Science.gov

Sample records for 2-hour plasma glucose

  1. Comparison of the Current Diagnostic Criterion of HbA1c with Fasting and 2-Hour Plasma Glucose Concentration

    PubMed Central

    Karnchanasorn, Rudruidee; Huang, Jean; Feng, Wei; Chuang, Lee-Ming

    2016-01-01

    To determine the effectiveness of hemoglobin A1c (HbA1c) ≥ 6.5% in diagnosing diabetes compared to fasting plasma glucose (FPG) ≥ 126 mg/dL and 2-hour plasma glucose (2hPG) ≥ 200 mg/dL in a previously undiagnosed diabetic cohort, we included 5,764 adult subjects without established diabetes for whom HbA1c, FPG, 2hPG, and BMI measurements were collected. Compared to the FPG criterion, the sensitivity of HbA1c ≥ 6.5% was only 43.3% (106 subjects). Compared to the 2hPG criterion, the sensitivity of HbA1c ≥ 6.5% was only 28.1% (110 subjects). Patients who were diabetic using 2hPG criterion but had HbA1c < 6.5% were more likely to be older (64 ± 15 versus 60 ± 15 years old, P = 0.01, mean ± STD), female (53.2% versus 38.2%, P = 0.008), leaner (29.7 ± 6.1 versus 33.0 ± 6.6 kg/m2, P = 0.000005), and less likely to be current smokers (18.1% versus 29.1%, P = 0.02) as compared to those with HbA1c ≥ 6.5%. The diagnostic agreement in the clinical setting revealed the current HbA1c ≥ 6.5% is less likely to detect diabetes than those defined by FPG and 2hPG. HbA1c ≥ 6.5% detects less than 50% of diabetic patients defined by FPG and less than 30% of diabetic patients defined by 2hPG. When the diagnosis of diabetes is in doubt by HbA1c, FPG and/or 2hPG should be obtained. PMID:27597979

  2. Comparison of the Current Diagnostic Criterion of HbA1c with Fasting and 2-Hour Plasma Glucose Concentration.

    PubMed

    Karnchanasorn, Rudruidee; Huang, Jean; Ou, Horng-Yih; Feng, Wei; Chuang, Lee-Ming; Chiu, Ken C; Samoa, Raynald

    2016-01-01

    To determine the effectiveness of hemoglobin A1c (HbA1c) ≥ 6.5% in diagnosing diabetes compared to fasting plasma glucose (FPG) ≥ 126 mg/dL and 2-hour plasma glucose (2hPG) ≥ 200 mg/dL in a previously undiagnosed diabetic cohort, we included 5,764 adult subjects without established diabetes for whom HbA1c, FPG, 2hPG, and BMI measurements were collected. Compared to the FPG criterion, the sensitivity of HbA1c ≥ 6.5% was only 43.3% (106 subjects). Compared to the 2hPG criterion, the sensitivity of HbA1c ≥ 6.5% was only 28.1% (110 subjects). Patients who were diabetic using 2hPG criterion but had HbA1c < 6.5% were more likely to be older (64 ± 15 versus 60 ± 15 years old, P = 0.01, mean ± STD), female (53.2% versus 38.2%, P = 0.008), leaner (29.7 ± 6.1 versus 33.0 ± 6.6 kg/m(2), P = 0.000005), and less likely to be current smokers (18.1% versus 29.1%, P = 0.02) as compared to those with HbA1c ≥ 6.5%. The diagnostic agreement in the clinical setting revealed the current HbA1c ≥ 6.5% is less likely to detect diabetes than those defined by FPG and 2hPG. HbA1c ≥ 6.5% detects less than 50% of diabetic patients defined by FPG and less than 30% of diabetic patients defined by 2hPG. When the diagnosis of diabetes is in doubt by HbA1c, FPG and/or 2hPG should be obtained. PMID:27597979

  3. No Interactions Between Previously Associated 2-Hour Glucose Gene Variants and Physical Activity or BMI on 2-Hour Glucose Levels

    PubMed Central

    Scott, Robert A.; Chu, Audrey Y.; Grarup, Niels; Manning, Alisa K.; Hivert, Marie-France; Shungin, Dmitry; Tönjes, Anke; Yesupriya, Ajay; Barnes, Daniel; Bouatia-Naji, Nabila; Glazer, Nicole L.; Jackson, Anne U.; Kutalik, Zoltán; Lagou, Vasiliki; Marek, Diana; Rasmussen-Torvik, Laura J.; Stringham, Heather M.; Tanaka, Toshiko; Aadahl, Mette; Arking, Dan E.; Bergmann, Sven; Boerwinkle, Eric; Bonnycastle, Lori L.; Bornstein, Stefan R.; Brunner, Eric; Bumpstead, Suzannah J.; Brage, Soren; Carlson, Olga D.; Chen, Han; Chen, Yii-Der Ida; Chines, Peter S.; Collins, Francis S.; Couper, David J.; Dennison, Elaine M.; Dowling, Nicole F.; Egan, Josephine S.; Ekelund, Ulf; Erdos, Michael R.; Forouhi, Nita G.; Fox, Caroline S.; Goodarzi, Mark O.; Grässler, Jürgen; Gustafsson, Stefan; Hallmans, Göran; Hansen, Torben; Hingorani, Aroon; Holloway, John W.; Hu, Frank B.; Isomaa, Bo; Jameson, Karen A.; Johansson, Ingegerd; Jonsson, Anna; Jørgensen, Torben; Kivimaki, Mika; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Laakso, Markku; Lecoeur, Cécile; Lévy-Marchal, Claire; Li, Guo; Loos, Ruth J.F.; Lyssenko, Valeri; Marmot, Michael; Marques-Vidal, Pedro; Morken, Mario A.; Müller, Gabriele; North, Kari E.; Pankow, James S.; Payne, Felicity; Prokopenko, Inga; Psaty, Bruce M.; Renström, Frida; Rice, Ken; Rotter, Jerome I.; Rybin, Denis; Sandholt, Camilla H.; Sayer, Avan A.; Shrader, Peter; Schwarz, Peter E.H.; Siscovick, David S.; Stančáková, Alena; Stumvoll, Michael; Teslovich, Tanya M.; Waeber, Gérard; Williams, Gordon H.; Witte, Daniel R.; Wood, Andrew R.; Xie, Weijia; Boehnke, Michael; Cooper, Cyrus; Ferrucci, Luigi; Froguel, Philippe; Groop, Leif; Kao, W.H. Linda; Vollenweider, Peter; Walker, Mark; Watanabe, Richard M.; Pedersen, Oluf; Meigs, James B.; Ingelsson, Erik; Barroso, Inês; Florez, Jose C.; Franks, Paul W.; Dupuis, Josée; Wareham, Nicholas J.; Langenberg, Claudia

    2012-01-01

    Gene–lifestyle interactions have been suggested to contribute to the development of type 2 diabetes. Glucose levels 2 h after a standard 75-g glucose challenge are used to diagnose diabetes and are associated with both genetic and lifestyle factors. However, whether these factors interact to determine 2-h glucose levels is unknown. We meta-analyzed single nucleotide polymorphism (SNP) × BMI and SNP × physical activity (PA) interaction regression models for five SNPs previously associated with 2-h glucose levels from up to 22 studies comprising 54,884 individuals without diabetes. PA levels were dichotomized, with individuals below the first quintile classified as inactive (20%) and the remainder as active (80%). BMI was considered a continuous trait. Inactive individuals had higher 2-h glucose levels than active individuals (β = 0.22 mmol/L [95% CI 0.13–0.31], P = 1.63 × 10−6). All SNPs were associated with 2-h glucose (β = 0.06–0.12 mmol/allele, P ≤ 1.53 × 10−7), but no significant interactions were found with PA (P > 0.18) or BMI (P ≥ 0.04). In this large study of gene–lifestyle interaction, we observed no interactions between genetic and lifestyle factors, both of which were associated with 2-h glucose. It is perhaps unlikely that top loci from genome-wide association studies will exhibit strong subgroup-specific effects, and may not, therefore, make the best candidates for the study of interactions. PMID:22415877

  4. Dietary Fatty Acids Differentially Associate with Fasting Versus 2-Hour Glucose Homeostasis: Implications for The Management of Subtypes of Prediabetes

    PubMed Central

    Guess, Nicola; Perreault, Leigh; Kerege, Anna; Strauss, Allison; Bergman, Bryan C.

    2016-01-01

    Over-nutrition has fuelled the global epidemic of type 2 diabetes, but the role of individual macronutrients to the diabetogenic process is not well delineated. We aimed to examine the impact of dietary fatty acid intake on fasting and 2-hour plasma glucose concentrations, as well as tissue-specific insulin action governing each. Normoglycemic controls (n = 15), athletes (n = 14), and obese (n = 23), as well as people with prediabetes (n = 10) and type 2 diabetes (n = 11), were queried about their habitual diet using a Food Frequency Questionnaire. All subjects were screened by an oral glucose tolerance test (OGTT) and studied using the hyperinsulinemic/euglycemic clamp with infusion of 6,62H2-glucose. Multiple regression was performed to examine relationships between dietary fat intake and 1) fasting plasma glucose, 2) % suppression of endogenous glucose production, 3) 2-hour post-OGTT plasma glucose, and 4) skeletal muscle insulin sensitivity (glucose rate of disappearance (Rd) and non-oxidative glucose disposal (NOGD)). The %kcal from saturated fat (SFA) was positively associated with fasting (β = 0.303, P = 0.018) and 2-hour plasma glucose (β = 0.415, P<0.001), and negatively related to % suppression of hepatic glucose production (β = -0.245, P = 0.049), clamp Rd (β = -0.256, P = 0.001) and NOGD (β = -0.257, P = 0.001). The %kcal from trans fat was also negatively related to clamp Rd (β = -0.209, P = 0.008) and NOGD (β = -0.210, P = 0.008). In contrast, the %kcal from polyunsaturated fat (PUFA) was negatively associated with 2-hour glucose levels (β = -0.383, P = 0.001), and positively related to Rd (β = 0.253, P = 0.007) and NOGD (β = 0.246, P = 0.008). Dietary advice to prevent diabetes should consider the underlying pathophysiology of the prediabetic state. PMID:26999667

  5. Dietary Fatty Acids Differentially Associate with Fasting Versus 2-Hour Glucose Homeostasis: Implications for The Management of Subtypes of Prediabetes.

    PubMed

    Guess, Nicola; Perreault, Leigh; Kerege, Anna; Strauss, Allison; Bergman, Bryan C

    2016-01-01

    Over-nutrition has fuelled the global epidemic of type 2 diabetes, but the role of individual macronutrients to the diabetogenic process is not well delineated. We aimed to examine the impact of dietary fatty acid intake on fasting and 2-hour plasma glucose concentrations, as well as tissue-specific insulin action governing each. Normoglycemic controls (n = 15), athletes (n = 14), and obese (n = 23), as well as people with prediabetes (n = 10) and type 2 diabetes (n = 11), were queried about their habitual diet using a Food Frequency Questionnaire. All subjects were screened by an oral glucose tolerance test (OGTT) and studied using the hyperinsulinemic/euglycemic clamp with infusion of 6,62H2-glucose. Multiple regression was performed to examine relationships between dietary fat intake and 1) fasting plasma glucose, 2) % suppression of endogenous glucose production, 3) 2-hour post-OGTT plasma glucose, and 4) skeletal muscle insulin sensitivity (glucose rate of disappearance (Rd) and non-oxidative glucose disposal (NOGD)). The %kcal from saturated fat (SFA) was positively associated with fasting (β = 0.303, P = 0.018) and 2-hour plasma glucose (β = 0.415, P<0.001), and negatively related to % suppression of hepatic glucose production (β = -0.245, P = 0.049), clamp Rd (β = -0.256, P = 0.001) and NOGD (β = -0.257, P = 0.001). The %kcal from trans fat was also negatively related to clamp Rd (β = -0.209, P = 0.008) and NOGD (β = -0.210, P = 0.008). In contrast, the %kcal from polyunsaturated fat (PUFA) was negatively associated with 2-hour glucose levels (β = -0.383, P = 0.001), and positively related to Rd (β = 0.253, P = 0.007) and NOGD (β = 0.246, P = 0.008). Dietary advice to prevent diabetes should consider the underlying pathophysiology of the prediabetic state. PMID:26999667

  6. The "lipid accumulation product" is associated with 2-hour postload glucose outcomes in overweight/obese subjects with nondiabetic fasting glucose.

    PubMed

    Malavazos, Alexis Elias; Cereda, Emanuele; Ermetici, Federica; Caccialanza, Riccardo; Briganti, Silvia; Rondanelli, Mariangela; Morricone, Lelio

    2015-01-01

    "Lipid accumulation product" (LAP) is a continuous variable based on waist circumference and triglyceride concentration previously associated with insulin resistance. We investigated the accuracy of LAP in identifying oral glucose tolerance test (OGTT) abnormalities and compared it to the homeostasis model assessment of insulin resistance (HOMA-IR) in a population of overweight/obese outpatients presenting with nondiabetic fasting glucose. We studied 381 (male: 23%) adult (age: 18-70 years) overweight/obese Caucasians (body mass index: 36.9 ± 5.4 Kg/m(2)) having fasting plasma glucose < 7.0 mmol/L. OGTT was used to diagnose unknown glucose tolerance abnormalities: impaired glucose tolerance (IGT) and type-2 diabetes mellitus (T2-DM). According to OGTT 92, subjects had an IGT and 33 were diagnosed T2-DM. Logistic regression analysis detected a significant association for both LAP and HOMA-IR with single (IGT and T2-DM) and composite (IGT + T2-DM) abnormal glucose tolerance conditions. However, while the association with diabetes was similar between LAP and HOMA-IR, the relationship with IGT and composite outcomes by models including LAP was significantly superior to those including HOMA-IR (P = 0.006 and P = 0.007, resp.). LAP seems to be an accurate index, performing better than HOMA-IR, for identifying 2-hour postload OGTT outcomes in overweight/obese patients with nondiabetic fasting glucose. PMID:25792981

  7. The “Lipid Accumulation Product” Is Associated with 2-Hour Postload Glucose Outcomes in Overweight/Obese Subjects with Nondiabetic Fasting Glucose

    PubMed Central

    Malavazos, Alexis Elias; Cereda, Emanuele; Ermetici, Federica; Caccialanza, Riccardo; Briganti, Silvia; Rondanelli, Mariangela; Morricone, Lelio

    2015-01-01

    “Lipid accumulation product” (LAP) is a continuous variable based on waist circumference and triglyceride concentration previously associated with insulin resistance. We investigated the accuracy of LAP in identifying oral glucose tolerance test (OGTT) abnormalities and compared it to the homeostasis model assessment of insulin resistance (HOMA-IR) in a population of overweight/obese outpatients presenting with nondiabetic fasting glucose. We studied 381 (male: 23%) adult (age: 18–70 years) overweight/obese Caucasians (body mass index: 36.9 ± 5.4 Kg/m2) having fasting plasma glucose < 7.0 mmol/L. OGTT was used to diagnose unknown glucose tolerance abnormalities: impaired glucose tolerance (IGT) and type-2 diabetes mellitus (T2-DM). According to OGTT 92, subjects had an IGT and 33 were diagnosed T2-DM. Logistic regression analysis detected a significant association for both LAP and HOMA-IR with single (IGT and T2-DM) and composite (IGT + T2-DM) abnormal glucose tolerance conditions. However, while the association with diabetes was similar between LAP and HOMA-IR, the relationship with IGT and composite outcomes by models including LAP was significantly superior to those including HOMA-IR (P = 0.006 and P = 0.007, resp.). LAP seems to be an accurate index, performing better than HOMA-IR, for identifying 2-hour postload OGTT outcomes in overweight/obese patients with nondiabetic fasting glucose. PMID:25792981

  8. Efficacy of 2-hour post glucose insulin levels in predicting insulin resistance in polycystic ovarian syndrome with infertility

    PubMed Central

    Saxena, Pikee; Prakash, Anupam; Nigam, Aruna

    2011-01-01

    BACKGROUND: Insulin resistance (IR) is central to the pathogenesis of polycystic ovarian syndrome (PCOS), but tests for determining IR are elaborate, tedious and expensive. AIMS: To evaluate if “2-hour post-glucose insulin level” is an effective indicator of IR and can aid in diagnosing IR in infertile PCOS women. SETTINGS AND DESIGN: Observational study at infertility clinic of a tertiary care center. MATERIALS AND METHODS: 50 infertile women with PCOS and 20 females with tubal/male factor infertility were evaluated for the presence of IR, as defined by the fasting/2-hour post-glucose insulin levels cutoffs of >25/>41 μU/mL, respectively. The clinical, metabolic and endocrinologic profile was determined in both the groups. STATISTICAL ANALYSIS: Statistical analysis was performed using SPSS (Chicago, IL, USA). RESULTS: Body mass index, post load glucose, insulin, glucose/insulin ratio, area under curve (AUC) of glucose and insulin and insulinogenic index were significantly lower in the controls as compared to the PCOS group. “2-hour post-glucose insulin levels” were elevated in 88% of PCOS individuals but were normal in all females not suffering from PCOS. These levels significantly correlated with AUC of glucose and insulin, and insulinogenic index and inversely correlated with 2-hour glucose to insulin ratio (r=0.827, 0.749 and –0.732, respectively). CONCLUSIONS: “2-hour post-glucose insulin levels” appears to be a good indicator of IR. It can be a useful tool, especially in low resource setting where a single sample can confirm the diagnosis, thus reducing cost and repeat visits. PMID:21772735

  9. The Association between HbA1c, Fasting Glucose, 1-Hour Glucose and 2-Hour Glucose during an Oral Glucose Tolerance Test and Cardiovascular Disease in Individuals with Elevated Risk for Diabetes

    PubMed Central

    Lind, Marcus; Tuomilehto, Jaakko; Uusitupa, Matti; Nerman, Olle; Eriksson, Johan; Ilanne-Parikka, Pirjo; Keinänen-Kiukaanniemi, Sirkka; Peltonen, Markku; Pivodic, Aldina; Lindström, Jaana

    2014-01-01

    Objective To determine the association between HbA1c, fasting plasma glucose (FPG), 1-hour (1 hPG) and 2-hour (2 hPG) glucose after an oral glucose tolerance test (OGTT) and cardiovascular disease in individuals with elevated risk for diabetes. Design We studied the relationship between baseline, updated mean and updated (last) value of HbA1c, FPG, 1 hPG and 2 hPG after an oral 75 g glucose tolerance test (OGTT) and acute CVD events in 504 individuals with impaired glucose tolerance (IGT) at baseline enrolled in the Finnish Diabetes Prevention Study. Setting Follow-up of clinical trial. Participants 504 individuals with IGT were followed with yearly evaluations with OGTT, FPG and HbA1c. Main Outcome Measure Relative risk of CVD. Results Over a median follow-up of 9.0 years 34 (6.7%) participants had a CVD event, which increased to 52 (10.3%) over a median follow-up of 13.0 years when including events that occurred among participants following a diagnosis of diabetes. Updated mean HbA1c, 1 hPG and 2 hPG, HR per 1 unit SD of 1.57 (95% CI 1.16 to 2.11), p = 0.0032, 1.51 (1.03 to 2.23), p = 0.036 and 1.60 (1.10 to 2.34), p = 0.014, respectively, but not FPG (p = 0.11), were related to CVD. In analyses of the last value prior to the CVD event the same three glycaemic measurements were associated with the CVD events, with HRs per 1 unit SD of 1.45 (1.06 to 1.98), p = 0.020, 1.55 (1.04 to 2.29), p = 0.030 and 2.19 (1.51 to 3.18), p<0.0001, respectively but only 2 hPG remained significant in pairwise comparisons. Including the follow-up period after diabetes onset updated 2 hPG (p = 0.003) but not updated mean HbA1c (p = 0.08) was related to CVD. Conclusions and Relevance Current 2 hPG level in people with IGT is associated with increased risk of CVD. This supports its use in screening for prediabetes and monitoring glycaemic levels of people with prediabetes. PMID:25285769

  10. Diabetic neuropathy and plasma glucose control.

    PubMed

    Porte, D; Graf, R J; Halter, J B; Pfeifer, M A; Halar, E

    1981-01-01

    Diabetic neuropathy is defined, and theories of its pathogenesis are reviewed. Recent studies designed to investigate the influence of plasma glucose on nerve function in noninsulin-dependent diabetic patients are summarized. Motor nerve conduction velocities in the median and peroneal nerves were measured using a double-stimulus technique, and sensory conduction velocity was measured by conventional methods before and after therapy with oral agents or insulin. The degree of hyperglycemia was assessed by measurement of fasting plasma glucose and glycosylated hemoglobin concentrations. The degree of slowing in motor nerve conduction velocity in untreated patients was found to correlate with the fasting plasma glucose and glycosylated hemoglobin concentrations, but sensory nerve function, although abnormal, did not show such correlation. Reduction of hyperglycemia was associated with improvement in motor nerve conduction velocity in the peroneal and median motor nerves of these patients, but sensory nerve conduction velocity showed no such improvement. Improvement in median motor nerve conduction velocity was directly related to the degree of reduction in fasting plasma glucose concentration. These findings suggest that metabolic factors related to hyperglycemia are important in the impaired motor nerve function seen in noninsulin-dependent patients with maturity-onset diabetes. PMID:7457487

  11. Response to fifty grams oral glucose challenge test and pattern of preceding fasting plasma glucose in normal pregnant Nigerians

    PubMed Central

    Ajayi, Godwin Olufemi

    2014-01-01

    Background: Diabetes mellitus in pregnancy has profound implications for the baby and mother and thus active screening for this is desirable. Method: Fifty grams oral glucose challenge test was administered after obtaining consent to 222 women in good health with singleton pregnancies without diabetes mellitus at 24 to 28 weeks gestation after an overnight fast. Venous blood sample was obtained before and 1 hour after the glucose load. A diagnostic 3-hour 100 g oral glucose tolerance test was subsequently performed in all. Results: Two hundred and ten women had a normal response to oral glucose tolerance test i.e. venous plasma glucose below these cut-off levels: fasting 95 mg/dl (5.3 mmol/l), 1 hour 180 mg/dl (10.0 mmol/l), 2 hours 155 mg/dl (8.6 mmol/l) and 3 hours 140 mg/dl (7.8 mmol/l), while 12 were found to have gestational diabetes mellitus and were subsequently excluded from the study. They were appropriately managed. The mean maternal age was 30.9 ± 4.1 years (range 19 to 45 years) and the mean parity was 1.2 ± 1.1 (range 0 to 5). The mean fasting plasma glucose was 74.5 ± 11.5 mg/dl (range 42 to 117 mg/dl), while the mean plasma glucose 1 hour after 50 g glucose challenge test was 115.3 ± 19.1 mg/dl (range 56 to 180 mg/dl). Conclusions: The mean fasting plasma glucose in normal pregnant Nigerians was 74.5 ± 11.5 mg/dl (range 42 to 117 mg/dl). There is a need to re-appraise and possibly review downwards the World Health Organization fasting plasma glucose diagnostic criteria in pregnant Nigerians for better detection of gestational diabetes mellitus. Pregnant women with venous plasma glucose greater than 153.5 mg/dl (8.5 mmol/l) 1 hour after 50 g glucose challenge test are strongly recommended for diagnostic test of gestational diabetes mellitus.

  12. Effect of quinine therapy on plasma glucose and plasma insulin levels in pregnant women infected with Plasmodium falciparum malaria in Gezira state.

    PubMed

    Elbadawi, N E E; Mohamed, M I; Dawod, O Y; Ali, K E; Daoud, O H; Ali, E M; Ahmed, E G E; Mohamed, A E

    2011-09-01

    To determine if quinine has a metabolic effect during treatment of severe or complicated malaria, we studied its effects on plasma glucose and plasma insulin levels in 150 pregnant women with malaria referred to Madani maternity teaching hospital, Gezira state and 50 healthy pregnant controls. Levels were determined at baseline (day 0) before the start of quinine treatment, after 2 days of treatment (2 hours after the 4th dose) and after 7 days of treatment (day 8). There was a statistically significant increase in plasma insulin concentrations during the quinine infusion and fall in plasma glucose concentration (P < 0.001). Quinine administered at the recommended dose and rate can disrupt plasma glucose homeostasis although it is still the drug of choice for severe and complicated malaria in Sudan. PMID:22259921

  13. Misled by the Morning "Fasting" Plasma Glucose.

    PubMed

    King, Allen B

    2015-11-01

    Because of its ease and simplicity of its measurement, the morning fasting plasma glucose (FPG), has been as used a surrogate marker for the entire basal day when titrating once-nightly basal insulin. Common in obese insulin-treated patients with type 2 diabetes, late and large evening meals elevate the FPG. This has led to dosing of basal insulin well beyond the basal requirements and contributes to hypoglycemia and weight gain seen with this therapy. It is recommended that during basal insulin titration, the evening meal be limited and hypoglycemia be monitored early in the morning, that bewitching time when the "peakless" basal insulin's action is peaking and the predawn phenomenon insulin sensitivity is higher. PMID:25972281

  14. Effects of fasting on plasma glucose and prolonged tracer measurement of hepatic glucose output in NIDDM

    SciTech Connect

    Glauber, H.; Wallace, P.; Brechtel, G.

    1987-10-01

    We studied the measurement of hepatic glucose output (HGO) with prolonged (3-/sup 3/H)glucose infusion in 14 patients with non-insulin-dependent diabetes mellitus (NIDDM). Over the course of 10.5 h, plasma glucose concentration fell with fasting by one-third, from 234 +/- 21 to 152 +/- 12 mg/dl, and HGO fell from 2.35 +/- 0.18 to 1.36 +/- 0.07 mg . kg-1 . min-1 (P less than .001). In the basal state, HGO and glucose were significantly correlated (r = 0.68, P = .03), and in individual patients, HGO and glucose were closely correlated as both fell with fasting (mean r = 0.79, P less than .01). Plasma (3-/sup 3/H)glucose radioactivity approached a steady state only 5-6 h after initiation of the primed continuous infusion, and a 20% overestimate of HGO was demonstrated by not allowing sufficient time for tracer labeling of the glucose pool. Assumption of steady-state instead of non-steady-state kinetics in using Steele's equations to calculate glucose turnover resulted in a 9-24% overestimate of HGO. Stimulation of glycogenolysis by glucagon injection demonstrated no incorporation of (3-/sup 3/H)glucose in hepatic glycogen during the prolonged tracer infusion. In a separate study, plasma glucose was maintained at fasting levels (207 +/- 17 mg/dl) for 8 h with the glucose-clamp technique. Total glucose turnover rates remained constant during this prolonged tracer infusion. However, HGO fell to 30% of the basal value simply by maintaining fasting hyperglycemia in the presence of basal insulin levels.

  15. Normal fasting plasma glucose levels in some birds of prey.

    PubMed

    O'Donnell, J A; Garbett, R; Morzenti, A

    1978-10-01

    Blood samples taken from five great horned owls (Bubo virginianus), eight red-tailed hawks (Buteo jamaicensis), four marsh hawks (Circus cyaneus), two prairie falcons (Falco mexicanus), five golden eagles (Aquila chrysaetos), and five white leghorn chickens (Gallus domesticus) that had been fasted for 24 h were used to determine plasma levels of glucose by the glucose oxidase method. The mean plasma glucose levels were: great horned owls 374.6 mg/100 ml, red-tailed hawks 346.5 mg/00 ml, marsh hawks 369.3 mg/100 ml, prairie falcons 414.5 mg/100 ml, golden eagles 368.4 mg/100 ml, and white Leghorn chickens 218.2 mg/100 ml. The plasma glucose levels obtained for the raptorial birds in this study were considerably higher than those found for the chickens. These values are discussed in relation to the carnivorous food habits of raptors. PMID:739587

  16. Gestational diabetes mellitus: Screening with fasting plasma glucose.

    PubMed

    Agarwal, Mukesh M

    2016-07-25

    Fasting plasma glucose (FPG) as a screening test for gestational diabetes mellitus (GDM) has had a checkered history. During the last three decades, a few initial anecdotal reports have given way to the recent well-conducted studies. This review: (1) traces the history; (2) weighs the advantages and disadvantages; (3) addresses the significance in early pregnancy; (4) underscores the benefits after delivery; and (5) emphasizes the cost savings of using the FPG in the screening of GDM. It also highlights the utility of fasting capillary glucose and stresses the value of the FPG in circumventing the cumbersome oral glucose tolerance test. An understanding of all the caveats is crucial to be able to use the FPG for investigating glucose intolerance in pregnancy. Thus, all health professionals can use the patient-friendly FPG to simplify the onerous algorithms available for the screening and diagnosis of GDM - thereby helping each and every pregnant woman. PMID:27525055

  17. Gestational diabetes mellitus: Screening with fasting plasma glucose

    PubMed Central

    Agarwal, Mukesh M

    2016-01-01

    Fasting plasma glucose (FPG) as a screening test for gestational diabetes mellitus (GDM) has had a checkered history. During the last three decades, a few initial anecdotal reports have given way to the recent well-conducted studies. This review: (1) traces the history; (2) weighs the advantages and disadvantages; (3) addresses the significance in early pregnancy; (4) underscores the benefits after delivery; and (5) emphasizes the cost savings of using the FPG in the screening of GDM. It also highlights the utility of fasting capillary glucose and stresses the value of the FPG in circumventing the cumbersome oral glucose tolerance test. An understanding of all the caveats is crucial to be able to use the FPG for investigating glucose intolerance in pregnancy. Thus, all health professionals can use the patient-friendly FPG to simplify the onerous algorithms available for the screening and diagnosis of GDM - thereby helping each and every pregnant woman. PMID:27525055

  18. Plasma Efavirenz Concentrations Are Associated With Lipid and Glucose Concentrations

    PubMed Central

    Sinxadi, Phumla Zuleika; McIlleron, Helen Margaret; Dave, Joel Alex; Smith, Peter John; Levitt, Naomi Sharlene; Haas, David William; Maartens, Gary

    2016-01-01

    Abstract Efavirenz-based antiretroviral therapy (ART) has been associated with dyslipidemia and dysglycemia, risk factors for cardiovascular disease. However, the pathogenesis is not well understood. We characterized relationships between plasma efavirenz concentrations and lipid and glucose concentrations in HIV-infected South Africans. Participants on efavirenz-based ART were enrolled into a cross-sectional study. The oral glucose tolerance test was performed after an overnight fast, and plasma drawn for mid-dosing interval efavirenz, fasting total cholesterol, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol, and triglycerides concentrations. Among 106 participants (77 women), median age was 38 years, median CD4 + T-cell count was 322 cells/μL, median duration on ART was 18 months, and median (interquartile range) efavirenz concentration was 2.23 (1.66 to 4.10) μg/mL. On multivariable analyses (adjusting for age, sex, body mass index, and ART duration) doubling of efavirenz concentrations resulted in mean changes in mmol/L (95%CI) of: total cholesterol (0.40 [0.22 to 0.59]), LDL cholesterol (0.19 [0.04 to 0.30]), HDL cholesterol (0.14 [0.07 to 0.20]), triglycerides (0.17 [0.03 to 0.33]), fasting glucose (0.18 [0.03 to 0.33]), and 2-h glucose concentrations (0.33 [0.08 to 0.60]). Among 57 participants with CYP2B6 genotype data, associations between slow metabolizer genotypes and metabolic profiles were generally consistent with those for measured efavirenz concentrations. Higher plasma efavirenz concentrations are associated with higher plasma lipid and glucose concentrations. This may have implications for long-term cardiovascular complications of efavirenz-based ART, particularly among populations with high prevalence of CYP2B6 slow metabolizer genotypes. PMID:26765416

  19. Plasma Efavirenz Concentrations Are Associated With Lipid and Glucose Concentrations.

    PubMed

    Sinxadi, Phumla Zuleika; McIlleron, Helen Margaret; Dave, Joel Alex; Smith, Peter John; Levitt, Naomi Sharlene; Haas, David William; Maartens, Gary

    2016-01-01

    Efavirenz-based antiretroviral therapy (ART) has been associated with dyslipidemia and dysglycemia, risk factors for cardiovascular disease. However, the pathogenesis is not well understood. We characterized relationships between plasma efavirenz concentrations and lipid and glucose concentrations in HIV-infected South Africans.Participants on efavirenz-based ART were enrolled into a cross-sectional study. The oral glucose tolerance test was performed after an overnight fast, and plasma drawn for mid-dosing interval efavirenz, fasting total cholesterol, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol, and triglycerides concentrations.Among 106 participants (77 women), median age was 38 years, median CD4 + T-cell count was 322 cells/μL, median duration on ART was 18 months, and median (interquartile range) efavirenz concentration was 2.23 (1.66 to 4.10) μg/mL. On multivariable analyses (adjusting for age, sex, body mass index, and ART duration) doubling of efavirenz concentrations resulted in mean changes in mmol/L (95%CI) of: total cholesterol (0.40 [0.22 to 0.59]), LDL cholesterol (0.19 [0.04 to 0.30]), HDL cholesterol (0.14 [0.07 to 0.20]), triglycerides (0.17 [0.03 to 0.33]), fasting glucose (0.18 [0.03 to 0.33]), and 2-h glucose concentrations (0.33 [0.08 to 0.60]). Among 57 participants with CYP2B6 genotype data, associations between slow metabolizer genotypes and metabolic profiles were generally consistent with those for measured efavirenz concentrations.Higher plasma efavirenz concentrations are associated with higher plasma lipid and glucose concentrations. This may have implications for long-term cardiovascular complications of efavirenz-based ART, particularly among populations with high prevalence of CYP2B6 slow metabolizer genotypes. PMID:26765416

  20. Effect of acute hyperglycemia on potassium (86Rb+) permeability and plasma lipid peroxidation in subjects with normal glucose tolerance.

    PubMed

    Güven, M; Onaran, I; Ulutin, T; Sultuybek, G; Hatemi, H

    2001-04-01

    Hyperglycemia is likely to be one of the important determinants of ion transport as it is known to induce oxidative stress and may thus enhance non-specific permeability of membranes. The aim of the present study was to evaluate the effects of an acute increase in glycemia on 86Rb+ (a marker for K+) influx and lipid peroxidation. We evaluated the 75-g oral glucose tolerance test (OGTT)-induced modification on 86Rb+ influx and plasma lipid peroxidation in 20 subjects with normal glucose tolerance (NGT). After 2-hour glucose loading, the levels of passive 86Rb+ influx and plasma lipid peroxidation were significantly increased, whereas the active influx of 86Rb+ was unchanged. The total and passive influx of 86Rb+ into erythrocytes was significantly correlated with the level of plasma lipid peroxidation. This study demonstrates that acute hyperglycemia induces an increase in the passive influx of 86Rb+ in subjects with NGT, suggesting that acute hyperglycemia may produce an oxidative stress in plasma. These changes may be among the earliest changes occurring in response to hyperglycemia. PMID:11383909

  1. Effect of acute hyperglycemia on potassium (86Rb+) permeability and plasma lipid peroxidation in subjects with normal glucose tolerance.

    PubMed

    Güven, M; Onaran, I; Ulutin, T; Sultuybek, G; Hatemi, H

    2001-01-01

    Hyperglycemia is likely to be one of the important determinants of ion transport as it is known to induce oxidative stress and may thus enhance non-specific permeability of membranes. The aim of the present study was to evaluate the effects of an acute increase in glycemia on 86Rb+ (a marker for K+) influx and lipid peroxidation. We evaluated the 75-g oral glucose tolerance test (OGTT)-induced modification on 86Rb+ influx and plasma lipid peroxidation in 20 subjects with normal glucose tolerance (NGT). After 2-hour glucose loading, the levels of passive 86Rb+ influx and plasma lipid peroxidation were significantly increased, whereas the active influx of 86Rb+ was unchanged. The total and passive influx of 86Rb+ into erythrocytes was significantly correlated with the level of plasma lipid peroxidation. This study demonstrates that acute hyperglycemia induces an increase in the passive influx of 86Rb+ in subjects with NGT, suggesting that acute hyperglycemia may produce an oxidative stress in plasma. These changes may be among the earliest changes occurring in response to hyperglycemia. PMID:11508792

  2. One-Hour Postload Plasma Glucose Levels Are Associated with Kidney Dysfunction

    PubMed Central

    Succurro, Elena; Arturi, Franco; Lugarà, Marina; Grembiale, Alessandro; Fiorentino, Teresa Vanessa; Caruso, Vittoria; Andreozzi, Francesco; Sciacqua, Angela; Hribal, Marta Letizia; Perticone, Francesco

    2010-01-01

    Background and objectives: A cutoff of 155 mg/dl for 1-hour postload plasma glucose (1hPG) during the oral glucose tolerance test (OGTT) is able to identify patients who are at high risk for type 2 diabetes and vascular atherosclerosis. We aimed to examine whether individuals with 1hPG ≥155 mg/dl are also at increased risk for chronic kidney disease (CKD). Design, setting, participants, & measurements: Atherosclerosis risk factors, OGTT, and estimated GFR by Chronic Kidney Disease Epidemiology Collaboration equation were analyzed in 1075 white individuals without diabetes. Results: The area under the receiver operating characteristic curve for 1hPG was the highest (0.700) compared with the areas under the receiver operating characteristic curve of 0, 30-minute, and 2-hour glucose concentrations. Individuals with 1hPG ≥155 mg/dl had a worse cardiometabolic risk profile, exhibiting significantly higher body mass index, BP, triglycerides, and fasting insulin levels and lower HDL, IGF-1 levels, and insulin sensitivity, than individuals with 1hPG <155 mg/dl. Estimated GFR was significantly lower in individuals with 1hPG ≥155 mg/dl. In a logistic regression model adjusted for age and gender, individuals with 1hPG ≥155 mg/dl showed an increased risk for CKD compared with individuals with 1hPG <155 mg/dl. When the logistic regression analysis was restricted to individuals who had normal glucose tolerance, those with 1hPG ≥155 mg/dl showed a higher risk for CKD compared with individuals with 1hPG <155 mg/dl. Conclusions: These data suggest that a cutoff point of 155 mg/dl for the 1hPG during OGTT may be helpful in the identification of individuals who are at increased risk for CKD. PMID:20595688

  3. Changes in Plasma Levels of N-Arachidonoyl Ethanolamine and N-Palmitoylethanolamine following Bariatric Surgery in Morbidly Obese Females with Impaired Glucose Homeostasis

    PubMed Central

    Mallipedhi, Akhila; Prior, Sarah L.; Dunseath, Gareth; Bracken, Richard M.; Barry, Jonathan; Caplin, Scott; Eyre, Nia; Morgan, James; Baxter, John N.; O'Sullivan, Saoirse E.; Sarmad, Sarir; Barrett, David A.; Bain, Stephen C.; Luzio, Steve D.

    2015-01-01

    Aim. We examined endocannabinoids (ECs) in relation to bariatric surgery and the association between plasma ECs and markers of insulin resistance. Methods. A study of 20 participants undergoing bariatric surgery. Fasting and 2-hour plasma glucose, lipids, insulin, and C-peptide were recorded preoperatively and 6 months postoperatively with plasma ECs (AEA, 2-AG) and endocannabinoid-related lipids (PEA, OEA). Results. Gender-specific analysis showed differences in AEA, OEA, and PEA preoperatively with reductions in AEA and PEA in females postoperatively. Preoperatively, AEA was correlated with 2-hour glucose (r = 0.55, P = 0.01), HOMA-IR (r = 0.61, P = 0.009), and HOMA %S (r = −0.71, P = 0.002). OEA was correlated with weight (r = 0.49, P = 0.03), waist circumference (r = 0.52, P = 0.02), fasting insulin (r = 0.49, P = 0.04), and HOMA-IR (r = 0.48, P = 0.05). PEA was correlated with fasting insulin (r = 0.49, P = 0.04). 2-AG had a negative correlation with fasting glucose (r = −0.59, P = 0.04). Conclusion. Gender differences exist in circulating ECs in obese subjects. Females show changes in AEA and PEA after bariatric surgery. Specific correlations exist between different ECs and markers of obesity and insulin and glucose homeostasis. PMID:25874237

  4. The relationship of plasma glucose and electrocardiographic parameters in elderly women with different degrees of glucose tolerance.

    PubMed

    Solini, A; Passaro, A; D'Elia, K; Calzoni, F; Alberti, L; Fellin, R

    2000-08-01

    Plasma glucose has been regarded as a risk factor for macrovascular complications in diabetes, but less is known about its role in the development of cardiac impairment other than coronary heart disease (CHD). The aim of our study was to determine the relationship between basal and post-OGTT (Oral Glucose Tolerance Test) plasma glucose levels and some ECG parameters in a group of elderly women with normal or impaired glucose tolerance (IGT). One-hundred and one women with normal fasting glucose (<6.0 mmol/L) and no familial history or clinical signs of CHD and diabetes underwent an OGTT and a resting ECG. Based on the degree of glucose tolerance, we identified 24 women with a diagnostic OGTT for either IGT or diabetes; the 77 women (age range 52-88 years) with normal glucose tolerance were further divided into two groups according to their post-OGTT area under the curve (AUCG): below and above the median value (32 and 45 women, respectively). Basal plasma glucose and insulin levels, as well as lipid profile and percent of hypertensive patients were similar in the three groups. Mean corrected QT (QTc) was prolonged as a function of progressive worsening of glucose tolerance even after adjustment for possible confounding factors (p=0.03). A similar relationship was apparent when post-OGTT plasma glucose peak (GP) was considered. In a multiple regression analysis, AUCG and GP were the only factors independently related to both QTc and Sokolow index. Our observations suggest that, even in the presence of a normal glucose tolerance, plasma glucose concentrations during an OGTT are associated with peculiar ECG signs potentially combined with an increased risk of sudden death, arrhythmias, or cardiovascular mortality. PMID:11073343

  5. Dynamin 2 regulates biphasic insulin secretion and plasma glucose homeostasis

    PubMed Central

    Fan, Fan; Ji, Chen; Wu, Yumei; Ferguson, Shawn M.; Tamarina, Natalia; Philipson, Louis H.; Lou, Xuelin

    2015-01-01

    Alterations in insulin granule exocytosis and endocytosis are paramount to pancreatic β cell dysfunction in diabetes mellitus. Here, using temporally controlled gene ablation specifically in β cells in mice, we identified an essential role of dynamin 2 GTPase in preserving normal biphasic insulin secretion and blood glucose homeostasis. Dynamin 2 deletion in β cells caused glucose intolerance and substantial reduction of the second phase of glucose-stimulated insulin secretion (GSIS); however, mutant β cells still maintained abundant insulin granules, with no signs of cell surface expansion. Compared with control β cells, real-time capacitance measurements demonstrated that exocytosis-endocytosis coupling was less efficient but not abolished; clathrin-mediated endocytosis (CME) was severely impaired at the step of membrane fission, which resulted in accumulation of clathrin-coated endocytic intermediates on the plasma membrane. Moreover, dynamin 2 ablation in β cells led to striking reorganization and enhancement of actin filaments, and insulin granule recruitment and mobilization were impaired at the later stage of GSIS. Together, our results demonstrate that dynamin 2 regulates insulin secretory capacity and dynamics in vivo through a mechanism depending on CME and F-actin remodeling. Moreover, this study indicates a potential pathophysiological link between endocytosis and diabetes mellitus. PMID:26413867

  6. Gluconeogenesis is not acutely regulated by either plasma glucose or plasma insulin concentration in parenterally fed ELBW infants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Parenterally fed ELBW infants often exhibit erratic regulation of plasma glucose levels in response to changes in glucose infusion rate. This apparent dysregulation could be the result of an inappropriate insulin secretory response, incomplete suppression of glucose production, or an inadequate chan...

  7. Alcohol, postprandial plasma glucose, and prognosis of hepatocellular carcinoma

    PubMed Central

    Abe, Hiroshi; Aida, Yuta; Ishiguro, Haruya; Yoshizawa, Kai; Miyazaki, Tamihiro; Itagaki, Munenori; Sutoh, Satoshi; Aizawa, Yoshio

    2013-01-01

    AIM: To identify factors associated with prognosis of hepatocellular carcinoma (HCC) after initial therapy. METHODS: A total of 377 HCC patients who were newly treated at Katsushika Medical Center, Japan from January 2000 to December 2009 and followed up for > 2 years, or died during follow-up, were enrolled. The factors related to survival were first analyzed in 377 patients with HCC tumor stage T1-T4 using multivariate Cox proportional hazards regression analysis. A similar analysis was performed in 282 patients with tumor stage T1-T3. Additionally, factors associated with the period between initial and subsequent therapy were examined in 144 patients who did not show local recurrence. Finally, 214 HCC stage T1-T3 patients who died during the observation period were classified into four groups according to their alcohol consumption and postprandial glucose levels, and differences in their causes of death were examined. RESULTS: On multivariate Cox proportional hazards regression analysis, the following were significantly associated with survival: underlying liver disease stage [non-cirrhosis/Child-Pugh A vs B/C, hazard ratio (HR): 0.603, 95% CI: 0.417-0.874, P = 0.0079], HCC stage (T1/T2 vs T3/T4, HR: 0.447, 95% CI: 0.347-0.576, P < 0.0001), and mean postprandial plasma glucose after initial therapy (< 200 vs ≥ 200 mg/dL, HR: 0.181, 95% CI: 0.067-0.488, P = 0.0008). In T1-T3 patients, uninterrupted alcohol consumption after initial therapy (no vs yes, HR: 0.641, 95% CI: 0.469-0.877, P = 0.0055) was significant in addition to underlying liver disease stage (non-cirrhosis/Child-Pugh A vs B/C, HR: 0649, 95% CI: 0.476-0.885, P = 0.0068), HCC stage (T1 vs T2/T3, HR: 0.788, 95% CI: 0.653-0.945, P = 0.0108), and mean postprandial plasma glucose after initial therapy (< 200 mg/dL vs ≥ 200 mg/dL, HR: 0.502, 95% CI: 0.337-0.747, P = 0.0005). In patients without local recurrence, time from initial to subsequent therapy for newly emerging HCC was significantly longer in

  8. A mechanistic study to increase understanding of titanium dioxide nanoparticles-increased plasma glucose in mice.

    PubMed

    Hu, Hailong; Li, Li; Guo, Qian; Jin, Sanli; Zhou, Ying; Oh, Yuri; Feng, Yujie; Wu, Qiong; Gu, Ning

    2016-09-01

    Titanium dioxide nanoparticle (TiO2 NP) is an authorized food additive. Previous studies determined oral administration of TiO2 NPs increases plasma glucose in mice via inducing insulin resistance. An increase in reactive oxygen species (ROS) has been considered the possible mechanism of increasing plasma glucose. However, persistently high plasma glucose is also a mechanism of increasing ROS. This study aims to explore whether TiO2 NPs increase plasma glucose via ROS. We found after oral administration of TiO2 NPs, an increase in ROS preceded an increase in plasma glucose. Subsequently, mice were treated with two antioxidants (resveratrol and vitamin E) at the same time as oral administration of TiO2 NPs. Results showed resveratrol and vitamin E reduced TiO2 NPs-increased ROS. An increase in plasma glucose was also inhibited. Further research showed resveratrol and vitamin E inhibited the secretion of TNF-α and IL-6, and the phosphorylation of JNK and p38 MAPK, resulting in improved insulin resistance. These results suggest TiO2 NPs increased ROS levels, and then ROS activated inflammatory cytokines and phosphokinases, and thus induced insulin resistance, resulting in an increase in plasma glucose. Resveratrol and vitamin E can reduce TiO2 NPs-increased ROS and thereby inhibit an increase in plasma glucose in mice. PMID:27430421

  9. Plasma cortisol and glucose concentrations in the striped mullet ( Mugil cephalus L.) subjected to intense handling stress

    NASA Astrophysics Data System (ADS)

    Hong, Wanshu

    1992-03-01

    The plasma cortisol and glucose concentrations were determined in mature female striped mullet ( Mugil cephalus L.) subjected to short term intense handling stress. The results indicated that plasma cortisol levels reached a peak 20 min after stress and declined gradually afterwards. The highest concentration of plasma glucose was observed 30 min after stress. The present study showed that the rise of plasma glucose was associated with the plasma cortisol levels.

  10. Differential Responses of Plasma Adropin Concentrations To Dietary Glucose or Fructose Consumption In Humans.

    PubMed

    Butler, Andrew A; St-Onge, Marie-Pierre; Siebert, Emily A; Medici, Valentina; Stanhope, Kimber L; Havel, Peter J

    2015-01-01

    Adropin is a peptide hormone encoded by the Energy Homeostasis Associated (ENHO) gene whose physiological role in humans remains incompletely defined. Here we investigated the impact of dietary interventions that affect systemic glucose and lipid metabolism on plasma adropin concentrations in humans. Consumption of glucose or fructose as 25% of daily energy requirements (E) differentially affected plasma adropin concentrations (P < 0.005) irrespective of duration, sex or age. Glucose consumption reduced plasma adropin from 3.55 ± 0.26 to 3.28 ± 0.23 ng/ml (N = 42). Fructose consumption increased plasma adropin from 3.63 ± 0.29 to 3.93 ± 0.34 ng/ml (N = 45). Consumption of high fructose corn syrup (HFCS) as 25% E had no effect (3.43 ± 0.32 versus 3.39 ± 0.24 ng/ml, N = 26). Overall, the effect of glucose, HFCS and fructose on circulating adropin concentrations were similar to those observed on postprandial plasma triglyceride concentrations. Furthermore, increases in plasma adropin levels with fructose intake were most robust in individuals exhibiting hypertriglyceridemia. Individuals with low plasma adropin concentrations also exhibited rapid increases in plasma levels following consumption of breakfasts supplemented with lipids. These are the first results linking plasma adropin levels with dietary sugar intake in humans, with the impact of fructose consumption linked to systemic triglyceride metabolism. In addition, dietary fat intake may also increase circulating adropin concentrations. PMID:26435060

  11. Depressive symptoms linked to 1-h plasma glucose concentrations during the oral glucose tolerance test in men and women with the metabolic syndrome

    PubMed Central

    Birnbaum-Weitzman, O.; Goldberg, R.; Hurwitz, B. E.; Llabre, M. M.; Gellman, M. D.; Gutt, M.; McCalla, J. R.; Mendez, A. J.; Schneiderman, N.

    2014-01-01

    Aims The addition of the 1-h plasma glucose concentration measure from an oral glucose tolerance test to prediction models of future Type 2 diabetes has shown to significantly strengthen their predictive power. The present study examined the relationship between severity of depressive symptoms and hyperglycaemia, focusing on the 1-h glucose concentration vs. fasting and 2-h oral glucose tolerance test glucose measures. Methods Participants included 140 adults with the metabolic syndrome and without diabetes who completed a baseline psychobiological assessment and a 2-h oral glucose tolerance test, with measurements taken every 30 min. Depressive symptoms were assessed using the Beck Depression Inventory. Results Multivariate linear regression revealed that higher levels of depressive symptoms were associated with higher levels of 1-h plasma glucose concentrations after adjusting for age, gender, ethnicity, BMI, antidepressant use and high-sensitivity C-reactive protein. Results were maintained after controlling for fasting glucose as well as for indices of insulin resistance and secretion. Neither fasting nor 2-h plasma glucose concentrations were significantly associated with depressive symptoms. Conclusions Elevated depressive symptoms in persons with the metabolic syndrome were associated with greater glycaemic excursion 1-h following a glucose load that was not accounted for by differences in insulin secretory function or insulin sensitivity. Consistent with previous findings, this study highlights the value of the 1-h oral glucose tolerance test plasma glucose measurement in the relation between depressive symptoms and glucose metabolism as an indicator of metabolic abnormalities not visible when focusing on fasting and 2-h post-oral glucose tolerance test measurements alone. PMID:24344735

  12. Glycaemia regulates the glucose transporter number in the plasma membrane of rat skeletal muscle.

    PubMed Central

    Dimitrakoudis, D; Ramlal, T; Rastogi, S; Vranic, M; Klip, A

    1992-01-01

    The number of glucose transporters was measured in isolated membranes from diabetic-rat skeletal muscle to determine the role of circulating blood glucose levels in the control of glucose uptake into skeletal muscle. Three experimental groups of animals were investigated in the post-absorptive state: normoglycaemic/normoinsulinaemic, hyperglycaemic/normoinsulinaemic and hyperglycaemic/normoinsulinaemic made normoglycaemic/normoinsulinaemic by phlorizin treatment. Hyperglycaemia caused a reversible decrease in total transporter number, as measured by cytochalasin B binding, in both plasma membranes and internal membranes of skeletal muscle. Changes in GLUT4 glucose transporter protein mirrored changes in cytochalasin B binding in plasma membranes. However, there was no recovery of GLUT4 levels in intracellular membranes with correction of glycaemia. GLUT4 mRNA levels decreased with hyperglycaemia and recovered only partially with correction of glycaemia. Conversely, GLUT1 glucose transporters were only detectable in the plasma membranes; the levels of this protein varied directly with glycaemia, i.e. in the opposite direction to GLUT4 glucose transporters. This study demonstrates that hyperglycaemia, in the absence of hypoinsulinaemia, is capable of down-regulating the glucose transport system in skeletal muscle, the major site of peripheral resistance to insulin-stimulated glucose transport in diabetes. Furthermore, correction of hyperglycaemia causes a complete restoration of the transport system in the basal state (determined by the transporter number in the plasma membrane), but possibly only an incomplete recovery of the transport system's ability to respond to insulin (since there is no recovery of GLUT4 levels in the intracellular membrane insulin-responsive transporter pool). Finally, the effect of hyperglycaemia is specific for glucose transporter isoforms, with GLUT1 and GLUT4 proteins varying respectively in parallel and opposite directions to levels of

  13. Higher fasting plasma glucose is associated with striatal and hippocampal shape differences: the 2sweet project

    PubMed Central

    Zhang, Tianqi; Shaw, Marnie; Humphries, Jacob; Sachdev, Perminder; Anstey, Kaarin J; Cherbuin, Nicolas

    2016-01-01

    Objective Previous studies have demonstrated associations between higher normal fasting plasma glucose levels (NFG) (<6.1 mmol/L), type 2 diabetes (T2D) and hippocampal atrophy and other cerebral abnormalities. Little is known about the association between plasma glucose and the striatum despite sensorimotor deficits being implicated in T2D. This study aimed to investigate the relationship between plasma glucose levels and striatal and hippocampal morphology using vertex-based shape analysis. Design A population-based, cross-sectional study. Setting Canberra and Queanbeyan, Australia. Participants 287 cognitively healthy individuals (mean age 63 years, 132 female, 273 Caucasian) with (n=261) or without T2D (n=26), selected from 2551 participants taking part in the Personality & Total Health (PATH) Through Life study by availability of glucose data, MRI scan, and absence of gross brain abnormalities and cognitive impairment. Outcome measures Fasting plasma glucose was measured at first assessment, and MRI images were collected 8 years later. Shape differences indicating outward and inward deformation at the hippocampus and the striatum were examined with FMRIB Software Library-Integrated Registration and Segmentation Toolbox (FSL-FIRST) after controlling for sociodemographic and health variables. Results Higher plasma glucose was associated with shape differences indicating inward deformation, particularly at the caudate and putamen, among participants with NFG after controlling for age, sex, body mass index (BMI), hypertension, smoking and depressive symptoms. Those with T2D showed shape differences indicating inward deformation at the right hippocampus and bilateral striatum, but outward deformation at the left hippocampus, compared with participants with NFG. Conclusions These findings further emphasize the importance of early monitoring and management of plasma glucose levels, even within the normal range, as a risk factor for cerebral atrophy. PMID

  14. Decrease in the plasma von Willebrand factor concentration following glucose ingestion: the role of insulin sensitivity.

    PubMed

    von Känel, R; Nelesen, R A; Le, D T; Ziegler, M G; Dimsdale, J E

    2001-12-01

    Elevated plasma von Willebrand factor (vWF) concentration is thought to be associated with increased prevalence of cardiovascular events in the insulin resistance syndrome. We examined the effects of oral glucose challenge and accompanying metabolic and hemodynamic changes on vWF levels with respect to insulin sensitivity. Forty normotensive and hypertensive subjects (mean age +/- SD, 40 +/- 5 years) underwent a standard oral glucose tolerance test (OGTT). Plasma vWF antigen, glucose, insulin, catecholamines, and hemodynamics were measured at rest, and at 30, 60, 90, and 120 minutes after glucose intake. Insulin sensitivity was determined by the insulin sensitivity index (ISI(0,120)). Resting plasma vWF concentration was associated with screening systolic blood pressure (BP) (r =.43, P =.005). There were time effects for all variables of interest. While vWF antigen (P =.044), epinephrine (P =.003), and diastolic BP (P =.001) decreased after glucose challenge, norepinephrine (P =.009), systolic BP (P =.022), and heart rate (P <.001) increased. Decline in vWF (area under the curve) was associated with decrease in epinephrine (r =.46, P =.004) and with screening systolic BP (r =.45, P =.004). However, neither resting plasma vWF levels nor vWF decrease following glucose ingestion were significantly associated with the ISI(0,120.) The plasma vWF concentration decreases following glucose ingestion. While mechanisms underlying this phenomenon may relate to sympathetic nervous system function, they seem not related to insulin sensitivity. Endothelial dysfunction such as caused by hypertension rather than metabolic dysregulation per se may underlie the elevated plasma vWF concentration found with insulin resistance. PMID:11735092

  15. Plasma Glucose Levels for Red Drum Sciaenops Ocellatus in a Florida Estuarine Fisheries Reserve

    NASA Technical Reports Server (NTRS)

    Bourtis, Carla M.; Francis-Floyd, Ruth; Boggs, Ashley S P.; Reyier, Eric A.; Stolen, Eric D.; Yanong, Roy P.; Guillette, Louis J., Jr.

    2015-01-01

    Despite the significant value of the southeastern United States' red drum (Sciaenops ocellatus) fishery, there is a lack of clinical blood chemistry data. This was the first study to assess plasma glucose values as an indicator of stress response to evaluate variation and the effect of reproductive activity for wild adult red drum in Florida. Red drum (n=126) were collected from NASA's Kennedy Space Center waters during three reproductive periods in 2011. Samples were obtained from the branchial vessels of the gill arch. Plasma glucose levels were significantly different among reproductive periods, with the highest mean values recorded during the spawning period, September- October (38.23 mg / dL +/- 10.0). The glucose range was 17 - 69 mg / dL. Glucose values were lower during all three periods than previous values recorded for cultured or captive red drum studies. This may indicate that fish from this population were under less stress than other populations previously sampled.

  16. Detecting Prediabetes and Diabetes: Agreement between Fasting Plasma Glucose and Oral Glucose Tolerance Test in Thai Adults

    PubMed Central

    Aekplakorn, Wichai; Tantayotai, Valla; Numsangkul, Sakawduan; Sripho, Wilarwan; Tatsato, Nutchanat; Burapasiriwat, Tuanjai; Pipatsart, Rachada; Sansom, Premsuree; Luckanajantachote, Pranee; Chawarokorn, Pongpat; Thanonghan, Anek; Lakhamkaew, Watchira; Mungkung, Aungsumalin; Boonkean, Rungnapa; Chantapoon, Chanidsa; Kungsri, Mayuree; Luanseng, Kasetsak; Chaiyajit, Kornsinun

    2015-01-01

    Aim. To evaluate an agreement in identifying dysglycemia between fasting plasma glucose (FPG) and the 2 hr postprandial glucose tolerance test (OGTT) in a population with high risk of diabetes. Methods. A total of 6,884 individuals aged 35–65 years recruited for a community-based diabetes prevention program were tested for prediabetes including impaired fasting glucose (IFG) or impaired glucose tolerance (IGT), and diabetes. The agreement was assessed by Kappa statistics. Logistic regression was used to examine factors associated with missed prediabetes and diabetes by FPG. Results. A total of 2671 (38.8%) individuals with prediabetes were identified. The prevalence of prediabetes identified by FPG and OGTT was 32.2% and 22.3%, respectively. The proportions of diabetes classified by OGTT were two times higher than those identified by FPG (11.0% versus 5.4%, resp.). The Kappa statistics for agreement of both tests was 0.55. Overall, FPG missed 46.3% of all prediabetes and 54.7% of all diabetes cases. Prediabetes was more likely to be missed by FPG among female, people aged <45 yrs, and those without family history of diabetes. Conclusion. The detection of prediabetes and diabetes using FPG only may miss half of the cases. Benefit of adding OGTT to FPG in some specific groups should be confirmed. PMID:26347060

  17. Real-time estimation of plasma insulin concentration from continuous glucose monitor measurements.

    PubMed

    de Pereda, Diego; Romero-Vivo, Sergio; Ricarte, Beatriz; Rossetti, Paolo; Ampudia-Blasco, Francisco Javier; Bondia, Jorge

    2016-01-01

    Continuous glucose monitors can measure interstitial glucose concentration in real time for closed-loop glucose control systems, known as artificial pancreas. These control systems use an insulin feedback to maintain plasma glucose concentration within a narrow and safe range, and thus to avoid health complications. As it is not possible to measure plasma insulin concentration in real time, insulin models have been used in literature to estimate them. Nevertheless, the significant inter- and intra-patient variability of insulin absorption jeopardizes the accuracy of these estimations. In order to reduce these limitations, our objective is to perform a real-time estimation of plasma insulin concentration from continuous glucose monitoring (CGM). Hovorka's glucose-insulin model has been incorporated in an extended Kalman filter in which different selected time-variant model parameters have been considered as extended states. The observability of the original Hovorka's model and of several extended models has been evaluated by their Lie derivatives. We have evaluated this methodology with an in-silico study with 100 patients with Type 1 diabetes during 25 h. Furthermore, it has been also validated using clinical data from 12 insulin pump patients with Type 1 diabetes who underwent four mixed meal studies. Real-time insulin estimations have been compared to plasma insulin measurements to assess performance showing the validity of the methodology here used in comparison with that formerly used for insulin models. Hence, real-time estimations for plasma insulin concentration based on subcutaneous glucose monitoring can be beneficial for increasing the efficiency of control algorithms for the artificial pancreas. PMID:26343364

  18. Glucose-Insulin Therapy, Plasma Substrate Levels and Cardiac Recovery After Cardiac Ischemic Events

    PubMed Central

    Van Wezel, H. B.

    2008-01-01

    Introduction The potential usefulness of glucose-insulin therapy relies to a large extent on the premise that it prevents hyperglycemia and hyperlipidemia following cardiac ischemic events. Methods In this review we evaluate the literature concerning plasma glucose and free fatty acids levels during and following cardiac ischemic events. Results The data indicate that hyperlipidemia and hyperglycemia most likely occur during acute coronary ischemic syndromes in the conscious state (e.g. acute myocardial infarction) and less so during reperfusion following CABG reperfusion. This is in accordance with observations that glucose-insulin therapy during early reperfusion post CABG may actually cause hypolipidemia, because substantial hyperlipidemia does not appear to occur during that stage of cardiac surgery. Discussion Considering recent data indicating that hypolipidemia may be detrimental for cardiac function, we propose that free fatty acid levels during reperfusion post CABG with the adjunct glucose-insulin therapy need to be closely monitored. Conclusion From a clinical point of view, a strategy directed at monitoring and thereafter maintaining plasma substrate levels in the normal range for both glucose (4–6 mM) and FFA (0.2–0.6 mM) as well as stimulation of glucose oxidation, promises to be the most optimal metabolic reperfusion treatment following cardiac ischemic episodes. Future (preclinical and subsequently clinical) investigations are required to investigate whether the combination of glucose-insulin therapy with concomitant lipid administration may be beneficial in the setting of reperfusion post CABG. PMID:18266096

  19. Plasma glucose kinetics and response of insulin and GIP following a cereal breakfast in female subjects: effect of starch digestibility

    PubMed Central

    Péronnet, F; Meynier, A; Sauvinet, V; Normand, S; Bourdon, E; Mignault, D; St-Pierre, D H; Laville, M; Rabasa-Lhoret, R; Vinoy, S

    2015-01-01

    Background/Objectives: Foods with high contents of slowly digestible starch (SDS) elicit lower glycemic responses than foods with low contents of SDS but there has been debate on the underlying changes in plasma glucose kinetics, that is, respective contributions of the increase in the rates of appearance and disappearance of plasma glucose (RaT and RdT), and of the increase in the rate of appearance of exogenous glucose (RaE) and decrease in endogenous glucose production (EGP). Subjects/Methods: Sixteen young healthy females ingested in random order four types of breakfasts: an extruded cereal (0.3% SDS: Lo-SDS breakfast) or one of three biscuits (39–45% SDS: Hi-SDS breakfasts). The flour in the cereal products was labeled with 13C, and plasma glucose kinetics were measured using [6,6-2H2]glucose infusion, along with the response of plasma glucose, insulin and glucose-dependent insulinotropic peptide (GIP) concentrations. Results: When compared with the Lo-SDS breakfast, after the three Hi-SDS breakfasts, excursions in plasma glucose, the response of RaE, RaT and RdT, and the reduction in EGP were significantly lower (P<0.05). The amount of exogenous glucose absorbed over the 4.5-h postprandial period was also significantly lower by ~31% (P<0.001). These differences were associated with lower responses of GIP and insulin concentrations. Conclusions: Substituting extruded cereals with biscuits slows down the availability of glucose from the breakfast and its appearance in peripheral circulation, blunts the changes in plasma glucose kinetics and homeostasis, reduces excursions in plasma glucose, and possibly distributes the glucose ingested over a longer period following the meal. PMID:25852025

  20. Differential Responses of Plasma Adropin Concentrations To Dietary Glucose or Fructose Consumption In Humans

    PubMed Central

    Butler, Andrew A.; St-Onge, Marie-Pierre; Siebert, Emily A.; Medici, Valentina; Stanhope, Kimber L.; Havel, Peter J.

    2015-01-01

    Adropin is a peptide hormone encoded by the Energy Homeostasis Associated (ENHO) gene whose physiological role in humans remains incompletely defined. Here we investigated the impact of dietary interventions that affect systemic glucose and lipid metabolism on plasma adropin concentrations in humans. Consumption of glucose or fructose as 25% of daily energy requirements (E) differentially affected plasma adropin concentrations (P < 0.005) irrespective of duration, sex or age. Glucose consumption reduced plasma adropin from 3.55 ± 0.26 to 3.28 ± 0.23 ng/ml (N = 42). Fructose consumption increased plasma adropin from 3.63 ± 0.29 to 3.93 ± 0.34 ng/ml (N = 45). Consumption of high fructose corn syrup (HFCS) as 25% E had no effect (3.43 ± 0.32 versus 3.39 ± 0.24 ng/ml, N = 26). Overall, the effect of glucose, HFCS and fructose on circulating adropin concentrations were similar to those observed on postprandial plasma triglyceride concentrations. Furthermore, increases in plasma adropin levels with fructose intake were most robust in individuals exhibiting hypertriglyceridemia. Individuals with low plasma adropin concentrations also exhibited rapid increases in plasma levels following consumption of breakfasts supplemented with lipids. These are the first results linking plasma adropin levels with dietary sugar intake in humans, with the impact of fructose consumption linked to systemic triglyceride metabolism. In addition, dietary fat intake may also increase circulating adropin concentrations. PMID:26435060

  1. Performance of Fasting Plasma Glucose and Postprandial Urine Glucose in Screening for Diabetes in Chinese High-risk Population

    PubMed Central

    Yang, Bing-Quan; Lu, Yang; He, Jia-Jia; Wu, Tong-Zhi; Xie, Zuo-Ling; Lei, Cheng-Hao; Zhou, Yi; Han, Jing; Bian, Mei-Qi; You, Hong; Mei, De-Xian; Sun, Zi-Lin

    2015-01-01

    Background: The conventional approaches to diabetes screening are potentially limited by poor compliance and laboratory demand. This study aimed to evaluate the performance of fasting plasma glucose (FPG) and postprandial urine glucose (PUG) in screening for diabetes in Chinese high-risk population. Methods: Nine hundred and nine subjects with high-risk factors of diabetes underwent oral glucose tolerance test after an overnight fast. FPG, hemoglobin A1c, 2-h plasma glucose (2 h-PG), and 2 h-PUG were evaluated. Diabetes and prediabetes were defined by the American Diabetes Association criteria. The area under the receiver operating characteristic (ROC) curve was used to evaluate the diagnostic accuracy of 2 h-PUG, and the optimal cut-off determined to provide the largest Youden index. Spearman correlation was used for relationship analysis. Results: Among 909 subjects, 33.4% (304/909) of subjects had prediabetes, and 17.2% (156/909) had diabetes. The 2 h-PUG was positively related to FPG and 2 h-PG (r = 0.428 and 0.551, respectively, both P < 0.001). For estimation of 2 h-PG ≥ 7.8 mmol/L and 2 h-PG ≥ 11.1 mmol/L using 2 h-PUG, the area under the ROC curve were 0.772 (95% confidence interval [CI ]: 0.738–0.806) and 0.885 (95% CI: 0.850–0.921), respectively. The corresponding optimal cut-offs for 2 h-PUG were 5.6 mmol/L and 7.5 mmol/L, respectively. Compared with FPG alone, FPG combined with 2 h-PUG had a higher sensitivity for detecting glucose abnormalities (84.1% vs. 73.7%, P < 0.001) and diabetes (82.7% vs. 48.1%, P < 0.001). Conclusion: FPG combined with 2 h-PUG substantially improves the sensitivity in detecting prediabetes and diabetes relative to FPG alone, and may represent an efficient layperson-oriented diabetes screening method. PMID:26668139

  2. Decrease of Plasma Glucose by Hibiscus taiwanensis in Type-1-Like Diabetic Rats

    PubMed Central

    Wang, Lin-Yu; Chung, Hsien-Hui

    2013-01-01

    Hibiscus taiwanensis (Malvaceae) is widely used as an alternative herb to treat disorders in Taiwan. In the present study, it is used to screen the effect on diabetic hyperglycemia in streptozotocin-induced diabetic rats (STZ-diabetic rats). The extract of Hibiscus taiwanensis showed a significant plasma glucose-lowering action in STZ-diabetic rats. Stems of Hibiscus taiwanensis are more effective than other parts to decrease the plasma glucose in a dose-dependent manner. Oral administration of Hibiscus taiwanensis three times daily for 3 days into STZ-diabetic rats increased the sensitivity to exogenous insulin showing an increase in insulin sensitivity. Moreover, similar repeated administration of Hibiscus taiwanensis for 3 days in STZ-diabetic rats produced a marked reduction of phosphoenolpyruvate carboxykinase (PEPCK) expression in liver and an increased expression of glucose transporter subtype 4 (GLUT 4) in skeletal muscle. Taken together, our results suggest that Hibiscus taiwanensis has the ability to lower plasma glucose through an increase in glucose utilization via elevation of skeletal GLUT 4 and decrease of hepatic PEPCK in STZ-diabetic rats. PMID:23690841

  3. Urinary N-acetyl-β-d-Glucosaminidase Levels are Positively Correlated With 2-Hr Plasma Glucose Levels During Oral Glucose Tolerance Testing in Prediabetes

    PubMed Central

    Ouchi, Motoshi; Suzuki, Tatsuya; Hashimoto, Masao; Motoyama, Masayuki; Ohara, Makoto; Suzuki, Kazunari; Igari, Yoshimasa; Watanabe, Kentaro; Nakano, Hiroshi; Oba, Kenzo

    2012-01-01

    Background Urinary N-acetyl-β-D-glucosaminidase (NAG) excretion is increased in patients with impaired glucose tolerance (IGT). This study investigated when during the oral glucose tolerance test (OGTT) the plasma glucose, urine glucose, and insulin levels correlate most strongly with urinary N-acetyl-β-d-glucosaminidase (NAG) levels in prediabetic subjects. Methods The OGTT was administered to 80 subjects who had not yet received a diagnosis of diabetes mellitus (DM) and in whom HbA1c levels were ≤6.8% and fasting plasma glucose levels were <7.0 mmol/l. Forty-two subjects had normal glucose tolerance (NGT), 31 had impaired glucose tolerance (IGT), and 7 had DM according to World Health Organization criteria. Serum levels of cystatin C, the estimated glomerular filtration rate, the urinary albumin-to-creatinine (Cr) ratio, urinary and serum β2-microglobulin, and urinary NAG were measured as markers of renal function. Results NAG levels were significantly higher in subjects with DM and in subjects with IGT than in subjects with NGT. No significant associations were observed between glycemic status and other markers of renal function. Multiple linear regression analysis showed that the NAG level was positively correlated with plasma glucose levels at 120 min of the OGTT and was associated with the glycemic status of prediabetic patients. Conclusion These results suggest that postprandial hyperglycemia is an independent factor that causes renal tubular damage in prediabetes patients. PMID:23143631

  4. Post-glucose-load urinary C-peptide and glucose concentration obtained during OGTT do not affect oral minimal model-based plasma indices.

    PubMed

    Jainandunsing, Sjaam; Wattimena, J L Darcos; Rietveld, Trinet; van Miert, Joram N I; Sijbrands, Eric J G; de Rooij, Felix W M

    2016-05-01

    The purpose of this study was to investigate how renal loss of both C-peptide and glucose during oral glucose tolerance test (OGTT) relate to and affect plasma-derived oral minimal model (OMM) indices. All individuals were recruited during family screening between August 2007 and January 2011 and underwent a 3.5-h OGTT, collecting nine plasma samples and urine during OGTT. We obtained the following three subgroups: normoglycemic, at risk, and T2D. We recruited South Asian and Caucasian families, and we report separate analyses if differences occurred. Plasma glucose, insulin, and C-peptide concentrations were analyzed as AUCs during OGTT, OMM estimate of renal C-peptide secretion, and OMM beta-cell and insulin sensitivity indices were calculated to obtain disposition indices. Post-glucose load glucose and C-peptide in urine were measured and related to plasma-based indices. Urinary glucose corresponded well with plasma glucose AUC (Cau r = 0.64, P < 0.01; SA r = 0.69, P < 0.01), S I (Cau r = -0.51, P < 0.01; SA r = -0.41, P < 0.01), Φ dynamic (Cau r = -0.41, P < 0.01; SA r = -0.57, P < 0.01), and Φ oral (Cau r = -0.61, P < 0.01; SA r = -0.73, P < 0.01). Urinary C-peptide corresponded well to plasma C-peptide AUC (Cau r = 0.45, P < 0.01; SA r = 0.33, P < 0.05) and OMM estimate of renal C-peptide secretion (r = 0.42, P < 0.01). In general, glucose excretion plasma threshold for the presence of glucose in urine was ~10-10.5 mmol L(-1) in non-T2D individuals, but not measurable in T2D individuals. Renal glucose secretion during OGTT did not influence OMM indices in general nor in T2D patients (renal clearance range 0-2.1 %, with median 0.2 % of plasma glucose AUC). C-indices of urinary glucose to detect various stages of glucose intolerance were excellent (Cau 0.83-0.98; SA 0.75-0.89). The limited role of renal glucose secretion validates the neglecting of urinary glucose secretion in kinetic models of glucose

  5. Glucose-independent inhibition of yeast plasma-membrane H+-ATPase by calmodulin antagonists.

    PubMed Central

    Romero, I; Maldonado, A M; Eraso, P

    1997-01-01

    Glucose metabolism causes activation of the yeast plasma-membrane H+-ATPase. The molecular mechanism of this regulation is not known, but it is probably mediated by phosphorylation of the enzyme. The involvement in this process of several kinases has been suggested but their actual role has not been proved. The physiological role of a calmodulin-dependent protein kinase in glucose-induced activation was investigated by studying the effect of specific calmodulin antagonists on the glucose-induced ATPase kinetic changes in wild-type and two mutant strains affected in the glucose regulation of the enzyme. Preincubation of the cells with calmidazolium or compound 48/80 impeded the increase in ATPase activity by reducing the Vmax of the enzyme without modifying the apparent affinity for ATP in the three strains. In one mutant, pma1-T912A, the putative calmodulin-dependent protein kinase-phosphorylatable Thr-912 was eliminated, and in the other, pma1-P536L, H+-ATPase was constitutively activated, suggesting that the antagonistic effect was not mediated by a calmodulin-dependent protein kinase and not related to glucose regulation. This was corroborated when the in vitro effect of the calmodulin antagonists on H+-ATPase activity was tested. Purified plasma membranes from glucose-starved or glucose-fermenting cells from both pma1-P890X, another constitutively activated ATPase mutant, and wild-type strains were preincubated with calmidazolium or melittin. In all cases, ATP hydrolysis was inhibited with an IC50 of approximately 1 microM. This inhibition was reversed by calmodulin. Analysis of the calmodulin-binding protein pattern in the plasma-membrane fraction eliminates ATPase as the calmodulin target protein. We conclude that H+-ATPase inhibition by calmodulin antagonists is mediated by an as yet unidentified calmodulin-dependent membrane protein. PMID:9148755

  6. 29 CFR 2530.200b-2 - Hour of service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINIMUM STANDARDS FOR EMPLOYEE PENSION BENEFIT PLANS UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY ACT OF 1974 RULES AND REGULATIONS FOR MINIMUM STANDARDS FOR EMPLOYEE PENSION BENEFIT PLANS Scope and General Provisions § 2530.200b-2 Hour of service. (a) General rule. An hour of service which must, as a minimum,...

  7. Caffeic acid as active principle from the fruit of Xanthium strumarium to lower plasma glucose in diabetic rats.

    PubMed

    Hsu, F L; Chen, Y C; Cheng, J T

    2000-04-01

    The antihyperglycemic effect of caffeic acid, one of the phenolic compounds contained in the fruit of Xanthium strumarium, was investigated. After an intravenous injection of caffeic acid into diabetic rats of both streptozotocin-induced and insulin-resistant models, a dose-dependent decrease of plasma glucose was observed. However, a similar effect was not produced in normal rats. An insulin-independent action of caffeic acid can thus be considered. Otherwise, this compound reduced the elevation of plasma glucose level in insulin-resistant rats receiving a glucose challenge test. Also, glucose uptake into the isolated adipocytes was raised by caffeic acid in a concentration-dependent manner. Increase of glucose utilization by caffeic acid seems to be responsible for the lowering of plasma glucose. PMID:10821047

  8. Radiation inactivation target size of rat adipocyte glucose transporters in the plasma membrane and intracellular pools

    SciTech Connect

    Jacobs, D.B.; Berenski, C.J.; Spangler, R.A.; Jung, C.Y.

    1987-06-15

    The in situ assembly states of the glucose transport carrier protein in the plasma membrane and in the intracellular (microsomal) storage pool of rat adipocytes were assessed by studying radiation-induced inactivation of the D-glucose-sensitive cytochalasin B binding activities. High energy radiation inactivated the glucose-sensitive cytochalasin B binding of each of these membrane preparations by reducing the total number of the binding sites without affecting the dissociation constant. The reduction in total number of binding sites was analyzed as a function of radiation dose based on target theory, from which a radiation-sensitive mass (target size) was calculated. When the plasma membranes of insulin-treated adipocytes were used, a target size of approximately 58,000 daltons was obtained. For adipocyte microsomal membranes, we obtained target sizes of approximately 112,000 and 109,000 daltons prior to and after insulin treatment, respectively. In the case of microsomal membranes, however, inactivation data showed anomalously low radiation sensitivities at low radiation doses, which may be interpreted as indicating the presence of a radiation-sensitive inhibitor. These results suggest that the adipocyte glucose transporter occurs as a monomer in the plasma membrane while existing in the intracellular reserve pool either as a homodimer or as a stoichiometric complex with a protein of an approximately equal size.

  9. The effect of insulin on plasma glucose concentrations, expression of hepatic glucose transporters and key gluconeogenic enzymes during the perinatal period in broiler chickens.

    PubMed

    Franssens, Lies; Lesuisse, Jens; Wang, Yufeng; Willems, Els; Willemsen, Hilke; Koppenol, Astrid; Guo, Xiaoquan; Buyse, Johan; Decuypere, Eddy; Everaert, Nadia

    2016-06-01

    Chickens have blood glucose concentrations that are twofold higher than those observed in mammals. Moreover, the insulin sensitivity seems to decrease with postnatal age in both broiler and layer chickens. However, little is known about the response of insulin on plasma glucose concentrations and mRNA abundance of hepatic glucose transporters 1, 2, 3, 8, 9 and 12 (GLUT1, 2, 3, 8, 9 and 12) and three regulatory enzymes of the gluconeogenesis, phosphoenolpyruvate carboxykinase 1 and 2 (PCK1 and 2) or fructose-1,6-biphosphatase 1 (FBP1) in chicks during the perinatal period. In the present study, broiler embryos on embryonic day (ED)16, ED18 or newly-hatched broiler chicks were injected intravenously with bovine insulin (1μg/g body weight (BW)) to examine plasma glucose response and changes in hepatic mRNA abundance of the GLUTs, PCK1 and 2 and FBP1. Results were compared with a non-treated control group and a saline-injected sham group. Plasma glucose levels of insulin-treated ED18 embryos recovered faster from their minimum level than those of insulin-treated ED16 embryos or newly-hatched chicks. In addition, at the minimum plasma glucose level seven hours post-injection (PI), hepatic GLUT2, FBP1 and PCK2 mRNA abundance was decreased in insulin-injected embryos, compared to sham and control groups, being most pronounced when insulin injection occurred on ED16. PMID:26723190

  10. Noninvasive measurement of plasma glucose from exhaled breath in healthy and type 1 diabetic subjects

    PubMed Central

    Oliver, Stacy R.; Ngo, Jerry; Flores, Rebecca; Midyett, Jason; Meinardi, Simone; Carlson, Matthew K.; Rowland, F. Sherwood; Blake, Donald R.; Galassetti, Pietro R.

