarro-Moratalla, E.; Nemes, N. M.; Tissen, V. G.; Cario, L.; Coronado, E.; García-Hernández, M.; Vieira, S.; Núñez-Regueiro, M.; Suderow, H.

    2016-05-01

    We present measurements of the superconducting and charge-density-wave (CDW) critical temperatures (Tc and TCDW) as a function of pressure in the transition metal dichalchogenides 2 H -TaSe2 and 2 H -TaS2 . Resistance and susceptibility measurements show that Tc increases from temperatures below 1 K up to 8.5 K at 9.5 GPa in 2 H -TaS2 and 8.2 K at 23 GPa in 2 H -TaSe2 . We observe a kink in the pressure dependence of TCDW at about 4 GPa that we attribute to the lock-in transition from incommensurate CDW to commensurate CDW. Above this pressure, the commensurate TCDW slowly decreases, coexisting with superconductivity within our full pressure range.

  13. Bis(ethylenediammonium) decaaquadisodium decavanadate, (C2H10N2)2[Na2(H2O)10][V10O28].

    PubMed

    Li, Guo Bao; Yang, Si Hai; Xiong, Ming; Lin, Jian Hua

    2004-12-01

    In the title compound, the decavanadate anion, [V(10)O(28)](6-), and the bridged [Na(2)(H(2)O)(10)](2+) dication lie across inversion centers. The charge balance is achieved by ethylenediammonium cations, H(3)NCH(2)CH(2)NH(3)(2+), which are disordered. The decavanadate anions are surrounded by the [Na(2)(H(2)O)(10)](2+) dications, thus forming layers, and the ethylenediammonium cations are located between these layers.

  14. C2H2 adsorption in three isostructural metal-organic frameworks: boosting C2H2 uptake by rational arrangement of nitrogen sites.

    PubMed

    Song, Chengling; Jiao, Jingjing; Lin, Qiyi; Liu, Huimin; He, Yabing

    2016-03-21

    Replacing the benzene spacer in the organic linker 5,5'-(benzene-1,4-diyl)diisophthalate with the nitrogen containing heterocyclic rings, namely, pyrazine, pyridazine, and pyrimidine results in three organic linkers, which were reacted with copper ions under solvothermal conditions to form three isostructural metal-organic frameworks (ZJNU-46, ZJNU-47 and ZJNU-48) exhibiting exceptionally high sorption capacities with regard to acetylene due to the simultaneous immobilization of open metal sites and Lewis basic nitrogen sites in the frameworks. At 1 atm and 295 K, the gravimetric C2H2 adsorption uptakes reach 187, 213 and 193 cm(3) (STP) g(-1) for these three compounds. The gravimetric C2H2 adsorption amount of ZJNU-47a is the second highest reported for MOF materials. Notably, despite their same porosities, and densities of open metal sites and uncoordinated nitrogen sites, distinctly different C2H2 adsorption capacities were observed for these three compounds, which we think are mainly associated with the difference in the relative position of nitrogen atoms leading to different binding affinities of the frameworks towards C2H2 guest molecules, and thus different C2H2 adsorptions. This work demonstrates that the rational arrangement of open nitrogen sites will favorably improve the C2H2 uptake and thus provides useful information for future design of porous MOFs with high acetylene storage capacities.

  15. Microwave Spectra and Geometries of C2H2\\cdots AuI and C2H4\\cdots AuI

    NASA Astrophysics Data System (ADS)

    Stephens, Susanna Louise; Mullaney, John Connor; Sprawling, Matt John; Tew, David Peter; Walker, Nick; Legon, Anthony

    2014-06-01

    A chirped-pulse Fourier transform microwave spectrometer has been used to measure the microwave spectra of both C2H2\\cdots AuI and C2H4\\cdots AuI. These complexes are generated via laser ablation at 532 nm of a gold surface in the presence of CF3I and either C2H2 or C2H4 and argon and are stabilized by a supersonic expansion. Rotational (A0, B0, C0) and centrifugal distortion constants (ΔJ, ΔJK and δJ) of each molecule have been determined as well the nuclear electric quadrupole coupling constants of gold and iodine atoms (χaa(Au}, χbb-χcc(Au), χaa(I) and χbb-χcc(I)). The spectrum of each molecule is consistent with a C2v structure in which the metal atom interacts with the π-orbital of the ethene or ethyne molecule. Isotopic substitutions of atoms within the C2H2 or C2H4 subunits are in progress and in conjunction with high level ab initio calculations will allow for accurate determination of the geometry of each molecule.

  16. Adhesion of CdTe quantum dots on model membranes and internalization into RBL-2H3 cells.

    PubMed

    Zhang, Mengmeng; Wei, Xiaoran; Ding, Lei; Hu, Jingtian; Jiang, Wei

    2017-03-08

    Quantum dots (QDs) have attracted broad attention due to their special optical properties and promising prospect in medical and biological applications. However, the process of QDs on cell membrane is worth further investigations because such process may lead to harmful effects on organisms and also important for QD application. In this study, adhesion of amino- and carboxyl-coated CdTe QDs (A-QDs and C-QDs) on cell membrane and the subsequent internalization are studied using a series of endocytosis-free model membranes, including giant and small unilamellar vesicles, supported lipid bilayers and giant plasma membrane vesicles (GPMVs). The adhered QD amounts on model membranes are quantified by a quartz crystal microbalance. The CdTe QD adhesion on model membranes is governed by electrostatic forces. Positively charged A-QDs adhere on GPMV surface and passively penetrate the plasma membrane via endocytosis-free mechanism, but negatively charged C-QDs cannot. Rat basophilic leukemia (RBL-2H3) cells are exposed to CdTe QDs to monitor the QD internalization process. Both A- and C-QDs are internalized by RBL-2H3 cells mainly via endocytosis. CdTe QDs do not accumulate on the plasma membrane of living cells due to the fast endocytosis and the weakened electrostatic attraction in biological medium, resulting in low chance of passive penetration. The suspended cells after trypsin digestion take more QDs than the adherent cells. A-QDs cause lower cell viability than C-QDs, probably because the approach of positively charged QDs to cells is favored and the smaller aggregates of A-QDs.

  17. Tensor Force Manifestations in Ab Initio Study of the {sup 2}H(d,{gamma}){sup 4}He, {sup 2}H(d,p){sup 3}H, and {sup 2}H(d,n){sup 3}He Reactions

    SciTech Connect

    Arai, K.; Aoyama, S.; Suzuki, Y.; Descouvemont, P.; Baye, D.

    2011-09-23

    The {sup 2}H(d,p){sup 3}H, {sup 2}H(d,n){sup 3}He, and {sup 2}H(d,{gamma}){sup 4}He reactions are studied at low energies in a multichannel ab initio model that takes into account the distortions of the nuclei. The internal wave functions of these nuclei are given by the stochastic variational method with the AV8{sup '} realistic interaction and a phenomenological three-body force included to reproduce the two-body thresholds. The obtained astrophysical S factors are all in very good agreement with the experiment. The most important channels for both transfer and radiative capture are identified by comparing to calculations with an effective central force. They are all found to dominate thanks to the tensor force.

  18. Observation of the pi...H hydrogen-bonded ternary complex, (C(2)H(4))(2)H(2)O, using matrix isolation infrared spectroscopy.

    PubMed

    Thompson, Matthew G K; Lewars, Errol G; Parnis, J Mark

    2005-10-27

    FTIR absorption spectra of water-containing ethene:Ar matrices, with compositions of ethene up to 1:10 ethene:Ar, have been recorded. Systematically increasing the concentration of ethene reveals features in the spectra consistent with the known 1:1 ethene:water complex, which subsequently disappear on further increase in ethene concentration. At high concentrations of ethene, new features are observed at 3669 and 3585 cm(-1), which are red-shifted with respect to matrix-isolated nu(3) and nu(1) O-H stretching modes of water and the 1:1 ethene:water complex. These shifts are consistent with a pi...H interaction of a 2:1 ethene:water complex of the form (C(2)H(4)...H-O-H...C(2)H(4)). The analogous (C(2)D(4))(2)H(2)O complex shows little shifting from positions associated with (C(2)H(4))(2)H(2)O, while the (C(2)H(4))(2)D(2)O isotopomer shows large shifts to 2722.3 and 2617.2 cm(-1), having identical nu(3)(H(2)O)/nu(3)(D(2)O) and nu(1)(H(2)O)/nu(1)(D(2)O) values when compared with monomeric water isotopomers. Features at 3626.1 and 2666.2 cm(-1) are also observed and are attributed to (C(2)H(4))(2)HDO. DFT calculations at the B3LYP/6-311+G(d,p) level for each isotopomer are presented, and the predicted vibrational frequencies are directly compared with experimental values. The interaction energy for the formation of the 2:1 ethene:water complex from the 1:1 ethene:water complex is also presented.

  19. Measured Total Cross Sections of Slow Neutrons Scattered by Gaseous and Liquid 2H2

    NASA Astrophysics Data System (ADS)

    Atchison, F.; van den Brandt, B.; Bryś, T.; Daum, M.; Fierlinger, P.; Hautle, P.; Henneck, R.; Kirch, K.; Kohlbrecher, J.; Kühne, G.; Konter, J. A.; Pichlmaier, A.; Wokaun, A.; Bodek, K.; Kasprzak, M.; Kuźniak, M.; Geltenbort, P.; Giersch, M.; Zmeskal, J.; Hino, M.; Utsuro, M.

    2005-06-01

    The total scattering cross sections for slow neutrons with energies E in the range 300 neV to 3 meV for gaseous and liquid ortho-2H2 have been measured. The cross sections for 2H2 gas are found to be in excellent agreement with both the Hamermesh and Schwinger and the Young and Koppel models. For liquid 2H2, we confirm the existing experimental data in the cold neutron range and the discrepancy with the gas models. We find a clear 1/√(E') dependence at low energies for both states. A simple explanation for the liquid 2H2 cross section is offered.

  20. SNF2H promotes hepatocellular carcinoma proliferation by activating the Wnt/β-catenin signaling pathway

    PubMed Central

    Wang, Yanan; Qin, Juanxiu; Liu, Qian; Hong, Xufen; Li, Tianming; Zhu, Yuanjun; He, Lei; Zheng, Bing; Li, Min

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and has an extremely poor prognosis. Surgical resection is always inapplicable to HCC patients diagnosed at an advanced tumor stage. The mechanisms underlying HCC cell proliferation remain obscure. In the present study, SWItch/sucrose nonfermentable catalytic subunit SNF2 (SNF2H) expression was tested in HCC tissues and Wnt/β-catenin pathway activation upon overexpression of SNF2H or knockdown of SNF2H expression was investigated in cultured HCC cells. It was demonstrated that SNF2H is a vital factor for HCC growth. The SNF2H expression level is increased in HCC tissues compared with paratumoral liver tissues. SNF2H promotes HCC cell proliferation and colony formation ability in vitro. SNF2H may increase the protein level of β-catenin and enhance its nuclear accumulation in HCC cells, thereby leading to the activation of the Wnt/β-catenin signaling pathway. In conclusion, the present results indicate that SNF2H plays a vital role in HCC cell growth, suggesting that SNF2H may be a promising therapeutic target for HCC treatment. PMID:27446433

  1. Calculational and Experimental Investigations of the Pressure Effects on Radical - Radical Cross Combinations Reactions: C2H5 + C2H3

    NASA Technical Reports Server (NTRS)

    Fahr, Askar; Halpern, Joshua B.; Tardy, Dwight C.

    2007-01-01

    Pressure-dependent product yields have been experimentally determined for the cross-radical reaction C2H5 + C2H3. These results have been extended by calculations. It is shown that the chemically activated combination adduct, 1-C4H8*, is either stabilized by bimolecular collisions or subject to a variety of unimolecular reactions including cyclizations and decompositions. Therefore the "apparent" combination/disproportionation ratio exhibits a complex pressure dependence. The experimental studies were performed at 298 K and at selected pressures between about 4 Torr (0.5 kPa) and 760 Torr (101 kPa). Ethyl and vinyl radicals were simultaneously produced by 193 nm excimer laser photolysis of C2H5COC2H3 or photolysis of C2H3Br and C2H5COC2H5. Gas chromatograph/mass spectrometry/flame ionization detection (GC/MS/FID) were used to identify and quantify the final reaction products. The major combination reactions at pressures between 500 (66.5 kPa) and 760 Torr are (1c) C2H5 + C2H3 yields 1-butene, (2c) C2H5 + C2H5 yields n-butane, and (3c) C2H3 + C2H3 yields 1,3-butadiene. The major products of the disproportionation reactions are ethane, ethylene, and acetylene. At moderate and lower pressures, secondary products, including propene, propane, isobutene, 2-butene (cis and trans), 1-pentene, 1,4-pentadiene, and 1,5-hexadiene are also observed. Two isomers of C4H6, cyclobutene and/or 1,2-butadiene, were also among the likely products. The pressure-dependent yield of the cross-combination product, 1-butene, was compared to the yield of n-butane, the combination product of reaction (2c), which was found to be independent of pressure over the range of this study. The [ 1-C4H8]/[C4H10] ratio was reduced from approx.1.2 at 760 Torr (101 kPa) to approx.0.5 at 100 Torr (13.3 kPa) and approx.0.1 at pressures lower than about 5 Torr (approx.0.7 kPa). Electronic structure and RRKM calculations were used to simulate both unimolecular and bimolecular processes. The relative importance

  2. Fast Response, vertically oriented graphene nanosheet electric double layer capacitors synthesized from C(2)H(2).

    PubMed

    Cai, Minzhen; Outlaw, Ronald A; Quinlan, Ronald A; Premathilake, Dilshan; Butler, Sue M; Miller, John R

    2014-06-24

    The growth and electrical characteristics of vertically oriented graphene nanosheets grown by radio frequency plasma-enhanced chemical vapor deposition from C2H2 feedstock on nickel substrates and used as electrodes in symmetric electric double layer capacitors (EDLC) are presented. The nanosheets exhibited 2.7 times faster growth rate and much greater specific capacitance for a given growth time than CH4 synthesized films. Raman spectra showed that the intensity ratio of the D band to G band versus temperature initially decreased to a minimum value of 0.45 at a growth temperature of 750 °C, but increased rapidly with further temperature increase (1.15 at 850 °C). The AC specific capacitance at 120 Hz of these EDLC devices increased in a linear fashion with growth temperature, up to 265 μF/cm(2) (2 μm high film, 850 °C with 10 min growth). These devices exhibited ultrafast frequency response: the frequency response at -45° phase angle reached over 20 kHz. Consistent with the increase in D band to G band ratio, the morphology of the films became less vertical, less crystalline, and disordered at substrate temperatures of 800 °C and above. This deterioration in morphology resulted in an increase in graphene surface area and defect density, which, in turn, contributed to the increased capacitance, as well as a slight decrease in frequency response. The low equivalent series resistance varied from 0.07 to 0.08 Ω and was attributed to the significant carbon incorporation into the Ni substrate.

  3. Hyperfine excitation of N2H+ by H2: towards a revision of N2H+ abundance in cold molecular clouds

    NASA Astrophysics Data System (ADS)

    Lique, François; Daniel, Fabien; Pagani, Laurent; Feautrier, Nicole

    2015-01-01

    The modelling of emission spectra of molecules seen in interstellar clouds requires the knowledge of collisional rate coefficients. Among the commonly observed species, N2H+ is of particular interest since it was shown to be a good probe of the physical conditions of cold molecular clouds. Thus, we have calculated hyperfine-structure-resolved excitation rate coefficients of N2H+(X1Σ+) by H2(j = 0), the most abundant collisional partner in the cold interstellar medium. The calculations are based on a new potential energy surface, obtained from highly correlated ab initio calculations. State-to-state rate coefficients between the first hyperfine levels were calculated, for temperatures ranging from 5 to 70 K. By comparison with previously published N2H+-He rate coefficients, we found significant differences which cannot be reproduced by a simple scaling relationship. As a first application, we also performed radiative transfer calculations, for physical conditions typical of cold molecular clouds. We found that the simulated line intensities significantly increase when using the new H2 rate coefficients, by comparison with the predictions based on the He rate coefficients. In particular, we revisited the modelling of the N2H+ emission in the LDN 183 core, using the new collisional data, and found that all three of the density, gas kinetic temperature and N2H+ abundance had to be revised.

  4. Photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 in the VUV region

    NASA Technical Reports Server (NTRS)

    Xia, T. J.; Chien, T. S.; Wu, C. Y. Robert; Judge, D. L.

    1991-01-01

    Using synchrotron radiation as a continuum light source, the photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 have been measured from their respective ionization thresholds to 1060 A. The vibrational constants associated with the nu(2) totally symmetric, out-of-plane bending vibration of the ground electronic state of PH3(+) have been obtained. The cross sections and quantum yields for producing neutral products through photoexcitation of these molecules in the given spectral regions have also been determined. In the present work, autoionization processes were found to be less important than dissociation and predissociation processes in NH3, PH3, and C2H4. Several experimental techniques have been employed in order to examine the various possible systematic errors critically.

  5. A density functional theory study of phenyl formation initiated by ethynyl radical (C2H*) and ethyne (C2H2).

    PubMed

    Santiago, Romero M; Indarto, Antonius

    2008-12-01

    An ab initio computational density functional theory (DFT) was used to study the formation of the first cyclic molecule (phenyl) initiated by the ethynyl radical (C(2)H*). The study covers a competition reaction between the addition reactions of C(2)H* with ethyne (C(2)H(2)) and some molecular re-arrangement schemes. The minimum energy paths of the preferred cyclic formation route were characterized. A thorough thermochemical analysis was performed by evaluating the differences in the energy of activation (DeltaE), enthalpy (DeltaH), and Gibb's free energy (DeltaG) of the optimized stable and transition state (TS) molecules. The reaction temperatures were set to normal (T = 298 K) and combustion (T = 1,200 K) conditions.

  6. Hydricities of BzNADH, CH5Mo(PMe3)(CO)2H, and C5Me5Mo(PMe3)(CO)2H in acetonitrile.

    PubMed

    Ellis, William W; Raebiger, James W; Curtis, Calvin J; Bruno, Joseph W; DuBois, Daniel L

    2004-03-10

    The thermodynamic hydride donor abilities of 1-benzyl-1,4-dihydronicotinamide (BzNADH, 59 +/- 2 kcal/mol), C(5)H(5)Mo(PMe(3))(CO)(2)H (55 +/- 3 kcal/mol), and C(5)Me(5)Mo(PMe(3))(CO)(2)H (58 +/- 2 kcal/mol) have been measured in acetonitrile by calorimetric and/or equilibrium methods. The hydride donor abilities of BzNADH and C(5)H(5)Mo(PMe(3))(CO)(2)H differ by 13 and 24 kcal/mol, respectively, from those reported previously for these compounds in acetonitrile. These results require significant revisions of the hydricities reported for related NADH analogues and metal hydrides. These compounds are moderate hydride donors as compared to previously determined compounds.

  7. Optical and electrical characterization of an atmospheric pressure microplasma jet for Ar/CH{sub 4} and Ar/C{sub 2}H{sub 2} mixtures

    SciTech Connect

    Yanguas-Gil, A.; Focke, K.; Benedikt, J.; Keudell, A. von

    2007-05-15

    A rf microplasma jet working at atmospheric pressure has been characterized for Ar, He, and Ar/CH{sub 4} and Ar/C{sub 2}H{sub 2} mixtures. The microdischarge has a coaxial configuration, with a gap between the inner and outer electrodes of 250 {mu}m. The main flow runs through the gap of the coaxial structure, while the reactive gases are inserted through a capillary as inner electrode. The discharge is excited using a rf of 13.56 MHz, and rms voltages around 200-250 V and rms currents of 0.4-0.6 A are obtained. Electron densities around 8x10{sup 20} m{sup -3} and gas temperatures lower than 400 K have been measured using optical emission spectroscopy for main flows of 3 slm and inner capillary flows of 160 SCCM. By adjusting the flows, the flow pattern prevents the mixing of the reactive species with the ambient air in the discharge region, so that no traces of air are found even when the microplasma is operated in an open atmosphere. This is shown in Ar/CH{sub 4} and Ar/C{sub 2}H{sub 2} plasmas, where no CO and CN species are present and the optical emission spectroscopy spectra are mainly dominated by CH and C{sub 2} bands. The ratio of these two species follows different trends with the amount of precursor for Ar/CH{sub 4} and Ar/C{sub 2}H{sub 2} mixtures, showing the presence of distinct chemistries in each of them. In Ar/C{sub 2}H{sub 2} plasmas, CH{sub x} species are produced mainly by electron impact dissociation of C{sub 2}H{sub 2} molecules, and the CH{sub x}/C{sub 2}H{sub x} ratio is independent of the precursor amount. In Ar/CH{sub 4} mixtures, C{sub 2}H{sub x} species are formed mainly by recombination of CH{sub x} species through three-body reactions, so that the CH{sub x}/C{sub 2}H{sub x} ratio depends on the amount of CH{sub 4} present in the mixture. All these properties make our microplasma design of great interest for applications such as thin film growth or surface treatment.

  8. MICROWAVE SPECTRA AND GEOMETRIES OF C2H_{2\\cdots AgI} and C2H_{4\\cdots AgI}

    NASA Astrophysics Data System (ADS)

    Stephens, Susanna L.; Tew, David Peter; Walker, Nick; Legon, Anthony

    2015-06-01

    A chirped-pulse Fourier transform microwave spectrometer has been used to measure the microwave spectra of both C2H_{2\\cdots AgI} and C2H_{4\\cdots AgI}. These complexes are generated via laser ablation at 532 nm of a silver surface in the presence of CF3I and either C2H_{2} or C2H_{4} and argon and are stabilized by a supersonic expansion. Rotational (A0, B0, C0) and centrifugal distortion constants (ΔJ and ΔJK) of each molecule have been determined as well the nuclear electric quadrupole coupling constants the iodine atom (χaa(I) and χbb-χcc(I)). The spectrum of each molecule is consistent with a C2v structure in which the metal atom interacts with the π-orbital of the ethene or ethyne molecule. Isotopic substitutions of atoms within the C2H_{2} or C2H_{4} subunits are in progress and in conjunction with high level ab initio calculations will allow for accurate determination of the geometry of each molecule. These to complexes are put in the context of the recently studied H2S\\cdots AgI, OC\\cdotsAgI, H3N\\cdots AgI and (CH3)_{3N\\cdots AgI}. S.Z. Riaz, S.L. Stephens, W. Mizukami, D.P. Tew, N.R. Walker, A.C. Legon, Chem. Phys. Let., 531, 1-12 (2012) S.L. Stephens, W. Mizukami, D.P. Tew, N.R. Walker, A.C. Legon, J. Chem. Phys., 136(6), 064306 (2012) D.M. Bittner, D.P. Zaleski, S.L. Stephens, N.R. Walker, A.C. Legon, Study in progress.

  9. Water vapor d2H dynamics over China derived from SCIAMACHY satellite measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigates water vapor isotopic patterns and controls over China using high-quality water vapor delta2H data retrieved from Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) observations. The results show that water vapor delta2H values on both annual and...

  10. Synthesis of 2H-indazoles by the [3 + 2] dipolar cycloaddition of sydnones with arynes.

    PubMed

    Fang, Yuesi; Wu, Chunrui; Larock, Richard C; Shi, Feng

    2011-11-04

    A rapid and efficient synthesis of 2H-indazoles has been developed using a [3 + 2] dipolar cycloaddition of sydnones and arynes. A series of 2H-indazoles have been prepared in good to excellent yields using this protocol, and subsequent Pd-catalyzed coupling reactions can be applied to the halogenated products to generate a structurally diverse library of indazoles.

  11. Robustness of N2H+ as tracer of the CO snowline

    NASA Astrophysics Data System (ADS)

    van't Hoff, M. L. R.; Walsh, C.; Kama, M.; Facchini, S.; van Dishoeck, E. F.

    2017-03-01

    Context. Snowlines in protoplanetary disks play an important role in planet formation and composition. Since the CO snowline is difficult to observe directly with CO emission, its location has been inferred in several disks from spatially resolved ALMA observations of DCO+ and N2H+. Aims: N2H+ is considered to be a good tracer of the CO snowline based on astrochemical considerations predicting an anti-correlation between N2H+ and gas-phase CO. In this work, the robustness of N2H+ as a tracer of the CO snowline is investigated. Methods: A simple chemical network was used in combination with the radiative transfer code LIME to model the N2H+ distribution and corresponding emission in the disk around TW Hya. The assumed CO and N2 abundances, corresponding binding energies, cosmic ray ionization rate, and degree of large-grain settling were varied to determine the effects on the N2H+ emission and its relation to the CO snowline. Results: For the adopted physical structure of the TW Hya disk and molecular binding energies for pure ices, the balance between freeze-out and thermal desorption predicts a CO snowline at 19 AU, corresponding to a CO midplane freeze-out temperature of 20 K. The N2H+ column density, however, peaks 5-30 AU outside the snowline for all conditions tested. In addition to the expected N2H+ layer just below the CO snow surface, models with an N2/CO ratio ≳0.2 predict an N2H+ layer higher up in the disk due to a slightly lower photodissociation rate for N2 as compared to CO. The influence of this N2H+ surface layer on the position of the emission peak depends on the total CO and N2 abundances and the disk physical structure, but the emission peak generally does not trace the column density peak. A model with a total (gas plus ice) CO abundance of 3 × 10-6 with respect to H2 fits the position of the emission peak previously observed for the TW Hya disk. Conclusions: The relationship between N2H+ and the CO snowline is more complicated than generally

  12. The transcriptional regulator c2h2 accelerates mushroom formation in Agaricus bisporus.

    PubMed

    Pelkmans, Jordi F; Vos, Aurin M; Scholtmeijer, Karin; Hendrix, Ed; Baars, Johan J P; Gehrmann, Thies; Reinders, Marcel J T; Lugones, Luis G; Wösten, Han A B

    2016-08-01

    The Cys2His2 zinc finger protein gene c2h2 of Schizophyllum commune is involved in mushroom formation. Its inactivation results in a strain that is arrested at the stage of aggregate formation. In this study, the c2h2 orthologue of Agaricus bisporus was over-expressed in this white button mushroom forming basidiomycete using Agrobacterium-mediated transformation. Morphology, cap expansion rate, and total number and biomass of mushrooms were not affected by over-expression of c2h2. However, yield per day of the c2h2 over-expression strains peaked 1 day earlier. These data and expression analysis indicate that C2H2 impacts timing of mushroom formation at an early stage of development, making its encoding gene a target for breeding of commercial mushroom strains.

  13. Structural characterization of (C2H2)1-6+ cluster ions by vibrational predissociation spectroscopy

    NASA Astrophysics Data System (ADS)

    Relph, Rachael A.; Bopp, Joseph C.; Roscioli, Joseph R.; Johnson, Mark A.

    2009-09-01

    Vibrational predissociation spectra are reported for the cationic acetylene clusters, (C2H2)n+, n =1-6, in the region of the C-H stretching fundamentals. For n =1 and 2, predissociation could only be observed for the Ar-tagged clusters. These were prepared by charge-transfer collisions of Ark+ with C2H2 to create C2H2+ṡArm clusters, which were then converted into larger members of the (C2H2)n+ṡAr series by sequential addition of acetylene molecules. The (C2H2)2+ṡAr spectrum indicates that this species is predominantly present as the cyclobutadiene cation. Although mobility measurements on the electron-impact-generated (C2H2)3+ ion indicated that it primarily occurs as the benzene cation, [P. O. Momoh, J. Am. Chem. Soc. 128, 12408 (2006)] photofragmentation of (C2H2)3+ṡAr in the C-H stretching region is dominated by the loss of C2H2 in addition to the weakly bound Ar atom. This suggests that the dominant n =3 species formed by sequential addition of C2H2 is based on a covalently bound C4H4+ core ion. Interestingly, the spectrum of this core C4H4+ species is different from that found for the cyclobutadiene cation, displaying instead a new band pattern that is retained in the higher (C2H2)3-6+ clusters. Multiple isomers are clearly involved, as yet another pattern of bands is recovered when the (C2H2)3+ṡAr action spectrum is recorded in the (minor) Ar loss fragmentation channel. One of these features does appear in the location of the single band characteristic of the Ar-tagged benzene cation reported earlier [Phys. Chem. Chem. Phys. 4, 24 (2002)], supporting a scenario where the benzene cation is one of the isomers present. We then compare the Ar predissociation results with (C2H2)n+ spectra obtained when the ions are prepared by electron impact ionization of neutral acetylene clusters. The photofragmentation behavior and vibrational spectra indicate that the dominant species formed in this way also occur with a covalently bound C4H4+ core. There are

  14. The determination of deep temperatures by means of the CO-CO2-H2-H2O geothermometer: an example using fumaroles in the Campi Flegrei, Italy

    NASA Astrophysics Data System (ADS)

    Tedesco, D.; Sabroux, J. C.

    1987-02-01

    Chromatographic analyses of fumarolic gases, collected in sampling bottles containing an alkaline solution, have been carried out using a thermal conductivity detector and a flame ionization detector, after catalytic conversion of CO and CH4. The latter method enables the concentration of carbon monoxide to be measured with sufficient accuracy for use in a CO-CO2-H2-H2O geothermometer. Application of this geothermometer to fumaroles in the crater of Solfatara in the Campi Flegrei, Italy, indicates that they are fed from a steam reservoir at 250±15 °C and at 10-36±2atm of oxygen. On the other hand, the CH4-CO2-H2-H2O geothermobarometer seems to re-equilibrate at superficial temperatures and cannot be used for infering thermodynamic conditions at depth. Regular sampling of these fumaroles together with a geothermometric interpretation of the gas analyses provides a means of monitoring, with comparative accuracy, the chemical and thermal evolution of the hydrothermal reservoir below the Solfatara crater. Such monitoring would probably detect an increase in temperature at depth and the injection of magmatic gas into the reservoir.

  15. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    DOEpatents

    Alvarez, Marc A.; Martinez, Rodolfo A.; Unkefer, Clifford J.

    2008-01-22

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S--, --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group. The present invention is also directed to a process of preparing labeled compounds, e.g., process of preparing [.sup.13C]methacrylic acid by reacting a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13CH.sub.2)-- aryl sulfone precursor with .sup.13CHI to form a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate, and, reacting the (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate with sodium hydroxide, followed by acid to form [.sup.13C]methacrylic acid. The present invention is further directed to a process of preparing [.sup.2H.sub.8]methyl methacrylate by reacting a (HOOC--C(C.sup.2H.sub.3).sub.2-- aryl sulfinyl intermediate with CD.sub.3I to form a (.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate, and heating the(.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate at temperatures and for time sufficient to form [.sup.2H.sub.8]methyl methacrylate.

  16. Trends and variations in CO, C2H6, and HCN in the Southern Hemisphere point to the declining anthropogenic emissions of CO and C2H6

    NASA Astrophysics Data System (ADS)

    Zeng, G.; Wood, S. W.; Morgenstern, O.; Jones, N. B.; Robinson, J.; Smale, D.

    2012-08-01

    We analyse the carbon monoxide (CO), ethane (C2H6) and hydrogen cyanide (HCN) partial columns (from the ground to 12 km) derived from measurements by ground-based solar Fourier Transform Spectroscopy at Lauder, New Zealand (45° S, 170° E), and at Arrival Heights, Antarctica (78° S, 167° E), from 1997 to 2009. Significant negative trends are calculated for all species at both locations, based on the daily-mean observed time series, namely CO (-0.94 ± 0.47% yr-1), C2H6 (-2.37 ± 1.18% yr-1) and HCN (-0.93 ± 0.47% yr-1) at Lauder and CO (-0.92 ± 0.46% yr-1), C2H6 (-2.82 ± 1.37% yr-1) and HCN (-1.41 ± 0.71% yr-1) at Arrival Heights. The uncertainties reflect the 95% confidence limits. However, the magnitudes of the trends are influenced by the anomaly associated with the 1997-1998 El Niño Southern Oscillation event at the beginning of the time series reported. We calculate trends for each month from 1997 to 2009 and find negative trends for all months. The largest monthly trends of CO and C2H6 at Lauder, and to a lesser degree at Arrival Heights, occur during austral spring during the Southern Hemisphere tropical and subtropical biomass burning period. For HCN, the largest monthly trends occur in July and August at Lauder and around November at Arrival Heights. The correlations between CO and C2H6 and between CO and HCN at Lauder in September to November, when the biomass burning maximizes, are significantly larger that those in other seasons. A tropospheric chemistry-climate model is used to simulate CO, C2H6, and HCN partial columns for the period of 1997-2009, using interannually varying biomass burning emissions from GFED3 and annually periodic but seasonally varying emissions from both biogenic and anthropogenic sources. The model-simulated partial columns of these species compare well with the measured partial columns and the model accurately reproduces seasonal cycles of all three species at both locations. However, while the model satisfactorily

  17. Homotopy Algorithm for Fixed Order Mixed H2/H(infinity) Design

    NASA Technical Reports Server (NTRS)

    Whorton, Mark; Buschek, Harald; Calise, Anthony J.

    1996-01-01

    Recent developments in the field of robust multivariable control have merged the theories of H-infinity and H-2 control. This mixed H-2/H-infinity compensator formulation allows design for nominal performance by H-2 norm minimization while guaranteeing robust stability to unstructured uncertainties by constraining the H-infinity norm. A key difficulty associated with mixed H-2/H-infinity compensation is compensator synthesis. A homotopy algorithm is presented for synthesis of fixed order mixed H-2/H-infinity compensators. Numerical results are presented for a four disk flexible structure to evaluate the efficiency of the algorithm.

  18. Identification of acetylene /C2H2/ in infrared atmospheric absorption spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Gillis, J. R.; Bonomo, F. S.; Murcray, F. H.; Murcray, D. G.; Cicerone, R. J.

    1981-01-01

    Infrared atmospheric absorption spectra at 0.02/cm resolution were obtained during a balloon flight on March 23, 1981 from the Holloman AFB, New Mexico. The absorption features, attributed to C2H2, were used to derive a preliminary mixing ratio of about 25 pptv near 9 km, accurate to + or - 40%. This mixing ratio falls into the range of values calculated for the upper troposphere C2H2 in a photochemical/transport model. However, previous measurements from aircraft grab sampling (Cronn and Robinson, 1979) show four to twelve times this C2H2 concentration 1.5 km below the tropopause.

  19. Determination of the delta(2H/1H)of Water: RSIL Lab Code 1574

    USGS Publications Warehouse

    Revesz, Kinga; Coplen, Tyler B.

    2008-01-01

    Reston Stable Isotope Laboratory (RSIL) lab code 1574 describes a method used to determine the relative hydrogen isotope-ratio delta(2H,1H), abbreviated hereafter as d2H of water. The d2H measurement of water also is a component of the National Water Quality Laboratory (NWQL) schedules 1142 and 1172. The water is collected unfiltered in a 60-mL glass bottle and capped with a Polyseal cap. In the laboratory, the water sample is equilibrated with gaseous hydrogen using a platinum catalyst (Horita, 1988; Horita and others, 1989; Coplen and others, 1991). The reaction for the exchange of one hydrogen atom is shown in equation 1.

  20. High-resolution spectroscopy of Saturn at 3 microns: CH 4, CH 3D, C 2H 2, C 2H 6, PH 3, clouds, and haze

    NASA Astrophysics Data System (ADS)

    Kim, Joo Hyeon; Kim, Sang J.; Geballe, Thomas R.; Kim, Sungsoo S.; Brown, Linda R.

    2006-12-01

    We report observation and analysis of a high-resolution 2.87-3.54 μm spectrum of the southern temperate region of Saturn obtained with NIRSPEC at Keck II. The spectrum reveals absorption and emission lines of five molecular species as well as spectral features of haze particles. The ν+ν band of CH 3D is detected in absorption between 2.87 and 2.92 μm; and we derived from it a mixing ratio approximately consistent with the Infrared Space Observatory result. The ν band of C 2H 2 also is detected in absorption between 2.95 and 3.05 μm; analysis indicates a sudden drop in the C 2H 2 mixing ratio at 15 mbar (130 km above the 1 bar level), probably due to condensation in the low stratosphere. The presence of the ν+ν+ν band of C 2H 6 near 3.07 μm, first reported by Bjoraker et al. [Bjoraker, G.L., Larson, H.P., Fink, U., 1981. Astrophys. J. 248, 856-862], is confirmed, and a C 2H 6 condensation altitude of 10 mbar (140 km) in the low stratosphere is determined. We assign weak emission lines within the 3.3 μm band of CH 4 to the ν band of C 2H 6, and derive a mixing ratio of 9±4×10 for this species. Most of the C 2H 6 3.3 μm line emission arises in the altitude range 460-620 km (at ˜μbar pressure levels), much higher than the 160-370 km range where the 12 μm thermal molecular line emission of this species arises. At 2.87-2.90 μm the major absorber is tropospheric PH 3. The cloud level determined here and at 3.22-3.54 is 390-460 mbar (˜30 km), somewhat higher than found by Kim and Geballe [Kim, S.J., Geballe, T.R., 2005. Icarus 179, 449-458] from analysis of a low resolution spectrum. A broad absorption feature at 2.96 μm, which might be due to NH 3 ice particles in saturnian clouds, is also present. The effect of a haze layer at about 125 km (˜12 mbar level) on the 3.20-3.54 μm spectrum, which was not apparent in the low resolution spectrum, is clearly evident in the high resolution data, and the spectral properties of the haze particles suggest that

  1. Alcohol Chemistry: Tentative Detections of Two New Interstellar Big Molecules CH_3OC_2H_5 and (C_2H_5)_2O

    NASA Astrophysics Data System (ADS)

    Kuan, Y.-J.; Charnley, S. B.; Wilson, T. L.; Ohishi, M.; Huang, H.-C.; Snyder, L. E.

    1999-05-01

    Recent modeling of gas-grain chemistry demonstrated that many of the organic species are not the products of grain-surface reactions but are in fact synthesized in the warm gas from simpler species produced on grains. To test gas-grain chemistry, in particular alcohol chemistry, we have thus searched for (C_2H_5)_2O (diethyl ether) and CH_3OC_2H_5 (methyl ethyl ether), using the NRAO 12-m, in the giant molecular cloud cores Sgr B2(N), W51 e1/e2 and Orion-KL, where alcohols have been evaporated from ice mantles. In addition, we have also used the BIMA array to observe the 3-mm transitions of the two molecules toward Sgr B2. The preliminary 12-m results indicate clean detections of various line transitions of the two molecular species in the 1-mm, 2-mm and 3-mm regimes in all 3 molecular cloud cores. Furthermore our BIMA maps show a clear concentration of CH_3OH toward Sgr B2(N), the Large Molecule Heimat; sole detections of CH_3OC_2H_5 and (C_2H_5)_2O toward Sgr B2(N), instead of the more evolved Sgr B2(M), are also observed unambiguously as predicted by alcohol chemistry. Our detections of the two complex molecules not only further confirm the gas-grain chemistry but also require specifically that methanol (CH_3OH) and ethanol (C_2H_5OH) to be formed in grain mantles. In addition, the detections of diethyl ether and methyl ethyl ether lead to the discovery of two new molecules, including the largest ever, (C_2H_5)_2O. This work was partially supported by: NSC grants 87-2112-M-003-007 and 88-2112-M-003-013 of Taiwan, National Taiwan Normal University, Academia Sinica Institute of Astronomy and Astrophysics, NSF AST 96-13999, the University of Illinois, and NASA's Exobiology Program.

  2. One-step fabrication of nickel nanocones by electrodeposition using CaCl2·2H2O as capping reagent

    NASA Astrophysics Data System (ADS)

    Lee, Jae Min; Jung, Kyung Kuk; Lee, Sung Ho; Ko, Jong Soo

    2016-04-01

    In this research, a method for the fabrication of nickel nanocones through the addition of CaCl2·2H2O to an electrodeposition solution was proposed. When electrodeposition was performed after CaCl2·2H2O addition, precipitation of the Ni ions onto the (2 0 0) crystal face was suppressed and anisotropic growth of the nickel electrodeposited structures was promoted. Sharper nanocones were produced with increasing concentration of CaCl2·2H2O added to the solution. Moreover, when temperature of the electrodeposition solutions approached 60 °C, the apex angle of the nanostructures decreased. In addition, the nanocones produced were applied to superhydrophobic surface modification using a plasma-polymerized fluorocarbon (PPFC) coating. When the solution temperature was maintained at 60 °C and the concentration of the added CaCl2·2H2O was 1.2 M or higher, the fabricated samples showed superhydrophobic surface properties. The proposed nickel nanocone formation method can be applied to various industrial fields that require metal nanocones, including superhydrophobic surface modification.

  3. Infrared and Ultraviolet Spectra of Diborane(6): B2H6 and B2D6.

    PubMed

    Peng, Yu-Chain; Chou, Sheng-Lung; Lo, Jen-Iu; Lin, Meng-Yeh; Lu, Hsiao-Chi; Cheng, Bing-Ming; Ogilvie, J F

    2016-07-21

    We recorded absorption spectra of diborane(6), B2H6 and B2D6, dispersed in solid neon near 4 K in both mid-infrared and ultraviolet regions. For gaseous B2H6 from 105 to 300 nm, we report quantitative absolute cross sections; for solid B2H6 and for B2H6 dispersed in solid neon, we measured ultraviolet absorbance with relative intensities over a wide range. To assign the mid-infrared spectra to specific isotopic variants, we applied the abundance of (11)B and (10)B in natural proportions; we undertook quantum-chemical calculations of wavenumbers associated with anharmonic vibrational modes and the intensities of the harmonic vibrational modes. To aid an interpretation of the ultraviolet spectra, we calculated the energies of electronically excited singlet and triplet states and oscillator strengths for electronic transitions from the electronic ground state.

  4. Oxydifluoromethylation of Alkenes by Photoredox Catalysis: Simple Synthesis of CF2H-Containing Alcohols.

    PubMed

    Arai, Yusuke; Tomita, Ren; Ando, Gaku; Koike, Takashi; Akita, Munetaka

    2016-01-22

    We have developed a novel and simple protocol for the direct incorporation of a difluoromethyl (CF2 H) group into alkenes by visible-light-driven photoredox catalysis. The use of fac-[Ir(ppy)3] (ppy=2-pyridylphenyl) photocatalyst and shelf-stable Hu's reagent, N-tosyl-S-difluoromethyl-S-phenylsulfoximine, as a CF2 H source is the key to success. The well-designed photoredox system achieves synthesis of not only β-CF2 H-substituted alcohols but also ethers and an ester from alkenes through solvolytic processes. The present method allows a single-step and regioselective formation of C(sp(3))-CF2 H and C(sp(3))-O bonds from C=C moiety in alkenes, such as hydroxydifluoromethylation, regardless of terminal or internal alkenes. Moreover, this methodology tolerates a variety of functional groups.

  5. The growth of phenanthrene from naphthalene by C2H2 additions

    NASA Astrophysics Data System (ADS)

    Bauschlicher, Charles W., Jr.

    2015-07-01

    Two paths are investigated for the growth of phenanthrene from naphthalene by the addition of C2H2 groups. The first series of steps leads to acenaphthylene (ACN), which is consistent with the path found previously. The addition of C2H2 to ACN can yield a product with two adjacent five-membered rings. Opening one five-membered ring produces a five-membered ring with CH2 side group. This can be converted to a six-membered ring in a manner analogous to the hydrogen atom catalysed fulvene to benzene conversion. A second path, with a somewhat higher barrier, can also lead to the phenanthrene product. The transition state for the second path is essentially isoenergetic with the stating material of ACN + C2H2 + H.

  6. Ecocatalysis for 2H-chromenes synthesis: an integrated approach for phytomanagement of polluted ecosystems.

    PubMed

    Escande, Vincent; Velati, Alicia; Grison, Claude

    2015-04-01

    A direct, general and efficient method to synthesize 2H-chromenes (2H-benzo[b]pyrans), identified as environmentally friendly pesticides, has been developed. This approach lays on the new concept of ecocatalysis, which involves the use of biomass from phytoextraction processes, as a valuable source of metallic elements for chemical synthesis. This methodology is similar or superior to known methods, affording 2H-chromenes with good to excellent yields (60-98%), including the preparation of precocene I, a natural insect growth regulator, with 91% yield. The approach is ideal for poor reactive substrates such as phenol or naphthol, classically transformed into 2H-chromenes by methodologies associated with environmental issues. These results illustrate the interest of combining phytoextraction and green synthesis of natural insecticides.

  7. Epitaxial growth and electronic structure of oxyhydride SrVO2H thin films

    NASA Astrophysics Data System (ADS)

    Katayama, Tsukasa; Chikamatsu, Akira; Yamada, Keisuke; Shigematsu, Kei; Onozuka, Tomoya; Minohara, Makoto; Kumigashira, Hiroshi; Ikenaga, Eiji; Hasegawa, Tetsuya

    2016-08-01

    Oxyhydride SrVO2H epitaxial thin films were fabricated on SrTiO3 substrates via topotactic hydridation of oxide SrVO3 films using CaH2. Structural and composition analyses suggested that the SrVO2H film possessed one-dimensionally ordered V-H--V bonds along the out-of-plane direction. The synthesis temperature could be lowered by reducing the film thickness, and the SrVO2H film was reversible to SrVO3 by oxidation through annealing in air. Photoemission and X-ray absorption spectroscopy measurements revealed the V3+ valence state in the SrVO2H film, indicating that the hydrogen existed as hydride. Furthermore, the electronic density of states was highly suppressed at the Fermi energy, consistent with the prediction that tetragonal distortion induces metal to insulation transition.

  8. Synthesis of 2H-indazoles by the [3 + 2] cycloaddition of arynes and sydnones.

    PubMed

    Wu, Chunrui; Fang, Yuesi; Larock, Richard C; Shi, Feng

    2010-05-21

    A rapid and efficient synthesis of 2H-indazoles has been developed, which involves the [3 + 2] dipolar cycloaddition of arynes and sydnones. The process proceeds under mild reaction conditions in good to excellent yields.

  9. Large-scale Spectroscopic Mapping of the ρ Ophiuchi Molecular Cloud Complex. I. The C2H-to-N2H+ Ratio as a Signpost of Cloud Characteristics

    NASA Astrophysics Data System (ADS)

    Pan, Zhichen; Li, Di; Chang, Qiang; Qian, Lei; Bergin, Edwin A.; Wang, Junzhi

    2017-02-01

    We present 2.5-square-degree C2H N = 1–0 and N2H+ J = 1–0 maps of the ρ Ophiuchi molecular cloud complex. These are the first large-scale maps of the ρ Ophiuchi molecular cloud complex with these two tracers. The C2H emission is spatially more extended than the N2H+ emission. One faint N2H+ clump, Oph-M, and one C2H ring, Oph-RingSW, are identified for the first time. The observed C2H-to-N2H+ abundance ratio ([C2H]/[N2H+]) varies between 5 and 110. We modeled the C2H and N2H+ abundances with 1D chemical models, which show a clear decline of [C2H]/[N2H+] with chemical age. Such an evolutionary trend is little affected by temperatures when they are below 40 K. At high density (n H > 105 cm‑3), however, the time it takes for the abundance ratio to drop at least one order of magnitude becomes less than the dynamical time (e.g., turbulence crossing time of ∼105 yr). The observed [C2H]/[N2H+] difference between L1688 and L1689 can be explained by L1688 having chemically younger gas in relatively less dense regions. The observed [C2H]/[N2H+] values are the results of time evolution, accelerated at higher densities. For the relatively low density regions in L1688 where only C2H emission was detected, the gas should be chemically younger.

  10. Synthesis of 2H-Indazoles by the [3 + 2] Dipolar Cycloaddition of Sydnones with Arynes

    PubMed Central

    Fang, Yuesi; Wu, Chunrui; Larock, Richard C.; Shi, Feng

    2011-01-01

    A rapid and efficient synthesis of 2H-indazoles has been developed using a [3 + 2] dipolar cycloaddition of sydnones and arynes. A series of 2H-indazoles have been prepared in good to excellent yields using this protocol, and subsequent Pd-catalyzed coupling reactions can be applied to the halogenated products to generate a structurally diverse library of indazoles. PMID:21970468

  11. Natural-abundance solid-state 2H NMR spectroscopy at high magnetic field.

    PubMed

    Aliev, Abil E; Mann, Sam E; Iuga, Dinu; Hughes, Colan E; Harris, Kenneth D M

    2011-06-09

    High-resolution solid-state (2)H NMR spectroscopy provides a method for measuring (1)H NMR chemical shifts in solids and is advantageous over the direct measurement of high-resolution solid-state (1)H NMR spectra, as it requires only the application of routine magic angle sample spinning (MAS) and routine (1)H decoupling methods, in contrast to the requirement for complex pulse sequences for homonuclear (1)H decoupling and ultrafast MAS in the case of high-resolution solid-state (1)H NMR. However, a significant obstacle to the routine application of high-resolution solid-state (2)H NMR is the very low natural abundance of (2)H, with the consequent problem of inherently low sensitivity. Here, we explore the feasibility of measuring (2)H MAS NMR spectra of various solids with natural isotopic abundances at high magnetic field (850 MHz), focusing on samples of amino acids, peptides, collagen, and various organic solids. The results show that high-resolution solid-state (2)H NMR can be used successfully to measure isotropic (1)H chemical shifts in favorable cases, particularly for mobile functional groups, such as methyl and -N(+)H(3) groups, and in some cases phenyl groups. Furthermore, we demonstrate that routine (2)H MAS NMR measurements can be exploited for assessing the relative dynamics of different functional groups in a molecule and for assessing whole-molecule motions in the solid state. The magnitude and field-dependence of second-order shifts due to the (2)H quadrupole interaction are also investigated, on the basis of analysis of simulated and experimental (1)H and (2)H MAS NMR spectra of fully deuterated and selectively deuterated samples of the α polymorph of glycine at two different magnetic field strengths.

  12. Analysis of dissolved C2H2 in transformer oils using laser Raman spectroscopy.

    PubMed

    Somekawa, Toshihiro; Kasaoka, Makoto; Kawachi, Fumio; Nagano, Yoshitomo; Fujita, Masayuki; Izawa, Yasukazu

    2013-04-01

    We have developed a laser Raman spectroscopy technique for assessing the working conditions of transformers by measuring dissolved C2H2 gas concentrations present in transformer oils. A frequency doubled Q-switched Nd:YAG laser (532 nm) was used as a laser source, and Raman signals at ~1972 cm(-1) originating from C2H2 gas dissolved in oil were detected. The results show that laser Raman spectroscopy is a useful alternative method for detecting transformer faults.

  13. Structural aspects of nucleotide ligand binding by a bacterial 2H phosphoesterase

    PubMed Central

    Myllykoski, Matti; Kursula, Petri

    2017-01-01

    The 2H phosphoesterase family contains enzymes with two His-X-Ser/Thr motifs in the active site. 2H enzymes are found in all kingdoms of life, sharing little sequence identity despite the conserved overall fold and active site. For many 2H enzymes, the physiological function is unknown. Here, we studied the structure of the 2H family member LigT from Escherichia coli both in the apo form and complexed with different active-site ligands, including ATP, 2′-AMP, 3′-AMP, phosphate, and NADP+. Comparisons to the well-characterized vertebrate myelin enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) highlight specific features of the catalytic cycle and substrate recognition in both enzymes. The role played by the helix α7, unique to CNPases within the 2H family, is apparently taken over by Arg130 in the bacterial enzyme. Other residues and loops lining the active site groove are likely to be important for RNA substrate binding. We visualized conformational changes related to ligand binding, as well as the position of the nucleophilic water molecule. We also present a low-resolution model of E. coli LigT bound to tRNA in solution, and provide a model for RNA binding by LigT, involving flexible loops lining the active site cavity. Taken together, our results both aid in understanding the common features of 2H family enzymes and help highlight the distinct features in the 2H family members, which must result in different reaction mechanisms. Unique aspects in different 2H family members can be observed in ligand recognition and binding, and in the coordination of the nucleophilic water molecule and the reactive phosphate moiety. PMID:28141848

  14. A Classical Trajectory Study of the Dissociation and Isomerization of C2H5

    DTIC Science & Technology

    2013-01-01

    C2H5) plays an important role in combustion chemistry. Because the reverse reactions constitute the addition of a hydrogen atom to a stable molecule...primary reaction zones of premixed flames. The hydrogen atom thus produced acts to promote chain branching through the H + O2 ⇌ OH + O reaction . Thus...calculations of reaction paths on the electronically excited-state potential energy surfaces (PESs) of C2H5 14 predict that the nonclassical bridge structure is

  15. Determination of Transformation Coefficients of the C2H4 Molecule

    NASA Astrophysics Data System (ADS)

    Fomchenko, A. L.; Belova, A. S.; Berezkin, K. B.; Ziatkova, A. G.

    2016-11-01

    The object of theoretical research is the C 2 H 4 molecule, as it is important to know its properties to address numerous problems of molecular physics. The "expanded" local mode approach developed earlier was used for a X2Y4 molecule. This approach makes it possible to obtain simple expressions for the transformation coefficients of the investigated molecule, which subsequently allows one to determine various spectroscopic parameters of the C 2 H 4 molecule in a simple form.

  16. Synthesis of a library of 2-alkyl-3-alkyloxy-2H-indazole-6-carboxamides.

    PubMed

    Mills, Aaron D; Maloney, Patrick; Hassanein, Elsayed; Haddadin, Makhluf J; Kurth, Mark J

    2007-01-01

    A library of 200 2-alkyl-3-alkyloxy-2H-indazole-6-carboxamides was synthesized using parallel solution-phase methods. The indazole cyclization reaction was optimized for library production with the best yields resulting from controlled alcohol/water solvent ratios. The key step, a heterocyclization reaction, proceeds by N,N-bond formation and delivers the 2H-indazole scaffold. Automated preparative HPLC was utilized to provide pure compounds on a 10+ mg scale.

  17. Calculation of the solubility diagrams in the system Ca(OH) 2-H 3PO 4-KOH-HNO 3-CO 2-H 2O

    NASA Astrophysics Data System (ADS)

    Vereecke, Guy; Lemaître, Jacques

    1990-09-01

    A computer program has been developed for calculating the solubility isotherms of sparingly soluble calcium phosphates (including octacalcium phosphate and β-tricalcium phosphate) and calcite in the system Ca(OH) 2-H 3PO 4-KOH-HNO 3-CO 2-H 2O. It allows the influence of such parameters as temperature, pH, partial CO 2 pressure and ionic strength to be investigated. The calculation process takes into account the effects of ion-pair formation and ionic strength. Selected solubility isotherms are presented and compared to literature data. The influence of temperature, Ca/P ratio, ionic strength and CO 2 pressure on the stability isotherms of hydroxyapatite and dicalcium phosphate are discussed in detail.

  18. A copper–polyol complex: [Na2(C2H6O2)6][Cu(C2H4O2)2

    PubMed Central

    Rivers, Joseph H.; Carroll, Kyler J.; Jones, Richard A.; Carpenter, Everett E.

    2010-01-01

    The ionic title complex, bis(μ-ethyl­ene glycol)-κ3 O,O′:O′;κ3 O:O,O′-bis[(ethyl­ene glycol-κ2 O,O′)(ethyl­ene glycol-κO)sodium] bis(ethyl­ene glycolato-κ2 O,O′)copper(II), [Na2(C2H6O2)6][Cu(C2H4O2)2], was obtained from a basic solution of CuCl2 in ethyl­ene glycol and consists of discrete ions inter­connected by O—H⋯O hydrogen bonds. This is the first example of a disodium–ethyl­ene glycol complex cation cluster. The cation lies about an inversion center and the CuII atom of the anion lies on another independent inversion center. PMID:20203401

  19. Direct ab initio study of the C6H6 + CH3/C2H5 = C6H5 + CH4/C2H6 reactions

    NASA Astrophysics Data System (ADS)

    Mai, Tam V.-T.; Ratkiewicz, Artur; Duong, Minh v.; Huynh, Lam K.

    2016-02-01

    A kinetic study of the reactions C6H6 + CH3/C2H5 = C6H5 + CH4/C2H6 was carried out in the temperature range of 300-2500 K using high levels of electronic structure theory, namely, CCSD(T)/CBS//BH&HLYP/cc-pVDZ, and canonical variational transition state theory (CVT) with corrections for small curvature tunneling (SCT) and hindered internal rotation (HIR) treatments. It is found that variational effect is not important and both SCT and HIR corrections noticeably affect the rate constants. Being in good agreement with literature data, the calculated results provide solid basis information for the investigation of the polyaromatic hydrocarbon (PAH) + alkyl radical reaction, an important class in combustion and soot formation.

  20. Multiparameter functional diversity of human C2H2 zinc finger proteins

    PubMed Central

    Schmitges, Frank W.; Radovani, Ernest; Najafabadi, Hamed S.; Barazandeh, Marjan; Campitelli, Laura F.; Yin, Yimeng; Jolma, Arttu; Zhong, Guoqing; Guo, Hongbo; Kanagalingam, Tharsan; Dai, Wei F.; Taipale, Jussi; Emili, Andrew; Greenblatt, Jack F.; Hughes, Timothy R.

    2016-01-01

    C2H2 zinc finger proteins represent the largest and most enigmatic class of human transcription factors. Their C2H2-ZF arrays are highly variable, indicating that most will have unique DNA binding motifs. However, most of the binding motifs have not been directly determined. In addition, little is known about whether or how these proteins regulate transcription. Most of the ∼700 human C2H2-ZF proteins also contain at least one KRAB, SCAN, BTB, or SET domain, suggesting that they may have common interacting partners and/or effector functions. Here, we report a multifaceted functional analysis of 131 human C2H2-ZF proteins, encompassing DNA binding sites, interacting proteins, and transcriptional response to genetic perturbation. We confirm the expected diversity in DNA binding motifs and genomic binding sites, and provide motif models for 78 previously uncharacterized C2H2-ZF proteins, most of which are unique. Surprisingly, the diversity in protein–protein interactions is nearly as high as diversity in DNA binding motifs: Most C2H2-ZF proteins interact with a unique spectrum of co-activators and co-repressors. Thus, multiparameter diversification likely underlies the evolutionary success of this large class of human proteins. PMID:27852650

  1. C2H4 adsorption on Cu(210), revisited: bonding nature and coverage effects.

    PubMed

    Amino, Shuichi; Arguelles, Elvis; Agerico Diño, Wilson; Okada, Michio; Kasai, Hideaki

    2016-08-24

    With the aid of density functional theory (DFT)-based calculations, we investigate the adsorption of C2H4 on Cu(210). We found two C2H4 adsorption sites, viz., the top of the step-edge atom (S) and the long bridge between two step-edge atoms (SS) of Cu(210). The step-edge atoms on Cu(210) block the otherwise active terrace sites found on copper surfaces with longer step sizes. This results in the preference for π-bonded over di-σ-bonded C2H4. We also found two stable C2H4 adsorption orientations on the S- and SS-sites, viz., with the C2H4 C[double bond, length as m-dash]C bond parallel (fit) and perpendicular (cross) to [001]. Furthermore, we found that the three peaks observed in previous temperature programmed desorption (TPD) experiment [Surf. Sci., 2011, 605, 934-940] could be attributed to C2H4 in the S-fit or S-cross, S-fit and S-cross-fit (S-cross and S-fit configurations that both exist in the same unit cell) configurations on Cu(210).

  2. DISSOCIATION OF B2H6 AND ADSORPTION OF THE FRAGMENTS OF B2H6 ON THE STEPPED Ge(100) SURFACE

    NASA Astrophysics Data System (ADS)

    Türkmenoğlu, Mustafa; Katircioğlu, Şenay

    2012-06-01

    In this work, the p-type doping of the SA type stepped Ge(100) surface by a diborane (B2H6) gas flow has been simulated by the possible dissociation and adsorption models. The most probable dissociation model of B2H6 and adsorption models of the fragments of B2H6 on the stepped Ge(100) surface have been determined by the local minimum total energy and/or binding energy calculations based on the Density functional (B3LYP/6-3g) and Hartree-Fock (HF/STO-3g) theories, respectively. The present calculations have shown that, the step region (for both up and down terraces) of the stepped Ge(100) surface has the most attractive sites for BH3 molecules determined to be the first dissociation fragments of B2H6 by an external energy of 1.3 eV. It has been found that, at the first step of the adsorption, BH3 can dissociate to BH2 and BH fragments on the stepped Ge(100) surface. While BH3 and BH2 products prefer to be attached to a single surface Ge atom, BH is bridged between two adjacent surface Ge atoms. According to the present optimization calculations, the p-type doping process of the stepped Ge(100) surface has started with the adsorption of BH3 on the electron deficient site (buckled down) of the Ge dimer bond close to the step edge and ended with the substitutional occupation of the Ge site in the layers of the surface by B atom. The beginning of the p-type doping of the stepped Ge(100) surface has been illustrated by the electronic states of B appeared in the optical energy gap of Ge very close to the edge of the HOMO.

  3. Laboratory studies of 2H evaporator scale dissolution in dilute nitric acid

    SciTech Connect

    Oji, L.

    2014-09-23

    The rate of 2H evaporator scale solids dissolution in dilute nitric acid has been experimentally evaluated under laboratory conditions in the SRNL shielded cells. The 2H scale sample used for the dissolution study came from the bottom of the evaporator cone section and the wall section of the evaporator cone. The accumulation rate of aluminum and silicon, assumed to be the two principal elemental constituents of the 2H evaporator scale aluminosilicate mineral, were monitored in solution. Aluminum and silicon concentration changes, with heating time at a constant oven temperature of 90 deg C, were used to ascertain the extent of dissolution of the 2H evaporator scale mineral. The 2H evaporator scale solids, assumed to be composed of mostly aluminosilicate mineral, readily dissolves in 1.5 and 1.25 M dilute nitric acid solutions yielding principal elemental components of aluminum and silicon in solution. The 2H scale dissolution rate constant, based on aluminum accumulation in 1.5 and 1.25 M dilute nitric acid solution are, respectively, 9.21E-04 ± 6.39E-04 min{sup -1} and 1.07E-03 ± 7.51E-05 min{sup -1}. Silicon accumulation rate in solution does track the aluminum accumulation profile during the first few minutes of scale dissolution. It however diverges towards the end of the scale dissolution. This divergence therefore means the aluminum-to-silicon ratio in the first phase of the scale dissolution (non-steady state conditions) is different from the ratio towards the end of the scale dissolution. Possible causes of this change in silicon accumulation in solution as the scale dissolution progresses may include silicon precipitation from solution or the 2H evaporator scale is a heterogeneous mixture of aluminosilicate minerals with several impurities. The average half-life for the decomposition of the 2H evaporator scale mineral in 1.5 M nitric acid is 12.5 hours, while the half-life for the decomposition of the 2H evaporator scale in 1.25 M nitric acid is 10

  4. Potential energy surface for C2H4I2+ dissociation including spin-orbit effects

    SciTech Connect

    Siebert, Matthew R.; Aquino, Adelia J.; De Jong, Wibe A.; Granucci, Giovanni; Hase, William L.

