Science.gov

Sample records for 2-h post-ogtt plasma

  1. Accumulation of 2H2O in plasma and eccrine sweat during exercise-heat stress.

    PubMed

    Armstrong, Lawrence E; Klau, Jennifer F; Ganio, Matthew S; McDermott, Brendon P; Yeargin, Susan W; Lee, Elaine C; Maresh, Carl M

    2010-02-01

    The purpose of this research was to characterize the movement of ingested water through body fluids, during exercise-heat stress. Deuterium oxide ((2)H(2)O) accumulation in plasma and eccrine sweat was measured at two sites (back and forehead). The exercise of 14 males was controlled via cycle ergometry in a warm environment (60 min; 28.7 degrees C, 51%rh). Subjects consumed (2)H(2)O (0.15 mg kg(-1), 99.9% purity) mixed in flavored, non-caloric, colored water before exercise, then consumed 3.0 ml kg(-1) containing no (2)H(2)O every 15 min during exercise. We hypothesized that water transit from mouth to skin would occur before 15 min. (2)H(2)O appeared rapidly in both plasma and sweat (P < 0.05), within 10 min of water consumption. The ratio (2)H(2)O/H(2)O (D:H) was 47.3-55.0 times greater in plasma than in back sweat at minutes 10, 20, and 30 (DeltaD:H relative to baseline). At elapsed minute 20, the mean rate of deuterium accumulation (DeltaD:H min(-1)) in plasma was 14.9 and 23.7 times greater than in forehead and back sweat samples, respectively. Mean (+/-SE) whole-body sweat rate was 1.04 +/- 0.05 L h(-1) and subjects with the greatest whole-body sweat rate exhibited the greatest peak deuterium enrichment in sweat (r(2) = 0.87, exponential function); the peak (2)H(2)O enrichment in sweat was not proportional (P > 0.05) to body mass, volume of the deuterium dose, or total volume of fluid consumed. These findings clarify the time course of fluid movement from mouth to eccrine sweat glands, and demonstrate considerable differences of (2)H(2)O enrichment in plasma versus sweat.

  2. Dynamics of the formation and loss of boron atoms in a H2/B2H6 microwave plasma

    NASA Astrophysics Data System (ADS)

    Duluard, C. Y.; Aubert, X.; Sadeghi, N.; Gicquel, A.

    2016-09-01

    For further improvements in doped-diamond deposition technology, an understanding of the complex chemistry in H2/CH4/B2H6 plasmas is of general importance. In this context, a H2/B2H6 plasma ignited by microwave power in a near resonant cavity at high pressure (100-200 mbar) is studied to measure the B-atom density in the ground state. The discharge is ignited in the gas mixture (0-135 ppm B2H6 in H2) by a 2.45 GHz microwave generator, leading to the formation of a hemispheric plasma core, surrounded by a faint discharge halo filling the remaining reactor volume. Measurements with both laser induced fluorescence and resonant absoption with a boron hollow cathode lamp indicate that the B-atom density is higher in the halo than in the plasma core. When the absorption line-of-sight is positioned in the halo, the absorption is so strong that the upper detection limit is reached. To understand the mechanisms of creation and loss of boron atoms, time-resolved absorption measurements have been carried out in a pulsed plasma regime (10 Hz, duty cycle 50%). The study focuses on the influence of the total pressure, the partial pressure of B2H6, as well as the source power, on the growth and decay rates of boron atoms when the plasma is turned off.

  3. Plasma Proteome Dynamics: Analysis of Lipoproteins and Acute Phase Response Proteins with 2H2O Metabolic Labeling*

    PubMed Central

    Li, Ling; Willard, Belinda; Rachdaoui, Nadia; Kirwan, John P.; Sadygov, Rovshan G.; Stanley, William C.; Previs, Stephen; McCullough, Arthur J.; Kasumov, Takhar

    2012-01-01

    Understanding the pathologies related to the regulation of protein metabolism requires methods for studying the kinetics of individual proteins. We developed a 2H2O metabolic labeling technique and software for protein kinetic studies in free living organisms. This approach for proteome dynamic studies requires the measurement of total body water enrichments by GC-MS, isotopic distribution of the tryptic peptide by LC-MS/MS, and estimation of the asymptotical number of deuterium incorporated into a peptide by software. We applied this technique to measure the synthesis rates of several plasma lipoproteins and acute phase response proteins in rats. Samples were collected at different time points, and proteins were separated by a gradient gel electrophoresis. 2H labeling of tryptic peptides was analyzed by ion trap tandem mass spectrometry (LTQ MS/MS) for measurement of the fractional synthesis rates of plasma proteins. The high sensitivity of LTQ MS in zoom scan mode in combination with 2H label amplification in proteolytic peptides allows detection of the changes in plasma protein synthesis related to animal nutritional status. Our results demonstrate that fasting has divergent effects on the rate of synthesis of plasma proteins, increasing synthesis of ApoB 100 but decreasing formation of albumin and fibrinogen. We conclude that this technique can effectively measure the synthesis of plasma proteins and can be used to study the regulation of protein homeostasis under physiological and pathological conditions. PMID:22393261

  4. Microwave Plasma-Activated Chemical Vapor Deposition of Nitrogen-Doped Diamond. II: CH4/N2/H2 Plasmas.

    PubMed

    Truscott, Benjamin S; Kelly, Mark W; Potter, Katie J; Ashfold, Michael N R; Mankelevich, Yuri A

    2016-11-03

    We report a combined experimental and modeling study of microwave-activated dilute CH4/N2/H2 plasmas, as used for chemical vapor deposition (CVD) of diamond, under very similar conditions to previous studies of CH4/H2, CH4/H2/Ar, and N2/H2 gas mixtures. Using cavity ring-down spectroscopy, absolute column densities of CH(X, v = 0), CN(X, v = 0), and NH(X, v = 0) radicals in the hot plasma have been determined as functions of height, z, source gas mixing ratio, total gas pressure, p, and input power, P. Optical emission spectroscopy has been used to investigate, with respect to the same variables, the relative number densities of electronically excited species, namely, H atoms, CH, C2, CN, and NH radicals and triplet N2 molecules. The measurements have been reproduced and rationalized from first-principles by 2-D (r, z) coupled kinetic and transport modeling, and comparison between experiment and simulation has afforded a detailed understanding of C/N/H plasma-chemical reactivity and variations with process conditions and with location within the reactor. The experimentally validated simulations have been extended to much lower N2 input fractions and higher microwave powers than were probed experimentally, providing predictions for the gas-phase chemistry adjacent to the diamond surface and its variation across a wide range of conditions employed in practical diamond-growing CVD processes. The strongly bound N2 molecule is very resistant to dissociation at the input MW powers and pressures prevailing in typical diamond CVD reactors, but its chemical reactivity is boosted through energy pooling in its lowest-lying (metastable) triplet state and subsequent reactions with H atoms. For a CH4 input mole fraction of 4%, with N2 present at 1-6000 ppm, at pressure p = 150 Torr, and with applied microwave power P = 1.5 kW, the near-substrate gas-phase N atom concentration, [N]ns, scales linearly with the N2 input mole fraction and exceeds the concentrations [NH]ns, [NH2]ns

  5. Microwave Plasma-Activated Chemical Vapor Deposition of Nitrogen-Doped Diamond. II: CH4/N2/H2 Plasmas

    PubMed Central

    2016-01-01

    We report a combined experimental and modeling study of microwave-activated dilute CH4/N2/H2 plasmas, as used for chemical vapor deposition (CVD) of diamond, under very similar conditions to previous studies of CH4/H2, CH4/H2/Ar, and N2/H2 gas mixtures. Using cavity ring-down spectroscopy, absolute column densities of CH(X, v = 0), CN(X, v = 0), and NH(X, v = 0) radicals in the hot plasma have been determined as functions of height, z, source gas mixing ratio, total gas pressure, p, and input power, P. Optical emission spectroscopy has been used to investigate, with respect to the same variables, the relative number densities of electronically excited species, namely, H atoms, CH, C2, CN, and NH radicals and triplet N2 molecules. The measurements have been reproduced and rationalized from first-principles by 2-D (r, z) coupled kinetic and transport modeling, and comparison between experiment and simulation has afforded a detailed understanding of C/N/H plasma-chemical reactivity and variations with process conditions and with location within the reactor. The experimentally validated simulations have been extended to much lower N2 input fractions and higher microwave powers than were probed experimentally, providing predictions for the gas-phase chemistry adjacent to the diamond surface and its variation across a wide range of conditions employed in practical diamond-growing CVD processes. The strongly bound N2 molecule is very resistant to dissociation at the input MW powers and pressures prevailing in typical diamond CVD reactors, but its chemical reactivity is boosted through energy pooling in its lowest-lying (metastable) triplet state and subsequent reactions with H atoms. For a CH4 input mole fraction of 4%, with N2 present at 1–6000 ppm, at pressure p = 150 Torr, and with applied microwave power P = 1.5 kW, the near-substrate gas-phase N atom concentration, [N]ns, scales linearly with the N2 input mole fraction and exceeds the concentrations [NH]ns, [NH2]ns

  6. Impact of reductive N2/H2 plasma on porous low-dielectric constant SiCOH thin films

    NASA Astrophysics Data System (ADS)

    Cui, Hao; Carter, Richard J.; Moore, Darren L.; Peng, Hua-Gen; Gidley, David W.; Burke, Peter A.

    2005-06-01

    Porous low-dielectric constant (low-κ) SiCOH thin films deposited using a plasma-enhanced chemical-vapor deposition have been comprehensively characterized before and after exposure to a reactive-ion-etch-type plasma of N2 and H2 chemistry. The low-κ film studied in this work is a carbon-doped silicon oxide film with a dielectric constant (κ) of 2.5. Studies show that a top dense layer is formed as a result of significant surface film densification after exposure to N2/H2 plasma while the underlying bulk layer remains largely unchanged. The top dense layer is found to seal the porous bulk SiCOH film. SiCOH films experienced significant thickness reduction, κ increase, and leakage current degradation after plasma exposure, accompanied by density increase, pore collapse, carbon depletion, and moisture content increase in the top dense layer. Both film densification and removal processes during N2/H2 plasma treatment were found to play important roles in the thickness reduction and κ increase of this porous low-κ SiCOH film. A model based upon mutually limiting film densification and removal processes is proposed for the continuous thickness reduction during plasma exposure. A combination of surface film densification, thickness ratio increase of top dense layer to bulk layer, and moisture content increase results in the increase in κ value of this SiCOH film.

  7. Mass spectrometric investigations of plasma chemical reactions in a radiofrequency discharge with Ar/C2H2 and Ar/C2H2/O2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Herrendorf, Ann-Pierra; Sushkov, Vladimir; Hippler, Rainer

    2017-03-01

    Plasma chemical reactions in complex Ar/C2H2 and Ar/C2H2/O2 radiofrequency plasmas with formation of nano-particles are investigated. Growing nano-particles cause a growth instability, which leads to temporal variations and a cyclic behaviour of plasma properties. Mass spectrometric observations show the consumption of C2H2 and the formation of polyacetylene C2nH2 molecules which increases with acetylene gas flow. The cycle frequency is a decreasing function of acetylene consumption. The addition of oxygen to the discharge reduces the cycle frequency and the formation of nano-particles and leads to the formation of CO and CO2 molecules presumably through the oxidation of C2H radicals which are formed in the discharge.

  8. Association of television viewing with fasting and 2-h postchallenge plasma glucose levels in adults without diagnosed diabetes.

    PubMed

    Dunstan, David W; Salmon, Jo; Healy, Genevieve N; Shaw, Jonathan E; Jolley, Damien; Zimmet, Paul Z; Owen, Neville

    2007-03-01

    We examined the associations of television viewing time with fasting plasma glucose (FPG) and 2-h postchallenge plasma glucose (2-h PG) levels in Australian adults. A total of 8,357 adults aged > 35 years who were free from diagnosed diabetes and who attended a population-based cross-sectional study (Australian Diabetes, Obesity and Lifestyle Study [AusDiab]) were evaluated. Measures of FPG and 2-h PG were obtained from an oral glucose tolerance test. Self-reported television viewing time (in the previous week) was assessed using an interviewer-administered questionnaire. Homeostasis model assessment (HOMA) of insulin sensitivity (HOMA-%S) and beta-cell function (HOMA-%B) were calculated based on fasting glucose and insulin concentrations. After adjustment for confounders and physical activity time, time spent watching television in women was positively associated with 2-h PG, log fasting insulin, and log HOMA-%B and inversely associated with log HOMA-%S (P < 0.05) but not with FPG. No significant associations were observed with glycemic measures in men. The beta-coefficients across categories of average hours spent watching television per day (< 1.0, 1.0-1.9, 2.0-2.9, 3.0-3.9, and > or = 4.0) for 2-h PG in women were 0 (reference), 0.009, 0.047, 0.473, and 0.501, respectively (P for trend = 0.02). Our findings highlight the unique deleterious relationship of sedentary behavior (indicated by television viewing time) and glycemic measures independent of physical activity time and adiposity status. These relationships differed according to sex and type of glucose measurement, with the 2-h PG measure being more strongly associated with television viewing. The findings suggest an important role for reducing sedentary behavior in the prevention of type 2 diabetes and cardiovascular disease, especially in women.

  9. Ammonia formation in N2/H2 plasmas on ITER-relevant plasma facing materials: Surface temperature and N2 plasma content effects

    NASA Astrophysics Data System (ADS)

    de Castro, A.; Alegre, D.; Tabarés, F. L.

    2015-08-01

    Ammonia production in N2/H2 direct current glow discharge plasmas, with nitrogen concentrations from 1.5% to 33%, different wall materials (tungsten, stainless steel and aluminium as a proxy for beryllium) and surface temperatures up to 350 °C has been investigated. Ammonia yields on the exposed materials have been deduced, resulting in different values depending on the wall material, its temperature and N2 plasma content. The results indicate weak wall temperature dependence in tungsten and stainless steel. However, wall temperatures above 300 °C have a very clear influence on aluminium walls, as almost all the molecular N2 depleted from the gas phase is converted into ammonia. The amount of implanted N seems to have a direct impact on the ammonia formation yield, pointing to the competition between N implantation and N/H-N/N recombination on the walls as the key mechanism of the ammonia formation.

  10. NO Removal in High Pressure Plasmas of N_2/H_2O/NO Mixtures

    NASA Astrophysics Data System (ADS)

    Fresnet, F.; Baravian, G.; Magne, L.; Pasquiers, S.; Postel, C.; Puech, V.; Rousseau, A.

    2001-10-01

    Influence of H_2O on NO removal has been studied using a homogeneous photo-triggered discharge with a time resolved LIF measurement of the NO density, in N_2/H_2O/NO mixtures at 460 mbar. The H_2O maximum concentration was 2.5 was between 70 and 160 J/l. Measurement of NO density has been performed up to 180 µs after the current pulse excitation of short duration, 50 ns. Kinetic analysis has been made using a self-consistent 0D-discharge model. NO is in great part dissociated, in N_2/NO, through collisions with the excited singlet states of N_2. We have previously shown that addition of ethene induces de-excitation of these states, leading to a decrease of the NO removal ( F. Fresnet, G. Baravian, L. Magne, S. Pasquiers, C. Postel, V. Puech, A. Rousseau, Appl. Phys. Lett., 77 (2000) 4118.). Similar processes take place when C_2H4 is replaced by H_2O. The value of the rate constant for collision of singlet states with water, 3.10-10 cm^3 s-1, is obtained from our study.

  11. Kinetic of the OH-radical in high pressure plasmas of N_2/H_2O/hydrocarbons mixtures

    NASA Astrophysics Data System (ADS)

    Baravian, G.; Fresnet, F.; Magne, L.; Pasquiers, S.; Postel, C.; Puech, V.; Rousseau, A.

    2001-10-01

    Kinetic of the OH-radical has been studied in homogeneous plasmas achieved in a photo-triggered discharge device, in N_2/H_2O with C_2H4 or C_3H_6, at 460 mbar with 1.2 concentration and a deposited energy in the plasma equal to 92 J/l. Hydrocarbon concentration ranged from 50 ppm up to 1000 ppm. Using the same technique as for NO kinetic studies ( F. Fresnet, G. Baravian, L. Magne, S. Pasquiers, C. Postel, V. Puech, A. Rousseau, Appl. Phys. Lett., 77 (2000) 4118.), a time resolved LIF diagnostic has been performed to measure the OH-radical density up to 180 µs after the short current pulse excitation, 50 ns. At fixed deposited energy, the LIF signal rapidly decreases when hydrocarbon concentration increases. Measurements have been compared to predictions of a self-consistent 0D-model which takes into account a detailed kinetic scheme, including oxidation reactions of hydrocarbons by the radical which are important processes in flue gas non-thermal plasma treatment. Results are discussed.

  12. Self-consistent simulation of N_2/H2 gas plasma for low-k material etching

    NASA Astrophysics Data System (ADS)

    Shon, Chae-Hwa; Makabe, Toshiaki

    2003-10-01

    We have developed a self-consistent modeling tool for H_2/N2 gas in two-frequency capacitively coupled plasma (2f-CCP) [1], based on the relaxation continuum (RCT) model [2]. As the resistance-capacitance (RC) delay of signals through interconnection materials becomes important, low-k materials have been proposed to solve the probelm. H_2/N2 gas is a promising candidate for the etching of future low-k dielectric materials because of high selectivity and environmentally friendly process. There are many reactions among the vibrationally excited states, electronically excited states, and ionized plasma in the N_2/H2 gas, that have to be considered self-consistently. In this model, plasma and neutrals are calculated self-consistently by iterating the simulation of both species till a spatiotemporal periodic steady state profile could be obtained. The spatiotemporal profiles and reactions of plasma and neutrals are discussed as a simulation results of the model. [1] C. H. Shon and T. Makabe, Submitted to Phys. Rev. E. [2] T. Makabe, "Advences in Low Temperature RF plasmas" (Elsevier, 2002).

  13. Kinetic modelling of NH3 production in N2-H2 non-equilibrium atmospheric-pressure plasma catalysis

    NASA Astrophysics Data System (ADS)

    Hong, Jungmi; Pancheshnyi, Sergey; Tam, Eugene; Lowke, John J.; Prawer, Steven; Murphy, Anthony B.

    2017-04-01

    Detailed plasma kinetics modelling is presented of a low electron energy N2-H2 atmospheric-pressure discharge for ammonia synthesis. The model considers both electron and vibrational kinetics, including excited N2(X, ν) and H2(X, ν) species, and surface reactions such as those occurring by the Eley-Rideal and Langmuir-Hinshelwood mechanisms and dissociative adsorption of molecules. The predictions of the model are compared to the measured NH3 concentration produced in a packed-bed dielectric barrier discharge reactor as a function of process parameters such as input gas composition and applied voltage. Unlike typical low-pressure plasma processes, under the plasma conditions considered here (reduced electric field E/N in the range 30-50 Td, electron density of the order 108 cm-3), the influence of ions is not significant. Instead, the reactions between radicals and vibrationally-excited molecules are more important. The active species in surface reactions, such as surface-adsorbed atomic nitrogen N(s) or hydrogen H(s), are found to be predominantly generated through the dissociative adsorption of molecules, in contrast to previously proposed mechanisms for plasma catalysis under low-pressure, high-E/N conditions. It is found that NH radicals play an important role at the early stages of the NH3-generation process, NH in turn is produced from N and H2(ν). Electron kinetics is shown to play a critical role in the molecular dissociation and vibrational excitation reactions that produce these precursors. It is further found that surface-adsorbed atomic hydrogen H(s) takes a leading role in the formation of NH3, which is another significant difference from the mechanisms in conventional thermo-chemical processes and low-pressure plasmas. The applied voltage, the gas temperature, the N2:H2 ratio in the input gas mixture and the reactivity of the surface material are all found to influence the ammonia production. The calculated results reproduce the observed trends in

  14. Characteristics and anticoagulation behavior of polyethylene terephthalate modified by C2H2 plasma immersion ion implantation-deposition

    NASA Astrophysics Data System (ADS)

    Wang, J.; Pan, C. J.; Kwok, S. C. H.; Yang, P.; Chen, J. Y.; Wan, G. J.; Huang, N.; Chu, P. K.

    2004-01-01

    Acetylene (C2H2) plasma immersion ion implantation-deposition (PIII-D) is conducted on polyethylene terephthalate (PET) to improve its blood compatibility. The structural and physicochemical properties of the modified surface are characterized by, Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), and static contact angle measurement. Atomic force microscopy discloses that the average roughness (Ra) of film surface decreases from 58.9 nm to 11.4 nm after C2H2 PIII-D treats PET. Attenuated total reflection Fourier transform infrared spectroscopy shows that the specfic adsorption peaks for PET decrease after ion implantation and deposition. Raman spectroscopy indicates that a thin amorphous polymerlike carbon (PLC) film is formed in the PET. The effects of the surface modification on the chemical bonding of C, H, and O are examined by XPS and the results show that the ratio of sp3 C-C to sp2 C=C is 0.25. After C2H2 PIII-D, the polar component γp of surface energy increases from 2.4 mN/m to 12.3 mN/m and γp/γd increases from 0.06 to 0.35. The wettability of the modified surfaces is improved. Scanning electron microscopy and optical microscopy reveal that the amounts of adhered, aggregated and morphologically changed platelets are reduced by the deposition of an amorphous polymer-like carbon film. The thrombin time, prothrombin time, and activated partial thromboplastin time of the modified PET are longer than those of the untreated PET. Our result thus shows that the amorphous PLC film deposited on the PET surface by C2H2 PIII-D improves platelet adhesion and activation. .

  15. Ordered and Disordered Phases Coexist in Plasma Membrane Vesicles of RBL-2H3 Mast Cells. An ESR Study

    PubMed Central

    Ge, Mingtao; Gidwani, Arun; Brown, H. Alex; Holowka, David; Baird, Barbara; Freed, Jack H.

    2003-01-01

    Four chain spin labels and a spin-labeled cholestane were used to study the dynamic structure of plasma membrane vesicles (PMV) prepared from RBL-2H3 mast cells at temperatures ranging from 22°C to 45°C. Analysis shows that the spectra from most labels consist of two components. The abundant spectral components exhibit substantial ordering that is intermediate between that of a liquid-ordered (Lo) phase, and that of a liquid-crystalline (Lc) phase as represented by model membranes. Also, rotational diffusion rates of the spin labels are comparable to those in the Lo phase. In contrast, the ordering for the less abundant components is much lower. These results indicate that a Lo-like region or phase (the abundant component) and an Lc-like region or phase (the less abundant component) coexist in the PMV. In contrast, membranes reconstituted from extracted lipids exhibit the more ordered phase only. This suggests that membrane-associated proteins are important for the coexistence of Lo-like and Lc-like regions in the plasma membrane. In addition, binding of the myristoylated protein, ARF6 to PMV, leads to a new spectral component for a headgroup lipid spin label that indicates the formation of plasma membrane defects by this low molecular weight GTPase. PMID:12885671

  16. Characteristics of NOx removal combining dielectric barrier discharge plasma with selective catalytic reduction by C2H5OH

    NASA Astrophysics Data System (ADS)

    Wang, Xing-Quan; Chen, Wei; Guo, Qi-Pei; Li, Yi; Lv, Guo-Hua; Sun, Xiu-Ping; Zhang, Xian-Hui; Feng, Ke-Cheng; Yang, Si-Ze

    2009-07-01

    With the assistance of dielectric barrier discharge (DBD) plasma, selective catalytic reduction of NOx by ethanol over Ag/Al2O3 catalysts was studied. Experimental results show that NOx conversion was greatly enhanced due to the presence of DBD plasma at lower temperature. By varying the DBD voltages or power in 13 kHz frequency at different temperatures, NOx conversion was increased to 40.7% from 6.4% at 176 °C, even to 66.8% from 17.3% at 200 °C. NOx conversion could even be improved to 90% at temperature above 255 °C. It was proposed that nonthermal plasma generated by dielectric barrier discharge reactor was very effective for oxidizing NO to NO2 under excess O2 conditions, which possesses high reactivity with C2H5OH to yield CxHyNzO compound. By reacting with CxHyNzO compound and oxygen, NOx is converted to N2 at low temperatures.

  17. Detailed study of the plasma-activated catalytic generation of ammonia in N2-H2 plasmas

    NASA Astrophysics Data System (ADS)

    van Helden, J. H.; Wagemans, W.; Yagci, G.; Zijlmans, R. A. B.; Schram, D. C.; Engeln, R.; Lombardi, G.; Stancu, G. D.; Röpcke, J.

    2007-02-01

    We investigated the efficiency and formation mechanism of ammonia generation in recombining plasmas generated from mixtures of N2 and H2 under various plasma conditions. In contrast to the Haber-Bosch process, in which the molecules are dissociated on a catalytic surface, under these plasma conditions the precursor molecules, N2 and H2, are already dissociated in the gas phase. Surfaces are thus exposed to large fluxes of atomic N and H radicals. The ammonia production turns out to be strongly dependent on the fluxes of atomic N and H radicals to the surface. By optimizing the atomic N and H fluxes to the surface using an atomic nitrogen and hydrogen source ammonia can be formed efficiently, i.e., more than 10% of the total background pressure is measured to be ammonia. The results obtained show a strong similarity with results reported in literature, which were explained by the production of ammonia at the surface by stepwise addition reactions between adsorbed nitrogen and hydrogen containing radicals at the surface and incoming N and H containing radicals. Furthermore, our results indicate that the ammonia production is independent of wall material. The high fluxes of N and H radicals in our experiments result in a passivated surface, and the actual chemistry, leading to the formation of ammonia, takes place in an additional layer on top of this passivated surface.

  18. Microwave Plasma-Activated Chemical Vapor Deposition of Nitrogen-Doped Diamond. I. N2/H2 and NH3/H2 Plasmas.

    PubMed

    Truscott, Benjamin S; Kelly, Mark W; Potter, Katie J; Johnson, Mack; Ashfold, Michael N R; Mankelevich, Yuri A

    2015-12-31

    We report a combined experimental/modeling study of microwave activated dilute N2/H2 and NH3/H2 plasmas as a precursor to diagnosis of the CH4/N2/H2 plasmas used for the chemical vapor deposition (CVD) of N-doped diamond. Absolute column densities of H(n = 2) atoms and NH(X(3)Σ(-), v = 0) radicals have been determined by cavity ring down spectroscopy, as a function of height (z) above a molybdenum substrate and of the plasma process conditions, i.e., total gas pressure p, input power P, and the nitrogen/hydrogen atom ratio in the source gas. Optical emission spectroscopy has been used to investigate variations in the relative number densities of H(n = 3) atoms, NH(A(3)Π) radicals, and N2(C(3)Πu) molecules as functions of the same process conditions. These experimental data are complemented by 2-D (r, z) coupled kinetic and transport modeling for the same process conditions, which consider variations in both the overall chemistry and plasma parameters, including the electron (Te) and gas (T) temperatures, the electron density (ne), and the plasma power density (Q). Comparisons between experiment and theory allow refinement of prior understanding of N/H plasma-chemical reactivity, and its variation with process conditions and with location within the CVD reactor, and serve to highlight the essential role of metastable N2(A(3)Σ(+)u) molecules (formed by electron impact excitation) and their hitherto underappreciated reactivity with H atoms, in converting N2 process gas into reactive NHx (x = 0-3) radical species.

  19. Effect of hydrogen ratio on plasma parameters of N{sub 2}-H{sub 2} gas mixture glow discharge

    SciTech Connect

    El-Brulsy, R. A.; Abd Al-Halim, M. A.; Abu-Hashem, A.; Rashed, U. M.; Hassouba, M. A.

    2012-05-15

    A dc plane glow discharge in a nitrogen-hydrogen (N{sub 2}-H{sub 2}) gas mixture has been operated at discharge currents of 10 and 20 mA. The electron energy distribution function (EEDF) at different hydrogen concentrations is measured. A Maxwellian EEDF is found in the positive column region, while in both cathode fall and negative glow regions, a non-Maxwellian one is observed. Langmuir electric probes are used at different axial positions, gas pressures, and hydrogen concentrations to measure the electron temperature and plasma density. The electron temperature is found to increase with increasing H{sub 2} concentration and decrease with increasing both the axial distance from the cathode and the mixture pressure. At first, with increasing distance from the cathode, the ion density decreases, while the electron density increases; then, as the anode is further approached, they remain nearly constant. At different H{sub 2} concentrations, the electron and ion densities decrease with increasing the mixture pressure. Both the electron and ion densities slightly decrease with increasing H{sub 2} concentration.

  20. Spectroscopic and modeling investigations of the gas-phase chemistry and composition in microwave plasma activated B2H6/Ar/H2 mixtures.

    PubMed

    Ma, Jie; Richley, James C; Davies, David R W; Cheesman, Andrew; Ashfold, Michael N R; Mankelevich, Yuri A

    2010-02-25

    This paper describes a three-pronged study of microwave (MW) activated B(2)H(6)/Ar/H(2) plasmas as a precursor to diagnosis of the B(2)H(6)/CH(4)/Ar/H(2) plasmas used for the chemical vapor deposition of B-doped diamond. Absolute column densities of B atoms and BH radicals have been determined by cavity ring-down spectroscopy as a function of height (z) above a molybdenum substrate and of the plasma process conditions (B(2)H(6) and Ar partial pressures, total pressure, and supplied MW power). Optical emission spectroscopy has been used to explore variations in the relative densities of electronically excited BH, H, and H(2) species as a function of the same process conditions and of time after introducing B(2)H(6) into a pre-existing Ar/H(2) plasma. The experimental measurements are complemented by extensive 2-D(r, z) modeling of the plasma chemistry, which results in refinements to the existing B/H chemistry and thermochemistry and demonstrates the potentially substantial loss of gas-phase BH(x) species through reaction with trace quantities of air/O(2) in the process gas mixture and heterogeneous processes occurring at the reactor wall.

  1. The quenching effect of hydrogen on the nitrogen in metastable state in atmospheric-pressure N{sub 2}-H{sub 2} microwave plasma torch

    SciTech Connect

    Li, Shou-Zhe Zhang, Xin; Chen, Chuan-Jie; Zhang, Jialiang; Wang, Yong-Xing; Xia, Guang-Qing

    2014-07-15

    The atmospheric-pressure microwave N{sub 2}-H{sub 2} plasma torch is generated and diagnosed by optical emission spectroscopy. It is found that a large amount of N atoms and NH radicals are generated in the plasma torch and the emission intensity of N{sub 2}{sup +} first negative band is the strongest over the spectra. The mixture of hydrogen in nitrogen plasma torch causes the morphology of the plasma discharge to change with appearance that the afterglow shrinks greatly and the emission intensity of N{sub 2}{sup +} first negative band decreases with more hydrogen mixed into nitrogen plasma. In atmospheric-pressure microwave-induced plasma torch, the hydrogen imposes a great influence on the characteristics of nitrogen plasma through the quenching effect of the hydrogen on the metastable state of N{sub 2}.

  2. Etching of low-k materials for microelectronics applications by means of a N2/H2 plasma: modeling and experimental investigation

    NASA Astrophysics Data System (ADS)

    Van Laer, K.; Tinck, S.; Samara, V.; de Marneffe, J. F.; Bogaerts, A.

    2013-04-01

    In this paper, we investigate the etch process of so-called low-k organic material by means of a N2/H2 capacitively coupled plasma, as applied in the micro-electronics industry for the manufacturing of computer chips. In recent years, such an organic material has emerged as a possible alternative for replacing bulk SiO2 as a dielectric material in the back-end-of-line, because of the smaller parasitic capacity between adjacent conducting lines, and thus a faster propagation of the electrical signals throughout the chip. Numerical simulations with a hybrid plasma model, using an extensive plasma and surface chemistry set, as well as experiments are performed, focusing on the plasma properties as well as the actual etching process, to obtain a better insight into the underlying mechanisms. Furthermore, the effects of gas pressure, applied power and gas composition are investigated to try to optimize the etch process. In general, the plasma density reaches a maximum near the wafer edge due to the so-called ‘edge effect’. As a result, the etch rate is not uniform but will also reach its maximum near the wafer edge. The pressure seems not to have a big effect. A higher power increases the etch rate, but the uniformity becomes (slightly) worse. The gas mixing ratio has no significant effect on the etch process, except when a pure H2 or N2 plasma is used, illustrating the synergistic effects of a N2/H2 plasma. In fact, our calculations reveal that the N2/H2 plasma entails an ion-enhanced etch process. The simulation results are in reasonable agreement with the experimental values. The microscopic etch profile shows the desired anisotropic shape under all conditions under study.

  3. Time-resolved molecular beam mass spectrometry of the initial stage of particle formation in an Ar/He/C2H2 plasma.

    PubMed

    Benedikt, J; Consoli, A; Schulze, M; von Keudell, A

    2007-10-25

    The temporal evolution of the neutral plasma chemistry products in a capacitively coupled plasma from argon/helium/acetylene is followed via molecular beam mass spectrometry with a time resolution of 100 ms. Several chemistry pathways are resolved. (i) The formation of C2nH2 (n = 2-5) molecules proceeds via the following sequence: the production of highly reactive C2H radicals in electron impact dissociation of C2H2 is followed by C2H induced chain polymerization of C2nH2 (n = 1-4). (ii) CnH4 (n = 4, 5, 6) compounds are detected already at an early stage of the discharge excluding polymerization reactions with C2H radical being responsible for their formation. Instead, vinylidene reactions with acetylene or mutual neutralization reactions of ionic species are proposed as sources of their formation. (iii) Surface reactions are identified as the source of C8H6. The measured hydrocarbon molecules represents possible precursors for negative ion formation via dissociative electron attachment reactions and can hence play a crucial role in particle nucleation. On the basis of the comparison of our data with available experimental and modeling results for acetylene plasmas in the literature, we propose C2nH2 (n > 1) molecules as important precursors for negative ion formation.

  4. Association of leisure time physical activity and abdominal obesity with fasting serum insulin and 2-h postchallenge plasma glucose levels.

    PubMed

    Borodulin, K; Tuomilehto, J; Peltonen, M; Lakka, T A; Sundvall, J; Jousilahti, P

    2006-09-01

    We investigated the joint associations of leisure time physical activity and abdominal obesity with fasting insulin and 2-h glucose levels and with the risk of impaired glucose tolerance (IGT) and Type 2 diabetes (Type 2 DM). A cross-sectional population-based random sample of 1812 Finnish adults 45-74 years of age without a history of cardiovascular disease or diabetes. Relative energy expenditure during the previous 12 months (METh/week), assessed by a questionnaire, was used as a measure of leisure time physical activity. Waist-hip ratio (WHR) was used as a measure of abdominal obesity. IGT and Type 2 DM were assessed by a 2-h oral glucose tolerance test and were defined according to the World Health Organization guidelines. While 2-h glucose and fasting insulin levels increased with increasing WHR (P < 0.001 and P < 0.001, respectively), both of them decreased with increasing physical activity (P = 0.015 and P < 0.001, respectively). The highest 2-h glucose and fasting insulin levels were found among individuals who had most abdominal obesity and were least physically active. Physically inactive individuals had a higher prevalence of IGT and Type 2 DM in all WHR tertiles than physically active persons. Higher levels of leisure time physical activity are associated with lower 2-h glucose and fasting insulin levels and a reduced risk of having IGT and Type 2 DM, independent of the level of abdominal obesity.

  5. Effect of the gas temperature and pressure on the nucleation time of particles in low pressure Ar-C2H2 rf plasmas

    NASA Astrophysics Data System (ADS)

    Lin, Jiashu; Henault, Marie; Orazbayev, Sagi; Boufendi, Laïa; Takahashi, Kazuo; Al Farabi Kazakh National University Collaboration; Kyoto Institute Of Technology Team; Gremi Team

    2016-09-01

    Particle formation in low pressure plasmas is a 3-step process. The first one corresponds to the nucleation and growth of nano-crystallites by ion-molecular reactions, the agglomeration phase to form large particles, and the growth by radical deposition on the particle surface. The nucleation phase was demonstrated to be sensitive to gas temperature and pressure. In this work, time of nucleation phase of particles formation in low pressure cold rf C2H2/Ar plasmas studied by varying gas temperature from 265 K to 375 K, gas pressure from 0.4 mbar to 0.8 mbar and rf power from 6 W to 20 W. The ratio of C2H2/Ar is fixed to 2/98 in terms of pressure. Several previous works reported that particle formation takes a few sec at room temperature in C2 H2 plasmas and the time is much shorter than 0.1 s in SiH4 plasmas. Time evolution of self-bias voltage was mainly used to determine nucleation time. The self-bias voltage was modified by phase transition between the steps from nucleation to coagulation. The experimental results showed that the nucleation time increased with gas temperature, decreased with gas pressure and discharge power. At constant gas pressure of 0.4 mbar and discharge power of 6 W, for example, the nucleation time increased from 5 sec to 30 sec with increas

  6. Simultaneous quantification of labeled (2)H5-glycerol, (13)C6-glucose, and endogenous D-glucose in mouse plasma using liquid chromatography tandem mass spectrometry.

    PubMed

    Jahouh, Farid; Wang, Rong

    2015-11-01

    Monitoring the level of glucose and glycerol or their labeled derivatives in biological fluid for kinetic studies has always been challenging, especially in mice, because of the limited volume in addition to the complexity of plasma. For such application, we developed a simple, fast, and sensitive method for the simultaneous measurement of absolute concentrations of labeled (2)H5-glycerol and (13)C6-glucose as well as endogenous D-glucose using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). In our study, 15.0 μL of mouse plasma was processed by a one-step protein precipitation, followed by LC-MS/MS analysis. The quantification of the analytes was carried out by monitoring the product ion scan of their corresponding deprotonated molecular ions and constructing the extracted ion fragmentogram by choosing a specific product ion for each analyte (equivalent to precursor ion to product ion transitions). The limit of detection (LOD) was evaluated to be 1.0 μM for both (2)H5-glycerol and (13)C6-glucose, and the limit of quantitation (LOQ) was observed to be 5.0 μM for both (2)H5-glycerol and (13)C6-glucose in diluted mice plasma that corresponds to 50 μM in plasma or 4.60 and 9.01 mg/dL of glycerol and glucose in plasma, respectively. The extraction recoveries are 81.9 % (CV = 8.1 %) for (2)H5-glycerol and 26.2 % (CV = 13.6 %) for (13)C6-glucose.

  7. Influence of Ar/O2/H2O Feed Gas and N2/O2/H2O Environment on the Interaction of Time Modulated MHz Atmospheric Pressure Plasma Jet (APPJ) with Model Polymers

    NASA Astrophysics Data System (ADS)

    Oehrlein, Gottlieb; Luan, Pingshan; Knoll, Andrew; Kondeti, Santosh; Bruggeman, Peter

    2016-09-01

    An Ar/O2/H2O fed time modulated MHz atmospheric pressure plasma jet (APPJ) in a sealed chamber was used to study plasma interaction with model polymers (polystyrene, poly-methyl methacrylate, etc.). The amount of H2O in the feed gas and/or present in the N2, O2, or N2/O2 environment was controlled. Short lived species such as O atoms and OH radicals play a crucial role in polymer etching and surface modifications (obtained from X-ray photoelectron spectroscopy of treated polymers without additional atmospheric exposure). Polymer etching depth for Ar/air fed APPJ mirrors the decay of gas phase O atoms with distance from the APPJ nozzle in air and is consistent with the estimated O atom flux at the polymer surface. Furthermore, whereas separate O2 or H2O admixture to Ar enhances polymer etching, simultaneous addition of O2 and H2O to Ar quenches polymer etching. This can be explained by the mutual quenching of O with OH, H and HO2 in the gas phase. Results where O2 and/or H2O in the environment were varied are consistent with these mechanisms. All results will be compared with measured and simulated species densities reported in the literature. We gratefully acknowledge funding from US Department of Energy (DE-SC0001939) and National Science Foundation (PHY-1415353).

  8. Improvement in surface hydrophilicity and resistance to deformation of natural leather through O2/H2O low-temperature plasma treatment

    NASA Astrophysics Data System (ADS)

    You, Xuewei; Gou, Li; Tong, Xingye

    2016-01-01

    The natural leather was modified through O2/H2O low-temperature plasma treatment. Surface morphology was characterized by scanning electron microscopy (SEM) and the results showed that the pores on the leather surface became deeper and larger with enhanced permeability of water and vapor. XPS and FTIR-ATR was performed to determine the chemical composition of natural leather surface. Oxygen-containing groups were successfully grafted onto the surface of natural leather and oxygen content increased with longer treatment time. After O2/H2O plasma treatment, initial water contact angle was about 21° and water contact angles were not beyond 55° after being stored for 3 days. Furthermore, the tensile test indicated that the resistance to deformation had a prominent transform without sacrificing the tensile strength.

  9. Different Profile Responses to Dose Variation for B{sub 2}H{sub 6} and BF{sub 3} Plasma Doping using PULSION registered

    SciTech Connect

    Spiegel, Y.; Torregrosa, F.; Etienne, H.; Felch, S. B.; Roux, L.; Turnbaugh, D.

    2011-01-07

    Plasma doping has been accepted into semiconductor manufacturing for two low energy, high dose implant applications. The p-type polysilicon counter-doping and contact doping for DRAM devices can be carried out using BF{sub 3} or B{sub 2}H{sub 6} precursor gas. The choice between these two precursors depends on the benefits and constraints of each one. In order to identify these benefits and constraints, the boron dopant profile responses to dose variation for both precursors have been studied using the PULSION plasma doping tool.

  10. He+O{sub 2}+H{sub 2}O plasmas as a source of reactive oxygen species

    SciTech Connect

    Liu, D. X.; Wang, X. H.; Rong, M. Z.; Iza, F.; Kong, M. G.

    2011-05-30

    The effect of water in the chemistry of atmospheric-pressure He+O{sub 2} plasmas is studied by means of a comprehensive global model. Water enables the generation of reactive oxygen species (ROS) cocktails that are rich not only in O, O{sub 2}*, and O{sub 3} but also in OH and H{sub 2}O{sub 2}. Due to its polar nature, water also leads to cluster formation, possibly affecting the plasma dynamics. Since the lifetime of many of the ROS is short, the plasma chemistry plays two roles: (i) direct interaction with superficial cells and (ii) triggering of a secondary chemistry that propagates the plasma treatment to regions away from the plasma-surface interface.

  11. Investigation of InP etching mechanisms in a Cl{sub 2}/H{sub 2} inductively coupled plasma by optical emission spectroscopy

    SciTech Connect

    Gatilova, L.; Bouchoule, S.; Guilet, S.; Chabert, P.

    2009-03-15

    Optical emission spectroscopy (OES) has been used in order to investigate the InP etching mechanisms in a Cl{sub 2}-H{sub 2} inductively coupled plasma. The authors have previously shown that anisotropic etching of InP could be achieved for a H{sub 2} percentage in the 35%-45% range where the InP etch rate also presents a local maximum [J. Vac. Sci. Technol. B 24, 2381 (2006)], and that anisotropic etching was due to an enhanced passivation of the etched sidewalls by a silicon oxide layer [J. Vac. Sci. Technol. B 26, 666 (2008)]. In this work, it is shown that this etching behavior is related to a maximum in the H atom concentration in the plasma. The possible enhancement of the sidewall passivation process in the presence of H is investigated by comparing OES measurements and etching results obtained for Cl{sub 2}-H{sub 2} and Cl{sub 2}-Ar gas mixtures.

  12. Predictive ability of fasting plasma glucose for a diabetic 2-h postload glucose value in oral glucose tolerance test: spectrum effect.

    PubMed

    Karakaya, Jale; Aksoy, Duygu Yazgan; Harmanci, Ayla; Karaagaoglu, Ergun; Gurlek, Alper

    2007-01-01

    The performance of diagnostic tests may vary according to patient characteristics. The aim of this study is to find out the factors, if any, that may affect the performance of fasting plasma glucose (FPG) to predict a diabetic 2-h postload glucose level (> or =200 mg/dl) in oral glucose tolerance test (OGTT). One hundred ninety-six patients with known risk factors for diabetes mellitus to whom OGTT was applied were included. Factors that may have an effect on the performance of FPG in prediction of a diabetic value in OGTT were determined by using logistic regression and likelihood ratios (LRs). The cutoff of FPG predicting a 2-h postload glucose of > or =200 mg/dl was calculated by receiver operating characteristic curve as 110 mg/dl (sensitivity, 76.7%; specificity, 75.9%). Waist-to-hip ratio (WHR) and body mass index (BMI) influenced sensitivity, whereas age, family history, and presence of hyperlipidemia affected specificity of FPG. Significant factors for positive LR were age and hyperlipidemia, whereas sex, smoking, hyperlipidemia, physical inactivity, WHR, and BMI influenced negative LR. Fasting plasma glucose performance as a diagnostic test can be affected by many factors that are clearly stated as risk factors for diabetes mellitus. These data emphasize how the interpretation of a diagnostic test varies as the patient characteristics vary; the criteria that we confidently rely on may not be that reliable, changing between just two different patients.

  13. The effect of RF-DC plasma N2-H2 in the selective hardening process for micro-patterned AISI420

    NASA Astrophysics Data System (ADS)

    Herdianto, Hengky; Santjojo, D. J. Djoko H.; Masruroh

    2017-08-01

    The high density of RF-DC plasma N2-H2 was used to make precise micro-texturing onto AISI420 has complex textured geometry. The original 2D micro-patterns were drawn onto substrate surface by maskless patterning using by of nano-carbon ink. These micro-patterned specimens were further plasma-nitrided at 673 K for 5.4 ks by 70 Pa using the hollow cathode device. The emissive light spectroscopy shows species in plasma were nitrogen atoms together with NH radicals and nitrogen molecular ions. Unprinted surface areas had selectively nitrided, have high nitrogen solute contents up to 12 mass%. Masked area just corresponded to carbon-mapping from printed nano-carbon inks, while unprinted surface to nitrogen mapping. The hardness profile had stepwise change across the borders between these printed and unprinted areas; e.g., the hardness on unprinted surface was 1200 Hv while it remained to be 350 Hv on printed surface. This selective nitriding and hardening enabled to construct the 3D textured miniature dies and products by chemical etching of printed area. These two peaks were related to extended martensitic lattice by high nitrogen extraordinary solid solution. The phase transformation from martensitic lattice α'-Fe through expanded phase into ɛ-Fe3N lattice.

  14. Bandgap measurements and the peculiar splitting of E2H phonon modes of InxAl1-xN nanowires grown by plasma assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tangi, Malleswararao; Mishra, Pawan; Janjua, Bilal; Ng, Tien Khee; Anjum, Dalaver H.; Prabaswara, Aditya; Yang, Yang; Albadri, Abdulrahman M.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2016-07-01

    The dislocation free InxAl1-xN nanowires (NWs) are grown on Si(111) by nitrogen plasma assisted molecular beam epitaxy in the temperature regime of 490 °C-610 °C yielding In composition ranges over 0.50 ≤ x ≤ 0.17. We study the optical properties of these NWs by spectroscopic ellipsometry (SE), photoluminescence, and Raman spectroscopies since they possesses minimal strain with reduced defects comparative to the planar films. The optical bandgap measurements of InxAl1-xN NWs are demonstrated by SE where the absorption edges of the NW samples are evaluated irrespective of substrate transparency. A systematic Stoke shift of 0.04-0.27 eV with increasing x was observed when comparing the micro-photoluminescence spectra with the Tauc plot derived from SE. The micro-Raman spectra in the NWs with x = 0.5 showed two-mode behavior for A1(LO) phonons and single mode behavior for E2H phonons. As for x = 0.17, i.e., high Al content, we observed a peculiar E2H phonon mode splitting. Further, we observe composition dependent frequency shifts. The 77 to 600 K micro-Raman spectroscopy measurements show that both AlN- and InN-like modes of A1(LO) and E2H phonons in InxAl1-xN NWs are redshifted with increasing temperature, similar to that of the binary III group nitride semiconductors. These studies of the optical properties of the technologically important InxAl1-xN nanowires will path the way towards lasers and light-emitting diodes in the wavelength of the ultra-violet and visible range.

  15. Mass spectrometry-based microassay of 2H and 13C plasma glucose labeling to quantify liver metabolic fluxes in vivo

    PubMed Central

    Hasenour, Clinton M.; Wall, Martha L.; Ridley, D. Emerson; Hughey, Curtis C.; James, Freyja D.; Wasserman, David H.

    2015-01-01

    Mouse models designed to examine hepatic metabolism are critical to diabetes and obesity research. Thus, a microscale method to quantitatively assess hepatic glucose and intermediary metabolism in conscious, unrestrained mice was developed. [13C3]propionate, [2H2]water, and [6,6-2H2]glucose isotopes were delivered intravenously in short- (9 h) and long-term-fasted (19 h) C57BL/6J mice. GC-MS and mass isotopomer distribution (MID) analysis were performed on three 40-μl arterial plasma glucose samples obtained during the euglycemic isotopic steady state. Model-based regression of hepatic glucose and citric acid cycle (CAC)-related fluxes was performed using a comprehensive isotopomer model to track carbon and hydrogen atom transitions through the network and thereby simulate the MIDs of measured fragment ions. Glucose-6-phosphate production from glycogen diminished, and endogenous glucose production was exclusively gluconeogenic with prolonged fasting. Gluconeogenic flux from phosphoenolpyruvate (PEP) remained stable, whereas that from glycerol modestly increased from short- to long-term fasting. CAC flux [i.e., citrate synthase (VCS)] was reduced with long-term fasting. Interestingly, anaplerosis and cataplerosis increased with fast duration; accordingly, pyruvate carboxylation and the conversion of oxaloacetate to PEP were severalfold higher than VCS in long-term fasted mice. This method utilizes state-of-the-art in vivo methodology and comprehensive isotopomer modeling to quantify hepatic glucose and intermediary fluxes during physiological stress in mice. The small plasma requirements permit serial sampling without stress and the affirmation of steady-state glucose kinetics. Furthermore, the approach can accommodate a broad range of modeling assumptions, isotope tracers, and measurement inputs without the need to introduce ad hoc mathematical approximations. PMID:25991647

  16. Effects of O 2 and N 2/H 2 plasma treatments on the neuronal cell growth on single-walled carbon nanotube paper scaffolds

    NASA Astrophysics Data System (ADS)

    Yoon, Ok Ja; Lee, Hyun Jung; Jang, Yeong Mi; Kim, Hyun Woo; Lee, Won Bok; Kim, Sung Su; Lee, Nae-Eung

    2011-08-01

    The O 2 and N 2/H 2 plasma treatments of single-walled carbon nanotube (SWCNT) papers as scaffolds for enhanced neuronal cell growth were conducted to functionalize their surfaces with different functional groups and to roughen their surfaces. To evaluate the effects of the surface roughness and functionalization modifications of the SWCNT papers, we investigated the neuronal morphology, mitochondrial membrane potential, and acetylcholine/acetylcholinesterase levels of human neuroblastoma during SH-SY5Y cell growth on the treated SWCNT papers. Our results demonstrated that the plasma-chemical functionalization caused changes in the surface charge states with functional groups with negative and positive charges and then the increased surface roughness enhanced neuronal cell adhesion, mitochondrial membrane potential, and the level of neurotransmitter in vitro. The cell adhesion and mitochondrial membrane potential on the negatively charged SWCNT papers were improved more than on the positively charged SWCNT papers. Also, measurements of the neurotransmitter level showed an enhanced acetylcholine level on the negatively charged SWCNT papers compared to the positively charged SWCNT papers.

  17. Inhibition of the multidrug and toxin extrusion (MATE) transporter by pyrimethamine increases the plasma concentration of metformin but does not increase antihyperglycaemic activity in humans.

    PubMed

    Oh, J; Chung, H; Park, S-I; Yi, S J; Jang, K; Kim, A H; Yoon, J; Cho, J-Y; Yoon, S H; Jang, I-J; Yu, K-S; Chung, J-Y

    2016-01-01

    We hypothesized that the pharmacodynamic (PD) characteristics of metformin would change with inhibition of the multidrug and toxin extrusion (MATE) transporter, which mediates renal elimination of metformin. Twenty healthy male subjects received two doses (750/500 mg) of metformin, with and without 50 mg of pyrimethamine (a potent MATE inhibitor), with 1 week of washout in between each dose. The PD characteristics of metformin were assessed using oral glucose tolerance tests (OGTTs) before and after the metformin dose. Metformin concentrations in plasma and urine were determined using liquid chromatography-electrospray ionization-tandem mass spectrometry. When metformin was co-administered with pyrimethamine, its area under the concentration-time curve from 0 to 12 h was 2.58-fold greater (p < 0.05), whereas the antihyperglycaemic effects of metformin were decreased. The mean differences (90% confidence interval) in mean and maximum serum glucose concentrations and in 2-h-post-OGTT serum glucose concentration were -0.6 (-1, -0.2), -0.9 (-1.6, -0.3) and -0.5 (-1.1, 0.1) mmol/l, respectively. These findings indicate that the response to metformin is not only related to the plasma exposure of metformin but is also related to other factors, such as inhibition of uptake transporters and the gastrointestinal-based pharmacology of metformin. © 2015 John Wiley & Sons Ltd.

  18. Agglomeration processes sustained by dust density waves in Ar/C{sub 2}H{sub 2} plasma: From C{sub 2}H{sub 2} injection to the formation of an organized structure

    SciTech Connect

    Dap, Simon; Hugon, Robert; Poucques, Ludovic de; Briancon, Jean-Luc; Bougdira, Jamal; Lacroix, David

    2013-03-15

    In this paper, an experimental investigation of dust particle agglomeration in a capacitively coupled RF discharge is reported. Carbonaceous particles are produced in an argon plasma using acetylene. As soon as the particle density becomes sufficient, dust density waves (DDWs) are spontaneously excited within the cathode sheath. Recently, it was proven that DDWs can significantly enhance the agglomeration rate between particles by transferring them a significant kinetic energy. Thus, it helps them to overcome Coulomb repulsion. The influence of this mechanism is studied from acetylene injection to the formation of very large agglomerates forming an organized structure after a few dozens of seconds. For this purpose, three diagnostic tools are used: extinction measurements to probe nanometer-sized particles, fast imaging for large agglomerates and a dust extraction technique developed for ex-situ analysis.

  19. Quantum cascade laser investigations of CH{sub 4} and C{sub 2}H{sub 2} interconversion in hydrocarbon/H{sub 2} gas mixtures during microwave plasma enhanced chemical vapor deposition of diamond

    SciTech Connect

    Ma Jie; Cheesman, Andrew; Ashfold, Michael N. R.; Hay, Kenneth G.; Wright, Stephen; Langford, Nigel; Duxbury, Geoffrey; Mankelevich, Yuri A.

    2009-08-01

    CH{sub 4} and C{sub 2}H{sub 2} molecules (and their interconversion) in hydrocarbon/rare gas/H{sub 2} gas mixtures in a microwave reactor used for plasma enhanced diamond chemical vapor deposition (CVD) have been investigated by line-of-sight infrared absorption spectroscopy in the wavenumber range of 1276.5-1273.1 cm{sup -1} using a quantum cascade laser spectrometer. Parameters explored include process conditions [pressure, input power, source hydrocarbon, rare gas (Ar or Ne), input gas mixing ratio], height (z) above the substrate, and time (t) after addition of hydrocarbon to a pre-existing Ar/H{sub 2} plasma. The line integrated absorptions so obtained have been converted to species number densities by reference to the companion two-dimensional (r,z) modeling of the CVD reactor described in Mankelevich et al. [J. Appl. Phys. 104, 113304 (2008)]. The gas temperature distribution within the reactor ensures that the measured absorptions are dominated by CH{sub 4} and C{sub 2}H{sub 2} molecules in the cool periphery of the reactor. Nonetheless, the measurements prove to be of enormous value in testing, tensioning, and confirming the model predictions. Under standard process conditions, the study confirms that all hydrocarbon source gases investigated (methane, acetylene, ethane, propyne, propane, and butane) are converted into a mixture dominated by CH{sub 4} and C{sub 2}H{sub 2}. The interconversion between these two species is highly dependent on the local gas temperature and the H atom number density, and thus on position within the reactor. CH{sub 4}->C{sub 2}H{sub 2} conversion occurs most efficiently in an annular shell around the central plasma (characterized by 14002}H{sub 2}->CH{sub 4} is favored in the more distant regions where T{sub gas}<1400 K. Analysis of the multistep interconversion mechanism reveals substantial net consumption of H atoms accompanying the CH{sub 4}->C{sub 2}H{sub 2

  20. Quantum cascade laser investigations of CH4 and C2H2 interconversion in hydrocarbon/H2 gas mixtures during microwave plasma enhanced chemical vapor deposition of diamond

    NASA Astrophysics Data System (ADS)

    Ma, Jie; Cheesman, Andrew; Ashfold, Michael N. R.; Hay, Kenneth G.; Wright, Stephen; Langford, Nigel; Duxbury, Geoffrey; Mankelevich, Yuri A.

    2009-08-01

    CH4 and C2H2 molecules (and their interconversion) in hydrocarbon/rare gas/H2 gas mixtures in a microwave reactor used for plasma enhanced diamond chemical vapor deposition (CVD) have been investigated by line-of-sight infrared absorption spectroscopy in the wavenumber range of 1276.5-1273.1 cm-1 using a quantum cascade laser spectrometer. Parameters explored include process conditions [pressure, input power, source hydrocarbon, rare gas (Ar or Ne), input gas mixing ratio], height (z) above the substrate, and time (t) after addition of hydrocarbon to a pre-existing Ar/H2 plasma. The line integrated absorptions so obtained have been converted to species number densities by reference to the companion two-dimensional (r ,z) modeling of the CVD reactor described in Mankelevich et al. [J. Appl. Phys. 104, 113304 (2008)]. The gas temperature distribution within the reactor ensures that the measured absorptions are dominated by CH4 and C2H2 molecules in the cool periphery of the reactor. Nonetheless, the measurements prove to be of enormous value in testing, tensioning, and confirming the model predictions. Under standard process conditions, the study confirms that all hydrocarbon source gases investigated (methane, acetylene, ethane, propyne, propane, and butane) are converted into a mixture dominated by CH4 and C2H2. The interconversion between these two species is highly dependent on the local gas temperature and the H atom number density, and thus on position within the reactor. CH4→C2H2 conversion occurs most efficiently in an annular shell around the central plasma (characterized by 14002H2→CH4 is favored in the more distant regions where Tgas<1400 K. Analysis of the multistep interconversion mechanism reveals substantial net consumption of H atoms accompanying the CH4→C2H2 conversion, whereas the reverse C2H2→CH4 process only requires H atoms to drive the reactions; H atoms are not consumed by the overall

  1. Plasma-enhanced CVD of functional coatings in Ar/maleic anhydride/C2H2 homogeneous dielectric barrier discharges at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Zajíčková, Lenka; Jelínek, Petr; Obrusník, Adam; Vodák, Jiří; Nečas, David

    2017-03-01

    In this contribution, we focus on the general problems of plasma-enhanced chemical vapor deposition in atmospheric pressure dielectric barrier discharges, i.e. deposition uniformity, film roughness and the formation of dust particles, and demonstrate them on the example of carboxyl coatings prepared by co-polymerization of acetylene and maleic anhydride. Since the transport of monomers at atmospheric pressure is advection-driven, special attention is paid to the gas dynamics simulations, gas flow patterns, velocity and residence time. By using numerical simulations, we design an optimized gas supply geometry capable of synthesizing uniform layers. The selection of the gas mixture containing acetylene was motivated by two of its characteristics: (i) suppression of filaments in dielectric barrier discharges, and (ii) improved film cross-linking, keeping the amount of functional groups high. However, acetylene discharges are prone to the formation of nanoparticles that can be incorporated into the deposited films, leading to their high roughness. Therefore, we also discuss the role of the gas composition, the spatial position of the substrate with respect to gas flow and the deposition time on the topography of the deposited films.

  2. Highly selective etching of silicon nitride to physical-vapor-deposited a-C mask in dual-frequency capacitively coupled CH{sub 2}F{sub 2}/H{sub 2} plasmas

    SciTech Connect

    Kim, J. S.; Kwon, B. S.; Heo, W.; Jung, C. R.; Park, J. S.; Shon, J. W.; Lee, N.-E.

    2010-01-15

    A multilevel resist (MLR) structure can be fabricated based on a very thin amorphous carbon (a-C) layer ( congruent with 80 nm) and Si{sub 3}N{sub 4} hard-mask layer ( congruent with 300 nm). The authors investigated the selective etching of the Si{sub 3}N{sub 4} layer using a physical-vapor-deposited (PVD) a-C mask in a dual-frequency superimposed capacitively coupled plasma etcher by varying the process parameters in the CH{sub 2}F{sub 2}/H{sub 2}/Ar plasmas, viz., the etch gas flow ratio, high-frequency source power (P{sub HF}), and low-frequency source power (P{sub LF}). They found that under certain etch conditions they obtain infinitely high etch selectivities of the Si{sub 3}N{sub 4} layers to the PVD a-C on both the blanket and patterned wafers. The etch gas flow ratio played a critical role in determining the process window for infinitely high Si{sub 3}N{sub 4}/PVD a-C etch selectivity because of the change in the degree of polymerization. The etch results of a patterned ArF photoresisit/bottom antireflective coating/SiO{sub x}/PVD a-C/Si{sub 3}N{sub 4} MLR structure supported the idea of using a very thin PVD a-C layer as an etch-mask layer for the Si{sub 3}N{sub 4} hard-mask pattern with a pattern width of congruent with 80 nm and high aspect ratio of congruent with 5.

  3. Study of the LTE departure in a low pressure supersonic plasma jet in Ar-H{sub 2} and in Ar-N{sub 2}-H{sub 2} mixture

    SciTech Connect

    Rajabian, M.; Vacquie, S.; Gravelle, D.V.

    1999-07-01

    Plasma torches at low pressure and controlled atmosphere are used in major applications for the production and processing of materials due to their potential for high performance, and low contamination. A good knowledge of the plasma parameters is necessary, particularly for the design of high-performance mathematical models that avoid the building of expensive prototypes for performance assessment. The present work is undertaken on a DC plasma torch operating over a wide pressure range (8 kPa to 100 kPa) at an arc power fixed at 17.5 kW. Emission spectroscopy diagnostics was carried out for determining temperature, electron and particle density profiles in two gas mixtures: Ar-N{sub 2}-H{sub 2} with flow rates of 40, 10, and 1 slpm respectively, and Ar-H{sub 2} with input flow rates of 35 and 7 slpm respectively. For the gas mixtures used, the supersonic shock occurs at a distance from the nozzle exit growing when the pressure decreases (8, 10, and 13 mm for pressures of 13, 20 and 26 kPa). For pressures of 100 kPa and 53 kPa, they observe a good agreement between the values of electron density Ne experimentally measured independently of local thermodynamic equilibrium (LTE) and the values obtained by calculation using the temperature obtained with Boltzmann diagram. Local thermodynamic equilibrium conditions prevail at these values of pressure. For the lower values of the pressure, the experimental value of N{sub 2}{sup {minus}} ion density are higher than the calculated values, using the rotational temperature T{sub h}, or the Boltzmann temperature T{sub e}. The discrepancy is lower with the use of T{sub e}. That shows the importance of the collisions between electrons and heavy particles, due to the high values of the electron density (4.10{sup 16} cm{sup {minus}3} in the supersonic shock wave for 13 kPa). For pressure lower than 26 kPa important deviation from LTE conditions are observed.

  4. Quantitation of methadone enantiomers in humans using stable isotope-labeled (2H3)-, (2H5)-, and (2H8)Methadone

    SciTech Connect

    Nakamura, K.; Hachey, D.L.; Kreek, M.J.; Irving, C.S.; Klein, P.D.

    1982-01-01

    A new technique for simultaneous stereoselective kinetic studies of methadone enantiomers was developed using three deuterium-labeled forms of methadone and GLC-chemical-ionization mass spectrometry. A racemic mixture (1:1) of (R)-(-)-(2H5)methadone (l-form) and (S)-(R)-(2H3)methadone (d-form) was administered orally in place of a single daily dose of unlabeled (+/-)-(2H0)methadone in long-term maintenance patients. Racemic (+/-)-(2H8)methadone was used as an internal standard for the simultaneous quantitation of (2H0)-, (2H3)-, and (2H5)methadone in plasma and urine. A newly developed extraction procedure, using a short, disposable C18 reversed-phase cartridge and improved chemical-ionization procedures employing ammonia gas, resulted in significant reduction of the background impurities contributing to the ions used for isotopic abundance measurements. These improvements enabled the measurement of labeled plasma methadone levels for 120 hr following a single dose. This methodology was applied to the study of methadone kinetics in two patients; in both patients, the analgesically active l-enantiomer of the drug had a longer plasma elimination half-life and a smaller area under the plasma disappearance curve than did the inactive d-form.

  5. Epitaxial growth of GaN by radical-enhanced metalorganic chemical vapor deposition (REMOCVD) in the downflow of a very high frequency (VHF) N2/H2 excited plasma - effect of TMG flow rate and VHF power

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Kondo, Hiroki; Ishikawa, Kenji; Oda, Osamu; Takeda, Keigo; Sekine, Makoto; Amano, Hiroshi; Hori, Masaru

    2014-04-01

    Gallium nitride (GaN) films have been grown by using our newly developed Radical-Enhanced Metalorganic Chemical Vapor Deposition (REMOCVD) system. This system has three features: (1) application of very high frequency (60 MHz) power in order to increase the plasma density, (2) introduction of H2 gas together with N2 gas in the plasma discharge region to generate not only nitrogen radicals but also active NHx molecules, and (3) radical supply under remote plasma arrangement with suppression of charged ions and photons by employing a Faraday cage. Using this new system, we have studied the effect of the trimethylgallium (TMG) source flow rate and of the plasma generation power on the GaN crystal quality by using scanning electron microscopy (SEM) and double crystal X-ray diffraction (XRD). We found that this REMOCVD allowed the growth of epitaxial GaN films of the wurtzite structure of (0001) orientation on sapphire substrates with a high growth rate of 0.42 μm/h at a low temperature of 800 °C. The present REMOCVD is a promising method for GaN growth at relatively low temperature and without using costly ammonia gas.

  6. Nitriding of titanium and its alloys by N2, NH3 or mixtures of N2 + H2 in a dc arc plasma at low pressures ( or = to torr)

    NASA Technical Reports Server (NTRS)

    Avni, R.

    1984-01-01

    The dc glow discharges in different gas mixtures of Ar + N2, Ar + NH3 or Ar + N2 + H2 result in the surface nitriding of Ti metal and its alloy (Ti6Al4V). Various gas mixtures were used in order to establish the main active species governing the nitriding process, i.e., N, N2, NH, or NH2 as excited or ionized particles. The dc discharge was sampled and analyzed by quadruple mass spectrometry (QPMS) and optical emission spectroscopy (OES), and the nitrided samples were analyzed by scanning electron microscopy (SEM) with an EDAX attachment, microhardness, and Fourier transform infrared reflectance spectrometry (FTIR). It was found that the excited and ionized nitrogen and hydrogen atoms are the main species responsible for the nitriding process in a dc glow discharge.

  7. Mecanismos cinéticos y distribuciones energéticas de iones (H3+, N2H+, CH3+...) en plasmas fríos de H2/N2/CH4

    NASA Astrophysics Data System (ADS)

    Tanarro, I.; Herrero, V. J.; Islyaikin, A.; Tabarés, F. L.; Tafalla, D.

    En este trabajo se presenta el estudio espectrométrico de los plasmas levemente ionizados generados en una descarga continua a baja presión de H2 con trazas de N2 y CH4, orientado principalmente a identificar la naturaleza y distribución energética de los iones que en ella se producen, y a asignar algunos de los mecanismos cinéticos elementales de formación y destrucción de tales especies. Alguno de los iones mayoritarios de estos plasmas, como el H3+, presenta gran interés desde el punto de vista de la Astrofísica por su prevista intervención en la química de las ionosferas planetarias y del medio interestelar, al actuar como sustancia intermedia en la formación de gran variedad de especies moleculares; si bien, dada su pequeña concentración, su observación real en el espacio se demoró hasta la pasada década de los años 90, cuando fue detectado por primera vez en la atmósfera de Júpiter y en otros objetos estelares. Del mismo modo que los trabajos espectroscópicos de laboratorio resultan indispensables para la posterior identificación de las especies observadas en el espacio, es de esperar que la asignación de los procesos cinéticos más importantes que tienen lugar en los plasmas generados en reactores de descarga, como los aquí presentados, permitan extrapolar los resultados así obtenidos al esclarecimiento de los mecanismos fisico-químicos participantes en otros medios observables únicamente a larga distancia.

  8. Synergistic influence of inorganic oxides (ZrO2 and SiO2) with N2H4 to protect composite coatings obtained via plasma electrolyte oxidation on Mg alloy.

    PubMed

    Zoubi, Wail Al; Kamil, Muhammad Prisla; Ko, Young Gun

    2017-01-18

    Different electrochemical approaches were proposed in this study to introduce nanoparticles to the coating layers, aiming at their in situ incorporation into the coating layers fabricated via plasma electrolytic oxidation (PEO). The addition of nanoparticles to the coating layers provided an electrochemical pathway to generate the functionalized coatings with a wide range of compositions and constituent phases as well giving the appearance of sealing the pores. In this study, the microstructure, chemical composition, and electrochemical response of the composite coating formed via one-stage PEO were compared with those obtained by means of structural modification of PEO coatings together with either impregnation or pre-deposition. For the combination of PEO and pre-deposition, the coating layer demonstrated less porous and better corrosion performance in the conditions used in this study, which were attributed to the denser and/or thicker layer resulting after incorporating the nanoparticles, such as SiO2 and ZrO2. In these methods, the nanoparticles were detected mainly not only near the coating surface, but also within the micro-defects inside the coating layers. Accordingly, the electrochemical analysis based on potentiodynamic polarization tests in 3.5 wt% NaCl solution clearly showed that the corrosion resistance of Mg alloy would be enhanced significantly due to the incorporation of SiO2 and ZrO2 or ZrO2 nanoparticles.

  9. Synergistic sterilization effect of microwave-excited nonthermal Ar plasma, H2O2, H2O and TiO2, and a global modeling of the interactions

    NASA Astrophysics Data System (ADS)

    Lee, H. Wk; Lee, H. W.; Kang, S. K.; Y Kim, H.; Won, I. H.; Jeon, S. M.; Lee, J. K.

    2013-10-01

    A microwave-excited atmospheric-pressure plasma jet (uAPPJ) exhibited a synergistic sterilization effect when combined with hydrogen peroxide (H2O2), distilled water (DW) and titanium dioxide (TiO2) photocatalysis. The sterilization efficacy of H2O2-uAPPJ increased as the H2O2 concentration increased. The addition of TiO2 also remarkably increased the sterilization efficacy. To find the main factor for the sterilization effect, optical emission spectra and the degradation rate of a methylene blue solution were measured. Numerical analysis, a newly developed global modeling, was also conducted to discover the mechanisms. Both experimental measurements and global modeling results suggested that combinations of H2O2, DW and TiO2 increased the generation of hydroxyl radicals (·OH), which are known to be strong bactericidal agents. It was revealed that charged species, especially electrons, have a dominant role in the increase of ·OH.

  10. Role of hydrogen on the deposition and properties of fluorinated silicon-nitride films prepared by inductively coupled plasma enhanced chemical vapor deposition using SiF{sub 4}/N{sub 2}/H{sub 2} mixtures

    SciTech Connect

    Fandino, J.; Santana, G.; Rodriguez-Fernandez, L.; Cheang-Wong, J.C.; Ortiz, A.; Alonso, J.C.

    2005-03-01

    Fluorinated silicon-nitride films have been prepared at low temperature (250 deg. C) by remote plasma enhanced chemical vapor deposition using mixtures of SiF{sub 4}, N{sub 2}, Ar, and various H{sub 2} flow rates. The deposited films were characterized by means of single wavelength ellipsometry, infrared transmission, resonant nuclear reactions, Rutherford backscattering analysis, and current-voltage measurements. It was found that films deposited without hydrogen grow with the highest deposition rate, however, they result with the highest fluorine content ({approx}27 at. %) and excess of silicon (Si/N ratio{approx_equal}1.75). These films also have the lowest refractive index and the highest etch rate, and exhibit very poor dielectric properties. As a consequence of the high fluorine content, these films hydrolize rapidly upon exposure to the ambient moisture, forming Si-H and N-H bonds, however, they do not oxidize completely. The addition of hydrogen to the deposition process reduces the deposition rate but improves systematically the stability and insulating properties of the films by reducing the amount of both silicon and fluorine incorporated during growth. All the fluorinated silicon-nitride films deposited at hydrogen flow rates higher than 3.5 sccm resulted free of Si-H bonds. In spite of the fact that films obtained at the highest hydrogen flow rate used in this work are still silicon rich (Si/N ratio{approx_equal}1.0) and contain a considerable amount of fluorine ({approx}16 at. %), they are chemically stable and show acceptable dielectric properties.

  11. Inactivation of the plasma membrane ATPase of Schizosaccharomyces pombe by hydrogen peroxide and by the Fenton reagent (Fe2+/H2O2): nonradical vs. radical-induced oxidation.

    PubMed

    Sigler, K; Gille, G; Vacata, V; Stadler, N; Höfer, M

    1998-01-01

    In the absence of added Fe2+, the ATPase activity of isolated Schizosaccharomyces pombe plasma membranes (5-7 mumol P(i) per mg protein per min) is moderately inhibited by H2O2 in a concentration-dependent manner. Sizable inactivation occurs only at 50-80 mmol/L H2O2. The process, probably a direct oxidative action of H2O2 on the enzyme, is not induced by the indigenous membrane-bound iron (19.3 nmol/mg membrane protein), is not affected by the radical scavengers mannitol and Tris, and involves a decrease of both the K(m) of the enzyme for ATP and the V of ATP splitting. On exposing the membranes to the Fenton reagent (50 mumol/L Fe2+ + 20 mmol/L H2O2), which causes a fast production of HO. radicals, the ATPase is 50-60% inactivated and 90% of added Fe2+ is oxidized to Fe3+ within 1 min. The inactivation occurs only when Fe2+ is added before H2O2 and can thus bind to the membranes. The lack of effect of radical scavengers (mannitol, Tris) indicates that HO. radicals produced in the bulk phase play no role in inactivation. Blockage of the inactivation by the iron chelator deferrioxamine implies that the process requires the presence of Fe2+ ions bound to binding sites on the enzyme molecules. Added catalase, which competes with Fe2+ for H2O2, slows down the inactivation but in some cases increases its total extent, probably due to the formation of the superoxide radical that gives rise to delayed HO. production.

