Science.gov

Sample records for 2-methacryloyloxyethyl phosphorylcholine mpc

  1. Novel protein-repellent dental adhesive containing 2-methacryloyloxyethyl phosphorylcholine

    PubMed Central

    Zhang, Ning; Melo, Mary Anne S.; Bai, Yuxing; Xu, Hockin H. K.

    2015-01-01

    Objectives Biofilms at tooth-restoration margins can produce acids and cause secondary caries. A protein-repellent adhesive resin can potentially inhibition bacteria attachment and biofilm growth. However, there has been no report on protein-repellent dental resins. The objectives of this study were to develop a protein-repellent bonding agent incorporating 2-methacryloyloxyethyl phosphorylcholine (MPC), and to investigate its resistance to protein adsorption and biofilm growth for the first time. Methods MPC was incorporated into Scotchbond Multi-Purpose (SBMP) at 0%, 3.75%, 7.5%, 11.25%, and 15% by mass. Extracted human teeth were used to measure dentin shear bond strengths. Protein adsorption onto resins was determined by a micro bicinchoninic acid (BCA) method. A dental plaque microcosm biofilm model with human saliva as inoculum was used to measure biofilm metabolic activity and colony-forming unit (CFU) counts. Results Adding 7.5% MPC into primer and adhesive did not decrease the dentin bond strength, compared to control (p > 0.1). Incorporation of 7.5% of MPC achieved the lowest protein adsorption, which was 20-fold less than that of control. Incorporation of 7.5% of MPC greatly reduced bacterial adhesion, yielding biofilm total microorganism, total streptococci, and mutans streptococci CFU that were an order of magnitude less than control. Conclusions A protein-repellent dental adhesive resin was developed for the first time. Incorporation of MPC into primer and adhesive at 7.5% by mass greatly reduced the protein adsorption and bacterial adhesion, without compromising the dentin bond strength. The novel protein-repellent primer and adhesive are promising to inhibit biofilm formation and acid production, to protect the tooth-restoration margins and prevent secondary caries. PMID:25234652

  2. Synthesis, characterisation, and in vitro cellular uptake kinetics of nanoprecipitated poly(2-methacryloyloxyethyl phosphorylcholine)- b-poly(2-(diisopropylamino)ethyl methacrylate) (MPC-DPA) polymeric nanoparticle micelles for nanomedicine applications

    NASA Astrophysics Data System (ADS)

    Salvage, Jonathan P.; Smith, Tia; Lu, Tao; Sanghera, Amendeep; Standen, Guy; Tang, Yiqing; Lewis, Andrew L.

    2016-10-01

    Nanoscience offers the potential for great advances in medical technology and therapies in the form of nanomedicine. As such, developing controllable, predictable, and effective, nanoparticle-based therapeutic systems remains a significant challenge. Many polymer-based nanoparticle systems have been reported to date, but few harness materials with accepted biocompatibility. Phosphorylcholine (PC) based biomimetic materials have a long history of successful translation into effective commercial medical technologies. This study investigated the synthesis, characterisation, nanoprecipitation, and in vitro cellular uptake kinetics of PC-based polymeric nanoparticle micelles (PNM) formed by the biocompatible and pH responsive block copolymer poly(2-methacryloyloxyethyl phosphorylcholine)- b-poly(2-(diisopropylamino)ethyl methacrylate) (MPC-DPA). Atom transfer radical polymerisation (ATRP), and gel permeation chromatography (GPC) were used to synthesise and characterise the well-defined MPC100-DPA100 polymer, revealing organic GPC, using evaporative light scatter detection, to be more accurate than aqueous GPC for this application. Subsequent nanoprecipitation investigations utilising photon correlation spectroscopy (PCS) revealed PNM size increased with polymer concentration, and conferred Cryo-stability. PNM diameters ranged from circa 64-69 nm, and increased upon hydrophobic compound loading, circa 65-71 nm, with loading efficiencies of circa 60 % achieved, whilst remaining monodisperse. In vitro studies demonstrated that the PNM were of low cellular toxicity, with colony formation and MTT assays, utilising V79 and 3T3 cells, yielding comparable results. Investigation of the in vitro cellular uptake kinetics revealed rapid, 1 h, cellular uptake of MPC100-DPA100 PNM delivered fluorescent probes, with fluorescence persistence for 48 h. This paper presents the first report of these novel findings, which highlight the potential of the system for nanomedicine application

  3. Synthesis, characterisation, and in vitro cellular uptake kinetics of nanoprecipitated poly(2-methacryloyloxyethyl phosphorylcholine)-b-poly(2-(diisopropylamino)ethyl methacrylate) (MPC-DPA) polymeric nanoparticle micelles for nanomedicine applications

    NASA Astrophysics Data System (ADS)

    Salvage, Jonathan P.; Smith, Tia; Lu, Tao; Sanghera, Amendeep; Standen, Guy; Tang, Yiqing; Lewis, Andrew L.

    2016-01-01

    Nanoscience offers the potential for great advances in medical technology and therapies in the form of nanomedicine. As such, developing controllable, predictable, and effective, nanoparticle-based therapeutic systems remains a significant challenge. Many polymer-based nanoparticle systems have been reported to date, but few harness materials with accepted biocompatibility. Phosphorylcholine (PC) based biomimetic materials have a long history of successful translation into effective commercial medical technologies. This study investigated the synthesis, characterisation, nanoprecipitation, and in vitro cellular uptake kinetics of PC-based polymeric nanoparticle micelles (PNM) formed by the biocompatible and pH responsive block copolymer poly(2-methacryloyloxyethyl phosphorylcholine)-b-poly(2-(diisopropylamino)ethyl methacrylate) (MPC-DPA). Atom transfer radical polymerisation (ATRP), and gel permeation chromatography (GPC) were used to synthesise and characterise the well-defined MPC100-DPA100 polymer, revealing organic GPC, using evaporative light scatter detection, to be more accurate than aqueous GPC for this application. Subsequent nanoprecipitation investigations utilising photon correlation spectroscopy (PCS) revealed PNM size increased with polymer concentration, and conferred Cryo-stability. PNM diameters ranged from circa 64-69 nm, and increased upon hydrophobic compound loading, circa 65-71 nm, with loading efficiencies of circa 60 % achieved, whilst remaining monodisperse. In vitro studies demonstrated that the PNM were of low cellular toxicity, with colony formation and MTT assays, utilising V79 and 3T3 cells, yielding comparable results. Investigation of the in vitro cellular uptake kinetics revealed rapid, 1 h, cellular uptake of MPC100-DPA100 PNM delivered fluorescent probes, with fluorescence persistence for 48 h. This paper presents the first report of these novel findings, which highlight the potential of the system for nanomedicine application

  4. Red fluorescent chitosan nanoparticles grafted with poly(2-methacryloyloxyethyl phosphorylcholine) for live cell imaging.

    PubMed

    Wang, Ke; Fan, Xingliang; Zhang, Xiaoyong; Zhang, Xiqi; Chen, Yi; Wei, Yen

    2016-08-01

    Poly(2-methacryloyloxyethyl phosphorylcholine) conjugated red fluorescent chitosan nanoparticles (GCC-pMPC) were facilely fabricated by "grafting from" method via surface initiated atom transfer radical polymerization (ATRP). Firstly, glutaraldehyde crosslinked red fluorescent chitosan nanoparticles (GCC NPs) with many amino groups and hydroxyl groups on their surface were prepared, which were then reacted with 2-bromoisobutyryl bromide to form GCC-Br; subsequently, poly(MPC) (pMPC) brushes were grafted onto GCC NPs surface using GCC-Br as initiator via ATRP. Compared with PEGylated nanoparticles, zwitterionic polymers modified nanoparticles demonstrated better performance in their cellular uptake. Moreover, the obtained GCC-pMPC demonstrated excellent water-dispersibility, biocompatibility, and photostability, which made them highly potential for long-term tracing applications. Importantly, the successful live cell imaging of GCC-pMPC would remarkably advance the research of their further bioapplications.

  5. Anti-inflammatory and protective effects of 2-methacryloyloxyethyl phosphorylcholine polymer on oral epithelial cells.

    PubMed

    Yumoto, Hiromichi; Hirota, Katsuhiko; Hirao, Kouji; Miyazaki, Tsuyoshi; Yamamoto, Nobuyuki; Miyamoto, Koji; Murakami, Keiji; Fujiwara, Natsumi; Matsuo, Takashi; Miyake, Yoichiro

    2015-02-01

    Periodontitis is a chronic inflammatory disease initiated by a microbial biofilm formed in the periodontal pocket. Gingival epithelium plays important roles as the first physical barrier to bacterial invasion and in orchestrating the innate immune reaction via toll-like receptors (TLRs), which recognize various bacterial products, and maintaining its function. Newly developed oral care products to inhibit bacterial adherence, subsequent inflammatory reaction and protect the gingival epithelium are expected. We previously reported that 2-methacryloyloxyethyl phosphorylcholine (MPC)-polymer coating decreased bacterial adhesion to human oral keratinocytes, RT-7, and mouth-rinsing with MPC-polymer inhibited the increase of oral bacteria. In this study, regarding the possibility of MPC-polymer application for preventing the adherence of periodontal pathogen, subsequent inflammatory reaction and protection of gingival epithelium, we examined the effects of MPC-polymer on the adherence of Porphyromonas gingivalis, major periodontitis-related pathogen, and TLR2 ligand to RT-7 and subsequent interleukin (IL)-8 production. MPC-polymer treatment significantly reduced P. gingivalis adherence by 44% and TLR2-mediated IL-8 production by blocking the binding of its specific-ligand in a concentration-dependent manner. Furthermore, MPC-polymer pretreatment protected RT-7 from injury by chemical irritants, cetylpyridinium chloride. These findings suggest that MPC-polymer is potentially useful for oral care to prevent oral infection and to maintain oral epithelial function. PMID:24753309

  6. A novel protein-repellent dental composite containing 2-methacryloyloxyethyl phosphorylcholine.

    PubMed

    Zhang, Ning; Chen, Chen; Melo, Mary As; Bai, Yu-Xing; Cheng, Lei; Xu, Hockin Hk

    2015-06-26

    Secondary caries due to biofilm acids is a primary cause of dental composite restoration failure. To date, there have been no reports of dental composites that can repel protein adsorption and inhibit bacteria attachment. The objectives of this study were to develop a protein-repellent dental composite by incorporating 2-methacryloyloxyethyl phosphorylcholine (MPC) and to investigate for the first time the effects of MPC mass fraction on protein adsorption, bacteria attachment, biofilm growth, and mechanical properties. Composites were synthesized with 0 (control), 0.75%, 1.5%, 2.25%, 3%, 4.5% and 6% of MPC by mass. A commercial composite was also tested as a control. Mechanical properties were measured in three-point flexure. Protein adsorption onto the composite was determined by the microbicinchoninic acid method. A human saliva microcosm biofilm model was used. Early attachment at 4 h, biofilm at 2 days, live/dead staining and colony-forming units (CFUs) of biofilms grown on the composites were investigated. Composites with MPC of up to 3% had mechanical properties similar to those without MPC and those of the commercial control, whereas 4.5% and 6% MPC decreased the mechanical properties (P<0.05). Increasing MPC from 0 to 3% reduced the protein adsorption on composites (P<0.05). The composite with 3% MPC had protein adsorption that was 1/12 that of the control (P<0.05). Oral bacteria early attachment and biofilm growth were also greatly reduced on the composite with 3% MPC, compared to the control (P<0.05). In conclusion, incorporation of MPC into composites at 3% greatly reduced protein adsorption, bacteria attachment and biofilm CFUs, without compromising mechanical properties. Protein-repellent composites could help to repel bacteria attachment and plaque build-up to reduce secondary caries. The protein-repellent method might be applicable to other dental materials.

  7. A novel protein-repellent dental composite containing 2-methacryloyloxyethyl phosphorylcholine

    PubMed Central

    Zhang, Ning; Chen, Chen; Melo, Mary AS; Bai, Yu-Xing; Cheng, Lei; Xu, Hockin HK

    2015-01-01

    Secondary caries due to biofilm acids is a primary cause of dental composite restoration failure. To date, there have been no reports of dental composites that can repel protein adsorption and inhibit bacteria attachment. The objectives of this study were to develop a protein-repellent dental composite by incorporating 2-methacryloyloxyethyl phosphorylcholine (MPC) and to investigate for the first time the effects of MPC mass fraction on protein adsorption, bacteria attachment, biofilm growth, and mechanical properties. Composites were synthesized with 0 (control), 0.75%, 1.5%, 2.25%, 3%, 4.5% and 6% of MPC by mass. A commercial composite was also tested as a control. Mechanical properties were measured in three-point flexure. Protein adsorption onto the composite was determined by the microbicinchoninic acid method. A human saliva microcosm biofilm model was used. Early attachment at 4 h, biofilm at 2 days, live/dead staining and colony-forming units (CFUs) of biofilms grown on the composites were investigated. Composites with MPC of up to 3% had mechanical properties similar to those without MPC and those of the commercial control, whereas 4.5% and 6% MPC decreased the mechanical properties (P<0.05). Increasing MPC from 0 to 3% reduced the protein adsorption on composites (P<0.05). The composite with 3% MPC had protein adsorption that was 1/12 that of the control (P<0.05). Oral bacteria early attachment and biofilm growth were also greatly reduced on the composite with 3% MPC, compared to the control (P<0.05). In conclusion, incorporation of MPC into composites at 3% greatly reduced protein adsorption, bacteria attachment and biofilm CFUs, without compromising mechanical properties. Protein-repellent composites could help to repel bacteria attachment and plaque build-up to reduce secondary caries. The protein-repellent method might be applicable to other dental materials. PMID:25655010

  8. Novel protein-repellent and biofilm-repellent orthodontic cement containing 2-methacryloyloxyethyl phosphorylcholine.

    PubMed

    Zhang, Ning; Zhang, Ke; Melo, Mary Anne S; Chen, Chen; Fouad, Ashraf F; Bai, Yuxing; Xu, Hockin H K

    2016-07-01

    The objectives of this study were to develop the first protein-repellent resin-modified glass ionomer cement (RMGI) by incorporating 2-methacryloyloxyethyl phosphorylcholine (MPC) for orthodontic applications, and to investigate the MPC effects on protein adsorption, biofilm growth, and enamel bond strength. MPC was incorporated into RMGI at 0% (control), 1.5%, 3%, and 5% by mass. Specimens were stored in water at 37°C for 1 and 30 days. Enamel shear bond strength (SBS) was measured, and the adhesive remnant index (ARI) scores were assessed. Protein adsorption onto the specimens was determined by a micro bicinchoninic acid method. A dental plaque microcosm biofilm model with human saliva as inoculum was used. The results showed that adding 3% of MPC into RMGI did not significantly reduce the SBS (p > 0.1). There was no significant loss in SBS for RMGI containing 3% MPC after water-aging for 30 days, as compared to 1 day (p > 0.1). RMGI with 3% MPC had protein adsorption that was 1/10 that of control. RMGI with 3% MPC greatly reduced the bacterial adhesion, and lactic acid production and colony-forming units of biofilms, while substantially increasing the medium solution pH containing biofilms. The protein-repellent and biofilm-repellent effects were not decreased after water-aging for 30 days. In conclusion, the MPC-containing RMGI is promising to reduce biofilms and white spot lesions without compromising orthodontic bracket-enamel bond strength. The novel protein-repellent method may have applicability to other orthodontic cements, dental composites, adhesives, sealants, and cements to repel proteins and biofilms. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 949-959, 2016.

  9. Durable modification of segmented polyurethane for elastic blood-contacting devices by graft-type 2-methacryloyloxyethyl phosphorylcholine copolymer.

    PubMed

    Liu, Yihua; Inoue, Yuuki; Mahara, Atsushi; Kakinoki, Sachiro; Yamaoka, Tetsuji; Ishihara, Kazuhiko

    2014-01-01

    We propose a novel application of 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers for enhancing the performance of modified segmented polyurethane (SPU) surfaces for the development of a small-diameter vascular prosthesis. The SPU membranes were modified by random-type, block-type, and graft-type MPC polymers that were prepared using a double-solution casting procedure on stainless steel substrates. Among these MPC polymers, the graft-type poly(MPC-graft-2-ethylhexyl methacrylate [EHMA]), which is composed of a poly(MPC) segment as the main chain and poly(EHMA) segments as side chains, indicated a higher stability on the SPU membrane after being peeled off from the stainless steel substrate, as well as after immersion in an aqueous medium. This stability was caused by the intermiscibility in the domain of the poly(EHMA) segments and the soft segments of the SPU membrane. Each SPU/MPC polymer membrane exhibited a dramatic suppression of protein adsorption from human plasma and endothelium cell adhesion. Based on these results, the performance of SPU/poly(MPC-graft-EHMA) tubings 2 mm in diameter as vascular prostheses was investigated. Even after blood was passed through the tubings for 2 min, the graft-type MPC polymers effectively protected the blood-contacting surfaces from thrombus formation. In summary, SPU modified by graft-type MPC polymers has the potential for practical application in the form of a non-endothelium, small-diameter vascular prosthesis. PMID:24894706

  10. Beneficial effects of synthetic phospholipid polymer, poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate), on stratum corneum function.

    PubMed

    Kanekura, T; Nagata, Y; Miyoshi, H; Ishihara, K; Nakabayashi, N; Kanzaki, T

    2002-05-01

    The effects of a newly synthesized phospholipid polymer, poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) [poly(MPC-co-BMA)], on the water barrier function and water-holding capacity of the stratum corneum were examined by measuring transepidermal water loss (TEWL) and electrical conductance of the skin surface. On the backs of four NC mice, the epidermal permeability barrier was abrogated by cellophane tape stripping 30 times. The skin was then treated with 0.1% poly(MPC-co-BMA) or distilled water twice daily for the following 3 days. Poly(MPC-co-BMA) reduced TEWL significantly compared with the control after the first treatment (P = 0.044) and this effect was observed for 3 days. In human skin, water-holding capacity was measured at 5, 10, 15, 30 min and 1, 2, and 4 h after the application of poly(MPC-co-BMA) or distilled water to both volar forearms of 21 healthy volunteers. Skin treated with poly(MPC-co-BMA) showed significantly greater ability to retain water at all time points. Poly(MPC-co-BMA) is the first synthetic material that can enhance both the water barrier function and water-holding capacity of the stratum corneum. Our results indicate that this substance may be useful clinically in the treatment of dry skin.

  11. Grafting of poly(2-methacryloyloxyethyl phosphorylcholine) on polyethylene liner in artificial hip joints reduces production of wear particles.

    PubMed

    Moro, Toru; Kyomoto, Masayuki; Ishihara, Kazuhiko; Saiga, Kenichi; Hashimoto, Masami; Tanaka, Sakae; Ito, Hideya; Tanaka, Takeyuki; Oshima, Hirofumi; Kawaguchi, Hiroshi; Takatori, Yoshio

    2014-03-01

    Despite improvements in the techniques, materials, and fixation of total hip arthroplasty, periprosthetic osteolysis, a complication that arises from this clinical procedure and causes aseptic loosening, is considered to be a major clinical problem associated with total hip arthroplasty. With the objective of reducing the production of wear particles and eliminating periprosthetic osteolysis, we prepared a novel hip polyethylene (PE) liner whose surface graft was made of a biocompatible phospholipid polymer-poly(2-methacryloyloxyethyl phosphorylcholine (MPC)). This study investigated the wear resistance of the poly(MPC)-grafted cross-linked PE (CLPE; MPC-CLPE) liner during 15×10(6) cycles of loading in a hip joint simulator. The gravimetric analysis showed that the wear of the acetabular liner was dramatically suppressed in the MPC-CLPE liner, as compared to that in the non-treated CLPE liner. Analyses of the MPC-CLPE liner surface revealed that it suffered from no or very little wear even after the simulator test, whereas the CLPE liners suffered from substantial wears. The scanning electron microscope (SEM) analysis of the wear particles isolated from the lubricants showed that poly(MPC) grafting dramatically decreased the total number, area, and volume of the wear particles. However, there was no significant difference in the particle size distributions, and, in particular, from the SEM image, it was observed that particles with diameters less than 0.50μm were present in the range of the highest frequency. In addition, there were no significant differences in the particle size descriptors and particle shape descriptors. The results obtained in this study show that poly(MPC) grafting markedly reduces the production of wear particles from CLPE liners, without affecting the size of the particles. These results suggest that poly(MPC) grafting is a promising technique for increasing the longevity of artificial hip joints.

  12. Preparation of a thick polymer brush layer composed of poly(2-methacryloyloxyethyl phosphorylcholine) by surface-initiated atom transfer radical polymerization and analysis of protein adsorption resistance.

    PubMed

    Inoue, Yuuki; Onodera, Yuya; Ishihara, Kazuhiko

    2016-05-01

    The purpose of this study was to prepare a thick polymer brush layer composed of poly(2-methacryloyloxyethyl phosphorylcholine (MPC)) and assess its resistance to protein adsorption from the dissolved state of poly(MPC) chains in an aqueous condition. The thick poly(MPC) brush layer was prepared through the surface-initiated atom transfer radical polymerization (SI-ATRP) of MPC with a free initiator from an initiator-immobilized substrate at given [Monomer]/[Free initiator] ratios. The ellipsometric thickness of the poly(MPC) brush layers could be controlled by the polymerization degree of the poly(MPC) chains. The thickness of the poly(MPC) brush layer in an aqueous medium was larger than that in air, and this tendency became clearer when the polymerization degree of the poly(MPC) increased. The maximum thickness of the poly(MPC) brush layer in an aqueous medium was around 110 nm. The static air contact angle of the poly(MPC) brush layer in water indicated a reasonably hydrophilic nature, which was independent of the thickness of the poly(MPC) brush layer at the surface. This result occurred because the hydrated state of the poly(MPC) chains is not influenced by the environment surrounding them. Finally, as measured with a quartz crystal microbalance, the amount of protein adsorbed from a fetal bovine serum solution (10% in phosphate-buffered saline) on the original substrate was 420 ng/cm(2). However, the poly(MPC) brush layer reduced this value dramatically to less than 50 ng/cm(2). This effect was independent of the thickness of the poly(MPC) brush layer for thicknesses between 20 nm and about 110 nm. These results indicated that the surface covered with a poly(MPC) brush layer is a promising platform to avoid biofouling and could also be applied to analyze the reactions of biological molecules with a high signal/noise ratio.

  13. Segmented polyurethane modified by photopolymerization and cross-linking with 2-methacryloyloxyethyl phosphorylcholine polymer for blood-contacting surfaces of ventricular assist devices.

    PubMed

    Kobayashi, Kae; Ohuchi, Katsuhiro; Hoshi, Hideo; Morimoto, Nobuyuki; Iwasaki, Yasuhiko; Takatani, Setsuo

    2005-01-01

    To improve the biocompatibility of pulsatile ventricular assist devices (VADs), the blood-contacting surface of the segmented polyurethane (SPU) diaphragm employed in an electromechanical VAD was modified by introducing 2-methacryloyloxyethyl phosphorylcholine (MPC) units into its surface and forming an interpenetrating polymer network (IPN) structure, which contained independently cross-linked MPC polymer and SPU. The SPU diaphragm modified with an IPN structure was then assembled into a target test pump and underwent continuous pump operation at 37 degrees C for 2 weeks in a simulated systemic circulation using a mock circulatory loop. The surface characteristics of the pump diaphragm after 2 weeks of pump operation were then analyzed with an X-ray photoelectron spectroscope (XPS) and gold-colloid-labeled immunoassay. The XPS surface analysis of the IPN-modified SPU indicated the firm anchoring of MPC units even after 2 weeks of pump operation (the phosphor : carbon ratio was reduced by only 0.09%). The IPN-modified diaphragm prevented protein adsorption as well as cell adhesion in comparison to the unmodified SPU surface. This result thus validated that (1) the IPN structure could firmly secure MPC units to the SPU surface even in a high-mechanical-stress and high-shear environment, (2) the antithrombogenic power of MPC units remained unchanged after 2 weeks of continuous exposure to a high-shear environment, and (3) the IPN modified SPU cross-linked with MPC could be a powerful antithrombogenic surface for blood pumps used for chronic circulatory support of cardiac patients.

  14. Self-assemblies of γ-CDs with pentablock copolymers PMA-PPO-PEO-PPO-PMA and endcapping via atom transfer radical polymerization of 2-methacryloyloxyethyl phosphorylcholine

    PubMed Central

    Lin, Jing; Kong, Tao; Ye, Lin; Zhang, Ai-ying

    2015-01-01

    Summary Pentablock copolymers PMA-PPO-PEO-PPO-PMA synthesized via atom transfer radical polymerization (ATRP) were self-assembled with varying amounts of γ-CDs to prepare poly(pseudorotaxanes) (PPRs). When the concentration of γ-CDs was lower, the central PEO segment served as a shell of the micelles and was preferentially bent to pass through the γ-CD cavity to construct double-chain-stranded tight-fit PPRs characterized by a channel-like crystal structure. With an increase in the amount of γ-CDs added, they began to accommodate the poly(methyl acrylate) (PMA) segments dissociated from the core of the micelles. When more γ-CDs were threaded and slipped over the segments, the γ-CDs were randomly distributed along the pentablock copolymer chain to generate single-chain-stranded loose-fit PPRs and showed no characteristic channel-like crystal structure. All the self-assembly processes of the pentablock copolymers resulted in the formation of hydrogels. After endcapping via in situ ATRP of 2-methacryloyloxyethyl phosphorylcholine (MPC), these single-chain-stranded loose-fit PPRs were transformed into conformational identical polyrotaxanes (PRs). The structures of the PPRs and PRs were characterized by means of 1H NMR, GPC, 13C CP/MAS NMR, 2D 1H NOESY NMR, FTIR, WXRD, TGA and DSC analyses. PMID:26732122

  15. Oil-in-water emulsion lotion providing controlled release using 2-methacryloyloxyethyl phosphorylcholine n-butyl methacrylate copolymer as emulsifier.

    PubMed

    Ishikawa, Akiko; Fujii, Makiko; Morimoto, Kumi; Yamada, Tomomi; Koizumi, Naoya; Kondoh, Masuo; Watanabe, Yoshiteru

    2012-01-01

    Lotion is a useful vehicle for active ingredients used to treat skin disease because it can be applied to the scalp, can cover large areas of skin, and it is easy to spread due to low viscosity. An emulsion lotion (EL) containing 2-methacryloyloxyethyl phosphorylcholine n-butyl methacrylate copolymer (PMB) as an emulsifier that provides controlled-release was developed. Diphenhydramine (DPH) was used as a model drug. Formulation with 5% DPH, 5% soybean oil, and 4% PMB in water was emulsified using a high-pressure homogenizer. Polysorbate 80 (TO) was used instead of PMB for comparison. They were applied in vitro to Yucatan micropig intact or stripped skin at a practical dose (2 μL/cm(2)). For stripped skin, penetration of DPH from 4% PMB EL was slower than that from 1% TO EL; results for intact skin were similar. The same phenomenon was observed with application to rabbit skin in vivo. When 4% PMB EL dried on the skin, it made a thin film matrix incorporating the oil phase, which controlled the release of DPH. The release rate could be controlled by the ratio of oil phase to PMB. The EL with PMB shows promise as a vehicle for long-acting treatment of skin diseases.

  16. Localized surface plasmon resonance nanosensing of C-reactive protein with poly(2-methacryloyloxyethyl phosphorylcholine)-grafted gold nanoparticles prepared by surface-initiated atom transfer radical polymerization.

    PubMed

    Kitayama, Yukiya; Takeuchi, Toshifumi

    2014-06-01

    Highly sensitive and selective protein nanosensing based on localized surface plasmon resonance (LSPR) of gold nanoparticles (AuNPs) on which polymerized specific ligands were grafted as an artificial protein recognition layer for the target protein were demonstrated. As a model, optical nanosensing for C-reactive protein (CRP), a known biomarker for chronic inflammation that predicts the risk of arteriosclerosis or heart attacks, was achieved by measuring the shift of LSPR spectra derived from the change of permittivity of poly(2-methacryloyloxyethyl phosphorylcholine)-grafted AuNPs (PMPC-g-AuNPs) upon interacting with CRP, in which the PMPC-g-AuNPs layer were grafted on AuNPs by surface-initiated atom transfer radical polymerization (ATRP). This nanosensing system was effective even for detecting CRP concentrations in a human serum solution diluted to 1% (w/w), at which point a limit of detection was ~50 ng/mL and nonspecific adsorption of other proteins was negligible. The nanosensing system using specific ligand-grafted AuNPs has several strengths, such as low preparation cost, avoiding the need for expensive instruments, no necessary complex pretreatments, and high stability, because it does not contain biobased molecules. We believe this novel synthetic route for protein nanosensors, composed of AuNPs and a polymerized specific ligand utilizing surface-initiated controlled/living radical polymerization, will provide a foundation for the design and synthesis of nanosensors targeting various other biomarker proteins, paving the way for future advances in the field of biosensing.

  17. Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization.

    PubMed

    Goda, Tatsuro; Konno, Tomohiro; Takai, Madoka; Moro, Toru; Ishihara, Kazuhiko

    2006-10-01

    The biomimetic synthetic phospholipid polymer containing a phosphorylcholine group, 2-methacryloyloxyethyl phosphorylcholine (MPC), has improved the surface property of biomaterials. Both hydrophilic and anti-biofouling surfaces were prepared on polydimethylsiloxane (PDMS) with MPC grafted by surface-initiated photo-induced radical polymerization. Benzophenone was used as the photoinitiator. The quantity of the adsorbed initiator on PDMS was determined by UV absorption and ellipsometry. The poly(MPC)-grafted PDMS surfaces were characterized by XPS, ATR-FTIR and static water contact angle (SCA) measurements. The SCA on PDMS decreased from 115 degrees to 25 degrees after the poly(MPC) grafting. The in vitro single protein adsorption on the poly(MPC)-grafted PDMS decreased 50-75% compared to the unmodified PDMS. The surface friction of the poly(MPC)-grafted PDMS was lower than the unmodified PDMS under wet conditions. The oxygen permeability of the poly(MPC)-grafted PDMS was as high as the unmodified PDMS. The tensile property of PDMS was maintained at about 90% of the ultimate stress and strain after the poly(MPC) grafting. The surface-modified PDMS is expected to be a novel medical elastomer which possesses an excellent surface hydrophilicity, anti-biofouling property, oxygen permeability and tensile property. PMID:16797692

  18. Grafting of phosphorylcholine functional groups on polycarbonate urethane surface for resisting platelet adhesion.

    PubMed

    Gao, Bin; Feng, Yakai; Lu, Jian; Zhang, Li; Zhao, Miao; Shi, Changcan; Khan, Musammir; Guo, Jintang

    2013-07-01

    In order to improve the resistance of platelet adhesion on material surface, 2-methacryloyloxyethyl phosphorylcholine (MPC) was grafted onto polycarbonate urethane (PCU) surface via Michael reaction to create biomimetic structure. After introducing primary amine groups via coupling tris(2-aminoethyl)amine (TAEA) onto the polymer surface, the double bond of MPC reacted with the amino group to obtain MPC modified PCU. The modified surface was characterized by Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The results verified that MPC was grafted onto PCU surface by Michael reaction method. The MPC grafted PCU surface had a low water contact angle and a high water uptake. This means that the hydrophilic PC functional groups improved the surface hydrophilicity significantly. In addition, surface morphology of MPC grafted PCU film was imaged by atomic force microscope (AFM). The results showed that the grafted surface was rougher than the blank PCU surface. In addition, platelet adhesion study was evaluated by scanning electron microscopy (SEM) observation. The PCU films after treated with platelet-rich plasma demonstrated that much fewer platelets adhered to the MPC-grafted PCU surface than to the blank PCU surface. The antithrombogenicity of the MPC-grafted PCU surface was determined by the activated partial thromboplastin time (APTT). The result suggested that the MPC modified PCU may have potential application as biomaterials in blood-contacting and some subcutaneously implanted devices.

  19. Effect of sodium chloride on hydration structures of PMEA and P(MPC-r-BMA).

    PubMed

    Morita, Shigeaki; Tanaka, Masaru

    2014-09-01

    The hydration structures of two different types of biomaterials, i.e., poly(2-methoxyethyl acrylate) (PMEA) and a random copolymer of 2-methacryloyloxyethyl phosphorylcholine and n-butyl methacrylate (P(MPC-r-BMA)), were investigated by means of attenuated total reflection infrared (ATR-IR) spectroscopy. The effects of the addition of sodium chloride to liquid water in contact with the surfaces of the polymer films were examined. The neutral polymer of PMEA was easily dehydrated by NaCl addition, whereas the zwitterionic polymer of P(MPC-r-BMA) was hardly dehydrated. More specifically, nonfreezing water having a strong interaction with the PMEA chain and freezing bound water having an intermediate interaction were hardly dehydrated by contacting with normal saline solution, whereas freezing water having a weak interaction with the PMEA chain was readily dehydrated. In contrast, freezing water in P(MPC-r-BMA) is exchanged for the saline solution contacting with the material surface without dehydration.

  20. Atomic layer deposition enhanced grafting of phosphorylcholine on stainless steel for intravascular stents.

    PubMed

    Zhong, Qi; Yan, Jin; Qian, Xu; Zhang, Tao; Zhang, Zhuo; Li, Aidong

    2014-09-01

    In-stent restenosis (ISR) and re-endothelialization delay are two major issues of intravascular stent in terms of clinical safety and effects. Construction of mimetic cell membrane surface on stents using phosphorylcholine have been regarded as one of the most powerful strategies to resolve these two issues and improve the performance of stents. In this study, atomic layer deposition (ALD) technology, which is widely used in semiconductor industry, was utilized to fabricate ultra-thin layer (10nm) of alumina (Al2O3) on 316L stainless steel (SS), then the alumina covered surface was modified with 3-aminopropyltriethoxysilane (APS) and 2-methacryloyloxyethyl phosphorylcholine (MPC) sequentially in order to produce phosphorylcholine mimetic cell membrane surface. The pristine and modified surfaces were characterized using X-ray photoelectron spectroscopy, atomic force microscope and water contact angle measurement. Furthermore, the abilities of protein adsorption, platelet adhesion and cell proliferation on the surfaces were investigated. It was found that alumina layer can significantly enhance the surface grafting of APS and MPC on SS; and in turn efficiently inhibit protein adsorption and platelet adhesion, and promote the attachment and proliferation of human umbilical vein endothelial cells (HUVEC) on the surfaces. In association with the fact that the deposition of alumina layer is also beneficial to the improvement of adhesion and integrity of drug-carrying polymer coating on drug eluting stents, we expect that ALD technology can largely assist in the modifications on inert metallic surfaces and benefit implantable medical devices, especially intravascular stents.

  1. Atomic layer deposition enhanced grafting of phosphorylcholine on stainless steel for intravascular stents.

    PubMed

    Zhong, Qi; Yan, Jin; Qian, Xu; Zhang, Tao; Zhang, Zhuo; Li, Aidong

    2014-09-01

    In-stent restenosis (ISR) and re-endothelialization delay are two major issues of intravascular stent in terms of clinical safety and effects. Construction of mimetic cell membrane surface on stents using phosphorylcholine have been regarded as one of the most powerful strategies to resolve these two issues and improve the performance of stents. In this study, atomic layer deposition (ALD) technology, which is widely used in semiconductor industry, was utilized to fabricate ultra-thin layer (10nm) of alumina (Al2O3) on 316L stainless steel (SS), then the alumina covered surface was modified with 3-aminopropyltriethoxysilane (APS) and 2-methacryloyloxyethyl phosphorylcholine (MPC) sequentially in order to produce phosphorylcholine mimetic cell membrane surface. The pristine and modified surfaces were characterized using X-ray photoelectron spectroscopy, atomic force microscope and water contact angle measurement. Furthermore, the abilities of protein adsorption, platelet adhesion and cell proliferation on the surfaces were investigated. It was found that alumina layer can significantly enhance the surface grafting of APS and MPC on SS; and in turn efficiently inhibit protein adsorption and platelet adhesion, and promote the attachment and proliferation of human umbilical vein endothelial cells (HUVEC) on the surfaces. In association with the fact that the deposition of alumina layer is also beneficial to the improvement of adhesion and integrity of drug-carrying polymer coating on drug eluting stents, we expect that ALD technology can largely assist in the modifications on inert metallic surfaces and benefit implantable medical devices, especially intravascular stents. PMID:25016426

  2. Development of a novel antifouling platform for biosensing probe immobilization from methacryloyloxyethyl phosphorylcholine-containing copolymer brushes.

    PubMed

    Akkahat, Piyaporn; Kiatkamjornwong, Suda; Yusa, Shin-ichi; Hoven, Voravee P; Iwasaki, Yasuhiko

    2012-04-01

    The immobilization of thiol-terminated poly[(methacrylic acid)-ran-(2-methacryloyloxyethyl phosphorylcholine)] (PMAMPC-SH) brushes on gold-coated surface plasmon resonance (SPR) chips was performed using the "grafting to" approach via self-assembly formation. The copolymer brushes provide both functionalizability and antifouling characteristics, desirable features mandatorily required for the development of an effective platform for probe immobilization in biosensing applications. The carboxyl groups from the methacrylic acid (MA) units were employed for attaching active biomolecules that can act as sensing probes for biospecific detection of target molecules, whereas the 2-methacryloyloxyethyl phosphorylcholine (MPC) units were introduced to suppress unwanted nonspecific adsorption. The detection efficiency of the biotin-immobilized PMAMPC brushes with the target molecule, avidin (AVD), was evaluated in blood plasma in comparison with the conventional 2D monolayer of 11-mercaptoundecanoic acid (MUA) and homopolymer brushes of poly(methacrylic acid) (PMA) also immobilized with biotin using the SPR technique. Copolymer brushes with 79 mol % MPC composition and a molecular weight of 49.3 kDa yielded the platform for probe immobilization with the best performance considering its high S/N ratio as compared with platforms based on MUA and PMA brushes. In addition, the detection limit for detecting AVD in blood plasma solution was found to be 1.5 nM (equivalent to 100 ng/mL). The results have demonstrated the potential for using these newly developed surface-attached PMAMPC brushes for probe immobilization and subsequent detection of designated target molecules in complex matrices such as blood plasma and clinical samples.