    2011-01-01

    Effective management of diabetes mellitus, affecting tens of millions of patients, requires frequent assessment of plasma glucose. Patient compliance for sufficient testing is often reduced by the unpleasantness of current methodologies, which require blood samples and often cause pain and skin callusing. We propose that the analysis of volatile organic compounds (VOCs) in exhaled breath can be used as a novel, alternative, noninvasive means to monitor glycemia in these patients. Seventeen healthy (9 females and 8 males, 28.0 ± 1.0 yr) and eight type 1 diabetic (T1DM) volunteers (5 females and 3 males, 25.8 ± 1.7 yr) were enrolled in a 240-min triphasic intravenous dextrose infusion protocol (baseline, hyperglycemia, euglycemia-hyperinsulinemia). In T1DM patients, insulin was also administered (using differing protocols on 2 repeated visits to separate the effects of insulinemia on breath composition). Exhaled breath and room air samples were collected at 12 time points, and concentrations of ∼100 VOCs were determined by gas chromatography and matched with direct plasma glucose measurements. Standard least squares regression was used on several subsets of exhaled gases to generate multilinear models to predict plasma glucose for each subject. Plasma glucose estimates based on two groups of four gases each (cluster A: acetone, methyl nitrate, ethanol, and ethyl benzene; cluster B: 2-pentyl nitrate, propane, methanol, and acetone) displayed very strong correlations with glucose concentrations (0.883 and 0.869 for clusters A and B, respectively) across nearly 300 measurements. Our study demonstrates the feasibility to accurately predict glycemia through exhaled breath analysis over a broad range of clinically relevant concentrations in both healthy and T1DM subjects. PMID:21467303

  11. Associations between plasma glucose and DSM-III-R cluster B personality traits in psychiatric outpatients.

    PubMed

    Svanborg, P; Mattila-Evenden, M; Gustavsson, P J; Uvnäs-Moberg, K; Asberg, M

    2000-01-01

    Associations between personality traits, measured with the Karolinska Scales of Personality, the Impulsiveness subscale from the Impulsiveness, Venturesomeness and Empathy (IVE) Inventory, and with self-assessed personality traits and disorders (SCID-II Screen Questionnaire), and plasma insulin, glucagon and glucose, respectively, were explored in a sample of 101 psychiatric outpatients of both sexes. No relationships between the peptide hormones and personality measures were found. However, fasting glucose values, which were all essentially within the normal biological variation, were significantly related to several personality measures. For males, a low blood glucose was associated with low stable general level of functioning, with high IVE Impulsiveness, and with self-assessed histrionic and narcissistic traits. High number of self-assessed personality traits for all cluster B personality disorders was strongly associated with high IVE Impulsiveness. The results of the present study support the generalizability of earlier findings from alcoholic impulsive offenders: in males, low blood glucose is associated with an extrovert and impulsive, acting-out behavior that includes the breaking of societal norms and rules. In contrast, for females a positive relationship between fasting glucose and self-assessed histrionic personality traits was found. Because no association between global level of functioning and glucose was found in women, these personality traits may not necessarily be maladaptive, as was the case for males. PMID:10644928

  12. The validation of the Z-Scan technique for the determination of plasma glucose

    NASA Astrophysics Data System (ADS)

    Alves, Sarah I.; Silva, Elaine A. O.; Costa, Simone S.; Sonego, Denise R. N.; Hallack, Maira L.; Coppini, Ornela L.; Rowies, Fernanda; Azzalis, Ligia A.; Junqueira, Virginia B. C.; Pereira, Edimar C.; Rocha, Katya C.; Fonseca, Fernando L. A.

    2013-11-01

    Glucose is the main energy source for the human body. The concentration of blood glucose is regulated by several hormones including both antagonists: insulin and glucagon. The quantification of glucose in the blood is used for diagnosing metabolic disorders of carbohydrates, such as diabetes, idiopathic hypoglycemia and pancreatic diseases. Currently, the methodology used for this determination is the enzymatic colorimetric with spectrophotometric. This study aimed to validate the use of measurements of nonlinear optical properties of plasma glucose via the Z-Scan technique. For this we used samples of calibrator patterns that simulate commercial samples of patients (ELITech ©). Besides calibrators, serum glucose levels within acceptable reference values (normal control serum - Brazilian Society of Clinical Pathology and Laboratory Medicine) and also overestimated (pathological control serum - Brazilian Society of Clinical Pathology and Laboratory Medicine) were used in the methodology proposal. Calibrator dilutions were performed and determined by the Z-Scan technique for the preparation of calibration curve. In conclusion, Z-Scan method can be used to determinate glucose levels in biological samples with enzymatic colorimetric reaction and also to apply the same quality control parameters used in biochemistry clinical.

  13. Phospholipids from herring roe improve plasma lipids and glucose tolerance in healthy, young adults

    PubMed Central

    2014-01-01

    Background Herring roe is an underutilized source of n-3 polyunsaturated fatty acids (PUFAs) for human consumption with high phospholipid (PL) content. Studies have shown that PL may improve bioavailability of n-3 PUFAs. Arctic Nutrition’s herring roe product MOPL™30 is a PL: docosahexaenoic acid (DHA)-rich fish oil mixture, with a DHA:eicosapentaenoic acid (EPA) ratio of about 3:1, which is also rich in choline. In this pilot study, we determined if MOPL30 could favorably affect plasma lipid parameters and glucose tolerance in healthy young adults. Methods Twenty female and one male adults, between 22 and 26 years of age, participated in the study. Participants took encapsulated MOPL30, 2.4 g/d EPA + DHA, for 14 days, and completed a three-day weighed food record before and during the capsule intake. Plasma lipids and their fatty acid (FA) composition, plasma and red blood cell (RBC) phosphatidylcholine (PC) FA composition, acylcarnitines, choline, betaine and insulin were measured before and after supplementation (n = 21), and one and four weeks after discontinuation of supplementation (n = 14). An oral glucose tolerance test was performed before and after supplementation. Results Fasting plasma triacylglycerol and non-esterified fatty acids decreased and HDL-cholesterol increased after 14 days of MOPL30 intake (p < 0.05). The dietary records showed that PUFA intake prior to and during capsule intake was not different. Fasting plasma glucose was unchanged from before to after supplementation. However, during oral glucose tolerance testing, blood glucose at both 10 and 120 min was significantly lower after supplementation with MOPL30 compared to baseline measurements. Plasma free choline and betaine were increased, and the n-6/n-3 polyunsaturated (PUFA) ratio in plasma and RBC PC were decreased post-supplementation. Four weeks after discontinuation of MOPL30, most parameters had returned to baseline, but a delayed effect was observed on n-6

  14. Spectral analysis of time functions of plasma glucose and immunoreactive insulin during intravenous glucose tolerance testing on atherosclerosis and noninsulin-dependent diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Malinov, Igor A.; Denisova, Tatyana P.; Malinova, Lidia I.; Brook, Sergey B.

    2000-04-01

    The time functions of plasma glucose and insulin obtained during intravenous glucose tolerance test were approximated by sections of Fourier series. The convincing quantitative and quality distinctions of amplitudes both phases of the first and second harmonics of decomposition of the indicated time functions are obtained. These distinctions were used as a basis of diagnostic algorithm of metabolic violations appropriate for atherosclerosis and non-insulin dependent diabetes mellitus in clinically obvious and preclinical stages.

  15. Berries modify the postprandial plasma glucose response to sucrose in healthy subjects.

    PubMed

    Törrönen, Riitta; Sarkkinen, Essi; Tapola, Niina; Hautaniemi, Elina; Kilpi, Kyllikki; Niskanen, Leo

    2010-04-01

    Sucrose increases postprandial blood glucose concentrations, and diets with a high glycaemic response may be associated with increased risk of obesity, type 2 diabetes and CVD. Previous studies have suggested that polyphenols may influence carbohydrate digestion and absorption and thereby postprandial glycaemia. Berries are rich sources of various polyphenols and berry products are typically consumed with sucrose. We investigated the glycaemic effect of a berry purée made of bilberries, blackcurrants, cranberries and strawberries, and sweetened with sucrose, in comparison to sucrose with adjustment of available carbohydrates. A total of twelve healthy subjects (eleven women and one man, aged 25-69 years) with normal fasting plasma glucose ingested 150 g of the berry purée with 35 g sucrose or a control sucrose load in a randomised, controlled cross-over design. After consumption of the berry meal, the plasma glucose concentrations were significantly lower at 15 and 30 min (P < 0.05, P < 0.01, respectively) and significantly higher at 150 min (P < 0.05) compared with the control meal. The peak glucose concentration was reached at 45 min after the berry meal and at 30 min after the control meal. The peak increase from the baseline was 1.0 mmol/l smaller (P = 0.002) after ingestion of the berry meal. There was no statistically significant difference in the 3 h area under the glucose response curve. These results show that berries rich in polyphenols decrease the postprandial glucose response of sucrose in healthy subjects. The delayed and attenuated glycaemic response indicates reduced digestion and/or absorption of sucrose from the berry meal. PMID:19930765

  16. Effects of sauna and glucose intake on TSH and thyroid hormone levels in plasma of euthyroid subjects.

    PubMed

    Strbák, V; Tatár, P; Angyal, R; Strec, V; Aksamitová, K; Vigas, M; Jánosová, H

    1987-05-01

    The effect of sauna on thyroid function parameters and its modification by glucose was studied in young euthyroid male volunteers. A 30-minute stay in sauna resulted in an increase in plasma TSH; the response was exaggerated if glycemia had been increased by oral glucose intake at the beginning of the experiment. Plasma rT3 also increased in sauna, this response was, however, blunted by the higher glycemia. TSH response to sauna was definitely present in young men (aged 20 to 25) and absent in middle-aged ones (50 to 55). To explore the mechanism of the effect of increased glycemia, TRH tests were performed and dopamine infusions were administered with and without glucose pretreatment. Increased glycemia did not affect TSH and T3 response to TRH in young volunteers; however, 90 minutes after the administration, plasma rT3 levels were significantly lower in glucose pretreated subjects than in those receiving TRH injections after water pretreatment. Simultaneous infusion of glucose prevented the inhibitory effect of dopamine infusion on plasma TSH. It was concluded that glucose directly modulates the effect of sauna on plasma TSH at a suprapituitary level, while the inhibiting effect of glucose on plasma rT3 response to sauna and TRH is probably mediated by the insulin effect on thyroid hormone metabolism. PMID:3106755

  17. Alteration in plasma glucose levels in Japanese encephalitis patients.

    PubMed

    Tandon, Apurva; Singh, Aditi; Atrishi, Ekta; Saxena, S K; Mathur, Asha

    2002-02-01

    A unique factor, human T cell hypoglycaemic factor (hTCHF), has been shown to produce hypoglycaemia during the convalescent stage in the plasma of patients with Japanese encephalitis virus (JEV) infection. The present study was undertaken to investigate the ability of T cells from fresh peripheral blood mononuclear cells (PBMC) of such patients to produce hTCHF. The PBMC, as well as the individual subpopulations, were cultured for 24 h and the culture supernatants (CS) were assayed for hypoglycaemic activity. The activity was observed in the CD8+ T cells. The hypoglycaemia in JE-confirmed patients coincided with the gradual rise in circulating glucagon level, with no significant alterations in insulin, growth hormone and cortisol levels. The hTCHF was purified by ion exchange chromatography and the purified protein was observed as a approximately 25 kDa band on SDS-PAGE. Secretory hTCHF in the sera of patients and T cell CS was present in 88% of convalescent serum samples. We conclude that during the convalescent stage of JEV infection, a unique factor, hTCHF, is secreted by activated CD8+ T cells from patients and that this is responsible for the development of hypoglycaemia. PMID:12059908

  18. Postnatal Stress in Mice: Effects on Body Fat, Plasma Lipids, Glucose and Insulin.

    PubMed

    d'Amore, A; Caiola, S; Maroccia, E; Loizzo, A

    2000-01-01

    Mice pups were exposed to stressful stimuli everyday during the first 3 weeks of life. Body weight, food intake and spontaneous locomotor activity, triglycerides, cholesterol, phospholipids, glucose and insulin basal levels, as well as epididymal fat pad weight and its cell volume were measured in stressed and control animals. Results indicated that postnatal stressful manipulations induced an increase in body weight, epididymal fat pad weight and its cell volume, as well as in insulin, glucose, cholesterol and triglycerides plasma levels, at 4 months of age. No significant changes in food consumption, locomotor activity and phospholipids plasma levels were found. Present data suggest that early stressful manipulations may induce residual effects on lipid and glucid metabolism. PMID:27414054

  19. Xanthohumol lowers body weight and fasting plasma glucose in obese male Zucker fa/fa rats.

    PubMed

    Legette, Leecole L; Luna, Arlyn Y Moreno; Reed, Ralph L; Miranda, Cristobal L; Bobe, Gerd; Proteau, Rosita R; Stevens, Jan F

    2013-07-01

    Obesity contributes to increased risk for several chronic diseases including cardiovascular disease and type 2 diabetes. Xanthohumol, a prenylated flavonoid from hops (Humulus lupulus), was tested for efficacy on biomarkers of metabolic syndrome in 4 week old Zucker fa/fa rats, a rodent model of obesity. Rats received daily oral doses of xanthohumol at 0, 1.86, 5.64, and 16.9 mg/kg BW for 6 weeks. All rats were maintained on a high fat (60% kcal) AIN-93G diet for 3 weeks to induce severe obesity followed by a normal AIN-93G (15% kcal fat) diet for the last 3 weeks of the study. Weekly food intake and body weight were recorded. Plasma cholesterol, glucose, insulin, triglyceride, and monocyte chemoattractant protein-1 (MCP-1) levels were assessed using commercial assay kits. Plasma and liver tissue levels of XN and its metabolites were determined by liquid-chromatography tandem mass spectrometry. Plasma and liver tissue levels of xanthohumol were similar between low and medium dose groups and significantly (p<0.05) elevated in the highest dose group. There was a dose-dependent effect on body weight and plasma glucose levels. The highest dose group (n=6) had significantly lower plasma glucose levels compared to the control group (n=6) in male but not female rats. There was also a significant decrease in body weight for male rats in the highest dose group (16.9 mg/kg BW) compared to rats that received no xanthohumol, which was also not seen for female rats. Plasma cholesterol, insulin, triglycerides, and MCP-1 as well as food intake were not affected by treatment. The findings suggest that xanthohumol has beneficial effects on markers of metabolic syndrome. PMID:22640929

  20. Diurnal Variation in Oral Glucose Tolerance: Blood Sugar and Plasma Insulin Levels Morning, Afternoon, and Evening

    PubMed Central

    Jarrett, R. J.; Baker, I. A.; Keen, H.; Oakley, N. W.

    1972-01-01

    Twenty-four subjects received three oral glucose tolerance tests, in the morning, afternoon, and evening of separate days. The mean blood sugar levels in the afternoon and evening tests were similar, and they were both significantly higher than those in the morning test. Plasma immunoreactive insulin levels, however, were highest in the morning test. The pattern of insulin levels during the afternoon and evening tests resembled that described as typical of maturity-onset diabetes. PMID:5058728

  1. Risk Factors and Plasma Glucose Profile of Gestational Diabetes in Omani Women

    PubMed Central

    Chitme, Havagiray R; Al Shibli, Sumaiya Abdallah Said; Al-Shamiry, Raya Mahmood

    2016-01-01

    Objectives We sought to conduct a detailed study on the risk factors of gestational diabetes mellitus (GDM) in Omani women to determine the actual and applicable risk factors and glucose profile in this population. Methods We conducted a cross-sectional case-control study using pregnant women diagnosed with GDM. Pregnant women without GDM were used as a control group. We collected information related to age, family history, prior history of pregnancy complications, age of marriage, age of first pregnancy, fasting glucose level, and oral glucose tolerance test (OGTT) results from three hospitals in Oman through face-to-face interviews and hospital records. Results The median age of women with GDM was 33 years old (p < 0.050). A significant risk was noted in women with a history of diabetes (p < 0.001), and those with mothers’ with a history of GDM. A significant (p < 0.010) relationship with a likelihood ratio of 43.9 was observed between the incidence of GDM in women with five or six pregnancies, a history of > 3 deliveries, height < 155 cm, and pregnancy or marriage at age < 18 years (p < 0.010). The mean difference in random plasma glucose, one-hour OGTT, and two-hour OGTT was significantly higher in GDM cases compared to control. Conclusions Glucose profile, family history, anthropometric profile, and age of first pregnancy and marriage should be considered while screening for GDM and determining the care needs of Omani women with GDM. PMID:27602192

  2. The effect of portal infusions of epinephrine on ingestion, plasma glucose and insulin in dogs.

    PubMed

    Bellinger, L L; Williams, F E

    1990-09-01

    Preabsorptive satiety has been hypothesized to occur as the result of food activating oral and gastrointestinal receptors that cause the release of catecholamines in the liver. The catecholamines were then proposed to hyperpolarize hepatic glucoreceptors and produce satiety. In the present study the hepatic portal vein was chronically cannulated in six mongrel dogs. Upon recovery the dogs were infused, over three minutes, with either saline or epinephrine (0.83 and 1.5 micrograms/kg b. wt.). Infusions ended 10 minutes prior to the animals' daily one-hour feeding period. The epinephrine infusions resulted in physiological increases in plasma glucose and insulin, but did not inhibit food consumption. The animals were next prefed 20% of their normal daily food intake 30 minutes prior to infusion of epinephrine at the above noted doses. Again plasma glucose and insulin increased, but food consumption was not affected. These data show that epinephrine infusions which produce physiological changes in plasma glucose and insulin do not alter feeding behavior of mongrel dogs. These findings are in agreement with previous data that question the physiological importance of the preabsorptive catecholamine satiety hypothesis. PMID:2176295

  3. Mediation of Endogenous β-endorphin by Tetrandrine to Lower Plasma Glucose in Streptozotocin-induced Diabetic Rats

    PubMed Central

    2004-01-01

    The role of β-endorphin in the plasma glucose-lowering action of tetrandrine in streptozotocin-induced diabetic rats (STZ-diabetic rats) was investigated. The plasma glucose concentration was assessed by the glucose oxidase method. The enzyme-linked immunosorbent assay was used to determine the plasma level of β-endorphin-like immunoreactivity (BER). The mRNA levels of glucose transporter subtype 4 (GLUT4) in soleus muscle and phosphoenolpyruvate carboxykinase (PEPCK) in the liver of STZ-diabetic rats were detected by Northern blotting analysis. The expressed protein of GLUT4 or PEPCK was characterized by Western blotting analysis. Tetrandrine dose-dependently increased plasma BER in a manner parallel to the decrease of plasma glucose in STZ-diabetic rats. Moreover, the plasma glucose-lowering effect of tetrandrine was inhibited by naloxone and naloxonazine at doses sufficient to block opioid μ-receptors. Further, tetrandrine failed to produce plasma glucose-lowering action in opioid μ-receptor knockout diabetic mice. Bilateral adrenalectomy eliminated the plasma glucose-lowering effect and plasma BER-elevating effect of tetrandrine in STZ-diabetic rats. Both effects were abolished by treatment with hexamethonium or pentolinium at doses sufficient to block nicotinic receptors. Tetrandrine enhanced BER release directly from the isolated adrenal medulla of STZ-diabetic rats and this action was abolished by the blockade of nicotinic receptors. Repeated intravenous administration of tetrandrine (1.0 mg/kg) to STZ-diabetic rats for 3 days resulted in an increase in the mRNA and protein levels of the GLUT4 in soleus muscle, in addition to the lowering of plasma glucose. Similar treatment with tetrandrine reversed the elevated mRNA and protein levels of PEPCK in the liver of STZ-diabetic rats. The obtained results suggest that tetrandrine may induce the activation of nicotinic receptors in adrenal medulla to enhance the secretion of β-endorphin, which could

  4. Titanium dioxide nanoparticles increase plasma glucose via reactive oxygen species-induced insulin resistance in mice.

    PubMed

    Hu, Hailong; Guo, Qian; Wang, Changlin; Ma, Xiao; He, Hongjuan; Oh, Yuri; Feng, Yujie; Wu, Qiong; Gu, Ning

    2015-10-01

    There have been few reports about the possible toxic effects of titanium dioxide (TiO2 ) nanoparticles on the endocrine system. We explored the endocrine effects of oral administration to mice of anatase TiO2 nanoparticles (0, 64 and 320 mg kg(-1) body weight per day to control, low-dose and high-dose groups, respectively, 7 days per week for 14 weeks). TiO2 nanoparticles were characterized by scanning and transmission electron microscopy (TEM) and dynamic light scattering (DLS), and their physiological distribution was investigated by inductively coupled plasma. Biochemical analyzes included plasma glucose, insulin, heart blood triglycerides (TG), free fatty acid (FFA), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6 and reactive oxygen species (ROS)-related markers (total SOD, GSH and MDA). Phosphorylation of IRS1, Akt, JNK1, and p38 MAPK were analyzed by western blotting. Increased titanium levels were found in the liver, spleen, small intestine, kidney and pancreas. Biochemical analyzes showed that plasma glucose significantly increased whereas there was no difference in plasma insulin secretion. Increased ROS levels were found in serum and the liver, as evidenced by reduced total SOD activity and GSH level and increased MDA content. Western blotting showed that oral administration of TiO2 nanoparticles induced insulin resistance (IR) in mouse liver, shown by increased phosphorylation of IRS1 (Ser307) and reduced phosphorylation of Akt (Ser473). The pathway by which TiO2 nanoparticles increase ROS-induced IR were included in the inflammatory response and phosphokinase, as shown by increased serum levels of TNF-α and IL-6 and increased phosphorylation of JNK1 and p38 MAPK in liver. These results show that oral administration of TiO2 nanoparticles increases ROS, resulting in IR and increasing plasma glucose in mice. PMID:25826740

  5. Mediation of beta-endorphin by isoferulic acid to lower plasma glucose in streptozotocin-induced diabetic rats.

    PubMed

    Liu, I-Min; Chen, Wang-Chuan; Cheng, Juei-Tang

    2003-12-01

    We investigated the mechanism(s) by which isoferulic acid lowers plasma glucose levels in streptozotocin-induced diabetic rats (STZ-diabetic rats). In STZ-diabetic rats, isoferulic acid dose dependently lowered plasma glucose concentrations and increased plasma beta-endorphin-like immunoreactivity (BER). Both of these effects of isoferulic acid were abolished by pretreatment of rats with tamsulosin or 2-[2,6-dimethoxyphenoxyethyl]aminomethyl-1,4-benzodioxane hydrochloride (WB 4101) at doses sufficient to block alpha1-adrenoceptors. Also, isoferulic acid enhanced BER release from isolated rat adrenal medulla in a concentration-dependent manner that could be abolished by treatment with alpha1-adrenoceptor antagonists. Moreover, bilateral adrenalectomy in STZ-diabetic rats eliminated the activities of isoferulic acid, including the plasma glucose-lowering effect and the plasma BER-elevating effect. Naloxone and naloxonazine inhibited the plasma glucose-lowering activity of isoferulic acid at doses sufficient to block opioid mu-receptors. In contrast with the effect in wild-type diabetic mice, isoferulic acid failed to lower plasma glucose levels in opioid mu-receptor knockout diabetic mice. Treatment of STZ-diabetic rats with isoferulic acid three times in 1 day resulted in an increase in the expression of the glucose transporter subtype 4 form in soleus muscle. This effect was blocked by alpha1-adrenoceptor or opioid mu-receptor antagonists. The reduction of elevated mRNA or protein level of hepatic phosphoenolpyruvate carboxykinase was also impeded in the same groups of STZ-diabetic rats. In conclusion, our results suggest that isoferulic acid may activate alpha1-adrenoceptors to enhance the secretion of beta-endorphin, which can stimulate the opioid mu-receptors to increase glucose use or/and reduce hepatic gluconeogenesis, resulting in a decrease of plasma glucose in STZ-diabetic rats. PMID:12975496

  6. Circadian Control of the Daily Plasma Glucose Rhythm: An Interplay of GABA and Glutamate

    PubMed Central

    Kalsbeek, Andries; Foppen, Ewout; Schalij, Ingrid; Van Heijningen, Caroline; van der Vliet, Jan; Fliers, Eric; Buijs, Ruud M.

    2008-01-01

    The mammalian biological clock, located in the hypothalamic suprachiasmatic nuclei (SCN), imposes its temporal structure on the organism via neural and endocrine outputs. To further investigate SCN control of the autonomic nervous system we focused in the present study on the daily rhythm in plasma glucose concentrations. The hypothalamic paraventricular nucleus (PVN) is an important target area of biological clock output and harbors the pre-autonomic neurons that control peripheral sympathetic and parasympathetic activity. Using local administration of GABA and glutamate receptor (ant)agonists in the PVN at different times of the light/dark-cycle we investigated whether daily changes in the activity of autonomic nervous system contribute to the control of plasma glucose and plasma insulin concentrations. Activation of neuronal activity in the PVN of non-feeding animals, either by administering a glutamatergic agonist or a GABAergic antagonist, induced hyperglycemia. The effect of the GABA-antagonist was time dependent, causing increased plasma glucose concentrations only when administered during the light period. The absence of a hyperglycemic effect of the GABA-antagonist in SCN-ablated animals provided further evidence for a daily change in GABAergic input from the SCN to the PVN. On the other hand, feeding-induced plasma glucose and insulin responses were suppressed by inhibition of PVN neuronal activity only during the dark period. These results indicate that the pre-autonomic neurons in the PVN are controlled by an interplay of inhibitory and excitatory inputs. Liver-dedicated sympathetic pre-autonomic neurons (responsible for hepatic glucose production) and pancreas-dedicated pre-autonomic parasympathetic neurons (responsible for insulin release) are controlled by inhibitory GABAergic contacts that are mainly active during the light period. Both sympathetic and parasympathetic pre-autonomic PVN neurons also receive excitatory inputs, either from the

  7. Association between One-Hour Post-Load Plasma Glucose Levels and Vascular Stiffness in Essential Hypertension

    PubMed Central

    Sciacqua, Angela; Maio, Raffaele; Miceli, Sofia; Pascale, Alessandra; Carullo, Giuseppe; Grillo, Nadia; Arturi, Franco; Sesti, Giorgio; Perticone, Francesco

    2012-01-01

    Objectives Pulse wave velocity (PWV) is a surrogate end-point for cardiovascular morbidity and mortality. A plasma glucose value ≥155 mg/dl for the 1-hour post-load plasma glucose during an oral glucose tolerance test (OGTT) is able to identify subjects with normal glucose tolerance (NGT) at high-risk for type-2 diabetes (T2D) and for subclinical organ damage. Thus, we addressed the question if 1-hour post-load plasma glucose levels, affects PWV and its central hemodynamic correlates, as augmentation pressure (AP) and augmentation index (AI). Methods We enrolled 584 newly diagnosed hypertensives. All patients underwent OGTT and measurements of PWV, AP and AI. Insulin sensitivity was assessed by Matsuda-index. Results Among participants, 424 were NGT and 160 had impaired glucose tolerance (IGT). Of 424 NGT, 278 had 1-h post-load plasma glucose <155 mg/dl (NGT<155) and 146 had 1-h post-load plasma glucose ≥155 mg/dl (NGT≥155). NGT≥155 had a worse insulin sensitivity and higher hs-CRP than NGT<155, similar to IGT subjects. In addition, NGT ≥155 in comparison with NGT<155 had higher central systolic blood pressure (134±12 vs 131±10 mmHg), as well as PWV (8.4±3.7 vs 6.7±1.7 m/s), AP (12.5±7.1 vs 9.8±5.7 mmHg) and AI (29.4±11.9 vs 25.1±12.4%), and similar to IGT. At multiple regression analysis, 1-h post-load plasma glucose resulted the major determinant of all indices of vascular stiffness. Conclusion Hypertensive NGT≥155 subjects, compared with NGT<155, have higher PWV and its hemodynamic correlates that increase their cardiovascular risk profile. PMID:23028545

  8. The effects of post-exercise glucose and alanine ingestion on plasma carnitine and ketosis in humans.

    PubMed Central

    Carlin, J I; Olson, E B; Peters, H A; Reddan, W G

    1987-01-01

    1. Several studies have hypothesized that alanine decreases plasma ketone body levels by increasing availability of oxaloacetate, thus allowing acetyl groups to enter the tricarboxylic acid cycle and releasing co-enzyme A (CoA). 2. Four, fasted adult males exercised at 50% of their maximal oxygen consumption for 1.5 h, then ingested 100 g of either glucose or alanine 2 h into recovery. 3. Post-exercise ketosis had developed at 2 h into recovery, as shown by a significantly elevated concentration of beta-hydroxybutyrate in the plasma. At this time plasma free fatty acids were elevated above resting levels while plasma free carnitine concentrations had fallen below resting values. 4. After either alanine or glucose ingestion beta-hydroxybutyrate concentrations fell to the same extent. After the alanine load free carnitine increased above that seen in the glucose trial. Following either alanine or glucose ingestion free fatty acid levels fell; they remained at resting levels in the alanine trial but decreased below rest in the glucose trial. 5. We assume that plasma carnitine concentrations largely reflect the hepatic carnitine pools; therefore, elevations in the plasma free carnitine are probably the result of an increased utilization of acetyl CoA. The significant elevation in plasma free carnitine concentration found after alanine ingestion is consistent with the hypothesis that alanine increases the oxidation of acetyl CoA by providing oxaloacetate for the tricarboxylic acid cycle. PMID:3443938

  9. Reciprocal regulation of insulin and plasma 5'-AMP in glucose homeostasis in mice.

    PubMed

    Xia, Lin; Wang, Zhongqiu; Zhang, Ying; Yang, Xiao; Zhan, Yibei; Cheng, Rui; Wang, Shiming; Zhang, Jianfa

    2015-03-01

    A previous investigation has demonstrated that plasma 5'-AMP (pAMP) exacerbates and causes hyperglycemia in diabetic mice. However, the crosstalk between pAMP and insulin signaling to regulate glucose homeostasis has not been investigated in depth. In this study, we showed that the blood glucose level was more dependent on the ratio of insulin to pAMP than on the absolute level of these two factors. Administration of 5'-AMP significantly attenuated the insulin-stimulated insulin receptor (IR) autophosphorylation in the liver and muscle tissues, resulting in the inhibition of downstream AKT phosphorylation. A docking analysis indicated that adenosine was a potential inhibitor of IR tyrosine kinase. Moreover, the 5'-AMP treatment elevated the ATP level in the pancreas and in the isolated islets, stimulating insulin secretion and increasing the plasma level of insulin. The insulin administration decreased the 5'-AMP-induced hyper-adenosine level by the up-regulation of adenosine kinase activities. Our results indicate that blood glucose homeostasis is reciprocally regulated by pAMP and insulin. PMID:25512345

  10. Rice (Oryza sativa japonica) Albumin Suppresses the Elevation of Blood Glucose and Plasma Insulin Levels after Oral Glucose Loading.

    PubMed

    Ina, Shigenobu; Ninomiya, Kazumi; Mogi, Takashi; Hase, Ayumu; Ando, Toshiki; Matsukaze, Narumi; Ogihara, Jun; Akao, Makoto; Kumagai, Hitoshi; Kumagai, Hitomi

    2016-06-22

    The suppressive effect of rice albumin (RA) of 16 kDa on elevation of blood glucose level after oral loading of starch or glucose and its possible mechanism were examined. RA suppressed the increase in blood glucose levels in both the oral starch tolerance test and the oral glucose tolerance test. The blood glucose concentrations 15 min after the oral administration of starch were 144 ± 6 mg/dL for control group and 127 ± 4 mg/dL for RA 200 mg/kg BW group, while those after the oral administration of glucose were 157 ± 7 mg/dL for control group and 137 ± 4 mg/dL for RA 200 mg/kg BW group. However, in the intraperitoneal glucose tolerance test, no significant differences in blood glucose level were observed between RA and the control groups, indicating that RA suppresses the glucose absorption from the small intestine. However, RA did not inhibit the activity of mammalian α-amylase. RA was hydrolyzed to an indigestible high-molecular-weight peptide (HMP) of 14 kDa and low-molecular-weight peptides by pepsin and pancreatin. Furthermore, RA suppressed the glucose diffusion rate through a semipermeable membrane like dietary fibers in vitro. Therefore, the indigestible HMP may adsorb glucose and suppress its absorption from the small intestine. PMID:27228466

  11. Higher Fasting Plasma Glucose Levels, within the Normal Range, are Associated with Decreased Processing Speed in High Functioning Young Elderly.

    PubMed

    Raizes, Meytal; Elkana, Odelia; Franko, Motty; Ravona Springer, Ramit; Segev, Shlomo; Beeri, Michal Schnaider

    2015-01-01

    We explored the association of plasma glucose levels within the normal range with processing speed in high functioning young elderly, free of type 2 diabetes mellitus (T2DM). A sample of 41 participants (mean age = 64.7, SD = 10; glucose 94.5 mg/dL, SD = 9.3), were examined with a computerized cognitive battery. Hierarchical linear regression analysis showed that higher plasma glucose levels, albeit within the normal range (<110 mg/dL), were associated with longer reaction times (p <  0.01). These findings suggest that even in the subclinical range and in the absence of T2DM, monitoring plasma glucose levels may have an impact on cognitive function. PMID:26484908

  12. Human Trials of a 2-Hour Prebreathe Protocol

    NASA Technical Reports Server (NTRS)

    Butler, Bruce D.; Vann, R. D.; Nishi, Ronald Y.; Gerth, W. A.; Beltran, E.; Conkin, J.; Schneider, Suzanne; Loftin, K. C.; Sullivan, Pat A.; Homick, Jerry L. (Technical Monitor)

    2000-01-01

    We evaluate 2-hour prebreathe protocols combining simulated microgravity and exercise during prebreathe with the objective of validating a protocol for use on International Space Station (ISS). The protocol was tested with four different exercise doses during prebreathe in a multi-center trial involving three laboratories. Subject selection, Doppler monitoring techniques for venous gas emboli (VGE), test termination criteria, and definitions of decompression sickness (DCS) were standardized in all laboratories. The Phase II protocol met the accept criteria for a prebreathe procedure for use by astronauts during assembly and maintenance of the ISS Dual-cycle ergometry or light exercise individually was not sufficient to protect against DCS at acceptable levels. The combination of both was successful.

  13. Intravenous lipid and amino acids briskly increase plasma glucose concentrations in small premature infants.

    PubMed

    Savich, R D; Finley, S L; Ogata, E S

    1988-07-01

    We determined the glycemic response to intravenous lipid infusion alone, lipid with amino acids, or amino acids alone in 15 very small premature infants receiving constant glucose infusion during early life. Infants who received lipid or lipid and amino acids demonstrated significant increases in glucose compared with infants who received amino acids. The combination of lipid and amino acids resulted in an earlier increase than lipid alone. Although plasma insulin did not change in all three groups, infants who received amino acids alone demonstrated an appropriate increase in glucagon. These data suggest that lipid infusion, a commonly used means of providing nutrition to premature infants, may cause significant disturbances in glucoregulation, particularly when administered with amino acids. PMID:3132930

  14. Restoration of early rise in plasma insulin levels improves the glucose tolerance of type 2 diabetic patients.

    PubMed

    Bruttomesso, D; Pianta, A; Mari, A; Valerio, A; Marescotti, M C; Avogaro, A; Tiengo, A; Del Prato, S

    1999-01-01

    The loss of first-phase insulin secretion is a characteristic feature of type 2 diabetic patients. The fast-acting insulin analog lispro provides a therapeutic tool for assessing the metabolic outcome of restoration of an early rise in plasma insulin levels after the ingestion of an oral glucose load. We studied eight type 2 diabetic patients on two different occasions when they received an oral glucose load (50 g) preceded by either human regular insulin or insulin analog lispro (both 0.075 U/kg lean body mass). Tritiated glucose was infused throughout the studies, and the oral glucose was labeled with [13C6]glucose for monitoring systemic and oral glucose kinetics, respectively. Basal plasma glucose (8.2 +/- 0.9 vs. 7.5 +/- 0.8 mmol/l), insulin (224 +/- 21 vs. 203 +/- 21 pmol/l), and endogenous glucose production (10.4 +/- 1.0 vs. 11.1 +/- 1.1 micromol x kg(-1) x min(-1)) were similar on both occasions. In spite of comparable incremental areas under the curve, the time course of plasma insulin concentration was much different. After injection of regular insulin, plasma insulin peaked at 120 min (368 +/- 42 pmol/l), while with lispro, the peak occurred at 60 min (481 +/- 42 pmol/l). Plasma insulin concentration during the last 3 h of the study, however, was lower with lispro compared with regular insulin. The incremental area under the curve of plasma C-peptide was lower with lispro (0.05 +/- 0.01 vs. 0.13 +/- 0.04 micromol/300 min; P < 0.01). After the ingestion of the oral glucose load, plasma glucose concentration increased by 78% at 80-100 min with regular insulin and by 62% with lispro (P < 0.05) and remained lower for the ensuing 3 h. The incremental area under the curve was 46% lower with lispro (715 +/- 109 vs. 389 +/- 109 pmol/300 min; P < 0.01). There was no difference in the two studies in the rate of appearance of the ingested glucose and in the overall rate of glucose disposal. During the initial 90 min, however, the rate of endogenous glucose

  15. Effects of Chinese herbal medicine on plasma glucose, protein and energy metabolism in sheep

    PubMed Central

    2013-01-01

    Background The use of antibiotics in animal diets is facing negative feedback due to the hidden danger of drug residues to human health. Traditional Chinese herbal medicine has been used to replace antibiotics in the past two decades and played an increasingly important role in livestock production. The present study was carried out to assess the feeding effects of a traditional nourishing Chinese herbal medicine mixture on kinetics of plasma glucose, protein and energy metabolism in sheep. Ruminal fermentation characteristics were also determined. Methods Four sheep were fed on either mixed hay (MH-diet) or MH-diet supplemented with 2% of Chinese herbal medicine (mixture of Astragalus root, Angelica root and Atractylodes rhizome; CHM-diet) over two 35-day periods using a crossover design. The turnover rate of plasma glucose was measured with an isotope dilution method using [U-13C]glucose. The rates of plasma leucine turnover and leucine oxidation, whole body protein synthesis (WBPS) and metabolic heat production were measured using the [1-13C]leucine dilution and open circuit calorimetry. Results Body weight gain of sheep was higher (P = 0.03) for CHM-diet than for MH-diet. Rumen pH was lower (P = 0.02), concentration of rumen total volatile fatty acid tended to be higher (P = 0.05) and acetate was higher (P = 0.04) for CHM-diet than for MH-diet. Turnover rates of plasma glucose and leucine did not differ between diets. Oxidation rate of leucine tended to be higher (P = 0.06) for CHM-diet than for MH-diet, but the WBPS did not differ between diets. Metabolic heat production tended to be greater (P = 0.05) for CHM-diet than for MH-diet. Conclusions The sheep fed on CHM-diet had a higher body weight gain and showed positive impacts on rumen fermentation and energy metabolism without resulting in any adverse response. Therefore, these results suggested that the Chinese herbal medicine mixture should be considered as a potential feed additive

  16. Glycemic Effects of Rebaudioside A and Erythritol in People with Glucose Intolerance

    PubMed Central

    Shin, Dong Hee; Lee, Ji Hye; Kang, Myung Shin; Kim, Tae Hoon; Jeong, Su Jin; Kim, Sang Soo

    2016-01-01

    Background Rebaudioside A and erythritol are nonnutritive sweeteners. There have been several studies of their glycemic effects, but the outcomes remain controversial. The purpose of this study was to evaluate the glycemic effects of rebaudioside A and erythritol as a sweetener in people with glucose intolerance. Methods This trial evaluated the glycemic effect after 2 weeks of consumption of rebaudioside A and erythritol as sweeteners in a pre-diabetic population. The patients were evaluated for fructosamine, fasting plasma glucose, C-peptide, insulin, and 2-hour plasma glucose before and after consumption of sweetener. The primary outcome was a change in fructosamine levels from the baseline to the end of treatment. Secondary outcomes were the changes in levels of fasting plasma glucose and 2-hour plasma glucose. Results From the baseline to the end of experiment, the changes in fructosamine levels after consumption of rebaudioside A and erythritol, did not differ significantly (244.00±19.57 vs. 241.68±23.39 µmol/L, P=0.366). The change in levels from the baseline to end of the study for rebaudioside A and erythritol were fasting plasma glucose (102.56±10.72 vs. 101.32±9.20 mg/dL), 2-hour plasma glucose (154.92±54.53 vs. 141.92±42.22 mg/dL), insulin (7.56±4.29 vs. 7.20±5.12 IU/mL), and C-peptide (2.92±1.61 vs. 2.73±1.31 ng/mL), respectively, and also did not differ significantly (P>0.05 for all). Conclusion Our study suggests that consumption of rebaudioside A and erythritol does not alter the glucose homeostasis in people with glucose intolerance. PMID:27352150

  17. Effects of Cr methionine on glucose metabolism, plasma metabolites, meat lipid peroxidation, and tissue chromium in Mahabadi goat kids.

    PubMed

    Emami, A; Ganjkhanlou, M; Zali, A

    2015-03-01

    This study was designed to investigate the effects of chromium methionine (Cr-Met) on glucose metabolism, blood metabolites, meat lipid peroxidation, and tissue chromium (Cr) in Mahabadi goat kids. Thirty-two male kids (16.5 ± 2.8 kg BW, 4-5 months of age) were fed for 90 days in a completely randomized design with four treatments. Treatments were supplemented with 0 (control), 0.5, 1, and 1.5 mg Cr as Cr-Met/animal/daily. Blood samples were collected via heparin tubes from the jugular vein on 0, 21, 42, 63, and 90 days of experiment. On day 70, an intravenous glucose tolerance test (IVGTT) was conducted. At the end of the feeding trial, the kids were slaughtered, and the liver, kidney, and longissimus dorsi (LD) muscle samples were collected. Plasma glucose, insulin, and triglyceride concentrations were decreased by Cr supplementation (P < 0.05). LD muscle malondialdehyde (MDA) decreased, and plasma and tissue Cr contents increased with increasing supplemental Cr levels (P < 0.05). Plasma glucose concentrations at 30 and 60 min after glucose infusion were lower in the kids fed 1.5 mg Cr diet than the kids fed control diet (P < 0.05). The IVGTT indicated that the kids supplemented with 1.5 mg Cr had higher glucose clearance rate (K) and lower glucose half-life (T½; P < 0.05). Glucose area under the response curve (AUC) from 0 to 180 min after glucose infusion was decreased linearly (P < 0.01) by supplemental Cr. The results suggested that supplemental Cr may improve glucose utilization and lipid oxidation of meat in fattening kid. PMID:25476000

  18. Inflight Exercise Regimen for the 2-Hour Prebreathe Protocol

    NASA Technical Reports Server (NTRS)

    Foster, Philip P.; Gernhardt, Michael L.; Woodruff, Kristin K.; Schneider, Susan M.; Homick, Jerry L. (Technical Monitor)

    2000-01-01

    A 10 min aerobic prebreathe exercise up to 75% V-O2(sub max) on a dual-cycle ergometer, included in the 2-hour prebreathe protocol, has been shown to dramatically reduce the incidence of decompression sickness (DCS) at altitude. In-flight only leg ergometry will be available. A balanced exercise was developed using surgical tubing with the ergometer on-orbit. We hypothesize that a 75% V02max workload, individually prescribed, would be achieved using a target heart rate to regulate the intensity of the arm exercise. VO2, heart rate (HR) / ECG, V-CO2 /V-O2, V(sub E), and V(sub T), and rate of perceived exertion (Borg scale) were measured in eleven healthy subjects who passed a US Air Force Class III Physical examination. A V-O2 peak test was performed to assess the sub-maximal exercise prescription. Two series of sub-maximal tests were performed: (1) leg ergometer/hand ergometer and (2) leg ergometer/surgical tubes. We found no significant differences (P > 0.05) in comparing the means for V-O2 and HR between the predicted and measured values during the final 4 minute-stage at "75% V-O2 workload" or between the two types of sub-maximal tests. The prescribed prebreathe sub-maximal exercise performed with flight certified surgical tubes was achieved using the target HR.

  19. Reducing dietary fat from a meal increases the bioavailability of exogenous carbohydrate without altering plasma glucose concentration.

    PubMed

    Knuth, Nicolas D; Shrivastava, Cara R; Horowitz, Jeffrey F

    2009-01-01

    The primary goal of this study was to determine the acute glycemic and endocrine responses to the reduction of fat content from a meal. On three separate occasions, nine overweight subjects (body mass index = 30 +/- 1 kg/m(2); 5 men, 4 women) consumed 1) a control meal ( approximately 800 kcal; 100 g of carbohydrate, 31 g of fat, and 30 g of protein), 2) a low-fat meal ( approximately 530 kcal; 100 g of carbohydrate, 1 g of fat, and 30 g of protein), or 3) a low-fat meal plus lipid infusion [same meal as low-fat meal, but the total energy provided was the same as control (800 kcal), with the "missing" fat ( approximately 30 g) provided via an intravenous lipid infusion]. All three meals contained [(13)C]glucose (3 mg/kg body wt) to assess the bioavailability of ingested glucose. During the 5-h period after each meal, we measured the recovery of [(13)C]glucose in plasma, plasma glucose, and insulin concentrations. We also measured plasma concentration of the gastrointestinal peptides: glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and peptide YY(3-36) (PYY(3-36)). The recovery of the ingested [(13)C]glucose in the hour after ingestion was greater (P < 0.05) after the low-fat than after the control meal [area under the curve (AUC): 1,206 +/- 252 and 687 +/- 161 microM.h, respectively]. However, removing dietary fat from the meal did not affect the plasma concentration of glucose or insulin. Importantly, [(13)C]glucose recovery was not different during the low-fat and lipid infusion trials (AUC: 1,206 +/- 252 and 1,134 +/- 247 microM.h, respectively), indicating that the accelerated delivery of exogenous glucose found after removing fat from the meal is due exclusively to the reduction of fat in the gastrointestinal tract. In parallel with these findings, the reduction in fat calories from the meal reduced plasma concentration of GIP, GLP-1, and PYY(3-36). In summary, these data suggest that removing fat from the diet expedited

  20. Postprandial plasma glucose effects of once-weekly albiglutide for the treatment of type 2 diabetes.

    PubMed

    Matthews, Jessica E; Reinhardt, Rickey R; Carr, Molly C

    2016-05-01

    Glucagon-like peptide 1 receptor agonists (GLP-1 RAs) vary in their structure, duration of action, efficacy, and safety. In order to optimize glycemic control, it is important to target both fasting (FPG) and postprandial plasma (PPG) glucose. Although phase 3 trials document the effect of GLP-1 RAs on glycated hemoglobin, few data are available to assess their effect on PPG. Albiglutide is a once-weekly GLP-1 RA with a half-life of ≈ 5 days. The goal of this review is to summarize the effects of albiglutide on PPG in four phase 2 trials and to describe the PPG-lowering effects of the GLP-1 RAs. At clinically relevant doses (30-64 mg), albiglutide consistently lowered PPG after each meal in addition to its effect on lowering FPG. Multiple weekly subcutaneous injections of albiglutide led to improvements in a variety of glycemic measures, including maximal reductions in PPG from baseline, postmeal glucose excursions, and FPG. Albiglutide, a longer-acting GLP-1 RAs, provides reductions in FPG, PPG following meals, and glucose over 24 hours. PMID:27043162

  1. Plasma Levels of Glucose and Insulin in Patients with Brain Tumors

    PubMed Central

    ALEXANDRU, OANA; ENE, L.; PURCARU, OANA STEFANA; TACHE, DANIELA ELISE; POPESCU, ALISA; NEAMTU, OANA MARIA; TATARANU, LIGIA GABRIELA; GEORGESCU, ADA MARIA; TUDORICA, VALERICA; ZAHARIA, CORNELIA; DRICU, ANICA

    2014-01-01

    In the last years there were many authors that suggest the existence of an association between different components of metabolic syndrome and various cancers. Two important components of metabolic syndrome are hyperglycemia and hyperinsulinemia. Both of them had already been linked with the increased risk of pancreatic, breast, endometrial or prostate cancer. However the correlation of the level of the glucose and insulin with various types and grades of brain tumors remains unclear. In this article we have analysed the values of plasma glucose and insulin in 267 patients, consecutively diagnosed with various types of brain tumors. Our results showed no correlation between the glycemia and brain tumor types or grades. High plasma levels of insulin were found in brain metastasis and astrocytomas while the other types of brain tumors (meningiomas and glioblastomas) had lower levels of the peptide. The levels of insulin were also higher in brain metastasis and grade 3 brain tumors when compared with grade 1, grade 2 and grade 4 brain tumors. PMID:24791202

  2. Changes in plasma glucose in Otsuka Long-Evans Tokushima Fatty rats after oral administration of maple syrup.

    PubMed

    Nagai, Noriaki; Yamamoto, Tetsushi; Tanabe, Wataru; Ito, Yoshimasa; Kurabuchi, Satoshi; Mitamura, Kuniko; Taga, Atsushi

    2015-01-01

    We investigate whether maple syrup is a suitable sweetener in the management of type 2 diabetes using the Otsuka Long-Evans Tokushima Fatty (OLETF) rat. The enhancement in plasma glucose (PG) and glucose absorption in the small intestine were lower after the oral administration of maple syrup than after sucrose administration in OLETF rats, and no significant differences were observed in insulin levels. These data suggested that maple syrup might inhibit the absorption of glucose from the small intestine and preventing the enhancement of PG in OLETF rats. Therefore, maple syrup might help in the prevention of type 2 diabetes. PMID:25757438

  3. Effects of aspartame and glucose administration on brain and plasma levels of large neutral amino acids and brain 5-hydroxyindoles.

    PubMed

    Yokogoshi, H; Roberts, C H; Caballero, B; Wurtman, R J

    1984-07-01

    Administration of the artificial sweetener aspartame (L-aspartylphenylalanylmethyl ester; 200 mg/kg) by gavage to rats caused large increments in brain and plasma levels of phenylalanine and its product tyrosine. Glucose administration (3 g/kg, by gavage, a dose sufficient to cause insulin-mediated reductions in plasma levels of the large neutral amino acids leucine, isoleucine, and valine) also elevated brain phenylalanine and tyrosine, and enhanced the increments caused by the aspartame, nearly doubling the rise in brain phenylalanine. Each animal's brain phenylalanine or tyrosine levels were highly correlated (r = 0.97 and 0.99, respectively) with its plasma phenylalanine or tyrosine ratios, affirming that aspartame's effects on the brain amino acids result from the changes it produces in plasma composition. As described previously, glucose consumption increased brain tryptophan levels, and consequently, brain levels of the 5-hydroxyindoles serotonin and 5-hydroxyindoleacetic acid. Aspartame alone had no effect on these compounds but completely blocked the changes in 5-hydroxyindoles caused by glucose. Each animal's brain level of tryptophan (r = 0.89) and 5-hydroxyindoles (r = 0.74) was also significantly correlated with its plasma tryptophan ratio, affirming that the effects of glucose or aspartame on these brain constituents also result from the changes they produce in plasma composition. The aspartame-glucose combination also reduced brain levels of leucine, isoleucine, and valine to a significantly greater extent than aspartame or glucose alone. These observations indicate that high aspartame doses can generate major neurochemical changes in rats, especially when consumed along with carbohydrate-containing foods. However, they should not in any way be interpreted as demonstrating that aspartame significantly affects the human brain. PMID:6204522

  4. Fasting plasma glucose 6–12 weeks after starting insulin glargine predicts likelihood of treatment success: a pooled analysis

    PubMed Central

    Karl, D; Zhou, R; Vlajnic, A; Riddle, M

    2012-01-01

    Aims To evaluate whether fasting plasma glucose values measured early during insulin therapy can identify patients with Type 2 diabetes who may not achieve adequate glycaemic control after 6 months and will require additional treatment. Methods Patient-level data from seven prospective, randomized, controlled studies using treat-to-target methods were pooled to evaluate the efficacy of insulin glargine. Fasting plasma glucose was measured at baseline, week 6 or 8 (6/8) and week 12. HbA1c was measured at week 24 to assess glycaemic control. Results One thousand and thirty-six patients (56% male, 81% white) were included in the analysis (mean age 56.3 years; duration of diabetes 8.4 years). Baseline mean fasting plasma glucose was 11.2 mmol/l and mean HbA1c was 73 mmol/mol (8.8%). After 24 weeks of treatment, mean HbA1c decreased to 53 mmol/mol (7.0%); 56% of patients reached a target HbA1c≤ 53 mmol/mol (7.0%). Significant correlations with week 24 HbA1c were obtained for fasting plasma glucose measured at week 6/8 and week 12 (r = 0.32; P < 0.0001 for both). Patients with fasting plasma glucose > 10 mmol/l at week 6/8 or week 12 were significantly less likely to achieve the HbA1c target at the end of treatment than patients with fasting plasma glucose < 8.9 mmol/l (P < 0.0001 for both). If fasting plasma glucose was > 10 mmol/l at week 6/8 or week 12, patients had only a 27% chance of reaching the HbA1c goal. Conclusions Fasting plasma glucose remaining > 10 mmol/l after 6–12 weeks of glargine therapy indicates that reaching target HbA1c≤ 53 mmol/mol (7.0%) is unlikely and calls for individualized attention to consider further therapeutic options. PMID:22413808

  5. Optimal Cut-Off Points of Fasting Plasma Glucose for Two-Step Strategy in Estimating Prevalence and Screening Undiagnosed Diabetes and Pre-Diabetes in Harbin, China

    PubMed Central

    Sun, Bo; Lan, Li; Cui, Wenxiu; Xu, Guohua; Sui, Conglan; Wang, Yibaina; Zhao, Yashuang; Wang, Jian; Li, Hongyuan

    2015-01-01

    To identify optimal cut-off points of fasting plasma glucose (FPG) for two-step strategy in screening abnormal glucose metabolism and estimating prevalence in general Chinese population. A population-based cross-sectional study was conducted on 7913 people aged 20 to 74 years in Harbin. Diabetes and pre-diabetes were determined by fasting and 2 hour post-load glucose from the oral glucose tolerance test in all participants. Screening potential of FPG, cost per case identified by two-step strategy, and optimal FPG cut-off points were described. The prevalence of diabetes was 12.7%, of which 65.2% was undiagnosed. Twelve percent or 9.0% of participants were diagnosed with pre-diabetes using 2003 ADA criteria or 1999 WHO criteria, respectively. The optimal FPG cut-off points for two-step strategy were 5.6 mmol/l for previously undiagnosed diabetes (area under the receiver-operating characteristic curve of FPG 0.93; sensitivity 82.0%; cost per case identified by two-step strategy ¥261), 5.3 mmol/l for both diabetes and pre-diabetes or pre-diabetes alone using 2003 ADA criteria (0.89 or 0.85; 72.4% or 62.9%; ¥110 or ¥258), 5.0 mmol/l for pre-diabetes using 1999 WHO criteria (0.78; 66.8%; ¥399), and 4.9 mmol/l for IGT alone (0.74; 62.2%; ¥502). Using the two-step strategy, the underestimates of prevalence reduced to nearly 38% for pre-diabetes or 18.7% for undiagnosed diabetes, respectively. Approximately a quarter of the general population in Harbin was in hyperglycemic condition. Using optimal FPG cut-off points for two-step strategy in Chinese population may be more effective and less costly for reducing the missed diagnosis of hyperglycemic condition. PMID:25785585

  6. Optimal cut-off points of fasting plasma glucose for two-step strategy in estimating prevalence and screening undiagnosed diabetes and pre-diabetes in Harbin, China.

    PubMed

    Bao, Chundan; Zhang, Dianfeng; Sun, Bo; Lan, Li; Cui, Wenxiu; Xu, Guohua; Sui, Conglan; Wang, Yibaina; Zhao, Yashuang; Wang, Jian; Li, Hongyuan

    2015-01-01

    To identify optimal cut-off points of fasting plasma glucose (FPG) for two-step strategy in screening abnormal glucose metabolism and estimating prevalence in general Chinese population. A population-based cross-sectional study was conducted on 7913 people aged 20 to 74 years in Harbin. Diabetes and pre-diabetes were determined by fasting and 2 hour post-load glucose from the oral glucose tolerance test in all participants. Screening potential of FPG, cost per case identified by two-step strategy, and optimal FPG cut-off points were described. The prevalence of diabetes was 12.7%, of which 65.2% was undiagnosed. Twelve percent or 9.0% of participants were diagnosed with pre-diabetes using 2003 ADA criteria or 1999 WHO criteria, respectively. The optimal FPG cut-off points for two-step strategy were 5.6 mmol/l for previously undiagnosed diabetes (area under the receiver-operating characteristic curve of FPG 0.93; sensitivity 82.0%; cost per case identified by two-step strategy ¥261), 5.3 mmol/l for both diabetes and pre-diabetes or pre-diabetes alone using 2003 ADA criteria (0.89 or 0.85; 72.4% or 62.9%; ¥110 or ¥258), 5.0 mmol/l for pre-diabetes using 1999 WHO criteria (0.78; 66.8%; ¥399), and 4.9 mmol/l for IGT alone (0.74; 62.2%; ¥502). Using the two-step strategy, the underestimates of prevalence reduced to nearly 38% for pre-diabetes or 18.7% for undiagnosed diabetes, respectively. Approximately a quarter of the general population in Harbin was in hyperglycemic condition. Using optimal FPG cut-off points for two-step strategy in Chinese population may be more effective and less costly for reducing the missed diagnosis of hyperglycemic condition. PMID:25785585

  7. Predictability of 1-h postload plasma glucose concentration: A 10-year retrospective cohort study

    PubMed Central

    Kuang, Lifen; Huang, Zhimin; Hong, Zhenzhen; Chen, Ailing; Li, Yanbing

    2015-01-01

    Aims/Introduction Elevated 1-h postload plasma glucose concentration (1hPG) during oral glucose tolerance test has been linked to an increased risk of type 2 diabetes and a poorer cardiometabolic risk profile. The present study analyzed the predictability and cut-off point of 1hPG in predicting type 2 diabetes in normal glucose regulation (NGR) subjects, and evaluated the long-term prognosis of NGR subjects with elevated 1hPG in glucose metabolism, kidney function, metabolic states and atherosclerosis. Materials and Methods A total of 116 Han Chinese classified as NGR in 2002 at the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China, were investigated. Follow-up was carried out in 2012 to evaluate the progression of glucose metabolism, kidney function, metabolic syndrome and carotid atherosclerosis. Results The areas under receiver operating characteristic curves were higher for 1hPG than FPG or 2hPG (0.858 vs 0.806 vs 0.746). The cut-off value of 1hPG with the maximal sum of sensitivity and specificity in predicting type 2 diabetes in NGR subjects was 8.85 mmol/L. The accumulative incidence of type 2 diabetes in subjects with 1hPG ≥8.85 mmol/L was higher than those <8.85 mmol/L (46.2% vs 3.3%, P = 0.000; relative risk 13.846, 95% confidence interval 4.223–45.400). On follow up, the prevalence of metabolic syndrome and abnormal carotid intima-media thickness in the subjects with 1hPG ≥8.85 mmol/L tended to be higher compared with those <8.85 mmol/L. Conclusions 1hPG is a good predictor of type 2 diabetes in NGR subjects, and the best cut-off point is 8.85 mmol/L. Some tendency indicates that NGR subjects with 1hPG ≥8.85 mmol/L are more prone to metabolic syndrome and carotid atherosclerosis. PMID:26543538

  8. Native fluorescence spectroscopy of blood plasma of rats with experimental diabetes: identifying fingerprints of glucose-related metabolic pathways

    NASA Astrophysics Data System (ADS)

    Shirshin, Evgeny; Cherkasova, Olga; Tikhonova, Tatiana; Berlovskaya, Elena; Priezzhev, Alexander; Fadeev, Victor

    2015-05-01

    We present the results of a native fluorescence spectroscopy study of blood plasma of rats with experimental diabetes. It was shown that the fluorescence emission band shape at 320 nm excitation is the most indicative of hyperglycemia in the blood plasma samples. We provide the interpretation of this fact based on the changes in reduced nicotinamide adenine dinucleotide phosphate concentration due to glucose-related metabolic pathways and protein fluorescent cross-linking formation following nonenzymatic glycation.

  9. Does sugar content matter? Blood plasma glucose levels in an occasional and a specialist avian nectarivore.

    PubMed

    Witteveen, Minke; Brown, Mark; Downs, Colleen T

    2014-01-01

    Nectar composition within a plant pollinator group can be variable, and bird pollinated plants can be segregated into two groups based on their adaptations to either a specialist or an occasional bird pollination system. Specialist nectarivores rely primarily on nectar for their energy requirements, while occasional nectarivores meet their energy requirements from nectar as well as from seeds, fruit and insects. Avian blood plasma glucose concentration (PGlu) is generally high compared with mammals. It is also affected by a range of factors including species, gender, age, ambient temperature, feeding pattern, reproductive status, circadian rhythm and moult status, among others. We examined whether sugar content affected PGlu of two avian nectarivores, a specialist nectarivore the Amethyst Sunbird Chalcomitra amethystina, and an occasional nectarivore the Cape White-eye Zosterops virens, when fed sucrose-hexose sugar solution diets of varying concentrations (5%-35%). Both species regulated PGlu within a range which was affected by sampling time (fed or fasted) and not dietary sugar concentration. The range in mean PGlu was broader in Amethyst Sunbirds (11.52-16.51mmol/L) compared with Cape White-eyes (14.33-15.85mmol/L). This suggests that these birds are not constrained by dietary sugar concentration with regard to PGlu regulation, and consequently selective pressure on plants for their nectar characteristics is due to reasons other than glucose regulation. PMID:24095723

  10. Amperometric biosensor based on glucose dehydrogenase and plasma-polymerized thin films.

    PubMed

    Hiratsuka, Atsunori; Fujisawa, Kohta; Muguruma, Hitoshi

    2008-04-01

    A novel design is described for an amperometric biosensor based on NAD(P)-dependent glucose dehydrogenase (GDH) combined with a plasma-polymerized thin film (PPF). The GDH is sandwiched between several nanometer thick acetonitrile PPFs on a sputtered gold electrode (PPF/GDH/PPF/Au). The lower PPF layer plays the role as an interface between enzyme and electrode because it is extremely thin, adheres well to the substrate (electrode), has a flat surface and a highly-crosslinked network structure, and is hydrophilic in nature. The upper PPF layer (overcoating) was directly deposited on immobilized GDH. The optimized amperometric biosensor characteristics covered 2.5-26 mM glucose concentration at +0.6 V of applied potential; the least-squares slope was 320 nA mM(-1) cm(-2) and the correlation coefficient was 0.990. Unlike conventional wet-chemical processes that are incompatible with mass production techniques, this dry-chemistry procedure has great potential for enabling high-throughput production of bioelectronic devices. PMID:18403839

  11. Effects of clozapine administration on body weight, glucose tolerance, blood glucose concentrations, plasma lipids, and insulin in male C57BL/6 mice: A parallel controlled study

    PubMed Central

    Yuan, Hai-Yan; Liang, Hai-Xia; Liang, Guang-Rong; Zhang, Gui-Xiang; Li, Huan-De

    2008-01-01

    Background: Clozapine has been associated with metabolic adverse events (AEs) (eg, elevated body weight, blood glucose concentrations, cholesterol, triglycerides [TG]), all of which have deleterious effects on health and medication compliance. However, little focus has been directed toward finding a suitable experimental model to study the metabolic AEs associated with clozapine. Objective: The aim of this study was to assess the effects of clozapine administration for 28 days on body weight, glucose tolerance, blood glucose concentrations, plasma lipids, and insulin in C57BL/6 mice. Methods: C57BL/6 mice were grouped and treated with clozapine 2 or 10 mg/kg or vehicle intraperitoneally QD for 28 days. Body weight was assessed on days 0 (baseline), 7, 14, 21, and 28, and glucose tolerance, blood glucose concentrations, insulin (calculated by insulin resistance index [IRI]), and plasma lipids (including total cholesterol, TG, high-density lipoprotein cholesterol [HDL-C], and low-density lipoprotein cholesterol) were assessed on day 29. Results: Sixty 10-week-old, male C57BL/6 mice were included in the study and were divided into 3 groups (20 mice per group). The body weight significantly decreased in the clozapine 10-mg-treated group on days 14, 21, and 28 compared with the vehicle group (mean [SD] body weight: 21.61 [1.05] vs 22.79 [1.11], 22.53 [1.05] vs 24.17 [1.24], and 22.21 [1.07] vs 24.99 [1.39] g, respectively; all, P < 0.05). In the clozapine 10-mg/kg group, blood glucose concentrations significantly increased 0, 30, 60, and 120 minutes after glucose administration compared with the vehicle group (mean [SD]: 6.67 [1.25], 25.34 [5.85], 12.68 [3.39], and 7.52 [1.45] mmol/L, respectively, vs 4.61 [0.78], 21.54 [6.55], 11.46 [3.46], and 6.55 [1.42] mmol/L, respectively; all P < 0.05). The clozapine 10-mg/kg group also had significant increases in plasma insulin concentrations compared with the vehicle group (12.70 [5.27] vs 7.62 [4.54] μIU/mL; P < 0.05) and

  12. Relationship Between A1C and Fasting Plasma Glucose in Dysglycemia or Type 2 Diabetes

    PubMed Central

    Ramachandran, Ambady; Riddle, Matthew C.; Kabali, Conrad; Gerstein, Hertzel C.

    2012-01-01

    OBJECTIVE A1C measurement has advantages over measures of plasma glucose. Few studies have evaluated the A1C–fasting plasma glucose (FPG) relationship and whether oral antidiabetes drugs (OADs) and ethnic or geographic variations affect the relationship. Baseline A1C and FPG data from the Outcome Reduction with Initial Glargine Intervention (ORIGIN) trial participants were analyzed to 1) elucidate the relationship between A1C and FPG in people with moderate dysglycemia (A1C 5.6–9.0% [38–75 mmol/mol]) and additional risk factors for cardiovascular disease, 2) determine whether this relationship is altered by use of an OAD, and 3) study whether geographic and ethnic differences exist. RESEARCH DESIGN AND METHODS Analysis was performed of 12,527 participants with dysglycemia or early type 2 diabetes recruited in North America, South America, Europe, Australia, and Asia who comprised white, Latin American, Asian, black, and other ethnicities. The A1C-FPG relationships were analyzed using cubic B spline curves in all participants and in subgroups not using an OAD or using an OAD and comprising persons of different ethnic or geographic origin. RESULTS A strong relationship between FPG in the range of 5.6–9.0 mmol/L and the corresponding A1C was seen across different geographic regions and ethnic groups. A smaller increase in A1C per unit increase in FPG occurred for persons taking an OAD versus those not taking an OAD. CONCLUSIONS The strong relationship between A1C and FPG in moderate dysglycemia is not significantly affected by ethnic or geographic differences. Use of an OAD alters the relationship and should be considered when interpreting A1C level. PMID:22323416

  13. Glucose metabolism in the amygdala in depression: relationship to diagnostic subtype and plasma cortisol levels.

    PubMed

    Drevets, Wayne C; Price, Joseph L; Bardgett, Mark E; Reich, Theodore; Todd, Richard D; Raichle, Marcus E

    2002-03-01

    In a previous positron emission tomography (PET) study of major depression, we demonstrated that cerebral blood flow was increased in the left amygdala in unipolar depressives with familial pure depressive disease (FPDD) relative to healthy controls [J. Neurosci. 12 (1992) 3628.]. These measures were obtained from relatively low-resolution PET images using a stereotaxic method based upon skull X-ray landmarks. The current experiments aimed to replicate and extend these results using higher-resolution glucose metabolism images and magnetic resonance imaging (MRI)-based region-of-interest (ROI) analysis. The specificity of this finding to FPDD was also investigated by assessing depressed samples with bipolar disorder (BD-D) and depression spectrum disease (DSD). Finally, the relationship between amygdala metabolism and plasma cortisol levels obtained during the scanning procedure was assessed. Glucose metabolism was measured using PET and 18F-fluorodeoxyglucose (18FDG) in healthy control (n=12), FPDD (n=12), DSD (n=9) and BD-D (n=7) samples in the amygdala and the adjacent hippocampus. The left amygdala metabolism differed across groups (P<.001), being increased in both the FPDD and BD-D groups relative to the control group. The left amygdala metabolism was positively correlated with stressed plasma cortisol levels in both the unipolar (r=.69; P<.005) and the bipolar depressives (r=0.68;.1plasma cortisol were evident in post hoc analyses of metabolism in the right amygdala or the hippocampus. Preliminary assessment of BD subjects imaged during remission suggested that amygdala metabolism is also elevated in remitted subjects who are not taking mood-stabilizing drugs, but within the normal range in subjects taking mood stabilizers. These data confirm our previous finding that neurophysiological activity is abnormally increased in FPDD, and extend it to BD-D. These

  14. Glucose Starvation Inhibits Autophagy via Vacuolar Hydrolysis and Induces Plasma Membrane Internalization by Down-regulating Recycling*

    PubMed Central

    Lang, Michael J.; Martinez-Marquez, Jorge Y.; Prosser, Derek C.; Ganser, Laura R.; Buelto, Destiney; Wendland, Beverly; Duncan, Mara C.

    2014-01-01

    Cellular energy influences all aspects of cellular function. Although cells can adapt to a gradual reduction in energy, acute energy depletion poses a unique challenge. Because acute depletion hampers the transport of new energy sources into the cell, the cell must use endogenous substrates to replenish energy after acute depletion. In the yeast Saccharomyces cerevisiae, glucose starvation causes an acute depletion of intracellular energy that recovers during continued glucose starvation. However, how the cell replenishes energy during the early phase of glucose starvation is unknown. In this study, we investigated the role of pathways that deliver proteins and lipids to the vacuole during glucose starvation. We report that in response to glucose starvation, plasma membrane proteins are directed to the vacuole through reduced recycling at the endosomes. Furthermore, we found that vacuolar hydrolysis inhibits macroautophagy in a target of rapamycin complex 1-dependent manner. Accordingly, we found that endocytosis and hydrolysis are required for survival in glucose starvation, whereas macroautophagy is dispensable. Together, these results suggest that hydrolysis of components delivered to the vacuole independent of autophagy is the cell survival mechanism used by S. cerevisiae in response to glucose starvation. PMID:24753258

  15. The natural 13C abundance of plasma glucose is a useful biomarker of recent dietary caloric sweetener intake.

    PubMed

    Cook, Chad M; Alvig, Amy L; Liu, Yu Qiu David; Schoeller, Dale A

    2010-02-01

    There is a need for objective biomarkers of dietary intake, because self-reporting is often subject to bias. We tested the validity of a biomarker for the fraction of dietary carbohydrate (CHO) from cane sugar and high fructose corn syrup (C(4) sugars) using natural (13)C abundance of plasma glucose. In a randomized, single-blinded, crossover design, 5 participants consumed 3 weight-maintaining diets for 7 d, with a 2-wk washout between diet periods. Diets differed in the fraction of total CHO energy from C(4) sugars (5, 16, or 32%). During each diet period, blood samples were drawn at hours 0800 and 1600 on d 1, 3, and 5 and at 0800, 1000, 1200, 1400, and 1600 on d 7. The delta(13)C abundance of plasma glucose was analyzed via GC- isotope ratio MS. Within each diet period, delta(13)C abundance of the 0800 fasting glucose did not change from baseline with increasing time during a diet period; however, there was a strong positive correlation (R(2) = 0.89) between delta(13)C abundance of the glucose concentration at 1000 on d 7 and the percent of breakfast CHO from C(4) sugars. Also, delta(13)C abundance of the combined plasma glucose samples on d 7 demonstrated a strong positive correlation (R(2) = 0.90) with the percent of total daily CHO from C(4) sugars. The natural delta(13)C abundance of postprandial plasma glucose relative to dietary C(4) CHO content was a valid biomarker for contributions of C(4) caloric sweeteners from the previous meal. PMID:20018804

  16. The effect of low zinc (Zn) intake on the plasma Zn response to a meal or glucose load

    SciTech Connect

    Hambidge, K.M.; Mellman, D.; Westcott, J.L. )

    1991-03-15

    The objective of this study was to test the hypothesis that the post-prandial net efflux of Zn from the plasma compartment is greater following a period of acute Zn deprivation. For 8 days, 5 healthy adults received their normal diet plus a 15 mg Zn supplement, following which they were fed a liquid synthetic egg albumin, high phytate diet providing less than 1 mg Zn per day for 8 days. On the 7th day on each diet, subjects were fed the low Zn liquid breakfast providing 240-400 kcal according to body weight. On the 8th day on each diet, subjects received an isocaloric quantity of glucose. Blood samples were collected before and for 6 hrs after both the test breakfast and glucose load. Post-prandial changes in plasma Zn were analyzed by a two-factor analysis of variance with repeated measures. Mean fasting plasma Zn did not change after a week of severe dietary Zn restriction. Post glucose decline in plasma Zn did not change significantly, but post-breakfast decline in plasma Zn was consistently greater across the 6 hr period. The maximal post-prandial decline was 11.6 {plus minus} 6.1 ug/dl in the control period and 19.3 {plus minus} 2.6 ug/dl in the Zn restricted period. It is concluded that the plasma Zn response is greater with a meal than with an equicaloric glucose load and that plasma Zn is more sensitive to a Zn restricted diet post-prandially than in the fasting state.

  17. Differences in neutral amino acid and glucose transport between brush border and basolateral plasma membrane of intestinal epithelial cells.

    PubMed

    Hopfer, U; Sigrist-Nelson, K; Ammann, E; Murer, H

    1976-12-01

    A comparison of L-valine and D-glucose transport was carried out with vesicles of plasma membrane isolated either from the luminal (brush border) or from the contra-luminal (basolateral) region of small intestinal epithelial cells. The existence of transport systems for both non-electrolytes was demonstrated by stereospecificity and saturability of uptake, as well as tracer coupling. Transport of L-valine and D-glucose differs markedly in the two types of plasma membrane with respect to stimulation by Na+. The presence of Na+ stimulated initial L-valine and D-glucose uptake in brush border, but not in basolateral membrane. Moreover, an electro-chemical Na+ gradient, oriented with the lower potential on the inside, supported accumulation of the non-electrolytes above medium concentration only in the brush border membrane. L-Valine and D-glucose transport also were saturated at lower concentrations in brush border (10-20 mM) than in basolateral plasma membranes (30-50 mM). A third difference between the two membranes was found in the effectiveness of known inhibitors of D-glucose transport. In brush border membranes phlorizin was more potent than phloretin and 2', 3', 4'-trihydroxy-4-methoxy chalcone and cytochalasin B did not inhibit at all. In contrast, with the basolateral plasma membranes the order of potency was changed to phloretin = 2',3',4'-trihydroxy-4-methoxy chalcone greater than cytochalasin B greater than phlorizin. These results indicate the presence of different types of transport systems for monosaccharides and neutral amino acids in the luminal and contra-luminal region of the plasma membrane. Active transepithelial transport can be explained on the basis of the different properties of the non-electrolyte transport systems in the two cellular regions and an electro-chemical Na+ gradient that is dependent on cellular metabolism. PMID:137908

  18. Relationships between insulin secretion, insulin action, and fasting plasma glucose concentration in nondiabetic and noninsulin-dependent diabetic subjects.

    PubMed Central

    Bogardus, C; Lillioja, S; Howard, B V; Reaven, G; Mott, D

    1984-01-01

    The relationships between insulin secretion, insulin action, and fasting plasma glucose concentration (FPG) were examined in 34 southwest American Indians (19 nondiabetics, 15 noninsulin-dependent diabetics) who had a broad range of FPG (88-310 mg/100 ml). Fasting, glucose-stimulated, and meal-stimulated plasma insulin concentrations were negatively correlated with FPG in diabetics but not in nondiabetics. In contrast, fasting and glucose-stimulated plasma C-peptide concentrations did not decrease with increasing FPG in either group and 24-h urinary C-peptide excretion during a diet of mixed composition was positively correlated with FPG for all subjects (r = 0.36, P less than 0.05). Fasting free fatty acid (FFA) was correlated with FPG in nondiabetics (r = 0.49, P less than 0.05) and diabetics (r = 0.77, P less than 0.001). Fasting FFA was also correlated with the isotopically determined endogenous glucose production rate in the diabetics (r = 0.54, P less than 0.05). Endogenous glucose production was strongly correlated with FPG in the diabetics (r = 0.90, P less than 0.0001), but not in the nondiabetics. Indirect calorimetry showed that FPG was also negatively correlated with basal glucose oxidation rates (r = -0.61, P less than 0.001), but positively with lipid oxidation (r = 0.74, P less than 0.001) in the diabetics. Insulin action was measured as total insulin-mediated glucose disposal, glucose oxidation, and storage rates, using the euglycemic clamp with simultaneous indirect calorimetry at plasma insulin concentrations of 135 +/- 5 and 1738 +/- 59 microU/ml. These parameters of insulin action were significantly, negatively correlated with FPG in the nondiabetics at both insulin concentrations, but not in the diabetics although all the diabetics had markedly decreased insulin action. We conclude that decreased insulin action is present in the noninsulin-dependent diabetics in this population and marked hyperglycemia occurs with the addition of decreased

  19. Amperometric, screen-printed, glucose biosensor for analysis of human plasma samples using a biocomposite water-based carbon ink incorporating glucose oxidase.

    PubMed

    Crouch, Eric; Cowell, David C; Hoskins, Stephen; Pittson, Robin W; Hart, John P

    2005-12-01

    This paper describes the optimisation of a screen-printing water-based carbon ink containing cobalt phthalocyanine (CoPC) and glucose oxidase (GOD) for the fabrication of a glucose biosensor. To optimise the performance of the biosensor, the loadings of the electrocatalyst (CoPC) and enzyme (GOD) were varied. It was found that the maximum linear range was achieved with a CoPC loading of 20% (m/m, relative to the mass of carbon) and a GOD loading of 628 U per gram of carbon. In our studies we chose to employ chronoamperometry, as this technique is commonly used for commercial devices. The optimum operating applied potential was found to be +0.5 V, following an incubation period of 60 s. The optimum supporting electrolyte was found to be 0.05 M phosphate buffer at pH 8.0, which resulted in a linear range of 0.2-5 mM, the former represents the detection limit. The sensitivity was 1.12 microA mM(-1). The effect of temperature was also investigated, and it was found that 40 degrees C gave optimal performance. The resulting amperometric biosensors were evaluated by measuring the glucose concentrations for 10 different human plasma samples containing endogenous glucose and also added glucose. The same samples were analysed by a standard spectrophotometric method, and the results obtained by the two different methods were compared. A good correlation coefficient (R(2) = 0.95) and slope (0.98) were calculated from the experimental data, indicating that the new devices hold promise for biomedical studies. PMID:16266677

  20. Rapidly alternating photoperiods disrupt central and peripheral rhythmicity and decrease plasma glucose, but do not affect glucose tolerance or insulin secretion in sheep.

    PubMed

    Varcoe, Tamara J; Gatford, Kathryn L; Voultsios, Athena; Salkeld, Mark D; Boden, Michael J; Rattanatray, Leewen; Kennaway, David J

    2014-09-01

    Disrupting circadian rhythms in rodents perturbs glucose metabolism and increases adiposity. To determine whether these effects occur in a large diurnal animal, we assessed the impact of circadian rhythm disruption upon metabolic function in sheep. Adult ewes (n = 7) underwent 3 weeks of a control 12 h light-12 h dark photoperiod, followed by 4 weeks of rapidly alternating photoperiods (RAPs) whereby the time of light exposure was reversed twice each week. Measures of central (melatonin secretion and core body temperature) and peripheral rhythmicity (clock and metabolic gene expression in skeletal muscle) were obtained over 24 h in both conditions. Metabolic homeostasis was assessed by glucose tolerance tests and 24 h glucose and insulin profiles. Melatonin and core body temperature rhythms resynchronized within 2 days of the last photoperiod shift. High-amplitude Bmal1, Clock, Nr1d1, Cry2 and Per3 mRNA rhythms were apparent in skeletal muscle, which were phase advanced by up to 3.5 h at 2 days after the last phase shift, whereas Per1 expression was downregulated at this time. Pparα, Pgc1α and Nampt mRNA were constitutively expressed in both conditions. Nocturnal glucose concentrations were reduced following chronic phase shifts (zeitgeber time 0, -5.5%; zeitgeber time 12, -2.9%; and zeitgeber time 16, -5.7%), whereas plasma insulin, glucose tolerance and glucose-stimulated insulin secretion were not altered. These results demonstrate that clock gene expression within ovine skeletal muscle oscillates over 24 h and responds to changing photoperiods. However, metabolic genes which link circadian and metabolic clocks in rodents were arrhythmic in sheep. Differences may be due to the ruminant versus monogastric digestive organization in each species. Together, these results demonstrate that despite disruptions to central and peripheral rhythmicity following exposure to rapidly alternating photoperiods, there was minimal impact on glucose homeostasis in

  1. Quantitative study of starving platelets in a minimal medium: maintenance by acetate or plasma but not by glucose.

    PubMed

    Whisson, M E; Nakhoul, A; Howman, P; Niu, X; Guppy, M

    1993-06-01

    The requirement of donor platelets for fuels, plasma and calcium were studied using platelets washed, filtered to remove leucocytes and resuspended in a new glucose-free minimal platelet storage medium with low citrate (3 mmol/l), low buffer capacity and no calcium. This is the first study of platelets stored without plasma, glucose or calcium and it was shown that platelets continued to aggregate with collagen plus adrenaline for 48 h and showed only a 50% fall in 'swirl index', an objective morphology score, after 3 days, showing that by these criteria human platelets do not require glucose. Sodium acetate extended the storage time by between 2 and 4 days, depending on the index parameter. This is the first evidence showing that failure of platelets in these conditions is at least partly due to exhaustion of fuel, and the first evidence that acetate prolongs in vitro survival. As little as 10% low-glucose plasma extended the storage time, but it was no better than acetate. New observations using this system included a very rapid fall in pH during resuspension of the washed platelet pellet, a rising pH in the absence of added fuel and an increased pH with added acetate. PMID:8374698

  2. Effects of piragliatin, a glucokinase activator, on fasting and postprandial plasma glucose in patients with type 2 diabetes mellitus.