    2012-10-24

    Previous experiments [Baer, et al. J. Phys. Chem. A 116, 2833 (2012)] have studied the dissociation of 1,2-diiodoethane radical cation (C2H4I2+•) and found a one-dimensional distribution of translational energy; an odd finding considering most product relative translational energy distributions are two-dimensional. The goal of this study is to obtain an accurate understanding of the potential energy surface (PES) topology for the unimolecular decomposition reaction C2H4I2+• - C2H4I+ + I•. This is done through comparison of many single-reference electronic structure methods, coupled-cluster single point (energy) calculations, and multi-reference calculations used to quantify spin-orbit (SO) coupling effects. We find that the structure of the C2H4I2+• reactant has a substantial effect on the role of SO coupling on the reaction energy. Both the BHandH and MP2 theories with an ECP/6-31++G** basis set, and without SO coupling corrections, provide accurate models for the reaction energetics. MP2 theory gives an unsymmetric structure with different C-I bond lengths, resulting in a SO energy for C2H4I2+• similar to that for the product I-atom and a negligible SO correction to the reaction energy. In contrast, DFT gives a symmetric structure for C2H4I2+•, similar to that of the neutral C2H4I2 parent, resulting in a substantial SO correction and increasing the reaction energy by 6.0-6.5 kcal/mol. Also, we find that for this system single point energy calculations are inaccurate, since a small change in geometry can lead to a large change in energy.

  5. Synthesis, spectral characterization and larvicidal activity of acridin-1(2H)-one analogues.

    PubMed

    Subashini, R; Bharathi, A; Roopan, Selvaraj Mohana; Rajakumar, G; Abdul Rahuman, A; Gullanki, Pavan Kumar

    2012-09-01

    Acridin-1(2H)-one analogue of 7-chloro-3,4-dihydro-9-phenyl-2-[(pyridine-2yl) methylene] acridin-1(2H)-one, 5 was prepared by using 7-chloro-3,4-dihydro-9-phenylacridin-1(2H)-one, 3 and picolinaldehyde, 4 in the presence of KOH at room temperature. These compounds were characterized by analytical and spectral analyses. The purpose of the present study was to assess the efficacy of larvicidal and repellent activity of synthesized 7-chloro-3,4-dihydro-9-phenyl-acridin-1(2H)-one analogues such as compounds 3 and 5 against the early fourth instar larvae of filariasis vector, Culex quinquefasciatus and Japanese encephalitis vector, Culex gelidus (Diptera: Culicidae). The compound exhibited high larvicidal effects at 50mg/L against both the mosquitoes with LC(50) values of 25.02 mg/L (r(2)=0.998) and 26.40 mg/L (r(2)=0.988) against C. quinquefasciatus and C. gelidus, respectively. The 7-chloro-3,4-dihydro-9-phenyl-acridin-1(2H)-one analogues that are reported for the first time to our best of knowledge can be better explored for the control of mosquito population. This is an ideal ecofriendly approach for the control of Japanese encephalitis vectors, C. quinquefasciatus and C. gelidus.

  6. Drivers of δ2H variations in an idealized extratropical cyclone

    NASA Astrophysics Data System (ADS)

    Dütsch, Marina; Pfahl, Stephan; Wernli, Heini

    2016-05-01

    Numerical model simulations of stable water isotopes help to improve our understanding of the complex processes driving isotopic variability in atmospheric moisture. We use the isotope-enabled Consortium for Small-Scale Modelling (COSMO) model to study the governing mechanisms of δ2H variations in an idealized extratropical cyclone. A set of experiments with differing initial conditions of δ2H in vapor and partly deactivated isotopic fractionation allows us to quantify the relative roles of cloud fractionation and vertical and horizontal advection for the simulated δ2H signals associated with the cyclone and fronts. Horizontal transport determines the large-scale pattern of δ2H in both vapor and precipitation, while fractionation and vertical transport are more important on a smaller scale, near the fronts. During the passage of the cold front fractionation leads to a V-shaped trend of δ2H in precipitation and vapor, which is, for vapor, superimposed on a gradual decrease caused by the arrival of colder air masses.

  7. Detection and quantification of 2H and 3R phases in commercial graphene-based materials

    PubMed Central

    Seehra, Mohindar S.; Geddam, Usha K.; Schwegler-Berry, Diane; Stefaniak, Aleksandr B.

    2017-01-01

    Graphene-based material (GBM) samples acquired from commercial sources are investigated using X-ray diffraction (XRD). Of the 18 GBM samples investigated here, seven samples show XRD patterns with features characteristic of the graphite structure. The XRD patterns of the seven samples are analyzed showing the presence of both the ABA (2H) structure and the ABCA (3R) structure. After de-convoluting the (101) lines of the 2H and 3R structures, the areas under the peaks are used to determine the relative concentrations of the 2H and 3R phases present, typically yielding the ratio 60/40 for 2H/3R. The presence of the 3R structure is important since the 3R structure is a semiconductor with tunable band gap and it is less stable than the 2H structure. The number of layers determined from the analysis of the XRD data varies between 65 and 109 for different samples yielding thickness of the graphite sheets varying between 22 nm and 37 nm. Scanning electron microscopy and transmission electron microscopy of three representative samples confirms the sheet-like morphology and stacking of the graphene layers in the samples. Relevance of these results in connection with their potential applications and toxicology is briefly discussed.

  8. Synthesis, spectral characterization and larvicidal activity of acridin-1(2H)-one analogues

    NASA Astrophysics Data System (ADS)

    Subashini, R.; Bharathi, A.; Roopan, Selvaraj Mohana; Rajakumar, G.; Abdul Rahuman, A.; Gullanki, Pavan Kumar

    Acridin-1(2H)-one analogue of 7-chloro-3,4-dihydro-9-phenyl-2-[(pyridine-2yl) methylene] acridin-1(2H)-one, 5 was prepared by using 7-chloro-3,4-dihydro-9-phenylacridin-1(2H)-one, 3 and picolinaldehyde, 4 in the presence of KOH at room temperature. These compounds were characterized by analytical and spectral analyses. The purpose of the present study was to assess the efficacy of larvicidal and repellent activity of synthesized 7-chloro-3,4-dihydro-9-phenyl-acridin-1(2H)-one analogues such as compounds 3 and 5 against the early fourth instar larvae of filariasis vector, Culex quinquefasciatus and Japanese encephalitis vector, Culex gelidus (Diptera: Culicidae). The compound exhibited high larvicidal effects at 50 mg/L against both the mosquitoes with LC50 values of 25.02 mg/L (r2 = 0.998) and 26.40 mg/L (r2 = 0.988) against C. quinquefasciatus and C. gelidus, respectively. The 7-chloro-3,4-dihydro-9-phenyl-acridin-1(2H)-one analogues that are reported for the first time to our best of knowledge can be better explored for the control of mosquito population. This is an ideal ecofriendly approach for the control of Japanese encephalitis vectors, C. quinquefasciatus and C. gelidus.

  9. Dissociative Recombination of N2H+: Evidence for Fracture of the NN Bond

    NASA Astrophysics Data System (ADS)

    Geppert, W. D.; Thomas, R.; Semaniak, J.; Ehlerding, A.; Millar, T. J.; Österdahl, F.; af Ugglas, M.; Djurić, N.; Paál, A.; Larsson, M.

    2004-07-01

    Branching ratios and absolute cross sections have been measured for the dissociative recombination of N2H+ using the CRYRING ion storage ring. It has been found that the channel N2H++e--->N2+H accounts for only 36% of the total reaction and that the branching into the other exoergic pathway, N2H++e--->NH+N, consequently amounts to 64%. The cross section of the reaction could be fitted by the expression σ=(2.4+/-0.4)×10-16E-1.04+/-0.02 cm2, which leads to a thermal reaction rate of k(T)=(1.0+/-0.2)×10-7(T/300)-0.51+/-0.02 cm3 s-1, in favorable agreement with previous flowing afterglow Langmuir probe measurements at room temperature, although our temperature dependence is very different. The implications of these measurements for the chemistry of interstellar clouds are discussed. A standard model calculation for a dark cloud predicts a slight increase of N2H+ in the dark clouds but a five- to sevenfold increase of the NH concentration as steady state is reached.

  10. Imidacloprid inhibits IgE-mediated RBL-2H3 cell degranulation and passive cutaneous anaphylaxis

    PubMed Central

    Shi, Linbo; Zou, Li; Gao, Jinyan; Xu, Huaing; Shi, Xiaoyun

    2016-01-01

    Background Imidacloprid has been commonly used as a pesticide for crop protection and acts as nicotinic acetylcholine receptor agonists. Little information about the relationship between imidacloprid and allergy is available. Objective This study aims to examine the effects of imidacoprid on IgE-mediated mast cell activation. Methods The rat basophilic leukemia cell line RBL-2H3 (RBL-2H3 cells) were treated with 10-3 – 10-12 mol/L imidacloprid, followed by measuring the mediator production, influx of Ca2+ in IgE-activated RBL-2H3 cells, and the possible effects of imidacoprid on anti-dinitrophenyl IgE-induced passive cutaneous anaphylaxis (PCA). Results It was shown that imidacoprid suppressed the production of histamine, β-hexosaminidase, leukotriene C4, interleukin-6, tumor necrosis factor-α, and Ca2+ mobilization in IgE-activated RBL-2H3 cells and decreased vascular extravasation in IgE-induced PCA. Conclusion It is the first time to show that imidacloprid suppressed the activation of RBL-2H3 cells. PMID:27803884

  11. Titan's ionic species: theoretical treatment of N2H+ and related ions.

    PubMed

    Brites, V; Hochlaf, M

    2009-10-22

    We use different ab initio methods to compute the three-dimensional potential energy surface (3D-PES) of the ground state of N(2)H(+). This includes the standard coupled cluster, the complete active space self-consistent field, the internally contacted multi reference configuration interaction, and the newly developed CCSD(T)-F12 methods. For the description of H and N atoms, several basis sets are tested. Then, we incorporate the 3D-PES analytical representations into variational calculations of the rovibrational spectrum of N(2)H(+)(X(1)Sigma(+)) up to 7200 cm(-1) above the zero point vibrational energy. Our data show that the CCSD(T)-F12/aug-cc-pVTZ approach represents a compromise for good description of the PES and computation cost. This technique is recommended for full dimensional PES generation of atmospheric and astrophysical relevant polyatomic systems. We applied this method to derive the rovibrational spectra of N(2)H(+)(X(1)Sigma(+)) and of N(2)H(++)(X(2)Sigma(+)). Finally, we discuss the existence of the N(2)H(++)(X(2)Sigma(+)) in Titan's atmosphere.

  12. Tunable electronic behavior in 3d transition metal doped 2H-WSe2

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Huang, Songlei; Li, Hongping; Zhang, Quan; Li, Changsheng; Liu, Xiaojuan; Meng, Jian; Tian, Yi

    2017-03-01

    Structural and electronic properties of 3d transition metal Sc, Ti, Cr and Mn incorporated 2H-WSe2 have been systematically investigated by first-principles calculations based on density functional theory. The calculated formation energies reveal that all the doped systems are thermodynamically more favorable under Se-rich condition than W-rich condition. The geometry structures almost hold that of the pristine 2H-WSe2 albeit with slight lattice distortion. More importantly, the electronic properties have been significantly tuned by the dopants, i.e., metal and semimetal behavior has been found in Sc, Ti and Mn-doped 2H-WSe2, respectively, semiconducting nature with narrowed band gap is expected in Cr-doped case, just as that of the pristine 2H-WSe2. In particular, magnetic character is realized by incorporation of Mn impurity with a total magnetic moment of 0.96 μB. Our results suggest chemical doping is an effective way to precisely tailor the electronic structure of layered transition metal dichalcogenide 2H-WSe2 for target technological applications.

  13. Complementary low energy ion scattering and X-ray photoelectron spectroscopy characterization of polystyrene submitted to N 2/H 2 glow discharge

    NASA Astrophysics Data System (ADS)

    Bonatto, F.; Rovani, S.; Kaufmann, I. R.; Soares, G. V.; Baumvol, I. J. R.; Krug, C.

    2012-02-01

    Low energy ion scattering (LEIS) and X-ray photoelectron spectroscopy (XPS) were used to access the elemental composition and chemical bonding characteristics of polystyrene (PS) surfaces sequentially treated by corona and glow discharge (plasma) processing in N 2/H 2 ambient. The latter has shown activity as suppressor of pathogenic Staphylococcus epidermidis biofilms. LEIS indicated that oxygen from the corona discharge process is progressively replaced by nitrogen at the PS surface. XPS shows C dbnd N and N sbnd C dbnd O chemical groups as significant inhibitors of bacterial adhesion, suggesting application in medical devices.

  14. Direct dynamics study on the hydrogen abstraction reactions N2H4+R→N2H3+RH (R=NH2,CH3)

    NASA Astrophysics Data System (ADS)

    Li, Qian Shu; Zhang, Xin

    2006-08-01

    We present a direct ab initio dynamics study on the hydrogen abstraction reactions N2H4+R→N2H3+RH (R=NH2,CH3), which are predicted to have six possible reaction channels for NH2 abstraction and four for CH3 abstraction caused by the different N2H4 isomers and various attacking orientations of foreign radical to N2H4. The structures and frequencies at the stationary points and the points along the minimum energy paths (MEPs) of all reaction channels are obtained at the UMP2(full)/6-31+G(d,p) level of theory. Energetic information of stationary points and the points along the MEPs is further refined by means of MC-QCISD method. The rate constants of these channels are calculated using the improved canonical variational transition-state theory with the small-curvature tunneling correction (ICVT/SCT) method. The calculated results show that the favorable reaction channels are channels (n1) and (n4) as well as (c1) and (c3) (refer to Scheme 1) in the whole temperature range. The total ICVT/SCT rate constants of all channels for the two reactions at the MC-QCISD //UMP2(full)/6-31+G(d,p) level are both in good agreement with the available experimental data, and corresponding three-parameter expressions of kICVT /SCT in 220-3000K are fitted as 6.46×10-15(T/298)3.60exp(-386/T)cm3mol-1s-1 for NH2 abstraction and 1.04×10-14 (T/298)4.00exp(-2037/T)cm3mol-1s-1 for CH3 abstraction. Additionally, the long range interaction between the H atom of X -H bond in foreign radicals and the lone pair on the nonreactive N atom of the transition states is further discussed to explain the various transition-state numbers of the two similar hydrogen abstraction reactions.

  15. Abstraction and addition kinetics of C2H radicals with CH4, C2H6, C3H8, C2H4, and C3H6: CVT/SCT/ISPE and hybrid meta-DFT methods.

    PubMed

    Dash, Manas Ranjan; Rajakumar, B

    2015-02-07

    Rate coefficients for the reactions of C2H radicals with methane (k1), ethane (k2), propane (k3), ethylene (k4), and propylene (k5) were computed using canonical variational transition state theory (CVT) coupled with hybrid-meta density functional theory (DFT) over a wide range of temperatures from 150 to 5000 K. The quantum chemical tunneling effect was corrected by the small curvature tunneling (SCT) method. The dynamic calculations are performed using the variational transition state theory (VTST) with the interpolated single-point energies (ISPE) method at the CCSD(T)/cc-pVTZ//M06-2X/6-31+G(d,p) level of theory. Intrinsic reaction coordinate (IRC) calculations were performed to verify that the transition states are connected to the reactants and products. The rate coefficients obtained over the studied temperature range yield the following Arrhenius expressions (cm(3) molecule(-1) s(-1)): k1 = 4.69 × 10(-19)T(2.44) exp[331/T], k2 = 4.29 × 10(-17)T(2.11) exp[432/T], k3 = 4.81 × 10(-17)T(1.98) exp[697/T], k4 = 7.54 × 10(-21)T(2.96) exp[1942/T], and k5 = 8.04 × 10(-23)T(3.44) exp[3011/T] cm(3) molecule(-1) s(-1). Branching ratio calculation for the reactions of C2H radicals with ethylene and propylene shows that the abstraction reactions are not important at lower temperatures. However, as the temperature increases, abstraction reactions become more important.

  16. A pulse sequence for singlet to heteronuclear magnetization transfer: S2hM

    NASA Astrophysics Data System (ADS)

    Stevanato, Gabriele; Eills, James; Bengs, Christian; Pileio, Giuseppe

    2017-04-01

    We have recently demonstrated, in the context of para-hydrogen induced polarization (PHIP), the conversion of hyperpolarized proton singlet order into heteronuclear magnetisation can be efficiently achieved via a new sequence named S2hM (Singlet to heteronuclear Magnetisation). In this paper we give a detailed theoretical description, supported by an experimental illustration, of S2hM. Theory and experiments on thermally polarized samples demonstrate the proposed method is robust to frequency offset mismatches and radiofrequency field inhomogeneities. The simple implementation, optimisation and the high conversion efficiency, under various regimes of magnetic equivalence, makes S2hM an excellent candidate for a widespread use, particularly within the PHIP arena.

  17. Photodetectors and birefringence in ZnP2-С2h5 crystals

    NASA Astrophysics Data System (ADS)

    Stamov, I. G.; Syrbu, N. N.; Dorogan, A. V.

    2013-03-01

    The spectral dependences of refractive indexes no(n⊥), ne(n||) and Δn=no(n⊥)-ne(n||) were studied in ZnP2-C2h5 crystals. The intersection of no(n⊥) and ne(n||) was found for λ0=0.906 μm. The crystal possesses positive dispersion Δn=no(n⊥)-ne(n||) in the region where λ>λ0, and a negative dispersion is observed in the region where λ<λ0. The electrical, spectral and azimuth characteristics of monolith n-р- and Ме-n-р-ZnP2C2h5 and discrete ZnP2-C2h5-ZnP2-D48 structures were studied, and a prognosis was made on the usage perspective of these devices.

  18. Analysis Of 2H-Evaporator Scale Pot Bottom Sample [HTF-13-11-28H

    SciTech Connect

    Oji, L. N.

    2013-07-15

    Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material from the 2H evaporator has been performed so that the evaporator can be chemically cleaned beginning July of 2013. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2H-evaporator pot and gravity drain line. The 2H-evaporator scale samples analyzed by Savannah River National Laboratory (SRNL) came from the bottom cone sections of the 2H-evaporator pot. The sample holder from the 2H-evaporator wall was virtually empty and was not included in the analysis. It is worth noting that after the delivery of these 2H-evaporator scale samples to SRNL for the analyses, the plant customer determined that the 2H evaporator could be operated for additional period prior to requiring cleaning. Therefore, there was no need for expedited sample analysis as was presented in the Technical Task Request. However, a second set of 2H evaporator scale samples were expected in May of 2013, which would need expedited sample analysis. X-ray diffraction analysis (XRD) confirmed the bottom cone section sample from the 2H-evaporator pot consisted of nitrated cancrinite, (a crystalline sodium aluminosilicate solid), clarkeite and uranium oxide. There were also mercury compound XRD peaks which could not be matched and further X-ray fluorescence (XRF) analysis of the sample confirmed the existence of elemental mercury or mercuric oxide. On ''as received'' basis, the scale contained an average of 7.09E+00 wt % total uranium (n = 3; st.dev. = 8.31E-01 wt %) with a U-235 enrichment of 5.80E-01 % (n = 3; st.dev. = 3.96E-02 %). The measured U-238 concentration was 7.05E+00 wt % (n=3, st

  19. Theoretical study of the C-H bond dissociation energy of C2H

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1990-01-01

    A theoretical study of the convergence of the C-H bond dissociation energy D(0) in C2H with respect to both the one- and n-particle spaces is presented. The calculated C-H bond energies of C2H2 and C2H4, which are in excellent agreement with experiment, are used for calibration. The best estimate for D(0) of 112.4 + or - 2.0 kcal/mol is slightly below the recent experimental value of 116.3 + or - 2.6 kcal/mol, but substantially above a previous theoretical estimate of 102 kcal/mol. The remaining discrepancy with experiment may reflect primarily the uncertainty in the experimental D(0) value of C2 required in the analysis.

  20. Detection of C2H4 Neptune from ISO/PHT-S Observations

    NASA Technical Reports Server (NTRS)

    Schulz, B.; Encrenaz, Th.; Bezard, B.; Romani, P. N.; Lellouch, E.; Atreya, S. K.

    1999-01-01

    The 6-12 micrometer spectrum of Neptune has been recorded with the PHT-S instrument of the Infrared Space Observatory (ISO) at a resolution of 0.095 micrometer. In addition to the emissions of CH4, CH3D and C2H6 previously identified, the spectrum shows the first firm identification of ethylene C2H4. The inferred column density above the 0.2-mbar level is in the range (1.1 - 3) x 10(exp 14) molecules/cm. To produce this low amount, previous photochemical models invoked rapid mixing between the source and sink regions of C2H4. We show that this requirement can be relaxed if recent laboratory measurements of CH4 photolysis branching ratios at Lyman alpha are used.

  1. Anharmonic suppression of charge density waves in 2H-NbS2

    NASA Astrophysics Data System (ADS)

    Leroux, M.; Le Tacon, M.; Calandra, M.; Cario, L.; Méasson, M.-A.; Diener, P.; Borrissenko, E.; Bosak, A.; Rodière, P.

    2012-10-01

    The temperature dependence of the phonon spectrum in the superconducting transition-metal dichalcogenide 2H-NbS2 is measured by diffuse and inelastic x-ray scattering. A deep, wide, and strongly temperature-dependent softening of the two lowest-energy longitudinal phonon bands appears along the ΓM symmetry line in reciprocal space. In sharp contrast to the isoelectronic compound 2H-NbSe2, the soft phonons energies are finite, even at very low temperature, and no charge density wave instability occurs, in disagreement with harmonic ab initio calculations. We show that 2H-NbS2 is at the verge of the charge density wave transition and its occurrence is only suppressed by the large anharmonic effects. Moreover, the anharmonicity and the electron phonon coupling both show a strong in-plane anisotropy.

  2. N2H(+) in the Orion ambient ridge - Cloud clumping versus rotation

    NASA Technical Reports Server (NTRS)

    Womack, Maria; Ziurys, L. M.; Sage, L. J.

    1993-01-01

    The IRAM 30-m telescope is used to obtain spectra of the J = 1 yields 0 transition of N2H(+) over a 2 x 2 arcsec area toward the Orion-KL/IRc2 star-forming region with 26-arcsec angular resolution. The N2H(+) emission, which exclusively traces the ridge gas, exhibits multiple radial velocities which appear to arise from the presence of at least four clouds of quiescent material. It is argued that the velocity structure of N2H(+) does not uniformly change across OMC-1 and, consequently, is inconsistent with the presence of large-scale differential rotation of the extended ridge along the SW-NE axis about IRc2. The coincidence of the two larger clouds with star-forming activity in Orion-KL suggests that either the quiescent gas is being pushed apart or that the star formation may have been triggered by a cloud-cloud interaction.

  3. A one-pot-three-step route to triazolotriazepinoindazolones from oxazolino-2H-indazoles.

    PubMed

    Conrad, Wayne E; Rodriguez, Kevin X; Nguyen, Huy H; Fettinger, James C; Haddadin, Makhluf J; Kurth, Mark J

    2012-08-03

    A one-pot-three-step method has been developed for the conversion of oxazolino-2H-indazoles into triazolotriazepinoindazolones with three points of diversity. Step one of this process involves a propargyl bromide-initiated ring opening of the oxazolino-2H-indazole (available by the Davis-Beirut reaction) to give an N(1)-(propargyl)-N(2)-(2-bromoethyl)-disubstituted indazolone, which then undergoes -CH(2)Br → -CH(2)N(3) displacement (step two) followed by an uncatalyzed intramolecular azide-alkyne 1,3-dipolar cycloaddition (step three) to form the target heterocycle. Employing 7-bromooxazolino-2H-indazole allows for further diversification through, for example, palladium-catalyzed coupling chemistry, as reported here.

  4. Collisions of slow polyatomic ions with surfaces: dissociation and chemical reactions of C2H2+*, C2H3+, C2H4+*, C2H5+, and their deuterated variants C2D2+* and C2D4+* on room-temperature and heated carbon surfaces.

    PubMed

    Jasík, Juraj; Zabka, Jan; Feketeova, Linda; Ipolyi, Imre; Märk, Tilmann D; Herman, Zdenek

    2005-11-17

    Interaction of C2Hn+ (n = 2-5) hydrocarbon ions and some of their isotopic variants with room-temperature and heated (600 degrees C) highly oriented pyrolytic graphite (HOPG) surfaces was investigated over the range of incident energies 11-46 eV and an incident angle of 60 degrees with respect to the surface normal. The work is an extension of our earlier research on surface interactions of CHn+ (n = 3-5) ions. Mass spectra, translational energy distributions, and angular distributions of product ions were measured. Collisions with the HOPG surface heated to 600 degrees C showed only partial or substantial dissociation of the projectile ions; translational energy distributions of the product ions peaked at about 50% of the incident energy. Interactions with the HOPG surface at room temperature showed both surface-induced dissociation of the projectiles and, in the case of radical cation projectiles C2H2+* and C2H4+*, chemical reactions with the hydrocarbons on the surface. These reactions were (i) H-atom transfer to the projectile, formation of protonated projectiles, and their subsequent fragmentation and (ii) formation of a carbon chain build-up product in reactions of the projectile ion with a terminal CH3-group of the surface hydrocarbons and subsequent fragmentation of the product ion to C3H3+. The product ions were formed in inelastic collisions in which the translational energy of the surface-excited projectile peaked at about 32% of the incident energy. Angular distributions of reaction products showed peaking at subspecular angles close to 68 degrees (heated surfaces) and 72 degrees (room-temperature surfaces). The absolute survival probability at the incident angle of 60 degrees was about 0.1% for C2H2+*, close to 1% for C2H4+* and C2H5+, and about 3-6% for C2H3+.

  5. Filamentary Structure of Serpens Main and Serpens South Seen in N2H+, HCO+, and HCN

    NASA Astrophysics Data System (ADS)

    Cox, Erin Guilfoil; Fernandez-Lopez, Manuel; Looney, Leslie; Arce, Héctor; Mundy, Lee; Storm, Shaye; Harris, Robert J.; Teuben, Peter J.

    2016-06-01

    We present the N2H+ (J = 1 → 0) map of the Serpens Main and Serpens South molecular cloud obtained as part of the CARMA Large Area Star Formation Survey (CLASSy). The observations cover 150 arcmin2 and 250 arcmin2, respectively, and fully sample structures from 3000 AU to 3 pc with a velocity resolution of 0.16 km s-1. They can be used to constrain the origin and evolution of molecular cloud filaments. The spatial distribution of the N2H+ emission is characterized by long filaments that resemble those observed in the dust continuum emission by Herschel. However, the gas filaments are typically narrower such that, in some cases, two or three quasi-parallel N2H+ filaments comprise a single observed dust continuum filament. Our results suggest that single filaments seen in Serpens South by Herschel may in fact be comprised of multiple narrower filaments. Some molecular filaments show velocity gradients along their major axis, and two are characterized by a steep velocity gradient in the direction perpendicular to the filament axis. The observed velocity gradient along one of these filaments was previously postulated as evidence for mass infall toward the central cluster, but these kind of gradients can be interpreted as projection of large-scale turbulence. Finally we compare the morphologies of these N2H+ filaments with those detected in HCO+ and HCN. In Serpens South we find that the N2H+ and dust maps are well correlated, whereas HCO+ and HCN do not have regularly have N2H+ counterparts. We postulate that this difference is due to large-scale shocks creating the HCO+ and HCN emission.

  6. PLASMA GENERATOR

    DOEpatents

    Foster, J.S. Jr.

    1958-03-11

    This patent describes apparatus for producing an electricity neutral ionized gas discharge, termed a plasma, substantially free from contamination with neutral gas particles. The plasma generator of the present invention comprises a plasma chamber wherein gas introduced into the chamber is ionized by a radiofrequency source. A magnetic field is used to focus the plasma in line with an exit. This magnetic field cooperates with a differential pressure created across the exit to draw a uniform and uncontaminated plasma from the plasma chamber.

  7. Low-energy elastic electron scattering form chloroethane, C2H5Cl

    NASA Astrophysics Data System (ADS)

    Sakaamini, A.; Navarro, C.; Cross, J.; Hargreaves, L. R.; Khakoo, M. A.; Fedus, Kamil; Winstead, C.; McKoy, V.

    2015-10-01

    We report theoretical as well as (normalized) experimental differential and integral cross sections for vibrationally elastic scattering of low-energy electrons from chloroethane, C2H5Cl, also known as ethyl chloride. The theoretical cross sections were computed using the Schwinger multichannel variational method in the single-channel approximation, with polarization effects included via virtual excitations. Cross section measurements were made at incident energies ranging from 1 to 30 eV and at scattering angles from {10}\\circ to {125}\\circ . We compare our data to previous results for C2H5Cl and for the related molecule chloromethane.

  8. Calculation of the Aluminosilicate Half-Life Formation Time in the 2H Evaporator

    SciTech Connect

    Fondeur, F.F.

    2000-09-21

    The 2H Evaporator contains large quantities of aluminosilicate solids deposited on internal fixtures. The proposed cleaning operations will dissolve the solids in nitric acid. Operations will then neutralize the waste prior to transfer to a waste tank. Combining recent calculations of heat transfer for the 2H Evaporator cleaning operations and laboratory experiments for dissolution of solid samples from the pot, the authors estimated the re-formation rate for aluminosilicates during cooling. The results indicate a half-life formation of 17 hours when evaporator solution cools from 60 degrees C and 9 hours when cooled from 90 degrees C.

  9. Low-temperature solid-state phase transformations in 2H silicon carbide

    NASA Technical Reports Server (NTRS)

    Will, H. A.; Powell, J. A.

    1972-01-01

    Single crystals of 2H SiC were observed to undergo phase transformations at temperatures as low as 400 C. Some 2H crystals transformed to a structure with one-dimensional disorder along the crystal c axis. Others transformed to a faulted cubic/6H structure. The transformation is time and temperature dependent and is greatly enhanced by dislocations. Observations indicate that the transformation takes place by means of a slip process perpendicular to the c axis. Cubic SiC crystals were observed to undergo a solid state transformation above 1400 C.

  10. First-principles characterization of potassium intercalation in the hexagonal 2H-MoS2

    SciTech Connect

    Andersen, Amity; Kathmann, Shawn M.; Lilga, Michael A.; Albrecht, Karl O.; Hallen, Richard T.; Mei, Donghai

    2012-01-12

    Periodic density functional theory calculations were performed to study the structural and electronic properties of potassium intercalated into hexagonal MoS{sub 2} (2H-MoS{sub 2}). Metallic potassium (K) atoms are incrementally loaded in the hexagonal sites of the interstitial spaces between MoS2 sheets of the 2H-MoS{sub 2} bulk structure generating 2H-KxMoS2 (0.125 {<=} x {<=} 1.0) structures. To accommodate the potassium atoms, the interstitial spacing c parameter in the 2H-MoS{sub 2} bulk expands from 12.816 {angstrom} in 2H-MoS{sub 2} to 16.086 {angstrom} in 2H-K{sub 0.125}MoS{sub 2}. The second lowest potassium loading concentration (K{sub 0.25}MoS{sub 2}) results in the largest interstitial spacing expansion (to c = 16.726 {angstrom}). Our calculations show that there is a small gradual contraction of the interstitial spacing as the potassium loading increases with c = 14.839 {angstrom} for KMoS{sub 2}. This interstitial contraction is correlated with an in-plane expansion of the MoS{sub 2} sheets, which is in good agreement with experimental X-ray diffraction (XRD) measurements. The electronic analysis shows that potassium readily donates its 4s electron to the conduction band of the 2H-K{sub x}MoS{sub 2}, and is largely ionic in character. As a result of the electron donation, the 2H-K{sub x}MoS{sub 2} system changes from a semiconductor to a more metallic system with increasing potassium intercalation. For loadings 0.25 {<=} x {<=} 0.625, triangular Mo-Mo-Mo moieties are prominent and tend to form rhombitrihexagonal motifs. Intercalation of H{sub 2}O molecules that solvate the K atoms is likely to occur in catalytic conditions. The inclusion of two H{sub 2}O molecules per K atom in the K{sub 0.25}MoS{sub 2} structure shows good agreement with XRD measurements.

  11. Identification of acetylene (C2H2) in infrared atmospheric absorption spectra

    NASA Astrophysics Data System (ADS)

    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Gillis, J. R.; Bonomo, F. S.; Murcray, F. H.; Murcray, D. G.; Cicerone, R. J.

    1981-12-01

    Infrared atmospheric absorption spectra at ˜0.02 cm-1 resolution obtained during a balloon flight made on March 23, 1981, show absorption features attributable to C2H2. These features are used to derive a preliminary mixing ratio of ˜25 pptv near 9 km. This mixing ratio falls into the range of values we calculate for upper tropospheric C2H2 in a photochemical/transport model but well below values measured previously in samples collected by other researchers.

  12. Implications of C2H photochemistry on the modeling of C2 distributions in comets

    NASA Technical Reports Server (NTRS)

    Jackson, William M.; Bao, Yihan; Urdahl, Randall S.

    1991-01-01

    Laboratory studies of the secondary photolysis of the C2H radical are summarized and used to explain some discrepancies between models of C2 emission in comets. These studies show that several states of the C2 radicals produced in the photolysis of C2H2 at 193 nm have bimodal rotational distributions when plotted as a Boltzmann diagram. They also establish that the C2 radicals are formed with varying degrees of vibrational excitation, so that if they are formed in a similar manner in comets, the C2 radicals must start out with this initial vibrational excitation.

  13. Effects of deuterium oxide on cell growth and vesicle speed in RBL-2H3 cells

    PubMed Central

    Triplett, Ashley R.

    2014-01-01

    For the first time we show the effects of deuterium oxide on cell growth and vesicle transport in rat basophilic leukemia (RBL-2H3) cells. RBL-2H3 cells cultured with 15 moles/L deuterium showed decreased cell growth which was attributed to cells not doubling their DNA content. Experimental observations also showed an increase in vesicle speed for cells cultured in deuterium oxide. This increase in vesicle speed was not observed in deuterium oxide cultures treated with a microtubule-destabilizing drug, suggesting that deuterium oxide affects microtubule-dependent vesicle transport. PMID:25237603

  14. Multicomponent synthesis of 3,6-dihydro-2H-1,3-thiazine-2-thiones.

    PubMed

    Kruithof, Art; Ploeger, Marten L; Janssen, Elwin; Helliwell, Madeleine; de Kanter, Frans J J; Ruijter, Eelco; Orru, Romano V A

    2012-02-08

    Non-fused 3,6-dihydro-2H-1,3-thiazine-2-thiones constitute a so far rather unexplored class of compounds, with the latest report dating back more than two decades. Thiazine-2-thiones contain an endocyclic dithiocarbamate group, which is often found in pesticides, in substrates for radical chemistry and in synthetic intermediates towards thioureas and amidines. We now report the multicomponent reaction (MCR) of in situ-generated 1-azadienes with carbon disulfide. With this reaction, a one-step protocol towards the potentially interesting 3,6-dihydro-2H-1,3-thiazine-2-thiones was established and a small library was synthesized.

  15. Electron-Impact Total Ionization Cross Sections of CH and C2H2

    PubMed Central

    Kim, Yong-Ki; Ali, M. Asgar; Rudd, M. Eugene

    1997-01-01

    Electron-impact total ionization cross sections for the CH radical and C2H2 (acetylene) have been calculated using the Binary-Encounter-Bethe (BEB) model. The BEB model combines the Mott cross section and the asymptotic form of the Bethe theory, and has been shown to generate reliable ionization cross sections for a large variety of molecules. The BEB cross sections for CH and C2H2 are in good agreement with the available experimental data from ionization thresholds to hundreds of eV in incident energies. PMID:27805116

  16. Davis-Beirut reaction: route to thiazolo-, thiazino-, and thiazepino-2H-indazoles.

    PubMed

    Farber, Kelli M; Haddadin, Makhluf J; Kurth, Mark J

    2014-08-01

    Methods for the construction of thiazolo-, thiazino-, and thiazepino-2H-indazoles from o-nitrobenzaldehydes or o-nitrobenzyl bromides and S-trityl-protected 1°-aminothioalkanes are reported. The process consists of formation of the requisite N-(2-nitrobenzyl)(tritylthio)alkylamine, subsequent deprotection of the trityl moiety with TFA, and immediate treatment with aq. KOH in methanol under Davis-Beirut reaction conditions to deliver the target thiazolo-, thiazino-, or thiazepino-2H-indazole in good overall yield. Subsequent S-oxidation gives the corresponding sulfone.

  17. N 2- and O 2-broadening coefficients of C 2H 2 IR lines

    NASA Astrophysics Data System (ADS)

    Bouanich, J. P.; Lambot, D.; Blanquet, G.; Walrand, J.

    1990-04-01

    Pressure-broadening parameters of six lines belonging to the ν5 band of C 2H 2 in collision with N 2 have been measured with a tunable diode-laser spectrometer in order to complete up to J = 33 our earlier measurements (D. Lambot, G. Blanquet, and J. P. Bouanich, J. Mol. Spectrosc.136, 86-92 (1989)) on the broadening of C 2H 2 by N 2 and O 2 at 297 K. These N 2- and O 2-broadening coefficients have been first calculated on the basis of the Anderson-Tsao-Curnutte theory; in this approach, we show that the short-range interactions which contribute significantly to the linewidths are not correctly treated. Next, we consider the improved semiclassical model proposed by Robert and Bonamy. The intermolecular potential consists in the addition of the atom-atom interaction model to the quadrupolar interactions. The limited radial spherical harmonics expansion of the atom-atom potential, from which expressions for the differential cross section were derived, appears to be quite insufficient at short intermolecular distances. Therefore, we use a more accurate representation of this potential, avoiding an inadequate truncation and keeping the analytic expressions obtained by Bonamy and Robert. In the calculations we take into account the contributions derived from the radial functions U000( r), U200( r), and U220( r), as well as from U400( r). A theoretical expression is obtained for the U400 contribution to the differential cross section. The results of the calculations arising from the exact radial expansion of the atom-atom potential appear to be significantly larger for high J lines than those arising from the truncated expansion. The latter results, which do not include adjustable atom-atom parameters, are in good agreement with experimental broadening coefficients for C 2H 2O 2 and in reasonable agreement (except at large J values) for C 2H 2N 2. It is also shown that the contributions to the linewidths derived from U400 are rather small for C 2H 2N 2 and more

  18. Unfolding the Quantum Nature of Proton Bound Symmetric Dimers of (MeOH)2H+ and (Me2O)2H+: a Theoretical Study

    NASA Astrophysics Data System (ADS)

    Tan, Jake Acedera; Kuo, Jer-Lai

    2014-06-01

    A proton under a tug of war between two competing Lewis bases is a common motif in biological systems and proton transfer processes. Over the past decades, model compounds for such motifs can be prepared by delicate stoichiometric control of salt solutions. Unfortunately, condensed phase studies, which aims to identify the key vibrational signatures are complicated to analyze. As a result, gas-phase studies do provide promising insights on the behavior of the shared proton. This study attempts to understand the quantum nature of the shared proton under theoretical paradigms. Proton bound symmetric dimers of (MeOH)2H+ and (Me2O)2H+ are chosen as the model compounds. The simulation is performed using Density Functional Theory (DFT) at the B3LYP level with 6-311+G(d,p) as the basis set. It was found out that stretching mode of shared proton couples with several other normal modes and its corresponding oscillator strength do distribute to other normal modes. J.R. Roscioli, L.R. McCunn and M.A. Johnson. Science 2007, 316, 249 T.E. DeCoursey. Physiol. Rev., 2003, 83, 475 E.S. Stoyanov. Psys. Chem. Phys., 2000,2,1137

  19. The conformational dynamics of H2-H3n and S2-H6 in gating ligand entry into the buried binding cavity of vitamin D receptor

    PubMed Central

    Tee, Wei-Ven; Ripen, Adiratna Mat; Mohamad, Saharuddin Bin

    2016-01-01

    Crystal structures of holo vitamin D receptor (VDR) revealed a canonical conformation in which the ligand is entrapped in a hydrophobic cavity buried in the ligand-binding domain (LBD). The mousetrap model postulates that helix 12 is positioned away from the domain to expose the interior cavity. However, the extended form of helix 12 is likely due to artifacts during crystallization. In this study, we set out to investigate conformational dynamics of apo VDR using molecular dynamics simulation on microsecond timescale. Here we show the neighboring backbones of helix 2-helix 3n and beta strand 2-helix 6 of LBD, instead of the helix 12, undergo large-scale motion, possibly gating the entrance of ligand to the ligand binding domain. Docking analysis to the simulated open structure of VDR with the estimated free energy of −37.0 kJ/mol, would emphasise the role of H2-H3n and S2-H6 in facilitating the entrance of calcitriol to the LBD of VDR. PMID:27786277

  20. Laser-induced fluorescence studies of excited Sr reactions: II. Sr(3P1)+CH3F, C2H5F, C2H4F2

    NASA Astrophysics Data System (ADS)

    Teule, J. M.; Janssen, M. H. M.; Bulthuis, J.; Stolte, S.

    1999-06-01

    The vibrational and rotational energy distributions of ground state SrF(X 2Σ) formed in the reactions of electronically excited Sr(3P1) with methylfluoride, ethylfluoride, and 1,1-difluoroethane have been studied by laser-induced fluorescence. Although the reactions of ground state Sr with these reactants are exothermic, no SrF products are observed for those reactions in this study. The fraction of available energy disposed into the sum of rotational and vibrational energy of the SrF(X 2Σ) product is approximately the same for all three reactions, i.e., 40%. The reaction of Sr(3P1) with CH3F results in very low vibrational excitation in the SrF reaction product. The product vibration increases in going to C2H5F and C2H4F2. It is concluded that the alkyl group influences the energy disposal mechanism in these reactions, and some suggestions are given for a partial explanation of the observations.

  1. Chemistry of TMC-1 with multiply deuterated species and spin chemistry of H2, H2+, H3+ and their isotopologues

    NASA Astrophysics Data System (ADS)

    Majumdar, L.; Gratier, P.; Ruaud, M.; Wakelam, V.; Vastel, C.; Sipilä, O.; Hersant, F.; Dutrey, A.; Guilloteau, S.

    2016-12-01

    Deuterated species are unique and powerful tools in astronomy since they can probe the physical conditions, chemistry, and ionization level of various astrophysical media. Recent observations of several deuterated species along with some of their spin isomeric forms have rekindled the interest for more accurate studies on deuterium fractionation. This paper presents the first publicly available chemical network of multiply deuterated species along with spin chemistry implemented on the latest state-of-the-art gas-grain chemical code `NAUTILUS'. D/H ratios for all deuterated species observed at different positions of TMC-1 are compared with the results of our model, which considers multiply deuterated species along with the spin chemistry of light hydrogen bearing species H2, H2+, H3+ and their isotopologues. We also show the differences in the modeled abundances of non-deuterated species after the inclusion of deuteration and spin chemistry in the model. Finally, we present a list of potentially observable deuterated species in TMC-1 awaiting detection.

  2. Synthesis of (11,11,12,12-2H4)progesterone for mass spectral investigations of peripheral metabolism

    SciTech Connect

    Kirk, D.N.; Smith, C.Z.; Honour, J.W. )

    1990-05-01

    Hecogenin has been transformed into (11,11,12,12-2H4)progesterone via base-catalyzed isotope exchange with D2O (at C-11), carbenic decomposition of the 12-tosylhydrazone formed by the use of (N,N,N'-2H3)toluene-p-sulfonylhydrazine, and reduction with (2H2)diimide to give (11,11,12,12-2H4)tigogenin, followed by standard degradation of the spiroketal side chain and dehydrogenation in ring A.

  3. TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OL)

    Atmospheric Science Data Center

    2016-10-25

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OL) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access: OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  4. The C-H Dissociation Energy of C2H6

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    The C-H bond energy in C2H6 is computed to be 99.76 +/- 0.35 kcal/mol, which is in excellent agreement with the most recent experimental values. The calculation of the C-H bond energy by direct dissociation and by an isodesmic reaction is discussed.

  5. Photo-induced reactions in the ion-molecule complex Mg+-OCNC2H5

    NASA Astrophysics Data System (ADS)

    Sun, Ju-Long; Liu, Haichuan; Han, Ke-Li; Yang, Shihe

    2003-06-01

    Ion-molecule complexes of magnesium cation with ethyl isocyanate were produced in a laser-ablation supersonic expansion nozzle source. Photo-induced reactions in the 1:1 complexes have been studied in the spectral range of 230-410 nm. Photodissociation mass spectrometry revealed the persistent product Mg+ from nonreactive quenching throughout the entire wavelength range. As for the reactive channels, the photoproducts, Mg+OCN and C2H5+, were produced only in the blue absorption band of the complex with low yields. The action spectrum of Mg+(OCNC2H5) consists of two pronounced peaks on the red and blue sides of the Mg+ 32P←32S atomic transition. The ground state geometry of Mg+-OCNC2H5 was fully optimized at B3LYP/6-31+G** level by using GAUSSIAN 98 package. The calculated absorption spectrum of the complex using the optimized structure of its ground state agrees well with the observed action spectrum. Photofragment branching fractions of the products are almost independent of the photolysis photon energy for the 3Px,y,z excitations. The very low branching ratio of reactive products to nonreactive fragment suggests that evaporation is the main relaxation pathway in the photo-induced reactions of Mg+(OCNC2H5).

  6. An improved technique for the 2H/1H analysis of urines from diabetic volunteers

    USGS Publications Warehouse

    Coplen, T.B.; Harper, I.T.

    1994-01-01

    The H2-H2O ambient-temperature equilibration technique for the determination of 2H/1H ratios in urinary waters from diabetic subjects provides improved accuracy over the conventional Zn reduction technique. The standard deviation, ~ 1-2???, is at least a factor of three better than that of the Zn reduction technique on urinary waters from diabetic volunteers. Experiments with pure water and solutions containing glucose, urea and albumen indicate that there is no measurable bias in the hydrogen equilibration technique.The H2-H2O ambient-temperature equilibration technique for the determination of 2H/1H ratios in urinary waters from diabetic subjects provides improved accuracy over the conventional Zn reduction technique. The standard deviation, approximately 1-2%, is at least a factor of three better than that of the Zn reduction technique on urinary waters from diabetic volunteers. Experiments with pure water and solutions containing glucose, urea and albumen indicate that there is no measurable bias in the hydrogen equilibration technique.

  7. Fluorescence from photoexcitation of C2H5OH by vacuum ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Han, J. C.; Suto, Masako; Lee, L. C.

    1989-01-01

    The photoabsorption and fluorescence cross sections of C2H5OH have been measured in the 46-200 nm region. Fluorescence is dispersed to identify the emission systems, which are mainly OH(A-X), CH(A,B-X), and the H Balmer series. The photodissociation processes that produce the observed emissions are discussed.

  8. 77 FR 44441 - Swap Transaction Compliance and Implementation Schedule: Clearing Requirement Under Section 2(h...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... From the Federal Register Online via the Government Publishing Office COMMODITY FUTURES TRADING... Requirement Under Section 2(h) of the CEA AGENCY: Commodity Futures Trading Commission. ACTION: Final rule. SUMMARY: The Commodity Futures Trading Commission (Commission or CFTC) is adopting regulations...

  9. Growth mode of carbide from C 2H 4 or CO on Ni( 1 1 1 )

    NASA Astrophysics Data System (ADS)

    Nakano, H.; Ogawa, J.; Nakamura, J.

    2002-08-01

    The growth of carbide on a Ni(1 1 1) surface by the decomposition of C 2H 4 and the Boudouard reaction (2CO g→C a+CO 2,g) was studied using scanning tunneling microscopy (STM), Auger electron spectroscopy and low energy electron diffraction. STM results showed that the carbide growth by the Boudouard reaction started at step edges on Ni(1 1 1), while for the C 2H 4 decomposition the carbide was formed preferentially at terrace sites with very low concentration of carbide at the step edge. The different behavior for the carbide growth was ascribed to the difference in the dissociation sites of CO and C 2H 4. As for the Boudouard reaction, CO was dissociated at the step edge and then carbon migrated into the bulk at a reaction temperature of 500 K. The carbon was then segregated at room temperature to the surface from the bulk to form a single domain of the ( 39× 39) R16.1° structure at the step edge. On the other hand, the C 2H 4 decomposition took place on the terrace leading to an isolated carbide unit or carbide short strings on the terrace.

  10. Improved watermelon quality using bottle gourd rootstock expressing a Ca(2+)/H(+) antiporter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bottle gourd ("Lagenaria siceraria" Standl.) has been commonly used as a source of rootstock for watermelon. To improve its performance as a rootstock without adverse effects on the scion, the bottle gourd was genetically engineered using a modified "Arabidopsis" Ca(2+)/H(+) exchanger sCAX2B. This t...

  11. Slow recrystallization of tripalmitoylglycerol from MCT oil observed by 2H NMR.

    PubMed

    Smith, Kevin W; Smith, Paul R; Furó, István; Pettersson, Erik Thyboll; Cain, Fred W; Favre, Loek; Talbot, Geoff

    2007-10-17

    The crystallization and recrystallization of fats have a significant impact on the properties and quality of many food products. While crystallization has been the subject of a number of studies using pure triacylglycerols (TAG), recrystallization in similarly pure systems is rarely studied. In this work, perdeuterated tripalmitoylglycerol ( (2)H-PPP) was dissolved in medium chain triacylglycerol oil (MCT) to yield a saturated solution. The solution was heated to cause partial melting of the solid and dissolution of the molten fraction of (2)H-PPP in MCT and was then cooled to the original temperature to induce recrystallization from the supersaturated solution. (2)H NMR was used to monitor the disappearance of (2)H-PPP from the solution and showed that recrystallization occurred in two steps. The first step was rapid, taking place over a few minutes, and accounted for more than two-thirds of the total recrystallization. The second step was much slower, taking place over a remarkably long timescale of hours to days. It is proposed that dissolution occurs from all parts of the crystals, leaving an etched and pitted surface. The first step of crystallization is the infilling of these pits, while the second step is the continued growth on the smoothed crystal faces.

  12. SO2:H2O surface complex found at the vapor/water interface.

    PubMed

    Tarbuck, Teresa L; Richmond, Geraldine L

    2005-12-07

    A weakly bonded SO2:H2O surface complex is found at the vapor/water interface prior to the reaction and dissolution of SO2 into the aqueous phase. The results have important implications for understanding the formation of atmospheric aerosols and understanding the atmospheric sulfur cycle.

  13. "In planta" regulation of the "Arabidopsis" Ca(2+)/H(+) antiporter CAX1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vacuolar localized Ca(2+)/H(+) exchangers such as "Arabidopsis thaliana" cation exchanger 1 (CAX1) play important roles in Ca(2+) homeostasis. When expressed in yeast, CAX1 is regulated via an N-terminal autoinhibitory domain. In yeast expression assays, a 36 amino acid N-terminal truncation of CAX1...

  14. Identification of microdomains involved in association of "Arabidopsis" Ca(2+)/H(+) exchangers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In planta, high capacity tonoplast Ca2+/H+ antiport is mediated in part by a family of CAtion Exchangers (CAX). Each CAX can be divided into two weakly homologous halves (N- and C-) at the negatively charged loop between transmembrane (TM) 6 and TM7. Some CAX halves (N+C) co-expressed in yeast cells...

  15. Characterization of Radionuclides for 2H Evaporator Cleaning Transfers to Tank 42

    SciTech Connect

    O'Bryant, R.F.

    2001-06-04

    This document contains the characterization methodology for sludge-contaminated waste generated from the 2H Evaporator cleaning transfers to Tank 42, based on process knowledge and available analytical data. The scaling factors developed for Tank 42 in this document supercede those presented in Reference 6, and any other previously developed radionuclide characterizations for Tank 42 sludge-contaminated waste.

  16. Turbulence in Supercritical O2/H2 and C7H16/N2 Mixing Layers

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth; Okong'o, Nora

    2003-01-01

    This report presents a study of numerical simulations of mixing layers developing between opposing flows of paired fluids under supercritical conditions, the purpose of the study being to elucidate chemical-species-specific aspects of turbulence. The simulations were performed for two different fluid pairs O2/H2 and C7H16/N2 at similar reduced initial pressures (reduced pressure is defined as pressure divided by critical pressure). Thermodynamically, O2/H2 behaves more nearly like an ideal mixture and has greater solubility, relative to C7H16/N2, which departs strongly from ideality. Because of a specified smaller initial density stratification, the C7H16/N2 layers exhibited greater levels of growth, global molecular mixing, and turbulence. However, smaller density gradients at the transitional state for the O2/H2 system were interpreted as indicating that locally, this system exhibits enhanced mixing as a consequence of its greater solubility and closer approach to ideality. These thermodynamic features were shown to affect entropy dissipation, which was found to be larger for O2/H2 and concentrated in high-density-gradient-magnitude regions that are distortions of the initial density-stratification boundary. In C7H16/N2, the regions of largest dissipation were found to lie in high-density-gradient-magnitude regions that result from mixing of the two fluids.

  17. N,N-bond-forming heterocyclization: synthesis of 3-alkoxy-2H-indazoles.

    PubMed

    Mills, Aaron D; Nazer, Musa Z; Haddadin, Makhluf J; Kurth, Mark J

    2006-03-31

    A one-step heterocyclization of o-nitrobenzylamines to 3-alkoxy-2H-indazoles is reported. The electronic nature of the nitrophenyl group, the steric and electronic nature of the R1-functionalized benzylic amine, and the nature of the alcoholic solvent affect the efficiency of this heterocyclization reaction (approximately 40-90%).

  18. The Rate Constant for the Reaction H + C2H5 at T = 295 - 150K

    NASA Technical Reports Server (NTRS)

    Pimentel, Andre S.; Payne, Walter A.; Nesbitt, Fred L.; Cody, Regina J.; Stief, Louis J.

    2004-01-01

    The reaction between the hydrogen atom and the ethyl (C2H3) radical is predicted by photochemical modeling to be the most important loss process for C2H5 radicals in the atmospheres of Jupiter and Saturn. This reaction is also one of the major sources for the methyl radicals in these atmospheres. These two simplest hydrocarbon radicals are the initial species for the synthesis of larger hydrocarbons. Previous measurements of the rate constant for the H + C2H5 reaction varied by a factor of five at room temperature, and some studies showed a dependence upon temperature while others showed no such dependence. In addition, the previous studies were at higher temperatures and generally higher pressures than that needed for use in planetary atmospheric models. The rate constant for the reaction H + C2H5 has been measured directly at T = 150, 202 and 295 K and at P = 1.0 Torr He for all temperatures and additionally at P = 0.5 and 2.0 Torr He at T = 202 K. The measurements were performed in a discharge - fast flow system. The decay of the C2H5 radical in the presence of excess hydrogen was monitored by low-energy electron impact mass spectrometry under pseudo-first order conditions. H atoms and C2H5 radicals were generated rapidly and simultaneously by the reaction of fluorine atoms with H2 and C2H6, respectively. The total rate constant was found to be temperature and pressure independent. The measured total rate constant at each temperature are: k(sub 1)(295K) = (1.02+/-0.24)x10(exp -10), k(sub 1)(202K) = (1.02+/-0.22)x10(exp -10) and k(sub 1)(150K) = (0.93+/-0.21)x10(exp -10), all in units of cu cm/molecule/s. The total rate constant derived from all the combined measurements is k(sub 1) = (l.03+/-0.17)x10(exp -10) cu cm/molecule/s. At room temperature our results are about a factor of two higher than the recommended rate constant and a factor of three lower than the most recently published study.

  19. LITERATURE REVIEW ON IMPACT OF GLYCOLATE ON THE 2H EVAPORATOR AND THE EFFLUENT TREATMENT FACILITY

    SciTech Connect

    Adu-Wusu, K.

    2012-05-10

    Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporator serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations {le} 33 mg/L or 0.44 mM. The ETF unit operations that will have

  20. Effect of gas phase composition cycling on/off modulation numbers of C2H2/SF6 flows on the formation of geometrically controlled carbon coils.

    PubMed

    Eum, Jun-Ho; Jeon, Young-Chul; Kim, Sung-Hoon

    2012-07-01

    Carbon coils can be synthesized using C2H2/H2 as source gases and SF6 as an incorporated additive gas under a thermal chemical vapor deposition system. In this study, nickel catalyst layer deposition and then hydrogen plasma pretreatment were performed prior to the carbon coils deposition reaction. To obtain geometrically controlled carbon coils, source gases and SF6 were manipulated as the cycling on/off modulation numbers of C2H2/SF6 flows. The cycling numbers were varied according to the different reaction processes. The increased cycling numbers could develop the wave-like nano-sized carbon coils. By further increasing the cycling numbers, however, the nanostructured carbon coils seemed to deteriorate. As a result, the maximum formation of geometrically controlled carbon coils was achieved by adjusting the cycling numbers. The enhanced etching capability of the fluorine-related species in SF6 additive gas was considered for the main objective of controlling the geometry of carbon coils.

  1. Plasma chemistry study of PLAD processes

    SciTech Connect

    Qin Shu; Brumfield, Kyle; Liu, Lequn Jennifer; Hu, Yongjun Jeff; McTeer, Allen; Hsu, Wei Hui; Wang Maoying

    2012-11-06

    Plasma doping (PLAD) shows very different impurity profiles compared to the conventional beam-line-based ion implantations due to its non-mass separation property and plasma environment. There is no simulation for PLAD process so far due to a lack of a dopant profile model. Several factors determine impurity profiles of PLAD process. The most significant factors are: plasma chemistry and deposition/etching characteristics of multi-ion species plasmas. In this paper, we present plasma chemistry and deposition/etching characteristics of PLAD processes versus co-gas dilutions. Four dopant plasmas including B{sub 2}H{sub 6}, BF{sub 3}, AsH{sub 3}, and PH{sub 3}, and two non-dopant plasmas including CH{sub 4} and GeH{sub 4} are studied and demonstrated.

  2. Microbial H2 cycling does not affect δ2H values of ground water

    USGS Publications Warehouse

    Landmeyer, J.E.; Chapelle, F.H.; Bradley, P.M.

    2000-01-01

    Stable hydrogen-isotope values of ground water (δ2H) and dissolved hydrogen concentrations (H(2(aq)) were quantified in a petroleum-hydrocarbon contaminated aquifer to determine whether the production/consumption of H2 by subsurface microorganisms affects ground water &delta2H values. The range of &delta2H observed in monitoring wells sampled (-27.8 ‰c to -15.5 ‰c) was best explained, however, by seasonal differences in recharge temperature as indicated using ground water δ18O values, rather than isotopic exchange reactions involving the microbial cycling of H2 during anaerobic petroleum-hydrocarbon biodegradation. The absence of a measurable hydrogen-isotope exchange between microbially cycled H2 and ground water reflects the fact that the amount of H2 available from the anaerobic decomposition of petroleum hydrocarbons is small relative to the amount of hydrogen present in water, even though milligram per liter concentrations of readily biodegradable contaminants are present at the study site. Additionally, isotopic fractionation calculations indicate that in order for H2 cycling processes to affect δ2H values of ground water, relatively high concentrations of H2 (>0.080 M) would have to be maintained, considerably higher than the 0.2 to 26 nM present at this site and characteristic of anaerobic conditions in general. These observations suggest that the conventional approach of using δ2H and δ18O values to determine recharge history is appropriate even for those ground water systems characterized by anaerobic conditions and extensive microbial H2 cycling.

  3. Effects of leaf water evaporative (2) H-enrichment and biosynthetic fractionation on leaf wax n-alkane δ(2) H values in C3 and C4 grasses.

    PubMed

    Gamarra, B; Sachse, D; Kahmen, A

    2016-11-01

    Leaf wax n-alkane δ(2) H values carry important information about environmental and ecophysiological processes in plants. However, the physiological and biochemical drivers that shape leaf wax n-alkane δ(2) H values are not completely understood. It is particularly unclear why n-alkanes in grasses are typically (2) H-depleted compared with plants from other taxonomic groups such as dicotyledonous plants and why C3 grasses are (2) H-depleted compared with C4 grasses. To resolve these uncertainties, we quantified the effects of leaf water evaporative (2) H-enrichment and biosynthetic hydrogen isotope fractionation on n-alkane δ(2) H values for a range of C3 and C4 grasses grown in climate-controlled chambers. We found that only a fraction of leaf water evaporative (2) H-enrichment is imprinted on the leaf wax n-alkane δ(2) H values in grasses. This is interesting, as previous studies have shown in dicotyledonous plants a nearly complete transfer of this (2) H-enrichment to the n-alkane δ(2) H values. We thus infer that the typically observed (2) H-depletion of n-alkanes in grasses (as opposed to dicots) is because only a fraction of the leaf water evaporative (2) H-enrichment is imprinted on the δ(2) H values. Our experiments also show that differences in n-alkane δ(2) H values between C3 and C4 grasses are largely the result of systematic differences in biosynthetic fractionation between these two plant groups, which was on average -198‰ and-159‰ for C3 and C4 grasses, respectively.

  4. A Comparison of hs-CRP Levels in New Diabetes Groups Diagnosed Based on FPG, 2-hPG, or HbA1c Criteria.

    PubMed

    Tutuncu, Yildiz; Satman, Ilhan; Celik, Selda; Dinccag, Nevin; Karsidag, Kubilay; Telci, Aysegul; Genc, Sema; Issever, Halim; Tuomilehto, Jaakko; Omer, Beyhan

    2016-01-01

    Fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) have been used to diagnose new-onset diabetes mellitus (DM) in order to simplify the diagnostic tests compared with the 2-hour oral glucose tolerance test (OGTT; 2-hPG). We aimed to identify optimal cut-off points of high sensitive C-reactive protein (hs-CRP) in new-onset DM people based on FPG, 2-hPG, or HbA1c methods. Data derived from recent population-based survey in Turkey (TURDEP-II). The study included 26,499 adult people (63% women, response rate 85%). The mean serum concentration of hs-CRP in women was higher than in men (p < 0.001). The people with new-onset DM based on HbA1c had higher mean hs-CRP level than FPG based and 2-hPG based DM cases. In HbA1c, 2-hPG, and FPG based new-onset DM people, cut-off levels of hs-CRP in women were 2.9, 2.1, and 2.5 mg/L [27.5, 19.7, and 23.5 nmol/L] and corresponding values in men were 2.0, 1.8, and 1.8 mg/L (19.0, 16.9, and 16.9 nmol/L), respectively (sensitivity 60-65% and specificity 54-64%). Our results revealed that hs-CRP may not further strengthen the diagnosis of new-onset DM. Nevertheless, the highest hs-CRP level observed in new-onset DM people diagnosed with HbA1c criterion supports the general assumption that this method might recognize people in more advanced diabetic stage compared with other diagnostic methods.