  3. MPC-polymer reduces adherence and biofilm formation by oral bacteria.

    PubMed

    Hirota, K; Yumoto, H; Miyamoto, K; Yamamoto, N; Murakami, K; Hoshino, Y; Matsuo, T; Miyake, Y

    2011-07-01

    Oral biofilms such as dental plaque cause dental caries and periodontitis, as well as aspiration pneumonia and infectious endocarditis by translocation. Hence, the suppression of oral biofilm formation is an issue of considerable importance. Mechanical removal, disinfectants, inhibition of polysaccharide formation, and artificial sugar have been used for the reduction of oral biofilm. From the viewpoint of the inhibition of bacterial adherence, we investigated whether aqueous biocompatible 2-methacryloyloxyethyl phosphorylcholine (MPC)-polymer can reduce streptococcal colonization and biofilm formation. We examined the effects of MPC-polymer on streptococcal adherence to saliva-coated hydroxyapatite and oral epithelial cells, and the adherence of Fusobacterium nucleatum to streptococcal biofilm. MPC-polymer application markedly inhibited both the adherence and biofilm formation of Streptococcus mutans on saliva-coated hydroxyapatite and streptococcal adherence to oral epithelial cells, and reduced the adherence of F. nucleatum to streptococcal biofilms. A small-scale clinical trial revealed that mouthrinsing with MPC-polymer inhibited the increase of oral bacterial numbers, especially of S. mutans. These findings suggest that MPC-polymer is a potent inhibitor of bacterial adherence and biofilm development, and may be useful to prevent dental-plaque-related diseases. (UMIN Clinical Trial Registry UMIN000003471).

  4. Photoreactive Polymers Bearing a Zwitterionic Phosphorylcholine Group for Surface Modification of Biomaterials.

    PubMed

    Lin, Xiaojie; Fukazawa, Kyoko; Ishihara, Kazuhiko

    2015-08-12

    Photoreactive polymers bearing zwitterionic phosphorylcholine and benzophenone groups on the side chain were synthesized and used as surface modification reagents for biomaterials. A photoreactive methacrylate containing the benzophenone group, 3-methacryloyloxy-2-hydroxypropyl-4-oxybenzophenone (MHPBP), was synthesized via a ring-opening and addition reaction between glycidyl methacrylate and 4-hydroxybenzophenone. Then, water-soluble, amphiphilic polymers poly(2-methacryloyloxyethyl phosphorylcholine (MPC)-co-MHPBP) (PMH) and poly(MPC-co-n-butyl methacrylate-co-MHPBP), with different monomer unit compositions, were synthesized through radical polymerization. Ultraviolet-visible (UV/vis) absorption spectra of these polymer solutions showed that these polymers have maximum absorption peaks at 254 and 289 nm that can be attributed to the benzophenone unit. The intensity of UV adsorption at 289 nm was decreased with increased UV irradiation time, and it was saturated within a few minutes, indicating that the polymers are highly sensitive to UV irradiation. A commercial material (i.e., cyclic polyolefin) was simply modified by a UV irradiation for 1.0 min. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analysis results indicated that the stability of the polymer on the surface was dramatically enhanced because of the photochemical reaction of the benzophenone moiety. The air contact angles of PMH surfaces measured in water were up to 160°. Thus, highly hydrophilic surfaces were obtained. The critical surface tension of the PMH-modified surface was 45.7 mN/m. By evaluating the biological reactivity of the treated surface, protein adsorption and cell adhesion were completely inhibited on the surface, which was prepared using a photopatterning procedure using PMH. In conclusion, photoreactive MPC polymers with a benzophenone moiety could be used as a novel and effective surface modifier.

  5. Selective biorecognition and preservation of cell function on carbohydrate-immobilized phosphorylcholine polymers.

    PubMed

    Iwasaki, Yasuhiko; Takami, Utae; Shinohara, Yurika; Kurita, Kimio; Akiyoshi, Kazunari

    2007-09-01

    To obtain synthetic materials capable of selectively recognizing proteins and cells, and preserving their functions, biomembrane mimetic polymers having a phospholipid polar group and carbohydrate side chains were designed. Poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate (BMA)-co-2-lactobionamidoethyl methacrylate (LAMA)] (PMBL) was synthesized and coated on substrates by solvent evaporation. Selective binding of galactose-recognized lectin, RCA120, to a PMBL surface was investigated by measurement of surface plasmon resonance. The binding of RCA120 to the PMBL surface was confirmed by a remarkable change in resonance angle. The apparent affinity constant of RCA120 to PMBL3.0 (3.0 mol % LAMA unit in the feed) per LAMA unit was 2.77 x 10(5) M(-1). When a glucose-recognized lectin, concanavalin A, was in contact with PMBL, no change in the resonance angle was observed, and any nonspecific fouling of protein on PMBL was effectively reduced. Cells of the human hepatocellular liver carcinoma cell line (HepG2) having asialoglycoprotein receptors (ASGPRs) were seeded on polymer surfaces. On poly(BMA) (PBMA), many adherent cells were observed and were well-spread with monolayer adhesion, but cell adhesion was reduced on poly(MPC-co-BMA) (PMB). HepG2 adhesion was observed on PMBL because the cell has ASGPRs; the number of cells adhering to the PMBL polymer surfaces increased with an increase in the density of galactose residues on the surface. In contrast, adhesion of NIH-3T3 cells to PMBL was reduced in a manner similar to that on PMB because the NIH-3T3 cells did not have ASGPRs. Cell adhesion to the PMBL surface was well-regulated by ligand-receptor interactions. Furthermore, some of the cells adhering to the PMBL surface had a spheroid form, and similarly shaped spheroids were scattered on the surface. Although poly(BMA-co-LAMA) (PBL) has galactose residues, the adherent cells were spread in a manner similar to those on PBMA. The MPC units in

  6. Simple surface modification of a titanium alloy with silanated zwitterionic phosphorylcholine or sulfobetaine modifiers to reduce thrombogenicity

    PubMed Central

    Ye, Sang-Ho; Johnson, Carl A.; Woolley, Joshua R.; Murata, Hironobu; Gamble, Lara J.; Ishihara, Kazuhiko; Wagner, William R.

    2011-01-01

    Thrombosis and thromboembolism remain problematic for a large number of blood contacting medical devices and limit broader application of some technologies due to this surface bioincompatibility. In this study we focused on the covalent attachment of zwitterionic phosphorylcholine (PC) or sulfobetaine (SB) moieties onto a TiAl6V4 surface with a single step modification method to obtain a stable blood compatible interface. Silanated PC or SB modifiers (PCSi or SBSi) which contain an alkoxy silane group and either PC or SB groups were prepared respectively from trimethoxysilane and 2-methacryloyloxyethyl phosphorylcholine (MPC) or N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine (SMDAB) monomers by a hydrosilylation reaction. A cleaned and oxidized TiAl6V4 surface was then modified with the PCSi or SBSi modifiers by a simple surface silanization reaction. The surface was assessed with x-ray photoelectron spectroscopy (XPS), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and contact angle goniometry. Platelet deposition and bulk phase activation were evaluated following contact with anticoagulated ovine blood. XPS results verified successful modification of the PCSi or SBSi modifiers onto TiAl6V4 based on increases in surface phosphorous or sulfur respectively. Surface contact angles in water decreased with the addition of hydrophilic PC or SB moieties. Both the PCSi and SBSi modified TiAl6V4 surfaces showed decreased platelet deposition and bulk phase platelet activation compared to unmodified TiAl6V4 and control surfaces. This single step modification with PCSi or SBSi modifiers offers promise for improving the surface hemocompatibility of TiAl6V4 and is attractive for its ease of application to geometrically complex metallic blood contacting devices. PMID:20547042

  7. MpcAgent

    2013-11-29

    MpcAgent software is a module for the VolltronLite platform from PNNL that regulates the operation of rooftop air conditioning units in small to medium commercial buildings for the purpose of reducing peak power consumption. The MpcAgent accomplishes this by restricting the number of units that may operate simultaneously and using a model predictive control strategy to select which units to operate in each control period. The outcome of this control is effective control of themore » building air temperature at the user specified set point while avoiding expensive peak demand charges that result from running all HVAC units simultaneously.« less

  8. MpcAgent

    SciTech Connect

    Nutaro, James

    2013-11-29

    MpcAgent software is a module for the VolltronLite platform from PNNL that regulates the operation of rooftop air conditioning units in small to medium commercial buildings for the purpose of reducing peak power consumption. The MpcAgent accomplishes this by restricting the number of units that may operate simultaneously and using a model predictive control strategy to select which units to operate in each control period. The outcome of this control is effective control of the building air temperature at the user specified set point while avoiding expensive peak demand charges that result from running all HVAC units simultaneously.

  9. Polymeric phosphorylcholine-camptothecin conjugates prepared by controlled free radical polymerization and click chemistry.

    PubMed

    Chen, Xiangji; McRae, Samantha; Parelkar, Sangram; Emrick, Todd

    2009-12-01

    Novel polymer-drug conjugates, consisting of zwitterionic poly(methacryloyloxyethyl phosphorylcholine) (polyMPC) as the polymer component, and camptothecin (CPT) as the drug, were prepared by two methods. In one case, CPT was transformed by acylation into a functional initiator for copper catalyzed atom transfer radical polymerization (ATRP), and polyMPC was grown from this therapeutic initiator. In the other case, a one-pot ATRP-"click" conjugation strategy was employed to synthesize novel polyMPC structures containing multiple copies of the drug pendant to the zwitterionic polymer chain. The latter method allows polyMPC-graft-CPT conjugates to be prepared with a high weight percent drug loading (up to 14% CPT) with excellent solubility in pure water (>250 mg/mL). The linkage chemistry chosen between the polyMPC backbone and the pendant drugs proved critically important for assuring drug release within a time frame reasonable to consider these structures as a platform for injectable cancer therapeutics. Liberation of the drug from the polymer backbone was monitored by high-performance liquid chromatography, using size-exclusion and reverse-phase columns, and the toxicity of the polymer-drug conjugates was examined in cell culture against breast (MCF7), ovarian (OVCAR-3), and colorectal (COLO 205) cancer cell lines.

  10. The MPC&A Questionnaire

    SciTech Connect

    Powell, Danny H; Elwood Jr, Robert H

    2011-01-01

    The questionnaire is the instrument used for recording performance data on the nuclear material protection, control, and accountability (MPC&A) system at a nuclear facility. The performance information provides a basis for evaluating the effectiveness of the MPC&A system. The goal for the questionnaire is to provide an accurate representation of the performance of the MPC&A system as it currently exists in the facility. Performance grades for all basic MPC&A functions should realistically reflect the actual level of performance at the time the survey is conducted. The questionnaire was developed after testing and benchmarking the material control and accountability (MC&A) system effectiveness tool (MSET) in the United States. The benchmarking exercise at the Idaho National Laboratory (INL) proved extremely valuable for improving the content and quality of the early versions of the questionnaire. Members of the INL benchmark team identified many areas of the questionnaire where questions should be clarified and areas where additional questions should be incorporated. The questionnaire addresses all elements of the MC&A system. Specific parts pertain to the foundation for the facility's overall MPC&A system, and other parts pertain to the specific functions of the operational MPC&A system. The questionnaire includes performance metrics for each of the basic functions or tasks performed in the operational MPC&A system. All of those basic functions or tasks are represented as basic events in the MPC&A fault tree. Performance metrics are to be used during completion of the questionnaire to report what is actually being done in relation to what should be done in the performance of MPC&A functions.

  11. Synthesis of grafted phosphorylcholine polymer layers as specific recognition ligands for C-reactive protein focused on grafting density and thickness to achieve highly sensitive detection.

    PubMed

    Kamon, Yuri; Kitayama, Yukiya; Itakura, Akiko N; Fukazawa, Kyoko; Ishihara, Kazuhiko; Takeuchi, Toshifumi

    2015-04-21

    We studied the effects of layer thickness and grafting density of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) thin layers as specific ligands for the highly sensitive binding of C-reactive protein (CRP). PMPC layer thickness was controlled by surface-initiated activators generated by electron transfer for atom transfer radical polymerization (AGET ATRP). PMPC grafting density was controlled by utilizing mixed self-assembled monolayers with different incorporation ratios of the bis[2-(2-bromoisobutyryloxy)undecyl] disulfide ATRP initiator, as modulated by altering the feed molar ratio with (11-mercaptoundecyl)tetra(ethylene glycol). X-ray photoelectron spectroscopy and ellipsometry measurements were used to characterize the modified surfaces. PMPC grafting densities were estimated from polymer thickness and the molecular weight obtained from sacrificial initiator during surface-initiated AGET ATRP. The effects of thickness and grafting density of the obtained PMPC layers on CRP binding performance were investigated using surface plasmon resonance employing a 10 mM Tris-HCl running buffer containing 140 mM NaCl and 2 mM CaCl2 (pH 7.4). Furthermore, the non-specific binding properties of the obtained layers were investigated using human serum albumin (HSA) as a reference protein. The PMPC layer which has 4.6 nm of thickness and 1.27 chains per nm(2) of grafting density showed highly sensitive CRP detection (limit of detection: 4.4 ng mL(-1)) with low non-specific HSA adsorption, which was improved 10 times than our previous report of 50 ng mL(-1). PMID:25783194

  12. Synthesis of grafted phosphorylcholine polymer layers as specific recognition ligands for C-reactive protein focused on grafting density and thickness to achieve highly sensitive detection.

    PubMed

    Kamon, Yuri; Kitayama, Yukiya; Itakura, Akiko N; Fukazawa, Kyoko; Ishihara, Kazuhiko; Takeuchi, Toshifumi

    2015-04-21

    We studied the effects of layer thickness and grafting density of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) thin layers as specific ligands for the highly sensitive binding of C-reactive protein (CRP). PMPC layer thickness was controlled by surface-initiated activators generated by electron transfer for atom transfer radical polymerization (AGET ATRP). PMPC grafting density was controlled by utilizing mixed self-assembled monolayers with different incorporation ratios of the bis[2-(2-bromoisobutyryloxy)undecyl] disulfide ATRP initiator, as modulated by altering the feed molar ratio with (11-mercaptoundecyl)tetra(ethylene glycol). X-ray photoelectron spectroscopy and ellipsometry measurements were used to characterize the modified surfaces. PMPC grafting densities were estimated from polymer thickness and the molecular weight obtained from sacrificial initiator during surface-initiated AGET ATRP. The effects of thickness and grafting density of the obtained PMPC layers on CRP binding performance were investigated using surface plasmon resonance employing a 10 mM Tris-HCl running buffer containing 140 mM NaCl and 2 mM CaCl2 (pH 7.4). Furthermore, the non-specific binding properties of the obtained layers were investigated using human serum albumin (HSA) as a reference protein. The PMPC layer which has 4.6 nm of thickness and 1.27 chains per nm(2) of grafting density showed highly sensitive CRP detection (limit of detection: 4.4 ng mL(-1)) with low non-specific HSA adsorption, which was improved 10 times than our previous report of 50 ng mL(-1).

  13. Biocompatibility of phosphorylcholine coated stents in normal porcine coronary arteries

    PubMed Central

    Whelan, D; van der Giessen, W J; Krabbendam, S; van Vliet, E A; Verdouw, P; Serruys, P; van Beusekom, H M M

    2000-01-01

    OBJECTIVE—To improve the biocompatibility of stents using a phosphorylcholine coated stent as a form of biomimicry.
INTERVENTIONS—Implantation of phosphorylcholine coated (n = 20) and non-coated (n = 21) stents was performed in the coronary arteries of 25 pigs. The animals were killed after five days (n = 6), four weeks (n = 7), and 12 weeks (n = 8), and the vessels harvested for histology, scanning electron microscopy, and morphometry.
MAIN OUTCOME MEASURES—Stent performance was assessed by studying early endothelialisation, neointima formation, and vessel wall reaction to the synthetic coating.
RESULTS—Stent thrombosis did not occur in either group. Morphometry showed no significant differences between the two study groups at any time point. At five days both the coated and non-coated stents were equally well endothelialised (91% v 92%, respectively). At four and 12 weeks there was no difference in intimal thickness between the coated and non-coated stents. Up to 12 weeks postimplant the phosphorylcholine coating was still discernible in the stent strut voids, and did not appear to elicit an adverse inflammatory response.
CONCLUSION—In this animal model the phosphorylcholine coating showed excellent blood and tissue compatibility, unlike a number of other polymers tested in a similar setting. Given that the coating was present up to 12 weeks postimplant with no adverse tissue reaction, it may be a potential candidate polymer for local drug delivery.


Keywords: phosphorylcholine; stents; coatings; biocompatible materials PMID:10677417

  14. Zwitterionic Phosphorylcholine-TPE Conjugate for pH-Responsive Drug Delivery and AIE Active Imaging.

    PubMed

    Chen, Yangjun; Han, Haijie; Tong, Hongxin; Chen, Tingting; Wang, Haibo; Ji, Jian; Jin, Qiao

    2016-08-24

    Polymeric micelles have emerged as a promising nanoplatform for cancer theranostics. Herein, we developed doxorubicin (DOX) encapsulated pH-responsive polymeric micelles for combined aggregation induced emission (AIE) imaging and chemotherapy. The novel zwitterionic copolymer poly(2-methacryloyloxyethylphosphorylcholine-co-2-(4-formylphenoxy)ethyl methacrylate) (poly(MPC-co-FPEMA)) was synthesized via RAFT polymerization and further converted to PMPC-hyd-TPE after conjugation of tetraphenylethene (TPE, a typical AIE chromophore) via acid-cleavable hydrazone bonds. The AIE activatable copolymer PMPC-hyd-TPE could self-assemble into spherical PC-hyd-TPE micelles, and DOX could be loaded through hydrophobic interactions. The zwitterionic micelles exhibited excellent physiological stability and low protein adsorption due to the stealthy phosphorylcholine (PC) shell. In addition, the cleavage of hydrophobic TPE molecules under acidic conditions could induce swelling of micelles, which was verified by size changes with time at pH 5.0. The in vitro DOX release profile also exhibited accelerated release rate with pH value decreasing from 7.4 to 5.0. Fluorescent microscopy and flow cytometry studies further demonstrated fast internalization and accumulation of drug loaded PC-hyd-TPE-DOX micelles in HepG2 cells, resulting in considerable time/dose-dependent cytotoxicity. Meanwhile, high-quality AIE imaging of PC-hyd-TPE micelles was confirmed in HepG2 cells. Notably, ex vivo imaging study exhibited efficient accumulation and drug release of PC-hyd-TPE-DOX micelles in the tumor tissue. Consequently, the multifunctional micelles with combined nonfouling surface, AIE active imaging, and pH-responsive drug delivery showed great potential as novel nanoplatforms for a new generation of cancer theranostics. PMID:27482632

  15. Effect of Salt on Phosphorylcholine-based Zwitterionic Polymer Brushes.

    PubMed

    Zhang, Zhenyu; Moxey, Mark; Alswieleh, Abdullah; Morse, Andrew J; Lewis, Andrew L; Geoghegan, Mark; Leggett, Graham J

    2016-05-24

    A quantitative investigation of the responses of surface-grown biocompatible brushes of poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC) to different types of salt has been carried out using ellipsometry, quartz crystal microbalance (QCM) measurements, and friction force microscopy. Both cations and anions of varying valency over a wide range of concentrations were examined. Ellipsometry shows that the height of the brushes is largely independent of the ionic strength, confirming that the degree of swelling of the polymer is independent of the ionic character of the medium. In contrast, QCM measurements reveal significant changes in mass and dissipation to the PMPC brush layer, suggesting that ions bind to phosphorylcholine (PC) groups in PMPC molecules, which results in changes in the stiffness of the brush layer, and the binding affinity varies with salt type. Nanotribological measurements made using friction force microscopy show that the coefficient of friction decreases with increasing ionic strength for a variety of salts, supporting the conclusion drawn from QCM measurements. It is proposed that the binding of ions to the PMPC molecules does not change their hydration state, and hence the height of the surface-grown polymeric brushes. However, the balance of the intra- and intermolecular interactions is strongly dependent upon the ionic character of the medium between the hydrated chains, modulating the interactions between the zwitterionic PC pendant groups and, consequently, the stiffness of the PMPC molecules in the brush layer. PMID:27133955

  16. Pneumococcal cell wall phosphorylcholine elicits polyclonal antibody secretion in mice.

    PubMed

    Bach, M A; Beckmann, E; Levitt, D

    1984-07-01

    Immunization of mice with phosphorylcholine (PC)-bearing Staphylococcus pneumoniae Type 2, strain 36a (R36a) results in both a PC-specific and a polyclonal increase in splenic plaque-forming cells. The polyclonal increase was observed in all strains tested, including those bearing an X-linked immune defect resulting in an undetectable anti-PC immune response. The magnitude of the polyclonal response is directly related to the amount of bacterial surface PC as detected by enzyme-linked immunosorbent assay. Congenitally athymic (nude) mice mount an anti-PC plaque-forming cell response after R36a immunization but fail to produce a significant polyclonal response. From our results it appears that PC on the cell wall of a bacterium acts both as a polyclonal activator and a specific antigen, stimulating each by different mechanisms.

  17. Surface Characterization of Aliphatic Polyester -g- Phosphorylcholine Copolymers

    NASA Astrophysics Data System (ADS)

    Zhang, Xiongfei; Emrick, Todd; Hsu, Shaw L.

    2007-03-01

    In order to control biodegradation behavior of a class of polyesters, hydrophilic functional groups were grafted onto the main chains. Phosphorylcholine (PC) molecules with azide attached at the end were synthesized. Due to their excellent biocompatibility and hydrophilicity, they have been covalently coupled to biodegradable aliphatic polyesters via a ``click'' cycloaddition reaction to produce amphiphilic graft copolymers. A series of copolymers were prepared by varying the molar incorporation of PC groups. Surface properties of the copolymers were examined to further explore their applications in drug delivery systems. Grazing angle reflection infrared spectroscopy was employed to determine segmental orientation at the film surface. XPS was used to verify surface composition. A water adsorption experiment was carried out to determine the water permeation rate. The improvement in hydrophilicity was confirmed by a water contact experiment. Results indicate that the graft copolymers were promising in drug delivery systems.

  18. Phosphorylcholine Phosphatase: A Peculiar Enzyme of Pseudomonas aeruginosa

    PubMed Central

    Domenech, Carlos Eduardo; Otero, Lisandro Horacio; Beassoni, Paola Rita; Lisa, Angela Teresita

    2011-01-01

    Pseudomonas aeruginosa synthesizes phosphorylcholine phosphatase (PchP) when grown on choline, betaine, dimethylglycine or carnitine. In the presence of Mg2+ or Zn2+, PchP catalyzes the hydrolysis of p-nitrophenylphosphate (p-NPP) or phosphorylcholine (Pcho). The regulation of pchP gene expression is under the control of GbdR and NtrC; dimethylglycine is likely the metabolite directly involved in the induction of PchP. Therefore, the regulation of choline metabolism and consequently PchP synthesis may reflect an adaptive response of P. aeruginosa to environmental conditions. Bioinformatic and biochemistry studies shown that PchP contains two sites for alkylammonium compounds (AACs): one in the catalytic site near the metal ion-phosphoester pocket, and another in an inhibitory site responsible for the binding of the alkylammonium moiety. Both sites could be close to each other and interact through the residues 42E, 43E and 82YYY84. Zn2+ is better activator than Mg2+ at pH 5.0 and it is more effective at alleviating the inhibition produced by the entry of Pcho or different AACs in the inhibitory site. We postulate that Zn2+ induces at pH 5.0 a conformational change in the active center that is communicated to the inhibitory site, producing a compact or closed structure. However, at pH 7.4, this effect is not observed because to the hydrolysis of the [Zn2+L2−1L20(H2O)2] complex, which causes a change from octahedral to tetrahedral in the metal coordination geometry. This enzyme is also present in P. fluorescens, P. putida, P. syringae, and other organisms. We have recently crystallized PchP and solved its structure. PMID:21915373

  19. Phosphorylcholine on isologous red blood cells induces polyclonal but not anti-phosphorylcholine plaque-forming cells in mice.

    PubMed

    Beckmann, E; Bach, M A; Levitt, D

    1984-07-01

    It has been demonstrated in the preceding report (Bach, M. A., Beckmann, E. and Levitt, D., Eur. J. Immunol. 1984. 14: 589) that phosphorylcholine (PC) on the bacterium Streptococcus pneumoniae R36a stimulated polyclonal as well as anti-PC plaque-forming cells (PFC) in mouse spleen in vivo. In this study, red blood cells from BALB/c mice (MRBC) were either conjugated with PC, 2,4,6-trinitrophenyl (TNP) or treated with phospholipase A2 (PLA2) to expose PC on the cell membrane (determined by hemagglutination with the anti-PC myeloma HOPC8). When BALB/c mice were immunized i.v. with the conjugated or enzyme-treated MRBC, a significant polyclonal antibody response occurred (p less than 0.05) using PC-MRBC or PLA2-treated MRBC, but not with TNP-MRBC or sham-treated MRBC. No anti-PC or anti-MRBC immunoglobulin-secreting cells developed after immunization. Repeated immunization with PC-MRBC resulted in similar levels of protein A PFC after each immunization but no anti-PC, anti-MRBC or anti-PC-MRBC PFC. Thus, PC on R36a or isologous RBC stimulated increased numbers of splenic plaque-forming cells. In the case of R36a, 10-25% of these PFC produced antibodies directed towards PC. In contrast, PC-MRBC or PLA2-treated MRBC, failed to evoke any anti-PC antibody responses.

  20. Successful modulation of murine lupus nephritis with tuftsin-phosphorylcholine.

    PubMed

    Bashi, Tomer; Blank, Miri; Ben-Ami Shor, Dana; Fridkin, Mati; Versini, Mathilde; Gendelman, Omer; Volkov, Alexander; Barshak, Iris; Shoenfeld, Yehuda

    2015-05-01

    In areas where helminths infections are common, autoimmune diseases are rare. Treatment with helminths and ova from helminths, improved clinical findings of inflammatory bowel disease, multiple-sclerosis and rheumatoid-arthritis. The immunomodulatory functions of some helminths were attributed to the phosphorylcholine (PC) moiety. We aimed to decipher the tolerogenic potential of Tuftsin-PC (TPC) compound in mice genetically prone to develop lupus. Lupus prone NZBXW/F1 mice received subcutaneously TPC (5 μg/1 ml), 3 times a week starting at 14 weeks age. Autoantibodies were tested by ELISA, T-regulatory-cells by FACS, cytokines profile by RT-PCR and cytokines protein levels by DuoSet ELISA. Glomerulonephritis was addressed by detection of proteinuria, and immunoglobulin complex deposition in the mesangium of the kidneys of the mice by immunofluorescence. Our results show that TPC attenuated the development of glomerulonephritis in lupus prone mice, in particular, it ameliorated proteinuria (p < 0.02), and reduced immunoglobulin deposition in the kidney mesangium. TPC also enhanced the expression of TGFβ and IL-10 (p < 0.001), and inhibited the production of IFNγ and IL-17 (p < 0.03). TPC Significantly enhanced the expansion of CD4+CD25+FOXP3+ T-regulatory cells (Tregs) phenotype in the treated mice. These data indicate that TPC hampered lupus development in genetically lupus prone mice which was exemplified by moderate glomerulonephritis, attenuation of pro-inflammatory cytokines and enhancement of anti-inflammatory cytokines expression, as well as Tregs expansion. Our results propose harnessing novel natural therapy for lupus patients.

  1. Phosphorylcholine substituted polyolefins: New syntheses, solution assemblies, and polymer vesicles

    NASA Astrophysics Data System (ADS)

    Kratz, Katrina A.

    This thesis describes the synthesis and applications of a new series of amphiphilic homopolymers and copolymers consisting of hydrophobic polyolefin backbone and hydrophilic phosphorylcholine (PC) pendant groups. These polymers are synthesized by ring opening metathesis polymerization (ROMP) of a novel PC- cyclooctene monomer, and copolymerization of various functionalized cyclooctene comonomers. Incorporation of different comonomers into the PC-polyolefin backbone affords copolymers with different functionalities, including crosslinkers, fluorophores, and other reactive groups, that tune the range of applications of these polymers, and their hydrophobic/hydrophilic balance. The amphiphilic nature of PC-polyolefins was exploited in oil-water interfacial assembly, providing robust polymer capsules to encapsulate and deliver nanoparticles to damaged regions of a substrate in a project termed `repair-and-go.' In repair-and-go, a flexible microcapsule filled with a solution of nanoparticles probes an imperfection-riddled substrate as it rolls over the surface. The thin capsule wall allows the nanoparticles to escape the capsules and enter into the cracks, driven in part by favorable interactions between the nanoparticle ligands and the cracked surface (i.e., hydrophobic-hydrophobic interactions). The capsules then continue their transport along the surface, filling more cracks and depositing particles into them. The amphiphilic nature of PC-polyolefins was also exploited in aqueous assembly, forming novel polymer vesicles in water. PC-polyolefin vesicles ranged in size from 50 nm to 30 µm. The mechanical properties of PC-polyolefin vesicles were measured by micropipette aspiration techniques, and found to be more robust than conventional liposomes or polymersomes prepared from block copolymers. PC-polyolefin vesicles have potential use in drug delivery; it was found that the cancer drug doxorubicin could be encapsulated efficiently in PC-polyolefin vesicles. In

  2. Crystallization and preliminary X-ray diffraction analysis of Pseudomonas aeruginosa phosphorylcholine phosphatase

    PubMed Central

    Otero, Lisandro H.; Beassoni, Paola R.; Domenech, Carlos E.; Lisa, Angela T.; Albert, Armando

    2010-01-01

    Pseudomonas aeruginosa phosphorylcholine phosphatase (PchP) catalyzes the hydrolysis of phosphorylcholine to produce choline and inorganic phosphate. Phosphorylcholine is released by the action of haemolytic phospholipase C (PlcH) on phosphatidylcholine or sphingomyelin. PchP belongs to the HAD superfamily and its activity is dependent on Mg2+, Zn2+ or Cu2+. The possible importance of PchP in the pathogenesis of P. aeruginosa, the lack of information about its structure and its low identity to other members of this family led us to attempt its crystallization in order to solve its three-dimensional structure. Crystals of the protein have been grown and diffraction data have been obtained to 2.7 Å resolution. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 137.16, b = 159.15, c = 73.31 Å, β = 117.89°. Statistical analysis of the unit-cell contents and the self-rotation function suggest a tetrameric state of the molecule with 222 point-group symmetry. PMID:20693680

  3. New Directions for MPC&A at Chelyabinsk-70

    SciTech Connect

    Tsygankov, G.; Churikov, Y.; Bukin, D.; Karpov, A.; Zuev,V.; Blasy, J.; Labiak, B.; Hernandez, J.; Apt, K.; Schultz, F.; Neymotin, L.; Ystesund, K.; Griggs, J.; Cahalane, P.

    2000-06-27

    This paper describes the new directions for the Nuclear Materials Protection, Control, and Accounting (MPC&A) program at the All Russian Scientific Research Institute of Technical Physics (VNIITF), also called Chelyabinsk-70. Chelyabinsk-70 is located in the Ural Mountains, approximately 2000 km east of Moscow and 100 km south of Ekaterinburg. US sponsored MPC&A work has been underway at VNIITF since mid 1995. During the first three years of the VNIITF project, emphasis was on the Pulse Research Reactor Facility (PRR), which contains one metal and two liquid pulse reactors and associated nuclear material storage rooms and a control center. A commissioning of the PRR was held in May of 1998. With the completion of the MPC&A work in the PRR, new physical protection work has focused on building 726, which contains a pulse reactor and a criticality facility. Physical protection work is now complete at building 726. Several changes in the direction of MPC&A work at VNIITF have taken place and others are underway as a result of new DOE Guidelines for MPC&A at Russian Facilities, the National Research Council report issued in late 1999 and other recommendations. A major change is to do MPC&A work only at facilities for which the US can assure the proper categorization of nuclear materials, that upgrades are appropriate, properly installed and operational and that the equipment and funds used to implement and support those upgrades are being utilized in the manner intended. Other changes in direction which will be described include, an increased emphasis on completing inventories, the use of ''inherently sustainable'' upgrades wherever possible, and completing improved accounting systems and other MPC&A upgrades on a prioritized facility by facility basis rather than attempting to implement them site wide.

  4. 32 CFR 635.20 - Military Police Codes (MPC).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Military Police Codes (MPC). 635.20 Section 635... ENFORCEMENT AND CRIMINAL INVESTIGATIONS LAW ENFORCEMENT REPORTING Offense Reporting § 635.20 Military Police... attached military police units are notified for mobilization, relocation, activation, or inactivation....

  5. 32 CFR 635.20 - Military Police Codes (MPC).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Military Police Codes (MPC). 635.20 Section 635... ENFORCEMENT AND CRIMINAL INVESTIGATIONS LAW ENFORCEMENT REPORTING Offense Reporting § 635.20 Military Police... attached military police units are notified for mobilization, relocation, activation, or inactivation....

  6. 32 CFR 635.20 - Military Police Codes (MPC).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Military Police Codes (MPC). 635.20 Section 635... ENFORCEMENT AND CRIMINAL INVESTIGATIONS LAW ENFORCEMENT REPORTING Offense Reporting § 635.20 Military Police... attached military police units are notified for mobilization, relocation, activation, or inactivation....

  7. 32 CFR 635.20 - Military Police Codes (MPC).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Military Police Codes (MPC). 635.20 Section 635... ENFORCEMENT AND CRIMINAL INVESTIGATIONS LAW ENFORCEMENT REPORTING Offense Reporting § 635.20 Military Police... attached military police units are notified for mobilization, relocation, activation, or inactivation....

  8. 32 CFR 635.20 - Military Police Codes (MPC).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Military Police Codes (MPC). 635.20 Section 635... ENFORCEMENT AND CRIMINAL INVESTIGATIONS LAW ENFORCEMENT REPORTING Offense Reporting § 635.20 Military Police... attached military police units are notified for mobilization, relocation, activation, or inactivation....

  9. Testing a Constrained MPC Controller in a Process Control Laboratory

    ERIC Educational Resources Information Center

    Ricardez-Sandoval, Luis A.; Blankespoor, Wesley; Budman, Hector M.

    2010-01-01

    This paper describes an experiment performed by the fourth year chemical engineering students in the process control laboratory at the University of Waterloo. The objective of this experiment is to test the capabilities of a constrained Model Predictive Controller (MPC) to control the operation of a Double Pipe Heat Exchanger (DPHE) in real time.…

  10. Synthesis and electropolymerization of phosphorylcholine-containing pyrroles and their hemocompatible properties.

    PubMed

    Yasuzawa, Mikito; Matsuki, Takashi; Yamada, Tetsuya; Kunugi, Akira

    2010-01-01

    A series of N-substituted pyrroles having phosphorylcholine with different methylene chain lengths between pyrrole group and phosphorylcholine group were synthesized and their electropolymerizations were performed in aqueous solution. The methylene chains were trimethylene (n = 3), pentamethylene (n = 5), nonamethylene (n = 9), and undecamethylene (n = 11), for 3-(1-pyrrolyl)propyl-2-(trimethylammonium)ethyl phosphate (5a), 5-(1-pyrrolyl)pentyl-2-(trimethylammonium)ethyl phosphate (5b), 9-(1-pyrrolyl)nonyl-2-(trimethylammonium)ethyl phosphate (5c), and 11-(1-pyrrolyl)undecyl-2-(trimethylammonium)ethyl phosphate (5d), respectively. Although electropolymerized films were produced from all pyrrole derivatives, thick and black polymer films were prepared from 5a, 5b and 5c. The pyrrole derivative with long methylene-chain 5d provided only colorless or slightly blackish thin film. Hemocompatibilities of the polymers from 5a, 5b and 5c were evaluated by platelet rich plasma (PRP) contacting studies and scanning electron microscopy (SEM) observations. The results indicated that these polymers have excellent hemocompatibility.

  11. Calcium-dependent binding of rabbit C-reactive protein to supported lipid monolayers containing exposed phosphorylcholine group.