  12. Infrared diode laser absorption spectroscopy of C(2)H(2) and C(2)H(6) in capacitively coupled methane RF discharges.

    PubMed

    Serdioutchenko, A; Möller, I; Soltwisch, H

    2004-12-01

    Low-temperature RF discharges with methane as feed gas are widely used for the deposition of hydrogenated films. The film properties depend strongly on the chemical composition and therefore two of the main stable products in this kind of discharge, namely ethane (C(2)H(6)) and acetylene (C(2)H(2)), have been measured for the understanding of the reaction kinetics in the plasma. An absorption spectrometer has been built up for the investigation of the concentrations of these as a function of the input power and the flow rate. The time scales for reaching steady state after the discharge is switched on and the depletion time scale after the plasma is switched off have been determined. Assuming the recombination of CH(3) molecules to be the only production mechanism for C(2)H(6) and using a simplified rate equation, the measured densities of C(2)H(6) can be reproduced very well by analytical fitting curves.

  13. Unusual Properties of Al_2H_6

    NASA Astrophysics Data System (ADS)

    Ganteför, G.; Burkart, S.; Seifert, G.; Rao, B. K.; Jena, P.

    2000-03-01

    Ab initio calculations based on density functional theory and generalized gradient approximation reveal the structure of Al_2H6 to be that of di-borane (B_2H_6) even though the chemistry of Al and B clusters are different. With an electron affinity of 0.44 eV and ionization potential of 10.14 eV, Al_2H6 bears the signature of a "magic" cluster. Unlike magic clusters in metallic systems, Al_2H6 is born out of the coalescence of two AlH3 which are also "magic" by themselves as dictated by their low electron affinity (0.28 eV) and high ionization potential (11.43 eV). The most striking property of Al_2H_6, however, is that its vertical electron detachment energy is about 2 eV higher than its adiabatic electron affinity signifying vast changes between the geometries of the anion and the neutral cluster. These predictions are verified experimentally by photodetachment spectroscopy.

  14. THz spectroscopy of D2H+

    NASA Astrophysics Data System (ADS)

    Yu, S.; Pearson, J. C.; Amano, T.; Matsushima, F.

    2017-01-01

    We extended the measurements of the rotational transitions of D2H+ up to 3 THz by using the JPL frequency multiplier chains and a TuFIR system at Toyama. D2H+ was generated in an extended negative glow discharge cell cooled to liquid nitrogen temperature. We observed five new THz lines. All the available rotational transition frequencies together with the combination differences derived from the three fundamental bands were subject to least square analysis to determine the molecular constants. New THz measurements are definitely useful for better characterization of spectroscopic properties. The improved molecular constants provide better predictions of other unobserved rotational transitions.

  15. The Reactions of C2H2 and CH3C2H on Ag Powder.

    DTIC Science & Technology

    1987-12-10

    Ag microclusters . This powder is then exposed to subsequent pulses of 20 or CH"C2H (3.7% in NP). The surface enhanced Raman Scattering (SERS) spectra...pulsing it with NO 2 gas which forms fresh Ag microclusters . This powder is then exposed to subsequent pulses of C2H2 or CH3 C2H (3.7% in N2). The surface...gas. The Ag imbedded in the AgNO migrates to sites where Ag microclusters are formed. These microstructures are a necessary part of the SERS enhancement

  16. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  17. Testosterone Plasma Concentration is Associated with Insulin Resistance in Male Hypertensive Patients.

    PubMed

    Schianca, Gian Piero Carnevale; Fra, Gian Paolo; Brustia, Fabio; Bellan, Mattia; Pirovano, Alice; Gualerzi, Alessandro; Gentile, Michela; Gibbin, Antonello; Menegatti, Mirta; Bartoli, Ettore; Pirisi, Mario

    2017-03-01

    Background: Low testosterone levels are a common finding among men with Type 2 Diabetes Mellitus (T2DM) and are inversely related to insulin resistance. Whether this relationship holds true in patients with hypertension, but normal glucose tolerance or prediabetes, is unclear. Methods: We recruited 87 male outpatients with essential arterial hypertension, aged 35-70 years. Anthropometric data were collected, an Oral Glucose Tolerance Test (OGTT) performed, and the homeostasis model assessment of insulin resistance (HOMA-IR) score calculated. Follicle-Stimulating Hormone, Luteinizing Hormone, testosterone, Sex Hormone-Binding-Globulin and free-testosterone were measured. The concentrations of sex hormones were compared between normoglucotolerant, prediabetic and diabetic patients. Non-parametric tests were applied as appropriate to verify differences among groups, while multiple linear regression was used to predict the variability of testosterone and free-testosterone. Results: Total serum testosterone concentration was significantly lower in T2DM in comparison to normoglucotolerant subjects (p<0.01) and was inversely related to body mass index (r=- 0.25, p<0.01), waist circumference (r=- 0.27, p<0.01), pre and post-OGTT plasma glucose (r=- 0.4, p<0.0001 and r=- 0.29, p<0.01, respectively), pre and post-OGTT plasma insulin (r=- 0.42, p<0.0001 and r=- 0.42, p<0.0001) and HOMA-IR (r=- 0.46, p<0.0001). Similar associations were observed for free testosterone; HOMA-IR was related to testosterone and free-testosterone even in patients with normal glucose tolerance (r=- 0.47, p<0.01 and r=- 0.34, p<0.05, respectively). At multivariate analysis HOMA-IR was the only variable associated to testosterone (p<0.001) and free-testosterone (p<0.05) plasma concentration. Conclusions: In males with hypertension, the link between insulin sensitivity and hypothalamic-pituitary-gonadal axis is maintained along the entire spectrum of glucose tolerance.

  18. Thz Spectroscopy of D_2H^+

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Pearson, John; Amano, Takayoshi

    2015-06-01

    Pure rotational transitions of D_2H^+ observed by high-resolution spectroscopy have been limited so far to the J = 110-101 transition at 691.7 GHz, J=220-211 at 1.370 THz, and J=111-000 at 1.477 THz. As this ion is a light asymmetric-top molecule, spectroscopic characterization and prediction of other rotational transition frequencies are not straightforward. In this presentation, we extended the measurements up to 2 THz by using the JPL frequency multiplier chains, and observed three new THz lines and re-measured the three known transitions. D_2H^+ was generated in an extended negative glow discharge cell cooled to liquid nitrogen temperature. Six rotational transition frequencies together with the combination differences derived from three fundamental bands were subject to least square analysis to determine the molecular constants. New THz measurements are definitely useful for better characterization of spectroscopic properties. The improved molecular constants provide better predictions of other unobserved rotational transitions. T. Hirao and T. Amano, Ap. J.,597, L85 (2003) K. M. Evenson et al cited by O. L. Polyansky and A. R. W. McKellar, J. Chem. Phys., 92, 4039 (1990) O. Asvany et al, Phys. Rev. Lett., 100, 233004 (2008)

  19. GC-MS and GC-MS/MS measurement of ibuprofen in 10-μL aliquots of human plasma and mice serum using [α-methylo-(2)H3]ibuprofen after ethyl acetate extraction and pentafluorobenzyl bromide derivatization: Discovery of a collision energy-dependent H/D isotope effect and pharmacokinetic application to inhaled ibuprofen-arginine in mice.

    PubMed

    Tsikas, Dimitrios; Kayacelebi, Arslan Arinc; Hanff, Erik; Mitschke, Anja; Beckmann, Bibiana; Tillmann, Hanns-Christian; Gutzki, Frank-Mathias; Müller, Meike; Bernasconi, Corrado

    2017-02-01

    GC-MS and GC-MS/MS methods were developed and validated for the quantitative determination of ibuprofen (d0-ibuprofen), a non-steroidal anti-inflammatory drug (NSAID), in human plasma using α-methyl-(2)H3-4-(isobutyl)phenylacetic acid (d3-ibuprofen) as internal standard. Plasma (10μL) was diluted with acetate buffer (80μL, 1M, pH 4.9) and d0- and d3-ibuprofen were extracted with ethyl acetate (2×500μL). After solvent evaporation d0- and d3-ibuprofen were derivatized in anhydrous acetonitrile by using pentafluorobenzyl (PFB) bromide and N,N-diisopropylethylamine as the base catalyst. Under electron-capture negative-ion chemical ionization (ECNICI), the PFB esters of d0- and d3-ibuprofen readily ionize to form their carboxylate anions [M-PFB](-) at m/z 205 and m/z 208, respectively. Collision-induced dissociation (CID) of m/z 205 and m/z 208 resulted in the formation of the anions at m/z 161 and m/z 164, respectively, due to neutral loss of CO2 (44 Da). A collision energy-dependent H/D isotope effect was observed, which involves abstraction/elimination of H(-) from d0-ibuprofen and D(-) from d3-ibuprofen and is minimum at a CE value of 5eV. Quantitative GC-MS determination was performed by selected-ion monitoring of m/z 205 and m/z 208. Quantitative GC-MS/MS determination was performed by selected-reaction monitoring of the mass transitions m/z 205 to m/z 161 for d0-ibuprofen and m/z 208 to m/z 164 for d3-ibuprofen. In a therapeutically relevant concentration range (0-1000μM) d0-ibuprofen added to human plasma was determined with accuracy (recovery, %) and imprecision (relative standard deviation, %) ranging between 93.7 and 110%, and between 0.8 and 4.9%, respectively. GC-MS (y) and GC-MS/MS (x) yielded almost identical results (y=4.00+0.988x, r(2)=0.9991). In incubation mixtures of arachidonic acid (10μM), d3-ibuprofen (10μM) or d0-ibuprofen (10μM) with ovine cyclooxygenase (COX) isoforms 1 and 2, the concentration of d3-ibuprofen and d0-ibuprofen did not

  20. An exact calculation of the N2+ and H2+ influx at cathode surface in N2-H2 discharges

    NASA Astrophysics Data System (ADS)

    Suraj, K. S.; Alex, Prince

    An exact calculation of N2+ and H2+ influx, at cathode surface in N2-H2 discharge, has been derived using electron impact ionization cross-section at plasma sheath boundary. The analytical formula is very convenient in practical applications. Through the analysis of experimental parameters for glow discharge plasma nitriding, the formula explains, why treatment in an N2-H2 mixture with H2 percentage ∼70% gives most enhanced result.

  1. Analysis of C2H4 in C2H6 and C2H5D with VUV absorption spectroscopy and a method to remove C2H4 from C2H6 and C2H5D.

    PubMed

    Lu, Hsiao-Chi; Chen, Hong-Kai; Cheng, Bing-Ming

    2004-10-01

    The photoabsorption cross section of C2H4 was measured in the spectral region 107-183 nm and those of C2H6 and C2H5D were accurately determined in the spectral region 107-162 nm using radiation from a synchrotron as source of VUV light. Typically, C2H4 present as a minor impurity in samples of C2H6 and C2H5D distorted the absorption cross section in curves of C2H6 and C2H5D in the onset region. We completely eliminated C2H4 from C2H6 and C2H5D using adsorption on activated Pd/charcoal at 195 K. By this means, we detected no C2H4 in samples of C2H6 and C2H5D according to their absorption spectra. The detection limit of C2H4 in C2H6 and C2H5D is less than 0.03 ppm with VUV absorption spectroscopy.

  2. Vibrational Spectroscopy of He-O_2H^+ and O_2H^+

    NASA Astrophysics Data System (ADS)

    Kohguchi, Hiroshi; Yamada, Koichi MT; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar

    2017-06-01

    The elusive protonated oxygen, O_2H^+, has been characterized by vibrational action spectroscopy in a cryogenic 22-pole ion trap. On the one hand, the vibrational bands of the tagged He-O_2H^+ have been investigated, using a table-top OPO system for the known OH-stretch^a, whereas the FELIX^b light source has been used to detect the hitherto unknown low-frequency O-O-H bend and O-O stretch. On the other hand, the untagged O_2H^+ has been detected for the first time by high-resolution rovibrational spectroscopy via its ν_1 OH-stretch motion. 38 ro-vibrational fine structure transitions with partly resolved hyperfine satellites were measured (56 resolved lines in total). Spectroscopic parameters were determined by a fit to an asymmetric rotor model with a ^3A'' electronic ground state. The band center is at 3016.73 \\wn, which is in good agreement with experimental^a and ab initio^{c,d} predictions. Based on the spectroscopic parameters, the rotational spectrum is predicted, but not detected yet. ^a S. A. Nizkorodov et al., Chem. Phys. Lett., 278, 26, 1997 ^b D. Oepts et al., Infrared Phys. Technol., 36, 297, 1995 ^c S. L. W. Weaver et al., Astrophys. J., 697, 601, 2009 ^d X. Huang and T. J. Lee, J. Chem. Phys., 129, 044312, 2008

  3. Association reactions at low pressure. III. The C2H2+/C2H2 system.

    PubMed

    Anicich, V G; Sen, A D; Huntress, W T; McEwan, M J

    1990-11-15

    The association reactions, C4H2(+) + C2H2 and C4H3(+) + C2H2 have been examined at pressures between 8 x 10(-8) and 1 x 10(-4) Torr at 298 K in an ion cyclotron resonance mass spectrometer. Association occurred via two different mechanisms. At pressures below approximately 2 x 10(-6) Torr, the association was bimolecular having rate coefficients k2 = 2.7 x 10(-10) cm3 s-1 and 2.0 x 10(-10) cm3 s-1 for C4H2+ and C4H3+, respectively. At pressures above approximately 2 x 10(-6) Torr, termolecular association was observed with rate coefficients, k3 = 5.7 x 10(-23) cm6 s-1 and 1.3 x 10(-23) cm6 s-1 for C4H2+ and C4H3+, respectively, when M = C2H2. The termolecular rate constants with N2, Ar, Ne, and He as the third body, M, are also reported. We propose that the low pressure bimolecular association process was the result of radiative stabilization of the complex and the termolecular association process was the result of collisional stabilization. Elementary rate coefficients were obtained and the lifetime of the collision complex was > or = 57 microseconds for (C6H4+)* and > or = 18 microseconds for (C6H5+)*. At pressures below 1 x 10(-6) Torr, approximately 11% of the (C6H4+)* were stabilized by photon emission and the remaining approximately 89% reverted back to reactants, while approximately 24% of the (C6H5+)* were stabilized by photon emission and the remaining approximately 76% reverted back to reactants. The ionic products of the C2H2(+) + C2H2 reaction, C4H2+ and C4H3+, were found to be formed with enough internal energy that they did not react by the radiative association channel until relaxed by several nonreactive collisions with the bath gas.

  4. Reactions of Fe+ and FeO+ with C2H2, C2H4, and C2H6: temperature-dependent kinetics.

    PubMed

    Ard, Shaun G; Melko, Joshua J; Fournier, Joseph A; Shuman, Nicholas S; Viggiano, Albert A

    2013-10-10

    We present the first temperature-dependent rate constants and branching ratios for the reactions of Fe(+) and FeO(+) with C2H2, C2H4, and C2H6 from 170 to 700 K. Fe(+) is observed to react only by association with the three hydrocarbons, with temperature dependencies of T(-2) to T(-3). FeO(+) reacts with C2H2 and C2H4 at the collision rate over the temperature range, and their respective product branchings show similar temperature dependences. In contrast, the reaction with ethane is collisional at 170 K but varies as T(-0.5), while the product branching remains essentially flat with temperature. These variations in reactivity are discussed in terms of the published reactive potential surfaces. The effectiveness of Fe(+) as an oxygen-transfer catalyst toward the three hydrocarbons is also discussed.

  5. Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei.

    PubMed Central

    Vercesi, A E; Moreno, S N; Docampo, R

    1994-01-01

    The use of digitonin to permeabilize the plasma membrane of Trypanosoma brucei procyclic and bloodstream trypomastigotes allowed the identification of a non-mitochondrial nigericin-sensitive Ca2+ compartment. The proton ionophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) was able to cause Ca2+ release from this compartment, which was also sensitive to sodium orthovanadate. Preincubation of the cells with the vacuolar H(+)-ATPase inhibitor bafilomycin A1 greatly reduced the nigericin-sensitive Ca2+ compartment. Bafilomycin A1 inhibited the initial rate of ATP-dependent non-mitochondrial Ca2+ uptake and stimulated the initial rate of nigericin-induced Ca2+ release by permeabilized procyclic trypomastigotes. ATP-dependent and bafilomycin A1- and 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl)-sensitive Acridine Orange uptake was demonstrated in permeabilized cells. Under these conditions Acridine Orange was concentrated in abundant cytoplasmic round vacuoles by a process inhibited by bafilomycin A1, NBD-Cl, nigericin, and Ca2+. Vanadate or EGTA significantly increased Acridine Orange uptake, while Ca2+ released Acridine Orange from these preparations, thus suggesting that the dye and Ca2+ were being accumulated in the same acidic vacuole. Acridine Orange uptake was reversed by nigericin, bafilomycin A1 and NH4Cl. The results are consistent with the presence of a Ca2+/H(+)-ATPase system pumping Ca2+ into an acidic vacuole, that we tentatively named the acidocalcisome. Images Figure 5 PMID:7998937

  6. Rate constant for the reaction C2H5 + HBr → C2H6 + Br.

    PubMed

    Golden, David M; Peng, Jingping; Goumri, A; Yuan, J; Marshall, Paul

    2012-06-21

    RRKM theory has been employed to analyze the kinetics of the title reaction, in particular, the once-controversial negative activation energy. Stationary points along the reaction coordinate were characterized with coupled cluster theory combined with basis set extrapolation to the complete basis set limit. A shallow minimum, bound by 9.7 kJ mol(-1) relative to C(2)H(5) + HBr, was located, with a very small energy barrier to dissociation to Br + C(2)H(6). The transition state is tight compared to the adduct. The influence of vibrational anharmonicity on the kinetics and thermochemistry of the title reaction were explored quantitatively. With adjustment of the adduct binding energy by ∼4 kJ mol(-1), the computed rate constants may be brought into agreement with most experimental data in the literature, including new room-temperature results described here. There are indications that at temperatures above those studied experimentally, the activation energy may switch from negative to positive.

  7. Rate Coefficients of C2H with C2H4, C2H6, and H2 from 150 to 359 K

    NASA Technical Reports Server (NTRS)

    Opansky, Brian J.; Leone, Stephen R.

    1996-01-01

    Rate coefficients for the reactions C2H with C2H4, C2H6, and H2 are measured over the temperature range 150-359 K using transient infrared laser absorption spectroscopy. The ethynyl radical is formed by photolysis of C2H2 with a pulsed excimer laser at 193 nm, and its transient absorption is monitored with a color center laser on the Q(sub 11)(9) line of the A(sup 2) Pi-Chi(sup 2) Sigma transition at 3593.68 cm(exp -1). Over the experimental temperature range 150-359 K the rate constants of C2H with C2H4, C2H6, and H2 can be fitted to the Arrhenius expressions k(sub C2H4) = (7.8 +/- 0.6) x 10(exp -11) exp[(134 +/- 44)/T], k(sub C2H6) = (3.5 +/- 0.3) x 10(exp -11) exp[(2.9 +/- 16)/T], and k(sub H2) = (1.2 +/- 0.3) x 10(exp -11) exp[(-998 +/- 57)]/T cm(exp 3) molecule(exp -1) sec(exp -1). The data for C2H with C2H4 and C2H6 indicate a negligible activation energy to product formation shown by the mild negative temperature dependence of both reactions. When the H2 data are plotted together with the most recent high-temperature results from 295 to 854 K, a slight curvature is observed. The H2 data can be fit to the non-Arrhenius form k(sub H2) = 9.2 x 10(exp -18) T(sup 2.17 +/- 0.50) exp[(-478 +/- 165)/T] cm(exp 3) molecules(exp -1) sec(exp -1). The curvature in the Arrhenius plot is discussed in terms of both quantum mechanical tunneling of the H atom from H2 to the C2H radical and bending mode contributions to the partition function.

  8. Synthesis of 2-Alkenyl-2H-indazoles from 2-(2-Carbonylmethyl)-2H-indazoles.

    PubMed

    Lin, Mei-Huey; Liang, Kung-Yu; Tsai, Chang-Hsien; Chen, Yu-Chun; Hsiao, Hung-Chang; Li, Yi-Syuan; Chen, Chung-Hao; Wu, Hau-Chun

    2016-02-19

    A procedure has been developed for synthesis of 2-alkenyl-2H-indazoles starting from 2-(2-carbonylmethyl)-2H-indazoles, which are prepared by gallium/aluminium- and aluminium-mediated, direct, regioselective alkylation of indazoles with α-bromocarbonyl compounds. The structure of 3-(2H-indazol-2-yl)-2H-chromen-2-one was proven by X-ray crystallography. The styrene- and coumarin-2H-indazoles produced by using the new method were found to have interesting fluorescence properties.

  9. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  10. Synthesis and properties of 3-nitro-2H-chromenes

    NASA Astrophysics Data System (ADS)

    Korotaev, V. Yu; Sosnovskikh, V. Ya; Barkov, A. Yu

    2013-12-01

    Methods of synthesis and chemical properties of 3-nitro-2H-chromenes, including reactions with nucleophiles, cycloaddition, oxidation and reduction, have been reviewed. Enantioselective reactions involving 3-nitro-2H-chromenes, as well as the stereochemistry of the products, are discussed. The ways of practical use of these compounds are shown. The bibliography includes 115 references.

  11. Variations of δ2H in an idealised extratropical cyclone

    NASA Astrophysics Data System (ADS)

    Dütsch, Marina; Pfahl, Stephan; Wernli, Heini

    2016-04-01

    Numerical model simulations of stable water isotopes help to improve our understanding of the complex processes driving isotopic variability in atmospheric waters. We use the isotope-enabled COSMO model to study the governing mechanisms of δ2H variations in an idealised extratropical cyclone. A set of experiments with differing initial conditions of δ2H in vapour and partially deactivated isotopic fractionation allows us to quantify the relative roles of cloud fractionation and vertical and horizontal advection for the simulated δ2H signals associated with the cyclone and fronts. Horizontal transport determines the large-scale pattern of δ2H in both vapour and precipitation, while fractionation and vertical transport are more important on a smaller scale, near the fronts. During the passage of the cold front fractionation leads to a V-shaped trend of δ2H in precipitation and vapour, which is, for vapour, superimposed on a gradual decrease caused by horizontal advection.

  12. Fasting, post-OGTT challenge, and nocturnal free fatty acids in prediabetic vs. normal glucose tolerant overweight and obese Latino adolescents

    PubMed Central

    Toledo-Corral, Claudia M.; Alderete, Tanya L.; Richey, Joyce; Sequeira, Paola; Goran, Michael I.; Weigensberg, Marc J.

    2014-01-01

    Background and Objective Type 2 diabetes risk and its relationship to free fatty acid (FFA) exposure and visceral fat by prediabetes status in minority adolescents has yet to be explored. Therefore, the objective of this study was to examine the association of circulating FFA under varying conditions with prediabetes in Latino adolescents and to determine the relative relationships of FFA and visceral adiposity to insulin sensitivity, secretion, and β-cell function. Subjects and Outcome Measures Overweight or obese, but otherwise healthy Latino adolescent males and females (n=164, 14.2±2.5 years) were recruited for assessment of prediabetes, abdominal fat, and FFA levels taken at a fasting state (FFAF), during an OGTT (FFAOGTT), and overnight (FFANOCTURNAL). Results Prediabetic adolescents had a higher FFAF than those with normal glucose tolerance when controlling for age, sex, pubertal status, total percent body fat, and visceral fat. FFAOGTT and FFANOCTURNAL did not differ between participants with prediabetes and those with normal glucose tolerance after adjusting for covariates. Visceral fat was independently related to insulin sensitivity and secretion in pubertal adolescents, however in post-pubertal adolescents, FFAF and visceral fat were both independent and negatively related to β-cell function. Conclusion These results support a plausible progression of the lipotoxicity theory of diabetes development during the pubertal transition. PMID:25109287

  13. Determination of muscle protein synthesis rates in fish using (2)H2O and (2)H NMR analysis of alanine.

    PubMed

    Marques, Cátia; Viegas, Filipa; Rito, João; Jones, John; Viegas, Ivan

    2016-09-15

    Following administration of deuterated water ((2)H2O), the fractional synthetic rate (FSR) of a given endogenous protein can be estimated by (2)H-enrichment quantification of its alanine residues. Currently, this is measured by mass spectrometry following a derivatization procedure. Muscle FSR was measured by (1)H/(2)H NMR analysis of alanine from seabass kept for 6 days in 5% (2)H-enriched saltwater, following acid hydrolysis and amino acid isolation by cation-exchange chromatography of muscle tissue. The analysis is simple and robust, and provides precise measurements of excess alanine (2)H-enrichment in the 0.1-0.4% range from 50 mmol of alanine recovered from muscle protein. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Temperature and pressure dependent rate coefficients for the reaction of C2H4 + HO2 on the C2H4O2H potential energy surface.

    PubMed

    Guo, JunJiang; Xu, JiaQi; Li, ZeRong; Tan, NingXin; Li, XiangYuan

    2015-04-02

    The potential energy surface (PES) for reaction C2H4 + HO2 was examined by using the quantum chemical methods. All rates were determined computationally using the CBS-QB3 composite method combined with conventional transition state theory(TST), variational transition-state theory (VTST) and Rice-Ramsberger-Kassel-Marcus/master-equation (RRKM/ME) theory. The geometries optimization and the vibrational frequency analysis of reactants, transition states, and products were performed at the B3LYP/CBSB7 level. The composite CBS-QB3 method was applied for energy calculations. The major product channel of reaction C2H4 + HO2 is the formation C2H4O2H via an OH(···)π complex with 3.7 kcal/mol binding energy which exhibits negative-temperature dependence. We further investigated the reactions related to this complex, which were ignored in previous studies. Thermochemical properties of the species involved in the reactions were determined using the CBS-QB3 method, and enthalpies of formation of species were compared with literature values. The calculated rate constants are in good agreement with those available from literature and given in modified Arrhenius equation form, which are serviceable in combustion modeling of hydrocarbons. Finally, in order to illustrate the effect for low-temperature ignition of our new rate constants, we have implemented them into the existing mechanisms, which can predict ethylene ignition in a shock tube with better performance.

  15. Theoretical study of the bonding of Nb(2+) to CH2, C2H2, and C2H4

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry

    1991-01-01

    The bonding of Nb(2+) with CH2, C2H2, and C2H4 is studied by using electronic structure calculations that include high levels of electron correlation. The binding energy for NbCH2(2+) is in good agreement with the lower bound determined from the reaction with CH4 but is significantly smaller than the value determined from the binding energy and ionization potential of NbCH2(+). The calculations and a new interpretation of the experiment indicate that the larger value is in error primarily because the ionization potential of NbCH2(+) determined from bracketing charge-exchange reactions is too small. The computed binding energy of NbC2H2(2+) is in good agreement with experiment. The calculations show that the bonding is predominantly covalent in character for both NbCH2(2+) and NbC2H2(2+), whereas for NbC2H4(2+) the electronic states that are predominantly ionic and covalent are nearly degenerate. The trend in binding energies, CH2 greater than C2H2 greater than C2H4, is consistent with the energy required to prepare the ligands for bonding.

  16. Theoretical study of the bonding of Nb(2+) to CH2, C2H2, and C2H4

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry

    1991-01-01

    The bonding of Nb(2+) with CH2, C2H2, and C2H4 is studied by using electronic structure calculations that include high levels of electron correlation. The binding energy for NbCH2(2+) is in good agreement with the lower bound determined from the reaction with CH4 but is significantly smaller than the value determined from the binding energy and ionization potential of NbCH2(+). The calculations and a new interpretation of the experiment indicate that the larger value is in error primarily because the ionization potential of NbCH2(+) determined from bracketing charge-exchange reactions is too small. The computed binding energy of NbC2H2(2+) is in good agreement with experiment. The calculations show that the bonding is predominantly covalent in character for both NbCH2(2+) and NbC2H2(2+), whereas for NbC2H4(2+) the electronic states that are predominantly ionic and covalent are nearly degenerate. The trend in binding energies, CH2 greater than C2H2 greater than C2H4, is consistent with the energy required to prepare the ligands for bonding.

  17. Efficient C2 functionalisation of 2H-2-imidazolines.

    PubMed

    Bon, Robin S; Sprenkels, Nanda E; Koningstein, Manoe M; Schmitz, Rob F; de Kanter, Frans J J; Dömling, Alexander; Groen, Marinus B; Orru, Romano V A

    2008-01-07

    Alkylation and oxidation of 2H-2-imidazolines, followed by regioselective deprotection, thionation and microwave-assisted Liebeskind-Srogl reaction, efficiently led to 2-aryl-2-imidazolines as new analogues of p53-hdm2 interaction inhibitors (Nutlins).

  18. Dynamics of glutathione and ophthalmate traced with 2H-enriched body water in rats and humans

    PubMed Central

    Kombu, Rajan S.; Zhang, Guo-Fang; Abbas, Rime; Mieyal, John J.; Anderson, Vernon E.; Kelleher, Joanne K.; Sanabria, Juan R.; Brunengraber, Henri

    2009-01-01

    We developed a LC-MS-MS assay of the 2H labeling of free glutathione (GSH) and bound glutathione [GSSR; which includes all DTT-reducible forms, primarily glutathione disulfide (GSSG) and mixed disulfides with proteins] and ophthalmate (an index of GSH depletion) labeled from 2H-enriched body water. In rats whose body water was 2.5% 2H enriched for up to 31 days, GSH labeling follows a complex pattern because of different rates of labeling of its constitutive amino acids. In rats infused with [13C2,15N-glycine]glutathione, the rate of appearance of plasma GSH was 2.1 μmol·min−1·kg−1, and the half-life of plasma GSH/GSSR was 6–8 min. In healthy humans whose body fluids were 0.5% 2H enriched, the 2H labeling of GSH/GSSR and ophthalmate can be precisely measured after 4 h, with GSH being more rapidly labeled than GSSR. Since plasma GSH/GSSR derives mostly from liver, this technique opens the way to 2) probe noninvasively the labeling pattern and redox status of the liver GSH system in humans and 2) assess the usefulness of ophthalmate as an index of GSH depletion. PMID:19401458

  19. C2H observations toward the Orion Bar

    NASA Astrophysics Data System (ADS)

    Nagy, Z.; Ossenkopf, V.; Van der Tak, F. F. S.; Faure, A.; Makai, Z.; Bergin, E. A.

    2015-06-01

    Context. The ethynyl radical (C2H) is one of the first radicals to be detected in the interstellar medium. Its higher rotational transitions have recently become available with the Herschel Space Observatory. Aims: We aim to constrain the physical parameters of the C2H emitting gas toward the Orion Bar. Methods: We analyze the C2H line intensities measured toward the Orion Bar CO+ Peak and Herschel/HIFI maps of C2H, CH, and HCO+ and a NANTEN map of [Ci]. We interpret the observed C2H emission using the combination of Herschel/HIFI and NANTEN data with radiative transfer and PDR models. Results: Five rotational transitions of C2H (from N = 6-5 up to N = 10-9) have been detected in the HIFI frequency range toward the CO+ peak of the Orion Bar. Based on the five detected C2H transitions, a single component rotational diagram analysis gives a rotation temperature of ~64 K and a beam-averaged C2H column density of 4 × 1013 cm-2. The rotational diagram is also consistent with a two-component fit, resulting in rotation temperatures of 43 ± 0.2 K and 123 ± 21 K and in beam-averaged column densities of ~8.3 × 1013 cm-2 and ~2.3 × 1013 cm-2 for the three lower-N and for the three higher-N transitions, respectively. The measured five rotational transitions cannot be explained by any single parameter model. According to a non-LTE model, most of the C2H column density produces the lower-N C2H transitions and traces a warm (Tkin ~ 100-150 K) and dense (n(H2) ~ 105-106 cm-3) gas. A small fraction of the C2H column density is required to reproduce the intensity of the highest-N transitions (N = 9-8 and N = 10-9) originating in a high-density (n(H2) ~5 × 106 cm-3) hot (Tkin ~ 400 K) gas. The total beam-averaged C2H column density in the model is 1014 cm-2. A comparison of the spatial distribution of C2H to those of CH, HCO+, and [Ci] shows the best correlation with CH. Conclusions: Both the non-LTE radiative transfer model and a simple PDR model representing the Orion Bar

  20. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Romani, P. N.; Abbas, M.; LeClair, A.; Strobel, D.

    2004-01-01

    Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10-1400 cm(sup -1) (1000-7 microns). In this paper we analyze a zonally-averaged set of CIRS spectra taken at the highest (0.5 cm(sup -1)) resolution, to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm(sup -1). Simultaneously, we retrieve the abundances of C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIRS resolution, introducing a non-uniqueness into the retrievals, such that vertical gradient and column abundance cannot both be found without additional constraints. Assuming profile gradients from photochemical calculations, we show that the column abundance of C2H2 decreases sharply towards the poles by a factor approximately 4, while C2H6 is unchanged in the north and increasing in the south, by a factor approximately 1.8. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors 2.7 and 3.5 respectively at a latitude 70 deg. However, the lifetime of C2H6 in the stratosphere (5 x 10(exp 9)) is much longer than the dynamical timescale for meridional motions inferred from SL-9 debris (5 x 10(exp 8 s)), and therefore the constant or rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite

  1. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Romani, P. N.; Abbas, M.; LeClair, A.; Strobel, D.

    2004-01-01

    Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10-1400 cm(sup -1) (1000-7 microns). In this paper we analyze a zonally-averaged set of CIRS spectra taken at the highest (0.5 cm(sup -1)) resolution, to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm(sup -1). Simultaneously, we retrieve the abundances of C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIRS resolution, introducing a non-uniqueness into the retrievals, such that vertical gradient and column abundance cannot both be found without additional constraints. Assuming profile gradients from photochemical calculations, we show that the column abundance of C2H2 decreases sharply towards the poles by a factor approximately 4, while C2H6 is unchanged in the north and increasing in the south, by a factor approximately 1.8. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors 2.7 and 3.5 respectively at a latitude 70 deg. However, the lifetime of C2H6 in the stratosphere (5 x 10(exp 9)) is much longer than the dynamical timescale for meridional motions inferred from SL-9 debris (5 x 10(exp 8 s)), and therefore the constant or rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite

  2. Infrared spectroscopy of V2+(H2O) complexes

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, B.; Duncan, M. A.

    2012-03-01

    Doubly charged vanadium-water complexes are produced by laser vaporization in a pulsed supersonic expansion. Size-selected ions are studied with infrared photodissociation spectroscopy in the O-H stretch region using argon complex predissociation. Density functional theory calculations provide structures and vibrational spectra of these ions. The O-H stretches of V2+(H2O) appear at lower frequencies than those of the free water molecule or V+(H2O). The symmetric stretch is more intense than the asymmetric stretch in both V+(H2O) and V2+(H2O) complexes. Spectra of V2+(H2O)Arn (n = 2-7) show that the coordination of the V2+ is filled with six ligands, i.e. one water and five argon atoms.

  3. Detection of Interstellar Ortho-D2H+ with SOFIA

    NASA Astrophysics Data System (ADS)

    Harju, Jorma; Sipilä, Olli; Brünken, Sandra; Schlemmer, Stephan; Caselli, Paola; Juvela, Mika; Menten, Karl M.; Stutzki, Jürgen; Asvany, Oskar; Kamiński, Tomasz; Okada, Yoko; Higgins, Ronan

    2017-05-01

    We report on the detection of the ground-state rotational line of ortho-D2H+ at 1.477 THz (203 μm) using the German REceiver for Astronomy at Terahertz frequencies (GREAT) on board the Stratospheric Observatory For Infrared Astronomy (SOFIA). The line is seen in absorption against far-infrared continuum from the protostellar binary IRAS 16293-2422 in Ophiuchus. The para-D2H+ line at 691.7 GHz was not detected with the APEX telescope toward this position. These D2H+ observations complement our previous detections of para-H2D+ and ortho-H2D+ using SOFIA and APEX. By modeling chemistry and radiative transfer in the dense core surrounding the protostars, we find that the ortho-D2H+ and para-H2D+ absorption features mainly originate in the cool (T < 18 K) outer envelope of the core. In contrast, the ortho-H2D+ emission from the core is significantly absorbed by the ambient molecular cloud. Analyses of the combined D2H+ and H2D+ data result in an age estimate of ˜5 × 105 yr for the core, with an uncertainty of ˜2 × 105 yr. The core material has probably been pre-processed for another 5 × 105 years in conditions corresponding to those in the ambient molecular cloud. The inferred timescale is more than 10 times the age of the embedded protobinary. The D2H+ and H2D+ ions have large and nearly equal total (ortho+para) fractional abundances of ˜10-9 in the outer envelope. This confirms the central role of {{{H}}}3+ in the deuterium chemistry in cool, dense gas, and adds support to the prediction of chemistry models that also {{{D}}}3+ should be abundant in these conditions.

  4. Quantifying cholesterol synthesis in vivo using 2H2O: enabling back-to-back studies in the same subject

    PubMed Central

    Previs, Stephen F.; Mahsut, Ablatt; Kulick, Alison; Dunn, Keiana; Andrews-Kelly, Genevieve; Johnson, Christopher; Bhat, Gowri; Herath, Kithsiri; Miller, Paul L.; Wang, Sheng-Ping; Azer, Karim; Xu, Jing; Johns, Douglas G.; Hubbard, Brian K.; Roddy, Thomas P.

    2011-01-01

    The advantages of using 2H2O to quantify cholesterol synthesis include i) homogeneous precursor labeling, ii) incorporation of 2H via multiple pathways, and iii) the ability to perform long-term studies in free-living subjects. However, there are two concerns. First, the t1/2 of tracer in body water presents a challenge when there is a need to acutely replicate measurements in the same subject. Second, assumptions are made regarding the number of hydrogens (n) that are incorporated during de novo synthesis. Our primary objective was to determine whether a step-based approach could be used to repeatedly study cholesterol synthesis a subject. We observed comparable changes in the 2H-labeling of plasma water and total plasma cholesterol in African-Green monkeys that received five oral doses of 2H2O, each dose separated by one week. Similar rates of cholesterol synthesis were estimated when comparing data in the group over the different weeks, but better reproducibility was observed when comparing replicate determinations of cholesterol synthesis in the same nonhuman primate during the respective dosing periods. Our secondary objective was to determine whether n depends on nutritional status in vivo; we observed n of ∼25 and ∼27 in mice fed a high-carbohydrate (HC) versus carbohydrate-free (CF) diet, respectively. We conclude that it is possible to acutely repeat studies of cholesterol synthesis using 2H2O and that n is relatively constant. PMID:21498887

  5. Evaluation of an electrochemical N2/H2 gas separator

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Wynveen, R. A.; Carlson, J. N.

    1973-01-01

    A program was successfully completed to evaluate an electrochemical nitrogen/hydrogen (N2/H2) separator for use in a spacecraft nitrogen (N2) generator. Based on the technical data obtained a N2/H2 separator subsystem consisting of an organic polymer gas permeator first stage and an electrochemical second and third stage was estimated to have the lowest total spared equivalent weight, 257 kg (566 lb), for a 15 lb/day N2 generation rate. A pre-design analysis of the electrochemical N2/H2 separator revealed that its use as a first stage resulted in too high a power requirement to be competitive with the organic polymer membrane and the palladium-silver membrane separation methods. As a result, program emphasis was placed on evaluating the electrochemical. A parametric test program characterized cell performance and established second- and third-stage electrochemical N2/H2 separator operating conditions. A design verification test was completed on the second and third stages. The second stage was then successfully endurance tested for 200 hours.

  6. The distribution and abundance of interstellar C2H

    NASA Technical Reports Server (NTRS)

    Huggins, P. J.; Carlson, W. J.; Kinney, A. L.

    1984-01-01

    C2H(N = 1-0) emission has been extensively observed in a variety of molecular clouds, including: 12 hot, dense, cloud cores, 3 bright-rimmed clouds (in NGC 1977, IC 1396, and IC 1848), and across the extended OMC - 1 cloud. It has also been observed in the circumstellar envelopes IRC + 10216 and AFGL 2688. Abundance analyses of the molecular clouds yield C2H/(C-13)O abundance ratios of about 0.01, with little variation (less than about a factor of 4) either between clouds or across individual clouds. In the Orion plateau source, the C2H abundance is enhanced by less than a factor of 4, relative to the extended cloud. The generally high levels of C2H found in the molecular clouds are not readily accounted for by simple, steady-state chemical models, and suggest, as do earlier observations of atomic carbon, that the carbon chemistry in dense clouds is more active than is commonly assumed.

  7. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Abbas, M.; LeClaire, A.; Romani, P. N.; Simon-Miller, A. A.

    2004-01-01

    The abundances of hydrocarbons such as acetylene (C2H2) and ethane (C2H6) in Jupiter's atmosphere are important physical quantities, constraining our models of the chemical and dynamical processes. However, our knowledge of these quantities and their vertical and latitudinal variations has remained sparse. The flyby of the Cassini spacecraft with Jupiter at the end of 2000 provided an excellent opportunity to observe the infrared spectrum with the Composite Infrared Spectrometer (CIRS) instrument, mapping the spatial variation of emissions from 10-1400 cm-1. CIRS spectra taken at the highest resolution (0.5 cm-1) in early December 2000 have been analysed to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 of CH4, and in the troposphere at 100-400 mbar, via the hydrogen collision-induced continuum absorption at 600-800 cm. Simultaneously, we have searched for meridional abundance variations in C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIM resolution, introducing a non-uniqueness into the retrievals, which means that vertical gradient and column abundance cannot be simultaneously found without additional constraints. If we assume the profile shapes from photochemical model calculations, we show that the column abundance of C2H2 must decrease sharply towards the poles, while C2H6 is constant or slightly increasing. The relevance of these results to current photochemical and dynamical knowledge of Jupiter's atmosphere is discussed.

  8. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Abbas, M.; LeClaire, A.; Romani, P. N.; Simon-Miller, A. A.

    2004-01-01

    The abundances of hydrocarbons such as acetylene (C2H2) and ethane (C2H6) in Jupiter's atmosphere are important physical quantities, constraining our models of the chemical and dynamical processes. However, our knowledge of these quantities and their vertical and latitudinal variations has remained sparse. The flyby of the Cassini spacecraft with Jupiter at the end of 2000 provided an excellent opportunity to observe the infrared spectrum with the Composite Infrared Spectrometer (CIRS) instrument, mapping the spatial variation of emissions from 10-1400 cm-1. CIRS spectra taken at the highest resolution (0.5 cm-1) in early December 2000 have been analysed to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 of CH4, and in the troposphere at 100-400 mbar, via the hydrogen collision-induced continuum absorption at 600-800 cm. Simultaneously, we have searched for meridional abundance variations in C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIM resolution, introducing a non-uniqueness into the retrievals, which means that vertical gradient and column abundance cannot be simultaneously found without additional constraints. If we assume the profile shapes from photochemical model calculations, we show that the column abundance of C2H2 must decrease sharply towards the poles, while C2H6 is constant or slightly increasing. The relevance of these results to current photochemical and dynamical knowledge of Jupiter's atmosphere is discussed.

  9. Observations of CH4, C2H6, and C2H2 in the stratosphere of Jupiter.

    PubMed

    Sada, P V; Bjoraker, G L; Jennings, D E; McCabe, G H; Romani, P N

    1998-12-01

    We have performed high-resolution spectral observations at mid-infrared wavelengths of CH4 (8.14 micrometers), C2H6 (12.16 micrometers), and C2H2 (13.45 micrometers) on Jupiter. These emission features probe the stratosphere of the planet and provide information on the carbon-based photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer CELESTE, in conjunction with the McMath-Pierce 1.5-m solar telescope between November 1994 and February 1995. We used the methane observations to derive the temperature profile of the jovian atmosphere in the 1-10 mbar region of the stratosphere. This profile was then used in conjunction with height-dependent mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. The resulting mixing ratios are 3.9(+1.9)(-1.3) x 10(-6) for C2H6 (5 mbar pressure level), and 2.3 +/- 0.5 x 10(-8) for C2H2 (8 mbar pressure level), where the quoted uncertainties are derived from model variations in the temperature profile which match the methane observation uncertainties. c1998 Academic Press.

  10. Search for the isomers of C2H3NO and C2H3NS in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel; Chakrabarti, Sandip Kumar; Das, Ankan; Gorai, Prasanta; Arunan, Elangannan

    2016-07-01

    With about 40% of all the known interstellar and circumstellar molecules having their isomeric analogues as known astromolecules, isomerism remains one of the leading themes in interstellar chemistry. In this regard, the recent detection of methyl isocyanate (with a number of isomeric analogues) in the Sgr B2(N) giant molecular cloud opens a new window for the possible astronomical detection of other C_2H_3NO isomers. The present work looks at the possibility of detecting other isomers of methyl isocyanate by considering different factors such as thermodynamic stability of the different isomers with respect to the Energy, Stability and Abundance (ESA) relationship, effect of interstellar hydrogen bonding with respect to the formation these isomers on the surface of the interstellar dust grains, possible formation routes for these isomers, spectroscopic parameters for potential astromolecules among these isomers, chemical modeling among other studies. The same studies are repeated for the C_2H_3NS isomers which are the isoelectroninc analogues of the C_2H_3NO isomers taking into account the unique chemistry of S and O-containing interstellar molecular species. Among the C_2H_3NS isomers, methyl isothiocyanate remains the most potential candidate for astronomical observation.

  11. Observations of CH4, C2H6, and C2H2 in the stratosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Sada, P. V.; Bjoraker, G. L.; Jennings, D. E.; McCabe, G. H.; Romani, P. N.

    1998-01-01

    We have performed high-resolution spectral observations at mid-infrared wavelengths of CH4 (8.14 micrometers), C2H6 (12.16 micrometers), and C2H2 (13.45 micrometers) on Jupiter. These emission features probe the stratosphere of the planet and provide information on the carbon-based photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer CELESTE, in conjunction with the McMath-Pierce 1.5-m solar telescope between November 1994 and February 1995. We used the methane observations to derive the temperature profile of the jovian atmosphere in the 1-10 mbar region of the stratosphere. This profile was then used in conjunction with height-dependent mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. The resulting mixing ratios are 3.9(+1.9)(-1.3) x 10(-6) for C2H6 (5 mbar pressure level), and 2.3 +/- 0.5 x 10(-8) for C2H2 (8 mbar pressure level), where the quoted uncertainties are derived from model variations in the temperature profile which match the methane observation uncertainties. c1998 Academic Press.

  12. CN and C2H in IRC +10216

    NASA Technical Reports Server (NTRS)

    Huggins, P. J.; Glassgold, A. E.; Morris, M.

    1984-01-01

    The effects of the production of the radicals CN and C2H from the dissociation of HCN and C2H2 by ambient UV photons in the outer envelope of IRC +10216 are investigated. The spatial distribution of the radicals and their observable millimeter emission-line characteristics are calculated from the inferred abundances of the progenitor species in the envelope of IRC +10216 using photochemical and radiative transfer models. These are compared with available observations to examine whether photoproduction is a possible explanation of the observed emission from these species. The results suggest that the variable abundances induced by photodestruction of their progenitors do affect the observed emission from the radicals.

  13. The problematic C2H4+F2 reaction barrier

    NASA Astrophysics Data System (ADS)

    Feng, Hao; Allen, Wesley D.

    2010-03-01

    The C2H4+F2 reaction is investigated through the most rigorous electronic structure methods currently feasible, using a focal point approach to converge toward the ab initio limit. Explicit computations were executed with basis sets as large as aug-cc-pV5Z and correlation treatments as extensive as coupled cluster through full triples with a perturbative inclusion of quadruple excitations [CCSDT(Q)]. Auxiliary core correlation, diagonal Born-Oppenheimer, and first-order relativistic corrections were included. All optimized geometries and vibrational frequencies were determined completely at the CCSD(T)/aug-cc-pVQZ level. The final C2H4+F2 reaction barrier from theory (8.0 kcal mol-1) is significantly higher than the recently reported experimental barrier (5.5±0.5 kcal mol-1). Our computations also yield a new enthalpy of formation of the fluoroethyl radical, ΔfH298°(C2H4F)=-13.2±0.2 kcal mol-1, whose uncertainty is an order of magnitude less than previous experimental values.

  14. A Metalloradical Approach to 2H-Chromenes

    PubMed Central

    Paul, Nanda D.; Mandal, Sutanuva; Otte, Matthias; Cui, Xin; Zhang, X. Peter; de Bruin, Bas

    2014-01-01

    Cobalt(III)–carbene radicals, generated through metalloradical activation of salicyl N-tosylhydrazones by cobalt(II) complexes of porphyrins, readily undergo radical addition to terminal alkynes to produce salicyl-vinyl radical intermediates. Subsequent hydrogen atom transfer (HAT) from the hydroxy group of the salicyl-moiety to the vinyl-radical leads to the formation of 2H-chromenes. The Co(II)-catalyzed process can tolerate various substitution patterns and produces the corresponding 2H-chromene products in good isolated yields. EPR spectroscopy and radical-trapping experiments with TEMPO are in agreement with the proposed radical mechanism. DFT calculations reveal the formation of the salicyl-vinyl radical intermediate by a metalloradical mediated process. Unexpectedly, subsequent HAT from the hydroxy moiety to the vinyl radical leads to formation of an o-quinone methide intermediate, which dissociates spontaneously from the cobalt center and easily undergoes an endo-cyclic, sigmatropic ring-closing reaction to form the final 2H-chromene product. PMID:24400781

  15. Mechanisms of CO2/H+ Sensitivity of Astrocytes

    PubMed Central

    Turovsky, Egor; Theparambil, Shefeeq M.; Kasymov, Vitaliy; Deitmer, Joachim W.; del Arroyo, Ana Gutierrez; Ackland, Gareth L.; Corneveaux, Jason J.; Allen, April N.; Huentelman, Matthew J.; Kasparov, Sergey; Marina, Nephtali

    2016-01-01

    Ventral regions of the medulla oblongata of the brainstem are populated by astrocytes sensitive to physiological changes in PCO2/[H+]. These astrocytes respond to decreases in pH with elevations in intracellular Ca2+ and facilitated exocytosis of ATP-containing vesicles. Released ATP propagates Ca2+ excitation among neighboring astrocytes and activates neurons of the brainstem respiratory network triggering adaptive increases in breathing. The mechanisms linking increases in extracellular and/or intracellular PCO2/[H+] with Ca2+ responses in chemosensitive astrocytes remain unknown. Fluorescent imaging of changes in [Na+]i and/or [Ca2+]i in individual astrocytes was performed in organotypic brainstem slice cultures and acute brainstem slices of adult rats. It was found that astroglial [Ca2+]i responses triggered by decreases in pH are preceded by Na+ entry, markedly reduced by inhibition of Na+/HCO3− cotransport (NBC) or Na+/Ca2+ exchange (NCX), and abolished in Na+-free medium or by combined NBC/NCX blockade. Acidification-induced [Ca2+]i responses were also dramatically reduced in brainstem astrocytes of mice deficient in the electrogenic Na+/HCO3− cotransporter NBCe1. Sensitivity of astrocytes to changes in pH was not affected by inhibition of Na+/H+ exchange or blockade of phospholipase C. These results suggest that in pH-sensitive astrocytes, acidification activates NBCe1, which brings Na+ inside the cell. Raising [Na+]i activates NCX to operate in a reverse mode, leading to Ca2+ entry followed by activation of downstream signaling pathways. Coupled NBC and NCX activities are, therefore, suggested to be responsible for functional CO2/H+ sensitivity of astrocytes that contribute to homeostatic regulation of brain parenchymal pH and control of breathing. SIGNIFICANCE STATEMENT Brainstem astrocytes detect physiological changes in pH, activate neurons of the neighboring respiratory network, and contribute to the development of adaptive respiratory responses to

  16. Measurement of regional cerebral blood flow in cat brain using intracarotid 2H2O and 2H NMR imaging

    SciTech Connect

    Detre, J.A.; Subramanian, V.H.; Mitchell, M.D.; Smith, D.S.; Kobayashi, A.; Zaman, A.; Leigh, J.S. Jr. )

    1990-05-01

    Cerebral blood flow (CBF) was measured in cat brain in vivo at 2.7 T using 2H NMR to monitor the washout of deuterated saline injected into both carotid arteries via the lingual arteries. In anesthetized cats, global CBF varied directly with PaCO{sub 2} over a range of 20-50 mm Hg, and the corresponding global CBF values ranged from 25 to 125 ml.100 g-1.min-1. Regional CBF was measured in a 1-cm axial section of cat brain using intracarotid deuterated saline and gradient-echo 2H NMR imaging. Blood flow images with a maximum pixel resolution of 0.3 x 0.3 x 1.0 cm were generated from the deuterium signal washout at each pixel. Image derived values for CBF agreed well with other determinations, and decreased significantly with hypocapnia.

  17. Theoretical study on the rate constants for the C2H5 + HBr --> C2H6 + Br reaction.

    PubMed

    Sheng, Li; Li, Ze-Sheng; Liu, Jing-Yao; Xiao, Jing-Fa; Sun, Chia-Chung

    2004-02-01

    The reaction C(2)H(5) + HBr --> C(2)H(6) + Br has been theoretically studied over the temperature range from 200 to 1400 K. The electronic structure information is calculated at the BHLYP/6-311+G(d,p) and QCISD/6-31+G(d) levels. With the aid of intrinsic reaction coordinate theory, the minimum energy paths (MEPs) are obtained at the both levels, and the energies along the MEP are further refined by performing the single-point calculations at the PMP4(SDTQ)/6-311+G(3df,2p)//BHLYP and QCISD(T)/6-311++G(2df,2pd)//QCISD levels. The calculated ICVT/SCT rate constants are in good agreement with available experimental values, and the calculate results further indicate that the C(2)H(5) + HBr reaction has negative temperature dependence at T < 850 K, but clearly shows positive temperature dependence at T > 850 K. The current work predicts that the kinetic isotope effect for the title reaction is inverse in the temperature range from 200 to 482 K, i.e., k(HBr)/k(DBr) < 1.

  18. Hydrogenation and Deuteration of C2H2 and C2H4 on Cold Grains: A Clue to the Formation Mechanism of C2H6 with Astronomical Interest

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hitomi; Hidaka, Hiroshi; Lamberts, Thanja; Hama, Tetsuya; Kawakita, Hideyo; Kästner, Johannes; Watanabe, Naoki

    2017-03-01

    We quantitatively investigated the hydrogen addition reactions of acetylene (C2H2) and ethylene (C2H4) on amorphous solid water (ASW) at 10 and 20 K relevant to the formation of ethane (C2H6) on interstellar icy grains. We found that the ASW surface enhances the reaction rates for C2H2 and C2H4 by approximately a factor of 2 compared to those on the pure-solid C2H2 and C2H4 at 10 K, probably due to an increase in the sticking coefficient and adsorption energy of the H atoms on ASW. In contrast to the previous proposal that the hydrogenation rate of C2H4 is orders of magnitude larger than that of C2H2, the present results show that the difference in hydrogenation rates of C2H2 and C2H4 is only within a factor of 3 on both the surfaces of pure solids and ASW. In addition, we found the small kinetic isotope effect for hydrogenation/deuteration of C2H2 and C2H4 at 10 K, despite the requirement of quantum tunneling. At 20 K, the reaction rate of deuteration becomes even larger than that of hydrogenation. These unusual isotope effects might originate from a slightly larger number density of D atoms than H atoms on ASW at 20 K. The hydrogenation of C2H2 is four times faster than CO hydrogenation and can produce C2H6 efficiently through C2H4 even in the environment of a dark molecular cloud.

  19. Mechanisms of CO2/H+ Sensitivity of Astrocytes.

    PubMed

    Turovsky, Egor; Theparambil, Shefeeq M; Kasymov, Vitaliy; Deitmer, Joachim W; Del Arroyo, Ana Gutierrez; Ackland, Gareth L; Corneveaux, Jason J; Allen, April N; Huentelman, Matthew J; Kasparov, Sergey; Marina, Nephtali; Gourine, Alexander V

    2016-10-19

    Ventral regions of the medulla oblongata of the brainstem are populated by astrocytes sensitive to physiological changes in PCO2/[H(+)]. These astrocytes respond to decreases in pH with elevations in intracellular Ca(2+) and facilitated exocytosis of ATP-containing vesicles. Released ATP propagates Ca(2+) excitation among neighboring astrocytes and activates neurons of the brainstem respiratory network triggering adaptive increases in breathing. The mechanisms linking increases in extracellular and/or intracellular PCO2/[H(+)] with Ca(2+) responses in chemosensitive astrocytes remain unknown. Fluorescent imaging of changes in [Na(+)]i and/or [Ca(2+)]i in individual astrocytes was performed in organotypic brainstem slice cultures and acute brainstem slices of adult rats. It was found that astroglial [Ca(2+)]i responses triggered by decreases in pH are preceded by Na(+) entry, markedly reduced by inhibition of Na(+)/HCO3(-) cotransport (NBC) or Na(+)/Ca(2+) exchange (NCX), and abolished in Na(+)-free medium or by combined NBC/NCX blockade. Acidification-induced [Ca(2+)]i responses were also dramatically reduced in brainstem astrocytes of mice deficient in the electrogenic Na(+)/HCO3(-) cotransporter NBCe1. Sensitivity of astrocytes to changes in pH was not affected by inhibition of Na(+)/H(+) exchange or blockade of phospholipase C. These results suggest that in pH-sensitive astrocytes, acidification activates NBCe1, which brings Na(+) inside the cell. Raising [Na(+)]i activates NCX to operate in a reverse mode, leading to Ca(2+) entry followed by activation of downstream signaling pathways. Coupled NBC and NCX activities are, therefore, suggested to be responsible for functional CO2/H(+) sensitivity of astrocytes that contribute to homeostatic regulation of brain parenchymal pH and control of breathing.

  20. Theoretical kinetics of O + C2H4

    DOE PAGES

    Li, Xiaohu; Jasper, Ahren W.; Zádor, Judit; ...

    2016-06-01

    The reaction of atomic oxygen with ethylene is a fundamental oxidation step in combustion and is prototypical of reactions in which oxygen adds to double bonds. For 3O+C2H4 and for this class of reactions generally, decomposition of the initial adduct via spin-allowed reaction channels on the triplet surface competes with intersystem crossing (ISC) and a set of spin-forbidden reaction channels on the ground-state singlet surface. The two surfaces share some bimolecular products but feature different intermediates, pathways, and transition states. In addition, the overall product branching is therefore a sensitive function of the ISC rate. The 3O+C2H4 reaction has beenmore » extensively studied, but previous experimental work has not provided detailed branching information at elevated temperatures, while previous theoretical studies have employed empirical treatments of ISC. Here we predict the kinetics of 3O+C2H4 using an ab initio transition state theory based master equation (AITSTME) approach that includes an a priori description of ISC. Specifically, the ISC rate is calculated using Landau–Zener statistical theory, consideration of the four lowest-energy electronic states, and a direct classical trajectory study of the product branching immediately after ISC. The present theoretical results are largely in good agreement with existing low-temperature experimental kinetics and molecular beam studies. Good agreement is also found with past theoretical work, with the notable exception of the predicted product branching at elevated temperatures. Above ~1000 K, we predict CH2CHO+H and CH2+CH2O as the major products, which differs from the room temperature preference for CH3+HCO (which is assumed to remain at higher temperatures in some models) and from the prediction of a previous detailed master equation study.« less

  1. Synthesis of 2H- and 13C-substituted dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2003-01-01

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  2. Synthesis Of 2h- And 13c-Substituted Dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-05-04

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  3. Dissociative attachment of electrons with Si2H6

    NASA Technical Reports Server (NTRS)

    Krishnakumar, E.; Srivastava, S. K.; Iga, I.

    1991-01-01

    Cross-sections for the production of negative ion fragments by electron attachment to Si2H6 and ion pair formation from it have been measured by utilizing the crossed electron beam-molecular beam collision technique. The negative ions are mass-analyzed by employing a quadrupole mass spectrometer. There are serious disagreements between the present and two previously published results. In the present paper cross-section values, appearance potentials, and the various channels of dissociation for the formation of negative monosilane fragments are presented.

  4. Depth-Dependent Critical Behavior in V2H

    SciTech Connect

    Del Genio, C.; Trenkler, J; Bassler, K; Wochner, P; Haeffner, D; Reiter, G; Bai, J; Moss, S

    2009-01-01

    Using x-ray diffuse scattering, we investigate the critical behavior of an order-disorder phase transition in a defective 'skin layer' of V{sub 2}H. In the skin layer, there exist walls of dislocation lines oriented normal to the surface. The density of dislocation lines within a wall decreases continuously with depth. We find that, because of this inhomogeneous distribution of defects, the transition effectively occurs at a depth-dependent local critical temperature. A depth-dependent scaling law is proposed to describe the corresponding critical ordering behavior.

  5. Near-Infrared Spectroscopy of Ethynyl Radical, C2H

    NASA Astrophysics Data System (ADS)

    Le, Anh T.; Hall, Gregory; Sears, Trevor

    2016-06-01

    The ethynyl radical, C_2H, is a reactive intermediate important in various combustion processes and also widely observed in the interstellar medium. In spite of extensive previous spectroscopic studies, the characterization of the near infrared transitions from the tilde{X}2Σ+ state to the mixed vibrational overtone and tilde{A}2Π states is incomplete. A strong band of C_2H at 7064 cm-1 was first observed in a neon matrix and assigned as the tilde{A}2Π(002)1 - tilde{X}2Σ+ transition by Forney et al. Subsequent theoretical work of Tarroni and Carter attributed the strong absorptions in this region to transitions terminating in two upper states, each a mixture of vibrationally excited tilde{X} states and different zero-order tilde{A}-state bending levels: a 2Σ+ symmetry combination of tilde{X}(0,20,3) and tilde{A}(0,3,0)0κ and a 2Π symmetry combination of tilde{X}(0,31,3) and tilde{A}(0,0,2)1. Transitions to them from the zero point level of the tilde{X} state are calculated to differ in energy by less than 10 cm-1 and to be within a factor of two in intensity. Diode laser transient absorption was used to record Doppler-limited spectra between 7020 and 7130 cm-1, using 193 nm photolysis of CF_3C_2H as a source of C_2H. Two interleaved, rotationally resolved bands were observed, consistent with a 2Σ - 2Σ transition at 7088 cm-1 and a 2Π - 2Σ transition at 7108 cm-1, in good accord with the Tarroni and Carter calculation. Progress on the assignment and fitting of the spectra will be reported. Acknowledgements: Work at Brookhaven National Laboratory was carried out under Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences, and Biosciences. D. Forney, M.E. Jacox, and W.E. Thompson, J. Mol. Spectrosc. 170, 178 (1995). R. Tarroni and S. Carter, Mol. Phys. 102, 2167 (2004)

  6. Photodissociation spectroscopy of Ca+(C2H4)

    NASA Astrophysics Data System (ADS)

    Holmes, J. H.; Kleiber, P. D.; Olsgaard, D. A.; Yang, K.-H.

    2000-04-01

    We have studied Ca+(C2H4) by photodissociation spectroscopy in a reflectron time-of-flight mass spectrometer over the spectral range 440-790 nm. Ca+ is the only photofragment observed. We find four absorption bands of the complex and assign them to metal-centered transitions correlating with excitation of Ca+(3d and 4p). Spectral assignment is supported by ab initio electronic structure calculations of the complex and isotope substitution experiments. Calculations find a weakly bound ground state equilibrium structure with C2V π-bonding geometry and a dissociation energy of De″=0.506 eV. Theoretical and experimental results show the 4pπ(2 2B2 & 2 2B1) excited states to be relatively weakly bound at long range. Spectral analysis gives vibrational constants for the Ca+--C2H4 intermolecular a1-stretch in the 1 2A1, 2 2B1, and 2 2B2 states, and for the CH2-CH2 a1-wag and the HCH a1-bend in 2 2B2. The results offer an interesting comparison with previous studies of similar weakly bound bimolecular complexes of light metal ions with alkene or alkane hydrocarbons.

  7. Physical and spectroscopic properties of pure C2H4 and CH4:C2H4 ices

    NASA Astrophysics Data System (ADS)

    Molpeceres, Germán; Satorre, Miguel Angel; Ortigoso, Juan; Zanchet, Alexandre; Luna, Ramón; Millán, Carlos; Escribano, Rafael; Tanarro, Isabel; Herrero, Víctor J.; Maté, Belén

    2017-04-01

    Physical and spectroscopic properties of ices of C2H4 and CH4:C2H4 mixtures with 3:1, 1:1 and 1:3 ratios have been investigated at 30 K. Two laboratories are involved in this work. In one of them, the density and refractive index of the samples have been measured by using a cryogenic quartz microbalance and laser interferometric techniques. In the other one, IR spectra have been recorded in the near- and mid-infrared regions, and band shifts with respect to the pure species, band strengths of the main bands, and the optical constants in both regions have been determined. Previous data on ethylene and the mixtures studied here were scarce. For methane, both the wavenumbers and band strengths have been found to follow a regular pattern of decrease with increasing dilution, but no pattern has been detected for ethylene vibrations. The method employed for the preparation of the samples, by vapour deposition under vacuum, is thought to be adequate to mimic the structure of astrophysical ices. Possible astrophysical implications, especially by means of the optical constants reported here, have been discussed.

  8. Kinetics of the hydrogen abstraction C2H3* + alkane --> C2H4 + alkyl radical reaction class.

    PubMed

    Muszyńska, Marta; Ratkiewicz, Artur; Huynh, Lam K; Truong, Thanh N

    2009-07-23

    This paper presents an application of the reaction class transition state theory (RC-TST) to predict thermal rate constants for hydrogen abstraction reactions of the type C(2)H(3) + alkane --> C(2)H(4) + alkyl radical. The linear energy relationship (LER) was proven to hold for both noncyclic and cyclic hydrocarbons. We have derived all parameters for the RC-TST method from rate constants of 19 representative reactions, coupling with LER and the barrier height grouping (BHG) approach. Both the RC-TST/LER, where only reaction energy is needed, and the RC-TST/BHG, where no other information is needed, can predict rate constants for any reaction in this reaction class with satisfactory accuracy for combustion modeling. Our analysis indicates that less than 90% systematic errors on the average exist in the predicted rate constants using the RC-TST/LER or RC-TST/BHG method, while in comparison to explicit rate calculations, the differences are within a factor of 2 on the average.

  9. 2H NMR studies of supercooled and glassy aspirin

    NASA Astrophysics Data System (ADS)

    Nath, R.; Nowaczyk, A.; Geil, B.; Bohmer, R.

    2007-11-01

    Acetyl salicylic acid, deuterated at the methyl group, was investigated using 2H-NMR in its supercooled and glassy states. Just above the glass transition temperature the molecular reorientations were studied using stimulated-echo spectroscopy and demonstrated a large degree of similarity with other glass formers. Deep in the glassy phase the NMR spectra look similar to those reported for the crystal [A. Detken, P. Focke, H. Zimmermann, U. Haeberlen, Z. Olejniczak, Z. T. Lalowicz, Z. Naturforsch. A 50 (1995) 95] and below 20 K they are indicative for rotational tunneling with a relatively large tunneling frequency. Measurements of the spin-lattice relaxation times for temperatures below 150 K reveal a broad distribution of correlation times in the glass. The dominant energy barrier characterizing the slow-down of the methyl group is significantly smaller than the well defined barrier in the crystal.

  10. One dimensional 1H, 2H and 3H

    NASA Astrophysics Data System (ADS)

    Vidal, A. J.; Astrakharchik, G. E.; Vranješ Markić, L.; Boronat, J.

    2016-05-01

    The ground-state properties of one-dimensional electron-spin-polarized hydrogen 1H, deuterium 2H, and tritium 3H are obtained by means of quantum Monte Carlo methods. The equations of state of the three isotopes are calculated for a wide range of linear densities. The pair correlation function and the static structure factor are obtained and interpreted within the framework of the Luttinger liquid theory. We report the density dependence of the Luttinger parameter and use it to identify different physical regimes: Bogoliubov Bose gas, super-Tonks-Girardeau gas, and quasi-crystal regimes for bosons; repulsive, attractive Fermi gas, and quasi-crystal regimes for fermions. We find that the tritium isotope is the one with the richest behavior. Our results show unambiguously the relevant role of the isotope mass in the properties of this quantum system.

  11. Vibrational and Rotational Spectroscopy of CD_2H^+

    NASA Astrophysics Data System (ADS)

    Asvany, Oskar; Jusko, Pavol; Brünken, Sandra; Schlemmer, Stephan

    2016-06-01

    The lowest rotational levels (J=0-5) of the CD_2H^+ ground state have been probed by high-resolution rovibrational and pure rotational spectroscopy in a cryogenic 22-pole ion trap. For this, the ν_1 rovibrational band has been revisited, detecting 107 transitions, among which 35 are new. The use of a frequency comb system allowed to measure the rovibrational transitions with high precision and accuracy, typically better than 1 MHz. The high precision has been confirmed by comparing combination differences in the ground and vibrationally excited state. For the ground state, this allowed for equally precise predictions of pure rotational transitions, 24 of which have been measured directly by a novel IR - mm-wave double resonance method. M.-F. Jagod et al, J. Molec. Spectrosc. 153, 666, 1992 S. Gartner et al, J. Phys. Chem. A 117, 9975, 2013

  12. 2H and 18O Freshwater Isoscapes of Scotland

    NASA Astrophysics Data System (ADS)

    Meier-Augenstein, Wolfram; Hoogewerff, Jurian; Kemp, Helen; Frew, Danny

    2013-04-01

    Scotland's freshwater lochs and reservoirs provide a vital resource for sustaining biodiversity, agriculture, food production as well as for human consumption. Regular monitoring of freshwaters by the Scottish Environment Protection Agency (SEPA) fulfils legislative requirements with regards to water quality but new scientific methods involving stable isotope analysis present an opportunity combining these mandatory monitoring schemes with fundamental research to inform and deliver on current and nascent government policies [1] through gaining a greater understanding of Scottish waters and their importance in the context of climate change, environmental sustainability and food security. For example, 2H and 18O isoscapes of Scottish freshwater could be used to underpin research and its applications in: • Climate change - Using longitudinal changes in the characteristic isotope composition of freshwater lochs and reservoirs as proxy, isoscapes will provide a means to assess if and how changes in temperature and weather patterns might impact on precipitation patterns and amount. • Scottish branding - Location specific stable isotope signatures of Scottish freshwater have the potential to be used as a tool for provenancing and thus protecting premium Scottish produce such as Scottish beef, Scottish soft fruit and Scottish Whisky. During 2011 and 2012, with the support of SEPA more than 110 samples from freshwater lochs and reservoirs were collected from 127 different locations across Scotland including the Highlands and Islands. Here we present the results of this sampling and analysis exercise isotope analyses in form of 2H and 18O isoscapes with an unprecedented grid resolution of 26.5 × 26.5 km (or 16.4 × 16.4 miles). [1] Adaptation Framework - Adapting Our Ways: Managing Scotland's Climate Risk (2009): Scotland's Biodiversity: It's in Your Hands - A strategy for the conservation and enhancement of biodiversity in Scotland (2005); Recipe For Success - Scotland

  13. On the bonding of La(+) and La(2+) to C2H2, C2H4, and C3H6

    NASA Technical Reports Server (NTRS)

    Rosi, Marzio; Bauschlicher, Charles W., Jr.

    1990-01-01

    The interaction of La(+) and La(2+) with C2H2, C2H4, and C3H6 is studied using electronic structure calculations that include correlation. The calculations show that the bonding in the dication is electrostatic in origin, and the computed binding energies are in good agreement with experiment. The La(+) forms two chemical bonds with the hydrocarbons. Since the pi bond is weaker for C2H2 than C2H4, the La(+)-C2H2 binding energy is larger than for La(+)-C2H4, LaC3H6(+) rearranges to yield a stronger bond than in LaC2H4(+) even though both hydrocarbons have a double bond.

  14. Ab initio study of {sup 2}H(d,{gamma}){sup 4}He, {sup 2}H(d,p){sup 3}H, and {sup 2}H(d,n){sup 4}He reactions and the tensor force

    SciTech Connect

    Arai, K.; Aoyama, S.; Suzuki, Y.; Descouvemont, P.; Baye, D.

    2012-11-12

    The {sup 2}H(d,p){sup 3}H, {sup 2}H(d,n){sup 3}He, and {sup 2}H(d,{gamma}){sup 4}He reactions at low energies are studied with realistic nucleon-nucleon interactions in an ab initio approach. The obtained astrophysical S-factors are all in very good agreement with experiment. The most important channels for both transfer and radiative capture are all found to dominate thanks to the tensor force.

  15. Human organic cation transporter 2 (hOCT2): Inhibitor studies using S2-hOCT2 cells.

    PubMed

    Chiba, Shoetsu; Ikawa, Toru; Takeshita, Hiroshi; Kanno, Sanae; Nagai, Tomonori; Takada, Meri; Mukai, Toshiji; Wempe, Michael F

    2013-08-09

    Highly expressed in kidney and located on the basolateral membrane, human organic cation transporter 2 (hOCT2) can transport various compounds (i.e. drugs and toxins) into the proximal tubular cell. Using cultured proximal tubule cells stably expressing hOCT2 (i.e. S2-hOCT2 cells), we sought to probe different compound classes (e.g. analgesics, anti-depressants, anti-psychotics, disinfectant, herbicides, insecticides, local anesthetic, muscarinic acetylcholine receptor antagonist, sedatives, steroid hormone, stimulants and toxins) for their ability to inhibit (14)C-TEA uptake, a prototypical OCT2 substrate. Aconitine, amitriptyline, atropine, chlorpyrifos, diazepam, fenitrothion, haloperidol, lidocaine, malathion, mianserin, nicotine and triazolam significantly inhibited (14)C-TEA uptake; IC50 values were 59.2, 2.4, 2.0, 20.7, 32.3, 13.2, 32.5, 104.6, 71.1, 17.7, 52.8 and 65.5μM, respectively. In addition, aconitine, amitriptyline, atropine, chlorpyrifos, fenitrothion, haloperidol, lidocaine, and nicotine displayed competitive inhibition with Ki values of 145.6, 2.5, 2.4, 24.8, 16.9, 51.6, 86.8 and 57.7μM, respectively. These in vitro data support the notion that compounds pertaining to a wide variety of different drug classes have the potential to decrease renal clearance of drugs transported via hOCT2. Consequently, these data warrant additional studies to probe hOCT2 and its role to influence drug pharmacokinetics.