    PubMed

    Zhi, Jianguo; Zhai, Suoping

    2016-02-01

    To assess the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of piragliatin, a double-blind, randomized, placebo-controlled, multiple-ascending-doses study was conducted in patients with type 2 diabetes mellitus (T2D). Fifty-nine T2D patients were given piragliatin or placebo in a dose-escalation design as a single dose on day 1 followed by multiple doses on days 3 through 8 at doses of 10, 25, 50, 100, and 200 mg twice a day (BID) as well as 200 mg every day (QD). Blood and urine samples were collected for PK analysis. PD assessments included plasma glucose, insulin, C-peptide, glucagon, and GLP-1. Piragliatin exposure was dose proportional without appreciable accumulation or food effect. Piragliatin treatment at steady state yielded dose-dependent reductions up to 32.5% and 35.5% for the highest dose in fasting and postprandial plasma glucose. Piragliatin was well tolerated. Mild or moderate hypoglycemia with rapid recovery after sugar-containing drinks or scheduled meals was the only dose-limiting adverse event. It is concluded that multiple doses of piragliatin consistently showed rapid, dose-dependent glucose reduction of fasting and postprandial plasma glucose in T2D patients. PMID:26183686

  3. Effects of low-dose thiazide diuretics on fasting plasma glucose and serum potassium-a meta-analysis.

    PubMed

    Mukete, Bertrand N; Rosendorff, Clive

    2013-01-01

    This study is a meta-analysis of the metabolic profile (fasting plasma glucose and serum potassium) of low-dose thiazide and thiazide-like diuretics. The meta-analysis involved 10 randomized controlled clinical trials with a total sample size of 17,636 and 17,947 for the potassium and glucose arms respectively. The random effect model was used to calculate the odds ratio with 95 percent confidence interval. The cumulative mean change of fasting plasma glucose was +0.20 mmol/L (+3.6 mg/dL) for the diuretic arm versus +0.12 mmol/L (+2.2 mg/dL) for the comparator arm. The cumulative mean change of serum potassium was -0.22 mmol/L (-0.22 mEq/L) for the diuretic arm versus +0.05 mmol/L (+0.05 mEq/L) for the comparator arm. The aggregate odds ratio for having higher fasting plasma glucose in subjects on low-dose thiazide versus non-thiazide antihypertensive was 1.22 (1.11 to 1.33; P < .01). The odds ratio for having a lower serum potassium in subjects on low-dose thiazide versus non-thiazide antihypertensive was 0.36 (0.27 to 0.49; P < .01). The magnitude of the observed change in fasting plasma glucose associated with low-dose thiazide diuretic use, while statistically significant, does not appear to place patients at clinically significant risk. On the other hand, the observed change in serum potassium was also statistically significant, and may be clinically significant in patients whose baseline potassium concentration is low or low-normal, and could predispose at-risk patients, such as those with ischemic heart disease, to ventricular arrhythmias. PMID:23800570

  4. The Prevalence and Associated Factors of Periodontitis According to Fasting Plasma Glucose in the Korean Adults

    PubMed Central

    Hong, Jae Won; Noh, Jung Hyun; Kim, Dong-Jun

    2016-01-01

    Abstract Although the relationship between diabetes and periodontitis is well established, the association between periodontitis and prediabetes has been investigated less extensively. Furthermore, there has been little research on the prevalence of periodontitis among individuals with prediabetes and diabetes as well as in the overall population using nationally representative data. Among 12,406 adults (≥19 years’ old) who participated in the 2012–2013 Korea National Health and Nutrition Examination Survey, a total of 9977 subjects completed oral and laboratory examinations and were included in this analysis. Periodontitis was defined as a community periodontal index score of ≥3 according to the World Health Organization criteria. The fasting plasma glucose level was categorized into the following 5 groups: normal fasting glucose (NFG) 1 (<90 mg/dL), NFG 2 (90–99 mg/dL), impaired fasting glucose (IFG) 1 (100–110 mg/dL), IFG 2 (111–125 mg/dL), and diabetes (≥126 mg/dL). Overall, the weighted prevalence of periodontitis among the Korean adult population was 24.8% (23.3–26.4%) (weight n = 8,455,952/34,086,014). The unadjusted weighted prevalences of periodontitis were 16.7%, 22.8%, 29.6%, 40.7%, and 46.7% in the NFG 1, NFG 2, IFG 1, IFG 2, and diabetes groups, respectively (P < 0.001). After adjusting for age, sex, smoking history, heavy alcohol drinking, college graduation, household income, waist circumference, serum triglyceride level, serum high-density lipoprotein cholesterol level, and the presence of hypertension, the adjusted weighted prevalence of periodontitis increased to 29.7% in the IFG 2 group (P = 0.045) and 32.5% in the diabetes group (P < 0.001), compared with the NFG 1 group (24%). The odds ratios for periodontitis with the above-mentioned variables as covariates were 1.42 (95% confidence interval [CI] 1.14–1.77, P = 0.002) in the diabetes group and 1.33 (95% CI 1.01–1.75, P = 0.044) in the IFG

  5. 1-Hour OGTT Plasma Glucose as a Marker of Progressive Deterioration of Insulin Secretion and Action in Pregnant Women.

    PubMed

    Ghio, Alessandra; Seghieri, Giuseppe; Lencioni, Cristina; Anichini, Roberto; Bertolotto, Alessandra; De Bellis, Alessandra; Resi, Veronica; Lacaria, Emilia; Del Prato, Stefano; Di Cianni, Graziano

    2012-01-01

    Considering old GDM diagnostic criteria, alterations in insulin secretion and action are present in women with GDM as well as in women with one abnormal value (OAV) during OGTT. Our aim is to assess if changes in insulin action and secretion during pregnancy are related to 1-hour plasma glucose concentration during OGTT. We evaluated 3 h/100 g OGTT in 4,053 pregnant women, dividing our population on the basis of 20 mg/dL increment of plasma glucose concentration at 1 h OGTT generating 5 groups (<120 mg/dL, n = 661; 120-139 mg/dL, n = 710; 140-159 mg/dL, n = 912; 160-179 mg/dL, n = 885; and ≥180 mg/dL, n = 996). We calculated incremental area under glucose (AUC(gluc)) and insulin curves (AUC(ins)), indexes of insulin secretion (HOMA-B), and insulin sensitivity (HOMA-R), AUC(ins)/AUC(gluc). AUC(gluc) and AUC(ins) progressively increased according to 1-hour plasma glucose concentrations (both P < 0.0001 for trend). HOMA-B progressively declined (P < 0.001), and HOMA-R progressively increased across the five groups. AUC(ins)/AUC(gluc) decreased in a linear manner across the 5 groups (P < 0.001). Analysing the groups with 1-hour value <180 mg/dL, defects in insulin secretion (HOMA-B: -29.7%) and sensitivity (HOMA-R: +15%) indexes were still apparent (all P < 0.001). Progressive increase in 1-hour OGTT is associated with deterioration of glucose tolerance and alterations in indexes of insulin action and secretion. PMID:22567007

  6. Blood flow is an important determinant of forearm glucose uptake following a mixed meal.

    PubMed

    Fugmann, A; Sarabi, M; Karlström, B; Berne, C; Lithell, H; Lind, L

    2003-09-01

    Insulin-mediated vasodilation has been suggested to be of importance for glucose uptake during normoglycemic hyperinsulinemia. If this also is valid after an ordinary mixed meal remains to be evaluated. Forearm blood flow (FBF) and forearm glucose uptake change (evaluated by venous occlusion plethysmography) and glucose arteriovenous differences were evaluated over 120 minutes in 10 healthy volunteers following an ordinary mixed meal (700-900 kcal, 34% of energy from fat). Fasting arterial glucose level was 4.9+/-0.9 mmol/l, and the maximum glucose level was reached 30 minutes after the start of ingestion (6.6+/-0.8 mmol/l, p<0.0001). Plasma insulin levels were increased four-fold. FBF increased rapidly within 20 minutes after the start of ingestion and reached its maximum after 50 minutes (94% higher than baseline level, p<0.01). After 2 hours FBF was still substantially elevated (75% above baseline level, p<0.01). Forearm glucose uptake increased fivefold already after 20 minutes ( p<0.01). During the 2 hours, the increase in FBF contributed to 41% of the forearm glucose uptake ( p<0.05). The present study showed that the increase in FBF seen after an ordinary mixed meal is important for the change in forearm glucose uptake. These results support the view that modulation of limb blood flow is a determinant of glucose uptake. PMID:14605966

  7. Plasma lactate and glucose flushes following burst swimming in silver trevally (Pseudocaranx dentex: Carangidae) support the "releaser" hypothesis.

    PubMed

    Wells, R M G; Baldwin, J

    2006-03-01

    Silver trevally (Pseudocaranx dentex) are highly athletic marine teleosts inhabiting the tropical waters of the Great Barrier Reef, Australia. Burst swimming increased plasma lactate from 1.6 +/- 0.4 S.D. to 21.6 +/- 3.3 mM (N = 6), among the highest values reported for functional hypoxia in fish. These data support the hypothesis that elite swimmers release lactate produced in the myotome into the circulation following anaerobic burst activity. The fish further developed a hyperglycaemic response to burst exercise with plasma glucose increasing from 6.6 +/- 2.0 to 13.2 +/- 2.3 mM (N = 6). Post-exercise erythrocyte swelling also occurred, but nucleoside triphosphate levels remained unaltered and do not provide a mechanism to modulate haemoglobin function during exercise. Metabolism of the blood cells appeared to be fuelled by both lactate and glucose. PMID:16459118

  8. Overexpression of Rad in muscle worsens diet-induced insulin resistance and glucose intolerance and lowers plasma triglyceride level

    NASA Astrophysics Data System (ADS)

    Ilany, Jacob; Bilan, Philip J.; Kapur, Sonia; Caldwell, James S.; Patti, Mary-Elizabeth; Marette, Andre; Kahn, C. Ronald

    2006-03-01

    Rad is a low molecular weight GTPase that is overexpressed in skeletal muscle of some patients with type 2 diabetes mellitus and/or obesity. Overexpression of Rad in adipocytes and muscle cells in culture results in diminished insulin-stimulated glucose uptake. To further elucidate the potential role of Rad in vivo, we have generated transgenic (tg) mice that overexpress Rad in muscle using the muscle creatine kinase (MCK) promoter-enhancer. Rad tg mice have a 6- to 12-fold increase in Rad expression in muscle as compared to wild-type littermates. Rad tg mice grow normally and have normal glucose tolerance and insulin sensitivity, but have reduced plasma triglyceride levels. On a high-fat diet, Rad tg mice develop more severe glucose intolerance than the wild-type mice; this is due to increased insulin resistance in muscle, as exemplified by a rightward shift in the dose-response curve for insulin stimulated 2-deoxyglucose uptake. There is also a unexpected further reduction of the plasma triglyceride levels that is associated with increased levels of lipoprotein lipase in the Rad tg mice. These results demonstrate a potential synergistic interaction between increased expression of Rad and high-fat diet in creation of insulin resistance and altered lipid metabolism present in type 2 diabetes. diabetes mellitus | glucose transport | RGK GTPase | transgenic mouse

  9. Insulin-stimulated plasma membrane fusion of Glut4 glucose transporter-containing vesicles is regulated by phospholipase D1.

    PubMed

    Huang, Ping; Altshuller, Yelena M; Hou, June Chunqiu; Pessin, Jeffrey E; Frohman, Michael A

    2005-06-01

    Insulin stimulates glucose uptake in fat and muscle by mobilizing Glut4 glucose transporters from intracellular membrane storage sites to the plasma membrane. This process requires the trafficking of Glut4-containing vesicles toward the cell periphery, docking at exocytic sites, and plasma membrane fusion. We show here that phospholipase D (PLD) production of the lipid phosphatidic acid (PA) is a key event in the fusion process. PLD1 is found on Glut4-containing vesicles, is activated by insulin signaling, and traffics with Glut4 to exocytic sites. Increasing PLD1 activity facilitates glucose uptake, whereas decreasing PLD1 activity is inhibitory. Diminished PA production does not substantially hinder trafficking of the vesicles or their docking at the plasma membrane, but it does impede fusion-mediated extracellular exposure of the transporter. The fusion block caused by RNA interference-mediated PLD1 deficiency is rescued by exogenous provision of a lipid that promotes fusion pore formation and expansion, suggesting that the step regulated by PA is late in the process of vesicle fusion. PMID:15772157

  10. The effects of combined vitamin D and calcium supplementation on fasting plasma glucose in non-diabetic adults age 65 and older

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Altered vitamin D and calcium homeostasis may play a role in the development of glucose intolerance. In a 3-year randomized controlled trial, we compared the effects of combined vitamin D and calcium supplementation vs. placebo on fasting plasma glucose (FPG) in healthy adults 65 years of age or old...

  11. Endocrine and metabolic effects of consuming fructose- and glucose-sweetened beverages with meals in obese men and women: Influence of insulin resistance on plasma triglyceride responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Context: Compared with glucose-sweetened beverages, consumption of fructose-sweetened beverages with meals elevates postprandial plasma triglycerides and lowers 24-h insulin and leptin profiles in normal weight women. The effects of fructose, compared with glucose, ingestion on metabolic profiles in...

  12. The effect of short-term metformin treatment on plasma prolactin levels in bromocriptine-treated patients with hyperprolactinaemia and impaired glucose tolerance: a pilot study.

    PubMed

    Krysiak, Robert; Okrzesik, Joanna; Okopien, Boguslaw

    2015-05-01

    Metformin was found to affect plasma levels of some pituitary hormones. This study was aimed at investigating whether metformin treatment has an impact on plasma prolactin levels in bromocriptine-treated patients with hyperprolactinaemia and impaired glucose tolerance. The study included 27 patients with hyperprolactinaemia, who had been treated for at least 6 months with bromocriptine. Based on prolactin levels, bromocriptine-treated patients were divided into two groups: patients with elevated (group A, n = 12) and patients with normal (group B, n = 15) prolactin levels. The control group included 16 age-, sex- and weight-matched hyperprolactinaemia-free individuals with impaired glucose tolerance (group C).The lipid profile, fasting plasma glucose levels, the homeostatic model assessment of insulin resistance ratio (HOMA-IR), glycated haemoglobin, as well as plasma levels of prolactin, thyrotropin and insulin-like growth factor-1 (IGF-1) were assessed at baseline and after 4 months of metformin treatment (2.55-3 g daily). In all treatment groups, metformin reduced HOMA-IR, plasma triglycerides and 2-h postchallenge plasma glucose. In patients with hyperprolactinaemia, but not in the other groups of patients, metformin slightly reduced plasma levels of prolactin, and this effect correlated weakly with the metabolic effects of this drug. Our study shows that metformin decreases plasma prolactin levels only in patients with elevated levels of this hormone. The obtained results suggest that metformin treatment may bring some benefits to hyperprolactinaemic patients with coexisting glucose metabolism disturbances already receiving dopamine agonist therapy. PMID:25239203

  13. Effects of Rice Straw Supplemented with Urea and Molasses on Intermediary Metabolism of Plasma Glucose and Leucine in Sheep.

    PubMed

    Alam, Mohammad Khairul; Ogata, Yasumichi; Sato, Yukari; Sano, Hiroaki

    2016-04-01

    An isotope dilution method using [U-(13)C]glucose and [1-(13)C]leucine (Leu) was conducted to evaluate the effects of rice straw supplemented with urea and molasses (RSUM-diet) on plasma glucose and Leu turnover rates in sheep. Nitrogen (N) balance, rumen fermentation characteristics and blood metabolite concentrations were also determined. Four sheep were fed either mixed hay (MH-diet), or a RSUM-diet with a crossover design for two 21 days period. Feed allowance was computed on the basis of metabolizable energy at maintenance level. The isotope dilution method was performed as the primed-continuous infusion on day 21 of each dietary period. Nitrogen intake was lower (p = 0.01) for the RSUM-diet and N digestibility did not differ (p = 0.57) between diets. Concentrations of rumen total volatile fatty acids tended to be higher (p = 0.09) for the RSUM-diet than the MH-diet. Acetate concentration in the rumen did not differ (p = 0.38) between diets, whereas propionate concentration was higher (p = 0.01) for the RSUM-diet compared to the MH-diet. Turnover rates as well as concentrations of plasma glucose and Leu did not differ between diets. It can be concluded that kinetics of plasma glucose and Leu metabolism were comparable between the RSUM-diet and the MH-diet, and rumen fermentation characteristics were improved in sheep fed the RSUM-diet compared to the MH-diet. PMID:26949953

  14. Effects of Rice Straw Supplemented with Urea and Molasses on Intermediary Metabolism of Plasma Glucose and Leucine in Sheep

    PubMed Central

    Alam, Mohammad Khairul; Ogata, Yasumichi; Sato, Yukari; Sano, Hiroaki

    2016-01-01

    An isotope dilution method using [U-13C]glucose and [1-13C]leucine (Leu) was conducted to evaluate the effects of rice straw supplemented with urea and molasses (RSUM-diet) on plasma glucose and Leu turnover rates in sheep. Nitrogen (N) balance, rumen fermentation characteristics and blood metabolite concentrations were also determined. Four sheep were fed either mixed hay (MH-diet), or a RSUM-diet with a crossover design for two 21 days period. Feed allowance was computed on the basis of metabolizable energy at maintenance level. The isotope dilution method was performed as the primed-continuous infusion on day 21 of each dietary period. Nitrogen intake was lower (p = 0.01) for the RSUM-diet and N digestibility did not differ (p = 0.57) between diets. Concentrations of rumen total volatile fatty acids tended to be higher (p = 0.09) for the RSUM-diet than the MH-diet. Acetate concentration in the rumen did not differ (p = 0.38) between diets, whereas propionate concentration was higher (p = 0.01) for the RSUM-diet compared to the MH-diet. Turnover rates as well as concentrations of plasma glucose and Leu did not differ between diets. It can be concluded that kinetics of plasma glucose and Leu metabolism were comparable between the RSUM-diet and the MH-diet, and rumen fermentation characteristics were improved in sheep fed the RSUM-diet compared to the MH-diet. PMID:26949953

  15. Comparison of several insulin sensitivity indices derived from basal plasma insulin and glucose levels with minimal model indices.

    PubMed

    García-Estévez, D A; Araújo-Vilar, D; Fiestras-Janeiro, G; Saavedra-González, A; Cabezas-Cerrato, J

    2003-01-01

    Some techniques for the evaluation of insulin resistance (IR), such as the clamp technique, are not viable for the study of large populations; and for this reason, alternative approaches based on fasting plasma glucose (FPG) and plasma insulin (FPI) have been proposed. The aim of this study was to compare the IR calculations obtained from FPI and FPG values with the insulin sensitivity (IS) index derived from the minimal model. Eighty-seven healthy subjects with a wide range of body mass index (18 - 44 kg x m -2) and 16 DM2 non-obese patients were included in the study. All of the patients underwent a frequently sampled intravenous glucose tolerance test (FSIGTT), and the minimal model of glucose was used for the estimation of insulin sensitivity (IS MINIMAL ). The HOMA-IR index, the Avignon index, and the quotient FPG/FPI were used to calculate basal steady-state IR. The basal IR value that best correlated with IS was Log (1/HOMA-IR) (r = 0.70, p < 0.001). All of the basal indices showed a high correlation with each other. In conclusions, insulin sensitivity indices as determined from the basal glycaemia and insulinemia values are not good estimators for metabolic reality from the perspective of the minimal model. Nevertheless, they might well have an IR screening value for epidemiological studies, as long as there is no pancreatic beta-cell dysfunction. PMID:12669265

  16. Influence of Acarbose on Plasma Glucose Fluctuations in Insulin-Treated Patients with Type 2 Diabetes: A Pilot Study

    PubMed Central

    Li, Feng-fei; Xu, Xiao-hua; Fu, Li-yuan; Su, Xiao-fei; Wu, Jin-dan; Lu, Chun-feng; Ye, Lei; Ma, Jian-hua

    2015-01-01

    Background and Aims. To evaluate the effect of adding acarbose on glycemic excursions measured by continuous glucose monitoring system (CGMS) in patients with type 2 diabetes mellitus (T2DM) already on insulin therapy. Materials and Methods. This was an opened and unblended study. 134 patients with T2DM were recruited. After initial rapidly corrected hyperglycaemia by continuous subcutaneous insulin infusion (CSII) for 7 d, a 4–6-day premixed insulin titration period subsequently followed. Patients were then randomized 1 : 1 to acarbose plus insulin group or insulin therapy group for 2 weeks. CGMS was used to measure glucose fluctuations for at least 3 days after therapy cessation. Results. Patients in acarbose plus insulin group achieved a significant improvement of MAGE compared to that of insulin therapy only group (5.56 ± 2.16 versus 7.50 ± 3.28 mmol/L, P = 0.044), accompanied by a significant decrease in the incremental AUC of plasma glucose concentration above 10.0 mmol/L (0.5 [0.03, 0.9] versus 0.85 [0.23,1.4]  mmol/L per day, P = 0.037). Conclusions. Add-on acarbose to insulin therapy further improves glucose fluctuation in patients with T2DM. This study was registered with ClinicalTrials.gov registration number ChiCTR-TRC-11001218. PMID:26640487

  17. Chronic growth hormone treatment in normal rats reduces post-prandial skeletal muscle plasma membrane GLUT1 content, but not glucose transport or GLUT4 expression and localization.

    PubMed Central

    Napoli, R; Cittadini, A; Chow, J C; Hirshman, M F; Smith, R J; Douglas, P S; Horton, E S

    1996-01-01

    Whether skeletal muscle glucose transport system is impaired in the basal, post-prandial state during chronic growth hormone treatment is unknown. The current study was designed to determine whether 4 weeks of human growth hormone (hGH) treatment (3.5 mg/kg per day) would impair glucose transport and/or the number of glucose transporters in plasma membrane vesicles isolated from hindlimb skeletal muscle of Sprague-Dawley rats under basal, post-prandial conditions. hGH treatment was shown to have no effect on glucose influx (Vmax or K(m)) determined under equilibrium exchange conditions in isolated plasma membrane vesicles. Plasma membrane glucose transporter number (Ro) measured by cytochalasin B binding was also unchanged by hGH treatment. Consequently, glucose transporter turnover number (Vmax/Ro), a measure of average glucose transporter intrinsic activity, was similar in hGH-treated and control rats. hGH did not change GLUT4 protein content in whole muscle or in the plasma membrane, and muscle content of GLUT4 mRNA also was unchanged. In contrast, GLUT1 protein content in the plasma membrane fraction was significantly reduced by hGH treatment. This was associated with a modest, although not significant, decrease in muscle content of GLUT1 mRNA. In conclusion, high-dose hGH treatment for 4 weeks did not alter post-prandial skeletal muscle glucose transport activity. Neither the muscle level nor the intracellular localization of GLUT4 was changed by the hormone treatment. On the contrary, the basal post-prandial level of GLUT1 in the plasma membrane was reduced by hGH. The mRNA data suggest that this reduction might result from a decrease in the synthesis of GLUT1. PMID:8645183

  18. DEVELOPMENTAL CHANGES OF PLASMA INSULIN, GLUCAGON, INSULIN-LIKE GROWTH FACTORS, THYROID HORMONES AND GLUCOSE CONCENTRATIONS IN CHICK EMBRYOS AND HATCHED CHICKS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The developmental hormonal changes in Cobb 500 chick embryos and hatched chicks were determined by measuring plasma insulin, glucagon, IGF-I, IGF-II, triiodothyronine, thyroxine, and glucose concentrations at different ages of chick embryos and hatched chicks. Plasma samples were obtained daily fro...

  19. Carbon Nanotube-Plasma Polymer-Based Amperometric Biosensors: Enzyme-Friendly Platform for Ultrasensitive Glucose Detection

    NASA Astrophysics Data System (ADS)

    Muguruma, Hitoshi; Matsui, Yasunori; Shibayama, Yu

    2007-09-01

    An amperometric enzyme biosensor fabricated with carbon nanotubes (CNTs) and plasma-polymerized thin films (PPFs) is reported. A mixture of the enzyme glucose oxidase (GOD) and a CNT film is sandwiched with 10-nm-thick acetonitrile PPFs. Under PPF layer was deposited onto a sputtered gold electrode. To facilitate the electrochemical communication between the CNT layer and GOD, CNT was treated with oxygen plasma. The device with single-walled CNTs showed a sensitivity higher than that of multiwalled CNTs. The glucose biosensor showed ultrasensitivity (a sensitivity of 40 μA mM-1 cm-2, a correlation coefficient of 0.992, a linear response range of 0.025-1.9 mM, a detection limit of 6.2 μM at S/N = 3, +0.8 V vs Ag/AgCl), and a rapid response (< 4 s in reaching 95% of maximum response). This high performance is attributed to the fact that CNTs have excellent electrocatalytic activity and enhance electron transfer, and that PPFs and/or the plasma process for CNTs are the enzyme-friendly platform, i.e., a suitable design of the interface between GOD and CNTs.

  20. Fasting modifies Aroclor 1254 impact on plasma cortisol, glucose and lactate responses to a handling disturbance in Arctic charr

    USGS Publications Warehouse

    Jorgensen, E.H.; Vijayan, M.M.; Aluru, N.; Maule, A.G.

    2002-01-01

    Integrated effects of polychlorinated biphenyl (PCB) and nutritional status on responses to handling disturbance were investigated in the Arctic charr (Salvelinus alpinus). The fish were orally contaminated with Aroclor 1254 and held either with or without food for 5 months before they were subjected to a 10-min handling disturbance. Food-deprived fish were given 0, 1, 10 or 100 mg PCB kg-1 and the fed fish 0 or 100 mg PCB kg-1. Plasma cortisol, glucose and lactate levels were measured at 0 (pre-handling), 1, 3, 6 and 23 h after the handling disturbance. Food-deprived control fish had elevated plasma cortisol levels compared with fed fish before handling. These basal cortisol levels were suppressed by PCB in food-deprived fish, and elevated by PCB in fed fish. The immediate cortisol and glucose responses to handling disturbance were suppressed by PCB in a dose-dependent way in food-deprived fish. Although these responses were also lowered by PCB in the fed fish, the effect was much less pronounced than in food-deprived fish. There were only minor effects on plasma lactate responses. Our findings suggest that the stress responses of the Arctic charr are compromised by PCB and that the long-term fasting, typical of high-latitude fish, makes these species particularly sensitive to organochlorines such as PCB. ?? 2002 Elsevier Science Inc. All rights reserved.

  1. Rutin ameliorates diabetic neuropathy by lowering plasma glucose and decreasing oxidative stress via Nrf2 signaling pathway in rats.

    PubMed

    Tian, Ruifeng; Yang, Wenqing; Xue, Qiang; Gao, Liang; Huo, Junli; Ren, Dongqing; Chen, Xiaoyan

    2016-01-15

    Rutin exhibits antidiabetic, antioxidant and anti-inflammatory properties, which makes rutin an attractive candidate for diabetic complications. The present study was designed to investigate the potential effect of rutin on diabetic neuropathy. After induction of diabetic neuropathy, rutin (5mg/kg, 25mg/kg and 50mg/kg) were daily given to the diabetic rats for 2 weeks. At the end of rutin administration, rutin produced a significant inhibition of mechanical hyperalgesia, thermal hyperalgesia and cold allodynia, as well as partial restoration of nerve conduction velocities in diabetic rats. Furthermore, rutin significantly increased Na(+), K(+)-ATPase activities in sciatic nerves and decreased caspase-3 expression in dorsal root ganglions (DRG). In addition, rutin significantly decreased plasma glucose, attenuated oxidative stress and neuroinflammation. Further studies showed that rutin significantly increased hydrogen sulfide (H2S) level, up-regulated the expression of nuclear factor-E2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1) in DRG. The evidences suggest the beneficial effect of rutin on diabetic neuropathy. Additionally, insulin (2 IU) and BG-12 (15mg/kg) were used to investigate the mechanisms underlying the beneficial effect of rutin on diabetic neuropathy. Insulin achieved lower plasma glucose and BG-12 achieved comparable Nrf2 expression than/to rutin (50mg/kg), respectively. In contrast, the beneficial effect of insulin and BG-12 was inferior to that of rutin (50mg/kg), suggesting that both lowered plasma glucose and Nrf2 signaling contribute to the beneficial effect of rutin on diabetic neuropathy. In conclusion, rutin produces significant protection in diabetic neuropathy, which makes it an attractive candidate for the treatment of diabetic neuropathy. PMID:26688570

  2. A comparison between 24-hour and 2-hour urine collection for the determination of proteinuria.

    PubMed

    Somanathan, N; Farrell, T; Galimberti, A

    2003-07-01

    Proteinuria is one of the fundamental criteria for the diagnosis of pre-eclampsia with quantitative assessment based on the 24-hour urine protein estimation as the gold standard. This study was undertaken to determine whether a 2-hour protein estimation correlated with that of a formal 24-hour collection. Thirty women with proteinuric hypertension were recruited. There was significant correlation between the 2-hour and 24-hour urine protein levels (Pearson's correlation coefficient 0.76 (P 0.000). A positive 2-hour test was associated more closely with significant levels of 24-hour proteinuria than dipstick analysis alone. We conclude from this study that a random 2-hour sample could be used for the initial assessment of proteinuria and so avoid the delay associated with 24-hour quantification of urinary protein. PMID:12881076

  3. The performance of hemoglobin A1c against fasting plasma glucose and oral glucose tolerance test in detecting prediabetes and diabetes

    PubMed Central

    Karakaya, Jale; Akin, Safak; Karagaoglu, Ergun; Gurlek, Alper

    2014-01-01

    Background: In recent years, hemoglobin A1c (HbA1c) is accepted among the algorithms used for making diagnosis for diabetes and prediabetes since it does not require subjects to be prepared for giving a blood sample. The aim of this study is to assess the performance of HbA1c against fasting plasma glucose (FPG) and oral glucose tolerance test (OGTT) in detecting prediabetes and diabetes. Materials and Methods: A total of 315 subjects were included in this study. The success of HbA1c in distinguishing the three diagnostic classes was examined by three-way receiver operating characteristic (ROC) analysis. The best cut-off points for HbA1c were found for discriminating the three disease status. Results: The performance of HbA1c, measured by the volume under the ROC surface (VUS), is found to be statistically significant (VUS = 0.535, P < 0.001). The best cut-off points for discriminating between normal and prediabetes groups and between prediabetes and diabetes groups are c1 = 5.2% and c2 = 6.4% respectively. Conclusion: The performance of HbA1c in distinguishing between the prediabetes and diabetes groups was higher than its ability in distinguishing between healthy and prediabetes groups. This study provides enough information to understand what proportion of diabetes patients were skipped with the HbA1c especially when the test result is healthy or prediabetes. If a subject was diagnosed as healthy or prediabetes by HbA1c, it would be beneficial to verify the status of that subject by the gold standard test (OGTT and FPG). PMID:25657750

  4. Plasma Periostin Levels Are Increased in Chinese Subjects with Obesity and Type 2 Diabetes and Are Positively Correlated with Glucose and Lipid Parameters

    PubMed Central

    Luo, Yuanyuan; Qu, Hua; Wang, Hang; Wei, Huili; Wu, Jing; Duan, Yang; Liu, Dan; Deng, Huacong

    2016-01-01

    The purpose of this study is to examine the relations among plasma periostin, glucose and lipid metabolism, insulin resistance and inflammation in Chinese patients with obesity (OB), and type 2 diabetes mellitus (T2DM). Plasma periostin levels in the T2DM group were significantly higher than the NGT group (P < 0.01). Patients with both OB and T2DM had the highest periostin levels. Correlation analysis showed that plasma periostin levels were positively correlated with weight, waist circumference (WC), body mass index (BMI), waist-hip ratio (WHR), fasting plasma glucose (FPG), 2 h postchallenge plasma glucose (2 h PG), glycated hemoglobin (HbA1c), triglyceride (TG), total cholesterol (TC), fasting insulin (FINS), homeostasis model assessment of insulin resistance (HOMA-IR), TNF-α, and IL-6 (P < 0.05 or 0.001) and negatively correlated with high-density lipoprotein cholesterol (HDL-C) (P < 0.001). Multiple linear regression analysis showed that TG, TNF-α, and HOMA-IR were independent related factors in influencing the levels of plasma periostin (P < 0.001). These results suggested that Chinese patients with obesity and T2DM had significantly higher plasma periostin levels. Plasma periostin levels were strongly associated with plasma TG, chronic inflammation, and insulin resistance. PMID:27313402

  5. Concomitant Intake of Quercetin with a Grain-Based Diet Acutely Lowers Postprandial Plasma Glucose and Lipid Concentrations in Pigs

    PubMed Central

    Wein, Silvia; Wolffram, Siegfried

    2014-01-01

    Treatment goals of diabetes mellitus type 2 (DMT2) include glycemic control and reduction of nonglycemic risk factors, for example, dyslipidemia. Quercetin, a plant-derived polyphenol, often discussed for possible antidiabetic effects, was investigated for acute postprandial glucose- and lipid-lowering effects in healthy growing pigs. Male pigs (n = 16, body weight = BW 25–30 kg) were fed flavonoid-poor grain-based meals without (GBM) or with quercetin (GBMQ). In a first experiment, postprandial plasma concentrations of glucose, nonesterified fatty acids (NEFA), and triacylglycerols were analyzed in 8 pigs receiving 500 g of either GBM or GBMQ (10 mg/kg BW) in a cross-over design. Blood samples were collected before, and up to 5 h every 30 min, as well as 6 and 8 h after the feeding. In the second experiment, 2 h after ingestions of 1000 g of either GBM or GBMQ (50 mg/kg BW) animals were sacrificed; gastric content was collected and analyzed for dry matter content. Quercetin ingestion reduced postprandial glucose, NEFA, and TG concentration, but two hours after ingestion of the meal no effect on gastric emptying was observed. Our results point to inhibitory effects of quercetin on nutrient absorption, which appear not to be attributable to delayed gastric emptying. PMID:24847478

  6. Change in fasting plasma glucose and incident type 2 diabetes mellitus: results from a prospective cohort study

    PubMed Central

    Mozaffary, Amirhossein; Asgari, Samaneh; Tohidi, Maryam; Kazempour-Ardebili, Sara; Azizi, Fereidoun; Hadaegh, Farzad

    2016-01-01

    Objective To investigate the association between changes in fasting plasma glucose (FPG) values and incident type 2 diabetes (T2D) in a cohort of the Iranian population. Design Prospective cohort study. Setting This study was conducted within the framework of the Tehran Lipid and Glucose Study (TLGS) to investigate the association between change in FPG between baseline examination (1999–2001) and the second visit (2002–2005) with incident T2D. Participants A total of 3981 non-diabetic participants aged ≥20 years. Outcome measure T2D was defined if the participant was using antidiabetic drugs or if FPG was ≥7 mmol/L or if the 2 h post-challenge plasma glucose (2-hPCG) was ≥11.1 mmol/L. Results During a median follow-up of 6.17 years, after the second examination, 288 new cases of T2D were identified. In a multivariate Cox proportional hazard analysis using age as timescale, we presented a simple model including FPG change (HR 1.19, 95% CI 1.07 to 1.33) and baseline waist circumference (WC) (HR 1.004, 95% CI 1.001 to 1.008) with a discriminative power (C-index) of 72%. Furthermore, we showed that the highest quartile of FPG change enhanced the T2D risk to 1.65 (95% CI 1.2 to 2.27) compared with the lowest quartile (p for trend=0.004).The independent risk of FPG change resisted further adjustment with 2-hPCG change. Adding the 2-hPCG change only slightly increased the discriminative power of the model including FPG change and baseline value of WC (0.73% vs 0.72%). After the study population had been limited to those with normal fasting glucose/normal glucose tolerance, FPG change remained an independent predictor (HR 1.57, 95% CI 1.31 to 1.88). Conclusions Two measurements of FPG obtained about 3 years apart can help to identify populations at risk of incident T2D independently of important traditional risk factors and their changes, including 2-hPCG change. PMID:27217283

  7. Effects of glucagon and insulin on plasma glucose, triglyceride, and triglyceride-rich lipoprotein concentrations in laying hens fed diets containing different types of fats.

    PubMed

    Pál, L; Grossmann, R; Dublecz, K; Husvéth, F; Wagner, L; Bartos, A; Kovács, G

    2002-11-01

    The influence of dietary fat supplementations differing in the ratio of n-6 to n-3 polyunsaturated fatty acids (PUFA) on the effects of glucagon and insulin on plasma glucose, triglyceride (TG), and TG-rich lipoprotein concentrations was investigated in laying hens. Birds were fed either a low-fat control diet (LF) or diets supplemented with 4% pumpkin seed oil (PO; rich in n-6 PUFA) or 4% cod liver oil (CO; rich in n-3 PUFA). After 4 wk feeding of the experimental diets, hens were implanted with wing vein catheters and injected with porcine glucagon (20 microg/kg BW) and porcine insulin (0.5 IU/kg BW), 2 to 5 h after oviposition. Plasma glucose, TG, and TG-rich lipoprotein concentrations were determined from 10 min pre-injection to 60 min post-injection. PO diet resulted in a prolonged plasma glucose response to glucagon administration and altered hypoglycemic response to insulin. However, CO diet did not influence plasma glucose response to either glucagon or insulin administration compared to LF diet. The effects of glucagon and insulin on plasma TG and TG-rich lipoproteins were similar for all diets regardless of the amount or type of fat. The results suggest that feeding dietary fats with high n-6 to n-3 PUFA ratio alters the glucagon and insulin sensitivity of plasma glucose in laying hens. Fats rich in n-3 PUFA seem to have no influence on the plasma glucose response to glucagon and insulin. PMID:12455597

  8. Isodihydrocapsiate stimulates plasma glucose uptake by activation of AMP-activated protein kinase.

    PubMed

    Hwang, Seung-Lark; Yang, Byung-Keun; Lee, Jai-Youl; Kim, Jeong-Han; Kim, Byung-Dong; Kim, Byung-Hong; Suh, Ki-Hyoung; Kim, Dae Young; Kim, Dae-Yong; Kim, Moon Sung; Song, Hebok; Park, Byeoung-Soo; Huh, Tae-Lin

    2008-06-27

    AMP-activated protein kinase (AMPK) is an energy-sensing enzyme that is implicated as a key factor in controlling whole body homeostasis, including fatty acid oxidation and glucose uptake. We report that a synthetic structural isomer of dihydrocapsiate, isodihydrocapsiate (8-methylnonanoic acid 3-hydroxy-4-methoxy benzyl ester) improves type 2 diabetes by activating AMPK through the LKB1 pathway. In L6 myotube cells, phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) and glucose uptake were significantly increased, whereas these effects were attenuated by an AMPK inhibitor, compound C. In addition, increased phosphorylation of AMPK and ACC by isodihydrocapsiate was significantly reduced by radicicol, an LKB1 destabilizer, suggesting that increased glucose uptake in L6 cells with isodihydrocapsiate treatment is predominantly accomplished by a LKB1-mediated AMPK activation pathway. Oral administration of isodihydrocapsiate to diabetic (db/db) mice reduced blood glucose levels by 40% after a 4-week treatment period. Our results support the development of isodihydrocapsiate as a potential therapeutic agent to target AMPK in type 2 diabetes. PMID:18435912

  9. Enhancement of glucose uptake in skeletal muscle L6 cells and insulin secretion in pancreatic hamster-insulinoma-transfected cells by application of non-thermal plasma jet

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Kaushik, Nagendra K.; Park, Gyungsoon; Choi, Eun H.; Uhm, Han S.

    2013-11-01

    Type-II diabetes Mellitus is characterized by defects in insulin action on peripheral tissues, such as skeletal muscle, adipose tissue, and liver and pancreatic beta cells. Since the skeletal muscle accounts for approximately 75% of insulin-stimulated glucose-uptake in our body, impaired insulin secretion from defected beta cell plays a major role in the afflicted glucose homoeostasis. It was shown that the intracellular reactive oxygen species and nitric oxide level was increased by non-thermal-plasma treatment in ambient air. These increased intracellular reactive species may enhance glucose uptake and insulin secretion through the activation of intracellular calcium (Ca+) and cAMP production.

  10. Consumption of the slow-digesting waxy maize starch leads to blunted plasma glucose and insulin response but does not influence energy expenditure or appetite in humans

    PubMed Central

    Sands, Amanda L.; Leidy, Heather J.; Hamaker, Bruce R.; Maguire, Paul; Campbell, Wayne W.

    2015-01-01

    Limited research in humans suggests that slowly digestible starch may blunt the postprandial increase and subsequent decline of plasma glucose and insulin concentrations, leading to prolonged energy availability and satiety, compared to more rapidly digestible starch. This study examined the postprandial metabolic and appetitive responses of waxy maize starch (WM), a slow-digestible starch. It was hypothesized that the waxy maize treatment would result in a blunted and more sustained glucose and insulin response, as well as energy expenditure and appetitive responses. Twelve subjects (6 men and 6 women) (age, 23 ± 1 years; body mass index, 22.2 ± 0.7 kg/m2; insulin sensitivity [homeostatic model assessment], 16% ± 2%; physical activity, 556 ± 120 min/wk) consumed, on separate days, 50 g of available carbohydrate as WM, a maltodextrin-sucrose mixture (MS), or white bread (control). Postprandial plasma glucose and insulin, energy expenditure, and appetite (hunger, fullness, desire to eat) were measured over 4 hours. Compared to control, the 4-hour glucose response was not different for MS and WM, and the 4-hour insulin response was higher for MS (P < .005) and lower for WM (P < .05). Compared to MS, WM led to lower 4-hour glucose and insulin responses (P < .001). These differences were driven by blunted glucose and insulin responses during the first hour for WM. Postprandial energy expenditure and appetite were not different among treatments. These results support that WM provides sustained glucose availability in young, insulin-sensitive adults. PMID:19628104

  11. The effects of wild blueberry consumption on plasma markers and gene expression related to glucose metabolism in the obese Zucker rat.

    PubMed

    Vendrame, Stefano; Zhao, Alice; Merrow, Thomas; Klimis-Zacas, Dorothy

    2015-06-01

    Impaired fasting blood glucose is one of the landmark signs of metabolic syndrome, together with hyperinsulinemia, dyslipidemia, hypertension, and a chronic proinflammatory, pro-oxidative, and prothrombotic environment. This study investigates the effect of wild blueberry (WB) consumption on blood glucose levels and other parameters involved in glucose metabolism in the obese Zucker rat (OZR), an experimental model of metabolic syndrome. Sixteen OZRs and 16 lean littermate controls (lean Zucker rat [LZR]) were fed an 8% enriched WB diet or a control (C) diet for 8 weeks. Plasma concentrations of glucose, insulin, glycated hemoglobin GHbA1c, resistin, and retinol-binding protein 4 (RBP4) were measured. Expression of the resistin, RBP4, and glucose transporter GLUT4 genes was also determined both in the liver and the abdominal adipose tissue (AAT). Plasma glycated hemoglobin HbA1c, RBP4, and resistin concentrations were significantly lower in OZRs following the WB diet (-20%, -22%, and -27%, respectively, compared to C diet, P<.05). Following WB consumption, resistin expression was significantly downregulated in the liver of both OZRs and LZRs (-28% and -61%, respectively, P<.05), while RBP4 expression was significantly downregulated in the AAT of both OZRs and LZRs (-87% and -43%, respectively, P<.05). All other markers were not significantly affected following WB consumption. In conclusion, WB consumption normalizes some markers related to glucose metabolism in the OZR model of metabolic syndrome, but has no effect on fasting blood glucose or insulin concentrations. PMID:25383490

  12. Consumption of the slow-digesting waxy maize starch leads to blunted plasma glucose and insulin response but does not influence energy expenditure or appetite in humans.

    PubMed

    Sands, Amanda L; Leidy, Heather J; Hamaker, Bruce R; Maguire, Paul; Campbell, Wayne W

    2009-06-01

    Limited research in humans suggests that slowly digestible starch may blunt the postprandial increase and subsequent decline of plasma glucose and insulin concentrations, leading to prolonged energy availability and satiety, compared to more rapidly digestible starch. This study examined the postprandial metabolic and appetitive responses of waxy maize starch (WM), a slow-digestible starch. It was hypothesized that the waxy maize treatment would result in a blunted and more sustained glucose and insulin response, as well as energy expenditure and appetitive responses. Twelve subjects (6 men and 6 women) (age, 23 +/- 1 years; body mass index, 22.2 +/- 0.7 kg/m(2); insulin sensitivity [homeostatic model assessment], 16% +/- 2%; physical activity, 556 +/- 120 min/wk) consumed, on separate days, 50 g of available carbohydrate as WM, a maltodextrin-sucrose mixture (MS), or white bread (control). Postprandial plasma glucose and insulin, energy expenditure, and appetite (hunger, fullness, desire to eat) were measured over 4 hours. Compared to control, the 4-hour glucose response was not different for MS and WM, and the 4-hour insulin response was higher for MS (P < .005) and lower for WM (P < .05). Compared to MS, WM led to lower 4-hour glucose and insulin responses (P < .001). These differences were driven by blunted glucose and insulin responses during the first hour for WM. Postprandial energy expenditure and appetite were not different among treatments. These results support that WM provides sustained glucose availability in young, insulin-sensitive adults. PMID:19628104

  13. Novel coumarin modified GLP-1 derivatives with enhanced plasma stability and prolonged in vivo glucose-lowering ability

    PubMed Central

    Han, Jing; Sun, Lidan; Huang, Xun; Li, Zheng; Zhang, Chenyu; Qian, Hai; Huang, Wenlong

    2014-01-01

    Background and Purpose The short biological half-life limits the therapeutic use of glucagon-like peptide-1 (GLP-1) and chemical modification to improve the interaction of peptides with serum albumin represents an effective strategy to develop long-acting peptide analogues. Coumarin, a natural product, is known to bind tightly to plasma proteins and possesses many biological activities. Therefore, we designed and synthesized a series of coumarin-modified GLP-1 derivatives, hypothesizing that conjugation with coumarin would retain the therapeutic effects and prolong the biological half-life of the conjugates. Experimental Approach Four cysteine-modified GLP-1 analogues (1–4) were prepared using Gly8-GLP-1(7–36)-NH2 peptide as a starting point. These analogues were conjugated with two coumarin maleimides to yield eight compounds (conjugates 6–13) for testing. Activation of human GLP-1 receptors, stability to enzymic inactivation in plasma and binding to human albumin were assessed in vitro. In vivo, effects on oral glucose tolerance tests (OGTT) in rats and on blood glucose levels in db/db mice were studied. Key Results Most conjugates showed well preserved receptor activation efficacy, enhanced albumin-binding properties and improved in vitro plasma stability and conjugate 7 was selected to undergo further assessment. In rats, conjugate 7 had a longer circulating t1/2 than exendin-4 or liraglutide. A prolonged antidiabetic effect of conjugate 7 was observed after OGTT in rats and a prolonged hypoglycaemic effect in db/db mice. Conclusions and Implications Cysteine-specific coumarin conjugation with GLP-1 offers a useful approach to the development of long-acting incretin-based antidiabetic agents. Conjugate 7 is a promising long-lasting GLP-1 derivative deserving further investigation. PMID:25039358

  14. Plasma Lactate Levels Increase during Hyperinsulinemic Euglycemic Clamp and Oral Glucose Tolerance Test.

    PubMed

    Berhane, Feven; Fite, Alemu; Daboul, Nour; Al-Janabi, Wissam; Msallaty, Zaher; Caruso, Michael; Lewis, Monique K; Yi, Zhengping; Diamond, Michael P; Abou-Samra, Abdul-Badi; Seyoum, Berhane

    2015-01-01

    Insulin resistance, which plays a central role in the pathogenesis of type 2 diabetes (T2D), is an early indicator that heralds the occurrence of T2D. It is imperative to understand the metabolic changes that occur at the cellular level in the early stages of insulin resistance. The objective of this study was to determine the pattern of circulating lactate levels during oral glucose tolerance test (OGTT) and hyperinsulinemic euglycemic clamp (HIEC) study in normal nondiabetic subjects. Lactate and glycerol were determined every 30 minutes during OGTT and HIEC on 22 participants. Lactate progressively increased throughout the HIEC study period (P < 0.001). Participants with BMI < 30 had significantly higher mean M-values compared to those with BMI ≥ 30 at baseline (P < 0.05). This trend also continued throughout the OGTT. In addition, those with impaired glucose tolerance test (IGT) had significantly higher mean lactate levels compared to those with normal glucose tolerance (P < 0.001). In conclusion, we found that lactate increased during HIEC study, which is a state of hyperinsulinemia similar to the metabolic milieu seen during the early stages in the development of T2D. PMID:25961050

  15. A Linear Dose-Response Relationship between Fasting Plasma Glucose and Colorectal Cancer Risk: Systematic Review and Meta-analysis

    PubMed Central

    Shi, Jianguo; Xiong, Lijuan; Li, Jiaoyuan; Cao, Heng; Jiang, Wen; Liu, Bo; Chen, Xueqin; Liu, Cheng; Liu, Ke; Wang, Guobin; Cai, Kailin

    2015-01-01

    For many years, the question of whether hyperglycaemia, a manifestation of prediabetes, diabetes mellitus and metabolic syndrome, is a risk factor for colorectal cancer has been intensely studied. In fact, even after the conclusion of several prospective studies, the topic is still controversial. We conducted a systematic review and meta-analysis to investigate the dose-response relationship between blood glucose concentration and the incidence of colorectal cancer. A linear (P = 0.303 for non-linearity) dose-response relationship was observed between fasting plasma glucose (FPG) and colorectal cancer risk without significant heterogeneity. The relative risk (RR) for colorectal cancer per 20 mg/dL increase in FPG was 1.015 (95% CI: 1.012–1.019, P = 0.000). In subgroup analyses, the pooled RRs for colon cancer (CC) and rectal cancer (RC) studies were 1.035 (95% CI 1.008–1.062, P = 0.011) and 1.031 (95% CI: 0.189–5.628, P = 0.972), respectively; in the analysis comparing men and women, the pooled RRs were 1.016 (95% CI: 1.012–1.020, P = 0.000) and 1.011 (95% CI: 0.995–1.027, P = 0.164), respectively. Sensitivity analyses using two methods showed similar results. In conclusion, there is a significant linear dose-response relationship between FPG and the incidence risk of colorectal cancer. For people with diabetes or prediabetes, controlling blood glucose might be useful to prevent colorectal cancer. PMID:26620869

  16. Development of diagnotors based on time-average values of plasma glucose and immunoreactive insulin levels during intravenous glucose tolerance testing

    NASA Astrophysics Data System (ADS)

    Denisova, Tatyana P.; Malinov, Igor A.; Malinova, Lidia I.; Brook, Sergey B.

    2000-04-01

    The diagnostic algorithm of glucose-insulinic violations for the patients with a clinically obvious atherosclerosis of coronary arteries, non-insulin dependent diabetes mellitus and persons with the heritable predisposition to these forms of pathology was designed. The realization of intravenous glucose tolerance test in specially fitted groups of patients served as basis of the algorithm.

  17. Deoxyandrographolide promotes glucose uptake through glucose transporter-4 translocation to plasma membrane in L6 myotubes and exerts antihyperglycemic effect in vivo.

    PubMed

    Arha, Deepti; Pandeti, Sukanya; Mishra, Akansha; Srivastava, Swayam Prakash; Srivastava, Arvind Kumar; Narender, Tadigoppula; Tamrakar, Akhilesh Kumar

    2015-12-01

    Skeletal muscle is the principal site for postprandial glucose utilization and augmenting the rate of glucose utilization in this tissue may help to control hyperglycemia associated with diabetes mellitus. Here, we explored the effect of Deoxyandrographolide (DeoAn) isolated from the Andrographis paniculata Nees on glucose utilization in skeletal muscle and investigated its antihyperglycemic effect in vivo in streptozotocin-induced diabetic rats and genetically diabetic db/db mice. In L6 myotubes, DeoAn dose-dependently stimulated glucose uptake by enhancing the translocation of glucose transporter 4 (GLUT4) to cell surface, without affecting the total cellular GLUT4 and GLUT1 content. These effects of DeoAn were additive to insulin. Further analysis revealed that DeoAn activated PI-3-K- and AMPK-dependent signaling pathways, account for the augmented glucose transport in L6 myotubes. Furthermore, DeoAn lowered postprandial blood glucose levels in streptozotocin-induced diabetic rats and also suppressed the rises in the fasting blood glucose, serum insulin, triglycerides and LDL-Cholesterol levels of db/db mice. These findings suggest the therapeutic efficacy of the DeoAn for type 2 diabetes mellitus and can be potential phytochemical for its management. PMID:26528798

  18. Nerve conduction abnormalities in untreated maturity-onset diabetes: relation to levels of fasting plasma glucose and glycosylated hemoglobin.

    PubMed

    Graf, R J; Halter, J B; Halar, E; Porte, D

    1979-03-01

    The role of metabolic abnormalities in the development of diabetic neuropathy is controversial. To investigate the influence of hyperglycemia on nerve conduction, we studied 20 untreated maturity-onset diabetic patients and 23 normal control subjects of similar age. Nerve conduction velocity of motor (median, peroneal, and tibial) and sensory (median and sural) nerves in diabetic patients was significantly slowed and H-reflex latency time prolonged. Levels of fasting plasma glucose in diabetic subjects were correlated with slowed motor conduction velocity of the median, peroneal, and tibial nerves but not with sensory nerve conduction velocities. Levels of glycosylated hemoglobin, an index of long-term glycemia, were correlated with slowing of peroneal motor conduction velocity in diabetic patients. These associations could not be explained by patient age or duration of diabetes. These findings suggest that the degree of hyperglycemia of untreated maturity-onset diabetes contributes to the motor nerve conduction abnormalities in this disease. PMID:426398

  19. Combination of 5-aminolevulinic acid and ferrous ion reduces plasma glucose and hemoglobin A1c levels in Zucker diabetic fatty rats.

    PubMed

    Hara, Takeshi; Koda, Aya; Nozawa, Naoko; Ota, Urara; Kondo, Hikaru; Nakagawa, Hitoshi; Kamiya, Atsuko; Miyashita, Kazutoshi; Itoh, Hiroshi; Nakajima, Motowo; Tanaka, Tohru

    2016-06-01

    Mitochondrial dysfunction is associated with type 2 diabetes mellitus (T2DM). 5-Aminolevulinic acid (ALA), a natural amino acid produced only in the mitochondria, is a precursor of heme. Cytochromes that contain heme play an important role in aerobic energy metabolism. Thus, ALA may help reduce T2DM-associated hyperglycemia. In this study, we investigated the effect of ALA combined with sodium ferrous citrate (SFC) on hyperglycemia in Zucker diabetic fatty (ZDF) rats. We found that the gavage administration of ALA combined with SFC (ALA/SFC) for 6 weeks reduced plasma glucose and hemoglobin A1c (HbA1c) levels in rats without affecting plasma insulin levels. The glucose-lowering effect depended on the amount of ALA/SFC administered per day. Furthermore, the glucose tolerance was also significantly improved by ALA/SFC administration. Although food intake was slightly reduced in the rats administered ALA/SFC, there was no effect on their body weight. Importantly, ALA/SFC administration induced heme oxygenase-1 (HO-1) expression in white adipose tissue and liver, and the induced expression levels of HO-1 correlated with the glucose-lowering effects of ALA/SFC. Taken together, these results suggest that ALA combined with ferrous ion is effective in reducing hyperglycemia of T2DM without affecting plasma insulin levels. HO-1 induction may be involved in the mechanisms underlying the glucose-lowering effect of ALA/SFC. PMID:27239432

  20. The effects of a nutraceutical combination on plasma lipids and glucose: A systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Pirro, Matteo; Mannarino, Massimo Raffaele; Bianconi, Vanessa; Simental-Mendía, Luis E; Bagaglia, Francesco; Mannarino, Elmo; Sahebkar, Amirhossein

    2016-08-01

    Dyslipidemia and hyperglycemia are associated with an increased risk of ischemic cardiovascular disease. Positive effects of a nutraceutical combination comprising red yeast rice, berberine, policosanol, astaxanthin, coenzyme Q10 and folic acid (NComb) on plasma lipid and glucose levels have been reported in some but not all clinical trials. To address this inconsistency, we tried to estimate the size of lipid- and glucose-lowering effects of NComb through a systematic review and meta-analysis of randomized controlled trials. A systematic literature search in PubMed-Medline, SCOPUS and Google Scholar databases was conducted to identify randomized controlled trials investigating the effects of NComb on plasma lipids and glucose levels. Inverse variance-weighted mean differences (WMDs) and 95% confidence intervals (CIs) were calculated for net changes in lipid and glucose levels using a random-effects model. Random-effects meta-regression was performed to assess the effect of putative confounders on plasma lipid and glucose levels. Fourteen trials (1670 subjects in the NComb arm and 1489 subjects in the control arm) met the eligibility criteria for lipid analysis and 10 trials (1014 subjects in the NComb arm and 962 subjects in the control arm) for glucose analysis. Overall, WMDs were significant for the impact of NComb supplementation on plasma levels of total cholesterol (-26.15mg/dL, p<0.001), LDL-cholesterol (-23.85mg/dL, p<0.001), HDL-cholesterol (2.53mg/dL, p<0.001), triglycerides (-13.83mg/dL, p<0.001) and glucose (-2.59mg/dL, p=0.010). NComb-induced amelioration of lipid profile was not affected by duration of supplementation nor by baseline lipid levels; conversely, a greater glucose-lowering effect of NComb was found with higher baseline glucose levels and longer durations of supplementation. In conclusion, the present results suggest that NComb supplementation is associated with improvement of lipid and glucose profile. Short-term beneficial effects of

  1. Comparison of the clinical characteristics of diabetes mellitus diagnosed using fasting plasma glucose and haemoglobin A1c: The 2011 Korea National Health and Nutrition Examination Survey.

    PubMed

    Hong, Sangmo; Kang, Jun Goo; Kim, Chul Sik; Lee, Seong Jin; Lee, Chang Beom; Ihm, Sung-Hee

    2016-03-01

    We compared the characteristics of a Korean adult population diagnosed with diabetes using only a fasting plasma glucose criterion or an HbA1c criterion. The single difference between these two groups was age. Further studies should be undertaken to clarify whether age-specific diagnostic criteria would be appropriate in Korean populations. PMID:26972956

  2. Mass spectrometry-based microassay of (2)H and (13)C plasma glucose labeling to quantify liver metabolic fluxes in vivo.

    PubMed

    Hasenour, Clinton M; Wall, Martha L; Ridley, D Emerson; Hughey, Curtis C; James, Freyja D; Wasserman, David H; Young, Jamey D

    2015-07-15

    Mouse models designed to examine hepatic metabolism are critical to diabetes and obesity research. Thus, a microscale method to quantitatively assess hepatic glucose and intermediary metabolism in conscious, unrestrained mice was developed. [(13)C3]propionate, [(2)H2]water, and [6,6-(2)H2]glucose isotopes were delivered intravenously in short- (9 h) and long-term-fasted (19 h) C57BL/6J mice. GC-MS and mass isotopomer distribution (MID) analysis were performed on three 40-μl arterial plasma glucose samples obtained during the euglycemic isotopic steady state. Model-based regression of hepatic glucose and citric acid cycle (CAC)-related fluxes was performed using a comprehensive isotopomer model to track carbon and hydrogen atom transitions through the network and thereby simulate the MIDs of measured fragment ions. Glucose-6-phosphate production from glycogen diminished, and endogenous glucose production was exclusively gluconeogenic with prolonged fasting. Gluconeogenic flux from phosphoenolpyruvate (PEP) remained stable, whereas that from glycerol modestly increased from short- to long-term fasting. CAC flux [i.e., citrate synthase (VCS)] was reduced with long-term fasting. Interestingly, anaplerosis and cataplerosis increased with fast duration; accordingly, pyruvate carboxylation and the conversion of oxaloacetate to PEP were severalfold higher than VCS in long-term fasted mice. This method utilizes state-of-the-art in vivo methodology and comprehensive isotopomer modeling to quantify hepatic glucose and intermediary fluxes during physiological stress in mice. The small plasma requirements permit serial sampling without stress and the affirmation of steady-state glucose kinetics. Furthermore, the approach can accommodate a broad range of modeling assumptions, isotope tracers, and measurement inputs without the need to introduce ad hoc mathematical approximations. PMID:25991647

  3. Multiple-Input Subject-Specific Modeling of Plasma Glucose Concentration for Feedforward Control

    PubMed Central

    2015-01-01

    The ability to accurately develop subject-specific, input causation models, for blood glucose concentration (BGC) for large input sets can have a significant impact on tightening control for insulin dependent diabetes. More specifically, for Type 1 diabetics (T1Ds), it can lead to an effective artificial pancreas (i.e., an automatic control system that delivers exogenous insulin) under extreme changes in critical disturbances. These disturbances include food consumption, activity variations, and physiological stress changes. Thus, this paper presents a free-living, outpatient, multiple-input, modeling method for BGC with strong causation attributes that is stable and guards against overfitting to provide an effective modeling approach for feedforward control (FFC). This approach is a Wiener block-oriented methodology, which has unique attributes for meeting critical requirements for effective, long-term, FFC. PMID:25620845

  4. Effect of altered eating pattern on serum fructosamine: total protein ratio and plasma glucose level.

    PubMed

    Ch'ng, S L; Cheah, S H; Husain, R; Duncan, M T

    1989-05-01

    The effect of alteration of eating pattern during Ramadan on body mass index (BMI), serum fructosamine: total protein ratio (F/TP), and glucose level in 18 healthy male Asiatic Moslems were studied. The results showed a significant decrease (p less than 0.025) in F/TP at the second week of Ramadan in 11 subjects who experienced continuous decrease in BMI throughout Ramadan. The remaining 7 subjects showed no significant changes in BMI and F/TP. No evidence of hypoglycaemia was observed in the subjects during the study. Serum fructosamine: total protein ratio in subjects with altered eating pattern preferably should be interpreted along with the change in body mass index. PMID:2774480

  5. Radio-Wave Heating of Iron Oxide Nanoparticles Can Regulate Plasma Glucose in Mice

    PubMed Central

    Stanley, Sarah A.; Gagner, Jennifer E.; Damanpour, Shadi; Yoshida, Mitsukuni; Dordick, Jonathan S.; Friedman, Jeffrey M.

    2013-01-01

    Medical applications of nanotechnology typically focus on drug delivery and biosensors. Here, we combine nanotechnology and bioengineering to demonstrate that nanoparticles can be used to remotely regulate protein production in vivo. We decorated a modified temperature-sensitive channel, TRPV1, with antibody-coated iron oxide nanoparticles that are heated in a low-frequency magnetic field. When local temperature rises, TRPV1 gates calcium to stimulate synthesis and release of bioengineered insulin driven by a Ca2+-sensitive promoter. Studying tumor xenografts expressing the bioengineered insulin gene, we show that exposure to radio waves stimulates insulin release from the tumors and lowers blood glucose in mice. We further show that cells can be engineered to synthesize genetically encoded ferritin nanoparticles and inducibly release insulin. These approaches provide a platform for using nanotechnology to activate cells. PMID:22556257

  6. Glucose transport and milk secretion during manipulated plasma insulin and glucose concentrations and during LPS-induced mastitis in dairy cows.

    PubMed

    Gross, J J; van Dorland, H A; Wellnitz, O; Bruckmaier, R M

    2015-08-01

    In dairy cows, glucose is essential as energy source and substrate for milk constituents. The objective of this study was to investigate effects of long-term manipulated glucose and insulin concentrations in combination with a LPS-induced mastitis on mRNA abundance of glucose transporters and factors involved in milk composition. Focusing on direct effects of insulin and glucose without influence of periparturient endocrine adaptations, 18 dairy cows (28 ± 6 weeks of lactation) were randomly assigned to one of three infusion treatments for 56 h (six animals each). Treatments included a hyperinsulinemic hypoglycaemic clamp (HypoG), a hyperinsulinemic euglycaemic clamp (EuG) and a control group (NaCl). After 48 h of infusions, an intramammary challenge with LPS from E. coli was performed and infusions continued for additional 8 h. Mammary gland biopsies were taken before, at 48 (before LPS challenge) and at 56 h (after LPS challenge) of infusion, and mRNA abundance of genes involved in mammary gland metabolism was measured by RT-qPCR. During the 48 h of infusions, mRNA abundance of glucose transporters GLUT1, 3, 4, 8, 12, SGLT1, 2) was not affected in HypoG, while they were downregulated in EuG. The mRNA abundance of alpha-lactalbumin, insulin-induced gene 1, κ-casein and acetyl-CoA carboxylase was downregulated in HypoG, but not affected in EuG. Contrary during the intramammary LPS challenge, most of the glucose transporters were downregulated in NaCl and HypoG, but not in EuG. The mRNA abundance of glucose transporters in the mammary gland seems not to be affected by a shortage of glucose, while enzymes and milk constituents directly depending on glucose as a substrate are immediately downregulated. During LPS-induced mastitis in combination with hypoglycaemia, mammary gland metabolism was more aligned to save glucose for the immune system compared to a situation without limited glucose availability during EuG. PMID:25319117

  7. Effects of pentobarbital on plasma glucose and free fatty acids in the rat.

    NASA Technical Reports Server (NTRS)

    Furner, R. L.; Neville, E. D.; Talarico, K. S.; Feller, D. D.

    1972-01-01

    Hyperglycemia and hypolipemia were observed in rats after the injection of sodium pentobarbital. The observed changes were independent of whether the blood was collected by decapitation or by needle puncture of the aorta. The hyperglycemic response was caused by two factors including the stress of the injection per se and the pharmacological action of the drug. Hyperlipemia was observed at 5 min postinjection. However, pentobarbital decreased plasma free fatty acids by 15 min postinjection. Both the hyperglycemia and hypolipemia responses were dose dependent.

  8. Plasma secretin concentration in anaesthetized pigs after intraduodenal glucose, fat, aminoacids, or meals with various pH.

    PubMed

    Fahrenkrug, J; Schaffalitzky de Muckadell, O B; Holst, J J

    1977-01-01

    The concentration of immunoreactive secretin in portal blood and the secretion from the exocrine pancreas were measured during intraduodenal infusion of isotonic or hypertonic saline, isotonic or hypertonic glucose, aminoacids, fat emulsion, or 0.1 mol X 1(-1) hydrochloric acid in 7 anaesthetized pigs. None of these substances, except hydrochloric acid, had any effect on plasma secretin concentration and pancreatic flow rate and bicarbonate output. Plasma secretin concentration rose significantly from 5.6 +/- 2.7 pmol X 1(-1) (mean +/- S.E.M.) to a peak value of 201.2 +/- 80.5 pmol X 1(-1) 15 min after infusion of hydrochloric acid. Pancreatic flow rate and bicarbonate output increased from 0.51 +/- 0.19 ml X h-1 (mean +/- S.E.M.) to 9.85 +/- 2.33 ml X h-1 and from 52 +/- 11 micronmol X h-1 to 1.004 +/- 290 micronmol X h-1, respectively. During intraduodenal introduction of meals with pH adjusted from 1.0 to 7.0 in 4 pigs amylase was secreted at all pH levels. However, only when pH of the meal was 1.0, resulting in an intraduodenal pH from 1.0 to 1.7 during the stimulation, was a significant increase in plasma secretin concentration and pancreatic flow rate observed from 5.5 +/- 2.8 pmol X 1(-1) (mean +/- S.E.M.) to 115.0 +/- 51.2 pmol X 1(-1) and from 0.20 +/- 0.08 ml X h-1 to 6.25 +/- 2.57 ml X h-1, respectively. PMID:17153

  9. γ-Tocopherol abolishes postprandial increases in plasma methylglyoxal following an oral dose of glucose in healthy, college-aged men.

    PubMed

    Masterjohn, Christopher; Mah, Eunice; Guo, Yi; Koo, Sung I; Bruno, Richard S

    2012-03-01

    Postprandial hyperglycemia contributes to the risk of cardiovascular disease in part by increasing concentrations of the reactive dicarbonyl methylglyoxal (MGO), a byproduct of glucose metabolism. Oxidative stress increases MGO formation from glucose in vitro and decreases its glutathione-dependent detoxification to lactate. We hypothesized that the antioxidant γ-tocopherol, a form of vitamin E, would decrease hyperglycemia-mediated postprandial increases in plasma MGO in healthy, normoglycemic, college-aged men. Participants (n=12 men; 22.3±1.0 years; 29.3±2.4 kg/m(2)) received an oral dose of glucose (75 g) in the fasted state prior to and following 5-day ingestion of a vitamin E supplement enriched in γ-tocopherol (500 mg/day). γ-Tocopherol supplementation increased (P<.0001) plasma γ-tocopherol from 2.22±0.32 to 7.06±0.71 μmol/l. Baseline MGO concentrations and postprandial hyperglycemic responses were unaffected by γ-tocopherol supplementation (P>.05). Postprandial MGO concentrations increased in the absence of supplemental γ-tocopherol (P<.05), but not following γ-tocopherol supplementation (P>.05). Area under the curve for plasma MGO was significantly (P<.05) smaller with the supplementation of γ-tocopherol than without (area under the curve (0-180 min), -778±1010 vs. 2277±705). Plasma concentrations of γ-carboxyethyl-hydroxychroman, reduced glutathione and markers of total antioxidant capacity increased after supplementation, and these markers and plasma γ-tocopherol were inversely correlated with plasma MGO (r=-0.48 to -0.67, P<.05). These data suggest that short-term supplementation of γ-tocopherol abolishes the oral glucose-mediated increases in postprandial MGO through its direct and indirect antioxidant properties and may reduce hyperglycemia-mediated cardiovascular disease risk. PMID:21543210

  10. Combining glycosylated hemoglobin A1c and fasting plasma glucose for diagnosis of type 2 diabetes in Chinese adults

    PubMed Central

    2013-01-01

    Background Glycosylated hemoglobin A1c (HbA1c) has been applied to identify type 2 diabetes (T2DM) in the U.S. and European countries. It has not been used in China mainly due to lack of a standardized approach to measure HbA1c, short of knowledge about racial-specific standard and deficiency of an optimal cut-off point. Methods To evaluate combination of HbA1c and fasting plasma glucose (FPG) in diagnosing T2DM in Chinese adults, a multistage sampling cross-sectional study was conducted in Shanghai, China, in 2009. The FPG measurement, HbA1c assay, and oral glucose tolerance test (OGTT) were performed in 6,661 Chinese adults (3057 men, 3604 women) who had no prior history of diabetes to identify the unrecognized T2DM. Results A total of 454 participants were identified as T2DM based on the 1999 World Health Organization (WHO) diagnostic criteria. Of these patients, 239 were detected using an FPG ≥ 7.0 mmol/l and 141 were further identified using an HbA1c ≥ 43 mmol/mol (6.1%), achieving a sensitivity of 83.7% and a specificity of 89.3% for combining use of FPG and HbA1c. In subjects at high risk of diabetes, the combining use of FPG and HbA1c produced a higher sensitivity and an improved positive predictive value (PPV), and had a satisfactory specificity and negative predictive value (NPV). Conclusions The combining use of FPG and HbA1c is a potential screening and diagnosis approach for T2DM in Chinese adults, especially among those at high risk of the disease. PMID:24099651

  11. Investigating the Role of Plasma Glucose Concentration as a Phenotypic Marker for CYP2C9 Genetic Variants, in the Diabetic Population of Gujarat.

    PubMed

    Bhatt, D; Chauhan, N; Sharma, A; Dhawan, D; Bhatt, R V; Phatak, S; Padh, H

    2014-01-01

    The present study was aimed to investigate the role of plasma glucose concentration as a phenotypic marker and to study the frequency distribution of CYP2C9 genetic variants in Gujarat state diabetic population. One hundred and nine unrelated diabetes mellitus patients treated with sulfonylureas were genotyped for CYP2C9*2 and CYP2C9*3 alleles. Their pre- and posttreatment postprandial blood glucose levels were recorded and mean glucose drop per milligram of drug values were calculated and further used as an index for phenotypic correlation. The frequencies of CYP2C9*1, CYP2C9*2 and CYP2C9*3 alleles in the Gujarat state diabetic population were 0.84, 0.07 and 0.09, respectively. The distribution of CYP2C9*1/*1, CYP2C9*1/*2, CYP2C9*1/*3, CYP2C9*2/*2, CYP2C9*2/*3 and CYP2C9*3/*3 genotypes were 0.73, 0.08, 0.13, 0.0, 0.06 and 0.0, respectively. Patients with CYP2C9*1/*2 genotype did not show any significant difference in the mean glucose drop per milligram of drug values when compared with wild-type patients in glipizide-treatment group. Patients with CYP2C9*1/*3 genotype showed greater mean glucose drop per milligram of drug values than patients with CYP2C9*1/*1 wild-type genotype for both glipizide and glimepiride while patients with CYP2C9*2/*3 genotype showed greater drop than patients with CYP2C9*1/*1 genotype only in the glipizide-treatment group. The presence of CYP2C9*3 allele significantly affected plasma glucose drop per milligram of drug values in patients taking glipizide and glimepiride, while effects of CYP2C9*2 allele were insignificant. Further studies are needed to confirm the effects of CYP2C9*2 allele on plasma glucose drop per milligram of drug values. However, plasma glucose concentration is a complex physiological marker that cannot be used to establish perfect genotype-phenotype correlation. Hence studies exploring robust phenotypic markers must be initiated. PMID:24799741

  12. Intensive lifestyle intervention including high-intensity interval training program improves insulin resistance and fasting plasma glucose in obese patients☆

    PubMed Central

    Marquis-Gravel, Guillaume; Hayami, Douglas; Juneau, Martin; Nigam, Anil; Guilbeault, Valérie; Latour, Élise; Gayda, Mathieu

    2015-01-01

    Objectives To analyze the effects of a long-term intensive lifestyle intervention including high-intensity interval training (HIIT) and Mediterranean diet (MedD) counseling on glycemic control parameters, insulin resistance and β-cell function in obese subjects. Methods The glycemic control parameters (fasting plasma glucose, glycated hemoglobin), insulin resistance, and β-cell function of 72 obese subjects (54 women; mean age = 53 ± 9 years) were assessed at baseline and upon completion of a 9-month intensive lifestyle intervention program conducted at the cardiovascular prevention and rehabilitation center of the Montreal Heart Institute, from 2009 to 2012. The program included 2–3 weekly supervised exercise training sessions (HIIT and resistance exercise), combined to MedD counseling. Results Fasting plasma glucose (FPG) (mmol/L) (before: 5.5 ± 0.9; after: 5.2 ± 0.6; P < 0.0001), fasting insulin (pmol/L) (before: 98 ± 57; after: 82 ± 43; P = 0.003), and insulin resistance, as assessed by the HOMA-IR score (before: 3.6 ± 2.5; after: 2.8 ± 1.6; P = 0.0008) significantly improved, but not HbA1c (%) (before: 5.72 ± 0.55; after: 5.69 ± 0.39; P = 0.448), nor β-cell function (HOMA-β, %) (before: 149 ± 78; after: 144 ± 75; P = 0.58). Conclusion Following a 9-month intensive lifestyle intervention combining HIIT and MedD counseling, obese subjects experienced significant improvements of FPG and insulin resistance. This is the first study to expose the effects of a long-term program combining HIIT and MedD on glycemic control parameters among obese subjects. PMID:26844086

  13. The Effects of Hyperhydrating Supplements Containing Creatine and Glucose on Plasma Lipids and Insulin Sensitivity in Endurance-Trained Athletes.

    PubMed

    Polyviou, Thelma P; Pitsiladis, Yannis P; Celis-Morales, Carlos; Brown, Benjamin; Speakman, John R; Malkova, Dalia

    2015-01-01

    The addition of carbohydrate (CHO) in the form of simple sugars to creatine (Cr) supplements is central. The study aimed to determine whether ingestion of glucose (Glu) simultaneously with Cr and glycerol (Cr/Gly) supplement is detrimental to plasma lipids of endurance-trained individuals and find out whether modification arising can be attenuated by replacing part of the Glu with alpha lipoic acid (Ala). Twenty-two endurance-trained cyclists were randomized to receive Cr/Gly/Glu (11.4 g Cr-H2O, 1 g Gly/kg BM, and 150 g Glu) or Cr/Gly/Glu/Ala (11.4 g Cr-H2O, 1 g Gly/kg BM, 100 g Glu, and 1 g Ala) for 7 days. Fasting concentration of TAG increased significantly (P < 0.01) after supplementation with Cr/Gly/Glu (before: 0.9 ± 0.2 mmol/L; after: 1.3 ± 0.4 mmol/L) and Cr/Gly/Glu/Ala (before: 0.8 ± 0.2 mmol/L; after: 1.2 ± 0.5 mmol/L) but changes were not different between the groups. Supplementation significantly (P < 0.05) increased the TAG to HDL-cholesterol ratio but had no effect on fasting concentration of total, HDL-, and LDL-cholesterol and insulin resistance. Thus, addition of Glu to Cr containing supplements enhances plasma TAG concentration and the TAG to HDL-cholesterol ratio and this enhancement cannot be attenuated by partial replacement of Glu with Ala. PMID:26167296

  14. The Effects of Hyperhydrating Supplements Containing Creatine and Glucose on Plasma Lipids and Insulin Sensitivity in Endurance-Trained Athletes

    PubMed Central

    Polyviou, Thelma P.; Pitsiladis, Yannis P.; Celis-Morales, Carlos; Brown, Benjamin; Speakman, John R.; Malkova, Dalia

    2015-01-01

    The addition of carbohydrate (CHO) in the form of simple sugars to creatine (Cr) supplements is central. The study aimed to determine whether ingestion of glucose (Glu) simultaneously with Cr and glycerol (Cr/Gly) supplement is detrimental to plasma lipids of endurance-trained individuals and find out whether modification arising can be attenuated by replacing part of the Glu with alpha lipoic acid (Ala). Twenty-two endurance-trained cyclists were randomized to receive Cr/Gly/Glu (11.4 g Cr-H2O, 1 g Gly/kg BM, and 150 g Glu) or Cr/Gly/Glu/Ala (11.4 g Cr-H2O, 1 g Gly/kg BM, 100 g Glu, and 1 g Ala) for 7 days. Fasting concentration of TAG increased significantly (P < 0.01) after supplementation with Cr/Gly/Glu (before: 0.9 ± 0.2 mmol/L; after: 1.3 ± 0.4 mmol/L) and Cr/Gly/Glu/Ala (before: 0.8 ± 0.2 mmol/L; after: 1.2 ± 0.5 mmol/L) but changes were not different between the groups. Supplementation significantly (P < 0.05) increased the TAG to HDL-cholesterol ratio but had no effect on fasting concentration of total, HDL-, and LDL-cholesterol and insulin resistance. Thus, addition of Glu to Cr containing supplements enhances plasma TAG concentration and the TAG to HDL-cholesterol ratio and this enhancement cannot be attenuated by partial replacement of Glu with Ala. PMID:26167296

  15. Glucose tolerance test - non-pregnant

    MedlinePlus

    ... have pre-diabetes or diabetes: A 2 hour value between 140 and 200 mg/dL is called impaired glucose tolerance. Your doctor may call this "pre-diabetes." It means you are at increased risk of developing diabetes over time. A glucose level ...

  16. High Fasting Plasma Glucose Mortality Effect: A Comparative Risk Assessment in 25–64 Years Old Iranian Population

    PubMed Central

    Peykari, Niloofar; Saeedi, Moghaddam Sahar; Djalalinia, Shirin; Kasaeian, Amir; Sheidaei, Ali; Mansouri, Anita; Mohammadi, Younes; Parsaeian, Mahboubeh; Mehdipour, Parinaz; Larijani, Bagher; Farzadfar, Farshad

    2016-01-01

    Background: High fasting plasma glucose (FPG) is one of the main leading risk factors of ischemic heart disease (IHD), stroke, and chronic kidney diseases (CKDs). We estimated population attributable fraction (PAF) and attributed death of these fatal outcomes of high FPG at national and subnational levels in 25–64 years old Iranian adult. Methods: We used national and subnational data of the Non-Communicable Disease Surveillance Survey for exposure to risk factors in 2005 and 2011 among Iranian adults of 25–64 years old. For estimating the attributed death, using the death registration system data of Iran, we multiply the cause-specific PAFs by the number of outcome-specific deaths. Results: In Iran, high FPG was responsible for about 31% of attributed total deaths of IHD, stroke, and CKD in 2011. The related attributed deaths had increased from 2005 to 2011. In females, the PAFs for the effect of high FPG on IHD, stroke, and CKD were higher in 2011 than 2005 in all age groups. In males, this increase has occurred in over 45 years old. The highest PAFs of high FPG outcomes mostly related to central provinces of Iran. The central region of Iran had the highest and the southeast of the country had the lowest levels of attributed deaths. Conclusions: Considering the global 25 × 25 targets for noncommunicable disease mortality reduction, high FPG as a leading risk factor of fatal outcomes should be more targeted through the dietary, behavioral, and pharmacological interventions in Iran. PMID:27280011

  17. Alterations in blood glucose and plasma glucagon concentrations during deep brain stimulation in the shell region of the nucleus accumbens in rats

    PubMed Central

    Diepenbroek, Charlene; van der Plasse, Geoffrey; Eggels, Leslie; Rijnsburger, Merel; Feenstra, Matthijs G. P.; Kalsbeek, Andries; Denys, Damiaan; Fliers, Eric; Serlie, Mireille J.; la Fleur, Susanne E.

    2013-01-01

    Deep brain stimulation (DBS) of the nucleus accumbens (NAc) is an effective therapy for obsessive compulsive disorder (OCD) and is currently under investigation as a treatment for eating disorders. DBS of this area is associated with altered food intake and pharmacological treatment of OCD is associated with the risk of developing type 2 diabetes. Therefore we examined if DBS of the NAc-shell (sNAc) influences glucose metabolism. Male Wistar rats were subjected to DBS, or sham stimulation, for a period of 1 h. To assess the effects of stimulation on blood glucose and glucoregulatory hormones, blood samples were drawn before, during and after stimulation. Subsequently, all animals were used for quantitative assessment of Fos immunoreactivity in the lateral hypothalamic area (LHA) using computerized image analysis. DBS of the sNAc rapidly increased plasma concentrations of glucagon and glucose while sham stimulation and DBS outside the sNAc were ineffective. In addition, the increase in glucose was dependent on DBS intensity. In contrast, the DBS-induced increase in plasma corticosterone concentrations was independent of intensity and region, indicating that the observed DBS-induced metabolic changes were not due to corticosterone release. Stimulation of the sNAc with 200 μA increased Fos immunoreactivity in the LHA compared to sham or 100 μA stimulated animals. These data show that DBS of the sNAc alters glucose metabolism in a region- and intensity- dependent manner in association with neuronal activation in the LHA. Moreover, these data illustrate the need to monitor changes in glucose metabolism during DBS-treatment of OCD patients. PMID:24339800

  18. Stalk segment 5 of the yeast plasma membrane H(+)-ATPase. Labeling with a fluorescent maleimide reveals a conformational change during glucose activation.

    PubMed

    Miranda, Manuel; Pardo, Juan Pablo; Allen, Kenneth E; Slayman, Carolyn W

    2002-10-25

    Glucose is well known to cause a rapid, reversible activation of the yeast plasma membrane H(+)-ATPase, very likely mediated by phosphorylation of two or more Ser/Thr residues near the C terminus. Recent mutagenesis studies have shown that glucose-dependent activation can be mimicked constitutively by amino acid substitutions in stalk segment 5 (S5), an alpha-helical stretch connecting the catalytic part of the ATPase with transmembrane segment 5 (Miranda, M., Allen, K. E., Pardo, J. P., and Slayman, C. W. (2001) J. Biol. Chem. 276, 22485-22490). In the present work, the fluorescent maleimide Alexa-488 has served as a probe for glucose-dependent changes in the conformation of S5. Experiments were carried out in a "3C" version of the ATPase, from which six of nine native cysteines had been removed by site-directed mutagenesis to eliminate background labeling by Alexa-488. In this construct, three of twelve cysteines introduced at various positions along S5 (A668C, S672C, and D676C) reacted with the Alexa dye in a glucose-independent manner, as shown by fluorescent labeling of the 100 kDa Pma1 polypeptide and by isolation and identification of the corresponding tryptic peptides. Especially significant was the fact that three additional cysteines reacted with Alexa-488 more rapidly (Y689C) or only (V665C and L678C) in plasma membranes from glucose-metabolizing cells. The results support a model in which the S5 alpha-helix undergoes a significant change in conformation to expose positions 665, 678, and 689 during glucose-dependent activation of the ATPase. PMID:12169695

  19. Alterations in blood glucose and plasma glucagon concentrations during deep brain stimulation in the shell region of the nucleus accumbens in rats.