    PubMed Central

    Sui, S F; Sun, Y T; Mi, L Z

    1999-01-01

    The interaction of rabbit C-reactive protein (rCRP) with a supported monolayer containing a phosphorylcholine moiety was studied. Three types of phospholipids were synthesized, each containing a insertion spacer of eight, six, or three atoms between the phosphorylcholine group and hydrophobic tail. By varying the length of the insertion spacer, we can vary the extension of the phosphorylcholine group from the membrane surface. By varying the monolayer composition, we can control the lateral distance between the exposed phosphorylcholine groups. Using the surface plasmon resonance technique (SPR), we demonstrated that the calcium-dependent binding of rCRP to the model membrane is governed not only by the ability of the ligand to access the binding pocket fully (spacer length), but also by lateral hindrance within the two-dimensional plane of the membrane. The value of the apparent binding constant was estimated by theoretical analysis, which is obviously dependent on the composition of the lipid mixture, and a maximum of (9.9 +/- 1.5) x 10(6) M-1 was obtained. PMID:9876145

  12. In situ patterning of organic molecules in aqueous solutions using an inverted electron-beam lithography system

    NASA Astrophysics Data System (ADS)

    Miyazako, Hiroki; Ishihara, Kazuhiko; Mabuchi, Kunihiko; Hoshino, Takayuki

    2016-06-01

    A method for in situ controlling the detachment and deposition of organic molecules such as sugars and biocompatible polymers in aqueous solutions by electron-beam (EB) scan is proposed and evaluated. It was demonstrated that EB irradiation could detach 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers from a silicon nitride membrane. Moreover, organic molecules such as cationic polymers and sugars could be deposited on the membrane by EB irradiation. Spatial distributions of scattered electrons were numerically simulated, and acceleration voltage dependences of the detachment and deposition phenomena were experimentally measured. The simulations and experimental results suggest that the detachment of MPC polymers is mainly due to electrical effects of primary electrons, and that the deposition of organic molecules is mainly due to chemical reactions induced by primary electrons. In view of these findings, the proposed method can be applied to in situ and nanoscale patterning such as the fabrication of cell scaffolds.

  13. Long-term hip simulator testing of the artificial hip joint bearing surface grafted with biocompatible phospholipid polymer.

    PubMed

    Moro, Toru; Takatori, Yoshio; Kyomoto, Masayuki; Ishihara, Kazuhiko; Hashimoto, Masami; Ito, Hideya; Tanaka, Takeyuki; Oshima, Hirofumi; Tanaka, Shigeyuki; Kawaguchi, Hiroshi

    2014-03-01

    To prevent periprosthetic osteolysis and subsequent aseptic loosening of artificial hip joints, we recently developed a novel acetabular highly cross-linked polyethylene (CLPE) liner with graft polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) on its surface. We investigated the wear resistance of the poly(MPC) (PMPC)-grafted CLPE liner during 20 million cycles in a hip joint simulator. We extended the simulator test of one liner to 70 million cycles to investigate the long-term durability of the grafting. Gravimetric, surface, and wear particle analyses revealed that PMPC grafting onto the CLPE liner surface markedly decreased the production of wear particles and showed that the effect of PMPC grafting was maintained through 70 million cycles. We believe that PMPC grafting can significantly improve the wear resistance of artificial hip joints. PMID:24249706

  14. MPC1-like Is a Placental Mammal-specific Mitochondrial Pyruvate Carrier Subunit Expressed in Postmeiotic Male Germ Cells.

    PubMed

    Vanderperre, Benoît; Cermakova, Kristina; Escoffier, Jessica; Kaba, Mayis; Bender, Tom; Nef, Serge; Martinou, Jean-Claude

    2016-08-01

    Selective transport of pyruvate across the inner mitochondrial membrane by the mitochondrial pyruvate carrier (MPC) is a fundamental step that couples cytosolic and mitochondrial metabolism. The recent molecular identification of the MPC complex has revealed two interacting subunits, MPC1 and MPC2. Although in yeast, an additional subunit, MPC3, can functionally replace MPC2, no alternative MPC subunits have been described in higher eukaryotes. Here, we report for the first time the existence of a novel MPC subunit termed MPC1-like (MPC1L), which is present uniquely in placental mammals. MPC1L shares high sequence, structural, and topological homology with MPC1. In addition, we provide several lines of evidence to show that MPC1L is functionally equivalent to MPC1: 1) when co-expressed with MPC2, it rescues pyruvate import in a MPC-deleted yeast strain; 2) in mammalian cells, it can associate with MPC2 to form a functional carrier as assessed by bioluminescence resonance energy transfer; 3) in MPC1 depleted mouse embryonic fibroblasts, MPC1L rescues the loss of pyruvate-driven respiration and stabilizes MPC2 expression; and 4) MPC1- and MPC1L-mediated pyruvate imports show similar efficiency. However, we show that MPC1L has a highly specific expression pattern and is localized almost exclusively in testis and more specifically in postmeiotic spermatids and sperm cells. This is in marked contrast to MPC1/MPC2, which are ubiquitously expressed throughout the organism. To date, the biological importance of this alternative MPC complex during spermatogenesis in placental mammals remains unknown. Nevertheless, these findings open up new avenues for investigating the structure-function relationship within the MPC complex. PMID:27317664

  15. Russian Navy Fresh Fuel MPC and A Training

    SciTech Connect

    Forehand, Harry M.; O'Shell, Parker; Opanassiouk, Yuri R.; Rexroth, Paul E.; Shmelev, Vladimir; Sukhoruchkin, Vladimir K.

    1999-07-06

    The goal of the Russian Navy Fuels Program is to incorporate nuclear fuel that is in the custody of the Russian Navy into a materials protection, control and accounting program. In addition to applying MPC and A upgrades to existing facilities, a program is underway to train site personnel in MPC and A activities. The goal is to assure that the upgraded facilities are managed, operated and maintained in an effective, sustainable manner. Training includes both the conceptual and necessary operational aspects of the systems and equipment. The project began with a Needs Assessment to identify priorities and objectives of required training. This led to the creation of a series of classes developed by Kurchatov Institute. One course was developed to allow attendees to get a general understanding of goals and objectives of nuclear MPC and A systems in the context of the Russian Navy. A follow-on course provided the detailed skills necessary for the performance of specialized duties. Parallel sessions with hands-on exercises provided the specific training needed for different personnel requirements. The courses were presented at KI facilities in Moscow. This paper reviews the work to date and future plans for this program.

  16. Effects of molecular architecture of phospholipid polymers on surface modification of segmented polyurethanes.

    PubMed

    Liu, Yihua; Inoue, Yuuki; Sakata, Sho; Kakinoki, Sachiro; Yamaoka, Tetsuji; Ishihara, Kazuhiko

    2014-01-01

    To modify the surface properties of segmented polyurethane (SPU), effects of the molecular architecture of the 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers on the performance of the SPU/MPC polymer membrane were investigated. We combined the random-type, block-type, and graft-type of the MPC polymers with a typical SPU, Tecoflex(®) using double solution casting procedure. The graft-type MPC polymers composed of a poly(MPC) main chain and poly(2-ethylhexyl methacrylate (EHMA)) side chains were synthesized through the combination of two different living radical polymerization techniques to regulate the density and chain length of the side chains. The SPU membranes modified with the MPC polymers were characterized using X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The results revealed that the MPC units were located on the SPU surface. Although the breaking strength of the SPU membranes modified with block-type poly(MPC-block-EHMA) and graft-type poly(MPC-graft-EHMA) was lower than that of SPU membranes modified with random-type poly(MPC-random-EHMA), their breaking strengths were adequate for manufacturing medical devices. On the other hand, better stability was observed in the MPC polymer layer on the SPU membrane after immersion in an aqueous medium, wherein the SPU membrane had been modified with the poly(MPC-graft-EHMA). This was because of the intermixing of the hydrophobic poly(EHMA) segments in the domain of the hard segments in the SPU membrane. After this modification, each SPU/MPC polymer membrane showed hydrophilic nature based on the MPC polymers and a dramatic suppression of protein adsorption. From these results, we concluded that the SPU membrane modified with the poly(MPC-graft-EHMA) was one of the promising polymeric biomaterials for making blood-contacting medical devices. PMID:24417469

  17. Labeled choline and phosphorylcholine: body distribution and brain autoradiography: concise communication

    SciTech Connect

    Friedland, R.P.; Mathis, C.A.; Budinger, T.F.; Moyer, B.R.; Rosen, M.

    1983-09-01

    Following intravenous injection of labeled choline or phosphorylcholine in rats and mice, the brain uptake as percent injected dose was less than 0.2% with 6-12% going to kidney and 3-6% to liver. A study of (/sup 14/C)choline autoradiography in a stump-tailed macaque demonstrated a five- to sixfold greater uptake in gray matter than in white matter. Dynamic positron imaging of (/sup 11/C)choline in a rhesus monkey demonstrated rapid brain uptake followed by rapid washout, with heavy late uptake in muscle. The use of labeled choline and choline analogs as imaging agents in human studies is constrained by the low brain uptake relative to extracerebral tissues.

  18. Labeled choline and phosphorylcholine: body distribution and brain autoradiography: concise communication

    SciTech Connect

    Friedland, R.P.; Mathis, C.A.; Budinger, T.F.; Moyer, B.R.; Rosen, M.

    1983-09-01

    Following intravenous injection of labeled choline or phosphorylcholine in rats and mice, the brain uptake as percent injected dose was less than 0.2% with 6 to 12% going to kidney and 3 to 6% to liver. A study of (/sup 14/C)choline autoradiography in a stump-tailed macaque demonstrated a five- to sixfold greater uptake in gray matter than in white matter. Dynamic positron imaging of (/sup 11/C) choline in a rhesus monkey demonstrated rapid brain uptake followed by rapid washout, with heavy late uptake in muscle. The use of labeled choline and choline analogs as imaging agents in human studies is constrained by the low brain uptake relative to extracerebral tissues.

  19. ANALYSIS OF MPC WEIGHT, DIMENSIONAL ENVELOPE, AND CONFIGURATION REQUIREMENTS

    SciTech Connect

    W.E. Wallin

    1995-03-03

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) in response to a request received via a QAP-3-12 Design Input Data Request from WAST Design (formerly MRSMPC Design). The request is to provide: (1) Specific MPC weight, dimensional envelope, and configuration requirements to ensure compatibility with MGDS capabilities. The objective of this analysis is to provide a response to the foregoing request. The purpose of this analysis is to provide the basis for the response. The response is stated in Section 8 herein.

  20. Rule-based OPC and MPC interaction for implant layers

    NASA Astrophysics Data System (ADS)

    Fu, Nan; Ning, Guoxiang; Werle, Florian; Roling, Stefan; Hecker, Sandra; Ackmann, Paul; Buergel, Christian

    2015-10-01

    Implant layers must cover both logic and SRAM devices with good fidelity even if feature density and pitch differ very much. The coverage design rules of implant layers for SRAM and logic to active layer can vary. Lithography targeting could be problematic, since it may cause issues of either over exposure in logic area or under exposure in SRAM area. The rule-based (RB) re-targeting in the SRAM issue features is to compensate the under exposure in SRAM area. However, the global sizing in SRAM may introduce some bridge issues. Selective targeting and communicating with active layer is necessary. Another method is to achieve different mean-to-nominal (MTN) in some special areas during the reticle process. Such implant wafer issues can also be resolved during the lithography and mask optimized data preparing flow or named as lithography tolerance mask process correction (MPC). In this manuscript, this conventional issue will be demonstrated which is either over exposure in logic area or under exposure in bitcell area. The selective rule-based re-targeting concerning active layer will also be discussed, together with the improved wafer CDSEM data. The alternative method is to achieve different mean-to-nominal in different reticle areas which can be realized by lithography tolerance MPC during reticle process. The investigation of alternative methods will be presented, as well as the trade-off between them to improve the wafer uniformity and process margin of implant layers.

  1. ANALYSIS OF MPC ACCESS REQUIREMENTS FOR ADDITION OF FILLER MATERIALS

    SciTech Connect

    W. Wallin

    1996-09-03

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) in response to a request received via a QAP-3-12 Design Input Data Request (Ref. 5.1) from WAST Design (formerly MRSMPC Design). The request is to provide: Specific MPC access requirements for the addition of filler materials at the MGDS (i.e., location and size of access required). The objective of this analysis is to provide a response to the foregoing request. The purpose of this analysis is to provide a documented record of the basis for the response. The response is stated in Section 8 herein. The response is based upon requirements from an MGDS perspective.

  2. Interface of covalently bonded phospholipids with a phosphorylcholine head: characterization, protein nonadsorption, and further functionalization.

    PubMed

    Ferez, Lynda; Thami, Thierry; Akpalo, Edefia; Flaud, Valérie; Tauk, Lara; Janot, Jean-Marc; Déjardin, Philippe

    2011-09-20

    Surface anchored poly(methylhydrosiloxane) (PMHS) thin films on oxidized silicon wafers or glass substrates were functionalized via the SiH hydrosilylation reaction with the internal double bonds of 1,2-dilinoleoyl-sn-glycero-3-phosphorylcholine (18:2 Cis). The surface was characterized by X-ray photoelectron spectroscopy, contact angle measurements, atomic force microscopy, and scanning electron microscopy. These studies showed that the PMHS top layer could be efficiently modified resulting in an interfacial high density of phospholipids. Grafted phospholipids made the initially hydrophobic surface (θ = 106°) very hydrophilic and repellent toward avidin, bovine serum albumin, bovine fibrinogen, lysozyme, and α-chymotrypsin adsorption in phosphate saline buffer pH 7.4. The surface may constitute a new background-stable support with increased biocompatibility. Further possibilities of functionalization on the surface remain available owing to the formation of interfacial SiOH groups by Karstedt-catalyzed side reactions of SiH groups with water. The presence of interfacial SiOH groups was shown by zeta potential measurements. The reactivity and surface density of SiOH groups were checked by fluorescence after reaction of a monoethoxy silane coupling agent bearing Alexa as fluorescent probe.

  3. Binding of phosphorylcholine by non-immunoglobulin molecules on mouse B cells.

    PubMed

    Bach, M A; Kohler, H; Levitt, D

    1983-07-01

    Phosphorylcholine (PC), a molecule found in the cell wall of most serotypes of pneumococcus, has been used extensively as a probe for the study of network interactions during immune responses. The frequency of B lymphocytes capable of interacting with PC has not been directly examined. We used immunofluorescence to study the binding of PC and monoclonal anti-TEPC15 anti-idiotopic antibodies to murine lymphocytes. In addition to identifying PC-specific Ig molecules, PC was bound by a non-Ig molecule on the surface of a relatively large subset of B cells; this non-Ig marker shared an idiotypic determinant with the PC-binding myeloma protein HOPC8 (H8). PC-bearing R36a pneumococci bind to a similar subset of lymphocytes. This binding is inhibited specifically by PC coupled to bovine serum albumin and also by a monoclonal anti-H8 antibody. We suggest that bacterial interaction with B cells through non-Ig molecules capable of binding a dominant antigen like PC may possess functional significance, possibly during the events that lead to antibody induction by these microorganisms.

  4. Surface reconstruction and hemocompatibility improvement of a phosphorylcholine end-capped poly(butylene succinate) coating.

    PubMed

    Hao, Ni; Wang, Yan-Bing; Zhang, Shi-Ping; Shi, Su-Qing; Nakashima, Kenichi; Gong, Yong-Kuan

    2014-09-01

    Control over cell-material surface interactions is the key to many new and improved biomedical devices. In this study, we present a simple yet effective surface modification method that allows for the surface reconstruction and formation of cell outer membrane mimetic structure on coatings that have significantly increased hemocompatibility. To achieve this, a phosphorylcholine end-capped poly(butylene succinate) (PBS-PC) was synthesized and dip-coated on coverslips. The surface structure of the amphiphilic PBS-PC film was reconstructed by heating in a vacuum oven to obtain the less hydrophilic surface and by immersing in hot water to obtain the more hydrophilic surface. Significant changes in the surface element concentration were observed by X-ray photoelectron spectroscopy analysis and changes in surface wettability were measured by sensitive dynamic contact angle technique. Scanning electron microscope images showed different morphologies of the reconstructed surfaces. Interestingly, the reconstruction between the less hydrophilic and more hydrophilic surfaces is reversible. More importantly, both the reconstructed surfaces are stable in room condition for more than 6 months, and both the surfaces show significant improvement in hemocompatibility as revealed by protein adsorption and platelet adhesion measurements. This reversible surface reconstruction strategy and the interesting results may be significant for fabricating stable and hemocompatible surfaces on differently shaped biomedical devices.

  5. MPC1, a key gene in cancer metabolism, is regulated by COUPTFII in human prostate cancer

    PubMed Central

    Wang, Leiming; Xu, Mafei; Qin, Jun; Lin, Shih-Chieh; Lee, Hui-Ju; Tsai, Sophia Y.; Tsai, Ming-Jer

    2016-01-01

    Mitochondrial pyruvate carrier 1 (MPC1) and MPC 2 form a transporter complex in cells to control pyruvate transportation into mitochondria. Reduced expression of MPC1 disrupts the transporter function, induces metabolic shift to increase glycolysis, and thus plays important roles in several diseases, including cancer. However, the role of MPC1 in prostate cancer and the underlying mechanism causing the down-regulation of MPC1 in tumor cells remain to be defined. Here, we show that MPC1 serves as a critical regulator of glycolysis in prostate cancer cells, which in turn controls cancer cell growth, invasion, and the tumorigenic capability. More importantly, we identified that chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII), a steroid receptor superfamily member, transcriptionally regulates the expression of MPC1. We further demonstrate that COUP-TFII, which is upregulated in the prostate cancer patient, regulates MPC1 and glycolysis to promote tumor growth and metastasis. Our findings reveal that COUP-TFII represses MPC1 expression in prostate cancer cells to facilitate a metabolism switch to increase glycolysis and promote cancer progression. This observation raises an intriguing possibility of targeting COUP-TFII to modulate cancer cell metabolism for prostate cancer intervention. PMID:26895100

  6. The effect of different component ratios in block polymers and processing conditions on electrodeposition efficiency onto titanium

    NASA Astrophysics Data System (ADS)

    Fukuhara, Yusuke; Kyuzo, Megumi; Tsutsumi, Yusuke; Nagai, Akiko; Chen, Peng; Hanawa, Takao

    2015-11-01

    2-Methacryloyloxyethyl phosphorylcholine (MPC) polymers for electrodeposition to titanium surfaces were synthesized. The polymers were block-type copolymers composed of a poly(MPC) segment and a poly(2-aminoethylmethacrylate (AEMA)) segment, which could electronically adsorb to a titanium oxide film on the titanium surface. The polymer was synthesized as expected by nuclear magnetic resonance and gel permeation chromatography. In a 0.26 mmol L-1 PMbA solution adjusted to pH 11, -3.0 V (vs. an Ag/AgCl electrode) was applied to a titanium substrate for 300 s. We evaluated the effects of the molecular structure of poly(MPC-block-AEMA) (PMbA) with a different polymerization degree of MPC unit, whereas the polymerization degree of the AEMA units was fixed. The 15-min electrodeposition of PMbA100 was the most efficient condition in this study. On the other hand, the results of the water contact angle and the amount of adsorbed protein did not change, even when altering the MPC unit number and electrodeposition time. This indicates that the immobilization by electrodeposition of PMbA is important for the inhibition of protein adsorption, while the polymerization degree of the MPC unit and the electrodeposition time do not influence them. This study will enhance the understanding of effective polymer structures for electrodeposition and electrodeposition conditions.

  7. Controlling the drug release rate from electrospun phospholipid polymer nanofibers with micro-patterned diamond-like carbon (DLC) coating

    NASA Astrophysics Data System (ADS)

    Yoshida, Soki; Hasebe, Terumitsu; Suzuki, Tetsuya; Hotta, Atsushi

    2013-03-01

    An effective way of controlling drug release from polymer fibers coated with thin diamond-like carbon (DLC) film was introduced. It is highly expected that electrospinning will produce polymer fiber and useful for drug delivery systems. The drug release rate should be rather precisely controlled in order to prevent side effects due to the burst drug-release from polymers. Our previous research has already revealed that the micro-patterned DLC could control the drug release rate from biocompatible polymer films. In this study, the drug release profile of the polymer fibers with DLC was investigated. Hydrophilic 2-methacryloyloxyethyl phosphorylcholine (MPC) was selected as a typical biocompatible polymer. It is well known that the MPC polymers show good hemocompatibility and that both MPC and DLC are excellent biocompatible materials with antithrombogenicity. The DLC/MPC composites could therefore be extensively utilized for blood-contacting medical devices. The percentile covered area with patterned DLC on MPC fibers containing drug was varied from 0% (without DLC) to 100% (fully covered). It was found that the drug eluting profiles could be effectively controlled by changing the covered area of micro-patterned DLC coatings on MPC.

  8. Human umbilical vein endothelial cell interaction with phospholipid polymer nanofibers coated by micro-patterned diamond-like carbon (DLC)

    NASA Astrophysics Data System (ADS)

    Yoshida, Soki; Hasebe, Terumitsu; Suzuki, Tetsuya; Hotta, Atsushi

    2013-03-01

    Blood-contacting medical devices should possess the surface properties with the following two important characteristics: The first is the anti-thrombogenicity of the material surface and the second is the re-endothelialization over the device surface after long-term implantation, because endothelial cells have excellent anticoagulant properties in blood vessels. To develop highly hemocompatible materials that could promote surface endothelialization, we investigated biocompatible polymers coated with thin diamond-like carbon (DLC) film. In this research, we examined the viability of human umbilical vein endothelial cells (HUVECs) for hydrophilic 2-methacryloyloxyethyl phosphorylcholine (MPC) fibers with DLC coatings, both of which were known to be anti-thrombogenic. DLC was synthesized on MPC by varying the ratio of covered area by patterned DLC. HUVECs were seeded on DLC-coated MPC for 6 days. The results indicated that the MPC surface with DLC did not disturb HUVEC proliferation in 6 days of culture. Additionally, we are currently making strong efforts to fabricate MPC fibers with bFGF which is an important growth factor involved in cell proliferation. MPC containing bFGF with DLC coatings could be extensively utilized for blood-contacting medical devices.

  9. Cooperative MPC&A Enhancements at Russian Navy Sites

    SciTech Connect

    Nelson, N N; O'Shell, P; Hendrickson, S; Sukhoruchkin, V; Antipov, S; Melkhov, E; Ponomarev-Stepnoi, N; Yurasov, N

    2001-05-30

    U.S. MPC&A cooperation with the Russian Federation (RF) Navy is based on a Joint Statement signed in 1996 to protect Highly Enriched Uranium (HEU) fresh fuel used for nuclear propulsion. The Russian Federation Navy is the largest owner in Russia of highly enriched uranium, both in the form of fresh nuclear fuel, and in the form of slightly irradiated fuel with a long cooling time after irradiation. As a result of this agreement, projects began at the Northern Fleet Fresh Fuel Storage Facility (Site 49) and Refueling Ship PM-63. Initial projects provided upgrades for RF Navy HEU fresh fuel storage facilities, beginning with a land-based facility near Murmansk and later adding other land-based and ship-based fresh fuel storage facilities. Additional protocols (December 1997, January 1999, and March 2000) significantly expanded cooperation to include all HEU fuel under RF Navy control. To date, it is estimated that tens of metric tons of HEU have been secured - enough to construct hundreds of nuclear devices. It was determined that the cooperation would be coordinated by the Russian Research Center, Kurchatov Institute. This paper describes the history of the Program development, its stages, current status, scale of the work and prospects.

  10. Self-optimizing MPC of melt temperature in injection moulding.

    PubMed

    Dubay, R

    2002-01-01

    The parameters in plastic injection moulding are highly nonlinear and interacting. Good control of plastic melt temperature for injection moulding is very important in reducing operator setup time, assuring consistent product quality, and preventing thermal degradation of the melt. Step response testing was performed on the barrel heating zones on an industrial injection moulding machine (IMM). The open loop responses indicated a high degree of process coupling between the heating zones. From these experimental step responses, a multiple-input-multiple-output model predictive control strategy was developed and practically implemented. The requirement of negligible overshoot is important to the plastics industry for preventing material overheating and wastage, and reducing machine operator setup time. A generic learning and self-optimizing MPC methodology was developed and implemented on the IMM to control melt temperature for any polymer to be moulded on any machine having different electrical heater capacities. The control performance was tested for varying setpoint trajectories typical of normal machine operations. The results showed that the predictive controller provided good control of melt temperature for all zones with negligible oscillations, and, therefore, eliminated material degradation and extended machine setup time. PMID:12014805

  11. Incorporation of phosphorylcholine into the lipooligosaccharide of nontypeable Haemophilus influenzae does not correlate with the level of biofilm formation in vitro.

    PubMed

    Puig, Carmen; Marti, Sara; Hermans, Peter W M; de Jonge, Marien I; Ardanuy, Carmen; Liñares, Josefina; Langereis, Jeroen D

    2014-04-01

    Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen that causes otitis media in children and community-acquired pneumonia or exacerbations of chronic obstructive pulmonary disease in adults. A large variety of studies suggest that biofilm formation by NTHi may be an important step in the pathogenesis of this bacterium. The objective of this report was to determine the relationship between the presence of phosphorylcholine in the lipooligosaccharide of NTHi and the level of biofilm formation. The study was performed on 111 NTHi clinical isolates collected from oropharyngeal samples of healthy children, middle ear fluid of children with otitis media, and sputum samples of patients with chronic obstructive pulmonary disease or community-acquired pneumonia. NTHi clinical isolates presented a large variation in the level of biofilm formation in a static assay and phosphorylcholine content. Isolates collected from the oropharynx and middle ear fluid of children tended to have more phosphorylcholine and made denser biofilms than isolates collected from sputum samples of patients with chronic obstructive pulmonary disease or community-acquired pneumonia. No correlation was observed between biofilm formation and the presence of phosphorylcholine in the lipooligosaccharide for either planktonic or biofilm growth. This lack of correlation was confirmed by abrogating phosphorylcholine incorporation into lipooligosaccharide through licA gene deletion, which had strain-specific effects on biofilm formation. Altogether, we present strong evidence to conclude that there is no correlation between biofilm formation in a static assay and the presence of phosphorylcholine in lipooligosaccharide in a large collection of clinical NTHi isolates collected from different groups of patients. PMID:24452688

  12. The role of lipooligosaccharide phosphorylcholine in colonization and pathogenesis of Histophilus somni in cattle.

    PubMed

    Elswaifi, Shaadi F; Scarratt, William K; Inzana, Thomas J

    2012-06-07

    Histophilus somni is a Gram-negative bacterium and member of the Pasteurellaceae that is responsible for respiratory disease and other systemic infections in cattle. One of the bacterium's virulence factors is antigenic phase variation of its lipooligosaccharide (LOS). LOS antigenic variation may occur through variation in composition or structure of glycoses or their substitutions, such as phosphorylcholine (ChoP). However, the role of ChoP in the pathogenesis of H. somni disease has not been established. In Haemophilus influenzae ChoP on the LOS binds to platelet activating factor on epithelial cells, promoting bacterial colonization of the host upper respiratory tract. However, ChoP is not expressed in the blood as it also binds C-reactive protein, resulting in complement activation and killing of the bacteria. In order to simulate the susceptibility of calves with suppressed immunity due to stress or previous infection, calves were challenged with bovine herpes virus-1 or dexamethazone 3 days prior to challenge with H. somni. Following challenge, expression of ChoP on the LOS of 2 different H. somni strains was associated with colonization of the upper respiratory tract. In contrast, lack of ChoP expression was associated with bacteria recovered from systemic sites. Histopathology of cardiac tissue from myocarditis revealed lesions containing bacterial clusters that appeared similar to a biofilm. Furthermore, some respiratory cultures contained substantial numbers of Pasteurella multocida, which were not present on preculture screens. Subsequent biofilm experiments have shown that H. somni and P. multocida grow equally well together in a biofilm, suggesting a commensal relationship may exist between the two species. Our results also showed that ChoP contributed to, but was not required for, adhesion to respiratory epithelial cells. In conclusion, expression of ChoP on H. somni LOS contributed to colonization of the bacteria to the host upper respiratory tract

  13. Neonatal exposure to pneumococcal phosphorylcholine modulates the development of house dust mite allergy during adult life.

    PubMed

    Patel, Preeyam S; Kearney, John F

    2015-06-15

    Currently, ∼20% of the global population suffers from an allergic disorder. Allergies and asthma occur at higher rates in developed and industrialized countries. It is clear that many human atopic diseases are initiated neonatally and herald more severe IgE-mediated disorders, including allergic asthma, which is driven by the priming of Th2 effector T cells. The hygiene hypothesis attempts to link the increased excessively sanitary conditions early in life to a default Th2 response and increasing allergic phenomena. Despite the substantial involvement of IgE Abs in such conditions, little attention has been paid to the effects of early microbial exposure on the B cell repertoire prior to the initiation of these diseases. In this study, we use Ab-binding assays to demonstrate that Streptococcus pneumoniae and house dust mite (HDM) bear similar phosphorylcholine (PC) epitopes. Neonatal C57BL/6 mice immunized with a PC-bearing pneumococcal vaccine expressed increased frequencies of PC-specific B cells in the lungs following sensitizing exposure to HDM as adults. Anti-PC IgM Abs in the lung decreased the interaction of HDM with pulmonary APCs and were affiliated with lowered allergy-associated cell infiltration into the lung, IgE production, development of airway hyperresponsiveness, and Th2 T cell priming. Thus, exposure of neonatal mice to PC-bearing pneumococci significantly reduced the development of HDM-induced allergic disease during adult life. Our findings demonstrate that B cells generated against conserved epitopes expressed by bacteria, encountered early in life, are also protective against the development of allergic disease during adult life. PMID:25957171

  14. Neonatal Exposure to Pneumococcal Phosphorylcholine Modulates the Development of House Dust Mite Allergy during Adult Life

    PubMed Central

    Patel, Preeyam S.

    2015-01-01

    Currently, ∼20% of the global population suffers from an allergic disorder. Allergies and asthma occur at higher rates in developed and industrialized countries. It is clear that many human atopic diseases are initiated neonatally and herald more severe IgE-mediated disorders, including allergic asthma, which is driven by the priming of Th2 effector T cells. The hygiene hypothesis attempts to link the increased excessively sanitary conditions early in life to a default Th2 response and increasing allergic phenomena. Despite the substantial involvement of IgE Abs in such conditions, little attention has been paid to the effects of early microbial exposure on the B cell repertoire prior to the initiation of these diseases. In this study, we use Ab-binding assays to demonstrate that Streptococcus pneumoniae and house dust mite (HDM) bear similar phosphorylcholine (PC) epitopes. Neonatal C57BL/6 mice immunized with a PC-bearing pneumococcal vaccine expressed increased frequencies of PC-specific B cells in the lungs following sensitizing exposure to HDM as adults. Anti-PC IgM Abs in the lung decreased the interaction of HDM with pulmonary APCs and were affiliated with lowered allergy-associated cell infiltration into the lung, IgE production, development of airway hyperresponsiveness, and Th2 T cell priming. Thus, exposure of neonatal mice to PC-bearing pneumococci significantly reduced the development of HDM-induced allergic disease during adult life. Our findings demonstrate that B cells generated against conserved epitopes expressed by bacteria, encountered early in life, are also protective against the development of allergic disease during adult life. PMID:25957171

  15. The Carbohydrate-linked Phosphorylcholine of the Parasitic Nematode Product ES-62 Modulates Complement Activation*

    PubMed Central

    Ahmed, Umul Kulthum; Maller, N. Claire; Iqbal, Asif J.; Al-Riyami, Lamyaa; Harnett, William; Raynes, John G.

    2016-01-01

    Parasitic nematodes manufacture various carbohydrate-linked phosphorylcholine (PCh)-containing molecules, including ES-62, a protein with an N-linked glycan terminally substituted with PCh. The PCh component is biologically important because it is required for immunomodulatory effects. We showed that most ES-62 was bound to a single protein, C-reactive protein (CRP), in normal human serum, displaying a calcium-dependent, high-avidity interaction and ability to form large complexes. Unexpectedly, CRP binding to ES-62 failed to efficiently activate complement as far as the C3 convertase stage in comparison with PCh-BSA and PCh-containing Streptococcus pneumoniae cell wall polysaccharide. C1q capture assays demonstrated an ES-62-CRP-C1q interaction in serum. The three ligands all activated C1 and generated C4b to similar extents. However, a C2a active site was not generated following ES-62 binding to CRP, demonstrating that C2 cleavage was far less efficient for ES-62-containing complexes. We proposed that failure of C2 cleavage was due to the flexible nature of carbohydrate-bound PCh and that reduced proximity of the C1 complex was the reason that C2 was poorly cleaved. This was confirmed using synthetic analogues that were similar to ES-62 only in respect of having a flexible PCh. Furthermore, ES-62 was shown to deplete early complement components, such as the rate-limiting C4, following CRP interaction and thereby inhibit classical pathway activation. Thus, flexible PCh-glycan represents a novel mechanism for subversion of complement activation. These data illustrate the importance of the rate-limiting C4/C2 stage of complement activation and reveal a new addition to the repertoire of ES-62 immunomodulatory mechanisms with possible therapeutic applications. PMID:27044740

  16. Capsular Polysaccharide of Erysipelothrix rhusiopathiae, the Causative Agent of Swine Erysipelas, and Its Modification with Phosphorylcholine

    PubMed Central

    Shi, Fang; Harada, Tomoyuki; Ogawa, Yohsuke; Ono, Hiroshi; Ohnishi-Kameyama, Mayumi; Miyamoto, Toru; Eguchi, Masahiro

    2012-01-01

    The capsule has been implicated in the virulence of the swine pathogen Erysipelothrix rhusiopathiae, a rod-shaped, intracellular Gram-positive bacterium that has a unique phylogenetic position in the phylum Firmicutes and is a close relative of Mollicutes (mycoplasma species). In this study, we analyzed the genetic locus and composition of the capsular polysaccharide (CPS) of the Fujisawa strain of E. rhusiopathiae. Genome analysis of the Fujisawa strain revealed that the genetic locus for capsular polysaccharide synthesis (cps) is located next to an lic operon, which is involved in the incorporation and expression of phosphorylcholine (PCho). Reverse transcription-PCR analysis showed that cps and lic are transcribed as a single mRNA, indicating that the loci form an operon. Using the cell surface antigen-specific monoclonal antibody (MAb) ER21 as a probe, the capsular materials were isolated from the Fujisawa strain by hot water extraction and treatment with DNase, RNase, pronase, and N-acetylmuramidase SG, followed by anion-exchange and gel filtration chromatography. The materials were then analyzed by high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. The CPS of E. rhusiopathiae is heterogeneous and consists of the major monosaccharides galacturonic acid, galactose, mannose, glucose, arabinose, xylose, and N-acetylglucosamine and some minor monosaccharides containing ribose, rhamnose, and N-acetylgalactosamine. In addition, the capsule is modified by PCho, which comigrates with the capsular materials, as determined by Western immunoblotting, and colocalizes on the cell surface, as determined by immunogold electron microscopy. Virulence testing of PCho-defective mutants in mice demonstrated that PCho is critical for the virulence of this organism. PMID:22949554

  17. U.S./Russian cooperative efforts to enhance nuclear MPC&A at VNIITF, (Chelyabinsk-70)

    SciTech Connect

    Abramson, B; Apt, K; Blasy, J; Bukin, D; Churikov, Y; Curtis, D; Eras, A; Magda, E; Neymotin, L; Shultz, F; Slankas, T; Tittemore, G; Tsygankov, G; Zuev, V

    1999-04-20

    The work described here is part of an effort called the Nuclear Materials Protection, Control, and Accounting (MPC&A) Program, a cooperative program between the US Department of Eenrgy (DOE) and Russia's Ministry of Atomic Energy (MinAtom). The objective of the program is to reduce the risk of nuclear proliferation by strengthening MPC&A systems at Russian nuclear Facilities. This paper describes that portion of the MPC&A program that is directed specifically to the needs of the All Russian Scientific Research Institute of Technical Physics (VNIITF), also called Chelyabinsk-70. A major MPC&A milestone was met at VNIITF when the MPC&A improvements were commissioned at the Pulse Research Reactor Facility in May of this year.

  18. MPC&A for plutonium disposition in the Russian federation

    SciTech Connect

    Sutcliffe, W.G.

    1995-08-08

    The issue of what to do with excess fissile materials from dismantled nuclear weapons has been discussed for a number of years. The options or alternatives commanding the most attention were identified by the American National Academy of Sciences. For plutonium these options are: (1) the fabrication and use of mixed-oxide (MOX) reactor fuel followed by the disposal of the spent fuel, or (2) vitrification (immobilization) of plutonium combined with highly radioactive material followed by direct disposal. The Academy report also identified the alternative of disposal in a deep borehole as requiring further study before being eliminated or accepted. The report emphasized security of nuclear materials as a principal factor in considering management and disposition decisions. Security of materials is particularly important in the near term-now-long before ultimate disposition can be accomplished. The MOX option was the subject of a NATO workshop held at Obninsk, Russia in October 1994. Hence this paper does not deal with the MOX alternative in detail. It deals with the following: materials protection, control, and accounting (MPC&A) for immobilization and disposal; the immobilization vs MOX alternatives; the security of disposed plutonium; the need to demonstrate MTC&A for plutonium disposition; and, finally, a recommended investment to quickly and inexpensively improve the protection of fissile materials in Russia. It is the author`s view that near-term management is of overriding importance. That is, with respect to the ultimate disposition of excess nuclear materials, how we get there is more important than where we are going.

  19. Phosphorylcholine-Coated Semiconducting Polymer Nanoparticles as Rapid and Efficient Labeling Agents for in vivo Cell Tracking

    PubMed Central

    Pu, Kanyi; Shuhendler, Adam J.; Valta, Maija P.; Cui, Lina; Saar, Matthias; Peehl, Donna M.