  5. Cosmic plasma

    NASA Technical Reports Server (NTRS)

    Alfven, H.

    1981-01-01

    Attention is given to experimental and theoretical approaches to plasma physics, plasma phenomena in laboratory and space, field and particle aspects of plasmas, the present state of the classical theory, boundary conditions and circuit dependence, and cosmology. Electric currents in space plasmas are considered, taking into account dualism in physics, particle-related phenomena in plasma physics, magnetic field lines, filaments, local plasma properties and the circuit, electric double layers, field-aligned currents as 'cables', an expanding circuit, different types of plasma regions, the cellular structure of space, and the fine structure of active plasma regions. Other topics discussed are related to circuits, the theory of cosmic plasmas, the origin of the solar system, the coexistence of matter and antimatter, annihilation as a source of energy, the Hubble expansion in a Euclidean space, and a model for the evolution of the Metagalaxy.

  6. The Dissociation Energies of CH4 and C2H2 Revisited

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The bond dissociation energies of CH4 and C2H2 and their fragments are investigated using basis set extrapolations and high levels of correlation. The computed bond dissociation energies (D(sub e)) are accurate to within 0.2 kcal/mol. The agreement with the experimental (D(sub 0)) values is excellent if we assume that the zero-point energy of C2H is 9.18 kcal/mol. The effect of core (1s) correlation on the bond dissociation energies of C-H bonds is shown to vary from 0.2 to 0.7 kcal/mol and that for C-C bonds varies from 0.4 to 2.2 kcal/mol.

  7. 2H-DNP-enhanced 2H–13C solid-state NMR correlation spectroscopy

    PubMed Central

    Maly, Thorsten; Andreas, Loren B.; Smith, Albert A.

    2015-01-01

    Perdeuteration of biological macromolecules for magic angle spinning solid-state NMR spectroscopy can yield high-resolution 2H–13C correlation spectra and the method is therefore of great interest for the structural biology community. Here we demonstrate that the combination of sample deuteration and dynamic nuclear polarization yields resolved 2H–13C correlation spectra with a signal enhancement of ε ≥ 700 compared to a spectrum recorded with microwaves off and otherwise identical conditions. To our knowledge, this is the first time that 2H-DNP has been employed to enhance MAS-NMR spectra of a biologically relevant system. The DNP process is studied using several polarizing agents and the technique is applied to obtain 2H–13C correlation spectra of U-[2H, 13C] proline. PMID:20458422

  8. Near infrared second overtone cw-cavity ringdown spectroscopy of D2H+ ions

    NASA Astrophysics Data System (ADS)

    Hlavenka, P.; Plasil, R.; Bano, G.; Korolov, I.; Gerlich, D.; Ramanlal, J.; Tennyson, J.; Glosik, J.

    2006-09-01

    A study of D2H+ ions in their lowest rotational states is presented. The ions are generated in pulsed discharge in liquid N2 cooled He/Ar/H2/D2 gas mixture. Near infrared (NIR) second overtone transitions in the 6534-6536 cm-1 (1.529-1.530 [mu]m) region are used to identify the ions and determine their degree of rotational excitation. The data were obtained using NIR cavity ringdown absorption spectroscopy (NIR-CRDS). The sensitivity obtained was typically 5 x 10-9 cm-1. The measured second overtone transition frequencies are in very good agreement (better than 0.02 cm-1) with ab initio predictions. From the Doppler broadening the kinetic temperature of ions is estimated to be (220 +/- 50) K. The absolute number density of D2H+ as a function of H2/D2 mixing ratio and time is measured.

  9. Mixed H(2)/H(sub infinity): Control with output feedback compensators using parameter optimization

    NASA Technical Reports Server (NTRS)

    Schoemig, Ewald; Ly, Uy-Loi

    1992-01-01

    Among the many possible norm-based optimization methods, the concept of H-infinity optimal control has gained enormous attention in the past few years. Here the H-infinity framework, based on the Small Gain Theorem and the Youla Parameterization, effectively treats system uncertainties in the control law synthesis. A design approach involving a mixed H(sub 2)/H-infinity norm strives to combine the advantages of both methods. This advantage motivates researchers toward finding solutions to the mixed H(sub 2)/H-infinity control problem. The approach developed in this research is based on a finite time cost functional that depicts an H-infinity bound control problem in a H(sub 2)-optimization setting. The goal is to define a time-domain cost function that optimizes the H(sub 2)-norm of a system with an H-infinity-constraint function.

  10. VUV photoionization cross sections of HO2, H2O2, and H2CO.

    PubMed

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio

    2015-02-26

    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.

  11. Optically pumped CHClF2 and C2H5I submillimeter wave lasers

    NASA Astrophysics Data System (ADS)

    Tobin, M. S.; Daley, T. W.

    1980-06-01

    Submillimeter wave laser action is reported for optically pumped chlorodifluoromethane gas and ethyl iodide vapor. The compounds were pumped by an electrically chopped CO2 laser at 10 Hz coupled to a metallic waveguide unoptimized 3.5 mm output-hole-coupled resonator with plunger mirrors. Coincidences between CO2 pump lines and molecular absorption lines were detected at three lines in the 9-micron R region in CHClF2 and two lines in the 10-micron R and P regions in C2H5I for chopped and not CW laser regimes. Comparison of the molecular structures of the two species with the CW FIR laser material selection criteria of Danielewicz and Weiss (1978) reveals that CHClF2 satisfies these criteria (although CHClF2 absorption does not overlap with many CO2 pump lines), while C2H5I does not, in agreement with experimental results.

  12. TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OLS)

    Atmospheric Science Data Center

    2016-10-25

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OLS) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access:  OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  13. Electron Impact Ionization and Dissociative Ionization of C2H2

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K.

    1995-01-01

    By utilizing a crossed electron beam collision geometry, a combination of time-of-flight (TOF) and quadrupole mass spectrometers, and the relative flow technique1 normalized values of cross sections and appearance energies (AP) were obtained for the formation of singly and multiply ionized species resulting from the ionization and dissociation of C2H2. Details ont he apparatus and technique have been published previously.2,3.

  14. DYNC2H1 mutation causes Jeune syndrome and recurrent lung infections associated with ciliopathy.

    PubMed

    Emiralioglu, Nagehan; Wallmeier, Julia; Olbrich, Heike; Omran, Heymut; Ozcelik, Ugur

    2017-03-03

    Asphyxiating thoracic dystrophy, also known as Jeune syndrome, is included in a group of syndromic skeletal ciliopathies associated with mutations in genes encoding proteins involved in the formation or function of motile cilia. Herein, we report a 6-mo-old male admitted to hospital with recurrent lung infections, thoracic dystrophy, and respiratory distress that was diagnosed as Jeune syndrome; DYNC2H1 mutation was detected via genetic analysis and ciliary dysfunction was noted via high-speed video microscopy.

  15. The Abundance of C2H4 in the Circumstellar Envelope of IRC+10216

    PubMed Central

    Fonfría, J. P.; Hinkle, K. H.; Cernicharo, J.; Richter, M. J.; Agúndez, M.

    2017-01-01

    High spectral resolution mid-IR observations of ethylene (C2H4) towards the AGB star IRC+10216 were obtained using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infrared Telescope Facility (IRTF). Eighty ro-vibrational lines from the 10.5 µm vibrational mode ν7 with J ≲ 30 were detected in absorption. The observed lines are divided into two groups with rotational temperatures of 105 and 400 K (warm and hot lines). The warm lines peak at ≃ −14 km s−1 with respect to the systemic velocity, suggesting that they are mostly formed outwards from ≃ 20R⋆. The hot lines are centered at −10 km s−1 indicating that they come from a shell between 10 and 20R⋆. 35% of the observed lines are unblended and can be fitted with a code developed to model the emission of a spherically symmetric circumstellar envelope. The analysis of several scenarios reveal that the C2H4 abundance relative to H2 in the range 5 − 20R⋆ is 6.9 × 10−8 in average and it could be as high as 1.1 × 10−7. Beyond 20R⋆, it is 8.2 × 10−8. The total column density is (6.5 ± 3.0) × 1015 cm−2. C2H4 is found to be rotationally under local thermodynamical equilibrium (LTE) and vibrationally out of LTE. One of the scenarios that best reproduce the observations suggests that up to 25% of the C2H4 molecules at 20R⋆ could condense onto dust grains. This possible depletion would not influence significantly the gas acceleration although it could play a role in the surface chemistry on the dust grains. PMID:28184097

  16. Characterization Results for the March 2016 H-Tank Farm 2H Evaporator Overhead Samples

    SciTech Connect

    Nicholson, J. C.

    2016-05-09

    This report contains the radioanalytical results of the 2H evaporator overhead sample received at SRNL on March 16, 2016. Specifically, concentrations of 137Cs, 90Sr, and 129I are reported and compared to the corresponding Waste Acceptance Criteria (WAC) limits of the Effluent Treatment Project (ETP) Waste Water Collection Tank (WWCT) (rev. 6). All of the radionuclide concentrations in the sample were found to be in compliance with the ETP WAC limits.

  17. Establishment of the C(2)H(5)+O(2) reaction mechanism: a combustion archetype.

    PubMed

    Wilke, Jeremiah J; Allen, Wesley D; Schaefer, Henry F

    2008-02-21

    The celebrated C(2)H(5)+O(2) reaction is an archetype for hydrocarbon combustion, and the critical step in the process is the concerted elimination of HO(2) from the ethylperoxy intermediate (C(2)H(5)O(2)). Master equation kinetic models fitted to measured reaction rates place the concerted elimination barrier 3.0 kcal mol(-1) below the C(2)H(5)+O(2) reactants, whereas the best previous electronic structure computations yield a barrier more than 2.0 kcal mol(-1) higher. We resolve this discrepancy here by means of the most rigorous computations to date, using focal point methods to converge on the ab initio limit. Explicit computations were executed with basis sets as large as cc-pV5Z and correlation treatments as extensive as coupled cluster through full triples with a perturbative inclusion of quadruple excitations [CCSDT(Q)]. The final predicted barrier is -3.0 kcal mol(-1), bringing the concerted elimination mechanism into precise agreement with experiment. This work demonstrates that higher correlation treatments such as CCSDT(Q) are not only feasible on systems of chemical interest but are necessary to supply accuracy beyond 0.5 kcal mol(-1), which is not obtained with the "gold standard" CCSD(T) method. Finally, we compute the enthalpy of formation of C(2)H(5)O(2) to be Delta(f)H degrees (298 K)=-5.3+/-0.5 kcal mol(-1) and Delta(f)H degrees (0 K)=-1.5+/-0.5 kcal mol(-1).

  18. OVRO N2H+ Observations of Class 0 Protostars: Constraints on the Formation of Binary Stars

    NASA Astrophysics Data System (ADS)

    Chen, Xuepeng; Launhardt, Ralf; Henning, Thomas

    2007-11-01

    We present the results of an interferometric study of the N2H+ (1-0) emission from nine nearby, isolated, low-mass protostellar cores, using the Owens Valley Radio Observatory (OVRO) millimeter array. The main goal of this study is the kinematic characterization of the cores in terms of rotation, turbulence, and fragmentation. Eight of the nine objects have compact N2H+ cores with FWHM radii of 1200-3500 AU, spatially coinciding with the thermal dust continuum emission. The one more evolved (Class I) object in the sample (CB 188) shows only faint and extended N2H+ emission. The mean N2H+ line width was found to be 0.37 km s-1. Estimated virial masses range from 0.3 to 1.2 Msolar. We find that thermal and turbulent energy support are about equally important in these cores, while rotational support is negligible. The measured velocity gradients across the cores range from 6 to 24 km s-1 pc-1. Assuming these gradients are produced by bulk rotation, we find that the specific angular momenta of the observed Class 0 protostellar cores are intermediate between those of dense (prestellar) molecular cloud cores and the orbital angular momenta of wide pre-main-sequence (PMS) binary systems. There appears to be no evolution (decrease) of angular momentum from the smallest prestellar cores via protostellar cores to wide PMS binary systems. In the context that most protostellar cores are assumed to fragment and form binary stars, this means that most of the angular momentum contained in the collapse region is transformed into orbital angular momentum of the resulting stellar binary systems.

  19. 1H-2H cross-polarization NMR in fast spinning solids by adiabatic sweeps

    NASA Astrophysics Data System (ADS)

    Wi, Sungsool; Schurko, Robert; Frydman, Lucio

    2017-03-01

    Cross-polarization (CP) experiments employing frequency-swept radiofrequency (rf) pulses have been successfully used in static spin systems for obtaining broadband signal enhancements. These experiments have been recently extended to heteronuclear I, S = spin-1/2 nuclides under magic-angle spinning (MAS), by applying adiabatic inversion pulses along the S (low-γ) channel while simultaneously applying a conventional spin-locking pulse on the I-channel (1H). This study explores an extension of this adiabatic frequency sweep concept to quadrupolar nuclei, focusing on CP from 1H (I = 1/2) to 2H spins (S = 1) undergoing fast MAS (νr = 60 kHz). A number of new features emerge, including zero- and double-quantum polarization transfer phenomena that depend on the frequency offsets of the swept pulses, the rf pulse powers, and the MAS spinning rate. An additional mechanism found operational in the 1H-2H CP case that was absent in the spin-1/2 counterpart, concerns the onset of a pseudo-static zero-quantum CP mode, driven by a quadrupole-modulated rf/dipolar recoupling term arising under the action of MAS. The best CP conditions found at these fast spinning rates correspond to double-quantum transfers, involving weak 2H rf field strengths. At these easily attainable (ca. 10 kHz) rf field conditions, adiabatic level-crossings among the {|1 ⟩ ,|0 ⟩ ,|-1 ⟩ } mS energy levels, which are known to complicate the CP MAS of quadrupolar nuclei, are avoided. Moreover, the CP line shapes generated in this manner are very close to the ideal 2H MAS spectral line shapes, facilitating the extraction of quadrupolar coupling parameters. All these features were corroborated with experiments on model compounds and justified using numerical simulations and average Hamiltonian theory models. Potential applications of these new phenomena, as well as extensions to higher spins S, are briefly discussed.

  20. Temporal and spatial distributions of δ18O and δ2H in precipitation in Romania

    NASA Astrophysics Data System (ADS)

    Nagavciuc, Viorica; Bădăluță, Carmen-Andreea; Perșoiu, Aurel

    2015-04-01

    Stable isotope ratios of meteoric water have an important role in climatic, paleoclimatic, hydrological and meteorological studies. While such data are available from most of Europe, so far, in Romania (East Central Europe), no systematic study of the stable isotopic composition of precipitation exists. In this context, the aim of this study is to analyze the isotopic composition of rainwater, its temporal and spatial distribution, the identification of the main factors influencing these variations and the creation of the first map of spatial distribution of stable isotopes in precipitation in Romania. Between March 2012 and March 2014 we have collected monthly samples from 22 stations in Romania, which were subsequently analyzed for their δ18O and δ2H at the Stable Isotopes Laboratory, Stefan cel Mare University, Suceava, Romania. Precipitation in W and NW Romania plot along the GMWL, while those in the East are slightly below it, on an evaporative trend. The LMWL for Romania is defined as δ2H=7,27*δ18O + 6,92. The W-E gradient in the distribution of δ18O and δ2H are less marked than the N-S ones, with local influences dominating in areas of strong evaporation (intramountain basins, rain-shadow areas etc). In SW, and especially in autumn and winter, Meditteranean cyclones carry moisture from the Eastern Mediterranean, the δ18O and δ2H values in precipitation in the area plotting between the GMWL and the Eastern Mediterranean Meteoric Water Line. The isotopic composition of rainwater in Romania correlates well with air temperature, and is influenced to a lesser extent by other factors such as the amount of precipitation, topography configuration, the effect of continentalism and season of the year.

  1. The Abundance of C2H4 in the Circumstellar Envelope of IRC+10216.

    PubMed

    Fonfría, J P; Hinkle, K H; Cernicharo, J; Richter, M J; Agúndez, M; Wallace, L

    2017-02-01

    High spectral resolution mid-IR observations of ethylene (C2H4) towards the AGB star IRC+10216 were obtained using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infrared Telescope Facility (IRTF). Eighty ro-vibrational lines from the 10.5 µm vibrational mode ν7 with J ≲ 30 were detected in absorption. The observed lines are divided into two groups with rotational temperatures of 105 and 400 K (warm and hot lines). The warm lines peak at ≃ -14 km s(-1) with respect to the systemic velocity, suggesting that they are mostly formed outwards from ≃ 20R⋆. The hot lines are centered at -10 km s(-1) indicating that they come from a shell between 10 and 20R⋆. 35% of the observed lines are unblended and can be fitted with a code developed to model the emission of a spherically symmetric circumstellar envelope. The analysis of several scenarios reveal that the C2H4 abundance relative to H2 in the range 5 - 20R⋆ is 6.9 × 10(-8) in average and it could be as high as 1.1 × 10(-7). Beyond 20R⋆, it is 8.2 × 10(-8). The total column density is (6.5 ± 3.0) × 10(15) cm(-2). C2H4 is found to be rotationally under local thermodynamical equilibrium (LTE) and vibrationally out of LTE. One of the scenarios that best reproduce the observations suggests that up to 25% of the C2H4 molecules at 20R⋆ could condense onto dust grains. This possible depletion would not influence significantly the gas acceleration although it could play a role in the surface chemistry on the dust grains.

  2. Ionized state of hydroperoxy radical-water hydrogen-bonded complex: (HO2-H2O)+.

    PubMed

    Joshi, Ravi; Ghanty, Tapan K; Naumov, Sergej; Mukherjee, Tulsi

    2007-12-27

    Ab initio molecular orbital calculations have been employed to characterize the structure and bonding of the (HO2-H2O)+ radical cation system. Geometry optimization of this system was carried out using unrestricted density functional theory in conjunction with the BHHLYP functional and 6-311++G(2df,2p) as well as 6-311++G(3df,3p) basis sets, the second-order Møller-Plesset perturbation (MP2) method with the 6-311++G(3df,3p) basis set, and the couple cluster (CCSD) method with the aug-cc-pVTZ basis set. The effect of spin multiplicity on the stability of the (HO2-H2O)+ system has been studied and also compared with that of oxygen. The calculated results suggest a proton-transferred hydrogen bond between HO2 and H2O in H3O3+ wherein a proton is partially transferred to H2O producing the O2...H3O+ structure. The basis set superposition error and zero-point energy corrected results indicate that the H3O3+ system is energetically more stable in the triplet state; however, the singlet state of H3O3+ is more stable with respect to its dissociation into H3O+ and singlet O2. Since the resulting proton-transferred hydrogen-bonded complex (O2...H3O+) consists of weakly bound molecular oxygen, it might have important implications in various chemical processes and aquatic life systems.

  3. The Abundance of C2H4 in the Circumstellar Envelope of IRC+10216

    NASA Astrophysics Data System (ADS)

    Fonfría, J. P.; Hinkle, K. H.; Cernicharo, J.; Richter, M. J.; Agúndez, M.; Wallace, L.

    2017-02-01

    High spectral resolution mid-IR observations of ethylene ({{{C}}}2{{{H}}}4) toward the AGB star IRC+10216 were obtained using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infrared Telescope Facility (IRTF). 80 ro-vibrational lines from the 10.5 μm vibrational mode {ν }7 with J ≲ 30 were detected in absorption. The observed lines are divided into two groups with rotational temperatures of 105 and 400 K (warm and hot lines). The warm lines peak at ≃ ‑14 km s‑1 with respect to the systemic velocity, suggesting that they are mostly formed outwards from ≃ 20{R}\\star . The hot lines are centered at ‑10 km s‑1 indicating that they come from a shell between 10 and 20{\\text{}}{R}\\star . 35% of the observed lines are unblended and can be fitted with a code developed to model the emission of a spherically symmetric circumstellar envelope. The analysis of several scenarios reveals that the {{{C}}}2{{{H}}}4 abundance relative to H2 in the range 5‑20R⋆ is 6.9× {10}-8 on average and it could be as high as 1.1 × 10‑7. Beyond 20{\\text{}}{R}\\star , it is 8.2 × 10‑8. The total column density is (6.5 ± 3.0) × 1015 cm‑2. {{{C}}}2{{{H}}}4 is found to be rotationally under local thermodynamical equilibrium (LTE) and vibrationally out of LTE. One of the scenarios that best reproduce the observations suggests that up to 25% of the {{{C}}}2{{{H}}}4 molecules at 20{\\text{}}{R}\\star could condense onto dust grains. This possible depletion would not significantly influence the gas acceleration although it could play a role in the surface chemistry on the dust grains.

  4. Establishment of the C2H5+O2 reaction mechanism: A combustion archetype

    NASA Astrophysics Data System (ADS)

    Wilke, Jeremiah J.; Allen, Wesley D.; Schaefer, Henry F.

    2008-02-01

    The celebrated C2H5+O2 reaction is an archetype for hydrocarbon combustion, and the critical step in the process is the concerted elimination of HO2 from the ethylperoxy intermediate (C2H5O2). Master equation kinetic models fitted to measured reaction rates place the concerted elimination barrier 3.0kcalmol-1 below the C2H5+O2 reactants, whereas the best previous electronic structure computations yield a barrier more than 2.0kcalmol-1 higher. We resolve this discrepancy here by means of the most rigorous computations to date, using focal point methods to converge on the ab initio limit. Explicit computations were executed with basis sets as large as cc-pV5Z and correlation treatments as extensive as coupled cluster through full triples with a perturbative inclusion of quadruple excitations [CCSDT(Q)]. The final predicted barrier is -3.0kcalmol-1, bringing the concerted elimination mechanism into precise agreement with experiment. This work demonstrates that higher correlation treatments such as CCSDT(Q) are not only feasible on systems of chemical interest but are necessary to supply accuracy beyond 0.5kcalmol-1, which is not obtained with the "gold standard" CCSD(T) method. Finally, we compute the enthalpy of formation of C2H5O2 to be ΔfH °(298K)=-5.3±0.5kcalmol-1 and ΔfH°(0K)=-1.5±0.5kcalmol-1.

  5. Kinetics Studies of Radical-Radical Reactions: The NO2 + N2H3 System

    DTIC Science & Technology

    2013-10-01

    investigating the kinetics of this elementary reaction . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...Viewgraph 3. DATES COVERED (From - To) September 2013- October 2013 4. TITLE AND SUBTITLE Kinetics Studies of Radical-Radical Reactions (I): The NO2...characteristics in relevant operating environments. Here we report theoretical results obtained on the prototypical radical- radical reaction : NO2 + N2H3

  6. Kinetics Studies of Radical-Radical Reactions (I): The NO2 + N2H3 System

    DTIC Science & Technology

    2013-08-01

    the potential energy surface for the NO2 + N2H3 system and have established the most likely reaction mechanism. The technique of laser photolysis...configuration interactions and coupled-cluster theories with single and double excitations, and correction for triple excitations. Specifically, the...differentially pumped chamber containing an electron impact ionization quadrupole mass spectrometer. 4. Results and Discussion To our knowledge

  7. Sensitivity of 2H NMR spectroscopy to motional models: Proteins and highly viscous liquids as examples

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Mielczarek, A.; Korpala, A.; Kozlowski, A.; Earle, K. A.; Moscicki, J.

    2012-06-01

    In order to study to what extent mechanisms of molecular motion can be unambiguously revealed by 2H NMR spectroscopy, 2H spectra for proteins (chicken villin protein headpiece HP36, selectively methyl-deuterated at leucine-69, Cδ D3) and binary systems of high viscosity (benzene-d6 in tricresyl phosphate) have been carefully analyzed as illustrative examples (the spectra are taken from the literature). In the first case, a model of restricted diffusion mediated by jumps between rotameric orientations has been tested against jump- and free diffusion models which describe rotational motion combined with jump dynamics. It has been found that the set of 2H spectra of methyl-deuterated at leucine-69 chicken villin protein headpiece HP36 can be consistently explained by different motional models as well as by a Gaussian distribution of correlation times assuming isotropic rotation (simple Brownian diffusion model). The last finding shows that when the possible distribution of correlation times is not very broad one might not be able to distinguish between heterogeneous and homogenous (but more complex) dynamics by analyzing 2H lineshapes. For benzene-d6 in tricresyl phosphate, the dynamics is heterogeneous and it has been demonstrated that a Gaussian distribution of correlation times reproduces well the experimental lineshapes, while for a Cole-Davidson distribution the agreement is somewhat worse. For inquires into the sensitivity of quadrupolar NMR spectral analysis (by "quadrupolar NMR spectroscopy we understand NMR spectroscopy of nuclei possessing quadrupole moment), the recently presented theoretical approach [Kruk et al., J. Chem. Phys. 135, 224511 (2011)], 10.1063/1.3664783 has been used as it allows simulating quadrupolar spectra for arbitrary motional conditions by employing the stochastic Liouville equation.

  8. Helicity in Supercritical O2/H2 and C7H16/N2 Mixing Layers

    NASA Technical Reports Server (NTRS)

    Okongo, Nora; Bellan, Josette

    2004-01-01

    This report describes a study of databases produced by direct numerical simulation of mixing layers developing between opposing flows of two fluids under supercritical conditions, the purpose of the study being to elucidate chemical-species-specific aspects of turbulence, with emphasis on helicity. The simulations were performed for two different fluid pairs -- O2/H2 and C7H16/N2 -- at similar values of reduced pressure.

  9. Efficient and convenient synthesis of indazol-3(2H)-ones and 2-aminobenzonitriles.

    PubMed

    Dou, Guolan; Shi, Daqing

    2009-01-01

    A mild, efficient, one-pot protocol for the synthesis of indazole-3(2H)-ones via cyclization of nitro-aryl substrates through low-valent titanium reagent has been described. The method used Triethylamine (TEA) to control pH. Particularly, 2-aminobenzonitriles were synthesized by one step easily. The mechanistic course of the reaction suggests the involvement of an anion leading to an intramolecular cyclization via N-N bond formation.

  10. Regulated release of Ca2+ from respiring mitochondria by Ca2+/2H+ antiport.

    PubMed

    Fiskum, G; Lehninger, A L

    1979-07-25

    Simultaneous measurements of oxygen consumption and transmembrane transport of Ca2+, H+, and phosphate show that the efflux of Ca2+ from respiring tightly coupled rat liver mitochondria takes place by an electroneutral Ca2+/2H+ antiport process that is ruthenium red-insensitive and that is regulated by the oxidation-reduction state of the mitochondrial pyridine nucleotides. When mitochondrial pyridine nucleotides are kept in a reduced steady state, the efflux of Ca2+ is inhibited; when they are in an oxidized state, Ca2+ efflux is activated. These processes were demonstrated by allowing phosphate-depleted mitochondria respiring on succinate in the presence of rotenone to take up Ca2+ from the medium. Upon subsequent addition of ruthenium red to block Ca2+ transport via the electrophoretic influx pathway, and acetoacetate, to bring mitochondrial pyridine nucleotides into the oxidized state, Ca2+ efflux and H+ influx ensued. The observed H+ influx/Ca2+ efflux ratio was close to the value 2.0 predicted for the operation of an electrically neutral Ca2+/2H+ antiport process.

  11. Electronic structure and charge-density-wave mechanism in 2H-TaSe_2

    NASA Astrophysics Data System (ADS)

    Rossnagel, Kai; Rotenberg, Eli; Smith, Neville V.; Seifarth, Olaf; Kipp, Lutz

    2004-03-01

    The simple layered charge-density-wave system 2H-TaSe2 has received renewed interest recently because it may share important physical properties with the high-temperature superconducting cuprates, such as quasi-two-dimensionality, qualitatively similar resisitivity curves and optical responses, saddle bands close to the chemical potential, and a possible correlation between the opening of a gap on parts of the Fermi surface and the occurence of a strong energy renormalization on ungapped parts. We present here a detailed angle-resolved photoelectron spectroscopy study of the near-EF electronic structure of 2H-TaSe_2, focusing on Fermi surface topology, energy gaps, and band renormalization effects. Our results provide important clues as to the origin of the still-debated charge-density-wave mechanism in 2H-TaSe2 and possible similarities to the electronic structure of cuprates. The experiments were carried out at the Electronic Structure Factory at beamline 7 of the Advanced Light Source in Berkeley. K.R. gratefully acknowledges support by the Alexander von Humboldt Foundation. Work at the University of Kiel is supported by DFG Forschergruppe FOR 353.

  12. Liquid water on Mars - An energy balance climate model for CO2/H2O atmospheres

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.; Callegari, A. J.; Hsieh, C. T.; Ziegler, W.

    1981-01-01

    A simple climatic model is developed for a Mars atmosphere containing CO2 and sufficient liquid water to account for the observed hydrologic surface features by the existence of a CO2/H2O greenhouse effect. A latitude-resolved climate model originally devised for terrestrial climate studies is applied to Martian conditions, with the difference between absorbed solar flux and emitted long-wave flux to space per unit area attributed to the divergence of the meridional heat flux and the poleward heat flux assumed to equal the atmospheric eddy heat flux. The global mean energy balance is calculated as a function of atmospheric pressure to assess the CO2/H2O greenhouse liquid water hypothesis, and some latitude-resolved cases are examined in detail in order to clarify the role of atmospheric transport and temperature-albedo feedback. It is shown that the combined CO2/H2O greenhouse at plausible early surface pressures may account for climates hot enough to support a hydrological cycle and running water at present-day insolation and visible albedo levels.

  13. Exotic SiO2H2 Isomers: Theory and Experiment Working in Harmony.

    PubMed

    McCarthy, Michael C; Gauss, Jürgen

    2016-05-19

    Replacing carbon with silicon can result in dramatic and unanticipated changes in isomeric stability, as the well-studied CO2H2 and the essentially unknown SiO2H2 systems illustrate. Guided by coupled-cluster calculations, three SiO2H2 isomers have been detected and spectroscopically characterized in a molecular beam discharge source using rotational spectroscopy. The cis,trans conformer of dihydroxysilylene HOSiOH, the ground-state isomer, and the high-energy, metastable dioxasilirane c-H2SiO2 are abundantly produced in a dilute SiH4/O2 electrical discharge, enabling precise structural determinations of both by a combination of isotopic measurements and calculated vibrational corrections. The isotopic studies also provide insight into their formation route, suggesting that c-H2SiO2 is formed promptly in the expansion but that cis,trans-HOSiOH is likely formed by secondary reactions following formation of the most stable dissociation pair, SiO + H2O. Although less abundant, the rotational spectrum of trans-silanoic acid, the silicon analogue of formic acid, HSi(O)OH, has also been observed.

  14. 2Q NMR of 2H2O ordering at solid interfaces

    NASA Astrophysics Data System (ADS)

    Krivokhizhina, Tatiana V.; Wittebort, R. J.

    2014-06-01

    Solvent ordering at an interface can be studied by multiple-quantum NMR. Quantitative studies of 2H2O ordering require clean double-quantum (2Q) filtration and an analysis of 2Q buildup curves that accounts for relaxation and, if randomly oriented samples are used, the distribution of residual couplings. A pulse sequence with absorption mode detection is extended for separating coherences by order and measuring relaxation times such as the 2Q filtered T2. Coherence separation is used to verify 2Q filtration and the 2Q filtered T2 is required to extract the coupling from the 2Q buildup curve when it is unresolved. With our analysis, the coupling extracted from the buildup curve in 2H2O hydrated collagen was equivalent to the resolved coupling measured in the usual 1D experiment and the 2Q to 1Q signal ratio was in accord with theory. Application to buildup curves from 2H2O hydrated elastin, which has an unresolved coupling, revealed a large increase in the 2Q signal upon mechanical stretch that is due to an increase in the ordered water fraction while changes in the residual coupling and T2 are small.

  15. A 2H and 14N NMR study of molecular motion in polycrystalline choline salts

    NASA Astrophysics Data System (ADS)

    Pratum, T. K.; Klein, M. P.

    2H and 14N solid-state NMR spectra of polycrystalline choline chloride, bromide, and iodide indicate that 180° cation flipping motion occurs in all three salts. From the temperature dependence of these spectra, the activation energy for this motion is determined to be 5.8 ± I kcal/mol in the iodide salt and 11 ± 1.5 kcal/mol in the chloride salt. In the bromide salt the reorientation rate is too rapid to be determined from the NMR lineshape, but the temperature dependence of the 2H quadrupole coupling parameters is indicative of a second-order phase transition at approximately 273 K. The spectral distortions in the 14N NMR spectra of the chloride and iodide salts are adequately explained using the motional model derived from the 2H NMR results, while the 14N spectra of the bromide salt show no motional effects. The axis of reorientation which is inferred from these data appears to be consistent with that indicated in a previous X-ray crystallographic study.

  16. Angular momentum of the N2H+ cores in the Orion A cloud

    NASA Astrophysics Data System (ADS)

    Tatematsu, Ken'ichi; Ohashi, Satoshi; Sanhueza, Patricio; Nguyen Luong, Quang; Umemoto, Tomofumi; Mizuno, Norikazu

    2016-04-01

    We have analyzed the angular momentum of the molecular cloud cores in the Orion A giant molecular cloud observed in the N2H+ J = 1-0 line with the Nobeyama 45 m radio telescope. We have measured the velocity gradient using position-velocity diagrams passing through core centers, and made sinusoidal fits against the position angle. Twenty-seven out of 34 N2H+ cores allowed us to measure the velocity gradient without serious confusion. The derived velocity gradient ranges from 0.5 to 7.8 km s-1 pc-1. We marginally found that the specific angular momentum J/M (against the core radius R) of the Orion N2H+ cores tends to be systematically larger than that of molecular cloud cores in cold dark clouds obtained by Goodman et al., in the J/M-R relation. The ratio β of rotational to gravitational energy is derived to be β = 10-2.3±0.7, and is similar to that obtained for cold dark cloud cores in a consistent definition. The large-scale rotation of the ∫-shaped filament of the Orion A giant molecular cloud does not likely govern the core rotation at smaller scales.

  17. Laboratory IR Studies and Astrophysical Implications of C2H2-Containing Binary Ices

    NASA Technical Reports Server (NTRS)

    Knez, C.; Moore, M.; Ferrante, R.; Hudson, R.

    2012-01-01

    Studies of molecular hot cores and protostellar environments have shown that the observed abundance of gas-phase acetylene (C2H2) cannot be matched by chemical models without the inclusion of C2H2 molecules subliming from icy grain mantles. Searches for infrared (IR) spectral features of solid-phase acetylene are under way, but few laboratory reference spectra of C2H2 in icy mixtures, which are needed for spectral fits to observational data, have been published. Here, we report a systematic study of the IR spectra of condensed-phase pure acetylene and acetylene in ices dominated by carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), and water (H2O). We present new spectral data for these ices, including band positions and intrinsic band strengths. For each ice mixture and concentration, we also explore the dependence of acetylene's nu5-band position (743 cm-1, 13.46 micrometers) and FWHM on temperature. Our results show that the nu5 feature is much more cleanly resolved in ices dominated by non-polar and low-polarity molecules, specifically CO, CO2, and CH4, than in mixtures dominated by H2O-ice. We compare our laboratory ice spectra with observations of a quiescent region in Serpens.

  18. Preparation of bis-(1(2)H-tetrazol-5-yl)-amine monohydrate

    DOEpatents

    Naud, Darren L.; Hiskey, Michael A.

    2003-05-27

    A process of preparing bis-(1(2)H-tetrazol-5-yl)-amine monohydrate is provided including combining a dicyanamide salt, an azide salt and water to form a first reaction mixture, adding a solution of a first strong acid characterized as having a pKa of less than about 1 to said first reaction mixture over a period of time characterized as providing a controlled reaction rate so as to gradually form hydrazoic acid without loss of significant quantities of hydrazoic acid from the solution while heating the first reaction mixture at temperatures greater than about 65.degree. C., heating the resultant reaction mixture at temperatures greater than about 65.degree. C. for a period of time sufficient to substantially completely form a reaction product, treating the reaction product with a solution of a second strong acid to form a product of bis-(1(2)H-tetrazol-5-yl)-amine monohydrate, and, recovering the bis-(1(2)H-tetrazol-5-yl)-amine monohydrate product.

  19. Mechanism and kinetics of the reaction NO3 + C2H4.

    PubMed

    Nguyen, Thanh Lam; Park, Jaehee; Lee, Kyungjun; Song, Kihyung; Barker, John R

    2011-05-19

    The reaction of NO(3) radical with C(2)H(4) was characterized using the B3LYP, MP2, B97-1, CCSD(T), and CBS-QB3 methods in combination with various basis sets, followed by statistical kinetic analyses and direct dynamics trajectory calculations to predict product distributions and thermal rate constants. The results show that the first step of the reaction is electrophilic addition of an O atom from NO(3) to an olefinic C atom from C(2)H(4) to form an open-chain adduct. A concerted addition reaction mechanism forming a five-membered ring intermediate was investigated, but is not supported by the highly accurate CCSD(T) level of theory. Master-equation calculations for tropospheric conditions predict that the collisionally stabilized NO(3)-C(2)H(4) free-radical adduct constitutes 80-90% of the reaction yield and the remaining products consist mostly of NO(2) and oxirane; the other products are produced in very minor yields. By empirically reducing the barrier height for the initial addition step by 1 kcal mol(-1) from that predicted at the CBS-QB3 level of theory and treating the torsional modes explicitly as one-dimensional hindered internal rotations (instead of harmonic oscillators), the computed thermal rate constants (including quantum tunneling) can be brought into very good agreement with the experimental data for the overall reaction rate constant.

  20. NMR resonance splitting of urea in stretched hydrogels: proton exchange and (1)H/(2)H isotopologues.

    PubMed

    Kuchel, Philip W; Naumann, Christoph; Chapman, Bogdan E; Shishmarev, Dmitry; Håkansson, Pär; Bacskay, George; Hush, Noel S

    2014-10-01

    Urea at ∼12 M in concentrated gelatin gel, that was stretched, gave (1)H and (2)H NMR spectral splitting patterns that varied in a predictable way with changes in the relative proportions of (1)H2O and (2)H2O in the medium. This required consideration of the combinatorics of the two amide groups in urea that have a total of four protonation/deuteration sites giving rise to 16 different isotopologues, if all the atoms were separately identifiable. The rate constant that characterized the exchange of the protons with water was estimated by back-transformation analysis of 2D-EXSY spectra. There was no (1)H NMR spectral evidence that the chiral gelatin medium had caused in-equivalence in the protons bonded to each amide nitrogen atom. The spectral splitting patterns in (1)H and (2)H NMR spectra were accounted for by intra-molecular scalar and dipolar interactions, and quadrupolar interactions with the electric field gradients of the gelatin matrix, respectively.

  1. Frequency Comb Assisted IR Measurements of H_3^+, H_2D^+ and D_2H^+ Transitions

    NASA Astrophysics Data System (ADS)

    Jusko, Pavol; Asvany, Oskar; Schlemmer, Stephan

    2016-06-01

    We present recent measurements of the fundamental transitions of H_3^+, H_2D^+ and D_2H^+ in a 4 K 22-pole trap by action spectroscopic techniques. Either Laser Induced Inhibition of Cluster Growth (He attachment at T≈4 K), endothermic reaction of H_3^+ with O_2, or deuterium exchange has been used as measurement scheme. We used a 3 μm optical parametric oscillator coupled to a frequency comb in order to achieve accuracy generally below 1 MHz. Five transitions of H_3^+, eleven of H_2D^+ and ten of D_2H^+ were recorder in our spectral range. We compare our H_3^+ results with two previous frequency comb assisted works. Moreover, accurate determination of the frequency allows us to predict pure rotational transitions for H_2D^+ and D_2H^+ in the THz range. P. Jusko, C. Konietzko, S. Schlemmer, O. Asvany, J. Mol. Spec. 319 (2016) 55 O. Asvany, S. Brünken, L. Kluge, S. Schlemmer, Appl. Phys. B 114 (2014) 203 O. Asvany, J. Krieg, S. Schlemmer, Rev. Sci. Instr. 83 (2012) 093110 J.N. Hodges, A.J. Perry, P.A. Jenkins, B.M. Siller, B.J. McCall, J. Chem. Phys. 139 (2013) 164201 H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, J.-T. Shy, Phys. Rev. Lett. 109 (2012) 263002

  2. Raft localization of type I Fcε receptor and degranulation of RBL-2H3 cells exposed to decavanadate, a structural model for V2O5.

    PubMed

    Al-Qatati, Abeer; Fontes, Fabio L; Barisas, B George; Zhang, Dongmei; Roess, Deborah A; Crans, Debbie C

    2013-09-07

    Vanadium oxides (VOs) have been identified as low molecular weight sensitizing agents associated with occupational asthma and compromised pulmonary immunocompetence. Symptoms of adult onset asthma result, in part, from increased signal transduction by Type I Fcε receptors (FcεRI) leading to release of vasoactive compounds including histamine from mast cells. Exposure to (VOs) typically occurs in the form of particles which are insoluble. Upon contact with water or biological fluids, (VOs) form a series of soluble oxoanions, one of which is decavanadate, V10O28(6-) abbreviated V10, which is structurally related to a common vanadium oxide, that is vanadium pentoxide, V2O5. Here we investigate whether V10 may be initiating plasma membrane events associated with activation of FcεRI signal transduction. We show that exposure of RBL-2H3 cells to V10 causes a concentration-dependent increase in degranulation of RBL-2H3 and, in addition, an increase in plasma membrane lipid packing as measured by the fluorescent probe, di-4-ANEPPDHQ. V10 also increases FcεRI accumulation in low-density membrane fragments, i.e., lipid rafts, which may facilitate FcεRI signaling. To determine whether V10 effects on plasma membrane lipid packing were similarly observed in Langmuir monolayers formed from dipalmitoylphosphatidylcholine (DPPC), the extent of lipid packing in the presence and absence of V10 and vanadate was compared. V10 increased the surface area of DPPC Langmuir monolayers by 6% and vanadate decreased the surface area by 4%. These results are consistent with V10 interacting with this class of membrane lipids and altering DPPC packing.

  3. 2H Stable Isotope Analysis of Tooth Enamel: A Pilot Study

    NASA Astrophysics Data System (ADS)

    Holobinko, Anastasia; Kemp, Helen; Meier-Augenstein, Wolfram; Prowse, Tracy; Ford, Susan

    2010-05-01

    Stable isotope analysis of biogenic tissues such as tooth enamel and bone mineral has become a well recognized and increasingly important method for determining provenance of human remains, and has been used successfully in bioarchaeological studies as well as forensic investigations (Lee-Thorp, 2008; Meier-Augenstein and Fraser, 2008). Particularly, 18O and 2H stable isotopes are well established proxies as environmental indicators of climate (temperature) and source water and are therefore considered as indicators of geographic life trajectories of animals and humans (Hobson et al., 2004; Schwarcz and Walker, 2006). While methodology for 2H analysis of human hair, fingernails, and bone collagen is currently used to determine geographic origin and identify possible migration patterns, studies involving the analysis of 2H in tooth enamel appear to be nonexistent in the scientific literature. The apparent lack of research in this area is believed to have two main reasons. (1) Compared to the mineral calcium hydroxylapatite Ca10(PO4)6(OH)2, in tooth enamel forming bio-apatite carbonate ions replace some of the hydroxyl ions at a rate of one CO32 replacing two OH, yet published figures for the degree of substitution vary (Wopenka and Pasteris, 2005). (2) Most probably due to the aforementioned no published protocols exist for sample preparation and analytical method to obtain δ2H-values from the hydroxyl fraction of tooth enamel. This dilemma has been addressed through a pilot study to establish feasibility of 2H stable isotope analysis of ground tooth enamel by continuous-flow isotope ratio mass spectrometry (IRMS) coupled on-line to a high-temperature conversion elemental analyzer (TC/EA). An array of archaeological and modern teeth has been analyzed under different experimental conditions, and results from this pilot study are being presented. References: Lee-Thorp, J.A. (2008) Archaeometry, 50, 925-950 Meier-Augenstein, W. and Fraser, I. (2008) Science & Justice

  4. Probing Perturbation of Bovine Lung Surfactant Extracts by Albumin using DSC and 2H-NMR

    PubMed Central

    Nag, Kaushik; Keough, Kevin M. W.; Morrow, Michael R.

    2006-01-01

    Lung surfactant (LS), a lipid-protein mixture, forms films at the lung air-water interface and prevents alveolar collapse at end expiration. In lung disease and injury, the surface activity of LS is inhibited by leakage of serum proteins such as albumin into the alveolar hypophase. Multilamellar vesicular dispersions of a clinically used replacement, bovine lipid extract surfactant (BLES), to which (2% by weight) chain-perdeuterated dipalmitoylphosphatidycholine (DPPG mixtures-d62) had been added, were studied using deuterium-NMR spectroscopy (2H-NMR) and differential scanning calorimetry (DSC). DSC scans of BLES showed a broad gel to liquid-crystalline phase transition between 10–35°C, with a temperature of maximum heat flow (Tmax) around 27°C. Incorporation of the DPPC-d62 into BLES-reconstituted vesicles did not alter the Tmax or the transition range as observed by DSC or the hydrocarbon stretching modes of the lipids observed using infrared spectroscopy. Transition enthalpy change and 2H-NMR order parameter profiles were not significantly altered by addition of calcium and cholesterol to BLES. 2H-NMR spectra of the DPPC-d62 probes in these samples were characteristic of a single average lipid environment at all temperatures. This suggested either continuous ordering of the bilayer through the transition during cooling or averaging of the DPPC-d62 environment by rapid diffusion between small domains on a short timescale relative to that characteristic of the 2H-NMR experiment. Addition of 10% by weight of soluble bovine serum albumin (1:0.1, BLES/albumin, dry wt/wt) broadened the transition slightly and resulted in the superposition of 2H-NMR spectral features characteristic of coexisting fluid and ordered phases. This suggests the persistence of phase-separated domains throughout the transition regime (5–35°C) of BLES with albumin. The study suggests albumin can cause segregation of protein bound-lipid domains in surfactant at NMR timescales (10−5 s

  5. High-frequency observations of δ2H and δ18O in storm rainfall

    NASA Astrophysics Data System (ADS)

    Stoecker, F.; Klaus, J.; Pangle, L. A.; Garland, C.; McDonnell, J. J.

    2012-12-01

    Stable isotopes ratios of hydrogen (2H/1H) and oxygen (18O/16O) are indispensable tools for investigation of the hydrologic cycle. Recent technological advances with laser spectroscopy now enable high-frequency measurement of key water cycle components. While the controls on rainfall isotope composition have been known generally for some time, our understanding of the effect of inter- and intra-storm processes on fine scale rainfall isotope composition is poorly understood. Here we present a new approach to observe inter- and intra-storm isotope variability in precipitation in high-frequency. We investigate the temporal development of δ2H and δ18O within and between discrete rainstorm. δ2H and δ18O in precipitation was measured from November 2011 to February 2012 in Corvallis, OR using a flow-cell combined with a Liquid Water Isotope Analyzer (LWIA-24d, Los Gatos Research, Inc.). The average sample frequency was 15 samples per hour, resulting in more than 3100 samples during the observation period. 27 separate rainstorms were identified in the dataset based on minimum inter-event time, minimum precipitation depth, and minimum number of isotope measurements. Event meteoric water lines were developed for each event. We observed short-term isotopic patterns (e.g., V-shaped trends), high-rate changes (5.3‰/h) and large absolute changes in isotopic composition (20‰) on intra-event scale. V-shaped trends appeared to be related to individual storm fronts detected by air temperature, cloud heights (NEXRAD radar echo tops) and cloud trajectories (Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT)). Despite this, we could detect no linear correlation between event-based isotopic variables (slope, δ2H-intercept, δ2H, δ18O) and the event meteoric water line. Furthermore, the composite event meteoric water line (i.e. the local meteoric water line) showed a wider spread for heavy isotopes than for light isotopes, caused presumably by different

  6. A highly selective fluorescent probe based on coumarin for the imaging of N2H4 in living cells

    NASA Astrophysics Data System (ADS)

    Chen, Song; Hou, Peng; Wang, Jing; Liu, Lei; Zhang, Qi

    2017-02-01

    A turn-on fluorescence probe for highly sensitive and selective detection of N2H4 was developed based on hydrazine-triggered a substitution- cyclization-elimination cascade. Upon the treatment with N2H4, probe 1, 4-methyl-coumarin-7-yl bromobutanoate, displayed a remarkable fluorescence enhancement (25-fold) with a maximum at 450 nm. This probe can quantitatively detect N2H4 with a extremely low detection limit as 7 × 10- 8 M. Moreover, cell imaging experiments have indicated that probe 1 has potential ability to detect and image N2H4 in biological systems.

  7. Cometary implications of recent laboratory experiments on the photochemistry of the C2H and C3H2 radicals

    NASA Technical Reports Server (NTRS)

    Jackson, William M.; Bao, Yihan; Urdahl, Randall S.; Song, Xueyu; Gosine, Jai; Lu, Chi

    1992-01-01

    Recent laboratory results on the photodissociation of the C2H and C3H2 radicals are described. These studies show that the C2 and C3 radicals are produced by the 193 nm photolysis of the C2H and C3H2 radicals, respectively. The quantum state distributions that were determined for the C2 radicals put certain constraints on the initial conditions for any models of the observed C2 cometary spectra. Experimental observations of C2 formed by the 212.8 nm photolysis of C2H are used to calculate a range of photochemical lifetimes for the C2H radical.

  8. Hydrogen dynamics in soil organic matter as determined by 13C and 2H labeling experiments

    NASA Astrophysics Data System (ADS)

    Paul, Alexia; Hatté, Christine; Pastor, Lucie; Thiry, Yves; Siclet, Françoise; Balesdent, Jérôme

    2016-12-01

    Understanding hydrogen dynamics in soil organic matter is important to predict the fate of 3H in terrestrial environments. One way to determine hydrogen fate and to point out processes is to examine the isotopic signature of the element in soil. However, the non-exchangeable hydrogen isotopic signal in soil is complex and depends on the fate of organic compounds and microbial biosyntheses that incorporate water-derived hydrogen. To decipher this complex system and to understand the close link between hydrogen and carbon cycles, we followed labeled hydrogen and labeled carbon throughout near-natural soil incubations. We performed incubation experiments with three labeling conditions: 1 - 13C2H double-labeled molecules in the presence of 1H2O; 2 - 13C-labeled molecules in the presence of 2H2O; 3 - no molecule addition in the presence of 2H2O. The preservation of substrate-derived hydrogen after 1 year of incubation (ca. 5 % in most cases) was lower than the preservation of substrate-derived carbon (30 % in average). We highlighted that 70 % of the C-H bonds are broken during the degradation of the molecule, which permits the exchange with water hydrogen. Added molecules are used more for trophic resources. The isotopic composition of the non-exchangeable hydrogen was mainly driven by the incorporation of water hydrogen during microbial biosynthesis. It is linearly correlated with the amount of carbon that is degraded in the soil. The quantitative incorporation of water hydrogen in bulk material and lipids demonstrates that non-exchangeable hydrogen exists in both organic and mineral-bound forms. The proportion of the latter depends on soil type and minerals. This experiment quantified the processes affecting the isotopic composition of non-exchangeable hydrogen, and the results can be used to predict the fate of tritium in the ecosystem or the water deuterium signature in organic matter.

  9. Volume-discharge formed in SF6 and C2H6 mixtures without preionization

    NASA Astrophysics Data System (ADS)

    Zhang, Ge; Ke, Changjun; Zhang, Shujuan

    2014-11-01

    A new approach to obtain glow discharge in working mixtures of non-chain HF laser has been brought forward. The most advantage of the approach is without pre-ionization, so the contamination of pre-ionization will not happen and the laser equipment is compact and simple. It is found, if the cathode surface is equally rough, we can obtain uniform volume-discharge in SF6 mixtures without any pre-ionization, and dispense with uniform electric field electrode profile. The form of Self-Sustained Volume Discharge (SSVD) is a Self-Initiated Volume Discharge (SIVD). We show here the possibility of obtaining SIVD with a uniform energy deposition in a system of electrodes with non-uniform electric field. Experiments show that, with rough cathode and even anode, a volume discharge is forming in non-uniform electric-field without pre-ionization in SF6 and C2H6 mixtures. At the beginning of the discharge, many diffuse channels attached to bright circular cathode spots, then, diverge towards the anode, with the channels overlapping, form a spatially uniform glow discharge. SIVD has been performed at a total mixture pressure up to 8kPa and energy deposition up to 200J/l. We also report measurements of the V-I characteristics of SIVD with SF6 and C2H6 mixtures at pressure up to about 8kPa. The experimental results indicate that SSVD in SF6 and C2H6 mixtures develops in the form of SIVD is promising for creation of high energy and pulse-periodic HF laser.

  10. Obstruction of dengue virus maturation by Fab fragments of the 2H2 antibody.

    PubMed

    Wang, Zhiqing; Li, Long; Pennington, Janice G; Sheng, Ju; Yap, Moh Lan; Plevka, Pavel; Meng, Geng; Sun, Lei; Jiang, Wen; Rossmann, Michael G

    2013-08-01

    The 2H2 monoclonal antibody recognizes the precursor peptide on immature dengue virus and might therefore be a useful tool for investigating the conformational change that occurs when the immature virus enters an acidic environment. During dengue virus maturation, spiky, immature, noninfectious virions change their structure to form smooth-surfaced particles in the slightly acidic environment of the trans-Golgi network, thereby allowing cellular furin to cleave the precursor-membrane proteins. The dengue virions become fully infectious when they release the cleaved precursor peptide upon reaching the neutral-pH environment of the extracellular space. Here we report on the cryo-electron microscopy structures of the immature virus complexed with the 2H2 antigen binding fragments (Fab) at different concentrations and under various pH conditions. At neutral pH and a high concentration of Fab molecules, three Fab molecules bind to three precursor-membrane proteins on each spike of the immature virus. However, at a low concentration of Fab molecules and pH 7.0, only two Fab molecules bind to each spike. Changing to a slightly acidic pH caused no detectable change of structure for the sample with a high Fab concentration but caused severe structural damage to the low-concentration sample. Therefore, the 2H2 Fab inhibits the maturation process of immature dengue virus when Fab molecules are present at a high concentration, because the three Fab molecules on each spike hold the precursor-membrane molecules together, thereby inhibiting the normal conformational change that occurs during maturation.

  11. Validation of SCALE (SAS2H) isotopic predictions for BWR spent fuel

    SciTech Connect

    Hermann, O.W.; DeHart, M.D.

    1998-09-01

    Thirty spent fuel samples obtained from boiling-water-reactor (BWR) fuel pins have been modeled at Oak Ridge National Laboratory using the SAS2H sequence of the SCALE code system. The SAS2H sequence uses transport methods combined with the depletion and decay capabilities of the ORIGEN-S code to estimate the isotopic composition of fuel as a function of its burnup history. Results of these calculations are compared with chemical assay measurements of spent fuel inventories for each sample. Results show reasonable agreement between measured and predicted isotopic concentrations for important actinides; however, little data are available for most fission products considered to be important for spent fuel concerns (e.g., burnup credit, shielding, source-term calculations, etc.). This work is a follow-up to earlier works that studied the ability to predict spent fuel compositions in pressurized-water-reactor (PWR) fuel pins. Biases and uncertainties associated with BWR isotopic predictions are found to be larger than those of PWR calculations. Such behavior is expected, as the operation of a BWR is significantly more complex than that of a PWR plant, and in general the design of a BWR has a more heterogeneous configuration than that of a PWR. Nevertheless, this work shows that the simple models employed using SAS2H to represent such complexities result in agreement to within 5% (and often less than 1%) or less for most nuclides important for spent fuel applications. On the other hand, however, the set of fuel samples analyzed represent a small subset of the BWR fuel population, and results reported herein may not be representative of the full population of BWR spent fuel.

  12. Validation of SCALE (SAS2H) Isotopic Predictions for BWR Spent Fuel

    SciTech Connect

    Hermann, O.W.

    1998-01-01

    Thirty spent fuel samples obtained from boiling-water-reactor (BWR) fuel pins have been modeled at Oak Ridge National Laboratory using the SAS2H sequence of the SCALE code system. The SAS2H sequence uses transport methods combined with the depletion and decay capabilities of the ORIGEN-S code to estimate the isotopic composition of fuel as a function of its burnup history. Results of these calculations are compared with chemical assay measurements of spent fuel inventories for each sample. Results show reasonable agreement between measured and predicted isotopic concentrations for important actinides; however, little data are available for most fission products considered to be important for spent fuel concerns (e.g., burnup credit, shielding, source-term calculations, etc.). This work is a follow-up to earlier works that studied the ability to predict spent fuel compositions in pressurized-water-reactor (PWR) fuel pins. Biases and uncertainties associated with BWR isotopic predictions are found to be larger than those of PWR calculations. Such behavior is expected, as the operation of a BWR is significantly more complex than that of a PWR plant, and in general the design of a BWR has a more heterogeneous configuration than that of a PWR. Nevertheless, this work shows that the simple models employed using SAS2H to represent such complexities result in agreement to within 5% (and often less than 1%) or less for most nuclides important for spent fuel applications. On the other hand, however, the set of fuel samples analyzed represent a small subset of the BWR fuel population, and results reported herein may not be representative of the full population of BWR spent fuel.

  13. Spectroscopic Line Parameters in the Infrared Bands of CH3CN and C2H6

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy

    2010-10-01

    In this paper, measurements of critical spectroscopic line parameters such as positions, absolute intensities and pressure broadened (self- and N2) half-width coefficients for transitions in the ν4 band of CH3CN (acetonitile, ethanenitrile, methyl cyanide) and the ν9 band of C2H6 (ethane) are presented. CH3CN has been measured by remote sensing in the earth's atmosphere, in comets and in interstellar molecular clouds. It is also a constituent in the atmospheres of Titan, Saturn's largest moon. Likewise, C2H6 is also an important constituent in the atmosphere of earth, the giant planets and comets. The 12- μm(˜720-850 cm-1) emission features of this molecule have been observed in spectra from outer solar system bodies of Jupiter, Saturn, Neptune and Titan. Because of their importance in remote sensing measurements, we recently recorded and analyzed a large number of laboratory infrared absorption spectra of pure and N2-broadened spectra of both these molecular bands. Spectra used in these analyses were recorded using either the Bruker IFS 125HR or the Bruker IFS 120HR FTS located at the Pacific Northwest National Laboratory (PNNL), in Richland Washington. To retrieve the various spectral line parameters, a multispectrum nonlinear least squares fitting algorithm was employed and all spectra belonging to each band were fitted simultaneously. Using this fitting technique, the same spectral regions from multiple spectra were fit all at once to maximize the accuracy of the retrieved parameters. The results obtained from present analyses are briefly discussed. In the case of C2H6 both room- and low temperature (˜210-296 K) spectra were recorded, but results from analyzing only room-temperature spectra will be discussed in this work.

  14. Plasma Assisted Combustion Mechanism for Small Hydrocarbons

    DTIC Science & Technology

    2015-01-01

    Andrey Starikovskiy Nickolay Aleksandrov PRINCETON University Plasma Assisted Combustion  Mechanism for Small  Hydrocarbons Report Documentation Page...COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Plasma Assisted Combustion Mechanism for Small Hydrocarbons 5a. CONTRACT NUMBER 5b...Kinetics of ignition of saturated  hydrocarbons  by nonequilibrium plasma: C2H6‐ to C5H12‐containing mixtures. Combustion and Flame 156  (2009) 221–233

  15. The leptonic CP phase from T2(H)K and μ+ decay at rest

    DOE PAGES

    Evslin, Jarah; Ge, Shao-Feng; Hagiwara, Kaoru

    2016-02-22

    Combining v oscillations at T2K or T2HK withmore » $$\\bar{v}$$ oscillations from μ+ decay at rest (DAR) allows a determination of the leptonic CP-violating phase . The degeneracies of this phase with θ13 and θ23 are broken and δ can be reliably distinguished from 180° - δ. In this study, we present the sensitivity to δ of T2(H)K together with a μ+ DAR experiment using Super-K as a near detector and Hyper-K at the Tochibora site as a far detector.« less

  16. Smoothed orientational order profile of lipid bilayers by 2H-nuclear magnetic resonance.

    PubMed Central

    Lafleur, M; Fine, B; Sternin, E; Cullis, P R; Bloom, M

    1989-01-01

    A new method has been developed to determine the complete orientational order profile of lipid bilayers using 2H-NMR. The profile is obtained from a single powder spectrum of a lipid which has a saturated chain fully deuteriated. The smoothed order profile is determined directly from the normalized dePaked spectrum assuming a monotonic decrease of the order along the acyl chain. The oscillatory variations of the order at the beginning of the chain are not described by this method. However the smoothed order profile reveals in a straightforward way the crucial features of the anisotropic order of the bilayer. PMID:2605294

  17. Characterization of Post-Cleaning Solids Samples from the 2H Evaporator Pot

    SciTech Connect

    WILMARTH, WILLIAM

    2004-03-15

    Samples retrieved from the 2H Evaporator Pot in October of 2003 were of a similar nature as previous materials. The bulk of the sample was comprised of a sodium aluminosilicate phase, cancrinite. The concentration of uranium in the evaporator solids,however, was very low:less than 0.1 percentage weight. The uranium enrichment was depleted as expected and measured 0.6 percent. These data agree with uranium contents generated during experimental testing. Additionally, the overall specific radionuclide content is lower for this sample than previous measured on samples from the Gravity Drain Line in 1997 and the cone and wall in 2000.

  18. Fermi surface, charge-density-wave gap, and kinks in 2H- TaSe2

    NASA Astrophysics Data System (ADS)

    Rossnagel, K.; Rotenberg, Eli; Koh, H.; Smith, N. V.; Kipp, L.

    2005-09-01

    The Fermi surface of the layered charge-density-wave compound 2H-TaSe2 is measured by angle-resolved photoemission as a function of temperature. A surprising Fermi-surface topology and a Fermi-surface branch-dependent charge-density-wave gap are found. In the charge-density-wave state band hybridization effects are strong and responsible for kinks in the band dispersions at relatively high binding energy. The implications of the results on the charge-density-wave mechanism are discussed.

  19. Characterization Results for the 2014 HTF 3H & 2H Evaporator Overhead Samples

    SciTech Connect

    Washington, A.

    2015-05-11

    This report tabulates the radiochemical analysis of the 3H and 2H evaporator overhead samples for 137Cs, 90Sr, and 129I to meet the requirements in the Effluent Treatment Project (ETP) Waste Acceptance Criteria (WAC) (rev. 6). This report identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. All data was found to be within the ETP WAC (rev. 6) specification for the Waste Water Collection Tanks (WWCT).

  20. 5-[(tert-Butyl-diphenyl-sil-yloxy)meth-yl]pyridazin-3(2H)-one.