    PubMed

    Diepenbroek, Charlene; van der Plasse, Geoffrey; Eggels, Leslie; Rijnsburger, Merel; Feenstra, Matthijs G P; Kalsbeek, Andries; Denys, Damiaan; Fliers, Eric; Serlie, Mireille J; la Fleur, Susanne E

    2013-01-01

    Deep brain stimulation (DBS) of the nucleus accumbens (NAc) is an effective therapy for obsessive compulsive disorder (OCD) and is currently under investigation as a treatment for eating disorders. DBS of this area is associated with altered food intake and pharmacological treatment of OCD is associated with the risk of developing type 2 diabetes. Therefore we examined if DBS of the NAc-shell (sNAc) influences glucose metabolism. Male Wistar rats were subjected to DBS, or sham stimulation, for a period of 1 h. To assess the effects of stimulation on blood glucose and glucoregulatory hormones, blood samples were drawn before, during and after stimulation. Subsequently, all animals were used for quantitative assessment of Fos immunoreactivity in the lateral hypothalamic area (LHA) using computerized image analysis. DBS of the sNAc rapidly increased plasma concentrations of glucagon and glucose while sham stimulation and DBS outside the sNAc were ineffective. In addition, the increase in glucose was dependent on DBS intensity. In contrast, the DBS-induced increase in plasma corticosterone concentrations was independent of intensity and region, indicating that the observed DBS-induced metabolic changes were not due to corticosterone release. Stimulation of the sNAc with 200 μA increased Fos immunoreactivity in the LHA compared to sham or 100 μA stimulated animals. These data show that DBS of the sNAc alters glucose metabolism in a region- and intensity- dependent manner in association with neuronal activation in the LHA. Moreover, these data illustrate the need to monitor changes in glucose metabolism during DBS-treatment of OCD patients. PMID:24339800

  20. An acute bout of whole body passive hyperthermia increases plasma leptin, but does not alter glucose or insulin responses in obese type 2 diabetics and healthy adults.

    PubMed

    Rivas, Eric; Newmire, Dan E; Crandall, Craig G; Hooper, Philip L; Ben-Ezra, Vic

    2016-07-01

    Acute and chronic hyperthermic treatments in diabetic animal models repeatedly improve insulin sensitivity and glycemic control. Therefore, the purpose of this study was to test the hypothesis that an acute 1h bout of hyperthermic treatment improves glucose, insulin, and leptin responses to an oral glucose challenge (OGTT) in obese type 2 diabetics and healthy humans. Nine obese (45±7.1% fat mass) type 2 diabetics (T2DM: 50.1±12y, 7.5±1.8% HbA1c) absent of insulin therapy and nine similar aged (41.1±13.7y) healthy non-obese controls (HC: 33.4±7.8% fat mass, P<0.01; 5.3±0.4% HbA1c, P<0.01) participated. Using a randomized design, subjects underwent either a whole body passive hyperthermia treatment via head-out hot water immersion (1h resting in 39.4±0.4°C water) that increased internal temperature above baseline by ∆1.6±0.4°C or a control resting condition. Twenty-four hours post treatments, a 75g OGTT was administered to evaluate changes in plasma glucose, insulin, C-peptide, and leptin concentrations. Hyperthermia itself did not alter area under the curve for plasma glucose, insulin, or C-peptide during the OGTT in either group. Fasting absolute and normalized (kg·fat mass) plasma leptin was significantly increased (P<0.01) only after the hyperthermic exposure by 17% in T2DM and 24% in HC groups (P<0.001) when compared to the control condition. These data indicate that an acute hyperthermic treatment does not improve glucose tolerance 24h post treatment in moderate metabolic controlled obese T2DM or HC individuals. PMID:27264884

  1. A single dose of sodium nitrate does not improve oral glucose tolerance in patients with type 2 diabetes mellitus.

    PubMed

    Cermak, Naomi M; Hansen, Dominique; Kouw, Imre W K; van Dijk, Jan-Willem; Blackwell, Jamie R; Jones, Andrew M; Gibala, Martin J; van Loon, Luc J C

    2015-08-01

    Dietary nitrate (NO3(-)) supplementation has been proposed as an emerging treatment strategy for type 2 diabetes. We hypothesized that ingestion of a single bolus of dietary NO3(-) ingestion improves oral glucose tolerance in patients with type 2 diabetes. Seventeen men with type 2 diabetes (glycated hemoglobin, 7.3% ± 0.2%) participated in a randomized crossover experiment. The subjects ingested a glucose beverage 2.5 hours after consumption of either sodium NO3(-) (0.15 mmol NaNO3(-) · kg(-1)) or a placebo solution. Venous blood samples were collected before ingestion of the glucose beverage and every 30 minutes thereafter during a 2-hour period to assess postprandial plasma glucose and insulin concentrations. The results show that plasma NO3(-) and nitrite levels were increased after NaNO3(-) as opposed to placebo ingestion (treatment-effect, P = .001). Despite the elevated plasma NO3(-) and nitrite levels, ingestion of NaNO3(-) did not attenuate the postprandial rise in plasma glucose and insulin concentrations (time × treatment interaction, P = .41 for glucose, P = .93 for insulin). Despite the lack of effect on oral glucose tolerance, basal plasma glucose concentrations measured 2.5 hours after NaNO3(-) ingestion were lower when compared with the placebo treatment (7.5 ± 0.4 vs 8.3 ± 0.4 mmol/L, respectively; P = .04). We conclude that ingestion of a single dose of dietary NO3(-) does not improve subsequent oral glucose tolerance in patients with type 2 diabetes. PMID:26092495

  2. Glucose-β-CD interaction assisted ACN field-amplified sample stacking in CZE for determination of trace amlodipine in beagle dog plasma.

    PubMed

    Li, Ji; Li, You; Zhang, Wenting; Chen, Zhao; Fan, Guorong

    2013-06-01

    A simple, sensitive and low-cost method using CE coupled with glucose-β-CD interaction assisted ACN stacking technique has been developed for quantification of trace amlodipine in dog plasma. The plasma samples were extracted with methyl tert-butyl ether. The separation was performed at 25°C in a 31.2 cm × 75 μm fused-silica capillary with an applied voltage of 15 kV. The BGE was composed of 6.25 mM borate/25 mM phosphate (pH 2.5) and 5 mg/mL glucose-β-CD. The detection wavelength was 200 nm. Because CD could diminish the interaction between drugs and matrix, and derivation groups of CD play an important role in separation performance, the effects of β-CD, and its derivatives on the separation were studied at several concentrations (0, 2.5, 5.0, 10.0 mg/mL). In this study, organic solvent field-amplified sample stacking technique in combination with glucose-β-CD enhanced the sensitivity about 60-70 folds and glucose-β-CD could effectively improve the peak shape. All the validation data, such as accuracy, precision extraction recovery, and stability, were within the required limits. The calibration curve was linear for amlodipine from 1 to 200 ng/mL. The method developed was successfully applied to the pharmacokinetic studies of amlodipine besylate in beagle dogs. PMID:23495256

  3. A mixture of Salacia oblonga extract and IP-PA1 reduces fasting plasma glucose (FPG) and low-density lipoprotein (LDL) cholesterol levels.

    PubMed

    Nakata, Kazue; Taniguchi, Yoshie; Yoshioka, Noriko; Yoshida, Aya; Inagawa, Hiroyuki; Nakamoto, Takeru; Yoshimura, Hiroshi; Miyake, Shin-Ichiro; Kohchi, Chie; Kuroki, Masahide; Soma, Gen-Ichiro

    2011-10-01

    At present, lifestyle-related diseases are one of the most critical health issues worldwide. It has been reported that lipopolysaccharide derived from a Gram-negative bacteria (IP-PA1) symbiotic with wheat exhibited several advantageous biological effects, such as the reduction of plasma glucose levels in NOD mice and low-density lipoprotein (LDL) levels in WHHL rabbits. In this study, the beneficial effects on plasma glucose and lipids of a tea (SI tea) consisting of IP-PA1 and Salacia (which contains an inhibitor of α-glucosidase) were investigated in the KK-Ay/TaJcl type 2 diabetic model mice and in human subjects with premetabolic syndrome in a double-blind, randomized study. SI tea significantly decreased plasma glucose levels in KK-Ay/TaJcl mice. A clinical trial of SI tea was performed with 41 subjects between the ages of 40 and 69, who belonged either to a high plasma glucose group (HG: FPG 100-125 mg/dl) or to a hyperlipidemia group (HL: TG ≥ 150 mg/dl, or LDL ≥ 120 mg/dl, or HDL < 40 mg/dl). These subjects ingested either Salacia without IP-PA1 (the control) or SI tea. Blood samples were collected at 0, 30, and 60 days after initiating SI tea treatment, and were measured for FPG, HbA1c, TG, LDL, and HDL. These results showed that SI tea reduced FPG and HbA1c more rapidly than the control in the HL group, and also significantly improved LDL and HDL levels in the HG group. Thus, SI tea may be helpful in preventing lifestyle-related diseases. PMID:22125681

  4. A mixture of Salacia oblonga extract and IP-PA1 reduces fasting plasma glucose (FPG) and low-density lipoprotein (LDL) cholesterol levels

    PubMed Central

    Nakata, Kazue; Taniguchi, Yoshie; Yoshioka, Noriko; Yoshida, Aya; Inagawa, Hiroyuki; Nakamoto, Takeru; Yoshimura, Hiroshi; Miyake, Shin-ichiro; Kohchi, Chie; Kuroki, Masahide

    2011-01-01

    At present, lifestyle-related diseases are one of the most critical health issues worldwide. It has been reported that lipopolysaccharide derived from a Gram-negative bacteria (IP-PA1) symbiotic with wheat exhibited several advantageous biological effects, such as the reduction of plasma glucose levels in NOD mice and low-density lipoprotein (LDL) levels in WHHL rabbits. In this study, the beneficial effects on plasma glucose and lipids of a tea (SI tea) consisting of IP-PA1 and Salacia (which contains an inhibitor of α-glucosidase) were investigated in the KK-Ay/TaJcl type 2 diabetic model mice and in human subjects with premetabolic syndrome in a double-blind, randomized study. SI tea significantly decreased plasma glucose levels in KK-Ay/TaJcl mice. A clinical trial of SI tea was performed with 41 subjects between the ages of 40 and 69, who belonged either to a high plasma glucose group (HG: FPG 100-125 mg/dl) or to a hyperlipidemia group (HL: TG ≥ 150 mg/dl, or LDL ≥ 120 mg/dl, or HDL < 40 mg/dl). These subjects ingested either Salacia without IP-PA1 (the control) or SI tea. Blood samples were collected at 0, 30, and 60 days after initiating SI tea treatment, and were measured for FPG, HbA1c, TG, LDL, and HDL. These results showed that SI tea reduced FPG and HbA1c more rapidly than the control in the HL group, and also significantly improved LDL and HDL levels in the HG group. Thus, SI tea may be helpful in preventing lifestyle-related diseases. PMID:22125681

  5. The seasonal glucocorticoid response of male Rufous-winged Sparrows to acute stress correlates with changes in plasma uric acid, but neither glucose nor testosterone.

    PubMed

    Deviche, Pierre; Valle, Shelley; Gao, Sisi; Davies, Scott; Bittner, Stephanie; Carpentier, Elodie

    2016-09-01

    We sought to clarify functional relationships between baseline and acute stress-induced changes in plasma levels of the stress hormone corticosterone (CORT) and the reproductive hormone testosterone (T), and those of two main metabolites, uric acid (UA) and glucose (GLU). Acute stress in vertebrates generally stimulates the secretion of glucocorticoids, which in birds is primarily CORT. This stimulation is thought to promote behavioral and metabolic changes, including increased glycemia. However, limited information in free-ranging birds supports the view that acutely elevated plasma CORT stimulates glycemia. Acute stress also often decreases the secretion of reproductive hormones (e.g., T in males), but the role of CORT in this decrease and the contribution of T to the regulation of plasma GLU remain poorly understood. We measured initial (pre-stress) and acute stress-induced plasma CORT and T as well as GLU in adult male Rufous-winged Sparrows, Peucaea carpalis, sampled during the pre-breeding, breeding, post-breeding molt, and non-breeding stages. Stress increased plasma CORT and the magnitude of this increase did not differ across life history stages. The stress-induced elevation of plasma CORT was consistently associated with decreased plasma UA, suggesting a role for CORT in the regulation of plasma UA during stress. During stress plasma GLU either increased (pre-breeding), did not change (breeding), or decreased (molt and non-breeding), and plasma T either decreased (pre-breeding and breeding) or did not change (molt and non-breeding). These data provide only partial support to the hypothesis that CORT secretion during acute stress exerts a hyperglycemic action or is responsible for the observed decrease in plasma T taking place at certain life history stages. They also do not support the hypothesis that rapid changes in plasma T influence glycemia. PMID:27292791

  6. Effect of housefly maggot meal (magmeal) diets on the performance, concentration of plasma glucose, cortisol and blood characteristics of Oreochromis niloticus fingerlings.

    PubMed

    Ogunji, J O; Kloas, W; Wirth, M; Neumann, N; Pietsch, C

    2008-08-01

    A 56-day feeding trial was conducted to access the effect of housefly maggot meal (magmeal) diets on the performance, concentration of plasma glucose, cortisol and blood characteristics of Oreochromis niloticus fingerlings. Seven feeds formulated to contain 36% protein and 20 kJ g(-1) gross energy (dry matter basis), were prepared by replacing fish meal with magmeal. Fifteen fingerlings (initial average weight 2.0 +/- 0.1 g) stocked per experimental tank were fed in triplicates at 5% body weight in two portions per day (a level previously established). Growth and food conversion ratio were adequate and comparable without any significant differences (p < 0.5) between feeding groups. Mean values for haematocrit and plasma glucose were not significantly different (p < 0.05) among the feeding groups. Fish group fed control diet (containing highest inclusion level of fish meal and without magmeal) gave the lowest haemoglobin concentration (5.96 +/- 0.22 g dl(-1)). This value was significantly different from other feeding groups. Stressful conditions in fish and in mammals are associated with decreased growth, haematocrit (packed cell volume) and haemoglobin values, increased whole blood glucose (hyperglycaemia) and plasma cortisol concentrations. No such physiological changes were observed in this study. Results suggest that feeding O. niloticus fingerling with magmeal diets did not cause any form of physiological stress. Magmeal can be used as a good alternative protein source in tilapia diets. PMID:18662361

  7. Effect of an aqueous extract of Scoparia dulcis on blood glucose, plasma insulin and some polyol pathway enzymes in experimental rat diabetes.

    PubMed

    Latha, M; Pari, L

    2004-04-01

    The effects of an aqueous extract of the plant Scoparia dulcis (200 mg/kg) on the polyol pathway and lipid peroxidation were examined in the liver of streptozotocin adult diabetic male albino Wistar rats. The diabetic control rats (N = 6) presented a significant increase in blood glucose, sorbitol dehydrogenase, glycosylated hemoglobin and lipid peroxidation markers such as thiobarbituric acid reactive substances (TBARS) and hydroperoxides, and a significant decrease in plasma insulin and antioxidant enzymes such as glutathione peroxidase (GPx), glutathione-S-transferase (GST) and reduced glutathione (GSH) compared to normal rats (N = 6). Scoparia dulcis plant extract (SPEt, 200 mg kg-1 day-1) and glibenclamide (600 microg kg-1 day-1), a reference drug, were administered by gavage for 6 weeks to diabetic rats (N = 6 for each group) and significantly reduced blood glucose, sorbitol dehydrogenase, glycosylated hemoglobin, TBARS, and hydroperoxides, and significantly increased plasma insulin, GPx, GST and GSH activities in liver. The effect of the SPEt was compared with that of glibenclamide. The effect of the extract may have been due to the decreased influx of glucose into the polyol pathway leading to increased activities of antioxidant enzymes and plasma insulin and decreased activity of sorbitol dehydrogenase. These results indicate that the SPEt was effective in attenuating hyperglycemia in rats and their susceptibility to oxygen free radicals. PMID:15064821

  8. Determinants of Fasting Plasma Glucose and Glycosylated Hemoglobin Among Low Income Latinos with Poorly Controlled Type 2 Diabetes

    PubMed Central

    Kollannoor-Samuel, Grace; Chhabra, Jyoti; Fernandez, Maria Luz; Vega-LÓpez, Sonia; Pérez, Sofia Segura; Damio, Grace; Calle, Mariana C.; D’Agostino, Darrin; Pérez-Escamilla, Rafael

    2011-01-01

    The objective of this study was to identify demographic, socio-economic, acculturation, lifestyle, sleeping pattern, and biomedical determinants of fasting plasma glucose (FPG) and glycosylated hemoglobin (HbA1c), among Latinos with type 2 diabetes (T2D). Latino adults (N = 211) with T2D enrolled in the DIALBEST trial were interviewed in their homes. Fasting blood samples were also collected in the participants’ homes. Because all participants had poor glucose control, above-median values for FPG (173 mg/dl) and HbA1c (9.2%) were considered to be indicative of poorer glycemic control. Multivariate analyses showed that receiving heating assistance (OR: 2.20; 95% CI: 0.96–4.96), and having a radio (3.11, 1.16–8.35), were risk factors for higher FPG levels, and lower income (10.4, 1.54–69.30) was a risk factor for higher HbA1c levels. Lower carbohydrate intake during the previous day (0.04; 0.005–0.37), as well as regular physical activity (0.30; 0.13–0.69), breakfast (2.78; 1.10–6.99) and dinner skipping (3.9; 1.03–14.9) during previous week were significantly associated with FPG concentrations. Being middle aged (2.24, 1.12–4.47), 30–60 min of sleep during the day time (0.07, 0.01–0.74) and having medical insurance (0.31, 0.10–0.96) were predictors of HbA1c. Results suggest that contemporaneous lifestyle behaviors were associated with FPG and contextual biomedical factors such as health care access with HbA1c. Lower socio-economic status indicators were associated with poorer FPG and HbA1c glycemic control. PMID:21181446

  9. Operational Implementation of a 2-Hour Prebreathe Protocol for International Space Station

    NASA Technical Reports Server (NTRS)

    Waligora, James M.; Conkin, J.; Foster, P. P.; Schneider, S.; Loftin, Karin C.; Gernhardt, Michael L.; Vann, R.

    2000-01-01

    Procedures, equipment, and analytical techniques were developed to implement the ground tested 2-hour protocol in-flight operations. The methods are: 1) The flight protocol incorporates additional safety margin over the ground tested protocol. This includes up to 20 min of additional time on enriched O2 during suit purge and pressure check, increased duration of extravehicular activity (EVA) preparation exercise during O2 prebreathing (up to 90 min vs; the tested 24 min), and reduced rates of depressurization. The ground test observations were combined with model projections of the conservative measures (using statistical models from Duke University and NASA JSQ to bound the risk of Type I and Type II decompression sickness (DCS). 2) An inflight exercise device using the in-flight ergometer and elastic tubes for upper body exercise was developed to replicate the dual cycle exercise in the ground trials. 3) A new in-flight breathing system was developed and man-tested. 4) A process to monitor inflight experience with the protocol, including the use of an in-suit Doppler bubble monitor when available, was developed. The results are: 1) The model projections of the conservative factors of the operational protocol were shown to reduce the risk of DCS to levels consistent with the observations of no DCS to date in the shuttle program. 2) Cross over trials of the dual cycle ergometer used in ground tests and the in-flight exercise system verified that02consumption and the % division of work between upper and lower body was not significantly different at the p= 0.05 level. 3) The in-flight breathing system was demonstrated to support work rates generating 75% O2(max) in 95 percentile subjects. 4) An in-flight monitoring plan with acceptance criteria was put in place for the 2-hour prebreathe protocol. And the conclusions are: The 2-hour protocol has been approved for flight, and all implementation efforts are in place to allow use of the protocol as early as flight ISS 7A

  10. Multiple Functional Polymorphisms in the G6PC2 Gene Contribute to the Association with Higher Fasting Plasma Glucose Levels

    PubMed Central

    Baerenwald, D. A.; Bonnefond, A.; Bouatia-Naji, N.; Flemming, B. P.; Umunakwe, O. C.; Oeser, J. K.; Pound, L. D.; Conley, N. L.; Cauchi, S.; Lobbens, S.; Eury, E.; Balkau, B.; Lantieri, O.; Dadi, P. K.; Jacobson, D. A.; Froguel, P.; O’Brien, R. M.

    2014-01-01

    Aims We previously identified the G6PC2 locus as a strong determinant of fasting plasma glucose (FPG) and showed that a common G6PC2 intronic single nucleotide polymorphism (SNP) (rs560887) and two common G6PC2 promoter SNPs (rs573225 and rs13431652) are highly associated with FPG. However, these promoter SNPs have complex effects on G6PC2 fusion gene expression, and our data suggested that only rs13431652 is a potentially causative SNP. Here we examine the effect of rs560887 on G6PC2 pre-mRNA splicing and the contribution of an additional common G6PC2 promoter SNP, rs2232316, to the association signal. Methods Mini-gene analyzes characterized the effect of rs560887 on G6PC2 pre-mRNA splicing. Fusion gene and gel retardation analyses characterized the effect of rs2232316 on G6PC2 promoter activity and transcription factor binding. The genetic association of rs2232316 with FPG variation was assessed using regression adjusted for age, gender and body mass index in 4,220 Europeans with normal FPG. Results & Conclusions The rs560887-G allele was shown to enhance G6PC2 pre-mRNA splicing while the rs2232316-A allele enhanced G6PC2 transcription by promoting Foxa2 binding. Genetic analyses provide evidence for association of the rs2232316-A allele with increased FPG (β=0.04 mmol/l; P=4.3×10−3) as part of the same signal as rs560887, rs573225 and rs13431652. As with rs13431652 the in situ functional data with rs560887 and rs2232316 are in accord with the putative function of G6PC2 in pancreatic islets and suggest that all three are potentially causative SNPs that contribute to the association between G6PC2 and FPG. PMID:23508304

  11. Common Missense Variant in the Glucokinase Regulatory Protein Gene Is Associated With Increased Plasma Triglyceride and C-Reactive Protein but Lower Fasting Glucose Concentrations

    PubMed Central

    Orho-Melander, Marju; Melander, Olle; Guiducci, Candace; Perez-Martinez, Pablo; Corella, Dolores; Roos, Charlotta; Tewhey, Ryan; Rieder, Mark J.; Hall, Jennifer; Abecasis, Goncalo; Tai, E. Shyong; Welch, Cullan; Arnett, Donna K.; Lyssenko, Valeriya; Lindholm, Eero; Saxena, Richa; de Bakker, Paul I.W.; Burtt, Noel; Voight, Benjamin F.; Hirschhorn, Joel N.; Tucker, Katherine L.; Hedner, Thomas; Tuomi, Tiinamaija; Isomaa, Bo; Eriksson, Karl-Fredrik; Taskinen, Marja-Riitta; Wahlstrand, Björn; Hughes, Thomas E.; Parnell, Laurence D.; Lai, Chao-Qiang; Berglund, Göran; Peltonen, Leena; Vartiainen, Erkki; Jousilahti, Pekka; Havulinna, Aki S.; Salomaa, Veikko; Nilsson, Peter; Groop, Leif; Altshuler, David; Ordovas, Jose M.; Kathiresan, Sekar

    2008-01-01

    OBJECTIVE—Using the genome-wide association approach, we recently identified the glucokinase regulatory protein gene (GCKR, rs780094) region as a novel quantitative trait locus for plasma triglyceride concentration in Europeans. Here, we sought to study the association of GCKR variants with metabolic phenotypes, including measures of glucose homeostasis, to evaluate the GCKR locus in samples of non-European ancestry and to fine- map across the associated genomic interval. RESEARCH DESIGN AND METHODS—We performed association studies in 12 independent cohorts comprising >45,000 individuals representing several ancestral groups (whites from Northern and Southern Europe, whites from the U.S., African Americans from the U.S., Hispanics of Caribbean origin, and Chinese, Malays, and Asian Indians from Singapore). We conducted genetic fine-mapping across the ∼417-kb region of linkage disequilibrium spanning GCKR and 16 other genes on chromosome 2p23 by imputing untyped HapMap single nucleotide polymorphisms (SNPs) and genotyping 104 SNPs across the associated genomic interval. RESULTS—We provide comprehensive evidence that GCKR rs780094 is associated with opposite effects on fasting plasma triglyceride (Pmeta = 3 × 10−56) and glucose (Pmeta = 1 × 10−13) concentrations. In addition, we confirmed recent reports that the same SNP is associated with C-reactive protein (CRP) level (P = 5 × 10−5). Both fine-mapping approaches revealed a common missense GCKR variant (rs1260326, Pro446Leu, 34% frequency, r2 = 0.93 with rs780094) as the strongest association signal in the region. CONCLUSIONS—These findings point to a molecular mechanism in humans by which higher triglycerides and CRP can be coupled with lower plasma glucose concentrations and position GCKR in central pathways regulating both hepatic triglyceride and glucose metabolism. PMID:18678614

  12. Effect of acute variations of insulin and glucose on plasma concentrations of asymmetric dimethylarginine in young people with Type 1 diabetes.

    PubMed

    Marcovecchio, M Loredana; Widmer, Barry; Dunger, David B; Dalton, R Neil

    2008-12-01

    ADMA (asymmetric dimethylarginine), an endogenous inhibitor of nitric oxide synthase, is considered a major risk factor for cardiovascular disease and progression of renal disease. In the present study we aim to investigate the effect of acute variations in plasma glucose and insulin on plasma ADMA levels in young people with T1D (Type 1 diabetes). Fifteen young patients (ten males) with T1D, median age 18.3 (13.2-24.4) years, HbA(1c) (glycated haemoglobin) 9% (6.4-13.6%), underwent an overnight (18:00-08:00 hours) variable insulin infusion for euglycaemia, followed by a hyperinsulinaemic-euglycaemic clamp (08:00-12:00 hours). Blood samples were collected every 15 min for determination of ADMA, SDMA (symmetric dimethylarginine), valine, phenylalanine, arginine, creatinine and glucose. Insulin levels were assessed every 30 min. During the overnight period, glucose levels increased following the evening meal. In response to the protein intake there was a significant increase in ADMA, arginine, valine, phenylalanine and creatinine. For the remaining part of the night, glucose levels progressively decreased reaching 5 mmol/l by 04:00 hours. ADMA and SDMA did not change significantly. During the hyperinsulinaemic clamp, a significant fall in ADMA was observed, from 0.468+/-0.056 to 0.364+/-0.050 micromol/l (P<0.001). A significant fall was also found in SDMA, valine, phenylalanine, arginine and the ADMA/SDMA ratio (all P<0.001), but not in creatinine levels. No correlation was found between insulin sensitivity and ADMA. We conclude that acute changes in glycaemia do not significantly affect plasma ADMA levels whereas infusion of insulin significantly reduces ADMA, suggesting an important role for insulin in the regulation of this cardiovascular risk factor. PMID:18498242

  13. Insulin Secretory Defect and Insulin Resistance in Isolated Impaired Fasting Glucose and Isolated Impaired Glucose Tolerance

    PubMed Central

    Aoyama-Sasabe, Sae; Fukushima, Mitsuo; Xin, Xin; Taniguchi, Ataru; Nakai, Yoshikatsu; Mitsui, Rie; Takahashi, Yoshitaka; Tsuji, Hideaki; Yabe, Daisuke; Yasuda, Koichiro; Kurose, Takeshi; Inagaki, Nobuya; Seino, Yutaka

    2016-01-01

    Objective. To investigate the characteristics of isolated impaired glucose tolerance (IGT) and isolated impaired fasting glucose (IFG), we analyzed the factors responsible for elevation of 2-hour postchallenge plasma glucose (2 h PG) and fasting plasma glucose (FPG) levels. Methods. We investigated the relationship between 2 h PG and FPG levels who underwent 75 g OGTT in 5620 Japanese subjects at initial examination for medical check-up. We compared clinical characteristics between isolated IGT and isolated IFG and analyzed the relationships of 2 h PG and FPG with clinical characteristics, the indices of insulin secretory capacity, and insulin sensitivity. Results. In a comparison between isolated IGT and isolated IFG, insulinogenic index was lower in isolated IGT than that of isolated IFG (0.43 ± 0.34 versus 0.50 ± 0.47, resp.; p < 0.01). ISI composite was lower in isolated IFG than that of isolated IGT (6.87 ± 3.38 versus 7.98 ± 4.03, resp.; p < 0.0001). In isolated IGT group, insulinogenic index showed a significant correlation with 2 h PG (r = −0.245, p < 0.0001) and had the strongest correlation with 2 h PG (β = −0.290). In isolated IFG group, ISI composite showed a significant correlation with FPG (r = −0.162, p < 0.0001) and had the strongest correlation with FPG (β = −0.214). Conclusions. We have elucidated that decreased early-phase insulin secretion is the most important factor responsible for elevation of 2 h PG levels in isolated IGT subjects, and decreased insulin sensitivity is the most important factor responsible for elevation of FPG levels in isolated IFG subjects. PMID:26788515

  14. β-3AR W64R Polymorphism and 30-Minute Post-Challenge Plasma Glucose Levels in Obese Children

    PubMed Central

    Verdi, Hasibe; Tulgar Kınık, Sibel; Yılmaz Yalçın, Yaprak; Muratoğlu Şahin, Nursel; Yazıcı, Ayşe Canan; Ataç, F. Belgin

    2015-01-01

    Objective: In this study, we aimed to investigate the association of W64R polymorphism of the β3-adrenergic receptor gene (β-3AR) with childhood obesity and related pathologies. Methods: β-3AR gene W64R genotyping was carried out in 251 children aged 6-18 years. Of these subjects, 130 were obese (62 boys) and 121 were normal-weight (53 boys). In the obese group, fasting lipids, glucose and insulin levels were measured. Oral glucose tolerance test (OGTT) was performed in 75 of the obese patients. Results: The frequency of W64R genotype was similar in obese and non-obese children. In obese children, relative body mass index, waist-to-hip ratio, serum lipid, glucose and insulin levels, as well as homeostasis model assessment of insulin resistance (HOMA-IR) scores were not different between Arg allele carriers (W64R and R64R) and noncarriers (W64W). In 75 obese children, OGTT results showed that Arg allele carriers had significantly higher 30-minute glucose levels (p=0.027). Conclusion: W64R polymorphism of the β-3AR gene is not associated with obesity and waist-to-hip ratio in Turkish children. Although there were no relationships between the genotypes and lipid, glucose/insulin levels or HOMA-IR, the presence of W64R variant seemed to have an unfavorable influence on early glucose excursion after glucose loading. PMID:25800470

  15. Effect of aspartame and protein, administered in phenylalanine-equivalent doses, on plasma neutral amino acids, aspartate, insulin and glucose in man.

    PubMed

    Møller, S E

    1991-05-01

    Six human males each received 0.56 g phenylalanine (Phe) in the form of 1.0 g aspartame or 12.2 g bovine albumin in 200 ml water or water alone. Venous blood samples collected before consumption and during the following 4 hr were assayed for plasma levels of large, neutral amino acids (LNAA), aspartate, insulin and glucose. The area under the curve for plasma Phe was 40% greater, although not significant, after aspartame compared with albumin intake. The indicated increased clearance rate of plasma Phe after albumin may be caused by the significant increase of insulin, on which aspartame had no effect. There was a significant main effect of aspartame for plasma tyrosine but not for tryptophan, valine, isoleucine or leucine. Plasma aspartate was significantly increased at 0.25 hr after the aspartame intake. The percentage Phe/LNAA decreased slightly in response to albumin but increased 55% after aspartame and remained significantly increased for 2 hr. Tyrosine/LNAA increased and tryptophan/LNAA decreased modestly after aspartame intake. The study showed that the intake of aspartame in a not unrealistically high dose produced a marked and persistent increase of the availability of Phe to the brain, which was not observed after protein intake. The study indicated, furthermore, that Phe was cleared faster from the plasma after consumption of protein compared with aspartame. PMID:1946186

  16. Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells

    NASA Astrophysics Data System (ADS)

    Kaushik, Neha; Lee, Su Jae; Choi, Tae Gyu; Baik, Ku Youn; Uhm, Han Sup; Kim, Chung Hyeok; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-03-01

    In this study, we show the selective and efficient anti-cancer effects of plasma (at a low dose) when cell metabolic modifiers are also included. 2-deoxy-D-glucose (2-DG), a glycolytic inhibitor, was used with effective doses of non-thermal plasma, synergistically attenuating cell metabolic viability and inducing caspase-dependent and independent cell death. The combination treatment decreased the intracellular ATP and lactate production in various types of blood cancer cells in vitro. Taken together, our findings suggest that 2-DG enhances the efficacy and selectivity of plasma and induces the synergistic inhibition of cancer cell growth by targeting glycolysis and apoptosis. Specifically, this treatment strategy demonstrated an enhanced growth inhibitory effect of plasma in the presence of a metabolic modifier that was selective against cancer cells, not non-malignant cells. This is the first study to report the advantage of combining plasma with 2-DG to eradicate blood cancer cells. Finally, we conclude that 2-DG with non-thermal plasma may be used as a combination treatment against blood cancer cells.

  17. Rationale for monitoring cyclosporine concentration at 2 hours after administration in infants posttransplantation.

    PubMed

    Furlan, V; Lykavieris, P; Maubert, M A; Habes, D; Debray, D

    2009-10-01

    Therapeutic drug monitoring is critical to avoid overimmunosuppression or underimmunosuppression in young pediatric transplant recipients. The objective of this study was to examine cyclosporine (CsA) trough (C0) and 2-hour post-dose (C2) concentrations in the early period after liver transplantation (OLT) to determine whether CsA C2 monitoring is justified. Seventeen infants younger than 2 years treated with CsA (Neoral) were monitored at C0. The biopsy-proved acute rejection rate was 65% at 3 months post-OLT. No correlation was observed between values at C0 and C2. Poor absorption of CsA was observed in most infants during the first 2 weeks post-OLT, as well as interindividual variability in CsA clearance. Exposure to CsA could not be estimated using either C0 or C2 determinations in the early post-OLT period. As a marker of poor absorption, C2 is useful but does not indicate delayed or rapid clearance of drug without simultaneous measurement of concentration at C0. We suggest the use of both C0 and C2 monitoring, or AUC monitoring on an individual basis during at least the first 2 weeks post-OLT. PMID:19857744

  18. The Development of a Continuous Intravascular Glucose Monitoring Sensor

    PubMed Central

    Crane, Barry C.; Barwell, Nicholas P.; Gopal, Palepu; Gopichand, Mannam; Higgs, Timothy; James, Tony D.; Jones, Christopher M.; Mackenzie, Alasdair; Mulavisala, Krishna Prasad; Paterson, William

    2015-01-01

    Background: Glycemic control in hospital intensive care units (ICU) has been the subject of numerous research publications and debate over the past 2 decades. There have been multiple studies showing the benefit of ICU glucose control in reducing both morbidity and mortality. GlySure Ltd has developed a glucose monitor based on a diboronic acid receptor that can continuously measure plasma glucose concentrations directly in a patient’s vascular system. The goal of this study was to validate the performance of the GlySure CIGM system in different patient populations. Methods: The GlySure Continuous Intravascular Glucose Monitoring (CIGM) System was evaluated in both the Cardiac ICU (33 patients) and MICU setting (14 patients). The sensor was placed through a custom CVC and measured the patients’ blood glucose concentration every 15 seconds. Comparison blood samples were taken at 2 hourly then 4 hourly intervals and measured on a YSI 2300 STAT Plus or an i-STAT. Results: Consensus error grid analysis of the data shows that the majority of the data (88.2% Cardiac, and 95.0% MICU) fell within zone A, which is considered to be clinically accurate and all data points fell within zones A and B. The MARD of the Cardiac trial was 9.90% and the MICU trial had a MARD of 7.95%. Data analysis showed no significant differences between data generated from Cardiac and MICU patients or by time or glucose concentration. Conclusions: The GlySure CIGM System has met the design challenges of measuring intravascular glucose concentrations in critically ill patients with acceptable safety and performance criteria and without disrupting current clinical practice. The accuracy of the data is not affected by the patients’ condition. PMID:26033921

  19. Mosapride, a selective serotonin 5-HT4 receptor agonist, and alogliptin, a selective dipeptidyl peptidase-4 inhibitor, exert synergic effects on plasma active GLP-1 levels and glucose tolerance in mice.

    PubMed

    Nonogaki, Katsunori; Kaji, Takao

    2015-12-01

    Pharmacologic stimulation of serotonin 5-HT4 receptors increased plasma active glucagon-like-peptide-1 (GLP-1) levels independent of feeding, and that pharmacologic stimulation of 5-HT4 receptors and pharmacologic inhibition of dipeptidyl peptidase-4 exerted synergic effects on plasma active GLP-1 levels and glucose tolerance in mice. PMID:26497774

  20. First autoclave-sterilized platelet-additive solution containing glucose with a physiological pH for the preparation of plasma-poor platelet concentrates.

    PubMed

    Shimizu, T; Shibata, K; Kora, S

    1992-01-01

    The glucose-free platelet-additive solution (termed AR solution), developed by Adams and Rock [Transfusion 1988;28:217-220], was modified by adding glucose as an energy substrate for platelets and maltose to prevent platelet lysis and by replacing sodium gluconate with sodium phosphate for better pH maintenance. The new platelet-additive solution (termed Seto solution) contained 90 mM NaCl, 5 mM KCl, 3 mM MgCl2, 17 mM tri-sodium citrate, 4.9 mM NaH2PO4, 20.1 mM Na2HPO4, 23 mM sodium acetate, 28.8 mM maltose, and 23.5 mM glucose with a pH of 7.4. The solution was sterilized by autoclaving in plastic bags in nitrogen to prevent glucose caramelization at high pH. Plasma-poor platelet concentrates prepared by adding Seto solution to the pelleted platelet buttons were stored in a LE-2 polyolefin bag at 22 degrees C with constant agitation for 5 days. The platelets suspended in Seto solution maintained oxygen consumption at a rate of 1.1 nmol/min/10(9) platelets after 5-day storage, with glucose consumption and lactate production rates of 0.5 +/- 0.2 and 1.2 +/- 0.2 nmol/min/10(9) platelets, respectively. This resulted in a final mean pH of 7.0. Those suspended in AR solution ceased glycolysis within 3 days because residual plasma glucose had been consumed. This was associated with decreases in percent hypotonic shock response and aggregation induced by adenosine diphosphate and collagen. Lactate dehydrogenase discharge in AR solution was 5 and 8 times higher at day 3 and day 5, respectively, than that of Seto solution. Morphologically, there were no ballooned platelets after storage in Seto solution.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1519373

  1. Fasting Plasma Glucose as Initial Screening for Diabetes and Prediabetes in Irish Adults: The Diabetes Mellitus and Vascular Health Initiative (DMVhi)

    PubMed Central

    Sinnott, Margaret; Kinsley, Brendan T.; Jackson, Abaigeal D.; Walsh, Cathal; O’Grady, Tony; Nolan, John J.; Gaffney, Peter; Boran, Gerard; Kelleher, Cecily; Carr, Bernadette

    2015-01-01

    Objective Type 2 diabetes has a long pre clinical asymptomatic phase. Early detection may delay or arrest disease progression. The Diabetes Mellitus and Vascular health initiative (DMVhi) was initiated as a prospective longitudinal cohort study on the prevalence of undiagnosed Type 2 diabetes and prediabetes, diabetes risk and cardiovascular risk in a cohort of Irish adults aged 45-75 years. Research Design and Methods Members of the largest Irish private health insurance provider aged 45 to 75 years were invited to participate in the study. Exclusion criteria: already diagnosed with diabetes or taking oral hypoglycaemic agents. Participants completed a detailed medical questionnaire, had weight, height, waist and hip circumference and blood pressure measured. Fasting blood samples were taken for fasting plasma glucose (FPG). Those with FPG in the impaired fasting glucose (IFG) range had a 75gm oral glucose tolerance test performed. Results 122,531 subjects were invited to participate. 29,144 (24%) completed the study. The prevalence of undiagnosed diabetes was 1.8%, of impaired fasting glucose (IFG) was 7.1% and of impaired glucose tolerance (IGT) was 2.9%. Dysglycaemia increased among those aged 45-54, 55-64 and 65-75 years in both males (10.6%, 18.5%, 21.7% respectively) and females (4.3%, 8.6%, 10.9% respectively). Undiagnosed T2D, IFG and IGT were all associated with gender, age, blood pressure, BMI, abdominal obesity, family history of diabetes and triglyceride levels. Using FPG as initial screening may underestimate the prevalence of T2D in the study population. Conclusions This study is the largest screening study for diabetes and prediabetes in the Irish population. Follow up of this cohort will provide data on progression to diabetes and on cardiovascular outcomes. PMID:25874867

  2. Association between the rs4753426 polymorphism in MTNR1B with fasting plasma glucose level and pancreatic β-cell function in gestational diabetes mellitus.

    PubMed

    Zhan, Y; Li, C; Gao, Q; Chen, J; Yu, S; Liu, S G

    2015-01-01

    We investigated the association between rs4753426 single nucleotide polymorphisms in the melatonin receptor 1B (MTNR1B) gene and the risk of developing gestational diabetes mellitus (GDM). A total of 516 gravidas (186 with GDM and 330 non-diabetic controls) were enrolled in the study. Genotype and allele frequencies of rs4753426 in the MTNR1B gene were detected by DNA sequencing. Fasting plasma glucose and fasting insulin levels were measured to calculate the homeostasis model assessment for insulin resistance (HOMA-IR) and for β-cell function. Three genotypes (CC, CT, and TT) were found in both groups. The frequencies of CC, CT, and TT genotypes for the GDM group were 70.97, 22.58, and 6.45% vs 53.03, 39.70, and 7.27% in the control group, respectively. Significant differences were observed in genotype frequencies between groups (P < 0.05). T and C allele frequencies in the GDM group were 17.74 and 82.26%, respectively, and in the control group were 27.12 and 72.88%, respectively. Significant differences in T and C allele frequencies were found between groups (P < 0.05). In the GDM group, the C allele was associated with increased fasting plasma glucose level and reduced pancreatic β-cell function (P < 0.05). There were no significant differences in total cholesterol, triglyceride, low-density lipoprotein, high-density lipoprotein concentration, or HOMA-IR between groups (P > 0.05). The single nucleotide polymorphism rs4753426 in MTNR1B may be a susceptibility gene locus for GDM, and the C allele may contribute to the increased fasting plasma glucose level and reduced pancreatic β-cell function. PMID:26345809

  3. Blood-Induced Interference of Glucose Sensor Function in Vitro: Implications for in Vivo Sensor Function

    PubMed Central

    Klueh, Ulrike; Liu, Zenghe; Ouyang, Tianmei; Cho, Brian; Feldman, Ben; Henning, Timothy P.; Kreutzer, Don

    2007-01-01

    Background Although tissue hemorrhages, with resulting blood clots, are associated with glucose sensor implantation, virtually nothing known is about the impact of red blood cells and red blood cell clots on sensor function in vitro or in vivo. In these studies, we tested the hypothesis that blood can directly interfere with glucose sensor function in vitro. Methods To test this hypothesis, heparinized human whole blood (HWB) and nonheparinized human whole blood (WB) were obtained from normal individuals. Aliquots of HWB and WB samples were also fractionated into plasma, serum, and total leukocyte (TL) components. Resulting HWB, WB, and WB components were incubated in vitro with an amperometric glucose sensor for 24 hours at 37°C. During incubation, blood glucose levels were determined periodically using a glucose monitor, and glucose sensor function (GSF) was monitored continuously as nanoampere output. Results Heparinized human whole blood had no significant effect on GSF in vitro, nor did TL, serum, or plasmaderived clots from WB. Sensors incubated with WB displayed a rapid signal loss associated with clot formation at 37°C. The half-life was 0.8 ± 0.2 hours (n = 16) for sensors incubated with WB compared to 3.2 ± 0.5 (n = 12) for sensors incubated with HWB with a blood glucose level of approximately 100 mg/dl. Conclusions These studies demonstrated that human whole blood interfered with GSF in vitro. These studies further demonstrated that this interference was related to blood clot formation, as HWB, serum, plasma-derived clots, or TL did not interfere with GSF in vitro in the same way that WB did. These in vitro studies supported the concept that the formation of blood clots at sites of glucose sensor implantation could have a negative impact on GSF in vivo. PMID:19885155

  4. Anger, and plasma lipid, lipoprotein, and glucose levels in healthy women: the mediating role of physical fitness.

    PubMed

    Siegman, Aron Wolfe; Malkin, Amy R; Boyle, Stephen; Vaitkus, Mark; Barko, William; Franco, Edward

    2002-02-01

    The association between anger, lipid profiles, and glucose levels were examined in this study of 103 middle aged, healthy women. A principal component factor analysis of Spielberger's Trait Anger and Anger Expression scales yielded two anger factors: Impulsive Anger-Out and Neurotic Anger. Impulsive anger-out significantly predicted a negative lipid profile (high total serum cholesterol (TSC), low density lipoproteins (LDL), TSC/HDL (high density lipids), and triglyceride levels) and heightened glucose levels, but only in physically unfit women. Neurotic anger did not predict lipid and glucose levels. These findings parallel previous findings regarding the two anger dimensions and CHD, with only impulsive anger-out predicting CHD. Furthermore, our findings indicate that the protective effect of physical fitness, previously documented for men, also occurs in women. PMID:11845555

  5. Blood-Brain Glucose Transfer: Repression in Chronic Hyperglycemia

    NASA Astrophysics Data System (ADS)

    Gjedde, Albert; Crone, Christian

    1981-10-01

    Diabetic patients with increased plasma glucose concentrations may develop cerebral symptoms of hypoglycemia when their plasma glucose is rapidly lowered to normal concentrations. The symptoms may indicate insufficient transport of glucose from blood to brain. In rats with chronic hyperglycemia the maximum glucose transport capacity of the blood-brain barrier decreased from 400 to 290 micromoles per 100 grams per minute. When plasma glucose was lowered to normal values, the glucose transport rate into brain was 20 percent below normal. This suggests that repressive changes of the glucose transport mechanism occur in brain endothelial cells in response to increased plasma glucose.

  6. Association of Roadway Proximity with Fasting Plasma Glucose and Metabolic Risk Factors for Cardiovascular Disease in a Cross-Sectional Study of Cardiac Catheterization Patients

    PubMed Central

    Kraus, William E.; Blach, Colette; Haynes, Carol S.; Dowdy, Elaine; Miranda, Marie Lynn; Devlin, Robert B.; Diaz-Sanchez, David; Cascio, Wayne E.; Mukerjee, Shaibal; Stallings, Casson; Smith, Luther A.; Gregory, Simon G.; Shah, Svati H.; Hauser, Elizabeth R.; Neas, Lucas M.

    2015-01-01

    Background The relationship between traffic-related air pollution (TRAP) and risk factors for cardiovascular disease needs to be better understood in order to address the adverse impact of air pollution on human health. Objective We examined associations between roadway proximity and traffic exposure zones, as markers of TRAP exposure, and metabolic biomarkers for cardiovascular disease risk in a cohort of patients undergoing cardiac catheterization. Methods We performed a cross-sectional study of 2,124 individuals residing in North Carolina (USA). Roadway proximity was assessed via distance to primary and secondary roadways, and we used residence in traffic exposure zones (TEZs) as a proxy for TRAP. Two categories of metabolic outcomes were studied: measures associated with glucose control, and measures associated with lipid metabolism. Statistical models were adjusted for race, sex, smoking, body mass index, and socioeconomic status (SES). Results An interquartile-range (990 m) decrease in distance to roadways was associated with higher fasting plasma glucose (β = 2.17 mg/dL; 95% CI: –0.24, 4.59), and the association appeared to be limited to women (β = 5.16 mg/dL; 95% CI: 1.48, 8.84 compared with β = 0.14 mg/dL; 95% CI: –3.04, 3.33 in men). Residence in TEZ 5 (high-speed traffic) and TEZ 6 (stop-and-go traffic), the two traffic zones assumed to have the highest levels of TRAP, was positively associated with high-density lipoprotein cholesterol (HDL-C; β = 8.36; 95% CI: –0.15, 16.9 and β = 5.98; 95% CI: –3.96, 15.9, for TEZ 5 and 6, respectively). Conclusion Proxy measures of TRAP exposure were associated with intermediate metabolic traits associated with cardiovascular disease, including fasting plasma glucose and possibly HDL-C. Citation Ward-Caviness CK, Kraus WE, Blach C, Haynes CS, Dowdy E, Miranda ML, Devlin RB, Diaz-Sanchez D, Cascio WE, Mukerjee S, Stallings C, Smith LA, Gregory SG, Shah SH, Hauser ER, Neas LM. 2015. Association of roadway

  7. Sustained Decrease of Early-Phase Insulin Secretion in Japanese Women with Gestational Diabetes Mellitus Who Developed Impaired Glucose Tolerance and Impaired Fasting Glucose Postpartum

    PubMed Central

    Katayama, Hiroko; Tachibana, Daisuke; Hamuro, Akihiro; Misugi, Takuya; Motoyama, Koka; Morioka, Tomoaki; Fukumoto, Shinya; Emoto, Masanori; Inaba, Masaaki; Koyama, Masayasu

    2015-01-01

    OBJECTIVE The aim of this study was to compare glucose intolerance in the antenatal and the postpartum periods using a 75-g oral glucose tolerance test (OGTT) in the Japanese women with gestational diabetes mellitus (GDM) using a retrospective design. PATIENTS AND METHODS Data were obtained from 85 Japanese women with GDM who delivered from April 2011 through April 2015 and who underwent an OGTT 6–14 weeks postpartum. The women were divided into two groups based on the results of the postpartum OGTT: one group with normal glucose tolerance (NGT) and the other with impaired glucose tolerance (IGT) as well as impaired fasting glucose (IFG). We analyzed the associations between postpartum IGT–IFG and various factors. RESULTS Antenatally, a significant difference was observed between the groups only in the 1-hour plasma glucose level of the 75-g OGTT. Postpartum results of plasma glucose level were significantly higher at 0.5, 1, and 2 hours in the IGT–IFG group than those in the NGT group. Moreover, a significant decrease in the levels of 0.5-hour immunoreactive insulin and insulinogenic index was observed in the IGT–IFG group compared to those in the NGT group. Homeostasis model assessment-insulin resistance and homeostasis model assessment β-cell function of both groups were found to significantly decrease in the postpartum period; however, there was no significant change in the insulinogenic index of either group. CONCLUSIONS Our study clearly showed that the postpartum IGT and IFG levels of Japanese women with GDM are affected by impaired early-phase insulin secretion; however, insulin resistance promptly improves. PMID:26688669

  8. Influence of excessive dietary protein intake during late gestation on drylot beef cow performance and progeny growth, carcass characteristics, and plasma glucose and insulin concentrations.

    PubMed

    Wilson, T B; Long, N M; Faulkner, D B; Shike, D W

    2016-05-01

    Spring-calving cows ( = 49) were used to investigate the effects of excessive prepartum dietary protein intake on late gestation cow performance as well as subsequent progeny growth, carcass characteristics, and plasma glucose and insulin concentrations. Treatments were formulated to be isocaloric and provide 100% (REQ) or 129% (HP) of CP requirement. Treatments were limit-fed 78 ± 12 d prepartum to calving. All cows were fed a common diet postpartum. Cow BW and BCS were recorded at initiation of treatments and within 48 h post-calving. Milk production was estimated via the weigh-suckle-weigh technique 69 ± 11 d postpartum. Calf BW was measured at birth and at weaning (121 ± 11 d of age). Progeny ( = 42) were weaned as a group and placed into a feedlot and fed a common finishing diet. Glucose and insulin concentrations were analyzed on a subset of progeny (12 per treatment) 90, 120, 150, 180, 210, and 240 min post-feeding, 2 d before slaughter (342 ± 11 d of age). Treatment had no effect ( ≥ 0.22) on cow BW, BCS, milk production, and subsequent reproduction or progeny preweaning growth. Progeny finishing growth and marbling scores were not affected ( ≥ 0.24) by treatment, yet 12th rib fat thickness ( < 0.01), KPH ( = 0.04), and YG ( = 0.01) were greater for progeny born to HP dams. Progeny born to HP dams had decreased ( ≤ 0.01) glucose and insulin concentrations, and insulin to glucose ratios, indicating greater insulin sensitivity. Although feeding cows 129% of CP requirement during late gestation did not affect cow performance or progeny preweaning or finishing period growth; carcass adiposity was increased by maternal treatment. PMID:27285701

  9. Preparation of penta-O-galloyl-β-D-glucose from tannic acid and plasma pharmacokinetic analyses by liquid-liquid extraction and reverse-phase HPLC.

    PubMed

    Li, Li; Shaik, Ahmad Ali; Zhang, Jinhui; Nhkata, Katai; Wang, Lei; Zhang, Yong; Xing, Chengguo; Kim, Sung-Hoon; Lü, Junxuan

    2011-02-20

    The gallotannin penta-O-galloyl-beta-D-glucose (PGG) has many biological activities including in vivo anti-cancer efficacy. We present in this paper a scaled-up protocol for its preparation in high purity from tannic acid by acidic methanolysis with typical yield of 15%. We also describe a method for the analysis of PGG in mouse plasma by HPLC and its application in preliminary pharmacokinetic studies. A liquid-liquid extraction (LLE) protocol was optimized for the extraction of PGG from mouse plasma. The extraction efficiency for PGG at 1 μg/mL in mouse plasma was 70.0±1.3% (n=5). The limit of detection (LOD) for PGG was approximately 0.2 μg/mL. Preliminary pharmacokinetic parameters of PGG following a single i.p. injection with 5% ethanol/saline vehicle in mice were established. The peak plasma PGG concentrations (C(max)) were approximately 3-4 μM at a dose of 0.5 mg per mouse (∼20 mg/kg) at 2 h post-injection (T(max)). PMID:20970943

  10. Plasma Adiponectin Levels in Elderly Patients with Prediabetes

    PubMed Central

    Kong, Si Eun; Kang, Yea Eun; Joung, Kyong Hye; Lee, Ju Hee; Kim, Hyun Jin

    2015-01-01

    Background The significance of adiponectin levels in elderly individuals with prediabetes has yet to be determined. Thus, the present study was performed to evaluate the relationships between adiponectin levels and anthropometric variables, body composition parameters, insulin sensitivity, and lipid profiles in elderly prediabetic patients. Methods The present study included 120 subjects with prediabetes who were >65 years of age and were selected from among 1,993 subjects enrolled in the Korea Rural Genomic Cohort Study. All subjects underwent a 75 g oral glucose tolerance test and tests for measurement of insulin sensitivity. All diagnoses of prediabetes satisfied the criteria of the American Diabetes Association. Results Plasma adiponectin levels were lower in elderly prediabetic subjects than elderly subjects with normal glucose tolerance (P<0.01) as well as in elderly prediabetic patients with metabolic syndrome (MetS) than in those without MetS (P<0.02). When the subjects were categorized into two groups according to plasma adiponectin levels, the waist-to-hip ratio and 2-hour insulin levels were significantly lower in individuals with high plasma adiponectin levels than in those with low plasma adiponectin levels. Additionally, the plasma adiponectin levels of elderly prediabetic subject were inversely correlated with body mass index (BMI), waist circumference (WC), waist-to-hip ratio, visceral fat, visceral fat ratio, and 2-hour insulin levels. Conclusion The present findings demonstrated that the major factors correlated with adiponectin levels in elderly prediabetic subjects were BMI, WC, waist-to-hip ratio, visceral fat, visceral fat ratio, and 2-hour insulin levels. PMID:26248857

  11. Effects of a 2-hour run on metabolic economy and lower extremity strength in men and women.

    PubMed

    Glace, B W; McHugh, M P; Gleim, G W

    1998-03-01

    Changes in running economy, or the oxygen cost of running at a given submaximal speed (ml/m/kg), during prolonged exercise have been well described in men but not in women. Lower extremity strength changes associated with prolonged exercise have never been addressed. We examined changes in running economy and strength following a 2-hour run in eight men and eight women. Knee and hip strength were measured pre- and post-running. Peak oxygen consumption (VO2peak) and oxygen consumption at ventilatory threshold were determined. Subjects then ran for 2 hours at an intensity which elicited ventilatory threshold (68.7% vs. 66.6% of VO2peak for men and women, p = 0.5). Water was ingested at a rate of 0.5% of body weight each half hour. Oxygen uptake (VO2) and respiratory exchange ratio were measured initially and at 1 and 2 hours. Body weight declined in the men (p = 0.001) but not in the women (p = 0.12). Running economy decreased in the men (p < 0.001) but not in the women (p = 0.084). At 2 hours of running, knee flexion and extension strength declined significantly in the men only (effect of gender x time, p < 0.014), but hip flexion, abduction, and adduction strength declined in both genders. Decreased knee extensor/flexor strength was evident in men only, while decreased hip strength was independent of gender. We conclude that 2 hours of running produced changes in knee strength and running economy in men only. PMID:9513864

  12. Comparison of measurements of canine plasma creatinine, glucose, proteins, urea, alanine aminotransferase, and alkaline phosphatase obtained with Spotchem SP 4430 and Vitros 250 analyzers.

    PubMed

    Trumel, C; Diquélou, A; Germain, C; Palanché, F; Braun, J P

    2005-12-01

    The suitability of the Spotchem 4430 benchtop biochemistry analyzer for canine blood samples was tested for creatinine, glucose, proteins, urea, alkaline phosphatases and alanine aminotransferase. Results obtained from whole blood and corresponding heparin plasma were identical except for proteins which were higher in plasma (n=10). Between series imprecision (n=10) was <5% for substrates and <10% for enzymes. Comparison of results from 100 Li-heparin samples with those measured with a Vitros 250 analyzer showed good correlation (r>0.93). The slopes of the Passing-Bablock's regression ranged from 0.90 to 1.20 and intercepts were low. The mean biases were low, except for creatinine for which the results obtained by Spotchem (Jaffe reaction) were about 20 micromol/L higher than with the Vitros (enzymatic reaction). The results of this study show that the Spotchem analyzer is suitable for use in canine whole blood or plasma when small numbers of tests are to be performed and large analyzers are not available. PMID:16054888

  13. Regional cerebral incorporation of plasma (/sup 14/C)palmitate, and cerebral glucose utilization, in water-deprived Long-Evans and Brattleboro rats

    SciTech Connect

    Noronha, J.G.; Larson, D.M.; Rapoport, S.I.

    1989-03-01

    Regional rates of incorporation into brain of intravenously administered (/sup 14/C)palmitate and regional cerebral metabolic rates for glucose (rCMRglc) were measured in water-provided (WP) and water-deprived (WD) homozygous (DI) and heterozygous (HZ) Brattleboro rats, a mutant strain unable to synthesize vasopressin, and in the parent Long-Evans (LE) strain. Following 15 h or 4 days of water deprivation, rCMRglc was elevated threefold in the pituitary neural lobe of LE-WD and DI-WD as compared with LE-WP rats, and in the paraventricular nucleus of LE-WD, and the supraoptic nucleus of DI-WD rats. However, incorporation of (/sup 14/C)palmitate into these regions was not specifically altered. The results indicate that water deprivation for up to 4 days increases rCMRglc in some brain regions involved with vasopressin, but does not alter (/sup 14/C)palmitate incorporation into these regions. Incorporation of plasma (/sup 14/C)palmitate is independent of unlabeled plasma palmitate at brain regions which have an intact blood-brain barrier, but at nonbarrier regions falls according to saturation kinetics as cold plasma concentration rises, with a mean half-saturation constant (Km) equal to 0.136 mumol.ml-1.

  14. Prediction of gestational diabetes mellitus in the first trimester, comparison of fasting plasma glucose, two-step and one-step methods: a prospective randomized controlled trial.

    PubMed

    Yeral, M Ilkin; Ozgu-Erdinc, A Seval; Uygur, Dilek; Seckin, K Doga; Karsli, M Fatih; Danisman, A Nuri

    2014-08-01

    Our aim was to evaluate and compare the diagnostic performance of three methods commonly used for GDM screening: fasting plasma glucose (FPG), two-step 50 g glucose challenge test (GCT), and 75 g glucose tolerance test (GTT) in a randomized study design to predict GDM in the first trimester and determine the best approach in predicting GDM. In a non-blind, parallel-group prospective randomized controlled study; 736 singleton pregnant women underwent FPG testing in the first trimester and randomly assigned to two groups; two-step 50 g GCT and 75 g GTT. GDM diagnosis was made according to Carpenter-Coustan or ADA (American Diabetes Association) criteria in two-step 50 g GCT and 75 g GTT groups, respectively. Subsequent testing was performed by two-step 50 g GCT at 24-28 weeks for screen negatives. After excluding the women who were lost to follow-up or withdrawn as a result of pregnancy loss, 486 pregnant women were recruited in the study. The FPG, two-step GCT, and one-step GTT methods identified GDM in 25/486 (5.1 %), 15/248 (6.0 %), and 27/238 (11.3 %) women, respectively. Area under ROC curves were 0.623, 0.708, and 0.792, respectively. Sensitivities were 47.17, 68.18, and 87.1 %, respectively. Specificities were 77.37, 100, and 100 %, respectively. Positive predictive values were 20.33, 100, and 100 %, respectively. Negative predictive values were 92.29, 97, and 98.1 %, respectively. Until superior screening alternatives become available, the 75 g GTT may be preferred for GDM screening in the first trimester. PMID:24282036

  15. Common variants in the LAMA5 gene associate with fasting plasma glucose and serum triglyceride levels in a cohort of pre- and early pubertal children

    PubMed Central

    De Luca, Maria; Chandler-Laney, Paula C.; Wiener, Howard; Fernandez, Jose R.

    2012-01-01

    Laminins are glycoproteins found in basement membranes where they play a vital role in tissue architecture and cell behavior. Previously, we reported the association of two polymorphisms (rs659822 and rs944895) in the laminin alpha5 (LAMA5) gene with anthropometric traits, fasting lipid profile, and glucose levels in pre-menopausal women and elderly subjects. Furthermore, studies in mice showed that Lama5 is involved in organogenesis and placental function during pregnancy. The objective of this study was to investigate whether rs659822 and/or rs944895 are associated with inter-individual variability in birth weight as well as anthropometric traits and metabolic phenotypes in children. Two hundred and eighty nine healthy children aged 7–12 yr of European, Hispanic, and African-American ancestry were studied. Co-dominant models adjusted for genetic admixture, age, gender, and stages of puberty were used to test for the association of the polymorphisms with each trait. Our analysis showed significant associations of rs659822 with fasting plasma glucose levels (P = 0.0004) and of rs944895 with fasting serum triglycerides (P = 0.004) after Bonferroni correction for multiple testing. Our results corroborate our previous findings that genetic variants in LAMA5 contribute to variation in metabolic phenotypes and provide evidence that this may occur early in life.

  16. Effects of Topical Anesthetics on Behavior, Plasma Corticosterone, and Blood Glucose Levels after Tail Biopsy of C57BL/6NHSD Mice (Mus musculus).

    PubMed

    Dudley, Emily S; Johnson, Robert A; French, DeAnne C; Boivin, Gregory P

    2016-01-01

    Tail biopsy is a common procedure that is performed to obtain genetic material for determining genotype of transgenic mice. The use of anesthetics or analgesics is recommended, although identifying safe and effective drugs for this purpose has been challenging. We evaluated the effects of topical 2.5% lidocaine-2.5% prilocaine cream applied to the distal tail tip at 5 or 60 min before biopsy, immersion of the tail tip for 10 seconds in ice-cold 70% ethanol just prior to biopsy, and immersion of the tail tip in 0.5% bupivacaine for 30 s after biopsy. Mice were 7, 11, or 15 d old at the time of tail biopsy. Acute behavioral responses, plasma corticosterone, and blood glucose were measured after biopsy, and body weight and performance in elevated plus maze and open-field tests after weaning. Ice-cold ethanol prior to biopsy prevented acute behavioral responses to biopsy, and both ice-cold ethanol and bupivacaine prevented elevations in corticosterone and blood glucose after biopsy. Tail biopsy with or without anesthesia did not affect body weight or performance on elevated plus maze or open-field tests. We recommend the use of ice-cold ethanol for topical anesthesia prior to tail biopsy in mice 7 to 15 d old. PMID:27423152

  17. One-hour postload plasma glucose and risks of fatal coronary heart disease and stroke among nondiabetic men and women: the Chicago Heart Association Detection Project in Industry (CHA) Study.

    PubMed

    Orencia, A J; Daviglus, M L; Dyer, A R; Walsh, M; Greenland, P; Stamler, J

    1997-12-01

    Associations of baseline one-hour postload plasma glucose with 22-year coronary heart disease, stroke, cardiovascular diseases, and all cause mortality were assessed in five age-specific cohorts of nondiabetic men and women from the Chicago Heart Association Detection Project in Industry: 10,269 men ages 18-39 years; 7993 men ages 40-59 years; 1240 men ages 60-74 years; 6319 women ages 40-59 years; and 932 women ages 60-74 years. Plasma glucose was determined one hour after a 50-gram oral glucose load. Cox regression analyses were used to control for age and other covariates. Generally, higher glucose was significantly associated with mortality from coronary heart disease, stroke, cardiovascular diseases, and all cause mortality in men and women. This large longitudinal study provides evidence that one-hour postload plasma glucose in the absence of clinical diabetes at baseline apparently is an independent risk factor for fatal coronary heart disease and stroke in middle-aged and older nondiabetic men and women, and also for cardiovascular diseases and for all cause mortality. PMID:9449940

  18. Comparison of Plasma Glucose and Gut Hormone Levels Between Drinking Enteral Formula Over a Period of 5 and 20 Minutes in Japanese Patients With Type 2 Diabetes: A Pilot Study

    PubMed Central

    Kamiko, Kazunari; Aoki, Kazutaka; Kamiyama, Hiroshi; Taguri, Masataka; Terauchi, Yasuo

    2016-01-01

    Background A fast eating speed is reportedly associated with obesity, fatty liver, and metabolic syndrome. As a comparison of postprandial glucose levels after eating quickly or slowly has not been previously reported for Japanese patients with type 2 diabetes, we evaluated the impact of the fast or slow ingestion of an enteral formula (liquid meal) on glucose metabolism. Methods Ten Japanese patients with type 2 diabetes who had been hospitalized at our hospital were enrolled. All the subjects received an enteral formula for breakfast. The study was performed over a 2-day period in each subject (day 1: enteral formula was consumed over a 5-minute period; day 2: enteral formula was consumed over a 20-minute period). The subjects were requested to fast for at least 12 hours before eating breakfast, and blood samples were collected at 0, 30, 60, and 120 min after the start of breakfast. Results The areas under the curve (AUCs) of the plasma glucose, serum insulin, plasma active ghrelin, glucagon-like peptide-1 (GLP-1), plasma total glucose-dependent insulinotropic polypeptide (GIP), and serum total peptide YY (PYY) levels were not significantly changed by intake over a 5-minute or 20-minute period. Conclusions Eating quickly per se probably does not affect postprandial glucose excursions, but the increased energy intake resulting from eating quickly may increase the body weight and increase insulin resistance. Eating quickly may increase energy intake and worsen long-term metabolic parameters.

  19. Change in blood glucose level in rats after immobilization

    NASA Technical Reports Server (NTRS)

    Platonov, R. D.; Baskakova, G. M.; Chepurnov, S. A.

    1981-01-01

    Experiments were carried out on male white rats divided into four groups. In group one the blood glucose level was determined immediately after immobilization. In the other three groups, two hours following immobilization, the blood glucose level was determined every 20 minutes for 3 hours 40 minutes by the glucose oxidase method. Preliminary immobilization for 2 hours removed the increase in the blood glucose caused by the stress reaction. By the 2nd hour of immobilization in the presence of continuing stress, the blood glucose level stabilized and varied within 42 + or - 5.5 and 47 + or - 8.1 mg %. Within 2 hours after the immobilization, the differences in the blood glucose level of the rats from the control groups were statistically insignificant.

  20. Effects of Beak Trimming, Stocking Density and Sex on Carcass Yield, Carcass Components, Plasma Glucose and Triglyceride Levels in Large White Turkeys

    PubMed Central

    Kiraz, Selahattin

    2015-01-01

    This study was conducted to determine the effects of beak trimming, stocking density (D) and sex (S) on live weight (LW), carcass yield and its component, and plasma glucose (PG) and triglyceride levels in Large White turkeys. To accomplish this aims, totally 288 d old large white turkey chicks (144 in each sex) were used. Beaks of 77 male and female poults were trimmed when 8 d old with an electrical beak trimmer. The birds were fed by commercial turkey rasion. Experiment was designed as 2 × 2 × 2 factorial arrangement with 3 replications in each group. Beak trimming and stocking density did not affect live weight, carcass composition and its components. The higher LW and carcass weight observed in trimmed groups. As expected, male birds are heavier than female, and carcass percentage (CP) would be adverse. However, in this study, CP of male was higher in trimmed, in 0.25 m2/bird. (D) × sex (S) interaction had an effect on both CP and thigh weights (p<0.05). Significantly D × S was observed in LW, CP and PG. The weight of carcass and its some components were higher in male. S × D interaction had an effect on plasma glucose level (p<0.05). Triglyceride level was affected (p<0.05) by sex. Significant relationships were found between percentage of thighs (r=0.447, p<0.01) and percentage of breast (r=0.400, p<0.01). According to this study, it can be said that trimming is useful with density of 0.25 m2/bird in turkey fattening. PMID:26877630

  1. Blood plasma magnesium, potassium, glucose, and immunoreactive insulin changes in cows moved abruptly from barn feeding to early spring pasture

    SciTech Connect

    Miller, J.K.; Madsen, F.C.; Lentz, D.E.; Wong, W.O.; Ramsey, N.; Tysinger, C.E.; Hansard, S.L.

    1980-07-01

    Cations and immunoreactive insulin in plasma were measured in 35 lactating cows moved abruptly to early spring pasture. After change of cows from grass-clover hay to fescue-bluegrass pasture containing 22 to 31 g potassium/kg dry matter, immunoreactive insulin of 5 Holstein cows increased 30% in 5 days and averaged 45% above prepasture concentrations for 40 days. Magnesium averaged 44% below prepasture content of plasma during this period and was correlated negatively with potassium -.17 and immunoreactive insulin -.37. Thirty Hereford cows were changed from corn silage and grass-clover hay to wheat-rye pasture containing 3.06% potassium in the dry matter. Each day on pasture, 10 cows each were fed 2.3 kg cornmeal, 10 were given 30 g magnesium oxide by capsule, and 10 were given no supplement. After unsupplemented cows were moved to pasture, immunoreactive insulin rose 51% in 8 days and plasma magnesium fell 24%. Both supplements reduced immunoreactive insulin, but magnesium was maintained higher by magnesium oxide than by cornmeal. Injection of two Holstein cows with insulin (2 IU/kg body weight) reduced plasma concentrations of both potassium and mgnesium 20% below that of two cows injected with only physiological saline. Whether elevated plasma insulin may accelerate development of hypomagnesemia in cattle on spring pasture with relatively high potassium content has not been established.

  2. Prevalence of diabetes mellitus and impaired glucose tolerance in a group of urban adults in Nigeria.

    PubMed Central

    Olatunbosun, S. T.; Ojo, P. O.; Fineberg, N. S.; Bella, A. F.

    1998-01-01

    This survey was undertaken to determine the prevalence of diabetes mellitus and impaired glucose tolerance in a group of urban adults in Ibadan, Nigeria. A total of 998 subjects randomly selected from five main ministries and departments in the Government Secretariat participated in the survey. Each subject was asked to fast overnight and ingested 75 g of glucose dissolved in 250 mL of water after answering a questionnaire. Relevant anthropometric measurements such as weight, height, waist and hip diameters, and blood pressure also were taken. After 2 hours, of blood was drawn and plasma glucose concentration measured. Diagnosis of diabetes or impaired glucose tolerance was based on 1985 World Health Organization (WHO) cut-off values. Blood glucose results were available in 875 subjects. Seven subjects were found to be diabetic for a prevalence of 0.8%, with the majority (5 subjects) being newly diagnosed. Nineteen were found to have impaired glucose tolerance for a prevalence of 2.2%. There were no sex differences between the two groups. All of the newly diagnosed diabetics were asymptomatic. Multivariate analysis revealed that subjects with a family history of diabetes, higher body mass index, and higher systolic blood pressure had higher blood glucose levels. The prevalence of diabetes in this survey is lower than rates reported in recent surveys in Nigeria that used less stringent criteria and different methodologies. The rate is comparable to that of a Tanzanian study that used WHO criteria. However, the rate of impaired glucose tolerance in this study, first to be reported in Nigeria, is lower than that obtained in the Bantu population. PMID:9617070

  3. Conglutin gamma, a lupin seed protein, binds insulin in vitro and reduces plasma glucose levels of hyperglycemic rats.

    PubMed

    Magni, Chiara; Sessa, Fabio; Accardo, Elena; Vanoni, Marco; Morazzoni, Paolo; Scarafoni, Alessio; Duranti, Marcello

    2004-11-01

    This work describes the in vitro interaction between a lupin seed protein, namely, conglutin gamma, and insulin. The binding to an insulin-immobilized matrix occurs in the pH range from 7.5 to 4.2 and is strongly affected by ionic strength, suggesting that it is driven primarily by electrostatic interactions. The quantitative parameters of the binding were determined by surface plasmon resonance. On the basis of the conditions required for the interaction to take place and the quantitative binding parameters, it appeared that the interaction is specific, despite the fact that the origin of the two protein molecules is completely different. The effect of the oral administration of conglutin gamma on the glycemic levels of rats subjected to glucose overloading was a statistically significant reduction in glycemia comparable to that of metformin, a well-known glucose lowering drug. These findings represent the first molecular evidence of the possible use of a legume protein in the control of glycemia. PMID:15590267

  4. Effects of acute and 2-hour postphysical activity on the estimation of body fat made by the bod pod.

    PubMed

    Harrop, Bradley J; Woodruff, Sarah J

    2015-06-01

    The Bod Pod has been found to be reliable/valid against several criterion methods, including hydrostatic weighing and dual-energy x-ray absorptiometry, and under different conditions, such as clothing, dehydrated states, and body temperature changes. However, questions remain regarding the effects of an acute bout of exercise. Therefore, the purpose was to determine the effects of an acute bout of exercise on the estimations made by the Bod Pod. Participants (15 men and 22 women) were of age 18-27 years and were currently exercising. Baseline Bod Pod measures were completed followed by a 30-minute cycling trial at 75% of maximum heart rate. Bod Pod measures were taken immediately after exercise and 2 hours after exercise. Differences between men and women were found at baseline between height (p < 0.001), weight (p < 0.001), body volume (BV; p < 0.001), and body density (Db; p < 0.001). Among men, body mass (p < 0.001), body fat percentage (%BF; p < 0.001), and BV (p < 0.001) decreased, whereas Db (p < 0.001) and body temperature (p < 0.001) increased directly after exercise; body mass (p < 0.001) and BV (p < 0.001) remained lower after 2 hours. Among women, body mass (p < 0.001) and BV (p < 0.001) decreased, whereas thoracic gas volume (p = 0.014) and temperature (p < 0.001) increased directly after exercise; body mass (p < 0.001) and BV (p < 0.001) remained lower, whereas %BF (p < 0.001) and Db (p = 0.006) remained higher 2 hours after exercise. These results suggest that a single bout of exercise immediately before Bod Pod testing seems to alter the estimate of %BF, and continues to affect the prediction 2 hours after exercise in women. PMID:25756324

  5. Maternal 75-g OGTT glucose levels as predictive factors for large-for-gestational age newborns in women with gestational diabetes mellitus.

    PubMed

    Brankica, Krstevska; Valentina, Velkoska Nakova; Slagjana, Simeonova Krstevska; Sasha, Jovanovska Mishevska

    2016-02-01

    Objective Our goal was to investigate which glucose measurement from the 75-g oral glucose tolerance test (OGTT) has more capability of predicting large for-gestational-age (LGA) newborns of mothers with gestational diabetes mellitus (GDM). Subjects and methods The study group consisted of 118 consecutively pregnant women with singleton pregnancy, patients of Outpatients Department of the Endocrinology, Diabetes, and Metabolic Disorders Clinic. All were prospectively screened for GDM between 24th and 28th week of pregnancy and followed to delivery. Outcome measures included: patients' ages, pre-pregnancy BMI, BMI before delivery, FPG, 1 and 2 hour OGTT glucose values, haemoglobin A1c at third trimester, gestational week of delivery, mode of delivery and baby birth weight. Results From 118 pregnancies, 78 (66.1%) women were with GDM, and 40 (33.9%) without GDM. There were statistically significant differences (30.7 versus 5.0%, p < 0.01) between LGA newborns from GDM and control group, respectively. Gestation week of delivery and fasting glucose levels were independent predictors for LGA (Beta = 0.58 and Beta = 0.37 respectively, p < 0.01). Areas under the receiver operator characteristic curve (AUC) were compared for the prediction of LGA (0.782 (0.685-0.861) for fasting, 0.719 (0.607-0.815) for 1-hour and 0.51 (0.392-0.626) for 2-hour OGTT plasma glucose levels). Conclusion Fasting and 1-hour plasma glucose levels from OGTT may predict LGA babies in GDM pregnancies. PMID:26909480

  6. Diabetes and Pre-Diabetes as Determined by Glycated Haemoglobin A1c and Glucose Levels in a Developing Southern Chinese Population

    PubMed Central

    Thomas, G. Neil; Xu, Yan Jun; Lao, Xiang Qian; Xu, Xiao Jun; Song, Xiu Ling; Xu, Hao Feng; Cai, Qiu Mao; Xia, Liang; Nie, Shao Ping; Deng, Hui Hong; Yu, Ignatius Tak Sun

    2012-01-01

    Background The American Diabetes Association and World Health Organization have recently adopted the HbA1c measurement as one method of diagnostic criteria for diabetes. The change in diagnostic criteria has important implications for diabetes treatment and prevention. We therefore investigate diabetes using HbA1c and glucose criteria together, and assess the prevalent trend in a developing southern Chinese population with 85 million residents. Methods A stratified multistage random sampling method was applied and a representative sample of 3590 residents 18 years of age or above was obtained in 2010. Each participant received a full medical check-up, including measurement of fasting plasma glucose, 2-hour post-load plasma glucose, and HbA1c. Information on history of diagnosis and treatment of diabetes was collected. The prevalence of diabetes obtained from the present survey was compared with the data from the survey in 2002. Results The prevalence of diabetes based on both glucose and HbA1c measurements was 21.7% (95% CI: 17.4%–26.1%) in 2010, which suggests that more than 1 in 5 adult residents were suffering from diabetes in this developing population. Only 12.9% (95% CI: 8.3%–17.6%) of diabetic residents were aware of their condition. The prevalence of pre-diabetes was 66.3% (95% CI: 62.7%–69.8%). The prevalence of diabetes and pre-diabetes which met all the three diagnostic thresholds (fast plasma glucose, 2 hour post-load plasma glucose, and HbA1c) was 3.1% and 5.2%, respectively. Diabetes and pre-diabetes as determined by HbA1c measurement had higher vascular risk than those determined by glucose levels. The prevalence of diabetes increased from 2.9% (95% CI: 2.0%–3.7%) in 2002 to 13.8% (95% CI: 10.2%–17.3%) in 2010 based on the same glucose criteria. Conclusions Our results show that the diabetes epidemic is accelerating in China. The awareness of diabetes is extremely low. The glucose test and HbA1c measurement should be used together to

  7. Delta CK-MB outperforms delta troponin I at 2 hours during the ED rule out of acute myocardial infarction.

    PubMed

    Fesmire, F M

    2000-01-01

    It has been shown that a rise in creatine kinase MB bank (CK-MB) of > or = + 1.6 ng/mL in 2 hours is more sensitive and equally specific for detection of acute myocardial infarction (AMI) as compared with a 2-hour CK-MB > or = 6 ng/mL during the emergency department (ED) evaluation of chest pain. Because cardiac specific troponin I (cTnI) is thought to have similar early release kinetics as compared with CK-MB mass, we undertook a retrospective cohort study in 578 chest pain patients whose baseline CK-MB and cTnI was less than two times the hospital's upper limits of normal and who underwent a 2-hour CK-MB and cTnI to compare sensitivities and specificities of the 2-hour delta CK-MB (deltaCK-MB) and delta cTnI (delta cTnI) for AMI and 30-day Adverse Outcome (AO). Thirty day AO was defined as AMI, life-threatening complication, death, or percutaneous transluminal coronary angioplasty (PTCA)/coronary artery bypass graft (CABG) within 30 days of ED presentation. Optimum delta values were determined by choosing the smallest cutoff value greater than the assay precision where the deltaCK-MB and delta cTnI had a positive likelihood ratio for 30-day AO of > or = 15. A deltaCK-MB > or = +1.5 ng/mL was more sensitive than a deltaTnI > or = +0.2 ng/mL for AMI (87.7% versus 61.4%; P < .0005) and 30-day AO (56.7% versus 42.3%; P < .005). There were no differences in specificities for AMI and 30-day AO. Combining the two tests (MBdelta > or = +1.5 ng/mL and/or a deltaTnI > or = +0.2 ng/mL) resulted in an incremental increase in sensitivity of 89.5% for AMI and 61.9% for AO (P < .005). Patients with either a rise in CK-MB of > or = +1.5 ng/mL or rise in cTnI of > or = +0.2 ng/mL in 2 hours should receive consideration for aggressive antiischemic therapy and further diagnostic testing before making an exclusionary diagnosis of nonischemic chest pain. PMID:10674522

  8. Naturally high plasma glucose levels in mourning doves (Zenaida macroura) do not lead to high levels of reactive oxygen species in the vasculature.

    PubMed

    Smith, Christina L; Toomey, Matthew; Walker, Benjimen R; Braun, Eldon J; Wolf, Blair O; McGraw, Kevin; Sweazea, Karen L

    2011-06-01

    Plasma glucose (P(Glu)) concentrations in birds are 1.5-2 times higher than those of mammals of similar body mass. In mammals, sustained elevations of P(Glu) lead to oxidative stress and free radical-mediated scavenging of endogenous vasodilators (e.g., nitric oxide), contributing to elevated blood pressure. Despite the relatively high P(Glu) levels in birds, they appear resistant to the development of oxidative stress in tissues such as the heart, brain and kidneys. To our knowledge no information exists on oxidative stress susceptibility in the resistance vasculature of birds. Therefore, we compared endogenous antioxidant mechanisms in the resistance vasculature of mourning doves (MODO; Zenaida macroura) and rats (Rattus norvegicus). Reactive oxygen species (ROS) were assessed with the fluorescent indicator 7'-dichlorodihydrofluorescein diacetate, acetyl ester in mesenteric arteries from rats and wild-caught MODO. Despite having significantly higher P(Glu) than rats, there were no significant differences in ROS levels between mesenteric arteries from rats or doves. Although superoxide dismutase and catalase activities were lower in the plasma, total antioxidant capacity, uric acid, vitamin E (α-tocopherol), and carotenoids (lutein and zeaxanthin) were significantly higher in MODO than in rats. Thus, compared to rats, MODO have multiple circulating antioxidants that may prevent the development of oxidative stress in the vasculature. PMID:21600747

  9. Phenotype and Age Differences in Blood Gas Characteristics, Electrolytes, Hemoglobin, Plasma Glucose and Cortisol in Female Squirrel Monkeys

    NASA Technical Reports Server (NTRS)

    Brizzee, K. R.; Ordy, J. M.; Dunlap, W. P.; Kendrick, R.; Wengenack, T. M.