  16. 2F and 2H evaporator loop evaluation closure report

    SciTech Connect

    Bates, W.F.

    1994-01-28

    As a result of the Concentrate Transfer System (CTS) tank ventilation system contamination event, a task team was formed to evaluate instrument loops associated with waste reduction equipment. During the event a conductivity probe designed to provide an alarm and initiate an interlock failed to respond to the presence of liquid. An investigation revealed that the probe had become disconnected from the loop. The daily functional check of the conductivity probe circuit only tested the circuit continuity from the ventilation unit to the control room and did not actually test the probe. To test the continuity, a test switch was used to simulate the conducting probe. Because the functional check did not test each part of the loop, the test could be satisfactorily completed even though the probe itself was inoperable. The function of the task team was to develop a list of loops and interlocks prioritized by importance and likelihood of similar failure. The team evaluated the associated loop calibration and functional test procedures to verify that they are adequate to ensure loop performance on a periodic frequency. This report documents the evaluation findings and associated actions required prior to startup of the 2F and 2H evaporators.

  17. Thermal decomposition of (UO2)O2(H2O)2·2H2O: Influence on structure, microstructure and hydrofluorination

    NASA Astrophysics Data System (ADS)

    Thomas, R.; Rivenet, M.; Berrier, E.; de Waele, I.; Arab, M.; Amaraggi, D.; Morel, B.; Abraham, F.

    2017-01-01

    The thermal decomposition of uranyl peroxide tetrahydrate, (UO2)O2(H2O)2.2H2O, was studied by combining high temperature powder X-ray diffraction, scanning electron microscopy, thermal analyses and spectroscopic techniques (Raman, IR and 1H NMR). In situ analyses reveal that intermediates and final uranium oxides obtained upon heating are different from that obtained after cooling at room temperature and that the uranyl precursor used to synthesize (UO2)O2(H2O)2·2H2O, sulfate or nitrate, has a strong influence on the peroxide thermal behavior and morphology. The decomposition of (UO2)O2(H2O)2·2H2O ex sulfate is pseudomorphic and leads to needle-like shaped particles of metastudtite, (UO2)O2(H2O)2, and UO3-x(OH)2x·zH2O, an amorphous phase found in air in the following of (UO2)O2(H2O)2 dehydration. (UO2)O2(H2O)2·2H2O and the compounds resulting from its thermal decomposition are very reactive towards hydrofluorination as long as their needle-like morphology is kept.

  18. Plasmon evolution and charge-density wave suppression in potassium intercalated 2H-TaSe2

    NASA Astrophysics Data System (ADS)

    König, A.; Koepernik, K.; Schuster, R.; Kraus, R.; Knupfer, M.; Büchner, B.; Berger, H.

    2012-10-01

    We have investigated the influence of potassium intercalation on the formation of the charge-density wave (CDW) instability in 2H-TaSe2 by means of electron energy-loss spectroscopy and density functional theory. Our observations are consistent with a filling of the conduction band as indicated by a substantial decrease of the plasma frequency in experiment and theory. In addition, elastic scattering clearly points to a destruction of the CDW upon intercalation as can be seen by a vanishing of the corresponding superstructures. This is accompanied by a new superstructure, which can be attributed to the intercalated potassium. Based on the behavior of the c-axis upon intercalation we argue in favor of interlayer sites for the alkali metal and that the lattice remains in the 2H modification.

  19. Significant Enhancement of C2 H2 /C2 H4 Separation by a Photochromic Diarylethene Unit: A Temperature- and Light-Responsive Separation Switch.

    PubMed

    Fan, Cong Bin; Le Gong, Le; Huang, Ling; Luo, Feng; Krishna, Rajamani; Yi, Xian Feng; Zheng, An Min; Zhang, Le; Pu, Shou Zhi; Feng, Xue Feng; Luo, Ming Biao; Guo, Guo Cong

    2017-06-26

    A dual temperature- and light-responsive C2 H2 /C2 H4 separation switch in a diarylethene metal-organic framework (MOF) is presented. At 195 K and 100 kPa this MOF shows ultrahigh C2 H2 /C2 H4 selectivity of 47.1, which is almost 21.4 times larger than the corresponding value of 2.2 at 293 K and 100 kPa, or 15.7 times larger than the value of 3.0 for the material under UV at 195 K and 100 kPa. The origin of this unique control in C2 H2 /C2 H4 selectivity, as unveiled by density functional calculations, is due to a guest discriminatory gate-opening effect from the diarylethene unit. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. High/variable mixture ratio O2/H2 engine

    NASA Technical Reports Server (NTRS)

    Adams, A.; Parsley, R. C.

    1988-01-01

    Vehicle/engine analysis studies have identified the High/Dual Mixture Ratio O2/H2 Engine cycle as a leading candidate for an advanced Single Stage to Orbit (SSTO) propulsion system. This cycle is designed to allow operation at a higher than normal O/F ratio of 12 during liftoff and then transition to a more optimum O/F ratio of 6 at altitude. While operation at high mixture ratios lowers specific impulse, the resultant high propellant bulk density and high power density combine to minimize the influence of atmospheric drag and low altitude gravitational forces. Transition to a lower mixture ratio at altitude then provides improved specific impulse relative to a single mixture ratio engine that must select a mixture ratio that is balanced for both low and high altitude operation. This combination of increased altitude specific impulse and high propellant bulk density more than offsets the compromised low altitude performance and results in an overall mission benefit. Two areas of technical concern relative to the execution of this dual mixture ratio cycle concept are addressed. First, actions required to transition from high to low mixture ratio are examined, including an assessment of the main chamber environment as the main chamber mixture ratio passes through stoichiometric. Secondly, two approaches to meet a requirement for high turbine power at high mixture ratio condition are examined. One approach uses high turbine temperature to produce the power and requires cooled turbines. The other approach incorporates an oxidizer-rich preburner to increase turbine work capability via increased turbine mass flow.

  1. 2H NMR studies of glycerol dynamics in protein matrices

    NASA Astrophysics Data System (ADS)

    Herbers, C. R.; Sauer, D.; Vogel, M.

    2012-03-01

    We use 2H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids.

  2. 2H NMR studies of glycerol dynamics in protein matrices.

    PubMed

    Herbers, C R; Sauer, D; Vogel, M

    2012-03-28

    We use (2)H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids.

  3. Urinary excretion of [2H4]folate by nonpregnant women following a single oral dose of [2H4]folic acid is a functional index of folate nutritional status.

    PubMed

    Gregory, J F; Williamson, J; Bailey, L B; Toth, J P

    1998-11-01

    In a 10-wk study with nonpregnant women (21-27 y, n = 5-6 per group), subjects were fed a diet containing approximately 68 nmol/d (30 microg/d) folate from food that was supplemented with folic acid in apple juice to yield a constant intake of 454, 680 or 907 nmol/d (200, 300 or 400 microg/d) to evaluate folate status and long-term in vivo kinetics. Reported here is an additional phase of this protocol conducted to determine the relationship between short-term urinary excretion after a single isotopically labeled dose and various measures of folate nutritional status. It was hypothesized that urinary excretion from a single [glutamate-2H4]folic acid ([2H4]folic acid) dose would increase in proportion to folate nutritional status due to saturable cellular uptake and retention processes along with saturation of renal reabsorption. Each subject was given 1.13 micromol (500 microg) of [2H4]folic acid orally on the morning of d 70 of the study, followed by a complete 24-h urine collection. Urine was analyzed to determine the isotopic enrichment of urinary folate by gas chromatography-mass spectrometry and the concentration of urinary folate by HPLC. Urinary excretion of [2H4]folate was greatest at the 907 nmol/d intake and was positively correlated with serum folate concentration but was not correlated with erythrocyte folate. Excretion of [2H4]folate tended to be greatest when plasma homocysteine concentrations were low (<8 micromol/L), although this relation was not significant. These results suggest that 24-h urinary excretion after a single oral dose of isotopically labeled folate is a functional indicator of folate nutritional status that complements other measures of folate nutriture.

  4. Beneficial associations of physical activity with 2-h but not fasting blood glucose in Australian adults: the AusDiab study.

    PubMed

    Healy, Genevieve N; Dunstan, David W; Shaw, Jonathan E; Zimmet, Paul Z; Owen, Neville

    2006-12-01

    We examined the associations of physical activity with fasting plasma glucose (FPG) and with 2-h postload plasma glucose (2-h PG) in men and women with low, moderate, and high waist circumference. The Australian Diabetes, Obesity and Lifestyle (AusDiab) study provided data on a population-based cross-sectional sample of 4,108 men and 5,106 women aged >or=25 years without known diabetes or health conditions that could affect physical activity. FPG and 2-h PG were obtained from an oral glucose tolerance test. Self-reported physical activity level was defined according to the current public health guidelines as active (>or=150 min/week across five or more sessions) or inactive (<150 min/week and/or less than five sessions). Sex-specific quintiles of physical activity time were used to ascertain dose response. Being physically active and total physical activity time were independently and negatively associated with 2-h PG. When physical activity level was considered within each waist circumference category, 2-h PG was significantly lower in active high-waist circumference women (beta -0.30 [95% CI -0.59 to -0.01], P = 0.044) and active low-waist circumference men (beta -0.25 [-0.49 to -0.02], P = 0.036) compared with their inactive counterparts. Considered across physical activity and waist circumference categories, 2-h PG levels were not significantly different between active moderate-waist circumference participants and active low-waist circumference participants. Associations between physical activity and FPG were nonsignificant. There are important differences between 2-h PG and FPG related to physical activity. It appears that 2-h PG is more sensitive to the beneficial effects of physical activity, and these benefits occur across the waist circumference spectrum.

  5. Theoretical study of the C-H bond dissociation energies of CH4, C2H2, C2H4, and H2C2O

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    The successive C-H bond dissociation energies of CH4, C2H2, C2H4, and H2C2O (ketene) are determined using large-basis sets and a high level of correlation treatment. For CH4, C2H2, and C2H4 the computed values are in excellent agreement with experiment. Using these results, the values 107.9 + or - 2.0 and 96.7 + or - 2.0 kcal/mol are recommended for the C-H bond dissociation energies of H2C2O and HC2O, respectively.

  6. Ion-neutral reaction of the C2H2N+ cation with C2H2: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Fathi, P.; Geppert, W. D.; Kaiser, A.; Ascenzi, D.

    2016-03-01

    The ion-neutral reactions of the C2H2N+ cation with C2H2 have been investigated using a Guided Ion Beam Mass Spectrometer (GIB-MS). The following ionic products were observed: CH3+, C2H2+, C2H3+, HNC+ /HCN+ , HCNH+, C3H+ , C2N+ , C3H3+, HCCN+ and C4H2N+ . Theoretical calculations have been carried out to propose reaction pathways leading to the observed products. These processes are of relevance for the generation of long chain nitrogen-containing species and they may be of interest for the chemistry of Titan's ionosphere or circumstellar envelopes.

  7. Alanine flux in obese and healthy humans as evaluated by /sup 15/N- and /sup 2/H/sub 3/-labeled alanines

    SciTech Connect

    Hoffer, L.J.; Yang, R.D.; Matthews, D.E.; Bistrian, B.R.; Bier, D.M.; Young, V.R.

    1988-10-01

    Estimates of plasma alanine flux as measured in humans using L-(/sup 15/N)-alanine or L-(3,3,3-/sup 2/H/sub 3/)alanine were compared by simultaneous intravenous infusion of both tracers. Plasma isotope enrichments were measured by chemical ionization gas chromatography-mass spectrometry. In 16 obese women before and during a hypocaloric diet and in 4 normal men in the postabsorptive and fed states, the fluxes were highly correlated (r2 = 0.93) although plasma alanine flux with the /sup 2/H tracer was two to three times greater than that obtained with (/sup 15/N)alanine. The fluxes decreased with the hypocaloric diet in obese subjects and increased during the fed state in healthy adults. Thus, although the estimates of alanine flux differed according to the tracer used, both appear to give equivalent information about changes in alanine kinetics induced by the nutritional conditions examined.

  8. Remarkably efficient synthesis of 2H-indazole 1-oxides and 2H-indazoles via tandem carbon-carbon followed by nitrogen-nitrogen bond formation.

    PubMed

    Bouillon, Isabelle; Zajícek, Jaroslav; Pudelová, Nadĕzda; Krchnák, Viktor

    2008-11-21

    Base-catalyzed tandem carbon-carbon followed by nitrogen-nitrogen bond formations quantitatively converted N-alkyl-2-nitro-N-(2-oxo-2-aryl-ethyl)-benzenesulfonamides to 2H-indazoles 1-oxides under mild conditions. Triphenylphosphine or mesyl chloride/triethylamine-mediated deoxygenation afforded 2H-indazoles.

  9. Remarkably Efficient Synthesis of 2H-Indazole 1-oxides and 2H-Indazoles via Tandem Carbon–Carbon Followed by Nitrogen–Nitrogen Bond Formation

    PubMed Central

    Bouillon, Isabelle; Zajíček, Jaroslav; Pudelová, Naděžda; Krchňák, Viktor

    2009-01-01

    Synthesis of Indazoles Base-catalyzed tandem carbon–carbon followed by nitrogen–nitrogen bond formations quantitatively converted N-alkyl-2-nitro-N-(2-oxo-2-aryl-ethyl)-benzenesulfonamides to 2H-indazoles 1-oxides under mild conditions. Triphenylphosphine or mesyl chloride/triethylamine-mediated deoxygenation afforded 2H-indazoles. PMID:18937414

  10. Leucine kinetics from (2H3)- and ( sup 13 C)leucine infused simultaneously by gut and vein

    SciTech Connect

    Hoerr, R.A.; Matthews, D.E.; Bier, D.M.; Young, V.R. )

    1991-01-01

    In amino acid tracer kinetic studies of the fed state, ingested amino acid may be taken up during its initial transit through splanchnic tissues and thus not enter the plasma compartment where tracer is infused. To investigate this possibility, adult human subjects received simultaneous intravenous (iv) and intragastric (ig) leucine tracer infusions, first during a postabsorptive (PA) 4-h primed continuous ig infusion of L-(1-13C)-leucine and L-(5,5,5-2H3)leucine iv, followed on a separate day by a fed infusion, in which an ig infusion of a liquid formula was started 2 h before the tracer infusion and continued throughout the tracer study. Subjects were accustomed to a constant experimental diet supplying 1.5 g protein.kg-1.day-1 and 41-45 kcal.kg-1.day-1 for 7 and 12 days before the PA and fed studies, respectively. For the PA study, plasma enrichment for the ig tracer was 3.34 +/- 0.27 (SE) mol + excess and for the iv tracer it was 4.18 +/- 0.10 (P less than 0.02). Enrichments of alpha-keto-isocaproic acid (KIC) were 3.24 +/- 0.16 (ig) and 3.02 +/- 0.14 (iv), respectively (not significant (NS)). For the fed study, plasma leucine enrichment for the ig tracer was 2.15 +/- 0.14 and for the iv tracer was 2.84 +/- 0.09 (P less than 0.02). KIC enrichments were 2.02 +/- 0.08 (ig) and 2.24 +/- 0.08 (iv), respectively (NS). In the PA study, the ratio of the plasma leucine enrichments for the ig and iv tracers was 0.80 +/- 0.06 and in the fed experiment, 0.76 +/- 0.05, respectively.

  11. Particle-in-Cell Simulations of Atmospheric Pressure He/2%H2O Discharges

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.; Graves, D. B.; Gopalakrishnan, R.

    2015-09-01

    Atmospheric pressure micro-discharges in contact with liquid surfaces are of increasing interest, especially in the bio-medical field. We conduct 1D3v particle-in-cell (PIC) simulations of a voltage-driven 1 mm width atmospheric pressure He/2% H2O plasma discharge in series with an 0.5 mm width liquid H2O layer and a 1mm width quartz dielectric layer. A previously developed two-temperature hybrid global model of atmospheric pressure He/H2O discharges was used to determine the most important species and collisional reactions to use in the PIC simulations. We found that H13O6+, H5O3-, and electrons were the most prominent charged species, while most of the metastable helium He* was quenched via Penning ionization. The ion-induced secondary emission coefficient γi was assumed to be 0.15 at all surfaces. A series of simulations were conducted at 27.12 MHz with Jrf ~ 800-2200 A/m2. The H2O rotational and vibrational excitation losses were so high that electrons reached the walls at thermal temperatures. We also simulated a much lower frequency case of 50 kHz with Vrf = 10 kV. In this case, the discharge ran in a pure time-varying γ-mode. This work was supported by the Department of Energy Office of Fusion Energy Science Contract DE-SC0001939.

  12. Microwave CVD Thick Diamond Film Synthesis Using CH4/H2/H2O Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Man, Weidong; Wang, Jianhua; Wang, Chuanxin; Ma, Zhibin; Wang, Shenggao; Xiong, Liwei

    2006-05-01

    Thick diamond films with a thickness of up to 1.2 mm and a area of 20 cm2 have been grown in a homemade 5 kW microwave plasma chemical vapor deposition (MPCVD) reactor using CH4/H2/H2O gas mixtures. The growth rate, radial profiles of the film thickness, diamond morphology and quality were evaluated with a range of parameters such as the substrate temperature of 700 oC to 1100 oC, the fed gas composition CH4/H2 = 3.0%, H2O/H2 = 0.0%~ 2.4%. They were characterized by scanning electron microscopy and Raman spectroscopy. Translucent diamond wafers have been produced without any sign of non-diamond carbon phases, Raman peak as narrow as 4.1 cm-1. An interesting type of diamond growth instability under certain deposition conditions was observed in a form of accelerated growth of selected diamond crystallites of a very big lateral size, about 1 mm, and of a better structure compared to the rest of the film.

  13. Production of C2H4Cl+ by dissociative photoionization of weak molecular complexes in C2H4 + HCl mixtures

    NASA Astrophysics Data System (ADS)

    Walters, E. A.; Grover, J. R.; Arneberg, D. L.; Santandrea, C. J.; White, M. G.

    1990-12-01

    The photoionization efficiency (PIE) spectrum from 600 to 1200 Å for the production of the ion C2H4Cl+ by dissociative photoionization of the products of room-temperature jet expansions of a 1:4 mixture of C2H4 and HCl was measured at several nozzle pressures. The results were resolved into the PIE yield curve for the heterodimer process C2H4·HCl+ hv→C2H4Cl++H+ e. This reaction is necessarily characterized by a large change in geometry between neutral complex and ionic product. The observed spectrum exhibits an unusual and conspicuous peak at 15.2 eV that is characterized by a sharp cutoff to the high energy side. This feature points to the onset of strongly nonstatistical channels for the production of C2H4Cl+ at this energy such that product formation proceeds through very few states. The observed onset of C2H4Cl+ at 11.92±0.24 eV is 17±6 kcal mol-1 above the true threshold. An important conclusion is that at all energies above the onset the yield of dissociative ionization of the heterodimer to the cation C2H4Cl+ is determined by dynamical factors.

  14. Synthesis of (R)-[2-2H]isopentenyl diphosphate and determination of its enantiopurity by 2H NMR spectroscopy in a lyotropic medium.

    PubMed

    Leyes, A E; Poulter, C D

    1999-10-07

    [formula: see text] The synthesis of (R)-[2-2H]isopentenyl diphosphate from D-mannitol 1,2:5,6-bis-acetonide in 10 steps is reported. Stereospecific incorporation of the label is achieved by a BF3-catalyzed NaCNBD3 reduction of the enantiomerically pure (S)-isopropylidene oxirane intermediate. The enantiomeric excess of the penultimate precursor [2-2H]isopentenyl tosylate (> 95% ee) was determined by 2H NMR spectroscopy in a poly-gamma-benzyl-L-glutamate/CH2Cl2 liquid crystal at -50 degrees C.

  15. Mechanistic Study of the Stereoselective Hydroxylation of [2-(2) H1 ,3-(2) H1 ]Butanes Catalyzed by Cytochrome P450 BM3 Variants.

    PubMed

    Yang, Chung-Ling; Lin, Cheng-Hung; Luo, Wen-I; Lee, Tsu-Lin; Ramu, Ravirala; Ng, Kok Yaoh; Tsai, Yi-Fang; Wei, Guor-Tzo; Yu, Steve S-F

    2017-02-21

    Engineered bacterial cytochrome P450s are noted for their ability in the oxidation of inert small alkanes. Cytochrome P450 BM3 L188P A328F (BM3 PF) and A74E L188P A328F (BM3 EPF) variants are able to efficiently oxidize n-butane to 2-butanol. Esterification of the 2-butanol derived from this reaction mediated by the aforementioned two mutants gives diastereomeric excesses (de) of -56±1 and -52±1 %, respectively, with the preference for the oxidation occurring at the C-HS bond. When tailored (2R,3R)- and (2S,3S)-[2-(2) H1 ,3-(2) H1 ]butane probes are employed as substrates for both variants, the obtained de values from (2R,3R)-[2-(2) H1 ,3-(2) H1 ]butane are -93 and -92 % for BM3 PF and EPF, respectively; whereas the obtained de values from (2S,3S)-[2-(2) H1 ,3-(2) H1 ]butane are 52 and 56 % in the BM3 PF and EPF systems, respectively. The kinetic isotope effects (KIEs) for the oxidation of (2R,3R)-[2-(2) H1 ,3-(2) H1 ]butane are 7.3 and 7.8 in BM3 PF and EPF, respectively; whereas KIEs for (2S,3S)-[2-(2) H1 ,3-(2) H1 ]butanes are 18 and 25 in BM3 PF and EPF, respectively. The discrepancy in KIEs obtained from the two substrates supports the two-state reactivity (TSR) that is proposed for alkane oxidation in cytochrome P450 systems. Moreover, for the first time, experimental evidence for tunneling in the oxidation mediated by P450 is given through the oxidation of the C-HR bond in (2S,3S)-[2-(2) H1 ,3-(2) H1 ]butane. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Environmental, trophic, and ecological factors influencing bone collagen δ2H

    NASA Astrophysics Data System (ADS)

    Topalov, Katarina; Schimmelmann, Arndt; David Polly, P.; Sauer, Peter E.; Lowry, Mark

    2013-06-01

    Organic deuterium/hydrogen stable isotope ratios (i.e., 2H/1H, expressed as δ2H value in ‰) in animal tissues are related to the 2H/1H in diet and ingested water. Bone collagen preserves the biochemical 2H/1H isotopic signal in the δ2H value of collagen's non-exchangeable hydrogen. Therefore, δ2H preserved in bone collagen has the potential to constrain environmental and trophic conditions, which is of interest to researchers studying of both living and fossil vertebrates. Our data examine the relationship of δ2H values of collagen with geographic variation in δ2H of meteoric waters, with local variations in the ecology and trophic level of species, and with the transition from mother's milk to adult diet. Based on 97 individuals from 22 marine and terrestrial vertebrates (predominately mammals), we found the relationships of collagen δ2H to both geographic variation in meteoric water δ2H (R2 = 0.55) and to δ15N in bone collagen (R2 = 0.17) statistically significant but weaker than previously reported. The second strongest control on collagen δ2H in our data is dietary, with nearly 50 percent of the variance in δ2H explained by trophic level (R2 = 0.47). Trophic level effects potentially confound the local meteoric signal if not held constant: herbivores tend to have the lowest δ2H values, omnivores have intermediate ones, and carnivores have the highest values. Body size (most likely related to mass-specific metabolic rates) has a strong influence on collagen δ2H (R2 = 0.30), by causing greater sensitivity in smaller animals to seasonal climate variations and/or high evapotranspiration leading to 2H-enrichment in tissues. In marine mammals weaning produces a dramatic effect on collagen δ2H with adult values being universally higher than pup values (R2 = 0.79). Interestingly, the shift in δ15N at weaning is downward, even though normally hydrogen and nitrogen isotope ratios are positively correlated with one another in respect to trophic level. Our

  17. Dehydrocoupling of dimethylamine borane catalyzed by Rh(PCy3)2H2Cl.

    PubMed

    Sewell, Laura J; Huertos, Miguel A; Dickinson, Molly E; Weller, Andrew S; Lloyd-Jones, Guy C

    2013-04-15

    The Rh(III) species Rh(PCy3)2H2Cl is an effective catalyst (2 mol %, 298 K) for the dehydrogenation of H3B·NMe2H (0.072 M in 1,2-F2C6H4 solvent) to ultimately afford the dimeric aminoborane [H2BNMe2]2. Mechanistic studies on the early stages in the consumption of H3B·NMe2H, using initial rate and H/D exchange experiments, indicate possible dehydrogenation mechanisms that invoke turnover-limiting N-H activation, which either precedes or follows B-H activation, to form H2B═NMe2, which then dimerizes to give [H2BNMe2]2. An additional detail is that the active catalyst Rh(PCy3)2H2Cl is in rapid equilibrium with an inactive dimeric species, [Rh(PCy3)H2Cl]2. The reaction of Rh(PCy3)2H2Cl with [Rh(PCy3)H2(H2)2][BAr(F)4] forms the halide-bridged adduct [Rh(PCy3)2H2(μ-Cl)H2(PCy3)2Rh][BAr(F)4] (Ar(F) = 3,5-(CF3)2C6H3), which has been crystallographically characterized. This dinuclear cation dissociates on addition of H3B·NMe2H to re-form Rh(PCy3)2H2Cl and generate [Rh(PCy3)2H2(η(2)-H3B·NMe2H)][BAr(F)4]. The fate of the catalyst at low catalyst loadings (0.5 mol %) is also addressed, with the formation of an inactive borohydride species, Rh(PCy3)2H2(η(2)-H2BH2), observed. On addition of H3B·NMe2H to Ir(PCy3)2H2Cl, the Ir congener Ir(PCy3)2H2(η(2)-H2BH2) is formed, with concomitant generation of the salt [H2B(NMe2H)2]Cl.

  18. Probing the aromaticity of the [(HtAc)3(μ2-H)6], [(HtTh)3(μ2-H)6],+, and [(HtPa)3(μ2-H)6] clusters

    NASA Astrophysics Data System (ADS)

    Ramírez-Tagle, Rodrigo; Alvarado-Soto, Leonor; Arratia-Perez, Ramiro; Bast, Radovan; Alvarez-Thon, Luis

    2011-09-01

    In this study we report about the aromaticity of the prototypical [(HtAc)3(μ2-H)6], [(HtTh)3(μ2-H)6]+, and [(HtPa)3(μ2-H)6] clusters via two magnetic criteria: nucleus-independent chemical shifts (NICS) and the magnetically induced current density. All-electron density functional theory calculations were carried out using the two-component zeroth-order regular approach and the four-component Dirac-Coulomb Hamiltonian, including scalar and spin-orbit relativistic effects. Four-component current density maps and the integration of induced ring-current susceptibilities clearly show that the clusters [(HtAc)3(μ2-H)6] and [(HtTh)3(μ2-H)6]+ are non-aromatic whereas [(HtPa)3(μ2-H)6] is anti-aromatic. However, for the thorium cluster we find a discrepancy between the current density plots and the classification through the NICS index. Our results also demonstrate the increasing influence of f orbitals, on bonding and magnetic properties, with increasing atomic number in these clusters. We think that the enhanced electron mobility in [(HtPa)3(μ2-H)6] is due the significant 5f character of its valence shell. Also the participation of f orbitals in bonding is the reason why the protactinium cluster has the shortest bond lengths of the three clusters. This study provides another example showing that the magnetically induced current density approach can give more reliable results than the NICS index.

  19. Probing the aromaticity of the [(H(t)Ac)3(μ2-H)6], [(H(t)Th)3(μ2-H)6],(+), and [(H(t)Pa)3(μ2-H)6] clusters.

    PubMed

    Ramírez-Tagle, Rodrigo; Alvarado-Soto, Leonor; Arratia-Perez, Ramiro; Bast, Radovan; Alvarez-Thon, Luis

    2011-09-14

    In this study we report about the aromaticity of the prototypical [(H(t)Ac)(3)(μ(2)-H)(6)], [(H(t)Th)(3)(μ(2)-H)(6)](+), and [(H(t)Pa)(3)(μ(2)-H)(6)] clusters via two magnetic criteria: nucleus-independent chemical shifts (NICS) and the magnetically induced current density. All-electron density functional theory calculations were carried out using the two-component zeroth-order regular approach and the four-component Dirac-Coulomb Hamiltonian, including scalar and spin-orbit relativistic effects. Four-component current density maps and the integration of induced ring-current susceptibilities clearly show that the clusters [(H(t)Ac)(3)(μ(2)-H)(6)] and [(H(t)Th)(3)(μ(2)-H)(6)](+) are non-aromatic whereas [(H(t)Pa)(3)(μ(2)-H)(6)] is anti-aromatic. However, for the thorium cluster we find a discrepancy between the current density plots and the classification through the NICS index. Our results also demonstrate the increasing influence of f orbitals, on bonding and magnetic properties, with increasing atomic number in these clusters. We think that the enhanced electron mobility in [(H(t)Pa)(3)(μ(2)-H)(6)] is due the significant 5f character of its valence shell. Also the participation of f orbitals in bonding is the reason why the protactinium cluster has the shortest bond lengths of the three clusters. This study provides another example showing that the magnetically induced current density approach can give more reliable results than the NICS index.

  20. First-principles studies of complex hydride YMn2H6 and its synthesis from metal hydride YMn2H4.5

    NASA Astrophysics Data System (ADS)

    Matsuo, Motoaki; Miwa, Kazutoshi; Semboshi, Satoshi; Li, Hai-Wen; Kano, Mika; Orimo, Shin-ichi

    2011-05-01

    First-principles calculations were performed for a complex hydride YMn2H6 to investigate its electronic structure and thermodynamic stability. The results indicated that an Y atom and one of two Mn atoms were ionized as Y3+ and Mn2+, respectively, and another Mn atom bound covalently to H atoms to form a [MnH6]5- complex anion. Based on the enthalpy change of -65 kJ/mol estimated from the calculation, we experimentally verified a possible low-pressure synthesis of YMn2H6 from a metal hydride YMn2H4.5. X-ray diffractometry confirmed the formation of YMn2H6 after hydrogenation below 5 MPa, much lower than the previously reported value of 170 MPa.

  1. Experimental and Modeling Study of the Temperature and Pressure Dependence of the Reaction C2H5 + O2 (+ M) → C2H5O2 (+ M).

    PubMed

    Fernandes, Ravi X; Luther, Klaus; Marowsky, Gerd; Rissanen, Matti P; Timonen, Raimo; Troe, Jürgen

    2015-07-16

    The reaction C2H5 + O2 (+ M) → C2H5O2 (+ M) was studied at 298 K at pressures of the bath gas M = Ar between 100 and 1000 bar. The transition from the falloff curve of an energy transfer mechanism to a high pressure range with contributions from the radical complex mechanism was observed. Further experiments were done between 188 and 298 K in the bath gas M = He at pressures in the range 0.7-2.0 Torr. The available data are analyzed in terms of unimolecular rate theory. An improved analytical representation of the temperature and pressure dependence of the rate constant is given for conditions where the chemical activation process C2H5 + O2 (+ M) → C2H4 + HO2 (+ M) is only of minor importance.

  2. First Observation of the nu(17)-nu(4) Difference Bands of Diborane (10)B(2)H(6) and (11)B(2)H(6).

    PubMed

    Flaud; Lafferty; Bürger; Pawelke; Domenech; Bermejo

    2000-10-01

    An analysis of the nu(17)-nu(4) difference bands near 800 cm(-1) of two isotopic species, (10)B(2)H(6) and (11)B(2)H(6), of diborane has been carried out using infrared spectra recorded with a resolution of ca. 0.003 cm(-1). In addition, the nu(17) band of (10)B(2)H(6) has been recorded and assigned. Since this band in (11)B(2)H(6) had already been studied (R. L. Sams, T. A. Blake, S. W. Sharpe, J.-M. Flaud, and W. J. Lafferty, J. Mol. Spectrosc. 191, 331-342 (1998)), it was possible to derive precise energy levels and Hamiltonian constants for the 4(1) vibrational states of both isotopic species. Copyright 2000 Academic Press.

  3. Strong enhancement of superconductivity at high pressures within the charge-density-wave states of 2 H -TaS2 and 2 H -TaSe2

    NASA Astrophysics Data System (ADS)

    Freitas, D. C.; Rodière, P.; Osorio, M. R.; Navarro-Moratalla, E.; Nemes, N. M.; Tissen, V. G.; Cario, L.; Coronado, E.; García-Hernández, M.; Vieira, S.; Núñez-Regueiro, M.; Suderow, H.

    2016-05-01

    We present measurements of the superconducting and charge-density-wave (CDW) critical temperatures (Tc and TCDW) as a function of pressure in the transition metal dichalchogenides 2 H -TaSe2 and 2 H -TaS2 . Resistance and susceptibility measurements show that Tc increases from temperatures below 1 K up to 8.5 K at 9.5 GPa in 2 H -TaS2 and 8.2 K at 23 GPa in 2 H -TaSe2 . We observe a kink in the pressure dependence of TCDW at about 4 GPa that we attribute to the lock-in transition from incommensurate CDW to commensurate CDW. Above this pressure, the commensurate TCDW slowly decreases, coexisting with superconductivity within our full pressure range.

  4. Bis(ethylenediammonium) decaaquadisodium decavanadate, (C2H10N2)2[Na2(H2O)10][V10O28].

    PubMed

    Li, Guo Bao; Yang, Si Hai; Xiong, Ming; Lin, Jian Hua

    2004-12-01

    In the title compound, the decavanadate anion, [V(10)O(28)](6-), and the bridged [Na(2)(H(2)O)(10)](2+) dication lie across inversion centers. The charge balance is achieved by ethylenediammonium cations, H(3)NCH(2)CH(2)NH(3)(2+), which are disordered. The decavanadate anions are surrounded by the [Na(2)(H(2)O)(10)](2+) dications, thus forming layers, and the ethylenediammonium cations are located between these layers.

  5. Microwave Spectra and Geometries of C2H2\\cdots AuI and C2H4\\cdots AuI

    NASA Astrophysics Data System (ADS)

    Stephens, Susanna Louise; Mullaney, John Connor; Sprawling, Matt John; Tew, David Peter; Walker, Nick; Legon, Anthony

    2014-06-01

    A chirped-pulse Fourier transform microwave spectrometer has been used to measure the microwave spectra of both C2H2\\cdots AuI and C2H4\\cdots AuI. These complexes are generated via laser ablation at 532 nm of a gold surface in the presence of CF3I and either C2H2 or C2H4 and argon and are stabilized by a supersonic expansion. Rotational (A0, B0, C0) and centrifugal distortion constants (ΔJ, ΔJK and δJ) of each molecule have been determined as well the nuclear electric quadrupole coupling constants of gold and iodine atoms (χaa(Au}, χbb-χcc(Au), χaa(I) and χbb-χcc(I)). The spectrum of each molecule is consistent with a C2v structure in which the metal atom interacts with the π-orbital of the ethene or ethyne molecule. Isotopic substitutions of atoms within the C2H2 or C2H4 subunits are in progress and in conjunction with high level ab initio calculations will allow for accurate determination of the geometry of each molecule.

  6. C2H2 adsorption in three isostructural metal-organic frameworks: boosting C2H2 uptake by rational arrangement of nitrogen sites.

    PubMed

    Song, Chengling; Jiao, Jingjing; Lin, Qiyi; Liu, Huimin; He, Yabing

    2016-03-21

    Replacing the benzene spacer in the organic linker 5,5'-(benzene-1,4-diyl)diisophthalate with the nitrogen containing heterocyclic rings, namely, pyrazine, pyridazine, and pyrimidine results in three organic linkers, which were reacted with copper ions under solvothermal conditions to form three isostructural metal-organic frameworks (ZJNU-46, ZJNU-47 and ZJNU-48) exhibiting exceptionally high sorption capacities with regard to acetylene due to the simultaneous immobilization of open metal sites and Lewis basic nitrogen sites in the frameworks. At 1 atm and 295 K, the gravimetric C2H2 adsorption uptakes reach 187, 213 and 193 cm(3) (STP) g(-1) for these three compounds. The gravimetric C2H2 adsorption amount of ZJNU-47a is the second highest reported for MOF materials. Notably, despite their same porosities, and densities of open metal sites and uncoordinated nitrogen sites, distinctly different C2H2 adsorption capacities were observed for these three compounds, which we think are mainly associated with the difference in the relative position of nitrogen atoms leading to different binding affinities of the frameworks towards C2H2 guest molecules, and thus different C2H2 adsorptions. This work demonstrates that the rational arrangement of open nitrogen sites will favorably improve the C2H2 uptake and thus provides useful information for future design of porous MOFs with high acetylene storage capacities.

  7. Tensor Force Manifestations in Ab Initio Study of the {sup 2}H(d,{gamma}){sup 4}He, {sup 2}H(d,p){sup 3}H, and {sup 2}H(d,n){sup 3}He Reactions

    SciTech Connect

    Arai, K.; Aoyama, S.; Suzuki, Y.; Descouvemont, P.; Baye, D.

    2011-09-23

    The {sup 2}H(d,p){sup 3}H, {sup 2}H(d,n){sup 3}He, and {sup 2}H(d,{gamma}){sup 4}He reactions are studied at low energies in a multichannel ab initio model that takes into account the distortions of the nuclei. The internal wave functions of these nuclei are given by the stochastic variational method with the AV8{sup '} realistic interaction and a phenomenological three-body force included to reproduce the two-body thresholds. The obtained astrophysical S factors are all in very good agreement with the experiment. The most important channels for both transfer and radiative capture are identified by comparing to calculations with an effective central force. They are all found to dominate thanks to the tensor force.

  8. Structure, phase transitions, dielectric and spectroscopic studies of the 2-aminopyrimidinium salts: [(2-NH 2C 4N 2H 3) 2H][ClO 4] and [2-NH 2C 4N 2H 4][BF 4

    NASA Astrophysics Data System (ADS)

    Czupiński, O.; Wojtaś, M.; Ciunik, Z.; Jakubas, R.

    2006-01-01

    Crystal structure of the 2-aminopyrimidinium derivatives: [(2-NH 2C 4N 2H 3) 2H][ClO 4] (I) and [2-NH 2C 4N 2H 4][BF 4] (II) has been determined at 100 K (I) and 293 K (II) by means of single crystal X-ray diffraction as monoclinic space group, P2/c and P2/n, respectively. The asymmetric part of the unit cell of (I) contains two symmetry independent 2-aminopyrimidine forming one dimeric cation and one disordered perchlorate anion. The structure of (II) consists of 2-aminopyrimidinium cation, [2-NH 2C 4N 2H 4] +, protonated at a pyrimidine ring-N atom and [BF 4] - anion. Differential scanning calorimetry (DSC) on perchlorate derivative ( 1:1), [2-NH 2C 4N 2H 3][ClO 4] (III)—being isomorphic to tetrafluoroborate one (I) at room temperature, reveals two phase transitions of first order: at 250/275 K and 390/410 K (cooling-heating, respectively), whereas the analog (II) only one transition at high temperatures—343/385 K. The dielectric studies in the frequency range 75 kHz - 10 MHz disclose relaxation process at high temperatures in salt (I). Infrared spectra of polycrystalline [2-NH 2C 4N 2H 4][BF 4] have been studied in the temperature range 300-420 K. Substantial changes in the temperature evolution of frequencies of internal modes of the 2-aminopyrimidinium cations and [BF 4] - anions near 390 K are due to the variations in the motion of both moieties and hydrogen bond configuration. The experimental studies indicate that all phase transitions taking place in studied 2-aminopyrimidinium derivatives are classified as an order-disorder.

  9. Adhesion of CdTe quantum dots on model membranes and internalization into RBL-2H3 cells.

    PubMed

    Zhang, Mengmeng; Wei, Xiaoran; Ding, Lei; Hu, Jingtian; Jiang, Wei

    2017-03-08

    Quantum dots (QDs) have attracted broad attention due to their special optical properties and promising prospect in medical and biological applications. However, the process of QDs on cell membrane is worth further investigations because such process may lead to harmful effects on organisms and also important for QD application. In this study, adhesion of amino- and carboxyl-coated CdTe QDs (A-QDs and C-QDs) on cell membrane and the subsequent internalization are studied using a series of endocytosis-free model membranes, including giant and small unilamellar vesicles, supported lipid bilayers and giant plasma membrane vesicles (GPMVs). The adhered QD amounts on model membranes are quantified by a quartz crystal microbalance. The CdTe QD adhesion on model membranes is governed by electrostatic forces. Positively charged A-QDs adhere on GPMV surface and passively penetrate the plasma membrane via endocytosis-free mechanism, but negatively charged C-QDs cannot. Rat basophilic leukemia (RBL-2H3) cells are exposed to CdTe QDs to monitor the QD internalization process. Both A- and C-QDs are internalized by RBL-2H3 cells mainly via endocytosis. CdTe QDs do not accumulate on the plasma membrane of living cells due to the fast endocytosis and the weakened electrostatic attraction in biological medium, resulting in low chance of passive penetration. The suspended cells after trypsin digestion take more QDs than the adherent cells. A-QDs cause lower cell viability than C-QDs, probably because the approach of positively charged QDs to cells is favored and the smaller aggregates of A-QDs.

  10. ENDOR/HYSCORE Studies of the Common Intermediate Trapped During Nitrogenase Reduction of N2H2, CH3N2H, and N2H4 Support an Alternating Reaction Pathway for N2 Reduction

    PubMed Central

    Lukoyanov, Dmitriy; Dikanov, Sergei A.; Yang, Zhi-Yong; Barney, Brett M.; Samoilova, Rimma I.; Narasimhulu, Kuppala V.; Dean, Dennis R.; Seefeldt, Lance C.; Hoffman, Brian M.

    2011-01-01

    Enzymatic N2 reduction proceeds along a reaction pathway comprised of a sequence of intermediate states generated as a dinitrogen bound to the active-site iron-molybdenum cofactor (FeMo-co) of the nitrogenase MoFe protein undergoes six steps of hydrogenation (e−/H+ delivery). There are two competing proposals for the reaction pathway, and they invoke different intermediates. In the ‘Distal’ (D) pathway, a single N of N2 is hydrogenated in three steps until the first NH3 is liberated, then the remaining nitrido-N is hydrogenated three more times to yield the second NH3. In the ‘Alternating’ (A) pathway, the two N’s instead are hydrogenated alternately, with a hydrazine-bound intermediate formed after four steps of hydrogenation and the first NH3 liberated only during the fifth step. A recent combination of X/Q-band EPR and 15N, 1,2H ENDOR measurements suggested that states trapped during turnover of the α-70Ala/α-195Gln MoFe protein with diazene or hydrazine as substrate correspond to a common intermediate (here denoted I) in which FeMo-co binds a substrate-derived [NxHy] moiety, and measurements reported here show that turnover with methyldiazene generates the same intermediate. In the present report we describe X/Q-band EPR and 14/15N, 1,2H ENDOR/-HYSCORE/ESEEM measurements that characterize the N-atom(s) and proton(s) associated with this moiety. The experiments establish that turnover with N2H2, CH3N2H, and N2H4 in fact generates a common intermediate, I, and show that the N-N bond of substrate has been cleaved in I. Analysis of this finding leads us to conclude that nitrogenase reduces N2H2, CH3N2H, and N2H4 via a common A reaction pathway, and that the same is true for N2 itself, with Fe ion(s) providing the site of reaction. PMID:21744838

  11. A microporous metal-organic framework for selective C2H2 and CO2 separation

    NASA Astrophysics Data System (ADS)

    Lin, Rong-Guang; Lin, Rui-Biao; Chen, Banglin

    2017-08-01

    A quartzlike metal-organic framework with interesting one dimensional channel has been synthesized. It exhibits considerable acetylene and carbon dioxide uptake of 41.5 and 24.6 cm3 g-1, respectively, and relatively high selectivity for separation of C2H2/C2H4, C2H2/CH4, CO2/CH4 and CO2/N2 at ambient condition.

  12. Observation of the pi...H hydrogen-bonded ternary complex, (C(2)H(4))(2)H(2)O, using matrix isolation infrared spectroscopy.

    PubMed

    Thompson, Matthew G K; Lewars, Errol G; Parnis, J Mark

    2005-10-27

    FTIR absorption spectra of water-containing ethene:Ar matrices, with compositions of ethene up to 1:10 ethene:Ar, have been recorded. Systematically increasing the concentration of ethene reveals features in the spectra consistent with the known 1:1 ethene:water complex, which subsequently disappear on further increase in ethene concentration. At high concentrations of ethene, new features are observed at 3669 and 3585 cm(-1), which are red-shifted with respect to matrix-isolated nu(3) and nu(1) O-H stretching modes of water and the 1:1 ethene:water complex. These shifts are consistent with a pi...H interaction of a 2:1 ethene:water complex of the form (C(2)H(4)...H-O-H...C(2)H(4)). The analogous (C(2)D(4))(2)H(2)O complex shows little shifting from positions associated with (C(2)H(4))(2)H(2)O, while the (C(2)H(4))(2)D(2)O isotopomer shows large shifts to 2722.3 and 2617.2 cm(-1), having identical nu(3)(H(2)O)/nu(3)(D(2)O) and nu(1)(H(2)O)/nu(1)(D(2)O) values when compared with monomeric water isotopomers. Features at 3626.1 and 2666.2 cm(-1) are also observed and are attributed to (C(2)H(4))(2)HDO. DFT calculations at the B3LYP/6-311+G(d,p) level for each isotopomer are presented, and the predicted vibrational frequencies are directly compared with experimental values. The interaction energy for the formation of the 2:1 ethene:water complex from the 1:1 ethene:water complex is also presented.

  13. SNF2H promotes hepatocellular carcinoma proliferation by activating the Wnt/β-catenin signaling pathway

    PubMed Central

    Wang, Yanan; Qin, Juanxiu; Liu, Qian; Hong, Xufen; Li, Tianming; Zhu, Yuanjun; He, Lei; Zheng, Bing; Li, Min

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and has an extremely poor prognosis. Surgical resection is always inapplicable to HCC patients diagnosed at an advanced tumor stage. The mechanisms underlying HCC cell proliferation remain obscure. In the present study, SWItch/sucrose nonfermentable catalytic subunit SNF2 (SNF2H) expression was tested in HCC tissues and Wnt/β-catenin pathway activation upon overexpression of SNF2H or knockdown of SNF2H expression was investigated in cultured HCC cells. It was demonstrated that SNF2H is a vital factor for HCC growth. The SNF2H expression level is increased in HCC tissues compared with paratumoral liver tissues. SNF2H promotes HCC cell proliferation and colony formation ability in vitro. SNF2H may increase the protein level of β-catenin and enhance its nuclear accumulation in HCC cells, thereby leading to the activation of the Wnt/β-catenin signaling pathway. In conclusion, the present results indicate that SNF2H plays a vital role in HCC cell growth, suggesting that SNF2H may be a promising therapeutic target for HCC treatment. PMID:27446433

  14. Measured Total Cross Sections of Slow Neutrons Scattered by Gaseous and Liquid 2H2

    NASA Astrophysics Data System (ADS)

    Atchison, F.; van den Brandt, B.; Bryś, T.; Daum, M.; Fierlinger, P.; Hautle, P.; Henneck, R.; Kirch, K.; Kohlbrecher, J.; Kühne, G.; Konter, J. A.; Pichlmaier, A.; Wokaun, A.; Bodek, K.; Kasprzak, M.; Kuźniak, M.; Geltenbort, P.; Giersch, M.; Zmeskal, J.; Hino, M.; Utsuro, M.

    2005-06-01

    The total scattering cross sections for slow neutrons with energies E in the range 300 neV to 3 meV for gaseous and liquid ortho-2H2 have been measured. The cross sections for 2H2 gas are found to be in excellent agreement with both the Hamermesh and Schwinger and the Young and Koppel models. For liquid 2H2, we confirm the existing experimental data in the cold neutron range and the discrepancy with the gas models. We find a clear 1/√(E') dependence at low energies for both states. A simple explanation for the liquid 2H2 cross section is offered.

  15. Calculational and Experimental Investigations of the Pressure Effects on Radical - Radical Cross Combinations Reactions: C2H5 + C2H3

    NASA Technical Reports Server (NTRS)

    Fahr, Askar; Halpern, Joshua B.; Tardy, Dwight C.

    2007-01-01

    Pressure-dependent product yields have been experimentally determined for the cross-radical reaction C2H5 + C2H3. These results have been extended by calculations. It is shown that the chemically activated combination adduct, 1-C4H8*, is either stabilized by bimolecular collisions or subject to a variety of unimolecular reactions including cyclizations and decompositions. Therefore the "apparent" combination/disproportionation ratio exhibits a complex pressure dependence. The experimental studies were performed at 298 K and at selected pressures between about 4 Torr (0.5 kPa) and 760 Torr (101 kPa). Ethyl and vinyl radicals were simultaneously produced by 193 nm excimer laser photolysis of C2H5COC2H3 or photolysis of C2H3Br and C2H5COC2H5. Gas chromatograph/mass spectrometry/flame ionization detection (GC/MS/FID) were used to identify and quantify the final reaction products. The major combination reactions at pressures between 500 (66.5 kPa) and 760 Torr are (1c) C2H5 + C2H3 yields 1-butene, (2c) C2H5 + C2H5 yields n-butane, and (3c) C2H3 + C2H3 yields 1,3-butadiene. The major products of the disproportionation reactions are ethane, ethylene, and acetylene. At moderate and lower pressures, secondary products, including propene, propane, isobutene, 2-butene (cis and trans), 1-pentene, 1,4-pentadiene, and 1,5-hexadiene are also observed. Two isomers of C4H6, cyclobutene and/or 1,2-butadiene, were also among the likely products. The pressure-dependent yield of the cross-combination product, 1-butene, was compared to the yield of n-butane, the combination product of reaction (2c), which was found to be independent of pressure over the range of this study. The [ 1-C4H8]/[C4H10] ratio was reduced from approx.1.2 at 760 Torr (101 kPa) to approx.0.5 at 100 Torr (13.3 kPa) and approx.0.1 at pressures lower than about 5 Torr (approx.0.7 kPa). Electronic structure and RRKM calculations were used to simulate both unimolecular and bimolecular processes. The relative importance

  16. Calculational and Experimental Investigations of the Pressure Effects on Radical - Radical Cross Combinations Reactions: C2H5 + C2H3

    NASA Technical Reports Server (NTRS)

    Fahr, Askar; Halpern, Joshua B.; Tardy, Dwight C.

    2007-01-01

    Pressure-dependent product yields have been experimentally determined for the cross-radical reaction C2H5 + C2H3. These results have been extended by calculations. It is shown that the chemically activated combination adduct, 1-C4H8*, is either stabilized by bimolecular collisions or subject to a variety of unimolecular reactions including cyclizations and decompositions. Therefore the "apparent" combination/disproportionation ratio exhibits a complex pressure dependence. The experimental studies were performed at 298 K and at selected pressures between about 4 Torr (0.5 kPa) and 760 Torr (101 kPa). Ethyl and vinyl radicals were simultaneously produced by 193 nm excimer laser photolysis of C2H5COC2H3 or photolysis of C2H3Br and C2H5COC2H5. Gas chromatograph/mass spectrometry/flame ionization detection (GC/MS/FID) were used to identify and quantify the final reaction products. The major combination reactions at pressures between 500 (66.5 kPa) and 760 Torr are (1c) C2H5 + C2H3 yields 1-butene, (2c) C2H5 + C2H5 yields n-butane, and (3c) C2H3 + C2H3 yields 1,3-butadiene. The major products of the disproportionation reactions are ethane, ethylene, and acetylene. At moderate and lower pressures, secondary products, including propene, propane, isobutene, 2-butene (cis and trans), 1-pentene, 1,4-pentadiene, and 1,5-hexadiene are also observed. Two isomers of C4H6, cyclobutene and/or 1,2-butadiene, were also among the likely products. The pressure-dependent yield of the cross-combination product, 1-butene, was compared to the yield of n-butane, the combination product of reaction (2c), which was found to be independent of pressure over the range of this study. The [ 1-C4H8]/[C4H10] ratio was reduced from approx.1.2 at 760 Torr (101 kPa) to approx.0.5 at 100 Torr (13.3 kPa) and approx.0.1 at pressures lower than about 5 Torr (approx.0.7 kPa). Electronic structure and RRKM calculations were used to simulate both unimolecular and bimolecular processes. The relative importance

  17. A Putative Chloroplast-Localized Ca(2+)/H(+) Antiporter CCHA1 Is Involved in Calcium and pH Homeostasis and Required for PSII Function in Arabidopsis.

    PubMed

    Wang, Chao; Xu, Weitao; Jin, Honglei; Zhang, Taijie; Lai, Jianbin; Zhou, Xuan; Zhang, Shengchun; Liu, Shengjie; Duan, Xuewu; Wang, Hongbin; Peng, Changlian; Yang, Chengwei

    2016-08-01

    Calcium is important for chloroplast, not only in its photosynthetic but also nonphotosynthetic functions. Multiple Ca(2+)/H(+) transporters and channels have been described and studied in the plasma membrane and organelle membranes of plant cells; however, the molecular identity and physiological roles of chloroplast Ca(2+)/H(+) antiporters have remained unknown. Here we report the identification and characterization of a member of the UPF0016 family, CCHA1 (a chloroplast-localized potential Ca(2+)/H(+) antiporter), in Arabidopsis thaliana. We observed that the ccha1 mutant plants developed pale green leaves and showed severely stunted growth along with impaired photosystem II (PSII) function. CCHA1 localizes to the chloroplasts, and the levels of the PSII core subunits and the oxygen-evolving complex were significantly decreased in the ccha1 mutants compared with the wild type. In high Ca(2+) concentrations, Arabidopsis CCHA1 partially rescued the growth defect of yeast gdt1Δ null mutant, which is defective in a Ca(2+)/H(+) antiporter. The ccha1 mutant plants also showed significant sensitivity to high concentrations of CaCl2 and MnCl2, as well as variation in pH. Taken these results together, we propose that CCHA1 might encode a putative chloroplast-localized Ca(2+)/H(+) antiporter with critical functions in the regulation of PSII and in chloroplast Ca(2+) and pH homeostasis in Arabidopsis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  18. Hyperfine excitation of N2H+ by H2: towards a revision of N2H+ abundance in cold molecular clouds

    NASA Astrophysics Data System (ADS)

    Lique, François; Daniel, Fabien; Pagani, Laurent; Feautrier, Nicole

    2015-01-01

    The modelling of emission spectra of molecules seen in interstellar clouds requires the knowledge of collisional rate coefficients. Among the commonly observed species, N2H+ is of particular interest since it was shown to be a good probe of the physical conditions of cold molecular clouds. Thus, we have calculated hyperfine-structure-resolved excitation rate coefficients of N2H+(X1Σ+) by H2(j = 0), the most abundant collisional partner in the cold interstellar medium. The calculations are based on a new potential energy surface, obtained from highly correlated ab initio calculations. State-to-state rate coefficients between the first hyperfine levels were calculated, for temperatures ranging from 5 to 70 K. By comparison with previously published N2H+-He rate coefficients, we found significant differences which cannot be reproduced by a simple scaling relationship. As a first application, we also performed radiative transfer calculations, for physical conditions typical of cold molecular clouds. We found that the simulated line intensities significantly increase when using the new H2 rate coefficients, by comparison with the predictions based on the He rate coefficients. In particular, we revisited the modelling of the N2H+ emission in the LDN 183 core, using the new collisional data, and found that all three of the density, gas kinetic temperature and N2H+ abundance had to be revised.

  19. Fast Response, vertically oriented graphene nanosheet electric double layer capacitors synthesized from C(2)H(2).

    PubMed

    Cai, Minzhen; Outlaw, Ronald A; Quinlan, Ronald A; Premathilake, Dilshan; Butler, Sue M; Miller, John R

    2014-06-24

    The growth and electrical characteristics of vertically oriented graphene nanosheets grown by radio frequency plasma-enhanced chemical vapor deposition from C2H2 feedstock on nickel substrates and used as electrodes in symmetric electric double layer capacitors (EDLC) are presented. The nanosheets exhibited 2.7 times faster growth rate and much greater specific capacitance for a given growth time than CH4 synthesized films. Raman spectra showed that the intensity ratio of the D band to G band versus temperature initially decreased to a minimum value of 0.45 at a growth temperature of 750 °C, but increased rapidly with further temperature increase (1.15 at 850 °C). The AC specific capacitance at 120 Hz of these EDLC devices increased in a linear fashion with growth temperature, up to 265 μF/cm(2) (2 μm high film, 850 °C with 10 min growth). These devices exhibited ultrafast frequency response: the frequency response at -45° phase angle reached over 20 kHz. Consistent with the increase in D band to G band ratio, the morphology of the films became less vertical, less crystalline, and disordered at substrate temperatures of 800 °C and above. This deterioration in morphology resulted in an increase in graphene surface area and defect density, which, in turn, contributed to the increased capacitance, as well as a slight decrease in frequency response. The low equivalent series resistance varied from 0.07 to 0.08 Ω and was attributed to the significant carbon incorporation into the Ni substrate.

  20. Microdomains of High Calcium Are Not Required for Exocytosis in Rbl-2h3 Mucosal Mast Cells

    PubMed Central

    Mahmoud, Sahar F.; Fewtrell, Clare

    2001-01-01

    We have previously shown that store-associated microdomains of high Ca2+ are not essential for exocytosis in RBL-2H3 mucosal mast cells. We have now examined whether Ca2+ microdomains near the plasma membrane are required, by comparing the secretory responses seen when Ca2+ influx was elicited by two very different mechanisms. In the first, antigen was used to activate the Ca2+ release–activated Ca2+ (CRAC) current (ICRAC) through CRAC channels. In the second, a Ca2+ ionophore was used to transport Ca2+ randomly across the plasma membrane. Since store depletion by Ca2+ ionophore will also activate ICRAC, different means of inhibiting ICRAC before ionophore addition were used. Ca2+ responses and secretion in individual cells were compared using simultaneous indo-1 microfluorometry and constant potential amperometry. Secretion still takes place when the increase in intracellular Ca2+ occurs diffusely via the Ca2+ ionophore, and at an average intracellular Ca2+ concentration that is no greater than that observed when Ca2+ entry via CRAC channels triggers secretion. Our results suggest that microdomains of high Ca2+ near the plasma membrane, or associated with mitochondria or Ca2+ stores, are not required for secretion. Therefore, we conclude that modest global increases in intracellular Ca2+ are sufficient for exocytosis in these nonexcitable cells. PMID:11309415

  1. Hydricities of BzNADH, CH5Mo(PMe3)(CO)2H, and C5Me5Mo(PMe3)(CO)2H in acetonitrile.

    PubMed

    Ellis, William W; Raebiger, James W; Curtis, Calvin J; Bruno, Joseph W; DuBois, Daniel L

    2004-03-10

    The thermodynamic hydride donor abilities of 1-benzyl-1,4-dihydronicotinamide (BzNADH, 59 +/- 2 kcal/mol), C(5)H(5)Mo(PMe(3))(CO)(2)H (55 +/- 3 kcal/mol), and C(5)Me(5)Mo(PMe(3))(CO)(2)H (58 +/- 2 kcal/mol) have been measured in acetonitrile by calorimetric and/or equilibrium methods. The hydride donor abilities of BzNADH and C(5)H(5)Mo(PMe(3))(CO)(2)H differ by 13 and 24 kcal/mol, respectively, from those reported previously for these compounds in acetonitrile. These results require significant revisions of the hydricities reported for related NADH analogues and metal hydrides. These compounds are moderate hydride donors as compared to previously determined compounds.

  2. A density functional theory study of phenyl formation initiated by ethynyl radical (C2H*) and ethyne (C2H2).

    PubMed

    Santiago, Romero M; Indarto, Antonius

    2008-12-01

    An ab initio computational density functional theory (DFT) was used to study the formation of the first cyclic molecule (phenyl) initiated by the ethynyl radical (C(2)H*). The study covers a competition reaction between the addition reactions of C(2)H* with ethyne (C(2)H(2)) and some molecular re-arrangement schemes. The minimum energy paths of the preferred cyclic formation route were characterized. A thorough thermochemical analysis was performed by evaluating the differences in the energy of activation (DeltaE), enthalpy (DeltaH), and Gibb's free energy (DeltaG) of the optimized stable and transition state (TS) molecules. The reaction temperatures were set to normal (T = 298 K) and combustion (T = 1,200 K) conditions.

  3. Photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 in the VUV region

    NASA Technical Reports Server (NTRS)

    Xia, T. J.; Chien, T. S.; Wu, C. Y. Robert; Judge, D. L.

    1991-01-01

    Using synchrotron radiation as a continuum light source, the photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 have been measured from their respective ionization thresholds to 1060 A. The vibrational constants associated with the nu(2) totally symmetric, out-of-plane bending vibration of the ground electronic state of PH3(+) have been obtained. The cross sections and quantum yields for producing neutral products through photoexcitation of these molecules in the given spectral regions have also been determined. In the present work, autoionization processes were found to be less important than dissociation and predissociation processes in NH3, PH3, and C2H4. Several experimental techniques have been employed in order to examine the various possible systematic errors critically.

  4. OH3- and O2H5- double Rydberg anions: Predictions and comparisons with NH4- and N2H7-

    NASA Astrophysics Data System (ADS)

    Melin, Junia; Ortiz, J. V.

    2007-07-01

    A low barrier in the reaction pathway between the double Rydberg isomer of OH3- and a hydride-water complex indicates that the former species is more difficult to isolate and characterize through anion photoelectron spectroscopy than the well known double Rydberg anion (DRA), tetrahedral NH4-. Electron propagator calculations of vertical electron detachment energies (VEDEs) and isosurface plots of the electron localization function disclose that the transition state's electronic structure more closely resembles that of the DRA than that of the hydride-water complex. Possible stabilization of the OH3- DRA through hydrogen bonding or ion-dipole interactions is examined through calculations on O2H5- species. Three O2H5- minima with H-(H2O)2, hydrogen-bridged, and DRA-molecule structures resemble previously discovered N2H7- species and have well separated VEDEs that may be observable in anion photoelectron spectra.

  5. MICROWAVE SPECTRA AND GEOMETRIES OF C2H_{2\\cdots AgI} and C2H_{4\\cdots AgI}

    NASA Astrophysics Data System (ADS)

    Stephens, Susanna L.; Tew, David Peter; Walker, Nick; Legon, Anthony

    2015-06-01

    A chirped-pulse Fourier transform microwave spectrometer has been used to measure the microwave spectra of both C2H_{2\\cdots AgI} and C2H_{4\\cdots AgI}. These complexes are generated via laser ablation at 532 nm of a silver surface in the presence of CF3I and either C2H_{2} or C2H_{4} and argon and are stabilized by a supersonic expansion. Rotational (A0, B0, C0) and centrifugal distortion constants (ΔJ and ΔJK) of each molecule have been determined as well the nuclear electric quadrupole coupling constants the iodine atom (χaa(I) and χbb-χcc(I)). The spectrum of each molecule is consistent with a C2v structure in which the metal atom interacts with the π-orbital of the ethene or ethyne molecule. Isotopic substitutions of atoms within the C2H_{2} or C2H_{4} subunits are in progress and in conjunction with high level ab initio calculations will allow for accurate determination of the geometry of each molecule. These to complexes are put in the context of the recently studied H2S\\cdots AgI, OC\\cdotsAgI, H3N\\cdots AgI and (CH3)_{3N\\cdots AgI}. S.Z. Riaz, S.L. Stephens, W. Mizukami, D.P. Tew, N.R. Walker, A.C. Legon, Chem. Phys. Let., 531, 1-12 (2012) S.L. Stephens, W. Mizukami, D.P. Tew, N.R. Walker, A.C. Legon, J. Chem. Phys., 136(6), 064306 (2012) D.M. Bittner, D.P. Zaleski, S.L. Stephens, N.R. Walker, A.C. Legon, Study in progress.

  6. Observation of mixed acetylene - Nitrous oxide trimers: Infrared spectra of C2H2-(N2O)2 and (C2H2)2-N2O

    NASA Astrophysics Data System (ADS)

    Sheybani-Deloui, S.; Yousefi, M.; Norooz Oliaee, J.; McKellar, A. R. W.; Moazzen-Ahmadi, N.

    2014-12-01

    Infrared spectra of the lowest energy isomers of C2H2-(N2O)2 and (C2H2)2-N2O were observed in the region of the ν1 fundamental band of the N2O monomer (∼2224 cm-1) using a tunable diode laser and/or a CW quantum cascade laser to probe a pulsed supersonic slit jet expansion. One infrared band was measured for each trimer. The band for C2H2-(N2O)2 corresponds to the out-of-phase vibrations of the pair of equivalent N2O monomers. It is blue shifted by about 10 cm-1 with respect to the free N2O monomer. The band for (C2H2)2-N2O is slightly less blue shifted (centered at 2232.81 cm-1). It can be simulated as a predominately a-type band. In addition to the normal isotopologues, the corresponding bands for C2D2-(N2O)2 and (C2D2)2-N2O were also observed. The structures of these trimers are similar to those of the lowest energy isomers of the analogous OCS - acetylene trimers reported previously, that is, a twisted barrel with C2 symmetry for C2H2-(N2O)2 and a distorted T-shaped acetylene dimer with a coplanar N2O beside the stem of the T for (C2H2)2-N2O. Here, we present our observation and experimental results, which agree well with calculations based on distributed multipole pair potentials.

  7. Water vapor d2H dynamics over China derived from SCIAMACHY satellite measurements

    USDA-ARS?s Scientific Manuscript database

    This study investigates water vapor isotopic patterns and controls over China using high-quality water vapor delta2H data retrieved from Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) observations. The results show that water vapor delta2H values on both annual and...

  8. Synthesis of 2H-indazoles by the [3 + 2] dipolar cycloaddition of sydnones with arynes.

    PubMed

    Fang, Yuesi; Wu, Chunrui; Larock, Richard C; Shi, Feng

    2011-11-04

    A rapid and efficient synthesis of 2H-indazoles has been developed using a [3 + 2] dipolar cycloaddition of sydnones and arynes. A series of 2H-indazoles have been prepared in good to excellent yields using this protocol, and subsequent Pd-catalyzed coupling reactions can be applied to the halogenated products to generate a structurally diverse library of indazoles.

  9. Robustness of N2H+ as tracer of the CO snowline

    NASA Astrophysics Data System (ADS)

    van't Hoff, M. L. R.; Walsh, C.; Kama, M.; Facchini, S.; van Dishoeck, E. F.

    2017-03-01

    Context. Snowlines in protoplanetary disks play an important role in planet formation and composition. Since the CO snowline is difficult to observe directly with CO emission, its location has been inferred in several disks from spatially resolved ALMA observations of DCO+ and N2H+. Aims: N2H+ is considered to be a good tracer of the CO snowline based on astrochemical considerations predicting an anti-correlation between N2H+ and gas-phase CO. In this work, the robustness of N2H+ as a tracer of the CO snowline is investigated. Methods: A simple chemical network was used in combination with the radiative transfer code LIME to model the N2H+ distribution and corresponding emission in the disk around TW Hya. The assumed CO and N2 abundances, corresponding binding energies, cosmic ray ionization rate, and degree of large-grain settling were varied to determine the effects on the N2H+ emission and its relation to the CO snowline. Results: For the adopted physical structure of the TW Hya disk and molecular binding energies for pure ices, the balance between freeze-out and thermal desorption predicts a CO snowline at 19 AU, corresponding to a CO midplane freeze-out temperature of 20 K. The N2H+ column density, however, peaks 5-30 AU outside the snowline for all conditions tested. In addition to the expected N2H+ layer just below the CO snow surface, models with an N2/CO ratio ≳0.2 predict an N2H+ layer higher up in the disk due to a slightly lower photodissociation rate for N2 as compared to CO. The influence of this N2H+ surface layer on the position of the emission peak depends on the total CO and N2 abundances and the disk physical structure, but the emission peak generally does not trace the column density peak. A model with a total (gas plus ice) CO abundance of 3 × 10-6 with respect to H2 fits the position of the emission peak previously observed for the TW Hya disk. Conclusions: The relationship between N2H+ and the CO snowline is more complicated than generally

  10. The transcriptional regulator c2h2 accelerates mushroom formation in Agaricus bisporus.

    PubMed

    Pelkmans, Jordi F; Vos, Aurin M; Scholtmeijer, Karin; Hendrix, Ed; Baars, Johan J P; Gehrmann, Thies; Reinders, Marcel J T; Lugones, Luis G; Wösten, Han A B

    2016-08-01

    The Cys2His2 zinc finger protein gene c2h2 of Schizophyllum commune is involved in mushroom formation. Its inactivation results in a strain that is arrested at the stage of aggregate formation. In this study, the c2h2 orthologue of Agaricus bisporus was over-expressed in this white button mushroom forming basidiomycete using Agrobacterium-mediated transformation. Morphology, cap expansion rate, and total number and biomass of mushrooms were not affected by over-expression of c2h2. However, yield per day of the c2h2 over-expression strains peaked 1 day earlier. These data and expression analysis indicate that C2H2 impacts timing of mushroom formation at an early stage of development, making its encoding gene a target for breeding of commercial mushroom strains.

  11. Optical and electrical characterization of an atmospheric pressure microplasma jet for Ar/CH{sub 4} and Ar/C{sub 2}H{sub 2} mixtures

    SciTech Connect

    Yanguas-Gil, A.; Focke, K.; Benedikt, J.; Keudell, A. von

    2007-05-15

    A rf microplasma jet working at atmospheric pressure has been characterized for Ar, He, and Ar/CH{sub 4} and Ar/C{sub 2}H{sub 2} mixtures. The microdischarge has a coaxial configuration, with a gap between the inner and outer electrodes of 250 {mu}m. The main flow runs through the gap of the coaxial structure, while the reactive gases are inserted through a capillary as inner electrode. The discharge is excited using a rf of 13.56 MHz, and rms voltages around 200-250 V and rms currents of 0.4-0.6 A are obtained. Electron densities around 8x10{sup 20} m{sup -3} and gas temperatures lower than 400 K have been measured using optical emission spectroscopy for main flows of 3 slm and inner capillary flows of 160 SCCM. By adjusting the flows, the flow pattern prevents the mixing of the reactive species with the ambient air in the discharge region, so that no traces of air are found even when the microplasma is operated in an open atmosphere. This is shown in Ar/CH{sub 4} and Ar/C{sub 2}H{sub 2} plasmas, where no CO and CN species are present and the optical emission spectroscopy spectra are mainly dominated by CH and C{sub 2} bands. The ratio of these two species follows different trends with the amount of precursor for Ar/CH{sub 4} and Ar/C{sub 2}H{sub 2} mixtures, showing the presence of distinct chemistries in each of them. In Ar/C{sub 2}H{sub 2} plasmas, CH{sub x} species are produced mainly by electron impact dissociation of C{sub 2}H{sub 2} molecules, and the CH{sub x}/C{sub 2}H{sub x} ratio is independent of the precursor amount. In Ar/CH{sub 4} mixtures, C{sub 2}H{sub x} species are formed mainly by recombination of CH{sub x} species through three-body reactions, so that the CH{sub x}/C{sub 2}H{sub x} ratio depends on the amount of CH{sub 4} present in the mixture. All these properties make our microplasma design of great interest for applications such as thin film growth or surface treatment.

  12. Fluorescence Excitation Model And Mixing Ratios Of Ethylene (C2H4) In Comets

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hitomi; Kawakita, H.

    2010-10-01

    In the last decade, some kinds of organic volatiles in cometary comae have been observed by the high-dispersion spectroscopic observations of comets in near-infrared region. One of interesting characters of cometary ices is the existence of abundant ethane (C2H6) relative to methane (CH4), even though ethane could not be formed by gas phase reactions only. Formation reactions of ethane in the early solar nebula (or in the pre-solar molecular cloud) are thought as the hydrogen addition reactions to acetylene on the cold grains (e.g., C2H2 -> C2H3 -> C2H4 -> C2H5 -> C2H6). However, it is reported that ethane could be formed by the dimerization of CH3 in CH4-rich ice by irradiation of energetic protons (Hadson and Moore, 1997). So the existence of ethylene (C2H4) is a key to distinguish these hypothesizes. The abundance of C2H4 is clue to contribution of C2H6 formation by hydrogen addition reactions. If we can confirm the existence of ethylene, conversion efficiency from acetylene to ethane and ethylene would provide clear view to the hydrogen addition reactions in the early solar nebula or in the pre-solar molecular cloud, because H atom can stick on cold grains under low temperature conditions (< 20 K) only. However, fluorescence excitation model for ethylene in comets have never been proposed to date. In this work, we will present the fluorescence excitation model of ethylene and we will determine C2H4/H2O ratios (or its upper limits) for the comets in our database.

  13. Isolation and characterization of lipid rafts with different properties from RBL-2H3 (rat basophilic leukaemia) cells.

