Science.gov

Sample records for 2-km horizontal grid

  1. Magnetic Anomalies of the Fennoscandian Shield on a 2km resolution grid

    NASA Astrophysics Data System (ADS)

    Korhonen, Juha V.; Aaro, Sven; Reidar Skilbrei, Jan; All, Tarmo

    2010-05-01

    Joint magnetic anomaly grid of the Fennoscandian Shield was released 2002, smoothed and used as data for the WDMAM2007. In comparison with MF5 this grid showed superior characteristics to other sets. The data will be released as a 2 km resolution grid for the WDMAM2011 with eventual updates of anomaly levels.

  2. EXAMINATION OF MODEL PREDICTIONS AT DIFFERENT HORIZONTAL GRID RESOLUTIONS

    EPA Science Inventory

    While fluctuations in meteorological and air quality variables occur on a continuum of spatial scales, the horizontal grid spacing of coupled meteorological and photochemical models sets a lower limit on the spatial scales that they can resolve. However, both computational costs ...

  3. Regional Climate Modelling: impact of horizontal grid resolution on precipitation estimates over Ireland

    NASA Astrophysics Data System (ADS)

    McGrath, Ray; Nolan, Paul

    2016-04-01

    Regional Climate Models (RCMs) are widely used to dynamically downscale the outputs from global climate model simulations. There is some evidence that high resolution RCMs with explicit convection can provide more accurate information on extreme precipitation events compared to coarse resolution simulations with parameterized convection. In flooding applications, where the interest may be focused on precipitation over a relatively large river catchment area, compared to the model grid spacing, the value of enhanced resolution needs to be quantified. This is addressed in a study using two RCMs: the COnsortium for Small-scale Modeling-Climate Limited-area Modelling (COSMO-CLM) model (version CCLM_5.00) and the Weather Research and Forecasting (WRF) model (version 3.7.1). Using ERA-Interim global re-analysis data as boundaries, climate simulations were performed for the period 1981-2015, for an area focused on Ireland, using model horizontal grid spacings of 18, 6 and 2 km (WRF) and 18, 6 and 1.5 km (COSMO-CLM). Model hourly precipitation outputs were compared with gridded and point observational datasets for time intervals extending from hours to seasons to assess the performance of the RCMs at the different resolutions.

  4. The impact of horizontal model grid resolution on the boundary layer structure over an idealized valley

    NASA Astrophysics Data System (ADS)

    Wagner, Johannes; Gohm, Alexander; Rotach, Mathias; Leukauf, Daniel; Posch, Christian

    2014-05-01

    The role of horizontal model grid resolution on the development of the daytime boundary layer over mountainous terrain is studied. A simple idealized valley topography with a cross-valley width of 20~km, a valley depth of 1.5~km and a constant surface heat flux forcing is used to generate upslope flows in a warming valley boundary layer. The goal of this study is to investigate differences in the upslope flow and boundary layer structure of the valley when its topography is either fully resolved, smoothed or not resolved by the numerical model. This is done by performing both large-eddy (LES) and kilometer-scale simulations with mesh sizes of 50, 1000, 2000, 4000, 5000 and 10000~m. In LES mode a valley inversion layer develops, which separates two vertically stacked circulation cells in an upper and lower boundary layer. These structures weaken with decreasing horizontal model grid resolution and change to a convective boundary layer similar to the one over an elevated flat plain when the valley is no longer resolved. Mean profiles of the LES run, which are obtained by horizontal averaging over the valley show a three-layer thermal structure and a secondary heat flux maximum at ridge height. Strong smoothing of the valley topography prevents the development of a valley inversion layer with stacked circulation cells and leads to higher valley temperatures due to smaller valley volumes. This investigation shows that a parameterization is needed in coarse resolution models to capture exchange processes over mountainous terrain.

  5. Sub-grid drag models for horizontal cylinder arrays immersed in gas-particle multiphase flows

    SciTech Connect

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2013-09-08

    Immersed cylindrical tube arrays often are used as heat exchangers in gas-particle fluidized beds. In multiphase computational fluid dynamics (CFD) simulations of large fluidized beds, explicit resolution of small cylinders is computationally infeasible. Instead, the cylinder array may be viewed as an effective porous medium in coarse-grid simulations. The cylinders' influence on the suspension as a whole, manifested as an effective drag force, and on the relative motion between gas and particles, manifested as a correction to the gas-particle drag, must be modeled via suitable sub-grid constitutive relationships. In this work, highly resolved unit-cell simulations of flow around an array of horizontal cylinders, arranged in a staggered configuration, are filtered to construct sub-grid, or `filtered', drag models, which can be implemented in coarse-grid simulations. The force on the suspension exerted by the cylinders is comprised of, as expected, a buoyancy contribution, and a kinetic component analogous to fluid drag on a single cylinder. Furthermore, the introduction of tubes also is found to enhance segregation at the scale of the cylinder size, which, in turn, leads to a reduction in the filtered gas-particle drag.

  6. Toward Energetically Consistent Parameterization of Horizontal and Vertical Sub-Grid Mixing for High-Resolution NWP Models

    NASA Astrophysics Data System (ADS)

    Bao, Jian-Wen; Grell, Eveyn; Michelson, Sara

    2013-04-01

    All numerical weather prediction (NWP) models require parameterizations of sub-grid turbulent mixing in both horizontal and vertical directions. Traditionally, due to the high aspect ratio between the horizontal and vertical dimensions of grids used in NWP models, it is assumed that the parameterizations of horizontal and vertical sub-grid mixing can be parameterized separately and most research efforts in the NWP community to parameterize sub-grid turbulent mixing has been focused on the vertical sub-grid turbulent mixing in the planetary boundary layer (PBL). Consequently, the parameterized vertical sub-grid mixing is formulated according to the vertical mixing theory in the PBL, while the parameterized horizontal sub-grid turbulent mixing in NWP models is formulated to be dependent on the grid-resolved strain rate and used mostly as numerical tuning parameter. Such a framework of parameterizing sub-grid turbulent mixing has a fundamental drawback: the conversion of grid-scale kinetic energy (KE) to sub-grid turbulent kinetic energy (TKE) is not consistently constrained between the vertical and horizontal directions. As the resolution of NWP models increases steadily, such that grid spacing becomes comparable to the typical size of largest energy-containing eddies, a more general and energetically consistent treatment of horizontal and vertical sub-grid turbulent mixing is required to overcome the drawback of the traditional parameterization approach. This presentation highlights major results from a series of sensitivity experiments with the Advanced Research WRF (ARW) model that were carried out for the purpose of comparing and evaluating a more general and energetically consistent parameterization of horizontal and vertical sub-grid turbulent mixing with two traditional schemes for parameterizing vertical sub-grid turbulent mixing in NWP models that share the same strain-rate-dependent parameterization for horizontal sub-grid turbulent mixing: the K

  7. Coupled ocean-atmosphere modeling on horizontally icosahedral and vertically hybrid-isentropic/isopycnic grids.

    NASA Astrophysics Data System (ADS)

    Bleck, Rainer; Sun, Shan; Li, Haiqin; Benjamin, Stan

    2016-04-01

    Current efforts to close the gap between weather prediction and climate models have led to the construction of a coupled ocean-atmosphere system consisting of two high-resolution component models, operating on matching icosahedral grids and utilizing adaptive, near-isentropic/isopycnic vertical coordinates. The two components models, FIM and HYCOM (the latter converted to an icosahedral mesh for this purpose), have been tested extensively in twice-daily global medium-range weather prediction (http://fim.noaa.gov) and in real-time ocean data assimilation (http://hycom.org), respectively. The use of matching horizontal grids, currently at resolutions of 15km, 30km and 60km, avoids coastline ambiguities and interpolation errors at the air-sea interface. The intended purpose of the coupled model being subseasonal-to-seasonal prediction, our focus is on mid-term precipitation biases and the statistical steadiness of the atmospheric circulation (blocking frequency, Rossby wave breaking, meridional heat transport, etc.), as well as on possible causes of ocean model drift. An attempt is made to isolate the weather model's role in modifying water mass properties and ocean circulations (including meridional overturning) by comparing coupled model results to ocean-only experiments forced by observed atmospheric boundary conditions. A multi-decadal run at 60km resolution is used to illustrate ENSO variability in the coupled system.

  8. Effect of horizontal grid resolution on simulations of the subtropical mode water in the North Pacific

    NASA Astrophysics Data System (ADS)

    Lee, Ho Jin; Yeop Kim, Sang; Lee, Kyung Eun

    2016-04-01

    We investigate how the Subtopical Mode Water (STMW) can be simulated differently in the North Pacific using a global Ocean General Circulation Model (OGCM) with non-eddying and eddy permitting resolution. The OGCM used in this study is the MOM version 4.1 and has a total of 50 levels along the vertical direction with enhanced resolution near the surface. The CORE version 2 (normal year forcing) data derived from the air-sea flux climatology averaged over 60 years (1948‑2007) are used to calculate heat, salt and momentum fluxes with a bulk formula at the sea surface. The sea surface salinity is restored to the climatological monthly mean surface salinity of the Polar Science Center Hydrographic Climatology on a 60-day timescale, to make up the fresh water flux at the sea surface. Two models that have horizontal resolutions of 1° and 1/4 °, respectively, are integrated during 50 years. The inter-annual variation of the STMW volume was well reproduced with the eddy-permitting grid resolution although the model was forced by a climatological atmospheric forcing. The annual formation and erosion volume of STMW varies by 7% and 9% of the mean volume, respectively.

  9. Photochemical grid model performance with varying horizontal grid resolution and sub-grid plume treatment for the Martins Creek near-field SO2 study

    NASA Astrophysics Data System (ADS)

    Baker, Kirk R.; Hawkins, Andy; Kelly, James T.

    2014-12-01

    Near source modeling is needed to assess primary and secondary pollutant impacts from single sources and single source complexes. Source-receptor relationships need to be resolved from tens of meters to tens of kilometers. Dispersion models are typically applied for near-source primary pollutant impacts but lack complex photochemistry. Photochemical models provide a realistic chemical environment but are typically applied using grid cell sizes that may be larger than the distance between sources and receptors. It is important to understand the impacts of grid resolution and sub-grid plume treatments on photochemical modeling of near-source primary pollution gradients. Here, the CAMx photochemical grid model is applied using multiple grid resolutions and sub-grid plume treatment for SO2 and compared with a receptor mesonet largely impacted by nearby sources approximately 3-17 km away in a complex terrain environment. Measurements are compared with model estimates of SO2 at 4- and 1-km resolution, both with and without sub-grid plume treatment and inclusion of finer two-way grid nests. Annual average estimated SO2 mixing ratios are highest nearest the sources and decrease as distance from the sources increase. In general, CAMx estimates of SO2 do not compare well with the near-source observations when paired in space and time. Given the proximity of these sources and receptors, accuracy in wind vector estimation is critical for applications that pair pollutant predictions and observations in time and space. In typical permit applications, predictions and observations are not paired in time and space and the entire distributions of each are directly compared. Using this approach, model estimates using 1-km grid resolution best match the distribution of observations and are most comparable to similar studies that used dispersion and Lagrangian modeling systems. Model-estimated SO2 increases as grid cell size decreases from 4 km to 250 m. However, it is notable that the

  10. Cartesian grid simulations of bubbling fluidized beds with a horizontal tube bundle

    SciTech Connect

    Li, Tingwen; Dietiker, Jean-Francois; Zhang, Yongmin; Shahnam, Mehrdad

    2011-12-01

    In this paper, the flow hydrodynamics in a bubbling fluidized bed with submerged horizontal tube bundle was numerically investigated with an open-source code: Multiphase Flow with Interphase eXchange (MFIX). A newly implemented cut-cell technique was employed to deal with the curved surface of submerged tubes. A series of 2D simulations were conducted to study the effects of gas velocity and tube arrangement on the flow pattern. Hydrodynamic heterogeneities on voidage, particle velocity, bubble fraction, and frequency near the tube circumferential surface were successfully predicted by this numerical method, which agrees qualitatively with previous experimental findings and contributes to a sounder understanding of the non-uniform heat transfer and erosion around a horizontal tube. A 3D simulation was also conducted. Significant differences between 2D and 3D simulations were observed with respect to bed expansion, bubble distribution, voidage, and solids velocity profiles. Hence, the 3D simulation is needed for quantitative prediction of flow hydrodynamics. On the other hand, the flow characteristics and bubble behavior at the tube surface are similar under both 2D and 3D simulations as far as the bubble frequency and bubble phase fraction are concerned. Comparison with experimental data showed that qualitative agreement was obtained in both 2D and 3D simulations for the bubble characteristics at the tube surface.

  11. Effect of horizontal grid resolution on simulations of oceanic CFC-11 uptake and direct injection of anthropogenic CO2

    NASA Astrophysics Data System (ADS)

    Wickett, M. E.; Caldeira, K.; Duffy, P. B.

    2003-06-01

    We simulate direct injection of CO2 and uptake of CFC-11 in a global, three-dimensional ocean general circulation model using two model resolutions: a coarse resolution of 4° in longitude by 2° in latitude and a finer resolution of 1° in both longitude and latitude. We assess the impact of resolution on the relative effectiveness of ocean carbon sequestration for four different injection sites: New York at 710 and 3025 m depths and San Francisco at 710 and 3025 m depths. Results show that deep injection is generally effective, with relatively small differences in retention, transport, and fluxes between the two resolutions. Results for the change in ocean pH due to CO2 injection show that resolution does limit the details at sufficiently small scales, with the finer resolution showing greater maximum pH changes. Model predictions of CFC-11 uptake generally have shallower penetration than is seen in observations, and the differences between the model resolutions are much smaller than the differences between either simulation and the observations. There is no persuasive evidence of improvement of large-scale results with globally higher horizontal resolution in these non-eddy-resolving simulations to justify the computational expense. However, when local details are the primary interest, the use of higher resolution may be justified. We suggest that the best approach to improving the results of coarse-resolution ocean models is not to globally increase horizontal resolution outside of the eddy-resolving regime, but rather to pursue other approaches such as improved numerical methods, better parameterizations of sub-grid-scale processes, better forcing data, or perhaps local resolution increases.

  12. 2.5D modelling of a horizontal electric dipole using Finite Difference method with non-uniform grids and preconditioned sparse matrices

    NASA Astrophysics Data System (ADS)

    Miranda, D. D.; Howard, A. Q.

    2012-12-01

    Computational modelling of geophysical data is an important step in the process of hydrocarbon exploration. It consists in simulating the exploratory procedure and realistic geological environments. It allows a preliminary evaluation of the exploration feasibility of a particular terrain or geological model, indicating the best conditions for geophysical surveys. In this paper, we assess the Finite Difference frequency domain method for modelling the electromagnetic response of a horizontal electric dipole in 1D and 2.5D geometries. The non-uniform grid is refined in regions where the electromagnetic fields vary rapidly, namely the regions where we have variation in conductivity distribution and near the source dipole. We chose the horizontal electromagnetic dipole because it is the source normally used in the marine controlled-source electromagnetic surveys (mCSEM), which is the next step in our research. The mCSEM, also known as Sea Bed Logging, is a method for detection and characterization of thin resistive structures, like hydrocarbon reservoirs, often located in regions of deep water. It consists of a mobile electric dipole or a magnetic loop as a source, positioned near the sea floor where an array of electric and magnetic receivers are deployed. The source transmitter uses a low frequency signal on the order of 1Hz, that diffuses both in the ocean and in the sediments beneath it and is captured by the receivers . Amplitude and phase of this signal depend on the electrical conductivity of the seabed environment. The complexity of the environments and the large dimensions of the geological domains that we want to investigate make the modelling procedure extremely demanding, since the Finite Difference method requires a total discretization of the studied domain, resulting in large systems of linear equations, which can make the procedure long and expensive. Non-uniform grids and exploitation of the sparse property of the Finite Difference matrices are example

  13. Demonstration of Femtosecond-Phase Stabilization in 2 km OpticalFiber

    SciTech Connect

    Staples, J.W.; Wilcox, R.; Byrd, J.M.

    2007-06-01

    Long-term phase drifts of less than a femtosecond per hour have been demonstrated in a 2 km length of single-mode optical fiber, stabilized interferometrically at 1530 nm. Recent improvements include a wide-band phase detector that reduces the possibility of fringe jumping due to fast external perturbations of the fiber and locking of the master CW laser wavelength to an atomic absorption line. Mode-locked lasers may be synchronized using two wavelengths of the comb, multiplexed over one fiber, each wavelength individually interferometrically stabilized.

  14. Faraday laser using 1.2 km fiber as an extended cavity

    NASA Astrophysics Data System (ADS)

    Tao, Zhiming; Zhang, Xiaogang; Pan, Duo; Chen, Mo; Zhu, Chuanwen; Chen, Jingbiao

    2016-07-01

    We demonstrate a Faraday laser using a 1.2 km fiber as an extended cavity, which provides optical feedback and obtains small free spectrum range (FSR) of 83 kHz, and have succeeded in limiting the laser frequency to a crossover transition {5}2{S}1/2,F=2\\to {5}2{P}3/2,F\\prime =1,3 of the natural 87Rb at 780 nm. The Faraday laser is based on a Faraday anomalous dispersion optical filter (FADOF) with an ultra-narrow bandwidth and the long fiber extended cavity of 1.2 km. The peak transmission assigned to the crossover transition F=2\\to F\\prime =1,3 in the FADOF is 20.5% with an ultra-narrow bandwidth of 29.1 MHz. The Allan deviation of the Faraday laser is around 6.0× {10}-11 in 0.06 to 1 s sampling time. Laser frequency is always kept in the center of the transmitted peak assigned to F=2\\to F\\prime =1,3. The Faraday laser realized here can provide light exactly resonant with an atomic transition used for atom–photon interaction experiments and is insensitive to diode temperature and injection current fluctuations.

  15. Assessment of the effects of horizontal grid resolution on long-term air quality trends using coupled WRF-CMAQ simulations

    EPA Science Inventory

    The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. WRF-CMAQ simulations over the continental Uni...

  16. Assessment of the effects of horizontal grid resolution on long-term air quality trends using coupled WRF-CMAQ simulations

    NASA Astrophysics Data System (ADS)

    Gan, Chuen-Meei; Hogrefe, Christian; Mathur, Rohit; Pleim, Jonathan; Xing, Jia; Wong, David; Gilliam, Robert; Pouliot, George; Wei, Chao

    2016-05-01

    The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. WRF-CMAQ simulations over the continental United State are performed over the 2001 to 2010 time period at two different horizontal resolutions of 12 and 36 km. Both simulations used the same emission inventory and model configurations. Model results are compared both in space and time to assess the potential weaknesses and strengths of using coarse resolution in long-term air quality applications. The results show that the 36 km and 12 km simulations are comparable in terms of trends analysis for both pollutant concentrations and radiation variables. The advantage of using the coarser 36 km resolution is a significant reduction of computational cost, time and storage requirement which are key considerations when performing multiple years of simulations for trend analysis. However, if such simulations are to be used for local air quality analysis, finer horizontal resolution may be beneficial since it can provide information on local gradients. In particular, divergences between the two simulations are noticeable in urban, complex terrain and coastal regions.

  17. Response of Organic Materials to Hypervelocity Impacts (up to 11.2 km/sec)

    NASA Astrophysics Data System (ADS)

    Bass, D. S.; Murphy, W. M.; Miller, G. P.; Grosch, D. J.; Walker, J. D.; Mullin, A.; Waite, J. H.

    1998-09-01

    It is speculated that organic-rich planetesimals played a role in the origin of life on Earth. However, the mechanism by which organics could have been delivered from space to a planetary surface is difficult to determine. Particularly problematic is the question of the stability of organic material under hypervelocity impact conditions. Although some evidence suggests organic molecules cannot survive impacts from projectile velocities greater than about 10 km/sec [1], other investigators have found that impacts create a favorable environment for post-shock recombination of organic molecules in the plume phase [2, 3]. Understanding the mechanisms involved in delivering organics to a planetary surface remains difficult to assess due to the lack of experimental results of hypervelocity impacts, particularly in the velocity range of tens of km/sec. Organic material preservation and destruction from impact shocks, the synthesis of organics in the post-impact plume environment, and implications of these processes for Earth and Mars can be investigated by launching an inorganic projectile into an analog planetesimal-and-bolide organic-rich target. We explored the pressure and temperature ranges of hypervelocity impacts (11.2 km/sec) through simulations with CTH impact physics computer code. Using an inhibited shaped-charge launcher, we also experimentally determined the response of organic material to hypervelocity impacts. Initial work focused on saturating well-characterized zeolitic tuff with an aqueous solution containing dissolved naphthalene, a common polycyclic aromatic hydrocarbon (PAH). Porosity measurements, thin section, and x-ray diffraction analyses were performed to determine that the tuff is primarily fine-grained clinoptilolite. In order to distinguish between contaminants and compounds generated or destroyed in the impact, we tagged the aqueous component of our target with deuterium. Experimental tests revealed that to first order, naphthalene survived

  18. Cultivation of methanogenic community from 2-km deep subseafloor coalbeds using a continuous-flow bioreactor

    NASA Astrophysics Data System (ADS)

    Imachi, H.; Tasumi, E.; Morono, Y.; Ito, M.; Takai, K.; Inagaki, F.

    2013-12-01

    Deep subseafloor environments associated with hydrocarbon reservoirs have been least explored by previous scientific drilling and hence the nature of deep subseafloor life and its ecological roles in the carbon cycle remain largely unknown. In this study, we performed cultivation of subseafloor methanogenic communities using a continuous-flow bioreactor with polyurethane sponges, called down-flow hanging sponge (DHS) reactor. The sample used for the reactor cultivation was obtained from 2 km-deep coalbeds off the Shimokita Peninsula of Japan, the northwestern Pacific, during the Integrated Ocean Drilling Program (IODP) Expedition 337 using a riser drilling technology of the drilling vessel Chikyu. The coalbed samples were incubated anaerobically in the DHS reactor at the in-situ temperature of 40°C. Synthetic seawater supplemented with a tiny amount of yeast extract, acetate, propionate and butyrate was provided into the DHS reactor. After 34 days of the bioreactor operation, a small production of methane was observed. The methane concentration was gradually increased and the stable carbon isotopic composition of methane was consistency 13C-depleted during the bioreactor operation, indicating the occurrence of microbial methanogenesis. Microscopic observation showed that the enrichment culture contained a variety of microorganisms, including methanogen-like rod-shaped cells with F420 auto-fluorescence. Interestingly, many spore-like particles were observed in the bioreactor enrichment. Phylogenetic analysis of 16S rRNA genes showed the growth of phylogenetically diverse bacteria and archaea in the DHS reactor. Predominant archaeal components were closely related to hydrogenotrophic methanogens within the genus Methanobacterium. Some predominant bacteria were related to the spore-formers within the class Clostridia, which are overall in good agreement with microscopic observations. By analyzing ion images using a nano-scale secondary ion mass spectrometry (Nano

  19. Horizontal Variability of Water and Its Relationship to Cloud Fraction near the Tropical Tropopause: Using Aircraft Observations of Water Vapor to Improve the Representation of Grid-scale Cloud Formation in GEOS-5

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Molod, Andrea M.

    2014-01-01

    Large-scale models such as GEOS-5 typically calculate grid-scale fractional cloudiness through a PDF parameterization of the sub-gridscale distribution of specific humidity. The GEOS-5 moisture routine uses a simple rectangular PDF varying in height that follows a tanh profile. While below 10 km this profile is informed by moisture information from the AIRS instrument, there is relatively little empirical basis for the profile above that level. ATTREX provides an opportunity to refine the profile using estimates of the horizontal variability of measurements of water vapor, total water and ice particles from the Global Hawk aircraft at or near the tropopause. These measurements will be compared with estimates of large-scale cloud fraction from CALIPSO and lidar retrievals from the CPL on the aircraft. We will use the variability measurements to perform studies of the sensitivity of the GEOS-5 cloud-fraction to various modifications to the PDF shape and to its vertical profile.

  20. Practical Point-to-Point Free-Space Quantum Key Distribution over 1/2 KM

    SciTech Connect

    Buttler, W.T.; Hughes, R.J.; Kwiat, P.G.; Lamoreaux, S.K.; Morgan, G.L.; Peterson, C.G.

    1999-02-01

    We have demonstrated point-to-point single-photon quantum key distribution (QKD) over a free-space optical path of {approximately}475 m under daylight conditions. This represents an increase of >1,000 times farther than any reported point-to-point demonstration, and >6 times farther than the previous folded path daylight demonstration. We expect to extend the daylight range to 2 km or more within the next few months. A brief description of the system is given here. The QKD transmitter, a.k.a. ''Alice'' (Fig. 1), consists of three thermoelectrically cooled diode lasers, a single interference filter (IF), two optical attenuators, two linear polarizers, two non-polarization beam-splitters (BSs), and a 27x beam expander. The two data-lasers' (dim-lasers') wavelengths are temperature controlled and constrained by the IF to {approximately}773 {+-} 0.5 nm, while the transmitted wavelength of the bright-laser (timing-laser) is {approximately}768 nm; the data-lasers are configured to emit a weak pulse of approximately 1 ns duration. The transmitter incorporates no active polarization switching--a first in QKD.

  1. In Situ Stresses in Borehole Blanche-1/South Australia Derived from Breakouts, Core Discing and Hydraulic Fracturing to 2 km Depth

    NASA Astrophysics Data System (ADS)

    Klee, G.; Bunger, A.; Meyer, G.; Rummel, F.; Shen, B.

    2011-09-01

    The development of Hot-Dry Rock (HDR) geothermal energy in Australia with drillings to some kilometres depth yields an impetus for deep stress logging. For the Olympic Dam HDR-project, borehole Blanche-1 was drilled to almost 2 km depth and provided the possibility to estimate the in situ stresses within the granitic borehole section by the analysis of borehole breakouts and core discing, as well as by hydraulic fracturing combined with acoustic borehole televiewer logging for fracture orientation determination. Although the stress magnitudes derived by the different methods deviate significantly, they clearly indicate for the depth range between 800 and 1,740 m a compressional stress regime of S v ≤ S h < S H and a consistent East-West orientation of maximum horizontal compression in agreement with existing stress data for Australia. The minor horizontal stress S h derived from the hydraulic fracturing closure pressure values is about equal to the overburden stress and may be regarded as most reliable.

  2. Restricting 32-128 km horizontal scales hardly affects the MJO in the Superparameterized Community Atmosphere Model v.3.0 but the number of cloud-resolving grid columns constrains vertical mixing

    NASA Astrophysics Data System (ADS)

    Pritchard, Michael S.; Bretherton, Christopher S.; DeMott, Charlotte A.

    2014-09-01

    The effects of artificially restricting the 32-128 km horizontal scale regime on MJO dynamics in the Superparameterized Community Atmosphere Model v.3.0 have been explored through reducing the extent of its embedded cloud resolving model (CRM) arrays. Two and four-fold reductions in CRM extent (from 128 to 64 km and 32 km) produce statistical composite MJO signatures with spatial scale, zonal phase speed, and intrinsic wind-convection anomaly structure that are all remarkably similar to the standard SPCAM's MJO. This suggests that the physics of mesoscale convective organization on 32-128 km scales are not critical to MJO dynamics in SPCAM and that reducing CRM extent may be a viable strategy for 400% more computationally efficient analysis of superparameterized MJO dynamics. However several unexpected basic state responses caution that extreme CRM domain reduction can lead to systematic mean state issues in superparameterized models. We hypothesize that an artificial limit on the efficiency of vertical updraft mixing is set by the number of grid columns available for compensating subsidence in the embedded CRM arrays. This can lead to reduced moisture ventilation supporting too much liquid cloud and thus an overly strong cloud shortwave radiative forcing, particularly in regions of deep convection.

  3. A grid amplifier

    NASA Technical Reports Server (NTRS)

    Kim, Moonil; Weikle, Robert M., II; Hacker, Jonathan B.; Delisio, Michael P.; Rutledge, David B.; Rosenberg, James J.; Smith, R. P.

    1991-01-01

    A 50-MESFET grid amplifier is reported that has a gain of 11 dB at 3.3 GHz. The grid isolates the input from the output by using vertical polarization for the input beam and horizontal polarization for the transmitted output beam. The grid unit cell is a two-MESFET differential amplifier. A simple calibration procedure allows the gain to be calculated from a relative power measurement. This grid is a hybrid circuit, but the structure is suitable for fabrication as a monolithic wafer-scale integrated circuit, particularly at millimeter wavelengths.

  4. Ensemble flood simulation for a small dam catchment in Japan using 10 and 2 km resolution nonhydrostatic model rainfalls

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kenichiro; Otsuka, Shigenori; Apip; Saito, Kazuo

    2016-08-01

    This paper presents a study on short-term ensemble flood forecasting specifically for small dam catchments in Japan. Numerical ensemble simulations of rainfall from the Japan Meteorological Agency nonhydrostatic model (JMA-NHM) are used as the input data to a rainfall-runoff model for predicting river discharge into a dam. The ensemble weather simulations use a conventional 10 km and a high-resolution 2 km spatial resolutions. A distributed rainfall-runoff model is constructed for the Kasahori dam catchment (approx. 70 km2) and applied with the ensemble rainfalls. The results show that the hourly maximum and cumulative catchment-average rainfalls of the 2 km resolution JMA-NHM ensemble simulation are more appropriate than the 10 km resolution rainfalls. All the simulated inflows based on the 2 and 10 km rainfalls become larger than the flood discharge of 140 m3 s-1, a threshold value for flood control. The inflows with the 10 km resolution ensemble rainfall are all considerably smaller than the observations, while at least one simulated discharge out of 11 ensemble members with the 2 km resolution rainfalls reproduces the first peak of the inflow at the Kasahori dam with similar amplitude to observations, although there are spatiotemporal lags between simulation and observation. To take positional lags into account of the ensemble discharge simulation, the rainfall distribution in each ensemble member is shifted so that the catchment-averaged cumulative rainfall of the Kasahori dam maximizes. The runoff simulation with the position-shifted rainfalls shows much better results than the original ensemble discharge simulations.

  5. Extension of the operating parameters of the two stage light gas gun to velocities below 2 km/sec.

    SciTech Connect

    Thoe, R S

    2007-08-28

    The Joint Actinide Shock Physics Experimental Facility (JASPER) located in area 27 at the Nevada Test Site Has been tasked with providing high accuracy information on the Equation Of State (EOS) and other dynamic properties of weapons grade plutonium and other actinides important to the stockpile stewardship program. In the past 5 years this facility has provided dozens of experimental data points for the accurate determination of pressure density relationship for these materials over a broad pressure range. In order to complete this survey it is necessary to extend the low pressure region to include projectile velocities below 2 km/s. For most gas gun facilities this would present not too great a difficulty, one could simply decrease the amount of propellant along with a decrease in the strength of the petal valve, However JASPER requires that the piston be securely embedded in the Acceleration Reservoir (AR) as part of the containment system. The projectile must remain flat and undistorted. This requirement makes the attainment of slow velocities problematic. This talk will discuss the JASPER Facility, A finite difference code developed to give predictive capability for two stage gas guns, and a set of experiments performed to demonstrate this capability.

  6. Potential sulfate reduction in deeply buried coalbeds 2 km below the seafloor off the Shimokita Peninsula (Japan)

    NASA Astrophysics Data System (ADS)

    Glombitza, C.; Inagaki, F.; Lever, M. A.; Jørgensen, B. B.

    2013-12-01

    Integrated Ocean Drilling Program (IODP) Expedition 337 aboard the drilling vessel Chikyu in summer 2012 was the first IODP expedition to drill into a deeply buried hydrocarbon system by riser drilling and, in the process, extended the depth record of scientific ocean drilling to 2466 meters below seafloor (mbsf). A main scientific goal of Expedition 337 was to explore microbial communities associated with deeply buried coalbeds 2 km below the seafloor at Site C0020 off the Shimokita Peninsula of Japan, northwestern coast of the Pacific Ocean. Four lithological units were defined according to sedimentological observations (Inagaki et al. 2012). Temperature measurements during wireline logging revealed in-situ temperatures in the range habitable for life, with ~40-45°C in 2km-deep coalbeds and 60°C at the bottom of the hole. To determine potential sulfate reduction rates (pSRRs) throughout the lower half of the borehole (1200-2466 mbsf; Units II - IV), we prepared slurries from fresh core material in artificial seawater medium containing 1 mM of sulfate and incubated these onboard with 35S-labeled sulfate at approximate in-situ temperatures (i.e., 25, 35, and 45°C). A duplicate set of incubations was started from each sample, one with only N2 in the headspace, and one with N2 + CH4 in the headspace. We incubated samples with 3.7 MBq 35S for a period of 10 days to achieve a detection limit of ca. 10 fmol sulfate cm-3 d-1. pSRRs were close to the detection limit in Unit II and increased by two orders of magnitude up to 2 pmol cm-3 d-1 in the coal-bearing strata (Unit III), decreasing again below in Unit IV. Maximum rates in Unit III reached values similar to those determined during the Chikyu shakedown cruise at 350 mbsf at the same site in 2006. In contrast to the pSRRs determined previously, however, addition of methane did not stimulate pSRRs, suggesting that potential sulfate reduction was supported by electron donors other than methane. The increase of pSRR in

  7. Characterizing Air Masses in the Lower Troposphere (< 2 km) during the 2011 Student Airborne Program (SARP) Mission in Southern California

    NASA Astrophysics Data System (ADS)

    Lee, H.; Elder, C.; Kauffman, E. J.; Weathers, E.; Thomas, E.; Johnson, E.; Turrentine, H.; Saad, K.; Nighelli, K.; Burns, M.; Heath, N.; Shetter, R. E.; Schaller, E.; Webster, A.; Buzay, E.; Peterson, J.; Simpson, I. J.; Rowland, F. S.; Blake, D. R.

    2011-12-01

    During the NASA Student Airborne Program (SARP) mission, high frequency whole air sampling during a missed-approach to Los Angeles International airport (LAX) provided air mass signatures collected in close proximity to their urban and oceanic sources. Each whole air sample was analyzed for 80 halocarbons, hydrocarbons and organic nitrates. Unlike other airborne missions, high frequency whole air sampling of about 70 samples collected over a 20 minute period (15 second fill per sample) during a 150 km flight path at low altitude (< 2 km) provided a more detailed profile of the Los Angeles air shed than has been previously accomplished. Correlations between CH3I, CHBr3, and MeONO2 (marine tracers) versus C2Cl4 and HCFC-22 (anthropogenic tracers) were used to distinguish between purely marine air and air influenced by emissions from Los Angeles (Figure 1). Of the 80 C1-C10 volatile organic compounds that were measured, 60 were elevated in air from the Los Angeles air shed. These included C1-C10 alkanes, C6-C8 aromatics, C2-C3 alkenes, halons, HCFCs, HFCs, CH3CCl3, chlorinated solvents (e.g., C2Cl4, CHCl3, CH2Cl2), and organic nitrates. Marine species emitted in this region of the Pacific were found to include MeONO2, EtONO2, CH2Br2, CHBr3, CH3I and DMS. Note that the C3 organic nitrates were not enhanced in the marine influenced air, and instead they are attributed to urban photochemistry. Overall, high-frequency and low-altitude whole air sampling during the LAX missed-approach clearly distinguished urban and oceanic sources and allowed a detailed chemical signature for Los Angeles air to be determined.

  8. INVESTIGATION OF PHOTOCHEMICAL MODELING OF POINT SOURCE POLLUTANTS WITH EULERIAN GRID AND LAGRANGIAN PLUME APPROACHES

    EPA Science Inventory

    In this paper, results of Eulerian grid and Lagrangian photochemical model simulations of emissions from a major elevated point source are presented. eries of simulations with grid sizes varying from 30 km to 2 km were performed with the Urban Airshed Model, a photochemical grid ...

  9. Perfluorocarbon Tracer Experiments on a 2 km Scale in Manchester Showing Ingress of Pollutants into a Building

    NASA Astrophysics Data System (ADS)

    Matthews, James; Wright, Matthew; Bacak, Asan; Silva, Hugo; Priestley, Michael; Martin, Damien; Percival, Carl; Shallcross, Dudley

    2016-04-01

    Cyclic perfluorocarbons (PFCs) have been used to measure the passage of air in urban and rural settings as they are chemically inert, non-toxic and have low background concentrations. The use of pre-concentrators and chemical ionisation gas chromatography enables concentrations of a few parts per quadrillion (ppq) to be measured in bag samples. Three PFC tracers were used in Manchester, UK in the summer of 2015 to map airflow in the city and ingress into buildings: perfluomethylcyclohexane (PMCH), perfluoro-2-4-dimethylcyclohexane (mPDMCH) and perfluoro-2-methyl-3-ethylpentene (PMEP). A known quantity of each PFC was released for 15 minutes from steel canisters using pre-prepared PFC mixtures. Release points were chosen to be upwind of the central sampling location (Simon Building, University of Manchester) and varied in distance up to 2.2 km. Six releases using one or three tracers in different configurations and under different conditions were undertaken in the summer. Three further experiments were conducted in the Autumn, to more closely investigate the rate of ingress and decay of tracer indoors. In each experiment, 10 litre samples were made over 30 minutes into Tedlar bags, starting at the same time the as PFC release. Samples were taken in 11 locations chosen from 15 identified areas including three in public parks, three outside within the University of Manchester area, seven inside and five outside of the Simon building and two outside a building nearby. For building measurements, receptors were placed inside the buildings on different floors; outside measurements were achieved through a sample line out of the window. Three of the sample positions inside the Simon building were paired with samplers outside to allow indoor-outdoor comparisons. PFC concentrations varied depending on location and height. The highest measured concentrations occurred when the tracer was released at sunrise; up to 330 ppq above background (11 ppq) of PMCH was measured at the 6

  10. Grid Work

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pointwise Inc.'s, Gridgen Software is a system for the generation of 3D (three dimensional) multiple block, structured grids. Gridgen is a visually-oriented, graphics-based interactive code used to decompose a 3D domain into blocks, distribute grid points on curves, initialize and refine grid points on surfaces and initialize volume grid points. Gridgen is available to U.S. citizens and American-owned companies by license.

  11. Horizontal drilling technology advances

    SciTech Connect

    Not Available

    1991-03-04

    Horizontal drilling technology is making further advances in the Texas Austin chalk play as such drilling continues to spread in many U.S. land areas. One company has completed a Cretaceous Austin chalk oil well with the longest horizontal well bore in Texas and what at 1 1/6 miles is believed to be the world's longest medium radius horizontal displacement.

  12. NESTED GRID MESOSCALE ATMOSPHERIC CHEMISTRY MODEL

    EPA Science Inventory

    A nested grid version of the Regional Acid Deposition Model (RADM) has been developed. he horizontal grid interval size of the nested model is 3 times smaller than that of RADM (80/3 km 26.7 km). herefore the nested model is better able to simulate mesoscale atmospheric processes...

  13. MAGNETIC GRID

    DOEpatents

    Post, R.F.

    1960-08-01

    An electronic grid is designed employing magnetic forces for controlling the passage of charged particles. The grid is particularly applicable to use in gas-filled tubes such as ignitrons. thyratrons, etc., since the magnetic grid action is impartial to the polarity of the charged particles and, accordingly. the sheath effects encountered with electrostatic grids are not present. The grid comprises a conductor having sections spaced apart and extending in substantially opposite directions in the same plane, the ends of the conductor being adapted for connection to a current source.

  14. Horizontal drilling developments

    SciTech Connect

    Gust, D.

    1997-05-01

    The advantages of horizontal drilling are discussed. Use of horizontal drilling has climbed in the past half decade as technology and familiarity offset higher costs with higher production rates and greater recoveries from new and existing wells. In essence, all types of horizontal wells expose a larger section of the reservoir to the wellbore with a resulting increase in flow rates. (A horizontal well may also be drilled to provide coning control or to intersect vertical fractures.) Thus, drilling horizontally, both onshore and offshore, reduces the number of wells necessary to develop a field.

  15. The Grid

    SciTech Connect

    White, Vicky

    2003-05-21

    By now almost everyone has heard of 'The Grid', or 'Grid Computing' as it should more properly be described. There are frequent articles in both the popular and scientific press talking about 'The Grid' or about some specific Grid project. Run II Experiments, US-CMS, BTeV, the Sloane Digital Sky Survey and the Lattice QCD folks are all incorporating aspects of Grid Computing in their plans, and the Fermilab Computing Division is supporting and encouraging these efforts. Why are we doing this and what does it have to do with running a physics experiment or getting scientific results? I will explore some of these questions and try to give an overview, not so much of the technical aspects of Grid Computing, rather of what the phenomenon means for our field.

  16. Fibonacci Grids

    NASA Technical Reports Server (NTRS)

    Swinbank, Richard; Purser, James

    2006-01-01

    Recent years have seen a resurgence of interest in a variety of non-standard computational grids for global numerical prediction. The motivation has been to reduce problems associated with the converging meridians and the polar singularities of conventional regular latitude-longitude grids. A further impetus has come from the adoption of massively parallel computers, for which it is necessary to distribute work equitably across the processors; this is more practicable for some non-standard grids. Desirable attributes of a grid for high-order spatial finite differencing are: (i) geometrical regularity; (ii) a homogeneous and approximately isotropic spatial resolution; (iii) a low proportion of the grid points where the numerical procedures require special customization (such as near coordinate singularities or grid edges). One family of grid arrangements which, to our knowledge, has never before been applied to numerical weather prediction, but which appears to offer several technical advantages, are what we shall refer to as "Fibonacci grids". They can be thought of as mathematically ideal generalizations of the patterns occurring naturally in the spiral arrangements of seeds and fruit found in sunflower heads and pineapples (to give two of the many botanical examples). These grids possess virtually uniform and highly isotropic resolution, with an equal area for each grid point. There are only two compact singular regions on a sphere that require customized numerics. We demonstrate the practicality of these grids in shallow water simulations, and discuss the prospects for efficiently using these frameworks in three-dimensional semi-implicit and semi-Lagrangian weather prediction or climate models.

  17. Development of Gridded Fields of Urban Canopy Parameters for Advanced Urban Meteorological and Air Quality Models

    EPA Science Inventory

    Urban dispersion and air quality simulation models applied at various horizontal scales require different levels of fidelity for specifying the characteristics of the underlying surfaces. As the modeling scales approach the neighborhood level (~1 km horizontal grid spacing), the...

  18. Horizontal well planning

    SciTech Connect

    Schuh, F.J. )

    1991-03-01

    Interest in horizontal drilling has exploded at a rate well above even the most optimistic projections. Certainly, this technique will not end with the Bakken and Austin Chalk plays. However, future reservoirs will undoubtedly require much more complicated well designs and multi-disciplined technical interaction than has been used so far. The horizontal drilling costs are too high to permit resolving of all the technical issues by trial and error. A multi-disciplinary team approach will be required in order for horizontal drilling to achieve its economic potential.

  19. Grid oscillators

    NASA Technical Reports Server (NTRS)

    Popovic, Zorana B.; Kim, Moonil; Rutledge, David B.

    1988-01-01

    Loading a two-dimensional grid with active devices offers a means of combining the power of solid-state oscillators in the microwave and millimeter-wave range. The grid structure allows a large number of negative resistance devices to be combined. This approach is attractive because the active devices do not require an external locking signal, and the combining is done in free space. In addition, the loaded grid is a planar structure amenable to monolithic integration. Measurements on a 25-MESFET grid at 9.7 GHz show power-combining and frequency-locking without an external locking signal, with an ERP of 37 W. Experimental far-field patterns agree with theoretical results obtained using reciprocity.

  20. Grid Computing

    NASA Astrophysics Data System (ADS)

    Foster, Ian

    2001-08-01

    The term "Grid Computing" refers to the use, for computational purposes, of emerging distributed Grid infrastructures: that is, network and middleware services designed to provide on-demand and high-performance access to all important computational resources within an organization or community. Grid computing promises to enable both evolutionary and revolutionary changes in the practice of computational science and engineering based on new application modalities such as high-speed distributed analysis of large datasets, collaborative engineering and visualization, desktop access to computation via "science portals," rapid parameter studies and Monte Carlo simulations that use all available resources within an organization, and online analysis of data from scientific instruments. In this article, I examine the status of Grid computing circa 2000, briefly reviewing some relevant history, outlining major current Grid research and development activities, and pointing out likely directions for future work. I also present a number of case studies, selected to illustrate the potential of Grid computing in various areas of science.

  1. Ensemble flood forecasting to support dam water release operation using 10 and 2 km-resolution JMA Nonhydrostatic Model ensemble rainfalls

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Otsuka, S.; Apip; Saito, K.

    2015-12-01

    This paper presents a study on short-term ensemble flood forecasting specifically for small dam catchments in Japan. Numerical ensemble simulations of rainfall from the Japan Meteorological Agency Nonhydrostatic Model are used as the input data to a rainfall-runoff model for predicting river discharge into a dam. The ensemble weather simulations use a conventional 10 km and a high-resolution 2 km spatial resolution. A distributed rainfall-runoff model is constructed for the Kasahori dam catchment (approx. 70 km2) and applied with the ensemble rainfalls. The results show that the hourly maximum and cumulative catchment-average rainfalls of the 2 km-resolution JMA-NHM ensemble simulation are more appropriate than the 10 km-resolution rainfalls. All the simulated inflows based on the 2 and 10 km rainfalls become larger than the flood discharge of 140 m3 s-1; a threshold value for flood control. The inflows with the 10 km-resolution ensemble rainfall are all considerably smaller than the observations, while, at least one simulated discharge out of 11 ensemble members with the 2 km-resolution rainfalls reproduces the first peak of the inflow at the Kasahori dam with similar amplitude to observations, although there are spatiotemporal lags between simulation and observation. To take positional lags into account of the ensemble discharge simulation, the rainfall distribution in each ensemble member is shifted so that the catchment-averaged cumulative rainfall of the Kasahori dam maximizes. The runoff simulation with the position-shifted rainfalls show much better results than the original ensemble discharge simulations.

  2. Horizontal drilling spurs optimism

    SciTech Connect

    Crouse, P.C. )

    1991-02-01

    1990 proved to be an exciting year for horizontal wells. This budding procedure appears to be heading for the mainstream oil and gas market, because it can more efficiently recover hydrocarbons from many reservoirs throughout the world. This paper reports on an estimated 1,000 wells that were drilled horizontally (all laterals) in 1990, with the Austin Chalk formation of Texas accounting for about 65% of all world activity. The Bakken Shale play in Montana and North Dakota proved to be the second most active area, with an estimated 90 wells drilled. Many operators in this play have indicated the bloom may be off the Bakken because of poor results outside the nose of the formation, further complicated by some of the harshest rock, reservoir and completion problems posed to horizontal technology.

  3. Horizontal carbon nanotube alignment.

    PubMed

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies. PMID:27546174

  4. Horizontal Advanced Tensiometer

    SciTech Connect

    Hubbell, Joel M.; Sisson, James B.

    2004-06-22

    An horizontal advanced tensiometer is described that allows the monitoring of the water pressure of soil positions, particularly beneath objects or materials that inhibit the use of previous monitoring wells. The tensiometer includes a porous cup, a pressure transducer (with an attached gasket device), an adaptive chamber, at least one outer guide tube which allows access to the desired horizontal position, a transducer wire, a data logger and preferably an inner guide tube and a specialized joint which provides pressure on the inner guide tube to maintain the seal between the gasket of the transducer and the adaptive chamber.

  5. Cloud feedback studies with a physics grid

    SciTech Connect

    Dipankar, Anurag; Stevens, Bjorn

    2013-02-07

    During this project the investigators implemented a fully parallel version of dual-grid approach in main frame code ICON, implemented a fully conservative first-order interpolation scheme for horizontal remapping, integrated UCLA-LES micro-scale model into ICON to run parallely in selected columns, and did cloud feedback studies on aqua-planet setup to evaluate the classical parameterization on a small domain. The micro-scale model may be run in parallel with the classical parameterization, or it may be run on a "physics grid" independent of the dynamics grid.

  6. Estimating worldwide solar radiation resources on a 40km grid

    SciTech Connect

    Maxwell, E.L.; George, R.L.; Brady, E.H.

    1996-11-01

    During 1995, the National Renewable Energy Laboratory (NREL), initiated the Data Grid Task under the auspices of DOE`s Resource Assessment Program. A data grid is a framework of uniformly spaced locations (grid points) for which data are available. Estimates of monthly averages of direct normal, diffuse horizontal, and global horizontal daily-total solar radiation energy (kWh/m{sup 2}) are being made for each point on a grid covering the US, Mexico, the Caribbean, and southern Canada. The grid points are separated by approximately 40 km. Using interpolation methods, the digital data grid can be used to estimate solar resources at any location. The most encouraging result to date has been the location of sources providing worldwide data for most of the input parameters required for modeling daily total solar radiation. This is a multiyear task expected to continue through the rest of this century.

  7. Occurrence of microbial acetate-oxidation in ~2 km-deep coal-bearing sediments off the Shimokita Peninsula, Japan (IODP Expedition 337)

    NASA Astrophysics Data System (ADS)

    Ijiri, A.; Inagaki, F.

    2015-12-01

    During the Integrated Ocean Drilling Program (IODP) Expedition 337 in 2012, the riser-drilling vessel Chikyu extended the previous world depth record of scientific ocean drilling and made one of the deepest scientific borehole down to 2466 m below the seafloor (mbsf) at Site C0020 Hole A off the Shimokita Peninsula, Japan. The sedimentary sequence consists of 17 lignite layers below 1.5 km bellow the seafloor. Microbiological and geochemical data consistently showed evidence for the existence of microbial communities associated with lignite coal beds in the coal-bearing sediments (Inagaki and Hinrichs et al., Science, 2015). Since lignite coals produce substantial dissolved organic compounds during the burial alternation process, volatile fatty acids may play important roles for microbial life and its activity in the deep sedimentary environment. To address this hypothesis, we measured methanogenic and acetate-oxidation activities by radiotracer incubation experiments using 14C-labelled substrate ([2-14C]-acetate) immediately after core recovery. Activity of aceticlastic methanogenesis was observed in the sediment above the coal-baring layers (>1990 mbsf), ranging from 0.2 to 1.2 pmol cm-3 d-1. The highest activity was observed in a coal-bed horizon at 1990 mbsf. However, aceticlastic methanogenesis was below the detection limit in sediment samples below the 2 km-coal layers. Activity of acetate oxidation to CO2 was measured by 14CO2 production rate from [2-14C]-acetate. Interestingly, the acetate-oxidation activity was observed in sediments above the coal beds, which values were generally higher than those of methanogenesis with the maximum value of 33 pmol cm-3 d-1 at 1800 mbsf. The rates gradually decreased with increasing depth from 1800 mbsf and reached below the detection limit (i.e., 0.05 pmol cm-3 d-1) in 2 km-deep coal-bed samples. The occurrence of relatively high acetate oxidation at ~1800 mbsf above the coal formation suggests that microbes respire

  8. Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross Bracing Joint, Vertical Cross Bracing End Detail - Ceylon Covered Bridge, Limberlost Park, spanning Wabash River at County Road 900 South, Geneva, Adams County, IN

  9. Horizontal geophone transducer assembly

    SciTech Connect

    Hefer, F.W.

    1985-06-25

    The geophone transducer comprises in combination: a geophone capable of detecting horizontal seismic waves, and a rigid casing having a gimbal chamber. A gimbal is provided inside the chamber on which the geophone is mounted for limited free angular movement in one direction only. The gimbal includes in one preferred embodiment a viscous liquid in which the geophone is only partially submerged while it is supported by a U-shaped bracket which is mounted for rotation about a fixed axis.

  10. Frequency Comb Spectroscopy of CO(2), CH(4), H(2)O, and Isotopes Over a 2 km Outdoor Path: Concentration Retrievals Using Different Absorption Models

    NASA Astrophysics Data System (ADS)

    Rieker, G. B.; Giorgetta, F. R.; Coddington, I.; Swann, W. C.; Zolot, A. M.; Sinclair, L. C.; Baumann, E.; Cromer, C.; Newbury, N.

    2014-06-01

    A dual frequency comb spectrometer is used to make high signal-to-noise measurements of atmospheric absorption from 5990 to 6260 cm-1 with 0.0033 cm-1 point spacing and ˜4·10-8 cm-1 resolution over a 2 km outdoor air path. The spectra, which encompass over 700 absorption features of CO2, CH4, and H2O, are fit with several absorption models to assess the quality of the models and to retrieve the various species concentrations and air temperature. The models tested include the HITRAN 2008 and 2012 spectral databases with Voigt line-shape profiles as well as a recent model for CO2 that includes the effects of line mixing and speed dependence. Residuals are typically less than 2% of the peak absorbance, except for the HITRAN 2012 CH4 model, which exhibits larger residuals. Species concentration retrievals using the models are compared with a calibrated point sensor mounted on a tower near the open air path.

  11. Horizontal drilling in shallow reservoirs

    SciTech Connect

    Murray, W.F. Jr.; Schrider, L.A.; Haynes, C.D.; Mazza, R.L.

    1992-06-01

    The objectives of this joint horizontal drilling effort by the US DOE and Belden & Blake in the complex, low permeability Clinton Sandstone will focus on the following objectives: (1) apply horizontal drilling technology in hard, abrasive, and tight Clinton Sandstone; (2) evaluate effects of multiple hydraulic fracturing in a low permeability horizontal wellbore; (3) assess economic viability of horizontal drilling in the Clinton and similar tight gas sands.

  12. Horizontal drilling in shallow reservoirs

    SciTech Connect

    Murray, W.F. Jr.; Schrider, L.A.; Haynes, C.D.; Mazza, R.L.

    1992-01-01

    The objectives of this joint horizontal drilling effort by the US DOE and Belden Blake in the complex, low permeability Clinton Sandstone will focus on the following objectives: (1) apply horizontal drilling technology in hard, abrasive, and tight Clinton Sandstone; (2) evaluate effects of multiple hydraulic fracturing in a low permeability horizontal wellbore; (3) assess economic viability of horizontal drilling in the Clinton and similar tight gas sands.

  13. Measurements of CO2, CH4, H2O, and HDO over a 2-km Outdoor Path with Dual-Comb Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rieker, G. B.; Giorgetta, F. R.; Coddington, I.; Swann, W. C.; Sinclair, L. C.; Cromer, C.; Baumann, E.; Newbury, N. R.; Kofler, J.; Petron, G.; Sweeney, C.; Tans, P. P.

    2013-12-01

    We demonstrate simultaneous sensing of CO2, CH4, H2O, and HDO over a 2-km outdoor open air path using dual-frequency-comb absorption spectroscopy (DCS). Our implementation of the DCS technique simultaneously offers broad spectral coverage (>8 THz, 267 cm-1) and fine spectral point spacing (100 MHz, 0.0033 cm-1) with a coherent eye-safe beam. The spectrometer, which is adapted from [Zolot et al., 2012], consists of two mutually coherent Erbium-doped fiber frequency-comb lasers which create a broad spectrum of perfectly spaced narrow linewidth frequency elements (';comb teeth') near 1.6 μm. The comb light is transmitted by a telescope and active steering mirrors from the roof of the NIST Boulder laboratory to a 50-cm flat mirror located 1 km away. The return light is received by a second telescope and carried via multimode fiber to a detector. The greenhouse gas absorption attenuates the teeth from the two combs that are coincident with the relevant molecular resonant frequencies. We purposefully offset the frequencies between the two frequency combs in a Vernier-like fashion so that each pair of comb teeth from the two combs results in a unique rf heterodyne beat frequency on the photodiode. The spectral spacing between subsequent comb teeth pairs is 100 MHz, far lower than the ~4 GHz linewidths of small molecule absorption features in the atmosphere. Because of the narrow comb linewidth, there is an essentially negligible instrument lineshape. The measured absorption spectrum can thus resolve neighboring absorption features of different species, and can be compared directly with HITRAN and recent greenhouse gas absorption models developed for satellite- and ground-based carbon observatories to determine the path-integrated concentrations of the absorbing species. Measurements covering the complete 30013←00001 absorption band of CO2 and absorption features of CH4, H2O and HDO between 1.6-1.67 μm were performed under a variety of atmospheric conditions. During

  14. Horizontal baffle for nuclear reactors

    DOEpatents

    Rylatt, John A.

    1978-01-01

    A horizontal baffle disposed in the annulus defined between the core barrel and the thermal liner of a nuclear reactor thereby physically separating the outlet region of the core from the annular area below the horizontal baffle. The horizontal baffle prevents hot coolant that has passed through the reactor core from thermally damaging apparatus located in the annulus below the horizontal baffle by utilizing the thermally induced bowing of the horizontal baffle to enhance sealing while accommodating lateral motion of the baffle base plate.