    PubMed

    Costas-Lago, María Carmen; Costas, Tamara; Vila, Noemí; Terán, Carmen

    2013-11-27

    In the title compound, C21H24N2O2Si, a new pyridazin-3(2H)-one derivative, the carbonyl group of the heterocyclic ring and the O atom of the silyl ether are located on the same side of the pyridazinone ring and the C-C-O-Si torsion angle is -140.69 (17)°. In the crystal, mol-ecules are linked by pairs of strong N-H⋯O hydrogen bonds into centrosymmetric dimers with graph-set notation R 2 (2)(8). Weak C-H⋯π inter-actions are also observed.

  1. Early Gravitropic Events in Roots of Arabidopsis: Ca(2+)H(+) Fluxes in the Columella Cells

    NASA Technical Reports Server (NTRS)

    Feldman, Lewis

    2003-01-01

    Despite the wealth of information derived from physiological approaches, molecular mechanisms for sensing and responding to gravity in plants remain largely uncharacterized. Roots of higher plants offer many advantages for studying the sensing and responding phases. In roots, gravisensing occurs in specialized cells, the columella cells in which earlier studies have indicated an involvement of the cytoskeleton, Ca(2+), H(+) and auxin in processing the gravity signal. The overall goal of this project was to characterize gravity-stimulated Ca(2+) and H(+) fluxes in the columella cells of a model plant Arabidopsis thaliana and to define their regulation. For this work we used intact Arabidopsis roots.

  2. Development of homotopy algorithms for fixed-order mixed H2/H(infinity) controller synthesis

    NASA Technical Reports Server (NTRS)

    Whorton, M.; Buschek, H.; Calise, A. J.

    1994-01-01

    A major difficulty associated with H-infinity and mu-synthesis methods is the order of the resulting compensator. Whereas model and/or controller reduction techniques are sometimes applied, performance and robustness properties are not preserved. By directly constraining compensator order during the optimization process, these properties are better preserved, albeit at the expense of computational complexity. This paper presents a novel homotopy algorithm to synthesize fixed-order mixed H2/H-infinity compensators. Numerical results are presented for a four-disk flexible structure to evaluate the efficiency of the algorithm.

  3. Laboratory Spectra of Mixtures of CH4, C2H6, and CH3OH

    NASA Technical Reports Server (NTRS)

    Mastrapa, Rachel; Berry, Matthew T.; Sandford, Scott

    2011-01-01

    Infrared spectroscopy is commonly used as a tool for identifying the composition of objects in the Solar System and beyond. Using laboratory spectra, optical constants can be calculated and used to create model spectra for comparison to spectra obtained from infrared telescopes. In this study, the optical constants of mixtures of simple organics, including CH4, C2H6, and CH3OH were calculated from 15 to 70 K, in the frequency range of 9000-500 cm(sup -1) (1.1-20 micrometers), at a spectral resolution of 1 cm(sup -1).

  4. Mixed H2/H Infinity Optimization with Multiple H Infinity Constraints

    DTIC Science & Technology

    1994-06-01

    DMD -),X p(QM): 2-7 2.3.1 Structured Singular Value in Control Systems The structured singular value is a framework based on the small gain theorem, in...sensitivity problem, and the mixed H2/H. controller. In this section, the value of the upper bound on t(a( DMD -’)) will simply be called IL for convenience. A...Casa 283 Ciudadela Kennedy Quito-Ecuador r1 I’ Form Approved REPORT DOCUMENTATION PAGE OM No. 0704-0188 putb4C reporting tburdtn for this collectiont

  5. Total lattice potential energy of sodium bromide dihydrate NaBr · 2H 2O

    NASA Astrophysics Data System (ADS)

    Herzig, P.; Jenkins, H. D. B.; Pritchett, M. S. F.

    1984-08-01

    In addition to presenting comparative calculations by two approaches for the total lattice potential energy of sodium bromide dihydrate, NaBr · 2H 2O, found to take the value 803.9 kJ mol -1, we investigate the influence of the size and nature of the basis set used to generate multipole moments in a Hartee-Fock calculation which are in turn used to calculate the Madelung constant. The requirement is one of critical size of the basis set and once this is reached the electrostatic energy will be reliable.

  6. Nanocrystallite Mg ferrite LPG, Cl2 and C2H5OH sensor

    NASA Astrophysics Data System (ADS)

    Gadkari, Ashok B.; Shinde, Tukaram J.; Vasambekar, Pramod N.

    2012-06-01

    The magnesium ferrite was synthesized by oxalate co-precipitation method. The crystal structure and surface morphology were examined by X-ray diffraction and SEM respectively. The nanocrystallite MgFe2O4 sensor was tested for gases like LPG, Cl2 and C2H5OH. Sensitivity was measured at various operating temperatures between 100-400°C. The sensor shows highest sensitivity to LPG at 225°C. The response and recovery time was measured at operating temperature of 225°C. The sensor exhibits a good response and recovery for LPG at operating temperature.

  7. Stable (2)H isotope analysis of modern-day human hair and nails can aid forensic human identification.

    PubMed

    Fraser, Isla; Meier-Augenstein, Wolfram

    2007-01-01

    Continuous-flow isotope ratio mass spectrometry (CF-IRMS) was used to compare (2)H isotopic composition at natural abundance level of human scalp hair and fingernail samples collected from subjects worldwide with interpolated delta(2)H precipitation values at corresponding locations. The results showed a strong correlation between delta(2)H values of meteoric water and hair (r(2) = 0.86), while the corresponding correlation for nails was not as strong (r(2) = 0.6). Offsets of -180 per thousand and -127 per thousand were observed when calculating solutions of the linear regression analyses for delta(2)H vs. delta(18)O correlation plots of hair and nail samples, respectively. Compared with the +10 per thousand offset of the global meteoric water line equation these findings suggested that delta(18)O data from hair and nail would be of limited diagnostic value. The results of this pilot study provide for the first time tentative correlations of (2)H isotopic composition of human hair and nails with local water. Linear regression analyses for measured delta(2)H values of human hair and nails vs. water yielded delta(2)H(hair) = 0.49 x delta(2)H(water) - 35 and delta(2)H(nails) = 0.38 x delta(2)H(water) - 49, respectively. The results suggest that (2)H isotopic analysis of hair and nail samples can be used to provide information regarding an individual's recent geographical life history and, hence, location. The benefit of this technique is to aid identification of victims of violent crime and mass disasters in circumstances where traditional methods such as DNA and fingerprinting cannot be brought to bear (or at least not immediately).

  8. Dusty plasmas

    SciTech Connect

    Jones, M.E.; Winske, D.; Keinigs, R.; Lemons, D.

    1996-05-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project has been to develop a fundamental understanding of dusty plasmas at the Laboratory. While dusty plasmas are found in space in galactic clouds, planetary rings, and cometary tails, and as contaminants in plasma enhanced fabrication of microelectronics, many of their properties are only partially understood. Our work has involved both theoretical analysis and self-consistent plasma simulations to understand basic properties of dusty plasmas related to equilibrium, stability, and transport. Such an understanding can improve the control and elimination of plasma dust in industrial applications and may be important in the study of planetary rings and comet dust tails. We have applied our techniques to the study of charging, dynamics, and coagulation of contaminants in plasma processing reactors for industrial etching and deposition processes and to instabilities in planetary rings and other space plasma environments. The work performed in this project has application to plasma kinetics, transport, and other classical elementary processes in plasmas as well as to plasma waves, oscillations, and instabilities.

  9. Probing anisotropic interaction potentials of unsaturated hydrocarbons with He*(2 3S) metastable atom: Attractive-site preference of σ-direction in C2H2 and π-direction in C2H4

    NASA Astrophysics Data System (ADS)

    Horio, Takuya; Hatamoto, Takuro; Maeda, Satoshi; Kishimoto, Naoki; Ohno, Koichi

    2006-03-01

    State-resolved collision energy dependence of Penning ionization cross sections of acetylene (C2H2) and ethylene (C2H4) with He*(2S3) metastable atoms was observed in a wide collision energy range from 20to350meV. A recently developed discharge nozzle source with a liquid N2 circulator was employed for the measurements in the low-energy range from 20to80meV. Based on classical trajectory calculations for the energy dependence of the partial ionization cross sections, anisotropic potential energy surfaces for the present systems were obtained by optimizing ab initio model potentials for the chemically related systems Li +C2H2 and C2H4. In the case of C2H2, the global minimum was found to be located around the H atom along the molecular axis with a well depth of 48meV (ca. 1.1kcal/mol). On the other hand, a dominant attractive well with a depth of 62meV (ca. 1.4kcal/mol) was found in the πCC electron region of C2H4. These findings were discussed in connection with orbital interactions between molecular orbitals of the target molecules and atomic orbitals of the metastable atom. It is concluded that σ-type unoccupied molecular orbitals of C2H2 and a πCC-type highest occupied molecular orbital of C2H4 play a significant role for the attractive-site preference of σ direction in C2H2 and π direction in C2H4, respectively.

  10. Advanced Low-Cost O2/H2 Engines for the SSTO Application

    NASA Technical Reports Server (NTRS)

    Goracke, B. David; Levack, Daniel J. H.; Nixon, Robert F.

    1994-01-01

    The recent NASA Access to Space study examined future Earth to orbit (ETO) transportation needs and fleets out to 2030. The baseline in the option 3 assessment was a single stage to orbit (SSTO) vehicle. A study was conducted to assess the use of new advanced low cost O2/H2 engines for this SSTO application. The study defined baseline configurations and ground rules and defined six engine cycles to explore engine performance. The cycles included an open cycle, and a series of closed cycles with varying abilities to extract energy from the propellants to power he turbomachinery. The cycles thus varied in the maximum chamber pressure they could reach and in their weights at any given chamber pressure. The weight of each cycle was calculated for two technology levels versus chamber pressure up to the power limit of the cycle. The performance in the SSTO mission was then modeled using the resulting engine weights and specific impulse performance using the Access to Space option 3 vehicle. The results showed that new O2/H2 engines are viable and competitive candidates for the SSTO application using chamber pressures of 4,000 psi.

  11. Interlayer electron-phonon coupling in WSe2/hBN heterostructures

    NASA Astrophysics Data System (ADS)

    Jin, Chenhao; Kim, Jonghwan; Suh, Joonki; Shi, Zhiwen; Chen, Bin; Fan, Xi; Kam, Matthew; Watanabe, Kenji; Taniguchi, Takashi; Tongay, Sefaattin; Zettl, Alex; Wu, Junqiao; Wang, Feng

    2016-10-01

    Engineering layer-layer interactions provides a powerful way to realize novel and designable quantum phenomena in van der Waals heterostructures. Interlayer electron-electron interactions, for example, have enabled fascinating physics that is difficult to achieve in a single material, such as the Hofstadter's butterfly in graphene/boron nitride (hBN) heterostructures. In addition to electron-electron interactions, interlayer electron-phonon interactions allow for further control of the physical properties of van der Waals heterostructures. Here we report an interlayer electron-phonon interaction in WSe2/hBN heterostructures, where optically silent hBN phonons emerge in Raman spectra with strong intensities through resonant coupling to WSe2 electronic transitions. Excitation spectroscopy reveals the double-resonance nature of such enhancement, and identifies the two resonant states to be the A exciton transition of monolayer WSe2 and a new hybrid state present only in WSe2/hBN heterostructures. The observation of an interlayer electron-phonon interaction could open up new ways to engineer electrons and phonons for device applications.

  12. P-selectin targeting to secretory lysosomes of Rbl-2H3 cells.

    PubMed

    Kaur, Jasber; Cutler, Daniel F

    2002-03-22

    The biogenesis of secretory lysosomes, which combine characteristics of both lysosomes and secretory granules, is currently of high interest. In particular, it is not clear whether delivery of membrane proteins to the secretory lysosome requires lysosomal, secretory granule, or some novel targeting determinants. Heterologous expression of P-selectin has established that this membrane protein contains targeting signals for both secretory granules and lysosomes. P-selectin is therefore an ideal probe with which to determine the signals required for targeting to secretory lysosomes. We have exploited subcellular fractionation and immunofluorescence microscopy to monitor targeting of transiently expressed wild-type and mutant horseradish peroxidase (HRP)-P-selectin chimeras to secretory lysosomes of Rbl-2H3 cells. The exposure of the HRP chimeras to intracellular proteolysis was also determined as a third monitor of secretory lysosome targeting. Our data show that HRP-P-selectin accumulates in secretory lysosomes of Rbl-2H3 cells using those cytoplasmic sequences previously found to be sufficient for targeting to conventional lysosomes. This work highlights the similar sorting signals used for targeting of membrane proteins to conventional lysosomes and secretory lysosomes.

  13. CCQE, 2p2h excitations and ν—energy reconstruction

    SciTech Connect

    Nieves, J.; Simo, I. Ruiz; Sánchez, F.; Vacas, M. J. Vicente

    2015-05-15

    We analyze the MiniBooNE muon neutrino CCQE-like dσ/dT{sub μ} d cos θ{sub μ} data using a theoretical model that, among other nuclear effects, includes RPA correlations and 2p2h (multinucleon) mechanisms. These corrections turn out to be essential for the description of the data. We find that MiniBooNE CCQE-like data are fully compatible with former determinations of the nucleon axial mass M{sub A} ∼ 1.05 GeV. This is in sharp contrast with several previous analysis where anomalously large values of M{sub A} ∼ 1.4 GeV have been suggested. We also show that because of the the multinucleon mechanism effects, the algorithm used to reconstruct the neutrino energy is not adequate when dealing with quasielastic-like events. Finally, we analyze the MiniBooNE unfolded cross section, and show that it exhibits an excess (deficit) of low (high) energy neutrinos, which is an artifact of the unfolding process that ignores 2p2h mechanisms.

  14. Low Temperature Flux Growth of 2H-SiC and Beta-Gallium Oxide

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Choa, Fow-Sen; Su, Ching-Hua; Arnold, Bradley; Kelly, Lisa

    2016-01-01

    We present brief overview of our study on the low temperature flux growth of two very important novel wide bandgap materials 2H-SiC and Beta-gallium oxide (Beta-Ga2O3). We have synthesized and grown 5 millimeter to 1 centimeter size single crystals of Beta-gallium oxide (Beta-Ga2O3). We used a flux and semi wet method to grow transparent good quality crystals. In the semi-wet method Ga2O3 was synthesized with starting gallium nitrate solution and urea as a nucleation agent. In the flux method we used tin and other metallic flux. This crystal was placed in an alumina crucible and temperature was raised above 1050 degrees Centigrade. After a time period of thirty hours, we observed prismatic and needle shaped crystals of gallium oxide. Scanning electron microscopic studies showed step growth morphology. Crystal was polished to measure the properties. Bandgap was measured 4.7electronvolts using the optical absorption curve. Another wide bandgap hexagonal 2H-SiC was grown by using Si-Al eutectic flux in the graphite crucible. We used slight AlN also as the impurity in the flux. The temperature was raised up to 1050 degrees Centigrade and slowly cooled to 850 degrees Centigrade. Preliminary characterization results of this material are also reported.

  15. Volumetric Properties and Fluid Phase Equilibria of CO2 + H2O

    SciTech Connect

    Capobianco, Ryan; Gruszkiewicz, Miroslaw {Mirek} S; Wesolowski, David J; Cole, David R; Bodnar, Robert

    2013-01-01

    The need for accurate modeling of fluid-mineral processes over wide ranges of temperature, pressure and composition highlighted considerable uncertainties of available property data and equations of state, even for the CO2 + H2O binary system. In particular, the solubility, activity, and ionic dissociation equilibrium data for the CO2-rich phase, which are essential for understanding dissolution/precipitation, fluid-matrix reactions, and solute transport, are uncertain or missing. In this paper we report the results of a new experimental study of volumetric and phase equilibrium properties of CO2 + H2O, to be followed by measurements for bulk and confined multicomponent fluid mixtures. Mixture densities were measured by vibrating tube densimetry (VTD) over the entire composition range at T = 200 and 250 C and P = 20, 40, 60, and 80 MPa. Initial analysis of the mutual solubilities, determined from volumetric data, shows good agreement with earlier results for the aqueous phase, but finds that the data of Takenouchi and Kennedy (1964) significantly overestimated the solubility of water in supercritical CO2 (by a factor of more than two at 200 C). Resolving this well-known discrepancy will have a direct impact on the accuracy of predictive modeling of CO2 injection in geothermal reservoirs and geological carbon sequestration through improved equations of state, needed for calibration of predictive molecular-scale models and large-scale reactive transport simulations.

  16. Quantifying unfrozen water in frozen soil by high-field 2H NMR.

    PubMed

    Sparrman, Tobias; Oquist, Mats; Klemedtsson, Leif; Schleucher, Jürgen; Nilsson, Mats

    2004-10-15

    To understand wintertime controls of biogeochemical processes in high latitude soils it is essential to distinguish between direct temperature effects and the effects of changes in water availability mediated by freezing. Efforts to separate these controls are hampered by a lack of adequate methods to determine the proportion of unfrozen water. In this study we present a high-field 2H2O NMR method for quantifying unfrozen water content in frozen soil. The experimental material consisted of the humic layer of a boreal spruce forest soil mixed with varying proportions of quartz sand and humidified with deuterium-enriched water. The relative standard deviation of unfrozen water content (measured as NMR signal integral) was less than 2% for repeated measurements on a given sample and 3.5% among all samples, based on a total of 16 measurements. As compared to 1H NMR, this 2H NMR method was found to be superior for several reasons: it is less sensitive to field inhomogeneity and paramagnetic impurities, it gives a bigger line shape difference between the ice and liquid signal, it shows a sharper response to water fusion, and it excludes the possibility of hydrogen in the organic material interfering with the measurement.

  17. Induced DNA demethylation can reshape chromatin topology at the IGF2-H19 locus

    PubMed Central

    Ito, Yoko; Nativio, Raffaella; Murrell, Adele

    2013-01-01

    Choriocarcinomas are embryonal tumours with loss of imprinting and hypermethylation at the insulin-like growth factor 2 (IGF2)-H19 locus. The DNA methyltransferase inhibitor, 5-Aza-2′deoxycytidine (5-AzaCdR) is an approved epigenetic cancer therapy. However, it is not known to what extent 5-AzaCdR influences other epigenetic marks. In this study, we set out to determine whether 5-AzaCdR treatment can reprogram the epigenomic organization of the IGF2-H19 locus in a choriocarcinoma cancer cell line (JEG3). We found that localized DNA demethylation at the H19 imprinting control region (ICR) induced by 5-AzaCdR, reduced IGF2, increased H19 expression, increased CTCF and cohesin recruitment and changed histone modifications. Furthermore chromatin accessibility was increased locus-wide and chromatin looping topography was altered such that a CTCF site downstream of the H19 enhancers switched its association with the CTCF site upstream of the IGF2 promoters to associate with the ICR. We identified a stable chromatin looping domain, which forms independently of DNA methylation. This domain contains the IGF2 gene and is marked by a histone H3 lysine 27 trimethylation block between CTCF site upstream of the IGF2 promoters and the Centrally Conserved Domain upstream of the ICR. Together, these data provide new insights into the responsiveness of chromatin topography to DNA methylation changes. PMID:23585276

  18. Study of C2H2 optic-fiber monitoring system on spectrum absorption

    NASA Astrophysics Data System (ADS)

    Wang, Yutian; Li, Xiao-Xin; Wang, Zhong-Dong

    2005-02-01

    We report our research on the development of optical fiber trace gas sensors for environmental applications. A novel optical fiber sensor for monitoring acetylene (C2H2) gases is described. Through studying the measure theory, we use the Beer-Lambert law to monitor the gas. And after analyzing the C2H2 spectrum, we select Distributed Feedback Laser Diode (DFB LD) as light source. Comparing many kinds" sensor detection head, the gas absorbing cell with tail fiber can have good coupling with optical fiber and improve the coupling stability. In the data processing system, signals are distilled by lock-in amplifiers and then harmonic measure technology processes that distilled faint signals. After the all, the electronic signals are transmitted into computer to process, alarm and display. We design the instrument who can remote and on-line measuring acetylene. Through theory analysis and system experiment, the design of the system is practicable, and has a better precision and some apply foreground.

  19. Free radical scavenging potency of quercetin catecholic colonic metabolites: Thermodynamics of 2H(+)/2e(-) processes.

    PubMed

    Amić, Ana; Lučić, Bono; Stepanić, Višnja; Marković, Zoran; Marković, Svetlana; Dimitrić Marković, Jasmina M; Amić, Dragan

    2017-03-01

    Reaction energetics of the double (2H(+)/2e(-)), i.e., the first 1H(+)/1e(-) (catechol→ phenoxyl radical) and the second 1H(+)/1e(-) (phenoxyl radical→ quinone) free radical scavenging mechanisms of quercetin and its six colonic catecholic metabolites (caffeic acid, hydrocaffeic acid, homoprotocatechuic acid, protocatechuic acid, 4-methylcatechol, and catechol) were computationally studied using density functional theory, with the aim to estimate the antiradical potency of these molecules. We found that second hydrogen atom transfer (HAT) and second sequential proton loss electron transfer (SPLET) mechanisms are less energy demanding than the first ones indicating 2H(+)/2e(-) processes as inherent to catechol moiety. The Gibbs free energy change for reactions of inactivation of selected free radicals indicate that catecholic colonic metabolites constitute an efficient group of more potent scavengers than quercetin itself, able to deactivate various free radicals, under different biological conditions. They could be responsible for the health benefits associated with regular intake of flavonoid-rich diet.

  20. Affordable uniform isotope labeling with (2)H, (13)C and (15)N in insect cells.

    PubMed

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D

    2015-06-01

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80% can be achieved for (15)N and (13)C with yields comparable to expression in full media. For (2)H,(15)N and (2)H,(13)C,(15)N labeling, incorporation is only slightly lower with 75 and 73%, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins.

  1. Mobility of Core Water in Bacillus subtilis Spores by 2H NMR

    PubMed Central

    Kaieda, Shuji; Setlow, Barbara; Setlow, Peter; Halle, Bertil

    2013-01-01

    Bacterial spores in a metabolically dormant state can survive long periods without nutrients under extreme environmental conditions. The molecular basis of spore dormancy is not well understood, but the distribution and physical state of water within the spore is thought to play an important role. Two scenarios have been proposed for the spore’s core region, containing the DNA and most enzymes. In the gel scenario, the core is a structured macromolecular framework permeated by mobile water. In the glass scenario, the entire core, including the water, is an amorphous solid and the quenched molecular diffusion accounts for the spore’s dormancy and thermal stability. Here, we use 2H magnetic relaxation dispersion to selectively monitor water mobility in the core of Bacillus subtilis spores in the presence and absence of core Mn2+ ions. We also report and analyze the solid-state 2H NMR spectrum from these spores. Our NMR data clearly support the gel scenario with highly mobile core water (∼25 ps average rotational correlation time). Furthermore, we find that the large depot of manganese in the core is nearly anhydrous, with merely 1.7% on average of the maximum sixfold water coordination. PMID:24209846

  2. Refinements in an Mg/MgH2/H2O-Based Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew; Huang, Yuhong

    2010-01-01

    Some refinements have been conceived for a proposed apparatus that would generate hydrogen (for use in a fuel cell) by means of chemical reactions among magnesium, magnesium hydride, and steam. The refinements lie in tailoring spatial and temporal distributions of steam and liquid water so as to obtain greater overall energy-storage or energy-generation efficiency than would otherwise be possible. A description of the prior art is prerequisite to a meaningful description of the present refinements. The hydrogen-generating apparatus in question is one of two versions of what was called the "advanced hydrogen generator" in "Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators" (NPO-43554), NASA Tech Briefs, Vol. 33, No. 1 (January 2009), page 52. To recapitulate: The apparatus would include a reactor vessel that would be initially charged with magnesium hydride. The apparatus would exploit two reactions: The endothermic decomposition reaction MgH2-->Mg + H2, which occurs at a temperature greater than or equal to 300 C, and The exothermic oxidation reaction MgH2 + H2O MgO + 2H2, which occurs at a temperature greater than or equal to 330 C.

  3. A method for direct in vivo measurement of drug concentrations from a single 2H NMR spectrum.

    PubMed

    Evelhoch, J L; McCoy, C L; Giri, B P

    1989-03-01

    The use of 2H-labeled drugs provides a measure of drug concentration in situ directly from a single 2H NMR spectrum obtained with any antenna by correcting only for differential saturation effects. The limit of detection for a drug labeled with three equivalent deuterons is roughly 0.5 mM.

  4. Mining the Brassica oleracea genome for Q-type C2H2 zinc finger transcription factor proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Q-type zinc finger proteins have been studied in several plant species and have been associated with response to stress. A whole genome analysis of Arabidopsis identified 176 putative C2H2 transcription factors (TF). Q-type C2H2 TFs containing the QALGGH motif and are a subset of these. In Arabidops...

  5. 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution.

    PubMed

    Toh, Rou Jun; Sofer, Zdeněk; Luxa, Jan; Sedmidubský, David; Pumera, Martin

    2017-03-09

    Herein, we compare the bulk, 2H and 3R phases of two most prevalent TMD materials: MoS2 and WS2. The 3R phase outperforms its 2H phase counterpart in hydrogen evolution reaction catalysis and is even comparable with the exfoliated, 1T phase in the case of MoS2.

  6. The Davis-Beirut Reaction: a novel entry into 2H-indazoles and indazolones. Recent biological activity of indazoles.

    PubMed

    Haddadin, Makhluf J; Conrad, Wayne E; Kurth, Mark J

    2012-10-01

    A novel, easy method for the syntheses of richly diversified 2H-indazoles and indazolones, called the Davis-Beirut reaction, and other recent 2H-indazole synthetic routes are briefly reviewed. An update on the biological activity of indazoles is also surveyed.

  7. Effect of Sterol Structure on Chain Ordering of an Unsaturated Phospholipid: A 2H-NMR Study of POPC/Sterol Membranes

    NASA Astrophysics Data System (ADS)

    Shaghaghi, Mehran; Thewalt, Jenifer; Zuckermann, Martin

    2012-10-01

    The physical properties of biological membranes are considerably altered by the presence of sterols. In particular, sterols help to maintain the integrity of the cell by adjusting the fluidity of the plasma membrane. Cholesterol is in addition an important component of lipid rafts which are hypothesized to compartmentalize the cell membrane surface thereby making it possible for certain proteins to function. Using 2H-NMR spectroscopy, we studied the effect of a series of different sterols on the chain ordering of POPC, an unsaturated phospholipid present in eukaryotic cell membranes. We were able to assigned specific roles to the structural differences between the sterols by comparing the manner in which they affect the average lipid chain conformation of POPC.

  8. Low-Temperature Rate Coefficients of C2H with CH4 and CD4 from 154 to 359 K

    NASA Technical Reports Server (NTRS)

    Opansky, Brian J.; Leone, Stephen R.

    1996-01-01

    Rate coefficients for the reaction C2H + CH4 yields C2H2 + CH3 and C2H + CD4 yields C2HD + CD3 are measured over the temperature range 154-359 K using transient infrared laser absorption spectroscopy. Ethynyl radicals are produced by pulsed laser photolysis of C2H2 in a variable temperature flow cell, and a tunable color center laser probes the transient removal of C2H (Chi(exp 2) Sigma(+) (0,0,0)) in absorption. The rate coefficients for the reactions of C2H with CH4 and CD4 both show a positive temperature dependence over the range 154-359 K, which can be expressed as k(sub CH4) = (1.2 +/- 0.1) x 10(exp -11) exp((-491 +/- 12)/T) and k(sub CD4) = (8.7 +/- 1.8) x 10(exp -12) exp((-650 +/- 61)/T) cm(exp 3) molecule(exp -1) s(exp -1), respectively. The reaction of C2H + CH4 exhibits a significant kinetic isotope effect at 300 K of k(sub CH4)/k(sub CD4) = 2.5 +/- 0.2. Temperature dependent rate constants for C2H + C2H2 were also remeasured over an increased temperature range from 143 to 359 K and found to show a slight negative temperature dependence, which can be expressed as k(sub C2H2) = 8.6 x 10(exp -16) T(exp 1.8) exp((474 +/- 90)/T) cm(exp 3) molecule(exp -1) s(exp -1).

  9. Modeling Ice Giant Interiors Using Constraints on the H2-H2O Critical Curve

    NASA Astrophysics Data System (ADS)

    Bailey, E.; Stevenson, D. J.

    2015-12-01

    We present a range of models of Uranus and Neptune, taking into account recent experimental data (Bali, 2013) implying the location of the critical curve of the H2-H2O system at pressures up to 2.6 GPa. The models presented satisfy the observed total mass of each planet and the radius at the observed 1-bar pressure level. We assume the existence of three regions at different depths: an outer adiabatic envelope composed predominately of H2 and He, with a helium mass fraction 0.26, a water-rich layer including varied amounts of rock and hydrogen, and a chemically homogeneous rock core. Using measured rotation rates of Uranus and Neptune, and a density profile obtained for each model using constituent equations of state and the assumption of hydrostatic equilibrium, we calculate the gravitational harmonics J2 and J4 for comparison with observed values as an additional constraint. The H2-H2O critical curve provides information about the nature of the boundary between the outer, hydrogen-rich envelope and underlying water-rich layer. The extrapolated critical curve for hydrogen-water mixtures crosses the adiabat of the outer atmospheric shell in these models at two depths, implying a shallow outer region of limited miscibility, an intermediate region between ~90 and 98 percent of the total planet radius within which hydrogen and water can mix in all proportions, and another, deeper region of limited miscibility at less than ~90 percent of the total planet radius. The pressure and temperature of the gaseous adiabatic shell at the depth of the shallowest extent of the water-rich layer determines whether a gradual compositional transition or an ocean surface boundary may exist at depth in these planets. To satisfy the observed J2, the outer extent of the water-rich layer in these models must be located between approximately 80 and 85 percent of the total planet radius, within the deep region of limited H2-H2O miscibility, implying an ocean surface is possible within the

  10. An ignored but most favorable channel for NCO +C2H2 reaction

    NASA Astrophysics Data System (ADS)

    Xie, Hong-bin; Wang, Jian; Zhang, Shao-wen; Ding, Yi-hong; Sun, Chia-chung

    2006-09-01

    The NCO +C2H2 reaction has been considered as a prototype for understanding the chemical reactivity of the isocyanate radical towards unsaturated hydrocarbons in fuel-rich combustion. It has also been proposed to provide an effective route for formation of oxazole-containing compounds in organic synthesis, and might have potential applications in interstellar processes. Unfortunately, this reaction has met mechanistic controversy both between experiments and between experiments and theoretical calculations. In this paper, detailed theoretical investigations at the Becke's three parameter Lee-Yang-Parr-B3LYP /6-31G(d), B3LYP /6-311++G(d,p), quadratic configuration interaction with single and double excitations QCISD /6-31G(d), and Gaussian-3 levels are performed for the NCO +C2H2 reaction, covering various entrance, isomerization, and decomposition channels. Also, the highly cost-expensive coupled-cluster theory including single and double excitations and perturbative inclusion of triple excitations CCSD(T)/aug-cc-pVTZ single-point energy calculation is performed for the geometries obtained at the Becke's three parameter Lee-Yang-Parr-B3LYP /6-311++G(d,p) level. A previously ignored yet most favorable channel via a four-membered ring intermediate with allyl radical character is found. However, formation of P3 H +HCCNCO and the five-membered ring channel predicted by previous experimental and theoretical studies is kinetically much less competitive. With the new channel, master equation rate constant calculations over a wide range of temperatures (298-1500K) and pressures (10-560Torr) show that the predicted total rate constants exhibit a positive-temperature dependence and no distinct pressure dependence effect. This is in qualitative agreement with available experimental results. Under the experimental conditions, the predicted values are about 50% lower than the latest experimental results. Also, the branching ratio variations of the fragments P2 HCN +HCCO and P5

  11. Pseudomorphic 2A--> 2M--> 2H phase transitions in lanthanum strontium germanate electrolyte apatites.

    PubMed

    Pramana, Stevin S; White, T J; Schreyer, Martin K; Ferraris, Cristiano; Slater, Peter R; Orera, Alodia; Bastow, T J; Mangold, Stefan; Doyle, Stephen; Liu, Tao; Fajar, Andika; Srinivasan, Madhavi; Baikie, Tom

    2009-10-21

    Apatite-like materials are of considerable interest as potential solid oxide fuel cell electrolytes, although their structural vagaries continue to attract significant discussion. Understanding these features is crucial both to explain the oxide ion conduction process and to optimise it. As the composition of putative P6(3)/m apatites with ideal formula [A(I)(4)][A(II)(6)][(BO(4))(6)][X](2) is varied the [A(I)(4)(BO(4))(6)] framework will flex to better accommodate the [A(II)(6)X(2)] tunnel component through adjustment of the A(I)O(6) metaprism twist angle (varphi). The space group theory prescribes that framework adaptation during phase changes must lead to one of the maximal non-isomorphic subgroups of P6(3)/m (P2(1), P2(1)/m, P1[combining macron]). These adaptations correlate with oxygen ion conduction, and become crucial especially when the tunnels are filled by relatively small ions and/or partially occupied, and if interstitial oxygens are located in the framework. Detecting and completely describing these lower symmetry structures can be challenging, as it is difficult to precisely control apatite stoichiometry and small departures from the hexagonal metric may be near the limits of detection. Using a combination of diffraction and spectroscopic techniques it is shown that lanthanum strontium germanate oxide electrolytes crystallise as triclinic (A), monoclinic (M) and hexagonal (H) bi-layer pseudomorphs with the composition ranges: [La(10-x)Sr(x)][(GeO(4))(5+x/2)(GeO(5))(1-x/2)][O(2)] (0 2)][H(delta)] (2 2)][H(delta)] (2.96 2H, with the latter showing the highest conduction. The results show that small twist angles and high symmetry

  12. 242-16H 2H EVAPORATOR POT SAMPLING FINAL REPORT

    SciTech Connect

    Krementz, D; William Cheng, W

    2008-06-11

    Due to the materials that are processed through 2H Evaporator, scale is constantly being deposited on the surfaces of the evaporator pot. In order to meet the requirements of the Nuclear Criticality Safety Analysis/Evaluation (NCSA/NCSE) for 2H Evaporator, inspections of the pot are performed to determine the extent of scaling. Once the volume of scale reaches a certain threshold, the pot must be chemically cleaned to remove the scale. Prior to cleaning the pot, samples of the scale are obtained to determine the concentration of uranium and plutonium and also to provide information to assist with pot cleaning. Savannah River National Laboratory (SRNL) was requested by Liquid Waste Organization (LWO) Engineering to obtain these samples from two locations within the evaporator. Past experience has proven the difficulty of successfully obtaining solids samples from the 2H Evaporator pot. To mitigate this risk, a total of four samplers were designed and fabricated to ensure that two samples could be obtained. Samples had previously been obtained from the cone surface directly below the vertical access riser using a custom scraping tool. This tool was fabricated and deployed successfully. A second scraper was designed to obtain sample from the nearby vertical thermowell and a third scraper was designed to obtain sample from the vertical pot wall. The newly developed scrapers both employed a pneumatically actuated elbow. The scrapers were designed to be easily attached/removed from the elbow assembly. These tools were fabricated and deployed successfully. A fourth tool was designed to obtain sample from the opposite side of the pot under the tube bundle. This tool was fabricated and tested, but the additional modifications required to make the tool field-ready could not be complete in time to meet the aggressive deployment schedule. Two samples were obtained near the pot entry location, one from the pot wall and the other from the evaporator feed pipe. Since a third

  13. Raftlike Mixtures of Sphingomyelin and Cholesterol Investigated by Solid-State 2H NMR Spectroscopy

    PubMed Central

    Bartels, Tim; Lankalapalli, Ravi S.; Bittman, Robert; Beyer, Klaus; Brown, Michael F.

    2009-01-01

    Sphingomyelin is a lipid that is abundant in the nervous systems of mammals, where it is associated with putative microdomains in cellular membranes and undergoes alterations due to aging or neurodegeneration. We investigated the effect of varying the concentration of cholesterol in binary and ternary mixtures with N-palmitoylsphingomyelin (PSM) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) using deuterium nuclear magnetic resonance (2H NMR) spectroscopy in both macroscopically aligned and unoriented multilamellar dispersions. In our experiments, we used PSM and POPC perdeuterated on the N-acyl and sn-1 acyl chains, respectively. By measuring solid-state 2H NMR spectra of the two lipids separately in mixtures with the same compositions as a function of cholesterol mole fraction and temperature, we obtained clear evidence for the coexistence of two liquid-crystalline domains in distinct regions of the phase diagram. According to our analysis of the first moments M1 and the observed 2H NMR spectra, one of the domains appears to be a liquid-ordered phase. We applied a mean-torque potential model as an additional tool to calculate the average hydrocarbon thickness, the area per lipid, and structural parameters such as chain extension and thermal expansion coefficient in order to further define the two coexisting phases. Our data imply that phase separation takes place in raftlike ternary PSM/POPC/cholesterol mixtures over a broad temperature range but vanishes at cholesterol concentrations equal to or greater than a mole fraction of 0.33. Cholesterol interacts preferentially with sphingomyelin only at smaller mole fractions, above which a homogeneous liquid-ordered phase is present. The reasons for these phase separation phenomena seem to be differences in the effects of cholesterol on the configurational order of the palmitoyl chains in PSM-d31 and POPC-d31 and a difference in the affinity of cholesterol for sphingomyelin observed at low temperatures

  14. 2H 2O quadrupolar splitting used to measure water exchange in erythrocytes

    NASA Astrophysics Data System (ADS)

    Kuchel, Philip W.; Naumann, Christoph

    2008-05-01

    The 2H NMR resonance from HDO (D = 2H) in human red blood cells (RBCs) suspended in gelatin that was held stretched in a special apparatus was distinct from the two signals that were symmetrically arranged on either side of it, which were assigned to extracellular HDO. The large extracellular splitting is due to the interaction of the electric quadrupole moment of the 2H nuclei with the electric field gradient tensor of the stretched, partially aligned gelatin. Lack of resolved splitting of the intracellular resonance indicated greatly diminished or absent ordering of the HDO inside RBCs. The separate resonances enabled the application of a saturation transfer method to estimate the rate constants of transmembrane exchange of water in RBCs. However both the theory and the practical applications needed modifications because even in the absence of RBCs the HDO resonances were maximally suppressed when the saturating radio-frequency radiation was applied exactly at the central frequency between the two resonances of the quadrupolar HDO doublet. More statistically robust estimates of the exchange rate constants were obtained by applying two-dimensional exchange spectroscopy (2D EXSY), with back-transformation analysis. A monotonic dependence of the estimates of the efflux rate constants on the mixing time, tmix, used in the 2D EXSY experiment were seen. Extrapolation to tmix = 0, gave an estimate of the efflux rate constant at 15 °C of 31.5 ± 2.2 s -1 while at 25 °C it was ˜50 s -1. These values are close to, but less than, those estimated by an NMR relaxation-enhancement method that uses Mn 2+ doping of the extracellular medium. The basis for this difference is thought to include the high viscosity of the extracellular gel. At the abstract level of quantum mechanics we have used the quadrupolar Hamiltonian to provide chemical shift separation between signals from spin populations across cell membranes; this is the first time, to our knowledge, that this has been

  15. Charge transfer reactions in Xe plasma expansion

    SciTech Connect

    Jiao, C. Q.; Garscadden, A.; Ganguly, B. N.

    2007-04-15

    Charge transfer reactions of fast Xe ions with hydrocarbons including methane (CH{sub 4}), ethene (C{sub 2}H{sub 4}), and propane (C{sub 3}H{sub 8}) are studied by adding these hydrocarbon gases into a cross flowing Xe plasma expansion. Branching ratios and relative reaction rates for the charge transfers of fast Xe{sup +} with each of the three hydrocarbon gases are measured under different rf powers of the inductively coupled Xe discharge. For CH{sub 4}/Xe system, we find that fast Xe{sup +} reacts readily with CH{sub 4} generating CH{sub 4}{sup +} and CH{sub 3}{sup +} in a ratio of 1:0.56, with an estimated rate coefficient of (2.3{+-}0.3)x10{sup -10} cm{sup 3}/s at 75 W rf power which slowly increases to (2.9{+-}0.3)x10{sup -10} cm{sup 3}/s at 250 W (error bars reflect only the uncertainties due to the unknown extent of the ion recombination that follows the charge transfer reaction). These observed charge transfer reactions are made possible by the kinetically excited Xe ions produced by free expansion of the plasma. For the C{sub 2}H{sub 4}/Xe system product ions C{sub 2}H{sub 4}{sup +} and C{sub 2}H{sub 2}{sup +} are observed, and for C{sub 3}H{sub 8}/Xe, C{sub 2}H{sub 4}{sup +} and C{sub 2}H{sub 5}{sup +} and minor product ions including C{sub 2}H{sub 2}{sup +} and C{sub 3}H{sub 7}{sup +} are observed.

  16. Kinetics of the WF 6 and Si 2H 6 surface reactions during tungsten atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Elam, J. W.; Nelson, C. E.; Grubbs, R. K.; George, S. M.

    2001-05-01

    The atomic layer deposition (ALD) of tungsten (W) films has been demonstrated using alternating exposures to tungsten hexafluoride (WF 6) and disilane (Si 2H 6). The present investigation explored the kinetics of the WF 6 and Si 2H 6 surface reactions during W ALD at 303-623 K using Auger electron spectroscopy techniques. The reaction of WF 6 with the Si 2H 6-saturated W surface proceeded to completion at 373-573 K. The WF 6 reaction displayed a reactive sticking coefficient of S=0.4 and required an exposure of 30 L (1 L=1×10 -6 Torr s) to achieve saturation at 573 K. The WF 6 exposures necessary to reach saturation increased with decreasing temperature. At surface temperatures <373 K, the WF 6 reaction did not consume all the silicon (Si) surface species remaining from the previous Si 2H 6 exposure. The reaction of Si 2H 6 with the WF 6-saturated W surface displayed three kinetic regimes. In the first region at low Si 2H 6 exposures⩽50 L, the Si 2H 6 reaction was independent of temperature and had a reactive sticking coefficient of S˜5×10 -2. In the second kinetic region at intermediate Si 2H 6 exposures of 50-300 L, the Si 2H 6 reaction showed an apparent saturation behavior with a Si thickness at saturation that increased with substrate temperature. At high Si 2H 6 exposures of 300-1×10 5 L, additional Si was deposited with an approximately logarithmic dependence on Si 2H 6 exposure. The Si 2H 6 reaction in this third kinetic region had an activation energy E=2.6 kcal/mol and the Si thickness deposited by a 1.6×10 5 L Si 2H 6 exposure increased with temperature from 3.0 Å at 303 K to 6.6 Å at 623 K. These kinetic results should help to explain W ALD growth rates observed at different reactant exposures and substrate temperatures.

  17. Understanding 2H/1H systematics of leaf wax n-alkanes in coastal plants at Stiffkey saltmarsh, Norfolk, UK

    NASA Astrophysics Data System (ADS)

    Eley, Yvette; Dawson, Lorna; Black, Stuart; Andrews, Julian; Pedentchouk, Nikolai

    2014-03-01

    Interpretation of sedimentary n-alkyl lipid δ2H data is complicated by a limited understanding of factors controlling interspecies variation in biomarker 2H/1H composition. To distinguish between the effects of interrelated environmental, physical and biochemical controls on the hydrogen isotope composition of n-alkyl lipids, we conducted linked δ2H analyses of soil water, xylem water, leaf water and n-alkanes from a range of C3 and C4 plants growing at a UK saltmarsh (i) across multiple sampling sites, (ii) throughout the 2012 growing season, and (iii) at different times of the day. Soil waters varied isotopically by up to 35‰ depending on marsh sub-environment, and exhibited site-specific seasonal shifts in δ2H up to a maximum of 31‰. Maximum interspecies variation in xylem water was 38‰, while leaf waters differed seasonally by a maximum of 29‰. Leaf wax n-alkane 2H/1H, however, consistently varied by over 100‰ throughout the 2012 growing season, resulting in an interspecies range in the ɛwax/leaf water values of -79‰ to -227‰. From the discrepancy in the magnitude of these isotopic differences, we conclude that mechanisms driving variation in the 2H/1H composition of leaf water, including (i) spatial changes in soil water 2H/1H, (ii) temporal changes in soil water 2H/1H, (iii) differences in xylem water 2H/1H, and (iv) differences in leaf water evaporative 2H-enrichment due to varied plant life forms, cannot explain the range of n-alkane δ2H values we observed. Results from this study suggests that accurate reconstructions of palaeoclimate regimes from sedimentary n-alkane δ2H require further research to constrain those biological mechanisms influencing species-specific differences in 2H/1H fractionation during lipid biosynthesis, in particular where plants have developed biochemical adaptations to water-stressed conditions. Understanding how these mechanisms interact with environmental conditions will be crucial to ensure accurate

  18. Reinvestigation of the elementary chemical kinetics of the reaction C2H5(•) + HBr (HI) → C2H6 + Br(•) (I(•)) in the range 293-623 K and its implication on the thermochemical parameters of C2H5(•) free radical.

    PubMed

    Leplat, N; Wokaun, A; Rossi, M J

    2013-11-14

    A reinvestigation of the absolute rate constants of the metathesis reactions C2H5• + HBr → C2H6 + Br• (R1) and C2H5• + HI → C2H6 + I• (R2) has been performed and led to the following Arrhenius expressions: k1 = 3.69(±0.95) × 10–11 exp(−10.62(±0.66)/RT), k2 = 1.20(±0.38) × 10–11 exp(−7.12(±1.059)/RT) in the temperature range 293–623 K (A/cm3 molecule–1 s–1, Ea/kJ mol–1). The study has been performed using a Knudsen reactor coupled to single-photon (VUV) photoionization mass spectrometer (SPIMS). Hydrocarbon free radicals have been generated externally before admission into the Knudsen reactor according to two different chemical schemes, enabling the generation of thermalized C2H5• free radicals. A minor correction to k1 and k2 for the wall loss of C2H5• (kw) has been applied throughout the temperature range. The obtained results are consistent regarding both the disappearance of C2H5• and the formation of closed shell products (n-C4H10, C2H4, C2H6), indicating that the chemical mechanism is largely understood and complete. Thermochemical parameters for C2H5• free radical resulting from the present kinetic measurements are discussed and point toward a slightly lower value for the standard heat of formation ΔfH298°(C2H5•) compared to some presently recommended values. On the basis of the present results and suitable data on the reverse reaction taken from the literature, we recommend ΔfH298°(C2H5•) = 117.3 ± 3.1 kJ/mol resulting from an average of “third law” evaluations using S298°(C2H5•) = 242.9 ± 4.6 J/K mol. The present work yields a standard heat of formation in satisfactory agreement with the results obtained by W. Tsang (ΔfH298°(C2H5•) = 119 ± 2 kJ/mol) despite using two very different experimental techniques.

  19. Monitoring particle growth in deposition plasmas

    NASA Astrophysics Data System (ADS)

    Schlebrowski, T.; Bahre, H.; Böke, M.; Winter, J.

    2013-12-01

    Plasma-enhanced chemical vapor deposition methods are frequently used to deposit barrier layers, e.g. on polymers for food packaging. These plasmas may suffer from particle (dust) formation. We report on a flexible monitoring system for dust. It is based on scanning a 3D plasma volume for particles by laser light scattering. The lower size limit of particles detected in the presented system is 20 nm. We report on existence diagrams for obtaining dust free or dust loaded capacitively or inductively coupled rf-plasmas in C2H2 depending on pressure, flow and rf-power. We further present growth rates for dust in these plasmas and show that monodisperse particles are only obtained during the first growth cycle.

  20. The FORMAMIDE_2-H_2O Complex: Structure and Hydrogen Bond Cooperative Effects

    NASA Astrophysics Data System (ADS)

    Blanco, Susana; Pinacho, Pablo; Lopez, Juan Carlos

    2016-06-01

    The adduct formamide_2-H_20 has been detected in a supersonic expansion and its rotational spectra in the 5-13 GHz frequency region characterized by narrow-band molecular beam Fourier transform microwave spectroscopy (MB-FTMW). The spectrum shows the hyperfine structure due to the presence of two 14N-nuclei. This hyperfine structure has been analyzed and the determined quadrupole coupling constants together with the rotational constants have been a key for the identification of the adduct structure on the light of ab initio computations. The rotational parameters are consistent with the formation of a three body cycle thanks to the double proton acceptor/proton donor character of both formamide and water. The low value of the planar moment of inertia Pcc indicates that the heavy atom skeleton of the cluster is essentially planar. A detailed analysis of the results reveals the subtle effects of hydrogen bond cooperative effects in this system.

  1. Crystal structure of NH4[La(SO4)2(H2O)

    PubMed Central

    Benslimane, Meriem; Redjel, Yasmine Kheira; Merazig, Hocine; Daran, Jean-Claude

    2015-01-01

    The principal building units in the crystal structure of ammonium aqua­bis(sulfato)­lanthanate(III) are slightly distorted SO4 tetra­hedra, LaO9 polyhedra in the form of distorted tricapped trigonal prisms, and NH4 + ions. The La3+ cation is coordinated by eight O atoms from six different sulfate tetra­hedra, two of which are bidentate coordinating and four monodentate, as well as one O atom from a water mol­ecule; each sulfate anion bridges three La3+ cations. These bridging modes result in the formation of a three-dimensional anionic [La(SO4)2(H2O)]− framework that is stabilized by O—H⋯O hydrogen-bonding inter­actions. The disordered ammonium cations are situated in the cavities of this framework and are hydrogen-bonded to six surrounding O atoms. PMID:26090145

  2. Effect of 2H and 18O water isotopes in kinesin-1 gliding assay

    PubMed Central

    Herskowitz, Lawrence J.; Koch, Steven J.

    2014-01-01

    We show for the first time the effects of heavy-hydrogen water (2H2O) and heavy-oxygen water (H218O) on the gliding speed of microtubules on kinesin-1 coated surfaces. Increased fractions of isotopic waters used in the motility solution decreased the gliding speed of microtubules by a maximum of 21% for heavy-hydrogen and 5% for heavy-oxygen water. We also show that gliding microtubule speed returns to its original speed after being treated with heavy-hydrogen water. We discuss possible interpretations of these results and the importance for future studies of water effects on kinesin and microtubules. We also discuss the implication for using heavy waters in biomolecular devices incorporating molecular motors. PMID:24711961

  3. Synthesis of (3) H, (2) H4 and (14) C-SCH 417690 (Vicriviroc).

    PubMed

    Hesk, D; Borges, S; Hendershot, S; Koharski, D; McNamara, P; Ren, S; Saluja, S; Truong, V; Voronin, K

    2016-05-15

    Vicriviroc or SCH 417690 is a potent and selective antagonist of the CCR5 receptor. CCR5 receptor antagonists have the potential for the treatment of HIV infections. Four distinct isotopically labelled forms of SCH 417690 were synthesized. Low specific activity [(3) H]SCH 417690 was prepared for a preliminary absorption, distribution, metabolism and excretion evaluation of the compound and [(14) C]SCH 417690 for more definitive absorption, distribution, metabolism and excretion work, including an absorption, metabolism and excretion study in man. In addition, high specific activity [(3) H]SCH 417690 was prepared for CCR5 receptor binding work and [(2) H4 ]SCH 417690 was prepared as an internal standard for a liquid chromatography-mass spectrometry bioanalytical method. The paper discusses the synthesis of four isotopically labelled forms of SCH 417690.

  4. Understanding H2- H2 interactions in Metal Organic Frameworks (MOFs) with unsaturated metal centers

    NASA Astrophysics Data System (ADS)

    Nijem, Nour; Veyan, Jean F.; Kong, Lingzhu; Zhao, Yonggang; Li, Jing; Langreth, David; Chabal, Yves J.

    2011-03-01

    Unsaturated Metal Organic Frameworks (MOFs) are particularly interesting due to their high H2 uptakes with relatively large isosteric heats of adsorption (Qst > 8 kJ / mol) . ThisworkexploresH 2 - H 2 interactionsbetweenadsorbedH 2 atthedifferentsitesinMOF - 74 (M 2 (dhtp) , dhtp = 2 , 5 - dihydroxyterephthalate) andcombinesIRspectroscopywithvdW - DFTcalculations . TheadsorptionsitesinMOF - 74 arefromhighesttolowestbindingenergiesthemetal , oxygen , benzeneandpore - centersites . ThefrequencyofadsorbedH 2 atthemetalsitesuffersanadditional ~ - 30 cm -1 redshift (forMgandZn) and ~ - 84 cm -1 (forCo) whentheneighboringoxygensiteisoccupied . ThedipolemomentofadsorbedH 2 isalsoaffected . TheseinteractionsextendtothebenzenesitesforMOF - 74 - Co . AdecreaseindipolemomentofH 2 adsorbedatthemetalsiteisobservedwiththepartialoccupationofthebenzenesites . However , thecompleteoccupationofthebenzenesitesinducesanadditional ~ - 10 cm -1 red shift. DOE Grant No. DE-FG02-08ER46491.

  5. RNF20-SNF2H Pathway of Chromatin Relaxation in DNA Double-Strand Break Repair.

    PubMed

    Kato, Akihiro; Komatsu, Kenshi

    2015-07-14

    Rapid progress in the study on the association of histone modifications with chromatin remodeling factors has broadened our understanding of chromatin dynamics in DNA transactions. In DNA double-strand break (DSB) repair, the well-known mark of histones is the phosphorylation of the H2A variant, H2AX, which has been used as a surrogate marker of DSBs. The ubiquitylation of histone H2B by RNF20 E3 ligase was recently found to be a DNA damage-induced histone modification. This modification is required for DSB repair and regulated by a distinctive pathway from that of histone H2AX phosphorylation. Moreover, the connection between H2B ubiquitylation and the chromatin remodeling activity of SNF2H has been elucidated. In this review, we summarize the current knowledge of RNF20-mediated processes and the molecular link to H2AX-mediated processes during DSB repair.

  6. Ca2+/H+ exchange by acidic organelles regulates cell migration in vivo

    PubMed Central

    Melchionda, Manuela; Pittman, Jon K.

    2016-01-01

    Increasing evidence implicates Ca2+ in the control of cell migration. However, the underlying mechanisms are incompletely understood. Acidic Ca2+ stores are fast emerging as signaling centers. But how Ca2+ is taken up by these organelles in metazoans and the physiological relevance for migration is unclear. Here, we identify a vertebrate Ca2+/H+ exchanger (CAX) as part of a widespread family of homologues in animals. CAX is expressed in neural crest cells and required for their migration in vivo. It localizes to acidic organelles, tempers evoked Ca2+ signals, and regulates cell-matrix adhesion during migration. Our data provide new molecular insight into how Ca2+ is handled by acidic organelles and link this to migration, thereby underscoring the role of noncanonical Ca2+ stores in the control of Ca2+-dependent function. PMID:27002171

  7. Spectrum sensing of trace C(2)H(2) detection in differential optical absorption spectroscopy technique.

    PubMed

    Chen, Xi; Dong, Xiaopeng

    2014-09-10

    An improved algorithm for trace C(2)H(2) detection is presented in this paper. The trace concentration is accurately calculated by focusing on the absorption spectrum from the frequency domain perspective. The advantage of the absorption spectroscopy frequency domain algorithm is its anti-interference capability. First, the influence of the background noise on the minimum detectable concentration is greatly reduced. Second, the time-consuming preprocess of spectra calibration in the differential optical absorption spectroscopy technique is skipped. Experimental results showed the detection limit of 50 ppm is achieved at a lightpath length of 0.2 m. This algorithm can be used in real-time spectrum analysis with high accuracy.

  8. High-resolution vibrational and rotational spectroscopy of CD2H+ in a cryogenic ion trap

    NASA Astrophysics Data System (ADS)

    Jusko, Pavol; Stoffels, Alexander; Thorwirth, Sven; Brünken, Sandra; Schlemmer, Stephan; Asvany, Oskar

    2017-02-01

    The low-lying rotational states (J = 0, … , 5) of CD2H+ have been probed by high-resolution ro-vibrational and pure rotational spectroscopy, applying several action spectroscopic methods in a cryogenic 22-pole ion trap. For this, the ν1 ro-vibrational band has been revisited, detecting 108 transitions, among which 36 are new. The use of a frequency comb system allowed us to measure the ro-vibrational transitions with high precision and accuracy, typically better than 1 MHz. The high precision has been confirmed by comparing equal combination differences in the ground and excited state. Moreover, precise predictions of pure rotational transitions were possible for the ground state. Twenty-five rotational transitions have been detected directly by a novel IR-mm-wave double resonance method, giving rise to highly accurate ground state spectroscopic parameters.

  9. Competition between charge exchange and chemical reaction - The D2/+/ + H system

    NASA Technical Reports Server (NTRS)

    Preston, R. K.; Cross, R. J., Jr.

    1973-01-01

    Study of the special features of molecular charge exchange and its competition with chemical reaction in the case of the D2(+) + H system. The trajectory surface hopping (TSH) model proposed by Tully and Preston (1971) is used to study this competition for a number of reactions involving the above system. The diatomics-in-molecules zero-overlap approximation is used to calculate the three adiabatic surfaces - one triplet and two singlet - which are needed to describe this system. One of the significant results of this study is that the chemical reaction and charge exchange are strongly coupled. It is also found that the number of trajectories passing into the chemical regions of the three surfaces depends very strongly on the surface crossings.-

  10. Characterization Results for the March 2016 H-Tank Farm 2H Evaporator Overhead Samples

    SciTech Connect

    Nicholson, J. C.

    2016-09-28

    This report contains the radioanalytical results of the 2H evaporator overhead sample received at SRNL on March 16, 2016. Specifically, concentrations of 137Cs, 90Sr, and 129I are reported and compared to the corresponding Waste Acceptance Criteria (WAC) limits of the Effluent Treatment Project (ETP) Waste Water Collection Tank (WWCT) (rev. 6). All of the radionuclide concentrations in the sample were found to be in compliance with the ETP WAC limits. Revision 1 of this document corrects the cumulative beta count initially reported for 90Sr content with the sole 90Sr count obtained after recharacterization of the sample. The initial data was found to be a cumulative beta count rather than the 90Sr count requested.

  11. Equilibrium concentrations of N2H4 and its decomposition products at elevated temperatures and pressures

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Fairchild, H. N., III; Martin, G. L.

    1973-01-01

    Liquid hydrazine is considered as a convenient source of hydrogen rather than just as a rocket fuel. For such purposes, the hydrogen is usually obtained by passing the hydrazine through a heated catalytic bed. One convenient measure of the effectiveness of a catalytic decomposition device as a whole is to compare the quantity of hydrogen produced with the equilibrium concentration of the gaseous species N2H4, NH3, N3, and H2 which would exist at the temperature and pressure found in various parts of the device. Calculations of the concentrations were carried out and are reported here. Following presentation of the results in both tabular and graphical forms is a comparison between the computed equilibrium concentrations and available experimental data.

  12. Rotational Spectroscopy of Vibrationally Excited N_2H^+ and N_2D^+ up to 2 Thz

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Pearson, John; Drouin, Brian; Crawford, Timothy J.; Daly, Adam M.; Elliott, Ben; Amano, Takayoshi

    2015-06-01

    Terahertz absorption spectroscopy was employed to extend the measurements on the pure rotational transitions of N_2H^+, N_2D^+ and their 15N-containing isotopologues in the ground state and first excited vibrational states for the three fundamental vibrational modes. In total 88 new pure rotational transitions were observed in the range of 0.7--2.0~THz. The observed transition frequencies were fit to experimental accuracy, and the improved molecular parameters were obtained. The new measurements and predictions will support the analysis of high-resolution astronomical observations made with facilities such as SOFIA and ALMA where laboratory rest frequencies with uncertainties of 1 MHz or smaller are required for proper analysis of velocity resolved astrophysical components.

  13. Inhibition of myeloperoxidase: evaluation of 2H-indazoles and 1H-indazolones.

    PubMed

    Roth, Aaron; Ott, Sean; Farber, Kelli M; Palazzo, Teresa A; Conrad, Wayne E; Haddadin, Makhluf J; Tantillo, Dean J; Cross, Carroll E; Eiserich, Jason P; Kurth, Mark J

    2014-11-15

    Myeloperoxidase (MPO) produces hypohalous acids as a key component of the innate immune response; however, release of these acids extracellularly results in inflammatory cell and tissue damage. The two-step, one-pot Davis-Beirut reaction was used to synthesize a library of 2H-indazoles and 1H-indazolones as putative inhibitors of MPO. A structure-activity relationship study was undertaken wherein compounds were evaluated utilizing taurine-chloramine and MPO-mediated H2O2 consumption assays. Docking studies as well as toxicophore and Lipinski analyses were performed. Fourteen compounds were found to be potent inhibitors with IC50 values <1μM, suggesting these compounds could be considered as potential modulators of pro-oxidative tissue injury pertubated by the inflammatory MPO/H2O2/HOCl/HOBr system.

  14. a Rotational Study of 2H-3H-PERFLUOROPENTANE and its Isotopologues

    NASA Astrophysics Data System (ADS)

    Duong, Chinh H.; Obenchain, Daniel A.; Novick, Stewart E.; Cooke, S. A.

    2012-06-01

    The chirped pulse Fourier transform microwave spectrum of 2H-3H-perfluoropentane has been observed and assigned. Given a racemic mixture sample of the four available structural isomers, only the (S,S) structure was observed in the broadband spectrum. Attempts at observing the 13C isotopologues on a Balle-Flygare cavity type spectrometer and their assignments will be discussed, along with an examination of the theoretical predictions for the structure and rotational constants of the molecule against their experimental values. Structural results of the monomer will also be compared with those of the helical structure of C2 perfluoropentane. Joseph A. Fournier, Robert K. Bohn, John A. Montgomery Jr., Masao Onda. J. Phys. Chem. 114 (1118), 2010.

  15. Interplay of charge density wave and multiband superconductivity in 2H-PdxTaSe2

    NASA Astrophysics Data System (ADS)

    Bhoi, D.; Khim, S.; Nam, W.; Lee, B. S.; Kim, Chanhee; Jeon, B.-G.; Min, B. H.; Park, S.; Kim, Kee Hoon

    2016-04-01

    2H-TaSe2 has been one of unique transition metal dichalcogenides exhibiting several phase transitions due to a delicate balance among competing electronic ground states. An unusual metallic state at high-T is sequentially followed by an incommensurate charge density wave (ICDW) state at ≈122 K and a commensurate charge density wave (CCDW) state at ≈90 K, and superconductivity at TC ~ 0.14 K. Upon systematic intercalation of Pd ions into TaSe2, we find that CCDW order is destabilized more rapidly than ICDW to indicate a hidden quantum phase transition point at x ~ 0.09–0.10. Moreover, TC shows a dramatic enhancement up to 3.3 K at x = 0.08, ~24 times of TC in 2H-TaSe2, in proportional to the density of states N(EF). Investigations of upper critical fields Hc2 in single crystals reveal evidences of multiband superconductivity as temperature-dependent anisotropy factor γH = , quasi-linear increase of , and an upward, positive-curvature in near TC. Furthermore, analysis of temperature-dependent electronic specific heat corroborates the presence of multiple superconducting gaps. Based on above findings and electronic phase diagram vs x, we propose that the increase of N(EF) and effective electron-phonon coupling in the vicinity of CDW quantum phase transition should be a key to the large enhancement of TC in PdxTaSe2.