    PubMed Central

    Radeva, Galina; Sharom, Frances J

    2004-01-01

    Lipid rafts are plasma-membrane microdomains that are enriched in certain lipids (sphingolipids, glycosphingolipids and cholesterol), as well as in lipid-modified proteins. Rafts appear to exist in the liquid-ordered phase, which contributes to their partitioning from the surrounding liquid-disordered glycerophospholipid environment. DRM (detergent-resistant membrane) fractions isolated from cells are believed to represent coalesced lipid rafts. We have employed extraction using two different non-ionic detergents, Brij-96 and Triton X-100, to isolate detergent-resistant lipid rafts from rat basophilic leukaemia cell line RBL-2H3, and compared their properties with each other and with plasma-membrane vesicles. DRM fractions were isolated as sealed unilamellar vesicles of similar size (135-170 nm diameter), using either sucrose-density-gradient sedimentation or gel-filtration chromatography. Lipid rafts isolated using Brij-96 and Triton X-100 differed in density, protein content and the distribution between high- and low-density fractions of the known raft constituents, Thy-1, and the non-receptor protein tyrosine kinases, Yes and Lyn. Lyn was found in the raft microdomains in predominantly phosphorylated form. The level of enrichment of the protein constituents of the isolated lipid rafts seemed to depend on the ratio of cell lipid/protein to detergent. As indicated by reactivity with anti-Thy-1 antibodies, lipid rafts prepared using Brij-96 appeared to consist of vesicles with primarily right-side-out orientation. Both Brij-96 and Triton X-100 appear to isolate detergent-insoluble raft microdomains from the rat basophilic leukaemia cell line RBL-2H3, but the observed differences suggest that either the detergents themselves play a role in determining the physicochemical characteristics of the resulting DRM fractions, or different subsets of rafts are isolated by the two detergents. PMID:14769131

  14. Structural characterization of (C2H2)1-6+ cluster ions by vibrational predissociation spectroscopy

    NASA Astrophysics Data System (ADS)

    Relph, Rachael A.; Bopp, Joseph C.; Roscioli, Joseph R.; Johnson, Mark A.

    2009-09-01

    Vibrational predissociation spectra are reported for the cationic acetylene clusters, (C2H2)n+, n =1-6, in the region of the C-H stretching fundamentals. For n =1 and 2, predissociation could only be observed for the Ar-tagged clusters. These were prepared by charge-transfer collisions of Ark+ with C2H2 to create C2H2+ṡArm clusters, which were then converted into larger members of the (C2H2)n+ṡAr series by sequential addition of acetylene molecules. The (C2H2)2+ṡAr spectrum indicates that this species is predominantly present as the cyclobutadiene cation. Although mobility measurements on the electron-impact-generated (C2H2)3+ ion indicated that it primarily occurs as the benzene cation, [P. O. Momoh, J. Am. Chem. Soc. 128, 12408 (2006)] photofragmentation of (C2H2)3+ṡAr in the C-H stretching region is dominated by the loss of C2H2 in addition to the weakly bound Ar atom. This suggests that the dominant n =3 species formed by sequential addition of C2H2 is based on a covalently bound C4H4+ core ion. Interestingly, the spectrum of this core C4H4+ species is different from that found for the cyclobutadiene cation, displaying instead a new band pattern that is retained in the higher (C2H2)3-6+ clusters. Multiple isomers are clearly involved, as yet another pattern of bands is recovered when the (C2H2)3+ṡAr action spectrum is recorded in the (minor) Ar loss fragmentation channel. One of these features does appear in the location of the single band characteristic of the Ar-tagged benzene cation reported earlier [Phys. Chem. Chem. Phys. 4, 24 (2002)], supporting a scenario where the benzene cation is one of the isomers present. We then compare the Ar predissociation results with (C2H2)n+ spectra obtained when the ions are prepared by electron impact ionization of neutral acetylene clusters. The photofragmentation behavior and vibrational spectra indicate that the dominant species formed in this way also occur with a covalently bound C4H4+ core. There are

  15. The determination of deep temperatures by means of the CO-CO2-H2-H2O geothermometer: an example using fumaroles in the Campi Flegrei, Italy

    NASA Astrophysics Data System (ADS)

    Tedesco, D.; Sabroux, J. C.

    1987-02-01

    Chromatographic analyses of fumarolic gases, collected in sampling bottles containing an alkaline solution, have been carried out using a thermal conductivity detector and a flame ionization detector, after catalytic conversion of CO and CH4. The latter method enables the concentration of carbon monoxide to be measured with sufficient accuracy for use in a CO-CO2-H2-H2O geothermometer. Application of this geothermometer to fumaroles in the crater of Solfatara in the Campi Flegrei, Italy, indicates that they are fed from a steam reservoir at 250±15 °C and at 10-36±2atm of oxygen. On the other hand, the CH4-CO2-H2-H2O geothermobarometer seems to re-equilibrate at superficial temperatures and cannot be used for infering thermodynamic conditions at depth. Regular sampling of these fumaroles together with a geothermometric interpretation of the gas analyses provides a means of monitoring, with comparative accuracy, the chemical and thermal evolution of the hydrothermal reservoir below the Solfatara crater. Such monitoring would probably detect an increase in temperature at depth and the injection of magmatic gas into the reservoir.

  16. Nuclear magnetic resonance studies of hydrogen motion in nanostructured Laves-phase hydrides ZrCr(2)H(x) and TaV(2)H(x).

    PubMed

    Soloninin, A V; Buzlukov, A L; Skripov, A V; Aleksashin, B A; Tankeyev, A P; Yermakov, A Ye; Mushnikov, N V; Uimin, M A; Gaviko, V S

    2008-07-09

    In order to study the mobility of hydrogen in nanostructured Laves-phase hydrides, we have measured the proton nuclear magnetic resonance (NMR) spectra and the proton spin-lattice and spin-spin relaxation rates in two nanostructured systems prepared by ball milling: ZrCr(2)H(3) and TaV(2)H(1+δ). The proton NMR measurements have been performed at the resonance frequencies of 14, 23.8 and 90 MHz over the temperature ranges 11-424 K (for coarse-grained samples) and 11-384 K (for nanostructured samples). Hydrogen mobility in the ball-milled ZrCr(2)H(3) is found to decrease strongly with increasing milling time. The experimental data suggest that this effect is related to the growth of the fraction of highly distorted intergrain regions where H mobility is much lower than in the crystalline grains. For the nanostructured TaV(2)H(1+δ) system, the ball milling is found to lead to a slight decrease in the long-range H mobility and to a suppression of the fast localized H motion in the crystalline grains.

  17. The influence of structural defects on the adsorption of simple molecules (H 2, C 2H 2, C 2H 4, C 2H 6, CO, NO) on rhenium single crystals

    NASA Astrophysics Data System (ADS)

    Ducros, R.; Housley, M.; Piquard, G.; Alnot, M.

    1981-07-01

    Using Thermal Programmed Desorption (TPD), Low Energy Electron Diffraction (LEED) and Auger Electron Spectroscopy (AES) we have studied the adsorption of hydrogen-containing molecules (H 2, C 2H 2, C 2H 4, C 2H 6) and oxygen-containing molecules (CO and NO) on two vicinal planes of the Re(0001) surface. The two surfaces are designated thus: ReS ¦14(0001)(101¯1)¦, ReS |6(0001)(167¯1) | . The structural defects have little effect on the adsorption of hydrogen and the hydrocarbons. They are more influential in the case of the oxygen-containing molecules. This is particularly true for CO; on the kink sites the CO molecules can completely dissociate whereas only a partial dissociation is possible on the steps. These results should be viewed in relation to the strong bond energy between carbon and oxygen in a CO molecule of 256 kcal/mole and the great affinity of oxygen for rhenium; ERe- O = 127 kcal/mole.

  18. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    DOEpatents

    Alvarez, Marc A.; Martinez, Rodolfo A.; Unkefer, Clifford J.

    2008-01-22

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S--, --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group. The present invention is also directed to a process of preparing labeled compounds, e.g., process of preparing [.sup.13C]methacrylic acid by reacting a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13CH.sub.2)-- aryl sulfone precursor with .sup.13CHI to form a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate, and, reacting the (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate with sodium hydroxide, followed by acid to form [.sup.13C]methacrylic acid. The present invention is further directed to a process of preparing [.sup.2H.sub.8]methyl methacrylate by reacting a (HOOC--C(C.sup.2H.sub.3).sub.2-- aryl sulfinyl intermediate with CD.sub.3I to form a (.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate, and heating the(.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate at temperatures and for time sufficient to form [.sup.2H.sub.8]methyl methacrylate.

  19. Trends and variations in CO, C2H6, and HCN in the Southern Hemisphere point to the declining anthropogenic emissions of CO and C2H6

    NASA Astrophysics Data System (ADS)

    Zeng, G.; Wood, S. W.; Morgenstern, O.; Jones, N. B.; Robinson, J.; Smale, D.

    2012-08-01

    We analyse the carbon monoxide (CO), ethane (C2H6) and hydrogen cyanide (HCN) partial columns (from the ground to 12 km) derived from measurements by ground-based solar Fourier Transform Spectroscopy at Lauder, New Zealand (45° S, 170° E), and at Arrival Heights, Antarctica (78° S, 167° E), from 1997 to 2009. Significant negative trends are calculated for all species at both locations, based on the daily-mean observed time series, namely CO (-0.94 ± 0.47% yr-1), C2H6 (-2.37 ± 1.18% yr-1) and HCN (-0.93 ± 0.47% yr-1) at Lauder and CO (-0.92 ± 0.46% yr-1), C2H6 (-2.82 ± 1.37% yr-1) and HCN (-1.41 ± 0.71% yr-1) at Arrival Heights. The uncertainties reflect the 95% confidence limits. However, the magnitudes of the trends are influenced by the anomaly associated with the 1997-1998 El Niño Southern Oscillation event at the beginning of the time series reported. We calculate trends for each month from 1997 to 2009 and find negative trends for all months. The largest monthly trends of CO and C2H6 at Lauder, and to a lesser degree at Arrival Heights, occur during austral spring during the Southern Hemisphere tropical and subtropical biomass burning period. For HCN, the largest monthly trends occur in July and August at Lauder and around November at Arrival Heights. The correlations between CO and C2H6 and between CO and HCN at Lauder in September to November, when the biomass burning maximizes, are significantly larger that those in other seasons. A tropospheric chemistry-climate model is used to simulate CO, C2H6, and HCN partial columns for the period of 1997-2009, using interannually varying biomass burning emissions from GFED3 and annually periodic but seasonally varying emissions from both biogenic and anthropogenic sources. The model-simulated partial columns of these species compare well with the measured partial columns and the model accurately reproduces seasonal cycles of all three species at both locations. However, while the model satisfactorily

  20. New Determination of the 2H(d,p)3H and 2H(d,n)3He Reaction Rates at Astrophysical Energies

    NASA Astrophysics Data System (ADS)

    Tumino, A.; Spartà, R.; Spitaleri, C.; Mukhamedzhanov, A. M.; Typel, S.; Pizzone, R. G.; Tognelli, E.; Degl'Innocenti, S.; Burjan, V.; Kroha, V.; Hons, Z.; La Cognata, M.; Lamia, L.; Mrazek, J.; Piskor, S.; Prada Moroni, P. G.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.

    2014-04-01

    The cross sections of the 2H(d,p)3H and 2H(d,n)3He reactions have been measured via the Trojan Horse method applied to the quasi-free 2H(3He,p 3H)1H and 2H(3He,n 3He)1H processes at 18 MeV off the proton in 3He. For the first time, the bare nucleus S(E) factors have been determined from 1.5 MeV, across the relevant region for standard Big Bang nucleosynthesis, down to the thermal energies of deuterium burning in the pre-main-sequence (PMS) phase of stellar evolution, as well as of future fusion reactors. Both the energy dependence and the absolute value of the S(E) factors deviate by more than 15% from the available direct data and existing fitting curves, with substantial variations in the electron screening by more than 50%. As a consequence, the reaction rates for astrophysics experience relevant changes, with a maximum increase of up to 20% at the temperatures of the PMS phase. From a recent primordial abundance sensitivity study, it turns out that the 2H(d,n)3He reaction is quite influential on 7Li, and the present change in the reaction rate leads to a decrease in its abundance by up to 10%. The present reaction rates have also been included in an updated version of the FRANEC evolutionary code to analyze their influence on the central deuterium abundance in PMS stars with different masses. The largest variation of about 10%-15% pertains to young stars (<=1 Myr) with masses >=1 M ⊙.

  1. New determination of the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reaction rates at astrophysical energies

    SciTech Connect

    Tumino, A.; Spartà, R.; Spitaleri, C.; Pizzone, R. G.; La Cognata, M.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Mukhamedzhanov, A. M.; Typel, S.; Tognelli, E.; Degl'Innocenti, S.; Prada Moroni, P. G.; Burjan, V.; Kroha, V.; Hons, Z.; Mrazek, J.; Piskor, S.; Lamia, L.

    2014-04-20

    The cross sections of the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reactions have been measured via the Trojan Horse method applied to the quasi-free {sup 2}H({sup 3}He,p {sup 3}H){sup 1}H and {sup 2}H({sup 3}He,n {sup 3}He){sup 1}H processes at 18 MeV off the proton in {sup 3}He. For the first time, the bare nucleus S(E) factors have been determined from 1.5 MeV, across the relevant region for standard Big Bang nucleosynthesis, down to the thermal energies of deuterium burning in the pre-main-sequence (PMS) phase of stellar evolution, as well as of future fusion reactors. Both the energy dependence and the absolute value of the S(E) factors deviate by more than 15% from the available direct data and existing fitting curves, with substantial variations in the electron screening by more than 50%. As a consequence, the reaction rates for astrophysics experience relevant changes, with a maximum increase of up to 20% at the temperatures of the PMS phase. From a recent primordial abundance sensitivity study, it turns out that the {sup 2}H(d,n){sup 3}He reaction is quite influential on {sup 7}Li, and the present change in the reaction rate leads to a decrease in its abundance by up to 10%. The present reaction rates have also been included in an updated version of the FRANEC evolutionary code to analyze their influence on the central deuterium abundance in PMS stars with different masses. The largest variation of about 10%-15% pertains to young stars (≤1 Myr) with masses ≥1 M {sub ☉}.

  2. Determination of the delta(2H/1H)of Water: RSIL Lab Code 1574

    USGS Publications Warehouse

    Revesz, Kinga; Coplen, Tyler B.

    2008-01-01

    Reston Stable Isotope Laboratory (RSIL) lab code 1574 describes a method used to determine the relative hydrogen isotope-ratio delta(2H,1H), abbreviated hereafter as d2H of water. The d2H measurement of water also is a component of the National Water Quality Laboratory (NWQL) schedules 1142 and 1172. The water is collected unfiltered in a 60-mL glass bottle and capped with a Polyseal cap. In the laboratory, the water sample is equilibrated with gaseous hydrogen using a platinum catalyst (Horita, 1988; Horita and others, 1989; Coplen and others, 1991). The reaction for the exchange of one hydrogen atom is shown in equation 1.

  3. Homotopy Algorithm for Fixed Order Mixed H2/H(infinity) Design

    NASA Technical Reports Server (NTRS)

    Whorton, Mark; Buschek, Harald; Calise, Anthony J.

    1996-01-01

    Recent developments in the field of robust multivariable control have merged the theories of H-infinity and H-2 control. This mixed H-2/H-infinity compensator formulation allows design for nominal performance by H-2 norm minimization while guaranteeing robust stability to unstructured uncertainties by constraining the H-infinity norm. A key difficulty associated with mixed H-2/H-infinity compensation is compensator synthesis. A homotopy algorithm is presented for synthesis of fixed order mixed H-2/H-infinity compensators. Numerical results are presented for a four disk flexible structure to evaluate the efficiency of the algorithm.

  4. The infrared spectrum of Al2H6 in solid hydrogen.

    PubMed

    Andrews, Lester; Wang, Xuefeng

    2003-03-28

    Although many volatile binary boron hydride compounds are known, binary aluminum hydride chemistry is limited to the polymeric (AlH3)(n) solid. The reaction of laser-ablated aluminum atoms and pure H2 during codeposition at 3.5 kelvin, followed by ultraviolet irradiation and annealing to 6.5 kelvin, allows dimerization of the intermediate AlH3 photolysis product to form Al2H6. The Al2H6 molecule is identified by seven new infrared absorptions that are accurately predicted by quantum chemical calculations for dibridged Al2H6, a molecule that is isostructural with diborane.

  5. Alcohol Chemistry: Tentative Detections of Two New Interstellar Big Molecules CH_3OC_2H_5 and (C_2H_5)_2O

    NASA Astrophysics Data System (ADS)

    Kuan, Y.-J.; Charnley, S. B.; Wilson, T. L.; Ohishi, M.; Huang, H.-C.; Snyder, L. E.

    1999-05-01

    Recent modeling of gas-grain chemistry demonstrated that many of the organic species are not the products of grain-surface reactions but are in fact synthesized in the warm gas from simpler species produced on grains. To test gas-grain chemistry, in particular alcohol chemistry, we have thus searched for (C_2H_5)_2O (diethyl ether) and CH_3OC_2H_5 (methyl ethyl ether), using the NRAO 12-m, in the giant molecular cloud cores Sgr B2(N), W51 e1/e2 and Orion-KL, where alcohols have been evaporated from ice mantles. In addition, we have also used the BIMA array to observe the 3-mm transitions of the two molecules toward Sgr B2. The preliminary 12-m results indicate clean detections of various line transitions of the two molecular species in the 1-mm, 2-mm and 3-mm regimes in all 3 molecular cloud cores. Furthermore our BIMA maps show a clear concentration of CH_3OH toward Sgr B2(N), the Large Molecule Heimat; sole detections of CH_3OC_2H_5 and (C_2H_5)_2O toward Sgr B2(N), instead of the more evolved Sgr B2(M), are also observed unambiguously as predicted by alcohol chemistry. Our detections of the two complex molecules not only further confirm the gas-grain chemistry but also require specifically that methanol (CH_3OH) and ethanol (C_2H_5OH) to be formed in grain mantles. In addition, the detections of diethyl ether and methyl ethyl ether lead to the discovery of two new molecules, including the largest ever, (C_2H_5)_2O. This work was partially supported by: NSC grants 87-2112-M-003-007 and 88-2112-M-003-013 of Taiwan, National Taiwan Normal University, Academia Sinica Institute of Astronomy and Astrophysics, NSF AST 96-13999, the University of Illinois, and NASA's Exobiology Program.

  6. High-resolution spectroscopy of Saturn at 3 microns: CH 4, CH 3D, C 2H 2, C 2H 6, PH 3, clouds, and haze

    NASA Astrophysics Data System (ADS)

    Kim, Joo Hyeon; Kim, Sang J.; Geballe, Thomas R.; Kim, Sungsoo S.; Brown, Linda R.

    2006-12-01

    We report observation and analysis of a high-resolution 2.87-3.54 μm spectrum of the southern temperate region of Saturn obtained with NIRSPEC at Keck II. The spectrum reveals absorption and emission lines of five molecular species as well as spectral features of haze particles. The ν+ν band of CH 3D is detected in absorption between 2.87 and 2.92 μm; and we derived from it a mixing ratio approximately consistent with the Infrared Space Observatory result. The ν band of C 2H 2 also is detected in absorption between 2.95 and 3.05 μm; analysis indicates a sudden drop in the C 2H 2 mixing ratio at 15 mbar (130 km above the 1 bar level), probably due to condensation in the low stratosphere. The presence of the ν+ν+ν band of C 2H 6 near 3.07 μm, first reported by Bjoraker et al. [Bjoraker, G.L., Larson, H.P., Fink, U., 1981. Astrophys. J. 248, 856-862], is confirmed, and a C 2H 6 condensation altitude of 10 mbar (140 km) in the low stratosphere is determined. We assign weak emission lines within the 3.3 μm band of CH 4 to the ν band of C 2H 6, and derive a mixing ratio of 9±4×10 for this species. Most of the C 2H 6 3.3 μm line emission arises in the altitude range 460-620 km (at ˜μbar pressure levels), much higher than the 160-370 km range where the 12 μm thermal molecular line emission of this species arises. At 2.87-2.90 μm the major absorber is tropospheric PH 3. The cloud level determined here and at 3.22-3.54 is 390-460 mbar (˜30 km), somewhat higher than found by Kim and Geballe [Kim, S.J., Geballe, T.R., 2005. Icarus 179, 449-458] from analysis of a low resolution spectrum. A broad absorption feature at 2.96 μm, which might be due to NH 3 ice particles in saturnian clouds, is also present. The effect of a haze layer at about 125 km (˜12 mbar level) on the 3.20-3.54 μm spectrum, which was not apparent in the low resolution spectrum, is clearly evident in the high resolution data, and the spectral properties of the haze particles suggest that

  7. Epitaxial growth and electronic structure of oxyhydride SrVO2H thin films

    NASA Astrophysics Data System (ADS)

    Katayama, Tsukasa; Chikamatsu, Akira; Yamada, Keisuke; Shigematsu, Kei; Onozuka, Tomoya; Minohara, Makoto; Kumigashira, Hiroshi; Ikenaga, Eiji; Hasegawa, Tetsuya

    2016-08-01

    Oxyhydride SrVO2H epitaxial thin films were fabricated on SrTiO3 substrates via topotactic hydridation of oxide SrVO3 films using CaH2. Structural and composition analyses suggested that the SrVO2H film possessed one-dimensionally ordered V-H--V bonds along the out-of-plane direction. The synthesis temperature could be lowered by reducing the film thickness, and the SrVO2H film was reversible to SrVO3 by oxidation through annealing in air. Photoemission and X-ray absorption spectroscopy measurements revealed the V3+ valence state in the SrVO2H film, indicating that the hydrogen existed as hydride. Furthermore, the electronic density of states was highly suppressed at the Fermi energy, consistent with the prediction that tetragonal distortion induces metal to insulation transition.

  8. The growth of phenanthrene from naphthalene by C2H2 additions

    NASA Astrophysics Data System (ADS)

    Bauschlicher, Charles W., Jr.

    2015-07-01

    Two paths are investigated for the growth of phenanthrene from naphthalene by the addition of C2H2 groups. The first series of steps leads to acenaphthylene (ACN), which is consistent with the path found previously. The addition of C2H2 to ACN can yield a product with two adjacent five-membered rings. Opening one five-membered ring produces a five-membered ring with CH2 side group. This can be converted to a six-membered ring in a manner analogous to the hydrogen atom catalysed fulvene to benzene conversion. A second path, with a somewhat higher barrier, can also lead to the phenanthrene product. The transition state for the second path is essentially isoenergetic with the stating material of ACN + C2H2 + H.

  9. Orientational order in the stable buckminster fullerene solvate C60·2CBr2H2

    NASA Astrophysics Data System (ADS)

    Ye, J.; Barrio, M.; Negrier, Ph.; Qureshi, N.; Rietveld, I. B.; Céolin, R.; Tamarit, J. Ll.

    2017-04-01

    Crystals of the solvate C60·2CBr2H2 (monoclinic C2/ m), which is stable in air, were grown by slow evaporation of solutions of C60 in CBr2H2 at room temperature. The high enthalpy change for the complete desolvation process, 54.9 kJ mol-1 of solvent, as well as the relatively large negative excess volume of -49.6 Å3 indicate the presence of strong intermolecular interactions between C60 and CBr2H2. The strong intermolecular interactions are consistent with an overall orientational order for the C60 and the CBr2H2 molecules in the solvate as found by the Rietveld refinement of its crystal structure.

  10. Ecocatalysis for 2H-chromenes synthesis: an integrated approach for phytomanagement of polluted ecosystems.

    PubMed

    Escande, Vincent; Velati, Alicia; Grison, Claude

    2015-04-01

    A direct, general and efficient method to synthesize 2H-chromenes (2H-benzo[b]pyrans), identified as environmentally friendly pesticides, has been developed. This approach lays on the new concept of ecocatalysis, which involves the use of biomass from phytoextraction processes, as a valuable source of metallic elements for chemical synthesis. This methodology is similar or superior to known methods, affording 2H-chromenes with good to excellent yields (60-98%), including the preparation of precocene I, a natural insect growth regulator, with 91% yield. The approach is ideal for poor reactive substrates such as phenol or naphthol, classically transformed into 2H-chromenes by methodologies associated with environmental issues. These results illustrate the interest of combining phytoextraction and green synthesis of natural insecticides.

  11. Oxydifluoromethylation of Alkenes by Photoredox Catalysis: Simple Synthesis of CF2H-Containing Alcohols.

    PubMed

    Arai, Yusuke; Tomita, Ren; Ando, Gaku; Koike, Takashi; Akita, Munetaka

    2016-01-22

    We have developed a novel and simple protocol for the direct incorporation of a difluoromethyl (CF2 H) group into alkenes by visible-light-driven photoredox catalysis. The use of fac-[Ir(ppy)3] (ppy=2-pyridylphenyl) photocatalyst and shelf-stable Hu's reagent, N-tosyl-S-difluoromethyl-S-phenylsulfoximine, as a CF2 H source is the key to success. The well-designed photoredox system achieves synthesis of not only β-CF2 H-substituted alcohols but also ethers and an ester from alkenes through solvolytic processes. The present method allows a single-step and regioselective formation of C(sp(3))-CF2 H and C(sp(3))-O bonds from C=C moiety in alkenes, such as hydroxydifluoromethylation, regardless of terminal or internal alkenes. Moreover, this methodology tolerates a variety of functional groups.

  12. Infrared and Ultraviolet Spectra of Diborane(6): B2H6 and B2D6.

    PubMed

    Peng, Yu-Chain; Chou, Sheng-Lung; Lo, Jen-Iu; Lin, Meng-Yeh; Lu, Hsiao-Chi; Cheng, Bing-Ming; Ogilvie, J F

    2016-07-21

    We recorded absorption spectra of diborane(6), B2H6 and B2D6, dispersed in solid neon near 4 K in both mid-infrared and ultraviolet regions. For gaseous B2H6 from 105 to 300 nm, we report quantitative absolute cross sections; for solid B2H6 and for B2H6 dispersed in solid neon, we measured ultraviolet absorbance with relative intensities over a wide range. To assign the mid-infrared spectra to specific isotopic variants, we applied the abundance of (11)B and (10)B in natural proportions; we undertook quantum-chemical calculations of wavenumbers associated with anharmonic vibrational modes and the intensities of the harmonic vibrational modes. To aid an interpretation of the ultraviolet spectra, we calculated the energies of electronically excited singlet and triplet states and oscillator strengths for electronic transitions from the electronic ground state.

  13. Indirect Approach To The {sup 2}H(d,p){sup 3}H Reaction Study

    SciTech Connect

    Sparta, R.; Pizzone, R. G.; Spitaleri, C.; Cherubini, S.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Aliotta, M.; Burjan, V.; Hons, Z.; Kroha, V.; Mrazek, J.; Kiss, G.; McCleskey, M.; Trache, L.

    2010-11-24

    In order to understand primordial and stellar nucleosynthesis, we have studied {sup 2}H(d,p){sup 3}H reaction at 0.4 MeV down to astrophysical energies. Knowledge of its S-factor is interesting also to plan reactions for fusion reactors to produce energy. The {sup 2}H(d,p)H reaction has been studied through the Trojan Horse Method applied to the three-body reaction {sup 2}H(He,pt)H, at beam energy of 17 MeV. Once selection of protons and tritons detected in coincidence and the selection of quasi-free events, the obtained S-factor is compared with direct measurements. Such data are in agreement with the direct ones and a pole invariance test has been obtained comparing the present results with another {sup 2}H(d,p){sup 3}H THM measurements, where a different spectator particle was employed.

  14. Synthesis of 2H-indazoles by the [3 + 2] cycloaddition of arynes and sydnones.

    PubMed

    Wu, Chunrui; Fang, Yuesi; Larock, Richard C; Shi, Feng

    2010-05-21

    A rapid and efficient synthesis of 2H-indazoles has been developed, which involves the [3 + 2] dipolar cycloaddition of arynes and sydnones. The process proceeds under mild reaction conditions in good to excellent yields.

  15. Epitaxial growth and electronic structure of oxyhydride SrVO{sub 2}H thin films

    SciTech Connect

    Katayama, Tsukasa; Chikamatsu, Akira Yamada, Keisuke; Onozuka, Tomoya; Shigematsu, Kei; Minohara, Makoto; Kumigashira, Hiroshi; Ikenaga, Eiji

    2016-08-28

    Oxyhydride SrVO{sub 2}H epitaxial thin films were fabricated on SrTiO{sub 3} substrates via topotactic hydridation of oxide SrVO{sub 3} films using CaH{sub 2}. Structural and composition analyses suggested that the SrVO{sub 2}H film possessed one-dimensionally ordered V-H{sup −}-V bonds along the out-of-plane direction. The synthesis temperature could be lowered by reducing the film thickness, and the SrVO{sub 2}H film was reversible to SrVO{sub 3} by oxidation through annealing in air. Photoemission and X-ray absorption spectroscopy measurements revealed the V{sup 3+} valence state in the SrVO{sub 2}H film, indicating that the hydrogen existed as hydride. Furthermore, the electronic density of states was highly suppressed at the Fermi energy, consistent with the prediction that tetragonal distortion induces metal to insulation transition.

  16. Determination of Transformation Coefficients of the C2H4 Molecule

    NASA Astrophysics Data System (ADS)

    Fomchenko, A. L.; Belova, A. S.; Berezkin, K. B.; Ziatkova, A. G.

    2016-11-01

    The object of theoretical research is the C 2 H 4 molecule, as it is important to know its properties to address numerous problems of molecular physics. The "expanded" local mode approach developed earlier was used for a X2Y4 molecule. This approach makes it possible to obtain simple expressions for the transformation coefficients of the investigated molecule, which subsequently allows one to determine various spectroscopic parameters of the C 2 H 4 molecule in a simple form.

  17. Structural aspects of nucleotide ligand binding by a bacterial 2H phosphoesterase

    PubMed Central

    Myllykoski, Matti; Kursula, Petri

    2017-01-01

    The 2H phosphoesterase family contains enzymes with two His-X-Ser/Thr motifs in the active site. 2H enzymes are found in all kingdoms of life, sharing little sequence identity despite the conserved overall fold and active site. For many 2H enzymes, the physiological function is unknown. Here, we studied the structure of the 2H family member LigT from Escherichia coli both in the apo form and complexed with different active-site ligands, including ATP, 2′-AMP, 3′-AMP, phosphate, and NADP+. Comparisons to the well-characterized vertebrate myelin enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) highlight specific features of the catalytic cycle and substrate recognition in both enzymes. The role played by the helix α7, unique to CNPases within the 2H family, is apparently taken over by Arg130 in the bacterial enzyme. Other residues and loops lining the active site groove are likely to be important for RNA substrate binding. We visualized conformational changes related to ligand binding, as well as the position of the nucleophilic water molecule. We also present a low-resolution model of E. coli LigT bound to tRNA in solution, and provide a model for RNA binding by LigT, involving flexible loops lining the active site cavity. Taken together, our results both aid in understanding the common features of 2H family enzymes and help highlight the distinct features in the 2H family members, which must result in different reaction mechanisms. Unique aspects in different 2H family members can be observed in ligand recognition and binding, and in the coordination of the nucleophilic water molecule and the reactive phosphate moiety. PMID:28141848

  18. Synthesis of 2H-Indazoles by the [3 + 2] Dipolar Cycloaddition of Sydnones with Arynes

    PubMed Central

    Fang, Yuesi; Wu, Chunrui; Larock, Richard C.; Shi, Feng

    2011-01-01

    A rapid and efficient synthesis of 2H-indazoles has been developed using a [3 + 2] dipolar cycloaddition of sydnones and arynes. A series of 2H-indazoles have been prepared in good to excellent yields using this protocol, and subsequent Pd-catalyzed coupling reactions can be applied to the halogenated products to generate a structurally diverse library of indazoles. PMID:21970468

  19. SMA Observations of C2H in High-mass Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Jiang, Xue-Jian; Liu, Hauyu Baobab; Zhang, Qizhou; Wang, Junzhi; Zhang, Zhi-Yu; Li, Juan; Gao, Yu; Gu, Qiusheng

    2015-08-01

    {{{C}}}2{{H}} is a representative hydrocarbon that is abundant and ubiquitous in the interstellar medium. To study its chemical properties, we present Submillimeter Array observations of the C2H N = 3-2 and HC3N J = 30-29 transitions and the 1.1 mm continuum emission toward four OB cluster-forming regions, AFGL 490, ON 1, W33 Main, and G10.6-0.4, which cover a bolometric luminosity range of ˜103-106 {L}⊙ . We found that on large scales, the C2H emission traces the dense molecular envelope. However, for all observed sources, the peaks of C2H emission are offset by several times 104 AU from the peaks of 1.1 mm continuum emission, where the most luminous stars are located. By comparing the distribution and profiles of C2H hyperfine lines and the 1.1 mm continuum emission, we find that the C2H column density (and abundance) around the 1.1 mm continuum peaks is lower than those in the ambient gas envelope. Chemical models suggest that C2H might be transformed to other species owing to increased temperature and density thus, its reduced abundance could be the signpost of the heated molecular gas in the ˜104 AU vicinity around the embedded high-mass stars. Our results support such theoretical prediction for centrally embedded ˜103-106 {L}⊙ OB star-forming cores, while future higher-resolution observations are required to examine the C2H transformation around the localized sites of high-mass star formation.

  20. Analysis of dissolved C2H2 in transformer oils using laser Raman spectroscopy.

    PubMed

    Somekawa, Toshihiro; Kasaoka, Makoto; Kawachi, Fumio; Nagano, Yoshitomo; Fujita, Masayuki; Izawa, Yasukazu

    2013-04-01

    We have developed a laser Raman spectroscopy technique for assessing the working conditions of transformers by measuring dissolved C2H2 gas concentrations present in transformer oils. A frequency doubled Q-switched Nd:YAG laser (532 nm) was used as a laser source, and Raman signals at ~1972 cm(-1) originating from C2H2 gas dissolved in oil were detected. The results show that laser Raman spectroscopy is a useful alternative method for detecting transformer faults.

  1. A Classical Trajectory Study of the Dissociation and Isomerization of C2H5

    DTIC Science & Technology

    2013-01-01

    C2H5) plays an important role in combustion chemistry. Because the reverse reactions constitute the addition of a hydrogen atom to a stable molecule...primary reaction zones of premixed flames. The hydrogen atom thus produced acts to promote chain branching through the H + O2 ⇌ OH + O reaction . Thus...calculations of reaction paths on the electronically excited-state potential energy surfaces (PESs) of C2H5 14 predict that the nonclassical bridge structure is

  2. Natural-abundance solid-state 2H NMR spectroscopy at high magnetic field.

    PubMed

    Aliev, Abil E; Mann, Sam E; Iuga, Dinu; Hughes, Colan E; Harris, Kenneth D M

    2011-06-09

    High-resolution solid-state (2)H NMR spectroscopy provides a method for measuring (1)H NMR chemical shifts in solids and is advantageous over the direct measurement of high-resolution solid-state (1)H NMR spectra, as it requires only the application of routine magic angle sample spinning (MAS) and routine (1)H decoupling methods, in contrast to the requirement for complex pulse sequences for homonuclear (1)H decoupling and ultrafast MAS in the case of high-resolution solid-state (1)H NMR. However, a significant obstacle to the routine application of high-resolution solid-state (2)H NMR is the very low natural abundance of (2)H, with the consequent problem of inherently low sensitivity. Here, we explore the feasibility of measuring (2)H MAS NMR spectra of various solids with natural isotopic abundances at high magnetic field (850 MHz), focusing on samples of amino acids, peptides, collagen, and various organic solids. The results show that high-resolution solid-state (2)H NMR can be used successfully to measure isotropic (1)H chemical shifts in favorable cases, particularly for mobile functional groups, such as methyl and -N(+)H(3) groups, and in some cases phenyl groups. Furthermore, we demonstrate that routine (2)H MAS NMR measurements can be exploited for assessing the relative dynamics of different functional groups in a molecule and for assessing whole-molecule motions in the solid state. The magnitude and field-dependence of second-order shifts due to the (2)H quadrupole interaction are also investigated, on the basis of analysis of simulated and experimental (1)H and (2)H MAS NMR spectra of fully deuterated and selectively deuterated samples of the α polymorph of glycine at two different magnetic field strengths.

  3. Synthesis of a library of 2-alkyl-3-alkyloxy-2H-indazole-6-carboxamides.

    PubMed

    Mills, Aaron D; Maloney, Patrick; Hassanein, Elsayed; Haddadin, Makhluf J; Kurth, Mark J

    2007-01-01

    A library of 200 2-alkyl-3-alkyloxy-2H-indazole-6-carboxamides was synthesized using parallel solution-phase methods. The indazole cyclization reaction was optimized for library production with the best yields resulting from controlled alcohol/water solvent ratios. The key step, a heterocyclization reaction, proceeds by N,N-bond formation and delivers the 2H-indazole scaffold. Automated preparative HPLC was utilized to provide pure compounds on a 10+ mg scale.

  4. Large-scale Spectroscopic Mapping of the ρ Ophiuchi Molecular Cloud Complex. I. The C2H-to-N2H+ Ratio as a Signpost of Cloud Characteristics

    NASA Astrophysics Data System (ADS)

    Pan, Zhichen; Li, Di; Chang, Qiang; Qian, Lei; Bergin, Edwin A.; Wang, Junzhi

    2017-02-01

    We present 2.5-square-degree C2H N = 1-0 and N2H+ J = 1-0 maps of the ρ Ophiuchi molecular cloud complex. These are the first large-scale maps of the ρ Ophiuchi molecular cloud complex with these two tracers. The C2H emission is spatially more extended than the N2H+ emission. One faint N2H+ clump, Oph-M, and one C2H ring, Oph-RingSW, are identified for the first time. The observed C2H-to-N2H+ abundance ratio ([C2H]/[N2H+]) varies between 5 and 110. We modeled the C2H and N2H+ abundances with 1D chemical models, which show a clear decline of [C2H]/[N2H+] with chemical age. Such an evolutionary trend is little affected by temperatures when they are below 40 K. At high density (n H > 105 cm-3), however, the time it takes for the abundance ratio to drop at least one order of magnitude becomes less than the dynamical time (e.g., turbulence crossing time of ˜105 yr). The observed [C2H]/[N2H+] difference between L1688 and L1689 can be explained by L1688 having chemically younger gas in relatively less dense regions. The observed [C2H]/[N2H+] values are the results of time evolution, accelerated at higher densities. For the relatively low density regions in L1688 where only C2H emission was detected, the gas should be chemically younger.

  5. Synthesis of polyhydroxylated 2H-azirines and 2-halo-2H-azirines from 3-azido-2,3-dideoxyhexopyranoses by alkoxyl radical fragmentation.

    PubMed

    Alonso-Cruz, Carmen R; Kennedy, Alan R; Rodríguez, María S; Suárez, Ernesto

    2008-06-06

    The reaction of 3-azido-2,3-dideoxypyranose and 3-azido-2,3-dideoxy-2-halohexopyranose compounds with (diacetoxyiodo)benzene and iodine generated 2-azido-1,2-dideoxy-1-iodoalditols and 2-azido-1,2-dideoxy-1-halo-1-iodoalditols, respectively. These beta-iodo azides could be transformed by chemoselective dehydroiodination into 2-azido-1,2-dideoxy-4- O-formyl-pent-1-enitols and (Z, E)-2-azido-1,2-dideoxy-1-halo-4- O-formyl-pent-1-enitols in good yields. Thermolysis and photochemical studies of these vinyl azides and 1-halovinyl azides for the synthesis of polyhydroxylated 3-alkyl-2 H-azirines and the hitherto unknown 2-halo-3-alkyl-2 H-azirines have also been accomplished.

  6. EPR of Cu 2+ and VO 2+ in a cobalt saccharin complex, [Co(sac) 2(H 2O) 4]·2H 2O, single crystals

    NASA Astrophysics Data System (ADS)

    Yerli, Y.; Köksal, F.; Karadag, A.

    2003-09-01

    Cu 2+ and VO 2+ doped single crystals of [Co(sac) 2(H 2O) 4]·2H 2O (Cosacaqua) complex were investigated using EPR technique at ambient temperature. Detailed investigation of the EPR spectra indicated that the Cu 2+ and VO 2+ substitute the Co 2+. Two sites were observed for Cu 2+ and VO 2+. But each site of V 4+ corresponds two different orientations of VO 2+. The principal values of the g and the hyperfine tensors were obtained. The spectra indicate that the ground state for Cu 2+ is mainly 3 dx2- y2. The covalent bonding parameters for Cu 2+ and VO 2+ and Fermi contact terms were obtained.

  7. Direct ab initio study of the C6H6 + CH3/C2H5 = C6H5 + CH4/C2H6 reactions

    NASA Astrophysics Data System (ADS)

    Mai, Tam V.-T.; Ratkiewicz, Artur; Duong, Minh v.; Huynh, Lam K.

    2016-02-01

    A kinetic study of the reactions C6H6 + CH3/C2H5 = C6H5 + CH4/C2H6 was carried out in the temperature range of 300-2500 K using high levels of electronic structure theory, namely, CCSD(T)/CBS//BH&HLYP/cc-pVDZ, and canonical variational transition state theory (CVT) with corrections for small curvature tunneling (SCT) and hindered internal rotation (HIR) treatments. It is found that variational effect is not important and both SCT and HIR corrections noticeably affect the rate constants. Being in good agreement with literature data, the calculated results provide solid basis information for the investigation of the polyaromatic hydrocarbon (PAH) + alkyl radical reaction, an important class in combustion and soot formation.

  8. Felix Spectroscopy of Likely Astronomical Molecular Ions: HC_3O^+, C_2H_3CNH^+, and C_2H_5CNH^+

    NASA Astrophysics Data System (ADS)

    Thorwirth, Sven; Asvany, Oskar; Brünken, Sandra; Jusko, Pavol; Schlemmer, Stephan; Martin-Drumel, Marie-Aline; McCarthy, Michael C.

    2017-06-01

    Infrared signatures of three molecular ions of relevance to the interstellar medium and planetary atmospheres have been detected at the Free Electron Laser for Infrared eXperiments, FELIX, at Radboud University (Nijmegen, The Netherlands) in combination with the 4K FELion 22-pole ion trap facility. Mid-infrared vibrational modes of protonated tricarbon monoxide, HC_3O^+, protonated vinyl cyanide, C_2H_3CNH^+, and protonated ethyl cyanide, C_2H_5CNH^+, were detected using resonant photodissociation of the respective Ne-complexes by monitoring the depletion of their cluster mass signal as a function of wavenumber. The infrared fingerprints compare very favorably with results from high-level quantum-chemical calculations performed at the CCSD(T) level of theory.

  9. Lightweight hydrogen-storage material Mg(0.65)Sc(0.35)D2 studied with 2H and 2H-{45Sc} MAS NMR exchange spectroscopy.

    PubMed

    Srinivasan, S; Magusin, P C M M

    2011-01-01

    Using double-quantum (2)H MAS NMR with (45)Sc recoupling and Bloch-Siegert compensated (2)H-{(45)Sc} TRAPDOR we have identified the overlapping NMR signals of deuterium with and without scandium neighbors in Mg(0.65)Sc(0.35)D(2), a candidate lightweight material for hydrogen storage. At room temperature we also observe a third type of mobile deuterium. Deuterium mobility among the three NMR-distinct sites has been investigated by means of one-and two-dimensional exchange spectroscopy (Exsy). Complete deuterium exchange within 0.1s is observed, which indicates that the three NMR-distinct sites are close together in the crystal lattice. The weak temperature- and MAS-rate dependences observed in Exsy are indicative for a combination of chemical exchange and spin diffusion. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. A copper–polyol complex: [Na2(C2H6O2)6][Cu(C2H4O2)2

    PubMed Central

    Rivers, Joseph H.; Carroll, Kyler J.; Jones, Richard A.; Carpenter, Everett E.

    2010-01-01

    The ionic title complex, bis(μ-ethyl­ene glycol)-κ3 O,O′:O′;κ3 O:O,O′-bis[(ethyl­ene glycol-κ2 O,O′)(ethyl­ene glycol-κO)sodium] bis(ethyl­ene glycolato-κ2 O,O′)copper(II), [Na2(C2H6O2)6][Cu(C2H4O2)2], was obtained from a basic solution of CuCl2 in ethyl­ene glycol and consists of discrete ions inter­connected by O—H⋯O hydrogen bonds. This is the first example of a disodium–ethyl­ene glycol complex cation cluster. The cation lies about an inversion center and the CuII atom of the anion lies on another independent inversion center. PMID:20203401

  11. Calculation of the solubility diagrams in the system Ca(OH) 2-H 3PO 4-KOH-HNO 3-CO 2-H 2O

    NASA Astrophysics Data System (ADS)

    Vereecke, Guy; Lemaître, Jacques

    1990-09-01

    A computer program has been developed for calculating the solubility isotherms of sparingly soluble calcium phosphates (including octacalcium phosphate and β-tricalcium phosphate) and calcite in the system Ca(OH) 2-H 3PO 4-KOH-HNO 3-CO 2-H 2O. It allows the influence of such parameters as temperature, pH, partial CO 2 pressure and ionic strength to be investigated. The calculation process takes into account the effects of ion-pair formation and ionic strength. Selected solubility isotherms are presented and compared to literature data. The influence of temperature, Ca/P ratio, ionic strength and CO 2 pressure on the stability isotherms of hydroxyapatite and dicalcium phosphate are discussed in detail.

  12. One-step fabrication of nickel nanocones by electrodeposition using CaCl2·2H2O as capping reagent

    NASA Astrophysics Data System (ADS)

    Lee, Jae Min; Jung, Kyung Kuk; Lee, Sung Ho; Ko, Jong Soo

    2016-04-01

    In this research, a method for the fabrication of nickel nanocones through the addition of CaCl2·2H2O to an electrodeposition solution was proposed. When electrodeposition was performed after CaCl2·2H2O addition, precipitation of the Ni ions onto the (2 0 0) crystal face was suppressed and anisotropic growth of the nickel electrodeposited structures was promoted. Sharper nanocones were produced with increasing concentration of CaCl2·2H2O added to the solution. Moreover, when temperature of the electrodeposition solutions approached 60 °C, the apex angle of the nanostructures decreased. In addition, the nanocones produced were applied to superhydrophobic surface modification using a plasma-polymerized fluorocarbon (PPFC) coating. When the solution temperature was maintained at 60 °C and the concentration of the added CaCl2·2H2O was 1.2 M or higher, the fabricated samples showed superhydrophobic surface properties. The proposed nickel nanocone formation method can be applied to various industrial fields that require metal nanocones, including superhydrophobic surface modification.

  13. DISSOCIATION OF B2H6 AND ADSORPTION OF THE FRAGMENTS OF B2H6 ON THE STEPPED Ge(100) SURFACE

    NASA Astrophysics Data System (ADS)

    Türkmenoğlu, Mustafa; Katircioğlu, Şenay

    2012-06-01

    In this work, the p-type doping of the SA type stepped Ge(100) surface by a diborane (B2H6) gas flow has been simulated by the possible dissociation and adsorption models. The most probable dissociation model of B2H6 and adsorption models of the fragments of B2H6 on the stepped Ge(100) surface have been determined by the local minimum total energy and/or binding energy calculations based on the Density functional (B3LYP/6-3g) and Hartree-Fock (HF/STO-3g) theories, respectively. The present calculations have shown that, the step region (for both up and down terraces) of the stepped Ge(100) surface has the most attractive sites for BH3 molecules determined to be the first dissociation fragments of B2H6 by an external energy of 1.3 eV. It has been found that, at the first step of the adsorption, BH3 can dissociate to BH2 and BH fragments on the stepped Ge(100) surface. While BH3 and BH2 products prefer to be attached to a single surface Ge atom, BH is bridged between two adjacent surface Ge atoms. According to the present optimization calculations, the p-type doping process of the stepped Ge(100) surface has started with the adsorption of BH3 on the electron deficient site (buckled down) of the Ge dimer bond close to the step edge and ended with the substitutional occupation of the Ge site in the layers of the surface by B atom. The beginning of the p-type doping of the stepped Ge(100) surface has been illustrated by the electronic states of B appeared in the optical energy gap of Ge very close to the edge of the HOMO.

  14. A Sensitive Search for Traces of Stratospheric NH3, PH3, C2H5D, and CH2C2H2 within Saturn's Beacon

    NASA Astrophysics Data System (ADS)

    Greathouse, T. K.; Irons, W.; Fouchet, T.; Fletcher, L.; Orton, G. S.; Bézard, B.; Tokunaga, A. T.; Lacy, J. H.

    2011-12-01

    The development of a hot region in Saturn's stratosphere, the Beacon, coincided with observations of a massive storm outbreak in Saturn's deeper atmosphere. It is thought that these disturbances in the troposphere and stratosphere are related. The severity and size of the deep convective storm along with the increased stratospheric temperatures of the Beacon suggested the possibility that the tropospheric convection was strong enough to inject chemical constituents from the troposphere into the stratosphere by convective overshoot. Using the high spectral resolution capabilities of TEXES, the Texas Echelon cross Echelle Spectrograph, mounted on the NASA Infrared Telescope Facility, IRTF, we performed a sensitive search for NH3 and PH3 emission lines that would indicate the presence of NH3 and PH3 in the stratospheric region of the Beacon. We will present upper limits to the NH3 and PH3 abundances as initial reductions of the data retrieved between July 14th and 19th, 2011 showed no obvious emission features from either gas. The high temperatures within the Beacon also allowed for a detailed search for molecules as yet undetected in the stratospheres of the Outer Planets, but predicted to exist at low abundance levels. Observations centered at 800 cm-1 and 845 cm-1 were retrieved to search for C2H5D and CH2C2H2 emission, respectively. Like the search for NH3 and PH3, initial reductions show no trace of these molecules. We will present a more thorough analysis with an upper limit to the CH2C2H2 abundance within the Beacon. Only a model to data comparison will be made for the C2H5D spectral setting, since a full set of line parameters for this molecule have yet to be recorded.

  15. {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reactions at sub-coulomb energies

    SciTech Connect

    Tumino, A.; Spitaleri, C.; Mukhamedzhanov, A. M.; Typel, S.; Sparta, R.; Aliotta, M.; Kroha, V.; Hons, Z.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Mrazek, J.; Pizzone, R. G.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.

    2012-11-20

    The {sup 2}H({sup 3}He,p{sup 3}H){sup 1}H and {sup 2}H({sup 3}He,n{sup 3}He){sup 1}H processes have been measured in quasi free kinematics to investigate for the first time the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reactions by means of the Trojan Horse Method. The {sup 3}He+d experiment was performed at 18 MeV, corresponding the a d-d energy range from 1.5 MeV down to 2 keV. This range overlaps with the relevant region for Standard Big Bang Nucleosynthesis as well as with the thermal energies of future fusion reactors and deuterium burning in the Pre Main Sequence phase of stellar evolution. This is the first pioneering experiment in quasi free regime where the charged spectator is detected. Both the energy dependence and the absolute value of the bare nucleus S(E) factors have been extracted for the first time. They deviate by more than 15% from available direct data with new S(0) values of 57.4{+-}1.8 MeVb for {sup 3}H+p and 60.1{+-}1.9 MeVb for {sup 3}He+n. None of the existing fitting curves is able to provide the correct slope of the new data in the full range, thus calling for a revision of the theoretical description. This has consequences in the calculation of the reaction rates with more than a 25% increase at the temperatures of future fusion reactors.

  16. C2H4 adsorption on Cu(210), revisited: bonding nature and coverage effects.

    PubMed

    Amino, Shuichi; Arguelles, Elvis; Agerico Diño, Wilson; Okada, Michio; Kasai, Hideaki

    2016-08-24

    With the aid of density functional theory (DFT)-based calculations, we investigate the adsorption of C2H4 on Cu(210). We found two C2H4 adsorption sites, viz., the top of the step-edge atom (S) and the long bridge between two step-edge atoms (SS) of Cu(210). The step-edge atoms on Cu(210) block the otherwise active terrace sites found on copper surfaces with longer step sizes. This results in the preference for π-bonded over di-σ-bonded C2H4. We also found two stable C2H4 adsorption orientations on the S- and SS-sites, viz., with the C2H4 C[double bond, length as m-dash]C bond parallel (fit) and perpendicular (cross) to [001]. Furthermore, we found that the three peaks observed in previous temperature programmed desorption (TPD) experiment [Surf. Sci., 2011, 605, 934-940] could be attributed to C2H4 in the S-fit or S-cross, S-fit and S-cross-fit (S-cross and S-fit configurations that both exist in the same unit cell) configurations on Cu(210).

  17. Multiparameter functional diversity of human C2H2 zinc finger proteins

    PubMed Central

    Schmitges, Frank W.; Radovani, Ernest; Najafabadi, Hamed S.; Barazandeh, Marjan; Campitelli, Laura F.; Yin, Yimeng; Jolma, Arttu; Zhong, Guoqing; Guo, Hongbo; Kanagalingam, Tharsan; Dai, Wei F.; Taipale, Jussi; Emili, Andrew; Greenblatt, Jack F.; Hughes, Timothy R.

    2016-01-01

    C2H2 zinc finger proteins represent the largest and most enigmatic class of human transcription factors. Their C2H2-ZF arrays are highly variable, indicating that most will have unique DNA binding motifs. However, most of the binding motifs have not been directly determined. In addition, little is known about whether or how these proteins regulate transcription. Most of the ∼700 human C2H2-ZF proteins also contain at least one KRAB, SCAN, BTB, or SET domain, suggesting that they may have common interacting partners and/or effector functions. Here, we report a multifaceted functional analysis of 131 human C2H2-ZF proteins, encompassing DNA binding sites, interacting proteins, and transcriptional response to genetic perturbation. We confirm the expected diversity in DNA binding motifs and genomic binding sites, and provide motif models for 78 previously uncharacterized C2H2-ZF proteins, most of which are unique. Surprisingly, the diversity in protein–protein interactions is nearly as high as diversity in DNA binding motifs: Most C2H2-ZF proteins interact with a unique spectrum of co-activators and co-repressors. Thus, multiparameter diversification likely underlies the evolutionary success of this large class of human proteins. PMID:27852650

  18. Kinetics of the reaction C2H5 + HO2 by time-resolved mass spectrometry.

    PubMed

    Ludwig, Wiebke; Brandt, Björn; Friedrichs, Gernot; Temps, Friedrich

    2006-03-09

    The overall rate constant for the radical-radical reaction C2H5 + HO2 --> products has been determined at room temperature by means of time-resolved mass spectrometry using a laser photolysis/flow reactor combination. Excimer laser photolysis of gas mixtures containing ethane, hydrogen peroxide, and oxalyl chloride was employed to generate controlled concentrations of C2H5 and HO2 radicals by the fast H abstraction reactions of the primary radicals Cl and OH with C2H6 and H2O2, respectively. By careful adjustments of the radical precursor concentrations, the title reaction could be measured under almost pseudo-first-order conditions with the concentration of HO2 in large excess over that of C2H5. From detailed numerical simulations of the measured concentration-time profiles of C2H5 and HO2, the overall rate constant for the reaction was found to be k1(293 K) = (3.1 +/- 1.0) x 10(13) cm3 mol(-1) s(-1). C2H5O could be confirmed as a direct reaction product.

  19. delta(13)C and delta(2)H isotope ratios in amphetamine synthesized from benzaldehyde and nitroethane.

    PubMed

    Collins, Michael; Salouros, Helen; Cawley, Adam T; Robertson, James; Heagney, Aaron C; Arenas-Queralt, Andrea

    2010-06-15

    Previous work in these laboratories and by Butzenlechner et al. and Culp et al. has demonstrated that the delta(2)H isotope value of industrial benzaldehyde produced by the catalytic oxidation of toluene is profoundly positive, usually in the range +300 per thousand to +500 per thousand. Synthetic routes leading to amphetamine, methylamphetamine or their precursors and commencing with such benzaldehyde may be expected to exhibit unusually positive delta(2)H values. Results are presented for delta(13)C and delta(2)H isotope values of 1-phenyl-2-nitropropene synthesized from an industrial source of benzaldehyde, having a positive delta(2)H isotope value, by a Knoevenagel condensation with nitroethane. Results are also presented for delta(13)C and delta(2)H isotope values for amphetamine prepared from the resulting 1-phenyl-2-nitropropene. The values obtained were compared with delta(13)C and delta(2)H isotope values obtained for an amphetamine sample prepared using a synthetic route that did not involve benzaldehyde. Finally, results are presented for samples of benzaldehyde, 1-phenyl-2-nitropropene and amphetamine that had been seized at a clandestine amphetamine laboratory. Copyright (c) 2010 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.

  20. Laboratory studies of 2H evaporator scale dissolution in dilute nitric acid

    SciTech Connect

    Oji, L.

    2014-09-23

    The rate of 2H evaporator scale solids dissolution in dilute nitric acid has been experimentally evaluated under laboratory conditions in the SRNL shielded cells. The 2H scale sample used for the dissolution study came from the bottom of the evaporator cone section and the wall section of the evaporator cone. The accumulation rate of aluminum and silicon, assumed to be the two principal elemental constituents of the 2H evaporator scale aluminosilicate mineral, were monitored in solution. Aluminum and silicon concentration changes, with heating time at a constant oven temperature of 90 deg C, were used to ascertain the extent of dissolution of the 2H evaporator scale mineral. The 2H evaporator scale solids, assumed to be composed of mostly aluminosilicate mineral, readily dissolves in 1.5 and 1.25 M dilute nitric acid solutions yielding principal elemental components of aluminum and silicon in solution. The 2H scale dissolution rate constant, based on aluminum accumulation in 1.5 and 1.25 M dilute nitric acid solution are, respectively, 9.21E-04 ± 6.39E-04 min{sup -1} and 1.07E-03 ± 7.51E-05 min{sup -1}. Silicon accumulation rate in solution does track the aluminum accumulation profile during the first few minutes of scale dissolution. It however diverges towards the end of the scale dissolution. This divergence therefore means the aluminum-to-silicon ratio in the first phase of the scale dissolution (non-steady state conditions) is different from the ratio towards the end of the scale dissolution. Possible causes of this change in silicon accumulation in solution as the scale dissolution progresses may include silicon precipitation from solution or the 2H evaporator scale is a heterogeneous mixture of aluminosilicate minerals with several impurities. The average half-life for the decomposition of the 2H evaporator scale mineral in 1.5 M nitric acid is 12.5 hours, while the half-life for the decomposition of the 2H evaporator scale in 1.25 M nitric acid is 10

  1. Determination of ketone body kinetics using a D-(-)-3-hydroxy(4,4,4-/sub 2/H/sup 3/)butyrate tracer

    SciTech Connect

    Bougneres, P.F.; Balasse, E.O.; Ferre, P.; Bier, D.M.

    1986-02-01

    In studies where D-(-)-3-hydroxy(4,4,4-/sub 2/H/sup 3/)butyrate is employed as isotopic tracer in vivo, we have described a selected ion monitoring, gas-liquid chromatography-mass spectrometry micromethod which measures (/sub 2/H/sup 3/) tracer enrichment in 3-hydroxybutyrate and acetoacetate from 300-microliters blood samples. For plasma samples in the physiologic range, intra- and interassay precisions for each ketone averaged better than +/- 1% and +/- 2%, respectively. The use of the method was validated by comparing kinetic data obtained with the above tracer with simultaneous flux data obtained with conventional D-(-)-3-hydroxy(3-/sup 14/C)butyrate tracer in five fasted rats.

  2. Quantitative C2H2 measurements in sooty flames using mid-infrared polarization spectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Z. W.; Li, Z. S.; Li, B.; Alwahabi, Z. T.; Aldén, M.

    2010-10-01

    Quantitative measurements of acetylene (C2H2) molecules as a combustion intermediate species in a series of rich premixed C2H4/air flames were non-intrusively performed, spatially resolved, using mid-infrared polarization spectroscopy (IRPS), by probing its fundamental ro-vibrational transitions. The flat sooty C2H4/air premixed flames with different equivalence ratios varying from 1.25 to 2.50 were produced on a 6 cm diameter porous-plug McKenna type burner at atmospheric pressure, and all measurements were performed at a height of 8.5 mm above the burner surface. IRPS excitation scans in different flame conditions were performed and rotational line-resolved spectra were recorded. Spectral features of acetylene molecules were readily recognized in the spectral ranges selected, with special attention to avoid the spectral interference from the large amount of coexisting hot water and other hydrocarbon molecules. On-line calibration of the optical system was performed in a laminar C2H2/N2 gas flow at ambient conditions. Using the flame temperatures measured by coherent anti-Stokes Raman spectroscopy in a previous work, C2H2 mole fractions in different flames were evaluated with collision effects and spectral overlap between molecular line and laser source being analyzed and taken into account. C2H2 IRPS signals in two different buffering gases, N2 and CO2, had been investigated in a tube furnace in order to estimate the spectral overlap coefficients and collision effects at different temperatures. The soot-volume fractions (SVF) in the studied flames were measured using a He-Ne laser-extinction method, and no obvious degrading of the IRPS technique due to the sooty environment has been observed in the flame with SVF up to ˜2×10-7. With the increase of flame equivalence ratios not only the SVF but also the C2H2 mole fractions increased.

  3. Potential energy surface for C2H4I2+ dissociation including spin-orbit effects

    SciTech Connect

    Siebert, Matthew R.; Aquino, Adelia J.; De Jong, Wibe A.; Granucci, Giovanni; Hase, William L.

    2012-10-24

    Previous experiments [Baer, et al. J. Phys. Chem. A 116, 2833 (2012)] have studied the dissociation of 1,2-diiodoethane radical cation (C2H4I2+•) and found a one-dimensional distribution of translational energy; an odd finding considering most product relative translational energy distributions are two-dimensional. The goal of this study is to obtain an accurate understanding of the potential energy surface (PES) topology for the unimolecular decomposition reaction C2H4I2+• - C2H4I+ + I•. This is done through comparison of many single-reference electronic structure methods, coupled-cluster single point (energy) calculations, and multi-reference calculations used to quantify spin-orbit (SO) coupling effects. We find that the structure of the C2H4I2+• reactant has a substantial effect on the role of SO coupling on the reaction energy. Both the BHandH and MP2 theories with an ECP/6-31++G** basis set, and without SO coupling corrections, provide accurate models for the reaction energetics. MP2 theory gives an unsymmetric structure with different C-I bond lengths, resulting in a SO energy for C2H4I2+• similar to that for the product I-atom and a negligible SO correction to the reaction energy. In contrast, DFT gives a symmetric structure for C2H4I2+•, similar to that of the neutral C2H4I2 parent, resulting in a substantial SO correction and increasing the reaction energy by 6.0-6.5 kcal/mol. Also, we find that for this system single point energy calculations are inaccurate, since a small change in geometry can lead to a large change in energy.

  4. Imidacloprid inhibits IgE-mediated RBL-2H3 cell degranulation and passive cutaneous anaphylaxis

    PubMed Central

    Shi, Linbo; Zou, Li; Gao, Jinyan; Xu, Huaing; Shi, Xiaoyun

    2016-01-01

    Background Imidacloprid has been commonly used as a pesticide for crop protection and acts as nicotinic acetylcholine receptor agonists. Little information about the relationship between imidacloprid and allergy is available. Objective This study aims to examine the effects of imidacoprid on IgE-mediated mast cell activation. Methods The rat basophilic leukemia cell line RBL-2H3 (RBL-2H3 cells) were treated with 10-3 – 10-12 mol/L imidacloprid, followed by measuring the mediator production, influx of Ca2+ in IgE-activated RBL-2H3 cells, and the possible effects of imidacoprid on anti-dinitrophenyl IgE-induced passive cutaneous anaphylaxis (PCA). Results It was shown that imidacoprid suppressed the production of histamine, β-hexosaminidase, leukotriene C4, interleukin-6, tumor necrosis factor-α, and Ca2+ mobilization in IgE-activated RBL-2H3 cells and decreased vascular extravasation in IgE-induced PCA. Conclusion It is the first time to show that imidacloprid suppressed the activation of RBL-2H3 cells. PMID:27803884

  5. 15 N- and 2 H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity

    SciTech Connect

    Justice, Nicholas B.; Li, Zhou; Wang, Yingfeng; Spaulding, Susan E.; Mosier, Annika C.; Robert L. Hettich; Pan, Chongle; Banfield, Jillian F.

    2014-05-20

    Understanding how individual species contribute to nutrient transformations in a microbial community is critical to prediction of overall ecosystem function. We conducted microcosm experiments in which floating acid mine drainage (AMD) microbial biofilms were submerged recapitulating the final stage in a natural biofilm life cycle. Biofilms were amended with either 15NH4 + or deuterium oxide (2H2O) and proteomic stable isotope probing (SIP) was used to track the extent to which different members of the community used these molecules in protein synthesis across anaerobic iron-reducing, aerobic iron-reducing and aerobic iron-oxidizing environments. Sulfobacillus spp. synthesized 15N-enriched protein almost exclusively under iron-reducing conditions whereas the Leptospirillum spp. synthesized 15N-enriched protein in all conditions. There were relatively few 15Nenriched archaeal proteins, and all showed low atom% enrichment, consistent with Archaea synthesizing protein using the predominantly 14N biomass derived from recycled biomolecules. In parallel experiments using 2H2O, extensive archaeal protein synthesis was detected in all conditions. In contrast, the bacterial species showed little protein synthesis using 2H2O. The nearly exclusive ability of Archaea to synthesize proteins using 2H2O may be due to archaeal heterotrophy, whereby Archaea off set deleterious effects of 2H by accessing 1H generated byrespiration of organic compounds.

  6. Tunable electronic behavior in 3d transition metal doped 2H-WSe2

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Huang, Songlei; Li, Hongping; Zhang, Quan; Li, Changsheng; Liu, Xiaojuan; Meng, Jian; Tian, Yi

    2017-03-01

    Structural and electronic properties of 3d transition metal Sc, Ti, Cr and Mn incorporated 2H-WSe2 have been systematically investigated by first-principles calculations based on density functional theory. The calculated formation energies reveal that all the doped systems are thermodynamically more favorable under Se-rich condition than W-rich condition. The geometry structures almost hold that of the pristine 2H-WSe2 albeit with slight lattice distortion. More importantly, the electronic properties have been significantly tuned by the dopants, i.e., metal and semimetal behavior has been found in Sc, Ti and Mn-doped 2H-WSe2, respectively, semiconducting nature with narrowed band gap is expected in Cr-doped case, just as that of the pristine 2H-WSe2. In particular, magnetic character is realized by incorporation of Mn impurity with a total magnetic moment of 0.96 μB. Our results suggest chemical doping is an effective way to precisely tailor the electronic structure of layered transition metal dichalcogenide 2H-WSe2 for target technological applications.

  7. Dissociative Recombination of N2H+: Evidence for Fracture of the NN Bond

    NASA Astrophysics Data System (ADS)

    Geppert, W. D.; Thomas, R.; Semaniak, J.; Ehlerding, A.; Millar, T. J.; Österdahl, F.; af Ugglas, M.; Djurić, N.; Paál, A.; Larsson, M.

    2004-07-01

    Branching ratios and absolute cross sections have been measured for the dissociative recombination of N2H+ using the CRYRING ion storage ring. It has been found that the channel N2H++e--->N2+H accounts for only 36% of the total reaction and that the branching into the other exoergic pathway, N2H++e--->NH+N, consequently amounts to 64%. The cross section of the reaction could be fitted by the expression σ=(2.4+/-0.4)×10-16E-1.04+/-0.02 cm2, which leads to a thermal reaction rate of k(T)=(1.0+/-0.2)×10-7(T/300)-0.51+/-0.02 cm3 s-1, in favorable agreement with previous flowing afterglow Langmuir probe measurements at room temperature, although our temperature dependence is very different. The implications of these measurements for the chemistry of interstellar clouds are discussed. A standard model calculation for a dark cloud predicts a slight increase of N2H+ in the dark clouds but a five- to sevenfold increase of the NH concentration as steady state is reached.

  8. Detection and quantification of 2H and 3R phases in commercial graphene-based materials

    PubMed Central

    Seehra, Mohindar S.; Geddam, Usha K.; Schwegler-Berry, Diane; Stefaniak, Aleksandr B.

    2017-01-01

    Graphene-based material (GBM) samples acquired from commercial sources are investigated using X-ray diffraction (XRD). Of the 18 GBM samples investigated here, seven samples show XRD patterns with features characteristic of the graphite structure. The XRD patterns of the seven samples are analyzed showing the presence of both the ABA (2H) structure and the ABCA (3R) structure. After de-convoluting the (101) lines of the 2H and 3R structures, the areas under the peaks are used to determine the relative concentrations of the 2H and 3R phases present, typically yielding the ratio 60/40 for 2H/3R. The presence of the 3R structure is important since the 3R structure is a semiconductor with tunable band gap and it is less stable than the 2H structure. The number of layers determined from the analysis of the XRD data varies between 65 and 109 for different samples yielding thickness of the graphite sheets varying between 22 nm and 37 nm. Scanning electron microscopy and transmission electron microscopy of three representative samples confirms the sheet-like morphology and stacking of the graphene layers in the samples. Relevance of these results in connection with their potential applications and toxicology is briefly discussed.

  9. Bulk Soil Organic Matter d2H as a Precipitation Proxy

    NASA Astrophysics Data System (ADS)

    Williams, E. K.; Terwilliger, V. J.; Nakamoto, B. J.; Berhe, A. A.; Fogel, M. L.

    2016-12-01

    The stable hydrogen isotopic composition (d2H) of leaf waxes have traditionally been used to infer modern and paleoclimate precipitation sources. However, the extent to which evapotranspiration of leaf waters affects the d2H of plant leaf waxes remains hotly contested with offsets varying between species. Because of the relative importance of root organic matter contribution to bulk soil pools compared to litter/leaves and the minimal fractionation between soil water and root material, it is plausible that bulk soil organic matter d2H may be an option for modern and paleoclimate precipitation reconstructions. In this study, we analyzed the non-exchangeable d2H composition of roots, litter, leaves, and bulk soils along an elevation gradient in the southern Sierra Nevada range (USA). Our results show a consistent offset of 30 ± 3‰ in bulk soil organic matter in surface soils from the measured precipitation. This consistent relationship with precipitation was not found in any of the other organic materials that we measured and implies that d2H bulk soil organic matter can record precipitation signals regardless of above-ground species composition. Additionally, we utilized physical density fractionation to determine which fractions (which vary in level of mineral association and in turnover time) of the soil control this relationship. These findings and how this relationship holds with depth will be presented in conjunction with data from a soil profile on the Ethiopian plateau spanning 6000 years.

  10. Synthesis, spectral characterization and larvicidal activity of acridin-1(2H)-one analogues

    NASA Astrophysics Data System (ADS)

    Subashini, R.; Bharathi, A.; Roopan, Selvaraj Mohana; Rajakumar, G.; Abdul Rahuman, A.; Gullanki, Pavan Kumar

    Acridin-1(2H)-one analogue of 7-chloro-3,4-dihydro-9-phenyl-2-[(pyridine-2yl) methylene] acridin-1(2H)-one, 5 was prepared by using 7-chloro-3,4-dihydro-9-phenylacridin-1(2H)-one, 3 and picolinaldehyde, 4 in the presence of KOH at room temperature. These compounds were characterized by analytical and spectral analyses. The purpose of the present study was to assess the efficacy of larvicidal and repellent activity of synthesized 7-chloro-3,4-dihydro-9-phenyl-acridin-1(2H)-one analogues such as compounds 3 and 5 against the early fourth instar larvae of filariasis vector, Culex quinquefasciatus and Japanese encephalitis vector, Culex gelidus (Diptera: Culicidae). The compound exhibited high larvicidal effects at 50 mg/L against both the mosquitoes with LC50 values of 25.02 mg/L (r2 = 0.998) and 26.40 mg/L (r2 = 0.988) against C. quinquefasciatus and C. gelidus, respectively. The 7-chloro-3,4-dihydro-9-phenyl-acridin-1(2H)-one analogues that are reported for the first time to our best of knowledge can be better explored for the control of mosquito population. This is an ideal ecofriendly approach for the control of Japanese encephalitis vectors, C. quinquefasciatus and C. gelidus.

  11. Drivers of δ2H variations in an idealized extratropical cyclone

    NASA Astrophysics Data System (ADS)

    Dütsch, Marina; Pfahl, Stephan; Wernli, Heini

    2016-05-01

    Numerical model simulations of stable water isotopes help to improve our understanding of the complex processes driving isotopic variability in atmospheric moisture. We use the isotope-enabled Consortium for Small-Scale Modelling (COSMO) model to study the governing mechanisms of δ2H variations in an idealized extratropical cyclone. A set of experiments with differing initial conditions of δ2H in vapor and partly deactivated isotopic fractionation allows us to quantify the relative roles of cloud fractionation and vertical and horizontal advection for the simulated δ2H signals associated with the cyclone and fronts. Horizontal transport determines the large-scale pattern of δ2H in both vapor and precipitation, while fractionation and vertical transport are more important on a smaller scale, near the fronts. During the passage of the cold front fractionation leads to a V-shaped trend of δ2H in precipitation and vapor, which is, for vapor, superimposed on a gradual decrease caused by the arrival of colder air masses.

  12. (15)N- and (2)H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity.

    PubMed

    Justice, Nicholas B; Li, Zhou; Wang, Yingfeng; Spaudling, Susan E; Mosier, Annika C; Hettich, Robert L; Pan, Chongle; Banfield, Jillian F

    2014-10-01

    Understanding how individual species contribute to nutrient transformations in a microbial community is critical to prediction of overall ecosystem function. We conducted microcosm experiments in which floating acid mine drainage (AMD) microbial biofilms were submerged - recapitulating the final stage in a natural biofilm life cycle. Biofilms were amended with either (15)NH4(+) or deuterium oxide ((2)H2O) and proteomic stable isotope probing (SIP) was used to track the extent to which different members of the community used these molecules in protein synthesis across anaerobic iron-reducing, aerobic iron-reducing and aerobic iron-oxidizing environments. Sulfobacillus spp. synthesized (15)N-enriched protein almost exclusively under iron-reducing conditions whereas the Leptospirillum spp. synthesized (15)N-enriched protein in all conditions. There were relatively few (15)N-enriched archaeal proteins, and all showed low atom% enrichment, consistent with Archaea synthesizing protein using the predominantly (14)N biomass derived from recycled biomolecules. In parallel experiments using (2)H2O, extensive archaeal protein synthesis was detected in all conditions. In contrast, the bacterial species showed little protein synthesis using (2)H2O. The nearly exclusive ability of Archaea to synthesize proteins using (2)H2O may be due to archaeal heterotrophy, whereby Archaea offset deleterious effects of (2)H by accessing (1)H generated by respiration of organic compounds. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Titan's ionic species: theoretical treatment of N2H+ and related ions.