  15. GridMan: A grid manipulation system

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.; Wang, Zhu

    1992-01-01

    GridMan is an interactive grid manipulation system. It operates on grids to produce new grids which conform to user demands. The input grids are not constrained to come from any particular source. They may be generated by algebraic methods, elliptic methods, hyperbolic methods, parabolic methods, or some combination of methods. The methods are included in the various available structured grid generation codes. These codes perform the basic assembly function for the various elements of the initial grid. For block structured grids, the assembly can be quite complex due to a large number of clock corners, edges, and faces for which various connections and orientations must be properly identified. The grid generation codes are distinguished among themselves by their balance between interactive and automatic actions and by their modest variations in control. The basic form of GridMan provides a much more substantial level of grid control and will take its input from any of the structured grid generation codes. The communication link to the outside codes is a data file which contains the grid or section of grid.

  16. Grid Data Management and Customer Demands at MeteoSwiss

    NASA Astrophysics Data System (ADS)

    Rigo, G.; Lukasczyk, Ch.

    2010-09-01

    Data grids constitute the required input form for a variety of applications. Therefore, customers increasingly expect climate services to not only provide measured data, but also grids of these with the required configurations on an operational basis. Currently, MeteoSwiss is establishing a production chain for delivering data grids by subscription directly from the data warehouse in order to meet the demand for precipitation data grids by governmental, business and science customers. The MeteoSwiss data warehouse runs on an Oracle database linked with an ArcGIS Standard edition geodatabase. The grids are produced by Unix-based software written in R called GRIDMCH which extracts the station data from the data warehouse and stores the files in the file system. By scripts, the netcdf-v4 files are imported via an FME interface into the database. Currently daily and monthly deliveries of daily precipitation grids are available from MeteoSwiss with a spatial resolution of 2.2km x 2.2km. These daily delivered grids are a preliminary based on 100 measuring sites whilst the grid of the monthly delivery of daily sums is calculated out of about 430 stations. Crucial for the absorption by the customers is the understanding of and the trust into the new grid product. Clearly stating needs which can be covered by grid products, the customers require a certain lead time to develop applications making use of the particular grid. Therefore, early contacts and a continuous attendance as well as flexibility in adjusting the production process to fulfill emerging customer needs are important during the introduction period. Gridding over complex terrain can lead to temporally elevated uncertainties in certain areas depending on the weather situation and coverage of measurements. Therefore, careful instructions on the quality and use and the possibility to communicate the uncertainties of gridded data proofed to be essential especially to the business and science customers who require

  17. MESH2D GRID GENERATOR DESIGN AND USE

    SciTech Connect

    Flach, G.; Smith, F.

    2012-01-20

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j{sub 0}) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. The overall mesh is constructed from grid zones that are typically then subdivided into a collection of smaller grid cells. The grid zones usually correspond to distinct materials or larger-scale geometric shapes. The structured grid zones are identified through uppercase indices (I,J). Subdivision of zonal regions into grid cells can be done uniformly, or nonuniformly using either a polynomial or geometric skewing algorithm. Grid cells may be concentrated backward, forward, or toward both ends. Figure 1 illustrates the above concepts in the context of a simple four zone grid.

  18. HORIZONTAL BOILING REACTOR SYSTEM

    DOEpatents

    Treshow, M.

    1958-11-18

    Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.

  19. Horizontally shaken impact pendulums

    NASA Astrophysics Data System (ADS)

    Alexander, T. J.; Xu, Y.; Sidhu, H.

    2016-03-01

    We consider two pendulum masses attached to the same pivot point and which interact with each other through Hertzian impacts. We show that this splitting of the mass leads to an instability in the conservative case, in which initially synchronized large amplitude motion may evolve into out-of-phase (impacting) motion. We then study in detail the response of the impacting masses in the presence of damping and driving through horizontal shaking of the pivot point. We find that synchronized modes are usually accompanied by small amplitude quasi-periodic, or even chaotic, impacts and a number of multi-period solutions may appear in the bifurcation diagram. We reveal the existence and stability of a number of impact modes and scan the frequency response of the system to a series of initial conditions to identify which modes may be more easily generated in experiment.

  20. Nurbs and grid generation

    SciTech Connect

    Barnhill, R.E.; Farin, G.; Hamann, B.

    1995-12-31

    This paper provides a basic overview of NURBS and their application to numerical grid generation. Curve/surface smoothing, accelerated grid generation, and the use of NURBS in a practical grid generation system are discussed.

  1. Data Grid Management Systems

    NASA Technical Reports Server (NTRS)

    Moore, Reagan W.; Jagatheesan, Arun; Rajasekar, Arcot; Wan, Michael; Schroeder, Wayne

    2004-01-01

    The "Grid" is an emerging infrastructure for coordinating access across autonomous organizations to distributed, heterogeneous computation and data resources. Data grids are being built around the world as the next generation data handling systems for sharing, publishing, and preserving data residing on storage systems located in multiple administrative domains. A data grid provides logical namespaces for users, digital entities and storage resources to create persistent identifiers for controlling access, enabling discovery, and managing wide area latencies. This paper introduces data grids and describes data grid use cases. The relevance of data grids to digital libraries and persistent archives is demonstrated, and research issues in data grids and grid dataflow management systems are discussed.

  2. Horizontal drilling in shallow reservoirs

    SciTech Connect

    Murray, W.F. Jr.; Schrider, L.A.; McCallister, J.V.; Mazza, R.L.

    1993-12-31

    Belden & Blake and the US DOE will cofund a horizontal well to be drilled in the Clinton Sandstone as part of the DOE`s multi well program titled ``Horizontal Drilling in Shallow Geologic Complex Reservoirs.`` This well will be located in Mahoning County, Ohio in an area which has demonstrated above average Clinton gas production. To the best of our knowledge, this will be the first horizontal well drilled to the Clinton Sand formation in Ohio. Since many of the remaining Clinton Sand drilling sites are of poorer reservoir quality, they may not be developed unless technology such as horizontal drilling can be successfully demonstrated.

  3. Performance of weather research and forecasting model with variable horizontal resolution

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Ojha, Satya P.; Singh, Randhir; Kishtawal, C. M.; Pal, P. K.

    2015-08-01

    In this paper, Weather Research and Forecasting (WRF) model is employed with three different horizontal grid spacings (45, 15 and 5 km) to assess the impact of horizontal resolution on short-range weather forecast. Simulations are carried out daily at 0000 UTC over the Indian region during the entire month of July 2011. A rigorous validation is performed against surface observations, radiosonde measurements and Tropical Rainfall Measuring Mission (TRMM) 3B42 merged rainfall product. Results show that horizontal resolution has a substantial impact on the WRF model forecast, particularly on the near surface temperature, moisture, winds and rainfall forecasts. Relative to 45-km horizontal grid spacing, 24-h forecasts of near surface temperature, moisture and winds are improved by ˜15, 9 and 4 %, respectively, when horizontal grid spacing is reduced to 5 km. Noteworthy improvement is also seen in the 24-h rainfall forecasts of the WRF model as the horizontal grid spacing decreased from 45 to 5 km. Larger improvements are observed over the Western Ghats and northeastern part of India compared to central India, which demonstrate the importance of finer resolution over the mountainous terrain compared to plains.

  4. High cesium concentrations in groundwater in the upper 1.2 km of fractured crystalline rock - Influence of groundwater origin and secondary minerals

    NASA Astrophysics Data System (ADS)

    Mathurin, Frédéric A.; Drake, Henrik; Tullborg, Eva-Lena; Berger, Tobias; Peltola, Pasi; Kalinowski, Birgitta E.; Åström, Mats E.

    2014-05-01

    Dissolved and solid phase cesium (Cs) was studied in the upper 1.2 km of a coastal granitoid fracture network on the Baltic Shield (Äspö Hard Rock Laboratory and Laxemar area, SE Sweden). There unusually high Cs concentrations (up to 5-6 μg L-1) occur in the low-temperature (<20 °C) groundwater. The material includes water collected in earlier hydrochemical monitoring programs and secondary precipitates (fracture coatings) collected on the fracture walls, as follows: (a) hydraulically pristine fracture groundwater sampled through 23 surface boreholes equipped for the retrieval of representative groundwater at controlled depths (Laxemar area), (b) fracture groundwater affected by artificial drainage collected through 80 boreholes drilled mostly along the Äspö Hard Rock Laboratory (underground research facility), (c) surface water collected in local streams, a lake and sea bay, and shallow groundwater collected in 8 regolith boreholes, and (d) 84 new specimens of fracture coatings sampled in cores from the Äspö HRL and Laxemar areas. The groundwater in each area is different, which affects Cs concentrations. The highest Cs concentrations occurred in deep-seated saline groundwater (median Äspö HRL: 4.1 μg L-1; median Laxemar: 3.7 μg L-1) and groundwater with marine origin (Äspö HRL: 4.2 μg L-1). Overall lower, but variable, Cs concentrations were found in other types of groundwater. The similar concentrations of Cs in the saline groundwater, which had a residence time in the order of millions of years, and in the marine groundwater, which had residence times in the order of years, shows that duration of water-rock interactions is not the single and primary control of dissolved Cs in these systems. The high Cs concentrations in the saline groundwater is ascribed to long-term weathering of minerals, primarily Cs-enriched fracture coatings dominated by illite and mixed-layer clays and possibly wall rock micaceous minerals. The high Cs concentrations in the

  5. Evolutionary sequences for horizontal branch stars

    NASA Technical Reports Server (NTRS)

    Sweigart, Allen V.

    1987-01-01

    A new grid of canonical evolutionary horizontal branch (HB) sequences is presented. Sequences are computed for each combination of the following helium and heavy-element abundances, respectively: Y(main sequence) = 0.20, 0.25, 0.30, and Z = 0.0001, 0.001, and 0.01. The results show that the bifurcation point at which the HB morphology changes from redward-evolving tracks to tracks with blueward loops shifts to higher effective temperatures with increasing helium abundance or metallicity. The sequences can be used to study in more detail how a number of HB properties such as the HB lifetime, the effective temperature at the bifurcation point in the track morphology, the luminosity dropoff of the blue HB, and the luminosity width of the red HB depend on the composition.

  6. DNS of Horizontal Convection

    NASA Astrophysics Data System (ADS)

    White, Brian; Scotti, Alberto

    2014-11-01

    We perform three-dimensional DNS of Horizontal Convection in a rectangular tank with idealized boundary conditions. The flow is driven by imposing the profile for the buoyancy b at the surface, where it ranges from b0 to b0 + Δb and the transition region is confined to a very small area. The Rayleigh based on the domain depth ranges from 105 to 1012. The scaling observed for the Nusselt number and the strength of the circulation is consistent with Rossby's scaling across the range of Rayleigh numbers considered, indicating that the dynamics in the boundary layer under the ``warming'' side throttles the flow. Energetically, we find that Available Potential Energy (APE) is generated along the surface, and converted to Kinetic Energy (KE). Along the descending plume energy goes from APE to KE up to Ra ~1011 . For higher Rayleigh numbers the plume becomes a net sink of APE. When the switch occurs, a stagnant layer develops near the bottom, and the overall circulation becomes characterized by a narrow plume which retroflects rapidly towards the surface, with a shallow recirculation to close the flow. This may indicate the beginning of a Sandström regime characterized by a stagnant abyssal region and a shallow circulation. Work supported by the National Science Foundation.

  7. Understanding Horizontal Governance. Research Brief

    ERIC Educational Resources Information Center

    Ferguson, Daniel

    2009-01-01

    Horizontal governance is an umbrella term that covers a range of approaches to policy development, service delivery issues, and management practices. A horizontal initiative may take place across levels of government, across boundaries between units of a single department or agency or among multiple departments or agencies, or across public,…

  8. Calibration of a Horizontal Sundial

    ERIC Educational Resources Information Center

    Rovsek, Barbara

    2010-01-01

    This paper describes how a horizontal sundial can be calibrated in a classroom without using the nontrivial equations of projective geometry. If one understands how a simple equatorial sundial works, one will also understand the procedure of calibrating a horizontal (or "garden," as it is also called) sundial.

  9. Spatial services grid

    NASA Astrophysics Data System (ADS)

    Cao, Jian; Li, Qi; Cheng, Jicheng

    2005-10-01

    This paper discusses the concept, key technologies and main application of Spatial Services Grid. The technologies of Grid computing and Webservice is playing a revolutionary role in studying the spatial information services. The concept of the SSG (Spatial Services Grid) is put forward based on the SIG (Spatial Information Grid) and OGSA (open grid service architecture). Firstly, the grid computing is reviewed and the key technologies of SIG and their main applications are reviewed. Secondly, the grid computing and three kinds of SIG (in broad sense)--SDG (spatial data grid), SIG (spatial information grid) and SSG (spatial services grid) and their relationships are proposed. Thirdly, the key technologies of the SSG (spatial services grid) is put forward. Finally, three representative applications of SSG (spatial services grid) are discussed. The first application is urban location based services gird, which is a typical spatial services grid and can be constructed on OGSA (Open Grid Services Architecture) and digital city platform. The second application is region sustainable development grid which is the key to the urban development. The third application is Region disaster and emergency management services grid.

  10. Method and application of horizontal slice volumetrics to waterflood management and horizontal drilling

    SciTech Connect

    Deshpande, A.; Flemings, P.B.; Huang, J.

    1996-12-31

    A computer mapping program was used to make horizontal slices of pore volume. The goal was to create maps that showed the distribution of pore volume vertically and laterally throughout the reservoir. That information was used for studying waterflood feasibility, monitoring an existing waterflood, and planning a horizontal well. This work was done at the United States Naval Petroleum Reserve No. 1, Elk Hills, CA. The reservoirs are the Miocene aged Northwest Stevens A sands and T & N sands. These sands are a series of stacked deep water turbidites draped across the western nose of a plunging anticline. To determine the reservoir sensitivity to the approach used to calculate horizontal slice volume, two methods were tested. The first involves creation of four isochores, bounded above by the sand top or base and below by the slice top or base, whose volumes are combined to give the slice volume. The second involves creation of a grid of the slice itself from which slice volume is calculated.

  11. Method and application of horizontal slice volumetrics to waterflood management and horizontal drilling

    SciTech Connect

    Deshpande, A.; Flemings, P.B. ); Huang, J. )

    1996-01-01

    A computer mapping program was used to make horizontal slices of pore volume. The goal was to create maps that showed the distribution of pore volume vertically and laterally throughout the reservoir. That information was used for studying waterflood feasibility, monitoring an existing waterflood, and planning a horizontal well. This work was done at the United States Naval Petroleum Reserve No. 1, Elk Hills, CA. The reservoirs are the Miocene aged Northwest Stevens A sands and T N sands. These sands are a series of stacked deep water turbidites draped across the western nose of a plunging anticline. To determine the reservoir sensitivity to the approach used to calculate horizontal slice volume, two methods were tested. The first involves creation of four isochores, bounded above by the sand top or base and below by the slice top or base, whose volumes are combined to give the slice volume. The second involves creation of a grid of the slice itself from which slice volume is calculated.

  12. Extreme horizontal branch stars

    NASA Astrophysics Data System (ADS)

    Heber, U.

    A review is presented on the properties, origin and evolutionary links of hot subluminous stars which are generally believed to be extreme Horizontal Branch stars or closely related objects. They exist both in the disk and halo populations (globular clusters) of the Galaxy. Amongst the field stars a large fraction of sdBs are found to reside in close binaries. The companions are predominantly white dwarfs, but also low mass main sequence stars are quite common. Systems with sufficiently massive white dwarf companions may qualify as Supernova Ia progenitors. Recently evidence has been found that the masses of some unseen companions might exceed the Chandrasekhar mass, hence they must be neutron stars or black holes. Even a planet has recently been detected orbiting the pulsating sdB star V391 Peg. Quite to the opposite,in globular clusters, only very few sdB binaries amongst are found indicating that the dominant sdB formation processes is different in a dense environment. Binary population synthesis models identify three formation channels, (i) stable Roche lobe overflow, (ii) one or two common envelope ejection phases and (iii) the merger of two helium white dwarfs. The latter channel may explain the properties of the He-enriched subluminous O stars, the hotter sisters of the sdB stars, because their binary fraction is lower than that of the sdBs by a factor of ten or more. The rivaling ''late hot flasher'' scenario is also discussed. Pulsating subluminous B (sdB) stars play an important role for asteroseismology as this technique has already led to mass determinations for a handful of stars. A unique hyper-velocity sdO star moving so fast that it is unbound to the Galaxy has probably been ejected by the super-massive black hole in the Galactic centre.

  13. Hybrid Grid Generation Using NW Grid

    SciTech Connect

    Jones-Oliveira, Janet B.; Oliveira, Joseph S.; Trease, Lynn L.; Trease, Harold E.; B.K. Soni, J. Hauser, J.F. Thompson, P.R. Eiseman

    2000-09-01

    We describe the development and use of a hybrid n-dimensional grid generation system called NWGRID. The Applied Mathematics Group at Pacific Northwest National Laboratory (PNNL) is developing this tool to support the Laboratory's computational science efforts in chemistry, biology, engineering and environmental (subsurface and atmospheric) modeling. NWGRID is the grid generation system, which is designed for multi-scale, multi-material, multi-physics, time-dependent, 3-D, hybrid grids that are either statically adapted or evolved in time. NWGRID'S capabilities include static and dynamic grids, hybrid grids, managing colliding surfaces, and grid optimization[using reconnections, smoothing, and adaptive mesh refinement (AMR) algorithms]. NWGRID'S data structure can manage an arbitrary number of grid objects, each with an arbitrary number of grid attributes. NWGRID uses surface geometry to build volumes by using combinations of Boolean operators and order relations. Point distributions can be input, generated using either ray shooting techniques or defined point-by-point. Connectivity matrices are then generated automatically for all variations of hybrid grids.

  14. Imaging the Alpine Fault to depths of more than 2 km - Initial results from the 2011 WhataDUSIE seismic reflection profile, Whataroa Valley, New Zealand

    NASA Astrophysics Data System (ADS)

    Kovacs, A.; Gorman, A. R.; Buske, S.; Schmitt, D. R.; Eccles, J. D.; Toy, V. G.; Sutherland, R.; Townend, J.; Norris, R.; Pooley, B.; Cooper, J.; Bruce, C.; Smillie, M.; Bain, S.; Hellwig, O.; Hlousek, F.; Hellmich, J.; Riedel, M.; Schijns, H. M.

    2011-12-01

    The Alpine Fault is a major plate-bounding fault that is thought to fail in large earthquakes (Mw~7.9) every 200-400 years and to have last ruptured in AD 1717. It is the principal geological structure accommodating transpressional motion between the Australian and Pacific plates on the South Island, with a long-term horizontal motion over the last 1-2 million years of 21-27 mm/yr. Determining the Alpine Fault zone structure at depths of several kilometres beneath the Earth's surface is crucial for understanding not only what conditions govern earthquake rupture but also how ongoing faulting produces mountain ranges such as the Southern Alps. The valley of the Whataroa River, in the central sector of the Alpine Fault, provides rare access to the SE (hanging wall) side of the fault for the purpose of a seismic survey. During January and February 2011, a ~5-km-long seismic reflection line was collected that aimed to image the Alpine Fault at depth. The acquisition was undertaken with the use of 21 Geode seismographs and two Seistronix seismographs with a total capacity of 552 channels. Geophone spacing varied from 4 m in the north (close to the surface trace of the fault) to 8 m in the south (farther from the surface trace.) Sources were 400-g Pentex charges buried in 1.5-2.0 m deep holes of which ~100 were dug by an excavator and ~100 were dug by hand tools where heavy equipment could not access shot locations. Single shots had a nominal separation of 25 m at the north end of the line. At the south end of the line, shots were deployed in patterns of five with a nominal spacing of 125 m. Acquisition system requirements and surface morphology (meanders in the Whataroa River) required five separate acquisition systems. Timing of shots for these systems was accomplished with a radio-controlled firing system, GPS clocks linked to co-located Reftek seismographs, and overlapping traces between acquisition systems. Shot records have been merged and processed through to

  15. Parallel grid population

    DOEpatents

    Wald, Ingo; Ize, Santiago

    2015-07-28

    Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.

  16. Effects of vertical shear in modelling horizontal oceanic dispersion

    NASA Astrophysics Data System (ADS)

    Lanotte, A. S.; Corrado, R.; Palatella, L.; Pizzigalli, C.; Schipa, I.; Santoleri, R.

    2016-02-01

    The effect of vertical shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of the South Mediterranean is investigated by means of observation and model data. In situ current measurements reveal that vertical gradients of horizontal velocities in the upper mixing layer decorrelate quite fast ( ˜ 1 day), whereas an eddy-permitting ocean model, such as the Mediterranean Forecasting System, tends to overestimate such decorrelation time because of finite resolution effects. Horizontal dispersion, simulated by the Mediterranean sea Forecasting System, is mostly affected by: (1) unresolved scale motions, and mesoscale motions that are largely smoothed out at scales close to the grid spacing; (2) poorly resolved time variability in the profiles of the horizontal velocities in the upper layer. For the case study we have analysed, we show that a suitable use of deterministic kinematic parametrizations is helpful to implement realistic statistical features of tracer dispersion in two and three dimensions. The approach here suggested provides a functional tool to control the horizontal spreading of small organisms or substance concentrations, and is thus relevant for marine biology, pollutant dispersion as well as oil spill applications.

  17. Horizontal and Vertical Line Designs.

    ERIC Educational Resources Information Center

    Johns, Pat

    2003-01-01

    Presents an art lesson in which students learn about the artist Piet Mondrian and create their own abstract artworks. Focuses on geometric shapes using horizontal and vertical lines. Includes background information about the artist. (CMK)

  18. Method of grid generation

    DOEpatents

    Barnette, Daniel W.

    2002-01-01

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  19. Dynamic Power Grid Simulation

    2015-09-14

    GridDyn is a part of power grid simulation toolkit. The code is designed using modern object oriented C++ methods utilizing C++11 and recent Boost libraries to ensure compatibility with multiple operating systems and environments.

  20. IPG Power Grid Overview

    NASA Technical Reports Server (NTRS)

    Hinke, Thomas

    2003-01-01

    This presentation will describe what is meant by grids and then cover the current state of the IPG. This will include an overview of the middleware that is key to the operation of the grid. The presentation will then describe some of the future directions that are planned for the IPG. Finally the presentation will conclude with a brief overview of the Global Grid Forum, which is a key activity that will contribute to the successful availability of grid components.

  1. Texaco sets horizontal well marks

    SciTech Connect

    Not Available

    1992-07-06

    This paper reports that Texaco Exploration and Production Inc. has completed the first dual lateral horizontal well in East Texas and claimed a horizontal oil well record in the Gulf of Mexico. The East Texas well, 1 Texaco Fee Brookeland, is the company's first dual lateral well. Site is in Newton County. The Brookeland well was drilled vertically to the top of Cretaceous Austin chalk at 9,138 ft. Texaco set casing, then drilled horizontally 3,242 ft to the southeast and 3,000 ft to the northwest for a total horizontal displacement of 6,242 ft. Texaco set an industry record offshore with its B19-ST well on its Teal prospect in Eugene Island Block 338, its first horizontal oil well in the gulf, by drilling a horizontal section of 1,414 ft. Measured depth (MD) is 7,500 ft and true vertical depth (TVD) 4,662 ft. Site is in 268 ft of water. Drilling horizontally through the Pleistocene prograding sand complex allowed Texaco to penetrate 50% more of the reservoir than would have been possible with a conventional well, Wallace the. In another industry first, Texaco isolated the Teal reservoir gas cap by setting intermediate casing 50 ft below the oil-gas contact with the 90{degrees} angle already established because of concern that the reservoir had an expanded gas cap. The dual lateral Brookeland well cost $500,000-700,000 less than two vertical wells capable of comparable production rates and recovery. Texaco expects the full cost of the well, production facilities, and gathering system to pay out in about 4 months. Texaco estimates the B19-ST well cost about 10% more than a Teal vertical well. A cross discipline team of Texaco geologists, geophysicists, engineers, and field technicians contributed to the success of both projects.

  2. Chimera Grid Tools

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert

    2005-01-01

    Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.

  3. Pressure analysis for horizontal wells

    SciTech Connect

    Davlau, F.; Mouronval, G.; Bourdarot, G.; Curutchet, P.

    1988-12-01

    This paper presents horizontal-well test design and interpretation methods. Analytical solutions are developed that can be handled easily by a desktop computer to carry out design as well as interpretation with semilog and log-log analysis. These analytical solutions point out the distinctive behavior of horizontal wells: (1) at early time, there is a circular radial flow in a vertical plane perpendicular to the well, and (2) at late time, there is a horizontal pseudoradial flow. Each type of flow is associated with a semilog straight line to which semilog analysis has to be adapted. The horizontal pseudoradial flow takes into account a pseudoskin depending on system geometry, which is a priori defined and estimated. Practical time criteria are proposed to determine the beginning and the end of each type of flow and to provide a guide to semilog analysis and well test design. The authors study the behavior of uniform-flux or infinite-conductivity horizontal wells, with wellbore storage and skin. The homogeneous reservoir is infinite or limited by impermeable or constant-pressure boundaries. A method is also outlined to transform all our solutions for homogeneous reservoirs into corresponding solutions for double-porosity reservoirs.

  4. Comparison of horizontal difference schemes for the shallow water equations on a sphere

    NASA Technical Reports Server (NTRS)

    Russell, Gary L.; Takano, Kenji; Abramopoulos, Frank

    1987-01-01

    The accuracy of horizontal difference schemes used in the hydrodynamics parts of General Circulation Models are compared by means of numerical experiments for the shallow water equations on a sphere. As expected, the phase lag of moving waves decreases as the order of accuracy of a scheme increases or as the grid resolution increases. Overall, Takano and Wurtele's partial fourth order energy and potential enstrophy conserving scheme on the C grid is most accurate. It is clearly superior to the other schemes for the Rossby-Haurwitz wave number 6 initial conditions for coarse grid resolution.

  5. Productivity and injectivity of horizontal wells. Annual report for the period, March 10, 1994--March 9, 1995

    SciTech Connect

    Fayers, F.J.

    1995-07-01

    Contents of this annual report include the following: (1) detailed well model for reservoir simulation--task 1; (2) comparative aspects of coning behavior in vertical and horizontal wells--task 1; (3) skin factor calculations for vertical, deviated, and horizontal wells--task 2; (4) a dissipation-based coarse grid system and its application to the scaleup of two phase problems--tasks 2 and 4; (5) analyses of experiments at Marathon Oil Company--task 3; (6) development of mechanistic model for multiphase flow in horizontal wells--task 3; and (7) sensitivity studies of wellbore friction and inflow for a horizontal well--task 8.

  6. Grid Architecture 2

    SciTech Connect

    Taft, Jeffrey D.

    2016-01-01

    The report describes work done on Grid Architecture under the auspices of the Department of Electricity Office of Electricity Delivery and Reliability in 2015. As described in the first Grid Architecture report, the primary purpose of this work is to provide stakeholder insight about grid issues so as to enable superior decision making on their part. Doing this requires the creation of various work products, including oft-times complex diagrams, analyses, and explanations. This report provides architectural insights into several important grid topics and also describes work done to advance the science of Grid Architecture as well.

  7. FermiGrid

    SciTech Connect

    Yocum, D.R.; Berman, E.; Canal, P.; Chadwick, K.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Sharma, N.; Timm, S.; /Fermilab

    2007-05-01

    As one of the founding members of the Open Science Grid Consortium (OSG), Fermilab enables coherent access to its production resources through the Grid infrastructure system called FermiGrid. This system successfully provides for centrally managed grid services, opportunistic resource access, development of OSG Interfaces for Fermilab, and an interface to the Fermilab dCache system. FermiGrid supports virtual organizations (VOs) including high energy physics experiments (USCMS, MINOS, D0, CDF, ILC), astrophysics experiments (SDSS, Auger, DES), biology experiments (GADU, Nanohub) and educational activities.

  8. The Managerial Grid; Key Orientations for Achieving Production through People.

    ERIC Educational Resources Information Center

    Blake, Robert R; Mouton, Jane S.

    The Managerial Grid arranges a concern for production on the horizontal axis and a concern for people on the vertical axis of a coordinate system: 1,1 shows minimum concern for production and people; 9,1 shows major production emphasis and minimum human considerations; 1,9 shows maximum concern for friendly working conditions and minimum…

  9. Nuclear component horizontal seismic restraint

    DOEpatents

    Snyder, Glenn J.

    1988-01-01

    A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.

  10. Horizontal displacement profiles in N Reactor horizontal control rod channels

    SciTech Connect

    Woodruff, E.M.

    1988-12-01

    One of the potential results from N Reactor graphite moderator distortion is horizontal curvature of the horizontal control rod (HCR) channels. Mockup testing has identified two possible problem scenarios resulting from such curvature: slow scram times and rod abrasion due to rubbing of the rod on the side of the channel and subsequent displacement of T-blocks that form the sides of the channels. As a result of these potential events, surveillance tools (instrumentation) to measure HCR channel horizontal displacement was recently developed. Surveillance of HCR channel 65, performed on December 11, 1987, indicated a six inch rearward displacement near the center of the channel. This approximated the displacement which mockup testing has identified as a concern with regard to T-block movement. Closed Circuit Television (CCTV) observations indicate that T-block movement has not occurred in HCR channel 65, but that there has been some rubbing of the rod on the channel sides. Review of most recent rod hot scram times indicates normal performance for HCR 65. To further evaluate this concern, horizontal deflection and CCTV surveillance was scheduled in six HCR channels surrounding HCR channel 65. Inspection of the HCR rod tip was also performed. 13 refs., 6 figs.

  11. A particle-grid air quality modeling approach

    SciTech Connect

    Chock, D.P.; Winkler, S.L.

    1996-12-31

    A particle-grid air quality modeling approach that can incorporate chemistry is proposed as an alternative to the conventional PDF-grid air quality modeling. The particle trajectory model can accurately describe advection of air pollutants without introducing artificial diffusion, generating negative concentrations or distorting the concentration distributions. It also accurately describes the dispersion of emissions from point sources and is capable of retaining subgrid-scale information. Inhomogeneous turbulence necessitates use of a small timestep, say, 10 s to describe vertical dispersion of particles in convective conditions. A timestep as large as 200 s can be used to simulate horizontal dispersion. A time-splitting scheme can be used to couple the horizontal and vertical dispersion in a 3D simulation, and about 2000-3000 particles per cell of size 5 km x 5 km X 50 m is sufficient to yield a highly accurate simulation of 3D dispersion. Use of an hourly-averaged concentration further reduces the demand of particle per cell to 500. The particle-grid method is applied to a system of ten reacting chemical species in a two-dimensional rotating flow field with and without diffusion. A chemistry grid within which reactions are assumed to take place can be decoupled from the grid describing the flow field. Two types of chemistry grids are used to describe the chemical reactions: a fixed coarse grid and a moving (the advection case) or stationary (the advection plus diffusion case) fine grid. Two particle-number densities are also used: 256 and 576 particles per fixed coarse grid cell. The species mass redistributed back to the particle after each reaction step is assumed to be proportional to the species mass in the particle before the reaction. The simulation results are very accurate, especially in the advection-chemistry case. Accuracy improves with the use of a fine grid.

  12. Speckle imaging over horizontal paths

    NASA Astrophysics Data System (ADS)

    Carrano, Carmen J.

    2002-09-01

    Atmospheric aberrations reduce the resolution and contrast in surveillance images recorded over horizontal or slant paths. This paper describes our recent horizontal and slant-path imaging experiments of extended scenes as well as the results obtained using speckle imaging. The experiments were performed with an 8-inch diameter telescope placed on either a rooftop or hillside and cover ranges of interest from 0.5 km up to 10 km. The scenery includes resolution targets, people, vehicles, and other structures. The improvement in image quality using speckle imaging is dramatic in many cases, and depends significantly upon the atmospheric conditions. We quantify resolution improvement through modulation transfer function measurement comparisons.

  13. Speckle Imaging Over Horizontal Paths

    SciTech Connect

    Carrano, C J

    2002-05-21

    Atmospheric aberrations reduce the resolution and contrast in surveillance images recorded over horizontal or slant paths. This paper describes our recent horizontal and slant path imaging experiments of extended scenes as well as the results obtained using speckle imaging. The experiments were performed with an 8-inch diameter telescope placed on either a rooftop or hillside and cover ranges of interest from 0.5 km up to 10 km. The scenery includes resolution targets, people, vehicles, and other structures. The improvement in image quality using speckle imaging is dramatic in many cases, and depends significantly upon the atmospheric conditions. We quantify resolution improvement through modulation transfer function measurement comparisons.

  14. Success in horizontal barrier developments

    SciTech Connect

    Pettit, P.J.; Ridenour, D.E.; Jalovec, J.

    1996-06-01

    A successful proof of concept demonstration has been conducted of operational methods and tooling for the in situ construction of underground horizontal barriers for the control and containment of groundwater and contamination. The method involves jet grouting with specially adapted tools guided between twin, parallel wells for the placement of a grout beneath a waste site. The objective of the work is to develop reliable methods of constructing extensive, competent horizontal barriers underneath waste sites without excavating or penetrating the waste during the process.

  15. Horizontal completions challenge for industry

    SciTech Connect

    Zaleski, T.E. Jr.; Spatz, E.

    1988-05-02

    As the technology to drill horizontal wells continues to evolve, the problem of efficiently and cost-effectively completing such wells grows. The economics of applying horizontal technology in high-productivity reservoirs demands both increased production and lower development costs. Such high productivity reservoirs are typical of the Gulf of Mexico, North Sea, South China basin, and other areas. Lowering development costs is achieved by drilling fewer wells and in the offshore environment by reducing the number of platforms and other well structures. Specifically addressed in this article are the problems of achieving high efficiency, long lasting completions while controlling costs in unconsolidated and poorly consolidated sandstone reservoirs.

  16. Understanding The Smart Grid

    SciTech Connect

    2007-11-15

    The report provides an overview of what the Smart Grid is and what is being done to define and implement it. The electric industry is preparing to undergo a transition from a centralized, producer-controlled network to a decentralized, user-interactive one. Not only will the technology involved in the electric grid change, but the entire business model of the industry will change too. A major objective of the report is to identify the changes that the Smart Grid will bring about so that industry participants can be prepared to face them. A concise overview of the development of the Smart Grid is provided. It presents an understanding of what the Smart Grid is, what new business opportunities or risks might come about due to its introduction, and what activities are already taking place regarding defining or implementing the Smart Grid. This report will be of interest to the utility industry, energy service providers, aggregators, and regulators. It will also be of interest to home/building automation vendors, information technology vendors, academics, consultants, and analysts. The scope of the report includes an overview of the Smart Grid which identifies the main components of the Smart Grid, describes its characteristics, and describes how the Smart Grid differs from the current electric grid. The overview also identifies the key concepts involved in the transition to the Smart Grid and explains why a Smart Grid is needed by identifying the deficiencies of the current grid and the need for new investment. The report also looks at the impact of the Smart Grid, identifying other industries which have gone through a similar transition, identifying the overall benefits of the Smart Grid, and discussing the impact of the Smart Grid on industry participants. Furthermore, the report looks at current activities to implement the Smart Grid including utility projects, industry collaborations, and government initiatives. Finally, the report takes a look at key technology

  17. Grid quality improvement by a grid adaptation technique

    NASA Technical Reports Server (NTRS)

    Lee, K. D.; Henderson, T. L.; Choo, Y. K.

    1991-01-01

    A grid adaptation technique is presented which improves grid quality. The method begins with an assessment of grid quality by defining an appropriate grid quality measure. Then, undesirable grid properties are eliminated by a grid-quality-adaptive grid generation procedure. The same concept has been used for geometry-adaptive and solution-adaptive grid generation. The difference lies in the definition of the grid control sources; here, they are extracted from the distribution of a particular grid property. Several examples are presented to demonstrate the versatility and effectiveness of the method.

  18. Navigation in Grid Space with the NAS Grid Benchmarks

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Hood, Robert; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    We present a navigational tool for computational grids. The navigational process is based on measuring the grid characteristics with the NAS Grid Benchmarks (NGB) and using the measurements to assign tasks of a grid application to the grid machines. The tool allows the user to explore the grid space and to navigate the execution at a grid application to minimize its turnaround time. We introduce the notion of gridscape as a user view of the grid and show how it can be me assured by NGB, Then we demonstrate how the gridscape can be used with two different schedulers to navigate a grid application through a rudimentary grid.

  19. Grid enabled Service Support Environment - SSE Grid

    NASA Astrophysics Data System (ADS)

    Goor, Erwin; Paepen, Martine

    2010-05-01

    The SSEGrid project is an ESA/ESRIN project which started in 2009 and is executed by two Belgian companies, Spacebel and VITO, and one Dutch company, Dutch Space. The main project objectives are the introduction of a Grid-based processing on demand infrastructure at the Image Processing Centre for earth observation products at VITO and the inclusion of Grid processing services in the Service Support Environment (SSE) at ESRIN. The Grid-based processing on demand infrastructure is meant to support a Grid processing on demand model for Principal Investigators (PI) and allow the design and execution of multi-sensor applications with geographically spread data while minimising the transfer of huge volumes of data. In the first scenario, 'support a Grid processing on demand model for Principal Investigators', we aim to provide processing power close to the EO-data at the processing and archiving centres. We will allow a PI (non-Grid expert user) to upload his own algorithm, as a process, and his own auxiliary data from the SSE Portal and use them in an earth observation workflow on the SSEGrid Infrastructure. The PI can design and submit workflows using his own processes, processes made available by VITO/ESRIN and possibly processes from other users that are available on the Grid. These activities must be user-friendly and not requiring detailed knowledge about the underlying Grid middleware. In the second scenario we aim to design, implement and demonstrate a methodology to set up an earth observation processing facility, which uses large volumes of data from various geographically spread sensors. The aim is to provide solutions for problems that we face today, like wasting bandwidth by copying large volumes of data to one location. We will avoid this by processing the data where they are. The multi-mission Grid-based processing on demand infrastructure will allow developing and executing complex and massive multi-sensor data (re-)processing applications more

  20. Securing smart grid technology

    NASA Astrophysics Data System (ADS)

    Chaitanya Krishna, E.; Kosaleswara Reddy, T.; Reddy, M. YogaTeja; Reddy G. M., Sreerama; Madhusudhan, E.; AlMuhteb, Sulaiman

    2013-03-01

    In the developing countries electrical energy is very important for its all-round improvement by saving thousands of dollars and investing them in other sector for development. For Growing needs of power existing hierarchical, centrally controlled grid of the 20th Century is not sufficient. To produce and utilize effective power supply for industries or people we should have Smarter Electrical grids that address the challenges of the existing power grid. The Smart grid can be considered as a modern electric power grid infrastructure for enhanced efficiency and reliability through automated control, high-power converters, modern communications infrastructure along with modern IT services, sensing and metering technologies, and modern energy management techniques based on the optimization of demand, energy and network availability and so on. The main objective of this paper is to provide a contemporary look at the current state of the art in smart grid communications as well as critical issues on smart grid technologies primarily in terms of information and communication technology (ICT) issues like security, efficiency to communications layer field. In this paper we propose new model for security in Smart Grid Technology that contains Security Module(SM) along with DEM which will enhance security in Grid. It is expected that this paper will provide a better understanding of the technologies, potential advantages and research challenges of the smart grid and provoke interest among the research community to further explore this promising research area.

  1. Horizontal electric fields from lightning return strokes

    NASA Technical Reports Server (NTRS)

    Thomson, E. M.; Medelius, P. J.; Rubinstein, M.; Uman, M. A.; Johnson, J.

    1988-01-01

    An experiment to measure simultaneously the wideband horizontal and vertical electric fields from lightning return strokes is described. Typical wave shapes of the measured horizontal and vertical fields are presented, and the horizontal fields are characterized. The measured horizontal fields are compared with calculated horizontal fields obtained by applying the wavetilt formula to the vertical fields. The limitations and sources of error in the measurement technique are discussed.

  2. Theoretical horizontal-branch evolution

    NASA Technical Reports Server (NTRS)

    Sweigart, Allen V.

    1987-01-01

    The general features of the theoretical evolution of canonical horizontal-branch (HB) stars are briefly reviewed with specific emphasis on the track morphology in the HR diagram and the determination of the globular cluster helium abundance. The observational evidence for the occurrence of semiconvection is discussed together with some remaining theoretical uncertainty.

  3. Horizontal drilling installs dutch waterline

    SciTech Connect

    Not Available

    1986-08-01

    A 32-in. potable water line system, installed by Van Eijk Leidingen B.V. in Holland, was laid through an intensively cultivated vegetable gardening area, and designed to furnish additional irrigation water. Using a horizontally drilled 42-in. hole under the Maasdijk, though a difficult job, reduced the length by more than 3 miles.

  4. Dragging a floating horizontal cylinder

    NASA Astrophysics Data System (ADS)

    Lee, Duck-Gyu; Kim, Ho-Young

    2010-11-01

    A cylinder immersed in a fluid stream experiences a drag, and it is well known that the drag coefficient is a function of the Reynolds number only. Here we study the force exerted on a long horizontal cylinder that is dragged perpendicular to its axis while floating on an air-water interface with a high Reynolds number. In addition to the flow-induced drag, the floating body is subjected to capillary forces along the contact line where the three phases of liquid/solid/gas meet. We first theoretically predict the meniscus profile around the horizontally moving cylinder assuming the potential flow, and show that the profile is in good agreement with that obtained experimentally. Then we compare our theoretical predictions and experimental measurement results for the drag coefficient of a floating horizontal cylinder that is given by a function of the Weber number and the Bond number. This study can help us to understand the horizontal motion of partially submerged objects at air-liquid interface, such as semi-aquatic insects and marine plants.

  5. Solar cell grid patterns

    NASA Technical Reports Server (NTRS)

    Yasui, R. K.; Berman, P. A. (Inventor)

    1976-01-01

    A grid pattern is described for a solar cell of the type which includes a semiconductive layer doped to a first polarity and a top counter-doped layer. The grid pattern comprises a plurality of concentric conductive grids of selected geometric shapes which are centered about the center of the exposed active surface of the counter-doped layer. Connected to the grids is one or more conductors which extend to the cell's periphery. For the pattern area, the grids and conductors are arranged in the pattern to minimize the maximum distance which any injected majority carriers have to travel to reach any of the grids or conductors. The pattern has a multiaxes symmetry with respect to the cell center to minimize the maximum temperature differentials between points on the cell surface and to provide a more uniform temperature distribution across the cell face.

  6. Some Considerations on Horizontal Displacement and Horizontal Displacement Coefficient B

    NASA Astrophysics Data System (ADS)

    Tajduś, Krzysztof; Tajduś, Antoni

    2015-12-01

    Mining-induced deformations of the ground surface and within the rock mass may pose danger not only for surface constructions but also for underground objects (e.g., tunnels, underground storages, garages), diverse types of pipelines, electric cables, etc. For a proper evaluation of hazard for surface and underground objects, such parameters as horizontal displacement and horizontal deformations, especially their maximum values, are of crucial importance. The paper is an attempt at a critical review of hitherto accomplished studies and state of the art of predicting horizontal displacement u, in particular the coefficient B, whose value allows determination of the value of maximum displacement if the value of maximum slope is known, or the value of maximum deformation if the value of maximum trough slope is recognized. Since the geodesic observations of fully developed subsidence troughs suggest that the value of the coefficient depends on the depth H, radius of main influences range r and properties of overburden rock, in particular the occurrence of sub-eras Paleogene and Neogene layers (old name: Quaternary and Tertiary) with low strength parameters, therefore a formula is provided in the present paper allowing for the estimation of the influence of those factors on the value of coefficient B.

  7. Enhanced Elliptic Grid Generation

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.

    2007-01-01

    An enhanced method of elliptic grid generation has been invented. Whereas prior methods require user input of certain grid parameters, this method provides for these parameters to be determined automatically. "Elliptic grid generation" signifies generation of generalized curvilinear coordinate grids through solution of elliptic partial differential equations (PDEs). Usually, such grids are fitted to bounding bodies and used in numerical solution of other PDEs like those of fluid flow, heat flow, and electromagnetics. Such a grid is smooth and has continuous first and second derivatives (and possibly also continuous higher-order derivatives), grid lines are appropriately stretched or clustered, and grid lines are orthogonal or nearly so over most of the grid domain. The source terms in the grid-generating PDEs (hereafter called "defining" PDEs) make it possible for the grid to satisfy requirements for clustering and orthogonality properties in the vicinity of specific surfaces in three dimensions or in the vicinity of specific lines in two dimensions. The grid parameters in question are decay parameters that appear in the source terms of the inhomogeneous defining PDEs. The decay parameters are characteristic lengths in exponential- decay factors that express how the influences of the boundaries decrease with distance from the boundaries. These terms govern the rates at which distance between adjacent grid lines change with distance from nearby boundaries. Heretofore, users have arbitrarily specified decay parameters. However, the characteristic lengths are coupled with the strengths of the source terms, such that arbitrary specification could lead to conflicts among parameter values. Moreover, the manual insertion of decay parameters is cumbersome for static grids and infeasible for dynamically changing grids. In the present method, manual insertion and user specification of decay parameters are neither required nor allowed. Instead, the decay parameters are

  8. Challenges facing production grids

    SciTech Connect

    Pordes, Ruth; /Fermilab

    2007-06-01

    Today's global communities of users expect quality of service from distributed Grid systems equivalent to that their local data centers. This must be coupled to ubiquitous access to the ensemble of processing and storage resources across multiple Grid infrastructures. We are still facing significant challenges in meeting these expectations, especially in the underlying security, a sustainable and successful economic model, and smoothing the boundaries between administrative and technical domains. Using the Open Science Grid as an example, I examine the status and challenges of Grids operating in production today.

  9. Chalk play tops Gulf Coast horizontal scene

    SciTech Connect

    Not Available

    1991-11-18

    This paper reports on horizontal drilling in the Cretaceous Austin chalk of Texas which dominates news of U.S. Gulf Coast horizontal action. In spite of a significant decline in horizontal drilling in Texas-the Texas Railroad Commission reported a 15 unit decline in the number of permits to drill horizontal wells during the third quarter-operators in East and South Texas continue to expand plays and develop new ones. The Cretaceous Bruda may be gaining some respect as a horizontal target in Texas. Elsewhere on the Gulf Coast, Mississippi soon will see more action on the horizontal drilling front.

  10. Horizontal Velocity Structure in Waterspouts.

    NASA Astrophysics Data System (ADS)

    Schwiesow, R. L.

    1981-04-01

    We have measured the spatial variation of a single horizontal component of the velocity in a number of waterspouts using an airborne infrared Doppler lidar. In 21 data sets, maximum velocities range from 4.2 to 33.6 m s1 and visible funnel diameters from 6.6 to 90 m. Data were taken at altitudes between 675 m, near cloud base, and 95 m above the surface. The sequences show time development of the velocity as a function of radius at a fixed altitude and the velocity structure at different altitudes and sequential times with a horizontal resolution of 0.75 m between data points. The variation in velocity structure between waterspouts is large, with some showing marked azimuthal asymmetry and mixing with the ambient flow, and others showing multiple concentric vortex shells.

  11. Horizontal gene transfer in plants.

    PubMed

    Gao, Caihua; Ren, Xiaodong; Mason, Annaliese S; Liu, Honglei; Xiao, Meili; Li, Jiana; Fu, Donghui

    2014-03-01

    Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries. HGT often occurs in microbic and eukaryotic genomes. However, the pathways by which HGTs occur in multicellular eukaryotes, especially in plants, are not well understood. We systematically summarized more than ten possible pathways for HGT. The intimate contact which frequently occurs in parasitism, symbiosis, pathogen, epiphyte, entophyte, and grafting interactions could promote HGTs between two species. Besides these direct transfer methods, genes can be exchanged with a vector as a bridge: possible vectors include pollen, fungi, bacteria, viruses, viroids, plasmids, transposons, and insects. HGT, especially when involving horizontal transfer of transposable elements, is recognized as a significant force propelling genomic variation and biological innovation, playing an important functional and evolutionary role in both eukaryotic and prokaryotic genomes. We proposed possible mechanisms by which HGTs can occur, which is useful in understanding the genetic information exchange among distant species or distant cellular components. PMID:24132513

  12. Horizontal-branch stellar evolution

    NASA Technical Reports Server (NTRS)

    Sweigart, Allen V.

    1990-01-01

    The results of canonical theory for the evolution of horizontal-branch (HB) stars are examined. Particular attention is given to how an HB star maintains the appropriate composition distribution within the semiconvective zone and how this composition is affected by the finite time-dependence with which convective boundaries actually move. Newly developed models based on time-dependent overshooting are presented for both the core-helium-exhaustion and main HB phases.

  13. Horizontal drilling opportunities in Ohio

    SciTech Connect

    Noel, J.A. )

    1991-08-01

    Horizontal drilling has become commonplace in certain parts of Texas. The Austin Chalk is the favorite target, especially where fracture systems are present. The activity has become so intense that leases are now costly or nearly impossible to find. This type of activity was prevalent during the late oil boom, but with vertical wells. So, the same areas that were drilled then are being redone with horizontal drilling. In the past few months, carbonates with little or no evidence of fracture systems are being drilled with some success. Because of the difficulty in lease acquisition, operators are turning their attention elsewhere. Even though horizontal drilling has been conducted limitedly in the Devonian black shales, the Appalachian basin is an area that calls for attention. In Ohio, there have been instances of discoveries of one-well fields in both the Trenton and Trempealeau formations. The initial production from these wells ranges from a few to hundreds of barrels of oil per day. The lack of success in offset wells has been attributed to the interpretation that the producing wells were serendipitously drilled into a limited fractured reservoir. In most cases, the producer is surrounded by clusters of dry holes. These Ohio wells and wells in one other area are studied using well data, spectral and sonic logs, aerial photographs, side-looking radar surveys, and other data. The results are presented on structure contour and lineament maps, and quantitative log interpretations. The maps show the interpretations of those areas of fracture systems that might be viable targets for horizontal drilling.

  14. Geometric grid generation

    NASA Technical Reports Server (NTRS)

    Ives, David

    1995-01-01

    This paper presents a highly automated hexahedral grid generator based on extensive geometrical and solid modeling operations developed in response to a vision of a designer-driven one day turnaround CFD process which implies a designer-driven one hour grid generation process.

  15. Internet 2 Access Grid.

    ERIC Educational Resources Information Center

    Simco, Greg

    2002-01-01

    Discussion of the Internet 2 Initiative, which is based on collaboration among universities, businesses, and government, focuses on the Access Grid, a Computational Grid that includes interactive multimedia within high-speed networks to provide resources to enable remote collaboration among the research community. (Author/LRW)

  16. Security for grids

    SciTech Connect

    Humphrey, Marty; Thompson, Mary R.; Jackson, Keith R.

    2005-08-14

    Securing a Grid environment presents a distinctive set of challenges. This paper groups the activities that need to be secured into four categories: naming and authentication; secure communication; trust, policy, and authorization; and enforcement of access control. It examines the current state of the art in securing these processes and introduces new technologies that promise to meet the security requirements of Grids more completely.

  17. Data Grid Implementations

    SciTech Connect

    Moore, Reagan W.; Studham, Ronald S.; Rajasekar, Arcot; Watson, Chip; Stockinger, Heinz; Kunszt, Peter; Charlie Catlett and Ian Foster

    2002-02-27

    Data grids link distributed, heterogeneous storage resources into a coherent data management system. From a user perspective, the data grid provides a uniform name space across the underlying storage systems, while supporting retrieval and storage of files. In the high energy physics community, at least six data grids have been implemented for the storage and distribution of experimental data. Data grids are also being used to support projects as diverse as digital libraries (National Library of Medicine Visible Embryo project), federation of multiple astronomy sky surveys (NSF National Virtual Observatory project), and integration of distributed data sets (Long Term Ecological Reserve). Data grids also form the core interoperability mechanisms for creating persistent archives, in which data collections are migrated to new technologies over time. The ability to provide a uniform name space across multiple administration domains is becoming a critical component of national-scale, collaborative projects.

  18. The SIM astronmetric grid

    NASA Technical Reports Server (NTRS)

    Swartz, R.

    2002-01-01

    The Space Interferometry Mission (SIM) is fundamentally a one-dimensional instrument with a 15-degree field-of-regard. Mission objectives require a global reference grid of thousands of well-understood stars with positions known to 4 microarcseconds which will be used to establish the instrument baseline vector during scientific observations. This accuracy will be achieved by frequently observing a set of stars throughout the mission and performing a global fit of the observations to determine position, proper motion and parallax for each star. Each star will be observed approximately 200 times with about 6.5 stars per single instrument field on the sky. We describe the nature of the reference grid, the candidate objects, and the results of simulations demonstrating grid performance, including estimates of the grid robustness when including effects such as instrument drift and possible contamination of the grid star sample by undetected binaries.

  19. A grid generation system for multi-disciplinary design optimization

    NASA Technical Reports Server (NTRS)

    Jones, William T.; Samareh-Abolhassani, Jamshid

    1995-01-01

    A general multi-block three-dimensional volume grid generator is presented which is suitable for Multi-Disciplinary Design Optimization. The code is timely, robust, highly automated, and written in ANSI 'C' for platform independence. Algebraic techniques are used to generate and/or modify block face and volume grids to reflect geometric changes resulting from design optimization. Volume grids are generated/modified in a batch environment and controlled via an ASCII user input deck. This allows the code to be incorporated directly into the design loop. Generated volume grids are presented for a High Speed Civil Transport (HSCT) Wing/Body geometry as well a complex HSCT configuration including horizontal and vertical tails, engine nacelles and pylons, and canard surfaces.

  20. Computational studies of horizontal axis wind turbines

    NASA Astrophysics Data System (ADS)

    Xu, Guanpeng

    A numerical technique has been developed for efficiently simulating fully three-dimensional viscous fluid flow around horizontal axis wind turbines (HAWT) using a zonal approach. The flow field is viewed as a combination of viscous regions, inviscid regions and vortices. The method solves the costly unsteady Reynolds averaged Navier-Stokes (RANS) equations only in the viscous region around the turbine blades. It solves the full potential equation in the inviscid region where flow is irrotational and isentropic. The tip vortices are simulated using a Lagrangean approach, thus removing the need to accurately resolve them on a fine grid. The hybrid method is shown to provide good results with modest CPU resources. A full Navier-Stokes based methodology has also been developed for modeling wind turbines at high wind conditions where extensive stall may occur. An overset grid based version that can model rotor-tower interactions has been developed. Finally, a blade element theory based methodology has been developed for the purpose of developing improved tip loss models and stall delay models. The effects of turbulence are simulated using a zero equation eddy viscosity model, or a one equation Spalart-Allmaras model. Two transition models, one based on the Eppler's criterion, and the other based on Michel's criterion, have been developed and tested. The hybrid method has been extensively validated for axial wind conditions for three rotors---NREL Phase II, Phase III, and Phase VI configurations. A limited set of calculations has been done for rotors operating under yaw conditions. Preliminary simulations have also been carried out to assess the effects of the tower wake on the rotor. In most of these cases, satisfactory agreement has been obtained with measurements. Using the numerical results from present methodologies as a guide, Prandtl's tip loss model and Corrigan's stall delay model were correlated with present calculations. An improved tip loss model has been

  1. U. S. horizontal drilling continues to spread

    SciTech Connect

    Petzet, G.A.

    1990-12-10

    This paper reports that horizontal drilling is still spreading in onshore U.S. oil fields. One company completed a shallow well producing oil by gravity drainage through three horizontal legs about 120{sup {degrees}} apart on the La Barge platform in Wyoming. The author reports successful Austin chalk horizontal drilling in Sabine County, East Texas. Another horizontal completion of Cretaceous Niobrara was reported and several other wells were drilling or staked in Silo field, Laramie County, Wyoming.

  2. Hurricanes in an Aquaplanet World: Implications of the Impacts of External Forcing and Model Horizontal Resolution

    SciTech Connect

    Li, Fuyu; Collins, William D.; Wehner, Michael F.; Leung, Lai-Yung R.