  16. Morphology-defined interaction of copper phthalocyanine with O2/H2O

    DOE PAGES

    Muckley, Eric S.; Miller, Nicholas; Jacobs, Christopher B.; ...

    2016-11-01

    Copper phthalocyanine (CuPc) is an important hole transport layer for organic photovoltaics (OPVs), but its interaction with ambient gas/vapor may lead to changes in electronic properties of the material which subsequently limits the lifetime of OPV devices. CuPc films of thickness 25 nm and 100 nm were grown by thermal sublimation at 25°C, 150°C, and 250°C in order to vary morphology. Using a source-measure unit and a quartz crystal microbalance (QCM), we measured changes in electrical resistance and film mass in situ during exposure to controlled pulses of O2 and H2O vapor. Mass loading by O2 was enhanced by amore » factor of 5 in films deposited at 250 C, possibly due to the ~200° C CuPc -> transition which allows higher O2 mobility between stacked molecules. While gas/vapor sorption occurred over timescales of < 10 minutes, resistance change occurred over timescales > 1 hour, suggesting that mass change occurs by rapid adsorption at active surface sites, whereas resistive response is dominated by slow diffusion of adsorbates into the film bulk. Resistive response generally increases with film deposition temperature due to increased porosity associated with larger crystalline domains. The 25 nm thick films exhibit higher resistive response than 100 nm thick films after an hour of O2/H2O exposure due to the smaller analyte diffusion length required for reaching the film/electrode interface. We found evidence of decoupling of CuPc from the gold-coated QCM crystal due to preferential adsorption of O2/H2O molecules on gold, which is consistent with findings of other studies.« less

  17. Aryl Hydrocarbon Receptor Ligand Effects in RBL2H3 Cells

    PubMed Central

    Maaetoft-Udsen, Kristina; Shimoda, Lori M.N.; Frøkiær, Hanne; Turner, Helen

    2012-01-01

    The aryl hydrocarbon receptor (AHR) mediates toxic effects of dioxin and xenobiotic metabolism. AHR has an emerging role in the immune system but its physiological ligands and functional role in immunocytes remain poorly understood. Mast cells are immunocytes that are central to inflammatory responses and release a spectrum of pro-inflammatory mediators including histamine, mast cell proteases, and pro-inflammatory cytokines such as IL-6 upon stimulation. Our aim was to investigate the AHR in model mast cells and examine how both putative and known AHR ligands, e.g., kynurenine, kynurenic acid (KA), Resveratrol, indolmycin, and violacein, affect mast cell activation and signaling. We tested these ligands on calcium signaling, degranulation, and gene expression. Our data show that AHR is present in three model mast cell lines, and that various known and putative AHR ligands regulate gene expression of Cyp1a1, a gene down-stream of AHR. Furthermore, we found that calcium influxes and mast cell secretory responses were enhanced or suppressed after chronic treatment with AHR agonists or antagonists, and that AHR ligands modified RBL2H3 cell degranulation. AHR ligands can chronically change cytokine gene expression in activated mast cells, as exemplified by IL-6. The antagonist Resveratrol repressed expression of induced IL-6 gene expression. Though KA and kynurenine are both AHR agonists, these ligands behaved differently in regards to degranulation and IL-6 expression, indicating that they may function outside of AHR pathways. These data suggest considerable complexity in RBL2H3 responses to AHR ligands, with implications for our understanding of both dioxin pathology and the immunological effects of endogenous AHR ligands. PMID:22471748

  18. Interplay of charge density wave and multiband superconductivity in 2H-PdxTaSe2

    PubMed Central

    Bhoi, D.; Khim, S.; Nam, W.; Lee, B. S.; Kim, Chanhee; Jeon, B.-G.; Min, B. H.; Park, S.; Kim, Kee Hoon

    2016-01-01

    2H-TaSe2 has been one of unique transition metal dichalcogenides exhibiting several phase transitions due to a delicate balance among competing electronic ground states. An unusual metallic state at high-T is sequentially followed by an incommensurate charge density wave (ICDW) state at ≈122 K and a commensurate charge density wave (CCDW) state at ≈90 K, and superconductivity at TC ~ 0.14 K. Upon systematic intercalation of Pd ions into TaSe2, we find that CCDW order is destabilized more rapidly than ICDW to indicate a hidden quantum phase transition point at x ~ 0.09–0.10. Moreover, TC shows a dramatic enhancement up to 3.3 K at x = 0.08, ~24 times of TC in 2H-TaSe2, in proportional to the density of states N(EF). Investigations of upper critical fields Hc2 in single crystals reveal evidences of multiband superconductivity as temperature-dependent anisotropy factor γH = , quasi-linear increase of , and an upward, positive-curvature in near TC. Furthermore, analysis of temperature-dependent electronic specific heat corroborates the presence of multiple superconducting gaps. Based on above findings and electronic phase diagram vs x, we propose that the increase of N(EF) and effective electron-phonon coupling in the vicinity of CDW quantum phase transition should be a key to the large enhancement of TC in PdxTaSe2. PMID:27045426

  19. The thermal decomposition of C{sub 2}H{sub 5}I

    SciTech Connect

    Kumaran, S.S.; Su, M.C.; Lim, K.P.; Michael, J.V.

    1996-06-01

    The high temperature thermal dissociation of C{sub 2}H{sub 5}I has been characterized in this study. Kinetics and overall yield experiments were performed over the temperature range, 946--2,046 K, using the atomic resonance absorption spectrometric technique (ARAS) for the temporal detection of both product H- and I-atoms behind reflected shock waves. The C{sub 2}H{sub 5}I decomposition proceeds by both C-I fission and HI elimination. Rate constants for the C-I fission process, measured over the temperature and density ranges, 946--1,303 K and 0.82--4.4 {times} 10{sup 18} cm{sup {minus}3}, respectively, can be well represented to within {+-}37% by the first-order expression: k = 6.34 {times} 10{sup 9} exp({minus}15,894 K/T) s{sup {minus}1}. Overall yield data for atomic product gave a branching ratio for C-I fission of (0.87 {+-} 0.11) suggesting that 13% of the reaction proceeds through molecular HI elimination. This conclusion is consistent with earlier studies that showed C-I fission to be the dominant dissociation channel. The temperature and pressure dependences of the dissociation rate constants and the yield data have been theoretically described using three formulations of unimolecular rate theory. The best description was obtained with a full Master`s equation analysis. However, all three calculations confirm that the HI elimination pathway is lower lying than the C-I fission process by {approximately} 3 kcal/mole.

  20. CO(2)/H(+) chemoreception in the cat pre-Bötzinger complex in vivo.

    PubMed

    Solomon, I C; Edelman, N H; O'Neal, M H

    2000-06-01

    We examined the effects of focal tissue acidosis in the pre-Bötzinger complex (pre-BötC; the proposed locus of respiratory rhythm generation) on phrenic nerve discharge in chloralose-anesthetized, vagotomized, paralyzed, mechanically ventilated cats. Focal tissue acidosis was produced by unilateral microinjection of 10-20 nl of the carbonic anhydrase inhibitors acetazolamide (AZ; 50 microM) or methazolamide (MZ; 50 microM). Microinjection of AZ and MZ into 14 sites in the pre-BötC reversibly increased the peak amplitude of integrated phrenic nerve discharge and, in some sites, produced augmented bursts (i.e., eupneic breath ending with a high-amplitude, short-duration burst). Microinjection of AZ and MZ into this region also reversibly increased the frequency of eupneic phrenic bursts in seven sites and produced premature bursts (i.e., doublets) in five sites. Phrenic nerve discharge increased within 5-15 min of microinjection of either agent; however, the time to the peak increase and the time to recovery were less with AZ than with MZ, consistent with the different pharmacological properties of AZ and MZ. In contrast to other CO(2)/H(+) brain stem respiratory chemosensitive sites demonstrated in vivo, which have only shown increases in amplitude of integrated phrenic nerve activity, focal tissue acidosis in the pre-BötC increases frequency of phrenic bursts and produces premature (i.e., doublet) bursts. These data indicate that the pre-BötC has the potential to play a role in the modulation of respiratory rhythm and pattern elicited by increased CO(2)/H(+) and lend additional support to the concept that the proposed locus for respiratory rhythm generation has intrinsic chemosensitivity.

  1. The photodissociation dynamics of the ethyl radical, C2H5, investigated by velocity map imaging

    NASA Astrophysics Data System (ADS)

    Steinbauer, Michael; Giegerich, Jens; Fischer, Kathrin H.; Fischer, Ingo

    2012-07-01

    The photodissociation dynamics of the ethyl radical C2H5 has been investigated by velocity map imaging. Ethyl was produced by flash pyrolysis from n-propyl nitrite and excited to the à 2A' (3s) Rydberg state around 250 nm. The energetically most favorable reaction channel in this wavelength region is dissociation to C2H4 (ethene) + H. The H-atom dissociation products were ionized in a [1+1'] process via the 1s-2p transition. The observed translational energy distribution is bimodal: A contribution of slow H-atoms with an isotropic angular distribution peaks at low translational energies. An expectation value for the fraction of excess energy released into translation of ⟨fT⟩ = 0.19 is derived from the data, typical for statistical dissociation reactions. In addition, a fast H-atom channel is observed, peaking around 1.8 eV. The latter shows an anisotropic distribution with β = 0.45. It originates from a direct dissociation process within less than a rotational period. Time-delay scans with varying extraction voltages indicate the presence of two rates for the formation of H-atoms. One rate with a sub-nanosecond time constant is associated with H-atoms with large translational energy; a second one with a time constant on the order of 100 ns is associated with H-atoms formed with low translational energy. The data confirm and extend those from previous experiments and remove some inconsistencies. Possible mechanisms for the dissociation are discussed in light of the new results as well as previous ones.

  2. The Microwave Spectrum of the HCOOCD_2H Species of Methyl Formate

    NASA Astrophysics Data System (ADS)

    Coudert, L. H.; Huet, T. R.; Margulès, L.; Motiyenko, R.; Mollendal, H.

    2010-06-01

    Methyl formate is a non-rigid molecule displaying internal rotation of its methyl group. The microwave spectra of its normal and mono deuterated HCOOCH_2D species have already been studied and values for the tunneling splitting due to the internal rotation were determined. The normal species displays a 405 MHz A/E splitting, the mono deuterated one, a smaller 84.76 MHz A'/A'' splitting. For the bideuterated species HCOOCD_2H, the value of this splitting is not known as its microwave spectrum has not been studied yet. In this paper experimental and theoretical investigations of the microwave spectrum of HCOOCD_2H are presented. More than 9000 transitions were measured with a submillimeter wave spectrometer. About 20 lines were recorded with a molecular beam spectrometer. Like for the mono deuterated species,^c depending on the location of the only hydrogen atom of the methyl group, two configurations arise. The C_s-symmetry H-in plane configuration displays a rigid rotator spectrum and its data was analyzed using a Watson-type Hamiltonian. The C_1-symmetry H-out of plane configuration undergoes the large amplitude internal rotation. Its data was analyzed using the so called water dimer formalism which allowed us to accurately reproduce the observed frequencies and to obtain the value of the tunneling splitting as well as the parameters involved in its rotational dependence. The hyperfine structure due to quadrupole coupling at the two deuterium atoms was also analyzed. Unexpectedly, for the H-out of plane configuration, the observed hyperfine patterns are neither those expected for two equivalent deuterium atoms nor those of a rigid molecule. Ilyushin, Kryvda, and Alekseev, J. Mol. Spec. 255 (2009) 32. Margulès, Coudert, Mollendal, Guillemin, Huet, and Janeckovà, J. Mol. Spec. 254 (2009) 55. Hougen, J. Mol. Spec. 114 (1985) 395; and Coudert and Hougen, J. Mol. Spec. 130 (1988) 86.

  3. A classical trajectory study of the dissociation and isomerization of C2H5.

    PubMed

    Wagner, Albert F; Rivera-Rivera, Luis A; Bachellerie, Damien; Perry, Jamin W; Thompson, Donald L

    2013-11-21

    Motivated by photodissociation experiments in which non-RRKM nanosecond lifetimes of the ethyl radical were reported, we have performed a classical trajectory study of the dissociation and isomerization of C2H5 over the energy range 100-150 kcal/mol. We used a customized version of the AIREBO semiempirical potential (Stuart, S. J.; et al. J. Chem. Phys. 2000, 112, 6472-6486) to more accurately describe the gas-phase decomposition of C2H5. This study constitutes one of the first gas-phase applications of this potential form. At each energy, 10,000 trajectories were run and all underwent dissociation in less than 100 ps. The calculated dissociation rate constants are consistent with RRKM models; no evidence was found for nanosecond lifetimes. An analytic kinetics model of isomerization/dissociation competition was developed that incorporated incomplete mode mixing through a postulated divided phase space. The fits of the model to the trajectory data are good and represent the trajectory results in detail through repeated isomerizations at all energies. The model correctly displays single exponential decay at lower energies, but at higher energies, multiexponential decay due to incomplete mode mixing becomes more apparent. At both ends of the energy range, we carried out similar trajectory studies on CD2CH3 to examine isotopic scrambling. The results largely support the assumption that a H or a D atom is equally likely to dissociate from the mixed-isotope methyl end of the molecule. The calculated fraction of products that have the D atom dissociation is ∼20%, twice the experimental value available at one energy within our range. The calculated degree of isotopic scrambling is non-monotonic with respect to energy due to a non-monotonic ratio of the isomerization to dissociation rate constants.

  4. The First Detailed 2H and 18O Isoscapes of Freshwater in Scotland

    NASA Astrophysics Data System (ADS)

    Meier-Augenstein, W.; Hoogewerff, J.; Kemp, H. F.; Frew, D.

    2012-04-01

    Scotland's freshwater lochs and reservoirs provide a vital resource for sustaining biodiversity, agriculture, food production as well as for human consumption. Regular monitoring of freshwater quality by the Scottish Environmental Protection Agency (SEPA) fulfils the legislative requirements but new scientific methods involving stable isotope analysis present an opportunity for delivering on current and nascent government policies [1] and gaining a greater understanding of Scottish waters and their importance in the context of climate change, environmental sustainability and the aforementioned functions. In brief, 2H and 18O isoscapes of Scottish freshwater could be used to support fundamental and applied research in: • Climate change - These first ever isoscapes will provide a baseline against which future environmental impact can be assessed due to changes in the characteristic isotope composition of freshwater lochs and reservoirs. • Scottish branding - Location specific stable isotope signatures of Scottish freshwater have the potential to be used as a tool for provenancing and thus protecting premium Scottish produce such as Scottish beef, Scottish berries and Scottish Whisky. During 2011, freshwater samples were collected with the support of SEPA from more than 80 freshwater lochs and reservoirs across Scotland. Here we present the result of the 2H and 18O stable isotope analyses of these water samples together with the first isoscapes generated based on these data. [1] Adaptation Framework - Adapting Our Ways: Managing Scotland's Climate Risk (2009): Scotland's Biodiversity: It's in Your Hands - A strategy for the conservation and enhancement of biodiversity in Scotland (2005); Recipe For Success - Scotland's National Food and Drink Policy (2009); Scottish Planning Policy Environmental Report (2009); Scottish Planning Policy (SPP) 15 Planning for Rural Development (2005); National Planning Policy Guideline (NPPG) 14: Natural Heritage (1999).

  5. Context-dependent DNA recognition code for C2H2 zinc-finger transcription factors

    PubMed Central

    Liu, Jiajian; Stormo, Gary D.

    2008-01-01

    Motivation: Modeling and identifying the DNA-protein recognition code is one of the most challenging problems in computational biology. Several quantitative methods have been developed to model DNA-protein interactions with specific focus on the C2H2 zinc-finger proteins, the largest transcription factor family in eukaryotic genomes. In many cases, they performed well. But the overall the predictive accuracy of these methods is still limited. One of the major reasons is all these methods used weight matrix models to represent DNA-protein interactions, assuming all base-amino acid contacts contribute independently to the total free energy of binding. Results: We present a context-dependent model for DNA–zinc-finger protein interactions that allows us to identify inter-positional dependencies in the DNA recognition code for C2H2 zinc-finger proteins. The degree of non-independence was detected by comparing the linear perceptron model with the non-linear neural net (NN) model for their predictions of DNA–zinc-finger protein interactions. This dependency is supported by the complex base-amino acid contacts observed in DNA–zinc-finger interactions from structural analyses. Using extensive published qualitative and quantitative experimental data, we demonstrated that the context-dependent model developed in this study can significantly improves predictions of DNA binding profiles and free energies of binding for both individual zinc fingers and proteins with multiple zinc fingers when comparing to previous positional-independent models. This approach can be extended to other protein families with complex base-amino acid residue interactions that would help to further understand the transcriptional regulation in eukaryotic genomes. Availability:The software implemented as c programs and are available by request. http://ural.wustl.edu/softwares.html Contact: stormo@ural.wustl.edu PMID:18586699

  6. Adaptor protein-3: A key player in RBL-2H3 mast cell mediator release

    PubMed Central

    da Silva, Elaine Zayas Marcelino; Freitas-Filho, Edismauro Garcia; de Souza-Júnior, Devandir Antonio; daSilva, Luis Lamberti Pinto; Jamur, Maria Celia

    2017-01-01

    Mast cell (MC) secretory granules are Lysosome-Related Organelles (LROs) whose biogenesis is associated with the post-Golgi secretory and endocytic pathways in which the sorting of proteins destined for a specific organelle relies on the recognition of sorting signals by adaptor proteins that direct their incorporation into transport vesicles. The adaptor protein 3 (AP-3) complex mediates protein trafficking between the trans-Golgi network (TGN) and late endosomes, lysosomes, and LROs. AP-3 has a recognized role in LROs biogenesis and regulated secretion in several cell types, including many immune cells such as neutrophils, natural killer cells, and cytotoxic T lymphocytes. However, the relevance of AP-3 for these processes in MCs has not been previously investigated. AP-3 was found to be expressed and distributed in a punctate fashion in rat peritoneal mast cells ex vivo. The rat MC line RBL-2H3 was used as a model system to investigate the role of AP-3 in mast cell secretory granule biogenesis and mediator release. By immunofluorescence and immunoelectron microscopy, AP-3 was localized both to the TGN and early endosomes indicating that AP-3 dependent sorting of proteins to MC secretory granules originates in these organelles. ShRNA mediated depletion of the AP-3 δ subunit was shown to destabilize the AP-3 complex in RBL-2H3 MCs. AP-3 knockdown significantly affected MC regulated secretion of β-hexosaminidase without affecting total cellular enzyme levels. Morphometric evaluation of MC secretory granules by electron microscopy revealed that the area of MC secretory granules in AP-3 knockdown MCs was significantly increased, indicating that AP-3 is involved in MC secretory granule biogenesis. Furthermore, AP-3 knockdown had a selective impact on the secretion of newly formed and newly synthesized mediators. These results show for the first time that AP-3 plays a critical role in secretory granule biogenesis and mediator release in MCs. PMID:28273137

  7. Seasonal patterns in δ(2) H values of multiple tissues from Andean birds provide insights into elevational migration.

    PubMed

    Villegas, Mariana; Newsome, Seth D; Blake, John G

    2016-12-01

    Elevational migration is a widespread phenomenon in tropical avifauna but it is difficult to identify using traditional approaches. Hydrogen isotope (δ(2) H) values of precipitation decrease with elevation so δ(2) H analysis of multiple bird tissues with different isotopic incorporation rates may be a reliable method for characterizing seasonal elevational migration. Here we compare δ(2) H values in metabolically inert (feathers and claws) and metabolically active (whole blood) tissues to examine whether an upslope migration occurs prior to the breeding season in the Yungas Manakin (Chiroxiphia boliviana). We compare results from C. boliviana with data from a known elevational migrant, the Streak-necked Flycatcher (Mionectes striaticollis). Opposite to our expectations, tissue δ(2) H values increased over time, largely reflecting seasonal patterns in precipitation δ(2) H rather than elevational effects; linear mixed-effects models with strongest support included ordinal date, tissue type, and elevation. This seasonal increase in precipitation δ(2) H is a general phenomenon in both tropical and temperate mountain ranges. We use these data to propose a hypothetical framework that predicts different patterns in tissue δ(2) H values collected in different seasons from residents and elevational migrants. This framework can serve as a reference for future studies that assess elevational migration in birds and other animals.

  8. Satellite observations of ethylene (C2H4) from the Aura Tropospheric Emission Spectrometer: A scoping study

    NASA Astrophysics Data System (ADS)

    Dolan, Wayana; Payne, Vivienne H.; Kualwik, Susan S.; Bowman, Kevin W.

    2016-09-01

    We present a study focusing on detection and initial quantitative estimates of ethylene (C2H4) in observations from the Tropospheric Emission Spectrometer (TES), a Fourier transform spectrometer aboard the Aura satellite that measures thermal infrared radiances with high spectral resolution (0.1 cm-1). We analyze observations taken in support of the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission and demonstrate the feasibility of future development of C2H4 into a TES standard product. In the Northern Hemisphere, C2H4 is commonly associated with boreal fire plumes, motor vehicle exhaust and petrochemical emissions. It has a short lifetime (∼14-32 h) in the troposphere due to its reaction with OH and O3. Chemical destruction of C2H4 in the atmosphere leads to the production of ozone and other species such as carbon monoxide (CO) and formaldehyde. Results indicate a correlation between C2H4 and CO in boreal fire plumes. Quantitative C2H4 estimates are sensitive to assumptions about the plume height and width. We find that C2H4 greater than 2-3 ppbv can be detected in a single TES observation (for a fire plume at 3 km altitude and 1.5 km width). Spatial averaging will be needed for surface-peaking profiles where TES sensitivity is lower.

  9. New Evidences for the observation of the Higgs boson in the Superconductor 2H-NbSe2

    NASA Astrophysics Data System (ADS)

    Measson, Marie-Aude; Clair, Bertrand; Gallais, Yann; Cazayous, Maximilien; Rodière, Pierre; Cario, Laurent; Sacuto, Alain; Squap Team; Systèmes À Fortes Corrélations Électroniques Collaboration; Imn Collaboration

    2013-03-01

    We provide here new evidences for the observation of the amplitude mode of the superconducting order parameter, the so-called Higgs Boson, in 2H-NbSe2. We report quantitatively comparative electronic Raman measurements on the dichalcogenides 2H-NbSe2, whose superconductivity (SC) coexists with a charge density wave order (CDW), and 2H-NbS2, which exhibits only the SC. A SC pair breaking peak develops below Tc in 2H-NbS2 whose intensity is much smaller than the peak associated with the SC in 2H-NbSe2. Thus, the peak observed in 2H-NbSe2 below Tc certainly doesn't get its intensity only from the superconducting condensate. Moreover, we measure precisely a spectral weight transfer from the amplitude mode of the CDW to the SC peak in 2H-NbSe2, versus decreasing temperature. The total spectral weight for both peaks is constant within +/- 3 % . This result is consistent with the theory of the observation of a Higgs mode thanks to its coupling with an amplitudon developed by Littlewood and Varma. This result complements what was firstly observed by Sooryakumar et Klein under magnetic field.

  10. Stability evaluation of a rocket engine for gaseous oxygen difluoride (OF2) and gaseous diborane (B2H6) propellants

    NASA Technical Reports Server (NTRS)

    Clayton, R. M.

    1972-01-01

    Results of an experimental evaluation of the dynamic stability of a candidate combustor for the space storable propellants gaseous OF2/B2H6 show that the combustor is unstable without supplementary damping. A computer analysis indicated that the uninhibited engine could be unstable. The experiments, conducted with O2/C2H4 substitute propellants and with 70-30 FLOX/B2H6 (OF2 simulated with FLOX), show that the uninhibited combustor has a low stability margin to starting transient perturbations, but that is relatively insensitive to bomb disturbances. Damping cavities are shown to provide stability.

  11. Characterization of human plasma proteome dynamics using deuterium oxide

    PubMed Central

    Wang, Ding; Liem, David A; Lau, Edward; Ng, Dominic CM; Bleakley, Brian J; Cadeiras, Martin; Deng, Mario C; Lam, Maggie PY; Ping, Peipei

    2016-01-01

    Purpose High-throughput quantification of human protein turnover via in vivo administration of deuterium oxide (2H2O) is a powerful new approach to examine potential disease mechanisms. Its immediate clinical translation is contingent upon characterizations of the safety and hemodynamic effects of in vivo administration of 2H2O to human subjects. Experimental design We recruited 10 healthy human subjects with a broad demographic variety to evaluate the safety, feasibility, efficacy, and reproducibility of 2H2O intake for studying protein dynamics. We designed a protocol where each subject orally consumed weight-adjusted doses of 70% 2H2O daily for 14 days to enrich body water and proteins with deuterium. Plasma proteome dynamics was measured using a high-resolution MS method we recently developed. Results This protocol was successfully applied in 10 human subjects to characterize the endogenous turnover rates of 542 human plasma proteins, the largest such human dataset to-date. Throughout the study, we did not detect physiological effects or signs of discomfort from 2H2O consumption. Conclusions and clinical relevance Our investigation supports the utility of a 2H2O intake protocol that is safe, accessible, and effective for clinical investigations of large-scale human protein turnover dynamics. This workflow shows promising clinical translational value for examining plasma protein dynamics in human diseases. PMID:24946186

  12. Theoretical and Laboratory Studies on the Interaction of Cosmic-Ray Particles with Interstellar Ices. III. Suprathermal Chemistry-Induced Formation of Hydrocarbon Molecules in Solid Methane (CH4), Ethylene (C2H4), and Acetylene (C2H2)

    NASA Astrophysics Data System (ADS)

    Kaiser, R. I.; Roessler, K.

    1998-08-01

    Methane, ethylene, and acetylene ices are irradiated in a ultra high vacuum vessel at 10 K with 9.0 MeV α-particles and 7.3 MeV protons to elucidate mechanisms to form hydrocarbon molecules upon interaction of Galactic cosmic-ray particles with extraterrestrial, organic ices. Theoretical calculations focus on computer simulations of ion-induced collision cascades in irradiated targets. Our experimental and computational investigations reveal that each MeV particle transfers its kinetic energy predominantly through inelastic encounters to the target leading to electronic excitation and ionization of the target molecules. Here electronically excited CH4 species can fragment to mobile H atoms and nonmobile CH3 radicals. The potential energy stored in Coulomb interaction of the CH+4 ions release energetic H and C atoms not in thermal equilibrium with the 10 K target (suprathermal species). Moderated to 1-10 eV kinetic energy, these carbon atoms and those triggered by the elastic energy transfer of the MeV projectile to the target are found to abstract up to two H atoms to yield suprathermal CH and CH2 species. C and CH, as well as CH2, can insert into a CH bond of a CH4 molecule to form methylcarbene (HCCH3), the ethyl radical (C2H5), and ethane (C2H6). HCCH3 either loses H2/2H to form acetylene, C2H2, rearranges to ethylene, C2H4, or adds two H atoms to form ethane, C2H6. C2H5 can abstract or lose an H atom, giving ethane and ethylene, respectively. C2H2 and C2H4 are found to react with suprathermal H atoms to form C2H3 and C2H5, respectively. Overlapping cascades and an increasing MeV ion exposure transforms C2Hx (x = 2, ..., 6) to even more complex alkanes up to C14H30. These elementary reactions of suprathermal species to insert, abstract, and add in/to bonds supply a powerful pathway to form new molecules in icy grain mantles condensed on interstellar grains or in hydrocarbon rich bodies in our solar system even at temperatures as low as 10 K.

  13. A novel dilithiation approach to 3,4-dihydro-2H-1,3-benzothiazines, 3,4-Dihydro-2H-1,3-benzoxazines, and 2,3,4,5-tetrahydro-1,3-benzothiazepines.

    PubMed

    Katritzky, Alan R; Xu, Yong-Jiang; Jain, Ritu

    2002-11-15

    3,4-Dihydro-2H-1,3-benzothiazines 4, 3,4-dihydro-2H-1,3-benzoxazines 9, and 2,3,4,5-tetrahydro-1,3-benzothiazepines 6 were synthesized by directed ortho-lithiation of thiophenols and phenols and by side-chain lithiation of substituted thiophenols, respectively, in one-pot by reacting with N,N-bis[(benzotriazol-1-yl)methyl]amines 3 as 1,3-biselectrophile synthons.

  14. Full-dimensional, high-level ab initio potential energy surfaces for H2(H2O) and H2(H2O)2 with application to hydrogen clathrate hydrates.

    PubMed

    Homayoon, Zahra; Conte, Riccardo; Qu, Chen; Bowman, Joel M

    2015-08-28

    New, full-dimensional potential energy surfaces (PESs), obtained using precise least-squares fitting of high-level electronic energy databases, are reported for intrinsic H2(H2O) two-body and H2(H2O)2 three-body potentials. The database for H2(H2O) consists of approximately 44 000 energies at the coupled cluster singles and doubles plus perturbative triples (CCSD(T))-F12a/haQZ (aug-cc-pVQZ for O and cc-pVQZ for H) level of theory, while the database for the three-body interaction consists of more than 36 000 energies at the CCSD(T)-F12a/haTZ (aug-cc-pVTZ for O, cc-pVTZ for H) level of theory. Two precise potentials are based on the invariant-polynomial technique and are compared to computationally faster ones obtained via "purified" symmetrization. All fits use reduced permutational symmetry appropriate for these non-covalent interactions. These intrinsic potentials are employed together with existing ones for H2, H2O, and (H2O)2, to obtain full PESs for H2(H2O) and H2(H2O)2. Properties of these full PESs are presented, including a diffusion Monte Carlo calculation of the zero-point energy and wavefunction, and dissociation energy of the H2(H2O) dimer. These PESs together with an existing one for water clusters are used in a many-body representation of the PES of hydrogen clathrate hydrates, illustrated for H2@(H2O)20. An analysis of this hydrate is presented, including the electronic dissociation energy to remove H2 from the calculated equilibrium structure.

  15. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  16. New Ni(II)-sulfonamide complexes: synthesis, structural characterization and antibacterial properties. X-ray diffraction of [Ni(sulfisoxazole)2(H2O)4].2H2O and [Ni(sulfapyridine)2].

    PubMed

    Mondelli, Melina; Bruné, Verónica; Borthagaray, Graciela; Ellena, Javier; Nascimento, Otaciro R; Leite, Clarice Q; Batista, Alzir A; Torre, María H

    2008-02-01

    The synthesis, structural characterization, voltammetric experiments and antibacterial activity of [Ni(sulfisoxazole)(2)(H(2)O)(4)].2H(2)O and [Ni(sulfapyridine)(2)] were studied and compared with similar previously reported copper complexes. [Ni(sulfisoxazole)(2)(H(2)O)(4)].2H(2)O crystallized in a monoclinic system, space group C2/c where the nickel ion was in a slightly distorted octahedral environment, coordinated with two sulfisoxazole molecules through the heterocyclic nitrogen and four water molecules. [Ni(sulfapyridine)(2)] crystallized in a orthorhombic crystal system, space group Pnab. The nickel ion was in a distorted octahedral environment, coordinated by two aryl amine N from two sulfonamides acting as monodentate ligands and four N atoms (two sulfonamidic N and two heterocyclic N) from two different sulfonamide molecules acting as bidentate ligands. Differential pulse voltammograms were recorded showing irreversible peaks at 1040 and 1070 mV, respectively, attributed to Ni(II)/Ni(III) process. [Ni(sulfisoxazole)(2)(H(2)O)(4)].2H(2)O and [Ni(sulfapyridine)(2)] presented different antibacterial behavior against Staphylococcus aureus and Escherichia coli from the similar copper complexes and they were inactive against Mycobacterium tuberculosis.

  17. Unmatter Plasma

    NASA Astrophysics Data System (ADS)

    Smarandache, Florentin

    2015-11-01

    ``Unmatter Plasma'' is a novel form of plasma, exclusively made of matter and its antimatter counterpart. An experiment (2015) on matter-antimatter plasma [or unmatter plasma] was recently successful at the Astra Gemini laser facility at the Rutherford Appleton Laboratory, Oxford, United Kingdom. The experiment that was made has produced electron-positron plasma. The positron is the antimatter of the electron, having an opposite charge of the electron, but the other properties are the same. Unmatter is considered as a combination of matter and antimatter. For example electron-positron is a type of unmatter. We coined the word ``unmatter'' (2004) that means neither matter nor antimatter, but something in between. Besides matter and antimatter there may exist unmatter (as a new form of matter) in accordance with the neutrosophy theory that between an entity and its opposite there exist intermediate entities.

  18. PLASMA ENERGIZATION

    DOEpatents

    Furth, H.P.; Chambers, E.S.

    1962-03-01

    BS>A method is given for ion cyclotron resonance heatthg of a magnetically confined plasma by an applied radio-frequency field. In accordance with the invention, the radiofrequency energy is transferred to the plasma without the usual attendent self-shielding effect of plasma polarlzatlon, whereby the energy transfer is accomplished with superior efficiency. More explicitly, the invention includes means for applying a radio-frequency electric field radially to an end of a plasma column confined in a magnetic mirror field configuration. The radio-frequency field propagates hydromagnetic waves axially through the column with the waves diminishing in an intermediate region of the column at ion cyclotron resonance with the fleld frequency. In such region the wave energy is converted by viscous damping to rotational energy of the plasma ions. (AEC)

  19. PLASMA DEVICE

    DOEpatents

    Baker, W.R.

    1961-08-22

    A device is described for establishing and maintaining a high-energy, rotational plasma for use as a fast discharge capacitor. A disc-shaped, current- conducting plasma is formed in an axinl magnetic field and a crossed electric field, thereby creating rotational kinetic enengy in the plasma. Such energy stored in the rotation of the plasma disc is substantial and is convertible tc electrical energy by generator action in an output line electrically coupled to the plasma volume. Means are then provided for discharging the electrical energy into an external circuit coupled to the output line to produce a very large pulse having an extremely rapid rise time in the waveform thereof. (AE C)

  20. Measured Total Cross Sections of Slow Neutrons Scattered by Gaseous and Liquid {sup 2}H{sub 2}

    SciTech Connect

    Atchison, F.; Brandt, B. van den; Brys, T.; Daum, M.; Fierlinger, P.; Hautle, P.; Henneck, R.; Kirch, K.; Kohlbrecher, J.; Kuehne, G.; Konter, J.A.; Pichlmaier, A.; Wokaun, A.; Bodek, K.; Kasprzak, M.; Kuzniak, M.; Geltenbort, P.; Giersch, M.; Zmeskal, J.; Hino, M.

    2005-06-03

    The total scattering cross sections for slow neutrons with energies E in the range 300 neV to 3 meV for gaseous and liquid ortho-{sup 2}H{sub 2} have been measured. The cross sections for {sup 2}H{sub 2} gas are found to be in excellent agreement with both the Hamermesh and Schwinger and the Young and Koppel models. For liquid {sup 2}H{sub 2}, we confirm the existing experimental data in the cold neutron range and the discrepancy with the gas models. We find a clear 1/{radical}(E{sup '}) dependence at low energies for both states. A simple explanation for the liquid {sup 2}H{sub 2} cross section is offered.

  1. New Mo6 Te6 Sub-Nanometer-Diameter Nanowire Phase from 2H-MoTe2.

    PubMed

    Zhu, Hui; Wang, Qingxiao; Zhang, Chenxi; Addou, Rafik; Cho, Kyeongjae; Wallace, Robert M; Kim, Moon J

    2017-03-10

    A novel phase transition, from multilayered 2H-MoTe2 to a parallel bundle of sub-nanometer-diameter metallic Mo6 Te6 nanowires (NWs) driven by catalyzer-free thermal-activation (400-500 °C) under vacuum, is demonstrated. The NWs form along the 〈11-20〉 2H-MoTe2 crystallographic directions with lengths in the micrometer range. The metallic NWs can act as an efficient hole injection layer on top of 2H-MoTe2 due to favorable band-alignment. In particular, an atomically sharp MoTe2 /Mo6 Te6 interface and van der Waals gap with the 2H layers are preserved. The work highlights an alternative pathway for forming a new transition metal dichalcogenide phase and will enable future exploration of its intrinsic transportation properties.

  2. The Chromatin Remodelling Enzymes SNF2H and SNF2L Position Nucleosomes adjacent to CTCF and Other Transcription Factors

    PubMed Central

    Wiechens, Nicola; Gkikopoulos, Triantaffyllos; Schofield, Pieta; Rocha, Sonia; Owen-Hughes, Tom

    2016-01-01

    Within the genomes of metazoans, nucleosomes are highly organised adjacent to the binding sites for a subset of transcription factors. Here we have sought to investigate which chromatin remodelling enzymes are responsible for this. We find that the ATP-dependent chromatin remodelling enzyme SNF2H plays a major role organising arrays of nucleosomes adjacent to the binding sites for the architectural transcription factor CTCF sites and acts to promote CTCF binding. At many other factor binding sites SNF2H and the related enzyme SNF2L contribute to nucleosome organisation. The action of SNF2H at CTCF sites is functionally important as depletion of CTCF or SNF2H affects transcription of a common group of genes. This suggests that chromatin remodelling ATPase’s most closely related to the Drosophila ISWI protein contribute to the function of many human gene regulatory elements. PMID:27019336

  3. Methionine kinetics in adult men: effects of dietary betaine on L-(2H3-methyl-1-13C)methionine

    SciTech Connect

    Storch, K.J.; Wagner, D.A.; Young, V.R. )

    1991-08-01

    The effects of a daily 3-g supplement of betaine on kinetic aspects of L-(2H3-methyl-1-13C)methionine (MET) metabolism in healthy young adult men were explored. Four groups of four subjects each were given a control diet, based on an L-amino acid mixture supplying 29.5 and 21.9 mg.kg-1.d-1 of L-methionine and L-cystine for 4 d before the tracer study, conducted on day 5 during the fed state. Two groups received the control diet and two groups received the betaine supplement. Tracer was given intravenously (iv) or orally. The transmethylation rate of MET (TM), homocysteine remethylation (RM), and oxidation of methionine were estimated from plasma methionine labeling and 13C enrichment of expired air. RM tended to increase (P = 0.14) but the TM and methionine oxidation were significantly (P less than 0.05) higher after betaine supplementation when estimated with the oral tracer. No differences were detected with the intravenous tracer. Methionine concentration in plasma obtained from blood taken from subjects in the fed state was higher (P less than 0.01) with betaine supplementation. These results suggest that excess methyl-group intake may increase the dietary requirement for methionine.

  4. Hydrochemistry and 18O/16O and 2H/1H Ratios of Ugandan Waters

    NASA Astrophysics Data System (ADS)

    Gebremichael, M. G.; Jasechko, S.

    2013-12-01

    Today, 70% of the 35 million people living in Uganda have access to an improved water source, ranking Uganda 148 out of 179 nations reporting in 2010 (Millennium Development Goals Indicators). 80% of Ugandans rely on groundwater as their primary drinking water source, collecting at springs or from shallow wells. Similarly, 80% of Ugandans rely upon agriculture - usually rain fed - as their primary income source. Despite lack of access to protected water sources faced by 10 million Ugandans, and the importance of the blue economy to Uganda's continued development, a country-wide investigation of the chemistry and the stable oxygen and hydrogen isotope compositions of waters has yet to be completed. Here we present 250 analyses of 18O/16O, 2H/1H and dissolved ion concentrations of Ugandan lakes, rivers, groundwaters and springs collected during July, 2013. We use the new data to characterize regional scale groundwater recharge sources, advection pathways and interactions with surface waters. Large lakes - Albert, Edward and Victoria - show increases in 18O/16O and 2H/1H ratios consistent with open water evaporation, and are shown to be distinct from nearby groundwaters, suggesting minimal recharge from large lakes to the subsurface. Salinities of eastern Ugandan groundwaters are elevated relative to samples collected from the central and western regions, suggesting that longer groundwater residence times and enhanced water-rock interactions characterize these waters. Springs from western Uganda show a shift in 18O/16O to higher values as a result of hydrothermal water-rock exchanges. Dissolved ion and noble gas concentrations show potential for use in assessing geothermal energy resources, perhaps aiding the Ugandan Ministry for Energy, Minerals and Development to meet their goal of increasing renewable energy from 4% (current) to 61% of total use by 2017 (Nyakabwa-Atwoki, 2013). Millennium Development Goals Indicators. mdgs.un.org/unsd/mdg/data.aspx Nyakabwa

  5. The effects of maternal anxiety during pregnancy on IGF2/H19 methylation in cord blood

    PubMed Central

    Mansell, T; Novakovic, B; Meyer, B; Rzehak, P; Vuillermin, P; Ponsonby, A-L; Collier, F; Burgner, D; Saffery, R; Ryan, J; Vuillermin, Peter; Ponsonby, Anne-Louise; Carlin, John B; Allen, Katie J; Tang, Mimi L; Saffery, Richard; Ranganathan, Sarath; Burgner, David; Dwyer, Terry; Jachno, Kim; Sly, Peter

    2016-01-01

    Compelling evidence suggests that maternal mental health in pregnancy can influence fetal development. The imprinted genes, insulin-like growth factor 2 (IGF2) and H19, are involved in fetal growth and each is regulated by DNA methylation. This study aimed to determine the association between maternal mental well-being during pregnancy and differentially methylated regions (DMRs) of IGF2 (DMR0) and the IGF2/H19 imprinting control region (ICR) in newborn offspring. Maternal depression, anxiety and perceived stress were assessed at 28 weeks of pregnancy in the Barwon Infant Study (n=576). DNA methylation was measured in purified cord blood mononuclear cells using the Sequenom MassArray Platform. Maternal anxiety was associated with a decrease in average ICR methylation (Δ=−2.23% 95% CI=−3.68 to −0.77%), and across all six of the individual CpG units in anxious compared with non-anxious groups. Birth weight and sex modified the association between prenatal anxiety and infant methylation. When stratified into lower (⩽3530 g) and higher (>3530 g) birth weight groups using the median birth weight, there was a stronger association between anxiety and ICR methylation in the lower birth weight group (Δ=−3.89% 95% CI=−6.06 to −1.72%), with no association in the higher birth weight group. When stratified by infant sex, there was a stronger association in female infants (Δ=−3.70% 95% CI=−5.90 to −1.51%) and no association in males. All the linear regression models were adjusted for maternal age, smoking and folate intake. These findings show that maternal anxiety in pregnancy is associated with decreased IGF2/H19 ICR DNA methylation in progeny at birth, particularly in female, low birth weight neonates. ICR methylation may help link poor maternal mental health and adverse birth outcomes, but further investigation is needed. PMID:27023171

  6. Effect of endocannabinoids on IgE-mediated allergic response in RBL-2H3 cells.

    PubMed

    Yoo, Jae-Myung; Sok, Dai-Eun; Kim, Mee Ree

    2013-09-01

    Recently, some endocannabinoids were reported to show anti-inflammatory and anti-allergic activities. In this respect, various arachidonoyl endocannabinoids were screened for the inhibition of allergic response in IgE-activated RBL-2H3 cells. Among arachidonoyl endocannabinoids with a low cytotoxicity, only NA-5HT remarkably inhibited the release of β-hexosaminidase (IC(50), 13.58 μM), a marker of degranulation, and tumor necrosis factor-α (IC(50), 12.52 μM), a pro-inflammatory cytokine, in IgE-activated RBL-2H3 cells. Additionally, NA-5HT markedly suppressed the formation of prostaglandin D(2) (PGD(2)) with IC(50) value of 1.27 μM and leukotriene B(4) (LTB(4)) with IC(50) value of 1.20 μM, and slightly LTC4. When effect of NA-5HT on early stage of FcεRI cascade was investigated, it significantly inhibited phosphorylation of Syk, but not Lyn. Furthermore, NA-5HT suppressed phosphorylation of PLCγ1/2 and PKCδ, related to degranulation process, as well as phosphorylation of LAT, ERK1/2, p38, JNK, Gab2, PI3K and Akt, implicated in the expression of pro-inflammatory cytokines. Relative to its effect on the late stage, NA-5HT slightly reduced phosphorylation of 5-lipoxygenase (5-LO) and cyclooxygenase-2 (COX-2). Additionally, NA-5HT significantly reduced the level of p40(phox), and partially inhibited the expression of p47(phox) and p67(phox). From these results, it is suggested that NA-5HT expresses anti-allergic action by suppressing the activation of Syk, LAT, p38, JNK, PI3K and Akt, as well as the expression of ERK1/2 and NADPH oxidase subunits. Further, a strong inhibition of PGD(2) or LTB(4) biosynthesis by NA-5HT may be an additional mechanism for its anti-allergic action. Such anti-allergic actions of NA-5HT may contribute to further information about its biological functions.

  7. Equilibrium 2H/1H fractionation in organic molecules: III. Cyclic ketones and hydrocarbons

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Sessions, Alex L.; Nielsen, Robert J.; Goddard, William A.

    2013-04-01

    Quantitative interpretation of stable hydrogen isotope ratios (2H/1H) in organic compounds is greatly aided by knowledge of the relevant equilibrium fractionation factors (ɛeq). Previous efforts have combined experimental measurements and hybrid Density Functional Theory (DFT) calculations to accurately predict equilibrium fractionations in linear (acyclic) organic molecules (Wang et al., 2009a,b), but the calibration produced by that study is not applicable to cyclic compounds. Here we report experimental measurements of equilibrium 2H/1H fractionation in six cyclic ketones, and use those data to evaluate DFT calculations of fractionation in diverse monocyclic and polycyclic compounds commonly found in sedimentary organic matter and petroleum. At 25, 50, and 75 °C, the experimentally measured ɛeq values for secondary and tertiary Hα in isotopic equilibrium with water are in the ranges of -130‰ to -150‰ and +10‰ to -40‰ respectively. Measured data are similar to DFT calculations of ɛeq for axial Hα but not equatorial Hα. In tertiary Cα positions with methyl substituents, this can be understood as a result of the methyl group forcing Hα atoms into a dominantly axial position. For secondary Cα positions containing both axial and equatorial Hα atoms, we propose that axial Hα exchanges with water significantly faster than the equatorial Hα does, due to the hyperconjugation-stabilized transition state. Interconversion of axial and equatorial positions via ring flipping is much faster than isotopic exchange at either position, and as a result the steady-state isotopic composition of both H's is strongly weighted toward that of axial Hα. Based on comparison with measured ɛeq values, a total uncertainty of 10-30‰ remains for theoretical ɛeq values. Using DFT, we systematically estimated the ɛeq values for individual H positions in various cyclic structures. By summing over all individual H positions, the molecular equilibrium fractionation was

  8. Pseudo-Jahn-Teller origin of the low barrier hydrogen bond in N2H7+

    NASA Astrophysics Data System (ADS)

    García-Fernández, P.; García-Canales, L.; García-Lastra, J. M.; Junquera, J.; Moreno, M.; Aramburu, J. A.

    2008-09-01

    The microscopic origin and quantum effects of the low barrier hydrogen bond (LBHB) in the proton-bound ammonia dimer cation N2H7+ were studied by means of ab initio and density-functional theory (DFT) methods. These results were analyzed in the framework of vibronic theory and compared to those obtained for the Zundel cation H5O2+. All geometry optimizations carried out using wavefunction-based methods [Hartree-Fock, second and fourth order Möller-Plesset theory (MP2 and MP4), and quadratic configuration interaction with singles and doubles excitations (QCISD)] lead to an asymmetrical H3N-H+⋯NH3 conformation (C3v symmetry) with a small energy barrier (1.26kcal/mol in MP4 and QCISD calculations) between both equivalent minima. The value of this barrier is underestimated in DFT calculations particularly at the local density approximation level where geometry optimization leads to a symmetric H3N⋯H+⋯NH3 structure (D3d point group). The instability of the symmetric D3d structure is shown to originate from the pseudo-Jahn-Teller mixing of the electronic A1g1 ground state with five low lying excited states of A2u symmetry through the asymmetric α2u vibrational mode. A molecular orbital study of the pseudo-Jahn-Teller coupling has allowed us to discuss the origin of the proton displacement and the LBHB formation in terms of the polarization of the NH3 molecules and the transfer of electronic charge between the proton and the NH3 units (rebonding). The parallel study of the H5O2+ cation, which presents a symmetric single-well structure, allows us to analyze why these similar molecules behave differently with respect to proton transfer. From the vibronic analysis, a unified view of the Rudle-Pimentel three-center four-electron and charge transfer models of LBHBs is given. Finally, the large difference in the N-N distance in the D3d and C3v configurations of N2H7+ indicates a large anharmonic coupling between α2u-α1g modes along the proton

  9. Reactivity of organic complexes at mineral-CO2-H2O interfaces

    NASA Astrophysics Data System (ADS)

    Miller, Q. R.; Schaef, T.; Kaszuba, J. P.; Qiu, L.; Bowden, M. E.; McGrail, B. P.

    2015-12-01

    Understanding the interactions between minerals and organics in H2O-CO2 fluids is important, as they are the two most abundant volatiles in the crust. CO2-rich fluids in natural and anthropogenic environments, such as metamorphic aureoles and carbon storage reservoirs, respectively, produce a complex geochemical setting in which CO2-rich fluids containing dissolved water and organic compounds interact with rocks and minerals. We have undertaken experimental and theoretical studies to evaluate how organics impact carbonate mineralization and to determine the partitioning behavior of organic complexes between CO2, H2O, and mineral interfaces. The first groups of experiments have clarified how the type and concentration of simple organic ligands impact the degree and type of carbonation in interfacial water films. In these experiments, salts of simple organic ligands were equilibrated with wet supercritical CO2, which was reacted with the model mineral forsterite (Mg2SiO4). The forsterite dissolution and coupled carbonate precipitation reactions were followed with time-resolved pressurized X-ray diffraction (XRD) at 50 °C and 90 bar. The extent of carbonation and the relative abundance of anhydrous magnesite (MgCO3) precipitated relative to hydrated nesquehonite (MgCO3·3H2O) was impacted by the type of organic ligand. Magnesite enhancement was observed with the trend of citrate>oxalate≈malonate>acetate>organic-free control. This indicates that the organic ligands complexed Mg2+ in the interfacial water film environment and helped alleviate kinetic barriers to magnesite formation. Additional XRD experiments with varying concentrations of citrate verified the dependence of magnesite enhancement and the degree of overall carbonation on the amount of organic present in the water film. Lastly, our ongoing work concerning the partitioning of organic and metal-organic complexes between CO2, H2O, and interfacial water films will be presented. This experimental work, which

  10. Full CI calibration of model hamiltonian, large basis set studies of the H 2-H 2 van der Waals interaction.

    NASA Astrophysics Data System (ADS)

    Burton, P. G.

    1983-08-01

    The non-variational CEPA2 PNO ansatz, recently employed in detailed studies of the H 2-H 2 van der Waals interaction by Burton and Senff and the full CI extrapolation studies on the same system by Burton are discussed in relation to the explicit full CI study of Harrison and Handy for the planar T configuration of H 2-H 2 ( R = 6.5 ao) in a basis of 80 functions.

  11. Pressure dependence of the absolute rate constant for the reaction Cl + C2H2 from 210-361 K

    NASA Technical Reports Server (NTRS)

    Brunning, J.; Stief, L. J.

    1985-01-01

    In recent years, considerable attention has been given to the role of chlorine compounds in the catalytic destruction of stratospheric ozone. However, while some reactions have been studied extensively, the kinetic data for the reaction of Cl with C2H2 is sparse with only three known determinations of the rate constant k3. The reactions involved are Cl + C2H2 yields reversibly ClC2H2(asterisk) (3a) and ClC2H2(asterisk) + M yields ClC2H2 + M (3b). In the present study, flash photolysis coupled with chlorine atomic resonance fluorescence have been employed to determine the pressure and temperature dependence of k3 with the third body M = Ar. Room temperature values are also reported for M = N2. The pressure dependence observed in the experiments confirms the expectation that the reaction involves addition of Cl to the unsaturated C2H2 molecule followed by collisional stabilization of the resulting adduct radical.

  12. Linking Hydrogen (δ2H) Isotopes in Feathers and Precipitation: Sources of Variance and Consequences for Assignment to Isoscapes

    PubMed Central

    Hobson, Keith A.; Van Wilgenburg, Steven L.; Wassenaar, Leonard I.; Larson, Keith

    2012-01-01

    Background Tracking small migrant organisms worldwide has been hampered by technological and recovery limitations and sampling bias inherent in exogenous markers. Naturally occurring stable isotopes of H (δ2H) in feathers provide an alternative intrinsic marker of animal origin due to the predictable spatial linkage to underlying hydrologically driven flow of H isotopes into foodwebs. This approach can assess the likelihood that a migrant animal originated from a given location(s) within a continent but requires a robust algorithm linking H isotopes in tissues of interest to an appropriate hydrological isotopic spatio-temporal pattern, such as weighted-annual rainfall. However, a number of factors contribute to or alter expected isotopic patterns in animals. We present results of an extensive investigation into taxonomic and environmental factors influencing feather δ2H patterns across North America. Principal Findings Stable isotope data were measured from 544 feathers from 40 species and 140 known locations. For δ2H, the most parsimonious model explaining 83% of the isotopic variance was found with amount-weighted growing-season precipitation δ2H, foraging substrate and migratory strategy. Conclusions/Significance This extensive H isotopic analysis of known-origin feathers of songbirds in North America and elsewhere reconfirmed the strong coupling between tissue δ2H and global hydrologic δ2H patterns, and accounting for variance associated with foraging substrate and migratory strategy, can be used in conservation and research for the purpose of assigning birds and other species to their approximate origin. PMID:22509393

  13. Ligand-induced substrate steering and reshaping of [Ag2(H)](+) scaffold for selective CO2 extrusion from formic acid.

    PubMed

    Zavras, Athanasios; Khairallah, George N; Krstić, Marjan; Girod, Marion; Daly, Steven; Antoine, Rodolphe; Maitre, Philippe; Mulder, Roger J; Alexander, Stefanie-Ann; Bonačić-Koutecký, Vlasta; Dugourd, Philippe; O'Hair, Richard A J

    2016-06-06

    Metalloenzymes preorganize the reaction environment to steer substrate(s) along the required reaction coordinate. Here, we show that phosphine ligands selectively facilitate protonation of binuclear silver hydride cations, [LAg2(H)](+) by optimizing the geometry of the active site. This is a key step in the selective, catalysed extrusion of carbon dioxide from formic acid, HO2CH, with important applications (for example, hydrogen storage). Gas-phase ion-molecule reactions, collision-induced dissociation (CID), infrared and ultraviolet action spectroscopy and computational chemistry link structure to reactivity and mechanism. [Ag2(H)](+) and [Ph3PAg2(H)](+) react with formic acid yielding Lewis adducts, while [(Ph3P)2Ag2(H)](+) is unreactive. Using bis(diphenylphosphino)methane (dppm) reshapes the geometry of the binuclear Ag2(H)(+) scaffold, triggering reactivity towards formic acid, to produce [dppmAg2(O2CH)](+) and H2. Decarboxylation of [dppmAg2(O2CH)](+) via CID regenerates [dppmAg2(H)](+). These gas-phase insights inspired variable temperature NMR studies that show CO2 and H2 production at 70 °C from solutions containing dppm, AgBF4, NaO2CH and HO2CH.

  14. Ligand-induced substrate steering and reshaping of [Ag2(H)]+ scaffold for selective CO2 extrusion from formic acid

    PubMed Central

    Zavras, Athanasios; Khairallah, George N.; Krstić, Marjan; Girod, Marion; Daly, Steven; Antoine, Rodolphe; Maitre, Philippe; Mulder, Roger J.; Alexander, Stefanie-Ann; Bonačić-Koutecký, Vlasta; Dugourd, Philippe; O'Hair, Richard A. J.

    2016-01-01

    Metalloenzymes preorganize the reaction environment to steer substrate(s) along the required reaction coordinate. Here, we show that phosphine ligands selectively facilitate protonation of binuclear silver hydride cations, [LAg2(H)]+ by optimizing the geometry of the active site. This is a key step in the selective, catalysed extrusion of carbon dioxide from formic acid, HO2CH, with important applications (for example, hydrogen storage). Gas-phase ion-molecule reactions, collision-induced dissociation (CID), infrared and ultraviolet action spectroscopy and computational chemistry link structure to reactivity and mechanism. [Ag2(H)]+ and [Ph3PAg2(H)]+ react with formic acid yielding Lewis adducts, while [(Ph3P)2Ag2(H)]+ is unreactive. Using bis(diphenylphosphino)methane (dppm) reshapes the geometry of the binuclear Ag2(H)+ scaffold, triggering reactivity towards formic acid, to produce [dppmAg2(O2CH)]+ and H2. Decarboxylation of [dppmAg2(O2CH)]+ via CID regenerates [dppmAg2(H)]+. These gas-phase insights inspired variable temperature NMR studies that show CO2 and H2 production at 70 °C from solutions containing dppm, AgBF4, NaO2CH and HO2CH. PMID:27265868

  15. Plasma universe

    NASA Technical Reports Server (NTRS)

    Alfven, H.

    1986-01-01

    Traditionally the views on the cosmic environent have been based on observations in the visual octave of the electromagnetic spectrum, during the last half-century supplemented by infrared and radio observations. Space research has opened the full spectrum. Of special importance are the X-ray-gamma-ray regions, in which a number of unexpected phenomena have been discovered. Radiations in these regions are likely to originate mainly from magnetised cosmic plasmas. Such a medium may also emit synchrotron radiation which is observable in the radio region. If a model of the universe is based on the plasma phenomena mentioned it is found that the plasma universe is drastically different from the traditional visual universe. Information about the plasma universe can also be obtained by extrapolation of laboratory experiments and magnetospheric in situ measurements of plasmas. This approach is possible because it is likely that the basic properties of plasmas are the same everywhere. In order to test the usefulness of the plasma universe model it is applied to cosmogony. Such an approach seems to be rather successful. For example, the complicated structure of the Saturnian C ring can be accounted for. It is possible to reconstruct certain phenomena 4 to 5 billions of years ago with an accuracy of better than 1%.

  16. Smoky Plasma

    NASA Astrophysics Data System (ADS)

    Robertson, Scott; Sternovsky, Zoltan

    2006-10-01

    The mesosphere contains nanometer-sized smoke particles that have formed in the vapor trails of meteors and that are thought to be the condensation nuclei for noctilucent clouds. Laboratory dusty plasmas often have the dust particles in a layer at the lower sheath boundary. We examine the possibility of creating in a double-plasma device a smoky plasma in which the particles would be sufficiently small to fill the plasma nearly uniformly while being sufficiently large to exhibit multiple charge states that would distinguish the smoky plasma from one containing heavy negative ions. For example, nanometer sized atomic clusters of Ag (4 nm radius, 10,000 atoms) can be generated in an oven with an inert gas that carries the particles into the plasma chamber. These particles will become charged negatively with about 8 electrons and will then be electrostatically contained by the presheath electric field The confining electric force will also be greater than the ion drag force that could otherwise create a void in the smoke particle density distribution. This plasma would make possible, for example, experiments on the coupling of electrostatic waves to fluid turbulence by the neutral drag force. An acoustic wave propagating in smoky plasma will exert different drag forces on electrons, ions, and smoke particles thus creating a charge-separation electric field that can be measured by potential probes. This coupling may be the origin of electrostatic fluctuations seen by rocket-borne electric field probes in the mesosphere. Supported by the NSF/DOE Plasma Science Initiative.

  17. High-solids biphasic CO2-H2O pretreatment of lignocellulosic biomass.

    PubMed

    Luterbacher, Jeremy S; Tester, Jefferson W; Walker, Larry P

    2010-10-15

    A high pressure (200 bar) CO(2)-H(2)O process was developed for pretreating lignocellulosic biomass at high-solid contents, while minimizing chemical inputs. Hardwood was pretreated at 20 and 40 (wt.%) solids. Switchgrass, corn stover, big bluestem, and mixed perennial grasses (a co-culture of big bluestem and switchgrass) were pretreated at 40 (wt.%) solids. Operating temperatures ranged from 150 to 250 degrees C, and residence times from 20 s to 60 min. At these conditions a biphasic mixture of an H(2)O-rich liquid (hydrothermal) phase and a CO(2)-rich supercritical phase coexist. Following pretreatment, samples were then enzymatically hydrolyzed. Total yields, defined as the fraction of the theoretical maximum, were determined for glucose, hemicellulose sugars, and two degradation products: furfural and 5-hydroxymethylfurfural. Response surfaces of yield as a function of temperature and residence time were compared for different moisture contents and biomass species. Pretreatment at 170 degrees C for 60 min gave glucose yields of 77%, 73%, and 68% for 20 and 40 (wt.%) solids mixed hardwood and mixed perennial grasses, respectively. Pretreatment at 160 degrees C for 60 min gave glucan to glucose yields of 81% for switchgrass and 85% for corn stover.

  18. Synthesis, structural and spectroscopic studies of 2-oxoacenaphthylen-1(2H)-ylidene nicotinohydrazide

    NASA Astrophysics Data System (ADS)

    Henriques, M. S. C.; Del Amparo, R.; Pérez-Álvarez, D.; Nogueira, B. A.; Rodríguez-Argüelles, M. C.; Paixão, J. A.

    2017-02-01

    The synthesis of a new hydrazone, 2-oxoacenaphthylen-1(2H)-ylidene nicotinohydrazide, and its structural and spectroscopic characterization is reported. The obtained powder was recrystallized from DMSO and ethanol that afforded small crystals used for single-crystal X-ray diffraction studies. The compound was found to crystallize in two polymorphs, depending on the crystallization conditions. One of the polymorphs (form I) crystallizes in the centrosymmetric P21/c monoclinic space group, the other (form II) crystallizes in the non-centrosymmetric, but achiral, orthorhombic space group P212121. Conformation of the molecules is similar in both polymorphs, but the network of weak intermolecular interactions determining the crystal packing is different. In form II an additional C-H⋯O bond connects molecules related by the screw-axis running parallel to the a-axis. Crystals of both polymorphs were also screened by FT-IR and Raman microscopy; a detailed analysis of the spectra and comparison with those of the isolated molecule calculated by ab-initio HF/MP2 and DFT/B3LYP methods using a correlation consistent cc-pVDZ basis set is presented. In addition, UV-vis and NMR studies were performed in solution.