    PubMed

    Brites, V; Hochlaf, M

    2009-10-22

    We use different ab initio methods to compute the three-dimensional potential energy surface (3D-PES) of the ground state of N(2)H(+). This includes the standard coupled cluster, the complete active space self-consistent field, the internally contacted multi reference configuration interaction, and the newly developed CCSD(T)-F12 methods. For the description of H and N atoms, several basis sets are tested. Then, we incorporate the 3D-PES analytical representations into variational calculations of the rovibrational spectrum of N(2)H(+)(X(1)Sigma(+)) up to 7200 cm(-1) above the zero point vibrational energy. Our data show that the CCSD(T)-F12/aug-cc-pVTZ approach represents a compromise for good description of the PES and computation cost. This technique is recommended for full dimensional PES generation of atmospheric and astrophysical relevant polyatomic systems. We applied this method to derive the rovibrational spectra of N(2)H(+)(X(1)Sigma(+)) and of N(2)H(++)(X(2)Sigma(+)). Finally, we discuss the existence of the N(2)H(++)(X(2)Sigma(+)) in Titan's atmosphere.

  14. Synthesis, spectral characterization and larvicidal activity of acridin-1(2H)-one analogues.

    PubMed

    Subashini, R; Bharathi, A; Roopan, Selvaraj Mohana; Rajakumar, G; Abdul Rahuman, A; Gullanki, Pavan Kumar

    2012-09-01

    Acridin-1(2H)-one analogue of 7-chloro-3,4-dihydro-9-phenyl-2-[(pyridine-2yl) methylene] acridin-1(2H)-one, 5 was prepared by using 7-chloro-3,4-dihydro-9-phenylacridin-1(2H)-one, 3 and picolinaldehyde, 4 in the presence of KOH at room temperature. These compounds were characterized by analytical and spectral analyses. The purpose of the present study was to assess the efficacy of larvicidal and repellent activity of synthesized 7-chloro-3,4-dihydro-9-phenyl-acridin-1(2H)-one analogues such as compounds 3 and 5 against the early fourth instar larvae of filariasis vector, Culex quinquefasciatus and Japanese encephalitis vector, Culex gelidus (Diptera: Culicidae). The compound exhibited high larvicidal effects at 50mg/L against both the mosquitoes with LC(50) values of 25.02 mg/L (r(2)=0.998) and 26.40 mg/L (r(2)=0.988) against C. quinquefasciatus and C. gelidus, respectively. The 7-chloro-3,4-dihydro-9-phenyl-acridin-1(2H)-one analogues that are reported for the first time to our best of knowledge can be better explored for the control of mosquito population. This is an ideal ecofriendly approach for the control of Japanese encephalitis vectors, C. quinquefasciatus and C. gelidus.

  15. Direct dynamics study on the hydrogen abstraction reactions N2H4+R→N2H3+RH (R=NH2,CH3)

    NASA Astrophysics Data System (ADS)

    Li, Qian Shu; Zhang, Xin

    2006-08-01

    We present a direct ab initio dynamics study on the hydrogen abstraction reactions N2H4+R→N2H3+RH (R=NH2,CH3), which are predicted to have six possible reaction channels for NH2 abstraction and four for CH3 abstraction caused by the different N2H4 isomers and various attacking orientations of foreign radical to N2H4. The structures and frequencies at the stationary points and the points along the minimum energy paths (MEPs) of all reaction channels are obtained at the UMP2(full)/6-31+G(d,p) level of theory. Energetic information of stationary points and the points along the MEPs is further refined by means of MC-QCISD method. The rate constants of these channels are calculated using the improved canonical variational transition-state theory with the small-curvature tunneling correction (ICVT/SCT) method. The calculated results show that the favorable reaction channels are channels (n1) and (n4) as well as (c1) and (c3) (refer to Scheme 1) in the whole temperature range. The total ICVT/SCT rate constants of all channels for the two reactions at the MC-QCISD //UMP2(full)/6-31+G(d,p) level are both in good agreement with the available experimental data, and corresponding three-parameter expressions of kICVT /SCT in 220-3000K are fitted as 6.46×10-15(T/298)3.60exp(-386/T)cm3mol-1s-1 for NH2 abstraction and 1.04×10-14 (T/298)4.00exp(-2037/T)cm3mol-1s-1 for CH3 abstraction. Additionally, the long range interaction between the H atom of X -H bond in foreign radicals and the lone pair on the nonreactive N atom of the transition states is further discussed to explain the various transition-state numbers of the two similar hydrogen abstraction reactions.

  16. Abstraction and addition kinetics of C2H radicals with CH4, C2H6, C3H8, C2H4, and C3H6: CVT/SCT/ISPE and hybrid meta-DFT methods.

    PubMed

    Dash, Manas Ranjan; Rajakumar, B

    2015-02-07

    Rate coefficients for the reactions of C2H radicals with methane (k1), ethane (k2), propane (k3), ethylene (k4), and propylene (k5) were computed using canonical variational transition state theory (CVT) coupled with hybrid-meta density functional theory (DFT) over a wide range of temperatures from 150 to 5000 K. The quantum chemical tunneling effect was corrected by the small curvature tunneling (SCT) method. The dynamic calculations are performed using the variational transition state theory (VTST) with the interpolated single-point energies (ISPE) method at the CCSD(T)/cc-pVTZ//M06-2X/6-31+G(d,p) level of theory. Intrinsic reaction coordinate (IRC) calculations were performed to verify that the transition states are connected to the reactants and products. The rate coefficients obtained over the studied temperature range yield the following Arrhenius expressions (cm(3) molecule(-1) s(-1)): k1 = 4.69 × 10(-19)T(2.44) exp[331/T], k2 = 4.29 × 10(-17)T(2.11) exp[432/T], k3 = 4.81 × 10(-17)T(1.98) exp[697/T], k4 = 7.54 × 10(-21)T(2.96) exp[1942/T], and k5 = 8.04 × 10(-23)T(3.44) exp[3011/T] cm(3) molecule(-1) s(-1). Branching ratio calculation for the reactions of C2H radicals with ethylene and propylene shows that the abstraction reactions are not important at lower temperatures. However, as the temperature increases, abstraction reactions become more important.

  17. Analysis Of 2H-Evaporator Scale Pot Bottom Sample [HTF-13-11-28H

    SciTech Connect

    Oji, L. N.

    2013-07-15

    Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material from the 2H evaporator has been performed so that the evaporator can be chemically cleaned beginning July of 2013. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2H-evaporator pot and gravity drain line. The 2H-evaporator scale samples analyzed by Savannah River National Laboratory (SRNL) came from the bottom cone sections of the 2H-evaporator pot. The sample holder from the 2H-evaporator wall was virtually empty and was not included in the analysis. It is worth noting that after the delivery of these 2H-evaporator scale samples to SRNL for the analyses, the plant customer determined that the 2H evaporator could be operated for additional period prior to requiring cleaning. Therefore, there was no need for expedited sample analysis as was presented in the Technical Task Request. However, a second set of 2H evaporator scale samples were expected in May of 2013, which would need expedited sample analysis. X-ray diffraction analysis (XRD) confirmed the bottom cone section sample from the 2H-evaporator pot consisted of nitrated cancrinite, (a crystalline sodium aluminosilicate solid), clarkeite and uranium oxide. There were also mercury compound XRD peaks which could not be matched and further X-ray fluorescence (XRF) analysis of the sample confirmed the existence of elemental mercury or mercuric oxide. On ''as received'' basis, the scale contained an average of 7.09E+00 wt % total uranium (n = 3; st.dev. = 8.31E-01 wt %) with a U-235 enrichment of 5.80E-01 % (n = 3; st.dev. = 3.96E-02 %). The measured U-238 concentration was 7.05E+00 wt % (n=3, st

  18. A pulse sequence for singlet to heteronuclear magnetization transfer: S2hM

    NASA Astrophysics Data System (ADS)

    Stevanato, Gabriele; Eills, James; Bengs, Christian; Pileio, Giuseppe

    2017-04-01

    We have recently demonstrated, in the context of para-hydrogen induced polarization (PHIP), the conversion of hyperpolarized proton singlet order into heteronuclear magnetisation can be efficiently achieved via a new sequence named S2hM (Singlet to heteronuclear Magnetisation). In this paper we give a detailed theoretical description, supported by an experimental illustration, of S2hM. Theory and experiments on thermally polarized samples demonstrate the proposed method is robust to frequency offset mismatches and radiofrequency field inhomogeneities. The simple implementation, optimisation and the high conversion efficiency, under various regimes of magnetic equivalence, makes S2hM an excellent candidate for a widespread use, particularly within the PHIP arena.

  19. Theoretical study of the C-H bond dissociation energy of C2H

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1990-01-01

    A theoretical study of the convergence of the C-H bond dissociation energy D(0) in C2H with respect to both the one- and n-particle spaces is presented. The calculated C-H bond energies of C2H2 and C2H4, which are in excellent agreement with experiment, are used for calibration. The best estimate for D(0) of 112.4 + or - 2.0 kcal/mol is slightly below the recent experimental value of 116.3 + or - 2.6 kcal/mol, but substantially above a previous theoretical estimate of 102 kcal/mol. The remaining discrepancy with experiment may reflect primarily the uncertainty in the experimental D(0) value of C2 required in the analysis.

  20. Anharmonic suppression of charge density waves in 2H-NbS2

    NASA Astrophysics Data System (ADS)

    Leroux, M.; Le Tacon, M.; Calandra, M.; Cario, L.; Méasson, M.-A.; Diener, P.; Borrissenko, E.; Bosak, A.; Rodière, P.

    2012-10-01

    The temperature dependence of the phonon spectrum in the superconducting transition-metal dichalcogenide 2H-NbS2 is measured by diffuse and inelastic x-ray scattering. A deep, wide, and strongly temperature-dependent softening of the two lowest-energy longitudinal phonon bands appears along the ΓM symmetry line in reciprocal space. In sharp contrast to the isoelectronic compound 2H-NbSe2, the soft phonons energies are finite, even at very low temperature, and no charge density wave instability occurs, in disagreement with harmonic ab initio calculations. We show that 2H-NbS2 is at the verge of the charge density wave transition and its occurrence is only suppressed by the large anharmonic effects. Moreover, the anharmonicity and the electron phonon coupling both show a strong in-plane anisotropy.

  1. Superconducting density of states and vortex cores of 2H-NbS2.

    PubMed

    Guillamón, I; Suderow, H; Vieira, S; Cario, L; Diener, P; Rodière, P

    2008-10-17

    Scanning tunneling microscopy and spectroscopy measurements in the superconducting dichalcogenide 2H-NbS2 show a peculiar superconducting density of states with two well-defined features at 0.97 and 0.53 meV, located, respectively, above and below the value for the superconducting gap expected from the single band s-wave BCS model (Delta=1.76k_(B)T_(c)=0.9 meV). Both features have a continuous temperature evolution and disappear at T_(c)=5.7 K. Moreover, we observe the hexagonal vortex lattice with radially symmetric vortices and a well-developed localized state at the vortex cores. The sixfold star shape characteristic of the vortex lattice of the compound 2H-NbSe2 is, together with the charge density wave order, absent in 2H-NbS2.

  2. Photodetectors and birefringence in ZnP2-С2h5 crystals

    NASA Astrophysics Data System (ADS)

    Stamov, I. G.; Syrbu, N. N.; Dorogan, A. V.

    2013-03-01

    The spectral dependences of refractive indexes no(n⊥), ne(n||) and Δn=no(n⊥)-ne(n||) were studied in ZnP2-C2h5 crystals. The intersection of no(n⊥) and ne(n||) was found for λ0=0.906 μm. The crystal possesses positive dispersion Δn=no(n⊥)-ne(n||) in the region where λ>λ0, and a negative dispersion is observed in the region where λ<λ0. The electrical, spectral and azimuth characteristics of monolith n-р- and Ме-n-р-ZnP2C2h5 and discrete ZnP2-C2h5-ZnP2-D48 structures were studied, and a prognosis was made on the usage perspective of these devices.

  3. A one-pot-three-step route to triazolotriazepinoindazolones from oxazolino-2H-indazoles.

    PubMed

    Conrad, Wayne E; Rodriguez, Kevin X; Nguyen, Huy H; Fettinger, James C; Haddadin, Makhluf J; Kurth, Mark J

    2012-08-03

    A one-pot-three-step method has been developed for the conversion of oxazolino-2H-indazoles into triazolotriazepinoindazolones with three points of diversity. Step one of this process involves a propargyl bromide-initiated ring opening of the oxazolino-2H-indazole (available by the Davis-Beirut reaction) to give an N(1)-(propargyl)-N(2)-(2-bromoethyl)-disubstituted indazolone, which then undergoes -CH(2)Br → -CH(2)N(3) displacement (step two) followed by an uncatalyzed intramolecular azide-alkyne 1,3-dipolar cycloaddition (step three) to form the target heterocycle. Employing 7-bromooxazolino-2H-indazole allows for further diversification through, for example, palladium-catalyzed coupling chemistry, as reported here.

  4. N2H(+) in the Orion ambient ridge - Cloud clumping versus rotation

    NASA Technical Reports Server (NTRS)

    Womack, Maria; Ziurys, L. M.; Sage, L. J.

    1993-01-01

    The IRAM 30-m telescope is used to obtain spectra of the J = 1 yields 0 transition of N2H(+) over a 2 x 2 arcsec area toward the Orion-KL/IRc2 star-forming region with 26-arcsec angular resolution. The N2H(+) emission, which exclusively traces the ridge gas, exhibits multiple radial velocities which appear to arise from the presence of at least four clouds of quiescent material. It is argued that the velocity structure of N2H(+) does not uniformly change across OMC-1 and, consequently, is inconsistent with the presence of large-scale differential rotation of the extended ridge along the SW-NE axis about IRc2. The coincidence of the two larger clouds with star-forming activity in Orion-KL suggests that either the quiescent gas is being pushed apart or that the star formation may have been triggered by a cloud-cloud interaction.

  5. Detection of C2H4 Neptune from ISO/PHT-S Observations

    NASA Technical Reports Server (NTRS)

    Schulz, B.; Encrenaz, Th.; Bezard, B.; Romani, P. N.; Lellouch, E.; Atreya, S. K.

    1999-01-01

    The 6-12 micrometer spectrum of Neptune has been recorded with the PHT-S instrument of the Infrared Space Observatory (ISO) at a resolution of 0.095 micrometer. In addition to the emissions of CH4, CH3D and C2H6 previously identified, the spectrum shows the first firm identification of ethylene C2H4. The inferred column density above the 0.2-mbar level is in the range (1.1 - 3) x 10(exp 14) molecules/cm. To produce this low amount, previous photochemical models invoked rapid mixing between the source and sink regions of C2H4. We show that this requirement can be relaxed if recent laboratory measurements of CH4 photolysis branching ratios at Lyman alpha are used.

  6. Complementary low energy ion scattering and X-ray photoelectron spectroscopy characterization of polystyrene submitted to N 2/H 2 glow discharge

    NASA Astrophysics Data System (ADS)

    Bonatto, F.; Rovani, S.; Kaufmann, I. R.; Soares, G. V.; Baumvol, I. J. R.; Krug, C.

    2012-02-01

    Low energy ion scattering (LEIS) and X-ray photoelectron spectroscopy (XPS) were used to access the elemental composition and chemical bonding characteristics of polystyrene (PS) surfaces sequentially treated by corona and glow discharge (plasma) processing in N 2/H 2 ambient. The latter has shown activity as suppressor of pathogenic Staphylococcus epidermidis biofilms. LEIS indicated that oxygen from the corona discharge process is progressively replaced by nitrogen at the PS surface. XPS shows C dbnd N and N sbnd C dbnd O chemical groups as significant inhibitors of bacterial adhesion, suggesting application in medical devices.

  7. Docosahexaenoic Acid Enhances Segregation of Lipids between Raft and Nonraft Domains: 2H-NMR Study

    PubMed Central

    Soni, Smita P.; LoCascio, Daniel S.; Liu, Yidong; Williams, Justin A.; Bittman, Robert; Stillwell, William; Wassall, Stephen R.

    2008-01-01

    Solid-state 2H-NMR of [2H31]-N-palmitoylsphingomyelin ([2H31]16:0SM, PSM*), supplemented by differential scanning calorimetry, was used for the first time, to our knowledge, to investigate the molecular organization of the sphingolipid in 1:1:1 mol mixtures with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (16:0–18:1PE, POPE) or 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine (16:0–22:6PE, PDPE) and cholesterol. When compared with 2H-NMR data for analogous mixtures of [2H31]16:0–18:1PE (POPE*) or [2H31]16:0-22:6PE (PDPE*) with egg SM and cholesterol, molecular interactions of oleic acid (OA) versus docosahexaenoic acid (DHA) are distinguished, and details of membrane architecture emerge. SM-rich, characterized by higher-order, and PE-rich, characterized by lower-order, domains <20 nm in size are formed in the absence and presence of cholesterol in both OA- and DHA-containing membranes. Although acyl chain order within both domains increases on the addition of sterol to the two systems, the resultant differential in order between SM- and PE-rich domains is almost a factor of 3 greater with DHA than with OA. Our interpretation is that the aversion that cholesterol has for DHA—but not for OA—excludes the sterol from DHA-containing, PE-rich (nonraft) domains and excludes DHA from SM-rich/cholesterol-rich (raft) domains. We attribute, in part, the diverse health benefits associated with dietary consumption of DHA to an alteration in membrane domains. PMID:18339742

  8. Filamentary Structure of Serpens Main and Serpens South Seen in N2H+, HCO+, and HCN

    NASA Astrophysics Data System (ADS)

    Cox, Erin Guilfoil; Fernandez-Lopez, Manuel; Looney, Leslie; Arce, Héctor; Mundy, Lee; Storm, Shaye; Harris, Robert J.; Teuben, Peter J.

    2016-06-01

    We present the N2H+ (J = 1 → 0) map of the Serpens Main and Serpens South molecular cloud obtained as part of the CARMA Large Area Star Formation Survey (CLASSy). The observations cover 150 arcmin2 and 250 arcmin2, respectively, and fully sample structures from 3000 AU to 3 pc with a velocity resolution of 0.16 km s-1. They can be used to constrain the origin and evolution of molecular cloud filaments. The spatial distribution of the N2H+ emission is characterized by long filaments that resemble those observed in the dust continuum emission by Herschel. However, the gas filaments are typically narrower such that, in some cases, two or three quasi-parallel N2H+ filaments comprise a single observed dust continuum filament. Our results suggest that single filaments seen in Serpens South by Herschel may in fact be comprised of multiple narrower filaments. Some molecular filaments show velocity gradients along their major axis, and two are characterized by a steep velocity gradient in the direction perpendicular to the filament axis. The observed velocity gradient along one of these filaments was previously postulated as evidence for mass infall toward the central cluster, but these kind of gradients can be interpreted as projection of large-scale turbulence. Finally we compare the morphologies of these N2H+ filaments with those detected in HCO+ and HCN. In Serpens South we find that the N2H+ and dust maps are well correlated, whereas HCO+ and HCN do not have regularly have N2H+ counterparts. We postulate that this difference is due to large-scale shocks creating the HCO+ and HCN emission.

  9. Solvent accessibility of protein surfaces by amide H/2H exchange MALDI-TOF mass spectrometry.

    PubMed

    Truhlar, Stephanie M E; Croy, Carrie H; Torpey, Justin W; Koeppe, Julia R; Komives, Elizabeth A

    2006-11-01

    One advantage of detecting amide H/2H exchange by mass spectrometry instead of NMR is that the more rapidly exchanging surface amides are still detectable. In this study, we present quench-flow amide H/2H exchange experiments to probe how rapidly the surfaces of two different proteins exchange. We compared the amide H/2H exchange behavior of thrombin, a globular protein, and IkappaBalpha, a nonglobular protein, to explore any differences in the determinants of amide H/2H exchange rates for each class of protein. The rates of exchange of only a few of the surface amides were as rapid as the "intrinsic" exchange rates measured for amides in unstructured peptides. Most of the surface amides exchanged at a slower rate, despite the fact that they were not seen to be hydrogen bonded to another protein group in the crystal structure. To elucidate the influence of the surface environment on amide H/2H exchange, we compared exchange data with the number of amides participating in hydrogen bonds with other protein groups and with the solvent accessible surface area. The best correlation with amide H/2H exchange was found with the total solvent accessible surface area, including side chains. In the case of the globular protein, the correlation was modest, whereas it was well correlated for the nonglobular protein. The nonglobular protein also showed a correlation between amide exchange and hydrogen bonding. These data suggest that other factors, such as complex dynamic behavior and surface burial, may alter the expected exchange rates in globular proteins more than in nonglobular proteins where all of the residues are near the surface.

  10. Collisions of slow polyatomic ions with surfaces: dissociation and chemical reactions of C2H2+*, C2H3+, C2H4+*, C2H5+, and their deuterated variants C2D2+* and C2D4+* on room-temperature and heated carbon surfaces.

    PubMed

    Jasík, Juraj; Zabka, Jan; Feketeova, Linda; Ipolyi, Imre; Märk, Tilmann D; Herman, Zdenek

    2005-11-17

    Interaction of C2Hn+ (n = 2-5) hydrocarbon ions and some of their isotopic variants with room-temperature and heated (600 degrees C) highly oriented pyrolytic graphite (HOPG) surfaces was investigated over the range of incident energies 11-46 eV and an incident angle of 60 degrees with respect to the surface normal. The work is an extension of our earlier research on surface interactions of CHn+ (n = 3-5) ions. Mass spectra, translational energy distributions, and angular distributions of product ions were measured. Collisions with the HOPG surface heated to 600 degrees C showed only partial or substantial dissociation of the projectile ions; translational energy distributions of the product ions peaked at about 50% of the incident energy. Interactions with the HOPG surface at room temperature showed both surface-induced dissociation of the projectiles and, in the case of radical cation projectiles C2H2+* and C2H4+*, chemical reactions with the hydrocarbons on the surface. These reactions were (i) H-atom transfer to the projectile, formation of protonated projectiles, and their subsequent fragmentation and (ii) formation of a carbon chain build-up product in reactions of the projectile ion with a terminal CH3-group of the surface hydrocarbons and subsequent fragmentation of the product ion to C3H3+. The product ions were formed in inelastic collisions in which the translational energy of the surface-excited projectile peaked at about 32% of the incident energy. Angular distributions of reaction products showed peaking at subspecular angles close to 68 degrees (heated surfaces) and 72 degrees (room-temperature surfaces). The absolute survival probability at the incident angle of 60 degrees was about 0.1% for C2H2+*, close to 1% for C2H4+* and C2H5+, and about 3-6% for C2H3+.

  11. First-principles characterization of potassium intercalation in the hexagonal 2H-MoS2

    SciTech Connect

    Andersen, Amity; Kathmann, Shawn M.; Lilga, Michael A.; Albrecht, Karl O.; Hallen, Richard T.; Mei, Donghai

    2012-01-12

    Periodic density functional theory calculations were performed to study the structural and electronic properties of potassium intercalated into hexagonal MoS{sub 2} (2H-MoS{sub 2}). Metallic potassium (K) atoms are incrementally loaded in the hexagonal sites of the interstitial spaces between MoS2 sheets of the 2H-MoS{sub 2} bulk structure generating 2H-KxMoS2 (0.125 {<=} x {<=} 1.0) structures. To accommodate the potassium atoms, the interstitial spacing c parameter in the 2H-MoS{sub 2} bulk expands from 12.816 {angstrom} in 2H-MoS{sub 2} to 16.086 {angstrom} in 2H-K{sub 0.125}MoS{sub 2}. The second lowest potassium loading concentration (K{sub 0.25}MoS{sub 2}) results in the largest interstitial spacing expansion (to c = 16.726 {angstrom}). Our calculations show that there is a small gradual contraction of the interstitial spacing as the potassium loading increases with c = 14.839 {angstrom} for KMoS{sub 2}. This interstitial contraction is correlated with an in-plane expansion of the MoS{sub 2} sheets, which is in good agreement with experimental X-ray diffraction (XRD) measurements. The electronic analysis shows that potassium readily donates its 4s electron to the conduction band of the 2H-K{sub x}MoS{sub 2}, and is largely ionic in character. As a result of the electron donation, the 2H-K{sub x}MoS{sub 2} system changes from a semiconductor to a more metallic system with increasing potassium intercalation. For loadings 0.25 {<=} x {<=} 0.625, triangular Mo-Mo-Mo moieties are prominent and tend to form rhombitrihexagonal motifs. Intercalation of H{sub 2}O molecules that solvate the K atoms is likely to occur in catalytic conditions. The inclusion of two H{sub 2}O molecules per K atom in the K{sub 0.25}MoS{sub 2} structure shows good agreement with XRD measurements.

  12. Low-energy elastic electron scattering form chloroethane, C2H5Cl

    NASA Astrophysics Data System (ADS)

    Sakaamini, A.; Navarro, C.; Cross, J.; Hargreaves, L. R.; Khakoo, M. A.; Fedus, Kamil; Winstead, C.; McKoy, V.

    2015-10-01

    We report theoretical as well as (normalized) experimental differential and integral cross sections for vibrationally elastic scattering of low-energy electrons from chloroethane, C2H5Cl, also known as ethyl chloride. The theoretical cross sections were computed using the Schwinger multichannel variational method in the single-channel approximation, with polarization effects included via virtual excitations. Cross section measurements were made at incident energies ranging from 1 to 30 eV and at scattering angles from {10}\\circ to {125}\\circ . We compare our data to previous results for C2H5Cl and for the related molecule chloromethane.

  13. Effects of deuterium oxide on cell growth and vesicle speed in RBL-2H3 cells

    PubMed Central

    Triplett, Ashley R.

    2014-01-01

    For the first time we show the effects of deuterium oxide on cell growth and vesicle transport in rat basophilic leukemia (RBL-2H3) cells. RBL-2H3 cells cultured with 15 moles/L deuterium showed decreased cell growth which was attributed to cells not doubling their DNA content. Experimental observations also showed an increase in vesicle speed for cells cultured in deuterium oxide. This increase in vesicle speed was not observed in deuterium oxide cultures treated with a microtubule-destabilizing drug, suggesting that deuterium oxide affects microtubule-dependent vesicle transport. PMID:25237603

  14. Low-temperature solid-state phase transformations in 2H silicon carbide

    NASA Technical Reports Server (NTRS)

    Will, H. A.; Powell, J. A.

    1972-01-01

    Single crystals of 2H SiC were observed to undergo phase transformations at temperatures as low as 400 C. Some 2H crystals transformed to a structure with one-dimensional disorder along the crystal c axis. Others transformed to a faulted cubic/6H structure. The transformation is time and temperature dependent and is greatly enhanced by dislocations. Observations indicate that the transformation takes place by means of a slip process perpendicular to the c axis. Cubic SiC crystals were observed to undergo a solid state transformation above 1400 C.

  15. Inclusive quasielastic spin observables for p+2H, 12C at 500 Me V

    NASA Astrophysics Data System (ADS)

    Barlett, M. L.; Fergerson, R. W.; Hoffman, G. W.; Marshall, J. A.; Ray, L.; Amann, J. F.; Bonner, B. E.; McClelland, J. B.

    1991-07-01

    Analyzing powers (Ay) and spin-rotation-depolarization parameters (DSS, DSL, DLS, DLL, DNN) were determined for 500 MeV p+2H and p + 12C inclusive quasielastic scattering at 10°, 15°, and 20° laboratory scattering angles. The p+2H data are consistent with the isospin-average of the proton-proton and proton-neutron scattering observables; the p+12C data are not. A relativistic plane wave impulse approximation calculation leads to better agreement with the p+12C spin-observables.

  16. Implications of C2H photochemistry on the modeling of C2 distributions in comets

    NASA Technical Reports Server (NTRS)

    Jackson, William M.; Bao, Yihan; Urdahl, Randall S.

    1991-01-01

    Laboratory studies of the secondary photolysis of the C2H radical are summarized and used to explain some discrepancies between models of C2 emission in comets. These studies show that several states of the C2 radicals produced in the photolysis of C2H2 at 193 nm have bimodal rotational distributions when plotted as a Boltzmann diagram. They also establish that the C2 radicals are formed with varying degrees of vibrational excitation, so that if they are formed in a similar manner in comets, the C2 radicals must start out with this initial vibrational excitation.

  17. Ab initio quasiparticle energies in 2H, 4H, and 6H SiC

    NASA Astrophysics Data System (ADS)

    Ummels, R. T. M.; Bobbert, P. A.; van Haeringen, W.

    1998-09-01

    Ab initio quasiparticle energies are calculated for the 2H, 4H, and 6H polytypes of SiC within the GW approximation for the self-energy. The starting point is a calculation within the pseudopotential local-density approximation framework. The calculated fundamental gaps of 3.15, 3.35, and 3.24 eV for 2H, 4H, and 6H SiC, respectively, show very good agreement with experimental data. The energy dependence of the screened interaction is modeled by a plasmon pole model from which the plasmon band structures are obtained.

  18. Multicomponent synthesis of 3,6-dihydro-2H-1,3-thiazine-2-thiones.

    PubMed

    Kruithof, Art; Ploeger, Marten L; Janssen, Elwin; Helliwell, Madeleine; de Kanter, Frans J J; Ruijter, Eelco; Orru, Romano V A

    2012-02-08

    Non-fused 3,6-dihydro-2H-1,3-thiazine-2-thiones constitute a so far rather unexplored class of compounds, with the latest report dating back more than two decades. Thiazine-2-thiones contain an endocyclic dithiocarbamate group, which is often found in pesticides, in substrates for radical chemistry and in synthetic intermediates towards thioureas and amidines. We now report the multicomponent reaction (MCR) of in situ-generated 1-azadienes with carbon disulfide. With this reaction, a one-step protocol towards the potentially interesting 3,6-dihydro-2H-1,3-thiazine-2-thiones was established and a small library was synthesized.

  19. 4-Methyl-2-oxo-2H-chromen-7-yl 4-meth-oxy-benzene-sulfonate.

    PubMed

    Sinha, Suman; Osman, Hasnah; Wahab, Habibah A; Hemamalini, Madhukar; Fun, Hoong-Kun

    2011-12-01

    In the title compound, C(17)H(14)O(6)S, the 2H-chromene ring is essentially planar, with a maximum deviation of 0.016 (1) Å. The dihedral angle between the 2H-chromene and the benzene rings is 54.61 (5)°. The C atom of the meth-oxy group is close to coplanar with its attached ring [deviation = 0.082 (2) Å]. In the crystal, mol-ecules are connected via C-H⋯O hydrogen bonds, forming sheets lying parallel to the bc plane. Weak C-H⋯π inter-actions are also observed.

  20. Calculation of the Aluminosilicate Half-Life Formation Time in the 2H Evaporator

    SciTech Connect

    Fondeur, F.F.

    2000-09-21

    The 2H Evaporator contains large quantities of aluminosilicate solids deposited on internal fixtures. The proposed cleaning operations will dissolve the solids in nitric acid. Operations will then neutralize the waste prior to transfer to a waste tank. Combining recent calculations of heat transfer for the 2H Evaporator cleaning operations and laboratory experiments for dissolution of solid samples from the pot, the authors estimated the re-formation rate for aluminosilicates during cooling. The results indicate a half-life formation of 17 hours when evaporator solution cools from 60 degrees C and 9 hours when cooled from 90 degrees C.

  1. Reinterpretation of the 2H(d,pp)nn reaction at 80 MeV

    NASA Astrophysics Data System (ADS)

    Warner, Robert E.

    1981-12-01

    Leeman et al. measured 2H(d,pp)nn cross sections at 80 MeV. They interpreted their results in terms of double spectator processes and had limited success in fitting their spectra. We obtain good fits to all their reported data by assuming final-state interactions between both final n-p pairs and ignoring the double spectator process. NUCLEAR REACTIONS 2H(d,pp)nn, E=80 MeV; calculated σ(E1,E2,θ1,θ2) assuming n-p final-state interactions. Improved fits over original interpretation assuming double spectator process.

  2. Davis-Beirut reaction: route to thiazolo-, thiazino-, and thiazepino-2H-indazoles.

    PubMed

    Farber, Kelli M; Haddadin, Makhluf J; Kurth, Mark J

    2014-08-01

    Methods for the construction of thiazolo-, thiazino-, and thiazepino-2H-indazoles from o-nitrobenzaldehydes or o-nitrobenzyl bromides and S-trityl-protected 1°-aminothioalkanes are reported. The process consists of formation of the requisite N-(2-nitrobenzyl)(tritylthio)alkylamine, subsequent deprotection of the trityl moiety with TFA, and immediate treatment with aq. KOH in methanol under Davis-Beirut reaction conditions to deliver the target thiazolo-, thiazino-, or thiazepino-2H-indazole in good overall yield. Subsequent S-oxidation gives the corresponding sulfone.

  3. Electron-Impact Total Ionization Cross Sections of CH and C2H2

    PubMed Central

    Kim, Yong-Ki; Ali, M. Asgar; Rudd, M. Eugene

    1997-01-01

    Electron-impact total ionization cross sections for the CH radical and C2H2 (acetylene) have been calculated using the Binary-Encounter-Bethe (BEB) model. The BEB model combines the Mott cross section and the asymptotic form of the Bethe theory, and has been shown to generate reliable ionization cross sections for a large variety of molecules. The BEB cross sections for CH and C2H2 are in good agreement with the available experimental data from ionization thresholds to hundreds of eV in incident energies. PMID:27805116

  4. N 2- and O 2-broadening coefficients of C 2H 2 IR lines

    NASA Astrophysics Data System (ADS)

    Bouanich, J. P.; Lambot, D.; Blanquet, G.; Walrand, J.

    1990-04-01

    Pressure-broadening parameters of six lines belonging to the ν5 band of C 2H 2 in collision with N 2 have been measured with a tunable diode-laser spectrometer in order to complete up to J = 33 our earlier measurements (D. Lambot, G. Blanquet, and J. P. Bouanich, J. Mol. Spectrosc.136, 86-92 (1989)) on the broadening of C 2H 2 by N 2 and O 2 at 297 K. These N 2- and O 2-broadening coefficients have been first calculated on the basis of the Anderson-Tsao-Curnutte theory; in this approach, we show that the short-range interactions which contribute significantly to the linewidths are not correctly treated. Next, we consider the improved semiclassical model proposed by Robert and Bonamy. The intermolecular potential consists in the addition of the atom-atom interaction model to the quadrupolar interactions. The limited radial spherical harmonics expansion of the atom-atom potential, from which expressions for the differential cross section were derived, appears to be quite insufficient at short intermolecular distances. Therefore, we use a more accurate representation of this potential, avoiding an inadequate truncation and keeping the analytic expressions obtained by Bonamy and Robert. In the calculations we take into account the contributions derived from the radial functions U000( r), U200( r), and U220( r), as well as from U400( r). A theoretical expression is obtained for the U400 contribution to the differential cross section. The results of the calculations arising from the exact radial expansion of the atom-atom potential appear to be significantly larger for high J lines than those arising from the truncated expansion. The latter results, which do not include adjustable atom-atom parameters, are in good agreement with experimental broadening coefficients for C 2H 2O 2 and in reasonable agreement (except at large J values) for C 2H 2N 2. It is also shown that the contributions to the linewidths derived from U400 are rather small for C 2H 2N 2 and more

  5. Laser-induced fluorescence studies of excited Sr reactions: II. Sr(3P1)+CH3F, C2H5F, C2H4F2

    NASA Astrophysics Data System (ADS)

    Teule, J. M.; Janssen, M. H. M.; Bulthuis, J.; Stolte, S.

    1999-06-01

    The vibrational and rotational energy distributions of ground state SrF(X 2Σ) formed in the reactions of electronically excited Sr(3P1) with methylfluoride, ethylfluoride, and 1,1-difluoroethane have been studied by laser-induced fluorescence. Although the reactions of ground state Sr with these reactants are exothermic, no SrF products are observed for those reactions in this study. The fraction of available energy disposed into the sum of rotational and vibrational energy of the SrF(X 2Σ) product is approximately the same for all three reactions, i.e., 40%. The reaction of Sr(3P1) with CH3F results in very low vibrational excitation in the SrF reaction product. The product vibration increases in going to C2H5F and C2H4F2. It is concluded that the alkyl group influences the energy disposal mechanism in these reactions, and some suggestions are given for a partial explanation of the observations.

  6. Unfolding the Quantum Nature of Proton Bound Symmetric Dimers of (MeOH)2H+ and (Me2O)2H+: a Theoretical Study

    NASA Astrophysics Data System (ADS)

    Tan, Jake Acedera; Kuo, Jer-Lai

    2014-06-01

    A proton under a tug of war between two competing Lewis bases is a common motif in biological systems and proton transfer processes. Over the past decades, model compounds for such motifs can be prepared by delicate stoichiometric control of salt solutions. Unfortunately, condensed phase studies, which aims to identify the key vibrational signatures are complicated to analyze. As a result, gas-phase studies do provide promising insights on the behavior of the shared proton. This study attempts to understand the quantum nature of the shared proton under theoretical paradigms. Proton bound symmetric dimers of (MeOH)2H+ and (Me2O)2H+ are chosen as the model compounds. The simulation is performed using Density Functional Theory (DFT) at the B3LYP level with 6-311+G(d,p) as the basis set. It was found out that stretching mode of shared proton couples with several other normal modes and its corresponding oscillator strength do distribute to other normal modes. J.R. Roscioli, L.R. McCunn and M.A. Johnson. Science 2007, 316, 249 T.E. DeCoursey. Physiol. Rev., 2003, 83, 475 E.S. Stoyanov. Psys. Chem. Phys., 2000,2,1137

  7. The conformational dynamics of H2-H3n and S2-H6 in gating ligand entry into the buried binding cavity of vitamin D receptor

    PubMed Central

    Tee, Wei-Ven; Ripen, Adiratna Mat; Mohamad, Saharuddin Bin

    2016-01-01

    Crystal structures of holo vitamin D receptor (VDR) revealed a canonical conformation in which the ligand is entrapped in a hydrophobic cavity buried in the ligand-binding domain (LBD). The mousetrap model postulates that helix 12 is positioned away from the domain to expose the interior cavity. However, the extended form of helix 12 is likely due to artifacts during crystallization. In this study, we set out to investigate conformational dynamics of apo VDR using molecular dynamics simulation on microsecond timescale. Here we show the neighboring backbones of helix 2-helix 3n and beta strand 2-helix 6 of LBD, instead of the helix 12, undergo large-scale motion, possibly gating the entrance of ligand to the ligand binding domain. Docking analysis to the simulated open structure of VDR with the estimated free energy of −37.0 kJ/mol, would emphasise the role of H2-H3n and S2-H6 in facilitating the entrance of calcitriol to the LBD of VDR. PMID:27786277

  8. Chemistry of TMC-1 with multiply deuterated species and spin chemistry of H2, H2+, H3+ and their isotopologues

    NASA Astrophysics Data System (ADS)

    Majumdar, L.; Gratier, P.; Ruaud, M.; Wakelam, V.; Vastel, C.; Sipilä, O.; Hersant, F.; Dutrey, A.; Guilloteau, S.

    2017-04-01

    Deuterated species are unique and powerful tools in astronomy since they can probe the physical conditions, chemistry and ionization level of various astrophysical media. Recent observations of several deuterated species along with some of their spin isomeric forms have rekindled the interest for more accurate studies on deuterium fractionation. This paper presents the first publicly available chemical network of multiply deuterated species along with spin chemistry implemented on the latest state-of-the-art gas-grain chemical code 'nautilus'. D/H ratios for all deuterated species observed at different positions of TMC-1 are compared with the results of our model, which considers multiply deuterated species along with the spin chemistry of light hydrogen bearing species H2, H2+, H3+ and their isotopologues. We also show the differences in the modelled abundances of non-deuterated species after the inclusion of deuteration and spin chemistry in the model. Finally, we present a list of potentially observable deuterated species in TMC-1 awaiting detection.

  9. Chemistry of TMC-1 with multiply deuterated species and spin chemistry of H2, H2+, H3+ and their isotopologues

    NASA Astrophysics Data System (ADS)

    Majumdar, L.; Gratier, P.; Ruaud, M.; Wakelam, V.; Vastel, C.; Sipilä, O.; Hersant, F.; Dutrey, A.; Guilloteau, S.

    2016-12-01

    Deuterated species are unique and powerful tools in astronomy since they can probe the physical conditions, chemistry, and ionization level of various astrophysical media. Recent observations of several deuterated species along with some of their spin isomeric forms have rekindled the interest for more accurate studies on deuterium fractionation. This paper presents the first publicly available chemical network of multiply deuterated species along with spin chemistry implemented on the latest state-of-the-art gas-grain chemical code `NAUTILUS'. D/H ratios for all deuterated species observed at different positions of TMC-1 are compared with the results of our model, which considers multiply deuterated species along with the spin chemistry of light hydrogen bearing species H2, H2+, H3+ and their isotopologues. We also show the differences in the modeled abundances of non-deuterated species after the inclusion of deuteration and spin chemistry in the model. Finally, we present a list of potentially observable deuterated species in TMC-1 awaiting detection.

  10. PLASMA GENERATOR

    DOEpatents

    Foster, J.S. Jr.

    1958-03-11

    This patent describes apparatus for producing an electricity neutral ionized gas discharge, termed a plasma, substantially free from contamination with neutral gas particles. The plasma generator of the present invention comprises a plasma chamber wherein gas introduced into the chamber is ionized by a radiofrequency source. A magnetic field is used to focus the plasma in line with an exit. This magnetic field cooperates with a differential pressure created across the exit to draw a uniform and uncontaminated plasma from the plasma chamber.

  11. Synthesis of (11,11,12,12-2H4)progesterone for mass spectral investigations of peripheral metabolism

    SciTech Connect

    Kirk, D.N.; Smith, C.Z.; Honour, J.W. )

    1990-05-01

    Hecogenin has been transformed into (11,11,12,12-2H4)progesterone via base-catalyzed isotope exchange with D2O (at C-11), carbenic decomposition of the 12-tosylhydrazone formed by the use of (N,N,N'-2H3)toluene-p-sulfonylhydrazine, and reduction with (2H2)diimide to give (11,11,12,12-2H4)tigogenin, followed by standard degradation of the spiroketal side chain and dehydrogenation in ring A.

  12. Identification of microdomains involved in association of "Arabidopsis" Ca(2+)/H(+) exchangers

    USDA-ARS?s Scientific Manuscript database

    In planta, high capacity tonoplast Ca2+/H+ antiport is mediated in part by a family of CAtion Exchangers (CAX). Each CAX can be divided into two weakly homologous halves (N- and C-) at the negatively charged loop between transmembrane (TM) 6 and TM7. Some CAX halves (N+C) co-expressed in yeast cells...

  13. Characterization of Radionuclides for 2H Evaporator Cleaning Transfers to Tank 42

    SciTech Connect

    O'Bryant, R.F.

    2001-06-04

    This document contains the characterization methodology for sludge-contaminated waste generated from the 2H Evaporator cleaning transfers to Tank 42, based on process knowledge and available analytical data. The scaling factors developed for Tank 42 in this document supercede those presented in Reference 6, and any other previously developed radionuclide characterizations for Tank 42 sludge-contaminated waste.

  14. Photo-induced reactions in the ion-molecule complex Mg+-OCNC2H5

    NASA Astrophysics Data System (ADS)

    Sun, Ju-Long; Liu, Haichuan; Han, Ke-Li; Yang, Shihe

    2003-06-01

    Ion-molecule complexes of magnesium cation with ethyl isocyanate were produced in a laser-ablation supersonic expansion nozzle source. Photo-induced reactions in the 1:1 complexes have been studied in the spectral range of 230-410 nm. Photodissociation mass spectrometry revealed the persistent product Mg+ from nonreactive quenching throughout the entire wavelength range. As for the reactive channels, the photoproducts, Mg+OCN and C2H5+, were produced only in the blue absorption band of the complex with low yields. The action spectrum of Mg+(OCNC2H5) consists of two pronounced peaks on the red and blue sides of the Mg+ 32P←32S atomic transition. The ground state geometry of Mg+-OCNC2H5 was fully optimized at B3LYP/6-31+G** level by using GAUSSIAN 98 package. The calculated absorption spectrum of the complex using the optimized structure of its ground state agrees well with the observed action spectrum. Photofragment branching fractions of the products are almost independent of the photolysis photon energy for the 3Px,y,z excitations. The very low branching ratio of reactive products to nonreactive fragment suggests that evaporation is the main relaxation pathway in the photo-induced reactions of Mg+(OCNC2H5).

  15. 77 FR 44441 - Swap Transaction Compliance and Implementation Schedule: Clearing Requirement Under Section 2(h...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... From the Federal Register Online via the Government Publishing Office COMMODITY FUTURES TRADING... Requirement Under Section 2(h) of the CEA AGENCY: Commodity Futures Trading Commission. ACTION: Final rule. SUMMARY: The Commodity Futures Trading Commission (Commission or CFTC) is adopting regulations...

  16. Slow recrystallization of tripalmitoylglycerol from MCT oil observed by 2H NMR.

    PubMed

    Smith, Kevin W; Smith, Paul R; Furó, István; Pettersson, Erik Thyboll; Cain, Fred W; Favre, Loek; Talbot, Geoff

    2007-10-17

    The crystallization and recrystallization of fats have a significant impact on the properties and quality of many food products. While crystallization has been the subject of a number of studies using pure triacylglycerols (TAG), recrystallization in similarly pure systems is rarely studied. In this work, perdeuterated tripalmitoylglycerol ( (2)H-PPP) was dissolved in medium chain triacylglycerol oil (MCT) to yield a saturated solution. The solution was heated to cause partial melting of the solid and dissolution of the molten fraction of (2)H-PPP in MCT and was then cooled to the original temperature to induce recrystallization from the supersaturated solution. (2)H NMR was used to monitor the disappearance of (2)H-PPP from the solution and showed that recrystallization occurred in two steps. The first step was rapid, taking place over a few minutes, and accounted for more than two-thirds of the total recrystallization. The second step was much slower, taking place over a remarkably long timescale of hours to days. It is proposed that dissolution occurs from all parts of the crystals, leaving an etched and pitted surface. The first step of crystallization is the infilling of these pits, while the second step is the continued growth on the smoothed crystal faces.

  17. Collisional Activation of [14Pro+2H]2+ Clusters: Chiral Dependence of Evaporation and Fission Processes

    PubMed Central

    Atlasevich, Natalya; Holliday, Alison E.; Valentine, Stephen J.; Clemmer, David E.

    2012-01-01

    Ion mobility/mass spectrometry techniques are used to investigate the dissociation of the small proline cluster [14Pro+2H]2+ produced by electrospray ionization. While this cluster is known to prefer heterochiral compositions (i.e., mixed L- and D-compositions, J. Phys. Chem. A, submitted for publication), it is possible to produce homochiral forms by electrospraying solutions containing only L or D proline. Differences in the measured cross sections for [14Pro+2H]2+ produced from enantiomerically pure (100% L or 100% D) or racemic (50:50 L/D) solutions indicate that homochiral and heterochiral clusters have different structures. Upon low-energy collisional activation, both the heterochiral and homochiral doubly charged structures evaporate neutral proline monomers, resulting in the formation of [xPro+2H]2+ ions, (where x = 13 to 9). At higher activation energies, there is evidence that these smaller clusters (primarily [10Pro+2H]2+) fission to produce [xPro+H]+ (where x = 1 to 6). Analysis of product ion intensities reveals a strong chiral preference associated with fissioning. Products of evaporation also show a chiral dependence, but to a lesser extent. PMID:22668003

  18. Weighted linear regression using D2H and D2 as the independent variables

    Treesearch

    Hans T. Schreuder; Michael S. Williams

    1998-01-01

    Several error structures for weighted regression equations used for predicting volume were examined for 2 large data sets of felled and standing loblolly pine trees (Pinus taeda L.). The generally accepted model with variance of error proportional to the value of the covariate squared ( D2H = diameter squared times height or D...

  19. Iron-catalyzed Rearrangements and Cycloaddition Reactions of 2H-Chromenes

    PubMed Central

    Luan, Yi; Sun, Huan

    2014-01-01

    Iron(III) salts catalyse the tandem rearrangement/hetero-Diels—Alder reaction of 2H-chromenes to yield tetrahydrochromeno heterocycles. The process can occur as a homodimerization and cycloaddition process using electron rich dienophiles. Deuterium labeling and mechanistic studies revealed a hydride shift and ortho-quinone methide cycloaddition reaction pathway. PMID:22098535

  20. SO2:H2O surface complex found at the vapor/water interface.

    PubMed

    Tarbuck, Teresa L; Richmond, Geraldine L

    2005-12-07

    A weakly bonded SO2:H2O surface complex is found at the vapor/water interface prior to the reaction and dissolution of SO2 into the aqueous phase. The results have important implications for understanding the formation of atmospheric aerosols and understanding the atmospheric sulfur cycle.

  1. Fluorescence from photoexcitation of C2H5OH by vacuum ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Han, J. C.; Suto, Masako; Lee, L. C.

    1989-01-01

    The photoabsorption and fluorescence cross sections of C2H5OH have been measured in the 46-200 nm region. Fluorescence is dispersed to identify the emission systems, which are mainly OH(A-X), CH(A,B-X), and the H Balmer series. The photodissociation processes that produce the observed emissions are discussed.

  2. Growth mode of carbide from C 2H 4 or CO on Ni( 1 1 1 )

    NASA Astrophysics Data System (ADS)

    Nakano, H.; Ogawa, J.; Nakamura, J.

    2002-08-01

    The growth of carbide on a Ni(1 1 1) surface by the decomposition of C 2H 4 and the Boudouard reaction (2CO g→C a+CO 2,g) was studied using scanning tunneling microscopy (STM), Auger electron spectroscopy and low energy electron diffraction. STM results showed that the carbide growth by the Boudouard reaction started at step edges on Ni(1 1 1), while for the C 2H 4 decomposition the carbide was formed preferentially at terrace sites with very low concentration of carbide at the step edge. The different behavior for the carbide growth was ascribed to the difference in the dissociation sites of CO and C 2H 4. As for the Boudouard reaction, CO was dissociated at the step edge and then carbon migrated into the bulk at a reaction temperature of 500 K. The carbon was then segregated at room temperature to the surface from the bulk to form a single domain of the ( 39× 39) R16.1° structure at the step edge. On the other hand, the C 2H 4 decomposition took place on the terrace leading to an isolated carbide unit or carbide short strings on the terrace.

  3. Hyperfine excitation of C2H and C2D by para-H2

    NASA Astrophysics Data System (ADS)

    Dumouchel, Fabien; Lique, François; Spielfiedel, Annie; Feautrier, Nicole

    2017-10-01

    The [C2H]/[C2D] abundance ratio is a useful tool to explore the physical and chemical conditions of cold molecular clouds. Hence, an accurate determination of both the C2H and C2D abundances is of fundamental interest. Due to the low density of the interstellar medium, the population of the energy levels of the molecules is not at local thermodynamical equilibrium. Thus, the accurate modelling of the emission spectra requires the calculation of collisional rate coefficients with the most abundant interstellar species. Hence, we provide rate coefficients for the hyperfine excitation of C2H and C2D by para-H2(j=0), the most abundant collisional partner in cold molecular clouds. State-to-state rate coefficients between the lowest levels were computed for temperatures ranging from 5 to 80 K. For both isotopologues, the Δj = ΔF propensity rule is observed. The comparison between C2H and C2D rate coefficients shows that differences by up to a factor of two exist, mainly for Δj = ΔN = 1 transitions. The new rate coefficients will significantly help in the interpretation of recent observed spectra.

  4. "In planta" regulation of the "Arabidopsis" Ca(2+)/H(+) antiporter CAX1

    USDA-ARS?s Scientific Manuscript database

    Vacuolar localized Ca(2+)/H(+) exchangers such as "Arabidopsis thaliana" cation exchanger 1 (CAX1) play important roles in Ca(2+) homeostasis. When expressed in yeast, CAX1 is regulated via an N-terminal autoinhibitory domain. In yeast expression assays, a 36 amino acid N-terminal truncation of CAX1...

  5. The WSTF-SNF2h chromatin remodeling complex interacts with several nuclear proteins in transcription.

    PubMed

    Cavellán, Erica; Asp, Patrik; Percipalle, Piergiorgio; Farrants, Ann-Kristin Ostlund

    2006-06-16

    The WSTF (Williams syndrome transcription factor) protein is involved in vitamin D-mediated transcription and replication as a component of two distinct ATP-dependent chromatin remodeling complexes, WINAC and WICH, respectively. We show here that the WICH complex (WSTF-SNF2h) interacts with several nuclear proteins as follows: Sf3b155/SAP155, RNA helicase II/Gualpha, Myb-binding protein 1a, CSB, the proto-oncogene Dek, and nuclear myosin 1 in a large 3-MDa assembly, B-WICH, during active transcription. B-WICH also contains RNAs, 45 S rRNA, 5 S rRNA, 7SL RNA, and traces of the U2 small nuclear RNA. The core proteins, WSTF, SNF2h, and nuclear myosin 1, are associated with the RNA polymerase III genes 5 S rRNA genes and 7SL, and post-transcriptional silencing of WSTF reduces the levels of these transcripts. Our results show that a WSTF-SNF2h assembly is involved in RNA polymerase III transcription, and we suggest that WSTF-SNF2h-NM1 forms a platform in transcription while providing chromatin remodeling.

  6. An improved technique for the 2H/1H analysis of urines from diabetic volunteers

    USGS Publications Warehouse

    Coplen, T.B.; Harper, I.T.

    1994-01-01

    The H2-H2O ambient-temperature equilibration technique for the determination of 2H/1H ratios in urinary waters from diabetic subjects provides improved accuracy over the conventional Zn reduction technique. The standard deviation, ~ 1-2???, is at least a factor of three better than that of the Zn reduction technique on urinary waters from diabetic volunteers. Experiments with pure water and solutions containing glucose, urea and albumen indicate that there is no measurable bias in the hydrogen equilibration technique.The H2-H2O ambient-temperature equilibration technique for the determination of 2H/1H ratios in urinary waters from diabetic subjects provides improved accuracy over the conventional Zn reduction technique. The standard deviation, approximately 1-2%, is at least a factor of three better than that of the Zn reduction technique on urinary waters from diabetic volunteers. Experiments with pure water and solutions containing glucose, urea and albumen indicate that there is no measurable bias in the hydrogen equilibration technique.

  7. First principles study of CrH and CrM2H

    NASA Astrophysics Data System (ADS)

    Kanagaprabha, S.; Santhosh, M.; Rajeswarapalanichamy, R.; Iyakutti, K.

    2013-06-01

    First principles calculation were performed using Tight-binding LMTO method with Local density approximation (LDA) and Atomic sphere approximation (ASA) to understand the electronic properties of CrH. A pressure induced structural phase transition from cubic to hexagonal structure of CrH is predicted. The stability of CrM2H is analyzed.

  8. The C-H Dissociation Energy of C2H6

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    The C-H bond energy in C2H6 is computed to be 99.76 +/- 0.35 kcal/mol, which is in excellent agreement with the most recent experimental values. The calculation of the C-H bond energy by direct dissociation and by an isodesmic reaction is discussed.

  9. N,N-bond-forming heterocyclization: synthesis of 3-alkoxy-2H-indazoles.

    PubMed

    Mills, Aaron D; Nazer, Musa Z; Haddadin, Makhluf J; Kurth, Mark J

    2006-03-31

    A one-step heterocyclization of o-nitrobenzylamines to 3-alkoxy-2H-indazoles is reported. The electronic nature of the nitrophenyl group, the steric and electronic nature of the R1-functionalized benzylic amine, and the nature of the alcoholic solvent affect the efficiency of this heterocyclization reaction (approximately 40-90%).

  10. Turbulence in Supercritical O2/H2 and C7H16/N2 Mixing Layers

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth; Okong'o, Nora

    2003-01-01

    This report presents a study of numerical simulations of mixing layers developing between opposing flows of paired fluids under supercritical conditions, the purpose of the study being to elucidate chemical-species-specific aspects of turbulence. The simulations were performed for two different fluid pairs O2/H2 and C7H16/N2 at similar reduced initial pressures (reduced pressure is defined as pressure divided by critical pressure). Thermodynamically, O2/H2 behaves more nearly like an ideal mixture and has greater solubility, relative to C7H16/N2, which departs strongly from ideality. Because of a specified smaller initial density stratification, the C7H16/N2 layers exhibited greater levels of growth, global molecular mixing, and turbulence. However, smaller density gradients at the transitional state for the O2/H2 system were interpreted as indicating that locally, this system exhibits enhanced mixing as a consequence of its greater solubility and closer approach to ideality. These thermodynamic features were shown to affect entropy dissipation, which was found to be larger for O2/H2 and concentrated in high-density-gradient-magnitude regions that are distortions of the initial density-stratification boundary. In C7H16/N2, the regions of largest dissipation were found to lie in high-density-gradient-magnitude regions that result from mixing of the two fluids.

  11. Improved watermelon quality using bottle gourd rootstock expressing a Ca(2+)/H(+) antiporter

    USDA-ARS?s Scientific Manuscript database

    Bottle gourd ("Lagenaria siceraria" Standl.) has been commonly used as a source of rootstock for watermelon. To improve its performance as a rootstock without adverse effects on the scion, the bottle gourd was genetically engineered using a modified "Arabidopsis" Ca(2+)/H(+) exchanger sCAX2B. This t...

  12. TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OL)

    Atmospheric Science Data Center

    2016-10-25

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OL) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access: OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  13. The Rate Constant for the Reaction H + C2H5 at T = 295 - 150K

    NASA Technical Reports Server (NTRS)

    Pimentel, Andre S.; Payne, Walter A.; Nesbitt, Fred L.; Cody, Regina J.; Stief, Louis J.

    2004-01-01

    The reaction between the hydrogen atom and the ethyl (C2H3) radical is predicted by photochemical modeling to be the most important loss process for C2H5 radicals in the atmospheres of Jupiter and Saturn. This reaction is also one of the major sources for the methyl radicals in these atmospheres. These two simplest hydrocarbon radicals are the initial species for the synthesis of larger hydrocarbons. Previous measurements of the rate constant for the H + C2H5 reaction varied by a factor of five at room temperature, and some studies showed a dependence upon temperature while others showed no such dependence. In addition, the previous studies were at higher temperatures and generally higher pressures than that needed for use in planetary atmospheric models. The rate constant for the reaction H + C2H5 has been measured directly at T = 150, 202 and 295 K and at P = 1.0 Torr He for all temperatures and additionally at P = 0.5 and 2.0 Torr He at T = 202 K. The measurements were performed in a discharge - fast flow system. The decay of the C2H5 radical in the presence of excess hydrogen was monitored by low-energy electron impact mass spectrometry under pseudo-first order conditions. H atoms and C2H5 radicals were generated rapidly and simultaneously by the reaction of fluorine atoms with H2 and C2H6, respectively. The total rate constant was found to be temperature and pressure independent. The measured total rate constant at each temperature are: k(sub 1)(295K) = (1.02+/-0.24)x10(exp -10), k(sub 1)(202K) = (1.02+/-0.22)x10(exp -10) and k(sub 1)(150K) = (0.93+/-0.21)x10(exp -10), all in units of cu cm/molecule/s. The total rate constant derived from all the combined measurements is k(sub 1) = (l.03+/-0.17)x10(exp -10) cu cm/molecule/s. At room temperature our results are about a factor of two higher than the recommended rate constant and a factor of three lower than the most recently published study.

  14. LITERATURE REVIEW ON IMPACT OF GLYCOLATE ON THE 2H EVAPORATOR AND THE EFFLUENT TREATMENT FACILITY

    SciTech Connect

    Adu-Wusu, K.

    2012-05-10

    Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporator serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations {le} 33 mg/L or 0.44 mM. The ETF unit operations that will have

  15. Microbial H2 cycling does not affect δ2H values of ground water

    USGS Publications Warehouse

    Landmeyer, J.E.; Chapelle, F.H.; Bradley, P.M.

    2000-01-01

    Stable hydrogen-isotope values of ground water (δ2H) and dissolved hydrogen concentrations (H(2(aq)) were quantified in a petroleum-hydrocarbon contaminated aquifer to determine whether the production/consumption of H2 by subsurface microorganisms affects ground water &delta2H values. The range of &delta2H observed in monitoring wells sampled (-27.8 ‰c to -15.5 ‰c) was best explained, however, by seasonal differences in recharge temperature as indicated using ground water δ18O values, rather than isotopic exchange reactions involving the microbial cycling of H2 during anaerobic petroleum-hydrocarbon biodegradation. The absence of a measurable hydrogen-isotope exchange between microbially cycled H2 and ground water reflects the fact that the amount of H2 available from the anaerobic decomposition of petroleum hydrocarbons is small relative to the amount of hydrogen present in water, even though milligram per liter concentrations of readily biodegradable contaminants are present at the study site. Additionally, isotopic fractionation calculations indicate that in order for H2 cycling processes to affect δ2H values of ground water, relatively high concentrations of H2 (>0.080 M) would have to be maintained, considerably higher than the 0.2 to 26 nM present at this site and characteristic of anaerobic conditions in general. These observations suggest that the conventional approach of using δ2H and δ18O values to determine recharge history is appropriate even for those ground water systems characterized by anaerobic conditions and extensive microbial H2 cycling.

  16. High-Density Energetic Metal-Organic Frameworks Based on the 5,5'-Dinitro-2H,2'H-3,3'-bi-1,2,4-triazole.

    PubMed

    Dong, Yalu; Peng, Panpan; Hu, Baoping; Su, Hui; Li, Shenghua; Pang, Siping

    2017-06-26

    High-energy metal-organic frameworks (MOFs) based on nitrogen-rich ligands are an emerging class of explosives, and density is one of the positive factors that can influence the performance of energetic materials. Thus, it is important to design and synthesize high-density energetic MOFs. In the present work, hydrothermal reactions of Cu(II) with the rigid polynitro heterocyclic ligands 5,5'-dinitro-2H,2'H-3,3'-bi-1,2,4-triazole (DNBT) and 5,5'-dinitro-3,3'-bis-1,2,4-triazole-1-diol (DNBTO) gave two high-density MOFs: [Cu(DNBT)(ATRZ)₃]n (1) and [Cu(DNBTO)(ATRZ)₂(H₂O)₂]n (2), where ATRZ represents 4,4'-azo-1,2,4-triazole. The structures were characterized by infrared spectroscopy, elemental analysis, ultraviolet-visible (UV) absorption spectroscopy and single-crystal X-ray diffraction. Their thermal stabilities were also determined by thermogravimetric/differential scanning calorimetry analysis (TG/DSC). The results revealed that complex 1 has a two-dimensional porous framework that possesses the most stable chair conformations (like cyclohexane), whereas complex 2 has a one-dimensional polymeric structure. Compared with previously reported MOFs based on copper ions, the complexes have higher density (ρ = 1.93 g cm(-3) for complex 1 and ρ = 1.96 g cm(-3) for complex 2) and high thermal stability (decomposition temperatures of 323 °C for complex 1 and 333.3 °C for complex 2), especially because of the introduction of an N-O bond in complex 2. We anticipate that these two complexes would be potential high-energy density materials.

  17. Effects of leaf water evaporative (2) H-enrichment and biosynthetic fractionation on leaf wax n-alkane δ(2) H values in C3 and C4 grasses.

    PubMed

    Gamarra, B; Sachse, D; Kahmen, A

    2016-11-01

    Leaf wax n-alkane δ(2) H values carry important information about environmental and ecophysiological processes in plants. However, the physiological and biochemical drivers that shape leaf wax n-alkane δ(2) H values are not completely understood. It is particularly unclear why n-alkanes in grasses are typically (2) H-depleted compared with plants from other taxonomic groups such as dicotyledonous plants and why C3 grasses are (2) H-depleted compared with C4 grasses. To resolve these uncertainties, we quantified the effects of leaf water evaporative (2) H-enrichment and biosynthetic hydrogen isotope fractionation on n-alkane δ(2) H values for a range of C3 and C4 grasses grown in climate-controlled chambers. We found that only a fraction of leaf water evaporative (2) H-enrichment is imprinted on the leaf wax n-alkane δ(2) H values in grasses. This is interesting, as previous studies have shown in dicotyledonous plants a nearly complete transfer of this (2) H-enrichment to the n-alkane δ(2) H values. We thus infer that the typically observed (2) H-depletion of n-alkanes in grasses (as opposed to dicots) is because only a fraction of the leaf water evaporative (2) H-enrichment is imprinted on the δ(2) H values. Our experiments also show that differences in n-alkane δ(2) H values between C3 and C4 grasses are largely the result of systematic differences in biosynthetic fractionation between these two plant groups, which was on average -198‰ and-159‰ for C3 and C4 grasses, respectively.

  18. Effect of gas phase composition cycling on/off modulation numbers of C2H2/SF6 flows on the formation of geometrically controlled carbon coils.

    PubMed

    Eum, Jun-Ho; Jeon, Young-Chul; Kim, Sung-Hoon

    2012-07-01

    Carbon coils can be synthesized using C2H2/H2 as source gases and SF6 as an incorporated additive gas under a thermal chemical vapor deposition system. In this study, nickel catalyst layer deposition and then hydrogen plasma pretreatment were performed prior to the carbon coils deposition reaction. To obtain geometrically controlled carbon coils, source gases and SF6 were manipulated as the cycling on/off modulation numbers of C2H2/SF6 flows. The cycling numbers were varied according to the different reaction processes. The increased cycling numbers could develop the wave-like nano-sized carbon coils. By further increasing the cycling numbers, however, the nanostructured carbon coils seemed to deteriorate. As a result, the maximum formation of geometrically controlled carbon coils was achieved by adjusting the cycling numbers. The enhanced etching capability of the fluorine-related species in SF6 additive gas was considered for the main objective of controlling the geometry of carbon coils.

  19. Plasma chemistry study of PLAD processes

    SciTech Connect

    Qin Shu; Brumfield, Kyle; Liu, Lequn Jennifer; Hu, Yongjun Jeff; McTeer, Allen; Hsu, Wei Hui; Wang Maoying

    2012-11-06

    Plasma doping (PLAD) shows very different impurity profiles compared to the conventional beam-line-based ion implantations due to its non-mass separation property and plasma environment. There is no simulation for PLAD process so far due to a lack of a dopant profile model. Several factors determine impurity profiles of PLAD process. The most significant factors are: plasma chemistry and deposition/etching characteristics of multi-ion species plasmas. In this paper, we present plasma chemistry and deposition/etching characteristics of PLAD processes versus co-gas dilutions. Four dopant plasmas including B{sub 2}H{sub 6}, BF{sub 3}, AsH{sub 3}, and PH{sub 3}, and two non-dopant plasmas including CH{sub 4} and GeH{sub 4} are studied and demonstrated.

  20. Plasma chemistry study of PLAD processes

    NASA Astrophysics Data System (ADS)

    Qin, Shu; Brumfield, Kyle; Liu, Lequn Jennifer; Hu, Yongjun Jeff; McTeer, Allen; Hsu, Wei Hui; Wang, Maoying

    2012-11-01

    Plasma doping (PLAD) shows very different impurity profiles compared to the conventional beam-line-based ion implantations due to its non-mass separation property and plasma environment. There is no simulation for PLAD process so far due to a lack of a dopant profile model. Several factors determine impurity profiles of PLAD process. The most significant factors are: plasma chemistry and deposition/etching characteristics of multi-ion species plasmas. In this paper, we present plasma chemistry and deposition/etching characteristics of PLAD processes versus co-gas dilutions. Four dopant plasmas including B2H6, BF3, AsH3, and PH3, and two non-dopant plasmas including CH4 and GeH4 are studied and demonstrated.

  1. A Comparison of hs-CRP Levels in New Diabetes Groups Diagnosed Based on FPG, 2-hPG, or HbA1c Criteria.

    PubMed

    Tutuncu, Yildiz; Satman, Ilhan; Celik, Selda; Dinccag, Nevin; Karsidag, Kubilay; Telci, Aysegul; Genc, Sema; Issever, Halim; Tuomilehto, Jaakko; Omer, Beyhan

    2016-01-01

    Fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) have been used to diagnose new-onset diabetes mellitus (DM) in order to simplify the diagnostic tests compared with the 2-hour oral glucose tolerance test (OGTT; 2-hPG). We aimed to identify optimal cut-off points of high sensitive C-reactive protein (hs-CRP) in new-onset DM people based on FPG, 2-hPG, or HbA1c methods. Data derived from recent population-based survey in Turkey (TURDEP-II). The study included 26,499 adult people (63% women, response rate 85%). The mean serum concentration of hs-CRP in women was higher than in men (p < 0.001). The people with new-onset DM based on HbA1c had higher mean hs-CRP level than FPG based and 2-hPG based DM cases. In HbA1c, 2-hPG, and FPG based new-onset DM people, cut-off levels of hs-CRP in women were 2.9, 2.1, and 2.5 mg/L [27.5, 19.7, and 23.5 nmol/L] and corresponding values in men were 2.0, 1.8, and 1.8 mg/L (19.0, 16.9, and 16.9 nmol/L), respectively (sensitivity 60-65% and specificity 54-64%). Our results revealed that hs-CRP may not further strengthen the diagnosis of new-onset DM. Nevertheless, the highest hs-CRP level observed in new-onset DM people diagnosed with HbA1c criterion supports the general assumption that this method might recognize people in more advanced diabetic stage compared with other diagnostic methods.

  2. Optically pumped CHClF2 and C2H5I submillimeter wave lasers

    NASA Astrophysics Data System (ADS)

    Tobin, M. S.; Daley, T. W.

    1980-06-01

    Submillimeter wave laser action is reported for optically pumped chlorodifluoromethane gas and ethyl iodide vapor. The compounds were pumped by an electrically chopped CO2 laser at 10 Hz coupled to a metallic waveguide unoptimized 3.5 mm output-hole-coupled resonator with plunger mirrors. Coincidences between CO2 pump lines and molecular absorption lines were detected at three lines in the 9-micron R region in CHClF2 and two lines in the 10-micron R and P regions in C2H5I for chopped and not CW laser regimes. Comparison of the molecular structures of the two species with the CW FIR laser material selection criteria of Danielewicz and Weiss (1978) reveals that CHClF2 satisfies these criteria (although CHClF2 absorption does not overlap with many CO2 pump lines), while C2H5I does not, in agreement with experimental results.

  3. Pyridazines. XVIII. 6-Aryl-3(2H)-pyridazinones inhibit calcium influx in stimulated platelets.

    PubMed

    Montero-Lastres, A; Fraiz, N; Laguna, R; Cano, E; Estevez, I; Raviña, E

    1999-12-01

    6-Phenyl-5-hydroxymethyl-4,5-dihydro-3(2H)-pyridazinone (1) and 6-thienyl-5-hydroxymethyl-4,5-dihydro-3(2H)-pyridazinone (2) inhibit platelet aggregation induced by thrombin (IC50 = 0.25 and 0.26 mM, respectively) or by the calcium ionophore ionomycin (IC50 = 0.42 and 0.43 mM, respectively). Pyridazinones 1 and 2 also show concentration-dependent attenuation of the increases in platelet cytosolic free calcium concentration induced by thrombin and ionomycin, suggesting that their antiaggregatory activity may be due to their capacity to inhibit the passage of calcium through the cytoplasmic membrane. This effect may be implicated in other pharmacological activities of 6-aryl-5-substituted-pyridazinones.

  4. Near infrared second overtone cw-cavity ringdown spectroscopy of D2H+ ions

    NASA Astrophysics Data System (ADS)

    Hlavenka, P.; Plasil, R.; Bano, G.; Korolov, I.; Gerlich, D.; Ramanlal, J.; Tennyson, J.; Glosik, J.

    2006-09-01

    A study of D2H+ ions in their lowest rotational states is presented. The ions are generated in pulsed discharge in liquid N2 cooled He/Ar/H2/D2 gas mixture. Near infrared (NIR) second overtone transitions in the 6534-6536 cm-1 (1.529-1.530 [mu]m) region are used to identify the ions and determine their degree of rotational excitation. The data were obtained using NIR cavity ringdown absorption spectroscopy (NIR-CRDS). The sensitivity obtained was typically 5 x 10-9 cm-1. The measured second overtone transition frequencies are in very good agreement (better than 0.02 cm-1) with ab initio predictions. From the Doppler broadening the kinetic temperature of ions is estimated to be (220 +/- 50) K. The absolute number density of D2H+ as a function of H2/D2 mixing ratio and time is measured.

  5. The 2H Electric Dipole Moment in a Separable Potential Approach

    NASA Astrophysics Data System (ADS)

    Gibson, B. F.; Afnan, I. R.

    2010-04-01

    Measurement of the electric dipole moment (EDM) of 2H or of 3He may well come prior to the coveted measurement of the neutron EDM. Exact model calculations for the deuteron are feasible, and we explore here the model dependence of such deuteron EDM calculations. We investigate in a separable potential approach the relationship of the full model calculation to the plane wave approximation, correct an error in an early potential model result, and examine the tensor force aspects of the model results as well as the effect of the short range repulsion found in the realistic, contemporary potential model calculations of Liu and Timmermans. We conclude that, because one-pion exchange dominates the EDM calculation, separable potential model calculations should provide an adequate picture of the 2H EDM until better than 10% measurements are achieved.

  6. Mixed H(2)/H(sub infinity): Control with output feedback compensators using parameter optimization

    NASA Technical Reports Server (NTRS)

    Schoemig, Ewald; Ly, Uy-Loi

    1992-01-01

    Among the many possible norm-based optimization methods, the concept of H-infinity optimal control has gained enormous attention in the past few years. Here the H-infinity framework, based on the Small Gain Theorem and the Youla Parameterization, effectively treats system uncertainties in the control law synthesis. A design approach involving a mixed H(sub 2)/H-infinity norm strives to combine the advantages of both methods. This advantage motivates researchers toward finding solutions to the mixed H(sub 2)/H-infinity control problem. The approach developed in this research is based on a finite time cost functional that depicts an H-infinity bound control problem in a H(sub 2)-optimization setting. The goal is to define a time-domain cost function that optimizes the H(sub 2)-norm of a system with an H-infinity-constraint function.

  7. VUV photoionization cross sections of HO2, H2O2, and H2CO.

    PubMed

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio

    2015-02-26

    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.