    2013-06-02

    High-resolution climate models have been shown to improve the statistics of tropical storms and hurricanes compared to low-resolution models. The impact of increasing horizontal resolution in the tropical storm simulation is investigated exclusively using a series of Atmospheric Global Climate Model (AGCM) runs with idealized aquaplanet steady-state boundary conditions and a fixed operational storm-tracking algorithm. The results show that increasing horizontal resolution helps to detect more hurricanes, simulate stronger extreme rainfall, and emulate better storm structures in the models. However, increasing model resolution does not necessarily produce stronger hurricanes in terms of maximum wind speed, minimum sea level pressure, and mean precipitation, as the increased number of storms simulated by high-resolution models is mainly associated with weaker storms. The spatial scale at which the analyses are conducted appears to have more important control on these meteorological statistics compared to horizontal resolution of the model grid. When the simulations are analyzed on common low-resolution grids, the statistics of the hurricanes, particularly the hurricane counts, show reduced sensitivity to the horizontal grid resolution and signs of scale invariant.

  3. Optimization Of A Computational Grid

    NASA Technical Reports Server (NTRS)

    Pearce, Daniel G.

    1993-01-01

    In improved method of generation of computational grid, grid-generation process decoupled from definition of geometry. Not necessary to redefine boundary. Instead, continuous boundaries in physical domain specified, and then grid points in computational domain mapped onto continuous boundaries.

  4. Decentral Smart Grid Control

    NASA Astrophysics Data System (ADS)

    Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk

    2015-01-01

    Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals.

  5. The DESY Grid Centre

    NASA Astrophysics Data System (ADS)

    Haupt, A.; Gellrich, A.; Kemp, Y.; Leffhalm, K.; Ozerov, D.; Wegner, P.

    2012-12-01

    DESY is one of the world-wide leading centers for research with particle accelerators, synchrotron light and astroparticles. DESY participates in LHC as a Tier-2 center, supports on-going analyzes of HERA data, is a leading partner for ILC, and runs the National Analysis Facility (NAF) for LHC and ILC in the framework of the Helmholtz Alliance, Physics at the Terascale. For the research with synchrotron light major new facilities are operated and built (FLASH, PETRA-III, and XFEL). DESY furthermore acts as Data-Tier1 centre for the Neutrino detector IceCube. Established within the EGI-project DESY operates a grid infrastructure which supports a number of virtual Organizations (VO), incl. ATLAS, CMS, and LHCb. Furthermore, DESY hosts some of HEP and non-HEP VOs, such as the HERA experiments and ILC as well as photon science communities. The support of the new astroparticle physics VOs IceCube and CTA is currently set up. As the global structure of the grid offers huge resources which are perfect for batch-like computing, DESY has set up the National Analysis Facility (NAF) which complements the grid to allow German HEP users for efficient data analysis. The grid infrastructure and the NAF use the same physics data which is distributed via the grid. We call the conjunction of grid and NAF the DESY Grid Centre. In the contribution to CHEP2012 we will in depth discuss the conceptional and operational aspects of our multi-VO and multi-community Grid Centre and present the system setup. We will in particular focus on the interplay of Grid and NAF and present experiences of the operations.

  6. High Velocity Horizontal Motions at the Edge of Sunspot Penumbrae

    NASA Astrophysics Data System (ADS)

    Hagenaar-Daggett, Hermance J.; Shine, R.

    2010-05-01

    The outer edges of sunspot penumbrae have long been noted as a region of interesting dynamics including formation of MMFs, extensions and retractions of the penumbral tips, fast moving (2-3 km/s) bright features dubbed"streakers", and localized regions of high speed downflows interpreted as Evershed "sinks". Using 30s cadence movies of high spatial resolution G band and Ca II H images taken by the Hinode SOT/FPP instrument from 5-7 Jan 2007, we have been investigating the penumbra around a sunspot in AR 10933. In addition to the expected phenomena, we also see occasional small dark crescent-shaped features with high horizontal velocities (6.5 km/s) in G band movies. These appear to be emitted from penumbral tips. They travel about 1.5 Mm developing a bright wake that evolves into a slower moving (1-2 km/s) bright feature. In some cases, there may be an earlier outward propagating disturbance within the penumbra. We have also analyzed available Fe 6302 Stokes V images to obtain information on the magnetic field. Although only lower resolution 6302 images made with a slower cadence are available for these particular data sets, we can establish that the features have the opposite magnetic polarity of the sunspot. This observation may be in agreement with simulations showing that a horizontal flux tube develops crests that move outward with a velocity as large as 10 km/s. This work was supported by NASA contract NNM07AA01C.

  7. Trends in life science grid: from computing grid to knowledge grid

    PubMed Central

    Konagaya, Akihiko

    2006-01-01

    Background Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. Results This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Conclusion Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community. PMID:17254294

  8. A Scalable proxy cache for Grid Data Access

    NASA Astrophysics Data System (ADS)

    Cristian Cirstea, Traian; Just Keijser, Jan; Koeroo, Oscar Arthur; Starink, Ronald; Templon, Jeffrey Alan

    2012-12-01

    We describe a prototype grid proxy cache system developed at Nikhef, motivated by a desire to construct the first building block of a future https-based Content Delivery Network for grid infrastructures. Two goals drove the project: firstly to provide a “native view” of the grid for desktop-type users, and secondly to improve performance for physics-analysis type use cases, where multiple passes are made over the same set of data (residing on the grid). We further constrained the design by requiring that the system should be made of standard components wherever possible. The prototype that emerged from this exercise is a horizontally-scalable, cooperating system of web server / cache nodes, fronted by a customized webDAV server. The webDAV server is custom only in the sense that it supports http redirects (providing horizontal scaling) and that the authentication module has, as back end, a proxy delegation chain that can be used by the cache nodes to retrieve files from the grid. The prototype was deployed at Nikhef and tested at a scale of several terabytes of data and approximately one hundred fast cores of computing. Both small and large files were tested, in a number of scenarios, and with various numbers of cache nodes, in order to understand the scaling properties of the system. For properly-dimensioned cache-node hardware, the system showed speedup of several integer factors for the analysis-type use cases. These results and others are presented and discussed.

  9. The horizontal-branch stars in globular clusters. I - The period-shift effect, the luminosity of the horizontal branch, and the age-metallicity relation

    NASA Technical Reports Server (NTRS)

    Lee, Young-Wook; Demarque, Pierre; Zinn, Robert

    1990-01-01

    Synthetic models of the horizontal branches in globular clusters are constructed from a grid of the standard horizontal branch evolutionary tracks. The models are used to study the period shifts at constant T(eff) between RR Lyrae variables in globular clusters of different metallicities and the variation in horizontal-branch luminosity with the Fe/H ratio. The results suggest that the observed differences in the mean periods of the ab variables and the fraction of c-type variables between the two Oosterhoff groups are caused by a difference in the mean luminosity of the ab variables of about 0.18 bolometric mass and by the uneven distribution of variables across the instability strip in the group II clusters.

  10. Horizontal drilling comes full circle

    SciTech Connect

    Fritz, M.

    1991-06-01

    This paper discusses the new discoveries of oil and gas in Utah's Paradox Fold and Fault Belt resulting from horizontal drilling techniques. The Kane Spring Federal {number sign}27-1 is the first successful horizontal wildcat drilled in Utah. The discovery well recorded an initial potential test rate of 914 barrels of oil and 290 thousand cubic feet of gas per day through a 10/64-inch choke, with a flowing tubing pressure of 3,460 psi. A one-hour test on a 14/64-inch choke produced a rate of 2,302 barrels of oil and 627 thousand cubic feet of gas per day. The paper describes the engineering aspects of the well construct which was needed to direct the drill stem in salt beds and relatively incompetent beds. The pay zone is located in the Cane Creek Shale of the Pennsylvanian Paradox Formation. The oil and gas are located in geologic fractures and sealed by two layers of salt. The future of the prospect area is described.

  11. Orphan penumbrae: Submerging horizontal fields

    NASA Astrophysics Data System (ADS)

    Jurčák, J.; Bellot Rubio, L. R.; Sobotka, M.

    2014-04-01

    Aims: We investigate the properties of orphan penumbrae, which are photospheric filamentary structures observed in active regions near polarity inversion lines that resemble the penumbra of regular sunspots but are not connected to any umbra. Methods: We use Hinode data from the Solar Optical Telescope to determine the properties of orphan penumbrae. Spectropolarimetric data are employed to obtain the vector magnetic field and line-of-sight velocities in the photosphere. Magnetograms are used to study the overall evolution of these structures, and G-band and Ca ii H filtergrams are to investigate their brightness and apparent horizontal motions. Results: Orphan penumbrae form between regions of opposite polarity in places with horizontal magnetic fields. Their magnetic configuration is that of Ω-shaped flux ropes. In the two cases studied here, the opposite-polarity regions approach each other with time and the whole structure submerges as the penumbral filaments disappear. Orphan penumbrae are very similar to regular penumbrae, including the existence of strong gas flows. Therefore, they could have a similar origin. The main difference between them is the absence of a "background" magnetic field in orphan penumbrae. This could explain most of the observed differences. Conclusions: The fast flows we detect in orphan penumbrae may be caused by the siphon flow mechanism. Based on the similarities between orphan and regular penumbrae, we propose that the Evershed flow is also a manifestation of siphon flows. A movie attached to Fig. 11 is available in electronic form at http://www.aanda.org

  12. Grid resolution study of ground water flow and transport.

    PubMed

    Bower, Kathleen M; Gable, Carl W; Zyvoloski, George A

    2005-01-01

    Three-dimensional grids representing a heterogeneous, ground water system are generated at 10 different resolutions in support of a site-scale flow and transport modeling effort. These grids represent hydrostratigraphy near Yucca Mountain, Nevada, consisting of 18 stratigraphic units with contrasting fluid flow and transport properties. The grid generation method allows the stratigraphy to be modeled by numerical grids of different resolution so that comparison studies can be performed to test for grid quality and determine the resolution required to resolve geologic structure and physical processes such as fluid flow and solute transport. The process of generating numerical grids with appropriate property distributions from geologic conceptual models is automated, thus making the entire process easy to implement with fewer user-induced errors. The series of grids of various resolutions are used to assess the level at which increasing resolution no longer influences the flow and solute transport results. Grid resolution is found to be a critical issue for ground water flow and solute transport. The resolution required in a particular instance is a function of the feature size of the model, the intrinsic properties of materials, the specific physics of the problem, and boundary conditions. The asymptotic nature of results related to flow and transport indicate that for a hydrologic model of the heterogeneous hydrostratigraphy under Yucca Mountain, a horizontal grid spacing of 600 m and vertical grid spacing of 40 m resolve the hydrostratigraphic model with sufficient precision to accurately model the hypothetical flow and solute transport to within 5% of the value that would be obtained with much higher resolution. PMID:15726930

  13. Grid generation and inviscid flow computation about aircraft geometries

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.

    1989-01-01

    Grid generation and Euler flow about fighter aircraft are described. A fighter aircraft geometry is specified by an area ruled fuselage with an internal duct, cranked delta wing or strake/wing combinations, canard and/or horizontal tail surfaces, and vertical tail surfaces. The initial step before grid generation and flow computation is the determination of a suitable grid topology. The external grid topology that has been applied is called a dual-block topology which is a patched C (exp 1) continuous multiple-block system where inner blocks cover the highly-swept part of a cranked wing or strake, rearward inner-part of the wing, and tail components. Outer-blocks cover the remainder of the fuselage, outer-part of the wing, canards and extend to the far field boundaries. The grid generation is based on transfinite interpolation with Lagrangian blending functions. This procedure has been applied to the Langley experimental fighter configuration and a modified F-18 configuration. Supersonic flow between Mach 1.3 and 2.5 and angles of attack between 0 degrees and 10 degrees have been computed with associated Euler solvers based on the finite-volume approach. When coupling geometric details such as boundary layer diverter regions, duct regions with inlets and outlets, or slots with the general external grid, imposing C (exp 1) continuity can be extremely tedious. The approach taken here is to patch blocks together at common interfaces where there is no grid continuity, but enforce conservation in the finite-volume solution. The key to this technique is how to obtain the information required for a conservative interface. The Ramshaw technique which automates the computation of proportional areas of two overlapping grids on a planar surface and is suitable for coding was used. Researchers generated internal duct grids for the Langley experimental fighter configuration independent of the external grid topology, with a conservative interface at the inlet and outlet.

  14. Grid Computing Education Support

    SciTech Connect

    Steven Crumb

    2008-01-15

    The GGF Student Scholar program enabled GGF the opportunity to bring over sixty qualified graduate and under-graduate students with interests in grid technologies to its three annual events over the three-year program.

  15. Space Development Grid Portal

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi

    2004-01-01

    This viewgraph presentation provides information on the development of a portal to provide secure and distributed grid computing for Payload Operations Integrated Center and Mission Control Center ground services.

  16. IDL Grid Web Portal

    NASA Astrophysics Data System (ADS)

    Massimino, P.; Costa, A.

    2008-08-01

    Image Data Language is a software for data analysis, visualization and cross-platform application development. The potentiality of IDL is well-known in the academic scientific world, especially in the astronomical environment where thousands of procedures are developed by using IDL. The typical use of IDL is the interactive mode but it is also possible to run IDL programs that do not require any interaction with the user, submitting them in batch or background modality. Through the interactive mode the user immediately receives images or other data produced in the running phase of the program; in batch or background mode, the user will have to wait for the end of the program, sometime for many hours or days to obtain images or data that IDL produced as output: in fact in Grid environment it is possible to access to or retrieve data only after completion of the program. The work that we present gives flexibility to IDL procedures submitted to the Grid computer infrastructure. For this purpose we have developed an IDL Grid Web Portal to allow the user to access the Grid and to submit IDL programs granting a full job control and the access to images and data generated during the running phase, without waiting for their completion. We have used the PHP technology and we have given the same level of security that Grid normally offers to its users. In this way, when the user notices that the intermediate program results are not those expected, he can stop the job, change the parameters to better satisfy the computational algorithm and resubmit the program, without consuming the CPU time and other Grid resources. The IDL Grid Web Portal allows you to obtain IDL generated images, graphics and data tables by using a normal browser. All conversations from the user and the Grid resources occur via Web, as well as authentication phases. The IDL user has not to change the program source much because the Portal will automatically introduce the appropriate modification before

  17. Implementing Production Grids

    NASA Technical Reports Server (NTRS)

    Johnston, William E.; Ziobarth, John (Technical Monitor)

    2002-01-01

    We have presented the essence of experience gained in building two production Grids, and provided some of the global context for this work. As the reader might imagine, there were a lot of false starts, refinements to the approaches and to the software, and several substantial integration projects (SRB and Condor integrated with Globus) to get where we are today. However, the point of this paper is to try and make it substantially easier for others to get to the point where Information Power Grids (IPG) and the DOE Science Grids are today. This is what is needed in order to move us toward the vision of a common cyber infrastructure for science. The author would also like to remind the readers that this paper primarily represents the actual experiences that resulted from specific architectural and software choices during the design and implementation of these two Grids. The choices made were dictated by the criteria laid out in section 1. There is a lot more Grid software available today that there was four years ago, and various of these packages are being integrated into IPG and the DOE Grids. However, the foundation choices of Globus, SRB, and Condor would not be significantly different today than they were four years ago. Nonetheless, if the GGF is successful in its work - and we have every reason to believe that it will be - then in a few years we will see that the 28 functions provided by these packages will be defined in terms of protocols and MIS, and there will be several robust implementations available for each of the basic components, especially the Grid Common Services. The impact of the emerging Web Grid Services work is not yet clear. It will likely have a substantial impact on building higher level services, however it is the opinion of the author that this will in no way obviate the need for the Grid Common Services. These are the foundation of Grids, and the focus of almost all of the operational and persistent infrastructure aspects of Grids.

  18. Random array grid collimator

    DOEpatents

    Fenimore, E.E.

    1980-08-22

    A hexagonally shaped quasi-random no-two-holes touching grid collimator. The quasi-random array grid collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasng throughput by elimination of a substrate. The presentation invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.

  19. Beyond grid security

    NASA Astrophysics Data System (ADS)

    Hoeft, B.; Epting, U.; Koenig, T.

    2008-07-01

    While many fields relevant to Grid security are already covered by existing working groups, their remit rarely goes beyond the scope of the Grid infrastructure itself. However, security issues pertaining to the internal set-up of compute centres have at least as much impact on Grid security. Thus, this talk will present briefly the EU ISSeG project (Integrated Site Security for Grids). In contrast to groups such as OSCT (Operational Security Coordination Team) and JSPG (Joint Security Policy Group), the purpose of ISSeG is to provide a holistic approach to security for Grid computer centres, from strategic considerations to an implementation plan and its deployment. The generalised methodology of Integrated Site Security (ISS) is based on the knowledge gained during its implementation at several sites as well as through security audits, and this will be briefly discussed. Several examples of ISS implementation tasks at the Forschungszentrum Karlsruhe will be presented, including segregation of the network for administration and maintenance and the implementation of Application Gateways. Furthermore, the web-based ISSeG training material will be introduced. This aims to offer ISS implementation guidance to other Grid installations in order to help avoid common pitfalls.

  20. Using Grid Benchmarks for Dynamic Scheduling of Grid Applications

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Hood, Robert

    2003-01-01

    Navigation or dynamic scheduling of applications on computational grids can be improved through the use of an application-specific characterization of grid resources. Current grid information systems provide a description of the resources, but do not contain any application-specific information. We define a GridScape as dynamic state of the grid resources. We measure the dynamic performance of these resources using the grid benchmarks. Then we use the GridScape for automatic assignment of the tasks of a grid application to grid resources. The scalability of the system is achieved by limiting the navigation overhead to a few percent of the application resource requirements. Our task submission and assignment protocol guarantees that the navigation system does not cause grid congestion. On a synthetic data mining application we demonstrate that Gridscape-based task assignment reduces the application tunaround time.

  1. Exploring Hypersonic, Unstructured-Grid Issues through Structured Grids

    NASA Technical Reports Server (NTRS)

    Mazaheri, Ali R.; Kleb, Bill

    2007-01-01

    Pure-tetrahedral unstructured grids have been shown to produce asymmetric heat transfer rates for symmetric problems. Meanwhile, two-dimensional structured grids produce symmetric solutions and as documented here, introducing a spanwise degree of freedom to these structured grids also yields symmetric solutions. The effects of grid skewness and other perturbations of structured-grids are investigated to uncover possible mechanisms behind the unstructured-grid solution asymmetries. By using controlled experiments around a known, good solution, the effects of particular grid pathologies are uncovered. These structured-grid experiments reveal that similar solution degradation occurs as for unstructured grids, especially for heat transfer rates. Non-smooth grids within the boundary layer is also shown to produce large local errors in heat flux but do not affect surface pressures.

  2. Near-Body Grid Adaption for Overset Grids

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Pulliam, Thomas H.

    2016-01-01

    A solution adaption capability for curvilinear near-body grids has been implemented in the OVERFLOW overset grid computational fluid dynamics code. The approach follows closely that used for the Cartesian off-body grids, but inserts refined grids in the computational space of original near-body grids. Refined curvilinear grids are generated using parametric cubic interpolation, with one-sided biasing based on curvature and stretching ratio of the original grid. Sensor functions, grid marking, and solution interpolation tasks are implemented in the same fashion as for off-body grids. A goal-oriented procedure, based on largest error first, is included for controlling growth rate and maximum size of the adapted grid system. The adaption process is almost entirely parallelized using MPI, resulting in a capability suitable for viscous, moving body simulations. Two- and three-dimensional examples are presented.

  3. Grid generation strategies for turbomachinery configurations

    NASA Astrophysics Data System (ADS)

    Lee, K. D.; Henderson, T. L.

    1991-01-01

    Turbomachinery flow fields involve unique grid generation issues due to their geometrical and physical characteristics. Several strategic approaches are discussed to generate quality grids. The grid quality is further enhanced through blending and adapting. Grid blending smooths the grids locally through averaging and diffusion operators. Grid adaptation redistributes the grid points based on a grid quality assessment. These methods are demonstrated with several examples.

  4. GRIDS: Grid-Scale Rampable Intermittent Dispatchable Storage

    SciTech Connect

    2010-09-01

    GRIDS Project: The 12 projects that comprise ARPA-E’s GRIDS Project, short for “Grid-Scale Rampable Intermittent Dispatchable Storage,” are developing storage technologies that can store renewable energy for use at any location on the grid at an investment cost less than $100 per kilowatt hour. Flexible, large-scale storage would create a stronger and more robust electric grid by enabling renewables to contribute to reliable power generation.

  5. Reference installation for the German grid initiative D-Grid

    NASA Astrophysics Data System (ADS)

    Buehler, W.; Dulov, O.; Garcia, A.; Jejkal, T.; Jrad, F.; Marten, H.; Mol, X.; Nilsen, D.; Schneider, O.

    2010-04-01

    The D-Grid reference installation is a test platform for the German grid initiative. The main task is to create the grid prototype for software and hardware components needed in the D-Grid community. For each grid-related task field different alternative middleware is included. With respect to changing demands from the community, new versions of the reference installation are released every six months.

  6. Arc Length Based Grid Distribution For Surface and Volume Grids

    NASA Technical Reports Server (NTRS)

    Mastin, C. Wayne

    1996-01-01

    Techniques are presented for distributing grid points on parametric surfaces and in volumes according to a specified distribution of arc length. Interpolation techniques are introduced which permit a given distribution of grid points on the edges of a three-dimensional grid block to be propagated through the surface and volume grids. Examples demonstrate how these methods can be used to improve the quality of grids generated by transfinite interpolation.

  7. Unstructured Grids on NURBS Surfaces

    NASA Technical Reports Server (NTRS)

    Samareh-Abolhassani, Jamshid

    1993-01-01

    A simple and efficient computational method is presented for unstructured surface grid generation. This method is built upon an advancing front technique combined with grid projection. The projection technique is based on a Newton-Raphson method. This combined approach has been successfully implemented for structured and unstructured grids. In this paper, the implementation for unstructured grid is discussed.

  8. The Benefits of Grid Networks

    ERIC Educational Resources Information Center

    Tennant, Roy

    2005-01-01

    In the article, the author talks about the benefits of grid networks. In speaking of grid networks the author is referring to both networks of computers and networks of humans connected together in a grid topology. Examples are provided of how grid networks are beneficial today and the ways in which they have been used.

  9. Smart Grid Integration Laboratory

    SciTech Connect

    Troxell, Wade

    2011-12-22

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of

  10. Explorando nuevos horizontes en NASA

    NASA Astrophysics Data System (ADS)

    Villanueva, G. L.

    A pesar de la incesante expansión del Universo iniciada con el Big Bang 14 mil millones de años atrás, nuestro Universo se siente cada día más cercano. La inquebrantable vocación de la humanidad por descubrir nuevos horizontes ha permitido el acercamiento de civilizaciones en nuestro planeta y nos ha permitido conocer nuestro lugar en el Universo como nunca antes. En este artículo presento una breve sinopsis de nuestro trabajo que se relaciona con diversas investigaciones con implicaciones astrobiológicas, desde el origen de los ingredientes de la "sopa de la vida", hasta la evolución y composición de la atmósfera de Marte.

  11. Productivity and Injectivity of Horizontal Wells

    SciTech Connect

    Aziz, Khalid; Hewett, Thomas A.; Arbabi, Sepehr; Smith, Marilyn

    1999-11-16

    The generation of suitable simulation grids for heterogeneous media and specific discretization issues that arise. Streamlines and equipotentials are used to define our base grids. Since streamlines are concentrated in high velocity regions they provide a natural means of clustering fine grid cells in crucial flow regions. For complex configurations and particularly for strongly heterogeneous regions the resulting grid cells can become very distorted due to extremely high curvatures. Two types of cell centered formulation are examined together with a cell vertex-point distributed scheme. Important distinctions are found for highly distorted cells. The new grids are tested for accuracy in terms of critical breakthrough parameters and it is shown that a much higher level of grid resolution is required by conventional simulators in order to achieve results that are comparable with those computed on relatively coarse streamline-potential grids.

  12. GridLAB-D/SG

    2011-08-30

    GridLAB-D is a new power system simulation tool that provides valuable information to users who design and operate electric power transmission and distribution systems, and to utilities that wish to take advantage of the latest smart grid technology. This special release of GridLAB-D was developed to study the proposed Smart Grid technology that is used by Battelle Memorial Institute in the AEP gridSMART demonstration project in Northeast Columbus, Ohio.

  13. Well testing and interpretation for horizontal wells

    SciTech Connect

    Kuchuk, F.J. )

    1995-01-01

    The use of transient well testing for determining reservoir parameters and productivity of horizontal wells has become common because of the upsurge in horizontal drilling. Initially, horizontal well tests were analyzed with the conventional techniques designed for vertical wells. During the last decade, analytic solutions have been presented for the pressure behavior of horizontal wells. New flow regimes have been identified, and simple equations and flow regime existence criteria have been presented for them. The flow regimes are now used frequently to estimate horizontal and vertical permeabilities of the reservoir, wellbore skin, and reservoir pressure. Although the existing tools and interpretation techniques may be sufficient for simple systems, innovation and improvement of the present technology are still essential for well testing of horizontal wells in many reservoirs with different geological environments and different well-completion requirements.

  14. International trends for future horizontal drilling

    SciTech Connect

    Joshi, S.D.; Lacy, S.L. )

    1991-03-01

    Since 1985, there has been tremendous growth in horizontal well drilling around the world. This paper summarizes the present trends and results. In addition, it describes the generalized reservoir and geological conditions where horizontal wells have been both economically successful and unsuccessful. Based upon these criteria, the paper estimates possible future activity. In the United States, horizontal wells have been economically successful in fractured reservoirs such as Bakken Shale and Austin Chalk. Internationally, on the other hand, a majority of the applications are for minimizing gas and water coning problems. In general, horizontal wells have been economically successful in minimizing water coning in sandstone and fractured carbonate reservoirs when oil column thicknesses are greater than 20 ft. Many of these applications are in sandstone formations; a few are in fractured carbonate formations. Horizontal wells have been more successful in reducing water coning than gas coning. Internationally, the use of horizontal wells to minimize water and gas coning will continue to grow.

  15. An Approach for Dynamic Grids

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Liou, Meng-Sing; Hindman, Richard G.

    1994-01-01

    An approach is presented for the generation of two-dimensional, structured, dynamic grids. The grid motion may be due to the motion of the boundaries of the computational domain or to the adaptation of the grid to the transient, physical solution. A time-dependent grid is computed through the time integration of the grid speeds which are computed from a system of grid speed equations. The grid speed equations are derived from the time-differentiation of the grid equations so as to ensure that the dynamic grid maintains the desired qualities of the static grid. The grid equations are the Euler-Lagrange equations derived from a variational statement for the grid. The dynamic grid method is demonstrated for a model problem involving boundary motion, an inviscid flow in a converging-diverging nozzle during startup, and a viscous flow over a flat plate with an impinging shock wave. It is shown that the approach is more accurate for transient flows than an approach in which the grid speeds are computed using a finite difference with respect to time of the grid. However, the approach requires significantly more computational effort.

  16. Complex Volume Grid Generation Through the Use of Grid Reusability

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    1997-01-01

    This paper presents a set of surface and volume grid generation techniques which reuse existing surface and volume grids. These methods use combinations of data manipulations to reduce grid generation time, improve grid characteristics, and increase the capabilities of existing domain discretization software. The manipulation techniques utilize physical and computational domains to produce basis function on which to operate and modify grid character and smooth grids using Trans-Finite Interpolation, a vector interpolation method and parametric re-mapping technique. With these new techniques, inviscid grids can be converted to viscous grids, multiple zone grid adaption can be performed to improve CFD solver efficiency, and topological changes to improve modeling of flow fields can be done simply and quickly. Examples of these capabilities are illustrated as applied to various configurations.

  17. NREL Smart Grid Projects

    SciTech Connect

    Hambrick, J.

    2012-01-01

    Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.

  18. An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    1999-01-01

    An unstructured grid adaptation technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The approach is based on a combination of grid subdivision, local remeshing, and grid movement. For solution adaptive grids, the surface triangulation is locally refined by grid subdivision, and the tetrahedral grid in the field is partially remeshed at locations of dominant flow features. A grid redistribution strategy is employed for geometric adaptation of volume grids to moving or deforming surfaces. The method is automatic and fast and is designed for modular coupling with different solvers. Several steady state test cases with different inviscid flow features were tested for grid/solution adaptation. In all cases, the dominant flow features, such as shocks and vortices, were accurately and efficiently predicted with the present approach. A new and robust method of moving tetrahedral "viscous" grids is also presented and demonstrated on a three-dimensional example.

  19. System for Estimating Horizontal Velocity During Descent

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew; Cheng, Yang; Wilson, Reg; Goguen, Jay; Martin, Alejandro San; Leger, Chris; Matthies, Larry

    2007-01-01

    The descent image motion estimation system (DIMES) is a system of hardware and software, designed for original use in estimating the horizontal velocity of a spacecraft descending toward a landing on Mars. The estimated horizontal velocity is used in generating rocket-firing commands to reduce the horizontal velocity as part of an overall control scheme to minimize the landing impact. DIMES can also be used for estimating the horizontal velocity of a remotely controlled or autonomous aircraft for purposes of navigation and control.

  20. Opportunities for horizontal drilling in Texas

    SciTech Connect

    Finley, R.J.; Laubach, S.E.; Tyler, N.; Holtz, M.H. )

    1991-03-01

    To date, horizontal drilling in Texas has been effective in achieving production increases where natural fracturing is significant, as in the Pearsall field of the Austin Chalk trend of south Texas. Projected average ultimate recoveries of 500,000 bbl of oil and 500 mmcf of gas per horizontal well compare with 75,000 bbl and 82 mmcf for vertical wells in that field. In addition to increasing production from naturally fractured reservoirs, horizontal drilling applications can enhance production where coning problems exist, where the reservoir zone is thin, where a gravity drainage mechanism exists, or where macroscale heterogeneity can be overcome to produce from complex, compartmentalized reservoirs. Major Texas reservoirs have been classified into 47 oil plays and 73 gas plays that are useful in evaluating the application of horizontal drilling. Geological character amenable to horizontal drilling is evident in at least 10 oil plays containing 144 reservoirs, more than two Bbl of proved reserves, and eight Bbbl of uncovered mobile oil. At least seven gas plays containing more than 124 reservoirs with cumulative production of more than 19.7 tcf are amenable to horizontal drilling. Tight gas reservoirs may benefit from multiple hydraulic fracture treatments from horizontal well sections drilled parallel to the minimum horizontal stress direction. Although play analysis defines general suitability, applications of horizontal drilling depend upon geologic, engineering, and, most importantly, economic assessments of specific prospects. Increased understanding of fractured reservoirs and of scales of reservoir heterogeneity will enhance future applications.

  1. Information Power Grid Posters

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi

    2003-01-01

    This document is a summary of the accomplishments of the Information Power Grid (IPG). Grids are an emerging technology that provide seamless and uniform access to the geographically dispersed, computational, data storage, networking, instruments, and software resources needed for solving large-scale scientific and engineering problems. The goal of the NASA IPG is to use NASA's remotely located computing and data system resources to build distributed systems that can address problems that are too large or complex for a single site. The accomplishments outlined in this poster presentation are: access to distributed data, IPG heterogeneous computing, integration of large-scale computing node into distributed environment, remote access to high data rate instruments,and exploratory grid environment.

  2. The Computing Grids

    NASA Astrophysics Data System (ADS)

    Govoni, P.

    2009-12-01

    Since the beginning of the millennium, High Energy Physics research institutions like CERN and INFN pioneered several projects aimed at exploiting the synergy among computing power, storage and network resources, and creating an infrastructure of distributed computing on a worldwide scale. In the year 2000, after the Monarch project [ http://monarc.web.cern.ch/MONARC/], DataGrid started [ http://eu-datagrid.web.cern.ch/eu-datagrid/] aimed at providing High Energy Physics with the computing power needed for the LHC enterprise. This program evolved into the EU DataGrid project, that implemented the first actual prototype of a Grid middleware running on a testbed environment. The next step consisted in the application to the LHC experiments, with the LCG project [ http://lcg.web.cern.ch/LCG/], in turn followed by the EGEE [ http://www.eu-egee.org/] and EGEE II programs.

  3. Interactive surface grid generation

    NASA Technical Reports Server (NTRS)

    Luh, Raymond Ching-Chung; Pierce, Lawrence E.; Yip, David

    1991-01-01

    This paper describes a surface grid generation tool called S3D. It is the result of integrating a robust and widely applicable interpolation technique with the latest in workstation technology. Employing the use of a highly efficient and user-friendly graphical interface, S3D permits real-time interactive analyses of surface geometry data and facilitates the construction of surface grids for a wide range of applications in Computational Fluid Dynamics (CFD). The design objectives are for S3D to be stand-alone and easy to use so that CFD analysts can take a hands-on approach toward most if not all of their surface grid generation needs. Representative examples of S3D applications are presented in describing the various elements involved in the process.

  4. Collection Efficiency and Ice Accretion Characteristics of Two Full Scale and One 1/4 Scale Business Jet Horizontal Tails

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin S.; Papadakis, Michael

    2005-01-01

    Collection efficiency and ice accretion calculations have been made for a series of business jet horizontal tail configurations using a three-dimensional panel code, an adaptive grid code, and the NASA Glenn LEWICE3D grid based ice accretion code. The horizontal tail models included two full scale wing tips and a 25 percent scale model. Flow solutions for the horizontal tails were generated using the PMARC panel code. Grids used in the ice accretion calculations were generated using the adaptive grid code ICEGRID. The LEWICE3D grid based ice accretion program was used to calculate impingement efficiency and ice shapes. Ice shapes typifying rime and mixed icing conditions were generated for a 30 minute hold condition. All calculations were performed on an SGI Octane computer. The results have been compared to experimental flow and impingement data. In general, the calculated flow and collection efficiencies compared well with experiment, and the ice shapes appeared representative of the rime and mixed icing conditions for which they were calculated.

  5. A Variable Resolution Stretched Grid General Circulation Model: Regional Climate Simulation

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.; Takacs, Lawrence L.; Govindaraju, Ravi C.; Suarez, Max J.

    2000-01-01

    The development of and results obtained with a variable resolution stretched-grid GCM for the regional climate simulation mode, are presented. A global variable resolution stretched- grid used in the study has enhanced horizontal resolution over the U.S. as the area of interest The stretched-grid approach is an ideal tool for representing regional to global scale interaction& It is an alternative to the widely used nested grid approach introduced over a decade ago as a pioneering step in regional climate modeling. The major results of the study are presented for the successful stretched-grid GCM simulation of the anomalous climate event of the 1988 U.S. summer drought- The straightforward (with no updates) two month simulation is performed with 60 km regional resolution- The major drought fields, patterns and characteristics such as the time averaged 500 hPa heights precipitation and the low level jet over the drought area. appear to be close to the verifying analyses for the stretched-grid simulation- In other words, the stretched-grid GCM provides an efficient down-scaling over the area of interest with enhanced horizontal resolution. It is also shown that the GCM skill is sustained throughout the simulation extended to one year. The developed and tested in a simulation mode stretched-grid GCM is a viable tool for regional and subregional climate studies and applications.

  6. Application of the nested grid STEM to an early summer acid rain in South Korea

    NASA Astrophysics Data System (ADS)

    Kim, Jungtae; Cho, SeogYeon

    The nested grid Sulfur Transport Eulerian Model (STEM) was developed and used to simulate the acid rain in Korea that occurred on 10 June 1996. The present nested grid system consists of three-grid systems. The coarsest grid system includes China, Korean Peninsula and Japan with the horizontal grid size of 80 km and the finest grid system includes only Korea with the horizontal grid size of 8.9 km. The calculated gas-phase SO 2 and O 3 concentrations agree relatively well with the field measurements. In addition, the model successfully reproduces the measured sulfate and nitrate concentrations in the rain water and futhermore identified the high concentration regions of liquid-phase sulfate and nitrate. In the present simulation conditions, most of the gas-phase of SO 2 and HNO 3 were washed out. A close relationship between wet deposition fluxes and precipitation rates were found for sulfate and nitrate. Finally, the model results also showed that a fine grid size is required to accurately calculate gas-phase concentrations as well as acid deposition fluxes.

  7. GridPV Toolbox

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feedermore » on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.« less

  8. GridPV Toolbox

    SciTech Connect

    Broderick, Robert; Quiroz, Jimmy; Grijalva, Santiago; Reno, Matthew; Coogan, Kyle

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.

  9. Widespread horizontal transfer of retrotransposons.

    PubMed

    Walsh, Ali Morton; Kortschak, R Daniel; Gardner, Michael G; Bertozzi, Terry; Adelson, David L

    2013-01-15

    In higher organisms such as vertebrates, it is generally believed that lateral transfer of genetic information does not readily occur, with the exception of retroviral infection. However, horizontal transfer (HT) of protein coding repetitive elements is the simplest way to explain the patchy distribution of BovB, a long interspersed element (LINE) about 3.2 kb long, that has been found in ruminants, marsupials, squamates, monotremes, and African mammals. BovB sequences are a major component of some of these genomes. Here we show that HT of BovB is significantly more widespread than believed, and we demonstrate the existence of two plausible arthropod vectors, specifically reptile ticks. A phylogenetic tree built from BovB sequences from species in all of these groups does not conform to expected evolutionary relationships of the species, and our analysis indicates that at least nine HT events are required to explain the observed topology. Our results provide compelling evidence for HT of genetic material that has transformed vertebrate genomes. PMID:23277587

  10. Horizontally opposed internal combustion engine

    SciTech Connect

    Honkanen, E.G.

    1992-07-28

    This patent describes a internal combustion engine. It comprises a base plate coincident with a horizontal plane and generally symmetrical with respect to a central longitudinal axis coincident with a vertical plane extending between fore and aft ends of the base plate, a main power crankshaft suspended below the base plate and extending parallel with the central longitudinal axis, a plurality of open-ended piston cylinders disposed below the base plate arranged in axially aligned pairs, a pair of auxiliary crankshafts detachably journaled below the base plate on opposite sides of the vertical plane; a connecting rod assembly pivotally interconnecting the pair of auxiliary crankshafts with the main power crankshaft; a piston assembly in each of the cylinders operatively connected with the associated auxiliary crankshaft and including a piston having a head, a wrist-pin and a connecting rod connecting the wrist-pin of each piston with the associated auxiliary crankshaft; a fuel induction assembly for admitting a combustible fuel mixture into the cylinders between the opposed heads of the pistons in a controlled sequence correlated to the receding movement of the pistons in the cylinders in a fuel intake stroke; means for igniting the fuel mixture compressed between the juxtaposed heads of the pistons; means for exhausting from the cylinders the products of combustion of the fuel mixture in correlation to the movement of the pistons in an exhaust stroke; and means including an oil pan enclosing the auxiliary crankshafts.

  11. Vertical and horizontal access configurations

    SciTech Connect

    Spampinato, P.T.

    1987-01-01

    A number of configuration features and maintenance operations are influenced by the choice of whether a design is based on vertical or horizontal access for replacing reactor components. The features which are impacted most include the first wall/blanket segmentation, the poloidal field coil locations, the toroidal field coil number and size, access port size for in-vessel components, and facilities. Since either configuration can be made to work, the choice between the two is not clear cut because both have certain advantages. It is apparent that there are large cost benefits in the poloidal field coil system for ideal coil locations for high elongation plasmas and marginal savings for the INTOR case. If we assume that a new tokamak design will require a higher plasma elongation, the recommendation is to arrange the poloidal field coils in a cost-effective manner while providing reasonable midplane access for heating interfaces and test modules. If a new design study is not based on a high elongation plasma, it still appears prudent to consider this approach so that in-vessel maintenance can be accomplished without moving very massive structures such as the bulk shield. 10 refs., 29 figs., 3 tabs.

  12. Grid base plate for an electrode plate for a storage battery and method of manufacture thereof

    SciTech Connect

    Sano, I.; Suzuki, Y.

    1981-06-02

    A grid base plate and its method of manufacture is described. The method is comprised of intermittently conveying a thin elongated metallic sheet longitudinally in one direction through successive first, second and third stations, the sheet being stopped in each of the stations between successive conveying steps. In the first station , the sheet is bent to form a peripheral upwardly projecting portion in a frame region surrounding an inner grid region. In the second station, a plurality of openings are punched in the grid region and in the third station, the sheet is punched along an outer peripheral edge surface to separate the base plate from the sheet. The upwardly projecting portion forms a space with the grid region which is filled with an active material of a thickness determined by the height of the upwardly projecting portion. The upwardly projecting portion has an outer bend region with an end surface constituting a peripheral edge of the frame which faces laterally outwards and is disposed vertically. The outer bend region has a lower surface disposed in the same horizontal plane as a lower surface of an inner region in the vicinity of the juncture of the projecting portion and the grid region. Thereby, when the base plate is placed on a horizontal planar surface, the peripheral frame region will rest on the horizontal surface along two lines of contact respectively at the bottom of the edge surface and at the lower surface at the juncture of the frame region and the grid region.

  13. Reduction of a grid moire pattern by integrating a carbon-interspaced high precision x-ray grid with a digital radiographic detector

    SciTech Connect

    Yoon, Jai-Woong; Park, Young-Guk; Park, Chun-Joo; Kim, Do-Il; Lee, Jin-Ho; Chung, Nag-Kun; Choe, Bo-Young; Suh, Tae-Suk; Lee, Hyoung-Koo

    2007-11-15

    The stationary grid commonly used with a digital x-ray detector causes a moire interference pattern due to the inadequate sampling of the grid shadows by the detector pixels. There are limitations with the previous methods used to remove the moire such as imperfect electromagnetic interference shielding and the loss of image information. A new method is proposed for removing the moire pattern by integrating a carbon-interspaced high precision x-ray grid with high grid line uniformity with the detector for frequency matching. The grid was aligned to the detector by translating and rotating the x-ray grid with respect to the detector using microcontrolled alignment mechanism. The gap between the grid and the detector surface was adjusted with micrometer precision to precisely match the projected grid line pitch to the detector pixel pitch. Considering the magnification of the grid shadows on the detector plane, the grids were manufactured such that the grid line frequency was slightly higher than the detector sampling frequency. This study examined the factors that affect the moire pattern, particularly the line frequency and displacement. The frequency of the moire pattern was found to be sensitive to the angular displacement of the grid with respect to the detector while the horizontal translation alters the phase but not the moire frequency. The frequency of the moire pattern also decreased with decreasing difference in frequency between the grid and the detector, and a moire-free image was produced after complete matching for a given source to detector distance. The image quality factors including the contrast, signal-to-noise ratio and uniformity in the images with and without the moire pattern were investigated.

  14. Essential Grid Workflow Monitoring Elements

    SciTech Connect

    Gunter, Daniel K.; Jackson, Keith R.; Konerding, David E.; Lee,Jason R.; Tierney, Brian L.

    2005-07-01

    Troubleshooting Grid workflows is difficult. A typicalworkflow involves a large number of components networks, middleware,hosts, etc. that can fail. Even when monitoring data from all thesecomponents is accessible, it is hard to tell whether failures andanomalies in these components are related toa given workflow. For theGrid to be truly usable, much of this uncertainty must be elim- inated.We propose two new Grid monitoring elements, Grid workflow identifiersand consistent component lifecycle events, that will make Gridtroubleshooting easier, and thus make Grids more usable, by simplifyingthe correlation of Grid monitoring data with a particular Gridworkflow.

  15. Distributed Accounting on the Grid

    NASA Technical Reports Server (NTRS)

    Thigpen, William; Hacker, Thomas J.; McGinnis, Laura F.; Athey, Brian D.

    2001-01-01

    By the late 1990s, the Internet was adequately equipped to move vast amounts of data between HPC (High Performance Computing) systems, and efforts were initiated to link together the national infrastructure of high performance computational and data storage resources together into a general computational utility 'grid', analogous to the national electrical power grid infrastructure. The purpose of the Computational grid is to provide dependable, consistent, pervasive, and inexpensive access to computational resources for the computing community in the form of a computing utility. This paper presents a fully distributed view of Grid usage accounting and a methodology for allocating Grid computational resources for use on a Grid computing system.

  16. Enabling Campus Grids with Open Science Grid Technology

    NASA Astrophysics Data System (ADS)

    Weitzel, Derek; Bockelman, Brian; Fraser, Dan; Pordes, Ruth; Swanson, David

    2011-12-01

    The Open Science Grid is a recognized key component of the US national cyber-infrastructure enabling scientific discovery through advanced high throughput computing. The principles and techniques that underlie the Open Science Grid can also be applied to Campus Grids since many of the requirements are the same, even if the implementation technologies differ. We find five requirements for a campus grid: trust relationships, job submission, resource independence, accounting, and data management. The Holland Computing Center's campus grid at the University of Nebraska-Lincoln was designed to fulfill the requirements of a campus grid. A bridging daemon was designed to bring non-Condor clusters into a grid managed by Condor. Condor features which make it possible to bridge Condor sites into a multi-campus grid have been exploited at the Holland Computing Center as well.

  17. Gravel packing feasible in horizontal well completions

    SciTech Connect

    Zaleski, T.E. Jr.; Ashton, J.P. )

    1990-06-11

    Successful completion of horizontal wells in unconsolidated formations depends on proper equipment selection and installation method balanced with reservoir objectives, formation parameters, and costs. The guidelines for designing these completions are based on generalized field experience, including horizontal cases where applicable.

  18. 33 CFR 84.17 - Horizontal sectors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Horizontal sectors. 84.17 Section 84.17 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INLAND NAVIGATION RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.17 Horizontal sectors. (a)(1) In the forward direction, sidelights...

  19. Worldwide experience shows horizontal well success

    SciTech Connect

    Karlsson, H.; Bitto, R.

    1989-03-01

    The convergence of technology and experience has made horizontal drilling an important tool in increasing production and solving a variety of completion problems. Since the early 1980s, horizontal drilling has been used to improve production on more than 700 oil and gas wells throughout the world. Approximately 200 horizontal wells were drilled in 1988 alone. Interest in horizontal drilling has been accelerating rapidly as service companies have developed and offered new technology for drilling and producing horizontal wells. Simultaneously, oil companies have developed better methods for evaluating reservoirs for potential horizontal applications, while their production departments have gained experience at completing and producing them. To date, most horizontal wells have been drilled in the United States. A major application is to complete naturally fractured formations, such as the Austin chalk in Texas, the Bakken shale in the Williston basin, the Spraberry in West Texas and the Devonian shale in the Eastern states. In addition, many horizontal wells have been drilled to produce the Niagaran reefs and the irregular Antrim shale reservoirs in Michigan.

  20. World Ocean Atlas 2013: Improved vertical and horizontal resolution

    NASA Astrophysics Data System (ADS)

    Locarnini, R. A.; Levitus, S.; Boyer, T.; Antonov, J. I.; Mishonov, A. V.; Garcia, H. E.; Zweng, M.; Reagan, J. R.

    2012-12-01

    The World Ocean Atlas (WOA) series of gridded long-term climatological means for temperature and salinity have been useful tools for oceanographic, climate, and modeling studies since 1982. The latest iteration of this series, World Ocean Atlas 2013 (WOA13) will extend previous versions by presenting oceanographic means at the annual, seasonal, and monthly compositing periods for 102 standard depth levels ranging from the surface to 5500 m depth. The earlier versions of WOA were limited to 33 standard depths over the same 0-5500 m. In addition to increased vertical resolution, WOA13 will have both 1° and 1/4° horizontal resolution versions. Finally, as with WOA09, the mean long-term climatological fields will be calculated by averaging each of six decadal climatologies in order to reduce temporal bias. Different than WOA09, each of the decadal climatologies will also be released to help meet different research requirements and to study decade-to-decade variability. Implications and limitations of increased vertical and horizontal resolution will be explored.

  1. Changing from computing grid to knowledge grid in life-science grid.

    PubMed

    Talukdar, Veera; Konar, Amit; Datta, Ayan; Choudhury, Anamika Roy

    2009-09-01

    Grid computing has a great potential to become a standard cyber infrastructure for life sciences that often require high-performance computing and large data handling, which exceeds the computing capacity of a single institution. Grid computer applies the resources of many computers in a network to a single problem at the same time. It is useful to scientific problems that require a great number of computer processing cycles or access to a large amount of data.As biologists,we are constantly discovering millions of genes and genome features, which are assembled in a library and distributed on computers around the world.This means that new, innovative methods must be developed that exploit the re-sources available for extensive calculations - for example grid computing.This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing a "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. By extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community. PMID:19579217

  2. APEC Smart Grid Initiative

    SciTech Connect

    Bloyd, Cary N.

    2012-03-01

    This brief paper describes the activities of the Asia Pacific Economic Cooperation (APEC) Smart Grid Initiative (ASGI) which is being led by the U.S. and developed by the APEC Energy Working Group. In the paper, I describe the origin of the initiative and briefly mention the four major elements of the initiative along with existing APEC projects which support it.

  3. Unlocking the smart grid

    SciTech Connect

    Rokach, Joshua Z.

    2010-10-15

    The country has progressed in a relatively short time from rotary dial phones to computers, cell phones, and iPads. With proper planning and orderly policy implementation, the same will happen with the Smart Grid. Here are some suggestions on how to proceed. (author)

  4. NSTAR Smart Grid Pilot

    SciTech Connect

    Rabari, Anil; Fadipe, Oloruntomi

    2014-03-31

    NSTAR Electric & Gas Corporation (“the Company”, or “NSTAR”) developed and implemented a Smart Grid pilot program beginning in 2010 to demonstrate the viability of leveraging existing automated meter reading (“AMR”) deployments to provide much of the Smart Grid functionality of advanced metering infrastructure (“AMI”), but without the large capital investment that AMI rollouts typically entail. In particular, a central objective of the Smart Energy Pilot was to enable residential dynamic pricing (time-of-use “TOU” and critical peak rates and rebates) and two-way direct load control (“DLC”) by continually capturing AMR meter data transmissions and communicating through customer-sited broadband connections in conjunction with a standardsbased home area network (“HAN”). The pilot was supported by the U.S. Department of Energy’s (“DOE”) through the Smart Grid Demonstration program. NSTAR was very pleased to not only receive the funding support from DOE, but the guidance and support of the DOE throughout the pilot. NSTAR is also pleased to report to the DOE that it was able to execute and deliver a successful pilot on time and on budget. NSTAR looks for future opportunities to work with the DOE and others in future smart grid projects.

  5. Efficient grid generation

    NASA Technical Reports Server (NTRS)

    Seki, Rycichi

    1989-01-01

    Because the governing equations in fluid dynamics contain partial differentials and are too difficult in most cases to solve analytically, these differentials are generally replaced by finite difference terms. These terms contain terms in the solution at nearby states. This procedure discretizes the field into a finite number of states. These states, when plotted, form a grid, or mesh, of points. It is at these states, or field points, that the solution is found. The optimum choice of states, the x, y, z coordinate values, minimizes error and computational time. But the process of finding these states is made more difficult by complex boundaries, and by the need to control step size differences between the states, that is, the need to control the spacing of field points. One solution technique uses a different set of state variables, which define a different coordinate system, to generate the grid more easily. A new method, developed by Dr. Joseph Steger, combines elliptic and hyperbolic partial differential equations into a mapping function between the physical and computational coordinate systems. This system of equations offers more control than either equation provides alone. The Steger algorithm was modified in order to allow bodies with stronger concavities to be used, offering the possibility of generating a single grid about multiple bodies. Work was also done on identifying areas where grid breakdown occurs.

  6. Grid generation research at OSU

    NASA Technical Reports Server (NTRS)

    Nakamura, S.

    1992-01-01

    In the last two years, effort was concentrated on: (1) surface modeling; (2) surface grid generation; and (3) 3-D flow space grid generation. The surface modeling shares the same objectives as the surface modeling in computer aided design (CAD), so software available in CAD can in principle be used for solid modeling. Unfortunately, however, the CAD software cannot be easily used in practice for grid generation purposes, because they are not designed to provide appropriate data base for grid generation. Therefore, we started developing a generalized surface modeling software from scratch, that provides the data base for the surface grid generation. Generating surface grid is an important step in generating a 3-D space for flow space. To generate a surface grid on a given surface representation, we developed a unique algorithm that works on any non-smooth surfaces. Once the surface grid is generated, a 3-D space can be generated. For this purpose, we also developed a new algorithm, which is a hybrid of the hyperbolic and the elliptic grid generation methods. With this hybrid method, orthogonality of the grid near the solid boundary can be easily achieved without introducing empirical fudge factors. Work to develop 2-D and 3-D grids for turbomachinery blade geometries was performed, and as an extension of this research we are planning to develop an adaptive grid procedure with an interactive grid environment.

  7. Horizontal drilling improves recovery in Abu Dhabi

    SciTech Connect

    Muhairy, A.A. ); Farid, E.A. )

    1993-09-13

    Both onshore and offshore Abu Dhabi, horizontal wells have increased productivity three to four times more than that from vertical and deviated wells in the same reservoirs. Horizontal drilling technology was first applied in Abu Dhabi in February 1988, and through March 1993, 48 wells have been horizontally drilled. During the 5 years of horizontal drilling, the experience gained by both operating company and service company personnel has contributed to a substantial improvement in drilling rate, and hence, a reduction in drilling costs. The improvements in drilling and completions resulted from the following: The horizontal drilling and completion operations were analyzed daily, and these follow-up analyses helped optimize the planning of subsequent wells. The bits and bottom hole assemblies were continuously analyzed for optimum selections. Steerable drilling assemblies were found very effective in the upper sections of the wells. The paper describes drilling activities onshore and offshore, completion design, and the outlook for future well drilling.

  8. U. S. operators expand horizontal programs

    SciTech Connect

    Petzet, G.A.

    1990-10-22

    Operators are fanning out across the U.S. with horizontal drilling programs completions in many fields and reservoirs. Most oil and gas producing states now have multiple horizontal wells. Although the South Texas Cretaceous Austin chalk play is not likely to be matched soon by any other horizontal play in number of wells and production. Figures show 847 horizontal drilling permits were issued in the U.S. during January-September 1990, up from 257 in all of 1989. Horizontal well permits numbered 97 in September, down from 119 in August and 123, the highest monthly total, in May 1990. Nearly all operators decline to provide production information. But in some areas that's available with some lag time from state agencies.

  9. Survey shows successes, failures of horizontal wells

    SciTech Connect

    Deskins, W.G.; McDonald, W.J.; Reid, T.B.

    1995-06-19

    Industry`s experience now shows that horizontal well technology must be applied thoughtfully and be site-specific to attain technical and economic success. This article, based on a comprehensive study done by Maurer Engineering for the US Department of Energy (DOE), addresses the success of horizontal wells in less-publicized formations, that is, other than the Austin chalk. Early excitement within the industry about the new technology reached a fever pitch at times, leaving some with the impression that horizontal drilling is a panacea for all drilling environments. This work gauges the overall success of horizontal technology in US and Canadian oil and gas fields, defines the applications where horizontal technology is most appropriate, and assesses its impact on oil recovery and reserves.

  10. Grid-size dependence of Cauchy boundary conditions used to simulate stream-aquifer interactions

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2010-01-01

    This work examines the simulation of stream–aquifer interactions as grids are refined vertically and horizontally and suggests that traditional methods for calculating conductance can produce inappropriate values when the grid size is changed. Instead, different grid resolutions require different estimated values. Grid refinement strategies considered include global refinement of the entire model and local refinement of part of the stream. Three methods of calculating the conductance of the Cauchy boundary conditions are investigated. Single- and multi-layer models with narrow and wide streams produced stream leakages that differ by as much as 122% as the grid is refined. Similar results occur for globally and locally refined grids, but the latter required as little as one-quarter the computer execution time and memory and thus are useful for addressing some scale issues of stream–aquifer interactions. Results suggest that existing grid-size criteria for simulating stream–aquifer interactions are useful for one-layer models, but inadequate for three-dimensional models. The grid dependence of the conductance terms suggests that values for refined models using, for example, finite difference or finite-element methods, cannot be determined from previous coarse-grid models or field measurements. Our examples demonstrate the need for a method of obtaining conductances that can be translated to different grid resolutions and provide definitive test cases for investigating alternative conductance formulations.