  19. Spatial structures of CO2, H2O, temperature and vertical wind velocity observed by aircraft

    NASA Astrophysics Data System (ADS)

    Selbach, Christoph; Schween, Jan; Crewell, Susanne; Geiss, Heiner; Neininger, Bruno

    2010-05-01

    During the FLUXPAT campaigns in 2008 and 2009 the MetAir Dimona research aricraft performed several fligths above a patchy, agricultural dominated landscape near Juelich/Germany. The measurements are aimed to capture the variability of water vapor and CO2 and derive turbulent fluxes in the atmospheric boundary layer close to the ground. Flights took place at two main levels around 150 m and 250 m above ground. Agriculture in this region is dominated by two different crops: sugar beet and wheat. Flights were scheduled in April and August as at these times of the year strong contrasts can be found between different fields. In April sugar beet is usually just seeded whereas wheat already forms a closed canopy. In August wheat unlike sugar beat is already harvested. We analyse the correlation lengths (L*) of CO2, H2O, temperature and vertical wind velocity on flight legs. L* is the median of the power spectrum i.e. 50 percent of the variance is in structures larger than L*. For the different quantities L* shows different behaviours during the day and between different flight levels. The structure lengthscales of CO2 have a large dependency on daytime and strongly decrease during noon and afternoon. We will present some approaches to explain this behaviour.

  20. Hexagonal 2H-MoSe2 broad spectrum active photocatalyst for Cr(VI) reduction

    PubMed Central

    Chu, Haipeng; Liu, Xinjuan; Liu, Baibai; Zhu, Guang; Lei, Wenyan; Du, Huigang; Liu, Junying; Li, Jianwei; Li, Can; Sun, Changqing

    2016-01-01

    To make full use of the solar energy, exploring broad spectrum active photocatalysts has become one of the core issues for photocatalysis. Here we report a novel hexagonal 2H-MoSe2 photocatalyst with ultraviolet (UV)-visible-near infrared (NIR) light response for the first time. The results indicate that the MoSe2 displays excellent photo-absorption and photocatalytic activity in the reduction of Cr(VI) under UV and visible even NIR light irradiation. MoSe2 synthesized at pH value of 2 achieves the highest Cr(VI) reduction rates of 99%, 91% and 100% under UV, visible and NIR light irradiation, respectively, which should be attributed to its comparatively higher light absorption, efficient charge separation and transfer as well as relatively large number of surface active sites. The excellent broad spectrum active photocatalytic activity makes the MoSe2 to be a promising photocatalyst for the effective utilization of solar energy. PMID:27734974

  1. Removal of Boron in Silicon by H2-H2O Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Tang, Kai; Andersson, Stefan; Nordstrand, Erlend; Tangstad, Merete

    2012-08-01

    The removal of boron in pure silicon by gas mixtures has been examined in the laboratory. Water-vapor-saturated hydrogen was used to remove boron doped in electronic-grade silicon in a vacuum frequency furnace. Boron concentrations in silicon were reduced from 52 ppm initially to 0.7 ppm and 3.4 ppm at 1450°C and 1500°C, respectively, after blowing a H2-3.2%H2O gas mixture for 180 min. The experimental results indicate that the boron removal as a function of gas-blowing time follows the law of exponential decay. After 99% of the boron is removed, approximately 90% of the silicon can be recovered. In order to better understand the gaseous refining mechanism, the quantum chemical coupled cluster with single and double excitations and a perturbative treatment of triple excitations method was used to accurately predict the enthalpy and entropy of formation of the HBO molecule. A simple refining model was then used to describe the boron refining process. This model can be used to optimize the refining efficiency.

  2. Supramolecular order and structural dynamics: A STM study of 2H-tetraphenylporphycene on Cu(111)

    SciTech Connect

    Stark, Michael; Träg, Johannes; Ditze, Stefanie; Steinrück, Hans-Peter; Marbach, Hubertus; Brenner, Wolfgang; Jux, Norbert

    2015-03-14

    The adsorption of 2H-tetraphenylporphycene (2HTPPc) on Cu(111) was investigated by scanning tunneling microscopy (STM). At medium coverages, supramolecular ordered islands are observed. The individual 2HTPPc molecules appear as two pairs of intense protrusions which are separated by an elongated depression. In the islands, the molecules are organized in rows oriented along one of the close packed Cu(111) substrate rows; the structure is stabilized by T-type interactions of the phenyl substituents of neighboring molecules. Two types of rows are observed, namely, highly ordered rows in which all molecules exhibit the same orientation, and less ordered rows in which the molecules exhibit two perpendicular orientations. Altogether, three different azimuthal orientations of 2HTPPc are observed within one domain, all of them rotated by 15° ± 1° relative to one closed packed Cu direction. The highly ordered rows are always separated by either one or two less ordered rows, with the latter structure being the thermodynamically more stable one. The situation in the islands is highly dynamic, such that molecules in the less ordered rows occasionally change orientation, also complete highly ordered rows can move. The supramolecular order and structural dynamics are discussed on the basis of the specific molecule-substrate and molecule-molecule interactions.

  3. Isomerization, Perturbations, Calculations and the S_{1} State of C_{2}H_{2}

    NASA Astrophysics Data System (ADS)

    Baraban, J. H.; Changala, P. B.; Berk, J. R. P.; Field, R. W.; Stanton, J. F.; Merer, A. J.

    2013-06-01

    Preliminary analysis of the energy region of the cis-trans isomerization transition state on the S_{1} surface of C_{2}H_{2} has revealed novel patterns and surprising perturbations, including unusually large (and high-order) anharmonicities, as well as K-staggerings of several vibrational levels. These effects complicate the analysis considerably, and require new models and calculations to account for and predict features of the observed spectra. The ˜{A}-˜{X} spectrum of acetylene has been studied both experimentally and theoretically for almost a century, and this cycle of unexpected phenomena eliciting innovative responses is found throughout its history. Especially in the last ten years, progress in understanding the S_{1} state rovibrational level structure and cis-trans isomerization has been accelerated by combining the information available from both ab initio computation and spectroscopic observations. The resulting dialogue has then frequently suggested fruitful avenues for further experiments and calculations. Current challenges and recent results in understanding the cis-trans isomerization transition state region will be discussed in this context.

  4. The safety of histamine 2 (H2) blockers in pregnancy: a meta-analysis.

    PubMed

    Gill, Simerpal Kaur; O'Brien, Lisa; Koren, Gideon

    2009-09-01

    Heartburn and acid reflux increase the severity of nausea and vomiting of pregnancy, and may lead to more serious medical conditions. The fetal safety of histamine 2 (H2) blockers, the most common antireflux medication, during pregnancy needs to be determined. The aim herein is to determine the fetal safety of H2 blockers during pregnancy through systematic review. All original research assessing the safety of H2 blockers in pregnancy was sought. Data included congenital malformations, spontaneous abortions, preterm delivery, and small for gestational age. A random-effects model combined results. With data from 2,398 exposed and 119,892 nonexposed to H2 blockers, overall odds ratio was 1.14 [0.89, 1.45]. Further analysis revealed no increased risks for spontaneous abortions, preterm delivery, and small for gestational age with odds ratios and 95% confidence intervals (CIs) of 0.62 [0.36-1.05], 1.17 [0.94, 1.147], and 0.28 [0.06, 1.22], respectively. H2 blockers can be used safely in pregnancy.

  5. ZAS: C2H2 zinc finger proteins involved in growth and development.

    PubMed

    Wu, Lai-Chu

    2002-01-01

    A ZAS gene encodes a large protein with two separate C2H2 zinc finger pairs that independently bind to specific DNA sequences, including the kappaB motif. Three paralogous mammalian genes, ZAS1, ZAS2, and ZAS3, and a related Drosophila gene, Schnurri, have been cloned and characterized. The ZAS genes encode transcriptional proteins that activate or repress the transcription of a variety of genes involved in growth, development, and metastasis. In addition, ZAS3 associates with a TNF receptor-associated factor to inhibit NF-kappaB- and JNK/ SAPK-mediated signaling of TNF-alpha. Genetic experiments show that ZAS3 deficiency leads to proliferation of cells and tumor formation in mice. The data suggest that ZAS3 is important in controlling cell growth, apoptosis, and inflammation. The potent vasoactive hormone endothelin and transcription factor AP2 gene families also each consist of three members. The ZAS, endothelin, and transcription factor AP2 genes form several linkage groups. Knowledge of the chromosomal locations of these genes provides valuable clues to the evolution of the vertebrate genome.

  6. Monascus secondary metabolites monascin and ankaflavin inhibit activation of RBL-2H3 cells.

    PubMed

    Chang, Yu-Ying; Hsu, Wei-Hsuan; Pan, Tzu-Ming

    2015-01-14

    Monascus-fermented products have been used as dietary food and traditional medicine due to their beneficial effects on circulation and digestive systems in Asia for thousands of years. Besides, monascin and ankaflavin, secondary metabolites from Monascus-fermented products, have proven anti-inflammatory and immunomodulatory effects. In previous research, monascin and ankaflavin ameliorated ovalbumin-induced airway allergic reaction often used as a type I allergy asthma model. Additionally, mast cells play critical roles in type I allergy. Therefore, RBL-2H3 cells were used as the mast cell model to determine whether the improving effects on asthma of monascin and ankaflavin came from influencing mast cells. PMA and ionomycin are common activators of mast cells because they stimulate the main signaling molecules during mast cell activation. Forty micromolar monascin and ankaflavin inhibited PMA/ionomycin-induced mast cell degranulation and TNF-α secretion through suppressing the phosphorylation of PKC and MAPK family ERK, JNK, and p38. Consequently, monascin and ankaflavin affected the activation of mast cells and may have the potential to improve type I allergy.

  7. The H2O2-H2O Hypothesis: Extremophiles Adapted to Conditions on Mars?

    NASA Astrophysics Data System (ADS)

    Houtkooper, Joop M.; Schulze-Makuch, Dirk

    2007-08-01

    The discovery of extremophiles on Earth is a sequence of discoveries of life in environments where it had been deemed impossible a few decades ago. The next frontier may be the Martian surface environment: could life have adapted to this harsh environment? What we learned from terrestrial extremophiles is that life adapts to every available niche where energy, liquid water and organic materials are available so that in principle metabolism and propagation are possible. A feasible adaptation mechanism to the Martian surface environment would be the incorporation of a high concentration of hydrogen peroxide in the intracellular fluid of organisms. The H2O2-H2O hypothesis suggests the existence of Martian organisms that have a mixture of H2O2 and H2O instead of salty water as their intracellular liquid (Houtkooper and Schulze-Makuch, 2007). The advantages are that the freezing point is low (the eutectic freezes at 56.5°C) and that the mixture is hygroscopic. This would enable the organisms to scavenge water from the atmosphere or from the adsorbed layers of water molecules on mineral grains, with H2O2 being also a source of oxygen. Moreover, below its freezing point the H2O2-H2O mixture has the tendency to supercool. Hydrogen peroxide is not unknown to biochemistry on Earth. There are organisms for which H2O2 plays a significant role: the bombardier beetle, Brachinus crepitans, produces a 25% H2O2 solution and, when attacked by a predator, mixes it with a fluid containing hydroquinone and a catalyst, which produces an audible steam explosion and noxious fumes. Another example is Acetobacter peroxidans, which uses H2O2 in its metabolism. H2O2 plays various other roles, such as the mediation of physiological responses such as cell proliferation, differentiation, and migration. Moreover, most eukaryotic cells contain an organelle, the peroxisome, which mediates the reactions involving H2O2. Therefore it is feasible that in the course of evolution, water-based organisms

  8. 4-Benzyl-6-p-tolyl­pyridazin-3(2H)-one

    PubMed Central

    Oubair, Ahmad; Daran, Jean-Claude; Fihi, Rachid; Majidi, Lhou; Azrour, Mohamed

    2009-01-01

    The title compound, C18H16N2O, is a new dihydro­pyridazin-3(2H)-one derivative synthesized in one step by condensation of α-benzyl­idene-γ-tolyl­butenolide with hydrazine. The mol­ecule is not planar; the tolyl and pyridazine rings are twisted with respect to each other making a dihedral angle of 27.35 (9)° and the benzyl ring is nearly perpendicular to the pyridazine ring with a dihedral angle of 85.24 (5)°. In the crystal structure, inversion dimers arise, being linked by pairs of N—H⋯O hydrogen bonds. Weak C—H⋯O hydrogen bonds and weak offset π–π stacking stabilize the packing. The π–π stacking occurs between the pyridazine rings of symmetry-related mol­ecules, with a centroid–centroid distance of 3.748 Å, an inter­planar distance of 3.605 Å and a slippage of 1.024 Å. PMID:21583202

  9. Identification of New {CIS} Vibrational Levels in the S1 State of C2H2

    NASA Astrophysics Data System (ADS)

    Baraban, J. H.; Changala, P. B.; Shaver, R. G.; Field, R. W.; Stanton, J. F.; Merer, A. J.

    2012-06-01

    Although the S_1 (tilde{A} ^1A_u) state of the trans conformer of acetylene has been known for many years, the corresponding S_1 (tilde{A} ^1A_2) state of the cis conformer was only discovered recently. Transitions to it from the ground state are electronically forbidden, but its vibrational levels acquire intensity by tunneling through the isomerization barrier and interacting with levels of the trans conformer. We have recently identified two new vibrational levels (32 and 41 61) of the {cis} conformer of S1 C2H2, bringing the total number of levels observed to six out of an expected ten up to the energies studied in this work. The appearance of these levels in IR-UV double resonance LIF spectra will be discussed, along with their vibrational assignments. Experimentally determined vibrational parameters and {ab initio} anharmonic force fields for both the {trans} and {cis} conformers will be presented as part of the evidence supporting these assignments. These results shed new light on the vibrational level structure of both conformers in this isomerizing system. A. J. Merer, A. H. Steeves, J. H. Baraban, H. A. Bechtel, and R. W. Field. J. Chem. Phys., 134(24):244310, 2011.

  10. High pressure-temperature Raman spectroscopy of H2-H2O clathrate.

    NASA Astrophysics Data System (ADS)

    Somayazulu, Maddury; Levedahl, Alexander; Goncharov, Alexander; Mao, Ho-Kwang; Hemley, Russell

    2007-03-01

    The melting curve of the C2 clathrate H2-H2O has been determined by in-situ Raman spectroscopy measurements in an externally heated diamond anvil cell. We have determined the melting curve to a maximum pressure of 27 GPa. These are the first measurements on the melting line in this clathrate. Depending on the stoichiometry of the starting mixture of H2 and H2O, we are able to study either a mixture of C2 and H2O or C2 and H2. In either case, we were able to pinpoint the melting of the clathrate from the measurements of the molecular stretching mode (vibron) in the clathrate. In the case of C2 + Ice VII, we observe the vibron in the clathrate at a frequency higher than in pure H2 at the same pressure. We have cross-calibrated the melting temperatures using the Stokes-anti Stokes ratio of the diamond first order and Raman active TO phonon of cubic Boron Nitride. We find that the clathrate melts well above the H2 melting at all pressures studied indicating that the stabilization of this clathrate at high pressures is indeed due to interactions between the host and guest molecules.

  11. Synthesis, structural and spectroscopic studies of 2-oxoacenaphthylen-1(2H)-ylidene nicotinohydrazide.

    PubMed

    Henriques, M S C; Del Amparo, R; Pérez-Álvarez, D; Nogueira, B A; Rodríguez-Argüelles, M C; Paixão, J A

    2017-02-05

    The synthesis of a new hydrazone, 2-oxoacenaphthylen-1(2H)-ylidene nicotinohydrazide, and its structural and spectroscopic characterization is reported. The obtained powder was recrystallized from DMSO and ethanol that afforded small crystals used for single-crystal X-ray diffraction studies. The compound was found to crystallize in two polymorphs, depending on the crystallization conditions. One of the polymorphs (form I) crystallizes in the centrosymmetric P21/c monoclinic space group, the other (form II) crystallizes in the non-centrosymmetric, but achiral, orthorhombic space group P212121. Conformation of the molecules is similar in both polymorphs, but the network of weak intermolecular interactions determining the crystal packing is different. In form II an additional C-H⋯O bond connects molecules related by the screw-axis running parallel to the a-axis. Crystals of both polymorphs were also screened by FT-IR and Raman microscopy; a detailed analysis of the spectra and comparison with those of the isolated molecule calculated by ab-initio HF/MP2 and DFT/B3LYP methods using a correlation consistent cc-pVDZ basis set is presented. In addition, UV-vis and NMR studies were performed in solution.

  12. Investigating Enhanced Multiple Ionization Near Conical Intersections in C2H 2 +

    NASA Astrophysics Data System (ADS)

    McCracken, Greg; Liekhus-Schmaltz, Chelsea; Kaldun, Andreas; Bucksbaum, Phil

    2016-05-01

    Nonadiabatic behavior near conical intersections (CIs) leads to strong nonradiative mixing between different electronic states in polyatomic molecules. Recently, evidence was shown that strong field multiple ionization was significantly enhanced near the CI driving the isomerization of CHD. An interesting question is if it is a general feature that conical intersections enhance ionization rates. In this talk, we investigate the possibility of enhanced multiple ionization near the CI between the A and X states of the C2H2 cation, which is involved in the isomerization pathway to vinylidene. The cation is prepared in the A state nonlinearly using 50 fs pulses at 266 nm. The evolution of the nuclear wavepacket through the CI is then probed by a strong ultrafast pulse at 800 nm. Using a newly designed system to reconstruct the momenta of all ion fragments from a single Coulomb explosion event, we are able to see any enhancement of highly charged channels over doubly charged ones from events that are probed near the CI. This work was supported by NSF Grant PHY-0649578.

  13. Scattering matrix approach to the dissociative recombination of HCO+ and N2H+.

    PubMed

    Fonseca dos Santos, S; Douguet, N; Kokoouline, V; Orel, A E

    2014-04-28

    We present a theoretical study of the indirect dissociative recombination of linear polyatomic ions at low collisional energies. The approach is based on the computation of the scattering matrix just above the ionization threshold and enables the explicit determination of all diabatic electronic couplings responsible for dissociative recombination. In addition, we use the multi-channel quantum-defect theory to demonstrate the precision of the scattering matrix by reproducing accurately ab initio Rydberg state energies of the neutral molecule. We consider the molecular ions N2H(+) and HCO(+) as benchmark systems of astrophysical interest and improve former theoretical studies, which had repeatedly produced smaller cross sections than experimentally measured. Specifically, we demonstrate the crucial role of the previously overlooked stretching modes for linear polyatomic ions with large permanent dipole moment. The theoretical cross sections for both ions agree well with experimental data over a wide energy range. Finally, we consider the potential role of the HOC(+) isomer in the experimental cross sections of HCO(+) at energies below 10 meV.

  14. Optimization of electrode characteristics for the Br-2/H-2 redox flow cell

    SciTech Connect

    Tucker, MC; Cho, KT; Weber, AZ; Lin, GY; Nguyen, TV

    2014-10-17

    The Br-2/H-2 redox flow cell shows promise as a high-power, low-cost energy storage device. The effect of various aspects of material selection, processing, and assembly of electrodes on the operation, performance, and efficiency of the system is determined. In particular, (+) electrode thickness, cell compression, hydrogen pressure, and (-) electrode architecture are investigated. Increasing hydrogen pressure and depositing the (-) catalyst layer on the membrane instead of on the carbon paper backing layers have a large positive impact on performance, enabling a limiting current density above 2 A cm(-2) and a peak power density of 1.4 W cm(-2). Maximum energy efficiency of 79 % is achieved. In addition, the root cause of limiting-current behavior in this system is elucidated, where it is found that Br- reversibly adsorbs at the Pt (-) electrode for potentials exceeding a critical value, and the extent of Br- coverage is potential-dependent. This phenomenon limits maximum cell current density and must be addressed in system modeling and design. These findings are expected to lower system cost and enable higher efficiency.

  15. Automated extraction of backbone deuteration levels from amide H/2H mass spectrometry experiments

    PubMed Central

    Hotchko, Matthew; Anand, Ganesh S.; Komives, Elizabeth A.; Ten Eyck, Lynn F.

    2006-01-01

    A Fourier deconvolution method has been developed to explicitly determine the amount of backbone amide deuterium incorporated into protein regions or segments by hydrogen/deuterium (H/D) exchange with high-resolution mass spectrometry. Determination and analysis of the level and number of backbone amide exchanging in solution provide more information about the solvent accessibility of the protein than do previous centroid methods, which only calculate the average deuterons exchanged. After exchange, a protein is digested into peptides as a way of determining the exchange within a local area of the protein. The mass of a peptide upon deuteration is a sum of the natural isotope abundance, fast exchanging side-chain hydrogens (present in MALDI-TOF H/2H data) and backbone amide exchange. Removal of the components of the isotopic distribution due to the natural isotope abundances and the fast exchanging side-chains allows for a precise quantification of the levels of backbone amide exchange, as is shown by an example from protein kinase A. The deconvoluted results are affected by overlapping peptides or inconsistent mass envelopes, and evaluation procedures for these cases are discussed. Finally, a method for determining the back exchange corrected populations is presented, and its effect on the data is discussed under various circumstances. PMID:16501228

  16. Inclusive electron scattering from 2H,3He, and 4He

    NASA Astrophysics Data System (ADS)

    Dytman, S. A.; Bernstein, A. M.; Blomqvist, K. I.; Pavel, T. J.; Quinn, B. P.; Altemus, R.; McCarthy, J. S.; Mechtel, G. H.; Ueng, T. S.; Whitney, R. R.

    1988-08-01

    We present new results for inclusive electron scattering in 2H, 3He, and 4He in order to test the reaction mechanism for quasielastic scattering as a function of nuclear density. Radiative corrections are applied to the cross section data and Rosenbluth separations are made for three-momentum transfer (q) between 300 and 600 MeV/c. The A and q dependencies of the data are discussed for the quasielastic peak and the region between the quasielastic peak and the Δ resonance peak (dip region). Comparisons are shown between the data and models based on a quasielastic reaction mechanism. The models give a reasonable representation of the peak at q~500 MeV/c, but the longitudinal data for the helium isotopes are significantly suppressed with respect to the quasielastic predictions at q<400 MeV/c. None of the calculations predict the rapid rise with q and A in the transverse strength in the dip region seen in the data. A significant breakdown of the quasielastic picture is seen in the data as A increases from 2 to 4.

  17. 3-Phenylalkyl-2H-chromenes and -chromans as novel rhinovirus infection inhibitors.

    PubMed

    Conti, Cinzia; Proietti Monaco, Luca; Desideri, Nicoletta

    2017-02-10

    Following our studies on structure-activity relationships of anti-rhinovirus chromene and chroman derivatives, we designed and synthesized new series of 3-phenylalkyl-2H-chromenes and -chromans bearing differently sized, aliphatic linker chains between the two cycles. The cytotoxicity and the antiviral activity of the new compounds on human rhinovirus (HRV) serotype 1B and 14 infection were evaluated in HeLa cell cultures. Most of the tested compounds interfered with HRV1B multiplication in the micromolar or submicromolar concentrations while HRV14 was less susceptible. 3-[3-(4-Chlorophenyl)propyl]chroman (9c) was selected for preliminary mechanism of action studies due to its potent activity against both serotypes (IC50 of 0.48μM and 1.36μM towards HRV1B and 14, respectively) coupled with high selectivity (SI=206.18 and 73.26, respectively). Results of time of addition/removal studies suggest that 9c, similarly to related derivatives, behaves as a capsid binder interfering with some early events of the HRV1B infectious cycle.

  18. Hexagonal 2H-MoSe2 broad spectrum active photocatalyst for Cr(VI) reduction.

    PubMed

    Chu, Haipeng; Liu, Xinjuan; Liu, Baibai; Zhu, Guang; Lei, Wenyan; Du, Huigang; Liu, Junying; Li, Jianwei; Li, Can; Sun, Changqing

    2016-10-13

    To make full use of the solar energy, exploring broad spectrum active photocatalysts has become one of the core issues for photocatalysis. Here we report a novel hexagonal 2H-MoSe2 photocatalyst with ultraviolet (UV)-visible-near infrared (NIR) light response for the first time. The results indicate that the MoSe2 displays excellent photo-absorption and photocatalytic activity in the reduction of Cr(VI) under UV and visible even NIR light irradiation. MoSe2 synthesized at pH value of 2 achieves the highest Cr(VI) reduction rates of 99%, 91% and 100% under UV, visible and NIR light irradiation, respectively, which should be attributed to its comparatively higher light absorption, efficient charge separation and transfer as well as relatively large number of surface active sites. The excellent broad spectrum active photocatalytic activity makes the MoSe2 to be a promising photocatalyst for the effective utilization of solar energy.

  19. Momentum-resolved hot electron dynamics at the 2 H -MoS2 surface

    NASA Astrophysics Data System (ADS)

    Hein, P.; Stange, A.; Hanff, K.; Yang, L. X.; Rohde, G.; Rossnagel, K.; Bauer, M.

    2016-11-01

    Time- and angle-resolved photoelectron spectroscopy (trARPES) is employed to study hot electron dynamics in the conduction band of photoexcited 2 H -MoS2. Momentum-dependent rise times of up to 150 fs after near-ultraviolet photoexcitation and decay times of the order of several-hundred fs allow us to locate areas of light absorption in the conduction-band energy landscape as well as to track the relaxation of hot electrons into the lowest-energy states. The conduction-band minima are finally depopulated within ≈1 ps, although a residual population remains up to the maximum investigated pump-probe delay of 15 ps. The presence of the fast depopulation channel differs from the results of experiments of bulk MoS2 performed with all-optical methods. It conforms, however, with recent findings for monolayer MoS2. We attribute this similarity to defect and surface states being of considerable relevance for the near-surface electron dynamics of bulk MoS2, as probed in a trARPES experiment.

  20. Simulation of nanoparticle coagulation in radio-frequency C2H2/Ar microdischarges

    NASA Astrophysics Data System (ADS)

    Xiang-Mei, Liu; Qi-Nan, Li; Rui, Li

    2016-06-01

    The nanoparticle coagulation is investigated by using a couple of fluid models and aerosol dynamics model in argon with a 5% molecular acetylene admixture rf microdischarges, with the total input gas flow rate of 400 sccm. It co-exists with a homogeneous, secondary electron-dominated low temperature γ-mode glow discharges. The heat transfer equation and flow equation for neutral gas are taken into account. We mainly focused on investigations of the nanoparticle properties in atmospheric pressure microdischarges, and discussed the influences of pressure, electrode spacing, and applied voltage on the plasma density and nanoparticle density profiles. The results show that the characteristics of microdischarges are quite different from those of low pressure radio-frequency discharges. First, the nanoparticle density in the bulk plasma in microdischarges is much larger than that of low pressure discharges. Second, the nanoparticle density of 10 nm experiences an exponential increase as soon as the applied voltage increases, especially in the presheath. Finally, as the electrode spacing increases, the nanoparticle density decreased instead of increasing. Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant Nos. A2015011 and A2015010), the Postdoctoral Scientific Research Development Fund of Heilongjiang Province, China (Grant No. LBH-Q14159), the Program for Young Teachers Scientific Research in Qiqihar University (Grant No. 2014k-Z11), the National Natural Science Foundation of China (Grant No. 11404180), and the University Nursing Program for Yong Scholars with Creative Talents in Heilongjiang Province, China (Grant No. UNPYSCT-2015095).

  1. The NER-related gene GTF2H5 predicts survival in high-grade serous ovarian cancer patients

    PubMed Central

    Kamieniak, Marta M.; Muñoz-Repeto, Ivan; Borrego, Salud; Hernando, Susana; Hernández-Agudo, Elena; Heredia Soto, Victoria; Márquez-Rodas, Ivan; Echarri, María José; Lacambra-Calvet, Carmen; Sáez, Raquel; Redondo, Andrés; Benítez, Javier

    2016-01-01

    Objective We aimed to evaluate the prognostic and predictive value of the nucleotide excision repair-related gene GTF2H5, which is localized at the 6q24.2-26 deletion previously reported by our group to predict longer survival of high-grade serous ovarian cancer patients. Methods In order to test if protein levels of GTF2H5 are associated with patients' outcome, we performed GTF2H5 immunohistochemical staining in 139 high-grade serous ovarian carcinomas included in tissue microarrays. Upon stratification of cases into high- and low-GTF2H5 staining categories (> and ≤ median staining, respectively) Kaplan-Meier and log-rank test were used to estimate patients’ survival and assess statistical differences. We also evaluated the association of GTF2H5 with survival at the transcriptional level by using the on-line Kaplan-Meier plotter tool, which includes gene expression and survival data of 855 high-grade serous ovarian cancer patients from 13 different datasets. Finally, we determined whether stable short hairpin RNA-mediated GTF2H5 downregulation modulates cisplatin sensitivity in the SKOV3 and COV504 cell lines by using cytotoxicity assays. Results Low expression of GTF2H5 was associated with longer 5-year survival of patients at the protein (hazard ratio [HR], 0.52; 95% CI, 0.29 to 0.93; p=0.024) and transcriptional level (HR, 0.80; 95% CI, 0.65 to 0.97; p=0.023) in high-grade serous ovarian cancer patients. We confirmed the association with 5-year overall survival (HR, 0.55; 95% CI, 0.38 to 0.78; p=0.0007) and also found an association with progression-free survival (HR, 0.72; 95% CI, 0.54 to 0.96; p=0.026) in a homogenous group of 388 high-stage (stages III-IV using the International Federation of Gynecology and Obstetrics staging system), optimally debulked high-grade serous ovarian cancer patients. GTF2H5-silencing induced a decrease of the half maximal inhibitory concentration upon cisplatin treatment in GTF2H5-silenced ovarian cancer cells. Conclusion Low

  2. Plasma Rain

    NASA Video Gallery

    On April 19, 2010 AIA observed one of the largest prominence eruptions in years. The huge structure erupts, but a great deal of the plasma (hundreds of millions of tons) is unable to escape the gra...

  3. Plasma Cleaning

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  4. 2H2O incorporation into hepatic acetyl-CoA and de novo lipogenesis as measured by Krebs cycle-mediated 2H-enrichment of glutamate and glutamine.

    PubMed

    Silva, Ana Maria; Martins, Fatima; Jones, John G; Carvalho, Rui

    2011-12-01

    Deuterated water is widely used for measuring de novo lipogenesis on the basis of quantifying lipid (2)H-enrichment relative to that of body water. However, incorporation of (2)H-enrichment from body water into newly synthesized lipid molecules is incomplete therefore the true lipid precursor enrichment differs from that of body water. We describe a novel measurement of de novo lipogenesis that is based on a true precursor-product analysis of hepatic acetyl-CoA and triglyceride methyl enrichments from deuterated water. After deuterated water administration to seven in situ and seven perfused livers, acetyl-CoA methyl enrichment was inferred from (2)H nuclear magnetic resonance analysis of hepatic glutamate/glutamine (Glx) enrichment and triglyceride methyl enrichment was directly determined by (2)H nuclear magnetic resonance of triglycerides. Acetyl-CoA (2) H-enrichment was 71% ± 1% that of body water for in situ livers and 53% ± 2% of perfusate water for perfused livers. From the ratio of triglyceride-methyl/acetyl-CoA enrichments, fractional de novo lipogenesis rates of 0.97% ± 0.09%/2 hr and 7.92% ± 1.47%/48 hr were obtained for perfused and in situ liver triglycerides, respectively. Our method reveals that acetyl-CoA enrichment is significantly less than body water both for in situ and perfused livers. Furthermore, the difference between acetyl-CoA and body water enrichments is sensitive to the experimental setting.

  5. Solubilities of salts in the ternary systems NaCl + CaCl2 + H2O and KCl + CaCl2 + H2O at 75°C

    NASA Astrophysics Data System (ADS)

    Yang, Ji-Min; Liu, Xiao-Lin; Liang, Pei-Pei

    2011-07-01

    The solubility in the NaCl-CaCl2-H2O and KCl-CaCl2-H2O systems were determined at 75°C and the phase diagrams and the diagram of physicochemical property vs composition were plotted. One invariant point, two univariant curves, and two crystallization zones, corresponding to potassium chloride, dihydrate (CaCl2 · 2H2O) showed up in the phase diagrams of the ternary systems. The mixing parameters θM, Ca and ΨM, Ca, Cl (M = Na or K) and equilibrium constant K sp were evaluated in NaCl-CaCl2-H2O and KCl-CaCl2-H2O systems by least-squares optimization procedure, in which the single-salt Pitzer parameters of NaCl, KCl, and CaCl2 β(0), β(1), β(2), and C Φ were directly calculated from the literature. The results obtained were in good agreement with the experimental data.

  6. Synthesis, crystal structure and properties of a new bi-dentate decavanadate [Cu(en) 2H 2O] 2[H 2V 10O 28]·12H 2O

    NASA Astrophysics Data System (ADS)

    Ma, Huiyuan; Meng, Xin; Sha, Jingquan; Pang, Haijun; Wu, Lizhou

    2011-05-01

    A new bi-dentate decavanadate compound formulated [Cu(en) 2H 2O] 2[H 2V 10O 28]·12H 2O (en = ethylenediamine) ( 1) has been hydrothermally synthesized and structurally characterized. And 1 crystallizes in the triclinic, space group P-1 with a = 10.2606(5) Å, b = 13.4690(6) Å, c = 15.2084(7) Å, α = 102.8150(1)°, β = 91.2380(1)°, γ = 92.1010(1)°, V = 2047.12(2) Å 3, R1( I > 2 σ( I) = 0.0511), and Z = 2. X-ray diffraction analysis reveals that 1 is constructed from bi-dentate decavanadate formed by decavanadate clusters coordinated to [Cu(en) 2H 2O] 2+ complexes and free water molecules. Furthermore, a three-dimensional (3D) framework is achieved in 1via hydrogen bonds between O/N atoms and H atoms of the neighboring [Cu(en) 2H 2O] 2[H 2V 10O 28] subunits. The UV-vis spectrum, fluorescent and electrochemical properties of 1 in aqueous solution are also studied.

  7. The composition of Saturn's atmosphere at northern temperate latitudes from Voyager IRIS spectra - NH3, PH3, C2H2, C2H6, CH3D, CH4, and the Saturnian D/H isotopic ratio

    NASA Technical Reports Server (NTRS)

    Courtin, R.; Gautier, D.; Marten, A.; Bezard, B.; Hanel, R.

    1984-01-01

    The vertical distributions and mixing ratios of minor constituents in the northern hemisphere of Saturn are investigated. Results are obtained for NH3, PH3, C2H2, C2H6, CH3D, and CH4; the D/H ratio is obtained from the CH4 and CH3D abundances. The NH3 mixing ratio in the upper atmosphere is found to be compatible with the saturated partial pressure. The inferred PH3/H2 ratio of 1.4 + or - 0.8 x 10 to the -6th is higher than the value derived from the solar P/H ratio. The stratospheric C2H2/H2 and C2H6/H2 ratios are, respectively, 2.1 + or - 1.4 x 10 to the -7th and 3.0 + or - 1.1 x 10 to the -6th; the latter decreases sharply below the 20-50 mbar level. The results for CH3D/H2 and CH4/H2 imply an enrichment of Saturn's upper atmosphere in carbon by a factor of at least three over the solar abundance. The interpretation of two NH3 lines in the five-micron window suggests a NH3/H2 ratio at the two bar level below the solar value.

  8. Competing intermolecular interactions in the high-temperature solid phases of even saturated carboxylic acids (C10H19O2H to C20H39O2H).

    PubMed

    Moreno-Calvo, Evelyn; Gbabode, Gabin; Cordobilla, Raquel; Calvet, Teresa; Cuevas-Diarte, Miquel Angel; Negrier, Philippe; Mondieig, Denise

    2009-12-07

    Structural knowledge of the high-temperature phases of saturated carboxylic acids (C(n)H(2n-1)O(2)H) from C(6)H(11)O(2)H to C(23)H(45)O(2)H is now complete. Crystal structures of the high-temperature phases of even acids from decanoic (C(10)H(19)O(2)H) to eicosanoic (C(20)H(39)O(2)H) are reported. The crystal structures of the six compounds were determined from powder X-ray diffraction data following direct space methods and refined by the Rietveld method combined with force field geometry optimization. The combination proved to be a valuable approach to obtain structures that are chemically sensible and in close agreement with the powder pattern. At the end of the process solid-state DFT calculations were applied to improve the overall accuracy of the system but in this case DFT did not render better structures. The high-temperature solid phases of even carboxylic acids are all P2(1)/c with Z=4, the molecules are united into dimers via strong hydrogen bonds. Two major types of interactions govern the crystal packing of carboxylic acids, hydrogen bonds and van der Waals interactions. A survey of the intermolecular interactions has revealed that hydrogen bonds are the dominant interaction for acids with less than 23 carbon atoms in the alkyl chain while van der Waals interactions dominate the packing for acids with more than 23 carbon atoms.

  9. Structures of the Phosphorylated and VO3-bound 2H-Phosphatase Domain of Sts-2

    SciTech Connect

    Chen, Y.; Jakoncic, J.; Parker, K.A.; Carpino, N; Nassar, N.

    2009-09-23

    The C-terminal domain of the suppressor of T cell receptor (TCR) signaling 1 and 2 (Sts-1 and -2) proteins has homology to the 2H-phosphatase family of enzymes. The phosphatase activity of the correspondent Sts-1 domain, Sts-1{sub PGM}, is key for its ability to negatively regulate the signaling of membrane-bound receptors including TCR and the epidermal growth factor receptor (EGFR). A nucleophilic histidine, which is transiently phosphorylated during the phosphatase reaction, is essential for the activity. Here, we present the crystal structure of Sts-2{sub PGM} in the phosphorylated active form and bound to VO{sub 3}, which represent structures of an intermediate and of a transition state analogue along the path of the dephosphorylation reaction. In the former structure, the proposed nucleophilic His366 is the only phoshorylated residue and is stabilized by several interactions with conserved basic residues within the active site. In the latter structure, the vanadium atom sits in the middle of a trigonal bipyramid formed by the three oxygen atoms of the VO{sub 3} molecule, atom NE2 of His366, and an apical water molecule Wa. The V-NE2 bond length (2.25 {angstrom}) suggests that VO{sub 3} is not covalently attached to His366 and that the reaction mechanism is partially associative. The two structures also suggest a role for Glu476 in activating a uniquely positioned water molecule. In both structures, the conformation of the active site is remarkably similar to the one seen in apo-Sts-2{sub PGM} suggesting that the spatial arrangement of the catalytic residues does not change during the dephosphorylation reaction.

  10. Chain orientation in natural rubber, Part II: 2H-NMR study.

    PubMed

    Rault, J; Marchal, J; Judeinstein, P; Albouy, P A

    2006-11-01

    Stress-induced crystallisation (SIC) and stress-induced melting (SIM) in natural rubbers (NR), unfilled and filled with carbon black (CB) have been studied by (2)H-NMR measurements. Various materials have been swollen with small amount (< 2%) of deuterated alkane chains. The orientation of the amorphous chains, then the local deformation of the amorphous chains during deformation cycles and during stress relaxation, permits to clarify the SIC and SIM processes during hardening and recovery. By mechanical, WAXS and NMR measurements one determines the same critical draw ratio for appearance lambda(A) and disappearance lambda(E) of the crystallites. It is demonstrated that the hysteresis observed by the different techniques (stress sigma, crystallinity chi, NMR splitting Deltanu) are due to the supercooling effect ( lambda(A) > lambda(E), at constant temperature). During hardening at constant strain rate it is found that the local draw ratio remains constant and equal to lambda(A), whereas the crystallinity increases linearly with the macroscopic draw ratio lambda. The hardening sigma approximately (lambda - lambda(A))(2) is then interpreted as a reinforcement effect due to the crystallites, which act as new crosslinks. This confirms the prediction of Flory. In filled rubber the same effects are observed, and the stress amplification factor is determined as a function of the CB content. It is found that the fillers act as nucleation centres for the NR crystallites. The reinforcement of such materials is due principally to this nucleation effect and to the presence of a super network formed by both the NR crystallites and the CB fillers.

  11. Hydrogen isotope systematics of H2-H2O-CH4 during hydrogenotrophic methanogenesis

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Kawagucci, S.; Hattori, S.; Yamada, K.; Ueno, Y.; Takai, K.; Yoshida, N.

    2011-12-01

    Hydrogen and carbon isotopes of CH4 have been utilized to trace microbial processes. The isotope fractionations during hydrogenotrophic methanogenesis, one of the major processes of environmental CH4, have been studied by several laboratory incubations. For the carbon isotope, H2 concentration is thought to be the major parameter controlling the carbon isotope fractionation by hydrogenotrophic methanogenesis. For the hydrogen, on the other hand, factors controlling isotope fractionation remain poorly understood, although H2 concentration is suggested to be important. This uncertainty prevents us to utilize δD-CH4 value as the tracer. The most important and principal question is whether all hydrogen atoms in microbially-generated CH4 come from environmental H2O or not. To answer the question, we investigated the D/H systematics of H2-H2O-CH4 during hydrogenotrophic methanogenesis by pure culture incubation with softly deuterium-enriched H2 and/or H2O. Our results demonstrate that δD-CH4 value produced by hydrogenotrophic methanogens depends not only on δD-H2O value but also on δD-H2 value. We observed constant correlation between δD-H2 and δD-CH4 values as well as between δD-H2O and δD-CH4 values, which suggests that hydrogen (/deuterium) atom of substrate H2 is also transferred to the product CH4. This implies that the range of δD-CH4 value produced by hydrogenotrophic methanogenesis should be re-evaluated considering the distribution of δD-H2 and δD-H2O values in natural environments.

  12. Long path monitoring of tropospheric O3, NO2, H2CO and SO2

    NASA Technical Reports Server (NTRS)

    Vandaele, A. C.; Carleer, M.; Colin, R.; Simon, P. C.

    1994-01-01

    Concentrations of tropospheric O3, NO2, H2CO, and SO2 have been measured on the Campus of the 'Universite Libre de Bruxelles' on a routine basis since October 1990. The long path system consists of a source lamp, a first 30 cm f/8 Cassegrain type telescope which collimates the light onto a slightly parabolic mirror placed on the roof of a building situated 394 m away from the laboratory. The light is sent back into a second 30 cm Cassegrain telescope. This telescope has been modified so that the output beam is a 5 cm diameter parallel beam. This beam is then focused onto the entrance aperture of the BRUKER IFS120HR fourier transform spectrometer. The two telescopes are mounted on alignment devices and the external mirror is equipped with a driving system operated from the laboratory. The choice of the light source (either a 1000 W high pressure 'ozone free' xenon lamp or a 250 W tungsten filament) and of the detector (either a solar blind UV-diode or a silicon diode) depended on the spectral region studied. These regions lie respectively from 26,000 cm(exp -1) to 30,000 cm(exp -1) (260-380 nm) and from 14,000 cm(exp -1) to 30,000 cm(exp -1) (330-700 nm). The spectra have been recorded at the resolution of 16 cm(exp -1) and with a dispersion of 7.7 cm(exp -1). They have been measured during the forward and the backward movements of the mobile mirror, in double sided mode; each spectrum is an average of 2000 scans. The time required to record a spectrum is about 45 minutes. The shape of the raw spectra in the two investigated regions are represented.

  13. The reaction OH + C2H4: an example of rotational channel switching.

    PubMed

    Golden, David M

    2012-05-03

    The low-temperature data for the reaction between OH and C(2)H(4) is treated canonically as either a two-well or one-well problem using the "Multiwell" suite of codes, in which a "well" refers to a minimum in the potential energy surface. The former is analogous to the two transition state model of Greenwald et al. [Greenwald, E. E.; North, S. W.; Georgievskii, Y.; Klippenstein, S. J. J. Phys. Chem. A2005, 109, 6031], while the latter reflects the dominance of the so-called "inner transition state". External rotations are treated adiabatically, causing changes in the magnitude of effective barriers as a function of temperature. Extant data are well-described with either model using only the average energy transferred in a downward direction, upon collision, ΔE(d)(T), as a fitting parameter. The best value for the parameters describing the rate coefficient as a function of temperature (200 < T/K < 400) (Data at lower temperature is too sparse to yield a recommendation.) and pressure in the form used in the NASA/JPL format [Sander, S. P.; Abbatt, J.; Barker, J. R.; Burkholder, J. B.; Friedl, R. R.; Golden, D. M.; Huie, R. E.; Kolb, C. E.; Kurylo, M. J.; Moortgat, G. K et al., Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 17, Jet Propulsion Laboratory, 2011] are k(0) = 1.0 × 10(-28)(T/300)(-3.5) cm(6) molecule(-2) s(-1) and k(∞) to 8.0 × 10(-12)(T/300)(-2.3) cm(3) molecule(-1) s(-1).

  14. Long path monitoring of tropospheric O3, NO2, H2CO and SO2

    NASA Astrophysics Data System (ADS)

    Vandaele, A. C.; Carleer, M.; Colin, R.; Simon, P. C.

    1994-04-01

    Concentrations of tropospheric O3, NO2, H2CO, and SO2 have been measured on the Campus of the 'Universite Libre de Bruxelles' on a routine basis since October 1990. The long path system consists of a source lamp, a first 30 cm f/8 Cassegrain type telescope which collimates the light onto a slightly parabolic mirror placed on the roof of a building situated 394 m away from the laboratory. The light is sent back into a second 30 cm Cassegrain telescope. This telescope has been modified so that the output beam is a 5 cm diameter parallel beam. This beam is then focused onto the entrance aperture of the BRUKER IFS120HR fourier transform spectrometer. The two telescopes are mounted on alignment devices and the external mirror is equipped with a driving system operated from the laboratory. The choice of the light source (either a 1000 W high pressure 'ozone free' xenon lamp or a 250 W tungsten filament) and of the detector (either a solar blind UV-diode or a silicon diode) depended on the spectral region studied. These regions lie respectively from 26,000 cm(exp -1) to 30,000 cm(exp -1) (260-380 nm) and from 14,000 cm(exp -1) to 30,000 cm(exp -1) (330-700 nm). The spectra have been recorded at the resolution of 16 cm(exp -1) and with a dispersion of 7.7 cm(exp -1). They have been measured during the forward and the backward movements of the mobile mirror, in double sided mode; each spectrum is an average of 2000 scans. The time required to record a spectrum is about 45 minutes. The shape of the raw spectra in the two investigated regions are represented.

  15. Monte Carlo simulations of high-pressure phase equilibria of CO2-H2O mixtures.

    PubMed

    Liu, Yang; Panagiotopoulos, Athanassios Z; Debenedetti, Pablo G

    2011-05-26

    Histogram-reweighting grand canonical Monte Carlo simulations were used to obtain the phase behavior of CO(2)-H(2)O mixtures over a broad temperature and pressure range (50 °C ≤ T ≤ 350 °C, 0 ≤ P ≤ 1000 bar). We performed a comprehensive test of several existing water (SPC, TIP4P, TIP4P2005, and exponential-6) and carbon dioxide (EPM2, TraPPE, and exponential-6) models using conventional Lorentz-Berthelot combining rules for the unlike-pair parameters. None of the models we studied reproduce adequately experimental data over the entire temperature and pressure range, but critical assessments were made on the range of T and P where particular model pairs perform better. Away from the critical region (T ≤ 250 °C), the exponential-6 model combination yields the best predictions for the CO(2)-rich phase, whereas the TraPPE/TIP4P2005 model combination provides the most accurate coexistence composition and pressure for the H(2)O-rich phase. Near the critical region (250 °C < T ≤ 350 °C), the critical points are not accurately estimated by any of the models studied, but the exponential-6 models are able to qualitatively capture the critical loci and the shape of the phase envelopes. Local improvements can be achieved at specific temperatures by introducing modification factors to the Lorentz-Berthelot combining rules, but the modified combining rule is still not able to achieve global improvements over the entire temperature and pressure range. Our work points to the challenge and importance of improving current atomistic models so as to accurately predict the phase behavior of this important binary mixture.

  16. Redetermination of metarossite, CaV5+ 2O6·2H2O

    PubMed Central

    Kobsch, Anaïs; Downs, Robert T.; Domanik, Kenneth J.

    2016-01-01

    The crystal structure of metarossite, ideally CaV2O6·2H2O [chemical name: calcium divanadium(V) hexa­oxide dihydrate], was first determined using precession photographs, with fixed isotropic displacement parameters and without locating the positions of the H atoms, leading to a reliability factor R = 0.11 [Kelsey & Barnes (1960 ▸). Can. Mineral. 6, 448–466]. This communication reports a structure redetermination of this mineral on the basis of single-crystal X-ray diffraction data of a natural sample from the Blue Cap mine, San Juan County, Utah, USA (R1 = 0.036). Our study not only confirms the structural topology reported in the previous study, but also makes possible the refinement of all non-H atoms with anisotropic displacement parameters and all H atoms located. The metarossite structure is characterized by chains of edge-sharing [CaO8] polyhedra parallel to [100] that are themselves connected by chains of alternating [VO5] trigonal bipyramids parallel to [010]. The two H2O mol­ecules are bonded to Ca. Analysis of the displacement parameters show that the [VO5] chains librate around [010]. In addition, we measured the Raman spectrum of metarossite and compared it with IR and Raman data previously reported. Moreover, heating of metarossite led to a loss of water, which results in a transformation to the brannerite-type structure, CaV2O6, implying a possible dehydration pathway for the compounds M 2+V2O6·xH2O, with M = Cu, Cd, Mg or Mn, and x = 2 or 4. PMID:27920917

  17. Theoretical study of electronic and tribological properties of h-BNC2/graphene, h-BNC2/h-BN and h-BNC2/h-BNC2 bilayers.

    PubMed

    Ansari, Narjes; Nazari, Fariba; Illas, Francesc

    2015-05-21

    Density functional theory based methods are used to investigate the interlayer sliding energy landscape (ISEL), binding energy and interlayer spacing between h-BNC2/graphene (I), h-BNC2/h-BN (II) and h-BNC2/h-BNC2 (III) bilayer structures for three, six and fourteen different stacking patterns, respectively. Our results show that, in the studied cases, increasing the atomic variety of the ingredient monolayers leads to an ISEL corrugation increase as well. For the studied bilayers the ISEL is obtained by means of the registry index. For sufficiently large flakes of h-BNC2 on graphene sheets with the largest incommensurability and the least monolayer anisotropy, a robust superlubricity occurs regardless of the relative interlayer orientation. On the other hand, for the h-BNC2/h-BNC2 bilayer exhibiting the least incommensurability and the most monolayer anisotropy, the occurrence of robust superlubricity depends on the relative interlayer orientation.

  18. Synthesis and antifungal activity of 2H-1,4-benzoxazin-3(4H)-one derivatives.

    PubMed

    Śmist, Małgorzata; Kwiecień, Halina; Krawczyk, Maria

    2016-01-01

    A series of 2-alkyl-2H-1,4-benzoxazin-3(4H)-ones (4a-l) was easily synthesized by two-step process involving O-alkylation of 2-nitrophenols with methyl 2-bromoalkanoates and next "green" catalytic reductive cyclization of the obtained 2-nitro ester intermediates (3a-l). Further, 6,7-dibromo (5a-c) and N-acetyl (6) derivatives were prepared by bromination and acetylation of unsubstituted 2-alkyl-2H-1,4-benzoxazin-3(4H)-ones (4a-c). The novel compounds (3a-l, 4d-l, 5a-c and 6) were fully characterized by spectroscopic methods (MS, (1)H and (13)C NMR). 2-Alkyl-2H-1,4-benzoxazin-3(4H)-ones (4a-l, 5a-c and 6) were screened for antifungal activity. Preliminary assays were performed using two methods: in vitro against seven phytopathogenic fungi-Botrytis cinerea, Phythophtora cactorum, Rhizoctonia solani, Phoma betae, Fusarium culmorum, Fusarium oxysporum and Alternaria alternata-and in vivo against barley powdery mildew Blumeria graminis. The tested compounds displayed moderate to good antifungal activity at high concentration (200 mg L(-1)). The most potent compounds were 2-ethyl-2H-1,4-benzoxazin-3(4H)-one (4a), 2-ethyl-7-fluoro-2H-1,4-benzoxazin-3(4H)-one (4g) and 4-acetyl-2-ethyl-2H-1,4-benzoxazin-3(4H)-one (6), which completely inhibited the mycelial growth of seven agricultural fungi at the concentration of 200 mg L(-1) in the in vitro tests. Moreover, 2-ethyl-2H-1,4-benzoxazin-3(4H)-one (4a) and 4-acetyl-2-ethyl-2H-1,4-benzoxazin-3(4H)-one (6) were also screened for antifungal activity at concentrations of 100 mg L(-1) and 20 mg L(-1). In the concentration of 100 mg L(-1), the N-acetyl derivative (6) completely inhibited the growth of three strains of fungi (F. culmorum, P. cactorum and R. solani), while 2-ethyl-2H-1,4-benzoxazin-3(4H)-one (4a) completely inhibited only R. solani strain. At the concentration of 20 mg L(-1), compound 6 showed good activity only against P. cactorum strain (72%).

  19. Synthesis of novel biologically active heterocyclic compounds from 2-oxo-2H-benzopyran-6-yl-imidazolidine.

    PubMed

    Mulwad, Vinata V; Langi, Bhushan P; Chaskar, Atul C

    2011-01-01

    6-Aminocoumarin on treatment with oxalyl chloride gives coumarinyl-6-isocynate (1a-c) which on treatment with glycine gives 1H-3-[2'-oxo-2'H-benzopyran-6'-yl]-5-imidazolidine-2, 4-dione (2a-c). (2a-c) when refluxed with o-chlorobenzaldehyde, m-hydroxybenzaldehyde, 3,4-dimethoxybenzaldehyde and 3-nitrobenzaldehyde separately gives 1H-5-(2"-chlorobenzylidene)-3-(2'-oxo-2'H-benzopyran-6'-yl) imidazolidine-2,4-dione (3a-c), 1H-5-(3"-hydroxybenzylidene)-3-(2'-oxo-2'H-benzopyran-6'-yl) imidazolidine-2,4-dione (4a-c), 1H-5-(3",4"-dimethoxybenzylidene)-3-(2'-oxo-2'H-benzopyran-6'-yl) imidazolidine-2,4-dione (5a-c) and 1H-5-(3"-nitrobenzylidene)-3-(2'-oxo-2'H-benzopyran-6'-yl) imidazolidine-2,4-dione (6a-c), respectively. 3-(2"-Chlorophenyl)-3a,4-dihydro-6-(2'-oxo-2'H-benzopyran-6'-yl) imidazo[4,5-c]isoxazol-5-one 7a-c is obtained from (3a-c) and hydroxylamine hydrochloride while 2,3a,4-trihydro-3-(3"-hydroxyphenyl)-6-(2'-oxo-2'H-benzopyran-6'-yl) imidazo[4,5-c]pyrazol-5-one (8a-c) obtained by reaction of (4a-c) with hydrazine hydrate. Compound (5a-c) on treatment with urea gives 5,7-dihydro-2-hydroxy-6-(3",4"-dimethoxyphenyl)-9-(2'-oxo-2'H-benzopyran-6'-yl) purin-8-one (9a-c) and compound (6a-c) on treatment with thiourea gives 5,7-dihydro-2-mercapto-6-(3"-nitrophenyl)-9-(2'-oxo-2'H-benzopyran-6'-yl)purin-8-one (10a-c). The structures of the compounds have been established on the basis of spectral analytical data. All the compounds have been screened for their antimicrobial activities against three bacterial strains S. aureus, S. typhi and E. coli. Compounds 2b, 3b, 4b, 5b, 6b, 7b, 8b, 9b and 10b with the presence of methyl groups at C7' and C8' of coumarin moiety were found to be more active than others.

  20. Plasma polymerization for cell adhesive/anti-adhesive implant coating

    NASA Astrophysics Data System (ADS)

    Meichsner, Juergen; Testrich, Holger; Rebl, Henrike; Nebe, Barbara

    2015-09-01

    Plasma polymerization of ethylenediamine (C2H8N2, EDA) and perfluoropropane (C3F8, PFP) with admixture of argon and hydrogen, respectively, was studied using an asymmetric 13.56 MHz CCP. The analysis of the plasma chemical gas phase processes for stable molecules revealed consecutive reactions: C2H8N2 consumption, intermediate product NH3, and main final product HCN. In C3F8- H2 plasma the precursor molecule C3F8 and molecular hydrogen are consumed and HF as well as CF4 and C2F6 are found as main gaseous reaction products. The deposited plasma polymer films on the powered electrode are strongly cross-linked due to ion bombardment. The stable plasma polymerized films from EDA are characterized by high content of nitrogen with N/C ratio of about 0.35. The plasma polymerized fluorocarbon film exhibit a reduced F/C ratio of about 1.2. Adhesion tests with human osteoblast cell line MG-63 on coated Ti6Al4V samples (polished) compared with uncoated reference sample yielded both, the enhanced cell adhesion for plasma polymerized EDA and significantly reduced cell adhesion for fluorocarbon coating, respectively. Aging of the plasma polymerized EDA film, in particular due to the reactions with oxygen from air, showed no significant change in the cell adhesion. The fluorocarbon coating with low cell adhesion is of interest for temporary implants. Funded by the Campus PlasmaMed.

  1. Protein-bound Vaccinium fruit polyphenols decrease IgE binding to peanut allergens and RBL-2H3 mast cell degranulation in vitro.

    PubMed

    Plundrich, Nathalie J; Bansode, Rishipal R; Foegeding, E Allen; Williams, Leonard L; Lila, Mary Ann

    2017-03-15

    Peanut allergy is a worldwide health concern. In this study, the natural binding properties of plant-derived polyphenols to proteins was leveraged to produce stable protein-polyphenol complexes comprised of peanut proteins and cranberry (Vaccinium macrocarpon Ait.) or lowbush blueberry (Vaccinium angustifolium Ait.) pomace polyphenols. Protein-bound and free polyphenols were characterized and quantified by multistep extraction of polyphenols from protein-polyphenol complexes. Immunoblotting was performed with peanut-allergic plasma to determine peanut protein-specific IgE binding to unmodified peanut protein, or to peanut protein-polyphenol complexes. In an allergen model system, RBL-2H3 mast cells were exposed to peanut protein-polyphenol complexes and evaluated for their inhibitory activity on ionomycin-induced degranulation (β-hexosaminidase and histamine). Among the evaluated polyphenolic compounds from protein-polyphenol complex eluates, quercetin, - in aglycone or glycosidic form - was the main phytochemical identified to be covalently bound to peanut proteins. Peanut protein-bound cranberry and blueberry polyphenols significantly decreased IgE binding to peanut proteins at p < 0.05 (38% and 31% decrease, respectively). Sensitized RBL-2H3 cells challenged with antigen and ionomycin in the presence of protein-cranberry and blueberry polyphenol complexes showed a significant (p < 0.05) reduction in histamine and β-hexosaminidase release (histamine: 65.5% and 65.8% decrease; β-hexosaminidase: 60.7% and 45.4% decrease, respectively). The modification of peanut proteins with cranberry or blueberry polyphenols led to the formation of peanut protein-polyphenol complexes with significantly reduced allergenic potential. Future trials are warranted to investigate the immunomodulatory mechanisms of these protein-polyphenol complexes and the role of quercetin in their hypoallergenic potential.

  2. A neutron scattering study of hydrogen dynamics in coarse-grained and nanostructured ZrCr2H3

    NASA Astrophysics Data System (ADS)

    Skripov, A. V.; Udovic, T. J.; Rush, J. J.; Uimin, M. A.

    2011-02-01

    The vibrational spectra of hydrogen and parameters of H diffusion in the coarse-grained C15-type system ZrCr2H3 and in nanostructured ZrCr2H3 have been studied by means of inelastic and quasielastic neutron scattering. It is found that the diffusive motion of hydrogen in coarse-grained ZrCr2H3 can be described in terms of at least two jump processes: a fast localized H motion with the jump rate τl - 1 over the hexagons formed by interstitial Zr2Cr2 sites and a slower process with the rate τd - 1 associated with H jumps leading to long-range diffusion. While τd - 1(T) in the range 250-380 K follows the Arrhenius law with the activation energy of 142 ± 4 meV, the temperature dependence of τl - 1 deviates from Arrhenius behavior. The nanostructured ZrCr2H3 samples prepared by ball milling consist of C15-type grains and strongly distorted (amorphous-like) regions. H atoms in the strongly distorted regions are found to be immobile on the time scale of our experiments. The microscopic picture of H jump motion in the C15-type grains of the nanostructured samples is similar to that in coarse-grained ZrCr2H3; however, the ball milling leads to a considerable decrease in the jump rate τd - 1.

  3. DNC/HNC and N2D+/N2H+ ratios in high-mass star-forming cores

    NASA Astrophysics Data System (ADS)

    Fontani, F.; Sakai, T.; Furuya, K.; Sakai, N.; Aikawa, Y.; Yamamoto, S.

    2014-05-01

    Chemical models predict that the deuterated fraction (the column density ratio between a molecule containing D and its counterpart containing H) of N2H+, Dfrac(N2H+), high in massive pre-protostellar cores, is expected to rapidly drop by an order of magnitude after the protostar birth, while that of HNC, Dfrac(HNC), remains constant for much longer. We tested these predictions by deriving Dfrac(HNC) in 22 high-mass star-forming cores divided in three different evolutionary stages, from high-mass starless core candidates (HMSCs, eight) to high-mass protostellar objects (HMPOs, seven) to ultracompact H II regions (UCHIIs, seven). For all of them, Dfrac(N2H+) was already determined through IRAM 30 m Telescope observations, which confirmed the theoretical rapid decrease of Dfrac(N2H+) after protostar birth. Therefore, our comparative study is not affected by biases introduced by the source selection. We have found average Dfrac(HNC) of 0.012, 0.009 and 0.008 in HMSCs, HMPOs and UCHIIs, respectively, with no statistically significant differences among the three evolutionary groups. These findings confirm the predictions of the chemical models, and indicate that large values of Dfrac(N2H+) are more suitable than large values of Dfrac(HNC) to identify cores on the verge of forming high-mass stars, likewise what was found in the low-mass regime.

  4. Site-resolved 2H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra

    NASA Astrophysics Data System (ADS)

    Lindh, E. L.; Stilbs, P.; Furó, I.

    2016-07-01

    We investigate a way one can achieve good spectral resolution in 2H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the 2H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two 2H spin populations with similar chemical shifts but different quadrupole splittings. In 2H-exchanged cellulose containing two 2H spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics.

  5. Sequence specificity is obtained from the majority of modular C2H2 zinc-finger arrays.

    PubMed

    Lam, Kathy N; van Bakel, Harm; Cote, Atina G; van der Ven, Anton; Hughes, Timothy R

    2011-06-01

    C2H2 zinc fingers (C2H2-ZFs) are the most prevalent type of vertebrate DNA-binding domain, and typically appear in tandem arrays (ZFAs), with sequential C2H2-ZFs each contacting three (or more) sequential bases. C2H2-ZFs can be assembled in a modular fashion, providing one explanation for their remarkable evolutionary success. Given a set of modules with defined three-base specificities, modular assembly also presents a way to construct artificial proteins with specific DNA-binding preferences. However, a recent survey of a large number of three-finger ZFAs engineered by modular assembly reported high failure rates (∼70%), casting doubt on the generality of modular assembly. Here, we used protein-binding microarrays to analyze 28 ZFAs that failed in the aforementioned study. Most (17) preferred specific sequences, which in all but one case resembled the intended target sequence. Like natural ZFAs, the engineered ZFAs typically yielded degenerate motifs, binding dozens to hundreds of related individual sequences. Thus, the failure of these proteins in previous assays is not due to lack of sequence-specific DNA-binding activity. Our findings underscore the relevance of individual C2H2-ZF sequence specificities within tandem arrays, and support the general ability of modular assembly to produce ZFAs with sequence-specific DNA-binding activity.