    2014-01-01

    Despite the pressing need to noninvasively monitor transplanted cells in vivo with fluorescence imaging, desirable fluorescent agents with rapid labeling capability, durable brightness, and ideal biocompatibility remain lacking. Herein we report phosphorylcholine-coated near-infrared (NIR) fluorescent semiconducting polymer nanoparticles (SPNs) as a new class of rapid, efficient and cytocompatible labeling nanoagents for in vivo cell tracking. The phosphorylcholine coating results in efficient and rapid endocytosis and allows the SPN to enter cells within 0.5 h in complete culture medium apparently independent of the cell type, while its NIR fluorescence leads to a tissue penetration depth of 0.5 cm. In comparison to quantum dots and Cy5.5, the SPN is tolerant to physiologically ubiquitous reactive oxygen species ROS, resulting in durable fluorescence both in vitro and in vivo. These desirable physical and physiological properties of the SPN permit cell tracking of human renal cell carcinoma (RCC) cells in living mice at a lower limit of detection of 10,000 cells with no obvious alteration of cell phenotype after 12 days. SPNs thus could provide unique opportunities for optimizing cellular therapy and deciphering pathological processes as a cell tracking label. PMID:24668903

  20. Chitosan Grafted with Phosphorylcholine and Macrocyclic Polyamine as an Effective Gene Delivery Vector: Preparation, Characterization and In Vitro Transfection.

    PubMed

    Li, Ling; Zhao, Fangfang; Zhao, Baojing; Zhang, Jin; Li, Chao; Qiao, Renzhong

    2015-07-01

    Herein, an effective gene delivery vector phosphorylcholine and macrocyclic polyamine grafted chitosan (PC-g(6)-Cs-g(2)-Cyclen) was developed. Chemical characterization of product PC-g(6)-Cs-g(2)-Cyclen was performed by NMR, FT-IR, gel permeation chromatography (GPC), and X-ray photoelectron spectroscopy (XPS) analysis. PC-g(6)-Cs-g(2)-Cyclen could more efficiently bind and protect plasmid DNA than macrocyclic polyamine grafted chitosan (Cs-g-Cyclen) and phosphorylcholine grafted chitosan (Cs-g-PC), as evaluated by agarose gel electrophoresis, circular dichroism spectra, and fluorescence quenching assays. PC-g(6)-Cs-g(2)-Cyclen could wrap DNA into uniform nanoparticles in the size of 112.6 ± 8.5 nm and possessed net cationic charge. UV spectroscopy and MTT assays showed excellent water-solubility and cell viability for PC-g(6)-Cs-g(2)-Cyclen. In addition, three polymer/DNA complexes showed 5.1-15.1-fold greater uptake activity and 10-14-fold higher transfection efficiency in 293 T cells as compared to chitosan/DNA complex, in which PC-g(6)-Cs-g(2)-Cyclen demonstrated the highest transfection activity. These date demonstrated that PC-g(6)-Cs-g(2)-Cyclen is a promising vector candidate for gene delivery. PMID:25800642

  1. On the potential for fibronectin/phosphorylcholine coatings on PTFE substrates to jointly modulate endothelial cell adhesion and hemocompatibility properties

    PubMed Central

    Montaño-Machado, Vanessa; Chevallier, Pascale; Mantovani, Diego; Pauthe, Emmanuel

    2015-01-01

    The use of biomolecules as coatings on biomaterials is recognized to constitute a promising approach to modulate the biological response of the host. In this work, we propose a coating composed by 2 biomolecules susceptible to provide complementary properties for cardiovascular applications: fibronectin (FN) to enhance endothelialization, and phosphorylcholine (PRC) for its non thrombogenic properties. Polytetrafluoroethylene (PTFE) was selected as model substrate mainly because it is largely used in cardiovascular applications. Two approaches were investigated: 1) a sequential adsorption of the 2 biomolecules and 2) an adsorption of the protein followed by the grafting of phosphorylcholine via chemical activation. All coatings were characterized by immunofluorescence staining, X-Ray Photoelectron Spectroscopy and Scanning Electron Microscopy analyses. Assays with endothelial cells showed improvement on cell adhesion, spreading and metabolic activity on FN-PRC coatings compared with the uncoated PTFE. Platelets adhesion and activation were both reduced on the coated surfaces when compared with uncoated PTFE. Moreover, clotting time tests exhibited better hemocompatibility properties of the surfaces after a sequential adsorption of FN and PRC. In conclusion, FN-PRC coating improves cell adhesion and non-thrombogenic properties, thus revealing a certain potential for the development of this combined deposition strategy in cardiovascular applications. PMID:25785369

  2. Immunoresponses to Neisseria meningitidis epitopes: suppression of secondary response to phosphorylcholine is carrier specific.

    PubMed Central

    Faro, J; Seoane, R; Eiras, A; Lareo, I; Couceiro, J; Regueiro, B J

    1986-01-01

    Results of our previous work have shown that Neisseria meningitidis serogroup B M986 can induce a phosphorylcholine (PC)-specific plaque-forming cell immunoresponse in mice. Also, a single injection of a relatively low dose of meningococci in NBF1 female mice induced a priming time-dependent suppression on subsequent meningococcus challenge. This suppression was not due to switching to another class of immunoglobulin nor to the presence of a capsule on N. meningitidis. In this study we show that suppression induced by meningococcus is carrier specific. Furthermore, we offer evidence suggesting that the structure(s) on meningococcus that trigger this suppression is heat labile and different from the antigenic structure(s) recognized by the suppressed B cells. In addition, we found that there is a gradual increase in antibody secretion rates of N. meningitidis-induced anti-PC plaque-forming cells that correlates with N. meningitidis priming time. Rather unexpected was the fact that pretreatment of mice with PC-keyhole limpet hemocyanin (thymus-dependent antigen) had a great influence on the subsequent PC-specific immunoresponses induced by N. meningitidis and PC-coupled heat-inactivated meningococcus [PC-(NMB)HI], as shown by (i) a striking decrease in T15 idiotype expression, (ii) concomitant direct anti-PC plaque-forming cells reduction, (iii) switching to immunoglobulin G (N. meningitidis-induced immunoresponse) or immunoglobulin G plus immunoglobulin A [PC-(NMB)HI-induced immunoresponse], and (iv) a significant increase in heterogeneity of plaque-forming cell secretion rates. The possibility that N. meningitidis, PC-(NMB)HI, and PC-KLH stimulate B lymphocytes pertaining to three different subpopulations embedded in distinct regulatory circuits is discussed, with emphasis on the interrelationships between T-dependent and T-independent lymphocyte compartments. We focus on the possibility of the existence of high-level regulatory circuits in which lymphocyte

  3. Novel therapeutic compound tuftsin-phosphorylcholine attenuates collagen-induced arthritis.

    PubMed

    Bashi, T; Shovman, O; Fridkin, M; Volkov, A; Barshack, I; Blank, M; Shoenfeld, Y

    2016-04-01

    Treatment with helminthes and helminthes ova improved the clinical symptoms of several autoimmune diseases in patients and in animal models. Phosphorylcholine (PC) proved to be the immunomodulatory molecule. We aimed to decipher the tolerogenic potential of tuftsin-PC (TPC), a novel helminth-based compound in collagen-induced arthritis (CIA) a mouse model of rheumatoid arthritis (RA). CIA DBA/1 mice were treated with TPC subcutaneously (5 µg/0.1 ml) or orally (250 µg/0.1 ml), starting prior to disease induction. The control groups were treated with PBS. Collagen antibodies were tested by enzyme-linked immunosorbent assay (ELISA), cytokine protein levels by ELISA kits and regulatory T (Treg ) and regulatory B (Breg ) cell phenotypes by fluorescence-activated cell sorter (FACS). TPC-treated mice had a significantly lower arthritis score of 1.5 in comparison with control mice 11.8 (P < 0.0001) in both subcutaneous and orally treated groups at day 31. Moreover, histology analysis demonstrated highly inflamed joints in control mice, whereas TPC-treated mice maintained normal joint structure. Furthermore, TPC decreased the titres of circulating collagen II antibodies in mice sera (P < 0.0001), enhanced expression of IL-10 (P < 0.0001) and inhibited production of tumour necrosis factor (TNF)-α, interleukin (IL)-17 and IL-1β (P < 0.0001). TPC significantly expanded the CD4(+) CD25(+) forkhead box protein 3 (FoxP3(+) ) Treg cells and CD19(+) IL-10(+) CD5(high) CD1d(high) T cell immunoglobulin mucin-1 (TIM-1(+) ) Breg cell phenotypes (P < 0.0001) in treated mice. Our data indicate that treatment with TPC attenuates CIA in mice demonstrated by low arthritic score and normal joints histology. TPC treatment reduced proinflammatory cytokines and increased anti-inflammatory cytokine expression, as well as expansion of Treg and Breg cells. Our results may lead to a new approach for a natural therapy for early rheumatoid arthritis onset. PMID:26618631

  4. Antibodies against Native and Oxidized Cardiolipin and Phosphatidylserine and Phosphorylcholine in Atherosclerosis Development

    PubMed Central

    Frostegård, Anna G.; Su, Jun; Hua, Xiang; Vikström, Max; de Faire, Ulf; Frostegård, Johan

    2014-01-01

    Background Antibodies against cardiolipin and phosphatidylserine (anti-CL and anti-PS) are associated with thrombosis. In contrast, we determined that IgM antibodies against oxidized CL and PS (OxCL and OxPS) and phosphorylcholine (anti-PC) could be protection markers for cardiovascular disease (CVD). Methods 226 individuals with established hypertension (diastolic pressure>95 mmHg) from the European Lacidipine Study on Atherosclerosis. Antibodies were tested by ELISA. As a surrogate measure of atherosclerosis, the mean of the maximum intima-media thicknesses (IMT) in the far walls of common carotids and bifurcations was determined by ultrasonography at the time of inclusion and 4 years following inclusion. Results Increases in IMT measures at follow-up were significantly less common in subjects which at baseline had high IgM anti-OxPS and anti-PC at above 75th percentile: OR 0,45, CI (0,23–0,86) and OR 0.37, CI (0,19–0,71), p = 0.0137 respectively and above 90th percentile: OR 0.32, CI (0,12–0,84) and OR 0.39, CI (0,15–1.00), p = 0.050 and OR 0,22, CI (0,08–0,59) p = 0,0029. IgM anti-OxCL was negatively associated with IMT increases (OR, 0.32, CI (0,12–0,84), p = 0231). There were no associations for IgM anti-PS or anti-CL. Anti-PC, as determined herein by a commercial ELISA, was strongly associated with data from our previously published in house ELISA (R = 0,87; p<0,0001).) Anti-PC was also a risk marker at low levels (below 25th percentile; OR = 2,37 (1,16–4,82), p = 0,0177). Conclusions High levels of IgM anti-OxPS and anti-OxCL, but not traditional anti-phospholipid antibodies (anti-PS and anti-CL), are associated with protection against atherosclerosis development. In addition, low IgM anti-PC was a risk marker but high a protection marker. PMID:25473948

  5. Protein-repellent and antibacterial dental composite to inhibit biofilms and caries

    PubMed Central

    Zhang, Ning; Ma, Jianfeng; Melo, Mary A. S.; Weir, Michael D.; Bai, Yuxing; Xu, Hockin H. K.

    2015-01-01

    Objectives Biofilm acids contribute to secondary caries, which is a main reason for dental restoration failures. The objectives of this study were to: (1) develop a protein-repellent and antibacterial composite, and (2) investigate the effects of combining 2-methacryloyloxyethyl phosphorylcholine (MPC) with quaternary ammonium dimethylaminohexadecyl methacrylate (DMAHDM) on composite mechanical properties and biofilm response for the first time. Methods MPC, DMAHDM and glass particles were mixed into a dental resin composite. Mechanical properties were measured in three-point flexure. Protein adsorption onto the composites was measured by a micro bicinchoninic acid method. A human saliva microcosm model was used to grow biofilms on composites. Colony-forming unit (CFU) counts, live/dead assay, metabolic activity, and lactic acid production of biofilms were determined. Results Incorporation of 3% MPC and 1.5% DMAHDM into composite achieved protein-repellent and antibacterial capabilities without compromising the mechanical properties. Composite with 3% MPC + 1.5% DMAHDM had protein adsorption that was 1/10 that of a commercial composite (p < 0.05). The composite with 3% MPC + 1.5% DMAHDM had much greater reduction in biofilm growth than using MPC or DMAHDM alone (p < 0.05). Biofilm CFU counts on composite with 3% MPC + 1.5% DMAHDM were more than three orders of magnitude lower than that of commercial control. Conclusions Dental composite with a combination of strong protein-repellent and antibacterial capabilities was developed for the first time. Composite with MPC and DMAHDM greatly reduced biofilm activity and is promising to inhibit secondary caries. The dual agents of MPC plus DMAHDM may have wide applicability to other dental materials. PMID:25478889

  6. Progress and future plans for MPC and A at Chelyabinsk-70

    SciTech Connect

    Apt, K; Blasy, J; Bukin, D; Cahalane, P; Churikov, Y; Curtis, D; Karpov, A; Labiak, B; Neymotin, L; Schultz, F; Tsygankov, G; Ystesund, K Slankas, T; Zuev, V

    1999-07-08

    This paper describes that portion of the Nuclear Materials Protection, Control, and Accounting (MPC and A) program that is directed specifically to the needs of the All Russian Scientific Research Institute of Technical Physics (VNIITF), also called Chelyabinsk-70. Chelyabinsk-70 is located in the Ural Mountains, approximately 2000 km east of Moscow and 100 km south of Ekaterinburg. The MPC and A work that has been completed, is underway and planned at the facility will be described. During the first two years of the VNIITF project, emphasis was on the Pulse Research Reactor Facility (PRR), which contains one metal and two liquid pulse reactors and associated nuclear material storage rooms and a control center. A commissioning of the PRR was held in May of 1998. With the completion of the MPC and A work in the PRR, new physical protection work is focusing on other areas. VNIITF-wide physical protection initiatives underway include access control and computerized badging systems, and a central MPC and A control system. Measured physical inventory taking is a high priority for the VNIITF Project Team. A VNIITF-wide computerized accounting system is also being developed for the large and diverse inventory of nuclear material subject to MPC and A.

  7. Influence of surface PMPC brushes on tribological and biocompatibility properties of UHMWPE

    NASA Astrophysics Data System (ADS)

    Xiong, Dangsheng; Deng, Yaling; Wang, Nan; Yang, Yuanyuan

    2014-04-01

    Extremely efficient lubrication has been observed between natural joint surfaces and the friction coefficients can reach as low as 0.001. However, attaining the ultra-low friction coefficients between articulating cartilage surfaces in any artificial joints remains a challenge for bio-tribologists. In order to obtain the ultra-low friction coefficients as in natural joints, a biomimetic zwitterionic monomer 2-methacryloyloxyethyl phosphorylcholine (MPC) was grafted on the ultra high molecular weight polyethylene (UHMWPE) by UV radiation and self-polymerized to form brush-like structure. The results of total reflection (FT-IR/ATR) spectra and X-ray photoelectron spectroscopy (XPS) spectra indicated successful grafting of PMPC on to the UHMWPE surface (Polymerization of 2-methacryloyloxyethyl phosphorylcholine). The water contact angle of UHMWPE decreased from 80° to 15° after grafting PMPC for 45 min. Tribological properties were tested under high contact stress for a longer duration of time. The friction coefficient of the sample grafted with PMPC was found to be much lower than that of untreated UHMWPE at initial stage which increased gradually with the increase of the cycle till it attained the same level as that observed for untreated UHMWPE. The wear rate of modified samples was decreased by 37% and 46% in distilled water and saline, respectively. The highly hydrated PMPC layer provided efficient lubrication at the interface between the sliding couple leading to wear reduction of UHMWPE. Furthermore, blood compatibility of modified artificial joint materials was improved significantly, which has been attributed to the properties and structures of PMPC grafted on the UHMWPE surface.

  8. Distributed MPC of polytopic uncertain systems: handling quantised communication and packet dropouts

    NASA Astrophysics Data System (ADS)

    Zhang, Langwen; Wang, Jingcheng; Wang, Bohui

    2015-10-01

    In this paper, we study the distributed model predictive control (MPC) of polytopic uncertain systems with quantised communication and packet dropouts. The model of the whole plant is divided into a certain number of incomplete subsystems. Due to the nature of the distributed control structure, there is generally a lack of information about the state of the overall system. Each subsystem shares its information with neighbour subsystems via reliable connection. Distributed MPC controllers are designed for each subsystem by solving the linear matrix inequalities optimisation problem. The distributed state feedback laws are quantised and transmitted via communication network. An iterative algorithm is presented to make coordination among distributed state feedback laws. The communication is assumed to be affected by random packet dropouts in a representation of Bernoulli distributed white sequences with known conditional probabilities. A case study is carried out to demonstrate the effectiveness of the proposed distributed MPC technique.

  9. A protein-repellent and antibacterial nanocomposite for Class-V restorations to inhibit periodontitis-related pathogens.

    PubMed

    Wang, Lin; Xie, Xianju; Imazato, Satoshi; Weir, Michael D; Reynolds, Mark A; Xu, Hockin H K

    2016-10-01

    The objectives of this study were to develop a bioactive dental composite and investigate the effects of 2-methacryloyloxyethyl phosphorylcholine (MPC) and dimethylaminohexadecyl methacrylate (DMAHDM) in Class V composite on mechanical properties, water sorption, protein adsorption, and inhibition of four species of periodontitis-related biofilms for the first time. The resin consisted of ethoxylated bisphenol A dimethacrylate (EBPADMA) and pyromellitic glycerol dimethacrylate (PMGDM). DMAHDM, MPC and nanoparticles of amorphous calcium phosphate (NACP) were incorporated into the resin. Four species (Porphyromonas gingivalis, Prevotella intermedia, Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum) were tested for biofilm colony-forming units (CFU), live/dead, metabolic activity, and polysaccharide production. The results showed that adding DMAHDM and MPC to the composite did not compromise the mechanical properties (p>0.1), with acceptable water sorption values. Composite with 3% MPC reduced protein adsorption to 1/9 that of a commercial composite (p<0.05). For all four species, the composite with 3% DMAHDM+3% MPC had much greater reduction in biofilms than using DMAHDM or MPC alone (p<0.05). Biofilm CFU was reduced by about 4 orders of magnitude via 3% DMAHDM+3% MPC, compared to control. The inhibition efficacy for the four species was: P. gingivalis>P intermedia=A. actinomycetemcomitans>F. nucleatum. In conclusion, a novel bioactive composite with 3% DMAHDM and 3% MPC achieved the greatest reduction in biofilm growth, metabolic activity and polysaccharide of four periodontal pathogens. The new composite is promising for Class V restorations especially with subgingival margins to inhibit periodontal pathogens, combat periodontitis and protect the periodontium.

  10. A protein-repellent and antibacterial nanocomposite for Class-V restorations to inhibit periodontitis-related pathogens.

    PubMed

    Wang, Lin; Xie, Xianju; Imazato, Satoshi; Weir, Michael D; Reynolds, Mark A; Xu, Hockin H K

    2016-10-01

    The objectives of this study were to develop a bioactive dental composite and investigate the effects of 2-methacryloyloxyethyl phosphorylcholine (MPC) and dimethylaminohexadecyl methacrylate (DMAHDM) in Class V composite on mechanical properties, water sorption, protein adsorption, and inhibition of four species of periodontitis-related biofilms for the first time. The resin consisted of ethoxylated bisphenol A dimethacrylate (EBPADMA) and pyromellitic glycerol dimethacrylate (PMGDM). DMAHDM, MPC and nanoparticles of amorphous calcium phosphate (NACP) were incorporated into the resin. Four species (Porphyromonas gingivalis, Prevotella intermedia, Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum) were tested for biofilm colony-forming units (CFU), live/dead, metabolic activity, and polysaccharide production. The results showed that adding DMAHDM and MPC to the composite did not compromise the mechanical properties (p>0.1), with acceptable water sorption values. Composite with 3% MPC reduced protein adsorption to 1/9 that of a commercial composite (p<0.05). For all four species, the composite with 3% DMAHDM+3% MPC had much greater reduction in biofilms than using DMAHDM or MPC alone (p<0.05). Biofilm CFU was reduced by about 4 orders of magnitude via 3% DMAHDM+3% MPC, compared to control. The inhibition efficacy for the four species was: P. gingivalis>P intermedia=A. actinomycetemcomitans>F. nucleatum. In conclusion, a novel bioactive composite with 3% DMAHDM and 3% MPC achieved the greatest reduction in biofilm growth, metabolic activity and polysaccharide of four periodontal pathogens. The new composite is promising for Class V restorations especially with subgingival margins to inhibit periodontal pathogens, combat periodontitis and protect the periodontium. PMID:27287170

  11. Levels of natural IgM antibodies against phosphorylcholine in healthy individuals and in patients undergoing isolated limb perfusion.

    PubMed

    Padilla, Niubel Diaz; Ciurana, Caroline; van Oers, Joep; Ogilvie, Aernout C; Hack, C Erik

    2004-10-01

    Natural IgM antibodies against phosphorylcholine (anti-Pc IgM) resemble C-reactive protein (CRP) regarding specificity and have gained increasing attention because of their supposed role in clearance of damaged cells and in cardiovascular disease. In order to quantify these antibodies in human plasma, we have developed an ELISA system, in which p-aminophenylphosphorylcholine (PCH) coupled to human serum albumin (HSA) was coated on microtiters plates. Human plasma or serum samples were incubated in the plates, after which bound anti-Pc IgM was detected with mouse anti-human IgM-HRP. Pre-incubation of plasma with competitors such as phosphorylcholine, phosphorylethanolamine, phosphorylserine or glycine-HSA, confirmed that the ELISA was specific for anti PC IgM. Levels of anti Pc IgM in a cohort of healthy donors differed by more than 100-fold, whereas the fluctuation of anti-Pc IgM levels in individuals over time was small (coefficient of variation between 6% to 25%). Furthermore, there was no correlation between CRP and anti-Pc IgM in this cohort. Levels of anti-Pc IgM in the normal donors correlated significantly with IgM binding to apoptotic cells. To test the hypothesis that anti-Pc IgM can bind to neo-antigens expressed on necrotic or apoptotic cells, anti-Pc IgM was also quantified in patients with tumors undergoing isolated limb perfusion with tumor necrosis factor-alpha (TNF-alpha). Following this procedure, a significant decrease of circulating anti-Pc IgM relative to total IgM was found in all five patients tested. In conclusion, we have developed a specific and reproducible ELISA for anti Pc IgM quantification. Fluctuation of levels of these natural antibodies over time in healthy individuals was limited, although the variation among individuals was large. Significant decreases of levels of anti-Pc IgM were found to occur during tissue damage.

  12. US/Russian MPC{ampersand}A program at the VNIITF Institute, Chelyabinsk 70

    SciTech Connect

    Teryohin, V.; Tsygankov, G.; Churikov, Y,

    1997-09-22

    The All Russian Institute of Technical Physics (VNIITF) is one of the major sites in the nuclear weapons complex in Russia. The site contains a number of research facilities which use nuclear material as well as assembly, disassembly, and testing of prototypes (pilot samples) of nuclear weapons. Chelyabinsk-70 (C-70) also has ties to the major nuclear materials production facilities in the Urals region of Russia. Under the U.S./Russian Materials Protection Control and Accounting (MPC&A) cooperative program, enhanced safeguards systems are being implemented, initially at a reactor test area that contains two pulse reactors and a nuclear material storage facility. Current year projects include site-wide improvements and next year, expansion of work into other facilities at the site. C-70 has developed an extensive computerized system that integrates the physical security alarm station with elements of the nuclear material control system. Under the MPC&A program, the existing systems have been augmented with Russian and US technologies. Additional facilities were added in 1997 to broaden the impact of the MPC&A program at the site. The integrated MPC&A system will be demonstrated to US and Russian audiences when completed in the spring, 1998. This paper describes the on-going activities and describe the cooperative effort between the Lawrence Livermore, Los Alamos, Sandia, Oak Ridge, Pacific Northwest, and Brookhaven US Department of Energy National Laboratories in support of VNIITF.

  13. White Paper: Multi-purpose canister (MPC) for DOE-owned spent nuclear fuel (SNF)

    SciTech Connect

    Knecht, D.A.

    1994-04-01

    The paper examines the issue, What are the advantages, disadvantages, and other considerations for using the MPC concept as part of the strategy for interim storage and disposal of DOE-owned SNF? The paper is based in part on the results of an evaluation made for the DOE National Spent Fuel Program by the Waste Form Barrier/Canister Team, which is composed of knowledgeable DOE and DOE-contractor personnel. The paper reviews the MPC and DOE SNF status, provides criteria and other considerations applicable to the issue, and presents an evaluation, conclusions, and recommendations. The primary conclusion is that while most of DOE SNF is not currently sufficiently characterized to be sealed into an MPC, the advantages of standardized packages in handling, reduced radiation exposure, and improved human factors should be considered in DOE SNF program planning. While the design of MPCs for DOE SNF are likely premature at this time, the use of canisters should be considered which are consistent with interim storage options and the MPC design envelope.

  14. 75 FR 42292 - List of Approved Spent Fuel Storage Casks: NAC-MPC System, Revision 6

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ... entry into ADAMS, which provides text and image files of NRC's public documents. If you do not have... for Storage of Spent Fuel at Power Reactor Sites'' (55 FR 29181; July 18, 1990). This rule also... subsequently issued a final rule on March 9, 2000 (65 FR 12444), that approved the NAC-MPC cask design...

  15. OPERATIONAL EXPERIENCE: UPGRADED MPC AND A SYSTEMS FOR THE RADIOCHEMICAL PLANT OF THE SIBERIAN CHEMICAL COMBINE

    SciTech Connect

    RODRIGUEZ,C.GOLOSKOKOV,I.FISHBONE,L.GOODEY,K.LOOMIS,M.CRAIN,B.JR.LARSEN,R.

    2003-07-18

    The success of reducing the risk of nuclear proliferation through physical protection and material control/accounting systems depends upon the development of an effective design that includes consideration of the objectives of the systems and the resources available to implement the design. Included among the objectives of the design are facility characterization, definition of threat, and identification of targets. When considering resources, the designer must consider funds available, rapid low-cost elements, technology elements, human resources, and the availability of resources to sustain operation of the end system. The Siberian Chemical Combine (SCC) is a multi-function nuclear facility located in the Tomsk region of Siberia, Russia. Beginning in 1996, SCC joined with the United States Department of Energy (US/DOE) Material Protection, Control, and Accounting (MPC&A) Program to develop and implement MPC&A upgrades for the Radiochemical, Chemical Metallurgical, Conversion, Uranium Enrichment, and Reactor Plants of the SCC. At the Radiochemical Plant the MPC&A design and implementation process has been largely completed for the Plutonium Storage Facility and related areas of the Radiochemical Plant. Design and implementation of upgrades for the Radiochemical Plant include rapid physical protection upgrades such as bricking up of doors and windows, and installation of security-hardened doors. Rapid material control and accounting upgrades include installation of modern balances and bar code equipment. Comprehensive MPC&A upgrades include the installation of access controls to sensitive areas of the Plant, alarm communication and display (AC&D) systems to detect and annunciate alarm conditions, closed circuit (CCTV) systems to assess alarm conditions, central and secondary alarm station upgrades that enable security forces to assess and respond to alarm conditions, material control and accounting upgrades that include upgraded physical inventory procedures, and

  16. Indoor environmental quality (IEQ) and building energy optimization through model predictive control (MPC)

    NASA Astrophysics Data System (ADS)

    Woldekidan, Korbaga

    This dissertation aims at developing a novel and systematic approach to apply Model Predictive Control (MPC) to improve energy efficiency and indoor environmental quality in office buildings. Model predictive control is one of the advanced optimal control approaches that use models to predict the behavior of the process beyond the current time to optimize the system operation at the present time. In building system, MPC helps to exploit buildings' thermal storage capacity and to use the information on future disturbances like weather and internal heat gains to estimate optimal control inputs ahead of time. In this research the major challenges of applying MPC to building systems are addressed. A systematic framework has been developed for ease of implementation. New methods are proposed to develop simple and yet reasonably accurate models that can minimize the MPC development effort as well as computational time. The developed MPC is used to control a detailed building model represented by whole building performance simulation tool, EnergyPlus. A co-simulation strategy is used to communicate the MPC control developed in Matlab platform with the case building model in EnergyPlus. The co-simulation tool used (MLE+) also has the ability to talk to actual building management systems that support the BACnet communication protocol which makes it easy to implement the developed MPC control in actual buildings. A building that features an integrated lighting and window control and HVAC system with a dedicated outdoor air system and ceiling radiant panels was used as a case building. Though this study is specifically focused on the case building, the framework developed can be applied to any building type. The performance of the developed MPC was compared against a baseline control strategy using Proportional Integral and Derivative (PID) control. Various conventional and advanced thermal comfort as well as ventilation strategies were considered for the comparison. These

  17. Biodegradable Poly(ester urethane)urea Elastomers with Variable Amino Content for Subsequent Functionalization with Phosphorylcholine

    PubMed Central

    Fang, Jun; Ye, Sang-Ho; Shankarraman, Venkat; Huang, Yixian; Mo, Xiumei; Wagner, William R.

    2015-01-01

    While surface modification is well suited for imparting biomaterials with specific functionality for favorable cell interactions, the modification of degradable polymers would be expected to provide only temporary benefit. Bulk modification by incorporating pendant reactive groups for subsequent functionalization of biodegradable polymers would provide a more enduring approach. Towards this end, a series of biodegradable poly(ester urethane)urea elastomers with variable amino content (PEUU-NH2 polymers) were developed. Carboxylated phosphorycholine was synthesized and conjugated to the PEUU-NH2 polymers for subsequent bulk functionalization to generate PEUU-PC polymers. Synthesis was verified by 1H NMR, X-ray photoelectron spectroscopy and ATR-FTIR. The impact of amine incorporation and phosphorylcholine conjugation was shown on mechanical, thermal and degradation properties. Water absorption increased with increasing amine content, and further with PC conjugation. In wet conditions, tensile strength and initial modulus generally decreased with increasing hydrophilicity, but remained in the range of 5–30 MPa and 10–20 MPa respectively. PC conjugation was associated with significantly reduced platelet adhesion in blood contact testing and the inhibition of rat vascular smooth muscle cell proliferation. These biodegradable PEUU-PC elastomers offer attractive properties for applications as non-thrombogenic, biodegradable coatings and for blood-contacting scaffold applications. Further, the PEUU-NH2 base polymers offer the potential to have multiple types of biofunctional groups conjugated onto the backbone to address a variety of design objectives. PMID:25132273

  18. Comparative Analyses of the Lipooligosaccharides from Nontypeable Haemophilus influenzae and Haemophilus haemolyticus Show Differences in Sialic Acid and Phosphorylcholine Modifications

    PubMed Central

    Post, Deborah M. B.; Ketterer, Margaret R.; Coffin, Jeremy E.; Reinders, Lorri M.; Munson, Robert S.; Bair, Thomas; Murphy, Timothy F.; Foster, Eric D.; Gibson, Bradford W.

    2016-01-01

    Haemophilus haemolyticus and nontypeable Haemophilus influenzae (NTHi) are closely related upper airway commensal bacteria that are difficult to distinguish phenotypically. NTHi causes upper and lower airway tract infections in individuals with compromised airways, while H. haemolyticus rarely causes such infections. The lipooligosaccharide (LOS) is an outer membrane component of both species and plays a role in NTHi pathogenesis. In this study, comparative analyses of the LOS structures and corresponding biosynthesis genes were performed. Mass spectrometric and immunochemical analyses showed that NTHi LOS contained terminal sialic acid more frequently and to a higher extent than H. haemolyticus LOS did. Genomic analyses of 10 strains demonstrated that H. haemolyticus lacked the sialyltransferase genes lic3A and lic3B (9/10) and siaA (10/10), but all strains contained the sialic acid uptake genes siaP and siaT (10/10). However, isothermal titration calorimetry analyses of SiaP from two H. haemolyticus strains showed a 3.4- to 7.3-fold lower affinity for sialic acid compared to that of NTHi SiaP. Additionally, mass spectrometric and immunochemical analyses showed that the LOS from H. haemolyticus contained phosphorylcholine (ChoP) less frequently than the LOS from NTHi strains. These differences observed in the levels of sialic acid and ChoP incorporation in the LOS structures from H. haemolyticus and NTHi may explain some of the differences in their propensities to cause disease. PMID:26729761

  19. Group reorientation and migration of amphiphilic polymer bearing phosphorylcholine functionalities on surface of cellular membrane mimicking coating.

    PubMed

    Yang, Shan; Zhang, Shi-Ping; Winnik, Françoise M; Mwale, Fackson; Gong, Yong-Kuan

    2008-03-01

    Amphiphilic polymers bearing phosphorylcholine (PC) groups can form films of interfacial structure similar to that of the outer membrane of living cells. The films, as prepared, present PC groups to the external aqueous environment and exhibit good biocompatibility. However, under certain conditions, the surface structure can change irreversibly due to the reorientation and deep migration of the surface groups. X-ray photoelectron spectroscopy (XPS), dynamic contact angle measurements, and cell culture experiments were used to investigate the reorientation and migration of the surface groups of an amphiphilic PC-polymer coating. When the polymer surface is immersed into or drawn out of water, significant reorientation and group migration occurs, as suggested by the large difference between the advancing and receding contact angles. Angle-resolved XPS measurements indicate that the hydrophobic groups move to the air/film interface while the hydrophilic groups migrate towards the bulk of the polymer coating. Long periods of aging may result in irreversible changes of the surface structure and decrease the biocompatibility of the materials.

  20. Biodegradable poly(ester urethane)urea elastomers with variable amino content for subsequent functionalization with phosphorylcholine.

    PubMed

    Fang, Jun; Ye, Sang-Ho; Shankarraman, Venkat; Huang, Yixian; Mo, Xiumei; Wagner, William R

    2014-11-01

    While surface modification is well suited for imparting biomaterials with specific functionality for favorable cell interactions, the modification of degradable polymers would be expected to provide only temporary benefit. Bulk modification by incorporating pendant reactive groups for subsequent functionalization of biodegradable polymers would provide a more enduring approach. Towards this end, a series of biodegradable poly(ester urethane)urea elastomers with variable amino content (PEUU-NH2 polymers) were developed. Carboxylated phosphorycholine was synthesized and conjugated to the PEUU-NH2 polymers for subsequent bulk functionalization to generate PEUU-PC polymers. Synthesis was verified by proton nuclear magnetic resonance, X-ray photoelectron spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy. The impact of amine incorporation and phosphorylcholine conjugation was shown on mechanical, thermal and degradation properties. Water absorption increased with increasing amine content, and further with PC conjugation. In wet conditions, tensile strength and initial modulus generally decreased with increasing hydrophilicity, but remained in the range of 5-30 MPa and 10-20 MPa, respectively. PC conjugation was associated with significantly reduced platelet adhesion in blood contact testing and the inhibition of rat vascular smooth muscle cell proliferation. These biodegradable PEUU-PC elastomers offer attractive properties for applications as non-thrombogenic, biodegradable coatings and for blood-contacting scaffold applications. Further, the PEUU-NH2 base polymers offer the potential to have multiple types of biofunctional groups conjugated onto the backbone to address a variety of design objectives.

  1. Development of a multifunctional adhesive system for prevention of root caries and secondary caries

    PubMed Central

    Zhang, Ning; Melo, Mary A. S.; Chen, Chen; Liu, Jason; Weir, Michael D.; Bai, Yuxing; Xu, Hockin H. K.

    2015-01-01

    Objectives The objectives of this study were to: (1) develop a novel adhesive for prevention of tooth root caries and secondary caries by possessing a combination of protein-repellent, antibacterial, and remineralization capabilities for the first time; and (2) investigate the effects of 2-methacryloyloxyethyl phosphorylcholine (MPC), dimethylaminohexadecyl methacrylate (DMAHDM), and nanoparticles of amorphous calcium phosphate (NACP) on dentine bond strength, protein-repellent properties, and dental plaque microcosm biofilm response. Methods MPC, DMAHDM and NACP were added into Scotchbond Multi-Purpose primer and adhesive. Dentine shear bond strengths were measured. Adhesive coating thickness, surface texture and dentine-adhesive interfacial structure were examined. Protein adsorption onto adhesive resin surface was determined by the micro bicinchoninic acid method. A human saliva microcosm biofilm model was used to investigate biofilm metabolic activity, colony-forming unit (CFU) counts, and lactic acid production. Results The resin with 7.5% MPC + 5% DMAHDM + 30% NACP did not adversely affect dentine shear bond strength (p > 0.1). The resin with 7.5% MPC + 5% DMAHDM + 30% NACP produced a coating on root dentine with a thickness of approximately 70 μm and completely sealed all the dentinal tubules. The resin with 7.5% MPC + 5% DMAHDM + 30% NACP had 95% reduction in protein adsorption, compared to SBMP control (p < 0.05). The resin with 7.5% MPC + 5% DMAHDM + 30% NACP was strongly antibacterial, with biofilm CFU being four orders of magnitude lower than that of SBMP control. Significance The novel multifunctional adhesive with strong protein-repellent, antibacterial and remineralization properties is promising to coat tooth roots to prevent root caries and secondary caries. The combined use of MPC, DMAHDM and NACP may have wide applicability to bonding agents, cements, sealants and composites to inhibit caries. PMID:26187532

  2. Phospholipid Polymer Biointerfaces for Lab-on-a-Chip Devices.

    PubMed

    Xu, Yan; Takai, Madoka; Ishihara, Kazuhiko

    2010-06-01

    This review summarizes recent achievements and progress in the development of various functional 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer biointerfaces for lab-on-a-chip devices and applications. As phospholipid polymers, MPC polymers can form cell-membrane-like surfaces by surface chemistry and physics and thereby provide biointerfaces capable of suppressing protein adsorption and many subsequent biological responses. In order to enable application to microfluidic devices, a number of MPC polymers with diverse functions have been specially designed and synthesized by incorporating functional units such as charge and active ester for generating the microfluidic flow and conjugating biomolecules, respectively. Furthermore, these polymers were incorporated with silane or hydrophobic moiety to construct stable interfaces on various substrate materials such as glass, quartz, poly(methyl methacrylate), and poly(dimethylsiloxane), via a silane-coupling reaction or hydrophobic interactions. The basic interfacial properties of these interfaces have been characterized from multiple aspects of chemistry, physics, and biology, and the suppression of nonspecific bioadsorption and control of microfluidic flow have been successfully achieved using these biointerfaces on a chip. Further, many chip-based biomedical applications such as immunoassays and DNA separation have been accomplished by integrating these biointerfaces on a chip. Therefore, functional phospholipid polymer interfaces are promising and useful for application to lab-on-a-chip devices in biomedicine.