  11. 850-nm Zn-diffusion vertical-cavity surface-emitting lasers with with oxide-relief structure for high-speed and energy-efficient optical interconnects from very-short to medium (2km) reaches

    NASA Astrophysics Data System (ADS)

    Shi, Jin-Wei; Wei, Chia-Chien; Chen, Jason (Jyehong); Yang, Ying-Jay

    2015-03-01

    High-speed and "green" ~850 nm vertical-cavity surface-emitting lasers (VCSELs) have lately attracted lots of attention due to their suitability for applications in optical interconnects (OIs). To further enhance the speed and its maximum allowable linking distance of VCSELs are two major trends to meet the requirement of OI in next generation data centers. Recently, by use of the advanced 850 nm VCSEL technique, data rate as high as 64 Gbit/sec over 57m and 20 Gbit/sec over 2km MMF transmission have been demonstrated, respectively. Here, we will review our recent work about 850 nm Zn-diffusion VCSELs with oxide-relief apertures to further enhance the above-mentioned performances. By using Zn-diffusion, we can not only reduce the device resistance but also manipulate the number of optical modes to benefit transmission. Combing such device, which has excellent single-mode (SMSR >30 dB) and high-power (~7mW) performance, with advanced modulation format (OFDM), record-high bit-rate-distance-product through MMF (2.3 km×28 Gbit/sec) has been demonstrated. Furthermore, by selective etching away the oxide aperture inside Zn-diffusion VCSEL, significant enhancement of device speed, D-factor, and reliability can be observed. With such unique VCSEL structure, >40 Gbit/sec energy-efficient transmission over 100m MMF under extremely low-driving current density (<10kA/cm2) has been successfully demonstrated.

  12. Current Grid operation and future role of the Grid

    NASA Astrophysics Data System (ADS)

    Smirnova, O.

    2012-12-01

    Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place

  13. A grid spacing control technique for algebraic grid generation methods

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Kudlinski, R. A.; Everton, E. L.

    1982-01-01

    A technique which controls the spacing of grid points in algebraically defined coordinate transformations is described. The technique is based on the generation of control functions which map a uniformly distributed computational grid onto parametric variables defining the physical grid. The control functions are smoothed cubic splines. Sets of control points are input for each coordinate directions to outline the control functions. Smoothed cubic spline functions are then generated to approximate the input data. The technique works best in an interactive graphics environment where control inputs and grid displays are nearly instantaneous. The technique is illustrated with the two-boundary grid generation algorithm.

  14. Spectral methods on arbitrary grids

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Gottlieb, David

    1995-01-01

    Stable and spectrally accurate numerical methods are constructed on arbitrary grids for partial differential equations. These new methods are equivalent to conventional spectral methods but do not rely on specific grid distributions. Specifically, we show how to implement Legendre Galerkin, Legendre collocation, and Laguerre Galerkin methodology on arbitrary grids.

  15. Ion Engine Grid Gap Measurements

    NASA Technical Reports Server (NTRS)

    Soulas, Gerge C.; Frandina, Michael M.

    2004-01-01

    A simple technique for measuring the grid gap of an ion engine s ion optics during startup and steady-state operation was demonstrated with beam extraction. The grid gap at the center of the ion optics assembly was measured with a long distance microscope that was focused onto an alumina pin that protruded through the center accelerator grid aperture and was mechanically attached to the screen grid. This measurement technique was successfully applied to a 30 cm titanium ion optics assembly mounted onto an NSTAR engineering model ion engine. The grid gap and each grid s movement during startup from room temperature to both full and low power were measured. The grid gaps with and without beam extraction were found to be significantly different. The grid gaps at the ion optics center were both significantly smaller than the cold grid gap and different at the two power levels examined. To avoid issues associated with a small grid gap during thruster startup with titanium ion optics, a simple method was to operate the thruster initially without beam extraction to heat the ion optics. Another possible method is to apply high voltage to the grids prior to igniting the discharge because power deposition to the grids from the plasma is lower with beam extraction than without. Further testing would be required to confirm this approach.

  16. Grid Interaction Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The mission of the Grid Interaction Technical Team (GITT) is to support a transition scenario to large scale grid-connected vehicle charging with transformational technology, proof of concept and information dissemination. The GITT facilitates technical coordination and collaboration between vehicle-grid connectivity and communication activities among U.S. DRIVE government and industry partners.

  17. Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid

    SciTech Connect

    2012-02-08

    GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improve the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.

  18. A particle grid air quality modeling approach. 1: The dispersion aspect

    SciTech Connect

    Chock, D.P.; Winkler, S.L. )

    1994-01-01

    A particle grid air quality modeling approach that can incorporate chemistry is proposed an an alternative to the conventional partial differential equation (PDE) grid air quality modeling approach. In this approach, each particle is tagged with different species masses and particles in the same grid participate in chemical reactions. The approach is flexible and removes the advection and point source problems encountered in the PDE approach. For a typical grid size of 5 km x 5 km x 50 m used in the lowest layer of an urban air quality model, use of 2000-3000 particles of unequal masses per grid cell will yield a highly accurate grid-averaged instantaneous concentration field that undergoes eddy diffusion for a period of about 1 day. Use of an hourly averaged concentration reduces the demand of particle per cell to about 500. Increasing the grid size also reduces the demand on the number of particles per cell. For the choice of our Lagrangian integral time scales, the time step must be small (10 s) for vertical dispersion simulation but can be large (200 s) for horizontal dispersion simulation. To reduce computation time, a time-splitting scheme is proposed to simulate the horizontal and vertical dispersion simulations in an alternating sequence. The present study also shows that the oft-used second-order-accurate finite difference scheme for solving the diffusion equation tends to overpredict the peak of a sharply peaked concentration.

  19. Horizontal fields generated by return strokes

    NASA Technical Reports Server (NTRS)

    Cooray, Vernon

    1991-01-01

    Horizontal fields generated by return strokes play an important role in the interaction of lightning generated electric fields with power lines. In many of the recent investigations on the interaction of lightning electromagnetic fields with power lines, the horizontal field was calculated by employing the expression for the tilt of the electric field of a plane wave propagating over finitely conducting earth. The method is suitable for calculating horizontal fields generated by return strokes at distances as close as 200m. At these close ranges, the use of the wavetilt expression can cause large errors.

  20. Bakken shale typifies horizontal drilling success

    SciTech Connect

    Leibman, P.R. )

    1990-12-01

    Given the favorable production response that has been obtained from horizontal drilling in vertical- fractured reservoirs such as the Bakken shale and, more recently, the Austin chalk, industry interest in this technology has mushroomed in the U.S. Indeed, it is difficult to find a good-sized oil company these days that is not involved in a horizontal drilling project or is giving it serious consideration. In response to growing evidence of successful field applications, the realization is dawning on the investment community that horizontal drilling represents a significant technological development with positive implications for both the exploration and production business, and the oilfield services industry.

  1. Smart Grid Demonstration Project

    SciTech Connect

    Miller, Craig; Carroll, Paul; Bell, Abigail

    2015-03-11

    The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and

  2. Gridded electron reversal ionizer

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor)

    1993-01-01

    A gridded electron reversal ionizer forms a three dimensional cloud of zero or near-zero energy electrons in a cavity within a filament structure surrounding a central electrode having holes through which the sample gas, at reduced pressure, enters an elongated reversal volume. The resultant negative ion stream is applied to a mass analyzer. The reduced electron and ion space-charge limitations of this configuration enhances detection sensitivity for material to be detected by electron attachment, such as narcotic and explosive vapors. Positive ions may be generated by generating electrons having a higher energy, sufficient to ionize the target gas and pulsing the grid negative to stop the electron flow and pulsing the extraction aperture positive to draw out the positive ions.

  3. 76 FR 1153 - Atlantic Grid Operations A LLC, Atlantic Grid Operations B LLC, Atlantic Grid Operations C LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ... Energy Regulatory Commission Atlantic Grid Operations A LLC, Atlantic Grid Operations B LLC, Atlantic Grid Operations C LLC, Atlantic Grid Operations D LLC and Atlantic Grid Operations E LLC; Notice of... (Commission) Rules of Practice and Procedure, 18 CFR 385.207, and Order No. 679,\\1\\ Atlantic Grid Operations...

  4. TRMM Gridded Text Products

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz

    2007-01-01

    NASA's Tropical Rainfall Measuring Mission (TRMM) has many products that contain instantaneous or gridded rain rates often among many other parameters. However, these products because of their completeness can often seem intimidating to users just desiring surface rain rates. For example one of the gridded monthly products contains well over 200 parameters. It is clear that if only rain rates are desired, this many parameters might prove intimidating. In addition, for many good reasons these products are archived and currently distributed in HDF format. This also can be an inhibiting factor in using TRMM rain rates. To provide a simple format and isolate just the rain rates from the many other parameters, the TRMM product created a series of gridded products in ASCII text format. This paper describes the various text rain rate products produced. It provides detailed information about parameters and how they are calculated. It also gives detailed format information. These products are used in a number of applications with the TRMM processing system. The products are produced from the swath instantaneous rain rates and contain information from the three major TRMM instruments: radar, radiometer, and combined. They are simple to use, human readable, and small for downloading.

  5. Wireless Communications in Smart Grid

    NASA Astrophysics Data System (ADS)

    Bojkovic, Zoran; Bakmaz, Bojan

    Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.

  6. Grid generation for turbomachinery problems

    NASA Technical Reports Server (NTRS)

    Steinhoff, J.; Reddy, K. C.

    1986-01-01

    The development of a computer code to generate numerical grids for complex internal flow systems such as the fluid flow inside the space shuttle main engine is outlined. The blending technique for generating a grid for stator-rotor combination at a particular radial section is examined. The computer programs which generate these grids are listed in the Appendices. These codes are capable of generating grids at different cross sections and thus providng three dimensional stator-rotor grids for the turbomachinery of the space shuttle main engine.

  7. EFFECTS OF STABLE STRATIFICATION ON TURBULENT DIFFUSION AND THE DECAY OF GRID TURBULENCE

    EPA Science Inventory

    Experiments are described in which a grid was towed horizontally along a large tank filled first with water and then with a stably stratified saline solution. The decay rates of the root-mean-square (r.m.s.) turbulent velocity components (w',v') perpendicular to the tow direction...

  8. Open-System Magma Reservoir Affects Gas Segregation, Vesiculation, Fragmentation and Lava/Pyroclast Dispersal During the 1.2 km-deep 2007-2010 Submarine Eruption at West Mata Volcano

    NASA Astrophysics Data System (ADS)

    Rubin, K. H.; Clague, D. A.; Embley, R. W.; Hellebrand, E.; Soule, S. A.; Resing, J.

    2014-12-01

    West Mata, a small, active rear-arc volcano in the NE Lau Basin, erupts crystal and gas rich boninite magma. Eruptions were observed at the summit (1.2 km water depth) during 5 ROV Jason dives in 2009 (the deepest erupting submarine volcano observed to date). Subsequent ROV and ship-based bathymetric mapping revealed that a pit crater formed and the summit eruption ceased in 2010, with roughly simultaneous eruptions along the SW rift zone. During the summit eruption, a combination of water depth, H2O-CO2-rich and high crystallinity magma, a split in the conduit to feed two vent sites, and waxing/waning magma supply led to a range of effusive/explosive eruption styles and volcanic deposit types. The 2-3 vent Hades cluster and the lone Prometheus vent had different eruption characteristics. Petrographic, petrologic and geochemical studies of erupted products indicate a change in magma composition in time and space over a period of 3.5 yrs, suggesting a small, open-system magma reservoir within the volcano. Prometheus (1174m depth) produced mostly pyroclastic material during our observations (e.g., highly vesicular glowing fluidal ejecta that cooled in the water column and rounded recycled dense clasts), but sampling and 210Po radiometric dating show that several months prior pillowed lava flows, subsequently covered with cm-sized pyroclasts, had flowed >50m from the vent. In contrast, vents at Hades (1200m depth) cycled between lava production and vigorous degassing, 10-20m high fire fountains and bursts of glowing lava-skinned bubbles, the products of which froze/broke in the water column, forming unstable cones of spatter and scoria near the vents. We hypothesize that bubbles collapse rather than form lava balloons because of skin brittleness (from high crystal content) and hydrostatic pressure. Clast settling times and patterns suggest >100m water column rise height for 10+ cm-sized fragments. Pillow flows were also observed to be issuing from the base of the

  9. The Open Science Grid status and architecture

    SciTech Connect

    Pordes, Ruth; Petravick, Don; Kramer, Bill; Olsen, James D.; Livny, Miron; Roy, Gordon A.; Avery, Paul Ralph; Blackburn, Kent; Wenaus, Torre J.; Wuerthwein, Frank K.; Foster, Ian; /Chicago U. /Indiana U.

    2007-09-01

    The Open Science Grid (OSG) provides a distributed facility where the Consortium members provide guaranteed and opportunistic access to shared computing and storage resources. The OSG project[1] is funded by the National Science Foundation and the Department of Energy Scientific Discovery through Advanced Computing program. The OSG project provides specific activities for the operation and evolution of the common infrastructure. The US ATLAS and US CMS collaborations contribute to and depend on OSG as the US infrastructure contributing to the World Wide LHC Computing Grid on which the LHC experiments distribute and analyze their data. Other stakeholders include the STAR RHIC experiment, the Laser Interferometer Gravitational-Wave Observatory (LIGO), the Dark Energy Survey (DES) and several Fermilab Tevatron experiments- CDF, D0, MiniBoone etc. The OSG implementation architecture brings a pragmatic approach to enabling vertically integrated community specific distributed systems over a common horizontal set of shared resources and services. More information can be found at the OSG web site: www.opensciencegrid.org.

  10. The Open Science Grid status and architecture

    NASA Astrophysics Data System (ADS)

    Pordes, R.; Petravick, D.; Kramer, B.; Olson, D.; Livny, M.; Roy, A.; Avery, P.; Blackburn, K.; Wenaus, T.; Würthwein, F.; Foster, I.; Gardner, R.; Wilde, M.; Blatecky, A.; McGee, J.; Quick, R.

    2008-07-01

    The Open Science Grid (OSG) provides a distributed facility where the Consortium members provide guaranteed and opportunistic access to shared computing and storage resources. The OSG project[1] is funded by the National Science Foundation and the Department of Energy Scientific Discovery through Advanced Computing program. The OSG project provides specific activities for the operation and evolution of the common infrastructure. The US ATLAS and US CMS collaborations contribute to and depend on OSG as the US infrastructure contributing to the World Wide LHC Computing Grid on which the LHC experiments distribute and analyze their data. Other stakeholders include the STAR RHIC experiment, the Laser Interferometer Gravitational-Wave Observatory (LIGO), the Dark Energy Survey (DES) and several Fermilab Tevatron experiments- CDF, D0, MiniBoone etc. The OSG implementation architecture brings a pragmatic approach to enabling vertically integrated community specific distributed systems over a common horizontal set of shared resources and services. More information can be found at the OSG web site: www.opensciencegrid.org.

  11. 3D Structured Grid Adaptation

    NASA Technical Reports Server (NTRS)

    Banks, D. W.; Hafez, M. M.

    1996-01-01

    Grid adaptation for structured meshes is the art of using information from an existing, but poorly resolved, solution to automatically redistribute the grid points in such a way as to improve the resolution in regions of high error, and thus the quality of the solution. This involves: (1) generate a grid vis some standard algorithm, (2) calculate a solution on this grid, (3) adapt the grid to this solution, (4) recalculate the solution on this adapted grid, and (5) repeat steps 3 and 4 to satisfaction. Steps 3 and 4 can be repeated until some 'optimal' grid is converged to but typically this is not worth the effort and just two or three repeat calculations are necessary. They also may be repeated every 5-10 time steps for unsteady calculations.

  12. Progress in Grid Generation: From Chimera to DRAGON Grids

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Kao, Kai-Hsiung

    1994-01-01

    Hybrid grids, composed of structured and unstructured grids, combines the best features of both. The chimera method is a major stepstone toward a hybrid grid from which the present approach is evolved. The chimera grid composes a set of overlapped structured grids which are independently generated and body-fitted, yielding a high quality grid readily accessible for efficient solution schemes. The chimera method has been shown to be efficient to generate a grid about complex geometries and has been demonstrated to deliver accurate aerodynamic prediction of complex flows. While its geometrical flexibility is attractive, interpolation of data in the overlapped regions - which in today's practice in 3D is done in a nonconservative fashion, is not. In the present paper we propose a hybrid grid scheme that maximizes the advantages of the chimera scheme and adapts the strengths of the unstructured grid while at the same time keeps its weaknesses minimal. Like the chimera method, we first divide up the physical domain by a set of structured body-fitted grids which are separately generated and overlaid throughout a complex configuration. To eliminate any pure data manipulation which does not necessarily follow governing equations, we use non-structured grids only to directly replace the region of the arbitrarily overlapped grids. This new adaptation to the chimera thinking is coined the DRAGON grid. The nonstructured grid region sandwiched between the structured grids is limited in size, resulting in only a small increase in memory and computational effort. The DRAGON method has three important advantages: (1) preserving strengths of the chimera grid; (2) eliminating difficulties sometimes encountered in the chimera scheme, such as the orphan points and bad quality of interpolation stencils; and (3) making grid communication in a fully conservative and consistent manner insofar as the governing equations are concerned. To demonstrate its use, the governing equations are

  13. Seismic transducer measures small horizontal displacements

    NASA Technical Reports Server (NTRS)

    Greenwood, T. L.

    1965-01-01

    Pendular seismic transducer mounted on base plate measures small horizontal displacements of structures subjected to vibration where no fixed reference point is available. Enclosure of transducer in transparent plastic case prevents air currents from disturbing the pendulum balance.

  14. Productivity and injectivity of horizontal wells

    SciTech Connect

    Aziz, Khalid

    2000-03-06

    One of the key issues addressed was pressure drop in long horizontal wells and its influence on well performance. Very little information is available in the literature on flow in pipes with influx through pipe walls. Virtually all of this work has been in small diameter pipes and with single-phase flow. In order to address this problem new experimental data on flow in horizontal and near horizontal wells have been obtained. Experiments were conducted at an industrial facility on typical 6 1/8 ID, 100 feet long horizontal well model. The new data along with available information in the literature have been used to develop new correlations and mechanistic models. Thus it is now possible to predict, within reasonable accuracy, the effect of influx through the well on pressure drop in the well.

  15. Horizontal steam generators: Problems and prospects

    NASA Astrophysics Data System (ADS)

    Trunov, N. B.; Ryzhov, S. B.; Davidenko, S. E.

    2011-03-01

    Main results of the 40-year experience gained from operation of horizontal steam generators in VVER-type reactor installations used in Russia and many foreign countries are described. Existing unresolved problems are pointed out.

  16. Melt Stirring by Horizontal Crucible Vibration

    NASA Technical Reports Server (NTRS)

    Wolf, M. F.; Elwell, D.; Feigelson, R. S.

    1985-01-01

    Horizontal vibration suggested as technique for more effective stirring of melts in crystal-growth apparatus. Vibrational technique may replace accelerated crucible rotation. Potential superiority of vibrational technique shown by preliminary experiments in which ink stirred into water.

  17. Smart Grid Risk Management

    NASA Astrophysics Data System (ADS)

    Abad Lopez, Carlos Adrian

    Current electricity infrastructure is being stressed from several directions -- high demand, unreliable supply, extreme weather conditions, accidents, among others. Infrastructure planners have, traditionally, focused on only the cost of the system; today, resilience and sustainability are increasingly becoming more important. In this dissertation, we develop computational tools for efficiently managing electricity resources to help create a more reliable and sustainable electrical grid. The tools we present in this work will help electric utilities coordinate demand to allow the smooth and large scale integration of renewable sources of energy into traditional grids, as well as provide infrastructure planners and operators in developing countries a framework for making informed planning and control decisions in the presence of uncertainty. Demand-side management is considered as the most viable solution for maintaining grid stability as generation from intermittent renewable sources increases. Demand-side management, particularly demand response (DR) programs that attempt to alter the energy consumption of customers either by using price-based incentives or up-front power interruption contracts, is more cost-effective and sustainable in addressing short-term supply-demand imbalances when compared with the alternative that involves increasing fossil fuel-based fast spinning reserves. An essential step in compensating participating customers and benchmarking the effectiveness of DR programs is to be able to independently detect the load reduction from observed meter data. Electric utilities implementing automated DR programs through direct load control switches are also interested in detecting the reduction in demand to efficiently pinpoint non-functioning devices to reduce maintenance costs. We develop sparse optimization methods for detecting a small change in the demand for electricity of a customer in response to a price change or signal from the utility

  18. GridTool: A surface modeling and grid generation tool

    NASA Technical Reports Server (NTRS)

    Samareh-Abolhassani, Jamshid

    1995-01-01

    GridTool is designed around the concept that the surface grids are generated on a set of bi-linear patches. This type of grid generation is quite easy to implement, and it avoids the problems associated with complex CAD surface representations and associated surface parameterizations. However, the resulting surface grids are close to but not on the original CAD surfaces. This problem can be alleviated by projecting the resulting surface grids onto the original CAD surfaces. GridTool is designed primary for unstructured grid generation systems. Currently, GridTool supports VGRID and FELISA systems, and it can be easily extended to support other unstructured grid generation systems. The data in GridTool is stored parametrically so that once the problem is set up, one can modify the surfaces and the entire set of points, curves and patches will be updated automatically. This is very useful in a multidisciplinary design and optimization process. GridTool is written entirely in ANSI 'C', the interface is based on the FORMS library, and the graphics is based on the GL library. The code has been tested successfully on IRIS workstations running IRIX4.0 and above. The memory is allocated dynamically, therefore, memory size will depend on the complexity of geometry/grid. GridTool data structure is based on a link-list structure which allows the required memory to expand and contract dynamically according to the user's data size and action. Data structure contains several types of objects such as points, curves, patches, sources and surfaces. At any given time, there is always an active object which is drawn in magenta, or in their highlighted colors as defined by the resource file which will be discussed later.

  19. Report of the Horizontal Launch Study

    NASA Technical Reports Server (NTRS)

    Wilhite, Alan W.; Bartolotta, Paul A.

    2011-01-01

    A study of horizontal launch concepts has been conducted. This study, jointly sponsored by the Defense Advanced Research Projects Agency (DARPA) and the National Aeronautics and Space Administration (NASA) was tasked to estimate the economic and technical viability of horizontal launch approaches. The study team identified the key parameters and critical technologies which determine mission viability and reported on the state of the art of critical technologies, along with objectives for technology development.

  20. Horizontal sidetrack taps reservoir sweet spots''

    SciTech Connect

    Wible, J.R. )

    1994-02-21

    Cutting a window at 85[degree] deviation allowed a sidetrack to pass through the high-resistivity sections in a Gulf of Mexico reservoir. Results from logging-while-drilling (LWD) tools indicated the original horizontal bore dropped too low in the reservoir, possibly leading to a low productivity well. The subsequent sidetrack successfully delivered the desired well bore, and the increased productivity justified the efforts in cutting a window in the horizontal section.

  1. Do infants have the horizontal bias?

    PubMed

    Van Renswoude, D R; Johnson, S P; Raijmakers, M E J; Visser, I

    2016-08-01

    A robust set of studies show that adults make more horizontal than vertical and oblique saccades, while scanning real-world scenes. In this paper we study the horizontal bias in infants. The directions of eye movements were calculated for 41 infants (M=8.40 months, SD=3.74, range=3.48-15.47) and 47 adults (M=21.74 years, SD=4.54, range=17.89-39.84) while viewing 28 real-world scenes. Saccade directions were binned to study the proportion of saccades in the horizontal, vertical and oblique directions. In addition, saccade directions were also modeled using a mixture of Von Mises distributions, to account for the relatively large amount of variance in infants data. Horizontal bias was replicated in adults and also found in infants, using both the binning and Von Mises approach. Moreover, a developmental pattern was observed in which older infants are more precise in targeting their saccades than younger infants. That infants have a horizontal bias is important in understanding infants' eye movements. Future studies should account for the horizontal bias in their designs and analyses. PMID:27281348

  2. Grid-based Meteorological and Crisis Applications

    NASA Astrophysics Data System (ADS)

    Hluchy, Ladislav; Bartok, Juraj; Tran, Viet; Lucny, Andrej; Gazak, Martin

    2010-05-01

    We present several applications from domain of meteorology and crisis management we developed and/or plan to develop. Particularly, we present IMS Model Suite - a complex software system designed to address the needs of accurate forecast of weather and hazardous weather phenomena, environmental pollution assessment, prediction of consequences of nuclear accident and radiological emergency. We discuss requirements on computational means and our experiences how to meet them by grid computing. The process of a pollution assessment and prediction of the consequences in case of radiological emergence results in complex data-flows and work-flows among databases, models and simulation tools (geographical databases, meteorological and dispersion models, etc.). A pollution assessment and prediction requires running of 3D meteorological model (4 nests with resolution from 50 km to 1.8 km centered on nuclear power plant site, 38 vertical levels) as well as running of the dispersion model performing the simulation of the release transport and deposition of the pollutant with respect to the numeric weather prediction data, released material description, topography, land use description and user defined simulation scenario. Several post-processing options can be selected according to particular situation (e.g. doses calculation). Another example is a forecasting of fog as one of the meteorological phenomena hazardous to the aviation as well as road traffic. It requires complicated physical model and high resolution meteorological modeling due to its dependence on local conditions (precise topography, shorelines and land use classes). An installed fog modeling system requires a 4 time nested parallelized 3D meteorological model with 1.8 km horizontal resolution and 42 levels vertically (approx. 1 million points in 3D space) to be run four times daily. The 3D model outputs and multitude of local measurements are utilized by SPMD-parallelized 1D fog model run every hour. The fog

  3. Flow simulation on generalized grids

    SciTech Connect

    Koomullil, R.P.; Soni, B.K.; Huang, Chi Ti

    1996-12-31

    A hybrid grid generation methodology and flow simulation on grids having an arbitrary number of sided polygons is presented. A hyperbolic type marching scheme is used for generating structured grids near the solid boundaries. A local elliptic solver is utilized for smoothing the grid lines and for avoiding grid line crossing. A new method for trimming the overlaid structured grid is presented. Delaunay triangulation is employed to generate an unstructured grid in the regions away from the body. The structured and unstructured grid regions are integrated together to form a single grid for the flow solver. An edge based data structure is used to store the grid information to ease the handling of general polygons. Integral form of the Navier-Stokes equations makes up the governing equations. A Roe averaged Riemann solver is utilized to evaluate the numerical flux at cell faces. Higher order accuracy is achieved by applying Taylor`s series expansion to the conserved variables, and the gradient is calculated by using Green`s theorem. For the implicit scheme, the sparse matrix resulting from the linearization is solved using GMRES method. The flux Jacobians are calculated numerically or by an approximate analytic method. Results are presented to validate the current methodology.

  4. Evaluating the Information Power Grid using the NAS Grid Benchmarks

    NASA Technical Reports Server (NTRS)

    VanderWijngaartm Rob F.; Frumkin, Michael A.

    2004-01-01

    The NAS Grid Benchmarks (NGB) are a collection of synthetic distributed applications designed to rate the performance and functionality of computational grids. We compare several implementations of the NGB to determine programmability and efficiency of NASA's Information Power Grid (IPG), whose services are mostly based on the Globus Toolkit. We report on the overheads involved in porting existing NGB reference implementations to the IPG. No changes were made to the component tasks of the NGB can still be improved.

  5. Productivity and injectivity of horizontal wells. Quarterly report, April 1, 1995--June 30, 1995

    SciTech Connect

    Aziz, K.; Hewett, T.A.

    1995-08-01

    The following activities have been carried out in the last three months: Work on developing a three-dimensional Voronoi grid simulator is progressing. Extensive testing of the grid generation and visualization modules of the simulator is continuing while modifications and improvements are being made to these capabilities; The recently developed semi-analytical method for calculating critical cresting rates is being extended for the case of simultaneous gas and water coning toward a horizontal well; The accuracy of available correlations and analytical models for breakthrough times of horizontal wells is being investigated through simulations of a field case; Work on developing methods for coupling between reservoir and the werbore through a network modeling approach is progressing. The current stage of the study involves evaluation of available analytical methods; The necessary modifications have been made to the rig at the Marathon facility and the high rate two-phase flow experiments are about to commence; new correlations for wall friction and interfacial friction factors have been developed for the stratified flow in horizontal and inclined pipes. After further testing this new approach will be used in our mechanistic model; and this quarterly report has been entirely devoted to the task fisted in the last item above and we only present an abridged version of the Masters report of Mr. Liang-Biao Ouyang on which it is based. The complete study will be included in the next Annual Report of the Project.

  6. Adventures in Computational Grids

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Sometimes one supercomputer is not enough. Or your local supercomputers are busy, or not configured for your job. Or you don't have any supercomputers. You might be trying to simulate worldwide weather changes in real time, requiring more compute power than you could get from any one machine. Or you might be collecting microbiological samples on an island, and need to examine them with a special microscope located on the other side of the continent. These are the times when you need a computational grid.

  7. TASMANIAN Sparse Grids Module

    SciTech Connect

    and Drayton Munster, Miroslav Stoyanov

    2013-09-20

    Sparse Grids are the family of methods of choice for multidimensional integration and interpolation in low to moderate number of dimensions. The method is to select extend a one dimensional set of abscissas, weights and basis functions by taking a subset of all possible tensor products. The module provides the ability to create global and local approximations based on polynomials and wavelets. The software has three components, a library, a wrapper for the library that provides a command line interface via text files ad a MATLAB interface via the command line tool.

  8. TASMANIAN Sparse Grids Module

    2013-09-20

    Sparse Grids are the family of methods of choice for multidimensional integration and interpolation in low to moderate number of dimensions. The method is to select extend a one dimensional set of abscissas, weights and basis functions by taking a subset of all possible tensor products. The module provides the ability to create global and local approximations based on polynomials and wavelets. The software has three components, a library, a wrapper for the library thatmore » provides a command line interface via text files ad a MATLAB interface via the command line tool.« less

  9. The Volume Grid Manipulator (VGM): A Grid Reusability Tool

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    1997-01-01

    This document is a manual describing how to use the Volume Grid Manipulation (VGM) software. The code is specifically designed to alter or manipulate existing surface and volume structured grids to improve grid quality through the reduction of grid line skewness, removal of negative volumes, and adaption of surface and volume grids to flow field gradients. The software uses a command language to perform all manipulations thereby offering the capability of executing multiple manipulations on a single grid during an execution of the code. The command language can be input to the VGM code by a UNIX style redirected file, or interactively while the code is executing. The manual consists of 14 sections. The first is an introduction to grid manipulation; where it is most applicable and where the strengths of such software can be utilized. The next two sections describe the memory management and the manipulation command language. The following 8 sections describe simple and complex manipulations that can be used in conjunction with one another to smooth, adapt, and reuse existing grids for various computations. These are accompanied by a tutorial section that describes how to use the commands and manipulations to solve actual grid generation problems. The last two sections are a command reference guide and trouble shooting sections to aid in the use of the code as well as describe problems associated with generated scripts for manipulation control.

  10. A grid quality manipulation system

    NASA Technical Reports Server (NTRS)

    Lu, Ning; Eiseman, Peter R.

    1991-01-01

    A grid quality manipulation system is described. The elements of the system are the measures by which quality is assessed, the computer graphic display of those measures, and the local grid manipulation to provide a response to the viewed quality indication. The display is an overlaid composite where the region is first covered with colors to reflect the values of the quality indicator, the grid is then placed on top of those colors, and finally a control net is placed on top of everything. The net represents the grid in terms of the control point form of algebraic grid generation. As a control point is moved, both the grid and the colored quality measures also move. This is a real time dynamic action so that the consequences of the manipulation are continuously seen.

  11. Prepares Overset Grids for Processing

    1998-04-22

    Many large and complex computational problems require multiple, structured, generically overlapped (overset) grids to obtain numerical solutions in a timely manner. BREAKUP significantly reduces required compute times by preparing overset grids for processing on massively parallel computers. BREAKUP subdivides the original grids for use on a user-specified number of parallel processors. Grid-to-grid and intragrid communications are maintained in the parallel environment via connectivity tables generated by BREAKUP. The subgrids are formed to be statically loadmore » balanced and to incur a minimum of communication between the subgrids. When the output of BREAKUP is submitted to an appropriately modified flow solver, subgrid solutions will be updated simultaneously. This contrasts to the much less efficient solution method of updating each original grid sequentially as done in the past.« less

  12. Smart Grid Enabled EVSE

    SciTech Connect

    None, None

    2014-10-15

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  13. LDCM Grid Prototype (LGP)

    NASA Technical Reports Server (NTRS)

    Weinstein, Beth; Lubelczyk, Jeff

    2006-01-01

    The LGP successfully demonstrated that grid technology could be used to create a collaboration among research scientists, their science development machines, and distributed data to create a science production system in a nationally distributed environment. Grid technology provides a low cost and effective method of enabling production of science products by the science community. To demonstrate this, the LGP partnered with NASA GSFC scientists and used their existing science algorithms to generate virtual Landsat-like data products using distributed data resources. LGP created 48 output composite scenes with 4 input scenes each for a total of 192 scienes processed in parallel. The demonstration took 12 hours, which beat the requirement by almost 50 percent, well within the LDCM requirement to process 250 scenes per day. The LGP project also showed the successful use of workflow tools to automate the processing. Investing in this technology has led to funding for a ROSES ACCESS proposal. The proposal intends to enable an expert science user to produce products from a number of similar distributed instrument data sets using the Land Cover Change Community-based Processing and Analysis System (LC-ComPS) Toolbox. The LC-ComPS Toolbox is a collection of science algorithms that enable the generation of data with ground resolution on the order of Landsat-class instruments.

  14. Grid-Enabled Measures

    PubMed Central

    Moser, Richard P.; Hesse, Bradford W.; Shaikh, Abdul R.; Courtney, Paul; Morgan, Glen; Augustson, Erik; Kobrin, Sarah; Levin, Kerry; Helba, Cynthia; Garner, David; Dunn, Marsha; Coa, Kisha

    2011-01-01

    Scientists are taking advantage of the Internet and collaborative web technology to accelerate discovery in a massively connected, participative environment —a phenomenon referred to by some as Science 2.0. As a new way of doing science, this phenomenon has the potential to push science forward in a more efficient manner than was previously possible. The Grid-Enabled Measures (GEM) database has been conceptualized as an instantiation of Science 2.0 principles by the National Cancer Institute with two overarching goals: (1) Promote the use of standardized measures, which are tied to theoretically based constructs; and (2) Facilitate the ability to share harmonized data resulting from the use of standardized measures. This is done by creating an online venue connected to the Cancer Biomedical Informatics Grid (caBIG®) where a virtual community of researchers can collaborate together and come to consensus on measures by rating, commenting and viewing meta-data about the measures and associated constructs. This paper will describe the web 2.0 principles on which the GEM database is based, describe its functionality, and discuss some of the important issues involved with creating the GEM database, such as the role of mutually agreed-on ontologies (i.e., knowledge categories and the relationships among these categories— for data sharing). PMID:21521586

  15. Grid Task Execution

    NASA Technical Reports Server (NTRS)

    Hu, Chaumin

    2007-01-01

    IPG Execution Service is a framework that reliably executes complex jobs on a computational grid, and is part of the IPG service architecture designed to support location-independent computing. The new grid service enables users to describe the platform on which they need a job to run, which allows the service to locate the desired platform, configure it for the required application, and execute the job. After a job is submitted, users can monitor it through periodic notifications, or through queries. Each job consists of a set of tasks that performs actions such as executing applications and managing data. Each task is executed based on a starting condition that is an expression of the states of other tasks. This formulation allows tasks to be executed in parallel, and also allows a user to specify tasks to execute when other tasks succeed, fail, or are canceled. The two core components of the Execution Service are the Task Database, which stores tasks that have been submitted for execution, and the Task Manager, which executes tasks in the proper order, based on the user-specified starting conditions, and avoids overloading local and remote resources while executing tasks.

  16. A Vertically Flow-Following, Icosahedral Grid Model for Medium-Range and Seasonal Prediction. Part 1: Model Description

    NASA Technical Reports Server (NTRS)

    Bleck, Rainer; Bao, Jian-Wen; Benjamin, Stanley G.; Brown, John M.; Fiorino, Michael; Henderson, Thomas B.; Lee, Jin-Luen; MacDonald, Alexander E.; Madden, Paul; Middlecoff, Jacques; Rosinski, James; Smirnova, Tanya G.; Sun, Shan; Wang, Ning

    2015-01-01

    A hydrostatic global weather prediction model based on an icosahedral horizontal grid and a hybrid terrain following/ isentropic vertical coordinate is described. The model is an extension to three spatial dimensions of a previously developed, icosahedral, shallow-water model featuring user-selectable horizontal resolution and employing indirect addressing techniques. The vertical grid is adaptive to maximize the portion of the atmosphere mapped into the isentropic coordinate subdomain. The model, best described as a stacked shallow-water model, is being tested extensively on real-time medium-range forecasts to ready it for possible inclusion in operational multimodel ensembles for medium-range to seasonal prediction.

  17. On unstructured grids and solvers

    NASA Technical Reports Server (NTRS)

    Barth, T. J.

    1990-01-01

    The fundamentals and the state-of-the-art technology for unstructured grids and solvers are highlighted. Algorithms and techniques pertinent to mesh generation are discussed. It is shown that grid generation and grid manipulation schemes rely on fast multidimensional searching. Flow solution techniques for the Euler equations, which can be derived from the integral form of the equations are discussed. Sample calculations are also provided.

  18. How to drill horizontal sections faster

    SciTech Connect

    Chaffin, M. )

    1991-12-01

    This paper reports that fewer trips, reduced slide time and lower drag during sliding have resulted from the application of downhole-adjustable stabilizers to horizontal drilling. Faster drilling times mean lower measurement while drilling (MWD) cost, and less wear on downhole equipment, motors and bits. These advantages combined with reduced drilling shocks have increased drilling rates and efficiency. Applying existing technology in new situations is an important way of reducing the cost of finding, exploring for and developing reserves. Engineers are responsible for using current technology to its fullest and developing new technology to reduce drilling expenses. Horizontal drilling was used in its early stages to develop the Austin chalk formation in Pearsall oil field more effectively. As procedures were generated to drill horizontal wells, Oryx drilling engineers began to develop new technology and investigate ways for existing technology to be used or altered to fit horizontal drilling programs. The new technology of downhole-adjustable stabilizers has been used successfully to further improve horizontal drilling efficiency.

  19. Statistical relations predict horizontal well production

    SciTech Connect

    Maloy, W.T. )

    1993-04-01

    Some fields and formations are more or less suited for horizontal drilling. Most horizontal candidates include complex reservoirs with heterogeneous geometries. In these, characteristics necessary for commercial production are difficult to define. As a result, many horizontal wells drilled to date have proven, or will prove, to be uneconomic. How to characterize a reservoir's suitability for horizontal drilling is a difficult question. A comparative method for fractured carbonate reservoirs with examples from the Austin Chalk/Buda trend of Texas is proposed in this paper. A statistical approach was used to characterize fracture styles. The relationships are intuitive and reveal that fracture density, interconnectedness and size are reflected respectively in the statistical measures of medium (mean), coefficient of variation (standard deviation), and range of reservoir production. Using only a statistical approach, four of five study group fields were accurately rank ordered. When risk of drainage and water production were considered, the match was perfect. Since most drilling has occurred in existing fields, these measures are readily available from production records. The analysis performed requires comparison with other similar fields for most of its usefulness. Horizontal drilling opportunities in other fields and formations might be defined using a similar statistical approach.

  20. Opportunities for horizontal drilling in Texas

    SciTech Connect

    Finley, R.J.; Laubach, S.E.; Tyler, N.; Holtz, M.H.

    1990-01-01

    Highly productive wells drilled in the Pearsall field (Austin Chalk) of South Texas have shown that horizontal drilling is an extremely effective technique for developing unrecovered oil and natural gas, particularly in mature hydrocarbon provinces that contain natural fractures. Production can also be enhanced where the reservoir-quality zone or the oil column is thin or where gravity-drainage production occurs. Although they are not current targets of horizontal drilling activity, many other kinds of reservoirs contain depositional heterogeneities that interfere with recovery by vertical wells. Use of horizontal drilling to tap multiple reservoir compartments in these reservoirs has significant potential but has yet to be fully tested. The resource target of unrecovered mobile oil in the nine Texas plays and subplays discussed in this report, amounting to more than 8 billion barrels of oil, warrants further testing of horizontal drilling in areas of depositional heterogeneities and multiple reservoir compartments. The authors summarize geological and engineering characteristics of selected formations in Texas that have been or are potential targets for horizontal drilling.

  1. Technology vital for horizontal well success

    SciTech Connect

    Meehan, D.N.

    1995-12-11

    Union Pacific Resources Co. (UPRC) has drilled more than 1,100 horizontal wells since 1987 and continues to operate about 15--20 rigs drilling horizontal wells. Technology has advanced the drilling, completion, formation evaluation, stimulation, and production of horizontal wells. Drilling break-throughs include dual-powerhead mud motors, retrievable whipstocks, and routine multiple lateral wells. Cost improvements have enabled UPRC to extend activity into deeper zones, which are hotter and more hostile. State-of-the-art drilling includes as many as four, 4,000+ ft horizontal laterals, horizontal wells at TVDs greater than 16,000 ft, and mud weights in excess of 15 ppg. In the Austin chalk, UPRC operates properties producing more than 480 MMcfd, 40,000 bo/d, and over 100,000 bw/d. The paper uses the wells of the Austin chalk to describe the technology used for formation evaluation, geological steering, muds, top drives, bit selection, mud motors, multiple laterals, retrievable whipstocks, water fracs, vapor-recovery units, artificial lift, automation, and surface facilities. Organizations, alliances, and corrosion problems are also discussed.

  2. Sand-control alternatives for horizontal wells

    SciTech Connect

    Zaleski, T.E. Jr. )

    1991-05-01

    This paper reports that it has been well documented that horizontal completions increase production rates, as much as two to five times those of conventional techniques, because more of the producing formation is exposed to the wellbore. Although productivity improvements are highly sensitive to reservoir parameters, it is becoming generally accepted that optimum horizontal lengths will be 2,000 to 4,000 ft. The length of these completions generally causes the velocity of the fluid at the sandface to be an order of magnitude less than that observed in conventional completions. Because drag forces contributed to sand production, horizontal wells can produce at higher sand-free flow rates than conventional completions in the same reservoir. While it is frequently argued that horizontal wells do not need sand control, the potential for sand production increases significantly as reserves deplete and rock stresses increase. This is becoming more evident today in several major North Sea oil fields with conventional completions. Also, many unconsolidated formations produce sand for the first time with the onset of water production, a typical problem in such areas as the Gulf of Mexico. Operators must decide whether to implement sand control in the original horizontal-completion program because of an immediate concern or because the potential exists for a problem to arise as the well matures.

  3. OGC and Grid Interoperability in enviroGRIDS Project

    NASA Astrophysics Data System (ADS)

    Gorgan, Dorian; Rodila, Denisa; Bacu, Victor; Giuliani, Gregory; Ray, Nicolas

    2010-05-01

    EnviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is a 4-years FP7 Project aiming to address the subjects of ecologically unsustainable development and inadequate resource management. The project develops a Spatial Data Infrastructure of the Black Sea Catchment region. The geospatial technologies offer very specialized functionality for Earth Science oriented applications as well as the Grid oriented technology that is able to support distributed and parallel processing. One challenge of the enviroGRIDS project is the interoperability between geospatial and Grid infrastructures by providing the basic and the extended features of the both technologies. The geospatial interoperability technology has been promoted as a way of dealing with large volumes of geospatial data in distributed environments through the development of interoperable Web service specifications proposed by the Open Geospatial Consortium (OGC), with applications spread across multiple fields but especially in Earth observation research. Due to the huge volumes of data available in the geospatial domain and the additional introduced issues (data management, secure data transfer, data distribution and data computation), the need for an infrastructure capable to manage all those problems becomes an important aspect. The Grid promotes and facilitates the secure interoperations of geospatial heterogeneous distributed data within a distributed environment, the creation and management of large distributed computational jobs and assures a security level for communication and transfer of messages based on certificates. This presentation analysis and discusses the most significant use cases for enabling the OGC Web services interoperability with the Grid environment and focuses on the description and implementation of the most promising one. In these use cases we give a special attention to issues such as: the relations between computational grid and

  4. Grid Generation Techniques Utilizing the Volume Grid Manipulator

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    1998-01-01

    This paper presents grid generation techniques available in the Volume Grid Manipulation (VGM) code. The VGM code is designed to manipulate existing line, surface and volume grids to improve the quality of the data. It embodies an easy to read rich language of commands that enables such alterations as topology changes, grid adaption and smoothing. Additionally, the VGM code can be used to construct simplified straight lines, splines, and conic sections which are common curves used in the generation and manipulation of points, lines, surfaces and volumes (i.e., grid data). These simple geometric curves are essential in the construction of domain discretizations for computational fluid dynamic simulations. By comparison to previously established methods of generating these curves interactively, the VGM code provides control of slope continuity and grid point-to-point stretchings as well as quick changes in the controlling parameters. The VGM code offers the capability to couple the generation of these geometries with an extensive manipulation methodology in a scripting language. The scripting language allows parametric studies of a vehicle geometry to be efficiently performed to evaluate favorable trends in the design process. As examples of the powerful capabilities of the VGM code, a wake flow field domain will be appended to an existing X33 Venturestar volume grid; negative volumes resulting from grid expansions to enable flow field capture on a simple geometry, will be corrected; and geometrical changes to a vehicle component of the X33 Venturestar will be shown.

  5. From the grid to the smart grid, topologically

    NASA Astrophysics Data System (ADS)

    Pagani, Giuliano Andrea; Aiello, Marco

    2016-05-01

    In its more visionary acceptation, the smart grid is a model of energy management in which the users are engaged in producing energy as well as consuming it, while having information systems fully aware of the energy demand-response of the network and of dynamically varying prices. A natural question is then: to make the smart grid a reality will the distribution grid have to be upgraded? We assume a positive answer to the question and we consider the lower layers of medium and low voltage to be the most affected by the change. In our previous work, we analyzed samples of the Dutch distribution grid (Pagani and Aiello, 2011) and we considered possible evolutions of these using synthetic topologies modeled after studies of complex systems in other technological domains (Pagani and Aiello, 2014). In this paper, we take an extra important step by defining a methodology for evolving any existing physical power grid to a good smart grid model, thus laying the foundations for a decision support system for utilities and governmental organizations. In doing so, we consider several possible evolution strategies and apply them to the Dutch distribution grid. We show how increasing connectivity is beneficial in realizing more efficient and reliable networks. Our proposal is topological in nature, enhanced with economic considerations of the costs of such evolutions in terms of cabling expenses and economic benefits of evolving the grid.

  6. Horizontal drilling techniques at Prudhoe Bay, Alaska

    SciTech Connect

    Wilkirson, J.P.; Smith, J.H.; Stagg, T.O.; Walters, D.A.

    1986-01-01

    Three extended departure horizontal wells have been drilled and completed at Prudhoe Bay, Alaska by Standard Alaska Production Company. Horizontal slotted liner completions of 1575 feet (480 m), 1637 feet (499 m), and 1163 feet (354 m) were accomplished at an average vertical depth of 9000 feet (2743 m). Improvements in technology and operating procedures have resulted in a cost per foot reduction of 40% over the three well program. When compared to conventional completions, initial production data indicates rate benefits of 300% and a major increase in ultimate recovery. This paper discusses the development of the techniques used to drill horizontal wells at Prudhoe Bay and reviews the drilling operations for each well.

  7. ESP's placed in horizontal lateral increase production

    SciTech Connect

    Gallup, A.; Wilson, B.L. ); Marshall, R. )

    1990-06-18

    By design, the electric submersible pump (ESP) is an effective method of lifting fluids from horizontal wells. But this ESP application does have unique installation and operating parameters that need to be considered. ESP's have been used for many years in directional wells. This application provides an experience base for understanding deflection limits on the unit. To avoid damaging the ESP, special equipment may be required in some horizontal installations. This paper discusses how several ESP's have been designed specifically for medium-radius wells. In these applications, the deeper pump setting provides for a significant increase in production rate. In general, to realize the full benefit of a horizontal installation, the ESP should be considered when planning, drilling, and completing the well.

  8. Horizontal gene transfer, genome innovation and evolution.

    PubMed

    Gogarten, J Peter; Townsend, Jeffrey P

    2005-09-01

    To what extent is the tree of life the best representation of the evolutionary history of microorganisms? Recent work has shown that, among sets of prokaryotic genomes in which most homologous genes show extremely low sequence divergence, gene content can vary enormously, implying that those genes that are variably present or absent are frequently horizontally transferred. Traditionally, successful horizontal gene transfer was assumed to provide a selective advantage to either the host or the gene itself, but could horizontally transferred genes be neutral or nearly neutral? We suggest that for many prokaryotes, the boundaries between species are fuzzy, and therefore the principles of population genetics must be broadened so that they can be applied to higher taxonomic categories. PMID:16138096

  9. NAS Grid Benchmarks: A Tool for Grid Space Exploration

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; VanderWijngaart, Rob F.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    We present an approach for benchmarking services provided by computational Grids. It is based on the NAS Parallel Benchmarks (NPB) and is called NAS Grid Benchmark (NGB) in this paper. We present NGB as a data flow graph encapsulating an instance of an NPB code in each graph node, which communicates with other nodes by sending/receiving initialization data. These nodes may be mapped to the same or different Grid machines. Like NPB, NGB will specify several different classes (problem sizes). NGB also specifies the generic Grid services sufficient for running the bench-mark. The implementor has the freedom to choose any specific Grid environment. However, we describe a reference implementation in Java, and present some scenarios for using NGB.

  10. Causes and characteristics of horizontal positional nystagmus.

    PubMed

    Lechner, Corinna; Taylor, Rachael L; Todd, Chris; Macdougall, Hamish; Yavor, Robbie; Halmagyi, G Michael; Welgampola, Miriam S

    2014-05-01

    Direction changing horizontal positional nystagmus can be observed in a variety of central and peripheral vestibular disorders. We tested sixty subjects with horizontal positional nystagmus and vertigo on the Epley Omniax(®) rotator. Monocular video recordings were performed with the right or left ear down, in the supine and prone positions. Nystagmus slow-phase velocity (SPV) was plotted as a function of time. Thirty-one subjects diagnosed with horizontal canalolithiasis had paroxysmal horizontal geotropic nystagmus with the affected ear down (onset 0.8 ± 1 s, range 0-4.9 s, duration 11.7-47.9 s, peak SPV 79 ± 67°/s). The SPV peaked at 5-20 s and declined to 0 by 60 s; at 40 s from onset, the average SPV was 1.8 % of the peak. Nine subjects diagnosed with cupulolithiasis had persistent apogeotropic horizontal nystagmus (onset 0.7 ± 1.4 s, range 0-4.3 s). Peak SPV was 54.2 ± 31.8°/s and 26.6 ± 12.2°/s with unaffected and affected ears down, respectively. At 40 s, the average SPV had decayed to only 81 % (unaffected ear down) and 65 % (affected ear down) of the peak. Twenty subjects were diagnosed with disorders other than benign positional vertigo (BPV) [vestibular migraine (VM), Ménière's Disease, vestibular schwannoma, unilateral or bilateral peripheral vestibular loss]. Subjects with VM (n = 13) had persistent geotropic or apogeotropic horizontal nystagmus. On average, at 40 s from nystagmus onset, the SPV was 61 % of the peak. Two patients with Ménière's Disease had persistent apogeotropic horizontal nystagmus; the peak SPV at 40 s ranged between 28.6 and 49.5 % of the peak. Symptomatic horizontal positional nystagmus can be observed in canalolithiasis, cupulolithiasis and diverse central and peripheral vestibulopathies; its temporal and intensity profile could be helpful in the separation of these entities. PMID:24676938

  11. Oxygen-enhanced models for globular cluster stars. III - Horizontal-branch sequences

    NASA Technical Reports Server (NTRS)

    Dorman, Ben

    1992-01-01

    A large grid of horizontal-branch (HB) evolutionary sequences which have been calculated with core expansion and semiconvection and with enhanced oxygen composition are presented and described. Tracks for 10 different metallicities are computed; they range from (Fe/H) = -0.47 to -2.26 and comprise a total of 115 sequences. The evolution is traced from the zero-age horizontal-branch (ZAHB) to the lower AGB at a point where log L/solar luminosity = 2.25. All of the sequences are illustrated on both the theoretical H-R diagram and on the B, V color-magnitude diagram. A complete set of tables for the ZAHB models and a representative sample of tabulations of the track parameters are provided. The phenomena which control HB evolution morphology, and existing certainties in theoretical HB models are discussed.

  12. The Open Science Grid

    SciTech Connect

    Pordes, Ruth; Kramer, Bill; Olson, Doug; Livny, Miron; Roy, Alain; Avery, Paul; Blackburn, Kent; Wenaus, Torre; Wurthwein, Frank; Gardner, Rob; Wilde, Mike; /Chicago U. /Indiana U.

    2007-06-01

    The Open Science Grid (OSG) provides a distributed facility where the Consortium members provide guaranteed and opportunistic access to shared computing and storage resources. OSG provides support for and evolution of the infrastructure through activities that cover operations, security, software, troubleshooting, addition of new capabilities, and support for existing and engagement with new communities. The OSG SciDAC-2 project provides specific activities to manage and evolve the distributed infrastructure and support its use. The innovative aspects of the project are the maintenance and performance of a collaborative (shared & common) petascale national facility over tens of autonomous computing sites, for many hundreds of users, transferring terabytes of data a day, executing tens of thousands of jobs a day, and providing robust and usable resources for scientific groups of all types and sizes. More information can be found at the OSG web site: www.opensciencegrid.org.

  13. Horizontal dispersion in shelf seas: High resolution modelling as an aid to sparse sampling

    NASA Astrophysics Data System (ADS)

    Stashchuk, Nataliya; Vlasenko, Vasiliy; Inall, Mark E.; Aleynik, Dmitry

    2014-11-01

    The ability of a hydrodynamic model to reproduce the results of a dye release experiment conducted in a wide shelf sea environment was investigated with the help of the Massachusetts Institute of Technology general circulation model (MITgcm). In the field experiment a fluorescent tracer, Rhodamine WT, was injected into the seasonal pycnocline, and its evolution was tracked for two days using a towed undulating vehicle equipped with a fluorometer and a CTD. With a 50 m horizontal resolution grid, and with three different forcings initialized in the model (viz: tides, stationary current, and wind stress on the free surface), it was possible to replicate the dye patch evolution quite accurately. The mechanisms responsible for the enhancement of horizontal dispersion were investigated on the basis of the model results. It was found that enhancement of the dye dispersion was controlled by vertically sheared currents that, in combination with vertical diapycnal mixing, led to a substantial increase in the “effective” horizontal mixing. The values of “effective” horizontal mixing found from the model runs were in good agreement with those obtained from in-situ data, and the probable degree to which the observational techniques undersampled the dye patch was revealed.

  14. Grid cells on steeply sloping terrain: evidence for planar rather than volumetric encoding.

    PubMed

    Hayman, Robin M A; Casali, Giulio; Wilson, Jonathan J; Jeffery, Kate J

    2015-01-01

    Neural encoding of navigable space involves a network of structures centered on the hippocampus, whose neurons -place cells - encode current location. Input to the place cells includes afferents from the entorhinal cortex, which contains grid cells. These are neurons expressing spatially localized activity patches, or firing fields, that are evenly spaced across the floor in a hexagonal close-packed array called a grid. It is thought that grids function to enable the calculation of distances. The question arises as to whether this odometry process operates in three dimensions, and so we queried whether grids permeate three-dimensional (3D) space - that is, form a lattice - or whether they simply follow the environment surface. If grids form a 3D lattice then this lattice would ordinarily be aligned horizontally (to explain the usual hexagonal pattern observed). A tilted floor would transect several layers of this putative lattice, resulting in interruption of the hexagonal pattern. We model this prediction with simulated grid lattices, and show that the firing of a grid cell on a 40°-tilted surface should cover proportionally less of the surface, with smaller field size, fewer fields, and reduced hexagonal symmetry. However, recording of real grid cells as animals foraged on a 40°-tilted surface found that firing of grid cells was almost indistinguishable, in pattern or rate, from that on the horizontal surface, with if anything increased coverage and field number, and preserved field size. It thus appears unlikely that the sloping surface transected a lattice. However, grid cells on the slope displayed slightly degraded firing patterns, with reduced coherence and slightly reduced symmetry. These findings collectively suggest that the grid cell component of the metric representation of space is not fixed in absolute 3D space but is influenced both by the surface the animal is on and by the relationship of this surface to the horizontal, supporting the hypothesis

  15. Grid cells on steeply sloping terrain: evidence for planar rather than volumetric encoding

    PubMed Central

    Hayman, Robin M. A.; Casali, Giulio; Wilson, Jonathan J.; Jeffery, Kate J.