  8. The Dissociation Energies of CH4 and C2H2 Revisited

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The bond dissociation energies of CH4 and C2H2 and their fragments are investigated using basis set extrapolations and high levels of correlation. The computed bond dissociation energies (D(sub e)) are accurate to within 0.2 kcal/mol. The agreement with the experimental (D(sub 0)) values is excellent if we assume that the zero-point energy of C2H is 9.18 kcal/mol. The effect of core (1s) correlation on the bond dissociation energies of C-H bonds is shown to vary from 0.2 to 0.7 kcal/mol and that for C-C bonds varies from 0.4 to 2.2 kcal/mol.

  9. 2H-DNP-enhanced 2H–13C solid-state NMR correlation spectroscopy

    PubMed Central

    Maly, Thorsten; Andreas, Loren B.; Smith, Albert A.

    2015-01-01

    Perdeuteration of biological macromolecules for magic angle spinning solid-state NMR spectroscopy can yield high-resolution 2H–13C correlation spectra and the method is therefore of great interest for the structural biology community. Here we demonstrate that the combination of sample deuteration and dynamic nuclear polarization yields resolved 2H–13C correlation spectra with a signal enhancement of ε ≥ 700 compared to a spectrum recorded with microwaves off and otherwise identical conditions. To our knowledge, this is the first time that 2H-DNP has been employed to enhance MAS-NMR spectra of a biologically relevant system. The DNP process is studied using several polarizing agents and the technique is applied to obtain 2H–13C correlation spectra of U-[2H, 13C] proline. PMID:20458422

  10. Mixed H2/H(infinity)-Control with an output-feedback compensator using parameter optimization

    NASA Technical Reports Server (NTRS)

    Schoemig, Ewald; Ly, Uy-Loi

    1992-01-01

    Among the many possible norm-based optimization methods, the concept of H-infinity optimal control has gained enormous attention in the past few years. Here the H-infinity framework, based on the Small Gain Theorem and the Youla Parameterization, effectively treats system uncertainties in the control law synthesis. A design approach involving a mixed H(sub 2)/H-infinity norm strives to combine the advantages of both methods. This advantage motivates researchers toward finding solutions to the mixed H(sub 2)/H-infinity control problem. The approach developed in this research is based on a finite time cost functional that depicts an H-infinity bound control problem in a H(sub 2)-optimization setting. The goal is to define a time-domain cost function that optimizes the H(sub 2)-norm of a system with an H-infinity-constraint function.

  11. Critical behavior of KDCO3 from 2H and 39K single crystal NMR.

    PubMed

    Odin, Christophe

    2008-01-01

    Potassium hydrogenocarbonate KDCO3 presents an order/disorder phase transition at Tc approximately 353 K. The critical behavior of this phase transition was studied by single crystal 2H and 39K NMR. The evolution of the order parameter as a function of temperature is quantified, and the critical exponent was determined, indicating a transition close to a tricritical point. The 2H Zeeman relaxation rate is strongly increased near the transition temperature. By calculating the noncritical contribution to the Zeeman relaxation rate, we show that the observed relaxation rate clearly presents a pseudo-divergent behavior near Tc, with a logarithmic singularity. The nature of the phase transition is discussed in the light of these results. Copyright (c) 2007 John Wiley & Sons, Ltd.

  12. ETM and ANN study for polysubstituted 2H-pyran-2-ones.

    PubMed

    Saracoglu, Murat; Basaran, Murat Alper; Thul, Pallavi; Sayiner, Hakan; Kandemirli, Sedat Giray; Gupta, Ved Prakash; Kandemirli, Fatma

    2013-09-01

    The structure glutamate pyruvate transaminase (GPT), glutamate oxaloacetate transaminase (GOT), acid phosphatase (ACP), alkaline phosphatase (ALP) and glutamate dehydrogenase (GlDH) activity relationships of 2H-pyran-2- ones polysubstitutes being a new class of hepatoprotective agents have been investigated by means of the Electronic- Topological Method (ETM) and two Statistical Analysis. Molecular fragments specific for active compounds were calculated for 2H-pyran-2-ones polysubstitutes by applying the ETM. QSAR descriptors such as molecular weight, EHOMO, ELUMO, ΔE, chemical potential, softness, electrophilicity index, dipole moment, etc were calculated. In order to examine the relationship between independent and dependent variables, both Partial Least Squares Regression and ANNs are employed to determine the relationship since the data set consists of highly nonlinearity and multicolinearity. It is observed that ANN has surpassed both PLS2 and PLS1 in terms of better modeling and validation.

  13. The Dissociation Energies of CH4 and C2H2 Revisited

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The bond dissociation energies of CH4 and C2H2 and their fragments are investigated using basis set extrapolations and high levels of correlation. The computed bond dissociation energies (D(sub e)) are accurate to within 0.2 kcal/mol. The agreement with the experimental (D(sub 0)) values is excellent if we assume that the zero-point energy of C2H is 9.18 kcal/mol. The effect of core (1s) correlation on the bond dissociation energies of C-H bonds is shown to vary from 0.2 to 0.7 kcal/mol and that for C-C bonds varies from 0.4 to 2.2 kcal/mol.

  14. The reaction of ethyl 2-oxo-2H-chromene-3-carboxylate with hydrazine hydrate.

    PubMed

    Abdel-Aziz, Hatem A; Elsaman, Tilal; Attia, Mohamed I; Alanazi, Amer M

    2013-02-06

    Although salicylaldehyde azine (3) was reported in 1985 as the single product of the reaction of ethyl 2-oxo-2H-chromene-3-carboxylate (1) with hydrazine hydrate, we identified another main reaction product, besides 3, which was identified as malono-hydrazide (4). In the last two decades, however, some articles have claimed that this reaction afforded exclusively hydrazide 2 and they have reported the use of this hydrazide 2 as a precursor in the syntheses of several heterocyclic compounds and hydrazones 6. We reported herein a study of the formation of 2 and a facile route for the synthesis of the target compounds N'-arylidene-2-oxo-2H-chromene-3-carbohydrazides 6a-f.

  15. The Abundance of C2H4 in the Circumstellar Envelope of IRC+10216.

    PubMed

    Fonfría, J P; Hinkle, K H; Cernicharo, J; Richter, M J; Agúndez, M; Wallace, L

    2017-02-01

    High spectral resolution mid-IR observations of ethylene (C2H4) towards the AGB star IRC+10216 were obtained using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infrared Telescope Facility (IRTF). Eighty ro-vibrational lines from the 10.5 µm vibrational mode ν7 with J ≲ 30 were detected in absorption. The observed lines are divided into two groups with rotational temperatures of 105 and 400 K (warm and hot lines). The warm lines peak at ≃ -14 km s(-1) with respect to the systemic velocity, suggesting that they are mostly formed outwards from ≃ 20R⋆. The hot lines are centered at -10 km s(-1) indicating that they come from a shell between 10 and 20R⋆. 35% of the observed lines are unblended and can be fitted with a code developed to model the emission of a spherically symmetric circumstellar envelope. The analysis of several scenarios reveal that the C2H4 abundance relative to H2 in the range 5 - 20R⋆ is 6.9 × 10(-8) in average and it could be as high as 1.1 × 10(-7). Beyond 20R⋆, it is 8.2 × 10(-8). The total column density is (6.5 ± 3.0) × 10(15) cm(-2). C2H4 is found to be rotationally under local thermodynamical equilibrium (LTE) and vibrationally out of LTE. One of the scenarios that best reproduce the observations suggests that up to 25% of the C2H4 molecules at 20R⋆ could condense onto dust grains. This possible depletion would not influence significantly the gas acceleration although it could play a role in the surface chemistry on the dust grains.

  16. Coupled Ca2+/H+ transport by cytoplasmic buffers regulates local Ca2+ and H+ ion signaling.

    PubMed

    Swietach, Pawel; Youm, Jae-Boum; Saegusa, Noriko; Leem, Chae-Hun; Spitzer, Kenneth W; Vaughan-Jones, Richard D

    2013-05-28

    Ca(2+) signaling regulates cell function. This is subject to modulation by H(+) ions that are universal end-products of metabolism. Due to slow diffusion and common buffers, changes in cytoplasmic [Ca(2+)] ([Ca(2+)]i) or [H(+)] ([H(+)]i) can become compartmentalized, leading potentially to complex spatial Ca(2+)/H(+) coupling. This was studied by fluorescence imaging of cardiac myocytes. An increase in [H(+)]i, produced by superfusion of acetate (salt of membrane-permeant weak acid), evoked a [Ca(2+)]i rise, independent of sarcolemmal Ca(2+) influx or release from mitochondria, sarcoplasmic reticulum, or acidic stores. Photolytic H(+) uncaging from 2-nitrobenzaldehyde also raised [Ca(2+)]i, and the yield was reduced following inhibition of glycolysis or mitochondrial respiration. H(+) uncaging into buffer mixtures in vitro demonstrated that Ca(2+) unloading from proteins, histidyl dipeptides (HDPs; e.g., carnosine), and ATP can underlie the H(+)-evoked [Ca(2+)]i rise. Raising [H(+)]i tonically at one end of a myocyte evoked a local [Ca(2+)]i rise in the acidic microdomain, which did not dissipate. The result is consistent with uphill Ca(2+) transport into the acidic zone via Ca(2+)/H(+) exchange on diffusible HDPs and ATP molecules, energized by the [H(+)]i gradient. Ca(2+) recruitment to a localized acid microdomain was greatly reduced during intracellular Mg(2+) overload or by ATP depletion, maneuvers that reduce the Ca(2+)-carrying capacity of HDPs. Cytoplasmic HDPs and ATP underlie spatial Ca(2+)/H(+) coupling in the cardiac myocyte by providing ion exchange and transport on common buffer sites. Given the abundance of cellular HDPs and ATP, spatial Ca(2+)/H(+) coupling is likely to be of general importance in cell signaling.

  17. Kinetics Studies of Radical-Radical Reactions: The NO2 + N2H3 System

    DTIC Science & Technology

    2013-10-01

    investigating the kinetics of this elementary reaction . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...Viewgraph 3. DATES COVERED (From - To) September 2013- October 2013 4. TITLE AND SUBTITLE Kinetics Studies of Radical-Radical Reactions (I): The NO2...characteristics in relevant operating environments. Here we report theoretical results obtained on the prototypical radical- radical reaction : NO2 + N2H3

  18. Temporal and spatial distributions of δ18O and δ2H in precipitation in Romania

    NASA Astrophysics Data System (ADS)

    Nagavciuc, Viorica; Bădăluță, Carmen-Andreea; Perșoiu, Aurel

    2015-04-01

    Stable isotope ratios of meteoric water have an important role in climatic, paleoclimatic, hydrological and meteorological studies. While such data are available from most of Europe, so far, in Romania (East Central Europe), no systematic study of the stable isotopic composition of precipitation exists. In this context, the aim of this study is to analyze the isotopic composition of rainwater, its temporal and spatial distribution, the identification of the main factors influencing these variations and the creation of the first map of spatial distribution of stable isotopes in precipitation in Romania. Between March 2012 and March 2014 we have collected monthly samples from 22 stations in Romania, which were subsequently analyzed for their δ18O and δ2H at the Stable Isotopes Laboratory, Stefan cel Mare University, Suceava, Romania. Precipitation in W and NW Romania plot along the GMWL, while those in the East are slightly below it, on an evaporative trend. The LMWL for Romania is defined as δ2H=7,27*δ18O + 6,92. The W-E gradient in the distribution of δ18O and δ2H are less marked than the N-S ones, with local influences dominating in areas of strong evaporation (intramountain basins, rain-shadow areas etc). In SW, and especially in autumn and winter, Meditteranean cyclones carry moisture from the Eastern Mediterranean, the δ18O and δ2H values in precipitation in the area plotting between the GMWL and the Eastern Mediterranean Meteoric Water Line. The isotopic composition of rainwater in Romania correlates well with air temperature, and is influenced to a lesser extent by other factors such as the amount of precipitation, topography configuration, the effect of continentalism and season of the year.

  19. Characterization Results for the March 2016 H-Tank Farm 2H Evaporator Overhead Samples

    SciTech Connect

    Nicholson, J. C.

    2016-05-09

    This report contains the radioanalytical results of the 2H evaporator overhead sample received at SRNL on March 16, 2016. Specifically, concentrations of 137Cs, 90Sr, and 129I are reported and compared to the corresponding Waste Acceptance Criteria (WAC) limits of the Effluent Treatment Project (ETP) Waste Water Collection Tank (WWCT) (rev. 6). All of the radionuclide concentrations in the sample were found to be in compliance with the ETP WAC limits.

  20. Ionized state of hydroperoxy radical-water hydrogen-bonded complex: (HO2-H2O)+.

    PubMed

    Joshi, Ravi; Ghanty, Tapan K; Naumov, Sergej; Mukherjee, Tulsi

    2007-12-27

    Ab initio molecular orbital calculations have been employed to characterize the structure and bonding of the (HO2-H2O)+ radical cation system. Geometry optimization of this system was carried out using unrestricted density functional theory in conjunction with the BHHLYP functional and 6-311++G(2df,2p) as well as 6-311++G(3df,3p) basis sets, the second-order Møller-Plesset perturbation (MP2) method with the 6-311++G(3df,3p) basis set, and the couple cluster (CCSD) method with the aug-cc-pVTZ basis set. The effect of spin multiplicity on the stability of the (HO2-H2O)+ system has been studied and also compared with that of oxygen. The calculated results suggest a proton-transferred hydrogen bond between HO2 and H2O in H3O3+ wherein a proton is partially transferred to H2O producing the O2...H3O+ structure. The basis set superposition error and zero-point energy corrected results indicate that the H3O3+ system is energetically more stable in the triplet state; however, the singlet state of H3O3+ is more stable with respect to its dissociation into H3O+ and singlet O2. Since the resulting proton-transferred hydrogen-bonded complex (O2...H3O+) consists of weakly bound molecular oxygen, it might have important implications in various chemical processes and aquatic life systems.

  1. 4-[(2H-Tetra­zol-2-yl)meth­yl]benzonitrile

    PubMed Central

    Xing, Zheng; Qu, Zhi-Rong

    2008-01-01

    The title compound, C9H7N5, was synthesized by reaction of 4-(bromomethyl)benzonitrile and 2H-tetrazole in the presence of KOH. The relative orientation of the planar tetra­zole ring and the methyl­benzonitrile moiety is (−)-anti­clinal. The crystal packing is dominated by van der Waals inter­actions. PMID:21201472

  2. Sensitivity of 2H NMR spectroscopy to motional models: Proteins and highly viscous liquids as examples

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Mielczarek, A.; Korpala, A.; Kozlowski, A.; Earle, K. A.; Moscicki, J.

    2012-06-01

    In order to study to what extent mechanisms of molecular motion can be unambiguously revealed by 2H NMR spectroscopy, 2H spectra for proteins (chicken villin protein headpiece HP36, selectively methyl-deuterated at leucine-69, Cδ D3) and binary systems of high viscosity (benzene-d6 in tricresyl phosphate) have been carefully analyzed as illustrative examples (the spectra are taken from the literature). In the first case, a model of restricted diffusion mediated by jumps between rotameric orientations has been tested against jump- and free diffusion models which describe rotational motion combined with jump dynamics. It has been found that the set of 2H spectra of methyl-deuterated at leucine-69 chicken villin protein headpiece HP36 can be consistently explained by different motional models as well as by a Gaussian distribution of correlation times assuming isotropic rotation (simple Brownian diffusion model). The last finding shows that when the possible distribution of correlation times is not very broad one might not be able to distinguish between heterogeneous and homogenous (but more complex) dynamics by analyzing 2H lineshapes. For benzene-d6 in tricresyl phosphate, the dynamics is heterogeneous and it has been demonstrated that a Gaussian distribution of correlation times reproduces well the experimental lineshapes, while for a Cole-Davidson distribution the agreement is somewhat worse. For inquires into the sensitivity of quadrupolar NMR spectral analysis (by "quadrupolar NMR spectroscopy we understand NMR spectroscopy of nuclei possessing quadrupole moment), the recently presented theoretical approach [Kruk et al., J. Chem. Phys. 135, 224511 (2011)], 10.1063/1.3664783 has been used as it allows simulating quadrupolar spectra for arbitrary motional conditions by employing the stochastic Liouville equation.

  3. Electron Impact Ionization and Dissociative Ionization of C2H2

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K.

    1995-01-01

    By utilizing a crossed electron beam collision geometry, a combination of time-of-flight (TOF) and quadrupole mass spectrometers, and the relative flow technique1 normalized values of cross sections and appearance energies (AP) were obtained for the formation of singly and multiply ionized species resulting from the ionization and dissociation of C2H2. Details ont he apparatus and technique have been published previously.2,3.

  4. Establishment of the C(2)H(5)+O(2) reaction mechanism: a combustion archetype.

    PubMed

    Wilke, Jeremiah J; Allen, Wesley D; Schaefer, Henry F

    2008-02-21

    The celebrated C(2)H(5)+O(2) reaction is an archetype for hydrocarbon combustion, and the critical step in the process is the concerted elimination of HO(2) from the ethylperoxy intermediate (C(2)H(5)O(2)). Master equation kinetic models fitted to measured reaction rates place the concerted elimination barrier 3.0 kcal mol(-1) below the C(2)H(5)+O(2) reactants, whereas the best previous electronic structure computations yield a barrier more than 2.0 kcal mol(-1) higher. We resolve this discrepancy here by means of the most rigorous computations to date, using focal point methods to converge on the ab initio limit. Explicit computations were executed with basis sets as large as cc-pV5Z and correlation treatments as extensive as coupled cluster through full triples with a perturbative inclusion of quadruple excitations [CCSDT(Q)]. The final predicted barrier is -3.0 kcal mol(-1), bringing the concerted elimination mechanism into precise agreement with experiment. This work demonstrates that higher correlation treatments such as CCSDT(Q) are not only feasible on systems of chemical interest but are necessary to supply accuracy beyond 0.5 kcal mol(-1), which is not obtained with the "gold standard" CCSD(T) method. Finally, we compute the enthalpy of formation of C(2)H(5)O(2) to be Delta(f)H degrees (298 K)=-5.3+/-0.5 kcal mol(-1) and Delta(f)H degrees (0 K)=-1.5+/-0.5 kcal mol(-1).

  5. The Abundance of C2H4 in the Circumstellar Envelope of IRC+10216

    PubMed Central

    Fonfría, J. P.; Hinkle, K. H.; Cernicharo, J.; Richter, M. J.; Agúndez, M.

    2017-01-01

    High spectral resolution mid-IR observations of ethylene (C2H4) towards the AGB star IRC+10216 were obtained using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infrared Telescope Facility (IRTF). Eighty ro-vibrational lines from the 10.5 µm vibrational mode ν7 with J ≲ 30 were detected in absorption. The observed lines are divided into two groups with rotational temperatures of 105 and 400 K (warm and hot lines). The warm lines peak at ≃ −14 km s−1 with respect to the systemic velocity, suggesting that they are mostly formed outwards from ≃ 20R⋆. The hot lines are centered at −10 km s−1 indicating that they come from a shell between 10 and 20R⋆. 35% of the observed lines are unblended and can be fitted with a code developed to model the emission of a spherically symmetric circumstellar envelope. The analysis of several scenarios reveal that the C2H4 abundance relative to H2 in the range 5 − 20R⋆ is 6.9 × 10−8 in average and it could be as high as 1.1 × 10−7. Beyond 20R⋆, it is 8.2 × 10−8. The total column density is (6.5 ± 3.0) × 1015 cm−2. C2H4 is found to be rotationally under local thermodynamical equilibrium (LTE) and vibrationally out of LTE. One of the scenarios that best reproduce the observations suggests that up to 25% of the C2H4 molecules at 20R⋆ could condense onto dust grains. This possible depletion would not influence significantly the gas acceleration although it could play a role in the surface chemistry on the dust grains. PMID:28184097

  6. Synaptic vesicles control the time course of neurotransmitter secretion via a Ca2+/H+ antiport

    PubMed Central

    Cordeiro, J Miguel; Gonçalves, Paula P; Dunant, Yves

    2011-01-01

    We investigated the physiological role of the vesicular Ca2+/H+ antiport in rapid synaptic transmission using the Torpedo electric organ (a modified neuromuscular system). By inhibiting V-type H+-transporting ATPase (V-ATPase), bafilomycin A1 dissipates the H+ gradient of synaptic vesicles, thereby abolishing the Ca2+/H+ antiport driving force. In electrophysiology experiments, bafilomycin A1 significantly prolonged the duration of the evoked electroplaque potential. A biochemical assay for acetylcholine (ACh) release showed that the effect of bafilomycin A1 was presynaptic. Indeed, bafilomycin A1 increased the amount of radio-labelled ACh released in response to paired-pulse stimulation. Bafilomycin A1 also enhanced Ca2+-dependent ACh release from isolated nerve terminals (synaptosomes). The bafilomycin-induced electroplaque potential lengthening did not arise from cholinesterase inhibition, since eserine (which also prolonged the electroplaque potential) strongly decreased evoked ACh release. Bafilomycin A1 augmented the amount of calcium accumulating in nerve terminals following a short tetanic stimulation and delayed subsequent calcium extrusion. By reducing stimulation-dependent calcium accumulation in synaptic vesicles, bafilomycin A1 diminished the corresponding depletion of vesicular ACh, as tested using both intact tissue and isolated synaptic vesicles. Strontium ions inhibit the vesicular Ca2+/H+ antiport, while activating transmitter release at concentrations one order of magnitude higher than Ca2+ does. In the presence of Sr2+ the time course of the electroplaque potential was also prolonged but, unlike bafilomycin A1, Sr2+ enhanced facilitation in paired-pulse experiments. It is therefore proposed that the vesicular Ca2+/H+ antiport function is to shorten ‘phasic’ transmitter release, allowing the synapse to transmit briefer impulses and so to work at higher frequencies. PMID:21059764

  7. (1)H-(2)H cross-polarization NMR in fast spinning solids by adiabatic sweeps.

    PubMed

    Wi, Sungsool; Schurko, Robert; Frydman, Lucio

    2017-03-14

    Cross-polarization (CP) experiments employing frequency-swept radiofrequency (rf) pulses have been successfully used in static spin systems for obtaining broadband signal enhancements. These experiments have been recently extended to heteronuclear I, S = spin-1/2 nuclides under magic-angle spinning (MAS), by applying adiabatic inversion pulses along the S (low-γ) channel while simultaneously applying a conventional spin-locking pulse on the I-channel ((1)H). This study explores an extension of this adiabatic frequency sweep concept to quadrupolar nuclei, focusing on CP from (1)H (I = 1/2) to (2)H spins (S = 1) undergoing fast MAS (νr = 60 kHz). A number of new features emerge, including zero- and double-quantum polarization transfer phenomena that depend on the frequency offsets of the swept pulses, the rf pulse powers, and the MAS spinning rate. An additional mechanism found operational in the (1)H-(2)H CP case that was absent in the spin-1/2 counterpart, concerns the onset of a pseudo-static zero-quantum CP mode, driven by a quadrupole-modulated rf/dipolar recoupling term arising under the action of MAS. The best CP conditions found at these fast spinning rates correspond to double-quantum transfers, involving weak (2)H rf field strengths. At these easily attainable (ca. 10 kHz) rf field conditions, adiabatic level-crossings among the {|1⟩,|0⟩,|-1⟩} mS energy levels, which are known to complicate the CP MAS of quadrupolar nuclei, are avoided. Moreover, the CP line shapes generated in this manner are very close to the ideal (2)H MAS spectral line shapes, facilitating the extraction of quadrupolar coupling parameters. All these features were corroborated with experiments on model compounds and justified using numerical simulations and average Hamiltonian theory models. Potential applications of these new phenomena, as well as extensions to higher spins S, are briefly discussed.

  8. DYNC2H1 mutation causes Jeune syndrome and recurrent lung infections associated with ciliopathy.

    PubMed

    Emiralioglu, Nagehan; Wallmeier, Julia; Olbrich, Heike; Omran, Heymut; Ozcelik, Ugur

    2017-03-03

    Asphyxiating thoracic dystrophy, also known as Jeune syndrome, is included in a group of syndromic skeletal ciliopathies associated with mutations in genes encoding proteins involved in the formation or function of motile cilia. Herein, we report a 6-mo-old male admitted to hospital with recurrent lung infections, thoracic dystrophy, and respiratory distress that was diagnosed as Jeune syndrome; DYNC2H1 mutation was detected via genetic analysis and ciliary dysfunction was noted via high-speed video microscopy.

  9. Establishment of the C2H5+O2 reaction mechanism: A combustion archetype

    NASA Astrophysics Data System (ADS)

    Wilke, Jeremiah J.; Allen, Wesley D.; Schaefer, Henry F.

    2008-02-01

    The celebrated C2H5+O2 reaction is an archetype for hydrocarbon combustion, and the critical step in the process is the concerted elimination of HO2 from the ethylperoxy intermediate (C2H5O2). Master equation kinetic models fitted to measured reaction rates place the concerted elimination barrier 3.0kcalmol-1 below the C2H5+O2 reactants, whereas the best previous electronic structure computations yield a barrier more than 2.0kcalmol-1 higher. We resolve this discrepancy here by means of the most rigorous computations to date, using focal point methods to converge on the ab initio limit. Explicit computations were executed with basis sets as large as cc-pV5Z and correlation treatments as extensive as coupled cluster through full triples with a perturbative inclusion of quadruple excitations [CCSDT(Q)]. The final predicted barrier is -3.0kcalmol-1, bringing the concerted elimination mechanism into precise agreement with experiment. This work demonstrates that higher correlation treatments such as CCSDT(Q) are not only feasible on systems of chemical interest but are necessary to supply accuracy beyond 0.5kcalmol-1, which is not obtained with the "gold standard" CCSD(T) method. Finally, we compute the enthalpy of formation of C2H5O2 to be ΔfH °(298K)=-5.3±0.5kcalmol-1 and ΔfH°(0K)=-1.5±0.5kcalmol-1.

  10. Coupled Ca2+/H+ transport by cytoplasmic buffers regulates local Ca2+ and H+ ion signaling

    PubMed Central

    Swietach, Pawel; Youm, Jae-Boum; Saegusa, Noriko; Leem, Chae-Hun; Spitzer, Kenneth W.; Vaughan-Jones, Richard D.

    2013-01-01

    Ca2+ signaling regulates cell function. This is subject to modulation by H+ ions that are universal end-products of metabolism. Due to slow diffusion and common buffers, changes in cytoplasmic [Ca2+] ([Ca2+]i) or [H+] ([H+]i) can become compartmentalized, leading potentially to complex spatial Ca2+/H+ coupling. This was studied by fluorescence imaging of cardiac myocytes. An increase in [H+]i, produced by superfusion of acetate (salt of membrane-permeant weak acid), evoked a [Ca2+]i rise, independent of sarcolemmal Ca2+ influx or release from mitochondria, sarcoplasmic reticulum, or acidic stores. Photolytic H+ uncaging from 2-nitrobenzaldehyde also raised [Ca2+]i, and the yield was reduced following inhibition of glycolysis or mitochondrial respiration. H+ uncaging into buffer mixtures in vitro demonstrated that Ca2+ unloading from proteins, histidyl dipeptides (HDPs; e.g., carnosine), and ATP can underlie the H+-evoked [Ca2+]i rise. Raising [H+]i tonically at one end of a myocyte evoked a local [Ca2+]i rise in the acidic microdomain, which did not dissipate. The result is consistent with uphill Ca2+ transport into the acidic zone via Ca2+/H+ exchange on diffusible HDPs and ATP molecules, energized by the [H+]i gradient. Ca2+ recruitment to a localized acid microdomain was greatly reduced during intracellular Mg2+ overload or by ATP depletion, maneuvers that reduce the Ca2+-carrying capacity of HDPs. Cytoplasmic HDPs and ATP underlie spatial Ca2+/H+ coupling in the cardiac myocyte by providing ion exchange and transport on common buffer sites. Given the abundance of cellular HDPs and ATP, spatial Ca2+/H+ coupling is likely to be of general importance in cell signaling. PMID:23676270

  11. OVRO N2H+ Observations of Class 0 Protostars: Constraints on the Formation of Binary Stars

    NASA Astrophysics Data System (ADS)

    Chen, Xuepeng; Launhardt, Ralf; Henning, Thomas

    2007-11-01

    We present the results of an interferometric study of the N2H+ (1-0) emission from nine nearby, isolated, low-mass protostellar cores, using the Owens Valley Radio Observatory (OVRO) millimeter array. The main goal of this study is the kinematic characterization of the cores in terms of rotation, turbulence, and fragmentation. Eight of the nine objects have compact N2H+ cores with FWHM radii of 1200-3500 AU, spatially coinciding with the thermal dust continuum emission. The one more evolved (Class I) object in the sample (CB 188) shows only faint and extended N2H+ emission. The mean N2H+ line width was found to be 0.37 km s-1. Estimated virial masses range from 0.3 to 1.2 Msolar. We find that thermal and turbulent energy support are about equally important in these cores, while rotational support is negligible. The measured velocity gradients across the cores range from 6 to 24 km s-1 pc-1. Assuming these gradients are produced by bulk rotation, we find that the specific angular momenta of the observed Class 0 protostellar cores are intermediate between those of dense (prestellar) molecular cloud cores and the orbital angular momenta of wide pre-main-sequence (PMS) binary systems. There appears to be no evolution (decrease) of angular momentum from the smallest prestellar cores via protostellar cores to wide PMS binary systems. In the context that most protostellar cores are assumed to fragment and form binary stars, this means that most of the angular momentum contained in the collapse region is transformed into orbital angular momentum of the resulting stellar binary systems.

  12. 1H-2H cross-polarization NMR in fast spinning solids by adiabatic sweeps

    NASA Astrophysics Data System (ADS)

    Wi, Sungsool; Schurko, Robert; Frydman, Lucio

    2017-03-01

    Cross-polarization (CP) experiments employing frequency-swept radiofrequency (rf) pulses have been successfully used in static spin systems for obtaining broadband signal enhancements. These experiments have been recently extended to heteronuclear I, S = spin-1/2 nuclides under magic-angle spinning (MAS), by applying adiabatic inversion pulses along the S (low-γ) channel while simultaneously applying a conventional spin-locking pulse on the I-channel (1H). This study explores an extension of this adiabatic frequency sweep concept to quadrupolar nuclei, focusing on CP from 1H (I = 1/2) to 2H spins (S = 1) undergoing fast MAS (νr = 60 kHz). A number of new features emerge, including zero- and double-quantum polarization transfer phenomena that depend on the frequency offsets of the swept pulses, the rf pulse powers, and the MAS spinning rate. An additional mechanism found operational in the 1H-2H CP case that was absent in the spin-1/2 counterpart, concerns the onset of a pseudo-static zero-quantum CP mode, driven by a quadrupole-modulated rf/dipolar recoupling term arising under the action of MAS. The best CP conditions found at these fast spinning rates correspond to double-quantum transfers, involving weak 2H rf field strengths. At these easily attainable (ca. 10 kHz) rf field conditions, adiabatic level-crossings among the {|1 ⟩ ,|0 ⟩ ,|-1 ⟩ } mS energy levels, which are known to complicate the CP MAS of quadrupolar nuclei, are avoided. Moreover, the CP line shapes generated in this manner are very close to the ideal 2H MAS spectral line shapes, facilitating the extraction of quadrupolar coupling parameters. All these features were corroborated with experiments on model compounds and justified using numerical simulations and average Hamiltonian theory models. Potential applications of these new phenomena, as well as extensions to higher spins S, are briefly discussed.

  13. Efficient and convenient synthesis of indazol-3(2H)-ones and 2-aminobenzonitriles.

    PubMed

    Dou, Guolan; Shi, Daqing

    2009-01-01

    A mild, efficient, one-pot protocol for the synthesis of indazole-3(2H)-ones via cyclization of nitro-aryl substrates through low-valent titanium reagent has been described. The method used Triethylamine (TEA) to control pH. Particularly, 2-aminobenzonitriles were synthesized by one step easily. The mechanistic course of the reaction suggests the involvement of an anion leading to an intramolecular cyclization via N-N bond formation.

  14. Helicity in Supercritical O2/H2 and C7H16/N2 Mixing Layers

    NASA Technical Reports Server (NTRS)

    Okongo, Nora; Bellan, Josette

    2004-01-01

    This report describes a study of databases produced by direct numerical simulation of mixing layers developing between opposing flows of two fluids under supercritical conditions, the purpose of the study being to elucidate chemical-species-specific aspects of turbulence, with emphasis on helicity. The simulations were performed for two different fluid pairs -- O2/H2 and C7H16/N2 -- at similar values of reduced pressure.

  15. The Abundance of C2H4 in the Circumstellar Envelope of IRC+10216

    NASA Astrophysics Data System (ADS)

    Fonfría, J. P.; Hinkle, K. H.; Cernicharo, J.; Richter, M. J.; Agúndez, M.; Wallace, L.

    2017-02-01

    High spectral resolution mid-IR observations of ethylene ({{{C}}}2{{{H}}}4) toward the AGB star IRC+10216 were obtained using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infrared Telescope Facility (IRTF). 80 ro-vibrational lines from the 10.5 μm vibrational mode {ν }7 with J ≲ 30 were detected in absorption. The observed lines are divided into two groups with rotational temperatures of 105 and 400 K (warm and hot lines). The warm lines peak at ≃ -14 km s-1 with respect to the systemic velocity, suggesting that they are mostly formed outwards from ≃ 20{R}\\star . The hot lines are centered at -10 km s-1 indicating that they come from a shell between 10 and 20{\\text{}}{R}\\star . 35% of the observed lines are unblended and can be fitted with a code developed to model the emission of a spherically symmetric circumstellar envelope. The analysis of several scenarios reveals that the {{{C}}}2{{{H}}}4 abundance relative to H2 in the range 5-20R⋆ is 6.9× {10}-8 on average and it could be as high as 1.1 × 10-7. Beyond 20{\\text{}}{R}\\star , it is 8.2 × 10-8. The total column density is (6.5 ± 3.0) × 1015 cm-2. {{{C}}}2{{{H}}}4 is found to be rotationally under local thermodynamical equilibrium (LTE) and vibrationally out of LTE. One of the scenarios that best reproduce the observations suggests that up to 25% of the {{{C}}}2{{{H}}}4 molecules at 20{\\text{}}{R}\\star could condense onto dust grains. This possible depletion would not significantly influence the gas acceleration although it could play a role in the surface chemistry on the dust grains.

  16. TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OLS)

    Atmospheric Science Data Center

    2016-10-25

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OLS) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access:  OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  17. Mechanism and kinetics of the reaction NO3 + C2H4.

    PubMed

    Nguyen, Thanh Lam; Park, Jaehee; Lee, Kyungjun; Song, Kihyung; Barker, John R

    2011-05-19

    The reaction of NO(3) radical with C(2)H(4) was characterized using the B3LYP, MP2, B97-1, CCSD(T), and CBS-QB3 methods in combination with various basis sets, followed by statistical kinetic analyses and direct dynamics trajectory calculations to predict product distributions and thermal rate constants. The results show that the first step of the reaction is electrophilic addition of an O atom from NO(3) to an olefinic C atom from C(2)H(4) to form an open-chain adduct. A concerted addition reaction mechanism forming a five-membered ring intermediate was investigated, but is not supported by the highly accurate CCSD(T) level of theory. Master-equation calculations for tropospheric conditions predict that the collisionally stabilized NO(3)-C(2)H(4) free-radical adduct constitutes 80-90% of the reaction yield and the remaining products consist mostly of NO(2) and oxirane; the other products are produced in very minor yields. By empirically reducing the barrier height for the initial addition step by 1 kcal mol(-1) from that predicted at the CBS-QB3 level of theory and treating the torsional modes explicitly as one-dimensional hindered internal rotations (instead of harmonic oscillators), the computed thermal rate constants (including quantum tunneling) can be brought into very good agreement with the experimental data for the overall reaction rate constant.

  18. NMR resonance splitting of urea in stretched hydrogels: proton exchange and (1)H/(2)H isotopologues.

    PubMed

    Kuchel, Philip W; Naumann, Christoph; Chapman, Bogdan E; Shishmarev, Dmitry; Håkansson, Pär; Bacskay, George; Hush, Noel S

    2014-10-01

    Urea at ∼12 M in concentrated gelatin gel, that was stretched, gave (1)H and (2)H NMR spectral splitting patterns that varied in a predictable way with changes in the relative proportions of (1)H2O and (2)H2O in the medium. This required consideration of the combinatorics of the two amide groups in urea that have a total of four protonation/deuteration sites giving rise to 16 different isotopologues, if all the atoms were separately identifiable. The rate constant that characterized the exchange of the protons with water was estimated by back-transformation analysis of 2D-EXSY spectra. There was no (1)H NMR spectral evidence that the chiral gelatin medium had caused in-equivalence in the protons bonded to each amide nitrogen atom. The spectral splitting patterns in (1)H and (2)H NMR spectra were accounted for by intra-molecular scalar and dipolar interactions, and quadrupolar interactions with the electric field gradients of the gelatin matrix, respectively.

  19. Frequency Comb Assisted IR Measurements of H_3^+, H_2D^+ and D_2H^+ Transitions

    NASA Astrophysics Data System (ADS)

    Jusko, Pavol; Asvany, Oskar; Schlemmer, Stephan

    2016-06-01

    We present recent measurements of the fundamental transitions of H_3^+, H_2D^+ and D_2H^+ in a 4 K 22-pole trap by action spectroscopic techniques. Either Laser Induced Inhibition of Cluster Growth (He attachment at T≈4 K), endothermic reaction of H_3^+ with O_2, or deuterium exchange has been used as measurement scheme. We used a 3 μm optical parametric oscillator coupled to a frequency comb in order to achieve accuracy generally below 1 MHz. Five transitions of H_3^+, eleven of H_2D^+ and ten of D_2H^+ were recorder in our spectral range. We compare our H_3^+ results with two previous frequency comb assisted works. Moreover, accurate determination of the frequency allows us to predict pure rotational transitions for H_2D^+ and D_2H^+ in the THz range. P. Jusko, C. Konietzko, S. Schlemmer, O. Asvany, J. Mol. Spec. 319 (2016) 55 O. Asvany, S. Brünken, L. Kluge, S. Schlemmer, Appl. Phys. B 114 (2014) 203 O. Asvany, J. Krieg, S. Schlemmer, Rev. Sci. Instr. 83 (2012) 093110 J.N. Hodges, A.J. Perry, P.A. Jenkins, B.M. Siller, B.J. McCall, J. Chem. Phys. 139 (2013) 164201 H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, J.-T. Shy, Phys. Rev. Lett. 109 (2012) 263002

  20. Preparation of bis-(1(2)H-tetrazol-5-yl)-amine monohydrate

    DOEpatents

    Naud, Darren L.; Hiskey, Michael A.

    2003-05-27

    A process of preparing bis-(1(2)H-tetrazol-5-yl)-amine monohydrate is provided including combining a dicyanamide salt, an azide salt and water to form a first reaction mixture, adding a solution of a first strong acid characterized as having a pKa of less than about 1 to said first reaction mixture over a period of time characterized as providing a controlled reaction rate so as to gradually form hydrazoic acid without loss of significant quantities of hydrazoic acid from the solution while heating the first reaction mixture at temperatures greater than about 65.degree. C., heating the resultant reaction mixture at temperatures greater than about 65.degree. C. for a period of time sufficient to substantially completely form a reaction product, treating the reaction product with a solution of a second strong acid to form a product of bis-(1(2)H-tetrazol-5-yl)-amine monohydrate, and, recovering the bis-(1(2)H-tetrazol-5-yl)-amine monohydrate product.

  1. Regulated release of Ca2+ from respiring mitochondria by Ca2+/2H+ antiport.

    PubMed

    Fiskum, G; Lehninger, A L

    1979-07-25

    Simultaneous measurements of oxygen consumption and transmembrane transport of Ca2+, H+, and phosphate show that the efflux of Ca2+ from respiring tightly coupled rat liver mitochondria takes place by an electroneutral Ca2+/2H+ antiport process that is ruthenium red-insensitive and that is regulated by the oxidation-reduction state of the mitochondrial pyridine nucleotides. When mitochondrial pyridine nucleotides are kept in a reduced steady state, the efflux of Ca2+ is inhibited; when they are in an oxidized state, Ca2+ efflux is activated. These processes were demonstrated by allowing phosphate-depleted mitochondria respiring on succinate in the presence of rotenone to take up Ca2+ from the medium. Upon subsequent addition of ruthenium red to block Ca2+ transport via the electrophoretic influx pathway, and acetoacetate, to bring mitochondrial pyridine nucleotides into the oxidized state, Ca2+ efflux and H+ influx ensued. The observed H+ influx/Ca2+ efflux ratio was close to the value 2.0 predicted for the operation of an electrically neutral Ca2+/2H+ antiport process.

  2. A 2H and 14N NMR study of molecular motion in polycrystalline choline salts

    NASA Astrophysics Data System (ADS)

    Pratum, T. K.; Klein, M. P.

    2H and 14N solid-state NMR spectra of polycrystalline choline chloride, bromide, and iodide indicate that 180° cation flipping motion occurs in all three salts. From the temperature dependence of these spectra, the activation energy for this motion is determined to be 5.8 ± I kcal/mol in the iodide salt and 11 ± 1.5 kcal/mol in the chloride salt. In the bromide salt the reorientation rate is too rapid to be determined from the NMR lineshape, but the temperature dependence of the 2H quadrupole coupling parameters is indicative of a second-order phase transition at approximately 273 K. The spectral distortions in the 14N NMR spectra of the chloride and iodide salts are adequately explained using the motional model derived from the 2H NMR results, while the 14N spectra of the bromide salt show no motional effects. The axis of reorientation which is inferred from these data appears to be consistent with that indicated in a previous X-ray crystallographic study.

  3. Angular momentum of the N2H+ cores in the Orion A cloud

    NASA Astrophysics Data System (ADS)

    Tatematsu, Ken'ichi; Ohashi, Satoshi; Sanhueza, Patricio; Nguyen Luong, Quang; Umemoto, Tomofumi; Mizuno, Norikazu

    2016-04-01

    We have analyzed the angular momentum of the molecular cloud cores in the Orion A giant molecular cloud observed in the N2H+ J = 1-0 line with the Nobeyama 45 m radio telescope. We have measured the velocity gradient using position-velocity diagrams passing through core centers, and made sinusoidal fits against the position angle. Twenty-seven out of 34 N2H+ cores allowed us to measure the velocity gradient without serious confusion. The derived velocity gradient ranges from 0.5 to 7.8 km s-1 pc-1. We marginally found that the specific angular momentum J/M (against the core radius R) of the Orion N2H+ cores tends to be systematically larger than that of molecular cloud cores in cold dark clouds obtained by Goodman et al., in the J/M-R relation. The ratio β of rotational to gravitational energy is derived to be β = 10-2.3±0.7, and is similar to that obtained for cold dark cloud cores in a consistent definition. The large-scale rotation of the ∫-shaped filament of the Orion A giant molecular cloud does not likely govern the core rotation at smaller scales.

  4. Detection of Interstellar Ethylene Oxide (c-C2H4O)

    NASA Astrophysics Data System (ADS)

    Dickens, J. E.; Irvine, W. M.; Ohishi, M.; Ikeda, M.; Ishikawa, S.; Nummelin, A.; Hjalmarson, Å.

    1997-11-01

    We report the identification of 10 transitions that support the detection of the small cyclic molecule ethylene oxide (c-C2H4O) in Sgr B2N. Although one of these transitions is severely blended, so that an accurate intensity and line width could not be determined, and two other lines are only marginally detected, we have done Gaussian fits to the remaining seven lines and have performed a rotation diagram analysis. Our results indicate a rotation temperature Trot = 18 K and a molecular column density N(c-C2H4O) = 3.3 × 1014 cm-2, corresponding to a fractional abundance relative to molecular hydrogen of order 6 × 10-11. This is a factor of more than 200 higher than the abundance for this molecule suggested by the ``new standard'' chemistry model of Lee, Bettens, & Herbst. This result suggests that grain chemistry might play an effective role in the production of c-C2H4O. No transitions of this molecule were detected in either Sgr B2M or Sgr B2NW.

  5. Detection of Interstellar Ethylene Oxide (c-C2H4O)

    NASA Astrophysics Data System (ADS)

    Dickens, J. E.; Irvine, W. M.; Ohishi, M.; Ikeda, M.; Ishikawa, S.; Nummelin, A.; Hjalmarson, A.

    1997-01-01

    We report the identification of 10 transitions which support the detection of the small cyclic molecule ethylene oxide (c-C2H40) in SgrB2(N). Although one of these transitions is severely blended, such that an accurate intensity and linewidth could not be determined, and two other lines are only marginally detected, we have done gaussian fits to the remaining 7 lines and have performed a rotation diagram analysis. Our results indicate a rotation temperature, Trot = 18 K, and a molecular column density, N(c-C2H40) = 3.3 x 1014cm-2, corresponding to a fractional abundance relative to molecular hydrogen of order 6 x 10exp -11). This is a factor of more than 200 higher than the abundance for this molecule suggested by the "new standard" chemistry model of Lee, Bettens, & Herbst (1996). This result suggests that grain chemistry might play an effective role in the production Of c-C2H40. No transitions of this molecule were detected in either SgrB2(M) or SgrB2(NW).

  6. Laboratory IR Studies and Astrophysical Implications of C2H2-Containing Binary Ices

    NASA Technical Reports Server (NTRS)

    Knez, C.; Moore, M.; Ferrante, R.; Hudson, R.

    2012-01-01

    Studies of molecular hot cores and protostellar environments have shown that the observed abundance of gas-phase acetylene (C2H2) cannot be matched by chemical models without the inclusion of C2H2 molecules subliming from icy grain mantles. Searches for infrared (IR) spectral features of solid-phase acetylene are under way, but few laboratory reference spectra of C2H2 in icy mixtures, which are needed for spectral fits to observational data, have been published. Here, we report a systematic study of the IR spectra of condensed-phase pure acetylene and acetylene in ices dominated by carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), and water (H2O). We present new spectral data for these ices, including band positions and intrinsic band strengths. For each ice mixture and concentration, we also explore the dependence of acetylene's nu5-band position (743 cm-1, 13.46 micrometers) and FWHM on temperature. Our results show that the nu5 feature is much more cleanly resolved in ices dominated by non-polar and low-polarity molecules, specifically CO, CO2, and CH4, than in mixtures dominated by H2O-ice. We compare our laboratory ice spectra with observations of a quiescent region in Serpens.

  7. Exotic SiO2H2 Isomers: Theory and Experiment Working in Harmony.

    PubMed

    McCarthy, Michael C; Gauss, Jürgen

    2016-05-19

    Replacing carbon with silicon can result in dramatic and unanticipated changes in isomeric stability, as the well-studied CO2H2 and the essentially unknown SiO2H2 systems illustrate. Guided by coupled-cluster calculations, three SiO2H2 isomers have been detected and spectroscopically characterized in a molecular beam discharge source using rotational spectroscopy. The cis,trans conformer of dihydroxysilylene HOSiOH, the ground-state isomer, and the high-energy, metastable dioxasilirane c-H2SiO2 are abundantly produced in a dilute SiH4/O2 electrical discharge, enabling precise structural determinations of both by a combination of isotopic measurements and calculated vibrational corrections. The isotopic studies also provide insight into their formation route, suggesting that c-H2SiO2 is formed promptly in the expansion but that cis,trans-HOSiOH is likely formed by secondary reactions following formation of the most stable dissociation pair, SiO + H2O. Although less abundant, the rotational spectrum of trans-silanoic acid, the silicon analogue of formic acid, HSi(O)OH, has also been observed.

  8. 2Q NMR of 2H2O ordering at solid interfaces

    NASA Astrophysics Data System (ADS)

    Krivokhizhina, Tatiana V.; Wittebort, R. J.

    2014-06-01

    Solvent ordering at an interface can be studied by multiple-quantum NMR. Quantitative studies of 2H2O ordering require clean double-quantum (2Q) filtration and an analysis of 2Q buildup curves that accounts for relaxation and, if randomly oriented samples are used, the distribution of residual couplings. A pulse sequence with absorption mode detection is extended for separating coherences by order and measuring relaxation times such as the 2Q filtered T2. Coherence separation is used to verify 2Q filtration and the 2Q filtered T2 is required to extract the coupling from the 2Q buildup curve when it is unresolved. With our analysis, the coupling extracted from the buildup curve in 2H2O hydrated collagen was equivalent to the resolved coupling measured in the usual 1D experiment and the 2Q to 1Q signal ratio was in accord with theory. Application to buildup curves from 2H2O hydrated elastin, which has an unresolved coupling, revealed a large increase in the 2Q signal upon mechanical stretch that is due to an increase in the ordered water fraction while changes in the residual coupling and T2 are small.

  9. Laboratory IR Studies and Astrophysical Implications of C2H2-Containing Binary Ices

    NASA Technical Reports Server (NTRS)

    Knez, C.; Moore, M.; Ferrante, R.; Hudson, R.

    2012-01-01

    Studies of molecular hot cores and protostellar environments have shown that the observed abundance of gas-phase acetylene (C2H2) cannot be matched by chemical models without the inclusion of C2H2 molecules subliming from icy grain mantles. Searches for infrared (IR) spectral features of solid-phase acetylene are under way, but few laboratory reference spectra of C2H2 in icy mixtures, which are needed for spectral fits to observational data, have been published. Here, we report a systematic study of the IR spectra of condensed-phase pure acetylene and acetylene in ices dominated by carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), and water (H2O). We present new spectral data for these ices, including band positions and intrinsic band strengths. For each ice mixture and concentration, we also explore the dependence of acetylene's nu5-band position (743 cm-1, 13.46 micrometers) and FWHM on temperature. Our results show that the nu5 feature is much more cleanly resolved in ices dominated by non-polar and low-polarity molecules, specifically CO, CO2, and CH4, than in mixtures dominated by H2O-ice. We compare our laboratory ice spectra with observations of a quiescent region in Serpens.

  10. CO2/H2 separation using a highly permeable polyurethane membrane: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Azizi, Morteza; Mousavi, Seyyed Abbas

    2015-11-01

    In this study, Molecular Dynamics (MD) and Grand Canonical Monte Carlo (GCMC) simulations were conducted to investigate the diffusivity, solubility, and permeability of CO2, CO, H2, and H2O in a polyurethane membrane at three different temperatures. The characterization of the simulated structures was carried out using XRD, FFV, Tg and density calculation, and cavity size distribution. The obtained results were within the expectations reported data in the literature based on the experimental approach, indicating the authenticity of approached in this work. The results showed that the highest diffusivity and permeability coefficients were observed for H2; while the highest values of solubility coefficient were found for H2O and CO2 gases. The increase of operating temperature from 298 K to 318 K has a positive effect on the permeation of all gases and a corresponding negative effect on the selectivity of the gas pair CO2/H2. Also, the results vividly showed that CO2 and H2O gases have a profound affinity with hard phase of polyurethane, while H2 and CO were conversely adsorbed by soft one. Moreover, the enhancement of permeability and permselectivity of CO2/H2 pair confirmed using Robeson Upper-Bond graph showed its good capacity for CO2/H2 separation application.

  11. Antinociceptive properties of new coumarin derivatives bearing substituted 3,4-dihydro-2H-benzothiazines

    PubMed Central

    2014-01-01

    Background Coumarins are an important class of widely distributed heterocyclic natural products exhibiting a broad pharmacological profile. In this work, a new series of coumarins bearing substituted 3,4-dihydro-2H-benzothiazines were described as potential analgesic agents. The clinical use of NSAIDs as traditional analgesics is associated with side effects such as gastrointestinal lesions and nephrotoxicity. Therefore, the discovery of new safer drugs represents a challenging goal for such a research area. Results The target compounds 3-(3-methyl-3,4-dihydro-2H-benzo[b][1,4]thiazin-3-yl)-2H-chromen-2-ones 2a-u were synthesized and characterized by spectral data. The antinociceptive properties of target compounds were determined by formalin-induced test and acetic acid-induced writhing test in mice. Among the tested compounds, compound 2u bearing 2-(4-(methylsulfonyl)benzoyl)- moiety on benzothiazine ring and 4-(methylsulfonyl)phenacyloxy- group on the 7 position of coumarin nucleus showed better profile of antinocecieption in both models. It was more effective than mefenamic acid during the late phase of formalin-induced test as well as in the acetic acid-induced writhing test. Conclusion Considering the significant antinoceciptive action of phenacyloxycoumarin derivatives, compound 2u prototype might be further used as model to obtain new more potent analgesic drugs. PMID:24398032

  12. Liquid water on Mars - An energy balance climate model for CO2/H2O atmospheres

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.; Callegari, A. J.; Hsieh, C. T.; Ziegler, W.

    1981-01-01

    A simple climatic model is developed for a Mars atmosphere containing CO2 and sufficient liquid water to account for the observed hydrologic surface features by the existence of a CO2/H2O greenhouse effect. A latitude-resolved climate model originally devised for terrestrial climate studies is applied to Martian conditions, with the difference between absorbed solar flux and emitted long-wave flux to space per unit area attributed to the divergence of the meridional heat flux and the poleward heat flux assumed to equal the atmospheric eddy heat flux. The global mean energy balance is calculated as a function of atmospheric pressure to assess the CO2/H2O greenhouse liquid water hypothesis, and some latitude-resolved cases are examined in detail in order to clarify the role of atmospheric transport and temperature-albedo feedback. It is shown that the combined CO2/H2O greenhouse at plausible early surface pressures may account for climates hot enough to support a hydrological cycle and running water at present-day insolation and visible albedo levels.

  13. Electronic structure and charge-density-wave mechanism in 2H-TaSe_2

    NASA Astrophysics Data System (ADS)

    Rossnagel, Kai; Rotenberg, Eli; Smith, Neville V.; Seifarth, Olaf; Kipp, Lutz

    2004-03-01

    The simple layered charge-density-wave system 2H-TaSe2 has received renewed interest recently because it may share important physical properties with the high-temperature superconducting cuprates, such as quasi-two-dimensionality, qualitatively similar resisitivity curves and optical responses, saddle bands close to the chemical potential, and a possible correlation between the opening of a gap on parts of the Fermi surface and the occurence of a strong energy renormalization on ungapped parts. We present here a detailed angle-resolved photoelectron spectroscopy study of the near-EF electronic structure of 2H-TaSe_2, focusing on Fermi surface topology, energy gaps, and band renormalization effects. Our results provide important clues as to the origin of the still-debated charge-density-wave mechanism in 2H-TaSe2 and possible similarities to the electronic structure of cuprates. The experiments were carried out at the Electronic Structure Factory at beamline 7 of the Advanced Light Source in Berkeley. K.R. gratefully acknowledges support by the Alexander von Humboldt Foundation. Work at the University of Kiel is supported by DFG Forschergruppe FOR 353.

  14. Liquid water on Mars - An energy balance climate model for CO2/H2O atmospheres

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.; Callegari, A. J.; Hsieh, C. T.; Ziegler, W.

    1981-01-01

    A simple climatic model is developed for a Mars atmosphere containing CO2 and sufficient liquid water to account for the observed hydrologic surface features by the existence of a CO2/H2O greenhouse effect. A latitude-resolved climate model originally devised for terrestrial climate studies is applied to Martian conditions, with the difference between absorbed solar flux and emitted long-wave flux to space per unit area attributed to the divergence of the meridional heat flux and the poleward heat flux assumed to equal the atmospheric eddy heat flux. The global mean energy balance is calculated as a function of atmospheric pressure to assess the CO2/H2O greenhouse liquid water hypothesis, and some latitude-resolved cases are examined in detail in order to clarify the role of atmospheric transport and temperature-albedo feedback. It is shown that the combined CO2/H2O greenhouse at plausible early surface pressures may account for climates hot enough to support a hydrological cycle and running water at present-day insolation and visible albedo levels.

  15. (2)H NMR study of the water dynamics in hydrated myoglobin.

    PubMed

    Lusceac, S A; Vogel, M

    2010-08-12

    We use 1D and 2D (2)H NMR to study the temperature-dependent mechanism for the rotational motion of myoglobin hydration water. The results show that isotropic and anisotropic water reorientation is observed at high and low temperatures, respectively, with a continuous crossover in the temperature range of 200-230 K. The anisotropic low-temperature motion has a large angular amplitude. It exhibits a broad distribution of geometries and pronounced dynamical heterogeneities, which are long-lived at least at T approximately 176 K. Exploiting the possibility to vary the angular resolution of (2)H NMR experiments, we find that the large solid angle accessible to low-temperature water reorientation is explored via large-angle rather than small-angle elementary steps; i.e., the rotational motion is not diffusive. Quantitative analysis of the NMR data using random-walk simulations implies that the number of sites involved in the observed water reorientation decreases from an infinite number during essentially isotropic motion above 230 K to a few, possibly two, below 165 K. Although the changes in the mechanism for water rotational motion may be accompanied by a mild change in the temperature dependence of the rotational correlation times, the (2)H NMR data provide strong evidence against the existence of a sharp fragile-to-strong transition at about 225 K. The present results are discussed in the context of previous experimental findings for hydrated proteins.

  16. Cosmic plasma

    NASA Technical Reports Server (NTRS)

    Alfven, H.

    1981-01-01

    Attention is given to experimental and theoretical approaches to plasma physics, plasma phenomena in laboratory and space, field and particle aspects of plasmas, the present state of the classical theory, boundary conditions and circuit dependence, and cosmology. Electric currents in space plasmas are considered, taking into account dualism in physics, particle-related phenomena in plasma physics, magnetic field lines, filaments, local plasma properties and the circuit, electric double layers, field-aligned currents as 'cables', an expanding circuit, different types of plasma regions, the cellular structure of space, and the fine structure of active plasma regions. Other topics discussed are related to circuits, the theory of cosmic plasmas, the origin of the solar system, the coexistence of matter and antimatter, annihilation as a source of energy, the Hubble expansion in a Euclidean space, and a model for the evolution of the Metagalaxy.

  17. High-frequency observations of δ2H and δ18O in storm rainfall

    NASA Astrophysics Data System (ADS)

    Stoecker, F.; Klaus, J.; Pangle, L. A.; Garland, C.; McDonnell, J. J.

    2012-12-01

    Stable isotopes ratios of hydrogen (2H/1H) and oxygen (18O/16O) are indispensable tools for investigation of the hydrologic cycle. Recent technological advances with laser spectroscopy now enable high-frequency measurement of key water cycle components. While the controls on rainfall isotope composition have been known generally for some time, our understanding of the effect of inter- and intra-storm processes on fine scale rainfall isotope composition is poorly understood. Here we present a new approach to observe inter- and intra-storm isotope variability in precipitation in high-frequency. We investigate the temporal development of δ2H and δ18O within and between discrete rainstorm. δ2H and δ18O in precipitation was measured from November 2011 to February 2012 in Corvallis, OR using a flow-cell combined with a Liquid Water Isotope Analyzer (LWIA-24d, Los Gatos Research, Inc.). The average sample frequency was 15 samples per hour, resulting in more than 3100 samples during the observation period. 27 separate rainstorms were identified in the dataset based on minimum inter-event time, minimum precipitation depth, and minimum number of isotope measurements. Event meteoric water lines were developed for each event. We observed short-term isotopic patterns (e.g., V-shaped trends), high-rate changes (5.3‰/h) and large absolute changes in isotopic composition (20‰) on intra-event scale. V-shaped trends appeared to be related to individual storm fronts detected by air temperature, cloud heights (NEXRAD radar echo tops) and cloud trajectories (Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT)). Despite this, we could detect no linear correlation between event-based isotopic variables (slope, δ2H-intercept, δ2H, δ18O) and the event meteoric water line. Furthermore, the composite event meteoric water line (i.e. the local meteoric water line) showed a wider spread for heavy isotopes than for light isotopes, caused presumably by different

  18. 2H Stable Isotope Analysis of Tooth Enamel: A Pilot Study

    NASA Astrophysics Data System (ADS)

    Holobinko, Anastasia; Kemp, Helen; Meier-Augenstein, Wolfram; Prowse, Tracy; Ford, Susan

    2010-05-01

    Stable isotope analysis of biogenic tissues such as tooth enamel and bone mineral has become a well recognized and increasingly important method for determining provenance of human remains, and has been used successfully in bioarchaeological studies as well as forensic investigations (Lee-Thorp, 2008; Meier-Augenstein and Fraser, 2008). Particularly, 18O and 2H stable isotopes are well established proxies as environmental indicators of climate (temperature) and source water and are therefore considered as indicators of geographic life trajectories of animals and humans (Hobson et al., 2004; Schwarcz and Walker, 2006). While methodology for 2H analysis of human hair, fingernails, and bone collagen is currently used to determine geographic origin and identify possible migration patterns, studies involving the analysis of 2H in tooth enamel appear to be nonexistent in the scientific literature. The apparent lack of research in this area is believed to have two main reasons. (1) Compared to the mineral calcium hydroxylapatite Ca10(PO4)6(OH)2, in tooth enamel forming bio-apatite carbonate ions replace some of the hydroxyl ions at a rate of one CO32 replacing two OH, yet published figures for the degree of substitution vary (Wopenka and Pasteris, 2005). (2) Most probably due to the aforementioned no published protocols exist for sample preparation and analytical method to obtain δ2H-values from the hydroxyl fraction of tooth enamel. This dilemma has been addressed through a pilot study to establish feasibility of 2H stable isotope analysis of ground tooth enamel by continuous-flow isotope ratio mass spectrometry (IRMS) coupled on-line to a high-temperature conversion elemental analyzer (TC/EA). An array of archaeological and modern teeth has been analyzed under different experimental conditions, and results from this pilot study are being presented. References: Lee-Thorp, J.A. (2008) Archaeometry, 50, 925-950 Meier-Augenstein, W. and Fraser, I. (2008) Science & Justice

  19. Probing Perturbation of Bovine Lung Surfactant Extracts by Albumin using DSC and 2H-NMR

    PubMed Central

    Nag, Kaushik; Keough, Kevin M. W.; Morrow, Michael R.

    2006-01-01

    Lung surfactant (LS), a lipid-protein mixture, forms films at the lung air-water interface and prevents alveolar collapse at end expiration. In lung disease and injury, the surface activity of LS is inhibited by leakage of serum proteins such as albumin into the alveolar hypophase. Multilamellar vesicular dispersions of a clinically used replacement, bovine lipid extract surfactant (BLES), to which (2% by weight) chain-perdeuterated dipalmitoylphosphatidycholine (DPPG mixtures-d62) had been added, were studied using deuterium-NMR spectroscopy (2H-NMR) and differential scanning calorimetry (DSC). DSC scans of BLES showed a broad gel to liquid-crystalline phase transition between 10–35°C, with a temperature of maximum heat flow (Tmax) around 27°C. Incorporation of the DPPC-d62 into BLES-reconstituted vesicles did not alter the Tmax or the transition range as observed by DSC or the hydrocarbon stretching modes of the lipids observed using infrared spectroscopy. Transition enthalpy change and 2H-NMR order parameter profiles were not significantly altered by addition of calcium and cholesterol to BLES. 2H-NMR spectra of the DPPC-d62 probes in these samples were characteristic of a single average lipid environment at all temperatures. This suggested either continuous ordering of the bilayer through the transition during cooling or averaging of the DPPC-d62 environment by rapid diffusion between small domains on a short timescale relative to that characteristic of the 2H-NMR experiment. Addition of 10% by weight of soluble bovine serum albumin (1:0.1, BLES/albumin, dry wt/wt) broadened the transition slightly and resulted in the superposition of 2H-NMR spectral features characteristic of coexisting fluid and ordered phases. This suggests the persistence of phase-separated domains throughout the transition regime (5–35°C) of BLES with albumin. The study suggests albumin can cause segregation of protein bound-lipid domains in surfactant at NMR timescales (10−5 s

  20. Raft localization of type I Fcε receptor and degranulation of RBL-2H3 cells exposed to decavanadate, a structural model for V2O5.

    PubMed

    Al-Qatati, Abeer; Fontes, Fabio L; Barisas, B George; Zhang, Dongmei; Roess, Deborah A; Crans, Debbie C

    2013-09-07

    Vanadium oxides (VOs) have been identified as low molecular weight sensitizing agents associated with occupational asthma and compromised pulmonary immunocompetence. Symptoms of adult onset asthma result, in part, from increased signal transduction by Type I Fcε receptors (FcεRI) leading to release of vasoactive compounds including histamine from mast cells. Exposure to (VOs) typically occurs in the form of particles which are insoluble. Upon contact with water or biological fluids, (VOs) form a series of soluble oxoanions, one of which is decavanadate, V10O28(6-) abbreviated V10, which is structurally related to a common vanadium oxide, that is vanadium pentoxide, V2O5. Here we investigate whether V10 may be initiating plasma membrane events associated with activation of FcεRI signal transduction. We show that exposure of RBL-2H3 cells to V10 causes a concentration-dependent increase in degranulation of RBL-2H3 and, in addition, an increase in plasma membrane lipid packing as measured by the fluorescent probe, di-4-ANEPPDHQ. V10 also increases FcεRI accumulation in low-density membrane fragments, i.e., lipid rafts, which may facilitate FcεRI signaling. To determine whether V10 effects on plasma membrane lipid packing were similarly observed in Langmuir monolayers formed from dipalmitoylphosphatidylcholine (DPPC), the extent of lipid packing in the presence and absence of V10 and vanadate was compared. V10 increased the surface area of DPPC Langmuir monolayers by 6% and vanadate decreased the surface area by 4%. These results are consistent with V10 interacting with this class of membrane lipids and altering DPPC packing.

  1. Plasma fibrinogen concentration in a Chinese population.

    PubMed

    Ko, G T; Yeung, V T; Chan, J C; Chow, C C; Li, J K; So, W Y; Tsang, L W; Cockram, C S

    1997-06-01

    Plasma fibrinogen concentration has been shown to be a predictor of major cardiovascular events. Information on plasma fibrinogen amongst Chinese has been scanty. We examined the relationships between plasma fibrinogen concentration and cardiovascular risk factors in 988 chinese subjects who underwent 75 g oral glucose tolerance test for screening for glucose intolerance. The study involved a selected sample with subjects who had an history of gestational diabetes, delivery of big babies (birth weight > or = 4 kg), equivocal plasma glucose concentrations and subjects who were family members of diabetic patients. This was mainly a non-smoking (96.6%), non-drinking (98%) and non-exercising (99%) population of which 87% (n = 855) were female. Among the 988 subjects (age +/- S.D. 36.8 +/- 10.2, range 16-79 years), plasma fibrinogen concentration ranged from 1.40 to 9.90 g/l with a mean of 3.26 +/- 0.93 g/l. On stratification of the subjects into 4 quartiles based on plasma fibrinogen concentrations, we found that increased plasma fibrinogen was associated with older age, higher body mass index (BMI), systolic and diastolic blood pressure (BP), fasting and 2 h plasma glucose (PG), prevalence of diabetes, glycated haemoglobin (HbA1c) and triglyceride (TG) level. After adjustment for age and sex, increased plasma fibrinogen concentration remained associated with higher BMI, systolic BP, 2 h PG and TG level. On multivariate analysis using age, BMI, BP, TG, HbA1c and PG as independent variables, plasma fibrinogen was independently related to plasma TG concentration and HbA1c. With 1 S.D. change in TG concentration and HbA1c, there were 3.7 and 5.2% changes in plasma fibrinogen concentration respectively. These findings emphasize the close relationships between plasma fibrinogen and cardiovascular risk factors, in particular abnormal lipid and glucose metabolism.

  2. Plasma Assisted Combustion Mechanism for Small Hydrocarbons

    DTIC Science & Technology

    2015-01-01

    O2 C2H6 C2H4 CH3OH iso‐propane CO2 C3H8 C3H6 C2H5OH neo‐pentane H2O C4H10 CH3OCH3  DME O3 C5H12 Ar H2 N2O PAC  Kinetic  Mechanism  O(-)+N(+)=N+O... Kinetic  Model:  Previous Versions D.V.Zatsepin, S.M.Starikovskaia, A.Yu.Starikovskii Hydrogen oxidation in a  stoichiometric hydrogen‐air mixtures in the... Kinetics  of ignition of saturated hydrocarbons by nonequilibrium plasma: C2H6‐ to C5H12‐containing mixtures. Combustion and Flame 156  (2009) 221–233

  3. Improving plant water isotope models with precise estimates of source water δ2H and δ18O values for trees from precipitation δ2H and δ18O values

    NASA Astrophysics Data System (ADS)

    Kahmen, A.; Brinkmann, N.; Seeger, S.; Buchmann, N. C.; Eugster, W.; Weiler, M.

    2016-12-01

    δ2H and δ18O values in plant water and plant organic compounds have established as powerful tools in ecology, biogeochemistry and paleoclimatology. In general, the δ2H and δ18O values in plants are driven by (i) the isotope composition of the plants' source water, (ii) the evaporative 2H or 18O enrichment of foliar water, and (iii) fractionations during the biosynthesis of organic compounds. While we have a robust understanding of what determines the evaporative 2H or 18O enrichment in plant water and biosynthetic fractionation factors have also been reasonably well constrained, our understanding how a plant's source water δ2H and δ18O values are linked to seasonal variation in precipitation δ2H and δ18O values is surprisingly poor. Precise estimates of a plant's source water δ2H and δ18O values, e.g. from the GNIP database are thus not possible and limit the application of plant water isotope models for the interpretation of δ2H and δ18O in plants. Here we present a four-year dataset of precipitation, soil water (0 - 80 cm) and plant source water δ2H and δ18O values from a mixed temperate forest. We employed this dataset to (i) estimate the link between precipitation and soil water δ2H and δ18O values at different soil depths, (ii) apply a hydrological model to estimate the mean residence time of precipitation water in different soil depths and (iii) estimate the integration time of seasonal precipitation for the source water δ2H and δ18O values of four tree species. Our data show a seasonal amplitude in δ2H and δ18O of precipitation of xx and xx, respectively. This seasonal variability in precipitation is transferred into the soil, where it declines with soil depth. Mean residence time of precipitation is xx days in the upper soil layers (5 cm) and increases to xx days in the lower soil layers (80 cm). The trees' source water originated from soil depths between 20 and 70 cm. The δ2H and δ18O values of the trees source water resemble mean

  4. Cometary implications of recent laboratory experiments on the photochemistry of the C2H and C3H2 radicals

    NASA Technical Reports Server (NTRS)

    Jackson, William M.; Bao, Yihan; Urdahl, Randall S.; Song, Xueyu; Gosine, Jai; Lu, Chi

    1992-01-01

    Recent laboratory results on the photodissociation of the C2H and C3H2 radicals are described. These studies show that the C2 and C3 radicals are produced by the 193 nm photolysis of the C2H and C3H2 radicals, respectively. The quantum state distributions that were determined for the C2 radicals put certain constraints on the initial conditions for any models of the observed C2 cometary spectra. Experimental observations of C2 formed by the 212.8 nm photolysis of C2H are used to calculate a range of photochemical lifetimes for the C2H radical.

  5. A highly selective fluorescent probe based on coumarin for the imaging of N2H4 in living cells

    NASA Astrophysics Data System (ADS)

    Chen, Song; Hou, Peng; Wang, Jing; Liu, Lei; Zhang, Qi

    2017-02-01

    A turn-on fluorescence probe for highly sensitive and selective detection of N2H4 was developed based on hydrazine-triggered a substitution- cyclization-elimination cascade. Upon the treatment with N2H4, probe 1, 4-methyl-coumarin-7-yl bromobutanoate, displayed a remarkable fluorescence enhancement (25-fold) with a maximum at 450 nm. This probe can quantitatively detect N2H4 with a extremely low detection limit as 7 × 10- 8 M. Moreover, cell imaging experiments have indicated that probe 1 has potential ability to detect and image N2H4 in biological systems.

  6. Volume-discharge formed in SF6 and C2H6 mixtures without preionization

    NASA Astrophysics Data System (ADS)

    Zhang, Ge; Ke, Changjun; Zhang, Shujuan

    2014-11-01

    A new approach to obtain glow discharge in working mixtures of non-chain HF laser has been brought forward. The most advantage of the approach is without pre-ionization, so the contamination of pre-ionization will not happen and the laser equipment is compact and simple. It is found, if the cathode surface is equally rough, we can obtain uniform volume-discharge in SF6 mixtures without any pre-ionization, and dispense with uniform electric field electrode profile. The form of Self-Sustained Volume Discharge (SSVD) is a Self-Initiated Volume Discharge (SIVD). We show here the possibility of obtaining SIVD with a uniform energy deposition in a system of electrodes with non-uniform electric field. Experiments show that, with rough cathode and even anode, a volume discharge is forming in non-uniform electric-field without pre-ionization in SF6 and C2H6 mixtures. At the beginning of the discharge, many diffuse channels attached to bright circular cathode spots, then, diverge towards the anode, with the channels overlapping, form a spatially uniform glow discharge. SIVD has been performed at a total mixture pressure up to 8kPa and energy deposition up to 200J/l. We also report measurements of the V-I characteristics of SIVD with SF6 and C2H6 mixtures at pressure up to about 8kPa. The experimental results indicate that SSVD in SF6 and C2H6 mixtures develops in the form of SIVD is promising for creation of high energy and pulse-periodic HF laser.

  7. Validation of SCALE (SAS2H) isotopic predictions for BWR spent fuel

    SciTech Connect

    Hermann, O.W.; DeHart, M.D.

    1998-09-01

    Thirty spent fuel samples obtained from boiling-water-reactor (BWR) fuel pins have been modeled at Oak Ridge National Laboratory using the SAS2H sequence of the SCALE code system. The SAS2H sequence uses transport methods combined with the depletion and decay capabilities of the ORIGEN-S code to estimate the isotopic composition of fuel as a function of its burnup history. Results of these calculations are compared with chemical assay measurements of spent fuel inventories for each sample. Results show reasonable agreement between measured and predicted isotopic concentrations for important actinides; however, little data are available for most fission products considered to be important for spent fuel concerns (e.g., burnup credit, shielding, source-term calculations, etc.). This work is a follow-up to earlier works that studied the ability to predict spent fuel compositions in pressurized-water-reactor (PWR) fuel pins. Biases and uncertainties associated with BWR isotopic predictions are found to be larger than those of PWR calculations. Such behavior is expected, as the operation of a BWR is significantly more complex than that of a PWR plant, and in general the design of a BWR has a more heterogeneous configuration than that of a PWR. Nevertheless, this work shows that the simple models employed using SAS2H to represent such complexities result in agreement to within 5% (and often less than 1%) or less for most nuclides important for spent fuel applications. On the other hand, however, the set of fuel samples analyzed represent a small subset of the BWR fuel population, and results reported herein may not be representative of the full population of BWR spent fuel.