  3. Cell outer membrane mimetic chitosan nanoparticles: preparation, characterization and cytotoxicity.

    PubMed

    Zhao, Jing; Liang, Fei; Kong, Lingheng; Zheng, Lina; Fan, Tao

    2015-01-01

    A negatively charged copolymer poly (MPC-co-AMPS) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and 2-acrylamide-2-methyl propane sulfonic acid (AMPS) was designed and synthesized. Chitosan nanoparticles with cell outer membrane mimetic structure were prepared by electrostatic interaction between the sulfonic acid groups of poly (MPC-co-AMPS) and the protonated amino groups of chitosan. Effects of factors on influencing the particle size, distribution, and stability were investigated. The experimental results showed that cell membrane mimetic chitosan nanoparticles with controllable and homogeneous size ranged from 100 to 300 nm were prepared at the concentration of 0.1-2.0 mg/mL and the charge ratio of 0.5-1.1. Chitosan nanoparticles prepared can exist stably for more than 45 days when placed at 4 °C and pH < 7.5. The cytotoxicity of the chitosan nanoparticles reduced significantly after surface modification with cell membrane mimetic structure, meeting the basic requirements of biomedical materials. The results suggest cell membrane mimetic chitosan nanoparticles prepared with polyanion and polycation obtain good biological compatibility and immune stealth ability, which has important academic significance and great application prospects.

  4. Discovery of an L-alanine ester prodrug of the Hsp90 inhibitor, MPC-3100.

    PubMed

    Kim, Se-Ho; Tangallapally, Rajendra; Kim, In Chul; Trovato, Richard; Parker, Daniel; Patton, J Scott; Reeves, Leslie; Bradford, Chad; Wettstein, Daniel; Baichwal, Vijay; Papac, Damon; Bajji, Ashok; Carlson, Robert; Yager, Kraig M

    2015-11-15

    Various types of Hsp90 inhibitors have been and continue to undergo clinical investigation. One development candidate is the purine-based, synthetic Hsp90 inhibitor 1 (MPC-3100), which successfully completed a phase I clinical study. However, further clinical development of 1 was hindered by poor solubility and consequent formulation issues and promoted development of a more water soluble prodrug. Towards this end, numerous pro-moieties were explored in vitro and in vivo. These studies resulted in identification of L-alanine ester mesylate, 2i (MPC-0767), which exhibited improved aqueous solubility, adequate chemical stability, and rapid bioconversion without the need for solubilizing excipients. Based on improved physical characteristics and favorable PK and PD profiles, 2i mesylate was selected for further development. A convergent, scalable, chromatography-free synthesis for 2i mesylate was developed to support further clinical evaluation.

  5. Dynamics of self-compressed argon and helium plasma streams in the MPC facility

    NASA Astrophysics Data System (ADS)

    Ladygina, M. S.; Marchenko, A. K.; Solyakov, D. G.; Petrov, Yu V.; Makhlaj, V. A.; Yeliseyev, D. V.; Garkusha, I. E.; Cherednichenko, T. N.

    2016-07-01

    The results of experimental investigations on self-compressed plasma streams and compression zone formation are presented for varied mass flow rate and initial concentrations of particles of working gas that depend on initial pressure. Experiments were carried out in the Magnetoplasma Compressor (MPC) facility. Space–time distributions of the electric current and electron density in the plasma stream compression region were measured under different experimental conditions. High-speed images of plasma stream dynamics in the MPC accelerating channel with a high temporal resolution were also obtained for different initial pressures. The experimental results show a strong dependence of plasma stream parameters and compression zone location on the initial gas concentration. The maximum electron density is obtained in the range of Ne = (1 ÷ 5) × 1018 cm‑3. Plasma streams have a good radial symmetry under all experimental conditions. The distributions of plasma parameters along the plasma stream flows are discussed.

  6. Dynamics of self-compressed argon and helium plasma streams in the MPC facility

    NASA Astrophysics Data System (ADS)

    Ladygina, M. S.; Marchenko, A. K.; Solyakov, D. G.; Petrov, Yu V.; Makhlaj, V. A.; Yeliseyev, D. V.; Garkusha, I. E.; Cherednichenko, T. N.

    2016-07-01

    The results of experimental investigations on self-compressed plasma streams and compression zone formation are presented for varied mass flow rate and initial concentrations of particles of working gas that depend on initial pressure. Experiments were carried out in the Magnetoplasma Compressor (MPC) facility. Space-time distributions of the electric current and electron density in the plasma stream compression region were measured under different experimental conditions. High-speed images of plasma stream dynamics in the MPC accelerating channel with a high temporal resolution were also obtained for different initial pressures. The experimental results show a strong dependence of plasma stream parameters and compression zone location on the initial gas concentration. The maximum electron density is obtained in the range of Ne = (1 ÷ 5) × 1018 cm-3. Plasma streams have a good radial symmetry under all experimental conditions. The distributions of plasma parameters along the plasma stream flows are discussed.

  7. ANALYSIS OF KEY MPC COMPONENTS MATERIAL REQUIREMENTS (SCPB: N/A)

    SciTech Connect

    D. Stahl

    1996-03-19

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) in response to a request received via a QAP-3-12 Design Input Data Request from Waste Acceptance, Storage & Transportation (WAST) Design (formerly MRS/MPC Design). The request is to provide: Specific material requirements for the various MPC components (shell, basket, closure lids, shield plug, neutron absorber, and flux traps, if used ). The objective of this analysis is to provide the requested requirements. The purpose of this analysis is to provide a documented record of the basis for the requested requirements. The response is stated in Section 8 herein. The analysis is based upon requirements from an MGDS perspective.

  8. US/Russian Laboratory-to-Laboratory MPC&A at the RRC Kurchatov Institute

    SciTech Connect

    Bondarev, N.D.; Sukhoruchkin, V.; Melkof, E.L.

    1995-07-01

    Formal interactions with Kurchatov Institute (KI) began summer 1994 on material protection, control and accountability (MPC&A). Contracts were placed by LANL and Sandia with KI to implement a nuclear material accounting system and a physical security system at a KI demonstration facility which contain two critical assemblies with special nuclear material. LLNL implemented May 1995 a task to measure by gamma-ray spectroscopy the uranium enrichment of fuel in the facility. This laboratory-to-laboratory effort is part of the cooperative program between US and Russian institutes in nuclear material nonproliferation. In 1994-5, KI personnel demonstrated the physical security system. The next facility for work in MPC&A at KI is the Central Storage Facility, which is important for the computerized material accounting system for KI.

  9. Numerical analysis of plasma flows in an MPC duct with diverter

    NASA Technical Reports Server (NTRS)

    Badin, V. V.

    1983-01-01

    The two-dimensional MHD-flow of the ideal plasma in a channel of the magnetoplasma compressor (MPC) with an axial hole in the central electrode (divertor) is numerically simulated. The steady-state regime of the flow is obtained. The influence of finite and periodical density perturbation at the entry of the channel on the compressional flow properties is investigated. It is shown that the flow is stable under such perturbations.

  10. Practical application of drainage system control by using MPC in Noorderzijlvest

    NASA Astrophysics Data System (ADS)

    van Heeringen, Klaas-Jan; Gooijer, Jan; Schwanenberg, Dirk

    2013-04-01

    We discuss the implementation of a Model Predictive Control (MPC) approach for the control of the pump stations and tidal spilling sluices in the district of the regional water authority Noorderzijlvest in the north of the Netherlands. The RTC component is integrated in a Delft-FEWS application that connects to the SCADA system of the waterboard and also 17 aggregated structures including 127 individual pumps and gates The approach consists of a Nonlinear MPC in combination with a low-pass filter for state updating. The MPC runs hourly for a 5-day forecast horizon. One main objective of the control is flood mitigation during extreme taken into account by anticipating approaching rainfall events by flow forecasting. Another objective has is the reduction of pumping costs by taking advantage of gravity flow through gates during low tide conditions and the exploitation of cheaper electricity at night, both in combination with tactical usage of the available storage in the water system. Firstly the approach is tested in a closed-loop setting in combination with a detailed one-dimensional hydraulic model as the real-world replacement. A performance comparison of the approach against the existing feedback control shows pumping cost reductions in the range of 7-35% for different sub-systems or total annual cost savings in the order of 150-200 thousand Euros as well as significantly reduced peak water levels during flood events.

  11. Surface grafting density analysis of high anti-clotting PU-Si-g-P(MPC) films

    NASA Astrophysics Data System (ADS)

    Lu, Chun-Yan; Zhou, Ning-Lin; Xiao, Ying-Hong; Tang, Yi-Da; Jin, Su-Xing; Wu, Yue; Zhang, Jun; Shen, Jian

    2012-02-01

    Well-defined zwitterionic polymer brushes with good blood compatibility were studied, grafted from polyurethane (PU) substrate (PU-Si-g-P(MPC)) by surface-initiated reverse atom transfer radical polymerization (SI-RATRP). We found that the structure of polymer brushes and hence their properties greatly depend on the grafting density. To solve the problems of the normal method for grafting density measurement, i.e., more requirements for qualified and proficient instrument operator, we established an effective and feasible way instead of the conventional method of spectroscopic ellipsometer combined with gel permeation chromatograph (ELM/GPC) to calculate the grafting density of PU-Si-g-P(MPC) films by using a software named ImageJ 1.44e in combination with scanning electronic microscope (SEM) or atomic microscope (AFM). X-ray photoelectron spectroscopy (XPS), SEM and AFM were employed to analyze the surface topography and changes of elements before and after graft modification of the synthetic PU-Si-g-P(MPC) biofilms.

  12. An 80 Mpc Filament of Galaxies at Redshift z=2.38

    NASA Technical Reports Server (NTRS)

    Woodgate, B.; Palunas, P.; Francis, P.; Williger, G.; Teplitz, H.

    2004-01-01

    We present the detection of 34 Lyman-alpha emission-line galaxy candidates in a 80 x 80 x 60 co-moving Mpc region surrounding the known z=2.38 galaxy cluster J2143-4423. We have confirmed 15 of these candidates in followup spectroscopy with 2dF at the AAT. The peak space density is a factor of 4 greater than that found by field samples at similar redshifts. The distribution of these galaxy candidates contains several 5-10 Mpc scale voids. We compare our observations with mock catalogs derived from the VIRGO consortium Lambda-CDM N-body simulations. Fewer than 1\\% of the mock catalogues contains voids as large as we observe. Our observations thus tentatively suggest that the galaxy distribution at redshift 2.38 contains larger voids than predicted by current models. The distribution of galaxies suggests a filament or cross-section of a great wall at least 80 x 10 Mpc in transverse extent. Three of the candidate galaxies and one previously discovered galaxy have the large luminosities and extended morphologies of "Lyman-alpha blobs". X-ray properties and physical characteristics of those blobs will be discussed in an accompanying poster by Williger et al.

  13. AN X-RAY WHIM METAL ABSORBER FROM A Mpc-SCALE EMPTY REGION OF SPACE

    SciTech Connect

    Zappacosta, L.; Nicastro, F.; Krongold, Y.; Maiolino, R.

    2012-07-10

    We report a detection of an absorption line at {approx}44.8 A in a >500 ks Chandra HRC-S/LETG X-ray grating spectrum of the blazar H 2356-309. This line can be identified as intervening C V-K{alpha} absorption, at z Almost-Equal-To 0.112, produced by a warm (log T = 5.1 K) intergalactic absorber. The feature is significant at a 2.9{sigma} level (accounting for the number of independent redshift trials). We estimate an equivalent hydrogen column density of log N{sub H} 19.05(Z/Z{sub Sun }){sup -1} cm{sup -2}. Unlike other previously reported FUV/X-ray metal detections of warm-hot intergalactic medium (WHIM), this C V absorber lies in a region with locally low galaxy density, at {approx}2.2 Mpc from the closest galaxy at that redshift, and therefore is unlikely to be associated with an extended galactic halo. We instead tentatively identify this absorber with an intervening WHIM filament possibly permeating a large-scale, 30 Mpc extended, structure of galaxies whose redshift centroid, within a cylinder of 7.5 Mpc radius centered on the line of sight to H 2356-309, is marginally consistent (at a 1.8{sigma} level) with the redshift of the absorber.

  14. Detection and site localization of phosphorylcholine-modified peptides by NanoLC-ESI-MS/MS using precursor ion scanning and multiple reaction monitoring experiments.

    PubMed

    Timm, Thomas; Lenz, Christof; Merkel, Dietrich; Sadiffo, Christian; Grabitzki, Julia; Klein, Jochen; Lochnit, Guenter

    2015-03-01

    Phosphorylcholine (PC)-modified biomolecules like lipopolysaccharides, glycosphingolipids, and (glyco)proteins are widespread, highly relevant antigens of parasites, since this small hapten shows potent immunomodulatory capacity, which allows the establishment of long-lasting infections of the host. Especially for PC-modified proteins, structural data is rare because of the zwitterionic nature of the PC substituent, resulting in low sensitivities and unusual but characteristic fragmentation patterns. We have developed a targeted mass spectrometric approach using hybrid triple quadrupole/linear ion trap (QTRAP) mass spectrometry coupled to nanoflow chromatography for the sensitive detection of PC-modified peptides from complex proteolytic digests, and the localization of the PC-modification within the peptide backbone. In a first step, proteolytic digests are screened using precursor ion scanning for the marker ions of choline (m/z 104.1) and phosphorylcholine (m/z 184.1) to establish the presence of PC-modified peptides. Potential PC-modified precursors are then subjected to a second analysis using multiple reaction monitoring (MRM)-triggered product ion spectra for the identification and site localization of the modified peptides. The approach was first established using synthetic PC-modified synthetic peptides and PC-modified model digests. Following the optimization of key parameters, we then successfully applied the method to the detection of PC-peptides in the background of a proteolytic digest of a whole proteome. This methodological invention will greatly facilitate the detection of PC-substituted biomolecules and their structural analysis.

  15. Detection and Site Localization of Phosphorylcholine-Modified Peptides by NanoLC-ESI-MS/MS Using Precursor Ion Scanning and Multiple Reaction Monitoring Experiments

    NASA Astrophysics Data System (ADS)

    Timm, Thomas; Lenz, Christof; Merkel, Dietrich; Sadiffo, Christian; Grabitzki, Julia; Klein, Jochen; Lochnit, Guenter

    2015-03-01

    Phosphorylcholine (PC)-modified biomolecules like lipopolysaccharides, glycosphingolipids, and (glyco)proteins are widespread, highly relevant antigens of parasites, since this small hapten shows potent immunomodulatory capacity, which allows the establishment of long-lasting infections of the host. Especially for PC-modified proteins, structural data is rare because of the zwitterionic nature of the PC substituent, resulting in low sensitivities and unusual but characteristic fragmentation patterns. We have developed a targeted mass spectrometric approach using hybrid triple quadrupole/linear ion trap (QTRAP) mass spectrometry coupled to nanoflow chromatography for the sensitive detection of PC-modified peptides from complex proteolytic digests, and the localization of the PC-modification within the peptide backbone. In a first step, proteolytic digests are screened using precursor ion scanning for the marker ions of choline ( m/z 104.1) and phosphorylcholine ( m/z 184.1) to establish the presence of PC-modified peptides. Potential PC-modified precursors are then subjected to a second analysis using multiple reaction monitoring (MRM)-triggered product ion spectra for the identification and site localization of the modified peptides. The approach was first established using synthetic PC-modified synthetic peptides and PC-modified model digests. Following the optimization of key parameters, we then successfully applied the method to the detection of PC-peptides in the background of a proteolytic digest of a whole proteome. This methodological invention will greatly facilitate the detection of PC-substituted biomolecules and their structural analysis.

  16. U.S./Russian cooperative efforts to enhance nuclear MPC&A at VNIITF, (Chelyabinsk-70)

    SciTech Connect

    Abramson, B; Apt, K; Blasy, J; Bukin, D; Churikov, Y; Eras, A; Magda, E; Neymotin, L; Schultz, F; Slankas, T; Tsygankov, G; Zuev, V

    1998-09-01

    The All Russian Scientific Research Institute of Technical Physics (VNIITF) is one of the major sites in the nuclear weapons complex in Russia. The site contains a number of research facilities which use nuclear material as well as assembly, disassembly, and testing of prototypes (pilot samples) of nuclear weapons. VNIITF also has ties to the major nuclear materials production facilities in the Urals region of Russia. The objective of the U.S./Russian Materials Protection Control and Accounting (MPC&A) cooperative program between the US Department of Energy and Russia's Ministry of Atomic Eneryy, at VNIITF is to improve the protection and accountability of nuclear material at VNIITF. Enhanced safeguards systems have been implemented at a reactor test area called the Pulse Research Reactor Facility (PRR) in Area 20. The area contains three pulse reactors with associated storage areas. The integrated MPC&A system at the PRR was demonstrated to US and Russian audiences in May, 1998. Expansion of work into several new facilities is underway both in Area 20 and at other locations. These include processing and production facilities some of which are considered sensitive facilities, by the Russian side. Methods have been developed to assure that work is done as agreed without actually having access to the buildings. C-70 has developed an extensive computerized system which integrates the physical security alarm station with elements of the nuclear material control system. Under the MPC&A program, the existing systems have been augmented with Russian and US technologies. This paper will describe the work completed at the PRR, and the on-going activities and cooperative effort between the Lawrence Livermore, Los Alamos, Sandia, Oak Ridge, Pacific Northwest, and Brookhaven US Department of Energy National Laboratories in support of VNIITF.

  17. Microprocessor-based power cable carrier control (MPC/sup 3/)

    SciTech Connect

    Alvis, R.L.; Rosborough, J.R.

    1982-03-01

    The MPC/sup 3/ was developed to control the orientation of individual solar energy collectors in a distributed field. The system was to be reliable, yet its total installed cost had to be kept to a minimum. Both goals were accomplished by transmitting a carrier signal over the power cables that lead to the field, usimg frequency shift keying (FSK) and Manchester data coding. Its operation is simple. A microprocessor at central control solves a sun-position equation. The microprocessor then transmits its results to the collector via carrier signal imposed on the power cable to the collector's drive mechanism. At the drive mechanism, an inclinometer mounted on each collector determines the orientation of its collector. There a system compares this data with the information gathered by the inclinometer, determines any discrepancies, and makes the necessary adjustments to the collector by actuating the drive mechanism until it detects a null position (that is, until the information coming from the inclinometer matches the results of the sun-position equation). Each row, or every other row, or each 2-axis tracking collector in a field can thus be controlled. Each collector control receives updated information from the central control every 0.75 or 1.5 seconds, depending on whether one or two separate commands are required. The MPC/sup 3/ system is rugged and, since it uses the power cables as transmission lines, it obviates the need for separate and expensive control wiring to the field. This approach also enables the manufacturer to control quality at the factory. The combination of mechanical inclinometer and microprocessor data frees the system from light-sensitive devices that could be confused by clouds or other environmental uncertainties. These qualities improve system reliability. In addition, the money saved in the eliminated control wiring and the necessarily slow and expensive checkout required in former systems can pay for an installed MPC/sup 3/ system.

  18. Output feedback robust MPC for LPV system with polytopic model parametric uncertainty and bounded disturbance

    NASA Astrophysics Data System (ADS)

    Ding, Baocang; Pan, Hongguang

    2016-08-01

    The output feedback robust model predictive control (MPC), for the linear parameter varying (LPV) system with norm-bounded disturbance, is addressed, where the model parametric matrices are only known to be bounded within a polytope. The previous techniques of norm-bounding technique, quadratic boundedness (QB), dynamic output feedback, and ellipsoid (true-state bound; TSB) refreshment formula for guaranteeing recursive feasibility, are fused into the newly proposed approaches. In the notion of QB, the full Lyapunov matrix is applied for the first time in this context. The single-step dynamic output feedback robust MPC, where the infinite-horizon control moves are parameterised as a dynamic output feedback law, is the main topic of this paper, while the multi-step method is also suggested. In order to strictly guarantee the physical constraints, the outer bound of the true state replaces the true state itself, so tightness of this bound has a major effect on the control performance. In order to tighten the TSB, a procedure for refreshing the real-time ellipsoid based on that of the last sampling instant is given. This paper is conclusive for the past results and far-reaching for the future researches. Two benchmark examples are given to show the effectiveness of the novel results.

  19. U.S.-Russia MPC and A upgrades at the Beloyarsk Nuclear Power Plant

    SciTech Connect

    Saraev, O.; Haase, M.; Smarto, C.; Mikkelsen, K.; Heinberg, C.; Showalter, R.; Soo Hoo, M.; Hatcher, C.; Forehand, M.

    1998-08-01

    During the January 1996 meeting of the Gore-Chernomyrdin Commission, the Beloyarsk Nuclear Power Plant (BNPP) was identified as one of the additional sites for cooperative projects on upgrading Materials Protection, Control and Accounting (MPC and A). Since June 1996, Sandia National Laboratories (SNL), Pacific Northwest National Laboratories (PNNL), and Los Alamos National Laboratory (LANL) have worked with BNPP to upgrade MPC and A at the facility. Some unique challenges were encountered because BNPP has an operating BN-600 600-Megawatt breeder reactor. SNL has been responsible for working with BNPP to implement physical protection upgrades to the Central Alarm Station, Fresh Fuel Storage building, Spent Fuel Storage Area, and Vehicle/Personnel Portal. In addition, improved communication equipment for the Ministry of the Interior (MVD) guards and training of personnel were provided. PNNL has been responsible for coordinating Material Control and Accounting (MC and A) upgrades at BNPP. PNNL, in conjunction with LANL, has implemented such MC and A upgrades as a computerized nuclear materials accounting system, training in MC and A elements, nondestructive assay instrumentation for fresh fuel, installation of a fork detector for measuring spent fuel, and installation of an underwater video camera for verification of spent fuel serial numbers.

  20. LONG-TERM CRITICALITY CONTROL ISSUES FOR THE MPC (SCPB: N/A)

    SciTech Connect

    D.A. Thomas

    1996-03-19

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) in response to a request received via a QAP-3-12 Design Input Data Request (Reference 5.1) from Waste Acceptance, Storage, & Transportation (WAST) Design (formerly MRSMPC Design). This design analysis is an answer to the Design Input Data Request to provide: Specific requirements for long-term criticality control. The time period for long-term criticality control requirements encompass the time phases of operations (pre-closure), containment (first 1,000 years post-closure), and isolation (the time period beyond the containment phase, at least to 10,000 years post-closure). The purpose and objective of this analysis is to provide specific long-term disposal criticality control requirements for the Multi-Purpose Canister (MPC) Subsystem Design Procurement Specification (DPS), so as to not preclude MPC compatibility with disposal in the MGDS.(References 5.2, 5.3, and 5.4) The response is stated in Section 8 herein and will be available for transmittal as an attachment to a QAP-3-12 Design Input Data Transmittal.

  1. THE MEGAMASER COSMOLOGY PROJECT. V. AN ANGULAR-DIAMETER DISTANCE TO NGC 6264 AT 140 Mpc

    SciTech Connect

    Kuo, C. Y.; Braatz, J. A.; Lo, K. Y.; Condon, J. J.; Impellizzeri, C. M. V.; Reid, M. J.; Henkel, C.

    2013-04-20

    We present the direct measurement of the Hubble constant, yielding the direct measurement of the angular-diameter distance to NGC 6264 using the H{sub 2}O megamaser technique. Our measurement is based on sensitive observations of the circumnuclear megamaser disk from four observations with the Very Long Baseline Array, the Green Bank Telescope (GBT), and the Effelsberg telescope. We also monitored the maser spectral profile for 2.3 years using the GBT to measure accelerations of maser lines by tracking their line-of-sight velocities as they change with time. The measured accelerations suggest that the systemic maser spots have a significantly wider radial distribution than in the archetypal megamaser in NGC 4258. We model the maser emission as arising from a circumnuclear disk with orbits dominated by the central black hole. The best fit of the data gives a Hubble constant of H{sub 0} = 68 {+-} 9 km s{sup -1} Mpc{sup -1}, which corresponds to an angular-diameter distance of 144 {+-} 19 Mpc. In addition, the fit also gives a mass of the central black hole of (3.09 {+-} 0.42) Multiplication-Sign 10{sup 7} M{sub Sun }. The result demonstrates the feasibility of measuring distances to galaxies located well into the Hubble flow by using circumnuclear megamaser disks.

  2. Surface monofunctionalized polymethyl pentene hollow fiber membranes by plasma treatment and hemocompatibility modification for membrane oxygenators

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Wang, Weiping; Zheng, Zhi; Fan, Wenling; Mao, Chun; Shi, Jialiang; Li, Lei

    2016-01-01

    The hemocompatibility of polymethyl pentene (PMP) hollow fiber membranes (HFMs) was improved through surface modification for membrane oxygenator applications. The modification was performed stepwise with the following: (1) oxygen plasma treatment, (2) functionalization of monosort hydroxyl groups through NaBH4 reduction, and (3) grafting 2-methacryloyloxyethyl phosphorylcholine (MPC) or heparin. SEM, ATR-FTIR, and XPS analyses were conducted to confirm successful grafting during the modification. The hemocompatibility of PMP HFMs was analyzed and compared through protein adsorption, platelet adhesion, and coagulation tests. Pure CO2 and O2 permeation rates, as well as in vitro gas exchange rates, were determined to evaluate the mass transfer properties of PMP HFMs. SEM results showed that different nanofibril topographies were introduced on the HFM surface. ATR-FTIR and XPS spectra indicated the presence of functionalization of monosort hydroxyl group and the grafting of MPC and heparin. Hemocompatibility evaluation results showed that the modified PMP HFMs presented optimal hemocompatibility compared with pristine HFMs. Gas permeation results revealed that gas permeation flux increased in the modified HFMs because of dense surface etching during the plasma treatment. The results of in vitro gas exchange rates showed that all modified PMP HFMs presented decreased gas exchange rates because of potential surface fluid wetting. The proposed strategy exhibits a potential for fabricating membrane oxygenators for biomedical applications to prevent coagulation formation and alter plasma-induced surface topology and composition.

  3. The structural and optical properties of type III human collagen biosynthetic corneal substitutes

    PubMed Central

    Hayes, Sally; Lewis, Phillip; Islam, M. Mirazul; Doutch, James; Sorensen, Thomas; White, Tomas; Griffith, May; Meek, Keith M.

    2015-01-01

    The structural and optical properties of clinically biocompatible, cell-free hydrogels comprised of synthetically cross-linked and moulded recombinant human collagen type III (RHCIII) with and without the incorporation of 2-methacryloyloxyethyl phosphorylcholine (MPC) were assessed using transmission electron microscopy (TEM), X-ray scattering, spectroscopy and refractometry. These findings were examined alongside similarly obtained data from 21 human donor corneas. TEM demonstrated the presence of loosely bundled aggregates of fine collagen filaments within both RHCIII and RHCIII-MPC implants, which X-ray scattering showed to lack D-banding and be preferentially aligned in a uniaxial orientation throughout. This arrangement differs from the predominantly biaxial alignment of collagen fibrils that exists in the human cornea. By virtue of their high water content (90%), very fine collagen filaments (2–9 nm) and lack of cells, the collagen hydrogels were found to transmit almost all incident light in the visible spectrum. They also transmitted a large proportion of UV light compared to the cornea which acts as an effective UV filter. Patients implanted with these hydrogels should be cautious about UV exposure prior to regrowth of the epithelium and in-growth of corneal cells into the implants. PMID:26159106

  4. Preparation of photoreactive phospholipid polymer nanoparticles to immobilize and release protein by photoirradiation.

    PubMed

    Chen, Weixin; Inoue, Yuuki; Ishihara, Kazuhiko

    2015-11-01

    Photoreactive and cytocompatible polymer nanoparticles for immobilizing and releasing proteins were prepared. A water-soluble and amphiphilic phospholipid polymer, poly(2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate (BMA)-co-4-(4-(1-methacryloyloxyethyl)-2-methoxy-5-nitrophenoxy) butyric acid (PL)) (PMB-PL) was synthesized. The PMB-PL underwent a cleavage reaction at the PL unit with photoirradiation at a wavelength of 365 nm. Additionally, the PMB-PL took polymer aggregate in aqueous medium and was used to modify the surface of biodegradable poly(L-lactic acid) (PLA) nanoparticle as an emulsifier. The morphology of the PMB-PL/PLA nanoparticle was spherical and approximately 130 nm in diameter. The carboxylic acid group in the PL unit could immobilize proteins by covalent bonding. The bound proteins were released by a photoinduced cleavage reaction. Within 60s, up to 90% of the immobilized proteins was released by photoirradiation. From these results and with an understanding of the fundamental properties of MPC polymers, we concluded that PMB-PL/PLA nanoparticles have the potential to be used as smart carriers to deliver proteins to biological systems, such as the inside of living cells.

  5. Phospholipid polymer-based antibody immobilization for cell rolling surfaces in stem cell purification system.

    PubMed

    Mahara, Atsushi; Chen, Hao; Ishihara, Kazuhiko; Yamaoka, Tetsuji

    2014-01-01

    We previously developed an antibody-conjugated cell rolling column that successfully separates stem cell subpopulations depending on the cell surface marker density, but a large amount of the injected cells were retained in the column because of non-specific interactions. In this study, an amphiphilic copolymer, poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate (nBMA)-co-N-vinyl formamide (NVf)], with phospholipid polar side groups was designed as a novel antibody-immobilizing modifier. The formamide groups in NVf units were converted to active maleimide groups. A plastic flow microfluidic chamber was coated with the copolymers, and a reduced anti-CD90 antibody was immobilized. The adipose tissue-derived stem cells isolated from the rat were injected into the flow chamber, and their rolling behavior was observed under a microscope with a high-speed camera. Non-specific cell adhesion was reduced strongly by means of this immobilization method because of the MPC unit, resulting in a high percentage of rolling cells. These results demonstrate that a surface coated with phospholipid polar groups can be used in an effective stem cell separation system based on the cell rolling process.

  6. Real Time Visualization and Characterization of Platelet Deposition under Flow onto Clinically-Relevant Opaque Surfaces

    PubMed Central

    Jamiolkowski, Megan A.; Woolley, Joshua R.; Kameneva, Marina V.; Antaki, James F.; Wagner, William R.

    2014-01-01

    Although the thrombogenic nature of the surfaces of cardiovascular devices is an important aspect of blood biocompatibility, few studies have examined platelet deposition onto opaque materials used for these devices in real time. This is particularly true for the metallic surfaces used in current ventricular assist devices (VADs). Using hemoglobin depleted red blood cells (RBC ghosts) and long working distance optics to visualize platelet deposition, we sought to perform such an evaluation. Fluorescently labeled platelets mixed with human RBC ghosts were perfused across 6 opaque materials (a titanium alloy (Ti6Al4V), silicon carbide (SiC), alumina (Al2O3), 2-methacryloyloxyethyl phosphorylcholine polymer coated Ti6Al4V (MPC-Ti6Al4V), yttria partially stabilized zirconia (YZTP), and zirconia toughened alumina (ZTA)) for 5 min at wall shear rates of 400 and 1000 sec−1. Ti6Al4V had significantly increased platelet deposition relative to MPC-Ti6Al4V, Al2O3, YZTP, and ZTA at both wall shear rates (P <0.01). For all test surfaces, increasing the wall shear rate produced a trend of decreased platelet adhesion. The described system can be a utilized as a tool for comparative analysis of candidate blood-contacting materials with acute blood contact. PMID:24753320

  7. The structural and optical properties of type III human collagen biosynthetic corneal substitutes.

    PubMed

    Hayes, Sally; Lewis, Phillip; Islam, M Mirazul; Doutch, James; Sorensen, Thomas; White, Tomas; Griffith, May; Meek, Keith M

    2015-10-01

    The structural and optical properties of clinically biocompatible, cell-free hydrogels comprised of synthetically cross-linked and moulded recombinant human collagen type III (RHCIII) with and without the incorporation of 2-methacryloyloxyethyl phosphorylcholine (MPC) were assessed using transmission electron microscopy (TEM), X-ray scattering, spectroscopy and refractometry. These findings were examined alongside similarly obtained data from 21 human donor corneas. TEM demonstrated the presence of loosely bundled aggregates of fine collagen filaments within both RHCIII and RHCIII-MPC implants, which X-ray scattering showed to lack D-banding and be preferentially aligned in a uniaxial orientation throughout. This arrangement differs from the predominantly biaxial alignment of collagen fibrils that exists in the human cornea. By virtue of their high water content (90%), very fine collagen filaments (2-9 nm) and lack of cells, the collagen hydrogels were found to transmit almost all incident light in the visible spectrum. They also transmitted a large proportion of UV light compared to the cornea which acts as an effective UV filter. Patients implanted with these hydrogels should be cautious about UV exposure prior to regrowth of the epithelium and in-growth of corneal cells into the implants. PMID:26159106

  8. Simple micropatterning method for enhancing fusion efficiency and responsiveness to electrical stimulation of C2C12 myotubes.

    PubMed

    Takayama, Yuzo; Wagatsuma, Akira; Hoshino, Takayuki; Mabuchi, Kunihiko

    2015-01-01

    Cultured myotubes induced in vitro from myoblast cell lines have been widely used to investigate muscle functional properties and disease-related biological phenotypes. Until now, several cell patterning techniques have been applied to regulate in vitro myotube structures. However, these previous studies required specific geometry patterns or soft materials for inducing efficient myotube formation. Thus, more simple and easy handling method will be promising. In this study, we aimed to provide a method to form C2C12 myotubes with regulated sizes and orientations in simple line patterns. We used a poly(dimethylsiloxane) (PDMS) stamp and a 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer solution to fabricate line patterns for myotube formation onto a culture dish. We confirmed that C2C12 myotubes of well-defined size and orientation were reproducibly formed. In particular, myotubes formed in the micropatterned lines showed the increased fusion efficiency. Then, functional dynamics in the micropatterned myotubes were detected and analyzed using a calcium imaging method. We confirmed micropatterning in line patterns enhanced the responsiveness of myotubes to external electrical stimulations. These results indicate that micropatterning myoblasts with the MPC polymer is a simple and effective method to form functional myotube networks. PMID:25311428

  9. Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling

    NASA Astrophysics Data System (ADS)

    Wang, Jingjing; Wei, Jun

    2016-09-01

    Crosslinked hydrogel brushes were grafted from stainless steel (SS) surfaces for marine antifouling. The brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) respectively with different fractions of crosslinker in the feed. The grafted layers prepared with different thickness were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), ellipsometry and water contact angle measurements. With the increase in the fraction of crosslinker in the feed, the thickness of the grafted layer increased and the surface became smooth. All the brush-coated SS surfaces could effectively reduce the adhesion of bacteria and microalgae and settlement of barnacle cyprids, as compared to the pristine SS surface. The antifouling efficacy of the PEGMA polymer (PPEGMA)-grafted surface was higher than that of the MPC polymer (PMPC)-grafted surfaces. Furthermore, the crosslinked hydrogel brush-grafted surfaces exhibited better fouling resistance than the non-crosslinked polymer brush-grafted surfaces, and the antifouling efficacy increased with the crosslinking density. These hydrogel coatings of low toxicity and excellent anti-adhesive characteristics suggested their useful applications as environmentally friendly antifouling coatings.

  10. Cellular Response to Non-contacting Nanoscale Sublayer: Cells Sense Several Nanometer Mechanical Property.

    PubMed

    Azuma, Tomoyuki; Teramura, Yuji; Takai, Madoka

    2016-05-01

    Cell adhesion is influenced not only from the surface property of materials but also from the mechanical properties of the nanometer sublayer just below the surface. In this study, we fabricated a well-defined diblock polymer brush composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) and 2-aminoethyl methacrylate (AEMA). The underlying layer of poly(MPC) is a highly viscous polymer, and the surface layer of poly(AEMA) is a cell-adhesive cationic polymer. The adhesion of L929 mouse fibroblasts was examined on the diblock polymer brush to see the effect of a non-contacting underlying polymer layer on the cell-adhesion behavior. Cells could sense the viscoelasticity of the underlying layers at the nanometer level, although the various fabricated diblock polymer brushes had the same surface property and the functional group. Thus, we found a new factor which could control cell spread at the nanometer level, and this insight would be important to design nanoscale biomaterials and interfaces. PMID:27064435

  11. SU-E-T-434: Evaluation of the Machine Performance Check (MPC) Program for Truebeam 2.0

    SciTech Connect

    Chin, E; Yu, S; Hadsell, M; Bush, K; Mok, E

    2014-06-01

    Purpose: Machine Performance Check (MPC) is a software application used to verify that the TrueBeam machine is operating within major specifications prior to treatment. Used in combination with a phantom named Isocal, it verifies beam output, beam uniformity, treatment isocenter size, coincidence of treatment and imaging isocenters, positioning accuracy of kV and MV imaging systems, accuracy of collimator and gantry rotation angle, positioning accuracy of jaws and MLC leafs, and couch positioning. The tests can be performed semi-automatically and requires approximately 10 minutes of machine time. It is the purpose of this study to report the performance of this program. Methods: A pre-release version of the MPC tool was installed on a Truebeam linac with 6D couch at our center. Baseline beam output measurements were taken for 5 photon beams (6–15 MV, 6 FFF, 10 FFF) and 5 electron beams (6–20 MeV). Deviations from the baseline output were subsequently recorded for several days and compared against independent measurements from a PTW farmer chamber and our daily QA device (Fluke Biomedical Tracker) as part of an ongoing evaluation. Results: The beam output deviations between the MPC and the PTW chamber measurements were within ±0.7% for photons beams and ±1.0% for electrons beams. This was similar to the tracker performance. There were some isolated incidents where the MPC measurements had unexplained spikes (>3%) that disappeared on a repeat measurement. MPC was also able to detect maximum positioning errors in the jaws (1.12 mm), MLCs (1.14 mm), and couch roll (0.11°). Conclusion: Overall, the ability of the MPC to monitor linac output stability was comparable to that of ionization chamber-based measurements. MPC also provided fast daily mechanical tests not currently available in the clinic. How best to utilize this previously unavailable data is still under investigation.