    2015-01-01

    Neural encoding of navigable space involves a network of structures centered on the hippocampus, whose neurons –place cells – encode current location. Input to the place cells includes afferents from the entorhinal cortex, which contains grid cells. These are neurons expressing spatially localized activity patches, or firing fields, that are evenly spaced across the floor in a hexagonal close-packed array called a grid. It is thought that grids function to enable the calculation of distances. The question arises as to whether this odometry process operates in three dimensions, and so we queried whether grids permeate three-dimensional (3D) space – that is, form a lattice – or whether they simply follow the environment surface. If grids form a 3D lattice then this lattice would ordinarily be aligned horizontally (to explain the usual hexagonal pattern observed). A tilted floor would transect several layers of this putative lattice, resulting in interruption of the hexagonal pattern. We model this prediction with simulated grid lattices, and show that the firing of a grid cell on a 40°-tilted surface should cover proportionally less of the surface, with smaller field size, fewer fields, and reduced hexagonal symmetry. However, recording of real grid cells as animals foraged on a 40°-tilted surface found that firing of grid cells was almost indistinguishable, in pattern or rate, from that on the horizontal surface, with if anything increased coverage and field number, and preserved field size. It thus appears unlikely that the sloping surface transected a lattice. However, grid cells on the slope displayed slightly degraded firing patterns, with reduced coherence and slightly reduced symmetry. These findings collectively suggest that the grid cell component of the metric representation of space is not fixed in absolute 3D space but is influenced both by the surface the animal is on and by the relationship of this surface to the horizontal, supporting the

  16. TIGER: Turbomachinery interactive grid generation

    NASA Technical Reports Server (NTRS)

    Soni, Bharat K.; Shih, Ming-Hsin; Janus, J. Mark

    1992-01-01

    A three dimensional, interactive grid generation code, TIGER, is being developed for analysis of flows around ducted or unducted propellers. TIGER is a customized grid generator that combines new technology with methods from general grid generation codes. The code generates multiple block, structured grids around multiple blade rows with a hub and shroud for either C grid or H grid topologies. The code is intended for use with a Euler/Navier-Stokes solver also being developed, but is general enough for use with other flow solvers. TIGER features a silicon graphics interactive graphics environment that displays a pop-up window, graphics window, and text window. The geometry is read as a discrete set of points with options for several industrial standard formats and NASA standard formats. Various splines are available for defining the surface geometries. Grid generation is done either interactively or through a batch mode operation using history files from a previously generated grid. The batch mode operation can be done either with a graphical display of the interactive session or with no graphics so that the code can be run on another computer system. Run time can be significantly reduced by running on a Cray-YMP.

  17. Grid generation using classical techniques

    NASA Technical Reports Server (NTRS)

    Moretti, G.

    1980-01-01

    A brief historical review of conformal mapping and its applications to problems in fluid mechanics and electromagnetism is presented. The use of conformal mapping as a grid generator is described. The philosophy of the 'closed form' approach and its application to a Neumann problem is discussed. Karman-Trefftz mappings and grids for ablated, three dimensional bodies are also discussed.

  18. LAPS Grid generation and adaptation

    NASA Astrophysics Data System (ADS)

    Pagliantini, Cecilia; Delzanno, Gia Luca; Guo, Zehua; Srinivasan, Bhuvana; Tang, Xianzhu; Chacon, Luis

    2011-10-01

    LAPS uses a common-data framework in which a general purpose grid generation and adaptation package in toroidal and simply connected domains is implemented. The initial focus is on implementing the Winslow/Laplace-Beltrami method for generating non-overlapping block structured grids. This is to be followed by a grid adaptation scheme based on Monge-Kantorovich optimal transport method [Delzanno et al., J. Comput. Phys,227 (2008), 9841-9864], that equidistributes application-specified error. As an initial set of applications, we will lay out grids for an axisymmetric mirror, a field reversed configuration, and an entire poloidal cross section of a tokamak plasma reconstructed from a CMOD experimental shot. These grids will then be used for computing the plasma equilibrium and transport in accompanying presentations. A key issue for Monge-Kantorovich grid optimization is the choice of error or monitor function for equi-distribution. We will compare the Operator Recovery Error Source Detector (ORESD) [Lapenta, Int. J. Num. Meth. Eng,59 (2004) 2065-2087], the Tau method and a strategy based on the grid coarsening [Zhang et al., AIAA J,39 (2001) 1706-1715] to find an ``optimal'' grid. Work supported by DOE OFES.

  19. Structured and unstructured grid generation.

    PubMed

    Thompson, J F; Weatherill, N P

    1992-01-01

    Current techniques in composite-block-structured grid generation and unstructured grid generation for general 3D geometries are summarized, including both algebraic and elliptic generation procedures for the former and Delaunay tessellations for the latter. Citations of relevant theory are given. Examples of applications for several geometries are included. PMID:1424687

  20. Intelligent automated surface grid generation

    NASA Technical Reports Server (NTRS)

    Yao, Ke-Thia; Gelsey, Andrew

    1995-01-01

    The goal of our research is to produce a flexible, general grid generator for automated use by other programs, such as numerical optimizers. The current trend in the gridding field is toward interactive gridding. Interactive gridding more readily taps into the spatial reasoning abilities of the human user through the use of a graphical interface with a mouse. However, a sometimes fruitful approach to generating new designs is to apply an optimizer with shape modification operators to improve an initial design. In order for this approach to be useful, the optimizer must be able to automatically grid and evaluate the candidate designs. This paper describes and intelligent gridder that is capable of analyzing the topology of the spatial domain and predicting approximate physical behaviors based on the geometry of the spatial domain to automatically generate grids for computational fluid dynamics simulators. Typically gridding programs are given a partitioning of the spatial domain to assist the gridder. Our gridder is capable of performing this partitioning. This enables the gridder to automatically grid spatial domains of wide range of configurations.

  1. Some Observations on Grid Convergence

    NASA Technical Reports Server (NTRS)

    Salas, manuel D.

    2006-01-01

    It is claimed that current practices in grid convergence studies, particularly in the field of external aerodynamics, are flawed. The necessary conditions to properly establish grid convergence are presented. A theoretical model and a numerical example are used to demonstrate these ideas.

  2. VizieR Online Data Catalog: New grids of Atlas9 models (Howarth, 2011)

    NASA Astrophysics Data System (ADS)

    Howarth, I. D.

    2010-11-01

    The "Atlas9.C04" directory contains grids of products newly generated from the atmospheric structures provided by Castelli & Kurucz (2004, IAUS, 203, p. A20; astro-ph/0405087). Subdirectories have names of the form, e.g., "m20v02" or "p05av02", where M20V02 MEANS [m/h] = -2.0, v(turb) = 2 km/s p05av02 means [M/H] = +0.5, alpha elements enhanced, v(turb) = 2 km/s The Atlas9.C04 models use Grevesse & Sauval (1998SSRv...85..161G) solar abundances, and mixing-length parameter l/H=1.25 The "Atlas9.A10" directory contains grids of products from newly calculated structures. Subdirectory naming mirrors that in Atlas9.C04. The models are based on Asplund et al. (2005ASPC..336...25A) solar abundances, and mixing-length parameter l/H=1.25; subdirectories suffixed "r" are for models with l/H=0.5. Model grids at notionally LMC and SMC abundances are included. Within each grid subdirectory there are three plain-text files for each model, with names of the form 't05000g40.', where the base identifies the effective temperature and log(g), and the extension identifies the file content. Files with '.flx' extensions contain listings of physical fluxes at 1221 wavelengths, from 90 angstrom to 160 micron (with 20-angstrom sampling through the optical). Fluxes are tabulated in erg/cm2/s/Å as a function of wavelength (in angstrom). Limb-darkening coefficients are provided in files with extensions '.ucP' (for photon-counting detectors) and '.ucE' (for energy-integrating detectors). (6 data files).

  3. An efficient horizontal advection scheme for the modeling of global transport of constituents

    SciTech Connect

    Hundsdorfer, W.; Spee, E.J.

    1995-12-01

    In this paper the authors consider a dimensional-splitting scheme for horizontal advection on a sphere with a uniform longitude-latitude grid. The 1D subprocesses that arise within the splitting are solved with an explicit finite-volume type scheme, which is made unconditionally stable by allowing the stencil to vary with the Courant numbers. The scheme is made positive by flux limiting. For the inaccuracies at the poles some special measures are discussed. Numerical tests show that the scheme is almost shape preserving and conservative, and it gives accurate results at low computational costs. 23 refs., 7 figs., 1 tab.

  4. DNS of vibrating grid turbulence

    NASA Astrophysics Data System (ADS)

    Khujadze, G.; Oberlack, M.

    Direct numerical simulation of the turbulence generated at a grid vibrating normally to itself using spectral code [1] is presented. Due to zero mean shear there is no production of turbulence apart from the grid. Action of the grid is mimiced by the function implemented in the middle of the simulation box:f_i (x_1 ,x_2 ) = {n^2 S}/2left\\{ {left| {{δ _{i3} }/4\\cos left( {{2π }/Mx_1 } right)\\cos left. {left( {{2π }/Mx_2 } right)} right|} right.sin (nt) + {β _i }/4} right\\}, where M is the mesh size, S/2 - amplitude or stroke of the grid, n - frequency. β i are random numbers with uniform distribution. The simulations were performed for the following parameters: x 1, x 2 ∈ [-π; π], x 3 ∈ [-2π; 2π]; Re = nS 2/? = 1000; S/M = 2; Numerical grid: 128 × 128 × 256.

  5. DNS of vibrating grid turbulence

    NASA Astrophysics Data System (ADS)

    Khujadze, G.; Oberlack, M.

    Direct numerical simulation of the turbulence generated at a grid vibrating normally to itself using spectral code [1] is presented. Due to zero mean shear there is no production of turbulence apart from the grid. Action of the grid is mimiced by the function implemented in the middle of the simulation box:f_i (x_1 ,x_2 ) = {n^2 S}/2left{ {left| {{δ _{i3} }/4\\cos left( {{2π }/Mx_1 } right)\\cos left. {left( {{2π }/Mx_2 } right)} right|} right.sin (nt) + {β _i }/4} right}, where M is the mesh size, S/2 - amplitude or stroke of the grid, n - frequency. β i are random numbers with uniform distribution. The simulations were performed for the following parameters: x 1, x 2 ∈ [-π; π], x 3 ∈ [-2π; 2π]; Re = nS 2/? = 1000; S/M = 2; Numerical grid: 128 × 128 × 256.

  6. MODFLOW-2000, the U.S. Geological Survey modular ground-water model -- Documentation of the Model-Layer Variable-Direction Horizontal Anisotropy (LVDA) capability of the Hydrogeologic-Unit Flow (HUF) package

    USGS Publications Warehouse

    Anderman, Evan R.; Kipp, K.L.; Hill, Mary C.; Valstar, Johan; Neupauer, R.M.

    2002-01-01

    This report documents the model-layer variable-direction horizontal anisotropy (LVDA) capability of the Hydrogeologic-Unit Flow (HUF) Package of MODFLOW-2000. The LVDA capability allows the principal directions of horizontal anisotropy to be different than the model-grid row and column directions, and for the directions to vary on a cell-by-cell basis within model layers. The HUF Package calculates effective hydraulic properties for model grid cells based on hydraulic properties of hydrogeologic units with thicknesses defined independently of the model layers. These hydraulic properties include, among other characteristics, hydraulic conductivity and a horizontal anisotropy ratio. Using the LVDA capability, horizontal anisotropy direction is defined for model grid cells within which one or more hydrogeologic units may occur. For each grid cell, the HUF Package calculates the effective horizontal hydraulic conductivity along the primary direction of anisotropy using the hydrogeologic-unit hydraulic conductivities, and calculates the effective horizontal hydraulic conductivity along the orthogonal anisotropy direction using the effective primary direction hydraulic conductivities and horizontal anisotropy ratios. The direction assigned to the model layer effective primary hydraulic conductivity is specified using a new data set defined by the LVDA capability, when active, to calculate coefficients needed to solve the ground-water flow equation. Use of the LVDA capability is illustrated in four simulation examples, which also serve to verify hydraulic heads, advective-travel paths, and sensitivities calculated using the LVDA capability. This version of the LVDA capability defines variable-direction horizontal anisotropy using model layers, not the hydrogeologic units defined by the HUF Package. This difference needs to be taken into account when designing model layers and hydrogeologic units to produce simulations that accurately represent a given field problem. This

  7. Regional Data Assimilation Using a Stretched-Grid Approach and Ensemble Calculations

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, M. S.; Takacs, L. L.; Govindaraju, R. C.; Atlas, Robert (Technical Monitor)

    2002-01-01

    The global variable resolution stretched grid (SG) version of the Goddard Earth Observing System (GEOS) Data Assimilation System (DAS) incorporating the GEOS SG-GCM (Fox-Rabinovitz 2000, Fox-Rabinovitz et al. 2001a,b), has been developed and tested as an efficient tool for producing regional analyses and diagnostics with enhanced mesoscale resolution. The major area of interest with enhanced regional resolution used in different SG-DAS experiments includes a rectangle over the U.S. with 50 or 60 km horizontal resolution. The analyses and diagnostics are produced for all mandatory levels from the surface to 0.2 hPa. The assimilated regional mesoscale products are consistent with global scale circulation characteristics due to using the SG-approach. Both the stretched grid and basic uniform grid DASs use the same amount of global grid-points and are compared in terms of regional product quality.

  8. Numerical Weather Prediction Over Caucasus Region With Nested Grid Models

    NASA Astrophysics Data System (ADS)

    Davitashvili, Dr.; Kutaladze, Dr.; Kvatadze, Dr.

    2010-09-01

    Global atmosphere models, which describe the weather processes, give the general character of the weather but can't catch the smaller scale processes, especially local weather for the territories with compound topography. Small-scale processes such as convection often dominate the local weather, which cannot be explicitly represented in models with grid size more then 10 km. A much finer grid is required to properly simulate frontal structures and represent cumulus convection. Georgia lies to the south of the Major Caucasian Ridge and the Lesser Caucasus mountains occupy the southern part of Georgia. About 85 percent of the total land area occupies complex mountain ranges.Therefore for the territory of Georgia it is necessary to use atmosphere models with a very high resolution nested grid system taking into account main orographic features of the area. We have elaborated and configured Whether Research Forecast - Advanced Researcher Weather (WRF-ARW) model for Caucasus region considering geographical-landscape character, topography height, land use, soil type and temperature in deep layers, vegetation monthly distribution, albedo and others. Porting of WRF-ARW application to the grid was a good opportunity for running model on larger number of CPUs and storing large amount of data on the grid storage elements. On the grid WRF was compiled for both Open MP and MPI (Shared + Distributed memory) environment and WPS was compiled for serial environment using PGI (v7.1.6, MPI- version 1.2.7) on the platform Linux-x86. In searching of optimal execution time for time saving different model directory structures and storage schema was used. Simulations were performed using a set of 2 domains with horizontal grid-point resolutions of 15 and 5 km, both defined as those currently being used for operational forecasts The coarser domain is a grid of 94x102 points which covers the South Caucasus region, while the nested inner domain has a grid size of 70x70 points mainly

  9. [From vertical to horizontal. Writing in adolescence].

    PubMed

    Catheline-Antipoff, N

    1995-04-01

    Writing at adolescence has a non negligible part in identity's construction. Vertical writing as tags, graphs and graffiti refer to a narcissism deficiency and express a pulsional necessity, whereas, horizontal writing as private diaries, letters and novels express object's search and are made in dreaming attitude. PMID:7618823

  10. Infragravity waves and horizontal seafloor compliance

    NASA Astrophysics Data System (ADS)

    Doran, Adrian K.; Laske, Gabi

    2016-01-01

    We report the first consistent observation of horizontal seafloor compliance induced by infragravity (IG) waves. Long-period IG ocean waves manifest themselves as broad, dominant features in ocean bottom pressure and vertical deformation spectra, but signals are rarely (if ever) identified on the horizontal components of traditional ocean bottom seismometers (OBS) due to low signal level and high current-induced tilt noise at long periods. We examine two OBS stations with shallow-buried seismometers: the Monterey Ocean Bottom Broadband site offshore California and the Ocean Seismic Network (OSN) pilot site OSN1B near Hawaii. We use nearby weather buoys to investigate the relationship between the presence of infragravity waves and environmental conditions. We find strong evidence that infragravity wave generation is primarily confined to the near-coastal environment. Additional IG source information is found by examining the directionality of passing IG waves as a function of frequency, which we analyze using the coherence between pressure and the two horizontal components. Finally, we evaluate the implications for a joint vertical and horizontal compliance inversion.

  11. Uniform head in horizontal and vertical wells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The steady-state head within a fully penetrating well may be estimated by evaluating the Thiem equation at the radius of the well. A method is presented here to extend results from the Thiem equation to horizontal wells and to partially penetrating wells. The particular model used in this investigat...

  12. Horizontal drilling used in gas storage programs

    SciTech Connect

    Young, F.S.Jr.; McDonald, W.J. ); Shikari, Y.A. )

    1993-04-05

    Horizontal wells may restore deliverability in old reservoirs and help efficiently develop new, porous-media, natural gas storage reservoirs. In many types of gas storage reservoirs, horizontal wells can have 5-10 times the productivity of vertical wells yet cost only about twice as much. The advantages of using horizontal wells in gas storage include the ability to develop less-favorable parts of the reservoir, fewer surface sites, less pipe and surface equipment, improved late season deliverability at low pressure, and reduced base gas requirements. Since 1990, the Gas Research Institute (GRI) has sponsored a project to increase the deliverability of the nation's 14,00 gas storage wells. The primary objective of the study is to conduct a comprehensive review of deliverability enhancement techniques, well completion methods, and procedures used by operators of underground natural gas storage fields in North America. Another objective is to design and construct a computer data base and compile reports and analyses in aggregated format. The first task of the project involved an assessment of the state of technology. The paper describes results from the gas storage survey; horizontal drilling technology; special considerations; and test results.

  13. Horizontally separated 1-in-1 crossing insertions

    SciTech Connect

    Syphers, M.J.

    1985-10-01

    Previous to this workshop, realistic lattices have been developed for vertically separated l-in-l (e.g., D.E. Johnson, A.A. Garren) and 2-in-1 (e.g., S. Heifets) magnets as well as for horizontally separated 2-in-l magnets (e.g., SSC RDS). Bringing together the widely separated ({approximately}60-70 cm) beams in a reasonable length of tunnel and keeping the dispersion zero at the interaction point has been difficult in the vertical l-in-l case. Most designs have required spacial 2-in-1 quadrupoles near the interaction point where the beams are separated by 15 cm or less. It is not clear that such magnets, as dictated by some of these lattice designs, can easily be built. The purpose of this exercise is to provide a crossing insertion for a realistic lattice which involves horizontally separated l-in-l magnets. The following horizontal crossing insertions, which incorporate the dispersion suppressors and phase trombones into the major arcs, need no special 2-in-1 magnets near the interaction point. The dispersion at the IP created by the horizontal crossing can be cancelled by the dispersion suppressor and one set of triplets.

  14. Horizontal Axis Levitron--A Physics Demonstration

    ERIC Educational Resources Information Center

    Michaelis, Max M.

    2014-01-01

    After a brief history of the Levitron, the first horizontal axis Levitron is reported. Because it is easy to operate, it lends itself to educational physics experiments and analogies. Precession and nutation are visualized by reflecting the beam from a laser pointer off the "spignet". Precession is fundamental to nuclear magnetic…

  15. Cutting Down the Tall Poppies: Horizontal Violence.

    ERIC Educational Resources Information Center

    Funk, Carole

    Many women in educational leadership positions experience negative treatment from female teachers and female superintendents. This phenomenon is known as horizontal violence, "the curious behavior of members of oppressed groups who often lash out at their peers in response to oppression instead of attacking their oppressors." This paper explores…

  16. Teaching Activities on Horizontal Nuclear Proliferation.

    ERIC Educational Resources Information Center

    Zola, John

    1990-01-01

    Provides learning activities concerning the horizontal proliferation of nuclear weapons. Includes step-by-step directions for four activities: (1) the life cycle of nuclear weapons; (2) nuclear nonproliferation: pros and cons; (3) the nuclear power/nuclear weapons connection; and (4) managing nuclear proliferation. (NL)

  17. Electroluminescence from completely horizontally oriented dye molecules

    NASA Astrophysics Data System (ADS)

    Komino, Takeshi; Sagara, Yuta; Tanaka, Hiroyuki; Oki, Yuji; Nakamura, Nozomi; Fujimoto, Hiroshi; Adachi, Chihaya

    2016-06-01

    A complete horizontal molecular orientation of a linear-shaped thermally activated delayed fluorescent guest emitter 2,6-bis(4-(10Hphenoxazin-10-yl)phenyl)benzo[1,2-d:5,4-d'] bis(oxazole) (cis-BOX2) was obtained in a glassy host matrix by vapor deposition. The orientational order of cis-BOX2 depended on the combination of deposition temperature and the type of host matrix. Complete horizontal orientation was obtained when a thin film with cis-BOX2 doped in a 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) host matrix was fabricated at 200 K. The ultimate orientation of guest molecules originates from not only the kinetic relaxation but also the kinetic stability of the deposited guest molecules on the film surface during film growth. Utilizing the ultimate orientation, a highly efficient organic light-emitting diode with the external quantum efficiency of 33.4 ± 2.0% was realized. The thermal stability of the horizontal orientation of cis-BOX2 was governed by the glass transition temperature (Tg) of the CBP host matrix; the horizontal orientation was stable unless the film was annealed above Tg.

  18. Orthodontic extrusion of horizontally impacted mandibular molars

    PubMed Central

    Ma, Zhigui; Yang, Chi; Zhang, Shanyong; Xie, Qianyang; Shen, Yuqing; Shen, Pei

    2014-01-01

    Objective: To introduce and evaluate a novel approach in treating horizontally impacted mandibular second and third molars. Materials and methods: An orthodontic technique was applied for treatment of horizontally impacted mandibular second and third molars, which included a push-type spring for rotation first, and then a cantilever for extrusion. There were 8 mandibular third molars (M3s) and 2 second molars (M2s) in this study. Tooth mobility, extraction time, the inclination and parallelism of the impacted tooth, alveolar bone height of the adjacent tooth, and the relationship of impacted M3 and the inferior alveolar nerve (IAN) were evaluated. Results: Two horizontally impacted M2s could be upright in the arch and good occlusal relationships were obtained after treatment. All impacted M3s were successfully separated from the IAN, without any neurologic consequences. The average extraction time was 5 minutes. There was a significant change in the inclination and parallelism of the impacted tooth after treatment. A new bone apposition with the average height of 3.2 mm was noted distal to the adjacent tooth. Conclusions: This two-step orthodontic technique as presented here may be a safe and feasible alternative in management of severely horizontally impacted mandibular molars, which achieves a successful separation of M3s from the IAN and an excellent position for M2s. PMID:25419364

  19. Utah's Cane Creek horizontal play expanding

    SciTech Connect

    Price, R.B.

    1991-08-12

    This paper reports on one of the U.S. horizontal plays that continues to gather steam in southern Utah. And because it is expanding in an environmentally sensitive area, development is being watched closely by the Bureau of Land Management and environmental groups. One operator planning a wildcat in the vicinity has been forced to postpone drilling for environmental reasons.

  20. Horizontally scaling dChache SRM with the Terracotta platform

    SciTech Connect

    Perelmutov, T.; Crawford, M.; Moibenko, A.; Oleynik, G.; /Fermilab

    2011-01-01

    The dCache disk caching file system has been chosen by a majority of LHC experiments Tier 1 centers for their data storage needs. It is also deployed at many Tier 2 centers. The Storage Resource Manager (SRM) is a standardized grid storage interface and a single point of remote entry into dCache, and hence is a critical component. SRM must scale to increasing transaction rates and remain resilient against changing usage patterns. The initial implementation of the SRM service in dCache suffered from an inability to support clustered deployment, and its performance was limited by the hardware of a single node. Using the Terracotta platform, we added the ability to horizontally scale the dCache SRM service to run on multiple nodes in a cluster configuration, coupled with network load balancing. This gives site administrators the ability to increase the performance and reliability of SRM service to face the ever-increasing requirements of LHC data handling. In this paper we will describe the previous limitations of the architecture SRM server and how the Terracotta platform allowed us to readily convert single node service into a highly scalable clustered application.

  1. Atmospheric Climate Model Experiments Performed at Multiple Horizontal Resolutions

    SciTech Connect

    Phillips, T; Bala, G; Gleckler, P; Lobell, D; Mirin, A; Maxwell, R; Rotman, D

    2007-12-21

    This report documents salient features of version 3.3 of the Community Atmosphere Model (CAM3.3) and of three climate simulations in which the resolution of its latitude-longitude grid was systematically increased. For all these simulations of global atmospheric climate during the period 1980-1999, observed monthly ocean surface temperatures and sea ice extents were prescribed according to standard Atmospheric Model Intercomparison Project (AMIP) values. These CAM3.3 resolution experiments served as control runs for subsequent simulations of the climatic effects of agricultural irrigation, the focus of a Laboratory Directed Research and Development (LDRD) project. The CAM3.3 model was able to replicate basic features of the historical climate, although biases in a number of atmospheric variables were evident. Increasing horizontal resolution also generally failed to ameliorate the large-scale errors in most of the climate variables that could be compared with observations. A notable exception was the simulation of precipitation, which incrementally improved with increasing resolution, especially in regions where orography plays a central role in determining the local hydroclimate.

  2. Grid Integration Studies: Data Requirements, Greening the Grid

    SciTech Connect

    Katz, Jessica

    2015-06-01

    A grid integration study is an analytical framework used to evaluate a power system with high penetration levels of variable renewable energy (VRE). A grid integration study simulates the operation of the power system under different VRE scenarios, identifying reliability constraints and evaluating the cost of actions to alleviate those constraints. These VRE scenarios establish where, how much, and over what timeframe to build generation and transmission capacity, ideally capturing the spatial diversity benefits of wind and solar resources. The results help build confidence among policymakers, system operators, and investors to move forward with plans to increase the amount of VRE on the grid.

  3. Single grid accelerator for an ion thrustor

    NASA Technical Reports Server (NTRS)

    Margosian, P. M.; Nakanishi, S. (Inventor)

    1973-01-01

    A single grid accelerator system for an ion thrustor is discussed. A layer of dielectric material is interposed between this metal grid and the chamber containing an ionized propellant for protecting the grid against sputtering erosion.

  4. Optimizing solar-cell grid geometry

    NASA Technical Reports Server (NTRS)

    Crossley, A. P.

    1969-01-01

    Trade-off analysis and mathematical expressions calculate optimum grid geometry in terms of various cell parameters. Determination of the grid geometry provides proper balance between grid resistance and cell output to optimize the energy conversion process.

  5. National Smart Water Grid

    SciTech Connect

    Beaulieu, R A

    2009-07-13

    The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and the western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing the US

  6. High energy collimating fine grids

    NASA Technical Reports Server (NTRS)

    Arrieta, Victor M.; Tuffias, Robert H.; Laferla, Raffaele

    1995-01-01

    The objective of this project was to demonstrate the fabrication of extremely tight tolerance collimating grids using a high-Z material, specifically tungsten. The approach taken was to fabricate grids by a replication method involving the coating of a silicon grid substrate with tungsten by chemical vapor deposition (CVD). A negative of the desired grid structure was fabricated in silicon using highly wafering techniques developed for the semiconductor industry and capable of producing the required tolerances. Using diamond wafering blades, a network of accurately spaced slots was machined into a single-crystal silicon surface. These slots were then filled with tungsten by CVD, via the hydrogen reduction of tungsten hexafluoride. Following tungsten deposition, the silicon negative was etched away to leave the tungsten collimating grid structure. The project was divided into five tasks: (1) identify materials of construction for the replica and final collimating grid structures; (2) identify and implement a micromachining technique for manufacturing the negative collimator replicas (performed by NASA/JPL); (3) develop a CVD technique and processing parameters suitable for the complete tungsten densification of the collimator replicas; (4) develop a chemical etching technique for the removal of the collimator replicas after the tungsten deposition process; and (5) fabricate and deliver tungsten collimating grid specimens.

  7. GridOPTICS Software System

    SciTech Connect

    Akyol, Bora A; Ciraci, PNNL Selim; Gibson, PNNL Tara; Rice, PNNL Mark; Sharma, PNNL Poorva; Yin, PNNL Jian; Allwardt, PNNL Craig; PNNL,

    2014-02-24

    GridOPTICS Software System (GOSS) is a middleware that facilitates creation of new, modular and flexible operational and planning platforms that can meet the challenges of the next generation power grid. GOSS enables Department of Energy, power system utilities, and vendors to build better tools faster. GOSS makes it possible to integrate Future Power Grid Initiative software products/prototypes into existing power grid software systems, including the PNNL PowerNet and EIOC environments. GOSS is designed to allow power grid applications developed for different underlying software platforms installed in different utilities to communicate with ease. This can be done in compliance with existing security and data sharing policies between the utilities. GOSS not only supports one-to-one data transfer between applications, but also publisher/subscriber scheme. To support interoperability requirements of future EMS, GOSS is designed for CIM compliance. In addition to this, it supports authentication and authorization capabilities to protect the system from cyber threats. In summary, the contributions of the GOSS middleware are as follows: • A platform to support future EMS development. • A middleware that promotes interoperability between power grid applications. • A distributed architecture that separates data sources from power grid applications. • Support for data exchange with either one-to-one or publisher/subscriber interfaces. • An authentication and authorization scheme for limiting the access to data between utilities.

  8. A Java commodity grid kit.

    SciTech Connect

    von Laszewski, G.; Foster, I.; Gawor, J.; Lane, P.; Mathematics and Computer Science

    2001-07-01

    In this paper we report on the features of the Java Commodity Grid Kit. The Java CoG Kit provides middleware for accessing Grid functionality from the Java framework. Java CoG Kit middleware is general enough to design a variety of advanced Grid applications with quite different user requirements. Access to the Grid is established via Globus protocols, allowing the Java CoG Kit to communicate also with the C Globus reference implementation. Thus, the Java CoG Kit provides Grid developers with the ability to utilize the Grid, as well as numerous additional libraries and frameworks developed by the Java community to enable network, Internet, enterprise, and peer-to peer computing. A variety of projects have successfully used the client libraries of the Java CoG Kit to access Grids driven by the C Globus software. In this paper we also report on the efforts to develop server side Java CoG Kit components. As part of this research we have implemented a prototype pure Java resource management system that enables one to run Globus jobs on platforms on which a Java virtual machine is supported, including Windows NT machines.

  9. GridOPTICS Software System

    2014-02-24

    GridOPTICS Software System (GOSS) is a middleware that facilitates creation of new, modular and flexible operational and planning platforms that can meet the challenges of the next generation power grid. GOSS enables Department of Energy, power system utilities, and vendors to build better tools faster. GOSS makes it possible to integrate Future Power Grid Initiative software products/prototypes into existing power grid software systems, including the PNNL PowerNet and EIOC environments. GOSS is designed to allowmore » power grid applications developed for different underlying software platforms installed in different utilities to communicate with ease. This can be done in compliance with existing security and data sharing policies between the utilities. GOSS not only supports one-to-one data transfer between applications, but also publisher/subscriber scheme. To support interoperability requirements of future EMS, GOSS is designed for CIM compliance. In addition to this, it supports authentication and authorization capabilities to protect the system from cyber threats. In summary, the contributions of the GOSS middleware are as follows: • A platform to support future EMS development. • A middleware that promotes interoperability between power grid applications. • A distributed architecture that separates data sources from power grid applications. • Support for data exchange with either one-to-one or publisher/subscriber interfaces. • An authentication and authorization scheme for limiting the access to data between utilities.« less

  10. Insights into horizontal acquisition patterns of dormancy and reactivation regulon genes in mycobacterial species using a partitioning-based framework.

    PubMed

    Mehra, Varun; Ghosh, Tarini Shankar; Mande, Sharmila S

    2016-09-01

    Horizontal Gene Transfer (HGT) events, initially thought to be rare in Mycobacterium tuberculosis, have recently been shown to be involved in the acquisition of virulence operons in M. tuberculosis. We have developed a new partitioning framework based HGT prediction algorithm, called Grid3M, and applied the same for the prediction of HGTs in Mycobacteria. Validation and testing using simulated and real microbial genomes indicated better performance of Grid3M as compared with other widely used HGT prediction methods. Specific analysis of the genes belonging to dormancy/reactivation regulons across 14 mycobacterial genomes indicated that horizontal acquisition is specifically restricted to important accessory proteins. The results also revealed Burkholderia species to be a probable source of HGT genes belonging to these regulons. The current study provides a basis for similar analyses investigating the functional/evolutionary aspects of HGT genes in other pathogens. A database of Grid3M predicted HGTs in completely sequenced genomes is available at https://metagenomics.atc.tcs.com/Grid3M/. PMID:27581938

  11. Grid Visualization Tool

    NASA Technical Reports Server (NTRS)

    Chouinard, Caroline; Fisher, Forest; Estlin, Tara; Gaines, Daniel; Schaffer, Steven

    2005-01-01

    The Grid Visualization Tool (GVT) is a computer program for displaying the path of a mobile robotic explorer (rover) on a terrain map. The GVT reads a map-data file in either portable graymap (PGM) or portable pixmap (PPM) format, representing a gray-scale or color map image, respectively. The GVT also accepts input from path-planning and activity-planning software. From these inputs, the GVT generates a map overlaid with one or more rover path(s), waypoints, locations of targets to be explored, and/or target-status information (indicating success or failure in exploring each target). The display can also indicate different types of paths or path segments, such as the path actually traveled versus a planned path or the path traveled to the present position versus planned future movement along a path. The program provides for updating of the display in real time to facilitate visualization of progress. The size of the display and the map scale can be changed as desired by the user. The GVT was written in the C++ language using the Open Graphics Library (OpenGL) software. It has been compiled for both Sun Solaris and Linux operating systems.

  12. Symbolic Constraint Maintenance Grid

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    Version 3.1 of Symbolic Constraint Maintenance Grid (SCMG) is a software system that provides a general conceptual framework for utilizing pre-existing programming techniques to perform symbolic transformations of data. SCMG also provides a language (and an associated communication method and protocol) for representing constraints on the original non-symbolic data. SCMG provides a facility for exchanging information between numeric and symbolic components without knowing the details of the components themselves. In essence, it integrates symbolic software tools (for diagnosis, prognosis, and planning) with non-artificial-intelligence software. SCMG executes a process of symbolic summarization and monitoring of continuous time series data that are being abstractly represented as symbolic templates of information exchange. This summarization process enables such symbolic- reasoning computing systems as artificial- intelligence planning systems to evaluate the significance and effects of channels of data more efficiently than would otherwise be possible. As a result of the increased efficiency in representation, reasoning software can monitor more channels and is thus able to perform monitoring and control functions more effectively.

  13. National transmission grid study

    SciTech Connect

    Abraham, Spencer

    2003-05-31

    The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to address them. DOE began by conducting an independent analysis of U.S. electricity markets and identifying transmission system bottlenecks using DOE’s Policy Office Electricity Modeling System (POEMS). DOE’s analysis, presented in Section 2, confirms the central role of the nation’s transmission system in lowering costs to consumers through increased trade. More importantly, DOE’s analysis also confirms the results of previous studies, which show that transmission bottlenecks and related transmission system market practices are adding hundreds of millions of dollars to consumers’ electricity bills each year. A more detailed technical overview of the use of POEMS is provided in Appendix A. DOE led an extensive, open, public input process and heard a wide range of comments and recommendations that have all been considered.1 More than 150 participants registered for three public workshops held in Detroit, MI (September 24, 2001); Atlanta, GA (September 26, 2001); and Phoenix, AZ (September 28, 2001).

  14. Buildings-to-Grid Technical Opportunities: From the Grid Perspective

    SciTech Connect

    Kropski, Ben; Pratt, Rob

    2014-03-28

    This paper outlines the nature of the power grid, lists challenges and barriers to the implementation of a transactive energy ecosystem, and provides concept solutions to current technological impediments.

  15. Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine

    SciTech Connect

    Lawson, M. J.; Li, Y.; Sale, D. C.

    2011-10-01

    This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

  16. Articulating Support for Horizontal Resistive Exercise

    NASA Technical Reports Server (NTRS)

    Gundo, Daniel; Schaffner, Grant; Bentley, Jason; Loehr, James A.

    2005-01-01

    A versatile mechanical device provides support for a user engaged in any of a variety of resistive exercises in a substantially horizontal orientation. The unique features and versatility of the device promise to be useful in bedrest studies, rehabilitation, and specialized strength training. The device affords a capability for selectively loading and unloading of portions of the user s body through its support mechanisms, so that specific parts of the body can be trained with little or no effect on other parts that may be disabled or in the process of recovery from injury. Thus, the device is ideal for rehabilitation exercise programs prescribed by physicians and physical therapists. The capability for selective loading and support also offers potential benefits to strength and conditioning trainers and athletes who wish to selectively strengthen selected parts. The principal innovative aspect of the device is that it supports the subject s weight while enabling the subject, lying substantially horizontally, to perform an exercise that closely approximates a full standing squat. The device includes mechanisms that support the subject in such a way that the hips are free to translate both horizontally and vertically and are free to rotate about the line connecting the hips. At the same time, the shoulders are free to translate horizontally while the upper back is free to rotate about the line connecting the shoulders. Among the mechanisms for hip motion and support is a counterbalance that offsets the weight of the subject as the subject s pelvis translates horizontally and vertically and rotates the pelvis about the line connecting the hips. The counterbalance is connected to a pelvic support system that allows these pelvic movements. The subject is also supported at the shoulder by a mechanism that can tilt to provide continuous support of the upper back while allowing the rotation required for arching the back as the pelvis is displaced. The shoulder support

  17. Thermal mixing layer downstream of half-heated turbulence grid

    NASA Astrophysics Data System (ADS)

    Larue, J. C.; Libby, P. A.

    1981-04-01

    Experimental and theoretical results are presented concerning the temperature in the thermal mixing layer downstream of a partially heated turbulence grid. Temperatures were measured by platinum wire thermometers located upstream and downstream of a turbulence grid consisting of 18 horizontal and 18 vertical heating rods, with the uppermost nine horizontal rods heated to a temperature about 200 C above ambient. Experimental results are presented for the mean temperature distribution, the distribution of relative temperature intensity, the distributions of the skewness and kurtosis of the temperature fluctuations, probability density functions for the temperature, the skewness of the temperature derivative and the thickness of the thermal interface in the thermal mixing layer, and are compared with previous experimental results where available. As in previous investigations, the measured intensity of the temperature fluctuations in the center of the mixing layer is found to disagree with that predicted by the analysis of Libby (1975) by 40%, and it is concluded that experiments simultaneously yielding the velocity and temperature characteristics are required to explain the discrepancy.

  18. Towards a new high resolution gridded daily precipitation dataset over Europe

    NASA Astrophysics Data System (ADS)

    Toreti, Andrea; Naveau, Philippe

    2016-04-01

    The availability of high resolution daily gridded observational datasets is essential in many applications and to properly evaluate regional climate models. As the horizontal resolution of such models has significantly increased in recent modelling exercises (e.g., Euro-Cordex), while the one of the available observational datasets has remained constant (approx. 25km), new approaches are needed to develop gridded dataset of daily precipitation. Here, we discuss a statistical conceptual framework to combine data from neighbouring stations and model outputs. Our approach is based on recent statistical models for precipitation distributions, meshed with a data assimilation scheme. Our study focuses on the European region.

  19. Improving horizontal resolution of high-frequency surface-wave methods using travel-time tomography

    NASA Astrophysics Data System (ADS)

    Yin, Xiaofei; Xu, Hongrui; Wang, Limin; Hu, Yue; Shen, Chao; Sun, Shida

    2016-03-01

    In surface-wave methods, horizontal resolution can be defined as the ability to distinguish anomalous objects that are laterally displaced from each other. The horizontal length of a recognizable geological anomalous body is measured by the lateral variation of shear (S)-wave velocity. Multichannel analysis of surface waves (MASW) is an efficient tool to determine near-surface S-wave velocities. The acquisition of the MASW method involves the same source-receiver configuration moved successively by a fixed distance interval (a few to several stations) along a linear survey line, which is called a roll-along acquisition geometry. A pseudo-2D S-wave velocity section is constructed by aligning 1D models, and each inverted 1D S-wave velocity model reflects the vertical S-wave velocity variation at the midpoint of each geophone spread. Although the MASW method can improve the horizontal resolution of S-wave velocity sections to some degree, the amount of fieldwork is increased by the roll-along acquisition geometry. We propose surface-wave tomography method to investigate horizontal resolution of surface-wave exploration. Phase-velocity dispersion curves are calculated by a pair of traces within a multichannel record through cross-correlation combined with a phase-shift scanning method. Then with the utilization of travel-time tomography, we can obtain high resolution pure-path dispersion curves with diverse sizes of grids at different frequencies. Finally, the pseudo-2D S-wave velocity structure is reconstructed by inverting the pure-path dispersion curves. Travel-time tomography of surface waves can extract accurate dispersion curves from a record with a short receiver spacing, and it can effectively enhance the ability of random noise immunity. Synthetic tests and a real-world example have indicated that travel-time tomography has a great potential for improving the horizontal resolution of surface waves using multi-channel analysis.

  20. Film condensation in a horizontal rectangular duct

    NASA Technical Reports Server (NTRS)

    Lu, Qing; Suryanarayana, N. V.

    1993-01-01

    Condensation heat transfer in a horizontal rectangular duct was experimentally and analytically investigated. To prevent the dripping of condensate on the film, the experiment was conducted inside a horizontal rectangular duct with vapor condensing only on the bottom cooled plate of the duct. R-113 and FC-72 (Fluorinert Electronic Fluid developed by the 3M Company) were used as the condensing fluids. The experimental program included measurements of film thickness, local and average heat transfer coefficients, wave length, wave speed, and a study of wave initiation. The measured film thickness was used to obtain the local heat transfer coefficient. The wave initiation was studied both with condensation and with an adiabatic air-liquid flow. The test sections used in both experiments were identical.

  1. Horizontal modular dry irradiated fuel storage system

    DOEpatents

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  2. Stability of vertical and horizontal axis Levitrons

    NASA Astrophysics Data System (ADS)

    Michaelis, M. M.; Taylor, D. B.

    2015-11-01

    The stability of the new horizontal axis Levitron3 is compared with that of the vertical axis device. The rotation frequency ranges are similar because they are determined by the same precessional micro-trap, for which some theory is given. But the macro-trap of the horizontal axis system gives it far greater mechanical stability. Field-line studies allow this to be more easily visualized. The greater stability allows for educational experiments which could only be contemplated with the old Levitron: driven precession and nutation and motion along the field lines. These experiments illustrate some very fundamental space dynamics and several other topics. The enhanced stability may also lead to electro-mechanical applications.

  3. Horizontal gene transfer between bacteria and animals.

    PubMed

    Dunning Hotopp, Julie C

    2011-04-01

    Horizontal gene transfer is increasingly described between bacteria and animals. Such transfers that are vertically inherited have the potential to influence the evolution of animals. One classic example is the transfer of DNA from mitochondria and chloroplasts to the nucleus after the acquisition of these organelles by eukaryotes. Even today, many of the described instances of bacteria-to-animal transfer occur as part of intimate relationships such as those of endosymbionts and their invertebrate hosts, particularly insects and nematodes, while numerous transfers are also found in asexual animals. Both of these observations are consistent with modern evolutionary theory, in particular the serial endosymbiotic theory and Muller's ratchet. Although it is tempting to suggest that these particular lifestyles promote horizontal gene transfer, it is difficult to ascertain given the nonrandom sampling of animal genome sequencing projects and the lack of a systematic analysis of animal genomes for such transfers. PMID:21334091

  4. Elf cites 5 advantages of horizontal drilling

    SciTech Connect

    Not Available

    1984-06-01

    ELF Aquitaine used horizontal drilling during a pilot test program to bring commercial production from its Rospo Mare oil discovery in the Adriatic, which would have been a costly disappointment if drilled by a conventional vertical well bore. Rospo Mare is a large reservoir containing a top column of highly viscous crude underlain by a water column. The company felt that a well bore that penetrated the reservoir vertically would bring early flooding of the oil column and yield only water. By penetrating the reservoir with a horizontal well drilled high in the oil column, the well successfully produced on numerous tests from Oct. 1982 until the end of the test program in 1983. Production was termed excellent, with productivity during tests reportedly reaching ca 15 times the rate produced from nearby vertical wells. However, ELF said the results usually average ca 5 times the usual rate of vertical wells.

  5. Horizontal Niobrara play proceeding with caution

    SciTech Connect

    Petzet, G.A.

    1991-11-11

    This paper reports that caution and careful planning are the watchwords for operators in their approach to horizontal drilling for oil in Puper Cretaceous Niobrara chalk in Colorado and Wyoming. Despite its geologic age equivalence with the Austin chalk of southeastern Texas, the formation has not attracted the same degree of attention or yielded as stunning results as the Austin chalk. Little is yet known about the precise reasons for its sporadic productivity; the exact nature of the fracture system(s) within it; the source and migration history of its oil(s); or the deeper structures and structural trends with which productivity appears associated. Niobrara underlies an area larger than that underlain by the Austin chalk, but Niobrara horizontal drilling so far has proceeded at a guarded pace.

  6. Search for horizontal bosons at the SSC

    SciTech Connect

    Albright, C.H.; Deshpande, N.G.; Gunion, J.F.; Haber, H.E.

    1984-01-01

    The production process anti p p ..-->.. l/sup -/l'/sup +/ + X, where the leptons belong to two different generations and X refers to spectator jets, provides a clear signature for horizontal (generation-changing) bosons when the leptons are emitted nearly back-to-back and p/sub T//sup miss/ = 0. Cross sections and p/sub T/ distributions for each lepton are presented, and discovery limits on M/sub H/ are extracted for several different channels.

  7. Spin stabilized magnetic levitation of horizontal rotors.

    SciTech Connect

    Romero, Louis Anthony

    2004-10-01

    In this paper we present an analysis of a new configuration for achieving spin stabilized magnetic levitation. In the classical configuration, the rotor spins about a vertical axis; and the spin stabilizes the lateral instability of the top in the magnetic field. In this new configuration the rotor spins about a horizontal axis; and the spin stabilizes the axial instability of the top in the magnetic field.

  8. Uniform head in horizontal and vertical wells.

    PubMed

    Steward, David R; Jin, Wei

    2006-01-01

    The steady-state head within a fully penetrating well may be estimated by evaluating the Thiem equation at the radius of the well. A method is presented here to extend results from the Thiem equation to horizontal wells and to partially penetrating wells. The particular model used in this investigation is based upon the analytic element method; it accurately reproduces a boundary condition of uniform head along the cylindrical surface at the perforated face of the well. This model is exercised over a representative range of parameters including the well's length, radius, and pumping rate, and the aquifer's hydraulic conductivity and thickness. Results are presented in a set of figures and tables that compare the well's drawdown to the drawdown that would have been obtained using the Thiem solution with the same pumping rate and radius. A methodology is presented to estimate the head within a horizontal or partially penetrating well by adding a correction term to results that can be readily obtained from computer models of vertical fully penetrating wells. This approach may also be used to contrast the differences in head between horizontal and vertical wells of various lengths, radii, and placement elevations. PMID:16405471

  9. Horizontal subsea trees allow frequent deepwater workovers

    SciTech Connect

    Krenek, M.; Hall, G.; Sheng, W.Z.

    1995-05-01

    Horizontal subsea wellheads have found application in the Liuhua oil field in the South China Sea. These trees allow installation and retrieval of downhole equipment through the tree without having to disturb the tree or its external connections to flow lines, service lines, or control umbilicals. This access to the well is important because the Liuhua wells will be produced with electrical submersible pumps (ESPs), which may have relatively short intervals between maintenance, leading to frequent well work. The wells will be completed subsea in about 300 m of water. The large bore, horizontal trees allow all downhole equipment to be pulled without removal of the subsea tree. This wellhead configuration also provides well control and vertical access to downhole equipment through a conventional marine drilling riser and subsea blowout preventer (BOP), eliminating the need for costly specialized completion risers. Another benefit of the horizontal tree is its extremely compact profile with a low number of valves for well control. Valve size and spacing are decoupled from the size and bore spacing of the tubing hanger. The tree`s low profile geometry reduces costs of manufacturing the tree and framework and optimize load transfer to the wellhead.

  10. Portable top drive cuts horizontal drilling costs

    SciTech Connect

    Jackson, B.; Yager, D.

    1993-11-01

    Economic analysis of a seven-well, long-reach horizontal drilling program into an unconsolidated, heavy-oil-bearing reservoir in Winter field near the Alberta/Saskatchewan border in Canada reveals that -- in the right application -- renting a portable top drive drilling system can reduce total drilling costs. Use of the portable top drive combined with other cost-saving measures enabled Saskoil, one of Canada`s larger independents, to drill more cheaply, on a cost-per-meter basis, in 1993 than in 1992. This was despite significant rental rates for drilling rigs and directional drilling services caused by increased demand in Western Canada. Total cost savings of 10% on wells that would otherwise cost in the (C) $500,000 range are believed realistic. Based on this year`s performance, Saskoil recommends top drive for the company`s future horizontal wells in this area. This article describes the operator`s horizontal well program, advantages of top drive in that program and how it was installed and applied. Estimated time savings for six wells, plus other ways top drive can cut costs and improve operations are discussed.

  11. Smart Wire Grid: Resisting Expectations

    SciTech Connect

    Ramsay, Stewart; Lowe, DeJim

    2014-03-03

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  12. Smart Wire Grid: Resisting Expectations

    ScienceCinema

    Ramsay, Stewart; Lowe, DeJim

    2014-04-09

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  13. Parallel Power Grid Simulation Toolkit

    SciTech Connect

    Smith, Steve; Kelley, Brian; Banks, Lawrence; Top, Philip; Woodward, Carol

    2015-09-14

    ParGrid is a 'wrapper' that integrates a coupled Power Grid Simulation toolkit consisting of a library to manage the synchronization and communication of independent simulations. The included library code in ParGid, named FSKIT, is intended to support the coupling multiple continuous and discrete even parallel simulations. The code is designed using modern object oriented C++ methods utilizing C++11 and current Boost libraries to ensure compatibility with multiple operating systems and environments.

  14. Discretization formulas for unstructured grids

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1988-01-01

    The Galerkin weighted residual technique using linear triangular weight functions is employed to develop finite difference formula in cartesian coordinates for the Laplacian operator, first derivative operators and the function for unstructured triangular grids. The weighted residual coefficients associated with the weak formulation of the Laplacian operator are shown to agree with the Taylor series approach on a global average. In addition, a simple algorithm is presented to determine the Voronoi (finite difference) area of an unstructured grid.

  15. Reinventing Batteries for Grid Storage

    ScienceCinema

    Banerjee, Sanjoy

    2013-05-29

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  16. Multi baseline Grid Software Correlator

    NASA Astrophysics Data System (ADS)

    Moritaka, Kimura; Nakajima, Junichi; Kondo, Tetsuro

    Software VLBI correlation is regarded as a solution for next generation VLBI. With a flexibility of the software correlation programming, appropriate scientific correlations by scientists are possible as well as the post processing. As the first experiment to handle Gbps VLBI data, multi baseline Grid correlator have been developing at CRL. The performance of software correlation adopted multi CPUs, SIMD architectures and Grid computing technology has nearly reached hardware correlator performance.

  17. Reinventing Batteries for Grid Storage

    SciTech Connect

    Banerjee, Sanjoy

    2012-01-01

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  18. AstroGrid-D: Grid technology for astronomical science

    NASA Astrophysics Data System (ADS)

    Enke, Harry; Steinmetz, Matthias; Adorf, Hans-Martin; Beck-Ratzka, Alexander; Breitling, Frank; Brüsemeister, Thomas; Carlson, Arthur; Ensslin, Torsten; Högqvist, Mikael; Nickelt, Iliya; Radke, Thomas; Reinefeld, Alexander; Reiser, Angelika; Scholl, Tobias; Spurzem, Rainer; Steinacker, Jürgen; Voges, Wolfgang; Wambsganß, Joachim; White, Steve

    2011-02-01

    We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4). Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project. We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites (Section 2.1), and advanced applications for specific scientific purposes (Section 2.2), such as a connection to robotic telescopes (Section 2.2.3). We can show from these examples how grid execution improves e.g. the scientific workflow. Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks. We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.

  19. 12. VIEW LOOKING SOUTHWEST, CHESTNUT ST. (lower horizontal line) TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW LOOKING SOUTHWEST, CHESTNUT ST. (lower horizontal line) TO WALNUT ST. (upper horizontal line), SHOWING SECOND BANK OF U.S. - Independence National Historical Park, Walnut, Sixth, Chestnut & Second Streets, Philadelphia, Philadelphia County, PA

  20. Sensitivity of snow cover to horizontal resolution in a land surface model

    NASA Astrophysics Data System (ADS)

    Dutra, E.; Kotlarski, S.; Viterbo, P.; Balsamo, G.; Miranda, P. M. A.; Schär, C.

    2010-09-01

    Snow cover is a highly variable land surface condition that exerts a strong control on the heat and moisture budget of the overlying atmosphere. Modeling studies based on long integrations of global circulation models (GCM) are normally carried out at very low resolution (typically coarser than 100 km) due to their high computational demand. On local scales, snow cover plays an important socioeconomic role, ranging from water management applications to outdoor recreation. These latter applications vary in horizontal resolution from a few hundred meters to a few kilometers, where small scale topography, land cover and local circulation effects play a significant role. In this study our focus will be on horizontal scales ranging from typical GCM global climate modeling to high resolution global weather forecasts. In the land surface component of a GCM (land surface model - LSM), snow cover temporal and spatial variability is mainly determined by the overlying atmospheric conditions. However, once snowfall settles on the ground, the sub-grid scale variability associated with complex terrain and land cover variability (not resolved at the model resolution) is parameterized following simple physical and/or empirical relations. The present study intends to access the impact of horizontal resolution in the European Centre for Medium-Range Weather Forecasts (ECMWF) land surface model (HTESSEL). HTESSEL is forced by the ECMWF operational weather forecasts since March 2006 to December 2009 (runs in offline/stand-alone mode). The control run is carried out at the horizontal resolution of the forecasts at TL799 (gaussian reduced grid N400 -about 25 km). Two lower horizontal resolutions are then tested: TL255 (gaussian reduced grid - about 80 km, same as the ERA-Interim reanalysis), and TL95 (gaussian reduced grid N48 - about 200 km). The length of the simulations is rather small (only 46 months), however global meteorological forcing at 25 km can only be accessed through the

  1. Grid-Optimization Program for Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Daniel, R. E.; Lee, T. S.

    1986-01-01

    CELLOPT program developed to assist in designing grid pattern of current-conducting material on photovoltaic cell. Analyzes parasitic resistance losses and shadow loss associated with metallized grid pattern on both round and rectangular solar cells. Though performs sensitivity studies, used primarily to optimize grid design in terms of bus bar and grid lines by minimizing power loss. CELLOPT written in APL.

  2. Simulation of the Summer Monsoon Rainfall over East Asia using the NCEP GFS Cumulus Parameterization at Different Horizontal Resolutions

    SciTech Connect

    Lim, Kyo-Sun; Hong, Song You; Yoon, Jin-Ho; Han, Jongil

    2014-10-01

    The most recent version of Simplified Arakawa-Schubert (SAS) cumulus scheme in National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) (GFS SAS) has been implemented into the Weather and Research Forecasting (WRF) model with a modification of triggering condition and convective mass flux to become depending on model’s horizontal grid spacing. East Asian Summer Monsoon of 2006 from June to August is selected to evaluate the performance of the modified GFS SAS scheme. Simulated monsoon rainfall with the modified GFS SAS scheme shows better agreement with observation compared to the original GFS SAS scheme. The original GFS SAS scheme simulates the similar ratio of subgrid-scale precipitation, which is calculated from a cumulus scheme, against total precipitation regardless of model’s horizontal grid spacing. This is counter-intuitive because the portion of resolved clouds in a grid box should be increased as the model grid spacing decreases. This counter-intuitive behavior of the original GFS SAS scheme is alleviated by the modified GFS SAS scheme. Further, three different cumulus schemes (Grell and Freitas, Kain and Fritsch, and Betts-Miller-Janjic) are chosen to investigate the role of a horizontal resolution on simulated monsoon rainfall. The performance of high-resolution modeling is not always enhanced as the spatial resolution becomes higher. Even though improvement of probability density function of rain rate and long wave fluxes by the higher-resolution simulation is robust regardless of a choice of cumulus parameterization scheme, the overall skill score of surface rainfall is not monotonically increasing with spatial resolution.