  6. Formation of hydrogenated amorphous carbon films by reactive high power impulse magnetron sputtering containing C2H2 gas

    NASA Astrophysics Data System (ADS)

    Kimura, Takashi; Kamata, Hikaru

    2015-09-01

    Diamond-like carbon (DLC) films have attracted interest for material industries, because they have unique properties. Hydrogenated amorphous carbon films are prepared by reactive high power impulse magnetron sputtering (HiPIMS) containing C2H2 gas and the properties of the films produced in Ar/C2H2 and Ne/C2H2 HiPIMS are compared. Production of hydrocarbon radicals and their ions strongly depends on both electron temperature and electron density in HiPIMS. Therefore, the influence of the difference in buffer gas (Ar and Ne) on the film properties is also valuable to investigate. The film preparation is performed at an average power of 60 W and a repetition frequency of 110 Hz. Total pressure ranges between 0.3 and 2 Pa. The maximum of instantaneous power is about 20-25 kW, and the magnitude of the current is 35 A. A negative pulse voltage is applied to the substrates for about 15 μs after the target voltage changed from about -500 V to 0 V. Hardness of the films prepared by Ar/C2H2 HiPIMS monotonically decreases with increasing the total pressure, whereas that of the films prepared by Ne/C2H2 HiPIMS does not strongly depend on the total pressure. This work is partially supported by JSPS KAKENHI Grant Number 26420230.

  7. /sup 2/H-NMR studies of hypocotyl cell walls of germinating beams supplied with perdeuterated myo-inositol

    SciTech Connect

    Sasaki, K.; Wallace, J.C.; MacKay, A.L.; Balza, F.; Taylor, I.E.P.

    1987-04-01

    When myo-(2-/sup 3/H) inositol (MI) was supplied to bean seeds by imbibition, only uronic acid, arabinose and xylose residues of cell wall polysaccharides were labeled. To study the structural mobility of the uronic acid- and/or pentose-rich polysaccharides in cell wall using /sup 2/H-NMR, the authors supplied perdeuterated MI with (2-/sup 3/H) MI to germinating bean seeds. Perdeuterated MI was prepared by the /sup 1/H-/sup 2/H exchange reaction of MI in deuterium oxide with Raney nickel. During the exchange reaction, extensive epimerization occurred and at least 6 inositol epimers in addition to MI were identified in the reaction mixture of GC/MS. The perdeuterated MI was completely resolved from other inositol epimers and purified by anion-exchange chromatography using Dowex 1 (borate form) and by crystallization. The /sup 2/H-NMR analysis resolved the /sup 2/H-labeled hypocotyl cell walls into two components (rigid and mobile components). They also report the distribution of /sup 2/H and /sup 3/H from perdeuterated and (2-/sup 3/H) MI in the cell wall sugar residues.

  8. A new diabatic representation of the coupled potential energy surfaces for Na(3p P-2) + H2 yields Na(3s S-2) + H2 or NaH + H

    NASA Technical Reports Server (NTRS)

    Halvick, Philippe; Truhlar, Donald G.

    1992-01-01

    A diabatic representation is presented of the coupled potential-energy surfaces for Na(3p P-2) + H2 yields Na (3s S-2) + H2 or NaH + H. The representation is designed to yield, upon diagonalization, realistic values for the two lowest energy adiabatic states at both asymptotes of the chemical reaction as well as near the conical intersection in the three-body interaction region. It is economical to evaluate and portable. It is suitable for dynamics calculations on both the quenching process and the electronically nonadiabatic chemical reaction.

  9. Full-dimensional, high-level ab initio potential energy surfaces for H{sub 2}(H{sub 2}O) and H{sub 2}(H{sub 2}O){sub 2} with application to hydrogen clathrate hydrates

    SciTech Connect

    Homayoon, Zahra; Conte, Riccardo; Qu, Chen; Bowman, Joel M.

    2015-08-28

    New, full-dimensional potential energy surfaces (PESs), obtained using precise least-squares fitting of high-level electronic energy databases, are reported for intrinsic H{sub 2}(H{sub 2}O) two-body and H{sub 2}(H{sub 2}O){sub 2} three-body potentials. The database for H{sub 2}(H{sub 2}O) consists of approximately 44 000 energies at the coupled cluster singles and doubles plus perturbative triples (CCSD(T))-F12a/haQZ (aug-cc-pVQZ for O and cc-pVQZ for H) level of theory, while the database for the three-body interaction consists of more than 36 000 energies at the CCSD(T)-F12a/haTZ (aug-cc-pVTZ for O, cc-pVTZ for H) level of theory. Two precise potentials are based on the invariant-polynomial technique and are compared to computationally faster ones obtained via “purified” symmetrization. All fits use reduced permutational symmetry appropriate for these non-covalent interactions. These intrinsic potentials are employed together with existing ones for H{sub 2}, H{sub 2}O, and (H{sub 2}O){sub 2}, to obtain full PESs for H{sub 2}(H{sub 2}O) and H{sub 2}(H{sub 2}O){sub 2}. Properties of these full PESs are presented, including a diffusion Monte Carlo calculation of the zero-point energy and wavefunction, and dissociation energy of the H{sub 2}(H{sub 2}O) dimer. These PESs together with an existing one for water clusters are used in a many-body representation of the PES of hydrogen clathrate hydrates, illustrated for H{sub 2}@(H{sub 2}O){sub 20}. An analysis of this hydrate is presented, including the electronic dissociation energy to remove H{sub 2} from the calculated equilibrium structure.

  10. Mechanism of acute depletion of plasma fibronectin following thermal injury in rats. Appearance of a gelatinlike ligand in plasma

    SciTech Connect

    Deno, D.C.; McCafferty, M.H.; Saba, T.M.; Blumenstock, F.A.

    1984-01-01

    Plasma fibronectin was depleted within 15 min following sublethal burn, followed by partial recovery at 8 h and complete restoration by 24 h in anesthetized rats. Radiolabeled /sup 75/Se-plasma fibronectin, injected intravenously before burn, was rapidly sequestered in burn skin as well as the liver. Fibronectin levels at 2 h postburn as detected by immunoassay vs. /sup 75/Se-plasma fibronectin indicated that more fibronectin was in the plasma than detected by electroimmunoassay. Crossed immunoelectrophoretic analysis of fibronectin in early postburn plasma demonstrated a reduced electrophoretic mobility of the fibronectin antigen. Addition of heparin or fibrin, both of which have affinity for fibronectin, to normal plasma was unable to reproduce this altered fibronectin electrophoretic pattern. In contrast, addition of gelatin or native collagen to normal plasma reproduced the abnormal electrophoretic pattern of fibronectin seen in burn plasma. Extracts of burned skin, but not extracts of normal skin, when added to normal plasma, elicited a similar altered electrophoretic pattern for fibronectin. By gel filtration, fibronectin in burn plasma had an apparent molecular weight approximately 40% greater than that observed in normal plasma. These data suggest the release into the blood of a gelatinlike ligand from burned skin, which complexes with plasma fibronectin. Thus, fibronectin deficiency acutely postburn appears mediated by (a) its accumulation at the site of burn injury; (b) its removal from the circulation by the liver; and (c) its presence in the plasma in a form that is less detectable by immunoassay.

  11. Antibacterial agent triclosan suppresses RBL-2H3 mast cell function

    SciTech Connect

    Palmer, Rachel K.; Hutchinson, Lee M.; Burpee, Benjamin T.; Tupper, Emily J.; Pelletier, Jonathan H.; Kormendy, Zsolt; Hopke, Alex R.; Malay, Ethan T.; Evans, Brieana L.; Velez, Alejandro; Gosse, Julie A.

    2012-01-01

    Triclosan is a broad-spectrum antibacterial agent, which has been shown previously to alleviate human allergic skin disease. The purpose of this study was to investigate the hypothesis that the mechanism of this action of triclosan is, in part, due to effects on mast cell function. Mast cells play important roles in allergy, asthma, parasite defense, and carcinogenesis. In response to various stimuli, mast cells degranulate, releasing allergic mediators such as histamine. In order to investigate the potential anti-inflammatory effect of triclosan on mast cells, we monitored the level of degranulation in a mast cell model, rat basophilic leukemia cells, clone 2H3. Having functional homology to human mast cells, as well as a very well defined signaling pathway leading to degranulation, this cell line has been widely used to gain insight into mast-cell driven allergic disorders in humans. Using a fluorescent microplate assay, we determined that triclosan strongly dampened the release of granules from activated rat mast cells starting at 2 μM treatment, with dose-responsive suppression through 30 μM. These concentrations were found to be non-cytotoxic. The inhibition was found to persist when early signaling events (such as IgE receptor aggregation and tyrosine phosphorylation) were bypassed by using calcium ionophore stimulation, indicating that the target for triclosan in this pathway is likely downstream of the calcium signaling event. Triclosan also strongly suppressed F-actin remodeling and cell membrane ruffling, a physiological process that accompanies degranulation. Our finding that triclosan inhibits mast cell function may explain the clinical data mentioned above and supports the use of triclosan or a mechanistically similar compound as a topical treatment for allergic skin disease, such as eczema. -- Highlights: ►The effects of triclosan on mast cell function using a murine mast cell model. ►Triclosan strongly inhibits degranulation of mast cells.

  12. New estimates of global CH4 and C2H6 production in the Precambrian crust

    NASA Astrophysics Data System (ADS)

    Sutcliffe, Chelsea N.; Lacrampe-Couloume, Georges; Ballentine, Chris J.; Sherwood Lollar, Barbara

    2015-04-01

    Saline fracture fluids found deep within the Precambrian shield possess isotopic and geochemical signatures consistent with prolonged water rock interaction. Noble gas-derived residence times of these fluids, on the order of millions to billions of years, highlight their significance as an ancient deep hydrosphere (Lippmann-Pipke et al., 2011; Holland et al., 2013). With mM concentrations of dissolved gases such as H2 and hydrocarbons, these fracture fluids are energy rich and capable of sustaining microbial communities of H2-utilizing methanogens and sulphate reducers (Lin et al., 2006). Globally, Precambrian rocks constitute over 70% of the volume of the continental crust (Goodwin, 1996) and represent a substantial under-investigated source of such dissolved gases. Recent calculations of global H2 production from these Precambrian Shield rocks, including both hydration reactions and radiolysis, doubles previous estimates to an increased rate of 0.4-2.3 x 1011 mol/yr (Sherwood Lollar et al., 2014). This has important consequences for hydrocarbon production, reflected in the high abundance of CH4 and C2H6 in dissolved fracture gases, up to 80 and 10 vol %, respectively. Given the long residence times of these fluids, hydrocarbon production could have persisted on geological timescales. To date, production from this source has not been incorporated into models of evolution of the early atmosphere. Additionally, the quantification of abiotic sources of methane and ethane in the analogous terrestrial Precambrian crust could contribute to our understanding of the origin of the episodic traces of methane recently detected on Mars (Webster et al., 2014). Investigating the origin of these gases has important implications for the global carbon cycle, as well as the distribution of life in the terrestrial deep subsurface and on other planets. We examine the isotopic evolution of these fracture fluids in the Canadian Shield and provide the first attempts to estimate methane

  13. Osmium(IV) complexes with 1H- and 2H-indazoles: tautomer identity versus spectroscopic properties and antiproliferative activity.

    PubMed

    Büchel, Gabriel E; Stepanenko, Iryna N; Hejl, Michaela; Jakupec, Michael A; Keppler, Bernhard K; Heffeter, Petra; Berger, Walter; Arion, Vladimir B

    2012-08-01

    A one-pot synthesis of osmium(IV) complexes with two different tautomers of indazole, 1H-indazole and 2H-indazole, namely (H(2)ind)[Os(IV)Cl(5)(2H-ind)] (1) and (H(2)ind)[Os(IV)Cl(5)(1H-ind)] (2) is reported. Both compounds have been comprehensively characterized by NMR spectroscopy, ESI (electrospray ionization) mass spectrometry, electronic absorption spectroscopy, IR spectroscopy, cyclic voltammetry and tested for antiproliferative activity in vitro in three human cancer cell lines, CH1 (ovarian carcinoma), A549 (non-small cell lung cancer) and SW480 (colon carcinoma), as well as in vivo in a Hep3B SCID mouse xeno-transplantation model. 2H-Indazole tautomer stabilization in 1 has been confirmed by X-ray diffraction.

  14. Phase-transfer induced room temperature ferromagnetic behavior in 1T@2H-MoSe2 nanosheets

    PubMed Central

    Xia, Baorui; Wang, Tongtong; Xiao, Wen; Zhang, Rongfang; Liu, Peitao; Ding, Jun; Gao, Daqiang; Xue, Desheng

    2017-01-01

    Manipulating electronic and magnetic properties of two-dimensional transitional-metal dichalcogenides has raised a lot of attention recently. Herein we report the synthesis and ferromagnetic properties of phase-transfer induced room temperature ferromagnetic behavior in 1 T@2H-MoSe2 nanosheets. Experimental results indicate the saturated magnetization of the 1 T@2H-MoSe2 compound increases first and then decreases as the increasing of 1 T-MoSe2 phase, where 65.58% 1 T-MoSe2 phase incorporation in 2H-MoSe2 could enhance the saturated magnetization from 0.32 memu/g to 8.36 memu/g. Besides, obvious magnetoresistance behaviors are observed in these samples, revealing their potential applications in future spintronics. PMID:28349939

  15. Dehydrogenation of N{sub 2}H{sub X} (X = 2 − 4) by nitrogen atoms: Thermochemical and kinetics

    SciTech Connect

    Spada, Rene Felipe Keidel; Araujo Ferrão, Luiz Fernando de; Roberto-Neto, Orlando; Machado, Francisco Bolivar Correto

    2013-11-21

    Thermochemical and kinetics of sequential hydrogen abstraction reactions from hydrazine by nitrogen atoms were studied. The dehydrogenation was divided in three steps, N{sub 2}H{sub 4} + N, N{sub 2}H{sub 3} + N, and N{sub 2}H{sub 2} + N. The thermal rate constants were calculated within the framework of canonical variational theory, with zero and small curvature multidimensional tunnelling corrections. The reaction paths were computed with the BB1K/aug-cc-pVTZ method and the thermochemical properties were improved with the CCSD(T)/CBS//BB1K/aug-cc-pVTZ approach. The first dehydrogenation step presents the lowest rate constants, equal to 1.22 × 10{sup −20} cm{sup 3} molecule{sup −1} s{sup −1} at 298 K.

  16. A first Late Glacial and Early Holocene coupled 18O and 2H biomarker isotope record from Gemuendener Maar, Germany

    NASA Astrophysics Data System (ADS)

    Zech, Michael; Bromm, Tobias; Hepp, Johannes; Benesch, Marianne; Sirocko, Frank; Glaser, Bruno; Zech, Roland

    2015-04-01

    During the last years, we developed a method for compound-specific d18O analyses of hemicellulose-derived sugars from plants, soils and sediment archives (Zech and Glaser, 2009; Zech et al., 2014). The coupling of respective d18O sugar results with d2H alkane results from paleosol and sediment climate archives proved to be a valuable innovative approach towards quantitative paleoclimate reconstruction (Hepp et al., 2014; Zech et al., 2013). Here we present a first coupled d18O sugar and d2H alkane biomarker record obtained for Late Glacial and Early Holocene sediments from the Gemuendener Maar in the Eifel, Germany. The d18O sugar biomarker record resembles the d18O ice core records of Greenland. The coupling with the d2H alkane biomarker results allows drawing further more quantitative paleocimate information in terms of (i) paleohumidity and (ii) d18O of paleoprecipitation.

  17. Detection of NO sub x,C2H4 concentrations by using CO and CO2 lasers

    NASA Technical Reports Server (NTRS)

    Gengchen, W.; Qinxin, K.

    1986-01-01

    A laser, especially the infrared line tunable laser, opens up a new way to monitor the atmospheric environment, and already has gotten effective practical application. One of the most serious problems in open path remote measurement at atmospheric pressure is the broadening effect which leads to increased linewidths, spectral interferences, and, as a result, tends to reduce detection sensitivity, so measuring laser wavelengths should be selected carefully, and interaction between the measuring wavelength and gas to be measured must be known very well. Therefore, N2O, No, NO2, CH4, NH3 and C2H4 absorption properties at some lines of CO and CO2 line tunable lasers were studied. The absorption coefficients of NO, NO2, and C2H4; some results on detection of NO sub x, C2H4 concentrations in both laboratory and field; and selection of measuring wavelengths and error analysis are discussed.

  18. Local structure and molecular motions in imidazolium hydrogen malonate crystal as studied by 2H and 13C NMR

    NASA Astrophysics Data System (ADS)

    Mizuno, M.; Chizuwa, M.; Umiyama, T.; Kumagai, Y.; Miyatou, T.; Ohashi, R.; Ida, T.; Tansho, M.; Shimizu, T.

    2015-04-01

    The local structure and molecular motion of the imidazolium hydrogen malonate crystal were investigated using solid-state 2H and 13C NMR. The imidazolium ion undergoes isotropic rotation, which is correlated with a defect in the crystal, as observed by 2H NMR broadline spectra above 263 K. A 180∘ flip of the imidazolium ion in the regular site was observed from 2H NMR quadrupole Carr-Purcell-Meiboom-Gill (QCPMG) spectra. The Grotthuss mechanism was accompanied by a 180∘ flip of the imidazolium ion in regular sites. Moreover, the proton transfer associated with the imidazolium ion of the defective crystal is important for proton conductivity of the imidazolium hydrogen malonate crystal.

  19. H2CO and N2H+ in Protoplanetary Disks: Evidence for a CO-ice Regulated Chemistry

    NASA Astrophysics Data System (ADS)

    Qi, Chunhua; Öberg, Karin I.; Wilner, David J.

    2013-03-01

    We present Submillimeter Array (SMA) observations of H2CO and N2H+ emission in the disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296 at 2''-6'' resolution and discuss the distribution of these species with respect to CO freezeout. The H2CO and N2H+ emission toward HD 163296 does not peak at the continuum emission center that marks the stellar position but is instead significantly offset. Using a previously developed model for the physical structure of this disk, we show that the H2CO observations are reproduced if H2CO is present predominantly in the cold outer disk regions. A model where H2CO is present only beyond the CO snow line (estimated at a radius of 160 AU) matches the observations well. We also show that the average H2CO excitation temperature, calculated from two transitions of H2CO observed in these two disks and a larger sample of disks around T Tauri stars in the DISCS (the Disk Imaging Survey of Chemistry with SMA) program, is consistent with the CO freezeout temperature of ~20 K. In addition, we show that N2H+ and H2CO line fluxes in disks are strongly correlated, indicative of co-formation of these species across the sample. Taken together, these results imply that H2CO and N2H+ are generally present in disks only at low temperatures where CO depletes onto grains, consistent with fast destruction of N2H+ by gas-phase CO, and in situ formation of H2CO through hydrogenation of CO ice. In this scenario H2CO, CH3OH, and N2H+ emission in disks should appear as rings with the inner edge at the CO midplane snow line. This prediction can be tested directly using observations from ALMA with higher resolution and better sensitivity.

  20. The anharmonic force field of ethylene, C2H4, by means of accurate ab initio calculations

    NASA Astrophysics Data System (ADS)

    Martin, Jan M. L.; Lee, Timothy J.; Taylor, Peter R.; François, Jean-Pierre

    1995-08-01

    The quartic force field of ethylene, C2H4, has been calculated ab initio using augmented coupled cluster, CCSD(T), methods and correlation consistent basis sets of spdf quality. For the 12C isotopomers C2H4, C2H3D, H2CCD2, cis-C2H2D2, trans-C2H2D2, C2HD3, and C2D4, all fundamentals are reproduced to better than 10 cm-1, except for three cases where the error is 11 cm-1. Our calculated harmonic frequencies suggest a thorough revision of the accepted experimentally derived values. Our computed and empirically corrected re geometry differs substantially from experimentally derived values: Both the predicted rz geometry and the ground-state rotational constants are, however, in excellent agreement with experiment, suggesting revision of the older values. Anharmonicity constants agree well with experiment for stretches, but differ substantially for stretch-bend interaction constants, due to equality constraints in the experimental analysis that do not hold. Improved criteria for detecting Fermi and Coriolis resonances are proposed and found to work well, contrary to the established method based on harmonic frequency differences that fails to detect several important resonances for C2H4 and its isotopomers. Surprisingly good results are obtained with a small spd basis at the CCSD(T) level. The well-documented strong basis set effect on the ν8 out-of-plane motion is present to a much lesser extent when correlation-optimized polarization functions are used. Complete sets of anharmonic, rovibrational coupling, and centrifugal distortion constants for the isotopomers are available as supplementary material to the paper via the World-Wide Web.

  1. Controls on compound specific 2H/1H of leaf waxes along a North American monsoonal transect

    NASA Astrophysics Data System (ADS)

    Berke, M. A.; Tipple, B. J.; Hambach, B.; Ehleringer, J. R.

    2013-12-01

    The use of hydrogen isotope ratios of sedimentary n-alkanes from leaf waxes has become an important method for the reconstruction of paleohydrologic conditions. Ideally, the relationship between lipid 2H/1H values and source water is one-to-one. But the extent to which the 2H/1H values are altered between initial source water and lipid 2H/1H values varies by plant type and environment. Additionally, these variables may be confounded by use of varied source waters by plants in the same ecosystem. Here, we use a transect study across the arid southwestern landscape of the United States, which is heavily influenced by the North American Monsoon, to study the variability in 2H/1H values of leaf waxes in co-occurring plants from Tucson, Arizona to Salt Lake City, Utah. Perennials, including rabbit brush (Chrysothamnus nauseosus), sagebrush (Artemisia tridentata), and gambel oak (Quercus gambelii) and an annual plant, sunflower (Helianthus annuus), were chosen for their wide geographic distribution along the entire transect. Our results indicate that n-alkane distribution for each plant was similar and generally showed no relationship to environmental variables (elevation, mean annual precipitation, latitude, and temperature). However, we find evidence of n-alkane 2H/1H value relating to transect latitude, a relationship that is weaker for all samples combined than the strong individual correlation for each plant species. Further, these 2H/1H values suggest that not all plants in the monsoon region utilize monsoon-delivered precipitation. These results imply an adaptation to discontinuous spatial coverage and amount of monsoonal precipitation and suggest care must be taken when assuming consistent source water for different plants, particularly in regions with highly seasonal precipitation delivery.

  2. ARP: Automatic rapid processing for the generation of problem dependent SAS2H/ORIGEN-s cross section libraries

    SciTech Connect

    Leal, L.C.; Hermann, O.W.; Bowman, S.M.; Parks, C.V.

    1998-04-01

    In this report, a methodology is described which serves as an alternative to the SAS2H path of the SCALE system to generate cross sections for point-depletion calculations with the ORIGEN-S code. ARP, Automatic Rapid Processing, is an algorithm that allows the generation of cross-section libraries suitable to the ORIGEN-S code by interpolation over pregenerated SAS2H libraries. The interpolations are carried out on the following variables: burnup, enrichment, and water density. The adequacy of the methodology is evaluated by comparing measured and computed spent fuel isotopic compositions for PWR and BWR systems.

  3. Synthesis and Biological Evaluation of Novel Aryl-2H-pyrazole Derivatives as Potent Non-purine Xanthine Oxidase Inhibitors.

    PubMed

    Sun, Zhi-Gang; Zhou, Xiao-Jing; Zhu, Ming-Li; Ding, Wen-Ze; Li, Zhen; Zhu, Hai-Liang

    2015-01-01

    A series of aryl-2H-pyrazole derivatives were synthesized and evaluated for inhibitory activity against xanthine oxidase in vitro as potent xanthine oxidase inhibitors. Among them, 2 aryl-2H-pyrazole derivatives showed significant inhibitory activities against xanthine oxidase. Compound 19 emerged as the most potent xanthine oxidase inhibitor (IC50=9.8 µM) in comparison with allopurinol (IC50=9.5 µM). The docking study revealed that compound 19 might have strong interactions with the active site of xanthine oxidase. This compound is thus a new candidate for further development for the treatment of gout.

  4. ANALYTICAL FORMULAE OF MOLECULAR ION ABUNDANCES AND THE N{sub 2}H{sup +} RING IN PROTOPLANETARY DISKS

    SciTech Connect

    Aikawa, Yuri; Furuya, Kenji; Nomura, Hideko; Qi, Chunhua

    2015-07-10

    We investigate the chemistry of ion molecules in protoplanetary disks, motivated by the detection of the N{sub 2}H{sup +} ring around TW Hya. While the ring inner radius coincides with the CO snow line, it is not apparent why N{sub 2}H{sup +} is abundant outside the CO snow line in spite of the similar sublimation temperatures of CO and N{sub 2}. Using the full gas-grain network model, we reproduced the N{sub 2}H{sup +} ring in a disk model with millimeter grains. The chemical conversion of CO and N{sub 2} to less volatile species (sink effect hereinafter) is found to affect the N{sub 2}H{sup +} distribution. Since the efficiency of the sink depends on various parameters such as activation barriers of grain-surface reactions, which are not well constrained, we also constructed the no-sink model; the total (gas and ice) CO and N{sub 2} abundances are set constant, and their gaseous abundances are given by the balance between adsorption and desorption. Abundances of molecular ions in the no-sink model are calculated by analytical formulae, which are derived by analyzing the full-network model. The N{sub 2}H{sup +} ring is reproduced by the no-sink model, as well. The 2D (R-Z) distribution of N{sub 2}H{sup +}, however, is different among the full-network model and no-sink model. The column density of N{sub 2}H{sup +} in the no-sink model depends sensitively on the desorption rate of CO and N{sub 2} and the cosmic-ray flux. We also found that N{sub 2}H{sup +} abundance can peak at the temperature slightly below the CO sublimation, even if the desorption energies of CO and N{sub 2} are the same.

  5. Regioselective synthesis of 2H-indazoles using a mild, one-pot condensation-Cadogan reductive cyclization.

    PubMed

    Genung, Nathan E; Wei, Liuqing; Aspnes, Gary E

    2014-06-06

    An operationally simple and efficient one-pot synthesis of 2H-indazoles from commercially available reagents is reported. Ortho-imino-nitrobenzene substrates, generated via condensation, undergo reductive cyclization promoted by tri-n-butylphosophine to afford substituted 2H-indazoles under mild reaction conditions. A variety of electronically diverse ortho-nitrobenzaldehydes and anilines were examined. To further extend the scope of the transformation, aliphatic amines were also employed to form N2-alkyl indazoles selectively under the optimized reaction conditions.

  6. Second-meal effects of pulses on blood glucose and subjective appetite following a standardized meal 2 h later.

    PubMed

    Mollard, Rebecca C; Wong, Christina L; Luhovyy, Bohdan L; Cho, France; Anderson, G Harvey

    2014-07-01

    This study investigated whether pulses (chickpeas, yellow peas, navy beans, lentils) have an effect on blood glucose (BG) and appetite following a fixed-size meal 2 h later. Over the following 2 h, all pulses lowered BG area under the curve (AUC) and lentils reduced appetite AUC compared with white bread (p < 0.05). Following the meal, BG was lower after lentils and chickpeas at 150 and 165 min, and AUC was lower after lentils compared with white bread (p < 0.05).

  7. PLASMA DEVICE

    DOEpatents

    Gow, J.D.; Wilcox, J.M.

    1961-12-26

    A device is designed for producing and confining highenergy plasma from which neutrons are generated in copious quantities. A rotating sheath of electrons is established in a radial electric field and axial magnetic field produced within the device. The electron sheath serves as a strong ionizing medium to gas introdueed thereto and also functions as an extremely effective heating mechanism to the resulting plasma. In addition, improved confinement of the plasma is obtained by ring magnetic mirror fields produced at the ends of the device. Such ring mirror fields are defined by the magnetic field lines at the ends of the device diverging radially outward from the axis of the device and thereafter converging at spatial annular surfaces disposed concentrically thereabout. (AFC)

  8. PLASMA DEVICE

    DOEpatents

    Baker, W.R.; Brathenahl, A.; Furth, H.P.

    1962-04-10

    A device for producing a confined high temperature plasma is described. In the device the concave inner surface of an outer annular electrode is disposed concentrically about and facing the convex outer face of an inner annular electrode across which electrodes a high potential is applied to produce an electric field there between. Means is provided to create a magnetic field perpendicular to the electric field and a gas is supplied at reduced pressure in the area therebetween. Upon application of the high potential, the gas between the electrodes is ionized, heated, and under the influence of the electric and magnetic fields there is produced a rotating annular plasma disk. The ionized plasma has high dielectric constant properties. The device is useful as a fast discharge rate capacitor, in controlled thermonuclear research, and other high temperature gas applications. (AEC)

  9. Azirinium ylides from α-diazoketones and 2H-azirines on the route to 2H-1,4-oxazines: three-membered ring opening vs 1,5-cyclization

    PubMed Central

    Rostovskii, Nikolai V; Khlebnikov, Alexander F; Starova, Galina L; Avdontseva, Margarita S

    2015-01-01

    Summary Strained azirinium ylides derived from 2H-azirines and α-diazoketones under Rh(II)-catalysis can undergo either irreversible ring opening across the N–C2 bond to 2-azabuta-1,3-dienes that further cyclize to 2H-1,4-oxazines or reversibly undergo a 1,5-cyclization to dihydroazireno[2,1-b]oxazoles. Dihydroazireno[2,1-b]oxazoles derived from 3-aryl-2H-azirines and 3-diazoacetylacetone or ethyl diazoacetoacetate are able to cycloadd to acetyl(methyl)ketene generated from 3-diazoacetylacetone under Rh(II) catalysis to give 4,6-dioxa-1-azabicyclo[3.2.1]oct-2-ene and/or 5,7-dioxa-1-azabicyclo[4.3.1]deca-3,8-diene-2-one derivatives. According to DFT calculations (B3LYP/6-31+G(d,p)), the cycloaddition can involve two modes of nucleophilic attack of the dihydroazireno[2,1-b]oxazole intermediate on acetyl(methyl)ketene followed by aziridine ring opening into atropoisomeric oxazolium betaines and cyclization. Azirinium ylides generated from 2,3-di- and 2,2,3-triaryl-substituted azirines give rise to only 2-azabuta-1,3-dienes and/or 2H-1,4-oxazines. PMID:25815084

  10. Spectroscopic studies of microwave plasmas containing hexamethyldisiloxane

    NASA Astrophysics Data System (ADS)

    Nave, A. S. C.; Mitschker, F.; Awakowicz, P.; Röpcke, J.

    2016-10-01

    Low-pressure microwave discharges containing hexamethyldisiloxane (HMDSO) with admixtures of oxygen and nitrogen, used for the deposition of silicon containing films, have been studied spectroscopically. Optical emission spectroscopy (OES) in the visible spectral range has been combined with infrared laser absorption spectroscopy (IRLAS). The experiments were carried out in order to analyze the dependence of plasma chemical phenomena on power and gas mixture at relatively low pressures, up to 50 Pa, and power values, up to 2 kW. The evolution of the concentration of the methyl radical, CH3, and of seven stable molecules, HMDSO, CH4, C2H2, C2H4, C2H6, CO and CO2, was monitored in the plasma processes by in situ IRLAS using tunable lead salt diode lasers (TDL) and external-cavity quantum cascade lasers (EC-QCL) as radiation sources. To achieve reliable values for the gas temperature inside and outside the plasma bulk as well as for the temperature in the plasma hot and colder zones, which are of great importance for calculation of species concentrations, three different methods based on emission and absorption spectroscopy data of N2, CH3 and CO have been used. In this approach line profile analysis has been combined with spectral simulation methods. The concentrations of the various species, which were found to be in the range between 1011 to 1015 cm-3, are in the focus of interest. The influence of the discharge parameters power, pressure and gas mixture on the molecular concentrations has been studied. To achieve further insight into general plasma chemical aspects the dissociation of the HMDSO precursor gas including its fragmentation and conversion to the reaction products was analyzed in detail.

  11. Chemical Kinetic Studies Using Ultraviolet Cavity Ring-Down=20 Spectroscopic Detection: Self-Reaction of Ethyl and Ethylperoxy Radicals=20 and the Reaction, O2 + C_2H_5arrow C_2H_5O_2

    NASA Astrophysics Data System (ADS)

    Atkinson, Dean B.; Hudgens, Jeffrey W.

    1997-04-01

    A laser-photolysis reactor that uses cavity ring-down spectroscopic (CRDS) detection was characterized and used to measure the rate coefficients of three benchmark reactions of known importance to ethane oxidation. At 295 K and approximately 700 Pa (5.5 torr) total pressure we obtained the self-reaction rate coefficients of k =3D 1.99(±0.44)×10-11=A0cm^3s-1 for C_2H5 + C_2H5 and k =3D 7.26(±2.4)×10-14=A0cm^3s-1 for C_2H_5O2 + C_2H_5O_2. We obtained k =3D 2.7(±0.3)×10-12=A0cm^3s-1 for the pseudo-first order association reaction, O2 + C_2H5 + Ar. We also measured the absorption cross-sections of the ethyl radical, σ _220 =3D 252(±42)×10-20 cm^2 and σ _222 =3D 206(±42)×10-20 cm^2. Stated uncertainties are ±2σ. The new rate coefficients agree with those obtained previously by other methods. The agreement confirms that ultraviolet CRDS detection is a viable tool for experimental determinations of gas-phase radical-radical and radical-molecule reaction rate coefficients.

  12. The ^2H(e,e'p)n Reaction at High Four-Momentum Transfer

    SciTech Connect

    Hassan Ibrahim

    2006-12-31

    in June 2002 and the high Q^2 kinematics were completed in November 2002. Before the start of the experiment many preparations were made to assure the quality of the collected data. Approximately two Terabytes of data were collected by the end of the experiment. The cross section results in this dissertation show clearly the effect of final state interactions between the two final state nucleons. The cross section ratio to the Laget PWBA+FSI calculation has a wiggle at P_miss ~ 300 MeV. It is yet to be seen whether this is merely due to the lack of MEC and IC in the present theoretical calculation. However, a similar feature was observed in a previous Hall A experiment. Further, discrepancies at very low P_miss cast some doubt on neutron form factor measurements using the deuteron as target. This study will add to the already growing body of systematic data for the ^2H(e,e'p)n reaction to better understand the N N short range and to provide vital input for heavier nuclei.

  13. Sterilization Effect of Wet Oxygen Plasma in the Bubbling Method.

    PubMed

    Tamazawa, Kaoru; Shintani, Hideharu; Tamazawa, Yoshinori; Shimauchi, Hidetoshi

    2015-01-01

    A new low-temperature sterilization method to replace the ethylene oxide gas sterilization is needed. Strong bactericidal effects of OH and O2H radicals are well known. The purpose of this study was to evaluate the sterilization effect of wet oxygen ("O2+H2O") plasma in the bubbling method, confirming the effect of humidity. Sterility assurance was confirmed by using a biological indicator (Geobacillus stearothermophilus ATCC7953, Namsa, USA). One hundred and eight samples (10(5) spores/carrier) were divided into three groups of 36 in each for treatment with a different type of gas (O2, O2+H2O, Air+H2O). Plasma processing was conducted using a plasma ashing apparatus (13.56 MHz, PACK-3(®), Y. A. C., Japan) under various gas pressures (13, 25, 50 Pa) and gas flows (50, 100, 200 sccm). Fixed plasma treatment parameters were power at 150 W, temperature of 60 ℃, treatment time of 10 min. The samples after treatment were incubated in trypticase soy broth at 58 ℃ for 72 h. The negative culture rate in the "O2+H2O" group was significantly (Mantel-Haenszel procedure, p<0.001) higher than in the other gas groups. It is suggested that the significant sterilization effect of the "O2+H2O" group depends on the bubbling method which is the method of introducing vapor into the chamber. The bubbling method seems able to generate OH and O2H radicals in a stable way.

  14. Plasma separation

    NASA Technical Reports Server (NTRS)

    Steurer, Wolfgang

    1992-01-01

    This process employs a thermal plasma for the separation and production of oxygen and metals. It is a continuous process that requires no consumables and relies entirely on space resources. The almost complete absence of waste renders it relatively clean. It can be turned on or off without any undesirable side effects or residues. The prime disadvantage is its high power consumption.

  15. Plasma technology

    SciTech Connect

    Herlitz, H.G.

    1986-11-01

    This paper describes the uses of plasma technology for the thermal destruction of hazardous wastes such as PCBs, dioxins, hydrocarbons, military chemicals and biological materials; for metals recovery from steel making dusts. One advantage of the process is that destruction of wastes can be carried out on site. Systems in several countries use the excess thermal energy for district heating.

  16. Infrared Absorption in Partially Disordered K2CuCl4·2H2O-TYPE Compounds

    NASA Astrophysics Data System (ADS)

    Grado-Caffaro, M. A.; Grado-Caffaro, M.

    An approximate relationship for the coefficient of optical absorption valid, in principle, for the infrared range, corresponding to K2CuCl4·2H2O-type compounds is derived from a model for electronic density of states. These compounds are assumed to be partially disordered from the point of view of the general theory of solids.

  17. Laser photoacoustic trace detection of C2H4 revealing adverse environmental effects of atmospheric pollution on plant material

    NASA Astrophysics Data System (ADS)

    Harren, Frans J. M.; Petruzzelli, Luciana

    1993-03-01

    The photoacoustic detection method for trace gases in the atmosphere is well developed towards very low limits of detection, in the last years. Due to the combination of a sensitive photoacoustic cell placed intracavity in an infrared CO2 laser we were able to detect C2H4 at ultralow (< 1:1011) concentrations within 10 seconds, C2H4 in a plant hormone which seems to play an important role throughout all the life stages of a plant, including seed germination. In addition, various types of stress have been reported to promote ethylene production from different plant tissues. As part of our ongoing research on the role of ethylene in seed germination, we have compared our laser photoacoustic set-up to a gaschromatograph for measuring C2H4 produced by germinating Pisum sativum L. seeds within the first days of imbibition. C2H4 evolution by intact seeds shows a maximum at about 25 hours of germination. Thereafter, the rate of ethylene measured by gaschromatograph continues to decrease while that measured by the laser-driven photoacoustic system shows further increases. Most of the ethylene produced by seeds is found in isolated embryonic axes. The fumigation with ozone affects the growth of seedlings and their ethylene evolution.

  18. Production of ultracold neutrons from a cold neutron beam on a {sup 2}H{sub 2} target

    SciTech Connect

    Atchison, F.; Brandt, B. van den; Brys, T.; Daum, M.; Fierlinger, P.; Hautle, P.; Henneck, R.; Heule, S.; Kasprzak, M.; Kirch, K.; Konter, J.A.; Michels, A.; Pichlmaier, A.; Wohlmuther, M.; Wokaun, A.; Bodek, K.; Szerer, U.; Geltenbort, P.; Zmeskal, J.; Pokotilovskiy, Y.

    2005-05-01

    The production rates of ultracold neutrons (UCN) from cold neutrons on gaseous, liquid, and solid deuterium targets have been measured. The comparison of the measured and calculated UCN production on gaseous {sup 2}H{sub 2} is used to calibrate the simulated target extraction and transport efficiencies of the experimental apparatus. The production cross section in solid {sup 2}H{sub 2} at 8 K for UCN with energies between 0 and 250 neV is R{sub solid,8K}={sigma}{sub solid,8K}{sup CN{yields}}U{sup CN} {rho}=(1.11{+-}0.23)x10{sup -8} cm{sup -1}. This value is consistent with other experiments in which UCN had been extracted from {sup 2}H{sub 2}. The value also agrees with calculations using the incoherent approximation and a simple Debye model and corroborates predictions for UCN densities expected at the high-intensity UCN source at the Paul Scherrer Institut. The temperature dependence of the UCN production in solid {sup 2}H{sub 2} down to 8 K can be explained within the same model when multiple-phonon excitation is included.

  19. A continuous-flow crushing device for on-line delta2H analysis of fluid inclusion water in speleothems.

    PubMed

    Vonhof, Hubert B; van Breukelen, Martin R; Postma, Onno; Rowe, Peter J; Atkinson, Tim C; Kroon, Dick

    2006-01-01

    A method for the isotope analysis of fluid inclusion water in speleothem calcite is presented. The technique is based on a commercially available continuous-flow pyrolysis furnace (ThermoFinnigan TC-EA). The main adaptation made to the standard TC-EA configuration is the addition of a crusher and cold trap unit, which is connected to the carrier gas inlet at the top of the TC-EA reactor tube. A series of tests conducted with this device shows that: (1) standard waters, injected in the crusher, and passed through a cryogenic trapping routine, yield accurate delta(2)H values; (2) crushed cubes of speleothem calcite from two Peruvian caves with rather dissimilar seepage water delta(2)H values yield fluid inclusion delta(2)H values in good accordance with these drip waters. The clear advantage of this continuous-flow technique for fluid inclusion isotope analysis is that it is relatively quick compared with other techniques. Since the conditions of water sample introduction into the TC-EA are identical for delta(2)H and delta(18)O analysis, we expect that only limited adaptations to the extraction procedure are required to provide delta(18)O analysis of fluid inclusion samples with the same device.

  20. Induction of the fatty acid 2-hydroxylase (FA2H) gene by Δ(9)-tetrahydrocannabinol in human breast cancer cells.

    PubMed

    Takeda, Shuso; Harada, Mari; Su, Shengzhong; Okajima, Shunsuke; Miyoshi, Hiroko; Yoshida, Kazutaka; Nishimura, Hajime; Okamoto, Yoshiko; Amamoto, Toshiaki; Watanabe, Kazuhito; Omiecinski, Curtis J; Aramaki, Hironori

    2013-01-01

    To investigate gene(s) being regulated by ∆(9)-tetrahydrocannabinol (∆(9)-THC), we performed DNA microarray analysis of human breast cancer MDA-MB-231 cells, which are poorly differentiated breast cancer cells, treated with ∆(9)-THC for 48 hr at an IC50 concentration of approximately 25 µM. Among the highly up-regulated genes (> 10-fold) observed, fatty acid 2-hydroxylase (FA2H) was significantly induced (17.8-fold). Although the physiological role of FA2H has not yet been fully understood, FA2H has been shown to modulate cell differentiation. The results of Oil Red O staining after ∆(9)-THC exposure showed the distribution of lipid droplets (a sign of the differentiated phenotype) in cells. Taken together, the results obtained here indicate that FA2H is a novel ∆(9)-THC-regulated gene, and that ∆(9)-THC induces differentiation signal(s) in poorly differentiated MDA-MB-231 cells.

  1. A theoretical study of the CH[sub 3]+C[sub 2]H[sub 2] reaction

    SciTech Connect

    Diau, E.W.; Lin, M.C. ); Melius, C.F. )

    1994-09-01

    The rate constants for the formation of various products in the CH[sub 3]+C[sub 2]H[sub 2] reaction have been computed by multichannel RRKM calculations using the molecular and transition-state parameters predicted by the BAC-MP4 method. The results of the calculations agree quantitatively with experimental data obtained under varying conditions: [ital T]=300--2200 K, [ital P]=30--2500 Torr. At low temperatures ([ital T][lt]1300 K), the CH[sub 3]+C[sub 2]H[sub 2] reaction is dominated by the addition-stabilization process producing CH[sub 3]C[sub 2]H[sub 2]. Under high-temperature ([ital T][gt]1400 K) and atmospheric-pressure conditions, the reaction occurs primarily by the CH[sub 3]-for-H displacement process producing CH[sub 3]C[sub 2]H, a likely source of the C[sub 3]H[sub 3] radical (which has recently been shown to be a key precursor of C[sub 6]H[sub 6] in hydrocarbon combustion reactions).

  2. MEASURING OF PROTEIN SYNTHESIS USING METABOLIC 2H-LABELING, HIGH-RESOLUTION MASS SPECTROMETRY AND AN ALGORITHM

    PubMed Central

    Kasumov, Takhar; Ilchenko, Sergey; Li, Ling; Rachdaoui, Nadia; Sadigov, Rovshan; Willard, Belinda; McCullough, Arthur J.; Previs, Stephen

    2013-01-01

    We recently developed a method for estimating protin dynamics in vivo with 2H2O using MALDI-TOF MS (Rachdaoui N. et al., MCP, 8, 2653-2662, 2009) and we confirmed that 2H-labeling of many hepatic free amino acids rapidly equilibrated with body water. Although this is a reliable method, it required modest sample purification and necessitated the determination of tissue-specific amino acid labeling. Another approach for quantifying protein kinetics is to measure the 2H-enrichments of body water (precursor) and protein-bound amino acid or proteolytic peptide (product) and to estimate how many copies of deuterium are incorporated into a product. In this study we have used nanospray LTQ-FTICR mass spectrometry to simultaneously measure the isotopic enrichment of peptides and protein-bound amino acids. A mathematical algorithm was developed to aid the data processing. The most notable improvement centers on the fact that the precursor:product labeling ratio can be obtained by measuring the labeling of water and a protein(s) (or peptides) of interest, therein minimizing the need to measure the amino acid labeling. As a proof of principle, we demonstrate that this approach can detect the effect of nutritional status on albumin synthesis in rats given 2H2O. PMID:21256107

  3. Ligand-promoted alkylation of C(sp3)-H and C(sp2)-H bonds.

    PubMed

    Zhu, Ru-Yi; He, Jian; Wang, Xiao-Chen; Yu, Jin-Quan

    2014-09-24

    9-Methylacridine was identified as a generally effective ligand to promote a Pd(II)-catalyzed C(sp(3))-H and C(sp(2))-H alkylation of simple amides with various alkyl iodides. This alkylation reaction was applied to the preparation of unnatural amino acids and geometrically controlled tri- and tetrasubstituted acrylic acids.

  4. Identification of Unsaturated and 2H Polyfluorocarboxylate Homologous Series and Their Detection in Environmental Samples and as Polymer Degradation Products

    EPA Science Inventory

    A pair of homologous series of polyfluorinated degradation products have been identified, both having structures similar to perfluorocarboxylic acids but (i) having a H substitution for F on the α carbon for 2H polyfluorocarboxylic acids (2HPFCAs) and (ii) bearing a double ...

  5. Theoretical study of the potential energy surface governing the stereochemistry in ClC sub 2 H sub 4 reactions

    SciTech Connect

    Engels, B.; Peyerimhoff, S.D. ); Skell, P.S. )

    1990-02-22

    Large-scale multireference configuration interaction calculations in a double-{xi}-type AO basis including polarization functions are carried out for the potential surface of the ClC{sub 2}H{sub 4} system. The charge distribution for various extreme points of the surface is discussed. The absolute minimum is found for an asymmetric ClC{sub 2}H{sub 4} structure. The symmetrical bridged nuclear conformation is also found to be stable with respect to dissociation into Cl + C{sub 2}H{sub 4}. The activation energy for rotation about the C-C axis is calculated to be around 18 kJ/mol, which is comparable to that for the 1,2 migration (around 26 kJ mol). The stereochemistry is governed by the fact that addition of Cl to C{sub 2}H{sub 4} (or dissociation) is a two-step reaction proceeding through a symmetrical intermediate. The direct addition pathway possesses a small barrier of about 8 kJ/mol.

  6. Synthesis, structure, and properties of the noncentrosymmetric hydrated borate Na(2)B(5)O(8)(OH).2H(2)O.

    PubMed

    Wang, Yongjiang; Pan, Shilie; Tian, Xuelin; Zhou, Zhongxiang; Liu, Gang; Wang, Jide; Jia, Dianzeng

    2009-08-17

    Single crystal of hydrated sodium borate Na(2)B(5)O(8)(OH).2H(2)O has been grown with sizes up to 5 x 5 x 3 mm(3) under mild hydrothermal conditions at 180 degrees C. The structure is determined by single-crystal X-ray diffraction and further characterized by IR and TG analyses. It crystallizes in the orthorhombic space group Pna2(1), with a = 11.967(2) A, b = 6.5320(13) A, c = 11.126(2) A, Z = 4, R1 = 0.0183, and wR2 = 0.0483. The crystal structure of Na(2)B(5)O(8)(OH).2H(2)O is made up of Na-O polyhedra, and [B(5)O(8)(OH)](2-) polyborate anions. Transmittance spectrum is performed on the Na(2)B(5)O(8)(OH).2H(2)O crystal, which shows an absorption edge less than 190 nm in the UV region. The powder second-harmonic generation intensity measured by the Kurtz-Perry method indicates that Na(2)B(5)O(8)(OH).2H(2)O is about half that of KH(2)PO(4) (KDP).

  7. Atomic structures and electronic properties of 2H-NbSe{sub 2}: The impact of Ti doping

    SciTech Connect

    Li, Hongping E-mail: zcwang@wpi-aimr.tohoku.ac.jp; Chen, Lin; Zhang, Kun; Liang, Jiaqing; Tang, Hua; Li, Changsheng; Liu, Xiaojuan; Meng, Jian; Wang, Zhongchang E-mail: zcwang@wpi-aimr.tohoku.ac.jp

    2014-09-14

    Layered transition metal dichalcogenides have aroused renewed interest as electronic materials, yet their electronic performances could be modified by chemical doping. Here, we perform a systematic first-principles calculation to investigate the effect of Ti doping on atomic structure and electronic properties of the 2H-NbSe{sub 2}. We consider a total of three possible Ti-doping models and find that both the substitution and intercalated models are chemically preferred with the intercalation model being more favorable than the substitution one. Structural analyses reveal a slight lattice distortion triggered by Ti doping, but the original structure of 2H-NbSe{sub 2} is maintained. We also observe an expansion of c axis in the substituted model, which is attributed to the reduced van der Waals interaction arising from the increased Se-Se bond length. Our calculations also predict that the electron transport properties can be enhanced by the Ti doping, especially for the Ti-intercalated 2H-NbSe{sub 2}, which should be beneficial for the realization of superconductivity. Furthermore, the covalence element is found in the Ti-Se bonds, which is ascribed to the hybridization of Ti 3d and Se 4p orbitals. The findings indicate that doping of transition metals can be regarded as a useful way to tailor electronic states so as to improve electron transport properties of 2H-NbSe{sub 2}.

  8. Constraints on Asian and European sources of methane from CH4-C2H6-CO correlations in Asian outflow

    NASA Astrophysics Data System (ADS)

    Xiao, Yaping; Jacob, Daniel J.; Wang, James S.; Logan, Jennifer A.; Palmer, Paul I.; Suntharalingam, Parvadha; Yantosca, Robert M.; Sachse, Glen W.; Blake, Donald R.; Streets, David G.

    2004-08-01

    Aircraft observations of Asian outflow from the Transport and Chemical Evolution Over the Pacific (TRACE-P) aircraft mission over the NW Pacific (March and April 2001) show large CH4 enhancements relative to background, as well as strong CH4-C2H6-CO correlations that provide signatures of regional sources. We apply a global chemical transport model simulation of the CH4-C2H6-CO system for the TRACE-P period to interpret these observations in terms of CH4 sources and to explore in particular the unique constraints from the CH4-C2H6-CO correlations. We use as a priori a global CH4 source inventory constrained with National Oceanic and Atmospheric Administration (NOAA) Climate Monitoring and Diagnostics Laboratory (CMDL) surface observations [Wang et al., 2004]. We find that the observed CH4 concentration enhancements and CH4-C2H6-CO correlations in Asian outflow in TRACE-P are determined mainly by anthropogenic emissions from China and Eurasia (defined here as Europe and eastern Russia), with only little contribution from tropical sources (wetlands and biomass burning). The a priori inventory overestimates the observed CH4 enhancements and shows regionally variable biases for the CH4/C2H6 slope. The CH4/CO slopes are simulated without significant bias. Matching both the observed CH4 enhancements and the CH4-C2H6-CO slopes in Asian outflow requires increasing the east Asian anthropogenic source of CH4, and decreasing the Eurasian anthropogenic source, by at least 30% for both. The need to increase the east Asian source is driven by the underestimate of the CH4/C2H6 slope in boundary layer Chinese outflow. The Streets et al. [2003] anthropogenic emission inventory for east Asia fits this constraint by increasing CH4 emissions from that region by 40% relative to the a priori, largely because of higher livestock and landfill source estimates. Eurasian sources (mostly European) then need to be reduced by 30-50% from the a priori value of 68 Tg yr-1. The decrease of

  9. N2H+ and N15NH+ toward the prestellar core 16293E in L1689N

    NASA Astrophysics Data System (ADS)

    Daniel, F.; Faure, A.; Pagani, L.; Lique, F.; Gérin, M.; Lis, D.; Hily-Blant, P.; Bacmann, A.; Roueff, E.

    2016-07-01

    Context. Understanding the processes that could lead to an enrichment of molecules in 15N atoms is of particular interest because this may shed light on the relatively strong variations observed in the 14N/15N ratio in various solar system environments. Aims: The sample of molecular clouds where 14N/15N ratios have been measured currently is small and has to be enlarged to allow statistically significant studies. In particular, the N2H+ molecule currently shows the broadest spread of 14N/15N ratios in high-mass star-forming regions. However, the 14N/15N ratio in N2H+ was obtained in only two low-mass star-forming regions (L1544 and B1b). We here extend this sample to a third dark cloud. Methods: We targeted the 16293E prestellar core, where the N15NH+J = 1-0 line was detected. Using a model previously developed for the physical structure of the source, we solved the molecular excitation with a nonlocal radiative transfer code. For this purpose, we computed specific collisional rate coefficients for the N15NH+-H2 collisional system. As a first step of the analysis, the N2H+ abundance profile was constrained by reproducing the N2H+J = 1-0 and 3-2 maps. A scaling factor was then applied to this profile to match the N15NH+J = 1-0 spectrum. Results: We derive a column density ratio N2H+/N15NH. Conclusions: We performed a detailed analysis of the excitation of N2H+ and N15NH+ in the direction of the 16293E core with modern models that solve the radiative transfer and with the most accurate collisional rate coefficients available to date. We obtained the third estimate of the N2H+/N15NH+ column density ratio in the direction of a cold prestellar core. The current estimate ~330 agrees with the typical value of the elemental isotopic ratio in the local interstellar medium. It is lower than in some other cores, however, where values as high as 1300 have been reported.

  10. First-principles analysis of C2H2 molecule diffusion and its dissociation process on the ferromagnetic bcc-Fe110 surface.

    PubMed

    Ikeda, Minoru; Yamasaki, Takahiro; Kaneta, Chioko

    2010-09-29

    Using the projector-augmented plane wave method, we study diffusion and dissociation processes of C(2)H(2) molecules on the ferromagnetic bcc-Fe(110) surface and investigate the formation process of graphene created by C(2)H(2) molecules. The most stable site for C(2)H(2) on the Fe surface is a hollow site and its adsorption energy is - 3.5 eV. In order to study the diffusion process of the C(2)H(2) molecule, the barrier height energies for the C atom, C(2)-dimer and CH as well as the C(2)H(2) molecule are estimated using the nudged elastic band method. The barrier height energy for C(2)H(2) is 0.71 eV and this indicates that the C(2)H(2) diffuses easily on this FM bcc-Fe(110) surface. We further investigate the two step dissociation process of C(2)H(2) on Fe. The first step is the dissociation of C(2)H(2) into C(2)H and H, and the second step is that of C(2)H into C(2) and H. Their dissociation energies are 0.9 and 1.2 eV, respectively. These energies are relatively small compared to the dissociation energy 7.5 eV of C(2)H(2) into C(2)H and H in the vacuum. Thus, the Fe surface shows catalytic effects. We further investigate the initial formation process of graphene by increasing the coverage of C(2)H(2). The formation process of the benzene molecule on the FM bcc(110) surface is also discussed. We find that there exists a critical coverage of C(2)H(2) which characterizes the beginning of the formation of the graphene.

  11. CF3(+) and CF2H(+): new reagents for n-alkane determination in chemical ionisation reaction mass spectrometry.

    PubMed

    Blake, Robert S; Ouheda, Saleh A; Evans, Corey J; Monks, Paul S

    2016-11-28

    Alkanes provide a particular analytical challenge to commonly used chemical ionisation methods such as proton-transfer from water owing to their basicity. It is demonstrated that the fluorocarbon ions CF3(+) and CF2H(+), generated from CF4, as reagents provide an effective means of detecting light n-alkanes in the range C2-C6 using direct chemical ionisation mass spectrometry. The present work assesses the applicability of the reagents in Chemical Ionisation Mass Spectrometric (CI-TOF-MS) environments with factors such as high moisture content, operating pressures of 1-10 Torr, accelerating electric fields (E/N) and long-lived intermediate complex formation. Of the commonly used chemical ionisation reagents, H3O(+) and NO(+) only react with hexane and higher while O2(+) reacts with all the target samples, but creates significant fragmentation. By contrast, CF3(+) and CF2H(+) acting together were found to produce little or no fragmentation. In dry conditions with E/N = 100 Td or higher the relative intensity of CF2H(+) to CF3(+) was mostly less than 1% but always less than 3%, making CF3(+) the main reagent ion. Using O2(+) in a parallel series of experiments, a substantially greater degree of fragmentation was observed. The detection sensitivities of the alkanes with CF3(+) and CF2H(+), while relatively low, were found to be better than those observed with O2(+). Experiments using alkane mixtures in the ppm range have shown the ionisation technique based on CF3(+) and CF2H(+) to be particularly useful for measurements of alkane/air mixtures found in polluted environments. As a demonstration of the technique's effectiveness in complex mixtures, the detection of n-alkanes in a smoker's breath is demonstrated.

  12. Analyses of Weapons-Grade MOX VVER-1000 Neutronics Benchmarks: Pin-Cell Calculations with SCALE/SAS2H

    SciTech Connect

    Ellis, R.J.

    2001-01-11

    A series of unit pin-cell benchmark problems have been analyzed related to irradiation of mixed oxide fuel in VVER-1000s (water-water energetic reactors). One-dimensional, discrete-ordinates eigenvalue calculations of these benchmarks were performed at ORNL using the SAS2H control sequence module of the SCALE-4.3 computational code system, as part of the Fissile Materials Disposition Program (FMDP) of the US DOE. Calculations were also performed using the SCALE module CSAS to confirm the results. The 238 neutron energy group SCALE nuclear data library 238GROUPNDF5 (based on ENDF/B-V) was used for all calculations. The VVER-1000 pin-cell benchmark cases modeled with SAS2H included zero-burnup calculations for eight fuel material variants (from LEU UO{sub 2} to weapons-grade MOX) at five different reactor states, and three fuel depletion cases up to high burnup. Results of the SAS2H analyses of the VVER-1000 neutronics benchmarks are presented in this report. Good general agreement was obtained between the SAS2H results, the ORNL results using HELIOS-1.4 with ENDF/B-VI nuclear data, and the results from several Russian benchmark studies using the codes TVS-M, MCU-RFFI/A, and WIMS-ABBN. This SAS2H benchmark study is useful for the verification of HELIOS calculations, the HELIOS code being the principal computational tool at ORNL for physics studies of assembly design for weapons-grade plutonium disposition in Russian reactors.

  13. Terahertz Spectroscopy of the Bending Vibrations of Acetylene 12C2H2 and 12C2D2

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Drouin, B.; Pearson, J.

    2009-12-01

    Several fundamental interstellar molecules, e.g., C2H2, CH4 and C3, are completely symmetric molecules and feature no permanent dipole moment and no pure rotation spectrum. As a result they have only previously been observed in the infrared. However, directly observing them with the rest of the molecular column especially when the source is spatially resolved would be very valuable in understanding chemical evolution. Vibrational difference bands provide a means to detect symmetric molecules with microwave precision using terahertz techniques. Herschel, SOFIA and ALMA have the potential to identify a number of vibrational difference bands of light symmetric species. This paper reports laboratory results on 12C2H2 and 12C2D2. Symmetric acetylene isotopologues have two bending modes, the trans bending and the cis bending. Their difference bands are allowed and occur in the microwave, terahertz, and far-infrared wavelengths, with band origins at 3500 GHz for 12C2H2 and 900 GHz for 12C2D2. Twenty 12C2H2 P branch high-J transitions and two hundred and fifty-one 12C2D2 P Q and R branch transitions have been measured in the 0.2 - 1.6 THz region with precision of 50 to 100 kHz. These lines were modeled together with prior data on the pure bending levels. Significantly improved molecular parameters were obtained for 12C2H2 and 12C2D2 with the combined data set, and new frequency and intensity predictions were made to support astrophysics applications. The research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. S. Y. was supported by an appointment to the NASA Postdoctoral Program, administrated by Oak Ridge Associated Universities through a contract with NASA.

  14. Beyond the Born-Oppenheimer approximation: High-resolution overtone spectroscopy of H2D+ and D2H+

    NASA Astrophysics Data System (ADS)

    Fárník, Michal; Davis, Scott; Kostin, Maxim A.; Polyansky, Oleg L.; Tennyson, Jonathan; Nesbitt, David J.

    2002-04-01

    Transitions to overtone 2ν2 and 2ν3, and combination ν2+ν3 vibrations in jet-cooled H2D+ and D2H+ molecular ions have been measured for the first time by high-resolution IR spectroscopy. The source of these ions is a pulsed slit jet supersonic discharge, which allows for efficient generation, rotational cooling, and high frequency (100 KHz) concentration modulation for detection via sensitive lock-in detection methods. Isotopic substitution and high-resolution overtone spectroscopy in this fundamental molecular ion permit a systematic, first principles investigation of Born-Oppenheimer "breakdown" effects due to large amplitude vibrational motion as well as provide rigorous tests of approximate theoretical methods beyond the Born-Oppenheimer level. The observed overtone transitions are in remarkably good agreement (<0.1 cm-1) with non-Born-Oppenheimer ab initio theoretical predictions, with small but systematic deviations for 2ν2, ν2+ν3, and 2ν3 excited states indicating directions for further improvement in such treatments. Spectroscopic assignment and analysis of the isotopomeric transitions reveals strong Coriolis mixing between near resonant 2ν3 and ν2+ν3 vibrations in D2H+. Population-independent line intensity ratios for transitions from common lower states indicate excellent overall agreement with theoretical predictions for D2H+, but with statistically significant discrepancies noted for H2D+. Finally, H2D+ versus D2H+ isotopomer populations are analyzed as a function of D2/H2 mixing ratio and can be well described by steady state kinetics in the slit discharge expansion.