  12. Implementation of the MPC and A Operations Monitoring (MOM) System at IRT-T FSRE Nuclear Power Institute (NPI)

    SciTech Connect

    Sitdikov,I.; Zenkov, A.; Tsibulnikov, Y.; Duncan, C.; Brownell, L.; Pratt, W.T.; Carbonaro, J.; White, R.M.; Coffing, J.A.

    2008-07-13

    The Material Protection, Control and Accounting (MPC&A) Program has been working since 1994 with nuclear sites in Russia to upgrade the physical protection (PP) and material control and accounting (MC&A) functions at facilities containing weapons usable nuclear material. In early 2001, the MPC&A program initiated the MPC&A Operations Monitoring (MOM) Project to monitor facilities where MPC&A upgrades have been installed to provide increased confidence that personnel are present and vigilant, provide confidence that security procedures are being properly performed and provide additional assurance that nuclear materials have not been stolen. The MOM project began as a pilot project at the Moscow State Engineering Physics Institute (MEPhI) and a MOM system was successfully installed in October 2001. Following the success of the MEPhI pilot project, the MPC&A Program expanded the installation of MOM systems to several other Russian facilities, including the Nuclear Physics Institute (NPI) in Tomsk. The MOM system was made operational at NPI in October 2004. This paper is focused on the experience gained from operation of this system and the objectives of the MOM system. The paper also describes how the MOM system is used at NPI and, in particular, how the data is analyzed. Finally, potential expansion of the MOM system at NPI is described.

  13. Biocontrol of Late Blight (Phytophthora capsici) Disease and Growth Promotion of Pepper by Burkholderia cepacia MPC-7

    PubMed Central

    Sopheareth, Mao; Chan, Sarun; Naing, Kyaw Wai; Lee, Yong Seong; Hyun, Hae Nam; Kim, Young Cheol; Kim, Kil Yong

    2013-01-01

    A chitinolytic bacterial strain having strong antifungal activity was isolated and identified as Burkholderia cepacia MPC-7 based on 16S rRNA gene analysis. MPC-7 solubilized insoluble phosphorous in hydroxyapatite agar media. It produced gluconic acid and 2-ketogluconic acid related to the decrease in pH of broth culture. The antagonist produced benzoic acid (BA) and phenylacetic acid (PA). The authentic compounds, BA and PA, showed a broad spectrum of antimicrobial activity against yeast, several bacterial and fungal pathogens in vitro. To demonstrate the biocontrol efficiency of MPC-7 on late blight disease caused by Phytophthora capsici, pepper plants in pot trials were treated with modified medium only (M), M plus zoospore inoculation (MP), MPC-7 cultured broth (B) and B plus zoospore inoculation (BP). With the sudden increase in root mortality, plants in MP wilted as early as five days after pathogen inoculation. However, plant in BP did not show any symptom of wilting until five days. Root mortality in BP was markedly reduced for as much as 50%. Plants in B had higher dry weight, P concentration in root, and larger leaf area compared to those in M and MP. These results suggested that B. cepacia MPC-7 should be considered as a candidate for the biological fertilizer as well as antimicrobial agent for pepper plants. PMID:25288930

  14. Using rule-based shot dose assignment in model-based MPC applications

    NASA Astrophysics Data System (ADS)

    Bork, Ingo; Buck, Peter; Wang, Lin; Müller, Uwe

    2014-10-01

    Shrinking feature sizes and the need for tighter CD (Critical Dimension) control require the introduction of new technologies in mask making processes. One of those methods is the dose assignment of individual shots on VSB (Variable Shaped Beam) mask writers to compensate CD non-linearity effects and improve dose edge slope. Using increased dose levels only for most critical features, generally only for the smallest CDs on a mask, the change in mask write time is minimal while the increase in image quality can be significant. This paper describes a method combining rule-based shot dose assignment with model-based shot size correction. This combination proves to be very efficient in correcting mask linearity errors while also improving dose edge slope of small features. Shot dose assignment is based on tables assigning certain dose levels to a range of feature sizes. The dose to feature size assignment is derived from mask measurements in such a way that shape corrections are kept to a minimum. For example, if a 50nm drawn line on mask results in a 45nm chrome line using nominal dose, a dose level is chosen which is closest to getting the line back on target. Since CD non-linearity is different for lines, line-ends and contacts, different tables are generated for the different shape categories. The actual dose assignment is done via DRC rules in a pre-processing step before executing the shape correction in the MPC engine. Dose assignment to line ends can be restricted to critical line/space dimensions since it might not be required for all line ends. In addition, adding dose assignment to a wide range of line ends might increase shot count which is undesirable. The dose assignment algorithm is very flexible and can be adjusted based on the type of layer and the best balance between accuracy and shot count. These methods can be optimized for the number of dose levels available for specific mask writers. The MPC engine now needs to be able to handle different dose

  15. Synthesis, Characterization, and Paclitaxel Release from a Biodegradable, Elastomeric, Poly(ester urethane)urea Bearing Phosphorylcholine Groups for Reduced Thrombogenicity

    PubMed Central

    Hong, Yi; Ye, Sang-Ho; Pelinescu, Anca L.; Wagner, William R.

    2013-01-01

    Biodegradable polymers with high elasticity, low thrombogenicity, and drug loading capacity continue to be pursued for vascular engineering applications, including vascular grafts and stents. A biodegradable elastomeric polyurethane was designed as a candidate material for use as a drug-eluting stent coating, such that it was nonthrombogenic and could provide antiproliferative drug release to inhibit smooth muscle cell proliferation. A phosphorylcholine containing poly(ester urethane) urea (PEUU-PC) was synthesized by grafting aminated phosphorylcholine onto backbone carboxyl groups of a polyurethane (PEUU-COOH) synthesized from a soft segment blend of polycaprolactone and dimethylolpropionic acid, a hard segment of diisocyanatobutane and a putrescine chain extender. Poly(ester urethane) urea (PEUU) from a soft segment of polycaprolactone alone was employed as a control material. All of the synthesized polyurethanes showed high distensibility (>600%) and tensile strengths in the 20–35 MPa range. PEUUPC experienced greater degradation than PEUU or PEUU-COOH in either a saline or lipase enzyme solution. PEUU-PC also exhibited markedly inhibited ovine blood platelet deposition compared with PEUU-COOH and PEUU. Paclitaxel loaded in all of the polymers during solvent casting continued to release for 5 d after a burst release in a 10% ethanol/PBS solution, which was utilized to increase the solubility of the releasate. Rat smooth muscle cell proliferation was significantly inhibited in 1 wk cell culture when releasate from the paclitaxel-loaded films was present. Based on these results, the synthesized PEUU-PC has promising functionality for use as a nonthrombogenic, drug eluting coating on metallic vascular stents and grafts. PMID:23035885

  16. The toothbrush-relic: evidence for a coherent 3-Mpc scale shock wave ?

    NASA Astrophysics Data System (ADS)

    Rottgering, Huub

    2010-10-01

    Recently, we have discovered an amzing 3 Mpc radio relic. Its coherent linear morphology and enormous size are very difficult to understand in the standard scenario that relics trace shocks in the ICM induced by massive cluster mergers. With our proposed observations we will determine (i) the presence of shock waves and their properties, (ii) the number of merging sub-clusters and dynamical state of the cluster, and (iii) the temperature structure of the ICM. This will allow us then to address the following questions: (1) are we witnessing a very special configuration consisting of multiple merging events that collectively conspire to yield a linear structure? (2) is there a compelling need for a more sophisticated particle acceleration mechanism?

  17. The Case for a Hubble Constant of 30 km s-1 Mpc-1.

    PubMed

    Bartlett, J G; Blanchard, A; Silk, J; Turner, M S

    1995-02-17

    Although recent determinations of the distance to the Virgo cluster based on Cepheid variable stars represent an important step in pinning down the Hubble constant, after 65 years a definitive determination of the Hubble constant still eludes cosmologists. At present, most of the observational determinations place the Hubble constant between 40 and 90 kilometers per second per megaparsec (km s(-1) Mpc(-1)). The case is made here for a Hubble constant that is even smaller than the lower bound of the accepted range on the basis of the great advantages, all theoretical in nature, of a Hubble constant of around 30 kilometers per second per megaparsec. Such a value for the Hubble cures all of the ills of the current theoretical orthodoxy, that is, a spatially flat universe composed predominantly of cold dark matter. PMID:17811436

  18. MPC&A training needs of the NIS/Baltics States.

    SciTech Connect

    Beck, David Franklin; Stoy-McLeod, Carol L.

    2006-07-01

    This report serves to document contract deliverables considered to be of continuing interest associated with two workshops conducted as part of an initial assessment of Material Protection, Control, and Accounting (MPC&A) training needs of the Newly Independent and Baltic States (NIS/Baltics). These workshops were held in Kiev, Ukraine, ca. 2003-2004, with the assistance of personnel from the George Kuzmycz Training Center (GKTC) of the Kiev Institute of Nuclear Research (KINR). Because of the dominant role Ukraine plays in the region in terms of the nuclear industry, one workshop focused exclusively on Ukrainian training needs, with participants attending from twelve Ukrainian organizations (plus U.S. DOE/NNSA representatives). The second workshop included participation by a further ten countries from the NIS/Baltics region. In addition, the training needs data developed during the workshop were supplemented by the outcomes of surveys and studies conducted by the GKTC.

  19. The Case for a Hubble Constant of 30 km s-1 Mpc-1.

    PubMed

    Bartlett, J G; Blanchard, A; Silk, J; Turner, M S

    1995-02-17

    Although recent determinations of the distance to the Virgo cluster based on Cepheid variable stars represent an important step in pinning down the Hubble constant, after 65 years a definitive determination of the Hubble constant still eludes cosmologists. At present, most of the observational determinations place the Hubble constant between 40 and 90 kilometers per second per megaparsec (km s(-1) Mpc(-1)). The case is made here for a Hubble constant that is even smaller than the lower bound of the accepted range on the basis of the great advantages, all theoretical in nature, of a Hubble constant of around 30 kilometers per second per megaparsec. Such a value for the Hubble cures all of the ills of the current theoretical orthodoxy, that is, a spatially flat universe composed predominantly of cold dark matter.

  20. Superluminal Motions at 500 Mpc: New Results on Nearby AGN Jets with HST

    NASA Astrophysics Data System (ADS)

    Meyer, Eileen T.; Georganopoulos, Markos; Sparks, William B.; Biretta, John A.; Van Der Marel, Roeland P.; Anderson, Jay; Chiaberge, Marco; Perlman, Eric S.; Norman, Colin Arthur

    2015-01-01

    I will present results from recent HST observations of several nearby AGN Jets. Using over 20 years of archival data in combination with the most recent deep ACS/WFC imaging, we have found evidence for superluminal motions in optical kpc-scale jets, beyond the only previously reported case of M87. Our observations show that relativistic bulk motions extend to the outermost parts of these jets, and our continuous refinement of astrometric techniques suggests that the reach of Hubble observations, and the constraints on jet models implied by these measurements, may extend beyond 500 Mpc. The presentation will include movies of these jets in which the motions of the plasma can be seen by eye.

  1. Searching for NEO precoveries in the PS1 and MPC databases

    NASA Astrophysics Data System (ADS)

    Weryk, Robert J.; Wainscoat, Richard J.

    2016-10-01

    The Pan-STARRS (PS1) survey telescope, operated by the University of Hawai`i, covers the sky north of -49 degrees declination with its seven square degree field-of-view. Described in detail by Wainscoat et al. (2015), it has become the leading telescope for new Near Earth Object (NEO) discoveries. In 2015, it found almost half of the new Near Earth Asteroids, as well as half of the new comets.Observations of potential NEOs must be followed up before they can be confirmed and announced as new discoveries, and we are dependent on the follow-up capabilities of other telescopes for this. However, not every NEO candidate is immediately followed up and linked into a well established orbit, possibly due to the fact that smaller bodies may not be visible at current instrument sensitivity limits for very long, or that their predicted orbits are too uncertain so follow-up telescopes look in the wrong location. But in certain cases, these objects may have been observed during previous lunations.We present a method to search for precovery detections in both the PS1 database, and the Isolated Tracklet File (ITF) provided by the Minor Planet Center (MPC). This file contains over 12 million detections mostly from the large surveys, which are not associated with any known objects. We demonstrate that multi-tracklet linkages for both known and unknown objects may be found in these databases, including detections for both NEOs and non-NEOs which often appear on the MPC's NEO Confirmation Page.[1] Wainscoat, R. et al., IAU Symposium 318, editors S. Chesley and R. Jedicke (2015)

  2. A Novel Matrikine-Like Micro-Protein Complex (MPC) Technology for Topical Skin Rejuvenation.

    PubMed

    Dreher, Frank

    2016-04-01

    This randomized, controlled, investigator-blinded study performed by an independent research organization evaluated the appearance of periorbital and perioral wrinkles following twice-daily application of a specific blend of matrikines and matrikine-like synthetic peptides for skin rejuvenation over a 6-month period. Fine lines and wrinkles of 133 women, aged 38 years to 65 years, were assessed by an independent expert evaluator using a 5-point visual analogue score. Subjects were divided into 3 groups and randomized to receive either the matrikine-based technology (MPC) or 1 of the 2 materials containing traditional growth factors. Test materials were well tolerated, and all 3 significantly reduced the appearance of periorbital and perioral wrinkles after 3 and 6 months. In the group receiving the matrikine-based technology, periorbital wrinkles improved (≥ 1 unit) in 28% of subjects after 1 month, in 65% after 3 months, and in 81% after 6 months. Perioral wrinkles improved (≥ 1 unit) in 39% of subjects after 1 month, in 41% after 3 months, and in 59% after 6 months. Improvements in skin firmness, tactile roughness, and pore appearance were also observed with each test material. Use of MPC was associated with significantly improved skin elasticity after 2 months (20%) and at 6 months (16%), whereas the comparator materials had no significant effects on elasticity. This study demonstrates that topical use of a specific blend of matrikines and matrikine-like peptides is suitable for skin rejuvenation. It also provides evidence that topical use of this novel technology provides comparable results to other technologies that use traditional growth factors for skin rejuvenation, with an additional potential benefit of improved skin elasticity. PMID:27050701

  3. GHOSTS I: A new faint very isolated dwarf galaxy at D = 12 ± 2 Mpc

    SciTech Connect

    Monachesi, Antonela; Bell, Eric F.; Radburn-Smith, David J.; Dalcanton, Julianne J.; De Jong, Roelof S.; Streich, David; Vlajić, Marija; Bailin, Jeremy; Holwerda, Benne W.; Alyson Ford, H.; Zucker, Daniel B.

    2014-01-10

    We report the discovery of a new faint dwarf galaxy, GHOSTS I, using HST/ACS data from one of our GHOSTS (Galaxy Halos, Outer disks, Substructure, Thick disk, and Star clusters) fields. Its detected individual stars populate an approximately 1 mag range of its luminosity function (LF). Using synthetic color-magnitude diagrams (CMDs) to compare with the galaxy's CMD, we find that the colors and magnitudes of GHOSTS I's individual stars are most consistent with being young helium-burning and asymptotic giant branch stars at a distance of ∼12 ± 2 Mpc. Morphologically, GHOSTS I appears to be actively forming stars, so we tentatively classify it as a dwarf irregular (dIrr) galaxy, although future Hubble Space Telescope (HST) observations deep enough to resolve a larger magnitude range in its LF are required to make a more secure classification. GHOSTS I's absolute magnitude is M{sub V}∼−9.85{sub −0.33}{sup +0.40}, making it one of the least luminous dIrr galaxies known, and its metallicity is lower than [Fe/H] = –1.5 dex. The half-light radius of GHOSTS I is 226 ± 38 pc and its ellipticity is 0.47 ± 0.07, similar to Milky Way and M31 dwarf satellites at comparable luminosity. There are no luminous massive galaxies or galaxy clusters within ∼4 Mpc from GHOSTS I that could be considered as its host, making it a very isolated dwarf galaxy in the local universe.

  4. Mask process correction (MPC) modeling and its application to EUV mask for electron beam mask writer EBM-7000

    NASA Astrophysics Data System (ADS)

    Kamikubo, Takashi; Ohnishi, Takayuki; Hara, Shigehiro; Anze, Hirohito; Hattori, Yoshiaki; Tamamushi, Shuichi; Bai, Shufeng; Wang, Jen-Shiang; Howell, Rafael; Chen, George; Li, Jiangwei; Tao, Jun; Wiley, Jim; Kurosawa, Terunobu; Saito, Yasuko; Takigawa, Tadahiro

    2010-09-01

    In electron beam writing on EUV mask, it has been reported that CD linearity does not show simple signatures as observed with conventional COG (Cr on Glass) masks because they are caused by scattered electrons form EUV mask itself which comprises stacked heavy metals and thick multi-layers. To resolve this issue, Mask Process Correction (MPC) will be ideally applicable. Every pattern is reshaped in MPC. Therefore, the number of shots would not increase and writing time will be kept within reasonable range. In this paper, MPC is extended to modeling for correction of CD linearity errors on EUV mask. And its effectiveness is verified with simulations and experiments through actual writing test.

  5. Huaiqihuang may protect from proteinuria by resisting MPC5 podocyte damage via targeting p-ERK/CHOP pathway

    PubMed Central

    Li, Tingxia; Mao, Jianhua; Huang, Lei; Fu, Haidong; Chen, Shuohui; Liu, Aimin; Liang, Yuqin

    2016-01-01

    The purpose of this study was to investigate the potential effects of Huaiqihuang (HQH) granule, a Chinese herbal medicine, in treating proteinuria and to reveal its possible mechanism. MPC5 podocytes were cultured in vitro at 37°C and induced with tunicamycin (TM). The TM-induced cells were treated with HQH at different concentrations. The cell proliferation was detected using the MTT assay. The optimal effective dose of HQH for MPC5 cells was determined by the MTT assay and LDH assay respectively. The influences of HQH on the proteinuria-related protein expression and the signaling pathway associated protein expression were also detected using quantitative reverse transcription PCR and Western blotting analysis. The results showed that the MPC5 cell model was successfully constructed in vitro. The HQH application could improve the harmful effects induced by TM on the MPC5 cells, including promoted cell proliferation and suppressed cell apoptosis. Furthermore, the protein expression, including podocin, nephrin, and synaptopodin was down-regulated by the TM treatment in the MPC5 cells. On contrary, the expression of these proteins was up-regulated after the HQH application. Also, the effect of TM on integrin α3 and integrin β1 expressions was also reversed by the HQH treatment. Moreover, the HQH application decreased the expression of p-ERK and DNA-damage-inducible transcript 3 (DDIT3 or CHOP) in the MPC5 cells, which was opposite to the effect observed in the cells treated with TM. Taken together, our study suggest that HQH application may protect podocytes from TM damage by suppressing the p-ERK/CHOP signaling pathway.

  6. Einstein SSS and MPC observations of Aql X-1 and 4U1820-30

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Christian, D. J.; Schoelkopf, R. J.; Swank, J. H.

    1989-01-01

    The results of timing and spectral analyses of the X-ray sources Aql X-1 (X1908+005) and 4U1820-30 (NGC6624) are reported using data obtained with the Einstein SSS (Solid State Spectrometer) and MPC (Monitor Proportional Counter) instruments. A classic type I burst was observed from Aql X-1 in both detectors and a coherent modulation with a period of 131.66 + or - 0.02 ms and a pulsed fraction of 10 percent was detected in the SSS data. There is no evidence for a loss of coherance during the approximately 80 sec when the burst is observable. The 2 sigma upper limit on the rate of change of the pulse period is 0.00005s/s. It is argued that an asymmetrical burst occurring on a neutron star rotating at 7.6 Hz offers a plausible explanation for the oscillation. The data from 4U1820-30 show that the amplitude of the 685 sec modulation, identified as the orbital period, is independent of energy down to 0.6 keV. The SSS data show that the light curve in the 0.6 to 4.5 keV band is smoother than at higher energies.

  7. The U.S. DOE MPC and A assistance program to Ukraine

    SciTech Connect

    Kuzmycz, G.; Bingham, C.; Chen, R.

    1997-09-01

    The nuclear industry of Ukraine is a vital part of the national economy. In 1995 nuclear power accounted for approximately 37% of the total electricity production. Ukraine has five nuclear power stations with fourteen reactors in commercial operation. Ukraine also has research facilities whose work involves nuclear materials. Improving the security of the nuclear material under its control is an important goal for the Ukrainian nuclear community. Ukraine has requested and is receiving the assistance of several IAEA member states in material protection, control and accounting (MPC and A). The US DOE is providing assistance in nuclear material safeguards in both material control and accountability (MC and A) and physical protection (PP) to the national regulatory authority and to four facilities in Ukraine. The program is well under way. At the Kiev Institute of Nuclear Research (KINR) a significant upgrade of the PP system has been completed. Similar upgrades are in progress at the Kharkov Institute of Physics and Technology (KIPT), South Ukraine Nuclear Power Plant (SUNPP) and Sevastopol Institute of Nuclear Energy and Industry (SINEI). MC and A equipment and software, including computers and NDA instrumentation, have been delivered to the facilities. This paper summarizes accomplishments of the program to date, and future plans.

  8. On dynamic output feedback robust MPC for constrained quasi-LPV systems

    NASA Astrophysics Data System (ADS)

    Ding, Baocang; Ping, Xubin; Pan, Hongguang

    2013-12-01

    This paper considers the dynamic output feedback robust model predictive control (MPC) of a quasi-linear parameter varying (quasi-LPV) system with bounded noise. In our previous works, for the unknown true state, either its ellipsoidal bounds or its polyhedral bounds were solely applied in the main optimisation problem. The recursive feasibility of the main optimisation problem was guaranteed by a simple refreshment of the ellipsoidal bound, but might be lost by applying the polyhedral bounds. This paper shows how and to what extent the recursive feasibility can be restored when the polyhedral bounds are still utilised. First, we propose a new approach which, at each sampling time, utilises either the ellipsoidal bound or the polyhedral bound in the main optimisation problem, the latter being used if and only if it is contained in the former. Then, we show the sufficient conditions under which the approaches based on polyhedral bounds preserve the property of recursive feasibility. A numerical example is given to illustrate the effectiveness of the controller.

  9. ASASSN-15oi: A Rapidly Evolving, Luminous Tidal Disruption Event at 216 Mpc

    NASA Astrophysics Data System (ADS)

    Holoien, T. W.-S.; Kochanek, C. S.; Prieto, J. L.; Grupe, D.; Chen, Ping; Godoy-Rivera, D.; Stanek, K. Z.; Shappee, B. J.; Dong, Subo; Brown, J. S.; Basu, U.; Beacom, J. F.; Bersier, D.; Brimacombe, J.; Carlson, E. K.; Falco, E.; Johnston, E.; Madore, B. F.; Pojmanski, G.; Seibert, M.

    2016-09-01

    We present ground-based and Swift photometric and spectroscopic observations of the tidal disruption event (TDE) ASASSN-15oi, discovered at the center of 2MASX J20390918-3045201 (d ≃ 216 Mpc) by the All-Sky Automated Survey for SuperNovae (ASAS-SN). The source peaked at a bolometric luminosity of L ≃ 1.3 × 1044 ergs s-1 and radiated a total energy of E ≃ 6.6 × 1050 ergs over the first ˜3.5 months of observations. The early optical/UV emission of the source can be fit by a blackbody with temperature increasing from T ˜ 2 × 104 K to T ˜ 4 × 104 K while the luminosity declines from L ≃ 1.3 × 1044 ergs s-1 to L ≃ 2.3 × 1043 ergs s-1, requiring the photosphere to be shrinking rapidly. The optical/UV luminosity decline during this period is most consistent with an exponential decline, L∝ e^{-(t-t_0)/τ}, with τ ≃ 46.5 days for t0 ≃ 57241.6 (MJD), while a power-law decline of L∝(t - t0)-α with t0 ≃ 57212.3 and α = 1.62 provides a moderately worse fit. ASASSN-15oi also exhibits roughly constant soft X-ray emission that is significantly weaker than the optical/UV emission. Spectra of the source show broad helium emission lines and strong blue continuum emission in early epochs, although these features fade rapidly and are not present ˜3 months after discovery. The early spectroscopic features and color evolution of ASASSN-15oi are consistent with a TDE, but the rapid spectral evolution is unique among optically-selected TDEs.

  10. Surface modification of a biodegradable magnesium alloy with phosphorylcholine (PC) and sulfobetaine (SB) functional macromolecules for reduced thrombogenicity and acute corrosion resistance

    PubMed Central

    Ye, Sang-Ho; Jang, Yong-Seok; Yun, Yeo-Heung; Shankarraman, Venkat; Woolley, Joshua R.; Hong, Yi; Gamble, Lara J.; Ishihara, Kazuhiko; Wagner, William R.

    2013-01-01

    Siloxane functionalized phosphorylcholine (PC) or sulfobetaine (SB) macromolecules (PCSSi or SBSSi) were synthesized to act as surface modifying agents for degradable metallic surfaces to improve acute blood compatibility and slow initial corrosion rates. The macromolecules were synthesized using a thiol-ene radical photopolymerization technique and then utilized to modify magnesium (Mg) alloy (AZ31) surfaces via an anhydrous phase deposition of the silane functional groups. X-ray photoelectron spectroscopy surface analysis results indicated successful surface modification based on increased nitrogen and phosphorus or sulfur composition on the modified surfaces relative to unmodified AZ31. In vitro acute thrombogenicity assessment after ovine blood contact with the PCSSi and SBSSi modified surfaces showed a significant decrease in platelet deposition and bulk phase platelet activation compared with the control alloy surfaces. Potentiodynamic polarization and electrochemical impedance spectroscopy data obtained from electrochemical corrosion testing demonstrated increased corrosion resistance for PCSSi and SBSSi modified AZ31 versus unmodified surfaces. The developed coating technique using PCSSi or SBSSi showed promise in acutely reducing both the corrosion and thrombotic processes, which would be attractive for application to blood contacting devices, such as vascular stents, made from degradable Mg alloys. PMID:23705967

  11. Phosphorylcholine-tuftsin compound prevents development of dextransulfate-sodium-salt induced murine colitis: implications for the treatment of human inflammatory bowel disease.

    PubMed

    Ben-Ami Shor, Dana; Bashi, Tomer; Lachnish, Jordan; Fridkin, Mati; Bizzaro, Giorgia; Barshak, Iris; Blank, Miri; Shoenfeld, Yehuda

    2015-01-01

    Improved clinical findings of inflammatory bowel disease (IBD) upon treatment with helminthes and their ova were proven in animal models of IBD and in human clinical studies. The immunomodulatory properties of several helminthes were attributed to the phosphorylcholine (PC) molecule. We assessed the therapeutic potential of tuftsin-PC conjugate (TPC) to attenuate murine colitis. Colitis was induced by Dextransulfate-Sodium-Salt (DSS) in drinking water. TPC was given by daily oral ingestion (50 μg/0.1 ml/mouse or PBS) starting at day -2. Disease activity index (DAI) score was followed daily and histology of the colon was performed by H&E staining. Analysis of the cytokines profile in distal colon lysates was performed by immunoblot. Treatment of DSS induced colitis with TPC prevented the severity of colitis, including a reduction in the DAI score, less shortening of the colon and less inflammatory activity in histology. The immunoblot showed that the colitis preventive activity of TPC was associated with downregulation of colon pro-inflammatory IL-1β, TNFα and IL-17 cytokines expression, and enhancement of anti-inflammatory IL-10 cytokine expression. In the current study, we demonstrated that TPC treatment can prevent significantly experimental colitis induction in naïve mice. We propose the TPC as a novel potential small synthetic molecule to treat colitis.

  12. The roles of epithelial cell contact, respiratory bacterial interactions and phosphorylcholine in promoting biofilm formation by Streptococcus pneumoniae and nontypeable Haemophilus influenzae.

    PubMed

    Krishnamurthy, Ajay; Kyd, Jennelle

    2014-08-01

    Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi) often share a common niche within the nasopharynx, both associated with infections such as bronchitis and otitis media. This study investigated how the association between NTHi and S. pneumoniae and the host affects their propensity to form biofilms. We investigated a selection of bacterial strain and serotype combinations on biofilm formation, and the effect of contact with respiratory epithelial cells. Measurement of biofilm showed that co-infection with NTHi and S. pneumoniae increased biofilm formation following contact with epithelial cells compared to no contact demonstrating the role of epithelial cells in biofilm formation. Additionally, the influence of phosphorylcholine (ChoP) on biofilm production was investigated using the licD mutant strain of NTHi 2019 and found that ChoP had a role in mixed biofilm formation but was not the only requirement. The study highlights the complex interactions between microbes and the host epithelium during biofilm production, suggesting the importance of understanding why certain strains and serotypes differentially influence biofilm formation. A key contributor to increased biofilm formation was the upregulation of biofilm formation by epithelial cell factors.

  13. System-wide hybrid MPC-PID control of a continuous pharmaceutical tablet manufacturing process via direct compaction.

    PubMed

    Singh, Ravendra; Ierapetritou, Marianthi; Ramachandran, Rohit

    2013-11-01

    The next generation of QbD based pharmaceutical products will be manufactured through continuous processing. This will allow the integration of online/inline monitoring tools, coupled with an efficient advanced model-based feedback control systems, to achieve precise control of process variables, so that the predefined product quality can be achieved consistently. The direct compaction process considered in this study is highly interactive and involves time delays for a number of process variables due to sensor placements, process equipment dimensions, and the flow characteristics of the solid material. A simple feedback regulatory control system (e.g., PI(D)) by itself may not be sufficient to achieve the tight process control that is mandated by regulatory authorities. The process presented herein comprises of coupled dynamics involving slow and fast responses, indicating the requirement of a hybrid control scheme such as a combined MPC-PID control scheme. In this manuscript, an efficient system-wide hybrid control strategy for an integrated continuous pharmaceutical tablet manufacturing process via direct compaction has been designed. The designed control system is a hybrid scheme of MPC-PID control. An effective controller parameter tuning strategy involving an ITAE method coupled with an optimization strategy has been used for tuning of both MPC and PID parameters. The designed hybrid control system has been implemented in a first-principles model-based flowsheet that was simulated in gPROMS (Process System Enterprise). Results demonstrate enhanced performance of critical quality attributes (CQAs) under the hybrid control scheme compared to only PID or MPC control schemes, illustrating the potential of a hybrid control scheme in improving pharmaceutical manufacturing operations.

  14. Biomedical soft contact-lens sensor for in situ ocular biomonitoring of tear contents.

    PubMed

    Chu, MingXing; Shirai, Takayuki; Takahashi, Daishi; Arakawa, Takahiro; Kudo, Hiroyuki; Sano, Kenji; Sawada, Shin-ichi; Yano, Kazuyoshi; Iwasaki, Yasuhiko; Akiyoshi, Kazunari; Mochizuki, Manabu; Mitsubayashi, Kohji

    2011-08-01

    A soft contact-lens biosensor (SCL-biosensor) for novel non-invasive biomonitoring of tear fluids was fabricated and tested. Wearing a biosensor on eye enabled the in situ monitoring of tear contents. The biosensor has an enzyme immobilized electrode on the surface of a polydimethyl siloxane (PDMS) contact lens. The SCL-biosensor was fabricated using microfabrication techniques for functional polymers (PDMS and 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer). In investigation of in vitro characterization, the SCL-biosensor showed excellent relationship between the output current and glucose concentration from 0.03 to 5.0 mmol·L(-1), with a correlation coefficient of 0.994. The calibration range covered the reported tear glucose concentrations (0.14 mmol·L(-1)). Based on the result, ocular biomonitoring with the SCL-biosensor was carried out. The SCL-biosensor well worked both in the static state and the dynamic state. The tear glucose level of rabbit was estimated to 0.12 mmol·L(-1) at first and then the tear turnover was successfully calculated to be 29.6 ± 8.42% min(-1). The result indicated that SCL-biosensor is useful for advanced biomonitoring on eye.

  15. Effects of extra irradiation on surface and bulk properties of PMPC-grafted cross-linked polyethylene.

    PubMed

    Yamane, Shihori; Kyomoto, Masayuki; Moro, Toru; Watanabe, Kenichi; Hashimoto, Masami; Takatori, Yoshio; Tanaka, Sakae; Ishihara, Kazuhiko

    2016-01-01

    Sterilization using high-energy irradiation is an important aspect of implementing an ultra-high molecular weight polyethylene acetabular liner in total hip arthroplasty (THA). In this study, we evaluate the effects of extra irradiations such as gamma-ray or plasma irradiation during sterilization of the poly(2-methacryloyloxyethyl phosphorylcholine [MPC]) (PMPC) surface and cross-linked polyethylene (CLPE) substrate of a PMPC-grafted CLPE acetabular liner. The PMPC-grafted surface yielded high wettability and low friction properties regardless of the extra irradiations as compared with untreated CLPE. During a hip simulator test, wear resistance of the PMPC-grafted CLPE liner was maintained after extra irradiation, which is due to the high wettability characteristics of the PMPC surface. In particular, the PMPC-grafted CLPE liner treated with plasma irradiation showed greater wettability and wear resistance than that with gamma-ray irradiation. However, we could not clearly observe the changes in chemical properties and morphology of the PMPC surface after both extra irradiations. The physical and mechanical properties attributed to CLPE substrate performance were also unchanged. In contrast, PMPC-grafted CLPE treated with plasma irradiation showed improved oxidation resistance as compared to that treated with gamma-ray irradiation after accelerated aging. Thus, we conclude that PMPC-grafted CLPE with plasma irradiation has promise as a lifelong solution for bearing in THA. PMID:26148654

  16. Tea stains-inspired initiator primer for surface grafting of antifouling and antimicrobial polymer brush coatings.

    PubMed

    Pranantyo, Dicky; Xu, Li Qun; Neoh, Koon-Gee; Kang, En-Tang; Ng, Ying Xian; Teo, Serena Lay-Ming

    2015-03-01

    Inspired by tea stains, plant polyphenolic tannic acid (TA) was beneficially employed as the primer anchor for functional polymer brushes. The brominated TA (TABr) initiator primer was synthesized by partial modification of TA with alkyl bromide functionalities. TABr with trihydroxyphenyl moieties can readily anchor on a wide range of substrates, including metal, metal oxide, polymer, glass, and silicon. Concomitantly, the alkyl bromide terminals serve as initiation sites for atom transfer radical polymerization (ATRP). Cationic [2-(methacryloyloxy)ethyl]trimethylammonium chloride (META) and zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) and N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine (SBMA) were graft-polymerized from the TABr-anchored stainless steel (SS) surface. The cationic polymer brushes on the modified surfaces are bactericidal, while the zwitterionic coatings exhibit resistance against bacterial adhesion. In addition, microalgal attachment (microfouling) and barnacle cyprid settlement (macrofouling) on the functional polymer-grafted surfaces were significantly reduced, in comparison to the pristine SS surface. Thus, the bifunctional TABr initiator primer provides a unique surface anchor for the preparation of functional polymer brushes for inhibiting both microfouling and macrofouling. PMID:25650890

  17. A practical approach to Model Predictive Control (MPC) for solar communities

    NASA Astrophysics Data System (ADS)

    Quintana, Humberto

    Solar district heating (SDH) systems are part of the solution to reduce energy consumption and GHG emissions required for space heating. This kind of installation takes advantage of the convenience of a centralized system and of solar energy to reduce dependency on fossil-fuels. An SDH system is a proven concept that can be enhanced with the addition of long-term thermal energy storage to compensate the seasonal disparity between solar energy supply and heating load demand. These systems are especially deployed in Europe. In Canada, the only SDH installation is the Drake Landing Solar Community (DLSC). This project, which includes seasonal storage (Borehole Thermal Energy Storage-BTES), has been a remarkable success, reaching a solar fraction of 97% by the fifth year of operation. An SDH system cannot be complete without an appropriate supervisory control that coordinates the operation and interaction of system components. The control is based on a set of rules that must consider the system's internal status and external conditions to guarantee occupant comfort with minimal fossil-fuels consumption. This research project is mainly focused on conceiving and assessing new control mechanisms aiming towards an increase of SDH systems' overall energy efficiency. The case study is the DLSC plant, and the proposed control strategies are based on the practical application of Model Predictive Control (MPC) theory. A calibrated model of DLSC including the supervisory control strategies was developed in TRNSYS, building upon the model used for design studies. The model was improved and new components were created when needed. The calibration process delivered a very good agreement for the most important yearly energy performance indices (2 % for solar heat input to the district and for gas consumption, and 5 % for electricity use). Proposed control strategies were conceived for modifying four aspects of the current control: the parameters that define the interaction between

  18. Surface functionalization of quantum dots with fine-structured pH-sensitive phospholipid polymer chains.

    PubMed

    Liu, Yihua; Inoue, Yuuki; Ishihara, Kazuhiko

    2015-11-01

    To add novel functionality to quantum dots (QDs), we synthesized water-soluble and pH-responsive block-type polymers by reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers were composed of cytocompatible 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer segments, which contain a small fraction of active ester groups and can be used to conjugate biologically active compounds to the polymer, and pH-responsive poly(2-(N,N-diethylamino) ethyl methacrylate (DEAEMA)) segments. One terminal of the polymer chain had a hydrophobic alkyl group that originated from the RAFT initiator. This hydrophobic group can bind to the hydrophobic layer on the QD surface. A fluorescent dye was conjugated to the polymer chains via the active ester group. The block-type polymers have an amphiphilic nature in aqueous medium. The polymers were thus easily bound to the QD surface upon evaporation of the solvent from a solution containing the block-type polymer and QDs, yielding QD/fluorescence dye-conjugated polymer hybrid nanoparticles. Fluorescence resonance energy transfer (FRET) between the QDs (donors) and the fluorescent dye molecules (acceptors) was used to obtain information on the conformational dynamics of the immobilized polymers. Higher FRET efficiency of the QD/fluorescent dye-conjugated polymer hybrid nanoparticles was observed at pH 7.4 as compared to pH 5.0 due to a stretching-shrinking conformational motion of the poly(DEAEMA) segments in response to changes in pH. We concluded that the block-type MPC polymer-modified nanoparticles could be used to evaluate the pH of cells via FRET fluorescence based on the cytocompatibility of the MPC polymer.