    1988-01-01

    Due to its small size, lower cost, tractable nature, successful breeding in captivity and its status near the middle of the primate phylogenetic scale, the squirrel monkey has become an attractive primate model for basic and biomedical research. Although the squirrel monkey now is being used more extensively in many laboratories with diverse interests, only fragmentary reports have been published regarding basic physiological characteristics, or baseline blood reference values of different phenotypes, particularly blood gases, hematology and serum chemical constituents. It is becoming recognized increasingly that these baseline blood reference values are important not only in the care and maintenance of the squirrel monkey, but are critical for assessing normal physiological status, as well as the effects of various experimental treatments. The purpose of this study was to compare differences in blood gases, electrolytes, hematology, blood glucose and cortisol among young and old Bolivian (Roman type) and Colombian (Gothic type) phenotypes of the squirrel monkey.

  10. Retrospective study on the efficacy of a low-carbohydrate diet for impaired glucose tolerance

    PubMed Central

    Maekawa, Satoshi; Kawahara, Tetsuya; Nomura, Ryosuke; Murase, Takayuki; Ann, Yasuyoshi; Oeholm, Masayuki; Harada, Masaru

    2014-01-01

    Background In recent years, the number of people with impaired glucose tolerance (IGT) has increased steadily worldwide. It is clear that the prevention of diabetes is important from the perspective of public health, medical care, and economics. It was recently reported that a low-carbohydrate diet (LCD) is useful for achieving weight loss and glycemic control, but there is no information about the effects of the LCD on IGT. We designed a 7-day in-hospital educational program focused on the LCD for IGT. Methods The subjects were 72 patients with IGT (36 in the LCD group and 36 in the control group) who were enrolled from April 2007–March 2012 and followed for 12 months. We retrospectively compared the LCD group with the control group. Results In 69.4% of the LCD group, blood glucose was normalized at 12 months and the 2-hour plasma glucose level in the oral glucose tolerance test (OGTT) was reduced by 33 mg/dL. In addition, the incidence of diabetes was significantly lower in the LCD group than in the control group at 12 months (0% versus 13.9%, P=0.02). The LCD group showed a significant decrease in fasting plasma glucose, hemoglobin A1c, the homeostasis model of assessment of insulin resistance value, body weight and serum triglycerides (TGs) at 12 months, while there was a significant increase of the serum high-density lipoprotein (HDL) cholesterol level. Conclusion The LCD is effective for normalizing blood glucose and preventing progression to type 2 diabetes in patients with IGT. PMID:24966689

  11. Changes in plasma metabolites and glucose homeostasis during omega-3 polyunsaturated fatty acid supplementation in women with polycystic ovary syndrome

    PubMed Central

    Karakas, Sidika E.; Perroud, Bertrand; Kind, Tobias; Palazoglu, Mine; Fiehn, Oliver

    2016-01-01

    Background Both fish (FO) and flaxseed oils (FLX) are n-3 polyunsaturated fatty acids (PUFA). Fish oil contains long chain while FLX contains essential n-3 PUFA. We demonstrated that FO altered insulin secretion and resistance in polycystic ovary syndrome (PCOS) women but FLX did not. Surprisingly, the effects of FO were similar to those of the n-6 PUFA-rich soybean oil (SBO). Since increased branched chain (BCAA) and aromatic amino acids (AA) affect insulin secretion and resistance, we investigated whether FO, FLX and /or SBO affect plasma metabolites, especially AA. Methods and findings In this six-week, randomized, 3-parallel arm, double-blinded study, 54 women received 3.5 g/day FO, FLX or SBO. In 51 completers (17 from each arm), fasting plasma metabolites were measured at the beginning and at the end. As compared to FLX, FO and SBO increased insulin response and resistance as well as several BCAA and aromatic AA. Pathway analysis indicated that FO exerted the largest biochemical impact, affecting AA degradation and biosynthesis, amine, polyamine degradation and alanine, glycine, l-carnitine biosynthesis and TCA cycle, while FLX had minimal impact affecting only alanine biosynthesis and l-cysteine degradation. Conclusion Effects of FO and SBO on plasma AA were similar and differed significantly from those of the FLX. The primary target of dietary PUFA is not known. Dietary PUFA may influence insulin secretion and resistance directly and alter plasma AA indirectly. Alternatively, as a novel concept, dietary PUFA may directly affect AA metabolism and the changes in insulin secretion and resistance may be secondary. PMID:27182493

  12. The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Preserves Endothelial Function in Mesenteric Arteries from Type 1 Diabetic Rats without Decreasing Plasma Glucose

    PubMed Central

    Salheen, Salheen M.; Panchapakesan, Usha; Pollock, Carol A.; Woodman, Owen L.

    2015-01-01

    The aim of the study was to investigate the effect of the DPP-4 inhibitor linagliptin on the mechanism(s) of endothelium-dependent relaxation in mesenteric arteries from STZ-induced diabetic rats. Both normal and diabetic animals received linagliptin (2 mg/kg) daily by oral gavage for a period of 4 weeks. To measure superoxide generation in mesenteric arteries, lucigenin-enhanced chemiluminescence was used. ACh-induced relaxation of mesenteric arteries was assessed using organ bath techniques and Western blotting was used to investigate protein expression. Pharmacological tools (1μM TRAM-34, 1μM apamin, 100 nM Ibtx, 100 μM L-NNA, 10 μM ODQ) were used to distinguish between NO and EDH-mediated relaxation. Linagliptin did not affect plasma glucose, but did decrease vascular superoxide levels. Diabetes reduced responses to ACh but did not affect endothelium-independent responses to SNP. Linagliptin improved endothelial function indicated by a significant increase in responses to ACh. Diabetes impaired the contribution of both nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) to endothelium-dependent relaxation and linagliptin treatment significantly enhanced the contribution of both relaxing factors. Western blotting demonstrated that diabetes also increased expression of Nox2 and decreased expression and dimerization of endothelial NO synthase, effects that were reversed by linagliptin. These findings demonstrate treatment of type 1 diabetic rats with linagliptin significantly reduced vascular superoxide levels and preserved both NO and EDH-mediated relaxation indicating that linagliptin can improve endothelial function in diabetes independently of any glucose lowering activity. PMID:26618855

  13. Toothbrushing, Blood Glucose and HbA1c: Findings from a Random Survey in Chinese Population.

    PubMed

    Su, Lingyu; Liu, Wenzhao; Xie, Bingwu; Dou, Lei; Sun, Jun; Wan, Wenjuan; Fu, Xiaoming; Li, Guangyue; Huang, Jiao; Xu, Ling

    2016-01-01

    Both diabetes and periodontal disease are prevalent in China. Poor oral hygiene practice is the major cause of periodontal disease. An association between oral hygiene practice and blood glucose level was reported in individuals with diabetes, but not in the general population. We examined the association in a population-based random survey recruiting 2,105 adults without previously diagnosed diabetes in Chongqing city, China. Plasma glucose and hemoglobin A1c (HbA1c) were measured, and a 2-hour oral glucose tolerance test was conducted for each respondent. Self-reported toothbrushing frequency was used as a proxy for oral hygiene practice. In a linear model controlling for potential confounders (demographic characteristics, socio-economic status, lifestyle risk factors, BMI, dental visit frequency, etc.), urban residents who barely brushed their teeth had an increase of 0.50 (95% CI: 0.10-0.90) mmol/L in fasting plasma glucose, and an increase of 0.26% (0.04-0.47%) in HbA1c, relative to those brushing ≥twice daily; for rural residents, the effects were 0.26 (0.05-0.48) mmol/L in fasting plasma glucose and 0.20% (0.09-0.31%) in HbA1c. Individuals with better oral practice tended to have lower level of blood glucose and HbA1c. Establishing good oral health behavioral habits may be conducive to diabetes prevention and control in the general population. PMID:27385509

  14. Toothbrushing, Blood Glucose and HbA1c: Findings from a Random Survey in Chinese Population

    PubMed Central

    Su, Lingyu; Liu, Wenzhao; Xie, Bingwu; Dou, Lei; Sun, Jun; Wan, Wenjuan; Fu, Xiaoming; Li, Guangyue; Huang, Jiao; Xu, Ling

    2016-01-01

    Both diabetes and periodontal disease are prevalent in China. Poor oral hygiene practice is the major cause of periodontal disease. An association between oral hygiene practice and blood glucose level was reported in individuals with diabetes, but not in the general population. We examined the association in a population-based random survey recruiting 2,105 adults without previously diagnosed diabetes in Chongqing city, China. Plasma glucose and hemoglobin A1c (HbA1c) were measured, and a 2-hour oral glucose tolerance test was conducted for each respondent. Self-reported toothbrushing frequency was used as a proxy for oral hygiene practice. In a linear model controlling for potential confounders (demographic characteristics, socio-economic status, lifestyle risk factors, BMI, dental visit frequency, etc.), urban residents who barely brushed their teeth had an increase of 0.50 (95% CI: 0.10–0.90) mmol/L in fasting plasma glucose, and an increase of 0.26% (0.04–0.47%) in HbA1c, relative to those brushing ≥twice daily; for rural residents, the effects were 0.26 (0.05–0.48) mmol/L in fasting plasma glucose and 0.20% (0.09–0.31%) in HbA1c. Individuals with better oral practice tended to have lower level of blood glucose and HbA1c. Establishing good oral health behavioral habits may be conducive to diabetes prevention and control in the general population. PMID:27385509

  15. Serum Potassium and Glucose Regulation in the ADDITION-Leicester Screening Study

    PubMed Central

    Carter, Patrice; Bodicoat, Danielle H.; Quinn, Lauren M.; Zaccardi, Francesco; Webb, David R.; Khunti, Kamlesh; Davies, Melanie J.

    2015-01-01

    Introduction. Previous observational studies have shown conflicting results between plasma K+ concentrations and risk of type 2 diabetes. To help clarify the evidence we aimed to determine whether an association existed between serum K+ and glucose regulation within a UK multiethnic population. Methods. Participants were recruited as part of the ADDITION Leicester study, a population based screening study. Individuals from primary care between the age of 40 and 75 years if White European or 25 and 75 years if South Asian or Afro Caribbean were recruited. Tests for associations between baseline characteristics and K+ quartiles were conducted using linear regression models. Results. Data showed individuals in the lowest K+ quartile had significantly greater 2-hour glucose levels (0.53 mmol/L, 95% CI: 0.36 to 0.70, P ≤ 0.001) than those in the highest K+ quartile. This estimation did not change with adjustment for potential confounders. Conversely, participants in the lowest K+ quartile had a 0.14% lower HbA1c (95% CI −0.19 to −0.10: P ≤ 0.001) compared to those in the highest K+ quartile. Conclusion. This cross-sectional analysis demonstrated that lower K+ was associated with greater 2 hr glucose. The data supports the possibility that K+ may influence glucose regulation and further research is warranted. PMID:25883988

  16. Fasting and diet content affect stress-induced changes in plasma glucose and cortisol in Juvenile chinook salmon. [Oncorhynchus tshawytscha

    SciTech Connect

    Barton, B.A.; Schreck, C.B. ); Fowler, L.G. )

    1988-01-01

    Juvenile chinook salmon (Oncorhynchus tshawytscha) reared on low-, medium-, or high-lipid diets for 18 weeks were either kept on their respective diets or fasted for 20 d; then they were subjected to a 30-s handling stress or to handling plus continuous confinement. In fish that were handled but not confined, poststress hyperglycemia was greatest in fed fish that received the high-lipid diet and was generally lower in fasted than in fed fish. Plasma cortisol elevations in response to handling or handling plus confinement stress were not appreciably affected by diet type or fasting. The result indicated that prior feeding regimes and the types of diet fed should be considered when one is interpreting the magnitude of hyperglycemic stress responses in juvenile chinook salmon.

  17. Real-time monitoring of glucose-6-phosphate dehydrogenase activity using liquid droplet arrays and its application to human plasma samples.

    PubMed

    Jung, Se-Hui; Ji, Su-Hyun; Han, Eun-Taek; Park, Won Sun; Hong, Seok-Ho; Kim, Young-Myeong; Ha, Kwon-Soo

    2016-05-15

    Glucose-6-phosphate dehydrogenase (G6PD) regulates nicotinamide adenine dinucleotide phosphate (NADPH) levels and is related to the pathogenesis of various diseases, including G6PD deficiency, type 2 diabetes, aldosterone-induced endothelial dysfunction, and cancer. Therefore, a highly sensitive array-based assay for determining quantitative G6PD activity is required. Here, we developed an on-chip G6PD activity assay using liquid droplet fluorescence arrays. Quantitative G6PD activity was determined by calculating reduced resorufin concentrations in liquid droplets. The limit of detection (LOD) of this assay was 0.162 mU/ml (2.89 pM), which is much more sensitive than previous assays. We used our activity assay to determine kinetic parameters, including Michaelis-Menten constants (Km) and maximum rates of enzymatic reaction (Vmax) for NADP(+) and G6P, and half-maximal inhibitory concentrations (IC50). We successfully applied this new assay to determine G6PD activity in human plasma from normal healthy individuals (n=30) and patients with inflammation (n=30). The inflammatory group showed much higher G6PD activities than did the normal group (p<0.001), with a high area under the curve value of 0.939. Therefore, this new activity assay has the potential to be used for diagnosis of G6PD-associated diseases and utilizing kinetic studies. PMID:26802575

  18. Abnormal oral glucose tolerance and glucose malabsorption after vagotomy and pyloroplasty. A tracer method for measuring glucose absorption rates

    SciTech Connect

    Radziuk, J.; Bondy, D.C.

    1982-11-01

    The mechanisms underlying the abnormal glucose tolerance in patients who had undergone vagotomy and pyloroplasty were investigated by measuring the rates of absorption of ingested glucose and the clearance rate of glucose using tracer methods. These methods are based on labeling a 100-g oral glucose load with (1-/sup 14/C)glucose and measuring glucose clearance using plasma levels of infused (3-/sup 3/H)glucose. The rate of appearance of both ingested and total glucose is then calculated continuously using a two-compartment model of glucose kinetics. It was found that about 30% of the ingested glucose (100 g) failed to appear in the systemic circulation. That this was due to malabsorption was confirmed using breath-hydrogen analysis. The absorption period is short (101 +/- 11 min) compared with normal values but the clearance of glucose is identical to that in control subjects, and it peaks 132 +/- 7 min after glucose loading. The peak plasma insulin values were more than four times higher in patients than in normal subjects, and this may afford an explanation of rates of glucose clearance that are inappropriate for the short absorption period. The combination of glucose malabsorption and this clearance pattern could yield the hypoglycemia that may be observed in patients after gastric surgery.

  19. Design of a 2-Hour Prebreathe Protocol for Space Walks (EVAs) from the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Gernhardt, M. L.; Conkin, J.; Foster, P. P.; Pilmanis, A. A.; Butler, B. D.; Fife, C.; Vann, R. D.; Gerth, W. A.; Loftin, K. C.; Dervay, J.; Waligora, J. M.; Powell, M. R.; Homick, Jerry L. (Technical Monitor)

    2000-01-01

    The majority of extravehicular activities (EVAs) performed from the shuttle use a 10.2 psi staged decompression. The International Space Station (ISS) will operate at 14.7 psi, requiring crews to "campout" in the airlock at 10.2 psi. The constraints associated with campout (crew isolation, oxygen usage, and waste management), provided the rationale to develop a 2-hour prebreathe protocol from 14.7 psi. Previous studies on the affect of microgravity and exercise during prebreathe suggested the feasibility of this approach. Various combinations of adynamia (nonwalking subjects), prebreathe exercise doses, and space suit donning options (10.2 vs. 14.7 psi) were analyzed against timeline and consumable constraints. Prospective decompression sickness (DCS) and venous gas emboli (VGE) accept/reject criteria were defined from statistical analysis of historical DCS data, combined with risk management of DCS under ISS mission circumstances. Maximum operational DCS levels were defined based on protecting for EVA capability with two crew members at 95% confidence, throughout ISS lifetime (within the constraints of NASA DCS disposition policy JPG 1800.3). The accept / reject limits were adjusted for greater safety (including Grade IV VGE criteria) based on analysis of related medical factors. Monte-Carlo simulation was performed to design a closed sequential, multi-center laboratory trial, including the capability of rejecting the primary protocol and testing at least one alternate exercise dose, within the 2-hour prebreathe. The 2-hour protocol incorporates 0, breathing for 5 0 min at 14.7 psi, including 10 min dual cycle ergometry at 75%VO(2max). It requires an additional 30 minO2breathing during depress from 14.7 to 10.2 psi, followed by a 30-60 min suit donning break at 10.2 psi/26.5% O2. It concludes with a 40 min in-suit O2 prebreathe. The protocol would be accepted for operations, if the incidence of DCS was less than 15% and Grade IV VGE less than 20%, both at 95

  20. Glucose Metabolism Effects of Vitamin D in Prediabetes: The VitDmet Randomized Placebo-Controlled Supplementation Study

    PubMed Central

    Tuomainen, Tomi-Pekka; Virtanen, Jyrki K.; Voutilainen, Sari; Nurmi, Tarja; Mursu, Jaakko; de Mello, Vanessa D. F.; Schwab, Ursula; Hakumäki, Martti; Pulkki, Kari

    2015-01-01

    Epidemiological evidence suggests a role for vitamin D in type 2 diabetes prevention. We investigated the effects of vitamin D3 supplementation on glucose metabolism and inflammation in subjects with prediabetes. A 5-month randomized, double-blind, placebo-controlled intervention with three arms (placebo, 40 μg/d, or 80 μg/d vitamin D3) was carried out among sixty-eight overweight (BMI 25–35) and aging (≥60 years) subjects from Finland, with serum 25-hydroxyvitamin D3 [25(OH)D3] < 75 nmol/L and either impaired fasting glucose or impaired glucose tolerance. Analyses included 66 subjects who completed the trial. Glucose metabolism was evaluated by fasting and 2-hour oral glucose tolerance test-derived indices and glycated hemoglobin. Inflammation was evaluated by high-sensitive C-reactive protein and five cytokines. Although a dose-dependent increase in serum 25(OH)D3 over the supplementation period was observed (P trend < 0.001), there were no other statistically significant differences in changes in the 13 glucose homeostasis indicators between the study groups other than increase in the 120 min glucose concentration (P trend = 0.021) and a decreasing trend both in 30 min plasma insulin (P trend = 0.030) and glycated hemoglobin (P trend = 0.024) concentrations. A borderline statistically significant decreasing trend in interleukin-1 receptor antagonist concentration was observed (P = 0.070). Vitamin D3 supplementation does not improve glucose metabolism in ageing subjects with prediabetes but may have modest anti-inflammatory effects. PMID:26106626

  1. Design and Testing of a 2-Hour Oxygen Prebreathe Protocol for Space Walks from the International Space Station

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Conkin, J.; Foster, P. P.; Pilmanis, A. A.; Butler, B. D.; Beltran, E.; Fife, C. E.; Vann, R. D.; Gerth, W. A.; Loftin, K. C.; Paloski, William H. (Technical Monitor)

    2000-01-01

    To develop and test a 2-hour prebreathe protocol for performing extravehicular activities (EVAs) from the International Space Station (ISS). Combinations of adynamia (non-walking), prebreathe exercise, and space suit donning options (10.2 vs. 14.7 psi) were evaluated, against timeline and consumable contraints to develop an operational 2- hour prebreathe protocol. Prospective accept/reject criteria were defined for decompression sickness (DCS) and venous gas emboli (VGE) from analysis of historical DCS data, combined with risk management of DCS under ISS mission circumstances. Maximum operational DCS levels were defined based on protecting for EVA capability with two crew-members at 95% confidence, throughout ISS lifetime (within the constraints of NASA DCS disposition policy JPG 1800.3). The accept/reject limits were adjusted for greater safety based on analysis of related medical factors. Monte-Carlo simulation was performed to design a closed sequential, multi-center human trial. Protocols were tested with 4 different prebreathe exercises (Phases I-IV), prior to exposure to 4.3 psi for 4 hrs. Subject selection, Doppler monitoring for VGE, test termination criteria, and DCS definitions were standardized. Phase I: upper and lower body exercises using dual-cycle ergometry (75% VO2 max for 10 min). Phase II: ergometry plus 24 min of light exercise (simulating space-suit preparations). Phase III: same 24 min of light exercise but no ergometry, and Phase IV: 56 min of light exercise without ergometry. A prebreathe procedure was accepted if, at 95% confidence, the incidence of DCS was less than 15% (with no Type II DCS), and Grade IV VGE was less than 20%.

  2. Glucose kinetics in infants of diabetic mothers

    SciTech Connect

    Cowett, R.M.; Susa, J.B.; Giletti, B.; Oh, W.; Schwartz, R.

    1983-08-01

    Glucose kinetic studies were performed to define the glucose turnover rate with 78% enriched D-(U-13C) glucose by the prime constant infusion technique at less than or equal to 6 hours of age in nine infants of diabetic mothers (four insulin-dependent and five chemical diabetic patients) at term. Five normal infants were studied as control subjects. All infants received 0.9% saline intravenously during the study with the tracer. Fasting plasma glucose, insulin, and glucose13/12C ratios were measured during the steady state, and the glucose turnover rate was derived. The average plasma glucose concentration was similar during the steady state in the infants of the diabetic mothers and in the control infants, and the glucose turnover rate was not significantly different among the groups: 2.3 +/- 0.6 mg . kg-1 min-1 in infants of insulin-dependent diabetic patients; 2.4 +/- 0.4 mg . kg-1 min-1 in infants of chemical diabetic patients; and 3.2 +/- 0.3 mg . kg-1 min-1 in the control subjects. Good control of maternal diabetes evidenced by the normal maternal hemoglobin A1c and plasma glucose concentration at delivery and cord plasma glucose concentration resulted in glucose kinetic values in the infants of diabetic mothers that were indistinguishable from those of control subjects. The data further support the importance of good control of the diabetic state in the pregnant woman to minimize or prevent neonatal hypoglycemia.

  3. Improving Effect of the Acute Administration of Dietary Fiber-Enriched Cereals on Blood Glucose Levels and Gut Hormone Secretion

    PubMed Central

    2016-01-01

    Dietary fiber improves hyperglycemia in patients with type 2 diabetes through its physicochemical properties and possible modulation of gut hormone secretion, such as glucagon-like peptide 1 (GLP-1). We assessed the effect of dietary fiber-enriched cereal flakes (DC) on postprandial hyperglycemia and gut hormone secretion in patients with type 2 diabetes. Thirteen participants ate isocaloric meals based on either DC or conventional cereal flakes (CC) in a crossover design. DC or CC was provided for dinner, night snack on day 1 and breakfast on day 2, followed by a high-fat lunch. On day 2, the levels of plasma glucose, GLP-1, glucose-dependent insulinotropic polypeptide (GIP), and insulin were measured. Compared to CC, DC intake exhibited a lower post-breakfast 2-hours glucose level (198.5±12.8 vs. 245.9±15.2 mg/dL, P<0.05) and a lower incremental peak of glucose from baseline (101.8±9.1 vs. 140.3±14.3 mg/dL, P<0.001). The incremental area under the curve (iAUC) of glucose after breakfast was lower with DC than with CC (P<0.001). However, there were no differences in the plasma insulin, glucagon, GLP-1, and GIP levels. In conclusion, acute administration of DC attenuates postprandial hyperglycemia without any significant change in the representative glucose-regulating hormones in patients with type 2 diabetes (ClinicalTrials.gov. NCT 01997281). PMID:26839476

  4. Frequency of diabetes, impaired fasting glucose, and glucose intolerance in high-risk groups identified by a FINDRISC survey in Puebla City, Mexico

    PubMed Central

    García-Alcalá, Hector; Genestier-Tamborero, Christelle Nathalie; Hirales-Tamez, Omara; Salinas-Palma, Jorge; Soto-Vega, Elena

    2012-01-01

    Background As a first step in the prevention of diabetes, the International Diabetes Federation recommends identification of persons at risk using the Finnish type 2 Diabetes Risk Assessment (FINDRISC) survey. The frequency of diabetes mellitus, impaired fasting glucose, and glucose intolerance in high-risk groups identified by FINDRISC is unknown in our country. The aim of this study was to determine the frequency of diabetes mellitus, impaired fasting glucose, and glucose intolerance in higher-risk groups using a FINDRISC survey in an urban population. Methods We used a television program to invite interested adults to fill out a survey at a television station. An oral glucose tolerance test was performed in all persons with a FINDRISC score ≥ 15 points (high-risk and very high-risk groups). Patients were classified as normal (fasting glucose < 100 mg/dL and 2-hour glucose < 140 mg/dL), or having impaired fasting glucose (fasting glucose 100–125 mg/dL and 2-hour glucose < 140 mg/dL), glucose intolerance (fasting glucose < 126 mg/dL and 2-hour glucose 140–199 mg/dL), and diabetes mellitus (fasting glucose ≥ 126 mg/dL or 2-hour glucose ≥ 200 mg/dL). We describe the frequency of each diagnostic category in this selected population according to gender and age. Results A total of 186 patients had a score ≥ 15. The frequencies of diabetes mellitus, impaired fasting glucose, glucose intolerance, and normal glucose levels were 28.6%, 25.9%, 29.2%, and 16.2%, respectively. We found a higher frequency of diabetes mellitus and impaired fasting glucose in men than in women (33% versus 27% and 40% versus 21%, respectively) and more glucose intolerance in women than in men (34% versus 16%, P < 0.05). Patients with diabetes mellitus (52.55 ± 9.2 years) were older than those with impaired fasting glucose (46.19 ± 8.89 years), glucose intolerance (46.15 ± 10.9 years), and normal levels (41.9 ± 10.45 years, P < 0.05). We found a higher frequency of diabetes

  5. Maturation of spermatozoa from rainbow trout (Oncorhynchus mykiss) sex-reversed females using artificial seminal plasma or glucose-methanol extender.

    PubMed

    Ciereszko, Andrzej; Dietrich, Grzegorz J; Nynca, Joanna; Dobosz, Stefan; Krom, Janusz

    2015-04-15

    Masculinized females (sex-reversed females) produce only homogametic spermatozoa (X) for fertilization which is desired for the production of all-female rainbow trout populations. The milt of sex-reversed females is of low quality and must be matured through extension in maturation solutions. The aim of this study was to compare the usefulness of glucose-methanol (GM) extender with artificial seminal plasma (ASP) extender for the maturation of milt of sex-reversed female rainbow trout. Milt suspensions were incubated at 4 °C for either 15 minutes (GM extender) or 120 minutes (ASP extender). Incubation of milt diluted in either the GM or ASP extender caused a significant (P < 0.05) increase in the percentage of sperm motility to 76.1 ± 10.9% and 74.7 ± 18.6% for GM and ASP, respectively, but no differences between both the extenders were found. Incubation also increased the average path velocity, straight line velocity, and linearity values of spermatozoa diluted with the GM extender; at the same time, none of the other parameters changed for ASP suspensions. Sperm diluted with ASP was characterized by higher curvilinear velocity and lateral head displacement values. Percentage of eyed embryos produced by fertilization using milt diluted in the GM extender amounted to 63.6 ± 16.4% and 67.2 ± 11.9% for sperm-to-egg ratio of 300,000:1 or 600,000:1, respectively and was lower (P < 0.05) compared with that of ASP extender (79.5 ± 5.8% and 80.3 ± 4.7% for sperm-to-egg ratio of 300,000:1 or 600,000:1, respectively). The results of our study clearly report that the mechanism of sperm maturation by the GM extender differs from that based on ASP. PMID:25638350

  6. Risk of Future Diabetes in Japanese People with High-normal Fasting Plasma Glucose Levels: A 4-Year Follow-up Study.

    PubMed

    Watanabe, Yoh; Eto, Tanenao; Taniguchi, Shotaro; Terauchi, Yasuo

    2016-01-01

    Objective There is no definite consensus regarding the treatment and guidance for individuals with high-normal fasting plasma glucose levels (FPG;100-109 mg/dL). The present study aimed to determine the risk factors for future diabetes in Japanese people with high-normal FPG. Methods Retrospective cohort studies were conducted from 2008 to 2012, including 15,097 individuals who underwent medical examinations. First, the participants were divided into normal FPG (n=13,065) and high-normal FPG (n=2,032) groups to compare the diabetes incidence. Second, the high FPG group was divided into diabetes onset (n=133) and non-diabetes onset (n=1,899) groups to compare the baseline values. Third, to determine the risk factors for future diabetes in the high-normal FPG group, multivariate analyses were conducted. Results The cumulative incidence during the mean follow-up of 4 years was 94/13,065 (0.72%) and 133/2,032 (6.55%) in the normal FPG and high-normal FPG groups, respectively. Within the high-normal FPG group, the baseline body mass index, waist circumference, triglycerides, FPG, alanine aminotransferase (ALT), and gamma-glutamyl transferase were significantly higher and high-density lipoprotein cholesterol (HDL-C) was significantly lower in the diabetes onset group than in the non-diabetes onset group. Obesity, abdominal obesity, hypertriglyceridemia, low HDL-C, and high ALT were significant risk factors for diabetes according to a multivariate analysis. Conclusion The high-normal FPG group had a higher risk of diabetes than the normal FPG group, particularly when accompanied with obesity, abdominal obesity, hypertriglyceridemia, low HDL-C, and high ALT. Thus, this high risk group should receive appropriate guidance for lifestyle changes to avoid developing diabetes at an early stage. PMID:27580535

  7. Modelling the Relative Contribution of Fasting and Post-Prandial Plasma Glucose to HbA1c in Healthy and Type 2 Diabetic Subjects

    ERIC Educational Resources Information Center

    Ollerton, Richard L.; Luzio, Steven D.; Owens, David R.

    2004-01-01

    Glycated haemoglobin (HbA1c) is regarded as the gold standard of glucose homeostasis assessment in diabetes. There has been much discussion in recent medical literature of experimental results concerning the relative contribution of fasting and post-prandial glucose levels to the value of HbA1c. A mathematical model of haemoglobin glycation is…

  8. Reproducibility of the pulmonary function response of older men and women to a 2-hour ozone exposure

    SciTech Connect

    Bedi, J.F.; Horvath, S.M.; Drechsler-Parks, D.M.

    1988-08-01

    To test the reproducibility of the pulmonary function response to ozone exposure in older individuals, eight men and eight women, average age 62.8 years, participated in three 2-hour exposures to 0.45 ppm ozone at 23.3 C and 62.5 percent relative humidity. The first and second exposures were separated by an average time of 17.2 days, and 27.3 days separated the second and third exposures. Subjects alternated riding a bicycle ergometer for 20 minutes at an average minute ventilation of 26 liters BTPS (body temperature pressure, saturated), with 20-minute rest periods. Forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV-1), and forced expiratory flow between 25 and 75% of FVC (FEF 25-75%) were measured pre and post exposure. The reproducibility of individual pre-post changes were assessed by calculation of the best linear fit and correlation coefficients between exposures. For FVC and FEV-1, the slopes were significantly different from 1, and correlation coefficients not significantly different from zero, implying that older individuals may not respond consistently to similar ozone exposures.

  9. Dexamethasone increases glucose cycling, but not glucose production, in healthy subjects

    SciTech Connect

    Wajngot, A.; Khan, A.; Giacca, A.; Vranic, M.; Efendic, S. )

    1990-11-01

    We established that measurement of glucose fluxes through glucose-6-phosphatase (G-6-Pase; hepatic total glucose output, HTGO), glucose cycling (GC), and glucose production (HGP), reveals early diabetogenic changes in liver metabolism. To elucidate the mechanism of the diabetogenic effect of glucocorticoids, we treated eight healthy subjects with oral dexamethasone (DEX; 15 mg over 48 h) and measured HTGO with (2-3H)glucose and HGP with (6-3H)glucose postabsorptively and during a 2-h glucose infusion (11.1 mumol.kg-1.min-1). (2-3H)- minus (6-3H)glucose equals GC. DEX significantly increased plasma glucose, insulin, C peptide, and HTGO, while HGP was unchanged. In controls and DEX, glucose infusion suppressed HTGO (82 vs. 78%) and HGP (87 vs. 91%). DEX increased GC postabsorptively (three-fold) P less than 0.005 and during glucose infusion (P less than 0.05) but decreased metabolic clearance and glucose uptake (Rd), which eventually normalized, however. Because DEX increased HTGO (G-6-Pase) and not HGP (glycogenolysis + gluconeogenesis), we assume that DEX increases HTGO and GC in humans by activating G-6-Pase directly, rather than by expanding the glucose 6-phosphate pool. Hyperglycemia caused by peripheral effects of DEX can also contribute to an increase in GC by activating glucokinase. Therefore, measurement of glucose fluxes through G-6-Pase and GC revealed significant early effects of DEX on hepatic glucose metabolism, which are not yet reflected in HGP.

  10. Performance of the 2-hour Accelerated Diagnostic Protocol Within the American College of Radiology Imaging Network PA 4005 Cohort

    PubMed Central

    Mahler, Simon A.; Miller, Chadwick D.; Litt, Harold I.; Gatsonis, Constantine A.; Snyder, Bradley S.; Hollander, Judd E.

    2015-01-01

    Objectives The 2-hour accelerated diagnostic protocol (ADAPT) is a decision rule designed to identify emergency department (ED) patients with chest pain for early discharge. Previous studies in the Asia-Pacific region demonstrated high sensitivity (97.9% to 99.7%) for major adverse cardiac events (MACE) at 30 days. The objective of this study was to determine the validity of ADAPT for risk stratification in a cohort of U.S. ED patients with suspected acute coronary syndrome (ACS). Methods A secondary analysis of participants enrolled in the American College of Radiology Imaging Network (ACRIN) PA 4005 trial was conducted. This trial enrolled 1,369 patients at least 30 years old with symptoms suggestive of ACS. All data elements were collected prospectively at the time of enrollment. Each patient was classified as low risk or at risk by ADAPT. Early discharge rate and sensitivity for MACE, defined as cardiac death, myocardial infarction (MI), or coronary revascularization at 30 days, were calculated. Results Of 1,140 patients with complete biomarker data, MACE occurred in 31 patients (2.7%). Among 551 of the 1,140 (48.3%, 95% confidence interval [CI] = 45.4% to 51.3%), ADAPT identified for early discharge; five of the 551 (0.9%, 95% CI = 0.3% to 2.1%) had MACE at 30 days. ADAPT was 83.9% (95% CI = 66.3% to 94.5%) sensitive, identifying 26 of 31 patients with MACE. Of the five patients identified for early discharge by ADAPT with MACE, there were no deaths, one patient with MI, and five with revascularizations. Conclusions In this first North American application of the ADAPT strategy, sensitivity for MACE within 30 days was 83.9%. One missed adverse event was a MI, with the remainder representing coronary revascularizations. The effect of missing revascularization events needs further investigation. PMID:25810343

  11. An Invert U-Shaped Curve: Relationship Between Fasting Plasma Glucose and Serum Uric Acid Concentration in a Large Health Check-Up Population in China

    PubMed Central

    Li, Haibo; Zha, Xiaojuan; Zhu, Yu; Liu, Mengxue; Guo, Rui; Wen, Yufeng

    2016-01-01

    Abstract There are some published studies focus on the invert U-shaped relationship between fasting plasma glucose (FPG) and serum uric acid (UA), while the threshold value and gender differences of this relationship were still obscure. We aimed to explore the dose–response relation between FPG level and serum UA concentration by conducted this epidemiological research in a large health check-up population in China. A total of 237,703 people were collected from January 2011 to July 2014 in our cross-sectional study; 100,348 subjects age 18 to 89 years and without known diabetes were included for the current analysis. One-way analysis of variance, generalized additive models, and 2-piecewise linear regression model were used. The mean concentration of UA with FPG of <6.1, 6.1 to 6.9, and ≥7.0 mmol/L was 240.9, 260.2, and 259.6 μmol/L in women and 349.0, 360.8, and 331.0 μmol/L in men. An invert U-shape with a threshold FPG of 7.5 (women)/6.5 (men) mmol/L was observed in the regression curve of FPG and UA, even after adjusting for potential confounders. The adjusted regression coefficients were 2.4 (95% confidence interval [CI]: 1.5 to 3.4, P < 0.001) for FPG < 7.5 mmol/L, −3.2 (95% CI: −5.0 to −1.3, P < 0.001) for FPG ≥ 7.5 mmol/L in women; while 0.8 (95% CI: −0.4 to 2.0, P = 0.19) for FPG < 6.5 mmol/L, −7.1 (95% CI: −8.0 to −6.1, P < 0.001) for FPG ≥ 6.5 mmol/L in men. Furthermore, the interaction between different FPG level and sex was significant (P < 0.05). An invert U-shape with a threshold of FPG was existed for serum UA level in Chinese adults age 18 to 89 years without known diabetes, and significant gender differences were found. Future researches should pay more attention to this relationship. PMID:27100447

  12. An Invert U-Shaped Curve: Relationship Between Fasting Plasma Glucose and Serum Uric Acid Concentration in a Large Health Check-Up Population in China.

    PubMed

    Li, Haibo; Zha, Xiaojuan; Zhu, Yu; Liu, Mengxue; Guo, Rui; Wen, Yufeng

    2016-04-01

    There are some published studies focus on the invert U-shaped relationship between fasting plasma glucose (FPG) and serum uric acid (UA), while the threshold value and gender differences of this relationship were still obscure. We aimed to explore the dose-response relation between FPG level and serum UA concentration by conducted this epidemiological research in a large health check-up population in China.A total of 237,703 people were collected from January 2011 to July 2014 in our cross-sectional study; 100,348 subjects age 18 to 89 years and without known diabetes were included for the current analysis. One-way analysis of variance, generalized additive models, and 2-piecewise linear regression model were used.The mean concentration of UA with FPG of <6.1, 6.1 to 6.9, and ≥7.0 mmol/L was 240.9, 260.2, and 259.6 μmol/L in women and 349.0, 360.8, and 331.0 μmol/L in men. An invert U-shape with a threshold FPG of 7.5 (women)/6.5 (men) mmol/L was observed in the regression curve of FPG and UA, even after adjusting for potential confounders. The adjusted regression coefficients were 2.4 (95% confidence interval [CI]: 1.5 to 3.4, P < 0.001) for FPG < 7.5 mmol/L, -3.2 (95% CI: -5.0 to -1.3, P < 0.001) for FPG ≥ 7.5 mmol/L in women; while 0.8 (95% CI: -0.4 to 2.0, P = 0.19) for FPG < 6.5 mmol/L, -7.1 (95% CI: -8.0 to -6.1, P < 0.001) for FPG ≥ 6.5 mmol/L in men. Furthermore, the interaction between different FPG level and sex was significant (P < 0.05).An invert U-shape with a threshold of FPG was existed for serum UA level in Chinese adults age 18 to 89 years without known diabetes, and significant gender differences were found. Future researches should pay more attention to this relationship. PMID:27100447

  13. Glucose control.

    PubMed

    Preiser, Jean-Charles

    2013-01-01

    Stress-related hyperglycemia is a common finding in acutely ill patients, and is related to the severity and outcome of the critical illness. The pathophysiology of stress hyperglycemia includes hormonal and neural signals, leading to increased production of glucose by the liver and peripheral insulin resistance mediated by the translocation of transmembrane glucose transporters. In one pioneering study, tight glycemic control by intensive insulin therapy in critically ill patients was associated with improved survival. However, this major finding was not confirmed in several other prospective randomized controlled trials. The reasons underlying the discrepancy between the first and the subsequent studies could include nutritional strategy (amount of calories provided, use of parenteral nutrition), case-mix, potential differences in the optimal blood glucose level (BG) in different types of patients, hypoglycemia and its correction, and the magnitude of glucose variability. Therefore, an improved understanding of the physiology and pathophysiology of glycemic regulation during acute illness is needed. Safe and effective glucose control will need improvement in the definition of optimal BG and in the measurement techniques, perhaps including continuous monitoring of insulin algorithms and closed-loop systems. PMID:23075589

  14. Postprandial glucose and insulin profiles following a glucose-loaded meal in cats and dogs.

    PubMed

    Hewson-Hughes, Adrian K; Gilham, Matthew S; Upton, Sarah; Colyer, Alison; Butterwick, Richard; Miller, Andrew T

    2011-10-01

    Data from intravenous (i.v.) glucose tolerance tests suggest that glucose clearance from the blood is slower in cats than in dogs. Since different physiological pathways are activated following oral administration compared with i.v. administration, we investigated the profiles of plasma glucose and insulin in cats and dogs following ingestion of a test meal with or without glucose. Adult male and female cats and dogs were fed either a high-protein (HP) test meal (15 g/kg body weight; ten cats and eleven dogs) or a HP + glucose test meal (13 g/kg body-weight HP diet + 2 g/kg body-weight D-glucose; seven cats and thirteen dogs) following a 24 h fast. Marked differences in plasma glucose and insulin profiles were observed in cats and dogs following ingestion of the glucose-loaded meal. In cats, mean plasma glucose concentration reached a peak at 120 min (10.2, 95 % CI 9.7, 10.8 mmol/l) and returned to baseline by 240 min, but no statistically significant change in plasma insulin concentration was observed. In dogs, mean plasma glucose concentration reached a peak at 60 min (6.3, 95 % CI 5.9, 6.7 mmol/l) and returned to baseline by 90 min, while plasma insulin concentration was significantly higher than pre-meal values from 30 to 120 min following the glucose-loaded meal. These results indicate that cats are not as efficient as dogs at rapidly decreasing high blood glucose levels and are consistent with a known metabolic adaptation of cats, namely a lack of glucokinase, which is important for both insulin secretion and glucose uptake from the blood. PMID:22005400

  15. The frog skin host-defense peptide CPF-SE1 improves glucose tolerance, insulin sensitivity and islet function and decreases plasma lipids in high-fat fed mice.

    PubMed

    Srinivasan, Dinesh; Ojo, Opeolu O; Owolabi, Bosede O; Conlon, J Michael; Flatt, Peter R; Abdel-Wahab, Yasser H A

    2015-10-01

    The frog skin host-defense peptide CPF-SE1 has previously been shown to stimulate the in vitro release of insulin from clonal BRIN-BD11 β-cells. In this study, the in vivo effects of the peptide were investigated in male NIH Swiss mice maintained on a high-fat diet to induce obesity and insulin resistance. Insulin-secretory responses of islets isolated from treated and untreated mice and changes in islet morphology were also examined. Total body fat, plasma glucagon, triglyceride and cholesterol concentrations were measured at the end of the treatment period. Acute intraperitoneal administration of CPF-SE1 (75 nmol body weight) to high-fat fed mice together with glucose (18 mmol/kg body weight) improved glucose tolerance and insulin responses compared to high-fat fed controls. Long term administration of CPF-SE1 (twice-daily administration of 75 nmol/kg body weight for 28 days) did not affect body weight or energy intake but decreased circulating glucose and increased insulin concentrations. Insulin sensitivity and insulin-secretory responses of islets to secretagogues were also significantly improved at 28 days in peptide-treated mice. In addition, significant decreases in plasma glucagon concentrations, pancreatic insulin and glucagon content, islet and beta cell area, body fat and plasma triglyceride levels were observed in CPF-SE1 treated with mice. In conclusion, CPF-SE1 improves beta cell function, insulin sensitivity and glycaemic control whilst reducing total body fat and circulating triglyceride levels. The peptide shows potential for development into an agent for treatment of patients with metabolic syndrome and type 2 diabetes. PMID:26123844

  16. Glucose Variability

    PubMed Central

    2013-01-01

    The proposed contribution of glucose variability to the development of the complications of diabetes beyond that of glycemic exposure is supported by reports that oxidative stress, the putative mediator of such complications, is greater for intermittent as opposed to sustained hyperglycemia. Variability of glycemia in ambulatory conditions defined as the deviation from steady state is a phenomenon of normal physiology. Comprehensive recording of glycemia is required for the generation of any measurement of glucose variability. To avoid distortion of variability to that of glycemic exposure, its calculation should be devoid of a time component. PMID:23613565

  17. A simple method for quantitation of insulin sensitivity and insulin release from an intravenous glucose tolerance test.

    PubMed

    Galvin, P; Ward, G; Walters, J; Pestell, R; Koschmann, M; Vaag, A; Martin, I; Best, J D; Alford, F

    1992-12-01

    Both insulin secretion and insulin sensitivity are important in the development of diabetes but current methods used for their measurements are complex and cannot be used for epidemiological surveys. This study describes a simplified approach for the estimation of first phase insulin release and insulin sensitivity from a standard 40-min intravenous glucose tolerance test (IVGTT), and compares these parameter estimations with the sophisticated minimal model analysis of a frequently sampled 3-h IVGTT and the euglycaemic clamp technique. For the simplified IVGTT, first phase insulin release was measured as the insulin area above basal post glucose load unit-1 incremental change (i.e. peak rise) in plasma glucose over 0-10 min, and insulin sensitivity as a rate of glucose disappearance (Kg) unit-1 insulin increase above basal from 0-40 min post-glucose load in 18 subjects who were studied twice, either basally or in a perturbed pathophysiological state (i.e. pre- and post-ultramarathon race, n = 5; pre- and post-20 h pulsatile hyperinsulinaemia, n = 8; pre- and post-thyrotoxic state, n = 5). A further 12 subjects were compared by IVGTT, and glucose clamp. In addition, seven dogs were studied three times by IVGTT during normal saline infusion and after short-term (1/2 hour) or long-term (72 hour) adrenaline infusions. First phase insulin release and insulin sensitivity estimated from the simplified IVGTT as calculated by the two methods correlated closely (rs = 0.89 and rs = 0.87, respectively), although less precisely in markedly insulin-resistant subjects and the slopes and y intercepts of the linear regression lines were similar in the basal and perturbed states.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1478037

  18. Rapid and specific isolation of radioactive glucose from biological samples.

    PubMed

    Mills, S E; Armentano, L E; Russell, R W; Young, J W

    1981-08-01

    An easy, reliable, and specific ion-exchange method is presented for isolating glucose for specific radioactivity determinations from both blood plasma and buffered in vitro incubation media. The use of a glucose binding resin (borate-charged anion resin) combined speed of ion exchange with specificity of derivative formation. Glucose specific radioactivities, determined by ion exchange on protein-free filtrates of plasma containing [carbon-14] glucose, show excellent agreement with those from the popular glucose pentaacetate derivative method and are less variable. Carry-over of labeled acetate, propionate, lactate, glyoxylate, alanine, aspartate, or glutamate into the glucose fraction is less than .2%. Glycerol carryover is 1.2%. Glucose recovery is increased about three times that of the glucose pentaacetate derivative method and averaged 94% from plasma filtrates. PMID:7298970

  19. Effects of Post-Exercise Honey Drink Ingestion on Blood Glucose and Subsequent Running Performance in the Heat

    PubMed Central

    Ahmad, Nur Syamsina; Ooi, Foong Kiew; Saat Ismail, Mohammed; Mohamed, Mahaneem

    2015-01-01

    Background: Glycogen depletion and hypoglycemia have been associated with fatigue and decrement of performance during prolonged exercise Objectives: This study investigated the effectiveness of Acacia honey drink as a post-exercise recovery aid on glucose metabolism and subsequent running performance in the heat. Patients and Methods: Ten subjects participated in this randomized cross-over study. All subjects performed 2 trials. In each trial, all subjects went through a glycogen depletion phase (Run-1), 2-hour rehydration phase and time trial running phase (Run-2). In Run-1, subjects were required to run on a treadmill at 65% VO2max in the heat (31°C, 70% relative humidity) for 60 min. During 2-hour rehydration phase, subjects drank either plain water (PW) or honey drink (HD) with amount equivalent to 150% of body weight loss in 3 boluses (60%, 50% and 40% subsequently) at 0, 30 and 60 min. In Run-2, the longest distance covered in 20 min was recorded for determining running performance. Two-way repeated measured ANOVA and paired t-test were used for analysis. Results: Running distance in Run-2 covered by the subjects in the honey drink HD trial (3420 ± 350 m) was significantly (P < 0.01) longer compared to plain water PW trial (3120 ± 340 m). In general, plasma glucose, serum insulin and osmolality were significantly (P < 0.05) higher in HD compared to PW during the rehydration phase and Run-2. Conclusions: These findings indicate that rehydration with honey drink improves running performance and glucose metabolism compared to plain water in the heat. Thus, honey drink can be recommended for rehydration purpose for athletes who compete in the heat. PMID:26448850

  20. A Dietary Supplement Containing Cinnamon, Chromium and Carnosine Decreases Fasting Plasma Glucose and Increases Lean Mass in Overweight or Obese Pre-Diabetic Subjects: A Randomized, Placebo-Controlled Trial

    PubMed Central

    Liu, Yuejun; Cotillard, Aurélie; Vatier, Camille; Bastard, Jean-Philippe; Fellahi, Soraya; Stévant, Marie; Allatif, Omran; Langlois, Clotilde; Bieuvelet, Séverine; Brochot, Amandine; Guilbot, Angèle; Clément, Karine; Rizkalla, Salwa W.

    2015-01-01

    Background Preventing or slowing the progression of prediabetes to diabetes is a major therapeutic issue. Objectives Our aim was to evaluate the effects of 4-month treatment with a dietary supplement containing cinnamon, chromium and carnosine in moderately obese or overweight pre-diabetic subjects, the primary outcome being change in fasting plasma glucose (FPG) level. Other parameters of plasma glucose homeostasis, lipid profile, adiposity and inflammatory markers were also assessed. Methods In a randomized, double-blind, placebo-controlled study, 62 subjects with a FPG level ranging from 5.55 to 7 mmol/L and a body mass index ≥25 kg/m2, unwilling to change their dietary and physical activity habits, were allocated to receive a 4-month treatment with either 1.2 g/day of the dietary supplement or placebo. Patients were followed up until 6 months post-randomization. Results Four-month treatment with the dietary supplement decreased FPG compared to placebo (-0.24±0.50 vs +0.12±0.59 mmol/L, respectively, p = 0.02), without detectable significant changes in HbA1c. Insulin sensitivity markers, plasma insulin, plasma lipids and inflammatory markers did not differ between the treatment groups. Although there were no significant differences in changes in body weight and energy or macronutrient intakes between the two groups, fat-free mass (%) increased with the dietary supplement compared to placebo (p = 0.02). Subjects with a higher FPG level and a milder inflammatory state at baseline benefited most from the dietary supplement. Conclusions Four-month treatment with a dietary supplement containing cinnamon, chromium and carnosine decreased FPG and increased fat-free mass in overweight or obese pre-diabetic subjects. These beneficial effects might open up new avenues in the prevention of diabetes. Trial Registration ClinicalTrials.gov NCT01530685 PMID:26406981

  1. Impact of diabetes duration on achieved reductions in glycated haemoglobin, fasting plasma glucose and body weight with liraglutide treatment for up to 28 weeks: a meta-analysis of seven phase III trials.

    PubMed

    Seufert, J; Bailey, T; Barkholt Christensen, S; Nauck, M A

    2016-07-01

    This meta-analysis of seven randomized, placebo-controlled studies (total 3222 patients) evaluated whether type 2 diabetes (T2D) duration affects the changes in blood glucose control and body weight that can be achieved with liraglutide and placebo. With liraglutide 1.2 mg, shorter diabetes duration was associated with a significantly greater, but clinically non-relevant, difference in glycated haemoglobin (HbA1c) reduction (p < 0.05), i.e. a 0.18% (1.96 mmol/mol) reduction in HbA1c per 10 years shorter diabetes duration. With liraglutide 1.8 mg, shorter diabetes duration was associated with a small but statistically significant trend for greater fasting plasma glucose (FPG) reduction (p < 0.05), i.e. a 0.38 mmol/l reduction in FPG per 10 years shorter diabetes duration. Neither the liraglutide 1.8 mg nor placebo results showed a significant association between HbA1c and diabetes duration and neither the liraglutide 1.2 mg nor placebo results showed a significant association between FPG and diabetes duration. Likewise, neither liraglutide nor placebo showed a significant association between change in weight and diabetes duration. These results suggest diabetes duration has a clinically negligible effect on achievable blood glucose control and weight outcomes with liraglutide and placebo in patients with T2D. PMID:26679282

  2. Estimation of liver glucose metabolism after refeeding

    SciTech Connect

    Rognstad, R.

    1987-05-01

    Refeeding or infusing glucose to rats fasted for 24 hr or more causes rapid liver glycogen synthesis, the carbon source now considered to be largely from gluconeogenesis. While substrate cycling between plasma glucose and liver glucose-6P is known to occur, this cycling has apparently been ignored when calculations are made of % contribution of direct and indirect pathways to liver glycogen synthesis, or when hepatic glucose output is calculated from glucose turnover minus the glucose infusion rate. They show that, isotopically, an estimate of the fluxes of liver glucokinase and glucose-6-phosphatase is required to quantitate sources of carbon for liver glycogen synthesis, and to measure hepatic glucose output (or uptake). They propose a method to estimate these fluxes, involving a short infusion of a /sup 14/C labelled gluconeogenic precursor plus (6T)glucose, with determination of isotopic yields in liver glycogen and total glucose. Given also the rate of liver glycogen synthesis, this procedure permits the estimation of net gluconeogenesis and hepatic glucose output or uptake. Also, in vitro evidence against the notion of a drastic zonation of liver carbohydrate metabolism is presented, e.g. raising the glucose concentration from 10 to 25 mM increases the /sup 14/C yield from H/sup 14/CO/sub 3//sup -/ in lactate, with the increased pyruvate kinase flux and decreased gluconeogenesis occurring in the same cell type, not opposing pathways in different hepatocyte types (as has been postulated by some to occur in vivo after refeeding.

  3. A UPLC-MS/MS method for simultaneous determination of danshensu, protocatechuic aldehyde, rosmarinic acid, and ligustrazine in rat plasma, and its application to pharmacokinetic studies of Shenxiong glucose injection in rats.

    PubMed

    Zheng, Lin; Gong, Zipeng; Lu, Yuan; Xie, Yumin; Huang, Yong; Liu, Yue; Lan, Yanyu; Wang, Aimin; Wang, Yonglin

    2015-08-01

    A rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for the simultaneous determination of the four major active ingredients, danshensu, protocatechuic aldehyde, rosmarinic acid, and ligustrazine, in the traditional Chinese medicine Shenxiong glucose injection in rat plasma. Acidified and alkalized plasma samples were extracted using ethyl acetate, and separated on a Waters C18 column (2.1mm×50mm, 1.7μm) by using a gradient mobile phase system of acetonitrile-water containing 0.1% formic acid and luteoloside as an internal standard. Electrospray ionization in the positive-ion mode and multiple reaction monitoring were used to identify and quantitate the active components. All calibration curves showed good linearity (r>0.994) over the concentration range, with a lower limit of quantification (LLOQ) between 0.02 and 0.21μg/mL. The precision of the in vivo study was evaluated by intra- and inter-day assays, and the percentage of relative standard deviation was within 15%. Moreover, satisfactory extraction efficiency was obtained (between 83.94 and 117.81%) by liquid-liquid extraction. The validated method was successfully applied in a pharmacokinetic study in rats after intravenous administration of Shenxiong glucose injection. The results showed that the four bioactive ingredients in Shenxiong glucose injection have linear pharmacokinetic properties in rats after intravenous injection within the administered dose range and partially different ones compared to single ingredient. PMID:26118621

  4. Effect of transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: a pilot randomized study

    PubMed Central

    2014-01-01

    Background Impaired glucose tolerance (IGT) is a pre-diabetic state of hyperglycemia that is associated with insulin resistance, increased risk of type II diabetes, and cardiovascular pathology. Recently, investigators hypothesized that decreased vagus nerve activity may be the underlying mechanism of metabolic syndrome including obesity, elevated glucose levels, and high blood pressure. Methods In this pilot randomized clinical trial, we compared the efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) and sham taVNS on patients with IGT. 72 participants with IGT were single-blinded and were randomly allocated by computer-generated envelope to either taVNS or sham taVNS treatment groups. In addition, 30 IGT adults were recruited as a control population and not assigned treatment so as to monitor the natural fluctuation of glucose tolerance in IGT patients. All treatments were self-administered by the patients at home after training at the hospital. Patients were instructed to fill in a patient diary booklet each day to describe any side effects after each treatment. The treatment period was 12 weeks in duration. Baseline comparison between treatment and control group showed no difference in weight, BMI, or measures of systolic blood pressure, diastolic blood pressure, fasting plasma glucose (FPG), 2-hour plasma glucose (2hPG), or glycosylated hemoglobin (HbAlc). Results 100 participants completed the study and were included in data analysis. Two female patients (one in the taVNS group, one in the sham taVNS group) dropped out of the study due to stimulation-evoked dizziness. The symptoms were relieved after stopping treatment. Compared with sham taVNS, taVNS significantly reduced the two-hour glucose tolerance (F(2) = 5.79, p = 0.004). In addition, we found that taVNS significantly decreased (F(1) = 4.21, p = 0.044) systolic blood pressure over time compared with sham taVNS. Compared with the no-treatment control group, patients

  5. Oxytocin increases extrapancreatic glucagon secretion and glucose production in pancreatectomized dogs

    SciTech Connect

    Altszuler, N.; Puma, F.; Winkler, B.; Fontan, N.; Saudek, C.D.

    1986-05-01

    Infusion of oxytocin into normal dogs increases plasma levels of insulin and glucagon and glucose production and uptake. To determine whether infused oxytocin also increases glucagon secretion from extrapancreatic sites, pancreatectomized dogs, off insulin of 18 hr, were infused with oxytocin and plasma glucagon, and glucose production and uptake were measured using the (6-/sup 3/H)glucose primer-infusion technique. The diabetic dogs, in the control period, had elevated plasma glucose and glucagon levels, an increased rate of glucose production, and a relative decrease in glucose uptake (decreased clearance). Infusion of oxytocin (500 ..mu..U/kg/min) caused a rise in plasma glucagon and glucose levels, increased glucose production, and further decreased glucose clearance. it is concluded that oxytocin can stimulate secretion of extrapancreatic glucagon, which contributes to the increased glucose production.

  6. Noninvasive glucose sensing by transcutaneous Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Shih, Wei-Chuan; Bechtel, Kate L.; Rebec, Mihailo V.

    2015-05-01

    We present the development of a transcutaneous Raman spectroscopy system and analysis algorithm for noninvasive glucose sensing. The instrument and algorithm were tested in a preclinical study in which a dog model was used. To achieve a robust glucose test system, the blood levels were clamped for periods of up to 45 min. Glucose clamping and rise/fall patterns have been achieved by injecting glucose and insulin into the ear veins of the dog. Venous blood samples were drawn every 5 min and a plasma glucose concentration was obtained and used to maintain the clamps, to build the calibration model, and to evaluate the performance of the system. We evaluated the utility of the simultaneously acquired Raman spectra to be used to determine the plasma glucose values during the 8-h experiment. We obtained prediction errors in the range of ˜1.5-2 mM. These were in-line with a best-case theoretical estimate considering the limitations of the signal-to-noise ratio estimates. As expected, the transition regions of the clamp study produced larger predictive errors than the stable regions. This is related to the divergence of the interstitial fluid (ISF) and plasma glucose values during those periods. Two key contributors to error beside the ISF/plasma difference were photobleaching and detector drift. The study demonstrated the potential of Raman spectroscopy in noninvasive applications and provides areas where the technology can be improved in future studies.

  7. Noninvasive glucose sensing by transcutaneous Raman spectroscopy

    PubMed Central

    Shih, Wei-Chuan; Bechtel, Kate L.; Rebec, Mihailo V.

    2015-01-01

    Abstract. We present the development of a transcutaneous Raman spectroscopy system and analysis algorithm for noninvasive glucose sensing. The instrument and algorithm were tested in a preclinical study in which a dog model was used. To achieve a robust glucose test system, the blood levels were clamped for periods of up to 45 min. Glucose clamping and rise/fall patterns have been achieved by injecting glucose and insulin into the ear veins of the dog. Venous blood samples were drawn every 5 min and a plasma glucose concentration was obtained and used to maintain the clamps, to build the calibration model, and to evaluate the performance of the system. We evaluated the utility of the simultaneously acquired Raman spectra to be used to determine the plasma glucose values during the 8-h experiment. We obtained prediction errors in the range of ∼1.5−2  mM. These were in-line with a best-case theoretical estimate considering the limitations of the signal-to-noise ratio estimates. As expected, the transition regions of the clamp study produced larger predictive errors than the stable regions. This is related to the divergence of the interstitial fluid (ISF) and plasma glucose values during those periods. Two key contributors to error beside the ISF/plasma difference were photobleaching and detector drift. The study demonstrated the potential of Raman spectroscopy in noninvasive applications and provides areas where the technology can be improved in future studies. PMID:25688542

  8. Impaired glucose tolerance in pediatric burn patients at discharge from the acute hospital stay

    PubMed Central

    Fram, Ricki Y.; Cree, Melanie G.; Wolfe, Robert R.; Barr, David; Herndon, David N.

    2013-01-01

    Objective Hyperglycemia, secondary to the hypermetabolic stress response, is a common occurrence after thermal injury. This stress response has been documented to persist up to 9 months post burn. The purpose of this study was to measure insulin sensitivity in severely burned children prior to discharge when wounds are 95% healed. Methods Twenty-four children, aged 4–17 years, with burns ≥ 40% total body surface area (TBSA) underwent a 2 hour oral glucose tolerance test (OGTT) prior to discharge from the acute pediatric burn unit. Plasma glucose and insulin levels, as well as the Homeostasis Model Assessment for Insulin Resistance (HOMAIR) were compared to published OGTT data from healthy, non-burned children. Results There was a significant difference between severely burned children and non-burned, healthy children with respect to the HOMAIR. Severely burned children had a HOMAIR of 3.53±1.62 compared to the value in non-burned healthy children was 1.28±0.16 (p<0.05). Conclusion Insulin resistance secondary to the hypermetabolic stress response persists in severely burned children when burn wounds are at least 95% healed. The results of this study warrant future investigations into therapeutic options for the burned child during the rehabilitative phase of their care after injury. PMID:20634704

  9. Glucose kinetics during prolonged exercise in highly trained human subjects: effect of glucose ingestion

    PubMed Central

    Jeukendrup, Asker E; Raben, Anne; Gijsen, Annemie; Stegen, Jos H C H; Brouns, Fred; Saris, Wim H M; Wagenmakers, Anton J M

    1999-01-01

    The objectives of this study were (1) to investigate whether glucose ingestion during prolonged exercise reduces whole body muscle glycogen oxidation, (2) to determine the extent to which glucose disappearing from the plasma is oxidized during exercise with and without carbohydrate ingestion and (3) to obtain an estimate of gluconeogenesis. After an overnight fast, six well-trained cyclists exercised on three occasions for 120 min on a bicycle ergometer at 50% maximum velocity of O2 uptake and ingested either water (Fast), or a 4% glucose solution (Lo-Glu) or a 22% glucose solution (Hi-Glu) during exercise. Dual tracer infusion of [U-13C]-glucose and [6,6-2H2]-glucose was given to measure the rate of appearance (Ra) of glucose, muscle glycogen oxidation, glucose carbon recycling, metabolic clearance rate (MCR) and non-oxidative disposal of glucose. Glucose ingestion markedly increased total Ra especially with Hi-Glu. After 120 min Ra and rate of disappearance (Rd) of glucose were 51-52 μmol kg−1 min−1 during Fast, 73-74 μmol kg−1 min−1 during Lo-Glu and 117–119 μmol kg−1 min−1 during Hi-Glu. The percentage of Rd oxidized was between 96 and 100% in all trials. Glycogen oxidation during exercise was not reduced by glucose ingestion. The vast majority of glucose disappearing from the plasma is oxidized and MCR increased markedly with glucose ingestion. Glucose carbon recycling was minimal suggesting that gluconeogenesis in these conditions is negligible. PMID:10050023

  10. The influence of nutrition on the insulin-like growth factor system and the concentrations of growth hormone, glucose, insulin, gonadotropins and progesterone in ovarian follicular fluid and plasma from adult female horses (Equus caballus)

    PubMed Central

    2014-01-01

    Background Feed intake affects the GH-IGF system and may be a key factor in determining the ovarian follicular growth rate. In fat mares, the plasma IGF-1 concentration is high with low GH and a quick follicular growth rate, in contrast to values observed in thin mares. Nothing is known regarding the long-term effects of differential feed intake on the IGF system. The objective of this experiment was to quantify IGFs, IGFBPs, GH, glucose, insulin, gonadotropin and progesterone (P4) in blood and in preovulatory follicular fluid (FF) in relation to feeding levels in mares. Methods Three years prior to the experiment, Welsh Pony mares were assigned to a restricted diet group (R, n = 10) or a well-fed group (WF, n = 9). All mares were in good health and exhibited differences in body weight and subcutaneous fat thickness. Follicular development was scanned daily and plasma was also collected daily. Preovulatory FF was collected by ultrasound-guided follicular aspiration. Hormone levels were assayed in FF and plasma with a validated RIA. Results According to scans, the total number of follicles in group R was 53% lower than group WF. Insulin and IGF-1 concentrations were higher in WF than in R mares. GH and IGF-2 concentrations were lower in plasma from WF mares than from R mares, but the difference was not significant in FF. The IGFBP-2/IGFBP-3 ratio in FF was not affected by feeding but was dramatically increased in R mare plasma. No difference in gonadotropin concentration was found with the exception of FSH, which was higher in the plasma of R mares. On the day of puncture, P4 concentrations were not affected by feeding but were higher in preovulatory FF than in plasma. Conclusions The bioavailability of IGF-1 or IGF-2, represented by the IGFBP2/IGFBP3 ratio, is modified by feed intake in plasma but not in FF. These differences partially explain the variability in follicular growth observed between well-fed mares and mares on restricted diets. PMID:25078409

  11. Regulation of Arabidopsis thaliana plasma membrane glucose-responsive regulator (AtPGR) expression by A. thaliana storekeeper-like transcription factor, AtSTKL, modulates glucose response in Arabidopsis.

    PubMed

    Chung, Moon-Soo; Lee, Sungbeom; Min, Ji-Hee; Huang, Ping; Ju, Hyun-Woo; Kim, Cheol Soo

    2016-07-01

    Biochemical, genetic, physiological, and molecular research in plants has demonstrated a central role of glucose (Glc) in the control of plant growth, metabolism, and development, and has revealed networks that integrate light, stresses, nutrients, and hormone signaling. Previous studies have reported that AtPGR protein as potential candidates for Glc signaling protein. In the present study, we characterized transcription factors that bind to the upstream region of the AtPGR gene isolated using the yeast one-hybrid screening with an Arabidopsis cDNA library. One of the selected genes (AtSTKL) appeared to confer elevated sensitivity to Glc response. Overexpression of AtSTKLs (AtSTKL1 and AtSTKL2) increased the sensitivity to Glc during the post-germination stages. In contrast, atstkl1 and atstkl2 antisense lines displayed reduced sensitivity to high Glc concentration during the early seedling stage. Furthermore, we showed that the two AtSTKLs bind to the 5'-GCCT-3' element of the upstream promoter region of the AtPGR gene in vitro and repress the beta-glucuronidase (GUS) activity in AtPGR promoter-GUS (P999-GUS) transgenic plants. Green fluorescent protein (GFP)-tagged AtSTKLs were localized in the nuclei of transgenic Arabidopsis cells. Collectively, these results suggest that AtSTKL1 and AtSTKL2 function both as repressors of AtPGR transcription and as novel transcription factors in the Glc signaling pathway. PMID:27031427

  12. Aspartame ingestion with and without carbohydrate in phenylketonuric and normal subjects: effect on plasma concentrations of amino acids, glucose, and insulin.

    PubMed

    Wolf-Novak, L C; Stegink, L D; Brummel, M C; Persoon, T J; Filer, L J; Bell, E F; Ziegler, E E; Krause, W L

    1990-04-01

    Seven subjects homozygous for phenylketonuria (PKU) and seven normal subjects were administered four beverage regimens after an overnight fast: unsweetened beverage, beverage providing carbohydrate (CHO), beverage providing aspartame (APM), and beverage providing APM plus CHO. The APM dose (200 mg) was the amount provided in 12 oz of diet beverage; the CHO was partially hydrolyzed starch (60 g). Plasma amino acid concentrations were determined after dosing and the molar plasma phenylalanine (Phe) to large neutral amino acid (LNAA) ratio calculated. APM administration without CHO did not increase plasma Phe concentrations over baseline values in either normal or PKU subjects (5.48 +/- 0.85 and 150 +/- 23.0 mumols/dL, respectively). Similarly, the Phe/LNAA did not increase significantly. Ingestion of beverage providing APM and CHO did not significantly increase plasma Phe concentrations over baseline values in either normal or PKU subjects. However, ingestion of beverage providing CHO (with or without APM) significantly decreased plasma levels of valine, isoleucine, and leucine 1.5 to 4 hours after dosing in both normal and PKU subjects, thereby increasing the Phe/LNAA ratio significantly. These data indicate that changes noted in Phe/LNAA values after ingestion of beverage providing APM plus CHO were due to CHO. The plasma insulin response to beverage providing CHO (with or without APM) was significantly higher in PKU subjects than in normals. PMID:2182973

  13. Intrapulmonary administration of natural honey solution, hyperosmolar dextrose or hypoosmolar distill water to normal individuals and to patients with type-2 diabetes mellitus or hypertension: their effects on blood glucose level, plasma insulin and C-peptide, blood pressure and peaked expiratory flow rate.

    PubMed

    Al-Waili, N

    2003-07-31

    Safety and effect intrapulmonary administration (by inhalation) of 60 % honey solution, 10% dextrose or distill water on blood sugar, plasma insulin and C-peptide, blood pressure, heart rate, and peaked expiratory flow rate (PEFR) in normal or diabetic subjects were studied. - Twenty-four healthy subjects, 16 patients with type 11 diabetes mellitus and six patients with hypertension were entered for study. They were underwent complete physical examination and laboratory investigations. Twelve healthy subjects were subjected for distill water inhalation for 10 min, and after one week they received inhalation of honey solution (60% wt/v) for 10 min. Another 12 healthy subjects received inhalation of 10% dextrose for 10 min. Blood glucose level, plasma insulin and C-peptide, blood pressure, heart rate and PEFR were estimated before inhalation and during 2-3 hrs after inhalation, at 30 min intervals. Random blood glucose level was estimated in eight patients with poorly controlled diabetes mellitus, and repeated 30 min after honey inhalation. One week later, fasting blood glucose level was estimated in each patient and blood glucose level was re-estimated during three hrs after honey inhalation, at 30 min intervals. Glucose tolerance test was performed in another eight patients with type-2 diabetes mellitus, and after one week the procedure was repeated with inhalation of honey, which was started immediately after ingestion of glucose. Six hypertensive patients received honey inhalation for 10 min; supine blood pressure and heart rate were measured before and after inhalation. - Results showed that in normal subjects distill water caused mild elevation of blood glucose level, mild lowering of plasma insulin, and significant reduction of plasma C-peptide. 10% dextrose inhalation caused mild reduction of plasma insulin and C-peptide and unremarkable changes in blood glucose level. No significant changes were obtained in blood pressure, heart rate or PEFR after distill

  14. Effect of intravenous bovine growth hormone or human pancreatic growth hormone-releasing factor on milk production and plasma hormones and metabolites in sheep.

    PubMed

    Hart, I C; Chadwick, P M; James, S; Simmonds, A D

    1985-05-01

    Although it is well known that exogenous bovine GH (bGH) increases milk yield in ruminants it has not been possible to determine whether an increase in endogenous GH secretion has the same effect. The recent isolation of human pancreatic GH-releasing factor (hpGRF-44) has enabled this comparison of the effects of bGH and hpGRF-44 on milk production in sheep. Three pairs of Dorset ewes underwent three 4-day treatments according to a Latin square design. Treatment 1 involved: 2-hourly i.v. injections (approximately 3.0 ml) of bGH (15 micrograms/kg; 1.8 units/mg); treatment 2: 2-hourly i.v. injections (approximately 3.0 ml) of hpGRF-44 (0.6 microgram/kg); treatment 3: 2-hourly i.v. injections (3.0 ml) of the vehicle. Treatment periods were separated by 10 days. Sheep were milked twice daily and the milk was analysed for fat, protein and lactose. Blood samples (5.0 ml) were taken before and at 15, 45, 75 and 100 min after every third injection throughout the 4 days. Plasma was analysed for insulin, glucose, urea and non-esterified fatty acids (NEFA). The changes in plasma GH stimulated by hpGRF-44 were consistent and repeatable throughout the 4 days of treatment.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3921646

  15. What is a normal blood glucose?

    PubMed

    Güemes, Maria; Rahman, Sofia A; Hussain, Khalid

    2016-06-01

    Glucose is the key metabolic substrate for tissue energy production. In the perinatal period the mother supplies glucose to the fetus and for most of the gestational period the normal lower limit of fetal glucose concentration is around 3 mmol/L. Just after birth, for the first few hours of life in a normal term neonate appropriate for gestational age, blood glucose levels can range between 1.4 mmol/L and 6.2 mmol/L but by about 72 h of age fasting blood glucose levels reach normal infant, child and adult values (3.5-5.5 mmol/L). Normal blood glucose levels are maintained within this narrow range by factors which control glucose production and glucose utilisation. The key hormones which regulate glucose homoeostasis include insulin, glucagon, epinephrine, norepinephrine, cortisol and growth hormone. Pathological states that affect either glucose production or utilisation will lead to hypoglycaemia. Although hypoglycaemia is a common biochemical finding in children (especially in the newborn) it is not possible to define by a single (or a range of) blood glucose value/s. It can be defined as the concentration of glucose in the blood or plasma at which the individual demonstrates a unique response to the abnormal milieu caused by the inadequate delivery of glucose to a target organ (eg, the brain). Hypoglycaemia should therefore be considered as a continuum and the blood glucose level should be interpreted within the clinical scenario and with respect to the counter-regulatory hormonal responses and intermediate metabolites. PMID:26369574

  16. Glucose test (image)

    MedlinePlus

    ... person with diabetes constantly manages their blood's sugar (glucose) levels. After a blood sample is taken and tested, it is determined whether the glucose levels are low or high. If glucose levels ...

  17. Low Blood Glucose (Hypoglycemia)

    MedlinePlus

    ... Other Dental Problems Diabetic Eye Disease Low Blood Glucose (Hypoglycemia) What is hypoglycemia? Hypoglycemia, also called low ... actions can also help prevent hypoglycemia: Check blood glucose levels Knowing your blood glucose level can help ...

  18. A Common Missense Variant in the Glucokinase Regulatory Protein Gene (GCKR) Is Associated with Increased Plasma Triglyceride and C-Reactive Protein but Lower Fasting Glucose Concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    OBJECTIVE-Using the genome-wide-association approach, we recently identified the glucokinase regulatory protein gene (GCKR, rs780094) region as a novel quantitative trait locus for plasma triglyceride concentration in Europeans. Here, we sought to study the association of GCKR variants with metaboli...

  19. Dietary effects in the early recovery phase of kwashiorkor. Plasma levels of triglycerides, FFA, D-beta-hydroxybutyrate, glycerol, postheparin lipoprotein lipase (LPL), glucose and insulin.

    PubMed

    Persson, B; Habte, D; Sterky, G

    1976-05-01

    The fatty liver often found in untreated kwashiorkor has been associated with highly variable concentration of circulating lipids. The effect on lipid metabolism of two isocaloric diets--one synthetic monomolecular (Vivonex) and one standard (Casilan)--which both initiated satisfactory clinical improvement was studied in 21 Ethiopian children with kwashiorkor during the first weeks of rehabilitation. Before treatment mean fasting values of all biochemical parameters were within normal ranges except for moderately elevated triglycerides--an unexpected finding-and low insulin. Individual values varied greatly; triglyceride between 0.39 and 3.49 mmol/1. FFA correlated both to glycerol, D-beta-hydroxybutyrate and triglyceride values. During treatment insulin, glucose and glycerol remained essentially unchanged and were similar in both dietary groups. In the Vivonex group only there was an initial marked, parallel fall of FFA and D-beta-hydroxybutyrate suggesting greater availability of carbohydrate and enhanced glucose utilization. This pattern of response seemed to occur without comparable inhibition of lipolysis. Triglycerides--like serum albumin--increased faster in the Casilan group. The highest mean triglyceride value was reached by day 8 in the Casilan group and by day 15 in the Vivonex group. Ten minutes following heparin injection triglycerides declined, FFA and glycerol increased indicating release of in vivo active lipase. LPL activity assayed in vitro was similar and unaffected by 2 weeks of dietary treatment in both groups. LPL activity was inversely correlated to triglycerides providing--beside the type of diet--another possible explanation for the wide variations seen in circulatory triglycerides. PMID:1274567

  20. Glucose transport in brain - effect of inflammation.

    PubMed

    Jurcovicova, J

    2014-01-01

    Glucose is transported across the cell membrane by specific saturable transport system, which includes two types of glucose transporters: 1) sodium dependent glucose transporters (SGLTs) which transport glucose against its concentration gradient and 2) sodium independent glucose transporters (GLUTs), which transport glucose by facilitative diffusion in its concentration gradient. In the brain, both types of transporters are present with different function, affinity, capacity, and tissue distribution. GLUT1 occurs in brain in two isoforms. The more glycosylated GLUT1 is produced in brain microvasculature and ensures glucose transport across the blood brain barrier (BBB). The less glycosylated form is localized in astrocytic end-feet and cell bodies and is not present in axons, neuronal synapses or microglia. Glucose transported to astrocytes by GLUT1 is metabolized to lactate serving to neurons as energy source. Proinflammatory cytokine interleukin (IL)-1β upregulates GLUT1 in endothelial cells and astrocytes, whereas it induces neuronal death in neuronal cell culture. GLUT2 is present in hypothalamic neurons and serves as a glucose sensor in regulation of food intake. In neurons of the hippocampus, GLUT2 is supposed to regulate synaptic activity and neurotransmitter release. GLUT3 is the most abundant glucose transporter in the brain having five times higher transport capacity than GLUT1. It is present in neuropil, mostly in axons and dendrites. Its density and distribution correlate well with the local cerebral glucose demands. GLUT5 is predominantly fructose transporter. In brain, GLUT5 is the only hexose transporter in microglia, whose regulation is not yet clear. It is not present in neurons. GLUT4 and GLUT8 are insulin-regulated glucose transporters in neuronal cell bodies in the cortex and cerebellum, but mainly in the hippocampus and amygdala, where they maintain hippocampus-dependent cognitive functions. Insulin translocates GLUT4 from cytosol to plasma

  1. Effects of alpha and beta adrenergic blockade on hepatic glucose balance before and after oral glucose. Role of insulin and glucagon.

    PubMed Central

    Chap, Z; Ishida, T; Chou, J; Michael, L; Hartley, C; Entman, M; Field, J B

    1986-01-01

    In conscious dogs, phentolamine infusion significantly increased fasting portal vein insulin, glucagon, and decreased net hepatic glucose output and plasma glucose. Propranolol significantly decreased portal vein insulin, portal flow, and increased hepatic glucose production and plasma glucose. Phentolamine, propranolol, and combined blockade reduced glucose absorption after oral glucose. alpha, beta, and combined blockade abolished the augmented fractional hepatic insulin extraction after oral glucose. Despite different absolute amounts of glucose absorbed and different amounts of insulin reaching the liver, the percent of the absorbed glucose retained by the liver was similar for control and with alpha- or beta blockade, but markedly decreased with combined blockade. Our conclusions are: (a) phentolamine and propranolol effects on basal hepatic glucose production may predominantly reflect their action on insulin and glucagon secretion; (b) after oral glucose, alpha- and beta-blockers separately or combined decrease glucose release into the portal system; (c) net hepatic glucose uptake is predominantly determined by hyperglycemia but can be modulated by insulin and glucagon; (d) direct correlation does not exist between hepatic delivery and uptake of insulin and net hepatic glucose uptake; (e) alterations in oral glucose tolerance due to adrenergic blockers, beyond their effects on glucose absorption, can be, to a large extent, mediated by their effects on insulin and glucagon secretion reflecting both hepatic and peripheral glucose metabolism. PMID:2870078

  2. In Vivo Blood Glucose Quantification Using Raman Spectroscopy

    PubMed Central

    Shao, Jingwei; Lin, Manman; Li, Yongqing; Li, Xue; Liu, Junxian; Liang, Jianpin; Yao, Huilu

    2012-01-01

    We here propose a novel Raman spectroscopy method that permits the noninvasive measurement of blood glucose concentration. To reduce the effects of the strong background signals produced by surrounding tissue and to obtain the fingerprint Raman lines formed by blood analytes, a laser was focused on the blood in vessels in the skin. The Raman spectra were collected transcutaneously. Characteristic peaks of glucose (1125 cm-1) and hemoglobin (1549 cm-1) were observed. Hemoglobin concentration served as an internal standard, and the ratio of the peaks that appeared at 1125 cm-1 and 1549 cm-1 peaks was used to calculate the concentration of blood glucose. We studied three mouse subjects whose blood glucose levels became elevated over a period of 2 hours using a glucose test assay. During the test, 25 Raman spectra were collected transcutaneously and glucose reference values were provided by a blood glucose meter. Results clearly showed the relationship between Raman intensity and concentration. The release curves were approximately linear with a correlation coefficient of 0.91. This noninvasive methodology may be useful for the study of blood glucose in vivo. PMID:23133555

  3. Prenatal stress influences the insulin response to a glucose challenge in yearling Brahman heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of prenatal stress on postnatal glucose metabolism was studied in progeny of cows that did or did not experience a transportation event during gestation. Specifically, 12 prenatally stressed (dams transported for 2 hours on days 40, 60, 80, 120, and 140 of gestation) and 12 Control yearli...