  3. A paradigm for parallel unstructured grid generation

    SciTech Connect

    Gaither, A.; Marcum, D.; Reese, D.

    1996-12-31

    In this paper, a sequential 2D unstructured grid generator based on iterative point insertion and local reconnection is coupled with a Delauney tessellation domain decomposition scheme to create a scalable parallel unstructured grid generator. The Message Passing Interface (MPI) is used for distributed communication in the parallel grid generator. This work attempts to provide a generic framework to enable the parallelization of fast sequential unstructured grid generators in order to compute grand-challenge scale grids for Computational Field Simulation (CFS). Motivation for moving from sequential to scalable parallel grid generation is presented. Delaunay tessellation and iterative point insertion and local reconnection (advancing front method only) unstructured grid generation techniques are discussed with emphasis on how these techniques can be utilized for parallel unstructured grid generation. Domain decomposition techniques are discussed for both Delauney and advancing front unstructured grid generation with emphasis placed on the differences needed for both grid quality and algorithmic efficiency.

  4. Ion beamlet vectoring by grid translation

    NASA Technical Reports Server (NTRS)

    Homa, J. M.; Wilbur, P. J.

    1982-01-01

    Ion beamlet vectoring is investigated by collecting deflection and divergence angle data for two-grid systems as a function of the relative displacement of these grids. Results show that at large displacements, accelerator grid impingement becomes a limiting factor and this determines the useful range of beamlet deflection. Beamlet deflection was shown to vary linearly with grid offset angle over this range. Values of deflection-to-offset angle ratio and useful range of deflection are presented as functions of grid-hole geometries, perveance levels, and accelerating voltages. It is found that the divergence of the beamlets is unaffected by deflection over the useful range of beamlet deflection. The grids of a typical dished-grid ion thruster are examined to determine where over the grid surface the grid offsets exceed the useful range, which indicates the regions on the surface where high accelerator grid impingment is probably occurring.

  5. Striped ratio grids for scatter estimation

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Wang, Adam S.; Star-Lack, Josh

    2016-03-01

    Striped ratio grids are a new concept for scatter management in cone-beam CT. These grids are a modification of conventional anti-scatter grids and consist of stripes which alternate between high grid ratio and low grid ratio. Such a grid is related to existing hardware concepts for scatter estimation such as blocker-based methods or primary modulation, but rather than modulating the primary, the striped ratio grid modulates the scatter. The transitions between adjacent stripes can be used to estimate and subtract the remaining scatter. However, these transitions could be contaminated by variation in the primary radiation. We describe a simple nonlinear image processing algorithm to estimate scatter, and proceed to validate the striped ratio grid on experimental data of a pelvic phantom. The striped ratio grid is emulated by combining data from two scans with different grids. Preliminary results are encouraging and show a significant reduction of scatter artifact.

  6. Study of the Local Horizon. (Spanish Title: Estudio del Horizonte Local.) Estudo do Horizonte Local

    NASA Astrophysics Data System (ADS)

    Ros, Rosa M.

    2009-12-01

    The study of the horizon is fundamental to easy the first observations of the students at any education center. A simple model, to be developed in each center, allows to easy the study and comprehension of the rudiments of astronomy. The constructed model is presented in turn as a simple equatorial clock, other models (horizontal and vertical) may be constructed starting from it. El estudio del horizonte es fundamental para poder facilitar las primeras observaciones de los alumnos en un centro educativo. Un simple modelo, que debe realizarse para cada centro, nos permite facilitar el estudio y la comprensión de los primeros rudimentos astronómicos. El modelo construido se presenta a su vez como un sencillo modelo de reloj ecuatorial y a partir de él se pueden construir otros modelos (horizontal y vertical). O estudo do horizonte é fundamental para facilitar as primeiras observações dos alunos num centro educativo. Um modelo simples, que deve ser feito para cada centro, permite facilitar o estudo e a compreensão dos primeiros rudimentos astronômicos. O modelo construído apresenta-se, por sua vez, como um modelo simples de relógio equatorial e a partir dele pode-se construir outros modelos (horizontal e vertical)

  7. CDF way to the GRID

    NASA Astrophysics Data System (ADS)

    Delli Paoli, F.

    2006-11-01

    The improvements of the peak instantaneous luminosity of the Tevatron Collider require large increases in computing requirements for the CDF experiment which has to be able to increase proportionally the amount of Monte Carlo data it produces and to satisfy the computing needs for future data analysis. This is, in turn, forcing the CDF Collaboration to move beyond the used dedicated resources and start exploiting Grid resources. CDF has been running a set of CDF Analysis Farm (CAFs), which are submission portals to dedicated pools. In this paper will be presented the CDF strategy to access Grid resources. GlideCAF, a new CAF implementation based on Condor Glide-in technology, has been developed to access resources in specific Grid Sites and is currently in production status at CNAF Tier-1 in Italy. Recently have been configured GlideCAFs also in San Diego (US), Fermilab and Lyon Tier-1 Center (France). GlideCAF model has been used also to implement OsgCAF, which is a Fermilab project to exploit OSG resources in US. LcgCAF is basically a reimplementation of the CAF model in order to access Grid resources by using the LCG/EGEE Middleware components in a total standard Grid way. LcgCAF is constituted by a set of services each of them responsible for accepting, submitting and monitoring CDF user jobs during theirs lifetimes in the Grid environment. An overview of the Grid Environment and of the specific Middleware services used will be presented; GlideCAF and LcgCAF implementations will be discussed in detail. Some details on OsgCAF project will be also given.

  8. Horizontal core acquisition and orientation for formation evaluation

    SciTech Connect

    Skopec, R.A. ); Mann, M.M. ); Grier, S.P. )

    1992-03-01

    The increase in horizontal drilling activity has produced a need for improved coring technology. The development of a reliable horizontal (medium-radius) coring and orientation system has greatly improved the acquisition of information necessary for formation evaluation and reservoir engineering. This paper describes newly developed hardware and methods for obtaining horizontal core sections.

  9. YPF uses horizontal reentry to aid thin bed production

    SciTech Connect

    Acosta, M.R.; Leiro, F.A.; Sesano, G.S.; Hill, D.

    1997-01-01

    Reentry and horizontal drilling/completion techniques have proven themselves useful in exploiting thin beds. A pilot horizontal reentry contracted by Yacimiento Petroliferos Fiscales (YPF) for a marginal well in its Lomita Sur field resulted in decreased water coning and production rates four times greater than expected. Further horizontal reentries in this thin-bed field are planned.

  10. Modeling flow into horizontal wells in a Dupuit-Forchheimer model.

    PubMed

    Haitjema, Henk; Kuzin, Sergey; Kelson, Vic; Abrams, Daniel

    2010-01-01

    Horizontal wells or radial collector wells are used in shallow aquifers to enhance water withdrawal rates. Groundwater flow patterns near these wells are three-dimensional (3D), but difficult to represent in a 3D numerical model because of the high degree of grid refinement needed. However, for the purpose of designing water withdrawal systems, it is sufficient to obtain the correct production rate of these wells for a given drawdown. We developed a Cauchy boundary condition along a horizontal well in a Dupuit-Forchheimer model. Such a steady-state 2D model is not only useful for predicting groundwater withdrawal rates but also for capture zone delineation in the context of source water protection. A comparison of our Dupuit-Forchheimer model for a radial collector well with a 3D model yields a nearly exact production rate. Particular attention is given to horizontal wells that extend underneath a river. A comparison of our approach with a 3D solution for this case yields satisfactory results, at least for moderate-to-large river bottom resistances. PMID:20331744

  11. Productivity and injectivity of horizontal wells. Quarterly report, October 1--December 31, 1993

    SciTech Connect

    Fayers, F.J.; Aziz, K.; Hewett, T.A.

    1993-03-10

    A number of activities have been carried out in the last three months. A list outlining these efforts is presented below followed by brief description of each activity in the subsequent sections of this report: Progress is being made on the development of a black oil three-phase simulator which will allow the use of a generalized Voronoi grid in the plane perpendicular to a horizontal well. The available analytical solutions in the literature for calculating productivity indices (Inflow Performance) of horizontal wells have been reviewed. The pseudo-steady state analytic model of Goode and Kuchuk has been applied to an example problem. A general mechanistic two-phase flow model is under development. The model is capable of predicting flow transition boundaries for a horizontal pipe at any inclination angle. It also has the capability of determining pressure drops and holdups for all the flow regimes. A large code incorporating all the features of the model has been programmed and is currently being tested.

  12. Idealised simulations of open cellular convection and horizontal wind fluctuations over the North Sea

    NASA Astrophysics Data System (ADS)

    Vincent, Claire Louise; Hahmann, Andrea; Pinson, Pierre; Giebel, Gregor

    2010-05-01

    The Weather Research and Forecasting (WRF) model was used to study the skill, sensitivity and limitations of a mesoscale model in predicting wind speed fluctuations on time scales of tens of minutes to hours. The work was motivated by the severely variable wind conditions that are often observed at the Horns Rev wind farm in the Danish North Sea. From a wind energy perspective, such fluctuations present challenges for both electricity transmission system operators, who must ensure reliability of the electricity grid, and wind farm operators, who must avoid financial losses associated with sudden and unexpected dips in wind power. Good forecasts of the onset of severely variable wind conditions are one way of increasing preparedness for such events. WRF was first used to model an episode of intense wind fluctuations that was observed at an offshore meteorological mast near the Horns Rev wind farm on 23-24th October 2002. WRF was able to reproduce large fluctuations in horizontal wind speed with a similar frequency to that of the observed wind fluctuations. Building on this result, WRF was then set up in an idealised framework as a simple simulation of wind blowing over water. The initialisation of the model was based on the actual conditions during a severely variable wind event over the North Sea. The benefit of running the model in an idealised mode was that individual aspects of model performance could be clearly isolated. During the first few hours of simulation, WRF produced unrealistic fluctuations in wind speed that were dominated by the horizontal grid spacing of the model. After 4 to 5 hours, realistic open cellular convection developed, with large fluctuations in horizontal wind speed similar to those observed in the real case. The structure of the convective cells had a spatial scale of about 30 km, which corresponded closely to cloud patterns seen in a visual satellite picture from the same event. The scale of the cells was largely invariant to changes

  13. Scaling Up Renewable Energy Generation: Aligning Targets and Incentives with Grid Integration Considerations, Greening The Grid

    SciTech Connect

    Katz, Jessica; Cochran, Jaquelin

    2015-05-27

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. This document, part of a Greening the Grid toolkit, provides power system planners with tips to help secure and sustain investment in new renewable energy generation by aligning renewable energy policy targets and incentives with grid integration considerations.

  14. Multiblock grid generation for jet engine configurations

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.

    1992-01-01

    The goal was to create methods for generating grids with minimal human intervention that are applicable to a wide range of problems and compatible with existing numerical methods and with existing and proposed computers. The following topics that are related to multiblock grid generation are briefly covered in viewgraph form: finding a domain decomposition, dimensioning grids, grid smoothing, manipulating grids and decompositions, and some specializations for jet engine configurations.

  15. Convective mixing in formations with horizontal barriers

    NASA Astrophysics Data System (ADS)

    Elenius, Maria T.; Gasda, Sarah E.

    2013-12-01

    It has been shown that convective mixing in porous media flow is important for applications such as saltwater intrusion and geological storage of carbon dioxide. In the latter case, dissolution from the injected phase to the resident brine is assisted by convective mixing, which leads to enhanced storage security through reduced buoyancy. Here, we focus on the effect of horizontal barriers on the efficiency of convective mixing. Previous investigations of the effect of heterogeneity on mixing efficiency have focused on random permeability fields or barriers of small extent compared to the intrinsic finger wavelength. The effect of horizontal barriers of larger extent, such as mudstone inclusions or thin shale deposits, has not been given sufficient attention. We perform detailed numerical investigations to represent the continuous solution of this problem in semi-infinite domains with barriers arranged in a periodic manner. The results show that mass flux into the domain, which is a measure of the efficiency of redistribution of the solute, is inversely proportional to the barrier length and proportional to the horizontal and vertical aperture between the barriers, for the cases studied. The flow structure is complex, and it depends not only on the total area of barriers but also largely on the distribution of barriers. Therefore, neither simple analytical models nor simple upscaling methods that lack information about the flow paths, can be used to predict the behavior. However, we compute the effective vertical permeability by flow-based upscaling and show that it can be used to directly obtain a first-order approximation to the mass flux into the domain.

  16. Horizontal tapping furnace and method of operation

    SciTech Connect

    Wunsche, E.R.

    1987-07-14

    A metallurgical furnace is described including: a furnace floor and a furnace wall means extending generally upwardly about the floor, the furnace having a vertical axis and a horizontal axis, means mounting the furnace for pivotal tilting movement about the horizontal axis between a non-tilted, normal upright position, and a tilted discharge position with the furnace tilted less than 15/sup 0/ to the vertical axis; a hearth zone defined between the floor and wall means adapted to house a bath of liquid metal of predetermined volume, the hearth zone having an upper end defining a predetermined upper level for the bath and for a layer of liquid slag floating on the upper level, when the furnace is in a non-tilted, normal upright position; the hearth zone having a lower end adjacent the floor, a tapping passage extending through the wall means from a liquid metal discharge outlet at an outer end into the lower end of the hearth zone, at an inner end, the discharge outlet being defined by an outwardly facing passage wall and the passage at the outer end; the tapping passage disposed generally parallel to the horizontal axis and vertically below the predetermined upper level, when the furnace is in the non-tilted, normal, upright position; a discharge outlet closure having a closure surface and pivotally mounted externally of the passage for pivotal to and for movement towards and away from the furnace wall means between a first position. The closure surface engages the passage wall at the outer end to fully close the discharge outlet, and a second position spaced apart from the passage wall.

  17. Smart Grid Information Clearinghouse (SGIC)

    SciTech Connect

    Rahman, Saifur

    2014-08-31

    Since the Energy Independence and Security Act of 2007 was enacted, there has been a large number of websites that discusses smart grid and relevant information, including those from government, academia, industry, private sector and regulatory. These websites collect information independently. Therefore, smart grid information was quite scattered and dispersed. The objective of this work was to develop, populate, manage and maintain the public Smart Grid Information Clearinghouse (SGIC) web portal. The information in the SGIC website is comprehensive that includes smart grid information, research & development, demonstration projects, technical standards, costs & benefit analyses, business cases, legislation, policy & regulation, and other information on lesson learned and best practices. The content in the SGIC website is logically grouped to allow easily browse, search and sort. In addition to providing the browse and search feature, the SGIC web portal also allow users to share their smart grid information with others though our online content submission platform. The Clearinghouse web portal, therefore, serves as the first stop shop for smart grid information that collects smart grid information in a non-bias, non-promotional manner and can provide a missing link from information sources to end users and better serve users’ needs. The web portal is available at www.sgiclearinghouse.org. This report summarizes the work performed during the course of the project (September 2009 – August 2014). Section 2.0 lists SGIC Advisory Committee and User Group members. Section 3.0 discusses SGIC information architecture and web-based database application functionalities. Section 4.0 summarizes SGIC features and functionalities, including its search, browse and sort capabilities, web portal social networking, online content submission platform and security measures implemented. Section 5.0 discusses SGIC web portal contents, including smart grid 101, smart grid projects

  18. A study of overflow simulations using MPAS-Ocean: Vertical grids, resolution, and viscosity

    NASA Astrophysics Data System (ADS)

    Reckinger, Shanon M.; Petersen, Mark R.; Reckinger, Scott J.

    2015-12-01

    MPAS-Ocean is used to simulate an idealized, density-driven overflow using the dynamics of overflow mixing and entrainment (DOME) setup. Numerical simulations are carried out using three of the vertical coordinate types available in MPAS-Ocean, including z-star with partial bottom cells, z-star with full cells, and sigma coordinates. The results are first benchmarked against other models, including the MITgcm's z-coordinate model and HIM's isopycnal coordinate model, which are used to set the base case used for this work. A full parameter study is presented that looks at how sensitive overflow simulations are to vertical grid type, resolution, and viscosity. Horizontal resolutions with 50 km grid cells are under-resolved and produce poor results, regardless of other parameter settings. Vertical grids ranging in thickness from 15 m to 120 m were tested. A horizontal resolution of 10 km and a vertical resolution of 60 m are sufficient to resolve the mesoscale dynamics of the DOME configuration, which mimics real-world overflow parameters. Mixing and final buoyancy are least sensitive to horizontal viscosity, but strongly sensitive to vertical viscosity. This suggests that vertical viscosity could be adjusted in overflow water formation regions to influence mixing and product water characteristics. Lastly, the study shows that sigma coordinates produce much less mixing than z-type coordinates, resulting in heavier plumes that go further down slope. Sigma coordinates are less sensitive to changes in resolution but as sensitive to vertical viscosity compared to z-coordinates.

  19. POWER GRID RELIABILITY AND SECURITY

    SciTech Connect

    Bose, Anjan; Venkatasubramanian, Vaithianathan; Hauser, Carl; Bakken, David; Anderson, David; Zhao, Chuanlin; Liu, Dong; Yang, Tao; Meng, Ming; Zhang, Lin; Ning, Jiawei; Tashman, Zaid

    2014-09-30

    This project has led to the development of a real-time simulation platform for electric power grids called Grid Simulator or GridSim for simulating the dynamic and information network interactions of large- scale power systems. The platform consists of physical models of power system components including synchronous generators, loads and control, which are simulated using a modified commercial power simulator namely Transient Stability Analysis Tool (TSAT) [1] together with data cleanup components, as well as an emulated substation level and wide-area power analysis components. The platform also includes realistic representations of communication network middleware that can emulate the real-time information flow back and forth between substations and control centers in wide-area power systems. The platform has been validated on a realistic 6000-bus model of the western American power system. The simulator GridSim developed in this project is the first of its kind in its ability to simulate real-time response of large-scale power grids, and serves as a cost effective real-time stability and control simulation platform for power industry.

  20. Grid Stiffened Structure Analysis Tool

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Grid Stiffened Analysis Tool contract is contract performed by Boeing under NASA purchase order H30249D. The contract calls for a "best effort" study comprised of two tasks: (1) Create documentation for a composite grid-stiffened structure analysis tool, in the form of a Microsoft EXCEL spread sheet, that was developed by originally at Stanford University and later further developed by the Air Force, and (2) Write a program that functions as a NASTRAN pre-processor to generate an FEM code for grid-stiffened structure. In performing this contract, Task 1 was given higher priority because it enables NASA to make efficient use of a unique tool they already have; Task 2 was proposed by Boeing because it also would be beneficial to the analysis of composite grid-stiffened structures, specifically in generating models for preliminary design studies. The contract is now complete, this package includes copies of the user's documentation for Task 1 and a CD ROM & diskette with an electronic copy of the user's documentation and an updated version of the "GRID 99" spreadsheet.

  1. The CrossGrid project

    NASA Astrophysics Data System (ADS)

    Kunze, M.; CrossGrid Collaboration

    2003-04-01

    There are many large-scale problems that require new approaches to computing, such as earth observation, environmental management, biomedicine, industrial and scientific modeling. The CrossGrid project addresses realistic problems in medicine, environmental protection, flood prediction, and physics analysis and is oriented towards specific end-users: Medical doctors, who could obtain new tools to help them to obtain correct diagnoses and to guide them during operations; industries, that could be advised on the best timing for some critical operations involving risk of pollution; flood crisis teams, that could predict the risk of a flood on the basis of historical records and actual hydrological and meteorological data; physicists, who could optimize the analysis of massive volumes of data distributed across countries and continents. Corresponding applications will be based on Grid technology and could be complex and difficult to use: the CrossGrid project aims at developing several tools that will make the Grid more friendly for average users. Portals for specific applications will be designed, that should allow for easy connection to the Grid, create a customized work environment, and provide users with all necessary information to get their job done.

  2. ASCI Grid Services summary report.

    SciTech Connect

    Hiebert-Dodd, Kathie L.

    2004-03-01

    The ASCI Grid Services (initially called Distributed Resource Management) project was started under DisCom{sup 2} when distant and distributed computing was identified as a technology critical to the success of the ASCI Program. The goals of the Grid Services project has and continues to be to provide easy, consistent access to all the ASCI hardware and software resources across the nuclear weapons complex using computational grid technologies, increase the usability of ASCI hardware and software resources by providing interfaces for resource monitoring, job submission, job monitoring, and job control, and enable the effective use of high-end computing capability through complex-wide resource scheduling and brokering. In order to increase acceptance of the new technology, the goal included providing these services in both the unclassified as well as the classified user's environment. This paper summarizes the many accomplishments and lessons learned over approximately five years of the ASCI Grid Services Project. It also provides suggestions on how to renew/restart the effort for grid services capability when the situation is right for that need.

  3. Decontamination of large horizontal concrete surfaces outdoors

    SciTech Connect

    Barbier, M.M.; Chester, C.V.

    1980-01-01

    A study is being conducted of the resources and planning that would be required to clean up an extensive contamination of the outdoor environment. As part of this study, an assessment of the fleet of machines needed for decontaminating large outdoor surfaces of horizontal concrete will be attempted. The operations required are described. The performance of applicable existing equipment is analyzed in terms of area cleaned per unit time, and the comprehensive cost of decontamination per unit area is derived. Shielded equipment for measuring directional radiation and continuously monitoring decontamination work are described. Shielding of drivers' cabs and remote control vehicles is addressed.

  4. Thermohaline stability of horizontal layers of saltwater

    SciTech Connect

    Shamsundar, N.; Krishna, C.N.

    1999-07-01

    The thermohaline stability of horizontal layers of saltwater (with cold fresh water on top of warm salty water) was studied using analytical and numerical methods. The marginal oscillatory instability state was calculated for different boundary conditions for uniform s well as for nonuniform temperature and salinity gradients. A correlation was developed to use the ratio of the mean gradient to the maximum gradient to enable stability results for nonlinear gradients to be extrapolated from simpler results for linear gradients. Contrary to published expectations, localized stability criteria are not suitable for calculating the effects of nonlinear temperature gradients.

  5. Large horizontal axis wind turbine development

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Thomas, R. L.

    1979-01-01

    The paper presents an overview of the NASA activities in large horizontal axis wind turbine development. First generation technology large wind turbines (Mod-0A, Mod-1) have been designed and are in operation at selected utility sites. Second generation machines (Mod-2) are scheduled to begin operations on a utility site in 1980. These machines are estimated to generate electricity at less than 4 cents/kWh when manufactured in modest production rates. Meanwhile, plans are being made to continue developing wind turbines which can meet the cost goals of 2 to 3 cents/kWh.

  6. In situ bioremediation using horizontal wells

    SciTech Connect

    1995-04-01

    In Situ Bioremediation (ISB), which is the term used in this report for Gaseous Nutrient Injection for In Situ Bioremediation, remediates soils and ground water contaminated with volatile organic compounds (VOCs) both above and below the water table. ISB involves injection of air and nutrients (sparging and biostimulation) into the ground water and vacuum extraction to remove .VOCs from the vadose zone concomitant with biodegradation of VOCs. The innovation is in the combination of 3 emerging technologies, air stripping, horizontal wells, and bioremediation via gaseous nutrient injection with a baseline technology, soil vapor extraction, to produce a more efficient in situ remediation system.

  7. Horizontal axis Levitron—a physics demonstration

    NASA Astrophysics Data System (ADS)

    Michaelis, Max M.

    2014-01-01

    After a brief history of the Levitron, the first horizontal axis Levitron is reported. Because it is easy to operate, it lends itself to educational physics experiments and analogies. Precession and nutation are visualized by reflecting the beam from a laser pointer off the ‘spignet’. Precession is fundamental to nuclear magnetic resonance, magnetic resonance imaging, particle traps and the movement of bodies in space. Longitudinal and lateral bounce behaviour is explained via ‘the principle of gentle superposition’ of two traps: the micro-precessional and the macro-trap. Theory is initiated. Scaling experiments are mentioned. Industrial applications might follow. Patent pending.

  8. Seismic and horizontal drilling unlock Austin Chalk

    SciTech Connect

    Kuich, N. )

    1990-09-01

    Giddings is a Texas field whose economic production is totally dependent on the development of natural fracture porosity. Matrix porosities and permeabilities in the Austin Chalk limestone, the primary objective, are incapable of maintaining commercial hydrocarbon production. This paper discusses how fracture identification from seismic data has been used as a successful prospecting tool in the area for over ten years. The advent of horizontal drilling technology now allows the development of multiple seismic fracture indicators in the same wellbore. These indicators often represent unique hydrocarbon accumulations.

  9. Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine

    SciTech Connect

    Lawson, Mi. J.; Li, Y.; Sale, D. C.

    2011-01-01

    This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines (HATTs). First, an HATT blade was designed using the blade element momentum method in conjunction with a genetic optimization algorithm. Several unstructured computational grids were generated using this blade geometry and steady CFD simulations were used to perform a grid resolution study. Transient simulations were then performed to determine the effect of time-dependent flow phenomena and the size of the computational timestep on the numerical solution. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

  10. Generation of Large-Scale Winds in Horizontally Anisotropic Convection.

    PubMed

    von Hardenberg, J; Goluskin, D; Provenzale, A; Spiegel, E A

    2015-09-25

    We simulate three-dimensional, horizontally periodic Rayleigh-Bénard convection, confined between free-slip horizontal plates and rotating about a distant horizontal axis. When both the temperature difference between the plates and the rotation rate are sufficiently large, a strong horizontal wind is generated that is perpendicular to both the rotation vector and the gravity vector. The wind is turbulent, large-scale, and vertically sheared. Horizontal anisotropy, engendered here by rotation, appears necessary for such wind generation. Most of the kinetic energy of the flow resides in the wind, and the vertical turbulent heat flux is much lower on average than when there is no wind. PMID:26451558

  11. Wavelet-Based Grid Generation

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1996-01-01

    Wavelets can provide a basis set in which the basis functions are constructed by dilating and translating a fixed function known as the mother wavelet. The mother wavelet can be seen as a high pass filter in the frequency domain. The process of dilating and expanding this high-pass filter can be seen as altering the frequency range that is 'passed' or detected. The process of translation moves this high-pass filter throughout the domain, thereby providing a mechanism to detect the frequencies or scales of information at every location. This is exactly the type of information that is needed for effective grid generation. This paper provides motivation to use wavelets for grid generation in addition to providing the final product: source code for wavelet-based grid generation.

  12. Using Grid Cells for Navigation

    PubMed Central

    Bush, Daniel; Barry, Caswell; Manson, Daniel; Burgess, Neil

    2015-01-01

    Summary Mammals are able to navigate to hidden goal locations by direct routes that may traverse previously unvisited terrain. Empirical evidence suggests that this “vector navigation” relies on an internal representation of space provided by the hippocampal formation. The periodic spatial firing patterns of grid cells in the hippocampal formation offer a compact combinatorial code for location within large-scale space. Here, we consider the computational problem of how to determine the vector between start and goal locations encoded by the firing of grid cells when this vector may be much longer than the largest grid scale. First, we present an algorithmic solution to the problem, inspired by the Fourier shift theorem. Second, we describe several potential neural network implementations of this solution that combine efficiency of search and biological plausibility. Finally, we discuss the empirical predictions of these implementations and their relationship to the anatomy and electrophysiology of the hippocampal formation. PMID:26247860

  13. Grids: The Top Ten Questions

    DOE PAGESBeta

    Schopf, Jennifer M.; Nitzberg, Bill

    2002-01-01

    The design and implementation of a national computing system and data grid has become a reachable goal from both the computer science and computational science point of view. A distributed infrastructure capable of sophisticated computational functions can bring many benefits to scientific work, but poses many challenges, both technical and socio-political. Technical challenges include having basic software tools, higher-level services, functioning and pervasive security, and standards, while socio-political issues include building a user community, adding incentives for sites to be part of a user-centric environment, and educating funding sources about the needs of this community. This paper details the areasmore » relating to Grid research that we feel still need to be addressed to fully leverage the advantages of the Grid.« less

  14. Grid-free compressive beamforming.

    PubMed

    Xenaki, Angeliki; Gerstoft, Peter

    2015-04-01

    The direction-of-arrival (DOA) estimation problem involves the localization of a few sources from a limited number of observations on an array of sensors, thus it can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve high-resolution imaging. On a discrete angular grid, the CS reconstruction degrades due to basis mismatch when the DOAs do not coincide with the angular directions on the grid. To overcome this limitation, a continuous formulation of the DOA problem is employed and an optimization procedure is introduced, which promotes sparsity on a continuous optimization variable. The DOA estimation problem with infinitely many unknowns, i.e., source locations and amplitudes, is solved over a few optimization variables with semidefinite programming. The grid-free CS reconstruction provides high-resolution imaging even with non-uniform arrays, single-snapshot data and under noisy conditions as demonstrated on experimental towed array data. PMID:25920844

  15. Ten Years of Grid Cells.

    PubMed

    Rowland, David C; Roudi, Yasser; Moser, May-Britt; Moser, Edvard I

    2016-07-01

    The medial entorhinal cortex (MEC) creates a neural representation of space through a set of functionally dedicated cell types: grid cells, border cells, head direction cells, and speed cells. Grid cells, the most abundant functional cell type in the MEC, have hexagonally arranged firing fields that tile the surface of the environment. These cells were discovered only in 2005, but after 10 years of investigation, we are beginning to understand how they are organized in the MEC network, how their periodic firing fields might be generated, how they are shaped by properties of the environment, and how they interact with the rest of the MEC network. The aim of this review is to summarize what we know about grid cells and point out where our knowledge is still incomplete. PMID:27023731

  16. Evaluating the Effects of Horizontal Spatial Discretization on Interflow in the Soil Zone Using the Richards and Groundwater Flow Equations

    NASA Astrophysics Data System (ADS)

    Henson, W.; Niswonger, R. G.

    2011-12-01

    In many mountainous regions, a large proportion of streamflow originates as shallow subsurface storm flow (interflow) within the shallow soils of hillslopes. Infiltration can accumulate to form perched groundwater within the upper few meters of the soil horizon that drains to streams through both macropores and soil-matrix. Richards Equation has become a commonly used governing equation for simulating interflow in regional-scale models. Recent research has shown that optimal vertical discretization for Richards Equation near land surface and the water table is much smaller than the discretization typically used in basin-scale hydrologic models, yet little is known about optimal horizontal discretization or potential effects of horizontal discretization on interflow solutions. Most of the work related to the effects of discretization on the solution of Richards Equation has focused on the vertical infiltration problem. This study evaluates horizontal spatial discretization effects on interflow predictions using 1) a modified version of GSFLOW and 2) VS2DT. The modified GSFLOW couples Smith-Parlange 1-D infiltration equations with 3-D unconfined groundwater flow equation, whereas VS2DT uses Richards Equation to represent infiltration and variably saturated flow. Interflow solutions and breakthrough at the stream were compared using a model domain similar to Vauclin and others (1979) with horizontal grid resolutions ranging from 0.05-5m and vertical resolutions ranging between 0.05-1m, with horizontal flow path lengths of 25m to the stream. Variable horizontal spatial resolutions affected VS2DT interflow solutions (RMSE up to 0.12) and interflow breakthrough at the stream, whereas GSFLOW solutions were well correlated (RMSE <0.052). Interflow breakthrough was delayed by up to 10 days with increasing resolution in VS2DT, whereas GSFLOW breakthrough was consistently the same day. Results indicate that the solution of Richards Equation for soil-zone interflow is much

  17. TIGGERC: Turbomachinery Interactive Grid Generator for 2-D Grid Applications and Users Guide

    NASA Technical Reports Server (NTRS)

    Miller, David P.

    1994-01-01

    A two-dimensional multi-block grid generator has been developed for a new design and analysis system for studying multiple blade-row turbomachinery problems. TIGGERC is a mouse driven, interactive grid generation program which can be used to modify boundary coordinates and grid packing and generates surface grids using a hyperbolic tangent or algebraic distribution of grid points on the block boundaries. The interior points of each block grid are distributed using a transfinite interpolation approach. TIGGERC can generate a blocked axisymmetric H-grid, C-grid, I-grid or O-grid for studying turbomachinery flow problems. TIGGERC was developed for operation on Silicon Graphics workstations. Detailed discussion of the grid generation methodology, menu options, operational features and sample grid geometries are presented.

  18. ON JOINT DETERMINISTIC GRID MODELING AND SUB-GRID VARIABILITY CONCEPTUAL FRAMEWORK FOR MODEL EVALUATION

    EPA Science Inventory

    The general situation, (but exemplified in urban areas), where a significant degree of sub-grid variability (SGV) exists in grid models poses problems when comparing gridbased air quality modeling results with observations. Typically, grid models ignore or parameterize processes ...

  19. In-situ bioremediation via horizontal wells

    SciTech Connect

    Hazen, T.C.; Looney, B.B.; Enzien, M.; Franck, M.M.; Fliermans, C.B.; Eddy, C.A.

    1993-12-31

    This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade TCE, PCE and their daughter products in situ by addition of nutrients to the contaminated zone. In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work (Radian 1989). Subsurface soils and water adjacent to an abandoned process sewer line at the SRS have been found to have elevated levels of TCE (Marine and Bledsoe 1984). This area of subsurface and groundwater contamination is the focus of a current integrated demonstration of new remediation technologies utilizing horizontal wells. Bioremediation has the potential to enhance the performance of in situ air stripping as well as offering stand-alone remediation of this and other contaminated sites (Looney et al. 1991). Horizontal wells could also be used to enhance the recovery of groundwater contaminants for bioreactor conversions from deep or inaccessible areas (e.g., under buildings) and to enhance the distribution of nutrient or microbe additions in an in situ bioremediation.

  20. Horizontal Air Bearing Experiment Number 1

    SciTech Connect

    Clauson, T.L.

    1999-08-31

    The Horizontal Air Bearing Experiment No.1 is a series of tests intended to further the understanding of rotational dynamics. A simple experimental assembly is rotated using the Horizontal Air Bearing and allowed to spin freely as the internal rotational damping is measured. The low friction of the bearing effectively isolates the test assembly, allowing the internal damping of the test object to be evaluated. The experimental assembly is composed of an aluminum ball within a spherical cavity. A flanged pipe section and an auxiliary adapter plate secure the assembly to the Air Bearing interface plate. Three aluminum balls are interchanged to vary test parameters. The aluminum balls are free to move independently as the entire assembly rotates. The aluminum balls vary in diameter and/or surface finish. While the diameter and surface finish is varied, the space between the ball and socket is dry. To examine the effect of viscosity, the space is filled with a lubricant while the ball diameter and surface finish is held constant.

  1. Modelling coastal low-level wind-jets: does horizontal resolution matter?

    NASA Astrophysics Data System (ADS)

    Ranjha, Raza; Tjernström, Michael; Svensson, Gunilla; Semedo, Alvaro

    2016-04-01

    Atmospheric flows in coastal regions are impacted by land-sea temperature contrasts, complex terrain, shape of the coastline, among many things. Along the west coast of central North America, winds in the boundary layer are mainly from north or northwest, roughly parallel to the coastline. Frequently, the coastal low-level wind field is characterized by a sharp wind maximum along the coast in the lowest kilometre. This feature, commonly referred to as a coastal low-level jet (CLLJ), has significant impact on the climatology of the coastal region and affects many human activities in the littoral zone. Hence, a good understanding and forecasting of CLLJs are vital. This study evaluates the issue of proper mesoscale numerical model resolution to describe the physics of a CLLJ, and its impact on the upper ocean. The COAMPS® model is used for a summer event to determine the realism of the model results compared to observations, from an area of supercritical flow adjustment between Pt. Sur and Pt. Conception, California. Simulations at different model horizontal resolutions, from 54 to 2 km are performed. While the model produces realistic results with increasing details at higher resolution, the results do not fully converge even at a resolution of only few kilometres and an objective analysis of model errors do not show an increased skill with increasing resolution. Based on all available information, a compromise resolution appears to be at least 6 km. New methods may have to be developed to evaluate models at very high resolution.

  2. TBGG- INTERACTIVE ALGEBRAIC GRID GENERATION

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1994-01-01

    TBGG, Two-Boundary Grid Generation, applies an interactive algebraic grid generation technique in two dimensions. The program incorporates mathematical equations that relate the computational domain to the physical domain. TBGG has application to a variety of problems using finite difference techniques, such as computational fluid dynamics. Examples include the creation of a C-type grid about an airfoil and a nozzle configuration in which no left or right boundaries are specified. The underlying two-boundary technique of grid generation is based on Hermite cubic interpolation between two fixed, nonintersecting boundaries. The boundaries are defined by two ordered sets of points, referred to as the top and bottom. Left and right side boundaries may also be specified, and call upon linear blending functions to conform interior interpolation to the side boundaries. Spacing between physical grid coordinates is determined as a function of boundary data and uniformly spaced computational coordinates. Control functions relating computational coordinates to parametric intermediate variables that affect the distance between grid points are embedded in the interpolation formulas. A versatile control function technique with smooth cubic spline functions is also presented. The TBGG program is written in FORTRAN 77. It works best in an interactive graphics environment where computational displays and user responses are quickly exchanged. The program has been implemented on a CDC Cyber 170 series computer using NOS 2.4 operating system, with a central memory requirement of 151,700 (octal) 60 bit words. TBGG requires a Tektronix 4015 terminal and the DI-3000 Graphics Library of Precision Visuals, Inc. TBGG was developed in 1986.

  3. Influence of grid aspect ratio on planetary boundary layer turbulence in large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Nishizawa, S.; Yashiro, H.; Sato, Y.; Miyamoto, Y.; Tomita, H.

    2015-10-01

    We examine the influence of the grid aspect ratio of horizontal to vertical grid spacing on turbulence in the planetary boundary layer (PBL) in a large-eddy simulation (LES). In order to clarify and distinguish them from other artificial effects caused by numerical schemes, we used a fully compressible meteorological LES model with a fully explicit scheme of temporal integration. The influences are investigated with a series of sensitivity tests with parameter sweeps of spatial resolution and grid aspect ratio. We confirmed that the mixing length of the eddy viscosity and diffusion due to sub-grid-scale turbulence plays an essential role in reproducing the theoretical -5/3 slope of the energy spectrum. If we define the filter length in LES modeling based on consideration of the numerical scheme, and introduce a corrective factor for the grid aspect ratio into the mixing length, the theoretical slope of the energy spectrum can be obtained; otherwise, spurious energy piling appears at high wave numbers. We also found that the grid aspect ratio has influence on the turbulent statistics, especially the skewness of the vertical velocity near the top of the PBL, which becomes spuriously large with large aspect ratio, even if a reasonable spectrum is obtained.

  4. The Design of Grids in Web Surveys

    PubMed Central

    Couper, Mick P.; Tourangeau, Roger; Conrad, Frederick G.; Zhang, Chan

    2014-01-01

    Grid or matrix questions are associated with a number of problems in Web surveys. In this paper, we present results from two experiments testing the design of grid questions to reduce breakoffs, missing data, and satisficing. The first examines dynamic elements to help guide respondent through the grid, and on splitting a larger grid into component pieces. The second manipulates the visual complexity of the grid and on simplifying the grid. We find that using dynamic feedback to guide respondents through a multi-question grid helps reduce missing data. Splitting the grids into component questions further reduces missing data and motivated underreporting. The visual complexity of the grid appeared to have little effect on performance. PMID:25258472

  5. Scientific Computing on the Grid

    SciTech Connect

    Allen, Gabrielle; Seidel, Edward; Shalf, John

    2001-12-12

    Computer simulations are becoming increasingly important as the only means for studying and interpreting the complex processes of nature. Yet the scope and accuracy of these simulations are severely limited by available computational power, even using today's most powerful supercomputers. As we endeavor to simulate the true complexity of nature, we will require much larger scale calculations than are possible at present. Such dynamic and large scale applications will require computational grids and grids require development of new latency tolerant algorithms, and sophisticated code frameworks like Cactus to carry out more complex and high fidelity simulations with a massive degree of parallelism.

  6. Convectively cooled electrical grid structure

    DOEpatents

    Paterson, J.A.; Koehler, G.W.

    1980-11-10

    Undesirable distortions of electrical grid conductors from thermal cycling are minimized and related problems such as unwanted thermionic emission and structural failure from overheating are avoided by providing for a flow of fluid coolant within each conductor. The conductors are secured at each end to separate flexible support elements which accommodate to individual longitudinal expansion and contraction of each conductor while resisting lateral displacements, the coolant flow preferably being directed into and out of each conductor through passages in the flexible support elements. The grid may have a modular or divided construction which facilitates manufacture and repairs.

  7. GENI: Grid Hardware and Software

    SciTech Connect

    2012-01-09

    GENI Project: The 15 projects in ARPA-E’s GENI program, short for “Green Electricity Network Integration,” aim to modernize the way electricity is transmitted in the U.S. through advances in hardware and software for the electric grid. These advances will improve the efficiency and reliability of electricity transmission, increase the amount of renewable energy the grid can utilize, and provide energy suppliers and consumers with greater control over their power flows in order to better manage peak power demand and cost.

  8. Convectively cooled electrical grid structure

    DOEpatents

    Paterson, James A.; Koehler, Gary W.

    1982-01-01

    Undesirable distortions of electrical grid conductors (12) from thermal cycling are minimized and related problems such as unwanted thermionic emission and structural failure from overheating are avoided by providing for a flow of fluid coolant within each conductor (12). The conductors (12) are secured at each end to separate flexible support elements (16) which accommodate to individual longitudinal expansion and contraction of each conductor (12) while resisting lateral displacements, the coolant flow preferably being directed into and out of each conductor through passages (48) in the flexible support elements (16). The grid (11) may have a modular or divided construction which facilitates manufacture and repairs.

  9. Grid for Earth Science Applications

    NASA Astrophysics Data System (ADS)

    Petitdidier, Monique; Schwichtenberg, Horst

    2013-04-01

    The civil society at large has addressed to the Earth Science community many strong requirements related in particular to natural and industrial risks, climate changes, new energies. The main critical point is that on one hand the civil society and all public ask for certainties i.e. precise values with small error range as it concerns prediction at short, medium and long term in all domains; on the other hand Science can mainly answer only in terms of probability of occurrence. To improve the answer or/and decrease the uncertainties, (1) new observational networks have been deployed in order to have a better geographical coverage and more accurate measurements have been carried out in key locations and aboard satellites. Following the OECD recommendations on the openness of research and public sector data, more and more data are available for Academic organisation and SMEs; (2) New algorithms and methodologies have been developed to face the huge data processing and assimilation into simulations using new technologies and compute resources. Finally, our total knowledge about the complex Earth system is contained in models and measurements, how we put them together has to be managed cleverly. The technical challenge is to put together databases and computing resources to answer the ES challenges. However all the applications are very intensive computing. Different compute solutions are available and depend on the characteristics of the applications. One of them is Grid especially efficient for independent or embarrassingly parallel jobs related to statistical and parametric studies. Numerous applications in atmospheric chemistry, meteorology, seismology, hydrology, pollution, climate and biodiversity have been deployed successfully on Grid. In order to fulfill requirements of risk management, several prototype applications have been deployed using OGC (Open geospatial Consortium) components with Grid middleware. The Grid has permitted via a huge number of runs to

  10. Interactive solution-adaptive grid generation

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Henderson, Todd L.

    1992-01-01

    TURBO-AD is an interactive solution-adaptive grid generation program under development. The program combines an interactive algebraic grid generation technique and a solution-adaptive grid generation technique into a single interactive solution-adaptive grid generation package. The control point form uses a sparse collection of control points to algebraically generate a field grid. This technique provides local grid control capability and is well suited to interactive work due to its speed and efficiency. A mapping from the physical domain to a parametric domain was used to improve difficulties that had been encountered near outwardly concave boundaries in the control point technique. Therefore, all grid modifications are performed on a unit square in the parametric domain, and the new adapted grid in the parametric domain is then mapped back to the physical domain. The grid adaptation is achieved by first adapting the control points to a numerical solution in the parametric domain using control sources obtained from flow properties. Then a new modified grid is generated from the adapted control net. This solution-adaptive grid generation process is efficient because the number of control points is much less than the number of grid points and the generation of a new grid from the adapted control net is an efficient algebraic process. TURBO-AD provides the user with both local and global grid controls.

  11. Grid Collector: Facilitating Efficient Selective Access from DataGrids

    SciTech Connect

    Wu, Kesheng; Gu, Junmin; Lauret, Jerome; Poskanzer, Arthur M.; Shoshani, Arie; Sim, Alexander; Zhang, Wei-Ming

    2005-05-17

    The Grid Collector is a system that facilitates the effective analysis and spontaneous exploration of scientific data. It combines an efficient indexing technology with a Grid file management technology to speed up common analysis jobs on high-energy physics data and to enable some previously impractical analysis jobs. To analyze a set of high-energy collision events, one typically specifies the files containing the events of interest, reads all the events in the files, and filters out unwanted ones. Since most analysis jobs filter out significant number of events, a considerable amount of time is wasted by reading the unwanted events. The Grid Collector removes this inefficiency by allowing users to specify more precisely what events are of interest and to read only the selected events. This speeds up most analysis jobs. In existing analysis frameworks, the responsibility of bringing files from tertiary storages or remote sites to local disks falls on the users. This forces most of analysis jobs to be performed at centralized computer facilities where commonly used files are kept on large shared file systems. The Grid Collector automates file management tasks and eliminates the labor-intensive manual file transfers. This makes it much easier to perform analyses that require data files on tertiary storages and remote sites. It also makes more computer resources available for analysis jobs since they are no longer bound to the centralized facilities.

  12. IGB grid: User's manual (A turbomachinery grid generation code)

    NASA Technical Reports Server (NTRS)

    Beach, T. A.; Hoffman, G.

    1992-01-01

    A grid generation code called IGB is presented for use in computational investigations of turbomachinery flowfields. It contains a combination of algebraic and elliptic techniques coded for use on an interactive graphics workstation. The instructions for use and a test case are included.

  13. caGrid 1.0: a Grid enterprise architecture for cancer research.

    PubMed

    Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel

    2007-01-01

    caGrid is the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG) program. The current release, caGrid version 1.0, is developed as the production Grid software infrastructure of caBIG. Based on feedback from adopters of the previous version (caGrid 0.5), it has been significantly enhanced with new features and improvements to existing components. This paper presents an overview of caGrid 1.0, its main components, and enhancements over caGrid 0.5. PMID:18693901

  14. Design and Implementation of a Multi-Grid Resource Broker for Grid Computing

    NASA Astrophysics Data System (ADS)

    Yang, Chao-Tung; Hu, Wen-Jen

    Grid computing integrates geographical computing resources across multiple virtual organizations to achieve high performance computing. A single grid often could not provide huge resources, because virtual organizations have no adequate of computing resources restriction on the scale of organizations. In this paper, we present a multi-grid, new grid architecture for integrating multiple computational grids from different virtual organizations. A resource broker is built on multiple grid environments; it integrates a number of single grids from different virtual organizations without the limitation of organizations. The multiple grid resource could be utilized efficiently and precisely.

  15. Tuned grid generation with ICEM CFD

    NASA Technical Reports Server (NTRS)

    Wulf, Armin; Akdag, Vedat

    1995-01-01

    ICEM CFD is a CAD based grid generation package that supports multiblock structured, unstructured tetrahedral and unstructured hexahedral grids. Major development efforts have been spent to extend ICEM CFD's multiblock structured and hexahedral unstructured grid generation capabilities. The modules added are: a parametric grid generation module and a semi-automatic hexahedral grid generation module. A fully automatic version of the hexahedral grid generation module for around a set of predefined objects in rectilinear enclosures has been developed. These modules will be presented and the procedures used will be described, and examples will be discussed.

  16. Estimating the horizontal and vertical direction-of-arrival of water-borne seismic signals in the northern Philippine Sea.

    PubMed

    Freeman, Simon E; D'Spain, Gerald L; Lynch, Stephen D; Stephen, Ralph A; Heaney, Kevin D; Murray, James J; Baggeroer, Arthur B; Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A

    2013-10-01

    Conventional and adaptive plane-wave beamforming with simultaneous recordings by large-aperture horizontal and vertical line arrays during the 2009 Philippine Sea Engineering Test (PhilSea09) reveal the rate of occurrence and the two-dimensional arrival structure of seismic phases that couple into the deep ocean. A ship-deployed, controlled acoustic source was used to evaluate performance of the horizontal array for a range of beamformer adaptiveness levels. Ninety T-phases from unique azimuths were recorded between Yeardays 107 to 119. T-phase azimuth and S-minus-P-phase time-of-arrival range estimates were validated using United States Geological Survey seismic monitoring network data. Analysis of phases from a seismic event that occurred on Yearday 112 near the east coast of Taiwan approximately 450 km from the arrays revealed a 22° clockwise evolution of T-phase azimuth over 90 s. Two hypotheses to explain such evolution-body wave excitation of multiple sources or in-water scattering-are presented based on T-phase origin sites at the intersection of azimuthal great circle paths and ridge/coastal bathymetry. Propagation timing between the source, scattering region, and array position suggests the mechanism behind the evolution involved scattering of the T-phase from the Ryukyu Ridge and a T-phase formation/scattering location estimation error of approximately 3.2 km. PMID:24116523

  17. Grid-coordinate generation program

    USGS Publications Warehouse

    Cosner, Oliver J.; Horwich, Esther

    1974-01-01

    This program description of the grid-coordinate generation program is written for computer users who are familiar with digital aquifer models. The program computes the coordinates for a variable grid -used in the 'Pinder Model' (a finite-difference aquifer simulator), for input to the CalComp GPCP (general purpose contouring program). The program adjusts the y-value by a user-supplied constant in order to transpose the origin of the model grid from the upper left-hand corner to the lower left-hand corner of the grid. The user has the options of, (1.) choosing the boundaries of the plot; (2.) adjusting the z-values (altitudes) by a constant; (3.) deleting superfluous z-values and (4.) subtracting the simulated surfaces from each other to obtain the decline. Output of this program includes the fixed format CNTL data cards and the other data cards required for input to GPCP. The output from GPCP then is used to produce a potentiometric map or a decline map by means of the CalComp plotter.

  18. Grid Logging: Best Practices Guide

    SciTech Connect

    Tierney, Brian L; Tierney, Brian L; Gunter, Dan

    2008-04-01

    The purpose of this document is to help developers of Grid middleware and application software generate log files that will be useful to Grid administrators, users, developers and Grid middleware itself. Currently, most of the currently generated log files are only useful to the author of the program. Good logging practices are instrumental to performance analysis, problem diagnosis, and security auditing tasks such as incident tracing and damage assessment. This document does not discuss the issue of a logging API. It is assumed that a standard log API such as syslog (C), log4j (Java), or logger (Python) is being used. Other custom logging API or even printf could be used. The key point is that the logs must contain the required information in the required format. At a high level of abstraction, the best practices for Grid logging are: (1) Consistently structured, typed, log events; (2) A standard high-resolution timestamp; (3) Use of logging levels and categories to separate logs by detail and purpose; (4) Consistent use of global and local identifiers; and (5) Use of some regular, newline-delimited ASCII text format. The rest of this document describes each of these recommendations in detail.

  19. Network mechanisms of grid cells.

    PubMed

    Moser, Edvard I; Moser, May-Britt; Roudi, Yasser

    2014-02-01

    One of the major breakthroughs in neuroscience is the emerging understanding of how signals from the external environment are extracted and represented in the primary sensory cortices of the mammalian brain. The operational principles of the rest of the cortex, however, have essentially remained in the dark. The discovery of grid cells, and their functional organization, opens the door to some of the first insights into the workings of the association cortices, at a stage of neural processing where firing properties are shaped not primarily by the nature of incoming sensory signals but rather by internal self-organizing principles. Grid cells are place-modulated neurons whose firing locations define a periodic triangular array overlaid on the entire space available to a moving animal. The unclouded firing pattern of these cells is rare within the association cortices. In this paper, we shall review recent advances in our understanding of the mechanisms of grid-cell formation which suggest that the pattern originates by competitive network interactions, and we shall relate these ideas to new insights regarding the organization of grid cells into functionally segregated modules. PMID:24366126

  20. Smart Grid Communications System Blueprint

    NASA Astrophysics Data System (ADS)

    Clark, Adrian; Pavlovski, Chris

    2010-10-01

    Telecommunications operators are well versed in deploying 2G and 3G wireless networks. These networks presently support the mobile business user and/or retail consumer wishing to place conventional voice calls and data connections. The electrical power industry has recently commenced transformation of its distribution networks by deploying smart monitoring and control devices throughout their networks. This evolution of the network into a `smart grid' has also motivated the need to deploy wireless technologies that bridge the communication gap between the smart devices and information technology systems. The requirements of these networks differ from traditional wireless networks that communications operators have deployed, which have thus far forced energy companies to consider deploying their own wireless networks. We present our experience in deploying wireless networks to support the smart grid and highlight the key properties of these networks. These characteristics include application awareness, support for large numbers of simultaneous cell connections, high service coverage and prioritized routing of data. We also outline our target blueprint architecture that may be useful to the industry in building wireless and fixed networks to support the smart grid. By observing our experiences, telecommunications operators and equipment manufacturers will be able to augment their current networks and products in a way that accommodates the needs of the emerging industry of smart grids and intelligent electrical networks.

  1. Ground Boundary Conditions for Thermal Convection Over Horizontal Surfaces at High Rayleigh Numbers

    NASA Astrophysics Data System (ADS)

    Hanjalić, K.; Hrebtov, M.

    2016-07-01

    We present "wall functions" for treating the ground boundary conditions in the computation of thermal convection over horizontal surfaces at high Rayleigh numbers using coarse numerical grids. The functions are formulated for an algebraic-flux model closed by transport equations for the turbulence kinetic energy, its dissipation rate and scalar variance, but could also be applied to other turbulence models. The three-equation algebraic-flux model, solved in a T-RANS mode ("Transient" Reynolds-averaged Navier-Stokes, based on triple decomposition), was shown earlier to reproduce well a number of generic buoyancy-driven flows over heated surfaces, albeit by integrating equations up to the wall. Here we show that by using a set of wall functions satisfactory results are found for the ensemble-averaged properties even on a very coarse computational grid. This is illustrated by the computations of the time evolution of a penetrative mixed layer and Rayleigh-Bénard (open-ended, 4:4:1 domain) convection, using 10 × 10 × 100 and 10 × 10 × 20 grids, compared also with finer grids (e.g. 60 × 60 × 100), as well as with one-dimensional treatment using 1 × 1 × 100 and 1 × 1 × 20 nodes. The approach is deemed functional for simulations of a convective boundary layer and mesoscale atmospheric flows, and pollutant transport over realistic complex hilly terrain with heat islands, urban and natural canopies, for diurnal cycles, or subjected to other time and space variations in ground conditions and stratification.

  2. Ground Boundary Conditions for Thermal Convection Over Horizontal Surfaces at High Rayleigh Numbers

    NASA Astrophysics Data System (ADS)

    Hanjalić, K.; Hrebtov, M.

    2016-02-01

    We present "wall functions" for treating the ground boundary conditions in the computation of thermal convection over horizontal surfaces at high Rayleigh numbers using coarse numerical grids. The functions are formulated for an algebraic-flux model closed by transport equations for the turbulence kinetic energy, its dissipation rate and scalar variance, but could also be applied to other turbulence models. The three-equation algebraic-flux model, solved in a T-RANS mode ("Transient" Reynolds-averaged Navier-Stokes, based on triple decomposition), was shown earlier to reproduce well a number of generic buoyancy-driven flows over heated surfaces, albeit by integrating equations up to the wall. Here we show that by using a set of wall functions satisfactory results are found for the ensemble-averaged properties even on a very coarse computational grid. This is illustrated by the computations of the time evolution of a penetrative mixed layer and Rayleigh-Bénard (open-ended, 4:4:1 domain) convection, using 10 × 10 × 100 and 10 × 10 × 20 grids, compared also with finer grids (e.g. 60 × 60 × 100 ), as well as with one-dimensional treatment using 1 × 1 × 100 and 1 × 1 × 20 nodes. The approach is deemed functional for simulations of a convective boundary layer and mesoscale atmospheric flows, and pollutant transport over realistic complex hilly terrain with heat islands, urban and natural canopies, for diurnal cycles, or subjected to other time and space variations in ground conditions and stratification.

  3. FermiGrid - experience and future plans

    SciTech Connect

    Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Timm, S.; Yocum, D.; /Fermilab

    2007-09-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid and the WLCG. FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the Open Science Grid (OSG), EGEE and the Worldwide LHC Computing Grid Collaboration (WLCG). Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure--the successes and the problems.

  4. HORSMIC. Horizontal Salt Solution Mining Model

    SciTech Connect

    Russo, A.J.