  19. Atheroprotective natural anti-phosphorylcholine antibodies of IgM subclass are decreased in Swedish controls as compared to non-westernized individuals from New Guinea

    PubMed Central

    Frostegård, Johan; Tao, WenJing; Georgiades, Anastasia; Råstam, Lennart; Lindblad, Ulf; Lindeberg, Staffan

    2007-01-01

    Objective To determine the importance of IgM antibodies against phosphorylcholine (aPC), a novel protective factor for cardiovascular disease (CVD), in a population with a non-western life style as compared with a Swedish control group. Methods and results Risk factors for cardiovascular disease were determined in a group of 108 individuals aged 40–86 years from New Guinea and 108 age-and sex-matched individuals from a population based study in Sweden. Antibodies were tested by ELISA. aPC IgM levels were significantly higher among New Guineans than among Swedish controls (p < 0.0001). This difference remained significant among both men and women when controlled for LDL and blood pressure which were lower and smoking which was more prevalent in New Guineans as compared to Swedish controls (p < 0.0001). aPC IgM was significantly and negatively associated with age and systolic blood pressure among Swedish controls and with waist circumference among New Guineans. aPC IgM levels were significantly higher among women than men in both groups. The proportion of the saturated fatty acid (FA) myristic acid in serum cholesterol esters was negatively but polyunsaturated eicosapentaenoic acid and also lipoprotein (a) were positively associated with aPC IgM levels. Conclusion IgM-antibodies against PC, which have atheroprotective properties, are higher in a population from Kitava, New Guinea with a traditional lifestyle, than in Swedish Controls, and higher among women than men in both populations tested. Such antibodies could contribute to the low incidence of cardiovascular disease reported from Kitava and could also provide an explanation as to why women have a later onset of CVD than men. PMID:17374168

  20. The PCome of Ascaris suum as a model system for intestinal nematodes: identification of phosphorylcholine-substituted proteins and first characterization of the PC-epitope structures.

    PubMed

    Timm, Thomas; Grabitzki, Julia; Severcan, Cinar; Muratoglu, Suzan; Ewald, Lisa; Yilmaz, Yavuz; Lochnit, Guenter

    2016-03-01

    In multicellular parasites (e.g., nematodes and protozoa), proteins and glycolipids have been found to be decorated with phosphorylcholine (PC). PC can provoke various effects on immune cells leading to an immunomodulation of the host's immune system. This immunomodulation allows long-term persistence but also prevents severe pathology due to downregulation of cellular immune responses. PC-containing antigens have been found to interfere with key proliferative signaling pathways in B and T cells, development of dendritic cells and macrophages, and mast cell degranulation. These effects contribute to the observed modulated cytokine levels and impairment of lymphocyte proliferation. In contrast to glycosphingolipids, little is known about the PC-epitopes of proteins. So far, only a limited number of PC-modified proteins from nematodes have been identified. In this project, PC-substituted proteins and glycolipids in Ascaris suum have been localized by immunohistochemistry in specific tissues of the body wall, intestine, and reproductive tract. Subsequently, we investigated the PCome of A. suum by 2D gel-based proteomics and detection by Western blotting using the PC-specific antibody TEPC-15. By peptide-mass-fingerprint matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), we could identify 59 PC-substituted proteins, which are in involved multiple cellular processes. In addition to membrane proteins like vitellogenin-6, we found proteins with structural (e.g., tubulins) and metabolic (e.g., pyruvate dehydrogenase) functions or which can act in the defense against the host's immune response (e.g., serpins). Initial characterization of the PC-epitopes revealed a predominant linkage of PC to the proteins via N-glycans. Our data form the basis for more detailed investigations of the PC-epitope structures as a prerequisite for comprehensive understanding of the molecular mechanisms of immunomodulation.

  1. Drug loading and elution from a phosphorylcholine polymer-coated coronary stent does not affect long-term stability of the coating in vivo.

    PubMed

    Lewis, Andrew L; Willis, Sean L; Small, Sharon A; Hunt, Stuart R; O'byrne, Vincent; Stratford, Peter W

    2004-01-01

    A drug eluting coronary stent was developed for use in preclinical and clinical trial evaluation. The stent was coated with a phosphorylcholine (PC)-based polymer coating containing the cell migration inhibitor batimastat. A pharmacokinetic study was conducted in a rabbit iliac model using (14)C-radiolabeled version of the drug; this showed the drug release to be first order with 94% of it being released within 28 days. Unloaded and drug-loaded stents were implanted in a porcine coronary artery model; a number were explanted at 5 days and scanning electron microscopy was used to show that the presence of the drug did not affect the rate of stent endothelialization. The remainder of the stents were removed after 6 months and the stents carefully removed from the arterial tissue. Fourier-transform infrared (FT-IR) spectroscopy (both attenuated total reflectance and microscopic imaging) was used to show the presence of the PC coating on control unloaded, drug-loaded and explanted stents, providing evidence that the coating was still present. This was further confirmed by use of atomic force microscopy (AFM) amplitude-phase, distance (a-p,d) curves which generated the characteristic traces of the PC coating. Further AFM depth-profiling techniques found that the thicknesses of the PC coatings on an control unloaded stent was 252+/-19 nm, on an control batimastat-loaded stent 906+/-224 nm and on an explanted stent 405+/-224 nm. The increase in thickness after the drug-loading process was a consequence of drug incorporation in the film, and the return to the unloaded dimensions for the explanted sample indicative of elution of the drug from the coating. The drug delivery PC coating was therefore found to be stable following elution of the drug and after 6 months implantation in vivo. PMID:15472385

  2. Theoretical study on the stability of double-decker type metal phthalocyanines, M(Pc)2 and M(Pc)2(+) (M = Ti, Sn and Sc): a critical assessment on the performance of density functionals.

    PubMed

    Sumimoto, Michinori; Kawashima, Yukio; Hori, Kenji; Fujimoto, Hitoshi

    2015-03-01

    We report the results of theoretical calculations on the optimized structures and relative energies between the D4d and D2 symmetry structures for double-decker type phthalocyanine compounds, Ti(Pc)2, Ti(Pc)2(+), Sn(Pc)2, Sn(Pc)2(+), Sc(Pc)2 and Sc(Pc)2(+), using eighteen types of functionals: B3LYP, B3PW91, B3P86, PBE1PBE, BHandHLYP, BPW91, BP86, M06, M06-2x, M06-HF, M06L, LC-BPW91, LC-ωPBE, CAM-B3LYP, B97D, ωB97, ωB97X and ωB97XD. Two phthalocyanine moieties are stacked in a face-to-face configuration in the D4d structure, but they are stapled by two σ-bonds in the D2 one. We found that the molecular symmetry of M(Pc)2 and M(Pc)2(+) depends on the balance between stabilization due to electron delocalization and exchange repulsion of π-electrons in the phthalocyanine moieties. We assessed the performance of the well-established functionals to select the appropriate functional for calculations on M(Pc)2 and M(Pc)2(+), and several important aspects came out. Generally, the hybrid GGA and hybrid meta-GGA functionals with 20-27% of the HF exchange term would give the molecular structures consistent with the experimental expectations for the double-decker type phthalocyanine compounds. Pure GGA and pure meta-GGA functionals (BPW91, BP86, M06L and B97D) have the tendency to overestimate the stability of the D4d structure. On the other hand, functionals including HF exchange for 50% and over or including long-range corrections (BHandHLYP, M06, M06-2x, M06-HF, LC-BPW91, LC-ωPBE, CAM-B3LYP, ωB97, ωB97X and ωB97XD) tend to overestimate the stability of the D2 structure. It should be emphasized that the B3LYP functional, one of the most commonly used hybrid GGA functionals with 20% HF exchange, cannot estimate the relative stability between the two molecular structures of Ti(Pc)2 appropriately. The calculation for the systems considered in this article required well-balanced treatment of the HF exchange with the accompanied exchange-correlation functional. Thus, as

  3. THERMAL EVALUATION OF THE USE OF BWR MOX SNF IN THE MULTI-PURPOSE CANISTER (MPC) WITH ACD DISPOSAL CONTAINER (SCPB: N/A)

    SciTech Connect

    T.L. Lotz

    1995-11-13

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) as specified in the Waste Package Implementation Plan (pp. 4-8,4-11,4-24,5-1, and 5-13; Ref. 5.10) and Waste Package Plan (pp. 3-15,3-17, and 3-24; Ref. 5.9). The design data request addressed herein is: (1) Characterize the conceptual 40 BWR Multi-Purpose Canister (MPC) Waste Package (WP) design to show that the design is feasible for use in the MGDS environment when loaded with BWR MOX SNF. (2) Characterize the conceptual 24 BWR Multi-Purpose Canister (MPC) Waste Package (WP) design to show that the design is feasible for use in the MGDS environment when loaded with BWR MOX SNF. The purpose of this analysis is to respond a concern that the long-term disposal thermal issues for the Multi-Purpose Canister (MPC) Subsystem Design, if used with SNF designed for a MOX fuel cycle, do not preclude MPC compatibility with the MGDS. The objective of this analysis is to provide thermal parameter information for the conceptual MPC design with disposal container which is loaded with BWR MOX SNF under nominal MGDS repository conditions. The results are intended to show that the design has a reasonable chance to meet the MGDS design requirements for normal MGDS operation, to provide the required guidance to determining the major design issues for future design efforts, and to show that the BWR MOX SNF loaded MPC performance is similar to an MPC loaded with commercial BWR SNF. Future design efforts will focus on specific MPC vendor designs and BWR MOX SNF designs when they become available.

  4. Development of Physical Protection Regulations for Rosatom State Corporation Sites under the U.S.-Russian MPC&A Program

    SciTech Connect

    Izmaylov, Alexander; Babkin, Vladimir; Shemigon, Nikolai N.; O'Brien, Patricia; Wright, Troy L.; Hazel, Michael J.; Tuttle, John D.; Cunningham, Mitchel E.; Lane, Melinda; Kovchegin, Dmitry

    2012-07-14

    This paper describes issues related to upgrading the physical protection regulatory basis for Rosatom State Corporation sites. It is underlined that most of the regulatory and methodological documents for this subject area have been developed under the U.S.-Russian MPC&A Program. According to the joint management plan developed and agreed upon by the parties in 2005, nearly 50 physical protection documents were identified to be developed, approved and implemented at Rosatom sites by 2012. It is also noted that, on the whole, the plans have been fulfilled.

  5. Reverse atom transfer radical polymerization (RATRP) for anti-clotting PU-LaCl3-g-P(MPC) films

    NASA Astrophysics Data System (ADS)

    Lu, Chunyan; Zhou, Ninglin; Xiao, Yinghong; Tang, Yida; Jin, Suxing; Wu, Yue; Shen, Jian

    2013-01-01

    Low grafting density is a disadvantage both in reverse atom transfer radical polymerization (RATRP) and ATRP. In this work, the surfaces of polyurethane (PU) were treated by LaCl3·6H2O to obtain modified surfaces with hydrated layers. The reaction of surface-initiated RATRP was carried out easily, which may be attributed to the enriched hydroxyl groups on the hydrated layers. An innovation found in this work is that some free lanthanum ions (La3+) reacted with the silane coupling agent (CPTM) and the product served as mixed ligand complex. The mixed ligand complex instead of conventional 2,2‧-bipyridine was adopted to serve as a ligand in the process of RATRP. As a result, PU surfaces grafted with well-defined polymer brushes (MPC) were obtained. PU substrates before and after modification were characterized by FTIR, XPS, AFM, SEM, SCA, respectively. The results showed that zwitterionic brushes were successfully fabricated on the PU surfaces (P(MPC)), and the content of the grafted layer increased gradually with polymerization time with the grafting density as high as 97.9%. The blood compatibility of the PU substrates was evaluated by plasma recalcification profiles test and platelet adhesion tests in vitro. It was found that all PU functionalized with zwitterionic brush showed improved resistance to nonspecific protein adsorption and platelet adhesion.

  6. Gluten-free vegan diet induces decreased LDL and oxidized LDL levels and raised atheroprotective natural antibodies against phosphorylcholine in patients with rheumatoid arthritis: a randomized study

    PubMed Central

    Elkan, Ann-Charlotte; Sjöberg, Beatrice; Kolsrud, Björn; Ringertz, Bo; Hafström, Ingiäld; Frostegård, Johan

    2008-01-01

    Introduction The purpose of this study was to investigate the effects of vegan diet in patients with rheumatoid arthritis (RA) on blood lipids oxidized low-density lipoprotein (oxLDL) and natural atheroprotective antibodies against phosphorylcholine (anti-PCs). Methods Sixty-six patients with active RA were randomly assigned to either a vegan diet free of gluten (38 patients) or a well-balanced non-vegan diet (28 patients) for 1 year. Thirty patients in the vegan group completed more than 3 months on the diet regimen. Blood lipids were analyzed by routine methods, and oxLDL and anti-PCs were analyzed by enzyme-linked immunosorbent assay. Data and serum samples were obtained at baseline and after 3 and 12 months. Results Mean ages were 50.0 years for the vegan group and 50.8 years for controls. Gluten-free vegan diet induced lower body mass index (BMI) and low-density lipoprotein (LDL) and higher anti-PC IgM than control diet (p < 0.005). In the vegan group, BMI, LDL, and cholesterol decreased after both 3 and 12 months (p < 0.01) and oxLDL after 3 months (p = 0.021) and trendwise after 12 months (p = 0.090). Triglycerides and high-density lipoprotein did not change. IgA anti-PC levels increased after 3 months (p = 0.027) and IgM anti-PC levels increased trendwise after 12 months (p = 0.057). There was no difference in IgG anti-PC levels. In the control diet group, IgM anti-PC levels decreased both after 3 and 12 months (p < 0.01). When separating vegan patients into clinical responders and non-responders at 12 months, the effects on oxLDL and anti-PC IgA were seen only in responders (p < 0.05). Conclusion A gluten-free vegan diet in RA induces changes that are potentially atheroprotective and anti-inflammatory, including decreased LDL and oxLDL levels and raised anti-PC IgM and IgA levels. PMID:18348715

  7. QUASARS PROBING QUASARS. VI. EXCESS H I ABSORPTION WITHIN ONE PROPER Mpc OF z ∼ 2 QUASARS

    SciTech Connect

    Prochaska, J. Xavier; Cantalupo, Sebastiano; Lau, Marie Wingyee; Bovy, Jo; Djorgovski, S. G.; Ellison, Sara L.; Martin, Crystal L.; Simcoe, Robert A.

    2013-10-20

    With close pairs of quasars at different redshifts, a background quasar sightline can be used to study a foreground quasar's environment in absorption. We use a sample of 650 projected quasar pairs to study the H I Lyα absorption transverse to luminous, z ∼ 2 quasars at proper separations of 30 kpc < R < 1 Mpc. In contrast to measurements along the line-of-sight, regions transverse to quasars exhibit enhanced H I Lyα absorption and a larger variance than the ambient intergalactic medium, with increasing absorption and variance toward smaller scales. Analysis of composite spectra reveals excess absorption characterized by a Lyα equivalent width profile W = 2.3 Å (R /100 kpc){sup –0.46}. We also observe a high (≅ 60%) covering factor of strong, optically thick H I absorbers (H I column N{sub H{sub I}}>10{sup 17.3} cm{sup -2}) at separations R < 200 kpc, which decreases to ∼20% at R ≅ 1 Mpc, but still represents a significant excess over the cosmic average. This excess of optically thick absorption can be described by a quasar-absorber cross-correlation function ξ{sub QA}(r) = (r/r{sub 0}){sup γ} with a large correlation length r{sub 0} = 12.5{sup +2.7}{sub -1.4} h{sup -1} Mpc (comoving) and γ=1.68{sup +0.14}{sub -0.30}. The H I absorption measured around quasars exceeds that of any previously studied population, consistent with quasars being hosted by massive dark matter halos M{sub halo} ≈ 10{sup 12.5} M{sub ☉} at z ∼ 2.5. The environments of these massive halos are highly biased toward producing optically thick gas, and may even dominate the cosmic abundance of Lyman limit systems and hence the intergalactic opacity to ionizing photons at z ∼ 2.5. The anisotropic absorption around quasars implies the transverse direction is much less likely to be illuminated by ionizing radiation than the line-of-sight.

  8. The Infrastructure Necessary to Support a Sustainable Material Protection, Control and Accounting (MPC&A) Program in Russia

    SciTech Connect

    Bachner, Katherine M.; Mladineo, Stephen V.

    2011-07-20

    The NNSA Material Protection, Control, and Accounting (MPC&A) program has been engaged for fifteen years in upgrading the security of nuclear materials in Russia. Part of the effort has been to establish the conditions necessary to ensure the long-term sustainability of nuclear security. A sustainable program of nuclear security requires the creation of an indigenous infrastructure, starting with sustained high level government commitment. This includes organizational development, training, maintenance, regulations, inspections, and a strong nuclear security culture. The provision of modern physical protection, control, and accounting equipment to the Russian Federation alone is not sufficient. Comprehensive infrastructure projects support the Russian Federation's ability to maintain the risk reduction achieved through upgrades to the equipment. To illustrate the contributions to security, and challenges of implementation, this paper discusses the history and next steps for an indigenous Tamper Indication Device (TID) program, and a Radiation Portal Monitoring (RPM) program.

  9. Development of a microfluidic platform for single-cell secretion analysis using a direct photoactive cell-attaching method.

    PubMed

    Jang, Kihoon; Ngo, Hong Trang Thi; Tanaka, Yo; Xu, Yan; Mawatari, Kazuma; Kitamori, Takehiko

    2011-01-01

    A precise understanding of individual cellular processes is essential to meet the expectations of most advanced cell biology. Therefore single-cell analysis is considered to be one of possible approach to overcome any misleading of cell characteristics by averaging large groups of cells in bulk conditions. In the present work, we modified a newly designed microchip for single-cell analysis and regulated the cell-adhesive area inside a cell-chamber of the microfluidic system. By using surface-modification techniques involving a silanization compound, a photo-labile linker and the 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer were covalently bonded on the surface of a microchannel. The MPC polymer was utilized as a non-biofouling compound for inhibiting non-specific binding of the biological samples inside the microchannel, and was selectively removed by a photochemical reaction that controlled the cell attachment. To achieve the desired single-macrophage patterning and culture in the cell-chamber of the microchannel, the cell density and flow rate of the culture medium were optimized. We found that a cell density of 2.0 × 10(6) cells/ml was the appropriate condition to introduce a single cell in each cell chamber. Furthermore, the macrophage was cultured in a small size of the cell chamber in a safe way for 5 h at a flow rate of 0.2 µl/min under the medium condition. This strategy can be a powerful tool for broadening new possibilities in studies of individual cellular processes in a dynamic microfluidic device.

  10. REDV/Rapamycin-loaded polymer combinations as a coordinated strategy to enhance endothelial cells selectivity for a stent system.

    PubMed

    Wei, Yu; Zhang, Jing-xun; Ji, Ying; Ji, Jian

    2015-12-01

    A major challenge in the development of drug eluting stent platform is the sustained inhibition of smooth muscle cell (SMC) proliferation while endothelial cell (EC) coverage is promoted. We demonstrated in this study that the combination of rapamycin-loaded polymer base layer and Arg-Glu-Asp-Val (REDV) peptide tethered top layer is a coordinated strategy to enhance EC-specific selectivity. A 2-methacryloyloxyethyl phosphorylcholine(MPC)-co-n-stearyl methacrylate (SMA) [PMS] film was prepared as a base coating to load rapamycin. MPC-co-SMA-co-p-nitrophenyloxycarbonyl polyethyleneglycol methacrylate (MEONP) [PMSN] was synthesized to form the top layer, which conjugated the EC-specific ligand REDV peptide that promotes EC attachment. The top layer functioned as a diffusion barrier, and the polymer film can sustain the rapamycin release of for over 120 days. The In vitro cell behavior of EC and SMC indicated that the rapamycin loaded polymer film inhibited cell growth in the first few days of drug release. After 8 days of drug release, the composite coating consistently resisted the nonspecific adsorption of SMC, whereas REDV enhanced EC attachment specifically. A rabbit iliac injury model was used to evaluate the in vivo of the application of this kind of surface-modified stainless steel stent. The composite polymer coating approach could significantly promote re-endothelialization without causing neointimal hyperplasia. The combination of an EC-specific ligand with rapamycin-loaded polymeric coating may potentially be an effective therapeutic alternative to improve currently available drug-eluting stents. PMID:26613858

  11. Simple surface treatment using amphiphilic phospholipid polymers to obtain wetting and lubricity on polydimethylsiloxane-based substrates.

    PubMed

    Fukazawa, Kyoko; Ishihara, Kazuhiko

    2012-09-01

    Simple surface treatment of polydimethylsiloxane (PDMS) substrates was performed using an aqueous-ethanolic solution of amphiphilic phospholipid polymers to reduce the hydrophobic and high friction characteristics of PDMS. The phospholipid polymers, poly(2-methacryloyloxyethyl phosphorylcholine (MPC)-co-2-ethylhexyl methacrylate (EHMA)-co-2-(N,N-dimethylamino)ethyl methacrylate) (PMED) and poly(MPC-co-EHMA) (PMEH) were synthesized, and the effects of the electric charge of the polymer chain on the stability of the attachment to the PDMS surface was investigated. The polymers were dissolved in a mixed solvent of ethanol and water, and the PDMS samples were treated by a simple dipping method using the polymer solution. Pure ethanol as the solvent was ineffective for the attachment of the polymers to the PDMS surface. It was considered that the hydrophobic interactions and electrostatic attraction forces between the polymer chains and the PDMS surface were too weak for efficient interaction in this solvent. On the other hand, the surface wettability and lubricity of PDMS could be improved by treatment with an aqueous-ethanolic solution of PMED. The static contact angle was decreased from 90° to 20° by this treatment, and the dynamic friction coefficient against a Co-Cr ball was decreased by nearly 80% compared with that of the untreated PDMS. The hydrophobic interactions and electrostatic attraction forces generated by PMED were both essential for the stable adsorption of the polymer layer on PDMS. Furthermore, the solubilized state of the polymers affected the adsorption of the polymer. We concluded that the surface of PDMS could be stably modified using aqueous-ethanolic solutions of PMED without the need for pretreatments. PMID:22609584

  12. REDV/Rapamycin-loaded polymer combinations as a coordinated strategy to enhance endothelial cells selectivity for a stent system.

    PubMed

    Wei, Yu; Zhang, Jing-xun; Ji, Ying; Ji, Jian

    2015-12-01

    A major challenge in the development of drug eluting stent platform is the sustained inhibition of smooth muscle cell (SMC) proliferation while endothelial cell (EC) coverage is promoted. We demonstrated in this study that the combination of rapamycin-loaded polymer base layer and Arg-Glu-Asp-Val (REDV) peptide tethered top layer is a coordinated strategy to enhance EC-specific selectivity. A 2-methacryloyloxyethyl phosphorylcholine(MPC)-co-n-stearyl methacrylate (SMA) [PMS] film was prepared as a base coating to load rapamycin. MPC-co-SMA-co-p-nitrophenyloxycarbonyl polyethyleneglycol methacrylate (MEONP) [PMSN] was synthesized to form the top layer, which conjugated the EC-specific ligand REDV peptide that promotes EC attachment. The top layer functioned as a diffusion barrier, and the polymer film can sustain the rapamycin release of for over 120 days. The In vitro cell behavior of EC and SMC indicated that the rapamycin loaded polymer film inhibited cell growth in the first few days of drug release. After 8 days of drug release, the composite coating consistently resisted the nonspecific adsorption of SMC, whereas REDV enhanced EC attachment specifically. A rabbit iliac injury model was used to evaluate the in vivo of the application of this kind of surface-modified stainless steel stent. The composite polymer coating approach could significantly promote re-endothelialization without causing neointimal hyperplasia. The combination of an EC-specific ligand with rapamycin-loaded polymeric coating may potentially be an effective therapeutic alternative to improve currently available drug-eluting stents.

  13. U.S./Russian Laboratory-to-Laboratory MPC&A Program at the VNIITF Institute, Chelyabinsk-70

    SciTech Connect

    Teryohin, V.; Tzygankov, G.; Blasy, J.

    1995-07-01

    The All Russian Institute of Technical Physics (VNIITF) is one of the major sites in the nuclear weapons complex in Russia. The site contains a number of research facilities which use nuclear material as well as facilities active in disassembly and disposition of nuclear weapons. Chelyabinsk-70 (C-70) also has ties to the major nuclear materials production facilities in the Urals region of Russia. Under the U.S./Russian Laboratory -to- Laboratory cooperative program, enhanced safeguards systems are being implemented, initially at a reactor test area that contains two pulse reactors and a nuclear material storage facility. C-70 is developing an extensive computerized system that integrates the physical security alarm station with elements of the nuclear material control system. Under the Lab-to-Lab program, the existing systems will bi augmented with Russian and US technologies. The integrated MPC&A system for the test facilities will be demonstrated to US and Russian audiences when completed and follow-on work at additional C-70 facilities will be identified. This paper will describe the on-going activities and describe the cooperative effort between the Lawrence Livermore, Los Alamos, Sandia, Oak Ridge, Pacific Northwest, and Brookhaven US Department of Energy National Laboratories in support of VNIITF.

  14. US/Russian laboratory-to-laboratory MPC&A Program at the VNIITF Institute, Chelyabinsk-70 May 1996

    SciTech Connect

    Tsygankov, G.; Churikov, Y.; Teryokhin, V.

    1996-05-01

    The AR Russian Institute of Technical Physics (VNIITF), also called Chelyabinsk-70, is one of two Russian federal nuclear centers established to design, test and support nuclear weapons throughout their life cycle. The site contains research facilities which use nuclear materials, two experimental plants which manufacture prototype samples for nuclear weapons, and a site for various ground tests. Chelyabinsk-70 also has cooperative relationships with the major nuclear materials production facilities in the Urals region of Russia. Chelyabinsk-70 has been participating in the US/Russian Laboratory-to-laboratory cooperative program for approximately one year. Six US Department of Energy Laboratories are carrying out a program of cooperation with VNIITF to improve the capabilities and facilities for nuclear materials protection, control, and accounting (MPC&A) at VNIITF. A Safeguards Effectiveness Evaluation Workshop was conducted at VNIITF in July, 1995. Enhanced safeguards systems are being implemented, initially at a reactor test area that contains three pulse reactors. Significant improvements to physical security and access control systems are under way. C-70 is developing an extensive computerized system that integrates the physical security alarm station with elements of the nuclear material control system. The existing systems will be augmented with Russian and US technologies. This paper will describe the on-going activities and describe the cooperative effort between the Lawrence Livermore, Los Alamos, Sandia, Oak Ridge, Pacific Northwest, and Brookhaven US Department of Energy National Laboratories and VNIITF.

  15. A characteristic size of approximately 10 Mpc for the ionized bubbles at the end of cosmic reionization.

    PubMed

    Wyithe, J Stuart B; Loeb, Abraham

    2004-11-11

    The first galaxies to appear in the Universe at redshifts z > 20 created ionized bubbles in the intergalactic medium of neutral hydrogen left over from the Big Bang. The ionized bubbles grew with time, surrounding clusters of dwarf galaxies and eventually overlapped quickly throughout the Universe over a narrow redshift interval near z approximately 6. This event signalled the end of the reionization epoch when the Universe was a billion years old. Measuring the size distribution of the bubbles at their final overlap phase is a focus of forthcoming programmes to observe highly redshifted radio emission from atomic hydrogen. Here we show that the combined constraints of cosmic variance and light travel time imply an observed bubble size at the end of the overlap epoch of approximately 10 physical Mpc, and a scatter in the observed redshift of overlap along different lines-of-sight of approximately 0.15. This scatter is consistent with observational constraints from recent spectroscopic data on the farthest known quasars. This implies that future radio experiments should be tuned to a characteristic angular scale of 0.5 degrees and have a minimum frequency bandwidth of approximately 8 MHz for an optimal detection of 21-cm flux fluctuations near the end of reionization.

  16. A characteristic size of approximately 10 Mpc for the ionized bubbles at the end of cosmic reionization.

    PubMed

    Wyithe, J Stuart B; Loeb, Abraham

    2004-11-11

    The first galaxies to appear in the Universe at redshifts z > 20 created ionized bubbles in the intergalactic medium of neutral hydrogen left over from the Big Bang. The ionized bubbles grew with time, surrounding clusters of dwarf galaxies and eventually overlapped quickly throughout the Universe over a narrow redshift interval near z approximately 6. This event signalled the end of the reionization epoch when the Universe was a billion years old. Measuring the size distribution of the bubbles at their final overlap phase is a focus of forthcoming programmes to observe highly redshifted radio emission from atomic hydrogen. Here we show that the combined constraints of cosmic variance and light travel time imply an observed bubble size at the end of the overlap epoch of approximately 10 physical Mpc, and a scatter in the observed redshift of overlap along different lines-of-sight of approximately 0.15. This scatter is consistent with observational constraints from recent spectroscopic data on the farthest known quasars. This implies that future radio experiments should be tuned to a characteristic angular scale of 0.5 degrees and have a minimum frequency bandwidth of approximately 8 MHz for an optimal detection of 21-cm flux fluctuations near the end of reionization. PMID:15538361

  17. Interfacing biomembrane mimetic polymer surfaces with living cells Surface modification for reliable bioartificial liver

    NASA Astrophysics Data System (ADS)

    Iwasaki, Yasuhiko; Takami, Utae; Sawada, Shin-ichi; Akiyoshi, Kazunari

    2008-11-01

    The surface design used for reducing nonspecific biofouling is one of the most important issues for the fabrication of medical devices. We present here a newly synthesized a carbohydrate-immobilized phosphorylcholine polymer for surface modification of medical devices to control the interface with living cells. A random copolymer composed of 2-methacryloyloxyethyl phosphorylcholine (MPC), n-butyl methacrylate (BMA), and 2-lactobionamidoethyl methacrylate (LAMA) was synthesized by conventional radical polymerization. The monomer feeding ratio in the copolymer was adjusted to 24/75/1 (MPC/BMA/LAMA). The copolymer (PMBL1.0) could be coated by solvent evaporation from an ethanol solution. Cells of the human hepatocellular liver carcinoma cell line (HepG2) having asialoglycoprotein receptors (ASGPRs) were seeded on PMBL1.0 or poly(BMA) (PBMA)-coated PET plates. On PBMA, many adherent cells were observed and were well spread with monolayer adhesion. HepG2 adhesion was observed on PMBL1.0 because the cell has ASGPRs. Furthermore, some of the cells adhering to PMBL1.0 had a spheroid formation and similarly shaped spheroids were scattered on the surface. According to confocal laser microscopic observation after 96 h cultivation, it was found that albumin production preferentially occurred in the center of the spheroid. The albumin production of the cells that adhered to PBMA was sparse. The amount of albumin production per unit cell that adhered to PMBL1.0 was determined by ELISA and was significantly higher than that which adhered to PBMA. Long-term cultivation of HepG2 was also performed using hollow fiber mini-modules coated with PMBL1.0. The concentration of albumin produced from HepG2 increased continuously for one month. In the mini-module, the function of HepG2 was effectively preserved for that period. On the hollow fiber membrane, spheroid formation of HepG2 cells was also observed. In conclusion, PMBL1.0 can provide a suitable surface for the cultivation of

  18. The "toothbrush-relic": evidence for a coherent linear 2-Mpc scale shock wave in a massive merging galaxy cluster?

    NASA Astrophysics Data System (ADS)

    van Weeren, R. J.; Röttgering, H. J. A.; Intema, H. T.; Rudnick, L.; Brüggen, M.; Hoeft, M.; Oonk, J. B. R.

    2012-10-01

    Some merging galaxy clusters host diffuse extended radio emission, so-called radio halos and relics, unrelated to individual galaxies. The origin of these halos and relics is still debated, although there is compelling evidence now that they are related to cluster merger events. Here we present detailed Westerbork Synthesis Radio Telescope (WSRT) and Giant Metrewave Radio Telescope (GMRT) radio observations between 147 MHz and 4.9 GHz of a new radio-selected galaxy cluster 1RXS J0603.3+4214, for which we find a redshift of 0.225. The cluster is detected as an extended X-ray source in the ROSAT All Sky Survey with an X-ray luminosity of LX, 0.1-2.4 keV ~ 1 × 1045 erg s-1. The cluster hosts a large bright 1.9 Mpc radio relic, an elongated ~2 Mpc radio halo, and two fainter smaller radio relics. The large radio relic has a peculiar linear morphology. For this relic we observe a clear spectral index gradient from the front of the relic towards the back, in the direction towards the cluster center. Parts of this relic are highly polarized with a polarization fraction of up to 60%. We performed rotation measure (RM) synthesis between 1.2 and 1.7 GHz. The results suggest that for the west part of the large relic some of the Faraday rotation is caused by the intracluster medium and not only due to galactic foregrounds. We also carried out a detailed spectral analysis of this radio relic and created radio color-color diagrams. We find (i) an injection spectral index of -0.6 to -0.7; (ii) steepening spectral index and increasing spectral curvature in the post-shock region; and (iii) an overall power-law spectrum between 74 MHz and 4.9 GHz with α = -1.10 ± 0.02. Mixing of emission in the beam from regions with different spectral ages is probably the dominant factor that determines the shape of the radio spectra. Changes in the magnetic field, total electron content, or adiabatic gains/losses do not play a major role. A model in which particles are (re)accelerated in a

  19. DISCOVERY OF A LARGE NUMBER OF CANDIDATE PROTOCLUSTERS TRACED BY ∼15 Mpc-SCALE GALAXY OVERDENSITIES IN COSMOS

    SciTech Connect

    Chiang, Yi-Kuan; Gebhardt, Karl; Overzier, Roderik

    2014-02-10

    To demonstrate the feasibility of studying the epoch of massive galaxy cluster formation in a more systematic manner using current and future galaxy surveys, we report the discovery of a large sample of protocluster candidates in the 1.62 deg{sup 2} COSMOS/UltraVISTA field traced by optical/infrared selected galaxies using photometric redshifts. By comparing properly smoothed three-dimensional galaxy density maps of the observations and a set of matched simulations incorporating the dominant observational effects (galaxy selection and photometric redshift uncertainties), we first confirm that the observed ∼15 comoving Mpc-scale galaxy clustering is consistent with ΛCDM models. Using further the relation between high-z overdensity and the present day cluster mass calibrated in these matched simulations, we found 36 candidate structures at 1.6 < z < 3.1, showing overdensities consistent with the progenitors of M{sub z} {sub =} {sub 0} ∼ 10{sup 15} M {sub ☉} clusters. Taking into account the significant upward scattering of lower mass structures, the probabilities for the candidates to have at least M{sub z=} {sub 0} ∼ 10{sup 14} M {sub ☉} are ∼70%. For each structure, about 15%-40% of photometric galaxy candidates are expected to be true protocluster members that will merge into a cluster-scale halo by z = 0. With solely photometric redshifts, we successfully rediscover two spectroscopically confirmed structures in this field, suggesting that our algorithm is robust. This work generates a large sample of uniformly selected protocluster candidates, providing rich targets for spectroscopic follow-up and subsequent studies of cluster formation. Meanwhile, it demonstrates the potential for probing early cluster formation with upcoming redshift surveys such as the Hobby-Eberly Telescope Dark Energy Experiment and the Subaru Prime Focus Spectrograph survey.