  15. Solubilization and Reconstitution of the Mg2+/2H+ Antiporter of the Lutoid Tonoplast from Hevea brasiliensis Latex.

    PubMed Central

    Amalou, Z.; Gibrat, R.; Trouslot, P.; D'Auzac, J.

    1994-01-01

    The Mg2+/2H+ antiporter recently described on lutoid membrane (Z. Amalou, R. Gibrat, C. Brugidou, P. Trouslot, J.d'Auzac [1992] Plant Physiol 100: 255-260) was solubilized by octylglucoside and reconstituted into soybean liposomes using the detergent dilution method. Magnesium efflux or influx experiments were used to generate a H+ influx or efflux, respectively, monitored with the fluorescent probe 9-amino-6-chloro-2-methoxyacridine. Both experiments gave saturable H+ fluxes as a function of internal or external Mg2+ concentrations with similar kinetic parameters Km and Vmax. The Km value for Mg2+ (about 2 mM) was identical to that previously found in lyophilized-resuspended lutoid (reference therein), whereas the Vmax value was 14-fold higher. Since only 10% of the initial proteins were recovered in proteoliposomes, and electrophoretic patterns of the two kinds of vesicles differed significantly, it was inferred that the increase in Vmax was due essentially to an enrichment of the protein antiporter in the reconstituted fraction, owing to a selective effect of octylglucoside at both solubilization and reconstitution steps. None of the various divalent cations used could dissipate the pH gradient of control liposomes of soybean lipids, unless the divalent/H+ exchanger A23187 was added, whereas a rapid dissipation of the pH gradient was observed with reconstituted proteoliposomes from lutoid proteins, with the cation selectivity sequence Zn2+ > Cd2+ > Mg2+ in the millimolar concentration range. The divalent ions Ca2+, Ba2+, and Mn2+ were incapable of generating a H+ efflux in reconstituted proteoliposomes, whereas both Mg2+/H+ and Ca2+/H+ exchanges were observed in lyophilized-resuspended lutoids. Therefore, the lutoid membrane seems to contain separate Mg2+/H+ and Ca2+/H transport systems, the latter being eliminated during the solubilization/reconstitution of lutoid membrane proteins. PMID:12232305

  16. Experimental and theoretical studies of charge transfer and deuterium ion transfer between D2O+ and C2H4

    NASA Astrophysics Data System (ADS)

    Liu, Li; Cai, Xiaohui; Li, Yue; Richards O'Grady, Elizabeth; Farrar, James M.

    2004-08-01

    The charge transfer and deuterium ion transfer reactions between D2O+ and C2H4 have been studied using the crossed beam technique at relative collision energies below one electron volt and by density functional theory (DFT) calculations. Both direct and rearrangement charge transfer processes are observed, forming C2H4+ and C2H3D+, respectively. Independent of collision energy, deuterium ion transfer accounts for approximately 20% of the reactive collisions. Between 22 and 36 % of charge transfer collisions occur with rearrangement. In both charge transfer processes, comparison of the internal energy distributions of products with the photoelectron spectrum of C2H4 shows that Franck-Condon factors determine energy disposal in these channels. DFT calculations provide evidence for transient intermediates that undergo H/D migration with rearrangement, but with minimal modification of the product energy distributions determined by long range electron transfer. The cross section for charge transfer with rearrangement is approximately 103 larger than predicted from the Rice-Ramsperger-Kassel-Marcus isomerization rate in transient complexes, suggesting a nonstatistical mechanism for H/D exchange. DFT calculations suggest that reactive trajectories for deuterium ion transfer follow a pathway in which a deuterium atom from D2O+ approaches the π-cloud of ethylene along the perpendicular bisector of the C-C bond. The product kinetic energy distributions exhibit structure consistent with vibrational motion of the D-atom in the bridged C2H4D+ product perpendicular to the C-C bond. The reaction quantitatively transforms the reaction exothermicity into internal excitation of the products, consistent with mixed energy release in which the deuterium ion is transferred in a configuration in which both the breaking and the forming bonds are extended.

  17. Formation and Fragmentation of Unsaturated Fatty Acid [M - 2H + Na]- Ions: Stabilized Carbanions for Charge-Directed Fragmentation

    NASA Astrophysics Data System (ADS)

    Thomas, Michael C.; Kirk, Benjamin B.; Altvater, Jens; Blanksby, Stephen J.; Nette, Geoffrey W.

    2013-12-01

    Fatty acids are long-chain carboxylic acids that readily produce [M - H]- ions upon negative ion electrospray ionization (ESI) and cationic complexes with alkali, alkaline earth, and transition metals in positive ion ESI. In contrast, only one anionic monomeric fatty acid-metal ion complex has been reported in the literature, namely [M - 2H + FeIICl]-. In this manuscript, we present two methods to form anionic unsaturated fatty acid-sodium ion complexes (i.e., [M - 2H + Na]-). We find that these ions may be generated efficiently by two distinct methods: (1) negative ion ESI of a methanolic solution containing the fatty acid and sodium fluoride forming an [M - H + NaF]- ion. Subsequent collision-induced dissociation (CID) results in the desired [M - 2H + Na]- ion via the neutral loss of HF. (2) Direct formation of the [M - 2H + Na]- ion by negative ion ESI of a methanolic solution containing the fatty acid and sodium hydroxide or bicarbonate. In addition to deprotonation of the carboxylic acid moiety, formation of [M - 2H + Na]- ions requires the removal of a proton from the fatty acid acyl chain. We propose that this deprotonation occurs at the bis-allylic position(s) of polyunsaturated fatty acids resulting in the formation of a resonance-stabilized carbanion. This proposal is supported by ab initio calculations, which reveal that removal of a proton from the bis-allylic position, followed by neutral loss of HX (where X = F- and -OH), is the lowest energy dissociation pathway.

  18. Five years of CO, HCN, C2H6, C2H2, CH3OH, HCOOH and H2CO total columns measured in the Canadian high Arctic

    NASA Astrophysics Data System (ADS)

    Viatte, C.; Strong, K.; Walker, K. A.; Drummond, J. R.

    2014-06-01

    We present a five-year time series of seven tropospheric species measured using a ground-based Fourier transform infrared (FTIR) spectrometer at the Polar Environment Atmospheric Research Laboratory (PEARL; Eureka, Nunavut, Canada; 80°05' N, 86°42' W) from 2007 to 2011. Total columns and temporal variabilities of carbon monoxide (CO), hydrogen cyanide (HCN) and ethane (C2H6) as well as the first derived total columns at Eureka of acetylene (C2H2), methanol (CH3OH), formic acid (HCOOH) and formaldehyde (H2CO) are investigated, providing a new data set in the sparsely sampled high latitudes. Total columns are obtained using the SFIT2 retrieval algorithm based on the optimal estimation method. The microwindows as well as the a priori profiles and variabilities are selected to optimize the information content of the retrievals, and error analyses are performed for all seven species. Our retrievals show good sensitivities in the troposphere. The seasonal amplitudes of the time series, ranging from 34 to 104%, are captured while using a single a priori profile for each species. The time series of the CO, C2H6 and C2H2 total columns at PEARL exhibit strong seasonal cycles with maxima in winter and minima in summer, in opposite phase to the HCN, CH3OH, HCOOH and H2CO time series. These cycles result from the relative contributions of the photochemistry, oxidation and transport as well as biogenic and biomass burning emissions. Comparisons of the FTIR partial columns with coincident satellite measurements by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) show good agreement. The correlation coefficients and the slopes range from 0.56 to 0.97 and 0.50 to 3.35, respectively, for the seven target species. Our new data set is compared to previous measurements found in the literature to assess atmospheric budgets of these tropospheric species in the high Arctic. The CO and C2H6concentrations are consistent with negative trends observed over the

  19. Five years of CO, HCN, C2H6, C2H2, CH3OH, HCOOH, and H2CO total columns measured in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Viatte, C.; Strong, K.; Walker, K. A.; Drummond, J. R.

    2013-12-01

    We present a five-year timeseries of seven tropospheric species measured using a ground-based Fourier Transform InfraRed (FTIR) spectrometer at the Polar Environment Atmospheric Research Laboratory (PEARL, Eureka, Nunavut, Canada, 80°05' N, 86°42' W) from 2007 to 2011. Total columns and temporal variabilities of carbon monoxide (CO), hydrogen cyanide (HCN), and ethane (C2H6), as well as the first derived total columns at Eureka of acetylene (C2H2), methanol (CH3OH), formic acid (HCOOH), and formaldehyde (H2CO) are investigated, providing a new dataset in the sparsely sampled high latitudes. Total columns are obtained using the SFIT2 retrieval algorithm based on the Optimal Estimation Method. The microwindows, as well as the a priori profiles and variabilities are selected to optimize the information content of the retrievals, and error analyses are performed for all seven species. Our retrievals show good sensitivities in the troposphere. The seasonal amplitudes of the timeseries, ranging from 34 to 104%, are captured while using a single a priori profile for each species. The timeseries of the CO, C2H6 and C2H2 total columns at PEARL exhibit strong seasonal cycles with maxima in winter and minima in summer, in opposite phase to the HCN, CH3OH, HCOOH and H2CO timeseries. These cycles result from the relative contributions of the photochemistry, oxidation, and transport, as well as biogenic and biomass burning emissions. Comparisons of the FTIR partial columns with coincident satellite measurements by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) show good agreement. The correlation coefficients and the slopes range from 0.56 to 0.97, and 0.50 to 3.35, respectively, for the seven target species. Our new dataset is compared with previous measurements found in the literature to assess atmospheric budgets of these tropospheric species in the high Arctic. The CO and C2H6 concentrations are consistent with negative trends observed over

  20. Scientific Reports of Plasma Medicine and its Mechanism for Therapy in Plasma Bioscience Research Center

    NASA Astrophysics Data System (ADS)

    Choi, Eun Ha

    2015-09-01

    Scientific reports of plasma medicine and its basic mechanism for therapy will be introduced, especially, performed in Plasma Bioscience Research Center, Korea. We have investigated enhanced anticancer effect of monocytes and macrophages activated by nonthermal plasma which act as immune-modulator on these immune cells. Further, we investigated the action of the nanosecond pulsed plasma activated media (NPPAM) on the lung cancer cells and its DNA oxidation pathway. We observed OD induced apoptosis on melanocytes G361 cancer cells through DNA damage signaling cascade. We also studied DNA oxidation by extracting DNA from treated cancer cell and analyzed the effects of OD/OH/D2O2/H2O2 on protein modification and oxidation. Additionally, we attempted molecular docking approaches to check the action of D2O2 on the apoptosis related genes.

  1. Is the Reaction of C3N(-) with C2H2 a Possible Process for Chain Elongation in Titan's Ionosphere?

    PubMed

    Lindén, Fredrik; Alcaraz, Christian; Ascenzi, Daniela; Guillemin, Jean-Claude; Koch, Leopold; Lopes, Allan; Polášek, Miroslav; Romanzin, Claire; Žabka, Jan; Zymak, Illia; Geppert, Wolf D

    2016-07-14

    The reaction of C3N(-) with acetylene was studied using three different experimental setups, a triple quadrupole mass spectrometer (Trento), a tandem quadrupole mass spectrometer (Prague), and the "CERISES" guided ion beam apparatus at Orsay. The process is of astrophysical interest because it can function as a chain elongation mechanism to produce larger anions that have been detected in Titan's ionosphere by the Cassini Plasma Spectrometer. Three major products of primary processes, C2H(-), CN(-), and C5N(-), have been identified, whereby the production of the cyanide anion is probably partly due to collisional induced dissociation. The formations of all these products show considerable reaction thresholds and also display comparatively small cross sections. Also, no strong signals of anionic products for collision energies lower than 1 eV have been observed. Ab initio calculations have been performed to identify possible pathways leading to the observed products of the title reaction and to elucidate the thermodynamics of these processes. Although the productions of CN(-) and C5N(-) are exoergic, all reaction pathways have considerable barriers. Overall, the results of these computations are in agreement with the observed reaction thresholds. Due to the existence of considerable reaction energy barriers and the small observed cross sections, the title reaction is not very likely to play a major role in the buildup of large anions in cold environments like the interstellar medium or planetary and satellite ionospheres.

  2. Genetic analysis of salt tolerance in Arabidopsis: Evidence for the role of Ca(2+)/H(+) transporter CAX1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coordinate regulation of transporters at both the plasma membrane and vacuole contribute to plant cell's ability to adapt to a changing environment and play a key role in the maintenance of the chemiosmotic circuits required for cellular growth. The plasma membrane (PM) Na+/H+ antiporter SOS1 is inv...

  3. Magnetoresistive waves in plasmas

    NASA Astrophysics Data System (ADS)

    Felber, F. S.; Hunter, R. O., Jr.; Pereira, N. R.; Tajima, T.

    1982-10-01

    The self-generated magnetic field of a current diffusing into a plasma between conductors can magnetically insulate the plasma. Propagation of magnetoresistive waves in plasmas is analyzed. Applications to plasma opening switches are discussed.

  4. Cardiotonic agents. 7. Prodrug derivatives of 4-ethyl-1,3-dihydro- 5-[4-(2-methyl-1H-imidazol-1-yl)benzoyl]-2H-imidazol-2-one.

    PubMed

    Shaw, K J; Erhardt, P W; Hagedorn, A A; Pease, C A; Ingebretsen, W R; Wiggins, J R

    1992-04-03

    The cardiotonic agent 4-ethyl-1,3-dihydro-5-4-(2-methyl-1H-imidazol-1-yl)benzoyl]-2H- imidazol-2-one (1) was found to have low bioavailability when administered orally to rats and dogs. A series of N-acyl derivatives, an underutilized prodrug of acidic NH compounds, has been synthesized and tested for their ability to improve the oral bioavailability of 1. Reaction of the monosodium salt of 1 with various anhydrides afforded the N-1 monoacylimidazolones with surprisingly high regioselectivity. In addition to the prodrugs, acylation of 1 with propionic or phenylacetic anhydride led to the novel 3H-pyrrolo[1,2-c]imidazole-3,5(2H)-diones 6. The prodrugs showed a significant increase in the partition coefficients with a minor decrease in the aqueous solubility. The benzoyl derivative 4b exhibited the highest stability in both pH 1.5 and 7.4 buffer solutions. Further evaluation of 4b showed rapid conversion to 1 in canine plasma (t1/2 = 38 min), and human plasma (t1/2 = 10 min). Oral studies indicated that the bioavailability of 4b was increased to greater than 75% (compared to less than 20% for 1), and hemodynamic studies demonstrated that the selective inotropic profile of 1 was retained.

  5. On the physical structure of IRC +10216. Ground-based and Herschel observations of CO and C2H

    NASA Astrophysics Data System (ADS)

    De Beck, E.; Lombaert, R.; Agúndez, M.; Daniel, F.; Decin, L.; Cernicharo, J.; Müller, H. S. P.; Min, M.; Royer, P.; Vandenbussche, B.; de Koter, A.; Waters, L. B. F. M.; Groenewegen, M. A. T.; Barlow, M. J.; Guélin, M.; Kahane, C.; Pearson, J. C.; Encrenaz, P.; Szczerba, R.; Schmidt, M. R.

    2012-03-01

    Context. The carbon-rich asymptotic giant branch star IRC +10 216 undergoes strong mass loss, and quasi-periodic enhancements of the density of the circumstellar matter have previously been reported. The star's circumstellar environment is a well-studied and complex astrochemical laboratory, in which many molecular species have been proved to be present. CO is ubiquitous in the circumstellar envelope, while emission from the ethynyl (C2H) radical is detected in a spatially confined shell around IRC +10 216. We recently detected unexpectedly strong emission from the N = 4-3, 6-5, 7-6, 8-7, and 9-8 transitions of C2H with the IRAM 30 m telescope and with Herschel/HIFI, which challenges the available chemical and physical models. Aims: We aim to constrain the physical properties of the circumstellar envelope of IRC +10 216, including the effect of episodic mass loss on the observed emission lines. In particular, we aim to determine the excitation region and conditions of C2H to explain the recent detections and to reconcile them with interferometric maps of the N = 1-0 transition of C2H. Methods: Using radiative-transfer modelling, we provide a physical description of the circumstellar envelope of IRC +10 216, constrained by the spectral-energy distribution and a sample of 20 high-resolution and 29 low-resolution CO lines - to date, the largest modelled range of CO lines towards an evolved star. We furthermore present the most detailed radiative-transfer analysis of C2H that has been done so far. Results: Assuming a distance of 150 pc to IRC +10 216, the spectral-energy distribution was modelled with a stellar luminosity of 11300 L⊙ and a dust-mass-loss rate of 4.0 × 10-8 M⊙ yr-1. Based on the analysis of the 20 high-frequency-resolution CO observations, an average gas-mass-loss rate for the last 1000 years of 1.5 × 10-5 M⊙ yr-1 was derived. This results in a gas-to-dust-mass ratio of 375, typical for this type of star. The kinetic temperature throughout the

  6. Covariance mapping of two-photon double core hole states in C 2 H 2 and C 2 H 6 produced by an x-ray free electron laser

    DOE PAGES

    Mucke, M; Zhaunerchyk, V; Frasinski, L J; ...

    2015-07-01

    Few-photon ionization and relaxation processes in acetylene (C2H2) and ethane (C2H6) were investigated at the linac coherent light source x-ray free electron laser (FEL) at SLAC, Stanford using a highly efficient multi-particle correlation spectroscopy technique based on a magnetic bottle. The analysis method of covariance mapping has been applied and enhanced, allowing us to identify electron pairs associated with double core hole (DCH) production and competing multiple ionization processes including Auger decay sequences. The experimental technique and the analysis procedure are discussed in the light of earlier investigations of DCH studies carried out at the same FEL and at thirdmore » generation synchrotron radiation sources. In particular, we demonstrate the capability of the covariance mapping technique to disentangle the formation of molecular DCH states which is barely feasible with conventional electron spectroscopy methods.« less

  7. Different cation-protonation patterns in mol­ecular salts of unsymmetrical dimethyhydrazine: C2H9N2·Br and C2H9N2·H2PO3

    PubMed Central

    Katinaitė, Judita; Harrison, William T. A.

    2016-01-01

    We describe the syntheses and crystal structures of two mol­ecular salts containing the 1,1-di­methyl­hydrazinium cation, namely 1,1-di­methyl­hydrazin-1-ium bromide, C2H9N2 +·Br−, (I), and 2,2-di­methyl­hydrazin-1-ium di­hydrogen phosphite, C2H9N2 +·H2PO3 −, (II). In (I), the cation is protonated at the methyl­ated N atom and N—H⋯Br hydrogen bonds generate [010] chains in the crystal. In (II), the cation is protonated at the terminal N atom and cation-to-anion N—H⋯O and anion-to-anion O—H⋯O hydrogen bonds generate (001) sheets. PMID:27536415

  8. PLASMA GENERATOR

    DOEpatents

    Wilcox, J.M.; Baker, W.R.

    1963-09-17

    This invention is a magnetohydrodynamic device for generating a highly ionized ion-electron plasma at a region remote from electrodes and structural members, thus avoiding contamination of the plasma. The apparatus utilizes a closed, gas-filled, cylindrical housing in which an axially directed magnetic field is provided. At one end of the housing, a short cylindrical electrode is disposed coaxially around a short axial inner electrode. A radial electrical discharge is caused to occur between the inner and outer electrodes, creating a rotating hydromagnetic ionization wave that propagates aiong the magnetic field lines toward the opposite end of the housing. A shorting switch connected between the electrodes prevents the wave from striking the opposite end of the housing. (AEC)

  9. Plasma displays

    SciTech Connect

    Sobel, A.

    1991-12-01

    Plasma displays make use of lightly ionized glow discharges to produce light, perform switching and selection functions, or both. Both the negative glow and the positive column are used. Color can be attained by using UV from the discharge to stimulate phosphors. The adroit use of priming can reduce the number of drive circuits required - an advantage unique in the display art to plasma devices. Short voltage pulses can improve the efficacy of positive-column devices. Short voltage pulses can improve the efficacy of positive-column devices. The gas discharge can be used as a source of electrons, which can then excite cathodoluminescent phosphors in a variety of colors. It can also be used as a selection means for liquid-crystal displays. In this paper a wide variety of device configurations, using both unidirectional and bidirectional pulse excitations, is described.

  10. Plasma pharmacy - physical plasma in pharmaceutical applications.

    PubMed

    von Woedtke, Th; Haertel, B; Weltmann, K-D; Lindequist, U

    2013-07-01

    During the last years the use of physical plasma for medical applications has grown rapidly. A multitude of findings about plasma-cell and plasma-tissue interactions and its possible use in therapy have been provided. One of the key findings of plasma medical basic research is that several biological effects do not result from direct plasma-cell or plasma-tissue interaction but are mediated by liquids. Above all, it was demonstrated that simple liquids like water or physiological saline, are antimicrobially active after treatment by atmospheric pressure plasma and that these effects are attributable to the generation of different low-molecular reactive species. Besides, it could be shown that plasma treatment leads to the stimulation of specific aspects of cell metabolism and to a transient and reversible increase of diffusion properties of biological barriers. All these results gave rise to think about another new and innovative field of medical plasma application. In contrast to plasma medicine, which means the direct use of plasmas on or in the living organism for direct therapeutic purposes, this field - as a specific field of medical plasma application - is called plasma pharmacy. Based on the present state of knowledge, most promising application fields of plasma pharmacy might be: plasma-based generation of biologically active liquids; plasma-based preparation, optimization, or stabilization of - mainly liquid - pharmaceutical preparations; support of drug transport across biological barriers; plasma-based stimulation of biotechnological processes.

  11. Differential reaction cross section of the C2H5X (X=Br, I) K → systems

    NASA Astrophysics Data System (ADS)

    Herrero, V. J.; Tabares, F. L.; Saez Rabanos, V.; Aoiz, F. J.; González Ureña, A.

    Using the crossed molecular beam method complete laboratory differential reaction cross sections for the exoergic reaction C2H5Br → BrK + C2H5 have been measured as a function of relative translational energy from 0·11 to 0·41 eV. An analysis has been carried out of both the present KBr laboratory angular distributions and that of KI from the K + C2H5I molecular beam reaction obtained by Aoiz et al., over the range of reactive translational energy, Ēt, from 0·17 eV to 0·55 eV. By using the uncoupled approximation for the centre of mass (c.m.) angular and recoil energy distributions to recover the laboratory angular distributions it was found the c.m. differential (solid angle) reaction cross sections to be backward-peaked, characteristic of a direct, rebound mechanism, with a large fraction of the available energy going into product translation. The average translational energy of the products, Ē't, increases approximately linearly with increasing collision energy E't = 0·57 Ēt + 0·59 and Ē't = 0·65 Et + 0·72 (in eV) for the K + C2H5Br and C2H5I reactions respectively. The present data for the K + C2H5X (X = I, Br) systems are compared with previous results for the analogous CH3X reaction from where the role played by the halogen and alkyl group is discussed and qualitative effects are noted as, for example, the fact that the heavier the alkyl group the broader the backward cone of the MX angular distribution. Comparison with several theoretical impulsive models, e.g. the photodissociation model of Herschbach and the information-theoretic form of Levine and coworkers is made. A modified hard sphere collision is also found to account satisfactorily for the main features of the present differential reaction cross sections.

  12. Measuring hourly 18O and 2H fluxes in a mixed hardwood forest using an integrated cavity output spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, L.; Caylor, K.; Dragoni, D.

    2008-12-01

    The 18O and 2H of water vapor can be used to investigate couplings between biological processes (e.g., photosynthesis or transpiration) and hydrologic processes (e.g., evaporation) and therefore serve as powerful tracers in hydrological cycles. A typical method for determining δ18O and δ2H fluxes in landscapes is a 'Keeling Plot' approach, which uses field-collected vapor samples coupled with a traditional isotope ratio mass spectrometer to infer the isotopic composition of evapotranspiration. However, fractionation accompanying inefficient vapor trapping can lead to large measurement uncertainty and the intensive laboring involved in cold-trap make it almost impossible for continuous measurements. Over the last 3-4 years a few groups have developed continuous approaches for measuring δ18O and δ2H that use laser absorption spectroscopy (LAS) to achieve accuracy levels similar to lab-based mass spectrometry methods. Unfortunately, most LAS systems need cryogenic cooling, constant calibration to a reference gas, and substantial power requirements, which make them unsuitable for long-term field deployment at remote field sites. In this research, we tested out a new LAS--based water vapor isotope analyzer (WVIA, Los Gatos Research, Inc, Mountain View, CA) based on Integrated Cavity Output Spectroscopy (ICOS) and coupled this instrument with a flux gradient system. The WVIA was calibrated bi- weekly using a dew point generator and water with known δ18O and δ2H signatures. The field work was performed at Morgan-Monroe State Forest Ameriflux tower site (central Indiana) between August 8 and August 27, 2008. The combination method was able to produce hourly δ18O and δ2H fluxes data with reproducibility similar to lab-based mass spectrometry methods. Such high temporal resolution data were also able to capture signatures of canopy and bare soil evaporation to individual rainfall events. The use of the ICOS water vapor analyzer within a gradient system has the

  13. The Anharmonic Force Field of Ethylene, C2H4, by Means of Accurate Ab Initio Calculations

    NASA Technical Reports Server (NTRS)

    Martin, Jan M. L.; Lee, Timothy J.; Taylor, Peter R.; Francois, Jean-Pierre; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The quartic force field of ethylene, C2H4, has been calculated ab initio using augmented coupled cluster, CCSD(T), methods and correlation consistent basis sets of spdf quality. For the C-12 isotopomers C2H4, C2H3D, H2CCD2, cis-C2H2D2, trans-C2H2D2, C2HD3, and C2D4, all fundamentals could be reproduced to better than 10 per centimeter, except for three cases of severe Fermi type 1 resonance. The problem with these three bands is identified as a systematic overestimate of the Kiij Fermi resonance constants by a factor of two or more; if this is corrected for, the predicted fundamentals come into excellent agreement with experiment. No such systematic overestimate is seen for Fermi type 2 resonances. Our computed harmonic frequencies suggest a thorough revision of the accepted experimentally derived values. Our computed and empirically corrected re geometry differs substantially from experimentally derived values: both the predicted rz geometry and the ground-state rotational constants are, however, in excellent agreement with experiment, suggesting revision of the older values. Anharmonicity constants agree well with experiment for stretches, but differ substantially for stretch-bend interaction constants, due to equality constraints in the experimental analysis that do not hold. Improved criteria for detecting Fermi and Coriolis resonances are proposed and found to work well, contrary to the established method based on harmonic frequency differences that fails to detect several important resonances for C2H4 and its isotopomers. Surprisingly good results are obtained with a small spd basis at the CCSD(T) level. The well-documented strong basis set effect on the v8 out-of-plane motion is present to a much lesser extent when correlation-optimized polarization functions are used. Complete sets of anharmonic, rovibrational coupling, and centrifugal distortion constants for the isotopomers are available as supplementary material to the paper.

  14. Theoretical characterization of the reaction CH3 +OH yields CH3OH yeilds products: The (1)CH2 + H2O, H2 + HCOH, and H2 + H2CO channels

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1993-01-01

    The potential energy surface (PES) for the CH3OH system has been characterized for the (1)CH2 + H2O, H2 + HCOH, and H2 + H2CO product channels using complete-active-space self-consistent-field (CASSCF) gradient calculations to determine the stationary point geometries and frequencies followed by CASSCF/internally contracted configuration-interaction (CCI) calculations to refine the energetics. The (1)CH2 + H2O channel is found to have no barrier. The long range interaction is dominated by the dipole-dipole term, which orients the respective dipole moments parallel to each other but pointing in opposite directions. At shorter separations there is a dative bond structure in which a water lone pair donates into the empty a" orbital of CH2. Subsequent insertion of CH2 into an OH bond of water have barriers located at -5.2 kcal/mol and 1.7 kcal/mol, respectively, with respect to CH3 + OH. From comparison of the computed energetics of the reactants and products to known thermochemical data it is estimated that the computed PES is accurate to plus or minus 2 kcal/mol.

  15. Feeding of [5,5-2H(2)]-1-desoxy-D-xylulose and [4,4,6,6,6-2H(5)]-mevalolactone to a geosmin-producing Streptomyces sp. and Fossombronia pusilla.

    PubMed

    Spiteller, Dieter; Jux, Andreas; Piel, Jörn; Boland, Wilhelm

    2002-12-01

    The biosynthesis of the trisnor sesquiterpenoid geosmin (4,8a-dimethyl-octahydro-naphthalen-4a-ol) (1) was investigated by feeding labeled [5,5-2H(2)]-1-desoxy-D-xylulose (11), [4,4,6,6,6-(2)H(5)]-mevalolactone (7) and [2,2-2H(2)]-mevalolactone (9) to Streptomyces sp. JP95 and the liverwort Fossombronia pusilla. The micro-organism produced geosmin via the 1-desoxy-D-xylulose pathway, whereas the liverwort exclusively utilized mevalolactone for terpenoid biosynthesis. Analysis of the labeling pattern in the resulting isotopomers of geosmin (1) by mass spectroscopy (EI/MS) revealed that geosmin is synthesized in both organisms by cyclization of farnesyl diphosphate to a germacradiene-type intermediate 4. Further transformations en route to geosmin (1) involve an oxidative dealkylation of an i-propyl substituent, 1,2-reduction of a resulting conjugated diene, and bicyclization of a germacatriene intermediate 13. The transformations largely resemble the biosynthesis of dehydrogeosmin (2) in cactus flowers but differ with respect to the regioselectivity of the side chain dealkylation and 1,2-reduction

  16. Atmospheric pressure plasma jet applications

    SciTech Connect

    Park, J.; Herrmann, H.W.; Henins, I.; Selwyn, G.S.

    1998-12-31

    The atmospheric pressure plasma jet (APPJ) is a non-thermal, high pressure plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O2/H2O) which flows between two concentric cylindrical electrodes: an outer grounded electrode and an inner electrode powered at 13.56 MHz RF. While passing through the plasma, the feedgas becomes excited, ionized or dissociated by electron impact. The fast-flowing effluent consists of ions and electrons, which are rapidly lost by recombination, highly reactive radicals (e.g., O, OH), and metastable species (e.g., O2). The metastable O2, which is reactive to hydrocarbon and other organic species, has been observed through optical emission spectroscopy to decrease by a factor of 2 from the APPJ nozzle exit to a distance of 10 cm. Unreacted metastable O2, and that which does not impinge on a surface, will then decay back to ordinary ground state O2, resulting in a completely dry, environmentally-benign form of surface cleaning. Applications such as removal of photoresist, oxide films and organic residues from wafers for the electronics industry, decontamination of civilian and military areas and personnel exposed to chemical or biological warfare agents, and paint (e.g., graffiti) removal are being considered.

  17. Essentially Molecular Metal Complexes Anchored to Zeolite: Synthesis and Characterization of Rhodium Complexes and Ruthenium Complexes Prepared from Rh(acac)(2-C2H4)2 and cis-Ru(acac)2( -C2H4)2

    SciTech Connect

    Ogino, I.; Gates, B

    2010-01-01

    Mononuclear complexes of rhodium and of ruthenium, Rh(acac)({eta}{sup 2}-C{sub 2}H{sub 4}){sub 2} and cis-Ru(acac)2({eta}{sup 2}-C{sub 2}H{sub 4}){sub 2} (acac = C{sub 5}H{sub 7}O{sub 2}{sup -}), were used as precursors to synthesize metal complexes bonded to zeolite {beta}. Infrared (IR) and extended X-ray absorption fine structure (EXAFS) spectra show that the species formed from Rh(acac)({eta}{sup 2}-C{sub 2}H{sub 4}){sub 2} was Rh({eta}{sup 2}-C{sub 2}H{sub 4}){sub 2}{sup +}, which was bonded to the zeolite at aluminum sites via two Rh-O bonds. Reaction of this supported rhodium complex with CO gave the supported rhodium gem-dicarbonyl Rh(CO){sub 2}{sup +}, which was characterized by two {nu}{sub CO} bands in the IR spectrum, at 2048 and 2115 cm{sup -1}, that were sharp (fwhm of 2115-cm{sup -1} band = 5 cm{sup -1}), indicating a high degree of uniformity of the supported species. Nearly the same result was observed (Liang, A. et al. J. Am. Chem. Soc. 2009, 131, 8460) for the isostructural rhodium complex supported on dealuminated HY zeolite, which was characterized by frequencies of the {nu}{sub CO} bands that were 4 and 2 cm{sup -1}, respectively, greater than those characterizing the zeolite {beta}-supported complex. This comparison indicates that the Rh atoms in Rh({eta}{sup 2}-C{sub 2}H{sub 4}){sub 2}{sup +} anchored on zeolite {beta} were slightly more electron-rich than those on zeolite Y. This inference is supported by EXAFS results showing shorter Rh-C bonds in the zeolite {beta}-supported rhodium ethene complex than in the zeolite Y-supported rhodium ethene complex. In contrast to these supported rhodium complexes, the zeolite {beta}-supported ruthenium samples were shown by IR and EXAFS spectroscopies to consist of mixtures of mononuclear ruthenium complexes with various numbers of acac ligands; when CO reacted with the supported ruthenium complexes, the resultant ruthenium carbonyls were characterized by {nu}{sub CO} spectra characteristic of both

  18. Temperature dependent product yields for the spin forbidden singlet channel of the C(3P) + C2H2 reaction

    NASA Astrophysics Data System (ADS)

    Hickson, Kevin M.; Loison, Jean-Christophe; Wakelam, Valentine

    2016-08-01

    The atomic hydrogen formation channels of the C + C2H2 reaction have been investigated using a continuous supersonic flow reactor over the 52-296 K temperature range. H-atoms were detected directly at 121.567 nm by vacuum ultraviolet laser induced fluorescence. Absolute H-atom yields were determined by comparison with the H-atom signal generated by the C + C2H4 reaction. The product yields agree with earlier crossed beam experiments employing universal detection methods. Incorporating these branching ratios in a gas-grain model of dense interstellar clouds increases the c-C3H abundance. This reaction is a minor source of C3-containing molecules in the present simulations.

  19. Analysis Of 2H-Evaporator Scale Wall [HTF-13-82] And Pot Bottom [HTF-13-77] Samples

    SciTech Connect

    Oji, L. N.

    2013-09-11

    Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material has been performed so that uranium and plutonium isotopic analysis can be input into a Nuclear Criticality Safety Assessment (NCSA) for scale removal by chemical cleaning. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2H-evaporator pot and gravity drain line. The 2H-evaporator scale samples analyzed by Savannah River National Laboratory (SRNL) came from two different locations within the evaporator pot; the bottom cone sections of the 2H-evaporator pot [Sample HTF-13-77] and the wall 2H-evaporator [sample HTF-13-82]. X-ray diffraction analysis (XRD) confirmed that both the 2H-evaporator pot scale and the wall samples consist of nitrated cancrinite (a crystalline sodium aluminosilicate solid) and clarkeite (a uranium oxyhydroxide mineral). On ''as received'' basis, the bottom pot section scale sample contained an average of 2.59E+00 {+-} 1.40E-01 wt % total uranium with a U-235 enrichment of 6.12E-01 {+-} 1.48E-02 %, while the wall sample contained an average of 4.03E+00 {+-} 9.79E-01 wt % total uranium with a U-235 enrichment of 6.03E-01% {+-} 1.66E-02 wt %. The bottom pot section scale sample analyses results for Pu-238, Pu-239, and Pu-241 are 3.16E-05 {+-} 5.40E-06 wt %, 3.28E-04 {+-} 1.45E-05 wt %, and <8.80E-07 wt %, respectively. The evaporator wall scale samples analysis values for Pu-238, Pu-239, and Pu-241 averages 3.74E-05 {+-} 6.01E-06 wt %, 4.38E-04 {+-} 5.08E-05 wt %, and <1.38E-06 wt %, respectively. The Pu-241 analyses results, as presented, are upper limit values. For these two evaporator scale samples obtained at two different

  20. Study of the C2H4/Si(100)-(2×1) Interface by Derivative Photoelectron Holography

    NASA Astrophysics Data System (ADS)

    Xu, S. H.; Wu, H. S.; Tong, S. Y.; Keeffe, M.; Lapeyre, G. J.; Rotenberg, E.

    The k derivative spectra (KDS) transform is used for construction of the three-dimensional atomic structure of the C2H4/Si(100)-(2×1) system from photoelectron diffraction data. The image function obtained by the KDS transform clearly observes the second-layer Si atoms and the C emitters apart from the first-layer Si atoms. The observations of the second-layer Si atoms and the C emitters make it easy to measure the C-C bond length correctly. Then a conclusive adsorption model — the di-σ model — for the C2H4/Si(100)-(2×1) system is established. In comparison with the KDS transform, the normal small-cone transform hardly measures the C-C bond length. The ability to observe more scatterers of a photoelectron emitter by the KDS transform expands the applicability of holographic imaging.

  1. Functionalized heteroarylpyridazines and pyridazin-3(2H)-one derivatives via palladium-catalyzed cross-coupling methodology.

    PubMed

    Clapham, Kate M; Batsanov, Andrei S; Greenwood, Ryan D R; Bryce, Martin R; Smith, Amy E; Tarbit, Brian

    2008-03-21

    A general method for the synthesis of functionalized pyridazinylboronic acids/esters is described involving a directed ortho metalation (DoM)--boronation protocol (Schemes 1 and 2). A comprehensive study of the reactivity of the C-B bond in palladium-catalyzed cross-couplings with aryl/heteroaryl halides is presented. Aryl-/heteroarylpyridazines are thereby obtained in synthetically viable yields (typically 40-75%) although in some cases competing protodeboronation has been observed. A series of pyridazin-3(2H)-one derivatives, including 4,6-diaryl/heteroaryl derivatives, have been obtained from the corresponding 3-methoxypyridazines in straightforward procedures (Schemes 3 and 4). Several X-ray crystal structures of aryl-/heteroarylpyridazines and derived pyridazin-3(2H)-one derivatives are reported. These multi-ring systems are of considerable interest in contemporary N-heterocyclic chemistry.

  2. Herman-Wallis factors in the C2H2nu5 infrared fundamental near 14 microns

    NASA Technical Reports Server (NTRS)

    Maguire, William C.; Hillman, John J.; Weber, Mark; Blass, William E.

    1991-01-01

    The presence of acetylene has been confirmed for some time in the atmospheres of the outer planets Jupiter, Saturn, Neptune, and Saturn's satellite Titan. For these atmospheres, the determination of C2H2 abundances using its strong nu5 fundamental requires laboratory line position and intensity measurements. The 1-m Fourier transform spectrometer at McMath solar telescope of Kitt Peak National Observatory was used to measure C2H2 at an unapodized spectral resolution of 0.0025/cm. Synthetic spectra are generated by convolving a Voigt line shape with an instrument function and varying intensity parameters by means of a nonlinear least squares technique. Intensities of 37 nu5 lines spanning P18 through R20 were measured using 0.123 torr of gas in a 1-cm cell. A Herman-Wallis intensity correction parameter of 1.3(4) x 10 to the -3rd has been derived using a least squares linear fit.

  3. Integration of V2H/V2G Hybrid System for Demand Response in Distribution Network

    SciTech Connect

    Wang, Yubo; Sheikh, Omar; Hu, Boyang; Chu, Chi-Cheng; Gadh, Rajit

    2014-11-03

    Integration of Electrical Vehicles (EVs) with power grid not only brings new challenges for load management, but also opportunities for distributed storage and generation in distribution network. With the introduction of Vehicle-to-Home (V2H) and Vehicle-to-Grid (V2G), EVs can help stabilize the operation of power grid. This paper proposed and implemented a hybrid V2H/V2G system with commercialized EVs, which is able to support both islanded AC/DC load and the power grid with one single platform. Standard industrial communication protocols are implemented for a seamless respond to remote Demand Respond (DR) signals. Simulation and implementation are carried out to validate the proposed design. Simulation and implementation results showed that the hybrid system is capable of support critical islanded DC/AC load and quickly respond to the remote DR signal for V2G within 1.5kW of power range.

  4. Study of Operational Regimes of the VASIMR Helicon Plasma Source

    NASA Astrophysics Data System (ADS)

    Batishchev, O.; Molvig, K.

    2000-10-01

    Effective plasma production by a plasma source is crucial for the overall > 50% efficiency of the VASIMR plasma rocket. Primary propellant H (D) - enters the helicon source as cold molecular gas and leaves it as a hot gas-plasma mix. We present an analysis that shows the following plasma composition: e, H_2, H, H^+, H_2^+, H_3^+. Mass and energy balance is described by the 14 non-linear plasma chemistry equations for the species concentrations and temperatures. Their numerical solution shows agreement with the measured electron temperature ~ 6 eV, and density ~ 10^12 cm-3 for both H and D discharges. Simulation shows also that the Ly-α radiation may account for 25%, while Frank-Condon neutrals for 15% of the total input power ~ 1 kW. Gas ionization fraction is ~ 3 - 5% with sizable amount of H_2^+ and H_3^+ ions. However, mass-flow ratio neutral gas/plasma is close to 1 due to the huge difference in the exhaust velocities. A separate numerical analysis of the pure gas flow in the gas inlet - quartz tube - magnet bore channel shows very good agreement with the gas pressure measurements. Modeling indicates that gas flow in the mixed viscous - free molecular regime (Kn ~ 0.5 - 2) is very subsonic with V ~ 0.02 - 0.1 C_S. We discuss effects of gas pre-heating and residual vacuum tank pressure, and importance of baffles.

  5. Two Phase Transitions of Octa(ethylsilsesquioxane) (C2H5SIO1.5)8 (PREPRINT)

    DTIC Science & Technology

    2006-05-30

    molecular motion in the crystal slows to a rigid limit. This transition from phase I to phase II lowers the symmetry from rhombohedral to triclinic ...per asymmetric unit in phase III, which is also triclinic . Even though the transition to phase III destroys the crystal, warming it to temperatures...E-mail: pmueller@mit.edu Synopsis Crystal structures of the ethyl substituted octa-silsesquioxane (C2H5SiO1.5)8 were determined at three different

  6. Evaluation testing of a portable vapor detector for Part-Per-Billion (PPB) level UDMH and N2H4

    NASA Technical Reports Server (NTRS)

    Curran, Dan; Lueck, Dale E.

    1995-01-01

    Trace level detection of hydrazine (N2H4), monomethyl hydrazine (MMH) and unsymmetrical dimethylhydrazine (UDMH) has been receiving increased attention over the past several years. In May 1995 the American Conference of Government Industrial Hygienists (ACGIH) lowered their acceptable threshold limit value (TLV) from 100 parts-per-billion (ppb) to 10 ppb. Several types of ppb-level detectors are being developed by the United States Air Force (USAF) Space and Missile Systems Center (SMSC). A breadboard version of a portable, lightweight hydrazine detection sensor was developed and produced by Giner Corp. for the USAF. This sensor was designed for ppb level UDMH and N2H4 vapor detection in near real-time. This instrument employs electrochemical sensing, utilizing a three electrode cell with an anion-exchange polymer electrolyte membrane as the only electrolyte in the system. The sensing, counter and reference electrodes are bonded to the membrane forming a single component. The only liquid required to maintain the sensor is deionized water which hydrates the membrane. At the request of the USAF SMSC, independent testing and evaluation of the breadboard instrument was performed at NASA's Toxic Vapor Detection Laboratory (TVDL) for response to ppb-level N2H4 and UDMH and MMH. The TVDL, located at Kennedy Space Center (KSC) has the unique ability to generate calibrated sample vapor streams of N2H4, UDMH, and MMH over a range from less than 10 ppb to thousands of parts per million (ppm) with full environmental control of relative humidity (0-90%) and temperature (0-50 C). The TVDL routinely performs these types of tests. Referenced sensors were subjected to extensive testing, including precision, linearity, response/recovery times, zero and span drift, humidity and temperature effects as well as ammonia interference. Results of these tests and general operation characteristics are reported.

  7. Spectroscopic analysis of the ν17 band of C2H5D at 770 - 850 cm-1

    NASA Astrophysics Data System (ADS)

    Daly, Adam; Drouin, Brian J.; Brown, Linda R.; Pearson, John C.; Sung, Keeyoon; Groner, Peter; Mantz, Arlan W.; Smith, Mary Ann H.

    2014-11-01

    To support planetary investigations of hydrocarbons, we analyzed the high resolution spectrum of C2H5D from 680 to 880 cm-1 in order to enable its detection in the atmospheres of Titan, Neptune and Uranus. Ethane, methane and acetylene are regarded as important organic molecules in the analysis of atmospheres and have been observed by ground based and satellite observations. The isotopes of ethane contain strong bands within the commonly viewed window of ethane’s ν9 band at 800 cm-1. Detailed analyses of d1-ethane and 13C-ethane provide unique insight into the isotopic fractionation and can be used to refine models of hydrocarbons in organic rich atmospheres. We present the analyses of the strong ν17 band of C2H5D at 805 cm-1 which lies within the often-measured "12 micron" window utilized by many present and past surveys of planetary atmospheres. Using the FTIR Bruker IFS 125HR at the Jet Propulsion Laboratory, the spectrum of 98% deuterium-enriched sample of C2H5D at high resolution (Resolving power ~ 320,000) was recorded at 130 K using a 0.20 m absorption cell. Over 10000 individual line frequencies and intensities were retrieved between 690 and 870 cm-1. Improved quantum mechanical models permitted over 4700 quantum assignments to be determined for the ν17 band at 805 cm-1, and the corresponding measured line positions were reproduced with a standard deviation of 4 x 10-4 cm-1. We will describe the resulting linelist for the ν17 band of C2H5D that enable this species to be identified in planetary atmospheres.Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, Connecticut College, and NASA Langley under contract with the National Aeronautics and Space Administration.

  8. Association of in vitro fertilization with global and IGF2/H19 methylation variation in newborn twins.

    PubMed

    Loke, Y J; Galati, J C; Saffery, R; Craig, J M

    2015-04-01

    In vitro fertilization (IVF) and its subset intracytoplasmic sperm injection (ICSI), are widely used medical treatments for conception. There has been controversy over whether IVF is associated with adverse short- and long-term health outcomes of offspring. As with other prenatal factors, epigenetic change is thought to be a molecular mediator of any in utero programming effects. Most studies focused on DNA methylation at gene-specific and genomic level, with only a few on associations between DNA methylation and IVF. Using buccal epithelium from 208 twin pairs from the Peri/Postnatal Epigenetic Twin Study (PETS), we investigated associations between IVF and DNA methylation on a global level, using the proxies of Alu and LINE-1 interspersed repeats in addition to two locus-specific regulatory regions within IGF2/H19, controlling for 13 potentially confounding factors. Using multiple correction testing, we found strong evidence that IVF-conceived twins have lower DNA methylation in Alu, and weak evidence of lower methylation in one of the two IGF2/H19 regulatory regions and LINE-1, compared with naturally conceived twins. Weak evidence of a relationship between ICSI and DNA methylation within IGF2/H19 regulatory region was found, suggesting that one or more of the processes associated with IVF/ICSI may contribute to these methylation differences. Lower within- and between-pair DNA methylation variation was also found in IVF-conceived twins for LINE-1, Alu and one IGF2/H19 regulatory region. Although larger sample sizes are needed, our results provide additional insight to the possible influence of IVF and ICSI on DNA methylation. To our knowledge, this is the largest study to date investigating the association of IVF and DNA methylation.

  9. Protonated ethane. A theoretical investigation of C[sub 2]H[sub 7][sup +] structures and energies

    SciTech Connect

    Carneiro, J.W.M. de; Schleyer, P.R. von ); Saunders, M. ); Remington, R.; Schaefer, H.F. III ); Rauk, A.; Sorensen, T.S. )

    1994-04-20

    The C[sub 2]H[sub 7][sup +] potential energy surface was characterized by high-level ab initio calculations. The effects of electron correlation on geometries and relative energies are substantial. At MP4(SDTQ)/6-311G**//MP2(full)/6-31G**, the global minimum is the C-C protonated structure 1, 4.4 kcal/mol (corrected to 298 K) more stable than the C-H protonated form 3. The proton affinity of ethane to give 1 (142.5 kcal/mol) is 12.5 kcal/mol greater than that of methane (130 kcal/mol). Methane adds to the methyl cation, leading to 1 without activation energy. Barriers for intramolecular hydrogen interchange are lower than the dissociation energy into the ethyl cation and hydrogen, consistent with the experimental observation that deuterium scrambling is faster than dissociation. C[sub 2]H[sub 7][sup +] loses H[sub 2] by 1,1-elimination in an endothermic (10.6 kcal/mol) process. Three frequencies deduced experimentally for C[sub 2]H[sub 7][sup +] correspond to those computed for 1, but neither 2, the H[sub 2]-rotated C-H protonated form, nor 3 can explain the other set of experimental spectral data. Complexes between H[sub 2] and bridged C[sub 2]H[sub 5][sup +] were located, but they are too weakly bonded to be detected experimentally. 45 refs., 3 figs., 9 tabs.

  10. Muonium Addition Reactions and Kinetic Isotope Effects in the Gas Phase: k∞ Rate Constants for Mu + C2H2.

    PubMed

    Arseneau, Donald J; Garner, David M; Reid, Ivan D; Fleming, Donald G

    2015-07-16

    The kinetics of the addition reaction of muonium (Mu) to acetylene have been studied in the gas phase at N2 moderator pressures mainly from ∼800 to 1000 Torr and over the temperature range from 168 to 446 K, but also down to 200 Torr at 168 K and over a much higher range of pressures, from 10 to 44 bar at 295 K, demonstrating pressure-independent rate constants, kMu(T). Even at 200 Torr moderator pressure, the kinetics for Mu + C2H2 addition behave as if effectively in the high-pressure limit, giving k∞ = kMu due to depolarization of the muon spin in the MuC2H2 radical formed in the addition step. The rate constants kMu(T) exhibit modest Arrhenius curvature over the range of measured temperatures. Comparisons with data and with calculations for the corresponding H(D) + C2H2 addition reactions reveal a much faster rate for the Mu reaction at the lowest temperatures, by 2 orders of magnitude, in accord with the propensity of Mu to undergo quantum tunneling. Moreover, isotopic atom exchange, which contributes in a major way to the analogous D atom reaction, forming C2HD + H, is expected to be unimportant in the case of Mu addition, a consequence of the much higher zero-point energy and hence weaker C-Mu bond that would form, meaning that the present report of the Mu + C2H2 reaction is effectively the only experimental study of kinetic isotope effects in the high-pressure limit for H-atom addition to acetylene.

  11. Quasifree Lambda, Sigma^0, and Sigma^- electroproduction from 1,2H, 3,4He, and Carbon

    SciTech Connect

    F. Dohrmann; A. Ahmidouch; C.S. Armstrong; J. Arrington; R. Asaturyan; S. Avery; K. Bailey; H. Bitao; H. Breuer; D.S. Brown; R. Carlini; J. Cha; N. Chant; E. Christy; A. Cochran; L. Cole; J. Crowder; S. Danagoulian; M. Elaasar; R. Ent; H. Fenker; Y. Fujii; L. Gan; K. Garrow; D.F. Geesaman; P. Gueye; K. Hafidi; W. Hinton; H. Juengst; C. Keppel; Y. Liang; J.H. Liu; A. Lung; D. Mack; P. Markowitz; J. Mitchell; T. Miyoshi; H. Mkrtchyan; S.K. Mtingwa; B. Mueller; G. Niculescu; I. Niculescu; D. Potterveld; B.A. Raue; P.E. Reimer; J. Reinhold; J. Roche; M. Sarsour; Y. Sato; R.E. Segel; A. Semenov; S. Stepanyan; V. Tadevosyan; S. Tajima; L. Tang; A. Uzzle; S. Wood; H. Yamaguchi; C. Yan; L. Yuan; B. Zeidman; M. Zeier; B. Zihlmann

    2007-07-30

    Kaon electroproduction from light nuclei and hydrogen, using 1H, 2H, 3He, 4He, and Carbon targets has been measured at Jefferson Laboratory. The quasifree angular distributions of Lambda and Sigma hyperons were determined at Q^2= 0.35(GeV/c)^2 and W= 1.91GeV. Electroproduction on hydrogen was measured at the same kinematics for reference.

  12. I2-Mediated 2H-indazole synthesis via halogen-bond-assisted benzyl C-H functionalization.

    PubMed

    Yi, Xiangli; Jiao, Lei; Xi, Chanjuan

    2016-10-18

    I2-Mediated benzyl C-H functionalization has been developed for the synthesis of 2H-indazoles, which features high efficiency, simple conditions and no need for metals. Mechanistic experiments and DFT calculations have revealed halogen bond assistance and a radical chain process for this reaction. The azo group and the bound iodine cooperate in the hydrogen abstraction step, which circumvents the thermodynamic disfavor of direct hydrogen abstraction by a simple iodine radical.

  13. A novel synthesis of 2-aryl-2H-indazoles via a palladium-catalyzed intramolecular amination reaction.

    PubMed

    Song, J J; Yee, N K

    2000-02-24

    [reaction: see text] A variety of 2-aryl-2H-indazoles were synthesized by the palladium-catalyzed intramolecular amination of the corresponding N-aryl-N(o-bromobenzyl)hydrazines. Of several sets of reaction conditions surveyed, the combination of Pd(OAc)2/dppf/tBuONa gave the best results. This method applies to a wide scope of substrates containing electron-donating and electron-withdrawing substituents.

  14. Process for the preparation of benozotriazoles and their polymers, and 2(2-hydroxy-5-isopropenylphenyl)2H-benzotriazole produced thereby

    DOEpatents

    Vogl, Otto; Nir, Zohar

    1989-03-14

    The compound 2(2-hydroxy-5-isopropenylphenyl)2H-benzotriazole (2H5P) is produced by azo coupling of o-nitrophenyl diazonium chloride with p-hydroxyacetophenone, subjecting the resulting isolated azo compound to reductive cyclization with zinc in the presence of sodium hydroxide at a temperature of about 50.degree.-70.degree. C., acidifying the resulting mixture so as to produce (2(2-hydroxy-5-acetylphenyl)2H-benzotriazole (2H5A), acetylating the isolated 2(2-hydroxy-5-acetylphenyl)2H-benzotriazole (2H5A), so as to produce 2(2-acetoxy-5-acetylphenyl)2H-benzotriazole (2A5A), methylating the isolated 2(2-acetoxy-5-acetylphenyl(2H-benzotriazole (2A5A) with a methyl Grignard reagent and dehydrating the isolated reaction product with potassium hydrogen sulfate so as to produce 2(2-hydroxy-5-isopropenylphenyl)2H-benzotriazole (2H5P). The compound is used as a polymerizable ultra violet light stabilizer.

  15. Crystal structures of [Mn(bdc)(Hspar)2(H2O)0.25]·2H2O containing MnO6+1 capped trigonal prisms and [Cu(Hspar)2](bdc)·2H2O containing CuO4 squares (Hspar = sparfloxacin and bdc = benzene-1,4-di-carboxyl-ate).

    PubMed

    An, Zhe; Gao, Jing; Harrison, William T A

    2016-01-01

    The syntheses and crystal structures of 0.25-aqua-(benzene-1,4-di-carboxyl-ato-κ(2) O,O')bis-(sparfloxacin-κ(2) O,O')manganese(II) dihydrate, [Mn(C8H4O4)(C19H22F2N4O3)2(H2O)0.25]·2H2O or [Mn(bdc)(Hspar)2(H2O)0.25]·2H2O, (I), and bis-(sparfloxacin-κ(2) O,O')copper(II) benzene-1,4-di-carboxyl-ate dihydrate, [Cu(C19H22F2N4O3)2](C8H4O4)·2H2O or [Cu(Hspar)2](bdc)·2H2O, (II), are reported (Hspar = sparfloxacin and bdc = benzene-1,4-di-carboxyl-ate). The Mn(2+) ion in (I) is coordinated by two O,O'-bidentate Hspar neutral mol-ecules (which exist as zwitterions) and an O,O'-bidentate bdc dianion to generate a distorted MnO6 trigonal prism. A very long bond [2.580 (12) Å] from the Mn(2+) ion to a 0.25-occupied water mol-ecule projects through a square face of the prism. In (II), the Cu(2+) ion lies on a crystallographic inversion centre and a CuO4 square-planar geometry arises from its coordination by two O,O'-bidentate Hspar mol-ecules. The bdc dianion acts as a counter-ion to the cationic complex and does not bond to the metal ion. The Hspar ligands in both (I) and (II) feature intra-molecular N-H⋯O hydrogen bonds, which close S(6) rings. In the crystals of both (I) and (II), the components are linked by N-H⋯O, O-H⋯O and C-H⋯O hydrogen bonds, generating three-dimensional networks.

  16. Wall mode stabilization at slow plasma rotation

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Betti, Riccardo; Reimerdes, Holger; Garofalo, Andrea; Manickam, Janardhan

    2007-11-01

    Unstable pressure-driven external kink modes, which become slowly growing resistive wall modes (RWMs) in the presence of a resistive wall, can lead to tokamak plasma disruptions at high beta. It has been shown that RWMs are stabilized by fast plasma rotation (about 1-2% of the Alfv'en frequency) in experiments. Conventional theories attribute the RWM suppression to the dissipation induced by the resonances between plasma rotation and ion bounce/transit or shear Alfv'en frequencies [1]. In those theories, the kinetic effects associated with the plasma diamagnetic frequencies and trapped-particle precession drift frequencies are neglected. It has been observed in recent experiments [2,3] that the RWM suppression also occurs at very slow plasma rotation (about 0.3% of the Alfv'en frequency), where the conventional dissipation is too small to fully suppress the RWMs. Here it is shown, that the trapped-particle kinetic contribution associated with the precession motion [4] is large enough to stabilize the RWM in DIII-D at low rotation. Work supported by the US-DoE OFES. [1] A. Bondeson and M. S. Chu, Physics of Plasmas, 3,3013 (1996). [2] H. Reimerdes et al., Physical Review Letters, 98,055001 (2007). [3] M. Takechi et al., Physical Review Letters, 98,055002 (2007). [4] B. Hu and R. Betti, Physical Review Letters, 93,105002 (2004).

  17. Permutationally invariant fitting of intermolecular potential energy surfaces: A case study of the Ne-C2H2 system

    NASA Astrophysics Data System (ADS)

    Li, Jun; Guo, Hua

    2015-12-01

    The permutation invariant polynomial-neural network (PIP-NN) approach is extended to fit intermolecular potential energy surfaces (PESs). Specifically, three PESs were constructed for the Ne-C2H2 system. PES1 is a full nine-dimensional PIP-NN PES directly fitted to ˜42 000 ab initio points calculated at the level of CCSD(T)-F12a/cc-pCVTZ-F12, while the other two consist of the six-dimensional PES for C2H2 [H. Han, A. Li, and H. Guo, J. Chem. Phys. 141, 244312 (2014)] and an intermolecular PES represented in either the PIP (PES2) or PIP-NN (PES3) form. The comparison of fitting errors and their distributions, one-dimensional cuts and two-dimensional contour plots of the PESs, as well as classical trajectory collisional energy transfer dynamics calculations shows that the three PESs are very similar. We conclude that full-dimensional PESs for non-covalent interacting molecular systems can be constructed efficiently and accurately by the PIP-NN approach for both the constituent molecules and intermolecular parts.

  18. LABORATORY IR STUDIES AND ASTROPHYSICAL IMPLICATIONS OF C{sub 2}H{sub 2}-CONTAINING BINARY ICES

    SciTech Connect

    Knez, C.; Moore, M. H.; Hudson, R. L.; Ferrante, R. F.

    2012-04-01

    Studies of molecular hot cores and protostellar environments have shown that the observed abundance of gas-phase acetylene (C{sub 2}H{sub 2}) cannot be matched by chemical models without the inclusion of C{sub 2}H{sub 2} molecules subliming from icy grain mantles. Searches for infrared (IR) spectral features of solid-phase acetylene are under way, but few laboratory reference spectra of C{sub 2}H{sub 2} in icy mixtures, which are needed for spectral fits to observational data, have been published. Here, we report a systematic study of the IR spectra of condensed-phase pure acetylene and acetylene in ices dominated by carbon monoxide (CO), carbon dioxide (CO{sub 2}), methane (CH{sub 4}), and water (H{sub 2}O). We present new spectral data for these ices, including band positions and intrinsic band strengths. For each ice mixture and concentration, we also explore the dependence of acetylene's {nu}{sub 5}-band position (743 cm{sup -1}, 13.46 {mu}m) and FWHM on temperature. Our results show that the {nu}{sub 5} feature is much more cleanly resolved in ices dominated by non-polar and low-polarity molecules, specifically CO, CO{sub 2}, and CH{sub 4}, than in mixtures dominated by H{sub 2}O-ice. We compare our laboratory ice spectra with observations of a quiescent region in Serpens.

  19. Estimation of a 2p2h effect on Gamow-Teller transitions within the second Tamm-Dancoff approximation

    NASA Astrophysics Data System (ADS)

    Minato, F.

    2016-04-01

    Two-particle two-hole (2p2h) effect on the Gamow-Teller (GT) transition for neutron-rich nuclei is studied by the second Tamm-Dancoff approximation (STDA) with the Skyrme interaction. Unstable 24O and 34Si and stable 48Ca nuclei are chosen to study the quenching and fragmentation of the GT strengths. Correlation of the 2p2h configurations causes about 20 % quenching and downward shift of GT giant resonances (GTGRs). The residual interaction changing relative angular momentum that appeared in the tensor force part gives a meaningful effect to the GT strength distributions. In this work, 17 - 26 % of the total GT strengths are brought to high-energy region above GTGRs. In particular, the tensor force brings strengths to high energy more than 50 MeV. STDA calculation within a small model space for 2p2h configuration is also performed and experimental data of 48Ca is reproduced reasonably.

  20. Computational study of the rovibrational spectra of CO2-C2H2 and CO2-C2D2

    NASA Astrophysics Data System (ADS)

    Donoghue, Geoff; Wang, Xiao-Gang; Dawes, Richard; Carrington, Tucker

    2016-12-01

    An intermolecular potential energy surface and rovibrational transition frequencies are computed for CO2-C2H2. An interpolating moving least squares method is used to fit ab initio points at the explicitly correlated coupled-cluster level. The rovibrational Schrödinger equation is solved with a symmetry-adapted Lanczos algorithm. The computed disrotatory and torsion vibrational levels of both CO2-C2H2 and CO2-C2D2 differ from those obtained by experimentalists by less than 0.5 cm-1. CO2-C2H2 has two equivalent minima with the monomers perpendicular to the inter-monomer axis. In contrast to many other Van der Waals dimers there is no disrotatory path that connects the minima. The tunnelling path follows the torsional coordinate over a high barrier and the splitting is therefore tiny. Using vibrational parent analysis we are able to fit and thus obtain rotational constants and centrifugal distortion constants. Calculated rotational constants differ from their experimental counterparts by less than 0.001 cm-1.