    1994-01-01

    The code HORSMIC was written to solve the problem of calculating the shape of hydrocarbon (gas or liquid) storage caverns formed by solution mining in bedded salt formations. In the past many storage caverns have been formed by vertically drilling into salt dome formations and solution mining large-aspect-ratio, vertically axisymmetric caverns. This approach is generally not satisfactory for shallow salt beds because it would result in geomechanically-unstable, pancake-shaped caverns. In order to produce a high aspect ratio cavern in the horizontal direction a more complicated strategy must be employed. This code was developed to implement such a strategy, and can be used to estimate the shape of the cavern produced by a prescribed leaching schedule. Multiple trials can then be used to investigate the effects of various pipe hole configurations in order to optimize over the cavern shape.

  5. Conjugate natural convection between horizontal eccentric cylinders

    NASA Astrophysics Data System (ADS)

    Nasiri, Davood; Dehghan, Ali Akbar; Hadian, Mohammad Reza

    2016-06-01

    This study involved the numerical investigation of conjugate natural convection between two horizontal eccentric cylinders. Both cylinders were considered to be isothermal with only the inner cylinder having a finite wall thickness. The momentum and energy equations were discretized using finite volume method and solved by employing SIMPLER algorithm. Numerical results were presented for various solid-fluid conductivity ratios (KR) and various values of eccentricities in different thickness of inner cylinder wall and also for different angular positions of inner cylinder. From the results, it was observed that in an eccentric case, and for KR < 10, an increase in thickness of inner cylinder wall resulted in a decrease in the average equivalent conductivity coefficient (overline{{K_{eq} }} ); however, a KR > 10 value caused an increase in overline{{K_{eq} }} . It was also concluded that in any angular position of inner cylinder, the value of overline{{K_{eq} }} increased with increase in the eccentricity.

  6. Horizontal Hostility among Non-Meat Eaters

    PubMed Central

    Rothgerber, Hank

    2014-01-01

    The present study examined intergroup judgments made between four groups of non-meat eaters: health vegetarians; ethical vegetarians; health vegans, and ethical vegans. Consistent with hypotheses based on horizontal hostility and the need to maintain ingroup distinctiveness, ethical vegetarians gave unfavorable evaluations to health vegetarians relative to vegans, especially when the mainstream omnivore group was made salient. Contrary to expectations, vegans gave relatively more favorable evaluations to ethical vegetarians than health vegetarians when mainstream salience was low. This was especially true for vegans who were motivated primarily by ethical concerns. When mainstream salience was high, vegans did not distinguish between the vegetarian subgroups. Results suggest that one’s motives for abstaining from meat often play a larger role in this type of intergroup perceptions than one’s dietary practices. PMID:24809342

  7. Aberrations of a horizontal-vertical depolarizer

    NASA Technical Reports Server (NTRS)

    Mcclain, Stephen C.; Chipman, Russell A.; Hillman, Lloyd W.

    1992-01-01

    Ray-trace equations for uniaxial birefringent materials are used here to derive third-order estimates for aberrations that are produced in imaging through uniaxial plates and horizontal-vertical (HV) depolarizers. An HV depolarizer is a spatial pseudodepolarizer; it converts a uniform input polarization state into a continuum of spatially varying polarization states in an output beam. An HV depolarizer consists of two birefringent wedges whose crystal axes are crossed at 90 deg. The interface between the wedges is included, which leads to a spatially varying retardance that provides the spatial pseudodepolarization. In HV depolarizers, spherical aberration, astigmatism, and image doubling are the principal aberrations for on-axis objects. Only spherical aberration occurs in isotropic plates, while the presence of birefringent wedges introduces astigmatism and image doubling. It is shown that image separation is proportional to the magnitude of the retardance variation.

  8. Large, horizontal-axis wind turbines

    NASA Technical Reports Server (NTRS)

    Linscott, B. S.; Perkins, P.; Dennett, J. T.

    1984-01-01

    Development of the technology for safe, reliable, environmentally acceptable large wind turbines that have the potential to generate a significant amount of electricity at costs competitive with conventional electric generating systems are presented. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. There are several ongoing large wind system development projects and applied research efforts directed toward meeting the technology requirements for utility applications. Detailed information on these projects is provided. The Mod-O research facility and current applied research effort in aerodynamics, structural dynamics and aeroelasticity, composite and hybrid composite materials, and multiple system interaction are described. A chronology of component research and technology development for large, horizontal axis wind turbines is presented. Wind characteristics, wind turbine economics, and the impact of wind turbines on the environment are reported. The need for continued wind turbine research and technology development is explored. Over 40 references are sited and a bibliography is included.

  9. Horizontal Drop of 21- PWR Waste Package

    SciTech Connect

    A.K. Scheider

    2007-01-31

    The objective of this calculation is to determine the structural response of the waste package (WP) dropped horizontally from a specified height. The WP used for that purpose is the 21-Pressurized Water Reactor (PWR) WP. The scope of this document is limited to reporting the calculation results in-terms of stress intensities. This calculation is associated with the WP design and was performed by the Waste Package Design group in accordance with the ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 16). AP-3.12Q, ''Calculations'' (Ref. 1 1) is used to perform the calculation and develop the document. The sketches attached to this calculation provide the potential dimensions and materials for the 21-PWR WP design.

  10. Horizontal tail loads in maneuvering flight

    NASA Technical Reports Server (NTRS)

    Pearson, Henry A; Mcgowan, William A; Donegan, James J

    1951-01-01

    A method is given for determining the horizontal tail loads in maneuvering flight. The method is based upon the assignment of a load-factor variation with time and the determination of a minimum time to reach peak load factor. The tail load is separated into various components. Examination of these components indicated that one of the components was so small that it could be neglected for most conventional airplanes; therefore, the number of aerodynamic parameters needed in this computation of tail loads was reduced to a minimum. In order to illustrate the method, as well as to show the effect of the main variables, a number of examples are given. Some discussion is given regarding the determination of maximum tail loads, maximum pitching accelerations, and maximum pitching velocities obtainable.

  11. Passive magnetic bearing for a horizontal shaft

    DOEpatents

    Post, Richard F.

    2003-12-02

    A passive magnetic bearing is composed of a levitation element and a restorative element. The levitation element is composed of a pair of stationary arcuate ferromagnetic segments located within an annular radial-field magnet array. The magnet array is attached to the inner circumference of a hollow shaft end. An attractive force between the arcuate segments and the magnet array acts vertically to levitate the shaft, and also in a horizontal transverse direction to center the shaft. The restorative element is comprised of an annular Halbach array of magnets and a stationary annular circuit array located within the Halbach array. The Halbach array is attached to the inner circumference of the hollow shaft end. A repulsive force between the Halbach array and the circuit array increases inversely to the radial space between them, and thus acts to restore the shaft to its equilibrium axis of rotation when it is displaced therefrom.

  12. Horizontal Gene Exchange in Environmental Microbiota

    PubMed Central

    Aminov, Rustam I.

    2011-01-01

    Horizontal gene transfer (HGT) plays an important role in the evolution of life on the Earth. This view is supported by numerous occasions of HGT that are recorded in the genomes of all three domains of living organisms. HGT-mediated rapid evolution is especially noticeable among the Bacteria, which demonstrate formidable adaptability in the face of recent environmental changes imposed by human activities, such as the use of antibiotics, industrial contamination, and intensive agriculture. At the heart of the HGT-driven bacterial evolution and adaptation are highly sophisticated natural genetic engineering tools in the form of a variety of mobile genetic elements (MGEs). The main aim of this review is to give a brief account of the occurrence and diversity of MGEs in natural ecosystems and of the environmental factors that may affect MGE-mediated HGT. PMID:21845185

  13. Horizontal Gene Transfer, Dispersal and Haloarchaeal Speciation

    PubMed Central

    Papke, R. Thane; Corral, Paulina; Ram-Mohan, Nikhil; de la Haba, Rafael R.; Sánchez-Porro, Cristina; Makkay, Andrea; Ventosa, Antonio

    2015-01-01

    The Halobacteria are a well-studied archaeal class and numerous investigations are showing how their diversity is distributed amongst genomes and geographic locations. Evidence indicates that recombination between species continuously facilitates the arrival of new genes, and within species, it is frequent enough to spread acquired genes amongst all individuals in the population. To create permanent independent diversity and generate new species, barriers to recombination are probably required. The data support an interpretation that rates of evolution (e.g., horizontal gene transfer and mutation) are faster at creating geographically localized variation than dispersal and invasion are at homogenizing genetic differences between locations. Therefore, we suggest that recurrent episodes of dispersal followed by variable periods of endemism break the homogenizing forces of intrapopulation recombination and that this process might be the principal stimulus leading to divergence and speciation in Halobacteria. PMID:25997110

  14. High expression hampers horizontal gene transfer.

    PubMed

    Park, Chungoo; Zhang, Jianzhi

    2012-01-01

    Horizontal gene transfer (HGT), the movement of genetic material from one species to another, is a common phenomenon in prokaryotic evolution. Although the rate of HGT is known to vary among genes, our understanding of the cause of this variation, currently summarized by two rules, is far from complete. The first rule states that informational genes, which are involved in DNA replication, transcription, and translation, have lower transferabilities than operational genes. The second rule asserts that protein interactivity negatively impacts gene transferability. Here, we hypothesize that high expression hampers HGT, because the fitness cost of an HGT to the recipient, arising from the 1) energy expenditure in transcription and translation, 2) cytotoxic protein misfolding, 3) reduction in cellular translational efficiency, 4) detrimental protein misinteraction, and 5) disturbance of the optimal protein concentration or cell physiology, increases with the expression level of the transferred gene. To test this hypothesis, we examined laboratory and natural HGTs to Escherichia coli. We observed lower transferabilities of more highly expressed genes, even after controlling the confounding factors from the two established rules and the genic GC content. Furthermore, expression level predicts gene transferability better than all other factors examined. We also confirmed the significant negative impact of gene expression on the rate of HGTs to 127 of 133 genomes of eubacteria and archaebacteria. Together, these findings establish the gene expression level as a major determinant of horizontal gene transferability. They also suggest that most successful HGTs are initially slightly deleterious, fixed because of their negligibly low costs rather than high benefits to the recipient. PMID:22436996

  15. Horizontal transfer of supernumerary chromosomes in fungi.

    PubMed

    van der Does, H Charlotte; Rep, Martijn

    2012-01-01

    Several species of filamentous fungi contain so-called dispensable or supernumerary chromosomes. These chromosomes are dispensable for the fungus to survive, but may carry genes required for specialized functions, such as infection of a host plant. It has been shown that at least some dispensable chromosomes are able to transfer horizontally (i.e., in the absence of a sexual cycle) from one fungal strain to another. In this paper, we describe a method by which this can be shown. Horizontal chromosome transfer (HCT) occurs during co-incubation of two strains. To document the actual occurrence of HCT, it is necessary to select for HCT progeny. This is accomplished by transforming two different drug-resistance genes into the two parent strains before their co-incubation. In one of the strains (the "donor"), a drug-resistance gene should be integrated in a chromosome of which the propensity for HCT is under investigation. In the "tester" or "recipient" strain, another drug-resistance gene should be integrated somewhere in the core genome. In this way, after co-incubation, HCT progeny can be selected on plates containing both drugs. HCT can be initiated with equal amounts of asexual spores of both strains, plated on regular growth medium for the particular fungus, followed by incubation until new asexual spores are formed. The new asexual spores are then harvested and plated on plates containing both drugs. Double drug-resistant colonies that appear should carry at least one chromosome from each parental strain. Finally, double drug-resistant strains need to be analysed to assess whether HCT has actually occurred. This can be done by various genome mapping methods, like CHEF-gels, AFLP, RFLP, PCR markers, optical maps, or even complete genome sequencing. PMID:22183669

  16. Grid computing in image analysis

    PubMed Central

    2011-01-01

    Diagnostic surgical pathology or tissue–based diagnosis still remains the most reliable and specific diagnostic medical procedure. The development of whole slide scanners permits the creation of virtual slides and to work on so-called virtual microscopes. In addition to interactive work on virtual slides approaches have been reported that introduce automated virtual microscopy, which is composed of several tools focusing on quite different tasks. These include evaluation of image quality and image standardization, analysis of potential useful thresholds for object detection and identification (segmentation), dynamic segmentation procedures, adjustable magnification to optimize feature extraction, and texture analysis including image transformation and evaluation of elementary primitives. Grid technology seems to possess all features to efficiently target and control the specific tasks of image information and detection in order to obtain a detailed and accurate diagnosis. Grid technology is based upon so-called nodes that are linked together and share certain communication rules in using open standards. Their number and functionality can vary according to the needs of a specific user at a given point in time. When implementing automated virtual microscopy with Grid technology, all of the five different Grid functions have to be taken into account, namely 1) computation services, 2) data services, 3) application services, 4) information services, and 5) knowledge services. Although all mandatory tools of automated virtual microscopy can be implemented in a closed or standardized open system, Grid technology offers a new dimension to acquire, detect, classify, and distribute medical image information, and to assure quality in tissue–based diagnosis. PMID:21516880

  17. Spaceflight Operations Services Grid (SOSG)

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Thigpen, William W.

    2004-01-01

    In an effort to adapt existing space flight operations services to new emerging Grid technologies we are developing a Grid-based prototype space flight operations Grid. This prototype is based on the operational services being provided to the International Space Station's Payload operations located at the Marshall Space Flight Center, Alabama. The prototype services will be Grid or Web enabled and provided to four user communities through portal technology. Users will have the opportunity to assess the value and feasibility of Grid technologies to their specific areas or disciplines. In this presentation descriptions of the prototype development, User-based services, Grid-based services and status of the project will be presented. Expected benefits, findings and observations (if any) to date will also be discussed. The focus of the presentation will be on the project in general, status to date and future plans. The End-use services to be included in the prototype are voice, video, telemetry, commanding, collaboration tools and visualization among others. Security is addressed throughout the project and is being designed into the Grid technologies and standards development. The project is divided into three phases. Phase One establishes the baseline User-based services required for space flight operations listed above. Phase Two involves applying Gridlweb technologies to the User-based services and development of portals for access by users. Phase Three will allow NASA and end users to evaluate the services and determine the future of the technology as applied to space flight operational services. Although, Phase One, which includes the development of the quasi-operational User-based services of the prototype, development will be completed by March 2004, the application of Grid technologies to these services will have just begun. We will provide status of the Grid technologies to the individual User-based services. This effort will result in an extensible

  18. Spaceflight Operations Services Grid (SOSG)

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Thigpen, William W.

    2004-01-01

    In an effort to adapt existing space flight operations services to new emerging Grid technologies we are developing a Grid-based prototype space flight operations Grid. This prototype is based on the operational services being provided to the International Space Station's Payload operations located at the Marshall Space Flight Center, Alabama. The prototype services will be Grid or Web enabled and provided to four user communities through portal technology. Users will have the opportunity to assess the value and feasibility of Grid technologies to their specific areas or disciplines. In this presentation descriptions of the prototype development, User-based services, Grid-based services and status of the project will be presented. Expected benefits, findings and observations (if any) to date will also be discussed. The focus of the presentation will be on the project in general, status to date and future plans. The End-use services to be included in the prototype are voice, video, telemetry, commanding, collaboration tools and visualization among others. Security is addressed throughout the project and is being designed into the Grid technologies and standards development. The project is divided into three phases. Phase One establishes the baseline User-based services required for space flight operations listed above. Phase Two involves applying Gridlweb technologies to the User-based services and development of portals for access by users. Phase Three will allow NASA and end users to evaluate the services and determine the future of the technology as applied to space flight operational services. Although, Phase One, which includes the development of the quasi-operational User-based services of the prototype, development will be completed by March 2004, the application of Grid technologies to these services will have just begun. We will provide status of the Grid technologies to the individual User-based services. This effort will result in an extensible

  19. 45 Km Horizontal Path Optical Link Experiment

    NASA Technical Reports Server (NTRS)

    Biswas, A.; Ceniceros, J.; Novak, M.; Jeganathan, M.; Portillo, A.; Erickson, D.; Depew, J.; Sanii, B.; Lesh, J. R.

    2000-01-01

    Mountain-top to mountain-top optical link experiments have been initiated at JPL, in order to perform a systems level evaluation of optical communications. Progress made so far is reported. ne NASA, JPL developed optical communications demonstrator (OCD) is used to transmit a laser signal from Strawberry Peak (SP), located in the San Bernadino mountains of California. This laser beam is received by a 0.6 m aperture telescope at JPL's Table Mountain Facility (TMF), located in Wrightwood, California. The optical link is bi-directional with the TMF telescope transmitting a continuous 4-wave (cw) 780 run beacon and the OCD sending back a 840 nm, 100 - 500 Mbps pseudo noise (PN) modulated, laser beam. The optical link path is at an average altitude of 2 km above sea level, covers a range of 46.8 km and provides an atmospheric channel equivalent to approx. 4 air masses. Average received power measured at either end fall well within the uncertainties predicted by link analysis. The reduction in normalized intensity variance (sigma(sup 2, sub I)) for the 4-beam beacon, compared to each individual beam, at SP, was from approx. 0.68 to 0.22. With some allowance for intra-beam mis-alignment, this is consistent with incoherent averaging. The sigma(sup2, sub I) measured at TMF approx. 0.43 +/- 0.22 exceeded the expected aperture averaged value of less than 0.1, probably because of beam wander. The focused spot sizes of approx. 162 +/- 6 microns at the TMF Coude and approx. 64 +/- 3 microns on the OCD compare to the predicted size range of 52 - 172 microns and 57 - 93 microns, respectively. This is consistent with 4 - 5 arcsec of atmospheric "seeing". The preliminary evaluation of OCD's fine tracking indicates that the uncompensated tracking error is approx. 3.3 micro rad compared to approx. 1.7 micro rad observed in the laboratory. Fine tracking performance was intermittent, primarily due to beacon fades on the OCD tracking sensor. The best bit error rates observed while

  20. Optimizing Grid Patterns on Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Burger, D. R.

    1984-01-01

    CELCAL computer program helps in optimizing grid patterns for different photovoltaic cell geometries and metalization processes. Five different powerloss phenomena associated with front-surface metal grid pattern on photovoltaic cells.

  1. Additional Security Considerations for Grid Management

    NASA Technical Reports Server (NTRS)

    Eidson, Thomas M.

    2003-01-01

    The use of Grid computing environments is growing in popularity. A Grid computing environment is primarily a wide area network that encompasses multiple local area networks, where some of the local area networks are managed by different organizations. A Grid computing environment also includes common interfaces for distributed computing software so that the heterogeneous set of machines that make up the Grid can be used more easily. The other key feature of a Grid is that the distributed computing software includes appropriate security technology. The focus of most Grid software is on the security involved with application execution, file transfers, and other remote computing procedures. However, there are other important security issues related to the management of a Grid and the users who use that Grid. This note discusses these additional security issues and makes several suggestions as how they can be managed.

  2. Power grid complex network evolutions for the smart grid

    NASA Astrophysics Data System (ADS)

    Pagani, Giuliano Andrea; Aiello, Marco

    2014-02-01

    The shift towards an energy grid dominated by prosumers (consumers and producers of energy) will inevitably have repercussions on the electricity distribution infrastructure. Today the grid is a hierarchical one delivering energy from large scale facilities to end-users. Tomorrow it will be a capillary infrastructure at the medium and low voltage levels that will support local energy trading among prosumers. We investigate how different network topologies and growth models facilitate a more efficient and reliable network, and how they can facilitate the emergence of a decentralized electricity market. We show how connectivity plays an important role in improving the properties of reliability and path-cost reduction. Our results indicate that a specific type of evolution balances best the ratio between increased connectivity and costs to achieve the network growth.

  3. New tools allow medium-radius horizontal drilling

    SciTech Connect

    Dech, J.A.; Hearn, D.D.; Schuh, F.J.; Lenhart, B.

    1986-07-14

    ARCO Oil and Gas Co. (AOGC) recently completed a project to develop new methods of drilling conventional-sized horizontal holes. A well bore of this type is particularly well-suited for producing low-permeability, fractured reservoirs at economic rates. Special drilling tools and support equipment were developed jointly with several major manufacturers. Of these tools, one of the systems developed with Norton Christensen most nearly met the design goals. This system was tested in Rockwall County, Tex., where a 6-in. OD horizontal hole was successfully drilled in the Austin chalk formation. The build rate from vertical to horizontal was 20/sup 0//100 ft; the horizontal portion of the well bore was drilled for another 1,340 ft. This gave a total horizontal displacement of 1,630 ft. The horizontal well bore was kept within a 30-ft vertical section.

  4. Smart Grid Status and Metrics Report

    SciTech Connect

    Balducci, Patrick J.; Weimar, Mark R.; Kirkham, Harold

    2014-07-01

    To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. It measures 21 metrics to provide insight into the grid’s capacity to embody these characteristics. This report looks across a spectrum of smart grid concerns to measure the status of smart grid deployment and impacts.

  5. The fundamentals of adaptive grid movement

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.

    1990-01-01

    Basic grid point movement schemes are studied. The schemes are referred to as adaptive grids. Weight functions and equidistribution in one dimension are treated. The specification of coefficients in the linear weight, attraction to a given grid or a curve, and evolutionary forces are considered. Curve by curve and finite volume methods are described. The temporal coupling of partial differential equations solvers and grid generators was discussed.

  6. The National Grid Project: A system overview

    NASA Technical Reports Server (NTRS)

    Gaither, Adam; Gaither, Kelly; Jean, Brian; Remotigue, Michael; Whitmire, John; Soni, Bharat; Thompson, Joe; Dannenhoffer,, John; Weatherill, Nigel

    1995-01-01

    The National Grid Project (NGP) is a comprehensive numerical grid generation software system that is being developed at the National Science Foundation (NSF) Engineering Research Center (ERC) for Computational Field Simulation (CFS) at Mississippi State University (MSU). NGP is supported by a coalition of U.S. industries and federal laboratories. The objective of the NGP is to significantly decrease the amount of time it takes to generate a numerical grid for complex geometries and to increase the quality of these grids to enable computational field simulations for applications in industry. A geometric configuration can be discretized into grids (or meshes) that have two fundamental forms: structured and unstructured. Structured grids are formed by intersecting curvilinear coordinate lines and are composed of quadrilateral (2D) and hexahedral (3D) logically rectangular cells. The connectivity of a structured grid provides for trivial identification of neighboring points by incrementing coordinate indices. Unstructured grids are composed of cells of any shape (commonly triangles, quadrilaterals, tetrahedra and hexahedra), but do not have trivial identification of neighbors by incrementing an index. For unstructured grids, a set of points and an associated connectivity table is generated to define unstructured cell shapes and neighboring points. Hybrid grids are a combination of structured grids and unstructured grids. Chimera (overset) grids are intersecting or overlapping structured grids. The NGP system currently provides a user interface that integrates both 2D and 3D structured and unstructured grid generation, a solid modeling topology data management system, an internal Computer Aided Design (CAD) system based on Non-Uniform Rational B-Splines (NURBS), a journaling language, and a grid/solution visualization system.

  7. Best Practices In Overset Grid Generation

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Gomez, Reynaldo J., III; Rogers, Stuart E.; Buning, Pieter G.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Grid generation for overset grids on complex geometry can be divided into four main steps: geometry processing, surface grid generation, volume grid generation and domain connectivity. For each of these steps, the procedures currently practiced by experienced users are described. Typical problems encountered are also highlighted and discussed. Most of the guidelines are derived from experience on a variety of problems including space launch and return vehicles, subsonic transports with propulsion and high lift devices, supersonic vehicles, rotorcraft vehicles, and turbomachinery.

  8. Visual analytics for power grid contingency analysis.

    PubMed

    Pak Chung Wong; Zhenyu Huang; Yousu Chen; Mackey, Patrick; Shuangshuang Jin

    2014-01-01

    Contingency analysis employs different measures to model scenarios, analyze them, and then derive the best response to any threats. A proposed visual-analytics pipeline for power grid management can transform approximately 100 million contingency scenarios to a manageable size and form. Grid operators can examine individual scenarios and devise preventive or mitigation strategies in a timely manner. Power grid engineers have applied the pipeline to a Western Electricity Coordinating Council power grid model. PMID:24808167

  9. Generating Three-Dimensional Grids About Anything

    NASA Technical Reports Server (NTRS)

    Sorenson, Reese L.

    1991-01-01

    Three-Dimensional Grids About Anything by Poisson's Equation (3DGRAPE) computer program designed to make computational grids in or about almost any shape. Generated by solution of Poisson's differential equations in three dimensions. Program automatically finds its own values for inhomogeneous terms giving near-orthogonality and controlled grid-cell height at boundaries. Grids generated applied to both viscous and inviscid aerodynamic problems, and to problems in other areas of fluid dynamics. Written in 100 percent FORTRAN 77.

  10. The State of NASA's Information Power Grid

    NASA Technical Reports Server (NTRS)

    Johnston, William E.; Vaziri, Arsi; Tanner, Leigh Ann; Feiereisen, William J.; Thigpen, William; Biegel, Bryan (Technical Monitor)

    2001-01-01

    This viewgraph presentation transfers the concept of the power grid to information sharing in the NASA community. An information grid of this sort would be characterized as comprising tools, middleware, and services for the facilitation of interoperability, distribution of new technologies, human collaboration, and data management. While a grid would increase the ability of information sharing, it would not necessitate it. The onus of utilizing the grid would rest with the users.

  11. Image Enhancement with Polymer Grid Triode Arrays

    NASA Astrophysics Data System (ADS)

    Heeger, Alan J.; Heeger, David J.; Langan, John; Yang, Yang

    1995-12-01

    An array of polymer grid triodes connected by a common grid functions as a "plastic retina," providing local contrast gain control for image enhancement. This simple device, made from layers of conducting polymers, functions as an active resistive network that performs center-surround filtering. The polymer grid triode array with common grid is a continuous analog of the discrete approach of Mead, with a variety of fabrication advantages and significant savings in area within the unit cell of each pixel.

  12. ITIL and Grid services at GridKa

    NASA Astrophysics Data System (ADS)

    Marten, H.; Koenig, T.

    2010-04-01

    The Steinbuch Centre for Computing (SCC) is a new organizational unit of the Karlsruhe Institute of Technology (KIT). Founded in February 2008 as a merger of the previous Institute for Scientific Computing of Forschungszentrum Karlsruhe and the Computing Centre of the Technical University Karlsruhe, SCC provides a broad spectrum of IT services for 8.000 employees and 18.000 students and carries out research and development in key areas of information technology under the same roof. SCC is also known to host the German WLCG [1] Tier-1 centre GridKa. In order to accompany the merging of the two existing computing centres located at a distance of about 10 km and to provide common first class services for science, SCC has selected the IT service management according to the industrial quasi-standard "IT Infrastructure Library (ITIL)" [3] as a strategic element. The paper discusses the implementation of a few ITIL key components from the perspective of a Scientific Computing Centre using examples of Grid services at GridKa.

  13. 21 CFR 886.1330 - Amsler grid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Amsler grid. 886.1330 Section 886.1330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1330 Amsler grid. (a) Identification. An Amsler grid is a...

  14. Stable boundary conditions for Cartesian grid calculations

    NASA Technical Reports Server (NTRS)

    Berger, M. J.; Leveque, R. J.

    1990-01-01

    The inviscid Euler equations in complicated geometries are solved using a Cartesian grid. This requires solid wall boundary conditions in the irregular grid cells near the boundary. Since these cells may be orders of magnitude smaller than the regular grid cells, stability is a primary concern. An approach to this problem is presented and its use is illustrated.

  15. 76 FR 46279 - Smart Grid Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ... National Institute of Standards and Technology Smart Grid Advisory Committee AGENCY: Department of Commerce, National Institute of Standards and Technology ACTION: Notice of open meeting. SUMMARY: The Smart Grid... should be sent to Office of the National Coordinator for Smart Grid Interoperability, National...

  16. 77 FR 38768 - Smart Grid Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... National Institute of Standards and Technology Smart Grid Advisory Committee AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of open meeting. SUMMARY: The Smart Grid... the Smart Grid Interoperability Panel transition plan, review the status of the research...

  17. Multiprocessor computer overset grid method and apparatus

    DOEpatents

    Barnette, Daniel W.; Ober, Curtis C.

    2003-01-01

    A multiprocessor computer overset grid method and apparatus comprises associating points in each overset grid with processors and using mapped interpolation transformations to communicate intermediate values between processors assigned base and target points of the interpolation transformations. The method allows a multiprocessor computer to operate with effective load balance on overset grid applications.

  18. Horizontal drilling: Overview of geologic aspects and opportunities

    SciTech Connect

    Stark, P.H. )

    1991-06-01

    Horizontal drilling and completions may become the most significant petroleum technology enhancement since reflection seismic. Through September 1990, 640 US horizontal completions were recorded, resulting in 532 oil and 69 gas producers. In addition, 345 horizontal wells were drilling or completing and 255 permits were outstanding. Mroe than 60% of historic US horizontal wells will be completed during 1990. Case studies demonstrate higher production rates and improved recoveries for horizontal completions. There are abundant global geologic opportunities for horizontal well technolgoy. Eight geologic criteria with potential for horizontal technology are reviewed. Models and examples showing results are presented for each. Source rocks - Bakken Shale case history, North Dakota; Fractured reservoirs - Austin Chalk case history, Texas; Paleokarst reservoirs - Liuhua field example, South China Sea; and karst reservoir potential, Mediterranean region; Chalk reservoirs - global distribution and Niobrara example, Colorado and Wyoming; Stratigraphic traps - Niagaran Reef example, Michigan basin; and tight, overpressured gas sands, northern Rocky Mountains; Reservoir/heterogeneity - Spraberry trend example, Midland basin; Coal-bed methane - US potential; Coning - Prudhoe Bay example, Alaska. Forecasts showing 5,000 worldwide horizontal completions by the year 2000 are tempered by limited equipment, crews, and recognized opportunity. If, however, economic benefits from case histories are creatively applied to potential geologic opportunities, then horizontal technology may comprise 30% or more of worldwide drilling at the turn of the century. Certainly, a technology that reduces dry-hole and environmental risks, increases productivity, and generates profits with $20/bbl oil could revitalize the domestic onshore industry.

  19. Demonstration of a utility industry horizontal drilling system: Horizontal well AMH-5 installation report

    SciTech Connect

    Not Available

    1992-12-31

    The Department of Energy`s Office of Technology Development initiated an integrated demonstration of innovative technologies and systems for cleanup of VOCs in soils and groundwater at the Savannah River Site (SRS) in 1989. The overall goal of the program is demonstration of multiple technologies and systems in the fields of drilling, characterization, monitoring, and remediation at a single test bed. Innovative technologies are compared to one another and to baseline technologies in terms of technical performance and cost effectiveness. Transfer of successfully demonstrated technologies and systems to DOE environmental restoration organizations, to other government agencies, and to industry is a critical part of the program. Directional drilling has been shown to be a successful technique for enhancing access to the subsurface, thus improving remediation systems, especially remediation systems which perform in situ. Demonstration of an innovative directional drilling system at the Integrated Demonstration Site at the SRS, was initiated in June of 1992. The directional drilling system was designed to install an in situ remediation system. The drilling system is an experimental compaction/dry drilling technique developed by Charles Machine Works (Ditch Witch{reg_sign}) of Perry, Oklahoma. A horizontal well was installed in the M Area of the SRS below and parallel to an abandoned tile process sewer line. The installation of the horizontal well was a two-part process. Part one consisted of drilling the borehole, and part two was the horizontal well completion.

  20. New solutions for the confined horizontal aquifer

    NASA Astrophysics Data System (ADS)

    Akylas, Evangelos; Gravanis, Elias

    2016-04-01

    The Boussinesq equation is a dynamical equation for the free surface of saturated subsurface flows over an impervious bed. Boussinesq equation is non-linear. The non-linearity comes from the reduction of the dimensionality of the problem: The flow is assumed to be vertically homogeneous, therefore the flow rate through a cross section of the flow is proportional to the free surface height times the hydraulic gradient, which is assumed to be equal to the slope of the free surface. In the present work we consider the case of the subsurface flow with horizontal bed. This is a case with an infinite Henderson and Wooding parameter, that is, it is the limiting case where the non-linear term is present in the Boussinesq equation while the linear spatial derivative term vanishes. Nonetheless, no analogue of the kinematic wave exists in this case as there is no exact solution for the build-up phase. Neither is there an exact recession-phase solution that holds in early times, as the Boussinesq separable solution is actually an asymptotic solution for large times. We construct approximate solutions for the horizontal aquifer which utilize directly the dynamical content of the non-linear Boussinesq equation. The approximate character of the solution lies in the fact that we start with a pre-supposed form for the solution, an educated guess, based on the nature of the initial condition as well as empirical observations from the numerical solution of the problem. The forms we shall use are power series of the location variable x along the bed with time-dependent coefficients. The series are not necessarily analytic. The boundary conditions are incorporated in the structure of the series from the beginning. The time-dependent coefficients are then determined by applying the Boussinesq equation and its spatial derivatives at the end-points of the aquifer. The forms are chosen also on the basis of their solubility; we would like to be able to construct explicitly the approximate

  1. Spline for blade grids design

    NASA Astrophysics Data System (ADS)

    Korshunov, Andrei; Shershnev, Vladimir; Korshunova, Ksenia

    2015-08-01

    Methods of designing blades grids of power machines, such as equal thickness shape built on middle-line arc, or methods based on target stress spreading were invented long time ago, well described and still in use. Science and technology has moved far from that time and laboriousness of experimental research, which were involving unique equipment, requires development of new robust and flexible methods of design, which will determine the optimal geometry of flow passage.This investigation provides simple and universal method of designing blades, which, in comparison to the currently used methods, requires significantly less input data but still provides accurate results. The described method is purely analytical for both concave and convex sides of the blade, and therefore lets to describe the curve behavior down the flow path at any point. Compared with the blade grid designs currently used in industry, geometric parameters of the designs constructed with this method show the maximum deviation below 0.4%.

  2. Vehicle to Grid Demonstration Project

    SciTech Connect

    Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

    2010-12-31

    This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

  3. Enhancing the resolution of airborne gamma-ray data using horizontal gradients

    NASA Astrophysics Data System (ADS)

    Beamish, David

    2016-09-01

    The spatial resolution characteristics of airborne gamma-ray data are largely controlled by survey elevation and line separation. In the UK, although low nominal surveys altitudes may be permitted, regulatory zones with elevations in excess of 180 m are required above conurbations. Since the data, typically in the form of grids, are evaluated alongside many other detailed geoscientific spatial datasets their absolute resolution limits, together with their spatial characteristics, become relevant. Here, using published software, we study the theoretical resolution characteristics of this form of survey data obtained with a line separation of 200 m. Of particular interest is the airborne response behaviour when non-uniform distributions of radioactivity are encountered. Although ultimately a function of the radioelement-concentration contrast encountered, the calculations reveal that such zones are most difficult to identify when their scale length decreases below the scale of the line separation. This limited resolution then further decreases with elevation. In order to increase our ability to resolve the edges of non-uniform source regions we calculate the horizontal gradient magnitude (HGM) of the observed data. While the data used can be the estimated radioelement concentrations (potassium, thorium and uranium) or their ratios, we demonstrate that the total count is particularly suited to this type of analysis. The theoretical calculations are supported by an examination of survey data across a series of isolated bodies (offshore islands). This empirical study indicates the practical limits to resolution when using the horizontal gradient and these are governed by the survey line separation. The HGM response provides an enhanced mapping of the edges of zones associated with a contrast in flux behaviour. The edges are detected using the maxima in the response and these can be additionally examined using grid curvature analysis. The technique is assessed using

  4. Performance of European chemistry transport models as function of horizontal resolution

    NASA Astrophysics Data System (ADS)

    Schaap, M.; Cuvelier, C.; Hendriks, C.; Bessagnet, B.; Baldasano, J. M.; Colette, A.; Thunis, P.; Karam, D.; Fagerli, H.; Graff, A.; Kranenburg, R.; Nyiri, A.; Pay, M. T.; Rouïl, L.; Schulz, M.; Simpson, D.; Stern, R.; Terrenoire, E.; Wind, P.

    2015-07-01

    Air pollution causes adverse effects on human health as well as ecosystems and crop yield and also has an impact on climate change trough short-lived climate forcers. To design mitigation strategies for air pollution, 3D Chemistry Transport Models (CTMs) have been developed to support the decision process. Increases in model resolution may provide more accurate and detailed information, but will cubically increase computational costs and pose additional challenges concerning high resolution input data. The motivation for the present study was therefore to explore the impact of using finer horizontal grid resolution for policy support applications of the European Monitoring and Evaluation Programme (EMEP) model within the Long Range Transboundary Air Pollution (LRTAP) convention. The goal was to determine the "optimum resolution" at which additional computational efforts do not provide increased model performance using presently available input data. Five regional CTMs performed four runs for 2009 over Europe at different horizontal resolutions. The models' responses to an increase in resolution are broadly consistent for all models. The largest response was found for NO2 followed by PM10 and O3. Model resolution does not impact model performance for rural background conditions. However, increasing model resolution improves the model performance at stations in and near large conglomerations. The statistical evaluation showed that the increased resolution better reproduces the spatial gradients in pollution regimes, but does not help to improve significantly the model performance for reproducing observed temporal variability. This study clearly shows that increasing model resolution is advantageous, and that leaving a resolution of 50 km in favour of a resolution between 10 and 20 km is practical and worthwhile. As about 70% of the model response to grid resolution is determined by the difference in the spatial emission distribution, improved emission allocation

  5. The CMS integration grid testbed

    SciTech Connect

    Graham, Gregory E.

    2004-08-26

    The CMS Integration Grid Testbed (IGT) comprises USCMS Tier-1 and Tier-2 hardware at the following sites: the California Institute of Technology, Fermi National Accelerator Laboratory, the University of California at San Diego, and the University of Florida at Gainesville. The IGT runs jobs using the Globus Toolkit with a DAGMan and Condor-G front end. The virtual organization (VO) is managed using VO management scripts from the European Data Grid (EDG). Gridwide monitoring is accomplished using local tools such as Ganglia interfaced into the Globus Metadata Directory Service (MDS) and the agent based Mona Lisa. Domain specific software is packaged and installed using the Distribution After Release (DAR) tool of CMS, while middleware under the auspices of the Virtual Data Toolkit (VDT) is distributed using Pacman. During a continuous two month span in Fall of 2002, over 1 million official CMS GEANT based Monte Carlo events were generated and returned to CERN for analysis while being demonstrated at SC2002. In this paper, we describe the process that led to one of the world's first continuously available, functioning grids.

  6. Telemedical applications and grid technology

    NASA Astrophysics Data System (ADS)

    Graschew, Georgi; Roelofs, Theo A.; Rakowsky, Stefan; Schlag, Peter M.; Kaiser, Silvan; Albayrak, Sahin

    2005-11-01

    Due to the experience in the exploitation of previous European telemedicine projects an open Euro-Mediterranean consortium proposes the Virtual Euro-Mediterranean Hospital (VEMH) initiative. The provision of the same advanced technologies to the European and Mediterranean Countries should contribute to their better dialogue for integration. VEMH aims to facilitate the interconnection of various services through real integration which must take into account the social, human and cultural dimensions. VEMH will provide a platform consisting of a satellite and terrestrial link for the application of medical e-learning, real-time telemedicine and medical assistance. The methodologies for the VEMH are medical-needs-driven instead of technology-driven. They supply new management tools for virtual medical communities and allow management of clinical outcomes for implementation of evidence-based medicine. Due to the distributed character of the VEMH Grid technology becomes inevitable for successful deployment of the services. Existing Grid Engines provide basic computing power needed by today's medical analysis tasks but lack other capabilities needed for communication and knowledge sharing services envisioned. When it comes to heterogeneous systems to be shared by different institutions especially the high level system management areas are still unsupported. Therefore a Metagrid Engine is needed that provides a superset of functionalities across different Grid Engines and manages strong privacy and Quality of Service constraints at this comprehensive level.

  7. Certainty grids for mobile robots

    NASA Technical Reports Server (NTRS)

    Moravec, H. P.

    1987-01-01

    A numerical representation of uncertain and incomplete sensor knowledge called Certainty Grids has been used successfully in several mobile robot control programs, and has proven itself to be a powerful and efficient unifying solution for sensor fusion, motion planning, landmark identification, and many other central problems. Researchers propose to build a software framework running on processors onboard the new Uranus mobile robot that will maintain a probabilistic, geometric map of the robot's surroundings as it moves. The certainty grid representation will allow this map to be incrementally updated in a uniform way from various sources including sonar, stereo vision, proximity and contact sensors. The approach can correctly model the fuzziness of each reading, while at the same time combining multiple measurements to produce sharper map features, and it can deal correctly with uncertainties in the robot's motion. The map will be used by planning programs to choose clear paths, identify locations (by correlating maps), identify well-known and insufficiently sensed terrain, and perhaps identify objects by shape. The certainty grid representation can be extended in the same dimension and used to detect and track moving objects.

  8. Smart Grid Interoperability Maturity Model

    SciTech Connect

    Widergren, Steven E.; Levinson, Alex; Mater, J.; Drummond, R.

    2010-04-28

    The integration of automation associated with electricity resources (including transmission and distribution automation and demand-side resources operated by end-users) is key to supporting greater efficiencies and incorporating variable renewable resources and electric vehicles into the power system. The integration problems faced by this community are analogous to those faced in the health industry, emergency services, and other complex communities with many stakeholders. To highlight this issue and encourage communication and the development of a smart grid interoperability community, the GridWise Architecture Council (GWAC) created an Interoperability Context-Setting Framework. This "conceptual model" has been helpful to explain the importance of organizational alignment in addition to technical and informational interface specifications for "smart grid" devices and systems. As a next step to building a community sensitive to interoperability, the GWAC is investigating an interoperability maturity model (IMM) based on work done by others to address similar circumstances. The objective is to create a tool or set of tools that encourages a culture of interoperability in this emerging community. The tools would measure status and progress, analyze gaps, and prioritize efforts to improve the situation.

  9. Building the International Lattice Data Grid

    SciTech Connect

    Mark G. Beckett, Paul Coddington, Bálint Joó, Chris M. Maynard, Dirk Pleiter, Osamu Tatebe, Tomoteru Yoshie

    2011-06-01

    We present the International Lattice Data Grid (ILDG), a loosely federated grid-of-grids for sharing data from Lattice Quantum Chromodynamics (LQCD) simulations. The ILDG comprises of metadata, file-format and web-service standards, which can be used to wrap regional data-grid interfaces, allowing seamless access to catalogues and data in a diverse set of collaborating regional grids. We discuss the technological underpinnings of the ILDG, primarily the metadata and the middleware, and offer a critique of its various aspects with the hindsight of the design work and the two years of production.

  10. A 3-D chimera grid embedding technique

    NASA Technical Reports Server (NTRS)

    Benek, J. A.; Buning, P. G.; Steger, J. L.

    1985-01-01

    A three-dimensional (3-D) chimera grid-embedding technique is described. The technique simplifies the construction of computational grids about complex geometries. The method subdivides the physical domain into regions which can accommodate easily generated grids. Communication among the grids is accomplished by interpolation of the dependent variables at grid boundaries. The procedures for constructing the composite mesh and the associated data structures are described. The method is demonstrated by solution of the Euler equations for the transonic flow about a wing/body, wing/body/tail, and a configuration of three ellipsoidal bodies.

  11. Spacer grid assembly and locking mechanism

    DOEpatents

    Snyder, Jr., Harold J.; Veca, Anthony R.; Donck, Harry A.

    1982-01-01

    A spacer grid assembly is disclosed for retaining a plurality of fuel rods in substantially parallel spaced relation, the spacer grids being formed with rhombic openings defining contact means for engaging from one to four fuel rods arranged in each opening, the spacer grids being of symmetric configuration with their rhombic openings being asymmetrically offset to permit inversion and relative rotation of the similar spacer grids for improved support of the fuel rods. An improved locking mechanism includes tie bars having chordal surfaces to facilitate their installation in slotted circular openings of the spacer grids, the tie rods being rotatable into locking engagement with the slotted openings.

  12. Grid generation for 3D turbomachinery configurations

    NASA Technical Reports Server (NTRS)

    Shih, Ming-Hsin; Soni, Bharat K.

    1992-01-01

    A numerical grid generation algorithm associated with the flow field about turbomachinery geometries is presented. Graphical user interface is developed with the FORMS Library to create an interactive, user-friendly working environment. This customized algorithm reduces the man-hours required to generate a grid associated with turbomachinery geometry, as compared to those required by general-purpose grid generation softwares. Bezier curves are utilized both interactively and automatically to accomplish grid line smoothness and orthogonality. Graphical user interactions are provided in the algorithm and allow the user to design and manipulate the grid lines with a mouse.

  13. Effects of grid size and aggregation on regional scale landuse scenario calculations using SVAT schemes

    NASA Astrophysics Data System (ADS)

    Bormann, H.

    2006-09-01

    This paper analyses the effect of spatial input data resolution on the simulated effects of regional scale landuse scenarios using the TOPLATS model. A data set of 25 m resolution of the central German Dill catchment (693 km2) and three different landuse scenarios are used for the investigation. Landuse scenarios in this study are field size scenarios, and depending on a specific target field size (0.5 ha, 1.5 ha and 5.0 ha) landuse is determined by optimising economic outcome of agricultural used areas and forest. After an aggregation of digital elevation model, soil map, current landuse and landuse scenarios to 50 m, 75 m, 100 m, 150 m, 200 m, 300 m, 500 m, 1 km and 2 km, water balances and water flow components for a 20 years time period are calculated for the entire Dill catchment as well as for 3 subcatchments without any recalibration. Additionally water balances based on the three landuse scenarios as well as changes between current conditions and scenarios are calculated. The study reveals that both model performance measures (for current landuse) as well as water balances (for current landuse and landuse scenarios) almost remain constant for most of the aggregation steps for all investigated catchments. Small deviations are detected at the resolution of 50 m to 500 m, while significant differences occur at the resolution of 1 km and 2 km which can be explained by changes in the statistics of the input data. Calculating the scenario effects based on increasing grid sizes yields similar results. However, the change effects react more sensitive to data aggregation than simple water balance calculations. Increasing deviations between simulations based on small grid sizes and simulations using grid sizes of 300 m and more are observed. Summarizing, this study indicates that an aggregation of input data for the calculation of regional water balances using TOPLATS type models does not lead to significant errors up to a resolution of 500 m. Focusing on scenario

  14. Color opponency in cone-driven horizontal cells in carp retina. Aspecific pathways between cones and horizontal cells

    PubMed Central

    1991-01-01

    The spectral and dynamic properties of cone-driven horizontal cells in carp retina were evaluated with silent substitution stimuli and/or saturating background illumination. The aim of this study was to describe the wiring underlying the spectral sensitivity of these cells. We will present electrophysiological data that indicate that all cone- driven horizontal cell types receive input from all spectral cone types, and we will present evidence that all cone-driven horizontal cell types feedback to all spectral cone types. These two findings are the basis for a model for the spectral and dynamic behavior of all cone- driven horizontal cells in carp retina. The model can account for the spectral as well as the dynamic behavior of the horizontal cells. It will be shown that the strength of the feedforward and feedback pathways between a horizontal cell and a particular spectral cone type are roughly proportional. This model is in sharp contrast to the Stell model, where the spectral behavior of the three horizontal cell types is explained by a cascade of feedforward and feedback pathways between cones and horizontal cells. The Stell model accounts for the spectral but not for the dynamic behavior of the horizontal cells. PMID:1711573

  15. Impact of surface coupling grids on tropical cyclone extremes in high-resolution atmospheric simulations

    NASA Astrophysics Data System (ADS)

    Zarzycki, Colin M.; Reed, Kevin A.; Bacmeister, Julio T.; Craig, Anthony P.; Bates, Susan C.; Rosenbloom, Nan A.

    2016-02-01

    This paper discusses the sensitivity of tropical cyclone climatology to surface coupling strategy in high-resolution configurations of the Community Earth System Model. Using two supported model setups, we demonstrate that the choice of grid on which the lowest model level wind stress and surface fluxes are computed may lead to differences in cyclone strength in multi-decadal climate simulations, particularly for the most intense cyclones. Using a deterministic framework, we show that when these surface quantities are calculated on an ocean grid that is coarser than the atmosphere, the computed frictional stress is misaligned with wind vectors in individual atmospheric grid cells. This reduces the effective surface drag, and results in more intense cyclones when compared to a model configuration where the ocean and atmosphere are of equivalent resolution. Our results demonstrate that the choice of computation grid for atmosphere-ocean interactions is non-negligible when considering climate extremes at high horizontal resolution, especially when model components are on highly disparate grids.

  16. Impact of surface coupling grids on tropical cyclone extremes in high-resolution atmospheric simulations

    SciTech Connect

    Zarzycki, Colin M.; Reed, Kevin A.; Bacmeister, Julio T.; Craig, Anthony P.; Bates, Susan C.; Rosenbloom, Nan A.

    2016-01-01

    This paper discusses the sensitivity of tropical cyclone climatology to surface coupling strategy in high-resolution configurations of the Community Earth System Model. Using two supported model setups, we demonstrate that the choice of grid on which the lowest model level wind stress and surface fluxes are computed may lead to differences in cyclone strength in multi-decadal climate simulations, particularly for the most intense cyclones. Using a deterministic framework, we show that when these surface quantities are calculated on an ocean grid that is coarser than the atmosphere, the computed frictional stress is misaligned with wind vectors in individual atmospheric grid cells. This reduces the effective surface drag, and results in more intense cyclones when compared to a model configuration where the ocean and atmosphere are of equivalent resolution. Our results demonstrate that the choice of computation grid for atmosphere–ocean interactions is non-negligible when considering climate extremes at high horizontal resolution, especially when model components are on highly disparate grids.

  17. CFD study of isothermal water flow in rod bundle with split-type spacer grid

    NASA Astrophysics Data System (ADS)

    Batta, A.; Class, A. G.

    2014-06-01

    The design of rod bundles in nuclear application nowadays is assessed by CFD (computational fluid dynamics). The accuracy of CFD models need validation. Within the OECD/NEA benchmark MATiS-H (Measurement and Analysis of Turbulent Mixing in Sub-channels - Horizontal) a single-phase water flow in a 5x5 rod bundle is studied. In the benchmark, two types of spacer grids are tested, the swirl type and the split type, where the current study focuses on the split type spacer grid. Comparison of CFD results obtained at Karlsruhe Institut of Technology (KIT) with experimental results of KAERI (Korea Atomic Energy Research Institute) are presented. In the benchmark velocities components along selected lines downstream of the spacer grid are measured and compared to CFD results. The CFD code STAR CCM+ with the Realized k-ɛ model is used. Comparisons with experimental results show quantitative and qualitative agreement for the averaged values of velocity components. Comparisons of results to other benchmark partners using different modeling show that the selected mesh size and models for the analysis of the current case gives relatively accurate results. However, the used turbulent model (Realized k-ɛ does not capture the turbulent intensity correctly. Computation shows that the flow has very high mixing due to the spacer grid, which does not decay within the measurements domain (z/ DH =0-10 downstream of spacer grid). The same conclusion can be drawn from experimental data.

  18. Magneto-convective instabilities in horizontal cavities

    NASA Astrophysics Data System (ADS)

    Mistrangelo, Chiara; Bühler, Leo

    2016-02-01

    A linear stability analysis is performed to investigate the onset of convective motions in a flat cavity filled with liquid metal. A volumetric heat source is uniformly distributed in the fluid and a horizontal magnetic field is imposed. Walls perpendicular to the magnetic field are thermally insulating, and the top wall is isothermal and the bottom adiabatic. When a magnetic field is applied, electromagnetic forces tend to transform 3D convective flow structures into quasi-2D rolls aligned to the magnetic field. By integrating 3D equations along magnetic field lines, a quasi-2D mathematical model has been derived. A dissipation term in the 2D equations accounts for 3D viscous effects in boundary layers at Hartmann walls perpendicular to the magnetic field. The influence of various parameters on flow stability is investigated. The flow is stabilized by increasing the magnetic field intensity or the electric conductance of Hartmann walls and by reducing the aspect ratio of the cavity. Numerical simulations are performed to verify the analytical results and to describe the main convective flow patterns in the non-linear regime.

  19. Shallow water model for horizontal centrifugal casting

    NASA Astrophysics Data System (ADS)

    Boháček, J.; Kharicha, A.; Ludwig, A.; Wu, M.

    2012-07-01

    A numerical model was proposed to simulate the solidification process of an outer shell of work roll made by the horizontal centrifugal casting technique. Shallow water model was adopted to solve the 2D average flow dynamics of melt spreading and the average temperature distribution inside the centrifugal casting mould by considering the centrifugal force, Coriolis force, viscous force due to zero velocity on the mould wall, gravity, and energy transport by the flow. Additionally, a 1D sub-model was implemented to consider the heat transfer in the radial direction from the solidifying shell to the mould. The solidification front was tracked by fulfilling the Stefan condition. Radiative and convective heat losses were included from both, the free liquid surface and the outer wall of the mould. Several cases were simulated with the following assumed initial conditions: constant height of the liquid metal (10, 20, and 30 mm), uniform temperature of the free liquid surface (1755 K). The simulation results have shown that while the solidification front remained rather flat, the free surface was disturbed by waves. The amplitude of waves increased with the liquid height. Free surface waves diminished as the solidification proceeded.

  20. Sheared bioconvection in a horizontal tube

    NASA Astrophysics Data System (ADS)

    Croze, O. A.; Ashraf, E. E.; Bees, M. A.

    2010-12-01

    The recent interest in using microorganisms for biofuels is motivation enough to study bioconvection and cell dispersion in tubes subject to imposed flow. To optimize light and nutrient uptake, many microorganisms swim in directions biased by environmental cues (e.g. phototaxis in algae and chemotaxis in bacteria). Such taxes inevitably lead to accumulations of cells, which, as many microorganisms have a density different to the fluid, can induce hydrodynamic instabilites. The large-scale fluid flow and spectacular patterns that arise are termed bioconvection. However, the extent to which bioconvection is affected or suppressed by an imposed fluid flow and how bioconvection influences the mean flow profile and cell transport are open questions. This experimental study is the first to address these issues by quantifying the patterns due to suspensions of the gravitactic and gyrotactic green biflagellate alga Chlamydomonas in horizontal tubes subject to an imposed flow. With no flow, the dependence of the dominant pattern wavelength at pattern onset on cell concentration is established for three different tube diameters. For small imposed flows, the vertical plumes of cells are observed merely to bow in the direction of flow. For sufficiently high flow rates, the plumes progressively fragment into piecewise linear diagonal plumes, unexpectedly inclined at constant angles and translating at fixed speeds. The pattern wavelength generally grows with flow rate, with transitions at critical rates that depend on concentration. Even at high imposed flow rates, bioconvection is not wholly suppressed and perturbs the flow field.

  1. Inlet Jet Interaction in Horizontal Pipe Flow

    NASA Astrophysics Data System (ADS)

    Jha, Pranab; Smith, Chuck; Metcalfe, Ralph

    2012-11-01

    Laminar incompressible flow (Re < 1000) inside a horizontal channel with multiple cross-flow inlets was studied numerically. First, two cross-flow inlets were used to observe the flow interference phenomenon between the inlets. This concept was extended to axisymmetric pipe flow with five cross-flow inlets. Three basic flow regimes - trickle flow, partially blocked flow and fully blocked flow - were identified with respect to the blocking of upstream inlets by the downstream ones. The effects of inlet pressure and different inlet sizes on the flow regimes under steady state condition were studied. A hydrostatic model of fluid reservoirs draining into the channel was constructed using a linear function for pressure at the inlet boundaries to study the dynamic behavior of the inlets. Three different time scales related to the depletion of the reservoirs were identified. The dynamic behavior of two cross-flow inlets was observed with the initial conditions corresponding to the three flow regimes. Similar study was carried out for a five-inlet case and the dynamic behavior of individual reservoirs was observed. The change of flow regimes in the system over time with reservoir draining was evident and the different time-scales involved were identified. Supported in Part by Apache Corporation.

  2. Method of operating horizontal coke oven batteries

    SciTech Connect

    Strobel, M.; Thiersch, F.B.