  4. Diurnal Variation in Response to Intravenous Glucose*

    PubMed Central

    Whichelow, Margaret J.; Sturge, R. A.; Keen, H.; Jarrett, R. J.; Stimmler, L.; Grainger, Susan

    1974-01-01

    Intravenous glucose tolerance tests (25 g) were performed in the morning and afternoon on 13 apparently normal persons. The individual K values (rate of decline of blood sugar) were all higher in the morning tests, and the mean values were significantly higher in the morning. Fasting blood sugar levels were slightly lower in the afternoon. There was no difference between the fasting morning and afternoon plasma insulin levels, but the levels after glucose were lower in the afternoon. Growth hormone levels were low at all times in non-apprehensive subjects and unaffected by glucose. The results suggest that the impaired afternoon intravenous glucose tolerance, like oral glucose tolerance, is associated with impaired insulin release and insulin resistance. PMID:4817160

  5. Glucose determination with fiber optic spectrometers

    NASA Astrophysics Data System (ADS)

    Starke, Eva; Kemper, Ulf; Barschdorff, Dieter

    1999-05-01

    Noninvasive blood glucose monitoring is the aim of research activities concerning the detection of small glucose concentrations dissolved in water and blood plasma. One approach for these measurements is the exploitation of absorption bands in the near infrared. However, the strong absorption of water represents a major difficulty. Transmission measurements of glucose dissolved in water and in blood plasma in the spectral region around 1600 nm with one- beam spectrometers and a FT-IR spectrometer are discussed. The evaluation of the data is carried out using a two-layer Lambert-Beer model and neural networks. In order to reduce the dimensions of a potential measuring device, an integrated acousto-optic tunable filter (AOTF) with an Erbium doped fiber amplifier as a radiation source is used. The fiber optic components are examined concerning their suitability. The smallest concentrations of glucose dissolved in water that can be separated are approximately 50 mg/dl. In the range of 50 mg/dl to 1000 mg/dl a correlation coefficient of 0.98 between real and estimated glucose concentrations is achieved using neural networks. In blood plasma so far glucose concentrations of about 100 mg/dl can be distinguished with good accuracy.

  6. Blood Test: Glucose

    MedlinePlus

    ... Things to Know About Zika & Pregnancy Blood Test: Glucose KidsHealth > For Parents > Blood Test: Glucose Print A A A Text Size What's in ... de sangre: glucosa What It Is A blood glucose test measures the amount of glucose (the main ...

  7. Dietary intake, food pattern, and abnormal blood glucose status of middle-aged adults: a cross-sectional community-based study in Myanmar

    PubMed Central

    Hlaing, Hlaing Hlaing; Liabsuetrakul, Tippawan

    2016-01-01

    Background Lifestyle changes, particularly dietary intake, had resulted in increasing trends of type-2 diabetes mellitus worldwide. However, dietary intake is diverse across country contexts. This study aimed to compare the dietary intake, food patterns, and blood glucose among middle-aged adults living in urban and suburban areas in Mandalay city, Myanmar, and explore their relationships. Methods A cross-sectional community-based study was conducted during June–November 2014. Adults aged 35–64 were randomly selected and requested to record all food they ate in a 4-day diary. Fasting and 2-hour postprandial blood glucose values were measured over two consecutive days. Dietary intakes were calculated in terms of energy, macronutrients, glycemic index, and glycemic load, and food patterns were identified by factor analysis. The relationships between food pattern, dietary intake, and blood glucose were assessed. Results Of 440 participants, dietary intake between urban and suburban residents was significantly different. Six food patterns were identified. There was no difference in fasting and 2-hour postprandial blood glucose between urban and suburban residents, but a strong correlation between fasting blood glucose and 2-hour postprandial blood glucose was found (correlation coefficient=0.8). Identification of abnormal blood glucose status using original fasting and converted 2-hour postprandial values showed substantial agreement (prevalence-adjusted bias-adjusted Kappa=0.8). Relationships between food patterns and blood glucose or abnormal blood glucose status were not found. Conclusion Food patterns were associated with dietary intake, not with abnormal blood glucose status. Two-hour postprandial blood glucose was highly correlated with fasting blood glucose and may be used for identifying abnormal blood glucose status. PMID:27150795

  8. Hepatic Carboxylesterase 1 Is Induced by Glucose and Regulates Postprandial Glucose Levels

    PubMed Central

    Xu, Jiesi; Yin, Liya; Xu, Yang; Li, Yuanyuan; Zalzala, Munaf; Cheng, Gang; Zhang, Yanqiao

    2014-01-01

    Metabolic syndrome, characterized by obesity, hyperglycemia, dyslipidemia and hypertension, increases the risks for cardiovascular disease, diabetes and stroke. Carboxylesterase 1 (CES1) is an enzyme that hydrolyzes triglycerides and cholesterol esters, and is important for lipid metabolism. Our previous data show that over-expression of mouse hepatic CES1 lowers plasma glucose levels and improves insulin sensitivity in diabetic ob/ob mice. In the present study, we determined the physiological role of hepatic CES1 in glucose homeostasis. Hepatic CES1 expression was reduced by fasting but increased in diabetic mice. Treatment of mice with glucose induced hepatic CES1 expression. Consistent with the in vivo study, glucose stimulated CES1 promoter activity and increased acetylation of histone 3 and histone 4 in the CES1 chromatin. Knockdown of ATP-citrate lyase (ACL), an enzyme that regulates histone acetylation, abolished glucose-mediated histone acetylation in the CES1 chromatin and glucose-induced hepatic CES1 expression. Finally, knockdown of hepatic CES1 significantly increased postprandial blood glucose levels. In conclusion, the present study uncovers a novel glucose-CES1-glucose pathway which may play an important role in regulating postprandial blood glucose levels. PMID:25285996

  9. Frequency of impaired glucose tolerance and diabetes mellitus in subjects with fasting blood glucose below 6.1 mmol/L (110 mg/dL).

    PubMed

    Khan, S H; Ijaz, A; Bokhari, S A Raza; Hanif, M S; Azam, N

    2013-02-01

    The diagnosis of diabetes mellitus by the available criteria is controversial and relies heavily on fasting glucose results. This cross-sectional study in 2010-2011 aimed to measure the frequency of impaired glucose tolerance and diabetes mellitus in 127 subjects having fasting blood glucose < 7.0 mmol/L and to measure the agreement between different standard diagnostic criteria. Subjects presenting to a laboratory for analysis of fasting blood glucose for excluding diabetes mellitus underwent a 2-hour 75 g oral glucose challenge. A total of 40.6% of subjects with fasting blood glucose from 5.6-6.0 mmol/L had abnormal glucose regulation on the basis ofthe gold standard glucose challenge. Agreement between American Diabetes Association and World Health Organization diagnostic criteria was only fair (kappa = 0.32). Abnormalities of glucose metabolism including impaired glucose tolerance and diabetes mellitus can exist at fasting blood glucose results < 6.1 mmol/L (110 mg/dL). PMID:23516829

  10. Depletion of norepinephrine of the central nervous system Down-regulates the blood glucose level in d-glucose-fed and restraint stress models.

    PubMed

    Park, Soo-Hyun; Kim, Sung-Su; Lee, Jae-Ryeong; Sharma, Naveen; Suh, Hong-Won

    2016-05-01

    DSP-4[N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride] is a neurotoxin that depletes norepinephrine. The catecholaminergic system has been implicated in the regulation of blood glucose level. In the present study, the effect of DSP-4 administered intracerebroventricularly (i.c.v.) or intrathecally (i.t.) on blood glucose level was examined in d-glucose-fed and restraint stress mice models. Mice were pretreated once i.c.v. or i.t. with DSP-4 (10-40μg) for 3days, and d-glucose (2g/kg) was fed orally. Blood glucose level was measured 0 (prior to glucose feeding or restraint stress), 30, 60, and 120min after d-glucose feeding or restraint stress. The i.c.v. or i.t. pretreatment with DSP-4 attenuated blood glucose level in the d-glucose-fed model. Plasma corticosterone level was downregulated in the d-glucose-fed model, whereas plasma insulin level increased in the d-glucose-fed group. The i.c.v. or i.t. pretreatment with DSP-4 reversed the downregulation of plasma corticosterone induced by feeding d-glucose. In addition, the d-glucose-induced increase in plasma insulin was attenuated by the DSP-4 pretreatment. Furthermore, i.c.v. or i.t. pretreatment with DSP-4 reduced restraint stress-induced increases in blood glucose levels. Restraint stress increased plasma corticosterone and insulin levels. The i.c.v. pretreatment with DSP-4 attenuated restraint stress-induced plasma corticosterone and insulin levels. Our results suggest that depleting norepinephrine at the supraspinal and spinal levels appears to be responsible for downregulating blood glucose levels in both d-glucose-fed and restraint stress models. PMID:26940240

  11. Sleep restriction acutely impairs glucose tolerance in rats.

    PubMed

    Jha, Pawan K; Foppen, Ewout; Kalsbeek, Andries; Challet, Etienne

    2016-06-01

    Chronic sleep curtailment in humans has been related to impairment of glucose metabolism. To better understand the underlying mechanisms, the purpose of the present study was to investigate the effect of acute sleep deprivation on glucose tolerance in rats. A group of rats was challenged by 4-h sleep deprivation in the early rest period, leading to prolonged (16 h) wakefulness. Another group of rats was allowed to sleep during the first 4 h of the light period and sleep deprived in the next 4 h. During treatment, food was withdrawn to avoid a postmeal rise in plasma glucose. An intravenous glucose tolerance test (IVGTT) was performed immediately after the sleep deprivation period. Sleep deprivation at both times of the day similarly impaired glucose tolerance and reduced the early-phase insulin responses to a glucose challenge. Basal concentrations of plasma glucose, insulin, and corticosterone remained unchanged after sleep deprivation. Throughout IVGTTs, plasma corticosterone concentrations were not different between the control and sleep-deprived group. Together, these results demonstrate that independent of time of day and sleep pressure, short sleep deprivation during the resting phase favors glucose intolerance in rats by attenuating the first-phase insulin response to a glucose load. In conclusion, this study highlights the acute adverse effects of only a short sleep restriction on glucose homeostasis. PMID:27354542

  12. Influence of Continuous Physiologic Hyperinsulinemia on Glucose Kinetics and Counterregulatory Hormones in Normal and Diabetic Humans

    PubMed Central

    Saccà, Luigi; Sherwin, Robert; Hendler, Rosa; Felig, Philip

    1979-01-01

    The effects of continuous infusions of insulin in physiologic doses on glucose kinetics and circulating counterregulatory hormones (epinephrine, norepinephrine, glucagon, cortisol, and growth hormone) were determined in normal subjects and diabetics. The normals received insulin at two dose levels (0.4 and 0.25 mU/kg per min) and the diabetics received the higher dose (0.4 mU/kg per min) only. In all three groups of studies, continuous infusion of insulin resulted in an initial decline in plasma glucose followed by stabilization after 60-180 min. In the normal subjects, with the higher insulin dose there was a fivefold rise in plasma insulin. Plasma glucose fell at a rate of 0.73±0.12 mg/min for 45 min and then stabilized at 55±3 mg/dl after 60 min. The initial decline in plasma glucose was a result of a rapid, 27% fall in glucose output and a 33% rise in glucose uptake. Subsequent stabilization was a result of a return of glucose output and uptake to basal levels. The rebound increment in glucose output was significant (P < 0.05) by 30 min after initiation of the insulin infusion and preceded, by 30-45 min, a significant rise in circulating counterregulatory hormones. With the lower insulin infusion dose, plasma insulin rose two- to threefold, plasma glucose initially fell at a rate of 0.37±0.04 mg/min for 75 min and stabilized at 67±3 mg/dl after 75 min. The changes in plasma glucose were entirely a result of a fall in glucose output and subsequent return to base line, whereas glucose uptake remained unchanged. Plasma levels of counterregulatory hormones showed no change from basal throughout the insulin infusion. In the diabetic group (plasma glucose levels 227±7 mg/dl in the basal state), the initial rate of decline in plasma glucose (1.01±0.15 mg/dl) and the plateau concentration of plasma glucose (59±5 mg/dl) were comparable to controls receiving the same insulin dose. However, the initial fall in plasma glucose was almost entirely a result of

  13. Glucose metabolism in patients with Cushing's syndrome.

    PubMed

    Bowes, S B; Benn, J J; Scobie, I N; Umpleby, A M; Lowy, C; Sönksen, P H

    1991-04-01

    Glucose intolerance, sometimes severe enough to cause frank diabetes mellitus, is a frequent feature of Cushing's syndrome. The primary cause of the hyperglycaemia, whether due to glucose over-production or under-utilization, remains unresolved. We therefore measured glucose turnover using an intravenous bolus of 3-3H glucose in 14 normoglycaemic patients with Cushing's syndrome and 14 control subjects. Seven of the patients with Cushing's syndrome were also restudied post-operatively. Plasma glucose concentrations were similar in all three groups whereas glucose metabolic clearance rate (MCR) (1.80 +/- 0.06 ml/min/kg) and glucose turnover rate (9.09 +/- 0.36 mumol/min/kg) were significantly reduced in patients with Cushing's syndrome compared to normal subjects (2.21 +/- 0.1; P less than 0.001; 10.90 +/- 0.50; P less than 0.01) and rose post-operatively to normal values (2.35 +/- 0.14 ml/min/kg; 11.07 +/- 0.48 mumol/min/kg). We conclude from these results that the hyperglycaemia sometimes found in Cushing's syndrome may be primarily due to decreased utilization rather than increased glucose production. PMID:1879061

  14. The regulation of glucose transport in the heart of control and diabetic rats: With special emphasis on the glucose transporter

    SciTech Connect

    Pleta, M. de Leoz.

    1989-01-01

    Glucose transport regulation with insulin and high perfusion pressure in the perfused rat hearts from control and diabetic rat hearts was investigated. ({sup 3}H)-cytochalasin B binding assay was used to study the distribution of glucose transporters within the subcellular membranes fractionated by linear sucrose density gradient centrifugation. In the present study, insulin increased glucose uptake in the perfused heart of control and diabetic animals. This coincided with an increase of glucose transporters on the plasma membrane. The increase in glucose transporters on the plasma membrane could not be accounted for by a decrease of glucose transporters from the microsomal membranes. High perfusion pressure did not change the number of glucose transporters on the plasma membrane compared to basal in the control and diabetic animals, though it increased glucose uptake above that observed for insulin in the control. Instead, high perfusion pressure altered the distribution of glucose transporters within the subcellular membranes in reverse to that with insulin, increasing an intermediate membrane pool believed to reside between the plasma membrane and microsomal membranes as well as the intracellular membrane pool.

  15. Intermittent hypoxia and diet-induced obesity: effects on oxidative status, sympathetic tone, plasma glucose and insulin levels, and arterial pressure.

    PubMed

    Olea, Elena; Agapito, Maria Teresa; Gallego-Martin, Teresa; Rocher, Asuncion; Gomez-Niño, Angela; Obeso, Ana; Gonzalez, Constancio; Yubero, Sara

    2014-10-01

    Obstructive sleep apnea (OSA) consists of sleep-related repetitive obstructions of upper airways that generate episodes of recurrent or intermittent hypoxia (IH). OSA commonly generates cardiovascular and metabolic pathologies defining the obstructive sleep apnea syndrome (OSAS). Literature usually links OSA-associated pathologies to IH episodes that would cause an oxidative status and a carotid body-mediated sympathetic hyperactivity. Because cardiovascular and metabolic pathologies in obese patients and those with OSAS are analogous, we used models (24-wk-old Wistar rats) of IH (applied from weeks 22 to 24) and diet-induced obesity (O; animals fed a high-fat diet from weeks 12 to 24) to define the effect of each individual maneuver and their combination on the oxidative status and sympathetic tone of animals, and to quantify cardiovascular and metabolic parameters and their deviation from normality. We found that IH and O cause an oxidative status (increased lipid peroxides and diminished activities of superoxide dismutases), an inflammatory status (augmented C-reactive protein and nuclear factor kappa-B activation), and sympathetic hyperactivity (augmented plasma and renal artery catecholamine levels and synthesis rate); combined treatments worsened those alterations. IH and O augmented liver lipid content and plasma cholesterol, triglycerides, leptin, glycemia, insulin levels, and HOMA index, and caused hypertension; most of these parameters were aggravated when IH and O were combined. IH diminished ventilatory response to hypoxia, and hypercapnia and O created a restrictive ventilatory pattern; a combination of treatments led to restrictive hypoventilation. Data demonstrate that IH and O cause comparable metabolic and cardiovascular pathologies via misregulation of the redox status and sympathetic hyperactivity. PMID:25103975

  16. Benefits of maltodextrin intake 2 hours before cholecystectomy by laparotomy in respiratory function and functional capacity: a prospective randomized clinical trial

    PubMed Central

    Zani, Fabiana Vieira Breijão; Aguilar-Nascimento, José Eduardo; Nascimento, Diana Borges Dock; da Silva, Ageo Mário Cândido; Caporossi, Fernanda Stephan; Caporossi, Cervantes

    2015-01-01

    ABSTRACT Objective: To evaluate the change in respiratory function and functional capacity according to the type of preoperative fasting. Methods: Randomized prospective clinical trial, with 92 female patients undergoing cholecystectomy by laparotomy with conventional or 2 hours shortened fasting. The variables measured were the peak expiratory flow, forced expiratory volume in the first second, forced vital capacity, dominant handgrip strength, and non-dominant handgrip strength. Evaluations were performed 2 hours before induction of anesthesia and 24 hours after the operation. Results: The two groups were similar in preoperative evaluations regarding demographic and clinical characteristics, as well as for all variables. However, postoperatively the group with shortened fasting had higher values than the group with conventional fasting for lung function tests peak expiratory flow (128.7±62.5 versus 115.7±59.9; p=0.040), forced expiratory volume in the first second (1.5±0.6 versus 1.2±0.5; p=0.040), forced vital capacity (2.3±1.1 versus 1.8±0.9; p=0.021), and for muscle function tests dominant handgrip strength (24.9±6.8 versus 18.4±7.7; p=0.001) and non-dominant handgrip strength (22.9±6.3 versus 17.0±7.8; p=0.0002). In the intragroup evaluation, there was a decrease in preoperative compared with postoperative values, except for dominant handgrip strength (25.2±6.7 versus 24.9±6.8; p=0.692), in the shortened fasting group. Conclusion: Abbreviation of preoperative fasting time with ingestion of maltodextrin solution is beneficial to pulmonary function and preserves dominant handgrip strength. PMID:26154547

  17. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a type of ...

  18. Your Glucose Meter

    MedlinePlus

    ... by Audience For Women Women's Health Topics Your Glucose Meter Share Tweet Linkedin Pin it More sharing ... Español Basic Facts 7 Tips for Testing Your Blood Sugar and Caring for Your Meter Glucose meters test ...

  19. Continuous Glucose Monitoring

    MedlinePlus

    ... catalog. Additional Links ​ Alternative Devices for Taking Insulin Children and Diabetes Glucose Meters Juvenile Diabetes (Teens and Diabetes ) Know Your Blood Glucose Numbers Your Guide to Diabetes: Type 1 and Type 2 Contact Us Health Information Center ...

  20. Glucose-lowering effects of intestinal bile acid sequestration through enhancement of splanchnic glucose utilization.

    PubMed

    Prawitt, Janne; Caron, Sandrine; Staels, Bart

    2014-05-01

    Intestinal bile acid (BA) sequestration efficiently lowers plasma glucose concentrations in type 2 diabetes (T2D) patients. Because BAs act as signaling molecules via receptors, including the G protein-coupled receptor TGR5 and the nuclear receptor FXR (farnesoid X receptor), to regulate glucose homeostasis, BA sequestration, which interrupts the entero-hepatic circulation of BAs, constitutes a plausible action mechanism of BA sequestrants. An increase of intestinal L-cell glucagon-like peptide-1 (GLP-1) secretion upon TGR5 activation is the most commonly proposed mechanism, but recent studies also argue for a direct entero-hepatic action to enhance glucose utilization. We discuss here recent findings on the mechanisms of sequestrant-mediated glucose lowering via an increase of splanchnic glucose utilization through entero-hepatic FXR signaling. PMID:24731596

  1. Identification of Glucose Transporters in Aspergillus nidulans

    PubMed Central

    dos Reis, Thaila Fernanda; Menino, João Filipe; Bom, Vinícius Leite Pedro; Brown, Neil Andrew; Colabardini, Ana Cristina; Savoldi, Marcela; Goldman, Maria Helena S.; Rodrigues, Fernando; Goldman, Gustavo Henrique

    2013-01-01

    To characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and –E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose. PMID:24282591

  2. Blood Sugar Measurement in Zebrafish Reveals Dynamics of Glucose Homeostasis

    PubMed Central

    Eames, Stefani C.; Philipson, Louis H.; Prince, Victoria E.

    2010-01-01

    Abstract The adult zebrafish has the potential to become an important model for diabetes-related research. To realize this potential, small-scale methods for analyzing pancreas function are required. The measurement of blood glucose level is a commonly used method for assessing β-cell function, but the small size of the zebrafish presents challenges both for collecting blood samples and for measuring glucose. We have developed methods for collecting microsamples of whole blood and plasma for the measurement of hematocrit and blood glucose. We demonstrate that two hand-held glucose meters designed for use by human diabetics return valid results with zebrafish blood. Additionally, we present methods for fasting and for performing postprandial glucose and intraperitoneal glucose tolerance tests. We find that the dynamics of zebrafish blood glucose homeostasis are consistent with patterns reported for other omnivorous teleost fish. PMID:20515318

  3. Assessment of incretins in oral glucose and lipid tolerance tests may be indicative in the diagnosis of metabolic syndrome aggravation.

    PubMed

    Kiec-Klimczak, M; Malczewska-Malec, M; Razny, U; Zdzienicka, A; Gruca, A; Goralska, J; Pach, D; Gilis-Januszewska, A; Dembinska-Kiec, A; Hubalewska-Dydejczyk, A

    2016-04-01

    Incretins stimulated by oral meals are claimed to be protective for the pancreatic beta cells, to increase insulin secretion, to inhibit glucagon release, slow gastric emptying (glucagon-like peptide-1) and suppress appetite. Recently it has however been suggested that glucagon-like peptide-1 (GLP-1) is putative early biomarker of metabolic consequences of the obesity associated proinflammatory state. The study was aimed to compare the release of incretins and some of early markers of inflammation at the fasting and postprandial period induced by functional oral glucose as well as lipid load in healthy controls and patients with metabolic syndrome (MS) to see if functional tests may be helpful in searching for the inflammatory status of patients. Fifty patients with MS and 20 healthy volunteers (C) participated in this study. The 3-hour oral glucose (OGTT) and the 8-hour oral lipid (OLTT) tolerance tests were performed. At fasting leptin and adiponectin, as well as every 30 minutes of OGTT and every 2 hours of OLTT blood concentration of GLP-1, glucose-dependent insulinotropic polypeptide (GIP), glucose, insulin, triglycerides, free fatty acids, glutathione peroxidase, interleukin-6, sE-selectin, monocyte chemoattractant protein-1 (MCP1) and visfatin were measured. At fasting and during both OGTT and OLTT the level of incretins did not differ between the MS and the C group. Both glucose and lipids reach food activated incretins secretion. Glucose was the main GLP-1 release activator, while the lipid load activated evidently GIP secretion. A significantly larger AUC-GIP after the lipid-rich meal over the carbohydrate meal was observed, while statistically bigger value of AUC-GLP-1 was noticed in OGTT than in OLTT (P < 0.001) within each of the investigated groups. In patients with the highest fasting plasma GIP concentration (3(rd) tertile), IL-6, MCP-1, sE-selectin and visfatin blood levels were increased and correlated with glutathione peroxydase, leptin

  4. CSF glucose test

    MedlinePlus

    Glucose test - CSF; Cerebrospinal fluid glucose test ... The glucose level in the CSF should be 50 to 80 mg/100 mL (or greater than 2/3 of the blood sugar level). Note: Normal value ranges may vary slightly ...

  5. Evaluation of effects of a preoperative 2-hour fast with glutamine and carbohydrate rich drink on insulin resistance in maxillofacial surgery

    PubMed Central

    Singh, Manpreet; Chaudhary, Manoj; Vashistha, Arpit; Kaur, Gagandeep

    2015-01-01

    Introduction The aim of this prospective, randomized, single-blinded study was to compare the effects of preoperative fast for clear fluids on insulin resistance and hemodynamic stability on patient undergoing maxillofacial surgery. Method In this study 20 patients undergoing maxillofacial surgery were randomized into four groups i.e. – group I patients with standard 08 h fasting before anesthesia, group-II patients were given 400 ml and 200 ml of water 08 h and 2 h respectively before anesthesia, group III patients were given 400 ml water with 50 gms of glucose and 40 gm of glutamine 08 h before anesthesia and 200 ml water with 25 gms of glucose and 10 gm of glutamine 2 h before anesthesia, group IV patients were given 400 ml water with 50 gms of glucose 08 h before anesthesia and 200 ml water with 25 gms of glucose 2 h before anesthesia. Blood samples were collected pre-operatively and post-operatively. Results Overall results suggest that Post-operative insulin resistance was greater in control patients (2.0 [0.3]) compared with the other 3 groups (placebo = 1.8 [0.9]); glutamine = (1.8 [0.6]); carbohydrate = (1.9 [0.6]). Discussion This study shows that shortening of pre-operative fasting time for clear fluids until 2- h prior to anesthesia may induce a favorable environment for the post-operative course. In conclusion, Glutamine with carbohydrate drink can be used safely in surgical patients. PMID:25853046

  6. Effects of Different Proportion of Carbohydrate in Breakfast on Postprandial Glucose Excursion in Normal Glucose Tolerance and Impaired Glucose Regulation Subjects

    PubMed Central

    Kang, Xin; Wang, Chun; Lifang, Lv; Chen, Dawei; Yang, Yanzhi; Liu, Guanjian; Wen, Hu; Chen, Lihong; He, Liping; Li, Xiujun; Tian, Haoming; Jia, Weiping

    2013-01-01

    Abstract Background The variability of postprandial plasma glucose is an independent risk factor for diabetes. The type and amount of carbohydrate may be important determinants of glycemic control. The aim of the study was to compare the effects of different proportions of carbohydrate in breakfast on postprandial blood glucose fluctuations in impaired glucose regulation (IGR) and normal glucose tolerance (NGT) subjects. Subjects and Methods This is a cross-sectional study of two groups including 55 subjects with IGR and 78 individuals with NGT. Their recorded breakfast was sorted into low-carbohydrate (LC) (carbohydrate <45%), medium-carbohydrate (MC) (carbohydrate 45–65%), and high-carbohydrate (HC) (carbohydrate >65%) meals according to the proportion of carbohydrate. Glucose concentrations were continuously measured with a continuous glucose monitoring system, and parameters such as the incremental area under the curve (iAUC) of glucose and postprandial glucose excursion (PPGE) were calculated to evaluate postprandial glucose fluctuations. Results The postprandial fluctuations of glucose increased gradually with increased proportions of carbohydrate in breakfast in both IGR and NGT subjects. For the MC and HC meals, iAUC, PPGE, postprandial glucose spike (PGS), and mean blood glucose were significantly greater than those in the NGT group (P<0.05), respectively. The median time to PGS and the time period in which glucose concentrations decreased to baseline after the MC and HC meals in the IGR group were significantly longer than those in the NGT group (P<0.01), respectively. Compared with the NGT subjects for the HC meal, the IGR subjects consuming the MC meal had greater PGS, range of glucose concentrations, SD, and PPGE (P<0.05). Conclusions The proportion of carbohydrate in breakfast contributes to glucose excursions in the NGT and IGR subjects. In the IGR subjects, a HC meal should be avoided and a LC meal should be recommended to prevent development of

  7. Contribution of propionate to glucose synthesis in sheep

    PubMed Central

    Leng, R. A.; Steel, J. W.; Luick, J. R.

    1967-01-01

    1. The production rate of propionate in the rumen and the entry rate of glucose into the body pool of glucose in sheep were measured by isotope-dilution methods. Propionate production rates were measured by using a continuous infusion of specifically labelled [14C]propionate. Glucose entry rates were estimated by using either a primed infusion or a continuous infusion of [U-14C]glucose. 2. The specific radioactivity of plasma glucose was constant between 4 and 9hr. after the commencement of intravenous infusion of [U-14C]glucose and between 1 and 3hr. when a primed infusion was used. 3. Infusion of [14C]propionate intraruminally resulted in a fairly constant specific radioactivity of rumen propionate between about 4 and 9hr. and of plasma glucose between 6 and 9hr. after the commencement of the infusion. Comparison of the mean specific radioactivities of glucose and propionate during these periods allowed estimates to be made of the contribution of propionate to glucose synthesis. 4. Comparisons of the specific radioactivities of plasma glucose and rumen propionate during intraruminal infusions of one of [1-14C]-, [2-14C]-, [3-14C]- and [U-14C]-propionate indicated considerable exchange of C-1 of propionate on conversion into glucose. The incorporation of C-2 and C-3 of propionate into glucose and lactate indicated that 54% of both the glucose and lactate synthesized arose from propionate carbon. 5. No differences were found for glucose entry rates measured either by a primed infusion or by a continuous infusion. The mean entry rate (±s.e.m.) of glucose estimated by using a continuous infusion into sheep was 0·33±0·03 (4) m-mole/min. and by using a primed infusion was 0·32±0·01 (4) m-mole/min. The mean propionate production rate was 1·24±0·03 (8) m-moles/min. The conversion of propionate into glucose was 0·36 m-mole/min., indicating that 32% of the propionate produced in the rumen is used for glucose synthesis. 6. It was indicated that a considerable

  8. [Glucose Metabolism: Stress Hyperglycemia and Glucose Control].

    PubMed

    Tanaka, Katsuya; Tsutsumi, Yasuo M

    2016-05-01

    It is important for the anesthesiologists to understand pathophysiology of perioperative stress hyperglycemia, because it offers strategies for treatment of stress hyperglycemia. The effect of glucose tolerance is different in the choice of the anesthetic agent used in daily clinical setting. Specifically, the volatile anesthetics inhibit insulin secretion after glucose load and affects glucose tolerance. During minor surgery by the remifentanil anesthesia, the stress reaction is hard to be induced, suggesting that we should consider low-dose glucose load. Finally it is necessary to perform the glycemic control of the patients who fell into stress hyperglycemia depending on the individual patient. However, there are a lot of questions to be answered in the future. The prognosis of the perioperative patients is more likely to be greatly improved if we can control stress hyperglycemia. PMID:27319094

  9. Glucose regulates lipid metabolism in fasting king penguins.

    PubMed

    Bernard, Servane F; Orvoine, Jord; Groscolas, René

    2003-08-01

    This study aims to determine whether glucose intervenes in the regulation of lipid metabolism in long-term fasting birds, using the king penguin as an animal model. Changes in the plasma concentration of various metabolites and hormones, and in lipolytic fluxes as determined by continuous infusion of [2-3H]glycerol and [1-14C]palmitate, were examined in vivo before, during, and after a 2-h glucose infusion under field conditions. All the birds were in the phase II fasting status (large fat stores, protein sparing) but differed by their metabolic and hormonal statuses, being either nonstressed (NSB; n = 5) or stressed (SB; n = 5). In both groups, glucose infusion at 5 mg.kg-1.min-1 induced a twofold increase in glycemia. In NSB, glucose had no effect on lipolysis (maintenance of plasma concentrations and rates of appearance of glycerol and nonesterified fatty acids) and no effect on the plasma concentrations of triacylglycerols (TAG), glucagon, insulin, or corticosterone. However, it limited fatty acid (FA) oxidation, as indicated by a 25% decrease in the plasma level of beta-hydroxybutyrate (beta-OHB). In SB, glucose infusion induced an approximately 2.5-fold decrease in lipolytic fluxes and a large decrease in FA oxidation, as reflected by a 64% decrease in the plasma concentration of beta-OHB. There were also a 35% decrease in plasma TAG, a 6.5- and 2.8-fold decrease in plasma glucagon and corticosterone, respectively, and a threefold increase in insulinemia. These data show that in fasting king penguins, glucose regulates lipid metabolism (inhibition of lipolysis and/or of FA oxidation) and affects hormonal status differently in stressed vs. nonstressed individuals. The results also suggest that in birds, as in humans, the availability of glucose, not of FA, is an important determinant of the substrate mix (glucose vs. FA) that is oxidized for energy production. PMID:12738609

  10. Evaluation of a Novel Glucose Area Under the Curve (AUC) Monitoring System: Comparison with the AUC by Continuous Glucose Monitoring

    PubMed Central

    Maegawa, Hiroshi; Morino, Katsutaro; Nishio, Yoshihiko; Sato, Toshiyuki; Okada, Seiki; Kikkawa, Yasuo; Watanabe, Toshihiro; Nakajima, Hiromu; Kashiwagi, Atsunori

    2016-01-01

    Background Management of postprandial hyperglycemia is a key aspect in diabetes treatment. We developed a novel system to measure glucose area under the curve (AUC) using minimally invasive interstitial fluid extraction technology (MIET) for simple monitoring of postprandial glucose excursions. In this study, we evaluated the relationship between our system and continuous glucose monitoring (CGM) by comparing glucose AUC obtained using MIET with that obtained using CGM for a long duration. Methods Twenty diabetic inpatients wearing a CGM system were enrolled. For MIET measurement, a plastic microneedle array was applied to the skin as pretreatment, and hydrogels were placed on the pretreated area to collect interstitial fluid. Hydrogels were replaced every 2 or 4 hours and AUC was predicted on the basis of glucose and sodium ion levels. Results AUC predicted by MIET correlated well with that measured by CGM (r=0.93). Good performances of both consecutive 2- and 4-hour measurements were observed (measurement error: 11.7%±10.2% for 2 hours and 11.1%±7.9% for 4 hours), indicating the possibility of repetitive measurements up to 8 hours. The influence of neither glucose fluctuation nor average glucose level over the measurement accuracy was observed through 8 hours. Conclusion Our system showed good relationship with AUC values from CGM up to 8 hours, indicating that single pretreatment can cover a large portion of glucose excursion in a day. These results indicated possibility of our system to contribute to convenient monitoring of glucose excursions for a long duration. PMID:27535643

  11. Evaluation of the appropriateness of using glucometers for measuring the blood glucose levels in mice.

    PubMed

    Togashi, Yu; Shirakawa, Jun; Okuyama, Tomoko; Yamazaki, Shunsuke; Kyohara, Mayu; Miyazawa, Ayumi; Suzuki, Takafumi; Hamada, Mari; Terauchi, Yasuo

    2016-01-01

    Glucometers are also widely used in diabetes research conducted using animal models. However, the appropriateness of measuring blood glucose levels using glucometers in animal models remains unclear. In this study, we evaluated the consistency between the blood glucose levels measured by 11 models of glucometers and plasma glucose levels measured by a laboratory biochemical test in blood samples collected by retro-orbital sinus puncture or tail-tip amputation. In both blood samples obtained by retro-orbital sinus puncture and those obtained by tail-tip amputation, 10 of the 11 models of glucometers yielded higher glucose values, while 1 yielded lower glucose values, than the plasma glucose values yielded by the laboratory test, the differences being in direct proportion to the plasma glucose values. Most glucometers recorded higher blood glucose levels after glucose loading and lower blood glucose levels after insulin loading in retro-orbital sinus blood as compared to tail vein blood. Our data suggest that the blood glucose levels measured by glucometers in mice tended to be higher than the plasma glucose levels yielded by the biochemical test under the hyperglycemic state, and that differences in the measured levels were observed according to the blood collection method depending on the glycemia status. PMID:27151424

  12. Evaluation of the appropriateness of using glucometers for measuring the blood glucose levels in mice

    PubMed Central

    Togashi, Yu; Shirakawa, Jun; Okuyama, Tomoko; Yamazaki, Shunsuke; Kyohara, Mayu; Miyazawa, Ayumi; Suzuki, Takafumi; Hamada, Mari; Terauchi, Yasuo

    2016-01-01

    Glucometers are also widely used in diabetes research conducted using animal models. However, the appropriateness of measuring blood glucose levels using glucometers in animal models remains unclear. In this study, we evaluated the consistency between the blood glucose levels measured by 11 models of glucometers and plasma glucose levels measured by a laboratory biochemical test in blood samples collected by retro-orbital sinus puncture or tail-tip amputation. In both blood samples obtained by retro-orbital sinus puncture and those obtained by tail-tip amputation, 10 of the 11 models of glucometers yielded higher glucose values, while 1 yielded lower glucose values, than the plasma glucose values yielded by the laboratory test, the differences being in direct proportion to the plasma glucose values. Most glucometers recorded higher blood glucose levels after glucose loading and lower blood glucose levels after insulin loading in retro-orbital sinus blood as compared to tail vein blood. Our data suggest that the blood glucose levels measured by glucometers in mice tended to be higher than the plasma glucose levels yielded by the biochemical test under the hyperglycemic state, and that differences in the measured levels were observed according to the blood collection method depending on the glycemia status. PMID:27151424

  13. Mechanisms to conserve glucose in lactating women during a 42-h fast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about how lactating women accommodate for their increased glucose demands during fasting to avoid maternal hypoglycemia. The objective of this study was to determine whether lactating women conserve plasma glucose by reducing maternal glucose utilization by increasing utilization of ...

  14. Pulmonary glucose transport in the fetal sheep.

    PubMed Central

    Barker, P M; Boyd, C A; Ramsden, C A; Strang, L B; Walters, D V

    1989-01-01

    1. In the chronically catheterized sheep fetus between 122 and 143 days gestation the concentration of D-glucose in lung liquid was very low (usually less than 0.01 mM, the lower limit of detection of the analytical method) whereas the mean plasma concentration was 0.19 mM (S.E.M. 0.4, n = 13). 2. When the lung liquid concentration of D-glucose was raised to 1.67-5.00 mM, rapid uptake was observed until the concentration had fallen to its preceding low level. The uptake showed saturation kinetics (Vmax = 2.29-8.78 mumol/min, increasing with gestation; mean Km = 0.14 +/- 0.02 mM, n = 11, no change with gestation). This active uptake of glucose was blocked by phloridzin (10(-4) M). It was associated with a decrease in lung liquid secretion rate from which a change in net sodium flux could be inferred of an order suggesting one-to-one glucose-sodium co-transport. 3. Radiolabelled 3-O-methyl-D-glucose (3-O-meG) - a monosaccharide which is transported but not metabolized - was taken up rapidly from lung liquid and this rapid uptake was inhibited by D-glucose with 50% inhibition at 0.35 mM (+/- 0.08, n = 9). It was also inhibited by phloridzin (10(-4) M). 4. Radiolabelled 2-deoxy-D-glucose - a monosaccharide which is not a substrate for sodium-coupled transport - was taken up only very slowly from lung liquid; the rate of uptake was appropriate for passive diffusional transport and it was unaffected by the addition of D-glucose or phloridzin to lung liquid. 5. Intravenous infusion of D-glucose caused no detectable increase in the concentration of glucose in lung liquid unless phloridzin was added, when a slow increase was observed. 6. In two experiments with active transport blocked by phloridzin in lung liquid (10(-4) M), the rate of entry of labelled 3-O-meG from plasma to lung liquid was measured during intravenous infusion of this tracer for 29 and 23 h. The rates of entry were similar to the rate of efflux of the tracer from lung liquid when uptake was blocked by

  15. Hourly analysis of cerebrospinal fluid glucose shows large diurnal fluctuations.

    PubMed

    Verbeek, Marcel M; Leen, Wilhelmina G; Willemsen, Michèl A; Slats, Diane; Claassen, Jurgen A

    2016-05-01

    Cerebrospinal fluid analysis is important in the diagnostics of many neurological disorders. Since the influence of food intake on the cerebrospinal fluid glucose concentration and the cerebrospinal fluid/plasma glucose ratio is largely unknown, we studied fluctuations in these parameters in healthy adult volunteers during a period of 36 h. Our observations show large physiological fluctuations of cerebrospinal fluid glucose and the cerebrospinal fluid/plasma glucose ratio, and their relation to food intake. These findings provide novel insights into the physiology of cerebral processes dependent on glucose levels such as energy formation (e.g. glycolysis), enzymatic reactions (e.g. glycosylation), and non-enzymatic reactions (e.g. advanced endproduct glycation). PMID:26945018

  16. Jejunal administration of glucose enhances acyl ghrelin suppression in obese humans.

    PubMed

    Tamboli, Robyn A; Sidani, Reem M; Garcia, Anna E; Antoun, Joseph; Isbell, James M; Albaugh, Vance L; Abumrad, Naji N

    2016-07-01

    Ghrelin is a gastric hormone that stimulates hunger and worsens glucose metabolism. Circulating ghrelin is decreased after Roux-en-Y gastric bypass (RYGB) surgery; however, the mechanism(s) underlying this change is unknown. We tested the hypothesis that jejunal nutrient exposure plays a significant role in ghrelin suppression after RYGB. Feeding tubes were placed in the stomach or jejunum in 13 obese subjects to simulate pre-RYGB or post-RYGB glucose exposure to the gastrointestinal (GI) tract, respectively, without the confounding effects of caloric restriction, weight loss, and surgical stress. On separate study days, the plasma glucose curves obtained with either gastric or jejunal administration of glucose were replicated with intravenous (iv) infusions of glucose. These "isoglycemic clamps" enabled us to determine the contribution of the GI tract and postabsorptive plasma glucose to acyl ghrelin suppression. Plasma acyl ghrelin levels were suppressed to a greater degree with jejunal glucose administration compared with gastric glucose administration (P < 0.05). Jejunal administration of glucose also resulted in a greater suppression of acyl ghrelin than the corresponding isoglycemic glucose infusion (P ≤ 0.01). However, gastric and isoglycemic iv glucose infusions resulted in similar degrees of acyl ghrelin suppression (P > 0.05). Direct exposure of the proximal jejunum to glucose increases acyl ghrelin suppression independent of circulating glucose levels. The enhanced suppression of acyl ghrelin after RYGB may be due to a nutrient-initiated signal in the jejunum that regulates ghrelin secretion. PMID:27279247

  17. Normalization of blood glucose in diabetic rats with phlorizin treatment reverses insulin-resistant glucose transport in adipose cells without restoring glucose transporter gene expression.

    PubMed Central

    Kahn, B B; Shulman, G I; DeFronzo, R A; Cushman, S W; Rossetti, L

    1991-01-01

    Evidence is emerging for a direct role of glucose, independent of changes in insulin, in the regulation of cellular glucose transport and glucose utilization in vivo. In this study we investigate potential cellular and molecular mechanisms for this regulatory effect of glucose by determining how normalization of glycemia without insulin therapy in diabetic rats influences 3-O-methylglucose transport and the expression and translocation of two genetically distinct species of glucose transporters (GTs) in adipose cells. These results are compared with alterations in glucose disposal in vivo measured by euglycemic clamp. In rats rendered diabetic by 90% pancreatectomy, insulin-stimulated glucose transport in adipose cells is decreased 50% in parallel with reduced insulin-mediated glucose disposal in vivo. Levels of adipose/muscle GTs measured by immunoblotting are decreased in adipose cell subcellular membrane fractions, as are the corresponding mRNA levels assessed by Northern blotting of total adipose cell RNA. Normalization of blood glucose in diabetic rats with phlorizin, which impairs renal tubular glucose reabsorption and thus enhances glucose excretion, restores insulin-stimulated glucose transport in adipose cells and insulin-mediated glucose disposal in vivo. Importantly, levels of the adipose/muscle GT protein remain 43% reduced in the low-density microsomes in the basal state and 46% reduced in the plasma membranes in the insulin-stimulated state. Adipose/muscle GT mRNA levels remain approximately 50% depressed. Levels of the HepG2/brain GT protein and mRNA are unaltered by diabetes or phlorizin treatment. Thus, changes in ambient glucose independent of changes in ambient insulin can regulate the glucose transport response to insulin in isolated adipose cells and changes in responsiveness parallel alterations in glucose uptake in vivo. Since this effect can occur without alteration in the expression of the two species of glucose transporters present in

  18. Quantifying the Contribution of the Liver to Glucose Homeostasis: A Detailed Kinetic Model of Human Hepatic Glucose Metabolism

    PubMed Central

    König, Matthias; Bulik, Sascha; Holzhütter, Hermann-Georg

    2012-01-01

    Despite the crucial role of the liver in glucose homeostasis, a detailed mathematical model of human hepatic glucose metabolism is lacking so far. Here we present a detailed kinetic model of glycolysis, gluconeogenesis and glycogen metabolism in human hepatocytes integrated with the hormonal control of these pathways by insulin, glucagon and epinephrine. Model simulations are in good agreement with experimental data on (i) the quantitative contributions of glycolysis, gluconeogenesis, and glycogen metabolism to hepatic glucose production and hepatic glucose utilization under varying physiological states. (ii) the time courses of postprandial glycogen storage as well as glycogen depletion in overnight fasting and short term fasting (iii) the switch from net hepatic glucose production under hypoglycemia to net hepatic glucose utilization under hyperglycemia essential for glucose homeostasis (iv) hormone perturbations of hepatic glucose metabolism. Response analysis reveals an extra high capacity of the liver to counteract changes of plasma glucose level below 5 mM (hypoglycemia) and above 7.5 mM (hyperglycemia). Our model may serve as an important module of a whole-body model of human glucose metabolism and as a valuable tool for understanding the role of the liver in glucose homeostasis under normal conditions and in diseases like diabetes or glycogen storage diseases. PMID:22761565

  19. Okara ameliorates glucose tolerance in GK rats

    PubMed Central

    Hosokawa, Masaya; Katsukawa, Michiko; Tanaka, Hiroshi; Fukuda, Hitomi; Okuno, Sonomi; Tsuda, Kinsuke; Iritani, Nobuko

    2016-01-01

    Okara, a food by-product from the production of tofu and soy milk, is rich in three beneficial components: insoluble dietary fiber, β-conglycinin, and isoflavones. Although isoflavones and β-conglycinin have recently been shown to improve glucose tolerance, the effects of okara have not yet been elucidated. Therefore, we herein investigated the effects of okara on glucose tolerance in Goto-Kakizaki (GK) rats, a representative animal model of Japanese type 2 diabetes. Male GK rats were fed a 10% lard diet with or without 5% dry okara powder for 2 weeks and an oral glucose tolerance test was performed. Rats were then fed each diet for another week and sacrificed. The expression of genes that are the master regulators of glucose metabolism in adipose tissue was subsequently examined. No significant differences were observed in body weight gain or food intake between the two groups of GK rats. In the oral glucose tolerance test, increases in plasma glucose levels were suppressed by the okara diet. The mRNA expression levels of PPARγ, adiponectin, and GLUT4, which up-regulate the effects of insulin, were increased in epididymal adipose tissue by the okara diet. These results suggest that okara provides a useful means for treating type 2 diabetes. PMID:27257347

  20. Okara ameliorates glucose tolerance in GK rats.

    PubMed

    Hosokawa, Masaya; Katsukawa, Michiko; Tanaka, Hiroshi; Fukuda, Hitomi; Okuno, Sonomi; Tsuda, Kinsuke; Iritani, Nobuko

    2016-05-01

    Okara, a food by-product from the production of tofu and soy milk, is rich in three beneficial components: insoluble dietary fiber, β-conglycinin, and isoflavones. Although isoflavones and β-conglycinin have recently been shown to improve glucose tolerance, the effects of okara have not yet been elucidated. Therefore, we herein investigated the effects of okara on glucose tolerance in Goto-Kakizaki (GK) rats, a representative animal model of Japanese type 2 diabetes. Male GK rats were fed a 10% lard diet with or without 5% dry okara powder for 2 weeks and an oral glucose tolerance test was performed. Rats were then fed each diet for another week and sacrificed. The expression of genes that are the master regulators of glucose metabolism in adipose tissue was subsequently examined. No significant differences were observed in body weight gain or food intake between the two groups of GK rats. In the oral glucose tolerance test, increases in plasma glucose levels were suppressed by the okara diet. The mRNA expression levels of PPARγ, adiponectin, and GLUT4, which up-regulate the effects of insulin, were increased in epididymal adipose tissue by the okara diet. These results suggest that okara provides a useful means for treating type 2 diabetes. PMID:27257347

  1. Relationship of Exercise, Age, and Gender on Decompression Sickness and Venous Gas Emboli During 2-Hour Oxygen Prebreathe Prior to Hypobaric Exposure

    NASA Technical Reports Server (NTRS)

    Conkin, J.; Gernhardt, M. L.; Foster, P. P.; Pilmanis, A. A.; Butler, B. D.; Beltran, E.; Fife, C. E.; Vann, R. D.; Gerth, W. A.; Loftin, K. C.; Paloski, William H. (Technical Monitor)

    2000-01-01

    We evaluated four 2-hour oxygen prebreathe protocols combining adynamia (non-walking) and 4 different amounts of exercise for potential use with extravehicular activity (EVA) on the International Space Station. Phase I: upper and lower body exercises using dual-cycle ergometry (75% VO2 max for 10 min). Phase 11: same ergometry plus 24 min of light exercise that simulated space suit preparations. Phase III: same 24 min of light exercise but no ergometry, and Phase IV: 56 min of light exercise without ergometry. After 80 min on 100% O2, the subjects breathed 26.5% O2 - 73.5% N2 for 30 min at 10.2 psi. All subjects performed a series of upper body exercises from a recumbent position for 4 hrs at 4.3 psi to simulate EVA work. Venous gas emboli (VGE) were monitored every 12 min using precordial Doppler ultrasound. The 39 female and 126 male exposures were analyzed for correlations between decompression sickness (DCS) or VGE, and risk variables. The duration and quantity of exercise during prebreathe inversely relates to DCS and VGE incidence. The type and distribution of the 19 cases of DCS were similar to historical cases. There was no correlation of age, gender, body mass index, or fitness level with greater incidence of DCS or all VGE. However there were more Grade IV VGE in males > 40 years (10 of 19) than in those =< 40 years (3 of 107), with p<0.01 from Fisher's Exact Chi square The latency time for VGE was longer (103 min +/- 56 SD, n = 15 versus 53 min +/- 31, n =13) when the ergometry occurred about 15 min into the prebreathe than when performed at the start of the prebreathe, but the order of the ergometry did not influence the overall DCS and VGE incidence. An increasing amount of exercise during prebreathes reduced the risk of DCS during subsequent exposures to 4.3 psi. Age, gender, or fitness level did not correlate with the incidence of DCS or VGE (combination of Grades I-IV). However males greater than 40 years had a higher incidence of Grade IV VGE.

  2. Pre-Type 1 Diabetes Dysmetabolism: Maximal sensitivity achieved with Both Oral and Intravenous Glucose Tolerance Testing

    PubMed Central

    Barker, Jennifer M.; McFann, Kim; Harrison, Leonard C.; Fourlanos, Spiros; Krischer, Jeffrey; Cuthbertson, David; Chase, H. Peter; Eisenbarth, George S.; Group, the DPT-1 Study

    2007-01-01

    Objective To determine the relationship of intravenous (IVGTT) and oral (OGTT) glucose tolerance tests abnormalities to diabetes development in a high-risk pre-diabetic cohort and identify an optimal testing strategy for detecting pre-clinical diabetes. Study design Diabetes Prevention Trial Type 1 randomized subjects to oral (n=372) and parenteral (n=339) insulin prevention trials. Subjects were followed with IVGTTs and OGTTs. Factors associated with progression to diabetes were evaluated. Results Survival analysis revealed that higher quartiles of 2-hour glucose and lower quartiles of FPIR at baseline were associated with decreased diabetes-free survival. Cox proportional hazards modeling showed that baseline BMI, FPIR and 2-hour glucose levels were significantly associated with an increased hazard for diabetes. On testing performed within 6 months of diabetes diagnosis, 3% (1/32) had normal first phase insulin response (FPIR) and normal 2-hour glucose on OGTT. The sensitivities for impaired glucose tolerance (IGT) and low FPIR performed within 6 months of diabetes diagnosis were equivalent (76% vs. 73%). Conclusions Most (97%) subjects had abnormal IVGTTs and/or OGTTs prior to the development of diabetes. The highest sensitivity is achieved using both tests. PMID:17188609

  3. Effect of anesthesia on glucose production and utilization in rats

    SciTech Connect

    Penicaud, L.; Ferre, P.; Kande, J.; Leturque, A.; Issad, T.; Girard, J.

    1987-03-01

    This study was undertaken to determine the effects of pentobarbital anesthesia (50 mg/kg ip) on glucose kinetics and individual tissue glucose utilization in vivo, in chronically catheterized rats. Glucose turnover studies were carried out using (3-/sup 3/H) glucose as tracer. A transient hyperglycemia and an increased glucose production were observed 3 min after induction of anesthesia. However, 40 min after induction of anesthesia, glycemia returned to the level observed in awake animals, whereas glucose turnover was decreased by 30% as compared with unanesthetized rats. These results are discussed with regard to the variations observed in plasma insulin, glucagon, and catecholamine levels. Glucose utilization by individual tissues was studied by the 2-(1-/sup 3/H) deoxyglucose technique. A four- to fivefold decrease in glucose utilization was observed in postural muscles (soleus and adductor longus), while in other nonpostural muscles (epitrochlearis, tibialis anterior, extensor digitorum longus, and diaphragm) and other tissues (white and brown adipose tissues) anesthesia did not modify the rate of glucose utilization. A decrease in glucose utilization was also observed in the brain.

  4. Glucose: detection and analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucose is an aldosic monosaccharide that is centrally entrenched in the processes of photosynthesis and respiration, serving as an energy reserve and metabolic fuel in most organisms. As both a monomer and as part of more complex structures such as polysaccharides and glucosides, glucose also pla...

  5. Monitor blood glucose - slideshow

    MedlinePlus

    ... medlineplus.gov/ency/presentations/100220.htm Monitoring blood glucose - Series—Monitoring blood glucose: Using a self-test meter To use the ... A.M. Editorial team. Related MedlinePlus Health Topics Blood Sugar A.D.A.M., Inc. is accredited by ...

  6. Glucose monitoring during Ramadan.

    PubMed

    Jabbar, Abdul

    2015-05-01

    In patients with diabetes who intend to fast during Ramadan, self-monitoring of blood glucose (SMBG) is an important tool. During this month, a long established treatment regimen, including medications, physical activity and diet plan, is changed to achieve concordance with the rules of fasting. Without proper glucose monitoring, it is not possible to achieve good glycaemic control. PMID:26013788

  7. Maternal inheritance of severe hypertriglyceridemia impairs glucose metabolism in offspring.

    PubMed

    Ma, Ya-Hong; Yu, Caiguo; Kayoumu, Abudurexiti; Guo, Xin; Ji, Zhili; Liu, George

    2015-04-01

    Maternally inherited familial hypercholesterolemia (FH) impairs glucose metabolism and increases cardiovascular risks in the offspring to a greater degree than paternal inherited FH. However, it remains unknown whether hypertriglyceridemia affects glucose metabolism via inheritance. In this study, we sought to compare the impact of maternally and paternally inherited hypertriglyceridemia on glucose and lipid metabolism in mice. ApoCIII transgenic mice with severe hypertriglyceridemia were mated with non-transgenic control mice to obtain 4 types of offspring: maternal non-transgenic control and maternal transgenic offspring, and paternal control and paternal transgenic offspring. Plasma triglycerides (TG), total cholesterol (TC), fasting plasma glucose (FPG) and fasting insulin (FINS) were measured. ApoCIII overexpression caused severe hypertriglyceridemia, but the transgenic female mice had unaltered fertility with normal pregnancy and birth of pups. The 4 groups of offspring had similar birth weight and growth rate. The plasma TG of maternal and paternal transgenic offspring were nearly 40-fold higher than maternal and paternal control mice, but there was no difference in plasma TG between maternal and paternal transgenic offspring. Although the FPG of the 4 groups of animals had no difference, the maternal transgenic mice showed impaired glucose tolerance, increased FINS levels and higher homeostasis model assessment insulin resistance index (HOMA-IR) than the other 3 groups. In conclusion, maternally inherited hypertriglyceridemia in ApoCIII transgenic mice displayed impaired glucose tolerance, hyperinsulinemia and increased HOMA-R, while paternally inherited hypertriglyceridemia did not have such impacts. PMID:25859267

  8. Comparison and Correlation of Glucose Levels in Serum and Saliva of Both Diabetic and Non-diabetic Patients

    PubMed Central

    Patel, Bhumika J; Dave, Bela; Dave, Dilip; Karmakar, Payel; Shah, Mona; Sarvaiya, Bhumi

    2015-01-01

    Background: To detect and compare salivary glucose with plasma glucose level and postprandial blood sugar (PPBS) and fasting blood sugar (FBS) in diabetic and non-diabetic subjects. Materials and Methods: A total of 100 patients were participated in this study. They were divided into two groups, each group consist of 50 patients. Un-stimulated saliva and blood were collected and investigated for glucose levels. Results: FBS, PPBS, plasma glucose levels and salivary glucose levels were higher in diabetic patients than healthy controls. FBS, PPBS, plasma glucose level and salivary glucose levels were significantly correlated with each other in diabetic patients Conclusion: Salivary glucose level can be used for monitoring tool to assess the glycemic status of diabetes mellitus patients as it is noninvasive and diagnostic method. PMID:26464543

  9. Simultaneous measurement of glucose transport and utilization in the human brain

    PubMed Central

    Shestov, Alexander A.; Emir, Uzay E.; Kumar, Anjali; Henry, Pierre-Gilles; Seaquist, Elizabeth R.

    2011-01-01

    Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, KMt and Vmaxt, in humans have so far been obtained by measuring steady-state brain glucose levels by proton (1H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose transport necessitated assuming a constant cerebral metabolic rate of glucose (CMRglc) obtained from other tracer studies, such as 13C NMR. Here we present new methodology to simultaneously obtain kinetic parameters for glucose transport and utilization in the human brain by fitting both dynamic and steady-state 1H NMR data with a reversible, non-steady-state Michaelis-Menten model. Dynamic data were obtained by measuring brain and plasma glucose time courses during glucose infusions to raise and maintain plasma concentration at ∼17 mmol/l for ∼2 h in five healthy volunteers. Steady-state brain vs. plasma glucose concentrations were taken from literature and the steady-state portions of data from the five volunteers. In addition to providing simultaneous measurements of glucose transport and utilization and obviating assumptions for constant CMRglc, this methodology does not necessitate infusions of expensive or radioactive tracers. Using this new methodology, we found that the maximum transport capacity for glucose through the blood-brain barrier was nearly twofold higher than maximum cerebral glucose utilization. The glucose transport and utilization parameters were consistent with previously published values for human brain. PMID:21791622

  10. A Kinetic Model of Whole-Body Glucose Metabolism with Reference to the Domestic Dog (Canis lupus familiaris)

    PubMed Central

    McKnight, Leslie L.; Shoveller, Anna K.; Lopez, Secundino

    2015-01-01

    A new two-pool model to describe glucose kinetics in the steady state is presented. The pools are plasma glucose, Q1, and tissue glucose, Q2 (both µmol). The flows (all µmol/min) into the plasma pool (Pool 1) are absorbed glucose entry from dietary sources, labelled glucose infusion, and hepatic glucose production. There is one flow out of Pool 1, glucose uptake by the tissues. Inflows to the tissues pool (Pool 2) are from plasma and glycogenolysis. Outflows from Pool 2 are to plasma, glucose oxidation, and glycogenesis and other metabolism. Application of the model was illustrated using experimental data derived from healthy adult Labrador Retrievers in the fasted and fed (repeated meal feeding) states. In general, model derived estimates of glucose kinetics were representative of normal glucose metabolism, where rates of glucose production and uptake are similar and act to maintain blood glucose concentrations. Furthermore, estimates of within tissue glucose cycling indicated glycogenolysis in fasting and glycogenesis when fed. In the fasted state, model outputs were consistent with those reported in the canine literature derived using a single pool model.

  11. Endogenous glucose production and glucose effectiveness in type 2 diabetic subjects derived from stable-labeled minimal model approach.

    PubMed

    Nagasaka, S; Tokuyama, K; Kusaka, I; Hayashi, H; Rokkaku, K; Nakamura, T; Kawakami, A; Higashiyama, M; Ishikawa, S; Saito, T

    1999-05-01

    Insulin sensitivity, glucose effectiveness, and endogenous glucose production (EGP) during stable-labeled, frequently sampled insulin-modified intravenous glucose tolerance test (FSIGT) were evaluated by a single-and two-compartment minimal model combined with nonparametric deconvolution in eleven nonobese Japanese type 2 diabetic patients. Four patients were treated with sulfonylureas, and the remaining seven with diet therapy alone. None had diabetic retinopathy and microalbuminuria. Their fasting glucose level was 117+/-7 mg/dl (mean +/- SE), and HbA1c was 6.6+/-0.3%. Age-, sex-, and BMI-matched subjects with normal glucose tolerance served as control subjects. Plasma insulin response to the stimuli and insulin sensitivity indexes (S(I), S(I)*, and S(I)2* were derived from a minimal model and single- and two-compartment-labeled minimal models) were impaired in the type 2 diabetic patients. The combined ability of glucose, per se, to increase its own uptake and suppress EGP (glucose effectiveness [SG]), which was derived from kinetic analysis of plasma glucose by a minimal model, was significantly lower in the type 2 diabetic patients (0.0132+/-0.0015 vs. 0.0203+/-0.0022; P<0.05). However, the ability of glucose, per se, to stimulate glucose uptake, assessed as S(G)* and S(G)2* from the kinetic analysis of labeled glucose by single- and two-compartment minimal model, was not impaired in those patients. EGP of the type 2 diabetic patients as a whole was suppressed to the level similar to that of the control subjects despite a higher plasma glucose level throughout FSIGT. When EGP in the diabetic subjects was analyzed, considering their recent glycemic control, the initial suppression was blunted in the patients with higher HbA1c levels. In conclusion, glucose mass action to stimulate glucose uptake remains near-normal in the lean Japanese type 2 diabetic patients of this study, whereas ability of glucose to suppress EGP is impaired in the patients with recent

  12. The effect of ispaghula (Fybogel and Metamucil) and guar gum on glucose tolerance in man.

    PubMed

    Jarjis, H A; Blackburn, N A; Redfern, J S; Read, N W

    1984-05-01

    The effects of incorporating Fybogel (3.5 and 7 g doses), Metamucil (7 g) or guar gum (2.5 and 14.5 g doses) in a drink containing 50 g glucose on plasma glucose, plasma insulin and gastric emptying were studied in thirty-eight normal volunteers. In addition, the effects of Fybogel (7 g) on glucose tolerance, plasma insulin and gastric emptying were measured in fourteen non-insulin-dependent diabetics. Both doses of guar gum significantly lowered plasma glucose and plasma insulin responses to the oral glucose load in normal subjects, although 14.5 g guar gum did not delay the half-time for gastric emptying. Neither Fybogel nor Metamucil had significant effects on plasma glucose responses in normal subjects. In addition, Fybogel (at either dose) had no significant effects on plasma insulin levels, or on gastric emptying in normal subjects or on plasma glucose and insulin responses in diabetic patients. The viscosity of ispaghula solutions ( Fybogel ) was lower than that of guar gum solutions. PMID:6326798

  13. Fasting and postabsorptive hepatic glucose and insulin metabolism in hyperthyroidism.

    PubMed

    Raboudi, N; Arem, R; Jones, R H; Chap, Z; Pena, J; Chou, J; Field, J B

    1989-01-01

    The effect of thyroid hormone excess on hepatic glucose balances and fractional hepatic extraction of insulin and glucagon was examined in six conscious dogs with catheters in the portal vein, hepatic vein, and femoral artery and Doppler flow probes on the portal vein and hepatic artery. An oral glucose tolerance test was performed before and after the animals were made hyperthyroid by intramuscular thyroxine administration (100 micrograms.kg-1.day-1) for 10 days. In the basal state and after oral glucose, insulin and glucagon levels in the three vessels and the basal fractional hepatic extraction of insulin and glucagon were not significantly modified by thyroid hormone. These results suggest that in short-term thyrotoxicosis insulin secretion is not impaired, and the rise in fasting plasma glucose and increased hepatic glucose production could reflect hepatic insulin resistance, increased availability of precursors for gluconeogenesis, or increased glycogenolysis. Hyperthyroidism significantly increased basal flows in the portal vein (14.7 +/- 0.6 vs. 12.9 +/- 0.5 ml.kg-1.min-1), the hepatic artery (4.8 +/- 0.3 vs. 3.9 +/- 0.2 ml.kg-1.min-1) and vein (19.6 +/- 0.7 vs. 16.9 +/- 0.4 ml.kg-1.min-1), the fasting plasma glucose concentration (104 +/- 3 vs. 92 +/- 2 mg/dl), and basal hepatic glucose output (2.1 +/- 0.2 vs. 1.5 +/- 0.2 mg.kg-1.min-1). It did not alter the nonhepatic splanchnic uptake of glucose, the percent of orally administered glucose that appeared in the portal vein (47 +/- 2 vs. 45 +/- 11%), the percent of hepatic uptake of glucose (59 +/- 11 vs. 74 +/- 22%), or the shape of the glucose tolerance test. PMID:2643338

  14. A glucose-centric perspective of hyperglycemia.

    PubMed

    Ramasarma, T; Rafi, M

    2016-02-01

    Digestion of food in the intestines converts the compacted storage carbohydrates, starch and glycogen, to glucose. After each meal, a flux of glucose (> 200 g) passes through the blood pool (4-6 g) in a short period of 2 h, keeping its concentration ideally in the range of 80-120 mg/100 mL. Tissue-specific glucose transporters (GLUTs) aid in the distribution of glucose to all tissues. The balance glucose after meeting the immediate energy needs is converted into glycogen and stored in liver (up to 100 g) and skeletal muscle (up to 300 g) for later use. High blood glucose gives the signal for increased release of insulin from pancreas. Insulin binds to insulin receptor on the plasma membrane and activates its autophosphorylation. This initiates the post-insulin-receptor signal cascade that accelerates synthesis of glycogen and triglyceride. Parallel control by phos-dephos and redox regulation of proteins exists for some of these steps. A major action of insulin is to inhibit gluconeogensis in the liver decreasing glucose output into blood. Cases with failed control of blood glucose have alarmingly increased since 1960 coinciding with changed life-styles and large scale food processing. Many of these turned out to be resistant to insulin, usually accompanied by dysfunctional glycogen storage. Glucose has an extended stay in blood at 8 mM and above and then indiscriminately adds on to surface protein-amino groups. Fructose in common sugar is 10-fold more active. This random glycation process interferes with the functions of many proteins (e.g., hemoglobin, eye lens proteins) and causes progressive damage to heart, kidneys, eyes and nerves. Some compounds are known to act as insulin mimics. Vanadium-peroxide complexes act at post-receptor level but are toxic. The fungus-derived 2,5-dihydroxybenzoquinone derivative is the first one known to act on the insulin receptor. The safe herbal products in use for centuries for glucose control have multiple active principles and

  15. Thermogenic Effect of Glucose in Hypothyroid Subjects

    PubMed Central

    Kozacz, Agnieszka; Grunt, Paulina; Steczkowska, Marta; Mikulski, Tomasz; Dąbrowski, Jan; Górecka, Monika; Sanocka, Urszula; Ziemba, Andrzej Wojciech

    2014-01-01

    The importance of thyroid hormone, catecholamines, and insulin in modification of the thermogenic effect of glucose (TEG) was examined in 34 healthy and 32 hypothyroid subjects. We calculated the energy expenditure at rest and during oral glucose tolerance test. Blood samples for determinations of glucose, plasma insulin, adrenaline (A), and noradrenaline (NA) were collected. It was found that TEG was lower in hypothyroid than in control group (19.68 ± 3.90 versus 55.40 ± 7.32 kJ, resp., P < 0.0004). Mean values of glucose and insulin areas under the curve were higher in women with hypothyroidism than in control group (286.79 ± 23.65 versus 188.41 ± 15.84 mmol/L·min, P < 0.003 and 7563.27 ± 863.65 versus 4987.72 ± 583.88 mU/L·min, P < 0.03 resp.). Maximal levels of catecholamines after glucose ingestion were higher in hypothyroid patients than in control subjects (Amax—0.69 ± 0.08 versus 0.30 ± 0.07 nmol/L, P < 0.0001, and NAmax—6.42 ± 0.86 versus 2.54 ± 0.30 nmol/L, P < 0.0002). It can be concluded that in hypothyroidism TEG and glucose tolerance are decreased while the adrenergic response to glucose administration is enhanced. Presumably, these changes are related to decreased insulin sensitivity and responsiveness to catecholamine action. PMID:24711817

  16. On-line continuous measurement of blood glucose and meal pattern in free-feeding rats: the role of glucose in meal initiation.

    PubMed

    Campfield, L A; Brandon, P; Smith, F J

    1985-06-01

    Louis-Sylvestre and LeMagnen have suggested that the premeal decline in blood glucose is or reflects a signal for meal initiation in rats. In order to extend and test this hypothesis, a computer controlled system for continuously and concurrently measuring blood glucose and food intake in free-feeding rats was developed. In 18 experiments (with and without intravenous saline infusions), blood glucose declined about 12 minutes prior to meal onset. During 2-1/2 hours of observation, no decline in blood glucose and no meal occurred in 19 other experiments. In 7 experiments in which 10 percent glucose was infused IV to partially block the premeal decline (average blockade = 46.5%), the subsequent meal was significantly delayed. These results suggest that the pre-meal decline in blood glucose is not only correlated with but is also caudally related to meal onset. These studies suggest that the premeal decline in blood glucose is among the signals for meal initiation. PMID:4027699

  17. Vascular Glucose Sensor Symposium

    PubMed Central

    Joseph, Jeffrey I; Torjman, Marc C.; Strasma, Paul J.

    2015-01-01

    Hyperglycemia, hypoglycemia, and glycemic variability have been associated with increased morbidity, mortality, length of stay, and cost in a variety of critical care and non–critical care patient populations in the hospital. The results from prospective randomized clinical trials designed to determine the risks and benefits of intensive insulin therapy and tight glycemic control have been confusing; and at times conflicting. The limitations of point-of-care blood glucose (BG) monitoring in the hospital highlight the great clinical need for an automated real-time continuous glucose monitoring system (CGMS) that can accurately measure the concentration of glucose every few minutes. Automation and standardization of the glucose measurement process have the potential to significantly improve BG control, clinical outcome, safety and cost. PMID:26078254

  18. Recombinant glucose uptake system

    DOEpatents

    Ingrahm, Lonnie O.; Snoep, Jacob L.; Arfman, Nico

    1997-01-01

    Recombinant organisms are disclosed that contain a pathway for glucose uptake other than the pathway normally utilized by the host cell. In particular, the host cell is one in which glucose transport into the cell normally is coupled to PEP production. This host cell is transformed so that it uses an alternative pathway for glucose transport that is not coupled to PEP production. In a preferred embodiment, the host cell is a bacterium other than Z. mobilis that has been transformed to contain the glf and glk genes of Z. mobilis. By uncoupling glucose transport into the cell from PEP utilization, more PEP is produced for synthesis of products of commercial importance from a given quantity of biomass supplied to the host cells.

  19. All about Blood Glucose

    MedlinePlus

    ... Blood Glucose Before meals: 80 to 130 mg/dl My Usual Results My Goals ______ to ______ ______ to ______ 2 ... the start of a meal: below 180 mg/dl below ______ below ______ What’s the best way to keep ...

  20. Blood Glucose Monitoring Devices

    MedlinePlus

    ... Glucose NIH Medline Plus - Diabetes Spotlight FDA permits marketing of first system of mobile medical apps for ... feeds Follow FDA on Twitter Follow FDA on Facebook View FDA videos on YouTube View FDA photos ...

  1. Sodium-Glucose Cotransporter Inhibitors: Effects on Renal and Intestinal Glucose Transport: From Bench to Bedside.

    PubMed

    Mudaliar, Sunder; Polidori, David; Zambrowicz, Brian; Henry, Robert R

    2015-12-01

    Type 2 diabetes is a chronic disease with disabling micro- and macrovascular complications that lead to excessive morbidity and premature mortality. It affects hundreds of millions of people and imposes an undue economic burden on populations across the world. Although insulin resistance and insulin secretory defects play a major role in the pathogenesis of hyperglycemia, several other metabolic defects contribute to the initiation/worsening of the diabetic state. Prominent among these is increased renal glucose reabsorption, which is maladaptive in patients with diabetes. Instead of an increase in renal glucose excretion, which could ameliorate hyperglycemia, there is an increase in renal glucose reabsorption, which helps sustain hyperglycemia in patients with diabetes. The sodium-glucose cotransporter (SGLT) 2 inhibitors are novel antidiabetes agents that inhibit renal glucose reabsorption and promote glucosuria, thereby leading to reductions in plasma glucose concentrations. In this article, we review the long journey from the discovery of the glucosuric agent phlorizin in the bark of the apple tree through the animal and human studies that led to the development of the current generation of SGLT2 inhibitors. PMID:26604280

  2. The effect of oxytocin on the plasma glucagon response to insulin-induced hypoglycaemia in man.

    PubMed

    Page, S R; Ang, V T; Jackson, R; Nussey, S S

    1990-01-01

    The presence of the classical neurohypophyseal hormone oxytocin has recently been described in the human pancreas in considerably higher concentrations than those found in peripheral plasma. Evidence in animals and man suggests that oxytocin can directly stimulate the secretion of glucagon from pancreatic islets. In order to investigate a possible paracrine role for oxytocin in the regulation of glucagon secretion we have studied the effect of oxytocin on the plasma glucagon response to insulin-induced hypoglycaemia in 10 lean fasted male subjects. Intravenous insulin tests were performed in random order with or without oxytocin infusion (2 U bolus injection; 111 mU/min for 2 hours). Blood sugar nadir occurred at the onset of symptoms (time S) with no significant differences between oxytocin and saline infusions (saline S = 24 +/- 2.3 min; oxytocin S = 23.3 +/- 2.7 min). There was no significant change in peripheral plasma oxytocin concentrations during saline infusion. During the oxytocin infusion plasma oxytocin concentrations rose from 1.05 +/- 0.1 (mean +/- SEM) pmol/l to a peak of 632 +/- 179 pmol/l and remained elevated throughout the study. Peak plasma glucagon concentrations occurred at S + 10 mins with no significant differences in peak values (saline 200 +/- 26.3 pg/ml; oxytocin 207 +/- 23.6 pg/ml) between saline and oxytocin infusions. The data suggest that oxytocin at concentrations up to 6.3 X 10(-10) M has no effect on the decline or recovery of blood glucose concentrations or on the plasma glucagon response to insulin-induced hypoglycaemia. PMID:2210021

  3. Effects of ethanol ingestion on maternal and fetal glucose homeostasis

    SciTech Connect

    Singh, S.P.; Snyder, A.K.; Singh, S.K.

    1984-08-01

    Carbohydrate metabolism has been studied in the offspring of rats fed liqiud diet containing ethanol during gestation (EF group). Weight-matched control dams were given liquid diet either by the pair-fed technique (PF group) or ad libitum (AF group). EF and PF dams showed reduced food consumption and attenuated gain in body weight during the gestation period compared with the AF group. Blood glucose, liver glycogen, and plasma insulin levels were significantly reduced in EF and PF dams. Ethanol ingestion resulted in a significant decrease in litter survival and fetal body weight. At term, EF pups on average showed a 30% decrease in blood glucose levels and 40% decrease in plasma insulin levels compared with AF pups. One hour after birth, EF pups exhibited a marked increase in blood sugar level compared with either control group. Fetal hyperinsulinemia disappeared shortly after delivery in control pups, as expected; however, in EF pups, the fall in plasma insulin level was gradual. Fetal and neonatal plasma glucagon levels were not altered by ethanol exposure in utero. Blood glucose levels remained significantly low at 2 days of age in EF pups, but reached near control values at 4 days of age. Plasma insulin and glucagon were nearly equal in EF and control pups at 2 and 4 days of age. These results show aberrations in blood glucose, plasma insulin, and liver glycogen levels in offspring exposed to ethanol in utero.

  4. Regulation of glucose and glycogen metabolism during and after exercise.

    PubMed

    Jensen, Thomas E; Richter, Erik A

    2012-03-01

    Utilization of carbohydrate in the form of intramuscular glycogen stores and glucose delivered from plasma becomes an increasingly important energy substrate to the working muscle with increasing exercise intensity. This review gives an update on the molecular signals by which glucose transport is increased in the contracting muscle followed by a discussion of glycogen mobilization and synthesis by the action of glycogen phosphorylase and glycogen synthase, respectively. Finally, this review deals with the signalling relaying the well-described increased sensitivity of glucose transport to insulin in the post-exercise period which can result in an overshoot of intramuscular glycogen resynthesis post exercise (glycogen supercompensation). PMID:22199166

  5. Regulation of glucose and glycogen metabolism during and after exercise

    PubMed Central

    Jensen, Thomas E; Richter, Erik A

    2012-01-01

    Utilization of carbohydrate in the form of intramuscular glycogen stores and glucose delivered from plasma becomes an increasingly important energy substrate to the working muscle with increasing exercise intensity. This review gives an update on the molecular signals by which glucose transport is increased in the contracting muscle followed by a discussion of glycogen mobilization and synthesis by the action of glycogen phosphorylase and glycogen synthase, respectively. Finally, this review deals with the signalling relaying the well-described increased sensitivity of glucose transport to insulin in the post-exercise period which can result in an overshoot of intramuscular glycogen resynthesis post exercise (glycogen supercompensation). PMID:22199166

  6. Comparative effect of intraduodenal and intrajejunal glucose infusion on the gut-incretin axis response in healthy males.

    PubMed

    Wu, T; Thazhath, S S; Marathe, C S; Bound, M J; Jones, K L; Horowitz, M; Rayner, C K

    2015-01-01

    The region of enteral nutrient exposure may be an important determinant of postprandial incretin hormone secretion and blood glucose homoeostasis. We compared responses of plasma glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), insulin and glucagon, and blood glucose to a standardised glucose infusion into the proximal jejunum and duodenum in healthy humans. Ten healthy males were evaluated during a standardised glucose infusion (2 kcal min(-1) over 120 min) into the proximal jejunum (50 cm post pylorus) and were compared with another 10 healthy males matched for ethnicity, age and body mass index who received an identical glucose infusion into the duodenum (12 cm post pylorus). Blood was sampled frequently for measurements of blood glucose and plasma hormones. Plasma GLP-1, GIP and insulin responses, as well as the insulin:glucose ratio and the insulinogenic index 1 (IGI1) were greater (P<0.05 for each) after intrajejunal (i.j.) than intraduodenal glucose infusion, without a significant difference in blood glucose or plasma glucagon. Pooled analyses revealed direct relationships between IGI1 and the responses of GLP-1 and GIP (r=0.48 and 0.56, respectively, P<0.05 each), and between glucagon and GLP-1 (r=0.70, P<0.001). In conclusion, i.j. glucose elicits greater incretin hormone and insulin secretion than intraduodenal glucose in healthy humans, suggesting regional specificity of the gut-incretin axis. PMID:25985092

  7. Measuring blood glucose in neonatal units: how does hemocue compare?

    PubMed Central

    Deshpande, S A; Matthews, J N; Platt, M P

    1996-01-01

    Rapid and reliable determination of blood glucose concentration is essential during the neonatal period to prevent adverse neurodevelopmental outcome from hypoglycaemia. Despite their unreliability, reagent strip methods continue to be used extensively in neonatal nurseries due to their rapidity and convenience. Recently, a new portable laboratory standard technique has been introduced (HemoCue B-Glucose system) for whole blood glucose determination. It is particularly suitable for near-patient testing in neonatal units. This new method, as well as other established methods of whole blood (Yellow Springs Instrument (YSI) and a hexokinase method on Cobas Bio), and plasma (Kodak Ektachem) glucose measurement, were therefore evaluated for their accuracy and concordance of measurements taken in the neonatal period. There were substantial discrepancies among the four methods of glucose measurement with wide limits of agreement between these methods. The glucose concentrations measured by HemoCue and YSI (n = 206), HemoCue and hexokinase (n = 113), HemoCue and plasma glucose on Ektachem (n = 69) and hexokinase and Ektachem (n = 66) were likely to differ by -29 to +61%, -23 to +56%, -36 to +65%, and -19 to +30%, respectively. Even the laboratory methods of blood glucose determination, therefore, can not be used interchangeably. Using a model based approach, the probabilities of "discordant" classification as hypo- or normo-glycaemia were estimated to be 6.8%, 6.5%, and 7.1% between HemoCue and YSI, HemoCue and hexokinase on Cobas Bio, and HemoCue and Ektachem analysers, respectively. In view of these low probabilities of discordant classification with other glucose analysers, the HemoCue system may offer a reasonable compromise between bedside and laboratory blood glucose estimations in neonates. PMID:8976688

  8. Alterations in glucose kinetics induced by pentobarbital anesthesia

    SciTech Connect

    Lang, C.H.; Bagby, G.J.; Hargrove, D.M.; Hyde, P.M.; Spitzer, J.J. )

    1987-12-01

    Because pentobarbital is often used in investigations related to carbohydrate metabolism, the in vivo effect of this drug on glucose homeostasis was studied. Glucose kinetics assessed by the constant intravenous infusion of (6-{sup 3}H)- and (U-{sup 14}C)glucose, were determined in three groups of catheterized fasted rats: conscious, anesthetized and body temperature maintained, and anesthetized but body temperature not maintained. After induction of anesthesia, marked hypothermia developed in rats not provided with external heat. Anesthetized rats that developed hypothermia showed a decrease in mean arterial blood pressure (25%) and heart rate (40%). Likewise, the plasma lactate concentration and the rates of glucose appearance, recycling, and metabolic clearance were reduced by 30-50% in the hypothermic anesthetized rats. Changes in whole-body carbohydrate metabolism were prevented when body temperature was maintained. Because plasma pentobarbital levels were similar between the euthermic and hypothermic rats during the first 2 h of the experiment, the rapid reduction in glucose metabolism in this latter group appears related to the decrease in body temperature. The continuous infusion of epinephrine produced alterations in glucose kinetics that were not different between conscious animals and anesthetized rats with body temperature maintained. Thus pentobarbital-anesthetized rats became hypothermic when kept at room temperature and exhibited marked decreases in glucose metabolism. Such changes were absent when body temperature was maintained during anesthesia.

  9. Palmitate stimulates glucose transport in rat adipocytes by a mechanism involving translocation of the insulin sensitive glucose transporter (GLUT4)

    NASA Technical Reports Server (NTRS)

    Hardy, R. W.; Ladenson, J. H.; Henriksen, E. J.; Holloszy, J. O.; McDonald, J. M.

    1991-01-01

    In rat adipocytes, palmitate: a) increases basal 2-deoxyglucose transport 129 +/- 27% (p less than 0.02), b) decreases the insulin sensitive glucose transporter (GLUT4) in low density microsomes and increases GLUT4 in plasma membranes and c) increases the activity of the insulin receptor tyrosine kinase. Palmitate-stimulated glucose transport is not additive with the effect of insulin and is not inhibited by the protein kinase C inhibitors staurosporine and sphingosine. In rat muscle, palmitate: a) does not affect basal glucose transport in either the soleus or epitrochlearis and b) inhibits insulin-stimulated glucose transport by 28% (p less than 0.005) in soleus but not in epitrochlearis muscle. These studies demonstrate a potentially important differential role for fatty acids in the regulation of glucose transport in different insulin target tissues.