  8. Validation of SCALE (SAS2H) Isotopic Predictions for BWR Spent Fuel

    SciTech Connect

    Hermann, O.W.

    1998-01-01

    Thirty spent fuel samples obtained from boiling-water-reactor (BWR) fuel pins have been modeled at Oak Ridge National Laboratory using the SAS2H sequence of the SCALE code system. The SAS2H sequence uses transport methods combined with the depletion and decay capabilities of the ORIGEN-S code to estimate the isotopic composition of fuel as a function of its burnup history. Results of these calculations are compared with chemical assay measurements of spent fuel inventories for each sample. Results show reasonable agreement between measured and predicted isotopic concentrations for important actinides; however, little data are available for most fission products considered to be important for spent fuel concerns (e.g., burnup credit, shielding, source-term calculations, etc.). This work is a follow-up to earlier works that studied the ability to predict spent fuel compositions in pressurized-water-reactor (PWR) fuel pins. Biases and uncertainties associated with BWR isotopic predictions are found to be larger than those of PWR calculations. Such behavior is expected, as the operation of a BWR is significantly more complex than that of a PWR plant, and in general the design of a BWR has a more heterogeneous configuration than that of a PWR. Nevertheless, this work shows that the simple models employed using SAS2H to represent such complexities result in agreement to within 5% (and often less than 1%) or less for most nuclides important for spent fuel applications. On the other hand, however, the set of fuel samples analyzed represent a small subset of the BWR fuel population, and results reported herein may not be representative of the full population of BWR spent fuel.

  9. Spectroscopic Line Parameters in the Infrared Bands of CH3CN and C2H6

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy

    2010-10-01

    In this paper, measurements of critical spectroscopic line parameters such as positions, absolute intensities and pressure broadened (self- and N2) half-width coefficients for transitions in the ν4 band of CH3CN (acetonitile, ethanenitrile, methyl cyanide) and the ν9 band of C2H6 (ethane) are presented. CH3CN has been measured by remote sensing in the earth's atmosphere, in comets and in interstellar molecular clouds. It is also a constituent in the atmospheres of Titan, Saturn's largest moon. Likewise, C2H6 is also an important constituent in the atmosphere of earth, the giant planets and comets. The 12- μm(˜720-850 cm-1) emission features of this molecule have been observed in spectra from outer solar system bodies of Jupiter, Saturn, Neptune and Titan. Because of their importance in remote sensing measurements, we recently recorded and analyzed a large number of laboratory infrared absorption spectra of pure and N2-broadened spectra of both these molecular bands. Spectra used in these analyses were recorded using either the Bruker IFS 125HR or the Bruker IFS 120HR FTS located at the Pacific Northwest National Laboratory (PNNL), in Richland Washington. To retrieve the various spectral line parameters, a multispectrum nonlinear least squares fitting algorithm was employed and all spectra belonging to each band were fitted simultaneously. Using this fitting technique, the same spectral regions from multiple spectra were fit all at once to maximize the accuracy of the retrieved parameters. The results obtained from present analyses are briefly discussed. In the case of C2H6 both room- and low temperature (˜210-296 K) spectra were recorded, but results from analyzing only room-temperature spectra will be discussed in this work.

  10. Hydrogen dynamics in soil organic matter as determined by 13C and 2H labeling experiments

    NASA Astrophysics Data System (ADS)

    Paul, Alexia; Hatté, Christine; Pastor, Lucie; Thiry, Yves; Siclet, Françoise; Balesdent, Jérôme

    2016-12-01

    Understanding hydrogen dynamics in soil organic matter is important to predict the fate of 3H in terrestrial environments. One way to determine hydrogen fate and to point out processes is to examine the isotopic signature of the element in soil. However, the non-exchangeable hydrogen isotopic signal in soil is complex and depends on the fate of organic compounds and microbial biosyntheses that incorporate water-derived hydrogen. To decipher this complex system and to understand the close link between hydrogen and carbon cycles, we followed labeled hydrogen and labeled carbon throughout near-natural soil incubations. We performed incubation experiments with three labeling conditions: 1 - 13C2H double-labeled molecules in the presence of 1H2O; 2 - 13C-labeled molecules in the presence of 2H2O; 3 - no molecule addition in the presence of 2H2O. The preservation of substrate-derived hydrogen after 1 year of incubation (ca. 5 % in most cases) was lower than the preservation of substrate-derived carbon (30 % in average). We highlighted that 70 % of the C-H bonds are broken during the degradation of the molecule, which permits the exchange with water hydrogen. Added molecules are used more for trophic resources. The isotopic composition of the non-exchangeable hydrogen was mainly driven by the incorporation of water hydrogen during microbial biosynthesis. It is linearly correlated with the amount of carbon that is degraded in the soil. The quantitative incorporation of water hydrogen in bulk material and lipids demonstrates that non-exchangeable hydrogen exists in both organic and mineral-bound forms. The proportion of the latter depends on soil type and minerals. This experiment quantified the processes affecting the isotopic composition of non-exchangeable hydrogen, and the results can be used to predict the fate of tritium in the ecosystem or the water deuterium signature in organic matter.

  11. Obstruction of dengue virus maturation by Fab fragments of the 2H2 antibody.

    PubMed

    Wang, Zhiqing; Li, Long; Pennington, Janice G; Sheng, Ju; Yap, Moh Lan; Plevka, Pavel; Meng, Geng; Sun, Lei; Jiang, Wen; Rossmann, Michael G

    2013-08-01

    The 2H2 monoclonal antibody recognizes the precursor peptide on immature dengue virus and might therefore be a useful tool for investigating the conformational change that occurs when the immature virus enters an acidic environment. During dengue virus maturation, spiky, immature, noninfectious virions change their structure to form smooth-surfaced particles in the slightly acidic environment of the trans-Golgi network, thereby allowing cellular furin to cleave the precursor-membrane proteins. The dengue virions become fully infectious when they release the cleaved precursor peptide upon reaching the neutral-pH environment of the extracellular space. Here we report on the cryo-electron microscopy structures of the immature virus complexed with the 2H2 antigen binding fragments (Fab) at different concentrations and under various pH conditions. At neutral pH and a high concentration of Fab molecules, three Fab molecules bind to three precursor-membrane proteins on each spike of the immature virus. However, at a low concentration of Fab molecules and pH 7.0, only two Fab molecules bind to each spike. Changing to a slightly acidic pH caused no detectable change of structure for the sample with a high Fab concentration but caused severe structural damage to the low-concentration sample. Therefore, the 2H2 Fab inhibits the maturation process of immature dengue virus when Fab molecules are present at a high concentration, because the three Fab molecules on each spike hold the precursor-membrane molecules together, thereby inhibiting the normal conformational change that occurs during maturation.

  12. CO2-H2O based pretreatment and enzyme hydrolysis of soybean hulls.

    PubMed

    Islam, S M Mahfuzul; Li, Qian; Loman, Abdullah Al; Ju, Lu-Kwang

    2017-11-01

    The high carbohydrate content of soybean hull makes it an attractive biorefinery resource. But hydrolyzing its complex structure requires concerted enzyme activities, at least cellulase, xylanase, pectinase and α-galactosidase. Effective pretreatment that generates minimal inhibitory products is important to facilitate enzymatic hydrolysis. Combined CO2-H2O pretreatment and enzymatic hydrolysis by Aspergillus niger and Trichoderma reesei enzyme broths was studied here. The pretreatment was evaluated at 80°C-180°C temperature and 750psi-1800psi pressure, with fixed moisture content (66.7%) and pretreatment time (30min). Ground hulls without and with different pretreatments were hydrolyzed by enzyme at 50°C and pH 4.8 and compared for glucose, xylose, galactose, arabinose, mannose and total reducing sugar release. CO2-H2O pretreatment at 1250psi and 130°C was found to be optimal. Compared to the unpretreated hulls hydrolyzed with 2.5-fold more enzyme, this pretreatment improved glucose, xylose, galactose, arabinose and mannose releases by 55%, 35%, 105%, 683% and 52%, respectively. Conversions of 97% for glucose, 98% for xylose, 41% for galactose, 59% for arabinose, 87% for mannose and 89% for total reducing sugar were achieved with Spezyme CP at 18FPU/g hull. Monomerization of all carbohydrate types was demonstrated. At the optimum pretreatment condition, generation of inhibitors acetic acid, furfural and hydroxymethylfurfural (HMF) was negligible, 1.5mg/g hull in total. The results confirmed the effective CO2-H2O pretreatment of soybean hulls at much lower pressure and temperature than those reported for biomass of higher lignin contents. The lower pressure requirement reduces the reactor cost and makes this new pretreatment method more practical and economical. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. 5-[(tert-Butyl-diphenyl-sil-yloxy)meth-yl]pyridazin-3(2H)-one.

    PubMed

    Costas-Lago, María Carmen; Costas, Tamara; Vila, Noemí; Terán, Carmen

    2013-11-27

    In the title compound, C21H24N2O2Si, a new pyridazin-3(2H)-one derivative, the carbonyl group of the heterocyclic ring and the O atom of the silyl ether are located on the same side of the pyridazinone ring and the C-C-O-Si torsion angle is -140.69 (17)°. In the crystal, mol-ecules are linked by pairs of strong N-H⋯O hydrogen bonds into centrosymmetric dimers with graph-set notation R 2 (2)(8). Weak C-H⋯π inter-actions are also observed.

  14. Digital simulation and experimental evaluation of the CO2-H(plus) control of pulmonary ventilation

    NASA Technical Reports Server (NTRS)

    Milhorn, H. T., Jr.; Reynolds, W. J.

    1972-01-01

    Previous models of the CO2-H(+) control of ventilation have been concerned either with the response to CO2 inhalation, or the response to perfusion of the surface of the medulla with mock cerebrospinal fluid having a high P sub CO2. Simulation of both responses with the same model has not been attempted. The purpose of the present study was two fold; first to develop such a model and, second, to obtain experimental data from human subjects for both developing this model and for evaluating this and future models.

  15. Early Gravitropic Events in Roots of Arabidopsis: Ca(2+)H(+) Fluxes in the Columella Cells

    NASA Technical Reports Server (NTRS)

    Feldman, Lewis

    2003-01-01

    Despite the wealth of information derived from physiological approaches, molecular mechanisms for sensing and responding to gravity in plants remain largely uncharacterized. Roots of higher plants offer many advantages for studying the sensing and responding phases. In roots, gravisensing occurs in specialized cells, the columella cells in which earlier studies have indicated an involvement of the cytoskeleton, Ca(2+), H(+) and auxin in processing the gravity signal. The overall goal of this project was to characterize gravity-stimulated Ca(2+) and H(+) fluxes in the columella cells of a model plant Arabidopsis thaliana and to define their regulation. For this work we used intact Arabidopsis roots.

  16. Total lattice potential energy of sodium bromide dihydrate NaBr · 2H 2O

    NASA Astrophysics Data System (ADS)

    Herzig, P.; Jenkins, H. D. B.; Pritchett, M. S. F.

    1984-08-01

    In addition to presenting comparative calculations by two approaches for the total lattice potential energy of sodium bromide dihydrate, NaBr · 2H 2O, found to take the value 803.9 kJ mol -1, we investigate the influence of the size and nature of the basis set used to generate multipole moments in a Hartee-Fock calculation which are in turn used to calculate the Madelung constant. The requirement is one of critical size of the basis set and once this is reached the electrostatic energy will be reliable.

  17. Mixed H2/H Infinity Optimization with Multiple H Infinity Constraints

    DTIC Science & Technology

    1994-06-01

    DMD -),X p(QM): 2-7 2.3.1 Structured Singular Value in Control Systems The structured singular value is a framework based on the small gain theorem, in...sensitivity problem, and the mixed H2/H. controller. In this section, the value of the upper bound on t(a( DMD -’)) will simply be called IL for convenience. A...Casa 283 Ciudadela Kennedy Quito-Ecuador r1 I’ Form Approved REPORT DOCUMENTATION PAGE OM No. 0704-0188 putb4C reporting tburdtn for this collectiont

  18. Laboratory Spectra of Mixtures of CH4, C2H6, and CH3OH

    NASA Technical Reports Server (NTRS)

    Mastrapa, Rachel; Berry, Matthew T.; Sandford, Scott

    2011-01-01

    Infrared spectroscopy is commonly used as a tool for identifying the composition of objects in the Solar System and beyond. Using laboratory spectra, optical constants can be calculated and used to create model spectra for comparison to spectra obtained from infrared telescopes. In this study, the optical constants of mixtures of simple organics, including CH4, C2H6, and CH3OH were calculated from 15 to 70 K, in the frequency range of 9000-500 cm(sup -1) (1.1-20 micrometers), at a spectral resolution of 1 cm(sup -1).

  19. The leptonic CP phase from T2(H)K and μ+ decay at rest

    DOE PAGES

    Evslin, Jarah; Ge, Shao-Feng; Hagiwara, Kaoru

    2016-02-22

    Combining v oscillations at T2K or T2HK withmore » $$\\bar{v}$$ oscillations from μ+ decay at rest (DAR) allows a determination of the leptonic CP-violating phase . The degeneracies of this phase with θ13 and θ23 are broken and δ can be reliably distinguished from 180° - δ. In this study, we present the sensitivity to δ of T2(H)K together with a μ+ DAR experiment using Super-K as a near detector and Hyper-K at the Tochibora site as a far detector.« less

  20. Characterization Results for the 2014 HTF 3H & 2H Evaporator Overhead Samples

    SciTech Connect

    Washington, A.

    2015-05-11

    This report tabulates the radiochemical analysis of the 3H and 2H evaporator overhead samples for 137Cs, 90Sr, and 129I to meet the requirements in the Effluent Treatment Project (ETP) Waste Acceptance Criteria (WAC) (rev. 6). This report identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. All data was found to be within the ETP WAC (rev. 6) specification for the Waste Water Collection Tanks (WWCT).

  1. Pressure induced effects on the Fermi surface of superconducting 2H-NbSe2.

    PubMed

    Suderow, H; Tissen, V G; Brison, J P; Martínez, J L; Vieira, S

    2005-09-09

    The pressure dependence of the critical temperature T(c) and upper critical field H(c2)(T) has been measured up to 19 GPa in the layered superconducting material 2H-NbSe2. T(c)(P) has a maximum at 10.5 GPa, well above the pressure for the suppression of the charge density wave (CDW) order. Using an effective two-band model to fit H(c2)(T), we obtain the pressure dependence of the anisotropy in the electron-phonon coupling and Fermi velocities, which reveals the peculiar interplay between CDW order, Fermi surface complexity, and superconductivity in this system.

  2. The quasielastic 2H(e,e'p)n reaction at high recoil momenta

    SciTech Connect

    D. Crovelli; Konrad Aniol; Javier Gomez; John LeRose; Arunava Saha; Paul Ulmer; Vina Punjabi; Richard Lindgren; Charles Perdrisat; David Meekins; Joseph Mitchell; Mark Jones; Robert Michaels; Bogdan Wojtsekhowski; Hartmuth Arenhoevel; Michael Finn; Jens-Ole Hansen; Riad Suleiman; Kevin Fissum; Sergey Malov; Cornelis De Jager; Cornelis de Jager; Rikki Roche; Michael Kuss; Eugene Chudakov; Sabine Jeschonnek; Franck Sabatie; Luminita Todor; Meihua Liang; Olivier Gayou; Jian-Ping Chen

    2001-11-01

    The 2H(e,e'p)n cross section was measured in Hall A of the Thomas Jefferson National Accelerator Facility (JLab) in quasielastic kinematics (x=0.96) at a four-momentum transfer squared, Q{sup 2}=0.67 (GeV/c){sup 2}. The experiment was performed in fixed electron kinematics for recoil momenta from zero to 550 MeV/c. Though the measured cross section deviates by 1-2 sigma from a state-of-the-art calculation at low recoil momenta, it agrees at high recoil momenta where final state interactions (FSI) are predicted to be large.

  3. Development of homotopy algorithms for fixed-order mixed H2/H(infinity) controller synthesis

    NASA Technical Reports Server (NTRS)

    Whorton, M.; Buschek, H.; Calise, A. J.

    1994-01-01

    A major difficulty associated with H-infinity and mu-synthesis methods is the order of the resulting compensator. Whereas model and/or controller reduction techniques are sometimes applied, performance and robustness properties are not preserved. By directly constraining compensator order during the optimization process, these properties are better preserved, albeit at the expense of computational complexity. This paper presents a novel homotopy algorithm to synthesize fixed-order mixed H2/H-infinity compensators. Numerical results are presented for a four-disk flexible structure to evaluate the efficiency of the algorithm.

  4. Characterization of Post-Cleaning Solids Samples from the 2H Evaporator Pot

    SciTech Connect

    WILMARTH, WILLIAM

    2004-03-15

    Samples retrieved from the 2H Evaporator Pot in October of 2003 were of a similar nature as previous materials. The bulk of the sample was comprised of a sodium aluminosilicate phase, cancrinite. The concentration of uranium in the evaporator solids,however, was very low:less than 0.1 percentage weight. The uranium enrichment was depleted as expected and measured 0.6 percent. These data agree with uranium contents generated during experimental testing. Additionally, the overall specific radionuclide content is lower for this sample than previous measured on samples from the Gravity Drain Line in 1997 and the cone and wall in 2000.

  5. Fermi surface, charge-density-wave gap, and kinks in 2H- TaSe2

    NASA Astrophysics Data System (ADS)

    Rossnagel, K.; Rotenberg, Eli; Koh, H.; Smith, N. V.; Kipp, L.

    2005-09-01

    The Fermi surface of the layered charge-density-wave compound 2H-TaSe2 is measured by angle-resolved photoemission as a function of temperature. A surprising Fermi-surface topology and a Fermi-surface branch-dependent charge-density-wave gap are found. In the charge-density-wave state band hybridization effects are strong and responsible for kinks in the band dispersions at relatively high binding energy. The implications of the results on the charge-density-wave mechanism are discussed.

  6. Smoothed orientational order profile of lipid bilayers by 2H-nuclear magnetic resonance.

    PubMed Central

    Lafleur, M; Fine, B; Sternin, E; Cullis, P R; Bloom, M

    1989-01-01

    A new method has been developed to determine the complete orientational order profile of lipid bilayers using 2H-NMR. The profile is obtained from a single powder spectrum of a lipid which has a saturated chain fully deuteriated. The smoothed order profile is determined directly from the normalized dePaked spectrum assuming a monotonic decrease of the order along the acyl chain. The oscillatory variations of the order at the beginning of the chain are not described by this method. However the smoothed order profile reveals in a straightforward way the crucial features of the anisotropic order of the bilayer. PMID:2605294

  7. Nanocrystallite Mg ferrite LPG, Cl2 and C2H5OH sensor

    NASA Astrophysics Data System (ADS)

    Gadkari, Ashok B.; Shinde, Tukaram J.; Vasambekar, Pramod N.

    2012-06-01

    The magnesium ferrite was synthesized by oxalate co-precipitation method. The crystal structure and surface morphology were examined by X-ray diffraction and SEM respectively. The nanocrystallite MgFe2O4 sensor was tested for gases like LPG, Cl2 and C2H5OH. Sensitivity was measured at various operating temperatures between 100-400°C. The sensor shows highest sensitivity to LPG at 225°C. The response and recovery time was measured at operating temperature of 225°C. The sensor exhibits a good response and recovery for LPG at operating temperature.

  8. Stable (2)H isotope analysis of modern-day human hair and nails can aid forensic human identification.

    PubMed

    Fraser, Isla; Meier-Augenstein, Wolfram

    2007-01-01

    Continuous-flow isotope ratio mass spectrometry (CF-IRMS) was used to compare (2)H isotopic composition at natural abundance level of human scalp hair and fingernail samples collected from subjects worldwide with interpolated delta(2)H precipitation values at corresponding locations. The results showed a strong correlation between delta(2)H values of meteoric water and hair (r(2) = 0.86), while the corresponding correlation for nails was not as strong (r(2) = 0.6). Offsets of -180 per thousand and -127 per thousand were observed when calculating solutions of the linear regression analyses for delta(2)H vs. delta(18)O correlation plots of hair and nail samples, respectively. Compared with the +10 per thousand offset of the global meteoric water line equation these findings suggested that delta(18)O data from hair and nail would be of limited diagnostic value. The results of this pilot study provide for the first time tentative correlations of (2)H isotopic composition of human hair and nails with local water. Linear regression analyses for measured delta(2)H values of human hair and nails vs. water yielded delta(2)H(hair) = 0.49 x delta(2)H(water) - 35 and delta(2)H(nails) = 0.38 x delta(2)H(water) - 49, respectively. The results suggest that (2)H isotopic analysis of hair and nail samples can be used to provide information regarding an individual's recent geographical life history and, hence, location. The benefit of this technique is to aid identification of victims of violent crime and mass disasters in circumstances where traditional methods such as DNA and fingerprinting cannot be brought to bear (or at least not immediately).

  9. Dusty plasmas

    SciTech Connect

    Jones, M.E.; Winske, D.; Keinigs, R.; Lemons, D.

    1996-05-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project has been to develop a fundamental understanding of dusty plasmas at the Laboratory. While dusty plasmas are found in space in galactic clouds, planetary rings, and cometary tails, and as contaminants in plasma enhanced fabrication of microelectronics, many of their properties are only partially understood. Our work has involved both theoretical analysis and self-consistent plasma simulations to understand basic properties of dusty plasmas related to equilibrium, stability, and transport. Such an understanding can improve the control and elimination of plasma dust in industrial applications and may be important in the study of planetary rings and comet dust tails. We have applied our techniques to the study of charging, dynamics, and coagulation of contaminants in plasma processing reactors for industrial etching and deposition processes and to instabilities in planetary rings and other space plasma environments. The work performed in this project has application to plasma kinetics, transport, and other classical elementary processes in plasmas as well as to plasma waves, oscillations, and instabilities.

  10. Probing anisotropic interaction potentials of unsaturated hydrocarbons with He*(2 3S) metastable atom: Attractive-site preference of σ-direction in C2H2 and π-direction in C2H4

    NASA Astrophysics Data System (ADS)

    Horio, Takuya; Hatamoto, Takuro; Maeda, Satoshi; Kishimoto, Naoki; Ohno, Koichi

    2006-03-01

    State-resolved collision energy dependence of Penning ionization cross sections of acetylene (C2H2) and ethylene (C2H4) with He*(2S3) metastable atoms was observed in a wide collision energy range from 20to350meV. A recently developed discharge nozzle source with a liquid N2 circulator was employed for the measurements in the low-energy range from 20to80meV. Based on classical trajectory calculations for the energy dependence of the partial ionization cross sections, anisotropic potential energy surfaces for the present systems were obtained by optimizing ab initio model potentials for the chemically related systems Li +C2H2 and C2H4. In the case of C2H2, the global minimum was found to be located around the H atom along the molecular axis with a well depth of 48meV (ca. 1.1kcal/mol). On the other hand, a dominant attractive well with a depth of 62meV (ca. 1.4kcal/mol) was found in the πCC electron region of C2H4. These findings were discussed in connection with orbital interactions between molecular orbitals of the target molecules and atomic orbitals of the metastable atom. It is concluded that σ-type unoccupied molecular orbitals of C2H2 and a πCC-type highest occupied molecular orbital of C2H4 play a significant role for the attractive-site preference of σ direction in C2H2 and π direction in C2H4, respectively.

  11. Calculations of thermal radiation transfer of C2H2 and C2H4 together with H2O, CO2, and CO in a one-dimensional enclosure using LBL and SNB models

    NASA Astrophysics Data System (ADS)

    Qi, Chaobo; Zheng, Shu; Zhou, Huaichun

    2017-08-01

    Generally, the involvement of hydrocarbons such as C2H4 and its derivative C2H2 in thermal radiation has not been accounted in the numerical simulation of their flames, which may cause serious error for estimation of temperature in the early stage of combustion. At the first, the Statistical Narrow-Band (SNB) model parameters for C2H2 and C2H4 are generated from line by line (LBL) calculations. The distributions of the concentrations of radiating gases such as H2O, CO2, CO, C2H2 and C2H4, and the temperature along the centerline of a laminar ethylene/air diffusion flame were chosen to form a one-dimensional, planar enclosure to be tested in this study. Thermal radiation transfer in such an enclosure was calculated using the LBL approach and the SNB model, most of the relative errors are less than 8% and the results of these two models shows an excellent agreement. Below the height of 20 mm, which is the early stage of the flame, the average fraction contributed by C2H2 and C2H4 in the radiative heat source is 33.8%, while that by CO is only 5.8%. This result indicates that the involvement of C2H2 and C2H4 in radiation heat transfer needs to be taken into account in the numerical modeling of the ethylene/air diffusion flame, especially in the early stage of combustion.

  12. Interlayer electron-phonon coupling in WSe2/hBN heterostructures

    NASA Astrophysics Data System (ADS)

    Jin, Chenhao; Kim, Jonghwan; Suh, Joonki; Shi, Zhiwen; Chen, Bin; Fan, Xi; Kam, Matthew; Watanabe, Kenji; Taniguchi, Takashi; Tongay, Sefaattin; Zettl, Alex; Wu, Junqiao; Wang, Feng

    2017-02-01

    Engineering layer-layer interactions provides a powerful way to realize novel and designable quantum phenomena in van der Waals heterostructures. Interlayer electron-electron interactions, for example, have enabled fascinating physics that is difficult to achieve in a single material, such as the Hofstadter's butterfly in graphene/boron nitride (hBN) heterostructures. In addition to electron-electron interactions, interlayer electron-phonon interactions allow for further control of the physical properties of van der Waals heterostructures. Here we report an interlayer electron-phonon interaction in WSe2/hBN heterostructures, where optically silent hBN phonons emerge in Raman spectra with strong intensities through resonant coupling to WSe2 electronic transitions. Excitation spectroscopy reveals the double-resonance nature of such enhancement, and identifies the two resonant states to be the A exciton transition of monolayer WSe2 and a new hybrid state present only in WSe2/hBN heterostructures. The observation of an interlayer electron-phonon interaction could open up new ways to engineer electrons and phonons for device applications.

  13. Limits of metastability in amorphous ices: 2H-NMR relaxation.

    PubMed

    Löw, Florian; Amann-Winkel, Katrin; Geil, Burkhard; Loerting, Thomas; Wittich, Carolin; Fujara, Franz

    2013-01-14

    The high-frequency reorientation dynamics of O-(2)H bonds is investigated in various amorphous ices including eHDA (expanded high density amorphous ice), LDA-II (low density amorphous ice II) and HGW (hyperquenched glassy water) using (2)H-NMR spin-lattice relaxation as a local probe. Both low density forms, HGW and LDA-II, show similar spin-lattice relaxation but differ in the thermal stability with respect to the transition into crystalline cubic ice I(c). HGW already transforms slightly above 135 K whereas LDA-II crystallizes at 150 K. eHDA is distinguishable from other high density amorphous ices in its thermal stability and spin-lattice relaxation. Its relaxation times are much larger compared to those of VHDA (very high density amorphous ice) and uHDA (unrelaxed high density amorphous ice). eHDA does not show annealing effects, transforms sharply into LDA-II above 123 K and provides higher thermal stability as compared to other high density forms.

  14. Affordable uniform isotope labeling with (2)H, (13)C and (15)N in insect cells.

    PubMed

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D

    2015-06-01

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80% can be achieved for (15)N and (13)C with yields comparable to expression in full media. For (2)H,(15)N and (2)H,(13)C,(15)N labeling, incorporation is only slightly lower with 75 and 73%, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins.

  15. New 2-Imino-2H-Chromene-3(N-aryl)carboxamides as Potential Cytotoxic Agents.

    PubMed

    Gill, Rupinder Kaur; Kumari, Jyoti; Bariwal, Jitender

    2017-01-01

    Synthesis and structure activity relationships of four series of novel 2-imino-2H-chromene-3(N-aryl) carboxamides (V-VIII) have been described by bioisosteric replacement of usually present ketone at 2nd position of coumarin with imine. Various substitutents are introduced on aryl and chromene ring of iminocoumarin to investigate the effect of lipophilicity and electronic properties of substituents on cytotoxic activity against four human cancer cell lines. Novel 2-imino-2H-chromene-3(N-aryl)carboxamides (V-VIII) were synthesized by the reaction of substituted 2- cyanoacetamides with different salicyaldehydes in the presence of sodium acetate in glacial acetic acid. Compound VIa showed potent activity against MCF-7 (IC50 = 8.5 μM), PC-3 (IC50 = 35.0 μM), A-549 (IC50 = 0.9 μM) and Caco-2 (IC50 = 9.9 μM) cell lines. The anticancer results revealed that most of the synthesized compounds showed equipotent activity with the standard 5-fluorouracil and docetaxel on Caco-2 and MCF-7 cell lines, respectively.

  16. A Forward Chemical Screen Using Zebrafish Embryos with Novel 2-Substituted 2H-Chromene Derivatives

    PubMed Central

    Torregroza, Ingrid; Evans, Todd; Das, Bhaskar C.

    2011-01-01

    We synthesized 2-substituted 2H-chromene derivatives from salicylaldehyde using potassium vinylic borates in the presence of secondary amines. Our goal was to generate novel compounds that might modulate transforming growth factor-β signaling, based on limited rational design. Potassium vinyl trifluoroborates react with salicylaldehydes at 80 °C in the presence of a secondary amine and produce 2-substituted 2H-chromene derivatives with a 70–90% yield. A small library of these compounds, predicted to potentially interact with transforming growth factor-β receptors, was screened for bioactivity in living zebrafish embryos. We found that the related compounds differentially affect development, and demonstrate one compound that produces severe body axis alterations in early embryogenesis and at lower doses affects specifically cardiovascular development. This compound modulates specifically a Smad-independent transforming growth factor-β-regulated mitogen-activated protein kinase pathway, namely p-SAPK/JNK. These compounds, as suggested by our biological assays, may prove useful to manipulate developmental programs and develop therapeutic tools. PMID:19207470

  17. P-selectin targeting to secretory lysosomes of Rbl-2H3 cells.

    PubMed

    Kaur, Jasber; Cutler, Daniel F

    2002-03-22

    The biogenesis of secretory lysosomes, which combine characteristics of both lysosomes and secretory granules, is currently of high interest. In particular, it is not clear whether delivery of membrane proteins to the secretory lysosome requires lysosomal, secretory granule, or some novel targeting determinants. Heterologous expression of P-selectin has established that this membrane protein contains targeting signals for both secretory granules and lysosomes. P-selectin is therefore an ideal probe with which to determine the signals required for targeting to secretory lysosomes. We have exploited subcellular fractionation and immunofluorescence microscopy to monitor targeting of transiently expressed wild-type and mutant horseradish peroxidase (HRP)-P-selectin chimeras to secretory lysosomes of Rbl-2H3 cells. The exposure of the HRP chimeras to intracellular proteolysis was also determined as a third monitor of secretory lysosome targeting. Our data show that HRP-P-selectin accumulates in secretory lysosomes of Rbl-2H3 cells using those cytoplasmic sequences previously found to be sufficient for targeting to conventional lysosomes. This work highlights the similar sorting signals used for targeting of membrane proteins to conventional lysosomes and secretory lysosomes.

  18. Study of C2H2 optic-fiber monitoring system on spectrum absorption

    NASA Astrophysics Data System (ADS)

    Wang, Yutian; Li, Xiao-Xin; Wang, Zhong-Dong

    2005-02-01

    We report our research on the development of optical fiber trace gas sensors for environmental applications. A novel optical fiber sensor for monitoring acetylene (C2H2) gases is described. Through studying the measure theory, we use the Beer-Lambert law to monitor the gas. And after analyzing the C2H2 spectrum, we select Distributed Feedback Laser Diode (DFB LD) as light source. Comparing many kinds" sensor detection head, the gas absorbing cell with tail fiber can have good coupling with optical fiber and improve the coupling stability. In the data processing system, signals are distilled by lock-in amplifiers and then harmonic measure technology processes that distilled faint signals. After the all, the electronic signals are transmitted into computer to process, alarm and display. We design the instrument who can remote and on-line measuring acetylene. Through theory analysis and system experiment, the design of the system is practicable, and has a better precision and some apply foreground.

  19. Induced DNA demethylation can reshape chromatin topology at the IGF2-H19 locus

    PubMed Central

    Ito, Yoko; Nativio, Raffaella; Murrell, Adele

    2013-01-01

    Choriocarcinomas are embryonal tumours with loss of imprinting and hypermethylation at the insulin-like growth factor 2 (IGF2)-H19 locus. The DNA methyltransferase inhibitor, 5-Aza-2′deoxycytidine (5-AzaCdR) is an approved epigenetic cancer therapy. However, it is not known to what extent 5-AzaCdR influences other epigenetic marks. In this study, we set out to determine whether 5-AzaCdR treatment can reprogram the epigenomic organization of the IGF2-H19 locus in a choriocarcinoma cancer cell line (JEG3). We found that localized DNA demethylation at the H19 imprinting control region (ICR) induced by 5-AzaCdR, reduced IGF2, increased H19 expression, increased CTCF and cohesin recruitment and changed histone modifications. Furthermore chromatin accessibility was increased locus-wide and chromatin looping topography was altered such that a CTCF site downstream of the H19 enhancers switched its association with the CTCF site upstream of the IGF2 promoters to associate with the ICR. We identified a stable chromatin looping domain, which forms independently of DNA methylation. This domain contains the IGF2 gene and is marked by a histone H3 lysine 27 trimethylation block between CTCF site upstream of the IGF2 promoters and the Centrally Conserved Domain upstream of the ICR. Together, these data provide new insights into the responsiveness of chromatin topography to DNA methylation changes. PMID:23585276

  20. Advanced Low-Cost O2/H2 Engines for the SSTO Application

    NASA Technical Reports Server (NTRS)

    Goracke, B. David; Levack, Daniel J. H.; Nixon, Robert F.

    1994-01-01

    The recent NASA Access to Space study examined future Earth to orbit (ETO) transportation needs and fleets out to 2030. The baseline in the option 3 assessment was a single stage to orbit (SSTO) vehicle. A study was conducted to assess the use of new advanced low cost O2/H2 engines for this SSTO application. The study defined baseline configurations and ground rules and defined six engine cycles to explore engine performance. The cycles included an open cycle, and a series of closed cycles with varying abilities to extract energy from the propellants to power he turbomachinery. The cycles thus varied in the maximum chamber pressure they could reach and in their weights at any given chamber pressure. The weight of each cycle was calculated for two technology levels versus chamber pressure up to the power limit of the cycle. The performance in the SSTO mission was then modeled using the resulting engine weights and specific impulse performance using the Access to Space option 3 vehicle. The results showed that new O2/H2 engines are viable and competitive candidates for the SSTO application using chamber pressures of 4,000 psi.

  1. CCQE, 2p2h excitations and ν—energy reconstruction

    SciTech Connect

    Nieves, J.; Simo, I. Ruiz; Sánchez, F.; Vacas, M. J. Vicente

    2015-05-15

    We analyze the MiniBooNE muon neutrino CCQE-like dσ/dT{sub μ} d cos θ{sub μ} data using a theoretical model that, among other nuclear effects, includes RPA correlations and 2p2h (multinucleon) mechanisms. These corrections turn out to be essential for the description of the data. We find that MiniBooNE CCQE-like data are fully compatible with former determinations of the nucleon axial mass M{sub A} ∼ 1.05 GeV. This is in sharp contrast with several previous analysis where anomalously large values of M{sub A} ∼ 1.4 GeV have been suggested. We also show that because of the the multinucleon mechanism effects, the algorithm used to reconstruct the neutrino energy is not adequate when dealing with quasielastic-like events. Finally, we analyze the MiniBooNE unfolded cross section, and show that it exhibits an excess (deficit) of low (high) energy neutrinos, which is an artifact of the unfolding process that ignores 2p2h mechanisms.

  2. Quantifying unfrozen water in frozen soil by high-field 2H NMR.

    PubMed

    Sparrman, Tobias; Oquist, Mats; Klemedtsson, Leif; Schleucher, Jürgen; Nilsson, Mats

    2004-10-15

    To understand wintertime controls of biogeochemical processes in high latitude soils it is essential to distinguish between direct temperature effects and the effects of changes in water availability mediated by freezing. Efforts to separate these controls are hampered by a lack of adequate methods to determine the proportion of unfrozen water. In this study we present a high-field 2H2O NMR method for quantifying unfrozen water content in frozen soil. The experimental material consisted of the humic layer of a boreal spruce forest soil mixed with varying proportions of quartz sand and humidified with deuterium-enriched water. The relative standard deviation of unfrozen water content (measured as NMR signal integral) was less than 2% for repeated measurements on a given sample and 3.5% among all samples, based on a total of 16 measurements. As compared to 1H NMR, this 2H NMR method was found to be superior for several reasons: it is less sensitive to field inhomogeneity and paramagnetic impurities, it gives a bigger line shape difference between the ice and liquid signal, it shows a sharper response to water fusion, and it excludes the possibility of hydrogen in the organic material interfering with the measurement.

  3. Free radical scavenging potency of quercetin catecholic colonic metabolites: Thermodynamics of 2H(+)/2e(-) processes.

    PubMed

    Amić, Ana; Lučić, Bono; Stepanić, Višnja; Marković, Zoran; Marković, Svetlana; Dimitrić Marković, Jasmina M; Amić, Dragan

    2017-03-01

    Reaction energetics of the double (2H(+)/2e(-)), i.e., the first 1H(+)/1e(-) (catechol→ phenoxyl radical) and the second 1H(+)/1e(-) (phenoxyl radical→ quinone) free radical scavenging mechanisms of quercetin and its six colonic catecholic metabolites (caffeic acid, hydrocaffeic acid, homoprotocatechuic acid, protocatechuic acid, 4-methylcatechol, and catechol) were computationally studied using density functional theory, with the aim to estimate the antiradical potency of these molecules. We found that second hydrogen atom transfer (HAT) and second sequential proton loss electron transfer (SPLET) mechanisms are less energy demanding than the first ones indicating 2H(+)/2e(-) processes as inherent to catechol moiety. The Gibbs free energy change for reactions of inactivation of selected free radicals indicate that catecholic colonic metabolites constitute an efficient group of more potent scavengers than quercetin itself, able to deactivate various free radicals, under different biological conditions. They could be responsible for the health benefits associated with regular intake of flavonoid-rich diet. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Superconducting order from disorder in 2H-TaSe2-xSx

    DOE PAGES

    Li, Lijun; Deng, Xiaoyu; Wang, Zhen; ...

    2017-02-24

    Here, we report on the emergence of robust superconducting order in single crystal alloys of TaSe2$ -$x Sx (0 ≤ × ≤2). The critical temperature of the alloy is surprisingly higher than that of the two end compounds TaSe2 and TaS2. The evolution of superconducting critical temperature Tc(x) correlates with the full width at half maximum of the Bragg peaks and with the linear term of the high-temperature resistivity. The conductivity of the crystals near the middle of the alloy series is higher or similar than that of either one of the end members 2H-TaSe2 and/or 2H-TaS2. It is knownmore » that in these materials superconductivity is in close competition with charge density wave order. We interpret our experimental findings in a picture where disorder tilts this balance in favor of superconductivity by destroying the charge density wave order.« less

  5. Interlayer electron-phonon coupling in WSe2/hBN heterostructures

    NASA Astrophysics Data System (ADS)

    Jin, Chenhao; Kim, Jonghwan; Suh, Joonki; Shi, Zhiwen; Chen, Bin; Fan, Xi; Kam, Matthew; Watanabe, Kenji; Taniguchi, Takashi; Tongay, Sefaattin; Zettl, Alex; Wu, Junqiao; Wang, Feng

    2016-10-01

    Engineering layer-layer interactions provides a powerful way to realize novel and designable quantum phenomena in van der Waals heterostructures. Interlayer electron-electron interactions, for example, have enabled fascinating physics that is difficult to achieve in a single material, such as the Hofstadter's butterfly in graphene/boron nitride (hBN) heterostructures. In addition to electron-electron interactions, interlayer electron-phonon interactions allow for further control of the physical properties of van der Waals heterostructures. Here we report an interlayer electron-phonon interaction in WSe2/hBN heterostructures, where optically silent hBN phonons emerge in Raman spectra with strong intensities through resonant coupling to WSe2 electronic transitions. Excitation spectroscopy reveals the double-resonance nature of such enhancement, and identifies the two resonant states to be the A exciton transition of monolayer WSe2 and a new hybrid state present only in WSe2/hBN heterostructures. The observation of an interlayer electron-phonon interaction could open up new ways to engineer electrons and phonons for device applications.

  6. Mobility of core water in Bacillus subtilis spores by 2H NMR.

    PubMed

    Kaieda, Shuji; Setlow, Barbara; Setlow, Peter; Halle, Bertil

    2013-11-05

    Bacterial spores in a metabolically dormant state can survive long periods without nutrients under extreme environmental conditions. The molecular basis of spore dormancy is not well understood, but the distribution and physical state of water within the spore is thought to play an important role. Two scenarios have been proposed for the spore's core region, containing the DNA and most enzymes. In the gel scenario, the core is a structured macromolecular framework permeated by mobile water. In the glass scenario, the entire core, including the water, is an amorphous solid and the quenched molecular diffusion accounts for the spore's dormancy and thermal stability. Here, we use (2)H magnetic relaxation dispersion to selectively monitor water mobility in the core of Bacillus subtilis spores in the presence and absence of core Mn(2+) ions. We also report and analyze the solid-state (2)H NMR spectrum from these spores. Our NMR data clearly support the gel scenario with highly mobile core water (~25 ps average rotational correlation time). Furthermore, we find that the large depot of manganese in the core is nearly anhydrous, with merely 1.7% on average of the maximum sixfold water coordination. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Refinements in an Mg/MgH2/H2O-Based Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew; Huang, Yuhong

    2010-01-01

    Some refinements have been conceived for a proposed apparatus that would generate hydrogen (for use in a fuel cell) by means of chemical reactions among magnesium, magnesium hydride, and steam. The refinements lie in tailoring spatial and temporal distributions of steam and liquid water so as to obtain greater overall energy-storage or energy-generation efficiency than would otherwise be possible. A description of the prior art is prerequisite to a meaningful description of the present refinements. The hydrogen-generating apparatus in question is one of two versions of what was called the "advanced hydrogen generator" in "Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators" (NPO-43554), NASA Tech Briefs, Vol. 33, No. 1 (January 2009), page 52. To recapitulate: The apparatus would include a reactor vessel that would be initially charged with magnesium hydride. The apparatus would exploit two reactions: The endothermic decomposition reaction MgH2-->Mg + H2, which occurs at a temperature greater than or equal to 300 C, and The exothermic oxidation reaction MgH2 + H2O MgO + 2H2, which occurs at a temperature greater than or equal to 330 C.

  8. Volumetric Properties and Fluid Phase Equilibria of CO2 + H2O

    SciTech Connect

    Capobianco, Ryan; Gruszkiewicz, Miroslaw {Mirek} S; Wesolowski, David J; Cole, David R; Bodnar, Robert

    2013-01-01

    The need for accurate modeling of fluid-mineral processes over wide ranges of temperature, pressure and composition highlighted considerable uncertainties of available property data and equations of state, even for the CO2 + H2O binary system. In particular, the solubility, activity, and ionic dissociation equilibrium data for the CO2-rich phase, which are essential for understanding dissolution/precipitation, fluid-matrix reactions, and solute transport, are uncertain or missing. In this paper we report the results of a new experimental study of volumetric and phase equilibrium properties of CO2 + H2O, to be followed by measurements for bulk and confined multicomponent fluid mixtures. Mixture densities were measured by vibrating tube densimetry (VTD) over the entire composition range at T = 200 and 250 C and P = 20, 40, 60, and 80 MPa. Initial analysis of the mutual solubilities, determined from volumetric data, shows good agreement with earlier results for the aqueous phase, but finds that the data of Takenouchi and Kennedy (1964) significantly overestimated the solubility of water in supercritical CO2 (by a factor of more than two at 200 C). Resolving this well-known discrepancy will have a direct impact on the accuracy of predictive modeling of CO2 injection in geothermal reservoirs and geological carbon sequestration through improved equations of state, needed for calibration of predictive molecular-scale models and large-scale reactive transport simulations.

  9. Mobility of Core Water in Bacillus subtilis Spores by 2H NMR

    PubMed Central

    Kaieda, Shuji; Setlow, Barbara; Setlow, Peter; Halle, Bertil

    2013-01-01

    Bacterial spores in a metabolically dormant state can survive long periods without nutrients under extreme environmental conditions. The molecular basis of spore dormancy is not well understood, but the distribution and physical state of water within the spore is thought to play an important role. Two scenarios have been proposed for the spore’s core region, containing the DNA and most enzymes. In the gel scenario, the core is a structured macromolecular framework permeated by mobile water. In the glass scenario, the entire core, including the water, is an amorphous solid and the quenched molecular diffusion accounts for the spore’s dormancy and thermal stability. Here, we use 2H magnetic relaxation dispersion to selectively monitor water mobility in the core of Bacillus subtilis spores in the presence and absence of core Mn2+ ions. We also report and analyze the solid-state 2H NMR spectrum from these spores. Our NMR data clearly support the gel scenario with highly mobile core water (∼25 ps average rotational correlation time). Furthermore, we find that the large depot of manganese in the core is nearly anhydrous, with merely 1.7% on average of the maximum sixfold water coordination. PMID:24209846

  10. Low Temperature Flux Growth of 2H-SiC and Beta-Gallium Oxide

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Choa, Fow-Sen; Su, Ching-Hua; Arnold, Bradley; Kelly, Lisa

    2016-01-01

    We present brief overview of our study on the low temperature flux growth of two very important novel wide bandgap materials 2H-SiC and Beta-gallium oxide (Beta-Ga2O3). We have synthesized and grown 5 millimeter to 1 centimeter size single crystals of Beta-gallium oxide (Beta-Ga2O3). We used a flux and semi wet method to grow transparent good quality crystals. In the semi-wet method Ga2O3 was synthesized with starting gallium nitrate solution and urea as a nucleation agent. In the flux method we used tin and other metallic flux. This crystal was placed in an alumina crucible and temperature was raised above 1050 degrees Centigrade. After a time period of thirty hours, we observed prismatic and needle shaped crystals of gallium oxide. Scanning electron microscopic studies showed step growth morphology. Crystal was polished to measure the properties. Bandgap was measured 4.7electronvolts using the optical absorption curve. Another wide bandgap hexagonal 2H-SiC was grown by using Si-Al eutectic flux in the graphite crucible. We used slight AlN also as the impurity in the flux. The temperature was raised up to 1050 degrees Centigrade and slowly cooled to 850 degrees Centigrade. Preliminary characterization results of this material are also reported.

  11. Stability of Plasma Human Immunodeficiency Virus Load in VACUTAINER PPT Plasma Preparation Tubes during Overnight Shipment

    PubMed Central

    Holodniy, Mark; Rainen, Lynne; Herman, Steve; Yen-Lieberman, Belinda

    2000-01-01

    VACUTAINER PPT plasma preparation tubes were evaluated to determine the effects of various handling and shipping conditions on plasma human immunodeficiency virus (HIV) load determinations. Plasmas obtained from PPT tubes stored and shipped under nine different conditions were compared to conventional EDTA tube plasmas stored at −70°C within 2 h after phlebotomy. Compared to viral loads in frozen EDTA plasma, those in PPT tube plasma that was frozen immediately and either separated or shipped in situ were not significantly different. Viral loads in PPT tube plasma after storage for 6 h at either room temperature or 4°C, followed by shipment at ambient temperature or on wet or dry ice, were not significantly different from baseline viral loads in EDTA or PPT plasma. The results of this study indicate that the HIV load in PPT tube plasma is equivalent to that in standard EDTA plasma. Plasma viral load is not affected by storage or shipment temperature when plasma is collected in PPT tubes. Furthermore, plasmas can be shipped in spun PPT tubes, and the tubes provide a safer and more convenient method for sample collection and transport than regular EDTA tubes. PMID:10618109

  12. Stability of plasma human immunodeficiency virus load in VACUTAINER PPT plasma preparation tubes during overnight shipment.

    PubMed

    Holodniy, M; Rainen, L; Herman, S; Yen-Lieberman, B

    2000-01-01

    VACUTAINER PPT plasma preparation tubes were evaluated to determine the effects of various handling and shipping conditions on plasma human immunodeficiency virus (HIV) load determinations. Plasmas obtained from PPT tubes stored and shipped under nine different conditions were compared to conventional EDTA tube plasmas stored at -70 degrees C within 2 h after phlebotomy. Compared to viral loads in frozen EDTA plasma, those in PPT tube plasma that was frozen immediately and either separated or shipped in situ were not significantly different. Viral loads in PPT tube plasma after storage for 6 h at either room temperature or 4 degrees C, followed by shipment at ambient temperature or on wet or dry ice, were not significantly different from baseline viral loads in EDTA or PPT plasma. The results of this study indicate that the HIV load in PPT tube plasma is equivalent to that in standard EDTA plasma. Plasma viral load is not affected by storage or shipment temperature when plasma is collected in PPT tubes. Furthermore, plasmas can be shipped in spun PPT tubes, and the tubes provide a safer and more convenient method for sample collection and transport than regular EDTA tubes.

  13. Mining the Brassica oleracea genome for Q-type C2H2 zinc finger transcription factor proteins

    USDA-ARS?s Scientific Manuscript database

    Q-type zinc finger proteins have been studied in several plant species and have been associated with response to stress. A whole genome analysis of Arabidopsis identified 176 putative C2H2 transcription factors (TF). Q-type C2H2 TFs containing the QALGGH motif and are a subset of these. In Arabidops...

  14. A method for direct in vivo measurement of drug concentrations from a single 2H NMR spectrum.

    PubMed

    Evelhoch, J L; McCoy, C L; Giri, B P

    1989-03-01

    The use of 2H-labeled drugs provides a measure of drug concentration in situ directly from a single 2H NMR spectrum obtained with any antenna by correcting only for differential saturation effects. The limit of detection for a drug labeled with three equivalent deuterons is roughly 0.5 mM.

  15. 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution.

    PubMed

    Toh, Rou Jun; Sofer, Zdeněk; Luxa, Jan; Sedmidubský, David; Pumera, Martin

    2017-03-09

    Herein, we compare the bulk, 2H and 3R phases of two most prevalent TMD materials: MoS2 and WS2. The 3R phase outperforms its 2H phase counterpart in hydrogen evolution reaction catalysis and is even comparable with the exfoliated, 1T phase in the case of MoS2.

  16. The Davis-Beirut Reaction: a novel entry into 2H-indazoles and indazolones. Recent biological activity of indazoles.

    PubMed

    Haddadin, Makhluf J; Conrad, Wayne E; Kurth, Mark J

    2012-10-01

    A novel, easy method for the syntheses of richly diversified 2H-indazoles and indazolones, called the Davis-Beirut reaction, and other recent 2H-indazole synthetic routes are briefly reviewed. An update on the biological activity of indazoles is also surveyed.

  17. C2H2 type of zinc finger transcription factors in foxtail millet define response to abiotic stresses.

    PubMed

    Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Mishra, Awdhesh Kumar; Khandelwal, Rohit; Khan, Yusuf; Roy, Riti; Prasad, Manoj

    2014-09-01

    C2H2 type of zinc finger transcription factors (TFs) play crucial roles in plant stress response and hormone signal transduction. Hence considering its importance, genome-wide investigation and characterization of C2H2 zinc finger proteins were performed in Arabidopsis, rice and poplar but no such study was conducted in foxtail millet which is a C4 Panicoid model crop well known for its abiotic stress tolerance. The present study identified 124 C2H2-type zinc finger TFs in foxtail millet (SiC2H2) and physically mapped them onto the genome. The gene duplication analysis revealed that SiC2H2s primarily expanded in the genome through tandem duplication. The phylogenetic tree classified these TFs into five groups (I-V). Further, miRNAs targeting SiC2H2 transcripts in foxtail millet were identified. Heat map demonstrated differential and tissue-specific expression patterns of these SiC2H2 genes. Comparative physical mapping between foxtail millet SiC2H2 genes and its orthologs of sorghum, maize and rice revealed the evolutionary relationships of C2H2 type of zinc finger TFs. The duplication and divergence data provided novel insight into the evolutionary aspects of these TFs in foxtail millet and related grass species. Expression profiling of candidate SiC2H2 genes in response to salinity, dehydration and cold stress showed differential expression pattern of these genes at different time points of stresses.

  18. Low-Temperature Rate Coefficients of C2H with CH4 and CD4 from 154 to 359 K

    NASA Technical Reports Server (NTRS)

    Opansky, Brian J.; Leone, Stephen R.

    1996-01-01

    Rate coefficients for the reaction C2H + CH4 yields C2H2 + CH3 and C2H + CD4 yields C2HD + CD3 are measured over the temperature range 154-359 K using transient infrared laser absorption spectroscopy. Ethynyl radicals are produced by pulsed laser photolysis of C2H2 in a variable temperature flow cell, and a tunable color center laser probes the transient removal of C2H (Chi(exp 2) Sigma(+) (0,0,0)) in absorption. The rate coefficients for the reactions of C2H with CH4 and CD4 both show a positive temperature dependence over the range 154-359 K, which can be expressed as k(sub CH4) = (1.2 +/- 0.1) x 10(exp -11) exp((-491 +/- 12)/T) and k(sub CD4) = (8.7 +/- 1.8) x 10(exp -12) exp((-650 +/- 61)/T) cm(exp 3) molecule(exp -1) s(exp -1), respectively. The reaction of C2H + CH4 exhibits a significant kinetic isotope effect at 300 K of k(sub CH4)/k(sub CD4) = 2.5 +/- 0.2. Temperature dependent rate constants for C2H + C2H2 were also remeasured over an increased temperature range from 143 to 359 K and found to show a slight negative temperature dependence, which can be expressed as k(sub C2H2) = 8.6 x 10(exp -16) T(exp 1.8) exp((474 +/- 90)/T) cm(exp 3) molecule(exp -1) s(exp -1).

  19. Effect of Sterol Structure on Chain Ordering of an Unsaturated Phospholipid: A 2H-NMR Study of POPC/Sterol Membranes

    NASA Astrophysics Data System (ADS)

    Shaghaghi, Mehran; Thewalt, Jenifer; Zuckermann, Martin

    2012-10-01

    The physical properties of biological membranes are considerably altered by the presence of sterols. In particular, sterols help to maintain the integrity of the cell by adjusting the fluidity of the plasma membrane. Cholesterol is in addition an important component of lipid rafts which are hypothesized to compartmentalize the cell membrane surface thereby making it possible for certain proteins to function. Using 2H-NMR spectroscopy, we studied the effect of a series of different sterols on the chain ordering of POPC, an unsaturated phospholipid present in eukaryotic cell membranes. We were able to assigned specific roles to the structural differences between the sterols by comparing the manner in which they affect the average lipid chain conformation of POPC.

  20. 2H 2O quadrupolar splitting used to measure water exchange in erythrocytes

    NASA Astrophysics Data System (ADS)

    Kuchel, Philip W.; Naumann, Christoph

    2008-05-01

    The 2H NMR resonance from HDO (D = 2H) in human red blood cells (RBCs) suspended in gelatin that was held stretched in a special apparatus was distinct from the two signals that were symmetrically arranged on either side of it, which were assigned to extracellular HDO. The large extracellular splitting is due to the interaction of the electric quadrupole moment of the 2H nuclei with the electric field gradient tensor of the stretched, partially aligned gelatin. Lack of resolved splitting of the intracellular resonance indicated greatly diminished or absent ordering of the HDO inside RBCs. The separate resonances enabled the application of a saturation transfer method to estimate the rate constants of transmembrane exchange of water in RBCs. However both the theory and the practical applications needed modifications because even in the absence of RBCs the HDO resonances were maximally suppressed when the saturating radio-frequency radiation was applied exactly at the central frequency between the two resonances of the quadrupolar HDO doublet. More statistically robust estimates of the exchange rate constants were obtained by applying two-dimensional exchange spectroscopy (2D EXSY), with back-transformation analysis. A monotonic dependence of the estimates of the efflux rate constants on the mixing time, tmix, used in the 2D EXSY experiment were seen. Extrapolation to tmix = 0, gave an estimate of the efflux rate constant at 15 °C of 31.5 ± 2.2 s -1 while at 25 °C it was ˜50 s -1. These values are close to, but less than, those estimated by an NMR relaxation-enhancement method that uses Mn 2+ doping of the extracellular medium. The basis for this difference is thought to include the high viscosity of the extracellular gel. At the abstract level of quantum mechanics we have used the quadrupolar Hamiltonian to provide chemical shift separation between signals from spin populations across cell membranes; this is the first time, to our knowledge, that this has been

  1. Raftlike Mixtures of Sphingomyelin and Cholesterol Investigated by Solid-State 2H NMR Spectroscopy

    PubMed Central

    Bartels, Tim; Lankalapalli, Ravi S.; Bittman, Robert; Beyer, Klaus; Brown, Michael F.

    2009-01-01

    Sphingomyelin is a lipid that is abundant in the nervous systems of mammals, where it is associated with putative microdomains in cellular membranes and undergoes alterations due to aging or neurodegeneration. We investigated the effect of varying the concentration of cholesterol in binary and ternary mixtures with N-palmitoylsphingomyelin (PSM) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) using deuterium nuclear magnetic resonance (2H NMR) spectroscopy in both macroscopically aligned and unoriented multilamellar dispersions. In our experiments, we used PSM and POPC perdeuterated on the N-acyl and sn-1 acyl chains, respectively. By measuring solid-state 2H NMR spectra of the two lipids separately in mixtures with the same compositions as a function of cholesterol mole fraction and temperature, we obtained clear evidence for the coexistence of two liquid-crystalline domains in distinct regions of the phase diagram. According to our analysis of the first moments M1 and the observed 2H NMR spectra, one of the domains appears to be a liquid-ordered phase. We applied a mean-torque potential model as an additional tool to calculate the average hydrocarbon thickness, the area per lipid, and structural parameters such as chain extension and thermal expansion coefficient in order to further define the two coexisting phases. Our data imply that phase separation takes place in raftlike ternary PSM/POPC/cholesterol mixtures over a broad temperature range but vanishes at cholesterol concentrations equal to or greater than a mole fraction of 0.33. Cholesterol interacts preferentially with sphingomyelin only at smaller mole fractions, above which a homogeneous liquid-ordered phase is present. The reasons for these phase separation phenomena seem to be differences in the effects of cholesterol on the configurational order of the palmitoyl chains in PSM-d31 and POPC-d31 and a difference in the affinity of cholesterol for sphingomyelin observed at low temperatures

  2. 242-16H 2H EVAPORATOR POT SAMPLING FINAL REPORT

    SciTech Connect

    Krementz, D; William Cheng, W

    2008-06-11

    Due to the materials that are processed through 2H Evaporator, scale is constantly being deposited on the surfaces of the evaporator pot. In order to meet the requirements of the Nuclear Criticality Safety Analysis/Evaluation (NCSA/NCSE) for 2H Evaporator, inspections of the pot are performed to determine the extent of scaling. Once the volume of scale reaches a certain threshold, the pot must be chemically cleaned to remove the scale. Prior to cleaning the pot, samples of the scale are obtained to determine the concentration of uranium and plutonium and also to provide information to assist with pot cleaning. Savannah River National Laboratory (SRNL) was requested by Liquid Waste Organization (LWO) Engineering to obtain these samples from two locations within the evaporator. Past experience has proven the difficulty of successfully obtaining solids samples from the 2H Evaporator pot. To mitigate this risk, a total of four samplers were designed and fabricated to ensure that two samples could be obtained. Samples had previously been obtained from the cone surface directly below the vertical access riser using a custom scraping tool. This tool was fabricated and deployed successfully. A second scraper was designed to obtain sample from the nearby vertical thermowell and a third scraper was designed to obtain sample from the vertical pot wall. The newly developed scrapers both employed a pneumatically actuated elbow. The scrapers were designed to be easily attached/removed from the elbow assembly. These tools were fabricated and deployed successfully. A fourth tool was designed to obtain sample from the opposite side of the pot under the tube bundle. This tool was fabricated and tested, but the additional modifications required to make the tool field-ready could not be complete in time to meet the aggressive deployment schedule. Two samples were obtained near the pot entry location, one from the pot wall and the other from the evaporator feed pipe. Since a third

  3. An ignored but most favorable channel for NCO +C2H2 reaction

    NASA Astrophysics Data System (ADS)

    Xie, Hong-bin; Wang, Jian; Zhang, Shao-wen; Ding, Yi-hong; Sun, Chia-chung

    2006-09-01

    The NCO +C2H2 reaction has been considered as a prototype for understanding the chemical reactivity of the isocyanate radical towards unsaturated hydrocarbons in fuel-rich combustion. It has also been proposed to provide an effective route for formation of oxazole-containing compounds in organic synthesis, and might have potential applications in interstellar processes. Unfortunately, this reaction has met mechanistic controversy both between experiments and between experiments and theoretical calculations. In this paper, detailed theoretical investigations at the Becke's three parameter Lee-Yang-Parr-B3LYP /6-31G(d), B3LYP /6-311++G(d,p), quadratic configuration interaction with single and double excitations QCISD /6-31G(d), and Gaussian-3 levels are performed for the NCO +C2H2 reaction, covering various entrance, isomerization, and decomposition channels. Also, the highly cost-expensive coupled-cluster theory including single and double excitations and perturbative inclusion of triple excitations CCSD(T)/aug-cc-pVTZ single-point energy calculation is performed for the geometries obtained at the Becke's three parameter Lee-Yang-Parr-B3LYP /6-311++G(d,p) level. A previously ignored yet most favorable channel via a four-membered ring intermediate with allyl radical character is found. However, formation of P3 H +HCCNCO and the five-membered ring channel predicted by previous experimental and theoretical studies is kinetically much less competitive. With the new channel, master equation rate constant calculations over a wide range of temperatures (298-1500K) and pressures (10-560Torr) show that the predicted total rate constants exhibit a positive-temperature dependence and no distinct pressure dependence effect. This is in qualitative agreement with available experimental results. Under the experimental conditions, the predicted values are about 50% lower than the latest experimental results. Also, the branching ratio variations of the fragments P2 HCN +HCCO and P5

  4. Modeling Ice Giant Interiors Using Constraints on the H2-H2O Critical Curve

    NASA Astrophysics Data System (ADS)

    Bailey, E.; Stevenson, D. J.

    2015-12-01

    We present a range of models of Uranus and Neptune, taking into account recent experimental data (Bali, 2013) implying the location of the critical curve of the H2-H2O system at pressures up to 2.6 GPa. The models presented satisfy the observed total mass of each planet and the radius at the observed 1-bar pressure level. We assume the existence of three regions at different depths: an outer adiabatic envelope composed predominately of H2 and He, with a helium mass fraction 0.26, a water-rich layer including varied amounts of rock and hydrogen, and a chemically homogeneous rock core. Using measured rotation rates of Uranus and Neptune, and a density profile obtained for each model using constituent equations of state and the assumption of hydrostatic equilibrium, we calculate the gravitational harmonics J2 and J4 for comparison with observed values as an additional constraint. The H2-H2O critical curve provides information about the nature of the boundary between the outer, hydrogen-rich envelope and underlying water-rich layer. The extrapolated critical curve for hydrogen-water mixtures crosses the adiabat of the outer atmospheric shell in these models at two depths, implying a shallow outer region of limited miscibility, an intermediate region between ~90 and 98 percent of the total planet radius within which hydrogen and water can mix in all proportions, and another, deeper region of limited miscibility at less than ~90 percent of the total planet radius. The pressure and temperature of the gaseous adiabatic shell at the depth of the shallowest extent of the water-rich layer determines whether a gradual compositional transition or an ocean surface boundary may exist at depth in these planets. To satisfy the observed J2, the outer extent of the water-rich layer in these models must be located between approximately 80 and 85 percent of the total planet radius, within the deep region of limited H2-H2O miscibility, implying an ocean surface is possible within the

  5. Pseudomorphic 2A--> 2M--> 2H phase transitions in lanthanum strontium germanate electrolyte apatites.

    PubMed

    Pramana, Stevin S; White, T J; Schreyer, Martin K; Ferraris, Cristiano; Slater, Peter R; Orera, Alodia; Bastow, T J; Mangold, Stefan; Doyle, Stephen; Liu, Tao; Fajar, Andika; Srinivasan, Madhavi; Baikie, Tom

    2009-10-21

    Apatite-like materials are of considerable interest as potential solid oxide fuel cell electrolytes, although their structural vagaries continue to attract significant discussion. Understanding these features is crucial both to explain the oxide ion conduction process and to optimise it. As the composition of putative P6(3)/m apatites with ideal formula [A(I)(4)][A(II)(6)][(BO(4))(6)][X](2) is varied the [A(I)(4)(BO(4))(6)] framework will flex to better accommodate the [A(II)(6)X(2)] tunnel component through adjustment of the A(I)O(6) metaprism twist angle (varphi). The space group theory prescribes that framework adaptation during phase changes must lead to one of the maximal non-isomorphic subgroups of P6(3)/m (P2(1), P2(1)/m, P1[combining macron]). These adaptations correlate with oxygen ion conduction, and become crucial especially when the tunnels are filled by relatively small ions and/or partially occupied, and if interstitial oxygens are located in the framework. Detecting and completely describing these lower symmetry structures can be challenging, as it is difficult to precisely control apatite stoichiometry and small departures from the hexagonal metric may be near the limits of detection. Using a combination of diffraction and spectroscopic techniques it is shown that lanthanum strontium germanate oxide electrolytes crystallise as triclinic (A), monoclinic (M) and hexagonal (H) bi-layer pseudomorphs with the composition ranges: [La(10-x)Sr(x)][(GeO(4))(5+x/2)(GeO(5))(1-x/2)][O(2)] (0 2)][H(delta)] (2 2)][H(delta)] (2.96 2H, with the latter showing the highest conduction. The results show that small twist angles and high symmetry

  6. Understanding 2H/1H systematics of leaf wax n-alkanes in coastal plants at Stiffkey saltmarsh, Norfolk, UK

    NASA Astrophysics Data System (ADS)

    Eley, Yvette; Dawson, Lorna; Black, Stuart; Andrews, Julian; Pedentchouk, Nikolai

    2014-03-01

    Interpretation of sedimentary n-alkyl lipid δ2H data is complicated by a limited understanding of factors controlling interspecies variation in biomarker 2H/1H composition. To distinguish between the effects of interrelated environmental, physical and biochemical controls on the hydrogen isotope composition of n-alkyl lipids, we conducted linked δ2H analyses of soil water, xylem water, leaf water and n-alkanes from a range of C3 and C4 plants growing at a UK saltmarsh (i) across multiple sampling sites, (ii) throughout the 2012 growing season, and (iii) at different times of the day. Soil waters varied isotopically by up to 35‰ depending on marsh sub-environment, and exhibited site-specific seasonal shifts in δ2H up to a maximum of 31‰. Maximum interspecies variation in xylem water was 38‰, while leaf waters differed seasonally by a maximum of 29‰. Leaf wax n-alkane 2H/1H, however, consistently varied by over 100‰ throughout the 2012 growing season, resulting in an interspecies range in the ɛwax/leaf water values of -79‰ to -227‰. From the discrepancy in the magnitude of these isotopic differences, we conclude that mechanisms driving variation in the 2H/1H composition of leaf water, including (i) spatial changes in soil water 2H/1H, (ii) temporal changes in soil water 2H/1H, (iii) differences in xylem water 2H/1H, and (iv) differences in leaf water evaporative 2H-enrichment due to varied plant life forms, cannot explain the range of n-alkane δ2H values we observed. Results from this study suggests that accurate reconstructions of palaeoclimate regimes from sedimentary n-alkane δ2H require further research to constrain those biological mechanisms influencing species-specific differences in 2H/1H fractionation during lipid biosynthesis, in particular where plants have developed biochemical adaptations to water-stressed conditions. Understanding how these mechanisms interact with environmental conditions will be crucial to ensure accurate

  7. Kinetics of the WF 6 and Si 2H 6 surface reactions during tungsten atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Elam, J. W.; Nelson, C. E.; Grubbs, R. K.; George, S. M.

    2001-05-01

    The atomic layer deposition (ALD) of tungsten (W) films has been demonstrated using alternating exposures to tungsten hexafluoride (WF 6) and disilane (Si 2H 6). The present investigation explored the kinetics of the WF 6 and Si 2H 6 surface reactions during W ALD at 303-623 K using Auger electron spectroscopy techniques. The reaction of WF 6 with the Si 2H 6-saturated W surface proceeded to completion at 373-573 K. The WF 6 reaction displayed a reactive sticking coefficient of S=0.4 and required an exposure of 30 L (1 L=1×10 -6 Torr s) to achieve saturation at 573 K. The WF 6 exposures necessary to reach saturation increased with decreasing temperature. At surface temperatures <373 K, the WF 6 reaction did not consume all the silicon (Si) surface species remaining from the previous Si 2H 6 exposure. The reaction of Si 2H 6 with the WF 6-saturated W surface displayed three kinetic regimes. In the first region at low Si 2H 6 exposures⩽50 L, the Si 2H 6 reaction was independent of temperature and had a reactive sticking coefficient of S˜5×10 -2. In the second kinetic region at intermediate Si 2H 6 exposures of 50-300 L, the Si 2H 6 reaction showed an apparent saturation behavior with a Si thickness at saturation that increased with substrate temperature. At high Si 2H 6 exposures of 300-1×10 5 L, additional Si was deposited with an approximately logarithmic dependence on Si 2H 6 exposure. The Si 2H 6 reaction in this third kinetic region had an activation energy E=2.6 kcal/mol and the Si thickness deposited by a 1.6×10 5 L Si 2H 6 exposure increased with temperature from 3.0 Å at 303 K to 6.6 Å at 623 K. These kinetic results should help to explain W ALD growth rates observed at different reactant exposures and substrate temperatures.

  8. Reinvestigation of the elementary chemical kinetics of the reaction C2H5(•) + HBr (HI) → C2H6 + Br(•) (I(•)) in the range 293-623 K and its implication on the thermochemical parameters of C2H5(•) free radical.

    PubMed

    Leplat, N; Wokaun, A; Rossi, M J

    2013-11-14

    A reinvestigation of the absolute rate constants of the metathesis reactions C2H5• + HBr → C2H6 + Br• (R1) and C2H5• + HI → C2H6 + I• (R2) has been performed and led to the following Arrhenius expressions: k1 = 3.69(±0.95) × 10–11 exp(−10.62(±0.66)/RT), k2 = 1.20(±0.38) × 10–11 exp(−7.12(±1.059)/RT) in the temperature range 293–623 K (A/cm3 molecule–1 s–1, Ea/kJ mol–1). The study has been performed using a Knudsen reactor coupled to single-photon (VUV) photoionization mass spectrometer (SPIMS). Hydrocarbon free radicals have been generated externally before admission into the Knudsen reactor according to two different chemical schemes, enabling the generation of thermalized C2H5• free radicals. A minor correction to k1 and k2 for the wall loss of C2H5• (kw) has been applied throughout the temperature range. The obtained results are consistent regarding both the disappearance of C2H5• and the formation of closed shell products (n-C4H10, C2H4, C2H6), indicating that the chemical mechanism is largely understood and complete. Thermochemical parameters for C2H5• free radical resulting from the present kinetic measurements are discussed and point toward a slightly lower value for the standard heat of formation ΔfH298°(C2H5•) compared to some presently recommended values. On the basis of the present results and suitable data on the reverse reaction taken from the literature, we recommend ΔfH298°(C2H5•) = 117.3 ± 3.1 kJ/mol resulting from an average of “third law” evaluations using S298°(C2H5•) = 242.9 ± 4.6 J/K mol. The present work yields a standard heat of formation in satisfactory agreement with the results obtained by W. Tsang (ΔfH298°(C2H5•) = 119 ± 2 kJ/mol) despite using two very different experimental techniques.

  9. Fc epsilon RI-mediated association of 6-micron beads with RBL-2H3 mast cells results in exclusion of signaling proteins from the forming phagosome and abrogation of normal downstream signaling

    PubMed Central

    1996-01-01

    Cells of the mucosal mast cell line, RBL-2H3, are normally stimulated to degranulate after aggregation of high affinity receptors for IgE (Fc epsilon RI) by soluble cross-linking ligands. This cellular degranulation process requires sustained elevation of cytoplasmic Ca2+. In this study, we investigated the response of RBL-2H3 cells to 6- micron beads coated with IgE-specific ligands. These ligand-coated beads cause only small, transient Ca2+ responses, even though the same ligands added in soluble form cause larger, more sustained Ca2+ responses. The ligand-coated 6-micron beads also fail to stimulate significant degranulation of RBL-2H3 cells, whereas much larger ligand- coated Sepharose beads stimulate ample degranulation. Confocal fluorescence microscopy shows that the 6-micron beads (but not the Sepharose beads) are phagocytosed by RBL-2H3 cells and that, beginning with the initial stages of bead engulfment, there is exclusion of many plasma membrane components from the 6-micron bead/cell interface, including p53/56lyn and several other markers for detergent-resistant membrane domains, as well as an integrin and unliganded IgE-Fc epsilon RI. The fluorescent lipid probe DiIC16 is a marker for the membrane domains that is excluded from the cell/bead interface, whereas a structural analogue, fast DiI, which differs from DiIC16 by the presence of unsaturated acyl chains, is not substantially excluded from the interface. None of these components are excluded from the interface of RBL-2H3 cells and the large Sepharose beads. Additional confocal microscopy analysis indicates that microfilaments are involved in the exclusion of plasma membrane components from the cell/bead interface. These results suggest that initiation of phagocytosis diverts normal signaling pathways in a cytoskeleton-driven membrane clearance process that alters the physiological response of the cells. PMID:8830772

  10. RNF20-SNF2H Pathway of Chromatin Relaxation in DNA Double-Strand Break Repair.

    PubMed

    Kato, Akihiro; Komatsu, Kenshi

    2015-07-14

    Rapid progress in the study on the association of histone modifications with chromatin remodeling factors has broadened our understanding of chromatin dynamics in DNA transactions. In DNA double-strand break (DSB) repair, the well-known mark of histones is the phosphorylation of the H2A variant, H2AX, which has been used as a surrogate marker of DSBs. The ubiquitylation of histone H2B by RNF20 E3 ligase was recently found to be a DNA damage-induced histone modification. This modification is required for DSB repair and regulated by a distinctive pathway from that of histone H2AX phosphorylation. Moreover, the connection between H2B ubiquitylation and the chromatin remodeling activity of SNF2H has been elucidated. In this review, we summarize the current knowledge of RNF20-mediated processes and the molecular link to H2AX-mediated processes during DSB repair.