    1981-09-22

    A horizontal coke oven battery construction in which a pusher is mounted to extend into the batteries from one side and push coke out of the batteries on the opposite side, comprises a plurality of coke oven batteries disposed in a row. A first waste gas flue extends along the pusher side of the batteries and a second waste gas flue extends along the coke side. A stack flue at one end of the batteries is connected to the first and second waste gas flues. The construction includes means for directing the heating gases into each oven battery during operation so that, in respect to the pusher and coke size, approximately one-half of the batteries is heated by upward burning and the other half is heated by downward burning. For example, all odd numbered batteries may be heated in the same direction and all even numbered batteries heated in the same direction. The invention also comprises a two-section regenerative heating system having reversing winches wherein the heating on one-half or approximately one-half of the oven chambers is equipped for upward burning and the heating of the other half is equipped with downward burning. Between the two halves, a center head maybe be provided, or only one reversing winch may be provided at the end of the battery.

  3. Axisymmetric, Ventilated Supercavitation in Unsteady, Horizontal Flow

    NASA Astrophysics Data System (ADS)

    Kawakami, Ellison; Lee, Seung-Jae; Arndt, Roger

    2012-11-01

    Drag reduction and/or speed augmentation of marine vehicles by means of supercavitation is a topic of great interest. During the initial launch of a supercavitating vehicle, an artificial supercavity is required until the vehicle can reach conditions at which a natural supercavity can be sustained. Previous studies at Saint Anthony Falls Laboratory (SAFL) focused on the behavior of ventilated supercavities in steady horizontal flows. In open waters, vehicles can encounter unsteady flows, especially when traveling under waves. A study has been carried out at SAFL to investigate the effects of unsteady flow on axisymmetric supercavities. An attempt is made to duplicate sea states seen in open waters. In an effort to track cavity dimensions throughout a wave cycle, an automated cavity tracking script has been developed. Using a high speed camera and the proper software, it is possible to synchronize cavity dimensions with pressure measurements taken inside the cavity. Results regarding supercavity shape, ventilation demand, cavitation parameters and closure methods are presented. It was found that flow unsteadiness caused a decrease in the overall length of the supercavity while having only a minimal effect on the maximum diameter. The supercavity volume varied with cavitation number and a possible relationship between the two is being explored. (Supported by ONR)

  4. Yaw dynamics of horizontal axis wind turbines

    SciTech Connect

    Hansen, A.C. )

    1992-05-01

    Designers of a horizontal axis wind turbine yaw mechanism are faced with a difficult decision. They know that if they elect to use a yaw- controlled rotor then the system will suffer increased initial cost and increased inherent maintenance and reliability problems. On the other hand, if they elect to allow the rotor to freely yaw they known they will have to account for unknown and random, though bounded, yaw rates. They will have a higher-risk design to trade-off against the potential for cost savings and reliability improvement. The risk of a yaw-free system could be minimized if methods were available for analyzing and understanding yaw behavior. The complexity of yaw behavior has, until recently, discouraged engineers from developing a complete yaw analysis method. The objectives of this work are to (1) provide a fundamental understanding of free-yaw mechanics and the design concepts most effective at eliminating yaw problems, and (2) provide tested design tools and guidelines for use by free-yaw wind systems manufacturers. The emphasis is on developing practical and sufficiently accurate design methods.

  5. Film condensation in a horizontal rectangular duct

    NASA Technical Reports Server (NTRS)

    Lu, Qing; Suryanarayana, N. V.

    1992-01-01

    Condensation heat transfer in an annular flow regime with and without interfacial waves was experimentally investigated. The study included measurements of heat transfer rate with condensation of vapor flowing inside a horizontal rectangular duct and experiments on the initiation of interfacial waves in condensation, and adiabatic air-liquid flow. An analytical model for the condensation was developed to predict condensate film thickness and heat transfer coefficients. Some conclusions drawn from the study are that the condensate film thickness was very thin (less than 0.6 mm). The average heat transfer coefficient increased with increasing the inlet vapor velocity. The local heat transfer coefficient decreased with the axial distance of the condensing surface, with the largest change at the leading edge of the test section. The interfacial shear stress, which consisted of the momentum shear stress and the adiabatic shear stress, appeared to have a significant effect on the heat transfer coefficients. In the experiment, the condensate flow along the condensing surface experienced a smooth flow, a two-dimensional wavy flow, and a three-dimensional wavy flow. In the condensation experiment, the local wave length decreased with the axial distance of the condensing surface and the average wave length decreased with increasing inlet vapor velocity, while the wave speed increased with increasing vapor velocity. The heat transfer measurements are reliable. And, the ultrasonic technique was effective for measuring the condensate film thickness when the surface was smooth or had waves of small amplitude.

  6. Yaw dynamics of horizontal axis wind turbines

    NASA Astrophysics Data System (ADS)

    Hansen, A. C.

    1992-05-01

    Designers of a horizontal axis wind turbine yaw mechanism are faced with a difficult decision. They know that if they elect to use a yaw-controlled rotor then the system will suffer increased initial cost and increased inherent maintenance and reliability problems. On the other hand, if they elect to allow the rotor to freely yaw they know they will have to account for unknown and random, though bounded, yaw rates. They will have a higher-risk design to trade-off against the potential for cost savings and reliability improvement. The risk of a yaw-free system could be minimized if methods were available for analyzing and understanding yaw behavior. The complexity of yaw behavior has, until recently, discouraged engineers from developing a complete yaw analysis method. The objectives of this work are to (1) provide a fundamental understanding of free-yaw mechanics and the design concepts most effective at eliminating yaw problems, and (2) provide tested design tools and guidelines for use by free-yaw wind systems manufacturers. The emphasis is on developing practical and sufficiently accurate design methods.

  7. Horizontal Shear Wave Imaging of Large Optics

    SciTech Connect

    Quarry, M J

    2007-09-05

    When complete the National Ignition Facility (NIF) will be the world's largest and most energetic laser and will be capable of achieving for the first time fusion ignition in the laboratory. Detecting optics features within the laser beamlines and sizing them at diameters of 0.1 mm to 10 mm allows timely decisions concerning refurbishment and will help with the routine operation of the system. Horizontally polarized shear waves at 10 MHz were shown to accurately detect, locate, and size features created by laser operations from 0.5 mm to 8 mm by placing sensors at the edge of the optic. The shear wave technique utilizes highly directed beams. The outer edge of an optic can be covered with shear wave transducers on four sides. Each transducer sends a pulse into the optic and any damage reflects the pulse back to the transmitter. The transducers are multiplexed, and the collected time waveforms are enveloped and replicated across the width of the element. Multiplying the data sets from four directions produces a map of reflected amplitude to the fourth power, which images the surface of the optic. Surface area can be measured directly from the image, and maximum depth was shown to be correlated to maximum amplitude of the reflected waveform.

  8. Horizontal visibility graphs from integer sequences

    NASA Astrophysics Data System (ADS)

    Lacasa, Lucas

    2016-09-01

    The horizontal visibility graph (HVG) is a graph-theoretical representation of a time series and builds a bridge between dynamical systems and graph theory. In recent years this representation has been used to describe and theoretically compare different types of dynamics and has been applied to characterize empirical signals, by extracting topological features from the associated HVGs which have shown to be informative on the class of dynamics. Among some other measures, it has been shown that the degree distribution of these graphs is a very informative feature that encapsulates nontrivial information of the series's generative dynamics. In particular, the HVG associated to a bi-infinite real-valued series of independent and identically distributed random variables is a universal exponential law P(k)=(1/3){(2/3)}k-2, independent of the series marginal distribution. Most of the current applications have however only addressed real-valued time series, as no exact results are known for the topological properties of HVGs associated to integer-valued series. In this paper we explore this latter situation and address univariate time series where each variable can only take a finite number n of consecutive integer values. We are able to construct an explicit formula for the parametric degree distribution {P}n(k), which we prove to converge to the continuous case for large n and deviates otherwise. A few applications are then considered.

  9. Interactive solution-adaptive grid generation procedure

    NASA Technical Reports Server (NTRS)

    Henderson, Todd L.; Choo, Yung K.; Lee, Ki D.

    1992-01-01

    TURBO-AD is an interactive solution adaptive grid generation program under development. The program combines an interactive algebraic grid generation technique and a solution adaptive grid generation technique into a single interactive package. The control point form uses a sparse collection of control points to algebraically generate a field grid. This technique provides local grid control capability and is well suited to interactive work due to its speed and efficiency. A mapping from the physical domain to a parametric domain was used to improve difficulties encountered near outwardly concave boundaries in the control point technique. Therefore, all grid modifications are performed on the unit square in the parametric domain, and the new adapted grid is then mapped back to the physical domain. The grid adaption is achieved by adapting the control points to a numerical solution in the parametric domain using control sources obtained from the flow properties. Then a new modified grid is generated from the adapted control net. This process is efficient because the number of control points is much less than the number of grid points and the generation of the grid is an efficient algebraic process. TURBO-AD provides the user with both local and global controls.

  10. Improving mobile robot localization: grid-based approach

    NASA Astrophysics Data System (ADS)

    Yan, Junchi

    2012-02-01

    Autonomous mobile robots have been widely studied not only as advanced facilities for industrial and daily life automation, but also as a testbed in robotics competitions for extending the frontier of current artificial intelligence. In many of such contests, the robot is supposed to navigate on the ground with a grid layout. Based on this observation, we present a localization error correction method by exploring the geometric feature of the tile patterns. On top of the classical inertia-based positioning, our approach employs three fiber-optic sensors that are assembled under the bottom of the robot, presenting an equilateral triangle layout. The sensor apparatus, together with the proposed supporting algorithm, are designed to detect a line's direction (vertical or horizontal) by monitoring the grid crossing events. As a result, the line coordinate information can be fused to rectify the cumulative localization deviation from inertia positioning. The proposed method is analyzed theoretically in terms of its error bound and also has been implemented and tested on a customary developed two-wheel autonomous mobile robot.

  11. GridMol: a grid application for molecular modeling and visualization.

    PubMed

    Sun, Yanhua; Shen, Bin; Lu, Zhonghua; Jin, Zhong; Chi, Xuebin

    2008-02-01

    In this paper we present GridMol, an extensible tool for building a high performance computational chemistry platform in the grid environment. GridMol provides computational chemists one-stop service for molecular modeling, scientific computing and molecular information visualization. GridMol is not only a visualization and modeling tool but also simplifies control of remote Grid software that can access high performance computing resources. GridMol has been successfully integrated into China National Grid, the most powerful Chinese Grid Computing platform. In Section "Grid computing" of this paper, a computing example is given to show the availability and efficiency of GridMol. GridMol is coded using Java and Java3D for portability and cross-platform compatibility (Windows, Linux, MacOS X and UNIX). GridMol can run not only as a stand-alone application, but also as an applet through web browsers. In this paper, we will present the techniques for molecular visualization, molecular modeling and grid computing. GridMol is available free of charge under the GNU Public License (GPL) from our website: http://www.sccas.cn/~syh/GridMol/index.html. PMID:18231861

  12. Grid artifact reduction for direct digital radiography detectors based on rotated stationary grids with homomorphic filtering

    SciTech Connect

    Kim, Dong Sik; Lee, Sanggyun

    2013-06-15

    Purpose: Grid artifacts are caused when using the antiscatter grid in obtaining digital x-ray images. In this paper, research on grid artifact reduction techniques is conducted especially for the direct detectors, which are based on amorphous selenium. Methods: In order to analyze and reduce the grid artifacts, the authors consider a multiplicative grid image model and propose a homomorphic filtering technique. For minimal damage due to filters, which are used to suppress the grid artifacts, rotated grids with respect to the sampling direction are employed, and min-max optimization problems for searching optimal grid frequencies and angles for given sampling frequencies are established. The authors then propose algorithms for the grid artifact reduction based on the band-stop filters as well as low-pass filters. Results: The proposed algorithms are experimentally tested for digital x-ray images, which are obtained from direct detectors with the rotated grids, and are compared with other algorithms. It is shown that the proposed algorithms can successfully reduce the grid artifacts for direct detectors. Conclusions: By employing the homomorphic filtering technique, the authors can considerably suppress the strong grid artifacts with relatively narrow-bandwidth filters compared to the normal filtering case. Using rotated grids also significantly reduces the ringing artifact. Furthermore, for specific grid frequencies and angles, the authors can use simple homomorphic low-pass filters in the spatial domain, and thus alleviate the grid artifacts with very low implementation complexity.

  13. Solving Partial Differential Equations on Overlapping Grids

    SciTech Connect

    Henshaw, W D

    2008-09-22

    We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solution of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.

  14. Curvilinear grids for sinuous river channels

    NASA Technical Reports Server (NTRS)

    Tatom, F. B.; Waldrop, W. R.; Smith, S. R.

    1980-01-01

    In order to effectively analyze the flow in sinuous river channels, a curvilinear grid system was developed for use in the appropriate hydrodynamic code. The CENTERLINE program was designed to generate a two dimensional grid for this purpose. The Cartesian coordinates of a series of points along the boundaries of the sinuous channel represent the primary input to CENTERLINE. The program calculates the location of the river centerline, the distance downstream along the centerline, and both radius of curvature and channel width as a function of such distance downstream. These parameters form the basis for the generation of the curvilinear grid. Based on input values for longitudinal and lateral grid spacing, the corresponding grid system is generated and a file is created containing the appropriate parameters for use in the associated explicit finite difference hydrodynamic programs. Because of the option for a nonuniform grid, grid spacing can be concentrated in areas containing the largest flow gradients.

  15. Getting a Grip on Grid Generation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    GridPro is an automatic, object-oriented, multi-block grid generator that provides ease of use, high quality, rapid production, and parametric design. When paired with a 3-D graphic user interface called az- Manager, GridPro presents users with an extremely efficient, interactive capability to build topology, edit surfaces, set computational fluid dynamics (CFD) boundary conditions, and view multi-block grids. The origins of the GridPro technology date back to a 1989 SBIR contract with NASA's Glenn Research Center, in which Glenn was seeking a multi-block grid generation program that would run automatically upon identifying a pattern of grid blocks supplied by a user. The technology is currently used in many engineering fields, including aerospace, turbo- machinery, automotive, and chemical industries.

  16. Generating Composite Overlapping Grids on CAD Geometries

    SciTech Connect

    Henshaw, W.D.

    2002-02-07

    We describe some algorithms and tools that have been developed to generate composite overlapping grids on geometries that have been defined with computer aided design (CAD) programs. This process consists of five main steps. Starting from a description of the surfaces defining the computational domain we (1) correct errors in the CAD representation, (2) determine topology of the patched-surface, (3) build a global triangulation of the surface, (4) construct structured surface and volume grids using hyperbolic grid generation, and (5) generate the overlapping grid by determining the holes and the interpolation points. The overlapping grid generator which is used for the final step also supports the rapid generation of grids for block-structured adaptive mesh refinement and for moving grids. These algorithms have been implemented as part of the Overture object-oriented framework.

  17. Horizontal gaze palsy with progressive scoliosis in a Moroccan family.

    PubMed

    Handor, H; Laghmari, M; Hafidi, Z; Daoudi, R

    2014-04-01

    Horizontal gaze palsy with progressive scoliosis (HGPPS) is a rare clinical condition characterized by a combination of horizontal gaze palsy, pendular nystagmus and scoliosis. Only a few cases have been previously described in the literature. Our observations serve to document the first cases in Morocco. PMID:24559884

  18. Surgery for Complete Vertical Rectus Paralysis Combined with Horizontal Strabismus

    PubMed Central

    Zou, Leilei; Liu, Rui; Liu, Yan; Lin, Jing; Liu, Hong

    2014-01-01

    Aims. To report outcomes of the simultaneous surgical correction of vertical rectus paralysis combined with moderate-to-large angle horizontal strabismus. Methods. If a preoperative forced duction test was positive, antagonist muscle weakening surgery was performed, and then augmented partial rectus muscle transposition (APRMT) + partial horizontal rectus recession-resection was performed 2 months later. If a preoperative forced duction test was negative, APRMT + partial horizontal rectus recession-resection was performed. Antagonistic muscle weakening surgery and/or conventional recession-resection of the horizontal and/or vertical muscles of the contralateral eye was performed 2 months later, as needed. Results. Ten patients with a mean age of 22.3 ± 13.0 years were included and mean follow-up was 7.1 months. The mean vertical deviation that APRMT corrected was 21.4 ± 3.7 PD (prism diopter). The absolute deviation in horizontal significantly decreased from a preoperative value of 48.5 ± 27.4 PD to a value of 3.0 ± 2.3 PD 6 months postoperatively. The movement score decreased from a value of −5 ± 0 preoperatively to a value of −2.7 ± 0.8 at 6 months postoperatively. Conclusion. For patients with complete vertical rectus paralysis combined with a moderate- to-large angle of horizontal strabismus, combined APRMT and partial horizontal rectus recession-resection is safe and effective for correcting vertical and horizontal strabismus. PMID:24883204

  19. District Power Equalization, Horizontal Equity and the Property Mix.

    ERIC Educational Resources Information Center

    Hilley, John

    1980-01-01

    Argues that the traditional district power equalization (DPE) grant formula achieves horizontal equity, that the formula must be modified when the measure of fiscal capacity differs from the legal tax base, and that the inclusion of a tax exporting variable leads to the breakdown of horizontal equity. (Author/IRT)

  20. Horizontal technology helps spark Louisiana`s Austin chalk trend

    SciTech Connect

    Koen, A.D.

    1996-04-29

    A handful of companies paced by some of the most active operators in the US are pressing the limits of horizontal technology to ramp up Cretaceous Austin chalk exploration and development (E and D) across Louisiana. Companies find applications in Louisiana for lessons learned drilling horizontal wells to produce chalk intervals in Texas in Giddings, Pearsall, and Brookeland fields. Continuing advances in horizontal well technology are helping operators deal with deeper, hotter reservoirs in more complex geological settings that typify the chalk in Louisiana. Better horizontal drilling, completion, formation evaluation, and stimulation techniques have enabled operators to produce oil and gas from formations previously thought to be uneconomical. Most of the improved capabilities stem from better horizontal tools. Horizontal drilling breakthroughs include dual powered mud motors and retrievable whipstocks, key links in the ability to drill wells with more than one horizontal lateral. Better geosteering tools have enabled operators to maintain horizontal wellbores in desired intervals by signaling bit positions downhole while drilling. This paper reviews the technology and provides a historical perspective on the various drilling programs which have been completed in this trend. It also makes predictions on future drilling successes.

  1. Horizontal biases in rats’ use of three-dimensional space

    PubMed Central

    Jovalekic, Aleksandar; Hayman, Robin; Becares, Natalia; Reid, Harry; Thomas, George; Wilson, Jonathan; Jeffery, Kate

    2011-01-01

    Rodent spatial cognition studies allow links to be made between neural and behavioural phenomena, and much is now known about the encoding and use of horizontal space. However, the real world is three dimensional, providing cognitive challenges that have yet to be explored. Motivated by neural findings suggesting weaker encoding of vertical than horizontal space, we examined whether rats show a similar behavioural anisotropy when distributing their time freely between vertical and horizontal movements. We found that in two- or three-dimensional environments with a vertical dimension, rats showed a prioritization of horizontal over vertical movements in both foraging and detour tasks. In the foraging tasks, the animals executed more horizontal than vertical movements and adopted a “layer strategy” in which food was collected from one horizontal level before moving to the next. In the detour tasks, rats preferred the routes that allowed them to execute the horizontal leg first. We suggest three possible reasons for this behavioural bias. First, as suggested by Grobety and Schenk [5], it allows minimisation of energy expenditure, inasmuch as costly vertical movements are minimised. Second, it may be a manifestation of the temporal discounting of effort, in which animals value delayed effort as less costly than immediate effort. Finally, it may be that at the neural level rats encode the vertical dimension less precisely, and thus prefer to bias their movements in the more accurately encoded horizontal dimension. We suggest that all three factors are related, and all play a part. PMID:21419172

  2. Hearing Impaired Children's Performance on the Piagetian Liquid Horizontality Test.

    ERIC Educational Resources Information Center

    Murphy-Berman, Virginia; And Others

    A paper-and-pencil test consisting of a series of 24 sketches was administered to assess the performance of hearing impaired students aged 9-12 on a Piagetian horizontality task. This age range among hearing students is the developmental period during which comprehension of the principle of horizontality should begin to emerge, indicating ability…

  3. Chord Panel Post, Vertical X Bracing & Horizontal Tie Joint ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Chord Panel Post, Vertical X Bracing & Horizontal Tie Joint Detail; Chord Joining Block & Spacer Block Detail; Cross Bracing Joint Detail; Chord Panel Post Diagonal & Horizontal Tie Joint Detail - Jackson Covered Bridge, Spanning Sugar Creek, CR 775N (Changed from Spanning Sugar Creek), Bloomingdale, Parke County, IN

  4. Globally Gridded Satellite (GridSat) Observations for Climate Studies

    NASA Technical Reports Server (NTRS)

    Knapp, Kenneth R.; Ansari, Steve; Bain, Caroline L.; Bourassa, Mark A.; Dickinson, Michael J.; Funk, Chris; Helms, Chip N.; Hennon, Christopher C.; Holmes, Christopher D.; Huffman, George J.; Kossin, James P.; Lee, Hai-Tien; Loew, Alexander; Magnusdottir, Gudrun

    2012-01-01

    Geostationary satellites have provided routine, high temporal resolution Earth observations since the 1970s. Despite the long period of record, use of these data in climate studies has been limited for numerous reasons, among them: there is no central archive of geostationary data for all international satellites, full temporal and spatial resolution data are voluminous, and diverse calibration and navigation formats encumber the uniform processing needed for multi-satellite climate studies. The International Satellite Cloud Climatology Project set the stage for overcoming these issues by archiving a subset of the full resolution geostationary data at approx.10 km resolution at 3 hourly intervals since 1983. Recent efforts at NOAA s National Climatic Data Center to provide convenient access to these data include remapping the data to a standard map projection, recalibrating the data to optimize temporal homogeneity, extending the record of observations back to 1980, and reformatting the data for broad public distribution. The Gridded Satellite (GridSat) dataset includes observations from the visible, infrared window, and infrared water vapor channels. Data are stored in the netCDF format using standards that permit a wide variety of tools and libraries to quickly and easily process the data. A novel data layering approach, together with appropriate satellite and file metadata, allows users to access GridSat data at varying levels of complexity based on their needs. The result is a climate data record already in use by the meteorological community. Examples include reanalysis of tropical cyclones, studies of global precipitation, and detection and tracking of the intertropical convergence zone.

  5. Verification of a non-hydrostatic dynamical core using horizontally spectral element vertically finite difference method

    NASA Astrophysics Data System (ADS)

    Choi, S. J.; Kim, J.; Shin, S.

    2014-12-01

    In this presentation, a new non-hydrostatic (NH) dynamical core using the spectral element method (SEM) in the horizontal discretization and the finite difference method (FDM) in the vertical discretization will be presented. By using horizontal SEM, which decomposes the physical domain into smaller pieces with a small communication stencil, we can achieve a high level of scalability. Also by using vertical FDM, we provide an easy way for coupling the dynamics and existing physics packages. The Euler equations used here are in a flux form based on the hybrid sigma hydrostatic pressure vertical coordinate, which are similar to those used in the Weather Research and Forecasting (WRF) model. Within these Euler equations, we use a time-split third-order Runge-Kutta (RK3) for the time discretization. In order to establish robustness, firstly the NH dynamical core is verified in a simplified two dimensional (2D) slice framework by conducting widely used standard benchmark tests, and then we verify the global three dimensional (3D) dynamical core on the cubed-sphere grid with several test cases introduced by Dynamical Core Model Intercomparison Project (DCMIP).

  6. Numerical study of natural convection in a horizontal cylinder filled with water-based alumina nanofluid

    NASA Astrophysics Data System (ADS)

    Meng, Xiangyin; Li, Yan

    2015-03-01

    Natural heat convection of water-based alumina (Al2O3/water) nanofluids (with volume fraction 1% and 4%) in a horizontal cylinder is numerically investigated. The whole three-dimensional computational fluid dynamics (CFD) procedure is performed in a completely open-source way. Blender, enGrid, OpenFOAM and ParaView are employed for geometry creation, mesh generation, case simulation and post process, respectively. Original solver `buoyantBoussinesqSimpleFoam' is selected for the present study, and a temperature-dependent solver `buoyantBoussinesqSimpleTDFoam' is developed to ensure the simulation is more realistic. The two solvers are used for same cases and compared to corresponding experimental results. The flow regime in these cases is laminar (Reynolds number is 150) and the Rayleigh number range is 0.7 × 107 ~ 5 × 107. By comparison, the average natural Nusselt numbers of water and Al2O3/water nanofluids are found to increase with the Rayleigh number. At the same Rayleigh number, the Nusselt number is found to decrease with nanofluid volume fraction. The temperature-dependent solver is found better for water and 1% Al2O3/water nanofluid cases, while the original solver is better for 4% Al2O3/water nanofluid cases. Furthermore, due to strong three-dimensional flow features in the horizontal cylinder, three-dimensional CFD simulation is recommended instead of two-dimensional simplifications.

  7. Seasonal variations and horizontal distribution of precipitation over extratropical continental regions in CMIP5

    NASA Astrophysics Data System (ADS)

    Hamada, A.; Hirota, N.; Takayabu, Y. N.

    2012-12-01

    Seasonal variations and horizontal distribution of precipitation over extratropical continental regions by the CMIP5 climate models in their historical runs are evaluated, in comparison with GPCP, CMAP, daily gridded gauge data APHRODITE, and with various reanalysis data. Eight regions are selected over the Eastern Europe, northwestern Russia, Mongolia, northeastern Russia, Alaska, western US, eastern Canada, and eastern US. It is shown that precipitation reproducibility over extratropical continental regions in climate models widely varies depending on regions and seasons, probably attributed to the matching of the precipitation characteristics and treatments of physical processes in the climate models. In some regions, additional treatments of physical processes such as those implemented in the Earth System Models improve the result, while in other regions, horizontal resolution looks essential for the improvements. The reproducibility also varies depending on seasons in a same region, for example, differs between summer and winter in the Eastern Europe. It is also noted that estimated rain amounts considerably vary among GPCP, CMAP, and APHRODITE. Acknowledgment: This study is supported by the 6th GPM/TRMM RA of JAXA, Green Network of Excellence (GRENE) Program by the Ministry of Education, Culture, Sports, Science and Technology, Japan, and Environment Research and Technology Development Fund (A-1201) of the Ministry of the Environment, Japan.

  8. Web-based visualization of gridded dataset usings OceanBrowser

    NASA Astrophysics Data System (ADS)

    Barth, Alexander; Watelet, Sylvain; Troupin, Charles; Beckers, Jean-Marie

    2015-04-01

    OceanBrowser is a web-based visualization tool for gridded oceanographic data sets. Those data sets are typically four-dimensional (longitude, latitude, depth and time). OceanBrowser allows one to visualize horizontal sections at a given depth and time to examine the horizontal distribution of a given variable. It also offers the possibility to display the results on an arbitrary vertical section. To study the evolution of the variable in time, the horizontal and vertical sections can also be animated. Vertical section can be generated by using a fixed distance from coast or fixed ocean depth. The user can customize the plot by changing the color-map, the range of the color-bar, the type of the plot (linearly interpolated color, simple contours, filled contours) and download the current view as a simple image or as Keyhole Markup Language (KML) file for visualization in applications such as Google Earth. The data products can also be accessed as NetCDF files and through OPeNDAP. Third-party layers from a web map service can also be integrated. OceanBrowser is used in the frame of the SeaDataNet project (http://gher-diva.phys.ulg.ac.be/web-vis/) and EMODNET Chemistry (http://oceanbrowser.net/emodnet/) to distribute gridded data sets interpolated from in situ observation using DIVA (Data-Interpolating Variational Analysis).

  9. The Dependence on Grid Resolution of Numerically Simulated Convective Cloud Systems Using Ice Microphysics

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Tao, Wei-Kuo; Lang, Stephen E.; Ferrier, Bradley S.

    1999-01-01

    Mesoscale research and forecast models are increasingly being used at horizontal resolutions of 1-8 km to simulate a variety of precipitating systems. When the model is used to simulate convective systems, it is uncertain to what extent the dynamics and microphysics of convective updrafts can be resolved with grids larger than 1 km. In this study, two- and three-dimensional versions of the Goddard Cumulus Ensemble model are used to determine the impact of horizontal grid resolution on the behavior of the simulated storms and on the characteristics of the cloud microphysical fields. It will be shown that as resolution decreases from about 1 km to greater than 3 km, there is a fairly rapid degradation of the storm structure in the form of reduced convective mass fluxes, updraft tilts, and cloud microphysics. A high-resolution simulation of hurricane outer rainbands using the MM5 mesoscale model shows also that there can be a substantial modification of the key microphysical processes that contribute to rainfall as a result of reducing the horizontal resolution.

  10. Steerable vertical to horizontal energy transducer for mobile robots

    DOEpatents

    Spletzer, Barry L.; Fischer, Gary J.; Feddema, John T.

    2001-01-01

    The present invention provides a steerable vertical to horizontal energy transducer for mobile robots that less complex and requires less power than two degree of freedom tilt mechanisms. The present invention comprises an end effector that, when mounted with a hopping actuator, translates along axis (typically vertical) actuation into combined vertical and horizontal motion. The end effector, or foot, mounts with an end of the actuator that moves toward the support surface (typically a floor or the earth). The foot is shaped so that the first contact with the support surface is off the axis of the actuator. Off-axis contact with the support surface generates an on-axis force (typically resulting in vertical motion) and a moment orthogonal to the axis. The moment initiates a horizontal tumbling motion, and tilts the actuator so that its axis is oriented with a horizontal component and continued actuation generates both vertical and horizontal force.

  11. Global ocean simulations by HYCOM on icosahedral and logically rectangular grids

    NASA Astrophysics Data System (ADS)

    Sun, Shan; Bleck, Rainer

    2015-04-01

    iHYCOM, short for "icosahedral HYbrid Coordinate Ocean Model", is being developed at the NOAA Earth System Research Laboratory. The purpose of formulating HYCOM on an icosahedral grid is to allow coupling to an existing icosahedral weather prediction model ("FIM", see http://fim.noaa.gov) unencumbered by interpolation problems at the air-sea-ice interface. We have tested the traditional HYCOM, formulated on a Mercator grid augmented by a bipolar pole patch, with iHYCOM for several decades at comparable horizontal mesh sizes in the 0.5-1.0 deg range, employing the same vertical resolution of 26 potential density (sigma_1) layers. These comparison runs were forced by CORE (Common Ocean-Ice Reference Experiment) fields. Several performance measures indicate that formulating HYCOM on an icosahedral mesh is feasible, although a numerically stable barotropic-baroclinic mode splitting scheme is not available yet. We compare the large scale circulations simulated by both model versions and investigate the model sensitivity to different horizontal grids.

  12. The stimulus integration area for horizontal vergence.

    PubMed

    Allison, Robert S; Howard, Ian P; Fang, Xueping

    2004-06-01

    Over what region of space are horizontal disparities integrated to form the stimulus for vergence? The vergence system might be expected to respond to disparities within a small area of interest to bring them into the range of precise stereoscopic processing. However, the literature suggests that disparities are integrated over a fairly large parafoveal area. We report the results of six experiments designed to explore the spatial characteristics of the stimulus for vergence. Binocular eye movements were recorded using magnetic search coils. Each dichoptic display consisted of a central target stimulus that the subject attempted to fuse, and a competing stimulus with conflicting disparity. In some conditions the target was stationary, providing a fixation stimulus. In other conditions, the disparity of the target changed to provide a vergence-tracking stimulus. The target and competing stimulus were combined in a variety of conditions including those in which (1) a transparent textured-disc target was superimposed on a competing textured background, (2) a textured-disc target filled the centre of a competing annular background, and (3) a small target was presented within the centre of a competing annular background of various inner diameters. In some conditions the target and competing stimulus were separated in stereoscopic depth. The results are consistent with a disparity integration area with a diameter of about 5 degrees. Stimuli beyond this integration area can drive vergence in their own right, but they do not appear to be summed or averaged with a central stimulus to form a combined disparity signal. A competing stimulus had less effect on vergence when separated from the target by a disparity pedestal. As a result, we propose that it may be more useful to think in terms of an integration volume for vergence rather than a two-dimensional retinal integration area. PMID:14985895

  13. Survey of Volumetric Grid Generators

    NASA Technical Reports Server (NTRS)

    Woo, Alex; Volakis, John; Hulbert, Greg; Case, Jeff; Presley, Leroy L. (Technical Monitor)

    1994-01-01

    This document is the result of an Internet Survey of Volumetric grid generators. As such we have included information from only the responses which were sent to us. After the initial publication and posting of this survey, we would encourage authors and users of grid generators to send further information. Here is the initial query posted to SIGGRID@nas and the USENET group sci.physics.computational.fluid-dynamics. Date: Sun, 30 Jan 94 11:37:52 -0800 From: woo (Alex Woo x6010 227-6 rm 315) Subject: Info Sought for Survey of Grid Generators I am collecting information and reviews of both government sponsored and commercial mesh generators for large scientific calculations, both block structured and unstructured. If you send me a review of a mesh generator, please indicate its availability and cost. If you are a commercial concern with information on a product, please also include references for possible reviewers. Please email to woo@ra-next.arc.nasa.gov. I will post a summary and probably write a short note for the IEEE Antennas and Propagation Magazine. Alex Woo, MS 227-6 woo@ames.arc.nasa.gov NASA Ames Research Center NASAMAIL ACWOO Moffett Field, CA 94035-1000 SPANET 24582::W00 (415) 604-6010 (FAX) 604-4357 fhplabs,decwrl,uunet)!ames!woo Disclaimer: These are not official statements of NASA or EMCC. We did not include all the submitted text here. Instead we have created a database entry in the freely available and widely used BIBTeX format which has an Uniform Resource Locator (URL) field pointing to more details. The BIBTeX database is modeled after those available from the BIBNET project at University of Utah.

  14. Insightful Workflow For Grid Computing

    SciTech Connect

    Dr. Charles Earl

    2008-10-09

    We developed a workflow adaptation and scheduling system for Grid workflow. The system currently interfaces with and uses the Karajan workflow system. We developed machine learning agents that provide the planner/scheduler with information needed to make decisions about when and how to replan. The Kubrick restructures workflow at runtime, making it unique among workflow scheduling systems. The existing Kubrick system provides a platform on which to integrate additional quality of service constraints and in which to explore the use of an ensemble of scheduling and planning algorithms. This will be the principle thrust of our Phase II work.

  15. Bootstrapping to a Semantic Grid

    SciTech Connect

    Schwidder, Jens; Talbott, Tara; Myers, James D.

    2005-02-28

    The Scientific Annotation Middleware (SAM) is a set of components and services that enable researchers, applications, problem solving environments (PSE) and software agents to create metadata and annotations about data objects and document the semantic relationships between them. Developed starting in 2001, SAM allows applications to encode metadata within files or to manage metadata at the level of individual relationships as desired. SAM then provides mechanisms to expose metadata and relation¬ships encoded either way as WebDAV properties. In this paper, we report on work to further map this metadata into RDF and discuss the role of middleware such as SAM in bridging between traditional and semantic grid applications.

  16. MSSA of globally gridded AAM

    NASA Astrophysics Data System (ADS)

    Zotov, Leonid; Schindelegger, Michael; Bizouard, Christian

    2016-04-01

    Multichannel singular spectrum analysis (MSSA) was applied to 111 years of Atmospheric Angular Momentum (AAM) grid data from ECMWMF 20th Century Reanalysis (ERA-20C) model. Components of zonal atmospheric circulation influencing Length of Day (LOD) were separated. Some of them are related to El Nino Southern Oscillation (ENSO) global circulation modes, others represent possible trends. Meridional AAM components were processed by complex MSSA. Annual, semiannual components were separated. The maps of influence in the Chandler and annual bands on Polar Motion (PM) were obtained. The regions where the torques come from, influence of friction in the mountains was also analyzed.

  17. Horizontal oil well applications and oil recovery assessment. Volume 1: Success of horizontal well technology, Final report

    SciTech Connect

    Deskins, W.G.; McDonald, W.J.; Knoll, R.G.; Springer, S.J.

    1995-03-01

    Horizontal technology has been applied in over 110 formations in the USA. Volume I of this study addresses the overall success of horizontal technology, especially in less-publicized formations, i.e., other than the Austin Chalk, Bakken, and Niobrara. Operators in the USA. and Canada were surveyed on a formation-by-formation basis by means of a questionnaire. Response data were received describing horizontal well projects in 58 formations in the USA. and 88 in Canada. Operators responses were analyzed for trends in technical and economic success based on lithology (clastics and carbonates) and resource type (light oil, heavy oil, and gas). The potential impact of horizontal technology on reserves was also estimated. A forecast of horizontal drilling activity over the next decade was developed.

  18. Unstructured grid research and use at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark G.

    1993-01-01

    Computational fluid dynamics applications of grid research at LRC include inlets, nozzles, and ducts; turbomachinery; propellers - ducted and unducted; and aircraft icing. Some issues related to internal flow grid generation are resolution requirements on several boundaries, shock resolution vs. grid periodicity, grid spacing at blade/shroud gap, grid generation in turbine blade passages, and grid generation for inlet/nozzle geometries. Aircraft icing grid generation issues include (1) small structures relative to airfoil chord must be resolved; (2) excessive number of grid points in far-field using structured grid; and (3) grid must be recreated as ice shape grows.

  19. Characterization of the horizontal optical turbulence (C{/n 2}) data measured at Kongju and Cheonan

    NASA Astrophysics Data System (ADS)

    Yeong Kim, Bo; Lee, Jun Ho; Soo Choi, Young

    2015-06-01

    When light from an object or an astronomical star propagates in the earth's atmosphere, atmospheric turbulence can distort and move the image in various ways. A quantitative measure of the intensity of optical turbulence with a refractive index structure parameter, C {/n 2}, is widely used in the statistical characterization of the random refractive index fluctuations generally referred to as optical turbulence. I this study, we investigated the horizontal optical turbulence in the near infrared region (850nm) at two sites in South Korea (Kongju and Cheonan) by using a scintillometer. The scintillometer measured the refractive index structure parameter C {/n 2} over 2.1- and 0.4-km paths, respectively, in Kongju and Cheonan. The first path was over an urban area characterized by a complicated land-use mix (residential houses, a river, bare ground, etc.) whereas the second path was a building-to-building path at a 15-m height on a university campus. In addition to the scintillometer, an independent weather station recorded meteorological conditions such as wind speed, relative humidity, and temperature. Study results indicate the general patterns of the optical turbulence at both sites agree with previous-reported diurnal patterns; they have two dips in C2n, one at around sunrise and the other at sunset, but the night profiles varied strongly depending on the atmospheric conditions. The average values of C {/n 2} for the measurement period were × 10-15 and 2.90 × 10-14 m-2/3 in Kongju and Cheonan, espectively, thus confirming that the optical field is clearer in the former. In addition, the average values of the Fried parameter, r0, were accordingly estimated to be 8.0 and 2.5 cm over a 2-km optical distance at Kongju and Cheonan, respectively.

  20. Maximum horizontal range of volcanic ballistic projectiles ejected during explosive eruptions at Santorini caldera

    NASA Astrophysics Data System (ADS)

    Konstantinou, K. I.

    2015-08-01

    This study investigates the hazard posed by Volcanic Ballistic Projectiles (VBPs) to the Santorini islands considering eruption scenarios that include low (VEI = 2-3) and higher energy (VEI > 3) eruptions. A model that describes rapid decompression of pressurized magma below a caprock along with its fragmentation and acceleration of particles is utilized for estimating initial velocities during vulcanian-style eruptions. These initial velocities are inserted into the ballistic equations assuming that VBPs have a cube-like shape, are subjected to gravity/drag forces and are launched into a zone of reduced drag. Four different diameters of VBPs are considered (0.35 m, 1.0 m, 2.0 m, 3.0 m) and also different values of gas fractions and extent of the reduced drag zone are investigated. The results of these calculations show that an area of 1-2 km width along the western coast of Thera will be within the maximum range of VBPs, provided that the eruptive vent will develop either on Nea Kameni or between Nea Kameni and Thera. Initial velocities for higher energy eruptions are estimated by considering the conversion efficiency of thermal to kinetic energy. For the case of an eruption with VEI = 4 and a number of vents centered between Nea and Palea Kameni, calculations show that the coastal areas of Thera and Therasia are within the maximum horizontal range of VBPs with diameter larger than 0.35 m. As the exact position of the eruptive vent seems to be of crucial importance for determining the areas at risk, continuous seismic and geodetic monitoring of the caldera is needed in order to decipher its likely location.

  1. Vertical and horizontal NO2 transport in urban area associated with land-sea breeze as observed by ground-based MAX-DOAS

    NASA Astrophysics Data System (ADS)

    Takashima, H.; Kanaya, Y.

    2013-12-01

    Since July 2012, continuous NO2 profile observations have been performed by using ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) at Fukuoka (33.55N, 130.36E), an urban site in Japan. MAX-DOAS is a passive remote sensing technique using scatted visible and ultraviolet solar radiation at several elevation angles, and it can allow us to retrieve vertical information on several trace gasses. In this study, the vertical resolution of the profiles is roughly 1 km below 2 km height. We investigate inhomogeneity of NO2 over Fukuoka by observing at two azimuth angles, Tenjin (downtown area) direction and Itoshima (out of downtown area) direction. Understanding of the spatial inhomogeneity of NO2 in urban area is important for measuring a priori profiles for satellite and for validating chemical transport model. Diurnal variation with maximum in the morning is clearly observed in both directions throughout the year for 0-1 km. Diurnal variation with maximum around noon is sometimes observed in Itoshima direction, which is delayed by 1-2 hours from maxima in Tenjin direction. The NO2 maximum for upper level (1-2 km) is also delayed from the maximum in Tenjin direction. From the analysis of surface wind field, these variations seems to be strongly related to vertical/horizontal transport of high concentration of NO2 from the downtown area (and development of the boundary layer) and horizontal transport of low concentration from ocean associated with land-sea breeze. We also present a comparison of NO2 data measured with the Ozone Monitoring Instrument (OMI) satellite sensor.

  2. Horizontal gene transfer from Agrobacterium to plants

    PubMed Central

    Matveeva, Tatiana V.; Lutova, Ludmila A.

    2014-01-01

    Most genetic engineering of plants uses Agrobacterium mediated transformation to introduce novel gene content. In nature, insertion of T-DNA in the plant genome and its subsequent transfer via sexual reproduction has been shown in several species in the genera Nicotiana and Linaria. In these natural examples of horizontal gene transfer from Agrobacterium to plants, the T-DNA donor is assumed to be a mikimopine strain of A. rhizogenes. A sequence homologous to the T-DNA of the Ri plasmid of Agrobacterium rhizogenes was found in the genome of untransformed Nicotiana glauca about 30 years ago, and was named “cellular T-DNA” (cT-DNA). It represents an imperfect inverted repeat and contains homologs of several T-DNA oncogenes (NgrolB, NgrolC, NgORF13, NgORF14) and an opine synthesis gene (Ngmis). A similar cT-DNA has also been found in other species of the genus Nicotiana. These presumably ancient homologs of T-DNA genes are still expressed, indicating that they may play a role in the evolution of these plants. Recently T-DNA has been detected and characterized in Linaria vulgaris and L. dalmatica. In Linaria vulgaris the cT-DNA is present in two copies and organized as a tandem imperfect direct repeat, containing LvORF2, LvORF3, LvORF8, LvrolA, LvrolB, LvrolC, LvORF13, LvORF14, and the Lvmis genes. All L. vulgaris and L. dalmatica plants screened contained the same T-DNA oncogenes and the mis gene. Evidence suggests that there were several independent T-DNA integration events into the genomes of these plant genera. We speculate that ancient plants transformed by A. rhizogenes might have acquired a selective advantage in competition with the parental species. Thus, the events of T-DNA insertion in the plant genome might have affected their evolution, resulting in the creation of new plant species. In this review we focus on the structure and functions of cT-DNA in Linaria and Nicotiana and discuss their possible evolutionary role. PMID:25157257

  3. Geologic aspects of horizontal drilling in self-sourcing reservoirs

    SciTech Connect

    Illich, H.A. )

    1991-03-01

    Horizontal drilling techniques provide a way to exploit hydrocarbon reserves that are either noneconomic or only marginally economic using vertical drilling techniques. A significant fraction of these reserves is contained in reservoirs that are self-sourcing or in reservoirs that are closely associated with their resources. Most formations drilled as horizontal targets are self-sourcing. The Austin Chalk, Niobrara, Mesaverde, and Bakken are examples of horizontally drilled, self-sourcing reservoir systems. In formations like the Bakken or Austin Chalk, the close relationship between reservoir and source makes risks associated with migration and accumulation less important. Reservoirs of this kind can contain oil or gas and often have little or no associated water. They can be matrix-dominated reservoirs, dual-porosity reservoirs (Mesaverde), or fractured reservoirs (Austin Chalk, Bakken, and Niobrara). Fractured, self-sourcing reservoirs also can possess matrix characteristics that contribute increased recovery efficiency. Most reservoirs drilled horizontally possess matrix characteristics that contribute increased recovery efficiency. Most reservoirs drilled horizontally possess highly heterogeneous reservoir systems. Characterization of the style of reservoir heterogeneity in self-sourcing systems is important if the favorable properties of horizontally oriented bore holes are to be realized. Production data and rock mechanics considerations are important in horizontal drilling ventures. Examples of the use of these data for the purpose of defining reservoir characteristics are discussed. Knowledge of lateral changes in reservoir properties is essential if we are to recover known reserves efficiently.

  4. Formation damage effects on horizontal-well flow efficiency

    SciTech Connect

    Renard, G.; Dupuy, J.M. )

    1991-07-01

    Wellbore damage commonly is accounted for by an apparent skin factor. A better relative index for determining the efficiency with which a well has been drilled and completed is the flow efficiency, the ration of a well's actual PI to ideal PI. The flow efficiency of horizontal wells is derived assuming steady-state flow of an incompressible fluid in a homogeneous, anisotropic medium. A comparison between the flow efficiencies of vertical and horizontal wells indicates that permeability reduction around the wellbore is less detrimental to horizontal wells. This paper shows that the effect of damage around a horizontal wellbore is reduced slightly by increasing the well length. Conversely, if the vertical permeability is less than the horizontal permeability, the anisotropy ratio, {radical} k{sub H}/k{sub V}, magnifies the influence of formation damage near the horizontal wellbore. Examples of flow efficiency calculations assuming a formation damage or a formation collapse around a liner in poorly consolidated formations are provided for horizontal and vertical wells.

  5. Unstructured grid generation using the distance function

    NASA Technical Reports Server (NTRS)

    Bihari, Barna L.; Chakravarthy, Sukumar R.

    1991-01-01

    A new class of methods for obtaining level sets to generate unstructured grids is presented. The consecutive grid levels are computed using the distance functions, which corresponds to solving the Hamilton-Jacobi equations representing the equations of motion of fronts propagating with curvature-dependent speed. The relationship between the distance function and the governing equations will be discussed as well as its application to generating grids. Multi-ply connected domains and complex geometries are handled naturally, with a straightforward generalization to several space dimensions. The grid points for the unstructured grid are obtained simultaneously with the grid levels. The search involved in checking for overlapping triangles is minimized by triangulating the entire domain one level at a time.

  6. ARPA-E: Advancing the Electric Grid

    ScienceCinema

    Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

    2014-03-13

    The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

  7. An interactive grid generation technique for turbomachinery

    NASA Technical Reports Server (NTRS)

    Beach, Tim

    1992-01-01

    A combination algebraic/elliptic technique is presented for the generation of 3-D grids about turbomachinery blade rows for both axial and radial flow machinery. The technique is build around use of an advanced engineering workstation to construct several 2-D grids interactively on predetermined blade-to-blade surfaces. A 3-D grid is generated by interpolating these surface grids onto an axisymmetric grid. On each blade to blade surface, a grid is created using algebraic techniques near the blade to control orthogonality within the boundary layer region and elliptic techniques in the mid-passage to achieve smoothness. The interactive definition of bezier curves as internal boundaries is the key to simple construction. The approach is adapted for use with the average passage solution technique, although this is not a limitation for most other uses. A variety of examples are presented.

  8. ARPA-E: Advancing the Electric Grid

    SciTech Connect

    Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

    2014-02-24

    The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

  9. Yin-Yang-Zhong grid: An overset grid system for a sphere

    NASA Astrophysics Data System (ADS)

    Hayashi, Hiroshi; Kageyama, Akira

    2016-01-01

    For numerical simulations inside a sphere, an overset grid system, Yin-Yang-Zhong grid, is proposed. The Yin-Yang-Zhong grid is an extension of the Yin-Yang grid, which is widely used in various simulations in spherical shell geometry. The Yin-Yang grid is itself an overset grid system with two component grids, and a new component grid called Zhong is placed at the center of the Yin-Yang grid. The Zhong grid component is constructed on Cartesian coordinates. Parallelization is intrinsically embedded in the Yin-Yang-Zhong grid system because the Zhong grid points are defined with cuboid blocks that are decomposed domains for parallelization. The computational efficiency approaches the optimum as the process number increases. Quantitative test simulations are performed for a diffusion problem in a sphere with the Yin-Yang-Zhong grid. Correct decay rates are obtained by the simulations. Two other tests in magnetohydrodynamics (MHD) in a sphere are also performed. One is an MHD dynamo simulation, and the other is an MHD relaxation simulation in a sphere.

  10. Systems Engineering Building Advances Power Grid Research

    SciTech Connect

    Virden, Jud; Huang, Henry; Skare, Paul; Dagle, Jeff; Imhoff, Carl; Stoustrup, Jakob; Melton, Ron; Stiles, Dennis; Pratt, Rob

    2015-08-19

    Researchers and industry are now better equipped to tackle the nation’s most pressing energy challenges through PNNL’s new Systems Engineering Building – including challenges in grid modernization, buildings efficiency and renewable energy integration. This lab links real-time grid data, software platforms, specialized laboratories and advanced computing resources for the design and demonstration of new tools to modernize the grid and increase buildings energy efficiency.

  11. Improved nuclear fuel assembly grid spacer

    DOEpatents

    Marshall, John; Kaplan, Samuel

    1977-01-01

    An improved fuel assembly grid spacer and method of retaining the basic fuel rod support elements in position within the fuel assembly containment channel. The improvement involves attachment of the grids to the hexagonal channel and of forming the basic fuel rod support element into a grid structure, which provides a design which is insensitive to potential channel distortion (ballooning) at high fluence levels. In addition the improved method eliminates problems associated with component fabrication and assembly.

  12. Improved Gridded Aerosol Data for India

    SciTech Connect

    Gueymard, C.; Sengupta, M.

    2013-11-01

    Using point data from ground sites in and around India equipped with multiwavelength sunphotometers, as well as gridded data from space measurements or from existing aerosol climatologies, an improved gridded database providing the monthly aerosol optical depth at 550 nm (AOD550) and Angstrom exponent (AE) over India is produced. Data from 83 sunphotometer sites are used here as ground truth tocalibrate, optimally combine, and validate monthly gridded data during the period from 2000 to 2012.

  13. Unstructured grids for sonic-boom analysis

    NASA Technical Reports Server (NTRS)

    Fouladi, Kamran

    1993-01-01

    A fast and efficient unstructured grid scheme is evaluated for sonic-boom applications. The scheme is used to predict the near-field pressure signatures of a body of revolution at several body lengths below the configuration, and those results are compared with experimental data. The introduction of the 'sonic-boom grid topology' to this scheme make it well suited for sonic-boom applications, thus providing an alternative to conventional multiblock structured grid schemes.

  14. Flow Battery Solution for Smart Grid Applications

    SciTech Connect

    none,

    2014-11-30

    To address future grid requirements, a U.S. Department of Energy ARRA Storage Demonstration program was launched in 2009 to commercialize promising technologies needed for stronger and more renewables-intensive grids. Raytheon Ktech and EnerVault received a cost-share grant award from the U.S. Department of Energy to develop a grid-scale storage system based on EnerVault’s iron-chromium redox flow battery technology.

  15. FINAL REPORT - CENTER FOR GRID MODERNIZATION

    SciTech Connect

    Markiewicz, Daniel R

    2008-06-30

    The objective of the CGM was to develop high-priority grid modernization technologies in advanced sensors, communications, controls and smart systems to enable use of real-time or near real-time information for monitoring, analyzing and managing distribution and transmission grid conditions. The key strategic approach to carry out individual CGM research and development (R&D) projects was through partnerships, primarily with the GridApp™ Consortium utility members.

  16. Grids for Dummies: Featuring Earth Science Data Mining Application

    NASA Technical Reports Server (NTRS)

    Hinke, Thomas H.

    2002-01-01

    This viewgraph presentation discusses the concept and advantages of linking computers together into data grids, an emerging technology for managing information across institutions, and potential users of data grids. The logistics of access to a grid, including the use of the World Wide Web to access grids, and security concerns are also discussed. The potential usefulness of data grids to the earth science community is also discussed, as well as the Global Grid Forum, and other efforts to establish standards for data grids.

  17. A New Elliptical Grid Clustering Method

    NASA Astrophysics Data System (ADS)

    Guansheng, Zheng

    A new base on grid clustering method is presented in this paper. This new method first does unsupervised learning on the high dimensions data. This paper proposed a grid-based approach to clustering. It maps the data onto a multi-dimensional space and applies a linear transformation to the feature space instead of to the objects themselves and then approach a grid-clustering method. Unlike the conventional methods, it uses a multidimensional hyper-eclipse grid cell. Some case studies and ideas how to use the algorithms are described. The experimental results show that EGC can discover abnormity shapes of clusters.

  18. Grid data extraction algorithm for ship routing

    NASA Astrophysics Data System (ADS)

    Li, Yuankui; Zhang, Yingjun; Yue, Xingwang; Gao, Zongjiang

    2015-05-01

    With the aim of extracting environmental data around routes, as the basis of ship routing optimization and other related studies, this paper, taking wind grid data as an example, proposes an algorithm that can effectively extract the grid data around rhumb lines. According to different ship courses, the algorithm calculates the wind grid index values in eight different situations, and a common computational formula is summarised. The wind grids around a ship route can be classified into `best-fitting' grids and `additional' grids, which are stored in such a way that, for example, when the data has a high-spacing resolution, only the `best-fitting' grids around ship routes are extracted. Finally, the algorithm was implemented and simulated with MATLAB programming. As the simulation results indicate, the algorithm designed in this paper achieved wind grid data extraction in different situations and further resolved the extraction problem of meteorological and hydrogeological field grids around ship routes efficiently. Thus, it can provide a great support for optimal ship routing related to meteorological factors.

  19. Structured adaptive grid generation using algebraic methods

    NASA Technical Reports Server (NTRS)

    Yang, Jiann-Cherng; Soni, Bharat K.; Roger, R. P.; Chan, Stephen C.

    1993-01-01

    The accuracy of the numerical algorithm depends not only on the formal order of approximation but also on the distribution of grid points in the computational domain. Grid adaptation is a procedure which allows optimal grid redistribution as the solution progresses. It offers the prospect of accurate flow field simulations without the use of an excessively timely, computationally expensive, grid. Grid adaptive schemes are divided into two basic categories: differential and algebraic. The differential method is based on a variational approach where a function which contains a measure of grid smoothness, orthogonality and volume variation is minimized by using a variational principle. This approach provided a solid mathematical basis for the adaptive method, but the Euler-Lagrange equations must be solved in addition to the original governing equations. On the other hand, the algebraic method requires much less computational effort, but the grid may not be smooth. The algebraic techniques are based on devising an algorithm where the grid movement is governed by estimates of the local error in the numerical solution. This is achieved by requiring the points in the large error regions to attract other points and points in the low error region to repel other points. The development of a fast, efficient, and robust algebraic adaptive algorithm for structured flow simulation applications is presented. This development is accomplished in a three step process. The first step is to define an adaptive weighting mesh (distribution mesh) on the basis of the equidistribution law applied to the flow field solution. The second, and probably the most crucial step, is to redistribute grid points in the computational domain according to the aforementioned weighting mesh. The third and the last step is to reevaluate the flow property by an appropriate search/interpolate scheme at the new grid locations. The adaptive weighting mesh provides the information on the desired concentration

  20. The Grid-idea and its evolution.

    SciTech Connect

    von Laszewski, G.; Mathematics and Computer Science

    2005-01-01

    In this paper we review the essence of the Grid-Idea. Specifically, we explore the changing definition of the Grid and follow its evolution over the past decade. This evolution is motivated by the gradual expansion of management issues that must be addressed to make production Grids a reality and to meet user requirements for increased functionality. Additionally, we focus on the evolutionary path of the Globus Toolkit taken to address the increasing needs of the community. We also discuss the evolutionary inclusion of commodity technologies as illustrated by the Java Commodity Grid Project.