  10. The effect of nopal (Opuntia ficus indica) on postprandial blood glucose, incretins, and antioxidant activity in Mexican patients with type 2 diabetes after consumption of two different composition breakfasts.

    PubMed

    López-Romero, Patricia; Pichardo-Ontiveros, Edgar; Avila-Nava, Azalia; Vázquez-Manjarrez, Natalia; Tovar, Armando R; Pedraza-Chaverri, José; Torres, Nimbe

    2014-11-01

    Nopal is a plant used in traditional Mexican medicine to treat diabetes. However, there is insufficient scientific evidence to demonstrate whether nopal can regulate postprandial glucose. The purpose for conducting this study was to evaluate the glycemic index, insulinemic index, glucose-dependent insulinotropic peptide (GIP) index, and the glucagon-like peptide 1 (GLP-1) index, and the effect of nopal on patients with type 2 diabetes after consumption of a high-carbohydrate breakfast (HCB) or high-soy-protein breakfast (HSPB) on the postprandial response of glucose, insulin, GIP, GLP-1, and antioxidant activity. In study 1, the glycemic index, insulinemic index, GIP index, and GLP-1 index were calculated for seven healthy participants who consumed 50 g of available carbohydrates from glucose or dehydrated nopal. In study 2, 14 patients with type 2 diabetes consumed nopal in HCB or HSPB with or without 300 g steamed nopal. The glycemic index of nopal was 32.5±4, insulinemic index was 36.1±6, GIP index was 6.5±3.0, and GLP-1 index was 25.9±18. For those patients with type 2 diabetes who consumed the HCB+nopal, there was significantly lower area under the curve for glucose (287±30) than for those who consumed the HCB only (443±49), and lower incremental area under the curve for insulin (5,952±833 vs 7,313±1,090), and those patients with type 2 diabetes who consumed the HSPB avoided postprandial blood glucose peaks. Consumption of the HSPB+nopal significantly reduced the postprandial peaks of GIP concentration at 30 and 45 minutes and increased the antioxidant activity after 2 hours measured by the 2,2-diphenyl-1-picrilhidracyl method. These findings suggest that nopal could reduce postprandial blood glucose, serum insulin, and plasma GIP peaks, as well as increase antioxidant activity in healthy people and patients with type 2 diabetes. PMID:25132122

  11. Effect of Cnidoscolus aconitifolius leaf extract on the blood glucose and insulin levels of inbred type 2 diabetic mice.

    PubMed

    Oladeinde, F O; Kinyua, A M; Laditan, A A; Michelin, R; Bryant, J L; Denaro, F; Makinde, J M; Williams, A L; Kennedy, A P; Bronner, Y

    2007-01-01

    The effects of Cnidoscolus aconitifolius (CA) leaf extract and chlorpropamide on blood glucose and insulin levels in the inbred type 2 diabetic mice are reported. After treatment with CA, the glucose levels were measured at 0 and 2-hour intervals in experimental groups and controls. Group I received no treatment and served as control; Group II was the reference and it received chlorpropamide; Groups I-III were moderately diabetic, 100-300 mg/dL blood glucose levels while Group IV were severely diabetic (> 300 mg/dL). Groups III and IV received CA and served as test groups. There was no significant difference between the blood glucose levels at 0 and 2 hours for the control group, (P>0.23) but there were statistically significant differences for Group II (P<0.0002); Group III (P<0.002) and Group IV (P<0.0001). For moderately diabetic mice, CA and chlorpropamide decreased the glucose levels by 25.6% and 16.3% respectively while for the severely diabetic mice CA decreased the blood glucose by 43.7%. It is proposed that CA has an insulinogenic property that possibly stimulated dormant beta-cells to secrete insulin. The histopathology of several organs in the treated animals was found to differ from the expected. The islets of Langerhans for example were found to be preserved in the time frame examined. Also the liver and kidney were found to display milder pathology in the treated groups. PMID:17531147

  12. Association of Maternal Vitamin D Status with Glucose Tolerance and Caesarean Section in a Multi-Ethnic Asian Cohort: The Growing Up in Singapore Towards Healthy Outcomes Study

    PubMed Central

    Loy, See Ling; Lek, Ngee; Yap, Fabian; Soh, Shu E.; Padmapriya, Natarajan; Tan, Kok Hian; Biswas, Arijit; Yeo, George Seow Heong; Kwek, Kenneth; Gluckman, Peter D.; Godfrey, Keith M.; Saw, Seang Mei; Müller-Riemenschneider, Falk; Chong, Yap-Seng; Chong, Mary Foong-Fong; Chan, Jerry Kok Yen

    2015-01-01

    Objective Epidemiological studies relating maternal 25-hydroxyvitamin D (25OHD) with gestational diabetes mellitus (GDM) and mode of delivery have shown controversial results. We examined if maternal 25OHD status was associated with plasma glucose concentrations, risks of GDM and caesarean section in the Growing Up in Singapore Towards healthy Outcomes (GUSTO) study. Methods Plasma 25OHD concentrations, fasting glucose (FG) and 2-hour postprandial glucose (2HPPG) concentrations were measured in 940 women from a Singapore mother-offspring cohort study at 26–28 weeks’ gestation. 25OHD inadequacy and adequacy were defined based on concentrations of 25OHD ≤75nmol/l and >75nmol/l respectively. Mode of delivery was obtained from hospital records. Multiple linear regression was performed to examine the association between 25OHD status and glucose concentrations, while multiple logistic regression was performed to examine the association of 25OHD status with risks of GDM and caesarean section. Results In total, 388 (41.3%) women had 25OHD inadequacy. Of these, 131 (33.8%), 155 (39.9%) and 102 (26.3%) were Chinese, Malay and Indian respectively. After adjustment for confounders, maternal 25OHD inadequacy was associated with higher FG concentrations (β = 0.08mmol/l, 95% Confidence Interval (CI) = 0.01, 0.14), but not 2HPPG concentrations and risk of GDM. A trend between 25OHD inadequacy and higher likelihood of emergency caesarean section (Odds Ratio (OR) = 1.39, 95% CI = 0.95, 2.05) was observed. On stratification by ethnicity, the association with higher FG concentrations was significant in Malay women (β = 0.19mmol/l, 95% CI = 0.04, 0.33), while risk of emergency caesarean section was greater in Chinese (OR = 1.90, 95% CI = 1.06, 3.43) and Indian women (OR = 2.41, 95% CI = 1.01, 5.73). Conclusions 25OHD inadequacy is prevalent in pregnant Singaporean women, particularly among the Malay and Indian women. This is associated with higher FG concentrations in Malay

  13. Disproportionately elevated proinsulinemia is observed at modestly elevated glucose levels within the normoglycemic range.

    PubMed

    Lorenzo, Carlos; Hanley, Anthony J; Rewers, Marian J; Haffner, Steven M

    2014-08-01

    We aimed to evaluate disproportional proinsulinemia in the pre-diabetic state by analyzing the cross-sectional differences between proinsulin (PI) ratios across the entire range of fasting and 2-h plasma glucose. The study sample was 1,016 participants in the insulin resistance atherosclerosis study, who had no previous diagnosis of diabetes. Insulin sensitivity index (SI) and acute insulin response (AIR) were measured by the frequently sampled intravenous glucose tolerance test. Fasting intact and split PI-to-insulin ratios (PI/I, SPI/I), intact and split PI-to-C-peptide ratios (PI/C-pep, SPI/C-pep), and SI-adjusted AIR were assessed as a function of fasting and 2-h glucose levels. SI-adjusted AIR was decreased (fasting glucose 96-98 mg/dl; 2-h glucose 120-131 mg/dl) and SPI/C-pep increased at modestly elevated fasting glucose and 2-h glucose within the normal glucose tolerance range (fasting glucose 96-98 mg/dl; 2-h glucose 132-142 mg/dl). PI/I was not increased until plasma glucose values were in the diabetic range of fasting glucose (>126 mg/dl) or the impaired glucose tolerance range of 2-h glucose (143-156 mg/dl). SPI/I and PI/C-pep as a function of fasting and 2-h glucose were situated between the curves for SPI/C-pep and PI/I. In conclusion, inappropriate amounts of PI and conversion intermediaries are demonstrated at modestly elevated glucose levels within the normoglycemic range. Ratios that use SPI in the numerator or C-pep in the denominator (and especially SPI/C-pep) are more sensitive to early glycemic excursions than PI/I. Disordered processing of PI may accompany derangements in early insulin secretory response. PMID:24532116

  14. Enzymatic growth of quantum dots: applications to probe glucose oxidase and horseradish peroxidase and sense glucose.

    PubMed

    Saa, Laura; Pavlov, Valeri

    2012-11-19

    Three innovative assays are developed for the detection of enzymatic activities of glucose oxidase (GOx) and horseradish peroxidase (HRP) by the generation of CdS quantum dots (QDs) in situ using non-conventional enzymatic reactions. In the first assay, GOx catalyzes the oxidation of 1-thio-β-D-glucose to give 1-thio-β-D-gluconic acid. The latter is spontaneously hydrolyzed to β-D-gluconic acid and H2 S, which in the presence of cadmium nitrate yields fluorescent CdS nanoparticles. In the second assay HRP catalyzes the oxidation of sodium thiosulfate with hydrogen peroxide generating H2 S and consequently CdS QDs. The combination of GOx with HRP, allowed quantification of glucose in plasma by following growth of fluorescent QDs. PMID:22887879

  15. Glucose homoeostasis following injury.

    PubMed Central

    Wright, P. D.

    1979-01-01

    Metabolic changes following injury have been observed for many years, and John Hunter discussed such changes in 1794. Changes in carbohydrate metabolism have been observed for a similar length of time, and glycosuria and hyperglycaemia have been reported by a number of observers. This paper records and quantitates the extent of hyperglycaemia in patients undergoing surgery of different degrees of severity and relates them to changes in blood insulin, growth hormone, cortisol, and catecholamine concentrations. Further animal studies were performed which suggested that a fall in intracellular glucose utilisation may be a contributory factor. The use of isotope labelling of glucose in man has enabled further studies to be done to clarify changes in exchangeable glucose mass, replacement rate, and space both in the normal situation and in the presence of infusions of glucagon, noradrenaline, glucose, and amino-acids. The hyperglycaemia is clearly the result of a complex interaction of changes in the availability and activity of hormones which control glucose metabolism both within and outside the cell. PMID:496234

  16. Investigating the effect of glucose on aortic pulse wave velocity using pancreatic clamping methodology.

    PubMed

    Puzantian, Houry; Teff, Karen; Townsend, Raymond R

    2015-05-01

    Aortic stiffness, determined by carotid-femoral pulse wave velocity (cfPWV), independently predicts cardiovascular outcomes. Recent studies suggest that glucose levels influence arterial stiffness indices. It is not clear, however, whether glucose affects cfPWV independently of glucoregulatory hormones. The aim of this study was to utilize a pancreatic clamping approach to determine whether plasma glucose independently predicts cfPWV. Healthy participants (N = 10) underwent pancreatic clamping to control glucose at varying concentrations using a 20% dextrose infusion while suppressing endogenous glucagon, insulin, and growth hormone by octreotide and replacing the hormones intravenously to achieve basal concentrations. Tonometric cfPWV, blood pressure, heart rate, plasma glucose, glucagon, insulin, growth hormone, and vasoactive biomarkers were measured. Plasma glucose levels of 150 mg/dl at 1 hr and 200 mg/dl at 2 hr postbaseline were achieved. There were no significant changes in cfPWV (5.8 m/s at 0 hr, 5.9 m/s at 1 hr, and 5.9 m/s at 2 hr) with increased glucose levels. There were small increases in insulin secretion. A definitive role for glucose in cfPWV modulation was not determined; there is a potential role for insulin as a cfPWV modulator. Continued efforts in clarifying the independent roles of glucose and insulin can elucidate novel vessel-related targets for cardiovascular disease prevention and management in patients with impaired glucose tolerance and diabetes. PMID:25802385

  17. Electroacupuncture improves glucose tolerance through cholinergic nerve and nitric oxide synthase effects in rats.

    PubMed

    Lin, Rong-Tsung; Chen, Ching-Yuan; Tzeng, Chung-Yuh; Lee, Yu-Chen; Cheng, Yu-Wen; Chen, Ying-I; Ho, Wai-Jane; Cheng, Juei-Tang; Lin, Jaung-Geng; Chang, Shih-Liang

    2011-04-25

    The purpose of this investigation was to evaluate the effect and mechanisms of electroacupuncture (EA) at the bilateral Zusanli acupoints (ST-36) on glucose tolerance in normal rats. Intravenous glucose tolerance test (IVGTT) was performed to examine the effects of electroacupuncture (EA) on glucose tolerance in rats. The EA group underwent EA at the ST-36, with settings of 15 Hz, 10 mA, and 60 min; the control group underwent the same treatments, but without EA. Atropine, hemicholinium-3 (HC-3) or NG-nitro-L-arginine methyl ester (L-NAME) were injected into the rats alone or simultaneously and EA was performed to investigate differences in plasma glucose levels compared to the control group. Plasma samples were obtained for assaying plasma glucose and free fatty acid (FFA) levels. Western blot was done to determine the insulin signal protein and nNOS to exam the correlation between EA and improvement in glucose tolerance. The EA group had significantly lower plasma glucose levels compared to the control group. Plasma glucose levels differed significantly between the EA and control groups after the administration of L-NAME, atropine, or HC-3 treatments alone, but there were no significant differences in plasma glucose with combined treatment of L-NAME and atropine or L-NAME and HC-3. EA decreased FFA levels and enhanced insulin signal protein (IRS1) and nNOS activities in skeletal muscle during IVGTT. In summary, EA stimulated cholinergic nerves and nitric oxide synthase for lowering plasma FFA levels to improve glucose tolerance. PMID:21376780

  18. Chlorogenic acid differentially affects postprandial glucose and glucose-dependent insulinotropic polypeptide response in rats.

    PubMed

    Tunnicliffe, Jasmine M; Eller, Lindsay K; Reimer, Raylene A; Hittel, Dustin S; Shearer, Jane

    2011-10-01

    Regular coffee consumption significantly lowers the risk of type 2 diabetes (T2D). Coffee contains thousands of compounds; however, the specific component(s) responsible for this reduced risk is unknown. Chlorogenic acids (CGA) found in brewed coffee inhibit intestinal glucose uptake in vitro. The objective of this study was to elucidate the mechanisms by which CGA acts to mediate blood glucose response in vivo. Conscious, unrestrained, male Sprague-Dawley rats were chronically catheterized and gavage-fed a standardized meal (59% carbohydrate, 25% fat, 12% protein), administered with or without CGA (120 mg·kg(-1)), in a randomized crossover design separated by a 3-day washout period. Acetaminophen was co-administered to assess the effects of CGA on gastric emptying. The incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) were measured. GLP-1 response in the presence of glucose and CGA was further examined, using the human colon cell line NCI-H716. Total area under the curve (AUC) for blood glucose was significantly attenuated in rats fed CGA (p < 0.05). Despite this, no differences in plasma insulin or nonesterified fatty acids were observed, and gastric emptying was not altered. Plasma GIP response was blunted in rats fed CGA, with a lower peak concentration and AUC up to 180 min postprandially (p < 0.05). There were no changes in GLP-1 secretion in either the in vivo or in vitro study. In conclusion, CGA treatment resulted in beneficial effects on blood glucose response, with alterations seen in GIP concentrations. Given the widespread consumption and availability of coffee, CGA may be a viable prevention tool for T2D. PMID:21977912

  19. Effect of insulin immunization on glucose tolerance in normal rats.

    PubMed

    Froguel, P; Reach, G

    1987-01-01

    Normal rats were immunized with insulin and Freund's adjuvant and submitted to an intravenous glucose tolerance test. Plasma glucose and free and total IRI levels were determined and compared to those observed in untreated rats, and in animals injected with the Freund's adjuvant used for the immunization procedure. In six of the 15 insulin injected animals, a significant amount of IRI (more than 100 mU/l) was found to circulate in bound form. In these animals, the fasting plasma glucose concentrations, and glucose disappearance rates were not different from those observed in all the other groups. However, the rise in their free IRI level was delayed, as was the return to basal level: 45 min after glucose injection, the free IRI concentration was still 98 +/- 29 mU/l in the six immunized rats vs 14 +/- 6 mU/l in those treated with Freund's adjuvant (p less than 0.01). Furthermore, the secondary nadir in the plasma glucose concentration observed at 60 min after glucose injection, was lower in the immunized rats (5.4 +/- 0.5 vs 6.8 +/- 0.3 mmol/l, p less than 0.05). It is concluded that in normal animals, IRI binding in proportions similar to those commonly observed in insulin-treated diabetic patients does not alter glucose tolerance but might lead to abnormal insulin kinetics and secondary hypoglycemia. These results might have implications for the use of closed-loop insulin delivery systems in type 1 (insulin-dependent) diabetic patients with insulin antibodies. PMID:3123287

  20. SGLT2 Mediates Glucose Reabsorption in the Early Proximal Tubule

    PubMed Central

    Platt, Kenneth A.; Cunard, Robyn; Schroth, Jana; Whaley, Jean; Thomson, Scott C.; Koepsell, Hermann; Rieg, Timo

    2011-01-01

    Mutations in the gene encoding for the Na+-glucose co-transporter SGLT2 (SLC5A2) associate with familial renal glucosuria, but the role of SGLT2 in the kidney is incompletely understood. Here, we determined the localization of SGLT2 in the mouse kidney and generated and characterized SGLT2-deficient mice. In wild-type (WT) mice, immunohistochemistry localized SGLT2 to the brush border membrane of the early proximal tubule. Sglt2−/− mice had glucosuria, polyuria, and increased food and fluid intake without differences in plasma glucose concentrations, GFR, or urinary excretion of other proximal tubular substrates (including amino acids) compared with WT mice. SGLT2 deficiency did not associate with volume depletion, suggested by similar body weight, BP, and hematocrit; however, plasma renin concentrations were modestly higher and plasma aldosterone levels were lower in Sglt2−/− mice. Whole-kidney clearance studies showed that fractional glucose reabsorption was significantly lower in Sglt2−/− mice compared with WT mice and varied in Sglt2−/− mice between 10 and 60%, inversely with the amount of filtered glucose. Free-flow micropuncture revealed that for early proximal collections, 78 ± 6% of the filtered glucose was reabsorbed in WT mice compared with no reabsorption in Sglt2−/− mice. For late proximal collections, fractional glucose reabsorption was 93 ± 1% in WT and 21 ± 6% in Sglt2−/− mice, respectively. These results demonstrate that SGLT2 mediates glucose reabsorption in the early proximal tubule and most of the glucose reabsorption by the kidney, overall. This mouse model mimics and explains the glucosuric phenotype of individuals carrying SLC5A2 mutations. PMID:20616166

  1. Glucose infusion does not suppress increased lipolysis after abdominal surgery.

    PubMed

    Schricker, T; Carli, F; Lattermann, R; Wachter, U; Georgieff, M

    2001-02-01

    The purpose of this study was to investigate the effect of glucose infusion on lipid metabolism after abdominal surgery. Patients (n = 6) with non-metastasized colorectal carcinoma were investigated on the second day after surgery and healthy volunteers were studied after an overnight fast. The rates of glycerol appearance (R(a) glycerol), i.e., lipolysis rates, were assessed by primed continuous infusion of [1,1,2,3,3,-5H2]glycerol before and after 3 h of glucose infusion (4 mg x kg(-1) x min(-1)). Plasma concentrations of glycerol, free fatty acids, glucose, lactate, insulin, and glucagon were determined. Fasting R(a) glycerol was higher in patients than in volunteers (7.7 +/- 1.8 versus 1.9 +/- 0.3 micromol x kg(-1) x min(-1), P < 0.05). Glucose infusion suppressed the R(a) glycerol in volunteers to 1.0 +/- 0.2 micromol x kg(-1) x min(-1) (P < 0.05), whereas lipolysis was not affected in patients. Plasma concentrations of glycerol and free fatty acids similarly decreased during glucose administration by 50% in both groups (P < 0.05). In contrast to the patients, a significant correlation (r = 0.78, P < 0.05) between the R(a) glycerol and plasma glycerol concentration was observed in normal subjects. The hyperglycemic response to glucose infusion was significantly more pronounced (P < 0.05) in patients (10.7 +/- 0.7 mmol/L) than in volunteers (7.1 +/- 0.4 mmol/L), whereas the plasma insulin increased to the same extent in the two groups (P < 0.001). In conclusion, lipolysis rates are increased after abdominal surgery and glucose administration, most likely due to insulin resistance, and fail to inhibit stimulated whole-body lipolysis. PMID:11240333

  2. Insulin, catecholamines, glucose and antioxidant enzymes in oxidative damage during different loads in healthy humans.

    PubMed

    Koska, J; Blazícek, P; Marko, M; Grna, J D; Kvetnanský, R; Vigas, M

    2000-01-01

    Exercise, insulin-induced hypoglycemia and oral glucose loads (50 g and 100 g) were used to compare the production of malondialdehyde and the activity of antioxidant enzymes in healthy subjects. Twenty male volunteers participated in the study. Exercise consisted of three consecutive work loads on a bicycle ergometer of graded intensity (1.5, 2.0, and 2.5 W/kg, 6 min each). Hypoglycemia was induced by insulin (Actrapid MC Novo, 0.1 IU/kg, i.v.). Oral administration of 50 g and 100 g of glucose was given to elevate plasma glucose. The activity of superoxide dismutase (SOD) was determined in red blood cells, whereas glutathione peroxidase (GSH-Px) activity was measured in whole blood. The concentration of malondialdehyde (MDA) was determined by HPLC, catecholamines were assessed radioenzymatically and glucose was measured by the glucose-oxidase method. Exercise increased MDA concentrations, GSH-Px and SOD activities as well as plasma noradrenaline and adrenaline levels. Insulin hypoglycemia increased plasma adrenaline levels, but the concentrations of MDA and the activities of GSH-Px and SOD were decreased. Hyperglycemia increased plasma MDA concentrations, but the activities of GSH-Px and SOD were significantly higher after a larger dose of glucose only. Plasma catecholamines were unchanged. These results indicate that the transient increase of plasma catecholamine and insulin concentrations did not induce oxidative damage, while glucose already in the low dose was an important triggering factor for oxidative stress. PMID:10984077

  3. How to monitor blood glucose.

    PubMed

    Dunning, Trisha

    2016-01-27

    Rationale and key points Capillary blood glucose monitoring is an essential component of diabetes care. Blood glucose tests provide important information about how the body is controlling blood glucose metabolism, and the effect of glucose-lowering medicines, illness and stress. ▶ The nurse should consider the rationale for testing blood glucose each time they perform a test, and reflect on the result, taking into consideration the patient's blood glucose target range and recommended care guidelines. ▶ Blood glucose testing times and testing frequency should be planned to suit the glucose-lowering medicine regimen and the clinical situation. Reflective activity Clinical skills articles can help update your practice and ensure it remains evidence based. Apply this article to your practice. Reflect on and write a short account of: 1. What you have gained from this article. 2. How this article will influence your practice when monitoring blood glucose. Subscribers can upload their reflective accounts at: rcni.com/portfolio . PMID:26967884

  4. Assessing Glucose Uptake through the Yeast Hexose Transporter 1 (Hxt1)

    PubMed Central

    Roy, Adhiraj; Dement, Angela D.; Cho, Kyu Hong; Kim, Jeong-Ho

    2015-01-01

    The transport of glucose across the plasma membrane is mediated by members of the glucose transporter family. In this study, we investigated glucose uptake through the yeast hexose transporter 1 (Hxt1) by measuring incorporation of 2-NBDG, a non-metabolizable, fluorescent glucose analog, into the yeast Saccharomyces cerevisiae. We find that 2-NBDG is not incorporated into the hxt null strain lacking all glucose transporter genes and that this defect is rescued by expression of wild type Hxt1, but not of Hxt1 with mutations at the putative glucose-binding residues, inferred from the alignment of yeast and human glucose transporter sequences. Similarly, the growth defect of the hxt null strain on glucose is fully complemented by expression of wild type Hxt1, but not of the mutant Hxt1 proteins. Thus, 2-NBDG, like glucose, is likely to be transported into the yeast cells through the glucose transport system. Hxt1 is internalized and targeted to the vacuole for degradation in response to glucose starvation. Among the mutant Hxt1 proteins, Hxt1N370A and HXT1W473A are resistant to such degradation. Hxt1N370A, in particular, is able to neither uptake 2-NBDG nor restore the growth defect of the hxt null strain on glucose. These results demonstrate 2-NBDG as a fluorescent probe for glucose uptake in the yeast cells and identify N370 as a critical residue for the stability and function of Hxt1. PMID:25816250

  5. Ethanolic extract of Allium cepa stimulates glucose transporter typ 4-mediated glucose uptake by the activation of insulin signaling.

    PubMed

    Gautam, Sudeep; Pal, Savita; Maurya, Rakesh; Srivastava, Arvind K

    2015-02-01

    The present work was undertaken to investigate the effects and the molecular mechanism of the standardized ethanolic extract of Allium cepa (onion) on the glucose transport for controlling diabetes mellitus. A. cepa stimulates glucose uptake by the rat skeletal muscle cells (L6 myotubes) in both time- and dose-dependent manners. This effect was shown to be mediated by the increased translocation of glucose transporter typ 4 protein from the cytoplasm to the plasma membrane as well as the synthesis of glucose transporter typ 4 protein. The effect of A. cepa extract on glucose transport was stymied by wortmannin, genistein, and AI½. In vitro phosphorylation analysis revealed that, like insulin, A. cepa extract also enhances the tyrosine phosphorylation of the insulin receptor-β, insulin receptor substrate-1, and the serine phosphorylation of Akt under both basal and insulin-stimulated conditions without affecting the total amount of these proteins. Furthermore, it is also shown that the activation of Akt is indispensable for the A. cepa-induced glucose uptake in L6 myotubes. Taken together, these findings provide ample evidence that the ethanolic extract of A. cepa stimulates glucose transporter typ 4 translocation-mediated glucose uptake by the activation of the phosphatidylinositol-4,5-bisphosphate 3-kinase/Akt dependent pathway. PMID:25654406

  6. Abnormal transient rise in hepatic glucose production after oral glucose in non-insulin-dependent diabetic subjects.

    PubMed

    Thorburn, A; Litchfield, A; Fabris, S; Proietto, J

    1995-05-01

    A transient rise in hepatic glucose production (HGP) after an oral glucosa load has been reported in some insulin-resistant states such as in obese fa/fa Zucker rats. The aim of this study was to determine whether this rise in HGP also occurs in subjects with established non-insulin-dependent diabetes mellitus (NIDDM). Glucose kinetics were measured basally and during a double-label oral glucose tolerance test (OGTT) in 12 NIDDM subjects and 12 non-diabetic 'control' subjects. Twenty minutes after the glucose load, HGP had increased 73% above basal in the NIDDM subjects (7.29 +/- 0.52 to 12.58 +/- 1.86 mumol/kg/min, P < 0.02). A transient rise in glucagon (12 pg/ml above basal, P < 0.004) occurred at a similar time. In contrast, the control subjects showed no rise in HGP or plasma glucagon. HGP began to suppress 40-50 min after the OGTT in both the NIDDM and control subjects. A 27% increase in the rate of gut-derived glucose absorption was also observed in the NIDDM group, which could be the result of increased gut glucose absorption or decreased first pass extraction of glucose by the liver. Therefore, in agreement with data in animal models of NIDDM, a transient rise in HGP partly contributes to the hyperglycemia observed after an oral glucose load in NIDDM subjects. PMID:7587920

  7. An ultrasensitive, non-enzymatic glucose assay via gold nanorod-assisted generation of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Xianyu, Yunlei; Sun, Jiashu; Li, Yixuan; Tian, Yue; Wang, Zhuo; Jiang, Xingyu

    2013-06-01

    This report demonstrates a colorimetric, non-enzymatic glucose assay with a low detection limit of 0.07 μM based on negatively charged gold nanorod-enhanced redox reaction. This glucose assay could generate silver nanoparticles as the readout that can be visualized by the naked eye, and only 4 femtomoles of nanorods are needed for glucose determination in one human plasma sample.This report demonstrates a colorimetric, non-enzymatic glucose assay with a low detection limit of 0.07 μM based on negatively charged gold nanorod-enhanced redox reaction. This glucose assay could generate silver nanoparticles as the readout that can be visualized by the naked eye, and only 4 femtomoles of nanorods are needed for glucose determination in one human plasma sample. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01697h

  8. Sodium-Glucose Cotransporter 2 Inhibitors: Possible Anti-Atherosclerotic Effects Beyond Glucose Lowering.

    PubMed

    Yanai, Hidekatsu; Katsuyama, Hisayuki; Hamasaki, Hidetaka; Adachi, Hiroki; Moriyama, Sumie; Yoshikawa, Reo; Sako, Akahito

    2016-01-01

    The new drug for type 2 diabetes, the sodium-glucose cotransporter 2 (SGLT-2) inhibitor, is reversible inhibitor of SGLT-2, leading to reduction of renal glucose reabsorption and decrease of plasma glucose, in an insulin-independent manner. In addition to glucose control, the management of coronary risk factors is very important for patients with diabetes. Here we reviewed published articles about the possible anti-atherosclerotic effects beyond glucose lowering of the SGLT-2 inhibitors. We searched by using Pubmed, and found 770 published articles about SGLT-2 inhibitors. Among 10 kinds of SGLT-2 inhibitors, the number of published articles about dapagliflozin was the greatest among SGLT-2 inhibitors. Since SGLT-2 inhibitors have similar chemical structures, we concentrated on the published articles about dapagliflozin. SGLT-2 inhibitors are proved to be significantly associated with weight loss and reduction of blood pressure by a relatively large number of studies. The studies investigating effects of dapagliflozin on visceral fat, insulin sensitivity, serum lipids, inflammation and adipocytokines are very limited. An influence of increase in glucagon secretion by SGLT-2 inhibitors on metabolic risk factors remains unknown. PMID:26668677

  9. Uptake and release of glucose by the human kidney. Postabsorptive rates and responses to epinephrine.

    PubMed Central

    Stumvoll, M; Chintalapudi, U; Perriello, G; Welle, S; Gutierrez, O; Gerich, J

    1995-01-01

    Despite ample evidence that the kidney can both produce and use appreciable amounts of glucose, the human kidney is generally regarded as playing a minor role in glucose homeostasis. This view is based on measurements of arteriorenal vein glucose concentrations indicating little or no net release of glucose. However, inferences from net balance measurements do not take into consideration the simultaneous release and uptake of glucose by the kidney. Therefore, to assess the contribution of release and uptake of glucose by the human kidney to overall entry and removal of plasma glucose, we used a combination of balance and isotope techniques to measure renal glucose net balance, fractional extraction, uptake and release as well as overall plasma glucose appearance and disposal in 10 normal volunteers under basal postabsorptive conditions and during a 3-h epinephrine infusion. In the basal postabsorptive state, there was small but significant net output of glucose by the kidney (66 +/- 22 mumol.min-1, P = 0.016). However, since renal glucose fractional extraction averaged 2.9 +/- 0.3%, there was considerable renal glucose uptake (2.3 +/- 0.2 mumol.kg-1.min-1) which accounted for 20.2 +/- 1.7% of systemic glucose disposal (11.4 +/- 0.5 mumol.kg-1.min-1). Renal glucose release (3.2 +/- 0.2 mumol.kg-1.min-1) accounted for 27.8 +/- 2.1% of systemic glucose appearance (11.4 +/- 0.5 mumol.kg-1.min-1). Epinephrine infusion, which increased plasma epinephrine to levels observed during hypoglycemia (3722 +/- 453 pmol/liter) increased renal glucose release nearly twofold (5.2 +/- 0.5 vs 2.8 +/- 0.1 mol.kg-1.min-1, P = 0.01) so that at the end of the infusion, renal glucose release accounted for 40.3 +/- 5.5% of systemic glucose appearance and essentially all of the increase in systemic glucose appearance. These observations suggest an important role for the human kidney in glucose homeostasis. PMID:7593645

  10. Blood glucose monitoring.

    PubMed

    Davey, Sarah

    2014-06-10

    I found the CPD article on blood glucose monitoring and management in acute stroke care interesting and informative. As I am a mental health nursing student, my knowledge of chronic physical conditions is limited, so I learned a lot. PMID:24894257

  11. Glucose Tolerance and Hyperkinesis.

    ERIC Educational Resources Information Center

    Langseth, Lillian; Dowd, Judith

    Examined were medical records of 265 hyperkinetic children (7-9 years old). Clinical blood chemistries, hematology, and 5-hour glucose tolerance test (GTT) results indicated that hematocrit levels were low in 27% of the Ss, eosinophil levels were abnormally high in 86% of the Ss, and GTT results were abnormal in a maority of Ss. (CL)

  12. Glucose urine test

    MedlinePlus

    ... with a color-sensitive pad. The color the dipstick changes to tells the provider the level of glucose in your urine. If needed, your provider may ask you to collect your urine at home over 24 hours . Your provider will tell you how to do ...

  13. Renal Glucose Handling

    PubMed Central

    Ferrannini, Ele; Veltkamp, Stephan A.; Smulders, Ronald A.; Kadokura, Takeshi

    2013-01-01

    OBJECTIVE Ipragliflozin, a sodium-glucose cotransporter 2 inhibitor, stimulates glycosuria and lowers glycemia in patients with type 2 diabetes (T2DM). The objective of this study was to assess the pharmacodynamics of ipragliflozin in T2DM patients with impaired renal function. RESEARCH DESIGN AND METHODS Glycosuria was measured before and after a single ipragliflozin dose in 8 nondiabetic subjects and 57 T2DM patients (age 62 ± 9 years, fasting glucose 133 ± 39 mg/dL, mean ± SD) with normal renal function (assessed as the estimated glomerular filtration rate [eGFR]) (eGFR1 ≥90 mL · min–1 · 1.73 m−2), mild (eGFR2 ≥60 to <90), moderate (eGFR3 ≥30 to <60), or severe reduction in eGFR (eGFR4 ≤15 to <30). RESULTS Ipragliflozin significantly increased urinary glucose excretion in each eGFR class (P < 0.0001). However, ipragliflozin-induced glycosuria declined (median [IQR]) across eGFR class (from 46 mg/min [33] in eGFR1 to 8 mg/min [7] in eGFR4, P < 0.001). Ipragliflozin-induced fractional glucose excretion (excretion/filtration) was 39% [27] in the T2DM patients (pooled data), similar to that of the nondiabetic subjects (37% [17], P = ns). In bivariate analysis of the pooled data, ipragliflozin-induced glycosuria was directly related to eGFR and fasting glucose (P < 0.0001 for both, r2 = 0.55), predicting a decrement in 24-h glycosuria of 15 g for each 20 mL/min decline in eGFR and an increase of 7 g for each 10 mg/dL increase in glucose above fasting normoglycemia. CONCLUSIONS In T2DM patients, ipragliflozin increases glycosuria in direct, linear proportion to GFR and degree of hyperglycemia, such that its amount can be reliably predicted in the individual patient. Although absolute glycosuria decreases with declining GFR, the efficiency of ipragliflozin action (fractional glucose excretion) is maintained in patients with severe renal impairment. PMID:23359360

  14. Correlation of salivary glucose, blood glucose and oral candidal carriage in the saliva of type 2 diabetics: A case-control study

    PubMed Central

    Kumar, Satish; Padmashree, S.; Jayalekshmi, Rema

    2014-01-01

    Objectives: To study the correlation between blood glucose levels and salivary glucose levels in type 2 diabetic patients, to study the relationship between salivary glucose levels and oral candidal carriage in type 2 diabetic patients and to determine whether salivary glucose levels could be used as a noninvasive tool for the measurement of glycemic control in type 2 diabetics. Study Design: The study population consisted of three groups: Group 1 consisted of 30 controlled diabetics and Group 2 consisted of 30 uncontrolled diabetics based on their random nonfasting plasma glucose levels. Group 3 consisted of 30 healthy controls. Two milliliters of peripheral blood was collected for the estimation of random nonfasting plasma glucose levels and glycosylated hemoglobin (HbA1c). Unstimulated saliva was collected for the estimation of salivary glucose. Saliva was collected by the oral rinse technique for the estimation of candidal counts. Results: The salivary glucose levels were significantly higher in controlled and uncontrolled diabetics when compared with controls. The salivary candidal carriage was also significantly higher in uncontrolled diabetics when compared with controlled diabetics and nondiabetic controls. The salivary glucose levels showed a significant correlation with blood glucose levels, suggesting that salivary glucose levels can be used as a monitoring tool for predicting glycemic control in diabetic patients. Conclusion: The present study found that estimation of salivary glucose levels can be used as a noninvasive, painless technique for the measurement of diabetic status of a patient in a dental set up. Increased salivary glucose levels leads to increased oral candidal carriage; therefore, oral diagnosticians are advised to screen the diabetic patients for any oral fungal infections and further management. PMID:25191065

  15. Dysregulation of Glucose Homeostasis Following Chronic Exogenous Administration of Leptin in Healthy Sprague-Dawley Rats

    PubMed Central

    Wjidan, Khalil; Ibrahim, Effendi; Caszo, Brinnell; Gnanou, Justin

    2015-01-01

    Introduction Impaired glucose utilization is seen in chronic hyperleptinaemia associated conditions such as obesity and type 2 diabetes mellitus. It is unclear if this impaired glucose utilization is due to the effect of persistent hyperleptinaemia on insulin secretion from the beta cells of pancreas. Aim To examine the effects of chronic leptin administration on plasma glucose regulation in rats. Materials and Methods Glucose challenge curves were plotted for male Sprague-Dawley rats treated with either normal saline (Control; n=8) or subcutaneous leptin injection for 42 days (60 μg/kg body weight/day; n=8). Plasma glucose and plasma insulin levels were measured at 0, 5, 10, 15, 20 and 25 minutes after glucose challenege. Skeletal muscle tissue was collected at the end of a glucose challenge for glucose transporter-4 protein content, insulin receptor and glucose transporter-4 mRNA expression. Data were analysed using repeated measures and one-way ANOVA with post-hoc analysis. Results Chronic leptin treatment caused significantly higher fasting insulin level. Post glucose challenge, there was a significant increase in blood glucose levels and insulin level in the leptin treated rats. There was no significant difference in the skeletal muscle glucose transporter-4 content. However, leptin treated rats showed decreased mRNA expression of Insulin Receptor and glucose transporter-4 in the skeletal muscle. Conclusion Leptin administration for 42 days caused hyperinsulinaemia and decreased the expression of insulin receptors in insulin sensitive tissues leading to the development of an insulin resistance-like state in the rats. PMID:26816939

  16. A new route to improved glucose yields in cellulose hydrolysis

    SciTech Connect

    Zhao, Haibo; Holladay, John E.; Kwak, Ja Hun; Zhang, Z. Conrad

    2007-08-01

    An unusual inverse temperature-dependent pathway was discovered for cellulose decrystallization in trifluoroacetic acid (TFA). Cellulose was completely decrystallized by TFA at 0 °C in less than 2 hours, a result not achieved in 48 hours at 25°C in the same medium. The majority of TFA used in cellulose decrystallization was recycled via a vacuum process. The small remaining amount of TFA was diluted with water to make a 0.5% TFA solution and used as a catalyst in dilute acid hydrolysis. After one minute, under batch conditions at 185 °C, the glucose yield reached 63.5% without production of levulinic acid. In comparison, only 15.0% glucose yield was achieved in the hydrolysis of untreated cellulose by 0.5% H2SO4 under the same condition. Further improvement of glucose yield is possible by optimizing reaction conditions. Alternatively, the remaining TFA can be completely removed by water while keeping the regenerated cellulose in a highly amorphous state. This regenerated cellulose is much more reactive than untreated cellulose in hydrolysis reactions, but still less reactive than corn starch. The lower temperatures and shorter reaction times with this activated cellulose makes it possible to reduce operating costs and decrease byproduct yields such as HMF and levulinic acid.

  17. Early Postpartum Glucose Testing in Women with Gestational Diabetes Mellitus.

    PubMed

    Werner, Erika F; Has, Phinnara; Tarabulsi, Gofran; Lee, Joyce; Satin, Andrew

    2016-08-01

    Objective Given that most women with gestational diabetes mellitus (GDM) never undergo the recommended 6 to 12 weeks postpartum glucose tolerance test (GTT), we assessed the feasibility of performing GTTs on postpartum day 2. Study Design We conducted a prospective cohort study in which women with GDM received a 75-g 2-hour GTT on postpartum day 2. We assessed the feasibility of this GTT and compared the results to the standard of care GTT at 6 to 12 weeks postpartum. We also evaluated maternal and pregnancy characteristics of women who return for 6 to 12 weeks GTTs compared with those lost to follow-up. Results In this study, 98 of 106 participants (92%) completed the postpartum day 2 GTT; 59% had normal glucose values at that time. Only 49 women returned at 6 to 12 weeks postpartum. Among women who had testing at both time points, the 2 days postpartum GTT were 100% sensitive and 94% specific for diabetes mellitus but less sensitive and specific for milder forms of abnormal glucose. Women who did not complete the 6 to 12 weeks postpartum GTT were less educated (p < 0.01) and more often had Medicaid (p < 0.01). Conclusion Performing GTTs on postpartum day 2 is feasible and should be further investigated as an alternative postpartum testing regimen in GDM. PMID:27120481

  18. Effect of Global ATGL Knockout on Murine Fasting Glucose Kinetics

    PubMed Central

    Coelho, Margarida; Nunes, Patricia; Mendes, Vera M.; Manadas, Bruno; Heerschap, Arend; Jones, John G.

    2015-01-01

    Mice deficient in adipose triglyceride lipase (ATGL−/−) present elevated ectopic lipid levels but are paradoxically glucose-tolerant. Measurement of endogenous glucose production (EGP) and Cori cycle activity provide insights into the maintenance of glycemic control in these animals. These parameters were determined in 7 wild-type (ATGL+/−) and 6 ATGL−/− mice by a primed-infusion of [U-13C6]glucose followed by LC-MS/MS targeted mass-isotopomer analysis of blood glucose. EGP was quantified by isotope dilution of [U-13C6]glucose while Cori cycling was estimated by analysis of glucose triose 13C-isotopomers. Fasting plasma free fatty-acids were significantly lower in ATGL−/− versus control mice (0.43 ± 0.05 mM versus 0.73 ± 0.11 mM, P < 0.05). Six-hour fasting EGP rates were identical for both ATGL−/− and control mice (79 ± 11 versus 71 ± 7 μmol/kg/min, resp.). Peripheral glucose metabolism was dominated by Cori cycling (80 ± 2% and 82 ± 7% of glucose disposal for ATGL−/− and control mice, resp.) indicating that peripheral glucose oxidation was not significantly upregulated in ATGL−/− mice under these conditions. The glucose 13C-isotopomer distributions in both ATGL−/− and control mice were consistent with extensive hepatic pyruvate recycling. This suggests that gluconeogenic outflow from the Krebs cycle was also well compensated in ATGL−/− mice. PMID:26236747

  19. The Correlation of Hemoglobin A1c to Blood Glucose

    PubMed Central

    Sikaris, Ken

    2009-01-01

    The understanding that hemoglobin A1c (HbA1c) represents the average blood glucose level of patients over the previous 120 days underlies the current management of diabetes. Even in making such a statement, we speak of “average blood glucose” as though “blood glucose” were itself a simple idea. When we consider all the blood glucose forms—arterial versus venous versus capillary, whole blood versus serum versus fluoride-preserved plasma, fasting versus nonfasting—we can start to see that this is not a simple issue. Nevertheless, it seems as though HbA1c correlates to any single glucose measurement. Having more than one measurement and taking those measurements in the preceding month improves the correlation further. In particular, by having glucose measurements that reflect both the relatively lower overnight glucose levels and measurements that reflect the postprandial peaks improves not only our ability to manage diabetes patients, but also our understanding of how HbA1c levels are determined. Modern continuous glucose monitoring (CGM) devices may take thousands of glucose results over a week. Several studies have shown that CGM glucose averages account for the vast proportion of the variation of HbA1c. The ability to relate HbA1c to average glucose may become a popular method for reporting HbA1c, eliminating current concerns regarding differences in HbA1c standardization. Hemoglobin A1c expressed as an average glucose may be more understandable to patients and improve not only their understanding, but also their ability to improve their diabetes management. PMID:20144279

  20. Glucose Metabolism in Neisseria gonorrhoeae

    PubMed Central

    Morse, Stephen A.; Stein, Stefanie; Hines, James

    1974-01-01

    The metabolism of glucose was examined in several clinical isolates of Neisseria gonorrhoeae. Radiorespirometric studies revealed that growing cells metabolized glucose by a combination on the Entner-Doudoroff and pentose phosphate pathways. A portion of the glyceraldehyde-3-phosphate formed via the Entner-Doudoroff pathway was recycled by conversion to glucose-6-phosphate. Subsequent catabolism of this glucose-6-phosphate by either the Entner-Doudoroff or pentose phosphate pathways yielded CO2 from the original C6 of glucose. Enzyme analyses confirmed the presence of all enzymes of the Entner-Doudoroff, pentose phosphate, and Embden-Meyerhof-Parnas pathways. There was always a high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) relative to that of 6-phosphogluconate dehydrogenase (EC 1.1.1.44). The glucose-6-phosphate dehydrogenase utilized either nicotinamide adenine dinucleotide phosphate or nicotinamide adenine dinucleotide as electron acceptor. Acetate was the only detectable nongaseous end product of glucose metabolism. Following the disappearance of glucose, acetate was metabolized by the tricarboxylic acid cycle as evidenced by the preferential oxidation of [1-14C]acetate over that of [2-14C]acetate. When an aerobically grown log-phase culture was subjected to anaerobic conditions, lactate and acetate were formed from glucose. Radiorespirometric studies showed that under these conditions, glucose was dissimilated entirely by the Entner-Doudoroff pathway. Further studies determined that this anaerobic dissimilation of glucose was not growth dependent. PMID:4156358

  1. Ceramide 1-phosphate stimulates glucose uptake in macrophages

    PubMed Central

    Ouro, Alberto; Arana, Lide; Gangoiti, Patricia; Rivera, Io-Guané; Ordoñez, Marta; Trueba, Miguel; Lankalapalli, Ravi S.; Bittman, Robert; Gomez-Muñoz, Antonio

    2014-01-01

    It is well established that ceramide 1-phosphate (C1P) is mitogenic and antiapoptotic, and that it is implicated in the regulation of macrophage migration. These activities require high energy levels to be available in cells. Macrophages obtain most of their energy from glucose. In this work, we demonstrate that C1P enhances glucose uptake in RAW264.7 macrophages. The major glucose transporter involved in this action was found to be GLUT 3, as determined by measuring its translocation from the cytosol to the plasma membrane. C1P-stimulated glucose uptake was blocked by selective inhibitors of phosphatidylinositol 3-kinase (PI3K) or Akt, also known as protein kinase B (PKB), and by specific siRNAs to silence the genes encoding for these kinases. C1P-stimulated glucose uptake was also inhibited by pertussis toxin (PTX) and by the siRNA that inhibited GLUT 3 expression. C1P increased the affinity of the glucose transporter for its substrate, and enhanced glucose metabolism to produce ATP. The latter action was also inhibited by PI3K- and Akt-selective inhibitors, PTX, or by specific siRNAs to inhibit GLUT 3 expression. PMID:23333242

  2. Effect of high glucose concentrations on human erythrocytes in vitro

    PubMed Central

    Viskupicova, Jana; Blaskovic, Dusan; Galiniak, Sabina; Soszyński, Mirosław; Bartosz, Grzegorz; Horakova, Lubica; Sadowska-Bartosz, Izabela

    2015-01-01

    Exposure to high glucose concentrations in vitro is often employed as a model for understanding erythrocyte modifications in diabetes. However, effects of such experiments may be affected by glucose consumption during prolonged incubation and changes of cellular parameters conditioned by impaired energy balance. The aim of this study was to compare alterations in various red cell parameters in this type of experiment to differentiate between those affected by glycoxidation and those affected by energy imbalance. Erythrocytes were incubated with 5, 45 or 100 mM glucose for up to 72 h. High glucose concentrations intensified lipid peroxidation and loss of activities of erythrocyte enzymes (glutathione S-transferase and glutathione reductase). On the other hand, hemolysis, eryptosis, calcium accumulation, loss of glutathione and increase in the GSSG/GSH ratio were attenuated by high glucose apparently due to maintenance of energy supply to the cells. Loss of plasma membrane Ca2+-ATPase activity and decrease in superoxide production were not affected by glucose concentration, being seemingly determined by processes independent of both glycoxidation and energy depletion. These results point to the necessity of careful interpretation of data obtained in experiments, in which erythrocytes are subject to treatment with high glucose concentrations in vitro. PMID:26141922

  3. Downregulation of mouse intestinal Na(+)-coupled glucose transporter SGLT1 by gum arabic (Acacia Senegal).

    PubMed

    Nasir, Omaima; Artunc, Ferruh; Wang, Kan; Rexhepaj, Rexhep; Föller, Michael; Ebrahim, Ammar; Kempe, Daniela S; Biswas, Raja; Bhandaru, Madhuri; Walter, Michael; Mohebbi, Nilufar; Wagner, Carsten A; Saeed, Amal M; Lang, Florian

    2010-01-01

    Intestinal Na(+)-coupled glucose transporter SGLT1 determines the rate of glucose transport, which in turn influences glucose-induced insulin release and development of obesity. The present study explored effects of Gum Arabic (GA), a dietary polysaccharide from dried exudates of Acacia Senegal, on intestinal glucose transport and body weight in wild-type C57Bl/6 mice. Treatment with GA (100 g/l) in drinking water for four weeks did not affect intestinal SGLT1 transcript levels but decreased SGLT1 protein abundance in jejunal brush border membrane vesicles. Glucose-induced jejunal short-circuit currents revealed that GA treatment decreased electrogenic glucose transport. Drinking a 20% glucose solution for four weeks significantly increased body weight and fasting plasma glucose concentrations, effects significantly blunted by simultaneous treatment with GA. GA further significantly blunted the increase in body weight, fasting plasma glucose and fasting insulin concentrations during high fat diet. In conclusion, the present observations disclose a completely novel effect of gum arabic, i.e. its ability to decrease intestinal SGLT1 expression and activity and thus to counteract glucose-induced obesity. PMID:20110681

  4. Glucose and Aging

    NASA Astrophysics Data System (ADS)

    Ely, John T. A.

    2008-04-01

    When a human's enzymes attach glucose to proteins they do so at specific sites on a specific molecule for a specific purpose that also can include ascorbic acid (AA) at a high level such as 1 gram per hour during exposure. In an AA synthesizing animal the manifold increase of AA produced in response to illness is automatic. In contrast, the human non-enzymatic process adds glucose haphazardly to any number of sites along available peptide chains. As Cerami clarified decades ago, extensive crosslinking of proteins contributes to loss of elasticity in aging tissues. Ascorbic acid reduces the random non-enyzmatic glycation of proteins. Moreover, AA is a cofactor for hydroxylase enzymes that are necessary for the production and replacement of collagen and other structural proteins. We will discuss the relevance of ``aging is scurvy'' to the biochemistry of human aging.

  5. Strategies Associated with Higher Postpartum Glucose Tolerance Screening Rates for Gestational Diabetes Mellitus Patients

    PubMed Central

    Ko, Jean Y.; Dietz, Patricia M.; Conrey, Elizabeth J.; Rodgers, Loren E.; Shellhaas, Cynthia; Farr, Sherry L.; Robbins, Cheryl L.

    2016-01-01

    Background Most women with histories of gestational diabetes mellitus do not receive a postpartum screening test for type 2 diabetes, even though they are at increased risk. The objective of this study was to identify factors associated with high rates of postpartum glucose screening. Methods This cross-sectional analysis assessed characteristics associated with postpartum diabetes screening for patients with gestational diabetes mellitus (GDM)-affected pregnancies self-reported by randomly sampled licensed obstetricians/gynecologists (OBs/GYNs) in Ohio in 2010. Results Responses were received from 306 OBs/GYNs (56.5% response rate), among whom 69.9% reported frequently (always/most of the time) screening women with GDM-affected pregnancies for abnormal glucose tolerance at the postpartum visit. Compared to infrequent screeners, OBs/GYNs who frequently screen for postpartum glucose tolerance were statistically (p < 0.05) more likely to have a clinical protocol addressing postpartum testing (67.2% vs. 26.7%), an electronic reminder system for providers (10.8% vs. 2.2%) and provide reminders to patients (16.4% vs. 4.4%). Frequent screeners were more likely to use recommended fasting blood glucose or 2-hour oral glucose tolerance test (61.8% vs. 34.6%, p < 0.001) than infrequent screeners. Conclusions Strategies associated with higher postpartum glucose screening for GDM patients included clinical protocols for postpartum testing, electronic medical records to alert providers of the need for testing, and reminders to patients. PMID:23789581

  6. Evidence for the absence of cerebral glucose-6-phosphatase activity in glycogen storage disease type I (Von Gierke's disease)

    SciTech Connect

    Phelps, M.E.; Mazziotta, J.C.; Hawkins, R.A.; Philippart, M.

    1981-01-01

    Glycogen storage disease type I (GSD-I) is characterized by a functional deficit in glucose-6-phosphatase that normally hydrolyzes glucose-6-PO/sub 4/ to glucose. This enzyme is primarily found in liver, kidney, and muscle but it is also present in brain, where it appears to participate in the regulation of cerebral tissue glucose. Since most neurological symptoms in GSD-I patients involve systemic hypoglycemia, previous reports have not examined possible deficiencies in phosphatase activity in the brain. Positron computed tomography, F-18-labeled 2-fluorodeoxyglucose (FDG) and a tracer kinetic model for FDG were used to measure the cortical plasma/tissue forward and reverse transport, phosphorylation and dephosphorylation rate constants, tissue/plasma concentration gradient, tissue concentration turnover rate for this competitive analog of glucose, and the cortical metabolic rates for glucose. Studies were carried out in age-matched normals (N = 13) and a single GSD-I patient. The dephosphorylation rate constant in the GSD-I patient was about one tenth the normal value indicating a low level of cerebral phosphatase activity. The other measured parameters were within normal limits except for the rate of glucose phosphorylation which reflected a cortical glucose metabolic rate one half the normal value. Since glucose transport and tissue glucose concentration was normal, the reduced cortical glucose metabolism probably results from the use of alternative substrates (..beta..-hydroxybutyrate and acetoacetate) which are consistently elevated in the plasma of GSD-I patients.

  7. Glucose-6-phosphate isomerase.

    PubMed

    Achari, A; Marshall, S E; Muirhead, H; Palmieri, R H; Noltmann, E A

    1981-06-26

    Glucose-6-phosphate isomerase (EC 5.3.1.9) is a dimeric enzyme of molecular mass 132000 which catalyses the interconversion of D-glucose-6-phosphate and D-fructose-6-phosphate. The crystal structure of the enzyme from pig muscle has been determined at a nominal resolution of 2.6 A. The structure is of the alpha/beta type. Each subunit consists of two domains and the active site is in both the domain interface and the subunit interface (P.J. Shaw & H. Muirhead (1976), FEBS Lett. 65, 50-55). Each subunit contains 13 methionine residues so that cyanogen bromide cleavage will produce 14 fragments, most of which have been identified and at least partly purified. Sequence information is given for about one-third of the molecule from 5 cyanogen bromide fragments. One of the sequences includes a modified lysine residue. Modification of this residue leads to a parallel loss of enzymatic activity. A tentative fit of two of the peptides to the electron density map has been made. It seems possible that glucose-6-phosphate isomerase, triose phosphate isomerase and pyruvate kinase all contain a histidine and a glutamate residue at the active site. PMID:6115414

  8. The Tuberous Sclerosis Complex Regulates Trafficking of Glucose Transporters and Glucose Uptake

    PubMed Central

    Jiang, Xiuyun; Kenerson, Heidi; Aicher, Lauri; Miyaoka, Robert; Eary, Janet; Bissler, John; Yeung, Raymond S.

    2008-01-01

    Human cancers often display an avidity for glucose, a feature that is exploited in clinical staging and response monitoring by using 18F-fluoro-deoxyglucose (FDG) positron emission tomography. Determinants of FDG accumulation include tumor blood flow, glucose transport, and glycolytic rate, but the underlying molecular mechanisms are incompletely understood. The phosphoinositide-3 kinase/Akt/mammalian target of rapamycin complex (mTORC) 1 pathway has been implicated in this process via the hypoxia-inducible factor alpha-dependent expression of vascular endothelial growth factor and glycolytic enzymes. Thus, we predicted that tumors with elevated mTORC1 activity would be accompanied by high FDG uptake. We tested this hypothesis in eight renal angiomyolipomas in which the loss of tuberous sclerosis complex (TSC) 1/2 function gave rise to constitutive mTORC1 activation. Surprisingly, these tumors displayed low FDG uptake on positron emission tomography. Exploring the underlying mechanisms in vitro revealed that Tsc2 regulates the membrane localization of the glucose transporter proteins (Glut)1, Glut2, and Glut4, and, therefore, glucose uptake. Down-regulation of cytoplasmic linker protein 170, an mTOR effector, rescued Glut4 trafficking in Tsc2−/− cells, whereas up-regulation of Akt activity in these cells was insufficient to redistribute Glut4 to the plasma membrane. The effect of mTORC1 on glucose uptake was confirmed using a liver-specific Tsc1- deletion mouse model in which FDG uptake was reduced in the livers of mutant mice compared with wild-type controls. Together, these data show that mTORC1 activity is insufficient for increased glycolysis in tumors and that constitutive mTOR activity negatively regulates glucose transporter trafficking. PMID:18511518

  9. Blood glucose distribution and prevalence of diabetes in Hanoi (Vietnam).

    PubMed

    Quoc, P S; Charles, M A; Cuong, N H; Lieu, L H; Tuan, N A; Thomas, M; Balkau, B; Simon, D

    1994-04-01

    Few epidemiologic surveys have been performed to assess the prevalence of diabetes in representative samples, and few data are available on the epidemiologic features of diabetes in Southeast Asia. We report the results of a 1990 study performed in the Hanoi area (Vietnam) on 4,912 subjects (95.0% of the eligible population), aged 15 years or over, selected by a stratified random cluster procedure using the 1989 census list. A two-step design was used: 1) screening for diabetes by measuring capillary blood glucose (CBG) before dinner with a Glucometer II device; and 2) for subjects with a CBG measurement of > or = 105 mg/dl, a diagnostic test on the following morning, using a 75-g oral glucose tolerance test and World Health Organization criteria (93.9% of the positive screenees took this test). CBG values before dinner were unimodally distributed and skewed to the right, increasing with age in both sexes. Women had a significantly higher level of age-adjusted CBG than did men before dinner (p < 0.0001) as well as when fasting (p < 0.0001) and 2 hours after the oral glucose tolerance test (p = 0.013). The prevalence of diabetes was 1.2% (95% confidence interval (CI) 0.9-1.5) and of impaired glucose tolerance, 1.6% (95% CI 1.3-2.0). Women had a significantly higher age-adjusted prevalence of diabetes than did men (relative risk = 2.3; 95% CI 1.3-4.1). Of the 63 diabetic subjects, nine (14.3%) had been diagnosed before the study, only one was obviously insulin dependent, and only one was obese with a body mass index of > or = 27 kg/m2. The subjects living in the urban areas had higher levels of fasting and 2-hour CBG and a higher diabetes prevalence than did the rural inhabitants (relative risk = 1.3; 95% CI 1.04-3.23). Diabetes appears to be a rare disease in the Hanoi area (1.4% for subjects aged 30-64 years, after age standardization using the Segi distribution), affecting women two times as often as men. Typical insulin-dependent (type I) or obese non

  10. Application of electroimmunoassay to the study of plasma protein synthesis in cultured hepatocytes.

    PubMed

    Grieninger, G; Pindyck, J; Hertzberg, K M; Mosesson, M W

    1979-01-01

    Electroimmunoassay has been applied to the study of plasma protein synthesis and secretion in liver cell cultures. The assay is performed on unconcentrated samples of culture medium containing the secreted plasma proteins and yields results within 2 hours. The characteristics of plasma protein production by the cultured hepatocytes coupled with the sensitivity of this assay permit the study of plasma protein in synthesis and its regulation by hormones and other agents without the routine use of radioisotopes. PMID:518014

  11. Chinese herbal medicines for people with impaired glucose tolerance or impaired fasting blood glucose

    PubMed Central

    Grant, Suzanne J; Bensoussan, Alan; Chang, Dennis; Kiat, Hosen; Klupp, Nerida L; Liu, Jian Ping; Li, Xun

    2011-01-01

    Background Around 308 million people worldwide are estimated to have impaired glucose tolerance (IGT); 25% to 75% of these will develop diabetes within a decade of initial diagnosis. At diagnosis, half will have tissue-related damage and all have an increased risk for coronary heart disease. Objectives The objective of this review was to assess the effects and safety of Chinese herbal medicines for the treatment of people with impaired glucose tolerance or impaired fasting glucose (IFG). Search strategy We searched the following databases: The Cochrane Library, PubMed, EMBASE, AMED, a range of Chinese language databases, SIGLE and databases of ongoing trials. Selection criteria Randomised clinical trials comparing Chinese herbal medicines with placebo, no treatment, pharmacological or non-pharmacological interventions in people with IGT or IFG were considered. Data collection and analysis Two authors independently extracted data. Trials were assessed for risk of bias against key criteria: random sequence generation, allocation concealment, blinding of participants, outcome assessors and intervention providers, incomplete outcome data, selective outcome reporting and other sources of bias. Main results This review examined 16 trials lasting four weeks to two years involving 1391 participants receiving 15 different Chinese herbal medicines in eight different comparisons. No trial reported on mortality, morbidity or costs. No serious adverse events like severe hypoglycaemia were observed. Meta-analysis of eight trials showed that those receiving Chinese herbal medicines combined with lifestyle modification were more than twice as likely to have their fasting plasma glucose levels return to normal levels (i.e. fasting plasma glucose <7.8 mmol/L and 2hr blood glucose <11.1 mmol/L) compared to lifestyle modification alone (RR 2.07; 95% confidence intervall (CI) 1.52 to 2.82). Those receiving Chinese herbs were less likely to progress to diabetes over the duration of the

  12. Electrochemical Glucose Biosensor of Platinum Nanospheres Connected by Carbon Nanotubes

    PubMed Central

    Claussen, Jonathan C.; Kim, Sungwon S.; Haque, Aeraj ul; Artiles, Mayra S.; Porterfield, D. Marshall; Fisher, Timothy S.

    2010-01-01

    Background Glucose biosensors comprised of nanomaterials such as carbon nanotubes (CNTs) and metallic nanoparticles offer enhanced electrochemical performance that produces highly sensitive glucose sensing. This article presents a facile biosensor fabrication and biofunctionalization procedure that utilizes CNTs electrochemically decorated with platinum (Pt) nanospheres to sense glucose amperometrically with high sensitivity. Method Carbon nanotubes are grown in situ by microwave plasma chemical vapor deposition (MPCVD) and electro-chemically decorated with Pt nanospheres to form a CNT/Pt nanosphere composite biosensor. Carbon nanotube electrodes are immobilized with fluorescently labeled bovine serum albumin (BSA) and analyzed with fluorescence microscopy to demonstrate their biocompatibility. The enzyme glucose oxidase (GOX) is immobilized onto the CNT/Pt nanosphere biosensor by a simple drop-coat method for amperometric glucose sensing. Results Fluorescence microscopy demonstrates the biofunctionalization capability of the sensor by portraying adsorption of fluorescently labeled BSA unto MPCVD-grown CNT electrodes. The subsequent GOX–CNT/Pt nanosphere biosensor demonstrates a high sensitivity toward H2O2 (7.4 μA/mM/cm2) and glucose (70 μA/mM/cm2), with a glucose detection limit and response time of 380 nM (signal-to-noise ratio = 3) and 8 s (t90%), respectively. The apparent Michaelis–Menten constant (0.64 mM) of the biosensor also reflects the improved sensitivity of the immobilized GOX/nanomaterial complexes. Conclusions The GOX–CNT/Pt nanosphere biosensor outperforms similar CNT, metallic nanoparticle, and more conventional carbon-based biosensors in terms of glucose sensitivity and detection limit. The biosensor fabrication and biofunctionalization scheme can easily be scaled and adapted for microsensors for physiological research applications that require highly sensitive glucose sensing. PMID:20307391

  13. Colorimetric Glucose Assay Based on Magnetic Particles Having Pseudo-peroxidase Activity and Immobilized Glucose Oxidase.

    PubMed

    Martinkova, Pavla; Opatrilova, Radka; Kruzliak, Peter; Styriak, Igor; Pohanka, Miroslav

    2016-05-01

    Magnetic particles (MPs) are currently used as a suitable alternative for peroxidase in the construction of novel biosensors, analytic and diagnostic methods. Their better chemical and thermal stabilities predestine them as appropriate pseudo-enzymatic catalysts. In this point of view, our research was focused on preparation of simply and fast method for immobilization of glucose oxidase onto surface of MPs with peroxidase-like activity. Spectrophotometric method (wavelength 450 nm) optimized for glucose determination using modified MPs has been successfully developed. Concentration curve for optimization of method was assayed, and Michaelis-Menten constant (K m) calculated, maximum reaction rate (V max), limit of detection, and correlation coefficient were determined to be 0.13 mmol/l (2.34 mg/dl), 1.79 pkat, 3.74 µmol/l (0.067 mg/dl), and 0.996, respectively. Interferences of other sugars such as sucrose, sorbitol, deoxyribose, maltose, and fructose were determined as well as effect of substances presenting in plasma (ascorbic acid, reduced glutathione, trolox, and urea). Results in comparison with positive and negative controls showed no interferences of the other sugars and no influence of plasma substances to measuring of glucose. The constructed method showed corresponding results with linear dependence and a correlation coefficient of 0.997. Possibility of repeated use of modified MPs was successfully proved. PMID:27041274

  14. Effect of Stevia rebaudiana on glucose tolerance in normal adult humans.

    PubMed

    Curi, R; Alvarez, M; Bazotte, R B; Botion, L M; Godoy, J L; Bracht, A

    1986-01-01

    The effect of aqueous extracts of Stevia rebaudiana leaves on a glucose tolerance test was investigated in 16 normal volunteers. Aqueous extracts of 5 grams of leaves were administered to volunteers at regular 6-h intervals for 3 days. Glucose tolerance tests were performed before and after extract administration. A second group of 6 normal volunteers who ingested an aqueous arabinose solution was also studied to eliminate possible stress effects. The extract of Stevia rebaudiana increased glucose tolerance. The extract significantly decreased plasma glucose levels during the test and after overnight fasting in all volunteers. PMID:3651629

  15. Glucose intolerance induced by blockade of central FGF receptors is linked to an acute stress response

    PubMed Central

    Rojas, Jennifer M.; Matsen, Miles E.; Mundinger, Thomas O.; Morton, Gregory J.; Stefanovski, Darko; Bergman, Richard N.; Kaiyala, Karl J.; Taborsky, Gerald J.; Schwartz, Michael W.

    2015-01-01

    Objective Central administration of ligands for fibroblast growth factor receptors (FGFRs) such as fibroblast growth factor-19 (FGF19) and FGF21 exert glucose-lowering effects in rodent models of obesity and type 2 diabetes (T2D). Conversely, intracerebroventricular (icv) administration of the non-selective FGFR inhibitor (FGFRi) PD173074 causes glucose intolerance, implying a physiological role for neuronal FGFR signaling in glucose homeostasis. The current studies were undertaken to identify neuroendocrine mechanisms underlying the glucose intolerance induced by pharmacological blockade of central FGFRs. Methods Overnight fasted, lean, male, Long-Evans rats received icv injections of either PD173074 or vehicle (Veh) followed 30 min later by performance of a frequently sampled intravenous glucose tolerance test (FSIGT). Minimal model analysis of glucose and insulin data from the FSIGT was performed to estimate insulin-dependent and insulin-independent components of glucose disposal. Plasma levels of lactate, glucagon, corticosterone, non-esterified free fatty acids (NEFA) and catecholamines were measured before and after intravenous (iv) glucose injection. Results Within 20 min of icv PD173074 injection (prior to the FSIGT), plasma levels of lactate, norepinephrine and epinephrine increased markedly, and each returned to baseline rapidly (within 8 min) following the iv glucose bolus. In contrast, plasma glucagon levels were not altered by icv FGFRi at either time point. Consistent with a previous report, glucose tolerance was impaired following icv PD173074 compared to Veh injection and, based on minimal model analysis of FSIGT data, this effect was attributable to reductions of both insulin secretion and the basal insulin effect (BIE), consistent with the inhibitory effect of catecholamines on pancreatic β-cell secretion. By comparison, there were no changes in glucose effectiveness at zero insulin (GEZI) or the insulin sensitivity index (SI). To determine if

  16. Pulsatile hyperglucagonemia fails to increase hepatic glucose production in normal man

    SciTech Connect

    Paolisso, G.; Scheen, A.J.; Luyckx, A.S.; Lefebvre, P.J.

    1987-01-01

    To study the metabolic effects of pulsatile glucagon administration, six male volunteers were submitted to a 260-min glucose-controlled glucose intravenous infusion using the Biostator. The endogenous secretion of the pancreatic hormones was inhibited by somatostatin, basal insulin secretion was replaced by a continuous insulin infusion, and glucagon was infused intravenously in two conditions at random: either continuously or intermittently. Blood glucose levels and glucose infusion rate were monitored continuously by the Biostator, and classical methodology using a D-(3-/sup 3/H)glucose infusion allowed the authors to study glucose turnover. While basal plasma glucagon levels were similar in both conditions, they plateaued at 189 +/- 38 pg ml/sup -1/ during continuous infusion and varied between 95 and 501 pg x ml/sup -1/ during pulsatile infusion. When compared with continuous administration, pulsatile glucagon infusion 1) initially induced a similar increase in endogenous (hepatic) glucose production and blood glucose, 2) did not prevent the so-called evanescent effect of glucagon on blood glucose, and 3) after 3 h tended to reduce rather than increase hepatic glucose production. In conclusion, in vivo pulsatile hyperglucanemia in normal man fails to increase hepatic glucose production.

  17. Fuel metabolism in Canada geese: effects of glucagon on glucose kinetics

    PubMed Central

    Weber, Jean-Michel

    2015-01-01

    During prolonged fasting, birds must rely on glucose mobilization to maintain normoglycemia. Glucagon is known to modulate avian energy metabolism during prolonged fasting, but the metabolic effects of this hormone on long-distance migrant birds have never been investigated. Our goal was to determine whether glucagon regulates the mobilization of the main lipid and carbohydrate fuels in migrant birds. Using the Canada goose (Branta canadensis) as a model species, we looked for evidence of fuel mobilization via changes in metabolite concentrations. No changes could be found for any lipid fraction, but glucagon elicited a strong increase in glucose concentration. Therefore, we aimed to quantify the effects of this hormone on glucose kinetics using continuous infusion of 6-[3H]-d-glucose. Glucagon was found to cause a 50% increase in glucose mobilization (from 22.2 ± 2.4 μmol·kg−1·min−1 to 33.5 ± 3.3 μmol·kg−1·min−1) and, together with an unchanged rate of carbohydrate oxidation, led to a 90% increase in plasma glucose concentration. This hormone also led to a twofold increase in plasma lactate concentration. No changes in plasma lipid concentration or composition were observed. This study is the first to demonstrate how glucagon modulates glucose kinetics in a long-distance migrant bird and to quantify its rates of glucose mobilization. PMID:26108869

  18. Regional brain glucose use in unstressed rats after two days of starvation

    SciTech Connect

    Mans, A.M.; Davis, D.W.; Hawkins, R.A.

    1987-12-01

    Regional brain glucose use was measured in conscious, unrestrained, fed rats and after 2 days of starvation, using quantitative autoradiography and (6-/sup 14/C)glucose. Plasma glucose, lactate, and ketone body concentrations and brain glucose and lactate content were measured in separate groups of rats. Glucose concentrations were lower in starved rats in both plasma and brain; plasma ketone body concentrations were elevated. Glucose use was found to be lower throughout the brain by about 12%. While some areas seemed to be affected more than others, statistical analysis showed that none were exceptionally different. The results could not be explained by increased loss of /sup 14/C as lactate or pyruvate during the experimental period, because the arteriovenous differences of these species were insignificant. The calculated contribution by ketone bodies to the total energy consumption was between 3 and 9% for the brain as a whole in the starved rats and could, therefore, partially account for the depression seen in glucose use. It was concluded that glucose oxidation is slightly depressed throughout the brain after 2 days of starvation.

  19. Modulation of parathion toxicity by glucose feeding: Is nitric oxide involved?

    SciTech Connect

    Liu Jing . E-mail: jing.pope@okstate.edu; Gupta, Ramesh C.; Goad, John T.; Karanth, Subramanya; Pope, Carey

    2007-03-15

    Glucose feeding can markedly exacerbate the toxicity of the anticholinesterase insecticide, parathion. We determined the effects of parathion on brain nitric oxide and its possible role in potentiation of toxicity by glucose feeding. Adult rats were given water or 15% glucose in water for 3 days and challenged with vehicle or parathion (18 mg/kg, s.c.) on day 4. Functional signs, plasma glucose and brain cholinesterase, citrulline (an indicator of nitric oxide production) and high-energy phosphates (HEPs) were measured 1-3 days after parathion. Glucose feeding exacerbated cholinergic toxicity. Parathion increased plasma glucose (15-33%) and decreased cortical cholinesterase activity (81-90%), with no significant differences between water and glucose treatment groups. In contrast, parathion increased brain regional citrulline (40-47%) and decreased HEPs (18-40%) in rats drinking water, with significantly greater changes in glucose-fed rats (248-363% increase and 31-61% decrease, respectively). We then studied the effects of inhibiting neuronal nitric oxide synthase (nNOS) by 7-nitroindazole (7NI, 30 mg/kg, i.p. x4) on parathion toxicity and its modulation by glucose feeding. Co-exposure to parathion and 7NI led to a marked increase in cholinergic signs of toxicity and lethality, regardless of glucose intake. Thus, glucose feeding enhanced the accumulation of brain nitric oxide following parathion exposure, but inhibition of nitric oxide synthesis was ineffective at counteracting increased parathion toxicity associated with glucose feeding. Evidence is therefore presented to suggest that nitric oxide may play both toxic and protective roles in cholinergic toxicity, and its precise contribution to modulation by glucose feeding requires further investigation.

  20. Lipolytic response to glucose infusion in human subjects

    SciTech Connect

    Wolfe, R.R.; Peters, E.J.

    1987-02-01

    The authors have determined the effect of various rates of glucose infusion on the rates of release of glycerol (R/sub a/ glycerol), free fatty acids (R/sub a/ FFA), and on energy metabolism in normal human volunteers. Plasma kinetics were determined with use of the stable isotopic tracers D-5-glycerol and (1- TC)palmitate, and energy metabolism was determined by indirect calorimetry. The effect of glucose infusion on R/sub a/ glycerol and R/sub a/ FFA was dose-dependent. At 4 mg x kg x min , both R/sub a/ glycerol and R/sub a/ FFA were suppressed; at 8 mg x kg x min , R/sub a/ FFA was even more depressed, but R/sub a/ glycerol was similar to the value during the 4 mg x kg x min infusion. At all infusion rates tested, the amount of potential energy available from the sum of the glucose infusion and endogenously mobilized fat was always greater than when no glucose was infused. Glucose decreased fat mobilization by both inhibiting lipolysis and stimulating reesterification, thus causing a significant increase in triglyceride-fatty acid substrate cycling within the adipose tissue. Plasma insulin was determined by radioimmunoassay.

  1. Acute effects of guar gum on glucose tolerance and intestinal absorption of nutrients in rats.

    PubMed

    Daumerie, C; Henquin, J C

    1982-03-01

    The mechanism by which non-digestible fibres improve oral glucose tolerance is still unclear. We have studied the effects of guar gum on oral carbohydrate tolerance and intestinal absorption of nutrients in anaesthetized rats. Addition of guar to an intragastric glucose load (1 g/kg) markedly delayed the rise in plasma glucose levels when the concentration of the gum was adequate (10 mg/ml). The insulin response was somewhat less marked, but the differences were not significant. When glucose was introduced directly into the duodenum, the gum only slightly reduced the rise in glucose levels, during the first 15 min. If sucrose (1 g/kg) was infused in the duodenum, acarboseR, an alpha-glucosidase inhibitor, but not guar, slowed the rise in plasma glucose and insulin levels. Intestinal absorption was measured in a tied duodenojejunal loop. Guar decreased active transport of glucose (4 mmol/l) by approximately 20%, but had no significant effect on the passive transport of glucose (100 mmol/l), nor on the absorption of sucrose (40 mmol/l) or leucine (4 mmol/l). At the concentration which improved glucose tolerance (10 mg/ml), but not at lower concentrations, guar gum markedly slowed gastric emptying. These results suggest that guar gum improves tolerance to oral carbohydrates mainly by decreasing the rate of gastric emptying, but inhibition of intestinal absorption may also be involved in the presence of low concentrations of the sugars. PMID:6284563

  2. Upregulation of glucose metabolism by granulocyte-monocyte colony-stimulating factor

    SciTech Connect

    Schuler, A.; Spolarics, Z.; Lang, C.H.; Bagby, G.J.; Nelson, S.; Spitzer, J.J. )

    1991-01-01

    Alterations of glucose metabolism were investigated for 6 hours following an intraarterial injection of murine recombinant granulocyte-monocyte colony-stimulating factor (GM-CSF). GM-CSF resulted in a transient elevation of plasma glucose. The rate of whole body glucose appearance, as measured by infusion of (6-{sup 3}H)glucose, was increased by about 10% between 0.5 and 3 hours following GM-CSF injection. In vivo glucose utilization of individual tissues was investigated by the tracer 2-deoxyglucose technique. At 30 min, GM-CSF increased glucose utilization by 80-90% in liver and lung, and 50-60% in skin and spleen. At 3 and 6 hours, glucose utilization by these tissues returned toward control levels except for lung. There was a 40-50% increase in glucose utilization by skeletal muscle 30 min after GM-CSF which was sustained for 6 hours. Glucose utilization of testis, ileum and kidney did not change significantly. Plasma concentrations of insulin, glucagon and tumor necrosis factor were not altered in response to GM-CSF. These findings indicate that some of the acute metabolic effects of a short-term administration of GM-CSF are observed in macrophage-rich tissues, and suggest that GM-CSF may be involved in the metabolic upregulation of immunologically active tissues.

  3. Cacao liquor procyanidin extract improves glucose tolerance by enhancing GLUT4 translocation and glucose uptake in skeletal muscle.

    PubMed

    Yamashita, Yoko; Okabe, Masaaki; Natsume, Midori; Ashida, Hitoshi

    2012-01-01

    Hyperglycaemia and insulin resistance are associated with the increased risk of the metabolic syndrome and other severe health problems. The insulin-sensitive GLUT4 regulates glucose homoeostasis in skeletal muscle and adipose tissue. In this study, we investigated whether cacao liquor procyanidin (CLPr) extract, which contains epicatechin, catechin and other procyanidins, improves glucose tolerance by promoting GLUT4 translocation and enhances glucose uptake in muscle cells. Our results demonstrated that CLPr increased glucose uptake in a dose-dependent manner and promoted GLUT4 translocation to the plasma membrane of L6 myotubes. Oral administration of a single dose of CLPr suppressed the hyperglycaemic response after carbohydrate ingestion, which was accompanied by enhanced GLUT4 translocation in ICR mice. These effects of CLPr were independent of α-glucosidase inhibition in the small intestine. CLPr also promoted GLUT4 translocation in skeletal muscle of C57BL/6 mice fed a CLPr-supplemented diet for 7 d. These results indicate that CLPr is a beneficial food material for improvement of glucose tolerance by promoting GLUT4 translocation to the plasma membrane of skeletal muscle. PMID:25191549

  4. Glucose repression in Saccharomyces cerevisiae.

    PubMed

    Kayikci, Ömur; Nielsen, Jens

    2015-09-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. PMID:26205245

  5. Glucose repression in Saccharomyces cerevisiae

    PubMed Central

    Kayikci, Ömur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. PMID:26205245

  6. Kinetics of metabolism of glucose, propionate and CO2 in steers as affected by injecting phlorizin and feeding propionate

    SciTech Connect

    Veenhuizen, J.J.; Russell, R.W.; Young, J.W.

    1988-11-01

    Effects of injecting phlorizin subcutaneously and/or feeding propionate on metabolism of glucose, propionate and CO2 were determined for four steers used in a 4 x 4 Latin square design. Isotope dilution techniques were used to determine a four-pool kinetic solution for the flux of carbon among plasma glucose, rumen propionate, blood CO2 and rumen CO2. Injecting 1 g of phlorizin twice daily for 19 d resulted in 7.1 mol glucose C/d being excreted in urine. The basal glucose production of 13.4 mol C/d was increased to 17.9 mol C/d with phlorizin. There was no change in glucose oxidation or propionate production. The percentage of plasma glucose derived from propionate was unaffected by phlorizin, but 54 +/- 0.4% of total propionate was converted to plasma glucose during phlorizin treatment versus 40 +/- 0.6% during the basal treatment. When propionate was fed (18.3 mol C/d) glucose production increased to 21.2 mol C/d from the basal value of 13.4 mol C/d, and propionate oxidation to CO2 increased to 14.9 mol C/d from the basal value of 4.1 mol C/d. Glucose derived from propionate was 43 +/- 5% for the basal treatment and 67 +/- 3% during propionate feeding. The percentage of propionate converted to plasma glucose and blood and rumen CO2 was not affected by feeding propionate. An increased need for glucose, because of glucose excretion during phlorizin treatment, caused an increased utilization of propionate for gluconeogenesis, but an increased availability of propionate caused an increase in glucose production without affecting the relative distribution of carbon from propionate.

  7. Optoelectronic Apparatus Measures Glucose Noninvasively

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Rovati, Luigi L.

    2003-01-01

    An optoelectronic apparatus has been invented as a noninvasive means of measuring the concentration of glucose in the human body. The apparatus performs polarimetric and interferometric measurements of the human eye to acquire data from which the concentration of glucose in the aqueous humor can be computed. Because of the importance of the concentration of glucose in human health, there could be a large potential market for instruments based on this apparatus.

  8. Optical monitoring of glucose concentration

    NASA Astrophysics Data System (ADS)

    Ross, I. N.; Mbanu, A.

    1985-02-01

    A device for the monitoring of blood glucose levels is investigated. It measures the sugar concentration using the effect of the glucose on the optical refractive index. Light is transmitted along an optical fibre, and, as most of the internal rays are incident at the fibre surface at an angle less than the critical angle, the refractive index of the surrounding liquid can be calculated. The device can measure glucose concentrations with a sensitivity of better than 0.1%.