  11. Multiband Superconductivity in 2 H - NbSe2 Probed by Cryomagnetic STM Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fridman, Igor; Wei, J. Y. T.; Kloc, C.; Lukic, V.; Hu, Rongwei; Petrovic, C.

    2011-03-01

    Using a novel magnetic field geometry, we study multiband pairing in single crystals of superconducting 2 H - NbSe 2 under finite superfluid momentum. Spectroscopy and conductance imaging were performed with a scanning tunneling microscope (STM) at 300 mK and in a field of up to 9 T, applied in the ab -plane. We observed multiple spectral features that evolve systematically with field, and a two-sloped zero-bias conductance that dips anomalously at 0.7 T. Our analysis yields distinct evidence for multiple gaps coming from the various Fermi-surface sheets, and has possible implications on the origin of the coexisting charge density wave order. Work supported by NSERC, CFI/OIT, CIFAR, U.S. DOE and Brookhaven Science Associates (No. DE-Ac02-98CH10886).

  12. Pressure Induced Local Structure Distortions in Cu(pyz)F2(H2O)2

    SciTech Connect

    Musfeldt, J.L.; Carr, G.; Liu, Z.; Li, S.; Kang, C.L., Jena, P.; Manson, J.L.; Schlueter, J.A. Whangbo, M.H.

    2011-06-06

    We employed infrared spectroscopy along with complementary lattice dynamics and spin density calculations to investigate pressure-driven local structure distortions in the copper coordination polymer Cu(pyz)F{sub 2}(H{sub 2}O){sub 2}. Here, pyz is pyrazine. Our study reveals rich and fully reversible local lattice distortions that buckle the pyrazine ring, disrupt the bc-plane O-H {hor_ellipsis} F hydrogen-bonding network, and reinforce magnetic property switching. The resiliency of the soft organic ring is a major factor in the stability of this material. Interestingly, the collective character of the lattice vibrations masks direct information on the Cu-N and Cu-O linkages through the series of pressure-induced Jahn-Teller axis switching transitions, although Cu-F bond softening is clearly identified above 3 GPa. These findings illustrate the importance of combined bulk and local probe techniques for microscopic structure determination in complex materials.

  13. Pressure-Induced Local Structure Distortions in Cu(pyz)F(2)(H(2)O)(2)

    SciTech Connect

    J Musfeldt; Z Liu; S Li; J Kang; C Lee; P Jena; J Manson; J Schlueter; G Carr; M Whangbo

    2011-12-31

    We employed infrared spectroscopy along with complementary lattice dynamics and spin density calculations to investigate pressure-driven local structure distortions in the copper coordination polymer Cu(pyz)F{sub 2}(H{sub 2}O){sub 2}. Here, pyz is pyrazine. Our study reveals rich and fully reversible local lattice distortions that buckle the pyrazine ring, disrupt the bc-plane O-H {hor_ellipsis} F hydrogen-bonding network, and reinforce magnetic property switching. The resiliency of the soft organic ring is a major factor in the stability of this material. Interestingly, the collective character of the lattice vibrations masks direct information on the Cu-N and Cu-O linkages through the series of pressure-induced Jahn-Teller axis switching transitions, although Cu-F bond softening is clearly identified above 3 GPa. These findings illustrate the importance of combined bulk and local probe techniques for microscopic structure determination in complex materials.

  14. Insertion Compounds of 2H-TaS2·NH3

    PubMed Central

    Meyer, S. F.; Acrivos, J. V.; Geballe, T. H.

    1975-01-01

    A new method of intercalating metals into layer compounds has been developed using electrolytic generation from the salt solution in ammonia. The results suggest that metals that are soluble in ammonia will form a homogeneous metal-ammonia intercalate layer, NH3·Mx, when x is less than the limiting solubility of M in NH3. The superconducting transition temperature (Tc) was found to increase as the c-axis expansion [2δ = c(TaS2·NH3·Mx) - c(2H-TaS2)] decreased when M = lithium, sodium, and potassium. Of all the alkali metals, potassium gave the most stable compounds and the highest Tc, 4.7°K. Images PMID:16592219

  15. Rotational Spectroscopy of Vibrationally Excited N_2H^+ and N_2D^+ up to 2 Thz

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Pearson, John; Drouin, Brian; Crawford, Timothy J.; Daly, Adam M.; Elliott, Ben; Amano, Takayoshi

    2015-06-01

    Terahertz absorption spectroscopy was employed to extend the measurements on the pure rotational transitions of N_2H^+, N_2D^+ and their 15N-containing isotopologues in the ground state and first excited vibrational states for the three fundamental vibrational modes. In total 88 new pure rotational transitions were observed in the range of 0.7--2.0~THz. The observed transition frequencies were fit to experimental accuracy, and the improved molecular parameters were obtained. The new measurements and predictions will support the analysis of high-resolution astronomical observations made with facilities such as SOFIA and ALMA where laboratory rest frequencies with uncertainties of 1 MHz or smaller are required for proper analysis of velocity resolved astrophysical components.

  16. Ca2+/H+ exchange by acidic organelles regulates cell migration in vivo

    PubMed Central

    Melchionda, Manuela; Pittman, Jon K.

    2016-01-01

    Increasing evidence implicates Ca2+ in the control of cell migration. However, the underlying mechanisms are incompletely understood. Acidic Ca2+ stores are fast emerging as signaling centers. But how Ca2+ is taken up by these organelles in metazoans and the physiological relevance for migration is unclear. Here, we identify a vertebrate Ca2+/H+ exchanger (CAX) as part of a widespread family of homologues in animals. CAX is expressed in neural crest cells and required for their migration in vivo. It localizes to acidic organelles, tempers evoked Ca2+ signals, and regulates cell-matrix adhesion during migration. Our data provide new molecular insight into how Ca2+ is handled by acidic organelles and link this to migration, thereby underscoring the role of noncanonical Ca2+ stores in the control of Ca2+-dependent function. PMID:27002171

  17. Inhibition of Myeloperoxidase: Evaluation of 2H-Indazoles and 1H-Indazolones

    PubMed Central

    Roth, Aaron; Ott, Sean; Farber, Kelli M.; Palazzo, Teresa A.; Conrad, Wayne E.; Haddadin, Makhluf J.; Tantillo, Dean J.; Cross, Carroll E.; Eiserich, Jason P.; Kurth, Mark J.

    2014-01-01

    Myeloperoxidase (MPO) produces hypohalous acids as a key component of the innate immune response; however, release of these acids extracellularly results in inflammatory cell and tissue damage. The two-step, one-pot Davis-Beirut reaction was used to synthesize a library of 2H-indazoles and 1H-indazolones as putative inhibitors of MPO. A structure-activity relationship study was undertaken wherein compounds were evaluated utilizing taurine-chloramine and MPO-mediated H2O2 consumption assays. Docking studies as well as toxicophore and Lipinski analyses were performed. Fourteen compounds were found to be potent inhibitors with IC50 values <1 μM, suggesting these compounds could be considered as potential modulators of pro-oxidative tissue injury pertubated by the inflammatory MPO:H2O2:HOCl/HOBr system. PMID:25438766

  18. Spectrum sensing of trace C(2)H(2) detection in differential optical absorption spectroscopy technique.

    PubMed

    Chen, Xi; Dong, Xiaopeng

    2014-09-10

    An improved algorithm for trace C(2)H(2) detection is presented in this paper. The trace concentration is accurately calculated by focusing on the absorption spectrum from the frequency domain perspective. The advantage of the absorption spectroscopy frequency domain algorithm is its anti-interference capability. First, the influence of the background noise on the minimum detectable concentration is greatly reduced. Second, the time-consuming preprocess of spectra calibration in the differential optical absorption spectroscopy technique is skipped. Experimental results showed the detection limit of 50 ppm is achieved at a lightpath length of 0.2 m. This algorithm can be used in real-time spectrum analysis with high accuracy.

  19. Covariance Matrix Adapted Evolution Strategy Based Design of Mixed H2/H ∞ PID Controller

    NASA Astrophysics Data System (ADS)

    Willjuice Iruthayarajan, M.; Baskar, S.

    This paper discusses the application of the covariance matrix adapted evolution strategy (CMAES) technique to the design of the mixed H2/H ∞ PID controller. The optimal robust PID controller is designed by minimizing the weighted sum of integral squared error (ISE) and balanced robust performance criterion involving robust stability and disturbance attenuation performance subjected to robust stability and disturbance attenuation constraints. In CMAES algorithm, these constraints are effectively handled by penalty parameter-less scheme. In order to test the performance of CMAES algorithm, MIMO distillation column model is considered. For the purpose of comparison, reported intelligent genetic algorithm (IGA) method is used. The statistical performances of combined ISE and balanced robust performance criterion in ten independent simulation runs show that a performance of CMAES is better than IGA method. Robustness test conducted on the system also shows that the robust performance of CMAES designed controller is better than IGA based controller under model uncertainty and external disturbances.

  20. Ion-molecule reactions of hydrocarbon ions in C2H2 and HCN

    NASA Technical Reports Server (NTRS)

    Anicich, V. G.; Huntress, W. T., Jr.; Mcewan, M. J.

    1986-01-01

    Rate coefficients and product distributions have been determined for reaction of the ions C(x)H(y)+ (x ranging from 1 to 4, and y ranging from 0 to 4) with C2H2 and HCN. The measurements were obtained using the ion cyclotron resonance technique at 298 K. In several reactions an association product was observed at pressures as low as 0.000001 torr, and in these cases stabilization of the intermediate was assumed to be by photon emission. Most of the reaction studied yield ions having a larger carbon skeleton than the reactant ion. These reactions provide routes for building large organic and organonitrogen molecules in combustion zones of unsaturated hydrocarbon flames and in astrochemical environments.

  1. Antimycobacterial activity of novel hydrazide-hydrazone derivatives with 2H-chromene and coumarin scaffold.

    PubMed

    Angelova, Violina T; Valcheva, Violeta; Vassilev, Nikolay G; Buyukliev, Rosen; Momekov, Georgi; Dimitrov, Ivan; Saso, Luciano; Djukic, Mirjana; Shivachev, Boris

    2017-01-15

    This study reports the synthesis of new 2H-chromene or coumarin based acylhydrazones, which were evaluated for their in vitro antimycobacterial activity against reference strain Mycobacterium tuberculosis H37Rv and compared to the first-line antituberculosis drugs, isoniazid (INH) and ethambutol (EMB). The most active compounds 7m (MIC 0.13μM), 7o (MIC 0.15μM) and 7k (MIC 0.17μM) demonstrated antimycobacterial activity at submicromolar concentration level and remarkably minimal associated cytotoxicity in the human embryonic kidney cell line HEK-293T. Structure-activity relationship for this class of compounds has been established. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. High-resolution vibrational and rotational spectroscopy of CD2H+ in a cryogenic ion trap

    NASA Astrophysics Data System (ADS)

    Jusko, Pavol; Stoffels, Alexander; Thorwirth, Sven; Brünken, Sandra; Schlemmer, Stephan; Asvany, Oskar

    2017-02-01

    The low-lying rotational states (J = 0, … , 5) of CD2H+ have been probed by high-resolution ro-vibrational and pure rotational spectroscopy, applying several action spectroscopic methods in a cryogenic 22-pole ion trap. For this, the ν1 ro-vibrational band has been revisited, detecting 108 transitions, among which 36 are new. The use of a frequency comb system allowed us to measure the ro-vibrational transitions with high precision and accuracy, typically better than 1 MHz. The high precision has been confirmed by comparing equal combination differences in the ground and excited state. Moreover, precise predictions of pure rotational transitions were possible for the ground state. Twenty-five rotational transitions have been detected directly by a novel IR-mm-wave double resonance method, giving rise to highly accurate ground state spectroscopic parameters.

  3. The FORMAMIDE_2-H_2O Complex: Structure and Hydrogen Bond Cooperative Effects

    NASA Astrophysics Data System (ADS)

    Blanco, Susana; Pinacho, Pablo; Lopez, Juan Carlos

    2016-06-01

    The adduct formamide_2-H_20 has been detected in a supersonic expansion and its rotational spectra in the 5-13 GHz frequency region characterized by narrow-band molecular beam Fourier transform microwave spectroscopy (MB-FTMW). The spectrum shows the hyperfine structure due to the presence of two 14N-nuclei. This hyperfine structure has been analyzed and the determined quadrupole coupling constants together with the rotational constants have been a key for the identification of the adduct structure on the light of ab initio computations. The rotational parameters are consistent with the formation of a three body cycle thanks to the double proton acceptor/proton donor character of both formamide and water. The low value of the planar moment of inertia Pcc indicates that the heavy atom skeleton of the cluster is essentially planar. A detailed analysis of the results reveals the subtle effects of hydrogen bond cooperative effects in this system.

  4. Crystal structure of NH4[La(SO4)2(H2O)

    PubMed Central

    Benslimane, Meriem; Redjel, Yasmine Kheira; Merazig, Hocine; Daran, Jean-Claude

    2015-01-01

    The principal building units in the crystal structure of ammonium aqua­bis(sulfato)­lanthanate(III) are slightly distorted SO4 tetra­hedra, LaO9 polyhedra in the form of distorted tricapped trigonal prisms, and NH4 + ions. The La3+ cation is coordinated by eight O atoms from six different sulfate tetra­hedra, two of which are bidentate coordinating and four monodentate, as well as one O atom from a water mol­ecule; each sulfate anion bridges three La3+ cations. These bridging modes result in the formation of a three-dimensional anionic [La(SO4)2(H2O)]− framework that is stabilized by O—H⋯O hydrogen-bonding inter­actions. The disordered ammonium cations are situated in the cavities of this framework and are hydrogen-bonded to six surrounding O atoms. PMID:26090145

  5. Synthesis of (3) H, (2) H4 and (14) C-SCH 417690 (Vicriviroc).

    PubMed

    Hesk, D; Borges, S; Hendershot, S; Koharski, D; McNamara, P; Ren, S; Saluja, S; Truong, V; Voronin, K

    2016-05-15

    Vicriviroc or SCH 417690 is a potent and selective antagonist of the CCR5 receptor. CCR5 receptor antagonists have the potential for the treatment of HIV infections. Four distinct isotopically labelled forms of SCH 417690 were synthesized. Low specific activity [(3) H]SCH 417690 was prepared for a preliminary absorption, distribution, metabolism and excretion evaluation of the compound and [(14) C]SCH 417690 for more definitive absorption, distribution, metabolism and excretion work, including an absorption, metabolism and excretion study in man. In addition, high specific activity [(3) H]SCH 417690 was prepared for CCR5 receptor binding work and [(2) H4 ]SCH 417690 was prepared as an internal standard for a liquid chromatography-mass spectrometry bioanalytical method. The paper discusses the synthesis of four isotopically labelled forms of SCH 417690.

  6. Core-mass nonadiabatic corrections to molecules: H2, H2+, and isotopologues.

    PubMed

    Diniz, Leonardo G; Alijah, Alexander; Mohallem, José Rachid

    2012-10-28

    For high-precision calculations of rovibrational states of light molecules, it is essential to include non-adiabatic corrections. In the absence of crossings of potential energy surfaces, they can be incorporated in a single surface picture through coordinate-dependent vibrational and rotational reduced masses. We present a compact method for their evaluation and relate in particular the vibrational mass to a well defined nuclear core mass derived from a Mulliken analysis of the electronic density. For the rotational mass we propose a simple, but very effective parametrization. The use of these masses in the nuclear Schrödinger equation yields numerical data for the corrections of a much higher quality than can be obtained with optimized constant masses, typically better than 0.1 cm(-1). We demonstrate the method for H(2), H(2)(+), and singly deuterated isotopologues. Isotopic asymmetry does not present any particular difficulty. Generalization to polyatomic molecules is straightforward.

  7. Characterization Results for the March 2016 H-Tank Farm 2H Evaporator Overhead Samples

    SciTech Connect

    Nicholson, J. C.

    2016-09-28

    This report contains the radioanalytical results of the 2H evaporator overhead sample received at SRNL on March 16, 2016. Specifically, concentrations of 137Cs, 90Sr, and 129I are reported and compared to the corresponding Waste Acceptance Criteria (WAC) limits of the Effluent Treatment Project (ETP) Waste Water Collection Tank (WWCT) (rev. 6). All of the radionuclide concentrations in the sample were found to be in compliance with the ETP WAC limits. Revision 1 of this document corrects the cumulative beta count initially reported for 90Sr content with the sole 90Sr count obtained after recharacterization of the sample. The initial data was found to be a cumulative beta count rather than the 90Sr count requested.

  8. Direct N2H4/H2O2 Fuel Cells Powered by Nanoporous Gold Leaves

    PubMed Central

    Yan, Xiuling; Meng, Fanhui; Xie, Yun; Liu, Jianguo; Ding, Yi

    2012-01-01

    Dealloyed nanoporous gold leaves (NPGLs) are found to exhibit high electrocatalytic properties toward both hydrazine (N2H4) oxidation and hydrogen peroxide (H2O2) reduction. This observation allows the implementation of a direct hydrazine-hydrogen peroxide fuel cell (DHHPFC) based on these novel porous membrane catalysts. The effects of fuel and oxidizer flow rate, concentration and cell temperature on the performance of DHHPFC are systematically investigated. With a loading of ~0.1 mg cm−2 Au on each side, an open circuit voltage (OCV) of 1.2 V is obtained at 80°C with a maximum power density 195 mW cm−2, which is 22 times higher than that of commercial Pt/C electrocatalyst at the same noble metal loading. NPGLs thus hold great potential as effective and stable electrocatalysts for DHHPFCs. PMID:23230507

  9. Ca2+/H+ exchange by acidic organelles regulates cell migration in vivo.

    PubMed

    Melchionda, Manuela; Pittman, Jon K; Mayor, Roberto; Patel, Sandip

    2016-03-28

    Increasing evidence implicates Ca(2+) in the control of cell migration. However, the underlying mechanisms are incompletely understood. Acidic Ca(2+) stores are fast emerging as signaling centers. But how Ca(2+) is taken up by these organelles in metazoans and the physiological relevance for migration is unclear. Here, we identify a vertebrate Ca(2+)/H(+)exchanger (CAX) as part of a widespread family of homologues in animals. CAX is expressed in neural crest cells and required for their migration in vivo. It localizes to acidic organelles, tempers evoked Ca(2+) signals, and regulates cell-matrix adhesion during migration. Our data provide new molecular insight into how Ca(2+) is handled by acidic organelles and link this to migration, thereby underscoring the role of noncanonical Ca(2+) stores in the control of Ca(2+)-dependent function. © 2016 Melchionda et al.

  10. Recent Advances in the Synthesis of SCF2 H- and SCF2 FG-Containing Molecules.

    PubMed

    Xiong, Heng-Ying; Pannecoucke, Xavier; Besset, Tatiana

    2016-11-14

    In recent years, much interest has been paid to difluoromethylthiolated molecules as the "SCF2 " moiety is a key motif in drug and agrochemical research. Consequently, the development of versatile strategies for the selective synthesis of SCF2 H- and SCF2 FG-containing molecules (FG=functional group) has attracted a lot of attention and inspired the scientific community to design new tools. This Minireview highlights the major progress made in this field. Particularly, methodologies developed for the difluoromethylation of sulfur-containing molecules and the direct construction of C-SCF2 bonds in various classes of compounds are showcased and discussed. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Induced Polarization in the 2H(gamma,n)p Reaction at Low Energy

    SciTech Connect

    Rocco Schiavilla

    2005-05-01

    The induced polarization, P{prime}{sub y}, of the neutron in the deuteron photo-disintegration from threshold up to 30 MeV is calculated using a variety of different, latest-generation potentials--Argonne v{sub 18}, Bonn 2000, and Nijmegen I--and a realistic model for the nuclear electromagnetic current operator, including one- and two-body terms. The model dependence of the theoretical predictions is found to be very small. These predictions are systematically larger in magnitude than the measured P{prime}{sub y} values, and corroborate the conclusions of an earlier, and much older, study. There is considerable scatter in the available experimental data. New and more accurate measurements of the induced polarization in the {sup 2}H({gamma},{rvec n}){sup 1}H reaction are needed in order to establish unequivocally whether there is a discrepancy between theory and experiment.

  12. Effect of 2H and 18O water isotopes in kinesin-1 gliding assay

    PubMed Central

    Herskowitz, Lawrence J.; Koch, Steven J.

    2014-01-01

    We show for the first time the effects of heavy-hydrogen water (2H2O) and heavy-oxygen water (H218O) on the gliding speed of microtubules on kinesin-1 coated surfaces. Increased fractions of isotopic waters used in the motility solution decreased the gliding speed of microtubules by a maximum of 21% for heavy-hydrogen and 5% for heavy-oxygen water. We also show that gliding microtubule speed returns to its original speed after being treated with heavy-hydrogen water. We discuss possible interpretations of these results and the importance for future studies of water effects on kinesin and microtubules. We also discuss the implication for using heavy waters in biomolecular devices incorporating molecular motors. PMID:24711961

  13. Understanding H2- H2 interactions in Metal Organic Frameworks (MOFs) with unsaturated metal centers

    NASA Astrophysics Data System (ADS)

    Nijem, Nour; Veyan, Jean F.; Kong, Lingzhu; Zhao, Yonggang; Li, Jing; Langreth, David; Chabal, Yves J.

    2011-03-01

    Unsaturated Metal Organic Frameworks (MOFs) are particularly interesting due to their high H2 uptakes with relatively large isosteric heats of adsorption (Qst > 8 kJ / mol) . ThisworkexploresH 2 - H 2 interactionsbetweenadsorbedH 2 atthedifferentsitesinMOF - 74 (M 2 (dhtp) , dhtp = 2 , 5 - dihydroxyterephthalate) andcombinesIRspectroscopywithvdW - DFTcalculations . TheadsorptionsitesinMOF - 74 arefromhighesttolowestbindingenergiesthemetal , oxygen , benzeneandpore - centersites . ThefrequencyofadsorbedH 2 atthemetalsitesuffersanadditional ~ - 30 cm -1 redshift (forMgandZn) and ~ - 84 cm -1 (forCo) whentheneighboringoxygensiteisoccupied . ThedipolemomentofadsorbedH 2 isalsoaffected . TheseinteractionsextendtothebenzenesitesforMOF - 74 - Co . AdecreaseindipolemomentofH 2 adsorbedatthemetalsiteisobservedwiththepartialoccupationofthebenzenesites . However , thecompleteoccupationofthebenzenesitesinducesanadditional ~ - 10 cm -1 red shift. DOE Grant No. DE-FG02-08ER46491.

  14. a Rotational Study of 2H-3H-PERFLUOROPENTANE and its Isotopologues

    NASA Astrophysics Data System (ADS)

    Duong, Chinh H.; Obenchain, Daniel A.; Novick, Stewart E.; Cooke, S. A.

    2012-06-01

    The chirped pulse Fourier transform microwave spectrum of 2H-3H-perfluoropentane has been observed and assigned. Given a racemic mixture sample of the four available structural isomers, only the (S,S) structure was observed in the broadband spectrum. Attempts at observing the 13C isotopologues on a Balle-Flygare cavity type spectrometer and their assignments will be discussed, along with an examination of the theoretical predictions for the structure and rotational constants of the molecule against their experimental values. Structural results of the monomer will also be compared with those of the helical structure of C2 perfluoropentane. Joseph A. Fournier, Robert K. Bohn, John A. Montgomery Jr., Masao Onda. J. Phys. Chem. 114 (1118), 2010.

  15. Inhibition of myeloperoxidase: evaluation of 2H-indazoles and 1H-indazolones.

    PubMed

    Roth, Aaron; Ott, Sean; Farber, Kelli M; Palazzo, Teresa A; Conrad, Wayne E; Haddadin, Makhluf J; Tantillo, Dean J; Cross, Carroll E; Eiserich, Jason P; Kurth, Mark J

    2014-11-15

    Myeloperoxidase (MPO) produces hypohalous acids as a key component of the innate immune response; however, release of these acids extracellularly results in inflammatory cell and tissue damage. The two-step, one-pot Davis-Beirut reaction was used to synthesize a library of 2H-indazoles and 1H-indazolones as putative inhibitors of MPO. A structure-activity relationship study was undertaken wherein compounds were evaluated utilizing taurine-chloramine and MPO-mediated H2O2 consumption assays. Docking studies as well as toxicophore and Lipinski analyses were performed. Fourteen compounds were found to be potent inhibitors with IC50 values <1μM, suggesting these compounds could be considered as potential modulators of pro-oxidative tissue injury pertubated by the inflammatory MPO/H2O2/HOCl/HOBr system.

  16. AlH3 and Al2H6: Magic Clusters with Unmagical Properties

    NASA Astrophysics Data System (ADS)

    Rao, B. K.; Jena, P.; Burkart, S.; Ganteför, G.; Seifert, G.

    2001-01-01

    Enhanced stability, low electron affinity, and high ionization potential are the hallmarks of a ``magic'' cluster. With an electron affinity of 0.28 eV, ionization potential of 11.43 eV, and a large binding energy, AlH3 satisfies these criteria. However, unlike other magic clusters that interact only weakly with each other, two AlH3 clusters bind to each other with an energy of 1.54 eV. The resulting Al2H6, while also a magic cluster in its own right, possesses the most unusual property that the difference between its adiabatic and vertical detachment energy is about 2 eV-the largest of any known cluster. These results, based on density functional theory, are verified experimentally through photodetachment spectroscopy.

  17. Competition between charge exchange and chemical reaction - The D2/+/ + H system

    NASA Technical Reports Server (NTRS)

    Preston, R. K.; Cross, R. J., Jr.

    1973-01-01

    Study of the special features of molecular charge exchange and its competition with chemical reaction in the case of the D2(+) + H system. The trajectory surface hopping (TSH) model proposed by Tully and Preston (1971) is used to study this competition for a number of reactions involving the above system. The diatomics-in-molecules zero-overlap approximation is used to calculate the three adiabatic surfaces - one triplet and two singlet - which are needed to describe this system. One of the significant results of this study is that the chemical reaction and charge exchange are strongly coupled. It is also found that the number of trajectories passing into the chemical regions of the three surfaces depends very strongly on the surface crossings.-

  18. The rate of the reaction between CN and C2H2 at interstellar temperatures.

    PubMed

    Woon, D E; Herbst, E

    1997-03-01

    The rate coefficient for the important interstellar reaction between CN and C2H2 has been calculated as a function of temperature between 10 and 300 K. The potential surface for this reaction has been determined through ab initio quantum chemical techniques; the potential exhibits no barrier in the entrance channel but does show a small exit channel barrier, which lies below the energy of reactants. Phase-space calculations for the reaction dynamics, which take the exit channel barrier into account, show the same unusual temperature dependence as determined by experiment, in which the rate coefficient at first increases as the temperature is reduced below room temperature and then starts to decrease as the temperature drops below 50-100 K. The agreement between theory and experiment provides strong confirmation that the reaction occurs appreciably at cool interstellar temperatures.

  19. Equilibrium concentrations of N2H4 and its decomposition products at elevated temperatures and pressures

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Fairchild, H. N., III; Martin, G. L.

    1973-01-01

    Liquid hydrazine is considered as a convenient source of hydrogen rather than just as a rocket fuel. For such purposes, the hydrogen is usually obtained by passing the hydrazine through a heated catalytic bed. One convenient measure of the effectiveness of a catalytic decomposition device as a whole is to compare the quantity of hydrogen produced with the equilibrium concentration of the gaseous species N2H4, NH3, N3, and H2 which would exist at the temperature and pressure found in various parts of the device. Calculations of the concentrations were carried out and are reported here. Following presentation of the results in both tabular and graphical forms is a comparison between the computed equilibrium concentrations and available experimental data.

  20. The thermal decomposition of C{sub 2}H{sub 5}I

    SciTech Connect

    Kumaran, S.S.; Su, M.C.; Lim, K.P.; Michael, J.V.

    1996-06-01

    The high temperature thermal dissociation of C{sub 2}H{sub 5}I has been characterized in this study. Kinetics and overall yield experiments were performed over the temperature range, 946--2,046 K, using the atomic resonance absorption spectrometric technique (ARAS) for the temporal detection of both product H- and I-atoms behind reflected shock waves. The C{sub 2}H{sub 5}I decomposition proceeds by both C-I fission and HI elimination. Rate constants for the C-I fission process, measured over the temperature and density ranges, 946--1,303 K and 0.82--4.4 {times} 10{sup 18} cm{sup {minus}3}, respectively, can be well represented to within {+-}37% by the first-order expression: k = 6.34 {times} 10{sup 9} exp({minus}15,894 K/T) s{sup {minus}1}. Overall yield data for atomic product gave a branching ratio for C-I fission of (0.87 {+-} 0.11) suggesting that 13% of the reaction proceeds through molecular HI elimination. This conclusion is consistent with earlier studies that showed C-I fission to be the dominant dissociation channel. The temperature and pressure dependences of the dissociation rate constants and the yield data have been theoretically described using three formulations of unimolecular rate theory. The best description was obtained with a full Master`s equation analysis. However, all three calculations confirm that the HI elimination pathway is lower lying than the C-I fission process by {approximately} 3 kcal/mole.

  1. C2H+H2CO: A new route for formaldehyde removal

    NASA Astrophysics Data System (ADS)

    Dong, Hao; Ding, Yi-hong; Sun, Chia-chung

    2005-05-01

    The title unknown reaction is theoretically studied at various levels to probe the interaction mechanism between the ethynyl radical (HCC•) and formaldehyde (H2CO). The most feasible pathway is a barrier-free direct H-abstraction process leading to acetylene and formyl radical (C2H2+HCO) via a weakly bound complex, and then the product can take secondary dissociation to the final product C2H2+CO+H. The C-addition channel leading to propynal plus H-atom (HCCCHO+H) has the barrier of only 3.6, 2.9, and 2.1kcal/mol at the CCSD(T )/6-311+G(3df,2p)//MP2/6-311G(d,p)+ZPVE, CCSD(T )/6-311+G(3df,2p)//QCISD/6-311G(d,p)+ZPVE, and G3//MP2 levels, respectively [CCSD(T)—coupled cluster with single, double, and triple excitations; ZPVE—zero-point vibrational energy; QCISD—quadratic configuration interaction with single and double excitations; G3//MP2—Gaussian-3 based on Moller-Plesset geometry]. The O addition also leading to propynal plus H atom needs to overcome a higher barrier of 5.3, 8.7, and 3.0kcal/mol at the three corresponding levels. The title no-barrier reaction presents a new efficient route to remove the pollutant H2CO, and should be included in the combustion models of hydrocarbons. It may also represent the fastest radical-H2CO reaction among the available theoretical data. Moreover, it could play an important role in the interstellar chemistry where the zero- or minute-barrier reactions are generally favored. Discussions are also made on the possible formation of the intriguing propynal in space via the title reaction on ice surface.

  2. Morphology-defined interaction of copper phthalocyanine with O2/H2O

    DOE PAGES

    Muckley, Eric S.; Miller, Nicholas; Jacobs, Christopher B.; ...

    2016-11-01

    Copper phthalocyanine (CuPc) is an important hole transport layer for organic photovoltaics (OPVs), but its interaction with ambient gas/vapor may lead to changes in electronic properties of the material which subsequently limits the lifetime of OPV devices. CuPc films of thickness 25 nm and 100 nm were grown by thermal sublimation at 25°C, 150°C, and 250°C in order to vary morphology. Using a source-measure unit and a quartz crystal microbalance (QCM), we measured changes in electrical resistance and film mass in situ during exposure to controlled pulses of O2 and H2O vapor. Mass loading by O2 was enhanced by amore » factor of 5 in films deposited at 250 C, possibly due to the ~200° C CuPc -> transition which allows higher O2 mobility between stacked molecules. While gas/vapor sorption occurred over timescales of < 10 minutes, resistance change occurred over timescales > 1 hour, suggesting that mass change occurs by rapid adsorption at active surface sites, whereas resistive response is dominated by slow diffusion of adsorbates into the film bulk. Resistive response generally increases with film deposition temperature due to increased porosity associated with larger crystalline domains. The 25 nm thick films exhibit higher resistive response than 100 nm thick films after an hour of O2/H2O exposure due to the smaller analyte diffusion length required for reaching the film/electrode interface. We found evidence of decoupling of CuPc from the gold-coated QCM crystal due to preferential adsorption of O2/H2O molecules on gold, which is consistent with findings of other studies.« less

  3. Ontogeny of O2 and CO2//H+ chemosensitivity in adrenal chromaffin cells: role of innervation.

    PubMed

    Salman, Shaima; Buttigieg, Josef; Nurse, Colin A

    2014-03-01

    The adrenal medulla plays a key role in the physiological responses of developing and mature mammals by releasing catecholamines (CAT) during stress. In rodents and humans, the innervation of CAT-producing, adrenomedullary chromaffin cells (AMCs) is immature or absent during early postnatal life, when these cells possess 'direct' hypoxia- and CO2/H(+)-chemosensing mechanisms. During asphyxial stressors at birth, these mechanisms contribute to a CAT surge that is critical for adaptation to extra-uterine life. These direct chemosensing mechanisms regress postnatally, in parallel with maturation of splanchnic innervation. Here, we review the evidence that neurotransmitters released from the splanchnic nerve during innervation activate signaling cascades that ultimately cause regression of direct AMC chemosensitivity to hypoxia and hypercapnia. In particular, we consider the roles of cholinergic and opioid receptor signaling, given that splanchnic nerves release acetylcholine and opiate peptides onto their respective postsynaptic nicotinic and opioid receptors on AMCs. Recent in vivo and in vitro studies in the rat suggest that interactions involving α7 nicotinic acetylcholine receptors (nAChRs), the hypoxia inducible factor (HIF)-2α signaling pathway, protein kinases and ATP-sensitive K(+) (KATP) channels contribute to the selective suppression of hypoxic chemosensitivity. In contrast, interactions involving μ- and/or δ-opiod receptor signaling pathways contribute to the suppression of both hypoxic and hypercapnic chemosensitivity, via regulation of the expression of KATP channels and carbonic anhydrase (CA I and II), respectively. These data suggest that the ontogeny of O2 and CO2/H(+) chemosensitivity in chromaffin cells can be regulated by the tonic release of presynaptic neurotransmitters.

  4. Anthelmintic effect of 2H-chromen-2-one isolated from Gliricidia sepium against Cooperia punctata.

    PubMed

    von Son-de Fernex, Elke; Alonso-Díaz, Miguel Ángel; Valles-de la Mora, Braulio; Mendoza-de Gives, Pedro; González-Cortazar, Manases; Zamilpa, Alejandro

    2017-07-01

    Gliricidia sepium is a tropical legume with known anthelmintic-like properties. The aim of this study was to: (1) perform a bio-guided fractionation of an acetonic extract of G. sepium leaves using the egg hatch assay (EHA); (2) elucidate the anthelmintic (AH)-like phytochemical using nuclear magnetic resonance (NMR); and (3) assess the ultrastructural damage of the Cooperia punctata treated eggs. The anthelmintic activity of G. sepium was traced from an acetonic extract using the EHA. Phytochemicals were isolated through silica gel columns and elucidated through spectroscopic measurements (1H and 13C). Final fraction was evaluated with EHA at decreasing concentrations of: 1.100; 0.500, 0.250, 0.125, 0.060, 0.001 and 0.00001 mg mL-1. Egg hatching inhibition was calculated using the formula: 100*(1-HT/HC). The maximal half of effective concentration (EC50) was calculated with GraphPad. Bio-guided isolation procedures lead to the elucidation of 2H-chromen-2-one, which inhibited both hatching and embryo development of C. punctata (EC50 of 0.024 ± 0.082 mg mL-1) (P < 0.05). Scanning and Transmission Electron Microscopy (SEM and TEM) revealed electrodensity alterations and fractures in the eggshell layers. After toxicity evaluations and in vivo assessment, 2H-chromen-2-one can be suggested as a novel AH-phytochemical for reducing larval density in pastures and worm burdens inside the host. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Molecular dynamics of spider dragline silk fiber investigated by 2H MAS NMR.

    PubMed

    Shi, Xiangyan; Holland, Gregory P; Yarger, Jeffery L

    2015-03-09

    The molecular dynamics of the proteins that comprise spider dragline silk were investigated with solid-state (2)H magic angle spinning (MAS) NMR line shape and spin-lattice relaxation time (T1) analysis. The experiments were performed on (2)H/(13)C/(15)N-enriched N. clavipes dragline silk fibers. The silk protein side-chain and backbone dynamics were probed for Ala-rich regions (β-sheet and 31-helical domains) in both native (dry) and supercontracted (wet) spider silk. In native (dry) silk fibers, the side chains in all Ala containing regions undergo similar fast methyl rotations (>10(9) s(-1)), while the backbone remains essentially static (<10(2) s(-1)). When the silk is wet and supercontracted, the presence of water initiates fast side-chain and backbone motions for a fraction of the β-sheet region and 31-helicies. β-Sheet subregion 1 ascribed to the poly(Ala) core exhibits slower dynamics, while β-sheet subregion 2 present in the interfacial, primarily poly(Gly-Ala) region that links the β-sheets to disordered 31-helical motifs, exhibits faster motions when the silk is supercontracted. Particularly notable is the observation of microsecond backbone motions for β-sheet subregion 2 and 31-helicies. It is proposed that these microsecond backbone motions lead to hydrogen-bond disruption in β-sheet subregion 2 and helps to explain the decrease in silk stiffness when the silk is wet and supercontracted. In addition, water mobilizes and softens 31-helical motifs, contributing to the increased extensibility observed when the silk is in a supercontracted state. The present study provides critical insight into the supercontraction mechanism and corresponding changes in mechanical properties observed for spider dragline silks.

  6. Direct Detection of C_2H_2 in Air and Human Breath by Cw-Crds

    NASA Astrophysics Data System (ADS)

    Schmidt, Florian M.; Vaittinen, Olavi; Metsälä, Markus; Halonen, Lauri

    2010-06-01

    Continuous wave cavity ring-down spectroscopy (cw-CRDS) is an established cavity-enhanced absorption technique that can provide the necessary sensitivity, selectivity and fast acquisition time for many applications involving the detection of trace species. We present a simple but highly sensitive cw-CRDS spectrometer based on an external cavity diode laser operating in the near-infrared region. This instrument allows us to directly detect acetylene (C_2H_2) mixing ratios in air with a detection limit of 120 parts per trillion by volume (pptv) measuring on a C_2H_2 absorption line at 6565.620 cm-1. Acetylene is a combustion product that is routinely used in environmental monitoring as a marker for anthropogenic emissions. In a recent work, the spectrometer was employed to measure the level of acetylene in indoor and outdoor air in Helsinki. Continuous flow measurements with high time resolution (one minute) revealed strong fluctuations in the acetylene mixing ratio in outdoor air during daytime. Due to its non-invasive nature and fast response time, the analysis of exhaled breath for medical diagnostics is an excellent and straightforward alternative to methods using urine or blood samples. In an ongoing study, the cw-CRDS instrument is used to establish the baseline level of acetylene in the breath of the healthy population. An elevated amount of acetylene in breath could indicate exposure to combustion exhausts or other volatile organic compound (VOC) rich sources. The latest results of this investigation will be presented. F. M. Schmidt, O. Vaittinen, M. Metsälä, P. Kraus and L. Halonen, submitted for publication in Appl. Phys. B.

  7. The photodissociation dynamics of the ethyl radical, C2H5, investigated by velocity map imaging

    NASA Astrophysics Data System (ADS)

    Steinbauer, Michael; Giegerich, Jens; Fischer, Kathrin H.; Fischer, Ingo

    2012-07-01

    The photodissociation dynamics of the ethyl radical C2H5 has been investigated by velocity map imaging. Ethyl was produced by flash pyrolysis from n-propyl nitrite and excited to the à 2A' (3s) Rydberg state around 250 nm. The energetically most favorable reaction channel in this wavelength region is dissociation to C2H4 (ethene) + H. The H-atom dissociation products were ionized in a [1+1'] process via the 1s-2p transition. The observed translational energy distribution is bimodal: A contribution of slow H-atoms with an isotropic angular distribution peaks at low translational energies. An expectation value for the fraction of excess energy released into translation of ⟨fT⟩ = 0.19 is derived from the data, typical for statistical dissociation reactions. In addition, a fast H-atom channel is observed, peaking around 1.8 eV. The latter shows an anisotropic distribution with β = 0.45. It originates from a direct dissociation process within less than a rotational period. Time-delay scans with varying extraction voltages indicate the presence of two rates for the formation of H-atoms. One rate with a sub-nanosecond time constant is associated with H-atoms with large translational energy; a second one with a time constant on the order of 100 ns is associated with H-atoms formed with low translational energy. The data confirm and extend those from previous experiments and remove some inconsistencies. Possible mechanisms for the dissociation are discussed in light of the new results as well as previous ones.

  8. The Microwave Spectrum of the HCOOCD_2H Species of Methyl Formate

    NASA Astrophysics Data System (ADS)

    Coudert, L. H.; Huet, T. R.; Margulès, L.; Motiyenko, R.; Mollendal, H.

    2010-06-01

    Methyl formate is a non-rigid molecule displaying internal rotation of its methyl group. The microwave spectra of its normal and mono deuterated HCOOCH_2D species have already been studied and values for the tunneling splitting due to the internal rotation were determined. The normal species displays a 405 MHz A/E splitting, the mono deuterated one, a smaller 84.76 MHz A'/A'' splitting. For the bideuterated species HCOOCD_2H, the value of this splitting is not known as its microwave spectrum has not been studied yet. In this paper experimental and theoretical investigations of the microwave spectrum of HCOOCD_2H are presented. More than 9000 transitions were measured with a submillimeter wave spectrometer. About 20 lines were recorded with a molecular beam spectrometer. Like for the mono deuterated species,^c depending on the location of the only hydrogen atom of the methyl group, two configurations arise. The C_s-symmetry H-in plane configuration displays a rigid rotator spectrum and its data was analyzed using a Watson-type Hamiltonian. The C_1-symmetry H-out of plane configuration undergoes the large amplitude internal rotation. Its data was analyzed using the so called water dimer formalism which allowed us to accurately reproduce the observed frequencies and to obtain the value of the tunneling splitting as well as the parameters involved in its rotational dependence. The hyperfine structure due to quadrupole coupling at the two deuterium atoms was also analyzed. Unexpectedly, for the H-out of plane configuration, the observed hyperfine patterns are neither those expected for two equivalent deuterium atoms nor those of a rigid molecule. Ilyushin, Kryvda, and Alekseev, J. Mol. Spec. 255 (2009) 32. Margulès, Coudert, Mollendal, Guillemin, Huet, and Janeckovà, J. Mol. Spec. 254 (2009) 55. Hougen, J. Mol. Spec. 114 (1985) 395; and Coudert and Hougen, J. Mol. Spec. 130 (1988) 86.

  9. Adaptor protein-3: A key player in RBL-2H3 mast cell mediator release

    PubMed Central

    da Silva, Elaine Zayas Marcelino; Freitas-Filho, Edismauro Garcia; de Souza-Júnior, Devandir Antonio; daSilva, Luis Lamberti Pinto; Jamur, Maria Celia

    2017-01-01

    Mast cell (MC) secretory granules are Lysosome-Related Organelles (LROs) whose biogenesis is associated with the post-Golgi secretory and endocytic pathways in which the sorting of proteins destined for a specific organelle relies on the recognition of sorting signals by adaptor proteins that direct their incorporation into transport vesicles. The adaptor protein 3 (AP-3) complex mediates protein trafficking between the trans-Golgi network (TGN) and late endosomes, lysosomes, and LROs. AP-3 has a recognized role in LROs biogenesis and regulated secretion in several cell types, including many immune cells such as neutrophils, natural killer cells, and cytotoxic T lymphocytes. However, the relevance of AP-3 for these processes in MCs has not been previously investigated. AP-3 was found to be expressed and distributed in a punctate fashion in rat peritoneal mast cells ex vivo. The rat MC line RBL-2H3 was used as a model system to investigate the role of AP-3 in mast cell secretory granule biogenesis and mediator release. By immunofluorescence and immunoelectron microscopy, AP-3 was localized both to the TGN and early endosomes indicating that AP-3 dependent sorting of proteins to MC secretory granules originates in these organelles. ShRNA mediated depletion of the AP-3 δ subunit was shown to destabilize the AP-3 complex in RBL-2H3 MCs. AP-3 knockdown significantly affected MC regulated secretion of β-hexosaminidase without affecting total cellular enzyme levels. Morphometric evaluation of MC secretory granules by electron microscopy revealed that the area of MC secretory granules in AP-3 knockdown MCs was significantly increased, indicating that AP-3 is involved in MC secretory granule biogenesis. Furthermore, AP-3 knockdown had a selective impact on the secretion of newly formed and newly synthesized mediators. These results show for the first time that AP-3 plays a critical role in secretory granule biogenesis and mediator release in MCs. PMID:28273137

  10. A classical trajectory study of the dissociation and isomerization of C2H5.

    PubMed

    Wagner, Albert F; Rivera-Rivera, Luis A; Bachellerie, Damien; Perry, Jamin W; Thompson, Donald L

    2013-11-21

    Motivated by photodissociation experiments in which non-RRKM nanosecond lifetimes of the ethyl radical were reported, we have performed a classical trajectory study of the dissociation and isomerization of C2H5 over the energy range 100-150 kcal/mol. We used a customized version of the AIREBO semiempirical potential (Stuart, S. J.; et al. J. Chem. Phys. 2000, 112, 6472-6486) to more accurately describe the gas-phase decomposition of C2H5. This study constitutes one of the first gas-phase applications of this potential form. At each energy, 10,000 trajectories were run and all underwent dissociation in less than 100 ps. The calculated dissociation rate constants are consistent with RRKM models; no evidence was found for nanosecond lifetimes. An analytic kinetics model of isomerization/dissociation competition was developed that incorporated incomplete mode mixing through a postulated divided phase space. The fits of the model to the trajectory data are good and represent the trajectory results in detail through repeated isomerizations at all energies. The model correctly displays single exponential decay at lower energies, but at higher energies, multiexponential decay due to incomplete mode mixing becomes more apparent. At both ends of the energy range, we carried out similar trajectory studies on CD2CH3 to examine isotopic scrambling. The results largely support the assumption that a H or a D atom is equally likely to dissociate from the mixed-isotope methyl end of the molecule. The calculated fraction of products that have the D atom dissociation is ∼20%, twice the experimental value available at one energy within our range. The calculated degree of isotopic scrambling is non-monotonic with respect to energy due to a non-monotonic ratio of the isomerization to dissociation rate constants.

  11. Interplay of charge density wave and multiband superconductivity in 2H-PdxTaSe2

    PubMed Central

    Bhoi, D.; Khim, S.; Nam, W.; Lee, B. S.; Kim, Chanhee; Jeon, B.-G.; Min, B. H.; Park, S.; Kim, Kee Hoon

    2016-01-01

    2H-TaSe2 has been one of unique transition metal dichalcogenides exhibiting several phase transitions due to a delicate balance among competing electronic ground states. An unusual metallic state at high-T is sequentially followed by an incommensurate charge density wave (ICDW) state at ≈122 K and a commensurate charge density wave (CCDW) state at ≈90 K, and superconductivity at TC ~ 0.14 K. Upon systematic intercalation of Pd ions into TaSe2, we find that CCDW order is destabilized more rapidly than ICDW to indicate a hidden quantum phase transition point at x ~ 0.09–0.10. Moreover, TC shows a dramatic enhancement up to 3.3 K at x = 0.08, ~24 times of TC in 2H-TaSe2, in proportional to the density of states N(EF). Investigations of upper critical fields Hc2 in single crystals reveal evidences of multiband superconductivity as temperature-dependent anisotropy factor γH = , quasi-linear increase of , and an upward, positive-curvature in near TC. Furthermore, analysis of temperature-dependent electronic specific heat corroborates the presence of multiple superconducting gaps. Based on above findings and electronic phase diagram vs x, we propose that the increase of N(EF) and effective electron-phonon coupling in the vicinity of CDW quantum phase transition should be a key to the large enhancement of TC in PdxTaSe2. PMID:27045426

  12. Structural water in carbonated hydroxylapatite and fluorapatite: confirmation by solid state (2)H NMR.

    PubMed

    Yoder, Claude H; Pasteris, Jill D; Worcester, Kimberly N; Schermerhorn, Demetra V

    2012-01-01

    Water is well recognized as an important component in bone, typically regarded as a constituent of collagen, a pore-filling fluid in bone, and an adsorbed species on the surface of bone crystallites. The possible siting and role of water within the structure of the apatite crystallites have not been fully explored. In our experiments, carbonated hydroxyl- and fluorapatites were prepared in D(2)O and characterized by elemental analysis, thermal gravimetric analysis, powder X-ray diffraction, and infrared and Raman spectroscopy. Two hydroxylapatites and two fluorapatites, with widely different amounts of carbonate were analyzed by solid state (2)H NMR spectroscopy using the quadrupole echo pulse sequence, and each spectrum showed one single line as well as a low-intensity powder pattern. The relaxation time of 7.1 ms for 5.9 wt% carbonated hydroxylapatite indicates that the single line is likely due to rapid, high-symmetry jumps in translationally rigid D(2)O molecules, indicative of structural incorporation within the lattice. Discrimination between structurally incorporated and adsorbed water is enhanced by the rapid exchange of surface D(2)O with atmospheric H(2)O. Moreover, a (2)H resonance was observed for samples dried under a variety of conditions, including in vacuo heating to 150°C. In contrast, a sample heated to 500°C produced no deuterium resonance, indicating that structural water had been released by that temperature. We propose that water is located in the c-axis channels. Because structural water is observed even for apatites with very low carbonate content, some of the water molecules must lie between the monovalent ions.

  13. Disturbed motor control of rhythmic movement at 2 h and delayed after maximal eccentric actions.

    PubMed

    Bottas, Reijo; Miettunen, Kari; Komi, Paavo V; Linnamo, Vesa

    2010-08-01

    The aim of this study was to examine the influence of exercise-induced muscle damage on elbow rhythmic movement (RM) performance and neural activity pattern and to investigate whether this influence is joint angle specific. Ten males performed an exercise of 50 maximal eccentric elbow flexions in isokinetic machine with duty cycle of 1:15. Maximal dynamic and isometric force tests (90 degrees , 110 degrees and 130 degrees elbow angle) and both active and passive stretch reflex tests of elbow flexors were applied to the elbow joint. The intentional RM was performed in the horizontal plane at elbow angles; 60-120 degrees (SA-RM), 80-140 degrees (MA-RM) and 100-160 degrees (LA-RM). All measurements together with the determination of muscle soreness, swelling, passive stiffness, serum creatine kinase were conducted before, immediately and 2h as well as 2 days, 4 days, 6 days and 8 days post-exercise. Repeated maximal eccentric actions modified the RM trajectory symmetry acutely (SA-RM) and delayed (SA/MA/LA-RM) until the entire follow up of 8 days. Acutely lowered MA-RM peak velocity together with reduced activity of biceps brachii (BB) at every RM range, reflected a poorer acceleration and deceleration capacity of elbow flexors. A large acute drop of BB EMG burst amplitude together with parallel decrease in BB active stretch reflex amplitude, especially 2h post-exercise, suggested an inhibitory effect originating most likely from groups III/IV mechano-nociceptors. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  14. CO(2)/H(+) chemoreception in the cat pre-Bötzinger complex in vivo.

    PubMed

    Solomon, I C; Edelman, N H; O'Neal, M H

    2000-06-01

    We examined the effects of focal tissue acidosis in the pre-Bötzinger complex (pre-BötC; the proposed locus of respiratory rhythm generation) on phrenic nerve discharge in chloralose-anesthetized, vagotomized, paralyzed, mechanically ventilated cats. Focal tissue acidosis was produced by unilateral microinjection of 10-20 nl of the carbonic anhydrase inhibitors acetazolamide (AZ; 50 microM) or methazolamide (MZ; 50 microM). Microinjection of AZ and MZ into 14 sites in the pre-BötC reversibly increased the peak amplitude of integrated phrenic nerve discharge and, in some sites, produced augmented bursts (i.e., eupneic breath ending with a high-amplitude, short-duration burst). Microinjection of AZ and MZ into this region also reversibly increased the frequency of eupneic phrenic bursts in seven sites and produced premature bursts (i.e., doublets) in five sites. Phrenic nerve discharge increased within 5-15 min of microinjection of either agent; however, the time to the peak increase and the time to recovery were less with AZ than with MZ, consistent with the different pharmacological properties of AZ and MZ. In contrast to other CO(2)/H(+) brain stem respiratory chemosensitive sites demonstrated in vivo, which have only shown increases in amplitude of integrated phrenic nerve activity, focal tissue acidosis in the pre-BötC increases frequency of phrenic bursts and produces premature (i.e., doublet) bursts. These data indicate that the pre-BötC has the potential to play a role in the modulation of respiratory rhythm and pattern elicited by increased CO(2)/H(+) and lend additional support to the concept that the proposed locus for respiratory rhythm generation has intrinsic chemosensitivity.

  15. The First Detailed 2H and 18O Isoscapes of Freshwater in Scotland

    NASA Astrophysics Data System (ADS)

    Meier-Augenstein, W.; Hoogewerff, J.; Kemp, H. F.; Frew, D.

    2012-04-01

    Scotland's freshwater lochs and reservoirs provide a vital resource for sustaining biodiversity, agriculture, food production as well as for human consumption. Regular monitoring of freshwater quality by the Scottish Environmental Protection Agency (SEPA) fulfils the legislative requirements but new scientific methods involving stable isotope analysis present an opportunity for delivering on current and nascent government policies [1] and gaining a greater understanding of Scottish waters and their importance in the context of climate change, environmental sustainability and the aforementioned functions. In brief, 2H and 18O isoscapes of Scottish freshwater could be used to support fundamental and applied research in: • Climate change - These first ever isoscapes will provide a baseline against which future environmental impact can be assessed due to changes in the characteristic isotope composition of freshwater lochs and reservoirs. • Scottish branding - Location specific stable isotope signatures of Scottish freshwater have the potential to be used as a tool for provenancing and thus protecting premium Scottish produce such as Scottish beef, Scottish berries and Scottish Whisky. During 2011, freshwater samples were collected with the support of SEPA from more than 80 freshwater lochs and reservoirs across Scotland. Here we present the result of the 2H and 18O stable isotope analyses of these water samples together with the first isoscapes generated based on these data. [1] Adaptation Framework - Adapting Our Ways: Managing Scotland's Climate Risk (2009): Scotland's Biodiversity: It's in Your Hands - A strategy for the conservation and enhancement of biodiversity in Scotland (2005); Recipe For Success - Scotland's National Food and Drink Policy (2009); Scottish Planning Policy Environmental Report (2009); Scottish Planning Policy (SPP) 15 Planning for Rural Development (2005); National Planning Policy Guideline (NPPG) 14: Natural Heritage (1999).

  16. Interplay of charge density wave and multiband superconductivity in 2H-PdxTaSe2

    NASA Astrophysics Data System (ADS)

    Bhoi, D.; Khim, S.; Nam, W.; Lee, B. S.; Kim, Chanhee; Jeon, B.-G.; Min, B. H.; Park, S.; Kim, Kee Hoon

    2016-04-01

    2H-TaSe2 has been one of unique transition metal dichalcogenides exhibiting several phase transitions due to a delicate balance among competing electronic ground states. An unusual metallic state at high-T is sequentially followed by an incommensurate charge density wave (ICDW) state at ≈122 K and a commensurate charge density wave (CCDW) state at ≈90 K, and superconductivity at TC ~ 0.14 K. Upon systematic intercalation of Pd ions into TaSe2, we find that CCDW order is destabilized more rapidly than ICDW to indicate a hidden quantum phase transition point at x ~ 0.09–0.10. Moreover, TC shows a dramatic enhancement up to 3.3 K at x = 0.08, ~24 times of TC in 2H-TaSe2, in proportional to the density of states N(EF). Investigations of upper critical fields Hc2 in single crystals reveal evidences of multiband superconductivity as temperature-dependent anisotropy factor γH = , quasi-linear increase of , and an upward, positive-curvature in near TC. Furthermore, analysis of temperature-dependent electronic specific heat corroborates the presence of multiple superconducting gaps. Based on above findings and electronic phase diagram vs x, we propose that the increase of N(EF) and effective electron-phonon coupling in the vicinity of CDW quantum phase transition should be a key to the large enhancement of TC in PdxTaSe2.

  17. Cloning and characterization of a Ca(2+)/H(+) exchanger from the halophyte Salicornia europaea L.

    PubMed

    Zhang, Liquan; Hao, Jinfeng; Bao, Mulan; Hasi, Agula; Niu, Yiding

    2015-11-01

    The calcium ion (Ca(2+)), which functions as a second messenger, plays an important role in plants' responses to various abiotic stresses, and Ca(2+)/H(+) exchangers (CAXs) are an important part of this process. In this study, we isolated and characterized a putative Ca(2+)/H(+) exchanger gene (SeCAX3) from Salicornia europaea L., a succulent, leafless euhalophyte. The SeCAX3 open reading frame was 1368 bp long and encoded a 455-amino-acid polypeptide that showed 67.9% similarity to AtCAX3. SeCAX3 was expressed in the shoots and roots of S. europaea. Expression of SeCAX3 was up-regulated by Ca(2+), Na(+), sorbitol, Li(+), abscisic acid, and cold treatments in shoots, but down-regulated by Ca(2+), sorbitol, abscisic acid, and cold treatments in roots. When SeCAX3 was transformed into a Ca-sensitive yeast strain, the transformed cells were able to grow in the presence of 200 mM Ca(2+). Furthermore, SeCAX3 conferred drought, salt, and cold tolerance in yeast. Compared with the control strains, the yeast transformants expressing SeCAX3 were able to grow well in the presence of 30 mM Li(+), 150 mM Mg(2+), or 6 mM Ba(2+). These results showed that the expression of SeCAX3 in yeast suppressed its Ca(2+) hypersensitivity and conferred tolerance to Mg(2+) and Ba(2+). Together, these findings suggest that SeCAX3 might be a Ca(2+) transporter that plays a role in regulating cation tolerance and the responses of S. europaea to various abiotic stresses. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. Context-dependent DNA recognition code for C2H2 zinc-finger transcription factors

    PubMed Central

    Liu, Jiajian; Stormo, Gary D.

    2008-01-01

    Motivation: Modeling and identifying the DNA-protein recognition code is one of the most challenging problems in computational biology. Several quantitative methods have been developed to model DNA-protein interactions with specific focus on the C2H2 zinc-finger proteins, the largest transcription factor family in eukaryotic genomes. In many cases, they performed well. But the overall the predictive accuracy of these methods is still limited. One of the major reasons is all these methods used weight matrix models to represent DNA-protein interactions, assuming all base-amino acid contacts contribute independently to the total free energy of binding. Results: We present a context-dependent model for DNA–zinc-finger protein interactions that allows us to identify inter-positional dependencies in the DNA recognition code for C2H2 zinc-finger proteins. The degree of non-independence was detected by comparing the linear perceptron model with the non-linear neural net (NN) model for their predictions of DNA–zinc-finger protein interactions. This dependency is supported by the complex base-amino acid contacts observed in DNA–zinc-finger interactions from structural analyses. Using extensive published qualitative and quantitative experimental data, we demonstrated that the context-dependent model developed in this study can significantly improves predictions of DNA binding profiles and free energies of binding for both individual zinc fingers and proteins with multiple zinc fingers when comparing to previous positional-independent models. This approach can be extended to other protein families with complex base-amino acid residue interactions that would help to further understand the transcriptional regulation in eukaryotic genomes. Availability:The software implemented as c programs and are available by request. http://ural.wustl.edu/softwares.html Contact: stormo@ural.wustl.edu PMID:18586699

  19. Equilibrium 2H/ 1H fractionations in organic molecules: I. Experimental calibration of ab initio calculations

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Sessions, Alex L.; Nielsen, Robert J.; Goddard, William A., III

    2009-12-01

    Carbon-bound hydrogen in sedimentary organic matter can undergo exchange over geologic timescales, altering its isotopic composition. Studies investigating the natural abundance distribution of 1H and 2H in such molecules must account for this exchange, which in turn requires quantitative knowledge regarding the endpoint of exchange, i.e., the equilibrium isotopic fractionation factor ( α eq). To date, relevant data have been lacking for molecules larger than methane. Here we describe an experimental method to measure α eq for C-bound H positions adjacent to carbonyl group (H α) in ketones. H at these positions equilibrates on a timescale of days as a result of keto-enol tautomerism, allowing equilibrium 2H/ 1H distributions to be indirectly measured. Molecular vibrations for the same ketone molecules are then computed using Density Functional Theory at the B3LYP/6-311G∗∗ level and used to calculate α eq values for H α. Comparison of experimental and computational results for six different straight and branched ketones yields a temperature-dependent linear calibration curve with slope = 1.081-0.00376 T and intercept = 8.404-0.387 T, where T is temperature in degrees Celsius. Since the dominant systematic error in the calculation (omission of anharmonicity) is of the same size for ketones and C-bound H in most other linear compounds, we propose that this calibration can be applied to analogous calculations for a wide variety of organic molecules with linear carbon skeletons for temperatures below 100 °C. In a companion paper ( Wang et al., 2009) we use this new calibration dataset to calculate the temperature-dependent equilibrium isotopic fractionation factors for a range of linear hydrocarbons, alcohols, ethers, ketones, esters and acids.

  20. Satellite observations of ethylene (C2H4) from the Aura Tropospheric Emission Spectrometer: A scoping study

    NASA Astrophysics Data System (ADS)

    Dolan, Wayana; Payne, Vivienne H.; Kualwik, Susan S.; Bowman, Kevin W.

    2016-09-01

    We present a study focusing on detection and initial quantitative estimates of ethylene (C2H4) in observations from the Tropospheric Emission Spectrometer (TES), a Fourier transform spectrometer aboard the Aura satellite that measures thermal infrared radiances with high spectral resolution (0.1 cm-1). We analyze observations taken in support of the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission and demonstrate the feasibility of future development of C2H4 into a TES standard product. In the Northern Hemisphere, C2H4 is commonly associated with boreal fire plumes, motor vehicle exhaust and petrochemical emissions. It has a short lifetime (∼14-32 h) in the troposphere due to its reaction with OH and O3. Chemical destruction of C2H4 in the atmosphere leads to the production of ozone and other species such as carbon monoxide (CO) and formaldehyde. Results indicate a correlation between C2H4 and CO in boreal fire plumes. Quantitative C2H4 estimates are sensitive to assumptions about the plume height and width. We find that C2H4 greater than 2-3 ppbv can be detected in a single TES observation (for a fire plume at 3 km altitude and 1.5 km width). Spatial averaging will be needed for surface-peaking profiles where TES sensitivity is lower.

  1. Seasonal patterns in δ(2) H values of multiple tissues from Andean birds provide insights into elevational migration.

    PubMed

    Villegas, Mariana; Newsome, Seth D; Blake, John G

    2016-12-01

    Elevational migration is a widespread phenomenon in tropical avifauna but it is difficult to identify using traditional approaches. Hydrogen isotope (δ(2) H) values of precipitation decrease with elevation so δ(2) H analysis of multiple bird tissues with different isotopic incorporation rates may be a reliable method for characterizing seasonal elevational migration. Here we compare δ(2) H values in metabolically inert (feathers and claws) and metabolically active (whole blood) tissues to examine whether an upslope migration occurs prior to the breeding season in the Yungas Manakin (Chiroxiphia boliviana). We compare results from C. boliviana with data from a known elevational migrant, the Streak-necked Flycatcher (Mionectes striaticollis). Opposite to our expectations, tissue δ(2) H values increased over time, largely reflecting seasonal patterns in precipitation δ(2) H rather than elevational effects; linear mixed-effects models with strongest support included ordinal date, tissue type, and elevation. This seasonal increase in precipitation δ(2) H is a general phenomenon in both tropical and temperate mountain ranges. We use these data to propose a hypothetical framework that predicts different patterns in tissue δ(2) H values collected in different seasons from residents and elevational migrants. This framework can serve as a reference for future studies that assess elevational migration in birds and other animals.

  2. SNF2H interacts with XRCC1 and is involved in repair of H2O2-induced DNA damage.

    PubMed

    Kubota, Yoshiko; Shimizu, Shinji; Yasuhira, Shinji; Horiuchi, Saburo

    2016-07-01

    The protein XRCC1 has no inherent enzymatic activity, and is believed to function in base excision repair as a dedicated scaffold component that coordinates other DNA repair factors. Repair foci clearly represent the recruitment and accumulation of DNA repair factors at sites of damage; however, uncertainties remain regarding their organization in the context of nuclear architecture and their biological significance. Here we identified the chromatin remodeling factor SNF2H/SMARCA5 as a novel binding partner of XRCC1, with their interaction dependent on the casein kinase 2-mediated constitutive phosphorylation of XRCC1. The proficiency of repairing H2O2-induced damage was strongly impaired by SNF2H knock-down, and similar impairment was observed with knock-down of both XRCC1 and SNF2H simultaneously, suggesting their role in a common repair pathway. Most SNF2H exists in the nuclear matrix fraction, forming salt extraction-resistant foci-like structures in unchallenged nuclei. Remarkably, damage-induced formation of both PAR and XRCC1 foci depended on SNF2H, and the PAR and XRCC1 foci co-localized with the SNF2H foci. We propose a model in which a base excision repair complex containing damaged chromatin is recruited to specific locations in the nuclear matrix for repair, with this recruitment mediated by XRCC1-SNF2H interaction. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. New Evidences for the observation of the Higgs boson in the Superconductor 2H-NbSe2

    NASA Astrophysics Data System (ADS)

    Measson, Marie-Aude; Clair, Bertrand; Gallais, Yann; Cazayous, Maximilien; Rodière, Pierre; Cario, Laurent; Sacuto, Alain; Squap Team; Systèmes À Fortes Corrélations Électroniques Collaboration; Imn Collaboration

    2013-03-01

    We provide here new evidences for the observation of the amplitude mode of the superconducting order parameter, the so-called Higgs Boson, in 2H-NbSe2. We report quantitatively comparative electronic Raman measurements on the dichalcogenides 2H-NbSe2, whose superconductivity (SC) coexists with a charge density wave order (CDW), and 2H-NbS2, which exhibits only the SC. A SC pair breaking peak develops below Tc in 2H-NbS2 whose intensity is much smaller than the peak associated with the SC in 2H-NbSe2. Thus, the peak observed in 2H-NbSe2 below Tc certainly doesn't get its intensity only from the superconducting condensate. Moreover, we measure precisely a spectral weight transfer from the amplitude mode of the CDW to the SC peak in 2H-NbSe2, versus decreasing temperature. The total spectral weight for both peaks is constant within +/- 3 % . This result is consistent with the theory of the observation of a Higgs mode thanks to its coupling with an amplitudon developed by Littlewood and Varma. This result complements what was firstly observed by Sooryakumar et Klein under magnetic field.

  4. Monitoring particle growth in deposition plasmas

    NASA Astrophysics Data System (ADS)

    Schlebrowski, T.; Bahre, H.; Böke, M.; Winter, J.

    2013-12-01

    Plasma-enhanced chemical vapor deposition methods are frequently used to deposit barrier layers, e.g. on polymers for food packaging. These plasmas may suffer from particle (dust) formation. We report on a flexible monitoring system for dust. It is based on scanning a 3D plasma volume for particles by laser light scattering. The lower size limit of particles detected in the presented system is 20 nm. We report on existence diagrams for obtaining dust free or dust loaded capacitively or inductively coupled rf-plasmas in C2H2 depending on pressure, flow and rf-power. We further present growth rates for dust in these plasmas and show that monodisperse particles are only obtained during the first growth cycle.

  5. Infrared spectroscopy and modeling of co-crystalline CO2·C2H2 aerosol particles. II. The structure and shape of co-crystalline CO2·C2H2 aerosol particles.

    PubMed

    Preston, Thomas C; Signorell, Ruth

    2012-03-07

    Infrared absorption spectra of co-crystalline CO(2)·C(2)H(2) aerosol particles were modeled using a combination of two methods. Density functional theory was used to model several bulk CO(2)·C(2)H(2) co-crystal structures and to calculate their lattice energies and frequency-dependent dielectric tensors. This was necessary as there currently exists no crystallographic or refractive index data on co-crystalline CO(2)·C(2)H(2)due to its metastability. The discrete dipole approximation was then used to calculate infrared absorption spectra of different model particles using the dielectric tensors calculated using density functional theory. Results from these simulations were compared to the experimental spectrum of co-crystalline CO(2)·C(2)H(2) aerosol particles. The aerosol particles after the decomposition of the co-crystalline phase were studied in Part I. © 2012 American Institute of Physics

  6. Stability evaluation of a rocket engine for gaseous oxygen difluoride (OF2) and gaseous diborane (B2H6) propellants

    NASA Technical Reports Server (NTRS)

    Clayton, R. M.

    1972-01-01

    Results of an experimental evaluation of the dynamic stability of a candidate combustor for the space storable propellants gaseous OF2/B2H6 show that the combustor is unstable without supplementary damping. A computer analysis indicated that the uninhibited engine could be unstable. The experiments, conducted with O2/C2H4 substitute propellants and with 70-30 FLOX/B2H6 (OF2 simulated with FLOX), show that the uninhibited combustor has a low stability margin to starting transient perturbations, but that is relatively insensitive to bomb disturbances. Damping cavities are shown to provide stability.

  7. High resolution, low temperature photoabsorption cross-section of C2H2 with application to Saturn's atmosphere

    NASA Technical Reports Server (NTRS)

    Caldwell, John; Wu, C. Y. R.; Xia, T. J.; Judge, D. L.; Wagener, R.

    1990-01-01

    New laboratory observations of the VUV absorption cross-section of C2H2, obtained under physical conditions approximating stratospheres of the giant planets, were combined with IUE observations of the albedo of Saturn, for which improved data reduction techniques have been used, to produce new models for that atmosphere. When the effects of C2H2 absorption are accounted for, additional absorption by other molecules is required. The best-fitting model also includes absorption by PH3, H2O, C2H6 and CH4. A small residual disagreement near 1600 A suggests that an additional trace species may be required to complete the model.

  8. Theoretical and Laboratory Studies on the Interaction of Cosmic-Ray Particles with Interstellar Ices. III. Suprathermal Chemistry-Induced Formation of Hydrocarbon Molecules in Solid Methane (CH4), Ethylene (C2H4), and Acetylene (C2H2)

    NASA Astrophysics Data System (ADS)

    Kaiser, R. I.; Roessler, K.

    1998-08-01

    Methane, ethylene, and acetylene ices are irradiated in a ultra high vacuum vessel at 10 K with 9.0 MeV α-particles and 7.3 MeV protons to elucidate mechanisms to form hydrocarbon molecules upon interaction of Galactic cosmic-ray particles with extraterrestrial, organic ices. Theoretical calculations focus on computer simulations of ion-induced collision cascades in irradiated targets. Our experimental and computational investigations reveal that each MeV particle transfers its kinetic energy predominantly through inelastic encounters to the target leading to electronic excitation and ionization of the target molecules. Here electronically excited CH4 species can fragment to mobile H atoms and nonmobile CH3 radicals. The potential energy stored in Coulomb interaction of the CH+4 ions release energetic H and C atoms not in thermal equilibrium with the 10 K target (suprathermal species). Moderated to 1-10 eV kinetic energy, these carbon atoms and those triggered by the elastic energy transfer of the MeV projectile to the target are found to abstract up to two H atoms to yield suprathermal CH and CH2 species. C and CH, as well as CH2, can insert into a CH bond of a CH4 molecule to form methylcarbene (HCCH3), the ethyl radical (C2H5), and ethane (C2H6). HCCH3 either loses H2/2H to form acetylene, C2H2, rearranges to ethylene, C2H4, or adds two H atoms to form ethane, C2H6. C2H5 can abstract or lose an H atom, giving ethane and ethylene, respectively. C2H2 and C2H4 are found to react with suprathermal H atoms to form C2H3 and C2H5, respectively. Overlapping cascades and an increasing MeV ion exposure transforms C2Hx (x = 2, ..., 6) to even more complex alkanes up to C14H30. These elementary reactions of suprathermal species to insert, abstract, and add in/to bonds supply a powerful pathway to form new molecules in icy grain mantles condensed on interstellar grains or in hydrocarbon rich bodies in our solar system even at temperatures as low as 10 K.

  9. Full-dimensional, high-level ab initio potential energy surfaces for H2(H2O) and H2(H2O)2 with application to hydrogen clathrate hydrates.

    PubMed

    Homayoon, Zahra; Conte, Riccardo; Qu, Chen; Bowman, Joel M

    2015-08-28

    New, full-dimensional potential energy surfaces (PESs), obtained using precise least-squares fitting of high-level electronic energy databases, are reported for intrinsic H2(H2O) two-body and H2(H2O)2 three-body potentials. The database for H2(H2O) consists of approximately 44 000 energies at the coupled cluster singles and doubles plus perturbative triples (CCSD(T))-F12a/haQZ (aug-cc-pVQZ for O and cc-pVQZ for H) level of theory, while the database for the three-body interaction consists of more than 36 000 energies at the CCSD(T)-F12a/haTZ (aug-cc-pVTZ for O, cc-pVTZ for H) level of theory. Two precise potentials are based on the invariant-polynomial technique and are compared to computationally faster ones obtained via "purified" symmetrization. All fits use reduced permutational symmetry appropriate for these non-covalent interactions. These intrinsic potentials are employed t