  9. CMOS image sensors as an efficient platform for glucose monitoring.

    PubMed

    Devadhasan, Jasmine Pramila; Kim, Sanghyo; Choi, Cheol Soo

    2013-10-01

    Complementary metal oxide semiconductor (CMOS) image sensors have been used previously in the analysis of biological samples. In the present study, a CMOS image sensor was used to monitor the concentration of oxidized mouse plasma glucose (86-322 mg dL(-1)) based on photon count variation. Measurement of the concentration of oxidized glucose was dependent on changes in color intensity; color intensity increased with increasing glucose concentration. The high color density of glucose highly prevented photons from passing through the polydimethylsiloxane (PDMS) chip, which suggests that the photon count was altered by color intensity. Photons were detected by a photodiode in the CMOS image sensor and converted to digital numbers by an analog to digital converter (ADC). Additionally, UV-spectral analysis and time-dependent photon analysis proved the efficiency of the detection system. This simple, effective, and consistent method for glucose measurement shows that CMOS image sensors are efficient devices for monitoring glucose in point-of-care applications. PMID:23900281

  10. Influence of ketamine on regional brain glucose use

    SciTech Connect

    Davis, D.W.; Mans, A.M.; Biebuyck, J.F.; Hawkins, R.A.

    1988-08-01

    The purpose of this study was to determine the effect of different doses of ketamine on cerebral function at the level of individual brain structures as reflected by glucose use. Rats received either 5 or 30 mg/kg ketamine intravenously as a loading dose, followed by an infusion to maintain a steady-state level of the drug. An additional group received 30 mg/kg as a single injection only, and was studied 20 min later, by which time they were recovering consciousness (withdrawal group). Regional brain energy metabolism was evaluated with (6-/sup 14/C)glucose and quantitative autoradiography during a 5-min experimental period. A subhypnotic, steady-state dose (5 mg/kg) of ketamine caused a stimulation of glucose use in most brain areas, with an average increase of 20%. At the larger steady-state dose (30 mg/kg, which is sufficient to cause anesthesia), there was no significant effect on most brain regions; some sensory nuclei were depressed (inferior colliculus, -29%; cerebellar dentate nucleus, -18%; vestibular nucleus, -16%), but glucose use in the ventral posterior hippocampus was increased by 33%. In contrast, during withdrawal from a 30-mg/kg bolus, there was a stimulation of glucose use throughout the brain (21-78%), at a time when plasma ketamine levels were similar to the levels in the 5 mg/kg group. At each steady-state dose, as well as during withdrawal, ketamine caused a notable stimulation of glucose use by the hippocampus.

  11. Thermoresponsive amperometric glucose biosensor.

    PubMed

    Pinyou, Piyanut; Ruff, Adrian; Pöller, Sascha; Barwe, Stefan; Nebel, Michaela; Alburquerque, Natalia Guerrero; Wischerhoff, Erik; Laschewsky, André; Schmaderer, Sebastian; Szeponik, Jan; Plumeré, Nicolas; Schuhmann, Wolfgang

    2016-03-01

    The authors report on the fabrication of a thermoresponsive biosensor for the amperometric detection of glucose. Screen printed electrodes with heatable gold working electrodes were modified by a thermoresponsive statistical copolymer [polymer I: poly(ω-ethoxytriethylenglycol methacrylate-co-3-(N,N-dimethyl-N-2-methacryloyloxyethyl ammonio) propanesulfonate-co-ω-butoxydiethylenglycol methacrylate-co-2-(4-benzoyl-phenoxy)ethyl methacrylate)] with a lower critical solution temperature of around 28 °C in aqueous solution via electrochemically induced codeposition with a pH-responsive redox-polymer [polymer II: poly(glycidyl methacrylate-co-allyl methacrylate-co-poly(ethylene glycol)methacrylate-co-butyl acrylate-co-2-(dimethylamino)ethyl methacrylate)-[Os(bpy)2(4-(((2-(2-(2-aminoethoxy)ethoxy)ethyl)amino)methyl)-N,N-dimethylpicolinamide)](2+)] and pyrroloquinoline quinone-soluble glucose dehydrogenase acting as biological recognition element. Polymer II bears covalently bound Os-complexes that act as redox mediators for shuttling electrons between the enzyme and the electrode surface. Polymer I acts as a temperature triggered immobilization matrix. Probing the catalytic current as a function of the working electrode temperature shows that the activity of the biosensor is dramatically reduced above the phase transition temperature of polymer I. Thus, the local modulation of the temperature at the interphase between the electrode and the bioactive layer allows switching the biosensor from an on- to an off-state without heating of the surrounding analyte solution. PMID:26702635

  12. Low glucokinase activity and high rates of gluconeogenesis contribute to hyperglycemia in barn owls (Tyto alba) after a glucose challenge.

    PubMed

    Myers, M R; Klasing, K C

    1999-10-01

    Barn owls (Tyto alba) and leghorn chickens were fed a low protein high glucose (33.44% protein, 23.67% glucose) or a high protein low glucose (55.35% protein, 1.5% glucose) diet. After an intravenous glucose infusion, the peak in plasma glucose was not affected by diet in either species and was 22.6 and 39.4 mmol/L in chickens and barn owls, respectively. Glucose levels returned to normal within 30 min in chickens, but remained elevated for 3.5 h in barn owls. An oral glucose challenge also resulted in greater and longer hyperglycemia in barn owls than in chickens. The activities of hepatic glucokinase, malic enzyme and phosphoenolpyruvate carboxykinase of barn owls were 16, 35, and 333% of the levels in chickens. Malic enzyme (P = 0.024) was less affected by dietary glucose level in barn owls than in chickens. Cultured hepatocytes from chickens produced 43% more glucose from lactate than hepatocytes from barn owls and, conversely, barn owl hepatocytes produced 87% more glucose from threonine than chickens (P = 0.001). Gluconeogenesis from lactate was greatly suppressed by high media glucose in chicken hepatocytes but not in those of barn owls (P = 0.0001 for species by glucose level interaction). When threonine was the substrate, gluconeogenesis was suppressed by increased glucose in both species but to a greater relative extent in chickens (P = 0.007 for species by glucose level interaction). Owls were glucose intolerant at least in part because of low hepatic glucokinase activity and an inadequate suppression of gluconeogenesis in the presence of exogenous glucose, apparently because they evolved with large excesses of amino acids and limited glucose in their normal diet. PMID:10498765

  13. A Mechanistic Model of Intermittent Gastric Emptying and Glucose-Insulin Dynamics following a Meal Containing Milk Components

    PubMed Central

    MacPherson, Jayden A. R.; Berends, Harma; Steele, Michael A.

    2016-01-01

    To support decision-making around diet selection choices to manage glycemia following a meal, a novel mechanistic model of intermittent gastric emptying and plasma glucose-insulin dynamics was developed. Model development was guided by postprandial timecourses of plasma glucose, insulin and the gastric emptying marker acetaminophen in infant calves fed meals of 2 or 4 L milk replacer. Assigning a fast, slow or zero first-order gastric emptying rate to each interval between plasma samples fit acetaminophen curves with prediction errors equal to 9% of the mean observed acetaminophen concentration. Those gastric emptying parameters were applied to glucose appearance in conjunction with minimal models of glucose disposal and insulin dynamics to describe postprandial glycemia and insulinemia. The final model contains 20 parameters, 8 of which can be obtained by direct measurement and 12 by fitting to observations. The minimal model of intestinal glucose delivery contains 2 gastric emptying parameters and a third parameter describing the time lag between emptying and appearance of glucose in plasma. Sensitivity analysis of the aggregate model revealed that gastric emptying rate influences area under the plasma insulin curve but has little effect on area under the plasma glucose curve. This result indicates that pancreatic responsiveness is influenced by gastric emptying rate as a consequence of the quasi-exponential relationship between plasma glucose concentration and pancreatic insulin release. The fitted aggregate model was able to reproduce the multiple postprandial rises and falls in plasma glucose concentration observed in calves consuming a normal-sized meal containing milk components. PMID:27253712

  14. A Mechanistic Model of Intermittent Gastric Emptying and Glucose-Insulin Dynamics following a Meal Containing Milk Components.

    PubMed

    Stahel, Priska; Cant, John P; MacPherson, Jayden A R; Berends, Harma; Steele, Michael A

    2016-01-01

    To support decision-making around diet selection choices to manage glycemia following a meal, a novel mechanistic model of intermittent gastric emptying and plasma glucose-insulin dynamics was developed. Model development was guided by postprandial timecourses of plasma glucose, insulin and the gastric emptying marker acetaminophen in infant calves fed meals of 2 or 4 L milk replacer. Assigning a fast, slow or zero first-order gastric emptying rate to each interval between plasma samples fit acetaminophen curves with prediction errors equal to 9% of the mean observed acetaminophen concentration. Those gastric emptying parameters were applied to glucose appearance in conjunction with minimal models of glucose disposal and insulin dynamics to describe postprandial glycemia and insulinemia. The final model contains 20 parameters, 8 of which can be obtained by direct measurement and 12 by fitting to observations. The minimal model of intestinal glucose delivery contains 2 gastric emptying parameters and a third parameter describing the time lag between emptying and appearance of glucose in plasma. Sensitivity analysis of the aggregate model revealed that gastric emptying rate influences area under the plasma insulin curve but has little effect on area under the plasma glucose curve. This result indicates that pancreatic responsiveness is influenced by gastric emptying rate as a consequence of the quasi-exponential relationship between plasma glucose concentration and pancreatic insulin release. The fitted aggregate model was able to reproduce the multiple postprandial rises and falls in plasma glucose concentration observed in calves consuming a normal-sized meal containing milk components. PMID:27253712

  15. Dietary fructose and glucose differentially affect lipid and glucose homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Absorbed glucose and fructose differ in that glucose largely escapes first pass removal by the liver, whereas fructose does not, resulting in different metabolic effects of these two monosaccharides. In short-term controlled feeding studies, dietary fructose significantly increases postprandial trig...

  16. Dietary fructose and glucose differentially affect lipid and glucose homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Absorbed glucose and fructose differ in that glucose largely escapes first-pass removal by the liver, whereas fructose does not, resulting in different metabolic effects of these 2 monosaccharides. In short-term controlled feeding studies, dietary fructose significantly increases postprandial trigly...

  17. Alteration of the regional cerebral glucose metabolism in healthy subjects by glucose loading.

    PubMed

    Ishibashi, Kenji; Wagatsuma, Kei; Ishiwata, Kiichi; Ishii, Kenji

    2016-08-01

    High plasma glucose (PG) levels can reduce fluorine-18-labeled fluorodeoxyglucose ((18) F-FDG) uptake, especially in the Alzheimer's disease (AD)-related regions. This fact is supported by studies showing that the resting-state activity in diabetes can be altered in the default mode network (DMN)-related regions, which considerably overlap with the AD-related regions. In order to expand the current knowledge, we aimed to investigate the relationship between increasing PG levels and the regional cerebral metabolic rates for glucose (CMRglc ) as a direct index of brain activity. We performed dynamic (18) F-FDG positron emission tomography with arterial blood sampling once each in the fasting and glucose-loading conditions on 12 young, healthy volunteers without cognitive impairment or insulin resistance. The absolute CMRglc values were calculated for the volume-of-interest (VOI) analysis, and normalized CMRglc maps were generated for the voxelwise analysis. The normalized measurement is known to have smaller intersubject variability than the absolute measurement, and may, thus, lead to greater statistical power. In VOI analysis, no regional difference in the CMRglc was found between the two conditions. In exploratory voxelwise analysis, however, significant clusters were identified in the precuneus, posterior cingulate, lateral parietotemporal, and medial prefrontal regions where the CMRglc decreased upon glucose loading (P < 0.05, corrected). These regions include the representative components of both the DMN and AD pathology. Taken together with the previous knowledge on the relationships between the DMN, AD, and diabetes, it may be inferred that glucose loading induces hypometabolism in the AD-related and DMN-related regions. Hum Brain Mapp 37:2823-2832, 2016. © 2016 Wiley Periodicals, Inc. PMID:27061859

  18. Diabetes alters the blood glucose response to ketamine in streptozotocin-diabetic rats

    PubMed Central

    Chen, Huayong; Li, Li; Xia, Hui

    2015-01-01

    Ketamine is a commonly used short-acting anesthetic and recently attempted to treat pain which is a complication of diabetes. In this study we investigated the effect of ketamine on glucose levels of normal rats and diabetic rats. The results showed that no significance between the glucose levels in ketamine treatment group and saline treatment group at all time points was observed in normal rats. Ketamine did not produce hyperglycemia in normal fasted rats. However, ketamine dose dependently elevated glucose in diabetic rats from 80 mg/kg to 120 mg/kg at 1 hour after injection. The glucose did not return to the levels before treatment in streptozotocin (STZ) induced diabetic rats. Insulin revealed a powerful potency in decreasing glucose levels in diabetic rats. Ketamine did not induce acute hyperglycemia any more after diabetic rats pretreated with insulin. Serum corticosterone was significantly increased in all treatment groups including saline group after 1 hour treatment compared with baseline values. Then the corticosterone declined in both saline treatment groups. However, ketamine induced a more significant increase in corticosterone at 1 hour after injection compared with that of saline control group of diabetic rats. And no decline trend of corticosterone was observed after ketamine treatment 2 hours. Insulin did not reduce the elevated corticosterone level induced by ketamine either. The results suggested that the diabetic rats had a risk of hyperglycaemia when they were treated with ketamine. Pretreatment with insulin is a good symptomatic treatment for hyperglycaemia induced by ketamine. PMID:26379948

  19. Diabetes alters the blood glucose response to ketamine in streptozotocin-diabetic rats.

    PubMed

    Chen, Huayong; Li, Li; Xia, Hui

    2015-01-01

    Ketamine is a commonly used short-acting anesthetic and recently attempted to treat pain which is a complication of diabetes. In this study we investigated the effect of ketamine on glucose levels of normal rats and diabetic rats. The results showed that no significance between the glucose levels in ketamine treatment group and saline treatment group at all time points was observed in normal rats. Ketamine did not produce hyperglycemia in normal fasted rats. However, ketamine dose dependently elevated glucose in diabetic rats from 80 mg/kg to 120 mg/kg at 1 hour after injection. The glucose did not return to the levels before treatment in streptozotocin (STZ) induced diabetic rats. Insulin revealed a powerful potency in decreasing glucose levels in diabetic rats. Ketamine did not induce acute hyperglycemia any more after diabetic rats pretreated with insulin. Serum corticosterone was significantly increased in all treatment groups including saline group after 1 hour treatment compared with baseline values. Then the corticosterone declined in both saline treatment groups. However, ketamine induced a more significant increase in corticosterone at 1 hour after injection compared with that of saline control group of diabetic rats. And no decline trend of corticosterone was observed after ketamine treatment 2 hours. Insulin did not reduce the elevated corticosterone level induced by ketamine either. The results suggested that the diabetic rats had a risk of hyperglycaemia when they were treated with ketamine. Pretreatment with insulin is a good symptomatic treatment for hyperglycaemia induced by ketamine. PMID:26379948

  20. Glucose transport and glucose transporter GLUT4 are regulated by product(s) of intermediary metabolism in cardiomyocytes.

    PubMed Central

    Fischer, Y; Böttcher, U; Eblenkamp, M; Thomas, J; Jüngling, E; Rösen, P; Kammermeier, H

    1997-01-01

    )propyl-2-amine]. In conclusion, cardiomyocyte glucose transport is subject to counter-regulation by alternative substrates. The glucose transport system appears to be controlled by (a) compound(s) of intermediary metabolism (other than glucose 6-phosphate), but in a different way than pyruvate dehydrogenase. Transport inhibition eventually occurs via a decrease in the amount of glucose transporters in the plasma membrane. PMID:9032447

  1. Acute intravenous leptin infusion increases glucose turnover but not skeletal muscle glucose uptake in ob/ob mice.

    PubMed

    Burcelin, R; Kamohara, S; Li, J; Tannenbaum, G S; Charron, M J; Friedman, J M

    1999-06-01

    The mouse ob gene encodes leptin, an adipocyte hormone that regulates body weight and energy expenditure. Leptin has potent metabolic effects on fat and glucose metabolism. A mutation of the ob gene results in mice with severe hereditary obesity and diabetes that can be corrected by treatment with the hormone. In lean mice, leptin acutely increases glucose metabolism in an insulin-independent manner, which could account, at least in part, for some of the antidiabetic effect of the hormone. To investigate further the acute effect of leptin on glucose metabolism in insulin-resistant obese diabetic mice, leptin (40 ng x g(-1) x h(-1)) was administered intravenously for 6 h in C57Bl/6J ob/ob mice. Leptin increased glucose turnover and stimulated glucose uptake in brown adipose tissue (BAT), brain, and heart with no increase in heart rate. A slight increase in all splanchnic tissues was also noticed. Conversely, no increase in skeletal muscle or white adipose tissue (WAT) glucose uptake was observed. Plasma insulin concentration increased moderately but neither glucose, glucagon, thyroid hormones, growth hormone, nor IGF-1 levels were different from phosphate-buffered saline-infused C57Bl/6J ob/ob mice. In addition, leptin stimulated hepatic glucose production, which was associated with increased glucose-6-phosphatase activity. Conversely, PEPCK activity was rather diminished. Interestingly, hepatic insulin receptor substrate (IRS)1-associated phosphatidylinositol 3-kinase activity was slightly elevated, but neither the content of glucose transporter GLUT2 nor the phosphorylation state of the insulin receptor and IRS-1 were changed by acute leptin treatment. Hepatic lipid metabolism was not stimulated during the acute leptin infusion, since the content of triglycerides, glycerol, and citrate was unchanged. These findings suggest that in ob/ob mice, the antidiabetic antiobesity effect of leptin could be the result of a profound alteration of glucose metabolism in liver

  2. Acute and chronic effects of glyceryl trinitrate therapy on insulin and glucose regulation in humans.

    PubMed

    Jedrzkiewicz, Sean; Parker, John D

    2013-05-01

    This study examined the effect of acute and sustained transdermal glyceryl trinitrate (GTN) therapy on insulin and glucose regulation. Totally, 12 males (18-30 years) underwent a glucose tolerance test at baseline (visit 1), 90 minutes after acute transdermal GTN 0.6 mg/h (visit 2), following 7 days of continuous GTN (visit 3), and 2 to 3 days after stopping GTN (visit 4). At each visit, plasma glucose and insulin concentrations were measured before and 30, 60, 90, and 120 minutes after a 75-g oral glucose load. Indices of glucose metabolism that were examined included the insulin sensitivity index, the homeostasis model assessment of insulin resistance (HOMA-IR), and the insulinogenic index. The acute administration of GTN had no effect on glucose and insulin responses (visit 2). However, after 7 days of GTN exposure (visit 3) there was an increase in the mean glucose concentration measured after the oral glucose load. On visit 1, the mean glucose concentration (± standard deviation) following the 75 g oral glucose challenge was 5.7 ± 0.5 µmol/L. On visit 3, after 7 days of transdermal GTN therapy, the mean glucose concentration after the oral glucose was significantly higher; 6.2 ± 0.5 µmol/L (P < .015; 95% confidence intervals 0.25-0.77). There was also an increase in the HOMA-IR index; on visit 1, the median HOMA-IR (interquartile range) was 5.2 (3.9) versus 6.9 (6.8) on visit 3 (P < .015). Other indices of glucose metabolism did not change. These observations document that GTN therapy modifies glucose metabolism causing evidence of increased insulin resistance during sustained therapy in normal humans. PMID:23230283

  3. Effects of glucose on water and sodium reabsorption in the proximal convoluted tubule of rat kidney.

    PubMed Central

    Bishop, J H; Green, R; Thomas, S

    1978-01-01

    1. The effects of glucose on sodium and water reabsorption by rat renal proximal tubules was investigated by in situ microperfusion of segments of proximal tubules with solutions containing glucose or no glucose, with and without phlorizin. 2. Absence of glucose did not significantly alter net water flux. Sodium flux was reduced by about 10% but this was not statistically significant. 3. In the absence of glucose in the perfusion fluid net secretion of glucose occurred. 4. Phlorizin reduced either net reabsorption or net secretion of glucose; and net water flux. 5. The data suggest that in later parts of the proximal convoluted tubule some sodium may be co-transported with glucose, but that this represents only a small fraction of the total sodium reabsorption. 6. It is suggested that the glucose carrier is reversible and in appropriate circumstances could cause glucose secretion. 7. Although phlorizin alters net water flux the underlying mechanisms are not clear. 8. The calculated osmolality of the reabsorbate was significantly greater than the perfusate osmolality and greater than plasma osmolality although this was not quite significant statistically. PMID:633143

  4. Glucosidic pathways of glycogen breakdown and glucose production by muscle from postexercised frogs.

    PubMed

    Fournier, P A; Guderley, H

    1993-11-01

    Muscle and body glucose in frogs increases markedly during the initial hour of recovery after strenuous exercise. The liver is not the major source responsible for this accumulation. This is indicated by the stability of liver glycogen levels after exercise and by the observation that hepatectomized and normal frogs accumulate similar amounts of glucose in their muscles and body during recovery. The renal contribution cannot account for this increase in body glucose. Most of the glucose that accumulates in the body after exercise has a muscular origin, as indicated by the facts that two-thirds of the body glucose is found in muscle and that the intracellular levels of muscle glucose are much higher than those of the plasma. The glucose that accumulates outside muscle may also have a muscular origin. The glucosidic pathways of glycogen breakdown are the only metabolic avenue with sufficient capacity to account for the amount of glucose accumulated in muscle during the first hour of recovery. These results indicate that the ability of an isolated preparation of frog muscle to liberate glucose during recovery from exercise (Fournier et al. J. Biol. Chem. 267: 8234-8238, 1992) is not an artifactual metabolic curiosity but rather a metabolic reality that takes place in vivo. Glucose accumulation during recovery is thought to facilitate the metabolic transition of frog carbohydrate metabolism from a catabolic state, characteristic of exercise, to an anabolic one. PMID:8238616

  5. Muscle: the predominant glucose-producing organ in the leopard frog during exercise.

    PubMed

    Fournier, P A; Guderley, H

    1993-02-01

    Although liver is thought to be the major glucose-producing organ in vertebrates, it is not the major source responsible for the accumulation of glucose in frogs during burst activity. This is indicated by the absence of significant changes in liver glycogen levels during exercise, the inability of the maximal reported rate of hepatic glucose production in vitro to account for the increase in the glucose content of the frog, and from the observation that hepatectomized and normal frogs accumulate similar amounts of glucose in their muscles and body during exercise. We conclude that most glucose that accumulates in the body during exercise originates in muscle because two-thirds of body glucose is found in muscle and because the intracellular levels of muscle glucose rise well above plasma levels. The glucose that accumulates outside muscle is also likely to originate in muscle. The most likely metabolic source of the glucose produced by muscle is the glycogen hydrolyzed by amylo-1,6-glucosidase. PMID:8447479

  6. Effects of stevioside on glucose transport activity in insulin-sensitive and insulin-resistant rat skeletal muscle.

    PubMed

    Lailerd, Narissara; Saengsirisuwan, Vitoon; Sloniger, Julie A; Toskulkao, Chaivat; Henriksen, Erik J

    2004-01-01

    Stevioside (SVS), a natural sweetener extracted from Stevia rebaudiana, has been used as an antihyperglycemic agent. However, little is known regarding its potential action on skeletal muscle, the major site of glucose disposal. Therefore, the purpose of the present study was to determine the effect of SVS treatment on skeletal muscle glucose transport activity in both insulin-sensitive lean (Fa/-) and insulin-resistant obese (fa/fa) Zucker rats. SVS was administered (500 mg/kg body weight by gavage) 2 hours before an oral glucose tolerance test (OGTT). Whereas the glucose incremental area under the curve (IAUC(glucose)) was not affected by SVS in lean Zucker rats, the insulin incremental area under the curve (IAUC(insulin)) and the glucose-insulin index (product of glucose and insulin IAUCs and inversely related to whole-body insulin sensitivity) were decreased (P<.05) by 42% and 45%, respectively. Interestingly, in the obese Zucker rat, SVS also reduced the IAUC(insulin) by 44%, and significantly decreased the IAUC(glucose) (30%) and the glucose-insulin index (57%). Muscle glucose transport was assessed following in vitro SVS treatment. In lean Zucker rats, basal glucose transport in type I soleus and type IIb epitrochlearis muscles was not altered by 0.01 to 0.1 mmol/L SVS. In contrast, 0.1 mmol/L SVS enhanced insulin-stimulated (2 mU/mL) glucose transport in both epitrochlearis (15%) and soleus (48%). At 0.5 mmol/L or higher, the SVS effect was reversed. Similarly, basal glucose transport in soleus and epitrochlearis muscles in obese Zucker rats was not changed by lower doses of SVS (0.01 to 0.1 mmol/L). However, these lower doses of SVS significantly increased insulin-stimulated glucose transport in both obese epitrochlearis and soleus (15% to 20%). In conclusion, acute oral SVS increased whole-body insulin sensitivity, and low concentrations of SVS (0.01 to 0.1 mmol/L) modestly improved in vitro insulin action on skeletal muscle glucose transport in both lean

  7. Alginate cryogel based glucose biosensor

    NASA Astrophysics Data System (ADS)

    Fatoni, Amin; Windy Dwiasi, Dian; Hermawan, Dadan

    2016-02-01

    Cryogel is macroporous structure provides a large surface area for biomolecule immobilization. In this work, an alginate cryogel based biosensor was developed to detect glucose. The cryogel was prepared using alginate cross-linked by calcium chloride under sub-zero temperature. This porous structure was growth in a 100 μL micropipette tip with a glucose oxidase enzyme entrapped inside the cryogel. The glucose detection was based on the colour change of redox indicator, potassium permanganate, by the hydrogen peroxide resulted from the conversion of glucose. The result showed a porous structure of alginate cryogel with pores diameter of 20-50 μm. The developed glucose biosensor was showed a linear response in the glucose detection from 1.0 to 5.0 mM with a regression of y = 0.01x+0.02 and R2 of 0.994. Furthermore, the glucose biosensor was showed a high operational stability up to 10 times of uninterrupted glucose detections.

  8. Antihypertensive drugs and glucose metabolism

    PubMed Central

    Rizos, Christos V; Elisaf, Moses S

    2014-01-01

    Hypertension plays a major role in the development and progression of micro- and macrovascular disease. Moreover, increased blood pressure often coexists with additional cardiovascular risk factors such as insulin resistance. As a result the need for a comprehensive management of hypertensive patients is critical. However, the various antihypertensive drug categories have different effects on glucose metabolism. Indeed, angiotensin receptor blockers as well as angiotensin converting enzyme inhibitors have been associated with beneficial effects on glucose homeostasis. Calcium channel blockers (CCBs) have an overall neutral effect on glucose metabolism. However, some members of the CCBs class such as azelnidipine and manidipine have been shown to have advantageous effects on glucose homeostasis. On the other hand, diuretics and β-blockers have an overall disadvantageous effect on glucose metabolism. Of note, carvedilol as well as nebivolol seem to differentiate themselves from the rest of the β-blockers class, being more attractive options regarding their effect on glucose homeostasis. The adverse effects of some blood pressure lowering drugs on glucose metabolism may, to an extent, compromise their cardiovascular protective role. As a result the effects on glucose homeostasis of the various blood pressure lowering drugs should be taken into account when selecting an antihypertensive treatment, especially in patients which are at high risk for developing diabetes. PMID:25068013

  9. Salivary glucose concentration exhibits threshold kinetics in normal-weight, overweight, and obese children

    PubMed Central

    Hartman, Mor-Li; Goodson, J Max; Barake, Roula; Alsmadi, Osama; Al-Mutawa, Sabiha; Ariga, Jitendra; Soparkar, Pramod; Behbehani, Jawad; Behbehani, Kazem; Welty, Francine

    2015-01-01

    Background Metabolic syndrome in childhood predicts the development of cardiovascular disease and type 2 diabetes (T2D) in adulthood. Testing for features of metabolic syndrome, such as fasting plasma glucose concentration, requires blood sampling which can be difficult in children. Here we evaluated salivary glucose concentration as a surrogate measurement for plasma glucose concentration in 11-year-old US children. Methods Children from Portland, Maine, and Cambridge, Massachusetts, with a mean age of 10.6±0.2 years provided 6-hour fasting samples of both blood and whole saliva. Salivary glucose levels were measured with a high-sensitivity assay (sensitivity =0.002 mg/dL). Plasma glucose levels were determined by a commercial clinical laboratory. Blood pressure, salivary flow rate, height, and weight were also measured. Results Of the 65 children enrolled, there were two underweight children (3.1%), 30 normal-weight children (46.2%), 12 overweight children (18.4%), and 21 obese children (32.3%). The mean overall glucose concentrations were 0.11±0.02 mg/dL in saliva and 86.3±0.8 mg/dL in plasma, and these did not differ significantly by body–weight groups. By regression analysis, the plasma concentration equaled 13.5 times the saliva concentration, with a threshold level of 84.8 mg/dL. Salivary glucose values less than threshold plasma concentration were essentially zero. Diagnostic analysis indicated a positive predictive value of 50%, a negative predictive value of 90%, and a sensitivity and specificity both of approximately 75%. The salivary glucose concentration did not vary with saliva flow rate. Conclusion Taking into account the threshold response characteristics of the salivary glucose concentration response, these results suggest that testing salivary glucose levels may be useful as a screening assay for high fasting plasma glucose levels. The low false positive value is important to assure a low fraction of missed diagnoses. PMID:25565874

  10. Combining plasma Epstein-Barr virus DNA and nodal maximal standard uptake values of 18F-fluoro-2-deoxy-D-glucose positron emission tomography improved prognostic stratification to predict distant metastasis for locoregionally advanced nasopharyngeal carcinoma

    PubMed Central

    Chen, Qiu-Yan; Guo, Shan-Shan; Liu, Li-Ting; Fan, Wei; Zhang, Xu; Guo, Ling; Zhao, Chong; Cao, Ka-Jia; Qian, Chao-Nan; Guo, Xiang; Xie, Dan; Zeng, Mu-Sheng; Mai, Hai-Qiang

    2015-01-01

    Background This study aimed to evaluate the value of combining the nodal maximal standard uptake values (SUVmax) of 18 F-fluoro-2-deoxy-D-glucose positron emission tomography with Epstein-Barr virus DNA(EBV DNA) levels to predict distant metastasis for nasopharyngeal carcinoma (NPC) patients Patients and Methods Eight hundred seventy-four patients with stage III-IVa-b NPC were evaluated for the effects of combining SUVmax and EBV DNA levels on distant metastasis-free survival (DMFS), disease-free survival (DFS) and overall survival (OS). Results The optimal cutoff value was 6,220 copies/mL for EBV DNA and 7.5 for SUVmax-N. Patients with lower EBV DNA levels or SUVmax-N had a significantly better 3-year DMFS, DFS, and OS. Patients were divided into four groups based on EBV DNA and SUVmax-N, as follows: low EBV DNA and low SUVmax-N (LL), low EBV DNA and high SUVmax-N (LH), high EBV DNA and low SUVmax-N (HL), and high EBV DNA and high SUVmax-N (HH). There were significant differences between the four mentioned groups in 3-year DMFS: 95.7%, 92.2%, 92.3%, and 80.1%, respectively (Ptrend < 0.001). When looking at the disease stage, the 3-year DMFS in group LL, LH, HL, HH were 94.2%, 92.9%, 95.0%, and 81.1%, respectively, in stage III patients (Ptrend < 0.001) and 92.7%, 87.2%, 86.3%, and 77.0% in stage IVa–b patients (Ptrend = 0.026). Conclusion Pretreatment EBV DNA and SUVmax of neck lymph nodes were independent prognostic factors for distant metastasis in NPC patients. Combining EBV DNA and SUVmax-N led to an improved risk stratification for distant metastasis in advanced-stage disease. PMID:26512922

  11. Development and Validation of a Rapid 13C6-Glucose Isotope Dilution UPLC-MRM Mass Spectrometry Method for Use in Determining System Accuracy and Performance of Blood Glucose Monitoring Devices

    PubMed Central

    Matsunami, Risë K.; Angelides, Kimon; Engler, David A.

    2015-01-01

    Background: There is currently considerable discussion about the accuracy of blood glucose concentrations determined by personal blood glucose monitoring systems (BGMS). To date, the FDA has allowed new BGMS to demonstrate accuracy in reference to other glucose measurement systems that use the same or similar enzymatic-based methods to determine glucose concentration. These types of reference measurement procedures are only comparative in nature and are subject to the same potential sources of error in measurement and system perturbations as the device under evaluation. It would be ideal to have a completely orthogonal primary method that could serve as a true standard reference measurement procedure for establishing the accuracy of new BGMS. Methods: An isotope-dilution liquid chromatography/mass spectrometry (ID-UPLC-MRM) assay was developed using 13C6-glucose as a stable isotope analogue to specifically measure glucose concentration in human plasma, and validated for use against NIST standard reference materials, and against fresh isolates of whole blood and plasma into which exogenous glucose had been spiked. Assay performance was quantified to NIST-traceable dry weight measures for both glucose and 13C6-glucose. Results: The newly developed assay method was shown to be rapid, highly specific, sensitive, accurate, and precise for measuring plasma glucose levels. The assay displayed sufficient dynamic range and linearity to measure across the range of both normal and diabetic blood glucose levels. Assay performance was measured to within the same uncertainty levels (<1%) as the NIST definitive method for glucose measurement in human serum. Conclusions: The newly developed ID UPLC-MRM assay can serve as a validated reference measurement procedure to which new BGMS can be assessed for glucose measurement performance. PMID:25986627

  12. Glucose kinetics in nondiabetic and diabetic women during the third trimester of pregnancy

    SciTech Connect

    Cowett, R.M.; Susa, J.B.; Kahn, C.B.; Giletti, B.; Oh, W.; Schwartz, R.

    1983-08-01

    Glucose kinetics were measured during the third trimester of pregnancy in nine nondiabetic women, nine insulin-dependent diabetic women, six gestational diabetic women, and five control women (nonpregnant, nondiabetic) after an overnight fast. The patients not dependent on insulin were diagnosed as diabetic by oral glucose tolerance tests during the third trimester. The turnover studies were repeated post partum (6 weeks to 5 months after delivery) in 14 of the 24 pregnant subjects. All pregnant groups had a progressive fall in plasma glucose concentration during the study, but there was a steady state of plasma glucose concentration during the turnover period. In comparison to the control subjects, both the pregnant nondiabetic and pregnant insulin-dependent diabetic women had significantly higher plasma insulin concentrations throughout the study There were no differences in the glucose turnover rate between any of the pregnant groups and the control group of women patients were studied post partum, the glucose turnover rate was similar when referenced to body weight; however, because of a 9.6% to 14.5% fall in weight post partum, the absolute valueds were h in the pregnant women. We conclude that, in the basal state after an overnight fast, (1) both nondiabetic and diabetic patients accelerated their glucose turnover rate during pregnancy to provide for increased maternal and fetoplacental metabolic requirements, and (2) in the diabetic subjects the nearly normal plasma glucose and insulin concentrations and other metabolic parameters, as well as the glucose turnover rate, suggested good metabolic control during pregnancy in most of the insulin-dependent and in all of the gestational diabetic patients.

  13. The Effect of Exercise with or Without Metformin on Glucose Profiles in Type 2 Diabetes: A Pilot Study.

    PubMed

    Myette-Côté, Étienne; Terada, Tasuku; Boulé, Normand G

    2016-04-01

    The study's goals were 1) to confirm the previously observed increase in postprandial glucose levels immediately after exercise in people with type 2 diabetes who are being treated with metformin; 2) to determine how long the increased glucose persists; 3) to examine the effect of skipping a dose of metformin before or after exercise. We recruited 10 participants with type 2 diabetes who were taking metformin. They completed 4 experimental conditions in random order: 1) morning and evening metformin doses, without exercise (M-M); 2) morning and evening metformin doses, with exercise (M-Ex-M); 3) exercise with evening metformin dose only (Ex-M); and 4) morning metformin dose only, with exercise (M-Ex). Exercise consisted of walking for 50 minutes at a moderate intensity at 11 am on the first day of each condition. Glucose was measured for 72 hours using continuous glucose monitoring systems. Standardized breakfasts were provided for 3 days in each condition, and standardized lunches and dinners were provided on the first day. Compared to M-M, M-Ex-M increased the average 2-hour incremental postprandial area under the curve following the 5 standardized meals (p<0.01) but did not affect daily mean glucose or fasting glucose concentrations. M-Ex (p<0.05), but not Ex-M (p=0.08) increased mean glucose concentrations compared to M-Ex-M on day 1. There were no differences among the 3 exercise conditions for fasting or postprandial glucose concentrations. The addition of a bout of exercise to metformin led to an increase in postprandial glucose levels without affecting mean glucose concentrations. Removing a metformin dose before or after exercise did not attenuate this negative effect. PMID:26711719

  14. Spontaneous hyperglycemia and impaired glucose tolerance in athymic nude BALB/c mice.

    PubMed

    Zeidler, A; Tosco, C; Kumar, D; Slavin, B; Parker, J

    1982-09-01

    Basal plasma glucose, glucose tolerance, and insulin secretion were investigated in young and mature athymic nude BALB/c mice and in age-matched controls. Basal plasma glucose levels in male athymic nude mice were similar to those of controls at 1, 3, and 4 wk of age. At 6, 8, and 12 wk of age, male athymic nudes had significantly higher basal plasma glucose levels when compared with controls (P less than 0.01). Plasma immunoreactive insulin concentrations were similar in athymic nudes and controls at 1 wk of age, but at 3 wk of age and subsequently at 6, 8, and 12 wk athymic nude mice had significantly decreased insulin levels when compared with their age-matched controls (P less than 0.05). We found impaired glucose tolerance in male athymic nude mice at all age groups when compared with both female athymic nudes and control BALB/c mice. The discovery of a spontaneous diabetic syndrome (hyperglycemia, impaired glucose tolerance, and decreased insulin secretion) in a colony of athymic nude mice may provide an excellent model for studying the genetics and interactions between the immune and endocrine systems. PMID:6761217

  15. Effect of insulin on in vivo glucose utilization in individual tissues of anesthetized lactating rats

    SciTech Connect

    Burnol, A.F.; Ferre, P.; Leturque, A.; Girard, J.

    1987-02-01

    Glucose utilization rate has been measured in skeletal muscles, white adipose tissue, and mammary gland of anesthetized nonlactating and lactating rats. During lactation, basal (1-TH) glucose utilization is decreased by 40% in periovarian white adipose tissue and by 65% in epitrochlearis and extensor digitorum longus but not in soleus muscle. This may be related to the lower blood glucose and plasma insulin concentrations observed during lactation. Basal glucose utilization rate in the mammary gland was, respectively, 18 +/- 2 and 350 +/- 50 g/min in nonlactating and lactating rats. During the euglycemic hyperinsulinemic clamp, a physiological increment in plasma insulin concentration induces a similar increase in glucose utilization rate in skeletal muscles and white adipose tissue in the two groups of rats. Furthermore this low increase in plasma insulin concentration does not alter mammary glucose utilization rate in nonlactating rats but induces the same increase as a maximal insulin concentration in lactating rats. These data show that the active mammary gland is the most insulin-sensitive tissue of the lactating rat that has been tested. The overall increase in insulin sensitivity and responsiveness that has been described in lactating rats can then mainly be attributed to the presence of the active mammary gland. Plasma insulin was determined by radioimmunoassay.

  16. Glucose oxidase-magnetite nanoparticle bioconjugate for glucose sensing.

    PubMed

    Rossi, Liane M; Quach, Ashley D; Rosenzweig, Zeev

    2004-10-01

    Immobilization of bioactive molecules on the surface of magnetic nanoparticles is of great interest, because the magnetic properties of these bioconjugates promise to greatly improve the delivery and recovery of biomolecules in biomedical applications. Here we present the preparation and functionalization of magnetite (Fe3O4) nanoparticles 20 nm in diameter and the successful covalent conjugation of the enzyme glucose oxidase to the amino-modified nanoparticle surface. Functionalization of the magnetic nanoparticle surface with amino groups greatly increased the amount and activity of the immobilized enzyme compared with immobilization procedures involving physical adsorption. The enzymatic activity of the glucose oxidase-coated magnetic nanoparticles was investigated by monitoring oxygen consumption during the enzymatic oxidation of glucose using a ruthenium phenanthroline fluorescent complex for oxygen sensing. The glucose oxidase-coated magnetite nanoparticles could function as nanometric glucose sensors in glucose solutions of concentrations up to 20 mmol L(-1). Immobilization of glucose oxidase on the nanoparticles also increased the stability of the enzyme. When stored at 4 degrees C the nanoparticle suspensions maintained their bioactivity for up to 3 months. PMID:15448967

  17. Glucose-stat, a glucose-controlled continuous culture.

    PubMed Central

    Kleman, G L; Chalmers, J J; Luli, G W; Strohl, W R

    1991-01-01

    A predictive and feedback proportional control algorithm, developed for fed-batch fermentations and described in a companion paper (G. L. Kleman, J. J. Chalmers, G. W. Luli, and W. R. Strohl, Appl. Environ. Microbiol. 57:910-917, 1991), was used in this work to control a continuous culture on the basis of the soluble-glucose concentration (called the glucose-stat). This glucose-controlled continuous-culture system was found to reach and maintain steady state for 11 to 24 residence times when four different background glucose concentrations (0.27, 0.50, 0.7, and 1.5 g/liter) were used. The predictive-plus-feedback control system yielded very tight control of the continuous nutristat cultures; glucose concentrations were maintained at the set points with less than 0.003 standard error. Acetate production by Escherichia coli B in glucose-stats was found not to be correlated with the level of steady-state soluble-glucose concentration. PMID:2059050

  18. Glucose-stat, a glucose-controlled continuous culture.

    PubMed

    Kleman, G L; Chalmers, J J; Luli, G W; Strohl, W R

    1991-04-01

    A predictive and feedback proportional control algorithm, developed for fed-batch fermentations and described in a companion paper (G. L. Kleman, J. J. Chalmers, G. W. Luli, and W. R. Strohl, Appl. Environ. Microbiol. 57:910-917, 1991), was used in this work to control a continuous culture on the basis of the soluble-glucose concentration (called the glucose-stat). This glucose-controlled continuous-culture system was found to reach and maintain steady state for 11 to 24 residence times when four different background glucose concentrations (0.27, 0.50, 0.7, and 1.5 g/liter) were used. The predictive-plus-feedback control system yielded very tight control of the continuous nutristat cultures; glucose concentrations were maintained at the set points with less than 0.003 standard error. Acetate production by Escherichia coli B in glucose-stats was found not to be correlated with the level of steady-state soluble-glucose concentration. PMID:2059050

  19. Amino acid mixture acutely improves the glucose tolerance of healthy overweight adults.

    PubMed

    Wang, Bei; Kammer, Lynne M; Ding, Zhenping; Lassiter, David G; Hwang, Jungyun; Nelson, Jeffrey L; Ivy, John L

    2012-01-01

    Certain amino acids have been reported to influence carbohydrate metabolism and blood glucose clearance, as well as improve the glucose tolerance in animal models. We hypothesized that an amino acid mixture consisting of isoleucine and 4 additional amino acids would improve the glucose response of healthy overweight men and women to an oral glucose tolerance test (OGTT). Twenty-two overweight healthy subjects completed 2 OGTTs after consuming 2 different test beverages. The amino acid mixture beverage (CHO/AA) consisted of 0.088 g cystine 2HCl, 0.043 g methionine, 0.086 g valine, 12.094 g isoleucine, 0.084 g leucine, and 100 g dextrose. The control beverage (CHO) consisted of 100 g dextrose only. Venous blood samples were drawn 10 minutes before the start of ingesting the drinks and 15, 30, 60, 120, and 180 minutes after the completion of the drinks. During the OGTT, the plasma glucose response for the CHO/AA treatment was significantly lower than that of the CHO treatment (P < .01), as was the plasma glucose area under the curve (CHO/AA 806 ± 31 mmol/L·3 hours vs CHO 942 ± 40 mmol/L·3 hours). Differences in plasma glucose between treatments occurred at 30, 60, 120, and 180 minutes after supplement ingestion. Plasma glucagon during the CHO/AA treatment was significantly higher than during the CHO treatment. However, there were no significant differences in plasma insulin or C-peptide responses between treatments. These results suggest that the amino acid mixture lowers the glucose response to an OGTT in healthy overweight subjects in an insulin-independent manner. PMID:22260861

  20. Effect of pertussis toxin pretreated centrally on blood glucose level induced by stress.

    PubMed

    Suh, Hong-Won; Sim, Yun-Beom; Park, Soo-Hyun; Sharma, Naveen; Im, Hyun-Ju; Hong, Jae-Seung

    2016-09-01

    In the present study, we examined the effect of pertussis toxin (PTX) administered centrally in a variety of stress-induced blood glucose level. Mice were exposed to stress after the pretreatment of PTX (0.05 or 0.1 µg) i.c.v. or i.t. once for 6 days. Blood glucose level was measured at 0, 30, 60 and 120 min after stress stimulation. The blood glucose level was increased in all stress groups. The blood glucose level reached at maximum level after 30 min of stress stimulation and returned to a normal level after 2 h of stress stimulation in restraint stress, physical, and emotional stress groups. The blood glucose level induced by cold-water swimming stress was gradually increased up to 1 h and returned to the normal level. The intracerebroventricular (i.c.v.) or intrathecal (i.t.) pretreatment with PTX, a Gi inhibitor, alone produced a hypoglycemia and almost abolished the elevation of the blood level induced by stress stimulation. The central pretreatment with PTX caused a reduction of plasma insulin level, whereas plasma corticosterone level was further up-regulated in all stress models. Our results suggest that the hyperglycemia produced by physical stress, emotional stress, restraint stress, and the cold-water swimming stress appear to be mediated by activation of centrally located PTX-sensitive G proteins. The reduction of blood glucose level by PTX appears to due to the reduction of plasma insulin level. The reduction of blood glucose level by PTX was accompanied by the reduction of plasma insulin level. Plasma corticosterone level up-regulation by PTX in stress models may be due to a blood glucose homeostatic mechanism. PMID:27610033

  1. Effect of pertussis toxin pretreated centrally on blood glucose level induced by stress

    PubMed Central

    Suh, Hong-Won; Sim, Yun-Beom; Park, Soo-Hyun; Sharma, Naveen; Im, Hyun-Ju

    2016-01-01

    In the present study, we examined the effect of pertussis toxin (PTX) administered centrally in a variety of stress-induced blood glucose level. Mice were exposed to stress after the pretreatment of PTX (0.05 or 0.1 µg) i.c.v. or i.t. once for 6 days. Blood glucose level was measured at 0, 30, 60 and 120 min after stress stimulation. The blood glucose level was increased in all stress groups. The blood glucose level reached at maximum level after 30 min of stress stimulation and returned to a normal level after 2 h of stress stimulation in restraint stress, physical, and emotional stress groups. The blood glucose level induced by cold-water swimming stress was gradually increased up to 1 h and returned to the normal level. The intracerebroventricular (i.c.v.) or intrathecal (i.t.) pretreatment with PTX, a Gi inhibitor, alone produced a hypoglycemia and almost abolished the elevation of the blood level induced by stress stimulation. The central pretreatment with PTX caused a reduction of plasma insulin level, whereas plasma corticosterone level was further up-regulated in all stress models. Our results suggest that the hyperglycemia produced by physical stress, emotional stress, restraint stress, and the cold-water swimming stress appear to be mediated by activation of centrally located PTX-sensitive G proteins. The reduction of blood glucose level by PTX appears to due to the reduction of plasma insulin level. The reduction of blood glucose level by PTX was accompanied by the reduction of plasma insulin level. Plasma corticosterone level up-regulation by PTX in stress models may be due to a blood glucose homeostatic mechanism. PMID:27610033

  2. Altered insulin response to glucose in weight-losing cancer patients.

    PubMed

    Rofe, A M; Bourgeois, C S; Coyle, P; Taylor, A; Abdi, E A

    1994-01-01

    Cancer cachexia and the underlying metabolic disturbances are due in part to either altered insulin release and action. Glucose intolerance in cancer patients is frequently observed but the nature of the insulin response is not usually described. The aim of this study was to investigate the insulin response in fasted, weigh-losing cancer patients following an oral glucose load (75 g). All cancer patients (n = 35) showed glucose intolerance. Three types of response were identified; those with an increased insulin: glucose ratio (I:G) at 60 min, (average 12.3, n = 13), those with a normal I:G (average 7.2 n = 7) and those with a decrease I:G (average 4.2, n = 15). Fasting plasma glucose concentrations were normal in all groups prior to the glucose tolerance test. However, patients with the lowest I:G also had the lowest fasting plasma insulin concentrations, the lowest plasma albumin concentrations and the highest plasma triglyceride concentrations. Those patients with an abnormal insulin response (either high or low I:G) had significantly greater weight loss (16% for low I:G group, 13% for the high I:G) compared to the normal responders (8%). Plasma fatty acid concentrations were increased in all cancer patients and decreased appropriately after glucose administration, indicating that lipolysis remained sensitive to the action of insulin. It is concluded that weight loss in cancer is associated with glucose intolerance and an abnormal insulin response, and that this response is indicative of either insulin resistance (high I:G) or decreased pancreatic function (low I:G). These findings suggest a role for insulin replacement therapy in the latter group of patients. PMID:8010722

  3. Measurement of Glucose in Blood with a Phenylboronic Acid Optical Sensor

    PubMed Central

    Worsley, Graham J.; Tourniaire, Guilhem A.; Medlock, Kathryn E. S.; Sartain, Felicity K.; Harmer, Hazel E.; Thatcher, Michael; Horgan, Adrian M.; Pritchard, John

    2008-01-01

    Background Current methods of glucose monitoring rely predominantly on enzymes such as glucose oxidase for detection. Phenylboronic acid receptors have been proposed as alternative glucose binders. A unique property of these molecules is their ability to bind glucose in a fully reversible covalent manner that facilitates direct continuous measurements. We examined (1) the ability of a phenylboronic-based sensor to measure glucose in blood and blood plasma and (2) the effect on measurement accuracy of a range of potential interferents. We also showed that the sensor is able to track glucose fluctuations occurring at rates mimicking those experienced in vivo. Method In vitro static measurements of glucose in blood and blood plasma were conducted using holographic sensors containing acrylamide, N,N′-methylenebisacrylamide, 3-acrylamidophenylboronic acid, and (3-acrylamidopropyl) trimethylammonium chloride. The same sensors were also used for in vitro measurements performed under flow conditions. Results The opacity of the liquid had no affect on the ability of the optical sensor to measure glucose in blood or blood plasma. The presence of common antibiotics, diabetic drugs, pain killers, and endogenous substances did not affect the measurement accuracy, as shown by error grid analysis. Ex vivo flow experiments showed that the sensor is able to track changes accurately in concentration occurring in real time without lag or evidence of hysteresis. Conclusions The ability of phenylboronic acid sensors to measure glucose in whole blood was demonstrated for the first time. Holographic sensors are ideally suited to continuous blood glucose measurements, being physically and chemically robust and potentially calibration free. PMID:19885345

  4. Contribution of abnormal muscle and liver glucose metabolism to postprandial hyperglycemia in NIDDM

    SciTech Connect

    Mitrakou, A.; Kelley, D.; Veneman, T.; Jenssen, T.; Pangburn, T.; Reilly, J.; Gerich, J. )

    1990-11-01

    To assess the role of muscle and liver in the pathogenesis of postprandial hyperglycemia in non-insulin-dependent diabetes mellitus (NIDDM), we administered an oral glucose load enriched with (14C)glucose to 10 NIDDM subjects and 10 age- and weight-matched nondiabetic volunteers and compared muscle glucose disposal by measuring forearm balance of glucose, lactate, alanine, O2, and CO2. In addition, we used the dual-lable isotope method to compare overall rates of glucose appearance (Ra) and disappearance (Rd), suppression of endogenous glucose output, and splanchnic glucose sequestration. During the initial 1-1.5 h after glucose ingestion, plasma glucose increased by approximately 8 mM in NIDDM vs. approximately 3 mM in nondiabetic subjects (P less than 0.01); overall glucose Ra was nearly 11 g greater in NIDDM than nondiabetic subjects, but glucose Rd was not significantly different in NIDDM and nondiabetic subjects. The greater overall glucose Ra of NIDDM subjects was due to 6.8 g greater endogenous glucose output (13.7 +/- 1.1 vs. 6.8 +/- 1.0 g, P less than 0.01) and 3.8 g less oral glucose splanchnic sequestration of the oral load (31.4 +/- 1.5 vs. 27.5 +/- 0.9 g, P less than 0.05). Although glucose taken up by muscle was not significantly different in NIDDM and nondiabetic subjects (39.3 +/- 3.5 vs. 41.0 +/- 2.5 g/5 h), a greater amount of the glucose taken up by muscle in NIDDM was released as lactate and alanine (11.7 +/- 1.0 vs. 5.2 +/- 0.3 g in nondiabetic subjects, P less than 0.01), and less was stored (11.7 +/- 1.3 vs. 16.9 +/- 1.5 g, P less than 0.05). We conclude that increased systemic glucose delivery, due primarily to reduced suppression of endogenous hepatic glucose output and, to a lesser extent, reduced splanchnic glucose sequestration, is the predominant factor responsible for postprandial hyperglycemia in NIDDM.

  5. The role of ghrelin in the regulation of glucose homeostasis.

    PubMed

    Alamri, Bader N; Shin, Kyungsoo; Chappe, Valerie; Anini, Younes

    2016-04-01

    Ghrelin is a 28-amino acid (aa) stomach-derived peptide discovered in 1999 as the endogenous ligand for growth hormone secretagogue-receptor (GHS-R). Ghrelin-producing cells constitute a distinct group of endocrine cells dispersed throughout the gastric mucosa and to a lesser extent in the small intestine and the endocrine pancreas. Ghrelin plasma levels rise during fasting and chronic caloric restriction to stimulate food intake and fat storage and to prevent life-threatening falls in blood glucose. Plasma ghrelin levels decrease after a meal is consumed and in conditions of energy surplus (such as obesity). Ghrelin has emerged as a key player in the regulation of appetite and energy homeostasis. Ghrelin achieves these functions through binding the ghrelin receptor GHS-R in appetite-regulating neurons and in peripheral metabolic organs including the endocrine pancreas. Ghrelin levels are negatively correlated with body mass index (BMI) and insulin resistance. In addition, ghrelin secretion is impaired in obesity and insulin resistance. Several studies highlight an important role for ghrelin in glucose homeostasis. Genetic, immunological, and pharmacological blockade of ghrelin signaling resulted in improved glucose tolerance and insulin sensitivity. Furthermore, exogenous ghrelin administration was shown to decrease glucose-induced insulin release and increase glucose level in both humans and rodents. GHS-R was shown to be expressed in pancreatic β-cells and ghrelin suppressed insulin release via a Ca2+-mediated pathway. In this review, we provide a detailed summary of recent advances in the field that focuses on the role of insulin and insulin resistance in the regulation of ghrelin secretion and on the role of ghrelin in glucose-stimulated insulin secretion (GSIS). PMID:27235674

  6. Grain sorghum muffin reduces glucose and insulin responses in men.

    PubMed

    Poquette, Nicole M; Gu, Xuan; Lee, Sun-Ok

    2014-05-01

    Diabetes and obesity have sparked interest in identifying healthy, dietary carbohydrates as functional ingredients for controlling blood glucose and insulin levels. Grain sorghum has been known to be a slowly digestible cereal; however, research is limited on its health effects in humans. The objectives of this study were to measure the contents of functional starch fractions, SDS (slowly-digestible starch) and RS (resistant starch), and to investigate the effects of grain sorghum on postprandial plasma glucose and insulin levels in 10 healthy men. A whole-wheat flour muffin (control) was compared with the grain sorghum muffin with both muffins containing 50 g of total starch. Using a randomized-crossover design, male subjects consumed treatments within a one-week washout period, and glucose and insulin levels were observed at 15 minutes before and 0, 15, 30, 45, 60, 75, 90, 120, 180 minutes after consumption. The mean glucose responses reduced after consuming grain sorghum, particularly at 45-120 minute intervals, and mean insulin responses reduced at 15-90 minute intervals compared to control (P < 0.05). The mean incremental area under the curve (iAUC) was significantly lowered for plasma glucose responses about an average of 35% from 3863 ± 443 to 2871 ± 163 mg (∼3 h) dL(-1) (P < 0.05). Insulin responses also reduced significantly from 3029 ± 965 μU (∼3 h) L(-1) for wheat to 1357 ± 204 with sorghum (P < 0.05). Results suggest that grain sorghum is a good functional ingredient to assist in managing glucose and insulin levels in healthy individuals. PMID:24608948

  7. Oyster mushroom reduced blood glucose and cholesterol in diabetic subjects.

    PubMed

    Khatun, K; Mahtab, H; Khanam, P A; Sayeed, M A; Khan, K A

    2007-01-01

    It has been postulated that mushroom has beneficial effect of lowering blood glucose and cholesterol in diabetic subjects. The literature so far searched and found that there was no published data in this regard. This study was undertaken to assess the effect of reducing blood glucose, cholesterol and triglycerides in diabetic patients. Additionally, this study addressed whether there was any hepatic and renal toxicity of mushroom. This clinical investigation was conducted in BIRDEM hospital from July 2005 to January 2006. Eighty-nine subjects were recruited. Baseline investigations included height, weight, blood pressure (SBP, DBP), plasma glucose for fasting (FPG) and 2-h after-breakfast (2hPG), total cholesterol (T-chol), triglycerides (TG) and high-density lipoprotein (HDL-c). Twenty- four days' study constitutes 7-days mushroom, 7-days no mushroom and then 7-days mushroom. Investigations were done at the start and each after every 7-days. Thirty subjects (M / F = 17 / 13) followed to ensure full compliance with the designed protocol for 24 days. The mean (SD) age of the participants was 46.3 (10) years. Mushroom significantly reduced systolic and diastolic blood pressure (SBP, p<0.01; DBP, p<0.05). It also lowered both plasma glucose significantly (FPG & 2-hPG, p<0.001). Mushroom also lowered total cholesterol and TG significantly; whereas, there was no significant change in weight and HDL-c. When mushroom was withdrawn, there were significant increases of DBP, FPG, 2hPG, T-cholesterol and TG, whereas, no significant change was observed in weight, SBP and HDL-c. Restarting mushroom there was again significant reduction of blood glucose, TG and cholesterol. We conclude that mushroom significantly reduced blood glucose, blood pressure, TG and cholesterol of diabetic subjects without any deleterious effect on liver and kidney. The effect of mushroom may be investigated in a large sample for a longer duration to evaluate its efficacy and toxicity. PMID:17344789

  8. Postprandial plasma fructose level is associated with retinopathy in patients with type 2 diabetes.

    PubMed

    Kawasaki, Takahiro; Ogata, Nobuyuki; Akanuma, Hiroshi; Sakai, Tadashi; Watanabe, Hiroyuki; Ichiyanagi, Kaoru; Yamanouchi, Toshikazu

    2004-05-01

    The aim of the present study was to investigate the association of fructose on microangiopathy in patients with diabetes. Postprandial plasma fructose concentrations and postprandial plasma glucose concentrations were simultaneously measured 3 times within a 24-hour period (2 hours after each meal) in 38 patients with type 2 diabetes that had been admitted to the hospital. The mean postprandial plasma fructose concentrations (MPPF) and the mean postprandial plasma glucose concentrations (MPPG) were calculated. Fructose was measured by gas chromatography-mass spectrometry (GCMS). Based solely on MPPF, we were able to divide the patients into three groups: the high MPPF (31.9 +/- 6.5 micromol/L) group (n = 12), the middle MPPF (21.2 +/- 1.8 micromol/L) group (n = 13), and the low MPPF (15.2 +/- 2.4 micromol/L) group (n = 13). Prevalence and degree of retinopathy and nephropathy were then evaluated in the 3 different groups. A significant correlation was observed in the prevalence of proliferative diabetic retinopathy (PDR) among the 3 MPPF groups (P =.024). The prevalence of PDR was higher in the high MPPF group (75.0%) than in the middle and low MPPF groups (23.1% and 38.5%, respectively). Although not significantly different statistically, the prevalence of all degrees of retinopathy showed a tendency to be higher in the high MPPF group (83.3%) than in the middle and low MPPF groups (46.2% and 46.2%, respectively) (P =.081). Nephropathy prevalence also showed a tendency to be higher in the high MPPF group (66.7%) than in the middle and low MPPF groups (38.5% and 30.8%, respectively), although the differences were not significant. The prevalence of clinical albuminuria was not significantly different among the 3 groups, but there was a tendency for it to be higher in the low MPPF group (30.8%) than in the high and middle MPPF groups (16.7% and 0%, respectively). No significant differences in glycemic indicators and mean duration of diabetes were observed among the 3

  9. Glucose screening and tolerance tests during pregnancy

    MedlinePlus

    Oral glucose tolerance test - pregnancy (OGTT); Glucose challenge test - pregnancy ... For the glucose screening test: You do not need to prepare or change your diet in any way. You will be asked to drink a ...

  10. Immunological identification of the human erythrocyte glucose transporter.

    PubMed Central

    Sogin, D C; Hinkle, P C

    1980-01-01

    A rabbit antibody against the human erythrocyte glucose transporter was purified by affinity chromatography and used to determine the distribution of transporter on polyacrylamide gels after electrophoresis in sodium dodecyl sulfate. Fresh erythrocyte ghosts showed transporter only at the broad 55,000 Mr band, as did the isolated transporter. HeLa cell plasma membranes showed a similar band of crossreacting material at Mr 55,000. The amount of crossreacting material in human erythrocyte ghosts and in plasma membranes from human HeLa cells and mouse L-1210 cells was determined in an enzyme-linked immunosorbent assay which gave results consistent with the extent of glucose-reversible binding of cytochalasin B. PMID:6934506

  11. Glucose turnover, oxidation, and indices of recycling in severely traumatized patients

    SciTech Connect

    Jeevanandam, M.; Young, D.H.; Schiller, W.R. )

    1990-05-01

    Hyperglycemia is often seen in trauma patients and its etiology is not clearly understood. We have determined parameters of glucose metabolism by using simultaneous primed-constant intravenous infusion of both (6-3H) glucose and (U-14C) glucose in ten severely traumatized hypermetabolic subjects during the early flow phase of injury and in six post-absorptive normal volunteers. The mean rate of glucose production (determined by means of (6-3H) glucose) was 3.96 +/- 0.40 mg/kg/min in trauma patients, which was significantly (p = 0.025) higher than the value of 2.75 +/- 0.13 observed in normal volunteers. Glucose turnover rates determined with (U-14C) glucose as tracer were lower in all subjects. The difference between the turnover rates determined by the two tracers represents an index of recycling of glucose through three-carbon fragments. This recycling index was similar in both groups of subjects in amount (0.24 +/- 0.07 vs. 0.26 +/- 0.08 mg glucose/kg/min) but different when expressed as percentage of total glucose turnover (5.6 +/- 1.4% vs. 9.8 +/- 1.7%; p = 0.05). The absolute rates of glucose clearance, oxidation, and recycling were similar in stressed trauma patients and unstressed controls although the rate of production was increased by 44% due to injury. Post-trauma hyperglycemia was mainly due to an increased hepatic output of glucose and not due to a decreased ability of the tissue to extract glucose from the plasma. Hyperglycemia may be the driving force in the metabolic effects of injury.

  12. Genetic polymorphisms of PCSK2 are associated with glucose homeostasis and progression to type 2 diabetes in a Chinese population

    PubMed Central

    Chang, Tien-Jyun; Chiu, Yen-Feng; Sheu, Wayne H-H.; Shih, Kuang-Chung; Hwu, Chii-Min; Quertermous, Thomas; Jou, Yuh-Shan; Kuo, Shan-Shan; Chang, Yi-Cheng; Chuang, Lee-Ming

    2015-01-01

    Proprotein convertase subtilisin/kexin type 2 (PCSK2) is a prohormone processing enzyme involved in insulin and glucagon biosynthesis. We previously found the genetic polymorphism of PCSK2 on chromosome 20 was responsible for the linkage peak of several glucose homeostasis parameters. The aim of this study is to investigate the association between genetic variants of PCSK2 and glucose homeostasis parameters and incident diabetes. Total 1142 Chinese participants were recruited from the Stanford Asia-Pacific Program for Hypertension and Insulin Resistance (SAPPHIRe) family study, and 759 participants were followed up for 5 years. Ten SNPs of the PCSK2 gene were genotyped. Variants of rs6044695 and rs2284912 were associated with fasting plasma glucose, and variants of rs2269023 were associated with fasting plasma glucose and 1-hour plasma glucose during OGTT. Haplotypes of rs4814605/rs1078199 were associated with fasting plasma insulin levels and HOMA-IR. Haplotypes of rs890609/rs2269023 were also associated with fasting plasma glucose, fasting insulin and HOMA-IR. In the longitudinal study, we found individuals carrying TA/AA genotypes of rs6044695 or TC/CC genotypes of rs2284912 had lower incidence of diabetes during the 5-year follow-up. Our results indicated that PCSK2 gene polymorphisms are associated with pleiotropic effects on various traits of glucose homeostasis and incident diabetes. PMID:26607656

  13. Plasma 25-Hydroxyvitamin D is Associated with Markers of the Insulin Resistance Phenotype in Non-diabetic Adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined the cross-sectional association between plasma 25-hydroxyvitamin D [25(OH)D] and markers of the insulin resistance phenotype. Plasma 25(OH)D concentrations were measured in 808 non-diabetic participants of the Framingham Offspring Study. Outcome measures included fasting and 2-hour pos...

  14. An overview of the effect of sodium glucose cotransporter 2 inhibitor monotherapy on glycemic and other clinical laboratory parameters in type 2 diabetes patients

    PubMed Central

    Wang, Yaowen; Hu, Xueting; Liu, Xueying; Wang, Zengqi

    2016-01-01

    Objectives We aimed to determine the effect of sodium glucose cotransporter 2 (SGLT2) inhibitor monotherapy on glycemic and other clinical laboratory parameters versus other antidiabetic medications or placebo therapy in patients with type 2 diabetes mellitus. In addition, we aimed to investigate the risk of diabetic ketoacidosis associated with SGLT2 inhibitor therapy and evaluate its weight-sparing ability. Design Meta-analysis. Materials and methods PubMed and MEDLINE were searched to identify eligible studies up to December 2015. Randomized controlled trials that assessed the efficacy and safety of SGLT2 inhibitor monotherapy versus placebo therapy or active control were considered. The Cochrane Collaboration Risk of Bias Tool was used to evaluate quality and bias. The mean difference was used to evaluate the glycemic and other clinical laboratory parameters for SGLT2 inhibitor intervention versus control by drugs or placebo. Similarly, the risk ratio was used to assess adverse events, and the I2 was used to evaluate heterogeneity. Results SGLT2 inhibitors significantly decreased glycated hemoglobin (HbA1c) (P<0.001), weight (P<0.001), and the low-density lipoprotein/high-density lipoprotein ratio (P=0.03) compared with placebo therapy. No statistically significant changes were found in fasting plasma glucose, 2-hour postprandial glucose, or lipid parameters. Significant changes in the uric acid level were found for SGLT2 inhibitors versus placebo therapy (P=0.005) or active control (P<0.001). Although no significant change in levels of ketones occurred (P=0.93), patients receiving SGLT2 inhibitors were at greater risk of increased ketone bodies. Events suggestive of urinary tract infection and pollakiuria presented the greatest risk for patients receiving SGLT2 inhibitors versus active control or placebo therapy. Conclusion SGLT2 inhibitors significantly decreased HbA1c, body weight, and the low-density lipoprotein/high-density lipoprotein ratio and were found

  15. Dissociable Behavioral, Physiological and Neural Effects of Acute Glucose and Fructose Ingestion: A Pilot Study

    PubMed Central

    Schmidt, André; Zimak, Nina; Peterli, Ralph; Beglinger, Christoph; Borgwardt, Stefan

    2015-01-01

    Previous research has revealed that glucose and fructose ingestion differentially modulate release of satiation hormones. Recent studies have begun to elucidate brain-gut interactions with neuroimaging approaches such as magnetic resonance imaging (MRI), but the neural mechanism underlying different behavioral and physiological effects of glucose and fructose are unclear. In this paper, we have used resting state functional MRI to explore whether acute glucose and fructose ingestion also induced dissociable effects in the neural system. Using a cross-over, double-blind, placebo-controlled design, we compared resting state functional connectivity (rsFC) strengths within the basal ganglia/limbic network in 12 healthy lean males. Each subject was administered fructose, glucose and placebo on three separate occasions. Subsequent correlation analysis was used to examine relations between rsFC findings and plasma concentrations of satiation hormones and subjective feelings of appetite. Glucose ingestion induced significantly greater elevations in plasma glucose, insulin, GLP-1 and GIP, while feelings of fullness increased and prospective food consumption decreased relative to fructose. Furthermore, glucose increased rsFC of the left caudatus and putamen, precuneus and lingual gyrus more than fructose, whereas within the basal ganglia/limbic network, fructose increased rsFC of the left amygdala, left hippocampus, right parahippocampus, orbitofrontal cortex and precentral gyrus more than glucose. Moreover, compared to fructose, the increased rsFC after glucose positively correlated with the glucose-induced increase in insulin. Our findings suggest that glucose and fructose induce dissociable effects on rsFC within the basal ganglia/limbic network, which are probably mediated by different insulin levels. A larger study would be recommended in order to confirm these findings. PMID:26107810

  16. The glucose-6-phosphatase system.

    PubMed Central

    van Schaftingen, Emile; Gerin, Isabelle

    2002-01-01

    Glucose-6-phosphatase (G6Pase), an enzyme found mainly in the liver and the kidneys, plays the important role of providing glucose during starvation. Unlike most phosphatases acting on water-soluble compounds, it is a membrane-bound enzyme, being associated with the endoplasmic reticulum. In 1975, W. Arion and co-workers proposed a model according to which G6Pase was thought to be a rather unspecific phosphatase, with its catalytic site oriented towards the lumen of the endoplasmic reticulum [Arion, Wallin, Lange and Ballas (1975) Mol. Cell. Biochem. 6, 75--83]. Substrate would be provided to this enzyme by a translocase that is specific for glucose 6-phosphate, thereby accounting for the specificity of the phosphatase for glucose 6-phosphate in intact microsomes. Distinct transporters would allow inorganic phosphate and glucose to leave the vesicles. At variance with this substrate-transport model, other models propose that conformational changes play an important role in the properties of G6Pase. The last 10 years have witnessed important progress in our knowledge of the glucose 6-phosphate hydrolysis system. The genes encoding G6Pase and the glucose 6-phosphate translocase have been cloned and shown to be mutated in glycogen storage disease type Ia and type Ib respectively. The gene encoding a G6Pase-related protein, expressed specifically in pancreatic islets, has also been cloned. Specific potent inhibitors of G6Pase and of the glucose 6-phosphate translocase have been synthesized or isolated from micro-organisms. These as well as other findings support the model initially proposed by Arion. Much progress has also been made with regard to the regulation of the expression of G6Pase by insulin, glucocorticoids, cAMP and glucose. PMID:11879177

  17. Statins Impair Glucose Uptake in Tumor Cells1

    PubMed Central

    Malenda, Agata; Skrobanska, Anna; Issat, Tadeusz; Winiarska, Magdalena; Bil, Jacek; Oleszczak, Bozenna; Sinski, Maciej; Firczuk, Małgorzata; Bujnicki, Janusz M; Chlebowska, Justyna; Staruch, Adam D; Glodkowska-Mrowka, Eliza; Kunikowska, Jolanta; Krolicki, Leszek; Szablewski, Leszek; Gaciong, Zbigniew; Koziak, Katarzyna; Jakobisiak, Marek; Golab, Jakub; Nowis, Dominika A

    2012-01-01

    Statins, HMG-CoA reductase inhibitors, are used in the prevention and treatment of cardiovascular diseases owing to their lipid-lowering effects. Previous studies revealed that, by modulating membrane cholesterol content, statins could induce conformational changes in cluster of differentiation 20 (CD20) tetraspanin. The aim of the presented study was to investigate the influence of statins on glucose transporter 1 (GLUT1)-mediated glucose uptake in tumor cells. We observed a significant concentration- and time-dependent decrease in glucose analogs' uptake in several tumor cell lines incubated with statins. This effect was reversible with restitution of cholesterol synthesis pathway with mevalonic acid as well as with supplementation of plasma membrane with exogenous cholesterol. Statins did not change overall GLUT1 expression at either transcriptional or protein levels. An exploratory clinical trial revealed that statin treatment decreased glucose uptake in peripheral blood leukocytes and lowered 18F-fluorodeoxyglucose (18F-FDG) uptake by tumor masses in a mantle cell lymphoma patient. A bioinformatics analysis was used to predict the structure of human GLUT1 and to identify putative cholesterol-binding motifs in its juxtamembrane fragment. Altogether, the influence of statins on glucose uptake seems to be of clinical significance. By inhibiting 18F-FDG uptake, statins can negatively affect the sensitivity of positron emission tomography, a diagnostic procedure frequently used in oncology. PMID:22577346

  18. Regional cerebral glucose metabolism in patients with alcoholic Korsakoff's syndrome

    SciTech Connect

    Kessler, R.M.; Parker, E.S.; Clark, C.M.; Martin, P.R.; George, D.T.; Weingartner, H.; Sokoloff, L.; Ebert, M.H.; Mishkin, M.

    1985-05-01

    Seven alcoholic male subjects diagnosed as having Korsakoff's syndrome and eight age-matched male normal volunteers were studied with /sup 18/F 2-fluoro-2-deoxy-D-glucose (2/sup 18/FDG). All subjects were examined at rest with eyes covered in a quiet, darkened room. Serial plasma samples were obtained following injection of 4 to 5 mCi of 2/sup 18/FDG. Tomographic slices spaced at 10mm axial increments were obtained (in-plane resolution = 1.75 cm, axial resolution = 1.78 cm). Four planes were selected from each subject, and a total of 46 regions of interest were sampled and glucose metabolic rates for each region calculated. The mean glucose metalbolic rate for the 46 regions in the Korsakoff subjects was significantly lower than that in the normal controls (5.17 +- .43 versus 6.6 +- 1.31). A Q-component analysis, which examined each subject's regional rates relative to his mean rate, revealed two distinct patterns in the Korsakoff group. Glucose metabolism was significantly reduced in 37 of the 46 regions sampled. Reduced cerebral glucose metabolism in a nondemented group of subjects has not previously been reported. The reduction in cortical metabolism may be the result of damage to sub-cortical projecting systems. The differing patterns of cerebral metabolism in Korsakoff's syndrome suggests subgroups with differing neuropathology. Regions implicated in memory function, medial temporal, thalamic and medial prefrontal were among the regions reduced in metabolism.

  19. Conversion of glucose to sorbose

    DOEpatents

    Davis, Mark E.; Gounder, Rajamani

    2016-02-09

    The present invention is directed to methods for preparing sorbose from glucose, said method comprising: (a) contacting the glucose with a silica-containing structure comprising a zeolite having a topology of a 12 membered-ring or larger, an ordered mesoporous silica material, or an amorphous silica, said structure containing Lewis acidic Ti.sup.4+ or Zr.sup.4+ or both Ti.sup.4+ and Zr.sup.4+ framework centers, said contacting conducted under reaction conditions sufficient to isomerize the glucose to sorbose. The sorbose may be (b) separated or isolated; or (c) converted to ascorbic acid.

  20. Effects of ketamine on glucose uptake by glucose transporter type 3 expressed in Xenopus oocytes: The role of protein kinase C

    SciTech Connect

    Tomioka, Shigemasa; Kaneko, Miyuki; Satomura, Kazuhito; Mikyu, Tomiko; Nakajo, Nobuyoshi

    2009-10-09

    We investigated the effects of ketamine on the type 3 facilitative glucose transporter (GLUT3), which plays a major role in glucose transport across the plasma membrane of neurons. Human-cloned GLUT3 was expressed in Xenopus oocytes by injection of GLUT3 mRNA. GLUT3-mediated glucose uptake was examined by measuring oocyte radioactivity following incubation with 2-deoxy-D-[1,2-{sup 3}H]glucose. While ketamine and S(+)-ketamine significantly increased GLUT3-mediated glucose uptake, this effect was biphasic such that higher concentrations of ketamine inhibited glucose uptake. Ketamine (10 {mu}M) significantly increased V{sub max} but not K{sub m} of GLUT3 for 2-deoxy-D-glucose. Although staurosporine (a protein kinase C inhibitor) increased glucose uptake, no additive or synergistic interactions were observed between staurosporine and racemic ketamine or S(+)-ketamine. Treatment with ketamine or S(+)-ketamine partially prevented GLUT3 inhibition by the protein kinase C activator phorbol-12-myrisate-13-acetate. Our results indicate that ketamine increases GLUT3 activity at clinically relevant doses through a mechanism involving PKC inhibition.

  1. The effect of dietary starch level on postprandial glucose and insulin concentrations in cats and dogs.

    PubMed

    Hewson-Hughes, Adrian K; Gilham, Matthew S; Upton, Sarah; Colyer, Alison; Butterwick, Richard; Miller, Andrew T

    2011-10-01

    A charge made against feeding dry foods to cats is that the high carbohydrate (i.e. starch) content results in high blood glucose levels which over time may have detrimental health effects. The present study determined the post-meal concentrations of plasma glucose and insulin in adult cats (seven males and four females) and dogs (Labrador retrievers; four males and five females) fed dry diets with low-starch (LS), moderate-starch (MS) or high-starch (HS) levels. In a cross-over design with at least 7 d between the test meals, plasma glucose and insulin concentrations were measured following a single meal of a LS, MS and HS diet (209 kJ/kg bodyweight). Only the HS diet resulted in significant post-meal increases in plasma glucose concentration in cats and dogs although the time-course profiles were different between the species. In cats, plasma glucose concentration was significantly increased above the pre-meal concentration from 11 h until 19 h after the meal, while in dogs, a significant increase above baseline was seen only at the 7 h time point. Plasma insulin was significantly elevated in dogs 4-8 h following the MS diet and 2-8 h after the HS diet. In cats, plasma insulin was significantly greater than baseline from 3-7 and 11-17 h after the HS diet. The time lag (approximately 11 h) between eating the HS diet and the subsequent prolonged elevation of plasma glucose concentration seen in cats may reflect metabolic adaptations that result in a slower digestive and absorptive capacity for complex carbohydrate. PMID:22005401

  2. Increased maternal nighttime cortisol concentrations in late gestation alter glucose and insulin in the neonatal lamb

    PubMed Central

    Antolic, Andrew; Feng, Xiaodi; Wood, Charles E; Richards, Elaine M; Keller-Wood, Maureen

    2015-01-01

    Previous studies in our laboratory have shown that a modest chronic increase in maternal cortisol concentrations impairs maternal glucose metabolism and increases the incidence of perinatal stillbirth. The dramatic outcomes prevented our ability to study the effects of maternal hypercortisolemia on neonatal growth, glucose metabolism, and hypothalamo–pituitary–adrenal axis response. Therefore, we developed a model in which pregnant ewes are infused for 12 h/day at 0.5 mg·kg–1·day–1 from day 115 of gestation until delivery (˜145), elevating nighttime plasma cortisol concentrations. This pattern of elevation of cortisol mimics that in patients with elevated evening cortisol concentrations, as in Cushing’s syndrome or chronic depression. Plasma cortisol, glucose, insulin, and electrolytes were measured during pregnancy and postpartum in control and cortisol-infused ewes and their postnatal lambs for the first 14 days after delivery. Neonatal growth and plasma ACTH, aldosterone, renin activity, and electrolytes, and organ weights at 14 days of age were also measured. Infusion of cortisol increased maternal plasma cortisol during pregnancy but not postpartum, and did not alter neonatal ACTH or cortisol. Although maternal glucose and insulin concentrations were not changed by the maternal infusion of cortisol, neonatal plasma glucose was increased and plasma insulin was decreased compared to those in the control group. Neonatal ponderal index and kidney weight were reduced, left ventricular wall thickness was increased, and plasma sodium and creatinine were increased after maternal cortisol infusion. These results suggest that excess maternal cortisol concentrations in late gestation alter growth, glucose and insulin regulation, and organ maturation in the neonate. PMID:26371232

  3. Impaired glucose metabolism treatment and carcinogenesis

    PubMed Central

    MATYSZEWSKI, ARTUR; CZARNECKA, ANNA; KAWECKI, MACIEJ; KORZEŃ, PIOTR; SAFIR, ILAN J.; KUKWA, WOJCIECH; SZCZYLIK, CEZARY

    2015-01-01

    Carbohydrate metabolism disorders increase the risk of carcinogenesis. Diabetes mellitus alters numerous physiological processes that may encourage cancer growth. However, treating impaired glucose homeostasis may actually promote neoplasia; maintaining proper glucose plasma concentrations reduces metabolic stresses, however, certain medications may themselves result in oncogenic effects. A number of previous studies have demonstrated that metformin reduces the cancer risk. However, the use of sulfonylurea derivatives correlates with an increased risk of developing a malignancy. Another form of treatment, insulin therapy, involves using various forms of insulin that differ in pharmacodynamics, pharmacokinetics and efficacy. Previous studies have indicated that certain insulin variants also affect the cancer risk. The results from analyses that address the safety of long-lasting insulin types raise the most concern regarding the increased risk of malignancy. Rapid development of novel diabetic medications and their widespread use carries the risk of potentially increased rates of cancer, unnoticeable in limited, randomized, controlled trials. In the present review, the results of clinical and epidemiological studies are evaluated to assess the safety of anti-hyperglycemic medications and their effect on cancer risk and outcomes. PMID:26622538

  4. [Contribution of the kidney to glucose homeostasis].

    PubMed

    Segura, Julián; Ruilope, Luis Miguel

    2013-09-01

    The kidney is involved in glucose homeostasis through three major mechanisms: renal gluconeogenesis, renal glucose consumption, and glucose reabsorption in the proximal tubule. Glucose reabsorption is one of the most important physiological functions of the kidney, allowing full recovery of filtered glucose, elimination of glucose from the urine, and prevention of calorie loss. Approximately 90% of the glucose is reabsorbed in the S1 segment of the proximal tubule, where glucose transporter-2 (GLUT2) and sodium-glucose transporter-2 (SGLT2) are located, while the remaining 10% is reabsorbed in the S3 segment by SGLT1 and GLUT1 transporters. In patients with hyperglycemia, the kidney continues to reabsorb glucose, thus maintaining hyperglycemia. Most of the renal glucose reabsorption is mediated by SGLT2. Several experimental and cli