  20. Local dark matter and dark energy as estimated on a scale of ~1 Mpc in a self-consistent way

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2009-12-01

    Context: Dark energy was first detected from large distances on gigaparsec scales. If it is vacuum energy (or Einstein's Λ), it should also exist in very local space. Here we discuss its measurement on megaparsec scales of the Local Group. Aims: We combine the modified Kahn-Woltjer method for the Milky Way-M 31 binary and the HST observations of the expansion flow around the Local Group in order to study in a self-consistent way and simultaneously the local density of dark energy and the dark matter mass contained within the Local Group. Methods: A theoretical model is used that accounts for the dynamical effects of dark energy on a scale of ~1 Mpc. Results: The local dark energy density is put into the range 0.8-3.7ρv (ρv is the globally measured density), and the Local Group mass lies within 3.1-5.8×1012 M⊙. The lower limit of the local dark energy density, about 4/5× the global value, is determined by the natural binding condition for the group binary and the maximal zero-gravity radius. The near coincidence of two values measured with independent methods on scales differing by ~1000 times is remarkable. The mass ~4×1012 M⊙ and the local dark energy density ~ρv are also consistent with the expansion flow close to the Local Group, within the standard cosmological model. Conclusions: One should take into account the dark energy in dynamical mass estimation methods for galaxy groups, including the virial theorem. Our analysis gives new strong evidence in favor of Einstein's idea of the universal antigravity described by the cosmological constant.

  1. Cosmic flows on 100 h-1 Mpc scales: standardized minimum variance bulk flow, shear and octupole moments

    NASA Astrophysics Data System (ADS)

    Feldman, Hume A.; Watkins, Richard; Hudson, Michael J.

    2010-10-01

    The low-order moments, such as the bulk flow and shear, of the large-scale peculiar velocity field are sensitive probes of the matter density fluctuations on very large scales. In practice, however, peculiar velocity surveys are usually sparse and noisy, which can lead to the aliasing of small-scale power into what is meant to be a probe of the largest scales. Previously, we developed an optimal `minimum variance' (MV) weighting scheme, designed to overcome this problem by minimizing the difference between the measured bulk flow (BF) and that which would be measured by an ideal survey. Here we extend this MV analysis to include the shear and octupole moments, which are designed to have almost no correlations between them so that they are virtually orthogonal. We apply this MV analysis to a compilation of all major peculiar velocity surveys, consisting of 4536 measurements. Our estimate of the BF on scales of ~100h-1Mpc has a magnitude of |v| = 416 +/- 78 kms -1 towards Galactic l = 282° +/- 11° and b = 6° +/- 6°. This result is in disagreement with Λ cold dark matter with Wilkinson Microwave Anisotropy Probe 5 (WMAP5) cosmological parameters at a high confidence level, but is in good agreement with our previous MV result without an orthogonality constraint, showing that the shear and octupole moments did not contaminate the previous BF measurement. The shear and octupole moments are consistent with WMAP5 power spectrum, although the measurement noise is larger for these moments than for the BF. The relatively low shear moments suggest that the sources responsible for the BF are at large distances.

  2. DEVELOPMENT, INSTALLATION AND OPERATION OF THE MPC&A OPERATIONS MONITORING (MOM) SYSTEM AT THE JOINT INSTITUTE FOR NUCLEAR RESEARCH (JINR) DUBNA, RUSSIA

    SciTech Connect

    Kartashov,V.V.; Pratt,W.; Romanov, Y.A.; Samoilov, V.N.; Shestakov, B.A.; Duncan, C.; Brownell, L.; Carbonaro, J.; White, R.M.; Coffing, J.A.

    2009-07-12

    The Material Protection, Control and Accounting (MPC&A) Operations Monitoring (MOM) systems handling at the International Intergovernmental Organization - Joint Institute for Nuclear Research (JINR) is described in this paper. Category I nuclear material (plutonium and uranium) is used in JINR research reactors, facilities and for scientific and research activities. A monitoring system (MOM) was installed at JINR in April 2003. The system design was based on a vulnerability analysis, which took into account the specifics of the Institute. The design and installation of the MOM system was a collaborative effort between JINR, Brookhaven National Laboratory (BNL) and the U.S. Department of Energy (DOE). Financial support was provided by DOE through BNL. The installed MOM system provides facility management with additional assurance that operations involving nuclear material (NM) are correctly followed by the facility personnel. The MOM system also provides additional confidence that the MPC&A systems continue to perform effectively.

  3. Application of strainrange partitioning to the prediction of MPC creep-fatigue data for 2 1/4 Cr-1Mo steel

    NASA Technical Reports Server (NTRS)

    Saltsman, J. F.; Halford, G. R.

    1976-01-01

    Strainrange partitioning is used to predict the long time cyclic lives of the metal properties council (MPC) creep-fatigue interspersion and cyclic creep-rupture tests conducted with annealed 2 1/4 Cr-1Mo steel. Observed lives agree with predicted lives within factors of two. The strainrange partitioning life relations used for the long time predictions were established from short time creep-fatigue data generated at NASA-Lewis on the same heat of material.

  4. Implementation of an advanced hybrid MPC-PID control system using PAT tools into a direct compaction continuous pharmaceutical tablet manufacturing pilot plant.

    PubMed

    Singh, Ravendra; Sahay, Abhishek; Karry, Krizia M; Muzzio, Fernando; Ierapetritou, Marianthi; Ramachandran, Rohit

    2014-10-01

    It is desirable for a pharmaceutical final dosage form to be manufactured through a quality by design (QbD)-based approach rather than a quality by testing (QbT) approach. An automatic feedback control system coupled with PAT tools that is part of the QbD paradigm shift, has the potential to ensure that the pre-defined end product quality attributes are met in a time and cost efficient manner. In this work, an advanced hybrid MPC-PID control architecture coupled with real time inline/online monitoring tools and principal components analysis (PCA) based additional supervisory control layer has been proposed for a continuous direct compaction tablet manufacturing process. The advantages of both MPC and PID have been utilized in a hybrid scheme. The control hardware and software integration and implementation of the control system has been demonstrated using feeders and blending unit operation of a continuous tablet manufacturing pilot plant and an NIR based PAT tool. The advanced hybrid MPC-PID control scheme leads to enhanced control loop performance of the critical quality attributes in comparison to a regulatory (e.g. PID) control scheme indicating its potential to improve pharmaceutical product quality. PMID:24974987

  5. The Quest for Anti-inflammatory and Anti-infective Biomaterials in Clinical Translation.

    PubMed

    Griffith, May; Islam, Mohammad M; Edin, Joel; Papapavlou, Georgia; Buznyk, Oleksiy; Patra, Hirak K

    2016-01-01

    Biomaterials are now being used or evaluated clinically as implants to supplement the severe shortage of available human donor organs. To date, however, such implants have mainly been developed as scaffolds to promote the regeneration of failing organs due to old age or congenital malformations. In the real world, however, infection or immunological issues often compromise patients. For example, bacterial and viral infections can result in uncontrolled immunopathological damage and lead to organ failure. Hence, there is a need for biomaterials and implants that not only promote regeneration but also address issues that are specific to compromised patients, such as infection and inflammation. Different strategies are needed to address the regeneration of organs that have been damaged by infection or inflammation for successful clinical translation. Therefore, the real quest is for multifunctional biomaterials with combined properties that can combat infections, modulate inflammation, and promote regeneration at the same time. These strategies will necessitate the inclusion of methodologies for management of the cellular and signaling components elicited within the local microenvironment. In the development of such biomaterials, strategies range from the inclusion of materials that have intrinsic anti-inflammatory properties, such as the synthetic lipid polymer, 2-methacryloyloxyethyl phosphorylcholine (MPC), to silver nanoparticles that have antibacterial properties, to inclusion of nano- and micro-particles in biomaterials composites that deliver active drugs. In this present review, we present examples of both kinds of materials in each group along with their pros and cons. Thus, as a promising next generation strategy to aid or replace tissue/organ transplantation, an integrated smart programmable platform is needed for regenerative medicine applications to create and/or restore normal function at the cell and tissue levels. Therefore, now it is of utmost

  6. The Quest for Anti-inflammatory and Anti-infective Biomaterials in Clinical Translation

    PubMed Central

    Griffith, May; Islam, Mohammad M.; Edin, Joel; Papapavlou, Georgia; Buznyk, Oleksiy; Patra, Hirak K.

    2016-01-01

    Biomaterials are now being used or evaluated clinically as implants to supplement the severe shortage of available human donor organs. To date, however, such implants have mainly been developed as scaffolds to promote the regeneration of failing organs due to old age or congenital malformations. In the real world, however, infection or immunological issues often compromise patients. For example, bacterial and viral infections can result in uncontrolled immunopathological damage and lead to organ failure. Hence, there is a need for biomaterials and implants that not only promote regeneration but also address issues that are specific to compromised patients, such as infection and inflammation. Different strategies are needed to address the regeneration of organs that have been damaged by infection or inflammation for successful clinical translation. Therefore, the real quest is for multifunctional biomaterials with combined properties that can combat infections, modulate inflammation, and promote regeneration at the same time. These strategies will necessitate the inclusion of methodologies for management of the cellular and signaling components elicited within the local microenvironment. In the development of such biomaterials, strategies range from the inclusion of materials that have intrinsic anti-inflammatory properties, such as the synthetic lipid polymer, 2-methacryloyloxyethyl phosphorylcholine (MPC), to silver nanoparticles that have antibacterial properties, to inclusion of nano- and micro-particles in biomaterials composites that deliver active drugs. In this present review, we present examples of both kinds of materials in each group along with their pros and cons. Thus, as a promising next generation strategy to aid or replace tissue/organ transplantation, an integrated smart programmable platform is needed for regenerative medicine applications to create and/or restore normal function at the cell and tissue levels. Therefore, now it is of utmost

  7. The Quest for Anti-inflammatory and Anti-infective Biomaterials in Clinical Translation

    PubMed Central

    Griffith, May; Islam, Mohammad M.; Edin, Joel; Papapavlou, Georgia; Buznyk, Oleksiy; Patra, Hirak K.

    2016-01-01

    Biomaterials are now being used or evaluated clinically as implants to supplement the severe shortage of available human donor organs. To date, however, such implants have mainly been developed as scaffolds to promote the regeneration of failing organs due to old age or congenital malformations. In the real world, however, infection or immunological issues often compromise patients. For example, bacterial and viral infections can result in uncontrolled immunopathological damage and lead to organ failure. Hence, there is a need for biomaterials and implants that not only promote regeneration but also address issues that are specific to compromised patients, such as infection and inflammation. Different strategies are needed to address the regeneration of organs that have been damaged by infection or inflammation for successful clinical translation. Therefore, the real quest is for multifunctional biomaterials with combined properties that can combat infections, modulate inflammation, and promote regeneration at the same time. These strategies will necessitate the inclusion of methodologies for management of the cellular and signaling components elicited within the local microenvironment. In the development of such biomaterials, strategies range from the inclusion of materials that have intrinsic anti-inflammatory properties, such as the synthetic lipid polymer, 2-methacryloyloxyethyl phosphorylcholine (MPC), to silver nanoparticles that have antibacterial properties, to inclusion of nano- and micro-particles in biomaterials composites that deliver active drugs. In this present review, we present examples of both kinds of materials in each group along with their pros and cons. Thus, as a promising next generation strategy to aid or replace tissue/organ transplantation, an integrated smart programmable platform is needed for regenerative medicine applications to create and/or restore normal function at the cell and tissue levels. Therefore, now it is of utmost

  8. In vivo performance of a phospholipid-coated bioerodable elastomeric graft for small-diameter vascular applications

    PubMed Central

    Soletti, Lorenzo; Nieponice, Alejandro; Hong, Yi; Ye, Sang-Ho; Stankus, John J.; Wagner, William R.; Vorp, David A.

    2011-01-01

    There remains a great need for vascular substitutes for small-diameter applications. The use of an elastomeric biodegradable material, enabling acute antithrombogenicity and long-term in vivo remodeling, could be beneficial for this purpose. Conduits (1.3 mm internal diameter) were obtained by electrospinning biodegradable poly(ester urethane)urea (PEUU), and by luminally immobilizing a non-thrombogenic, 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymer. Platelet adhesion was characterized in vitro after contact with ovine blood. The conduits were implanted as aortic interposition grafts in the rat for 4, 8, 12, and 24 weeks. Surface treatment resulted in a 10-fold decrease in platelet adhesion compared to untreated material. Patency at 8 weeks was 92% for the coated grafts compared to 40% for the non-coated grafts. Histology at 8 and 12 weeks demonstrated formation of cellularized neotissue consisting of aligned collagen and elastin. The lumen of the grafts was confluent with cells qualitatively aligned in the direction of blood flow. Immunohistochemistry suggested the presence of smooth muscle cells in the medial layer of the neotissue and endothelial cells lining the lumen. Mechanically, the grafts were less compliant than rat aortas prior to implantation (4.5 ± 2.0 × 10–4 mmHg–1 vs. 14.2 ± 1.1 × 10–4 mmHg–1, respectively), then after 4 weeks in vivo they approximated native values, but subsequently became stiffer again at later time points. The novel coated grafts exhibited promising antithrombogenic and mechanical properties for small-diameter arterial revascularization. Further evaluation in vivo will be required to demonstrate complete remodeling of the graft into a native-like artery. PMID:21171163

  9. KrasMAS: Implementation of a nuclear material computerized accounting system at the Mining and Chemical Combine through the Russian/US cooperative MPC and A program

    SciTech Connect

    Dorofeev, K.V.; Zhidkov, V.V.; Martinez, B.J.; Perry, R.T.; Scott, S.C.

    1998-12-31

    The Russian/US Mining and Chemical Combine (Gorno-Kimichesky Kombinat, GKhK, also referred to as Krasnoyarsk-26) Material Protection, Control and Accounting (MPC and A) project was initiated in June 1996. A critical component of the ongoing cooperative MPC and A enhancements at the GKhK is the implementation of a computerized nuclear material control and accountability (MC and A) system. This system must meet the MC and A requirements of the GKhK by integrating the information generated by numerous existing and new MC and A components in place at the GKhK (e.g., scales, bar-code equipment, NDA measurement systems). During the first phase of this effort, the GKhK adapted CoreMAS (developed at Los Alamos National Laboratory) for use in the PuO{sub 2} storage facility. This included formulation of Web-based user interfaces for plant personnel, Russification of the existing user interface, and at the functional level, modification of the CoreMAS stored procedures. The modified system is referred to as KrasMAS and builds upon completed work on CoreMAS. Ongoing efforts include adding GKhK specific report forms and expanding the functionality of the system for implementation at the radiochemical processing and reactor plants of the GKhK. Collaborations with other Russian facilities for appropriate parts of these efforts will be pursued.

  10. Spiral Galaxies with a Larger Fraction of Dark Matter in the Region of 3-10 Mpc Around the Virgo and Fornax Clusters

    NASA Astrophysics Data System (ADS)

    Kogoshvili, N. G.; Borchkhadze, T. M.; Kalloghlian, A. T.

    2015-09-01

    This is a study of the dynamic characteristics of spiral galaxies with absolute magnitudes M ≥ -20m.6 at distances of 3 to 10 Mpc from the Virgo and Fornax clusters based on data from the Merged Catalog of Galaxies MERCG. The diameters of the galaxies are used to determine the radius RD corresponding to the region with the greatest concentration of dark matter. Based on the condition of centrifugal equilibrium, the dynamic parameters of the spiral galaxies with M ≥ -20m.6 are calculated and compared with the dynamic characteristics of spiral galaxies with M ≥ -20m.6. It is found that there are many fewer spiral galaxies with M ≥ -20m.6 and a larger fraction of dark matter in the regions surrounding these clusters, estimated at 12.7% in the vicinity of the Virgo cluster and 15.3% in the vicinity of the Fornax cluster.

  11. Enzymic characterization of murine and human prohormone convertase-1 (mPC1 and hPC1) expressed in mammalian GH4C1 cells.

    PubMed Central

    Jean, F; Basak, A; Rondeau, N; Benjannet, S; Hendy, G N; Seidah, N G; Chrétien, M; Lazure, C

    1993-01-01

    Prohormone convertase-1 (PC1), an endopeptidase that is structurally related to the yeast subtilisin-like Kex2 gene product, has been proposed to be involved in mammalian tissue-specific prohormone processing at pairs of basic residues. To better study this enzyme, a rat somatomammotroph cell line, GH4C1, was infected with vaccinia virus recombinants of murine PC1 (mPC1) and human PC1 (hPC1). An enzymically active form of each protein was secreted into the cell medium and partially purified by anion-exchange chromatography. The 80-85 kDa enzyme was shown to be Ca(2+)-dependent and exhibited a pH optimum of 6.0 when assayed against a synthetic fluorogenic substrate, acetyl-Arg-Ser-Lys-Arg-4-methylcoumaryl-1-amide. mPC1 and hPC1 displayed identical cleavage selectivity towards a number of fluorogenic substrates, and those incorporating an Arg at the P4 site were most favoured. Synthetic peptides, encompassing the junction between the putative pro-region and the active enzyme, and between the pro-region and the biologically active parathyroid hormone, were shown to be recognized and cleaved specifically at the pair of basic residues by both enzymes. Group-specific proteinase inhibitors such as metal ion chelators and p-hydroxymercuribenzoate, but not phenylmethanesulphonyl fluoride and pepstatin, strongly inhibit the PC1-associated activity. In addition, it is shown that an enzyme activity displaying identical properties is present in the cell medium of uninfected corticotroph AtT-20 cells and that its level is increased following stimulation of secretion by the secretagogue 8-bromo cyclic AMP. PMID:8318017

  12. First Results from the MADCASH Survey: A Faint Dwarf Galaxy Companion to the Low-mass Spiral Galaxy NGC 2403 at 3.2 Mpc

    NASA Astrophysics Data System (ADS)

    Carlin, Jeffrey L.; Sand, David J.; Price, Paul; Willman, Beth; Karunakaran, Ananthan; Spekkens, Kristine; Bell, Eric F.; Brodie, Jean P.; Crnojević, Denija; Forbes, Duncan A.; Hargis, Jonathan; Kirby, Evan; Lupton, Robert; Peter, Annika H. G.; Romanowsky, Aaron J.; Strader, Jay

    2016-09-01

    We report the discovery of the faintest known dwarf galaxy satellite of a Large Magellanic Cloud (LMC) stellar-mass host beyond the Local Group (LG), based on deep imaging with Subaru/Hyper Suprime-Cam. Magellanic Analog Dwarf Companions And Stellar Halos (MADCASH) J074238+652501-dw lies ˜35 kpc in projection from NGC 2403, a dwarf spiral galaxy at D ≈ 3.2 Mpc. This new dwarf has {M}g=-7.4+/- 0.4 and a half-light radius of 168 ± 70 pc, at the calculated distance of 3.39 ± 0.41 Mpc. The color-magnitude diagram reveals no evidence of young stellar populations, suggesting that MADCASH J074238+652501-dw is an old, metal-poor dwarf similar to low-luminosity dwarfs in the LG. The lack of either detected HI gas ({M}{HI}/{L}V\\lt 0.69 {M}⊙ /{L}⊙ , based on Green Bank Telescope observations) or GALEX NUV/FUV flux enhancement is consistent with a lack of young stars. This is the first result from the MADCASH survey, which is conducting a census of the stellar substructure and faint satellites in the halos of Local Volume LMC analogs via resolved stellar populations. Models predict a total of ˜4-10 satellites at least as massive as MADCASH J074238+652501-dw around a host with the mass of NGC 2403, with 2-3 within our field of view, slightly more than the one such satellite observed in our footprint. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  13. First Results from the MADCASH Survey: A Faint Dwarf Galaxy Companion to the Low-mass Spiral Galaxy NGC 2403 at 3.2 Mpc

    NASA Astrophysics Data System (ADS)

    Carlin, Jeffrey L.; Sand, David J.; Price, Paul; Willman, Beth; Karunakaran, Ananthan; Spekkens, Kristine; Bell, Eric F.; Brodie, Jean P.; Crnojević, Denija; Forbes, Duncan A.; Hargis, Jonathan; Kirby, Evan; Lupton, Robert; Peter, Annika H. G.; Romanowsky, Aaron J.; Strader, Jay

    2016-09-01

    We report the discovery of the faintest known dwarf galaxy satellite of a Large Magellanic Cloud (LMC) stellar-mass host beyond the Local Group (LG), based on deep imaging with Subaru/Hyper Suprime-Cam. Magellanic Analog Dwarf Companions And Stellar Halos (MADCASH) J074238+652501-dw lies ˜35 kpc in projection from NGC 2403, a dwarf spiral galaxy at D ≈ 3.2 Mpc. This new dwarf has {M}g=-7.4+/- 0.4 and a half-light radius of 168 ± 70 pc, at the calculated distance of 3.39 ± 0.41 Mpc. The color–magnitude diagram reveals no evidence of young stellar populations, suggesting that MADCASH J074238+652501-dw is an old, metal-poor dwarf similar to low-luminosity dwarfs in the LG. The lack of either detected HI gas ({M}{HI}/{L}V\\lt 0.69 {M}ȯ /{L}ȯ , based on Green Bank Telescope observations) or GALEX NUV/FUV flux enhancement is consistent with a lack of young stars. This is the first result from the MADCASH survey, which is conducting a census of the stellar substructure and faint satellites in the halos of Local Volume LMC analogs via resolved stellar populations. Models predict a total of ˜4–10 satellites at least as massive as MADCASH J074238+652501-dw around a host with the mass of NGC 2403, with 2–3 within our field of view, slightly more than the one such satellite observed in our footprint. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  14. A ~6 Mpc overdensity at z ≃ 2.7 detected along a pair of quasar sight lines: filament or protocluster?

    NASA Astrophysics Data System (ADS)

    Finley, Hayley; Petitjean, Patrick; Noterdaeme, Pasquier; Pâris, Isabelle

    2014-12-01

    Simulations predict that gas in the intergalactic medium (IGM) is distributed in filamentary structures that connect dense galaxy clusters and form the cosmic web. These structures of predominantly ionized hydrogen are difficult to observe directly due to their lack of emitting regions. We serendipitously detected an overdensity of log N(H i) > 18.0 absorbers at z ≃ 2.69 along the lines of sight toward a pair of background quasars. Three main absorption regions spanning ~ 2000 km s-1 (corresponding to 6.4 h70-1 Mpc proper) are coincident in the two lines of sight, which are separated by ~ 90 h70-1 kpc transverse proper distance. Two regions have [Fe/H] <-1.9 and correspond to mild overdensities in the IGM gas. The third region is a sub-DLA with [Fe/H] = -1.1 that is probably associated with a galaxy. We discuss the possibility that the lines of sight probe along the length of a filament or intercept a galaxy protocluster. Based on observations with X-shooter on the Very Large Telescope at the European Southern Observatory under program 089.A-0855.

  15. Galaxy And Mass Assembly (GAMA): A Study of Energy, Mass, and Structure (1 kpc-1 Mpc) at z<0.3

    NASA Astrophysics Data System (ADS)

    Driver, S. P.; GAMA Team

    2016-10-01

    The GAMA survey has now completed its spectroscopic campaign of over 250,000 galaxies (r<19.8 mag), and will shortly complete the assimilation of the complementary panchromatic imaging data from GALEX, VST, VISTA, WISE, and Herschel. In the coming years the GAMA fields will be observed by the Australian Square Kilometer Array Pathfinder allowing a complete study of the stellar, dust, and gas mass constituents of galaxies within the low-z Universe (z<0.3). The science directive is to study the distribution of mass, energy, and structure on kpc-Mpc scales over a 3 billion year timeline. This is being pursued both as an empirical study in its own right, as well as providing a benchmark resource against which the outputs from numerical simulations can be compared. GAMA has three particularly compelling aspects which set it apart: completeness, selection, and panchromatic coverage. The very high redshift completeness (˜ 98%) allows for extremely complete and robust pair and group catalogs; the simple selection (r<19.8 mag) minimizes the selection bias and simplifies its management; and the panchromatic coverage, 0.2 μm - 1 m, enables studies of the complete energy distributions for individual galaxies, well defined sub-samples, and population assembles (either directly or via stacking techniques). For further details and data releases see: http://www.gama-survey.org.

  16. The MASSIVE survey. I. A volume-limited integral-field spectroscopic study of the most massive early-type galaxies within 108 Mpc

    SciTech Connect

    Ma, Chung-Pei; Greene, Jenny E.; Murphy, Jeremy D.; McConnell, Nicholas; Janish, Ryan; Blakeslee, John P.; Thomas, Jens

    2014-11-10

    Massive early-type galaxies represent the modern day remnants of the earliest major star formation episodes in the history of the universe. These galaxies are central to our understanding of the evolution of cosmic structure, stellar populations, and supermassive black holes, but the details of their complex formation histories remain uncertain. To address this situation, we have initiated the MASSIVE Survey, a volume-limited, multi-wavelength, integral-field spectroscopic (IFS) and photometric survey of the structure and dynamics of the ∼100 most massive early-type galaxies within a distance of 108 Mpc. This survey probes a stellar mass range M* ≳ 10{sup 11.5} M {sub ☉} and diverse galaxy environments that have not been systematically studied to date. Our wide-field IFS data cover about two effective radii of individual galaxies, and for a subset of them, we are acquiring additional IFS observations on sub-arcsecond scales with adaptive optics. We are also acquiring deep K-band imaging to trace the extended halos of the galaxies and measure accurate total magnitudes. Dynamical orbit modeling of the combined data will allow us to simultaneously determine the stellar, black hole, and dark matter halo masses. The primary goals of the project are to constrain the black hole scaling relations at high masses, investigate systematically the stellar initial mass function and dark matter distribution in massive galaxies, and probe the late-time assembly of ellipticals through stellar population and kinematical gradients. In this paper, we describe the MASSIVE sample selection, discuss the distinct demographics and structural and environmental properties of the selected galaxies, and provide an overview of our basic observational program, science goals and early survey results.

  17. Towards DIB mapping in galaxies beyond 100 Mpc. A radial profile of the λ5780.5 diffuse interstellar band in AM 1353-272 B

    NASA Astrophysics Data System (ADS)

    Monreal-Ibero, A.; Weilbacher, P. M.; Wendt, M.; Selman, F.; Lallement, R.; Brinchmann, J.; Kamann, S.; Sandin, C.

    2015-04-01

    Context. Diffuse interstellar bands (DIBs) are non-stellar weak absorption features of unknown origin found in the spectra of stars viewed through one or several clouds of the interstellar medium (ISM). Research of DIBs outside the Milky Way is currently very limited. In particular, spatially resolved investigations of DIBs outside of the Local Group are, to our knowledge, inexistent. Aims: In this contribution, we explore the capability of the high-sensitivity integral field spectrograph, MUSE, as a tool for mapping diffuse interstellar bands at distances larger than 100 Mpc. Methods: We used MUSE commissioning data for AM 1353-272 B, the member with the highest extinction of the Dentist's Chair, an interacting system of two spiral galaxies. High signal-to-noise spectra were created by co-adding the signal of many spatial elements distributed in a geometry of concentric elliptical half-rings. Results: We derived decreasing radial profiles for the equivalent width of the λ5780.5 DIB both in the receding and approaching side of the companion galaxy up to distances of ~4.6 kpc from the centre of the galaxy. The interstellar extinction as derived from the Hα/Hβ line ratio displays a similar trend, with decreasing values towards the external parts. This translates into an intrinsic correlation between the strength of the DIB and the extinction within AM 1353-272 B, consistent with the currently existing global trend between these quantities when using measurements for Galactic and extragalactic sightlines. Conclusions: It seems feasible to map the DIB strength in the Local Universe, which has up to now only been performed for the Milky Way. This offers a new approach to studying the relationship between DIBs and other characteristics and species of the ISM in addition to using galaxies in the Local Group or sightlines towards very bright targets outside the Local Group. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under program

  18. Forecasts for CMB μ and i-type spectral distortion constraints on the primordial power spectrum on scales 8∼Mpc{sup −1} with the future Pixie-like experiments

    SciTech Connect

    Khatri, Rishi; Sunyaev, Rashid A. E-mail: sunyaev@mpa-garching.mpg.de

    2013-06-01

    Silk damping at redshifts 1.5 × 10{sup 4}∼Mpc{sup −1} (10{sup 5}∼

  19. Neutron reflectivity study of the swollen structure of polyzwitterion and polyeletrolyte brushes in aqueous solution.

    PubMed

    Kobayashi, Motoyasu; Ishihara, Kazuhiko; Takahara, Atsushi

    2014-01-01

    The swollen brush structures of polycation and zwitterionic polymer brushes, such as poly(2-methacryloyloxyethyltrimethylammonium chloride) (PMTAC), poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), and poly[3-(N-2-methacryloyloxyethyl-N,N-dimethyl)ammonatopropanesulfonate] (PMAPS), in aqueous solutions of various ionic strengths were characterized by neutron reflectivity (NR) measurements. A series of the polyelectrolyte brushes were prepared by surface-initiated controlled radical polymerization on silicon substrates. A high-graft-density PMTAC brush in salt-free water (D2O) adopted a two-region step-like structure consisting of a shrunk region near the Si substrate surface and a diffuse brush region with a relatively stretched chain structure at the solution interface. The diffuse region of PMTAC was reduced with increase in salt (NaCl) concentration. The PMAPS brush in D2O formed a collapsed structure due to the strong molecular interaction between betaine groups, while significant increase in the swollen thickness was observed in salt aqueous solution. In contrast, no change was observed in the depth profile of the swollen PMPC brush in D2O with various salt concentrations. The unique solution behaviors of zwitterionic polymer brushes were described. PMID:25178564

  20. Adhesion and Proliferation of Human Periodontal Ligament Cells on Poly(2-methoxyethyl acrylate)

    PubMed Central

    Aoki, Makiko; Sato, Chikako; Ishihata, Hiroshi; Tanaka, Masaru

    2014-01-01

    Human periodontal ligament (PDL) cells obtained from extracted teeth are a potential cell source for tissue engineering. We previously reported that poly(2-methoxyethyl acrylate) (PMEA) is highly biocompatible with human blood cells. In this study, we investigated the adhesion, morphology, and proliferation of PDL cells on PMEA and other types of polymers to design an appropriate scaffold for tissue engineering. PDL cells adhered and proliferated on all investigated polymer surfaces except for poly(2-hydroxyethyl methacrylate) and poly[(2-methacryloyloxyethyl phosphorylcholine)-co-(n-butyl methacrylate)]. The initial adhesion of the PDL cells on PMEA was comparable with that on polyethylene terephthalate (PET). In addition, the PDL cells on PMEA spread well and exhibited proliferation behavior similar to that observed on PET. In contrast, platelets hardly adhered to PMEA. PMEA is therefore expected to be an excellent scaffold for tissue engineering and for culturing tissue-derived cells in a blood-rich environment. PMID:25165689

  1. Final Report: Efficient Databases for MPC Microdata

    SciTech Connect

    Michael A. Bender; Martin Farach-Colton; Bradley C. Kuszmaul

    2011-08-31

    The purpose of this grant was to develop the theory and practice of high-performance databases for massive streamed datasets. Over the last three years, we have developed fast indexing technology, that is, technology for rapidly ingesting data and storing that data so that it can be efficiently queried and analyzed. During this project we developed the technology so that high-bandwidth data streams can be indexed and queried efficiently. Our technology has been proven to work data sets composed of tens of billions of rows when the data streams arrives at over 40,000 rows per second. We achieved these numbers even on a single disk driven by two cores. Our work comprised (1) new write-optimized data structures with better asymptotic complexity than traditional structures, (2) implementation, and (3) benchmarking. We furthermore developed a prototype of TokuFS, a middleware layer that can handle microdata I/O packaged up in an MPI-IO abstraction.

  2. Characterization of Swollen States of Polyelectrolyte Brushes in Salt Solution by Neutron Reflectivity

    NASA Astrophysics Data System (ADS)

    Kobayashi, Motoyasu; Mitamura, Koji; Terada, Masami; Yamada, Norifumi L.; Takahara, Atsushi

    2011-01-01

    Cationic and zwitterionic polyelectrolyte brushes on quartz substrate were synthesized by surface-initiated atom transfer radical polymerization of 2-(methacryloyloxy)-ethyltrimethylammonium chloride (MTAC) and 2-(methacryloyloxy)ethyl phosphorylcholine (MPC). The effects of ionic strength on brush structure are investigated by neutron reflectivity (NR) in NaCl deuterium oxide (D2O) solutions. We observed that poly(MTAC) chains were drastically shrunk at concentrations above 0.1 M NaCl/D2O, which may be the change in charge-screening effect against ions on poly(MTAC). On the other hand, effect of salt concentration on a swollen state of poly(MPC) brush was negligible, even at the high concentration (5.0 M) close to saturation. The behaviour of poly(MPC) in salt aqueous solution is completely different from that of poly(MTAC), which may arise from the unique interaction properties, neutral nature, and hydrated water structure of phosphorylcholine units.

  3. Stability of distributed MPC in an intersection scenario

    NASA Astrophysics Data System (ADS)

    Sprodowski, T.; Pannek, J.

    2015-11-01

    The research topic of autonomous cars and the communication among them has attained much attention in the last years and is developing quickly. Among others, this research area spans fields such as image recognition, mathematical control theory, communication networks, and sensor fusion. We consider an intersection scenario where we divide the shared road space in different cells. These cells form a grid. The cars are modelled as an autonomous multi-agent system based on the Distributed Model Predictive Control algorithm (DMPC). We prove that the overall system reaches stability using Optimal Control for each multi-agent and demonstrate that by numerical results.

  4. Reversible Interactions of Proteins with Mixed Shell Polymeric Micelles: Tuning the Surface Hydrophobic/Hydrophilic Balance toward Efficient Artificial Chaperones.

    PubMed

    Wang, Jianzu; Song, Yiqing; Sun, Pingchuan; An, Yingli; Zhang, Zhenkun; Shi, Linqi

    2016-03-22

    Molecular chaperones can elegantly fine-tune its hydrophobic/hydrophilic balance to assist a broad spectrum of nascent polypeptide chains to fold properly. Such precious property is difficult to be achieved by chaperone mimicking materials due to limited control of their surface characteristics that dictate interactions with unfolded protein intermediates. Mixed shell polymeric micelles (MSPMs), which consist of two kinds of dissimilar polymeric chains in the micellar shell, offer a convenient way to fine-tune surface properties of polymeric nanoparticles. In the current work, we have fabricated ca. 30 kinds of MSPMs with finely tunable hydrophilic/hydrophobic surface properties. We investigated the respective roles of thermosensitive and hydrophilic polymeric chains in the thermodenaturation protection of proteins down to the molecular structure. Although the three kinds of thermosensitive polymers investigated herein can form collapsed hydrophobic domains on the micellar surface, we found distinct capability to capture and release unfolded protein intermediates, due to their respective affinity for proteins. Meanwhile, in terms of the hydrophilic polymeric chains in the micellar shell, poly(ethylene glycol) (PEG) excels in assisting unfolded protein intermediates to refold properly via interacting with the refolding intermediates, resulting in enhanced chaperone efficiency. However, another hydrophilic polymer-poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) severely deteriorates the chaperone efficiency of MSPMs, due to its protein-resistant properties. Judicious combination of thermosensitive and hydrophilic chains in the micellar shell lead to MSPM-based artificial chaperones with optimal efficacy.

  5. Synthesis and characterisation of cationically modified phospholipid polymers.

    PubMed

    Lewis, Andrew L; Berwick, James; Davies, Martyn C; Roberts, Clive J; Wang, Jin-Hai; Small, Sharon; Dunn, Anthony; O'Byrne, Vincent; Redman, Richard P; Jones, Stephen A

    2004-07-01

    Phospholipid-like copolymers based on 2-(methacryloyloxyethyl) phosphorylcholine were synthesised using monomer-starved free radical polymerisation methods and incorporating cationic charge in the form of the choline methacrylate monomer in amounts varying from 0 to 30 wt%, together with a 5 wt% silyl cross-linking agent in order to render them water-insoluble once thermally cured. Characterisation using a variety of techniques including nuclear magnetic resonance spectroscopy, high-pressure liquid chromatography and gel permeation chromatography showed the cationic monomer did not interfere with the polymerisation and that the desired amount of charge had been incorporated. Gravimetric and differential scanning calorimetry methods were used to evaluate the water contents of polymer membranes cured at 70 degrees C, which was seen to increase with increasing cation content, producing materials with water contents ranging from 50% to 98%. Surface plasmon resonance indicated that the coatings swelled rapidly in water, the rate and extent of swelling increasing with increasing cation level. Dynamic contact angle showed that coatings of all the polymers possessed a hydrophobic surface when dry in air, characteristic of the alkyl chains expressed at the surface (>100 degrees advancing angle). Rearrangement of the hydrophilic groups to the surface occurred once wet, to produce highly wettable surfaces with a decrease in advancing angle with increasing cation content. Atomic force microscopy showed all polymer films to be smooth with no features in topographical or phase imaging. Mechanical properties of the dry films were also unaffected by the increase in cation content.

  6. Influences of dehydration and rehydration on the lubrication properties of phospholipid polymer-grafted cross-linked polyethylene.

    PubMed

    Yarimitsu, Seido; Moro, Toru; Kyomoto, Masayuki; Watanabe, Kenichi; Tanaka, Sakae; Ishihara, Kazuhiko; Murakami, Teruo

    2015-07-01

    Surface modification by grafting of biocompatible phospholipid polymer onto the surface of artificial joint material has been proposed to reduce the risk of aseptic loosening and improve the durability. Poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)-grafted cross-linked polyethylene (CLPE) has shown promising results for reducing wear of CLPE. The main lubrication mechanism for the PMPC layer is considered to be the hydration lubrication. In this study, the lubrication properties of PMPC-grafted CLPE were evaluated in reciprocating friction test with rehydration process by unloading in various lubricants. The start-up friction of PMPC-grafted CLPE was reduced, and the damage of PMPC layer was suppressed by rehydration in water or hyaluronic acid solutions. In contrast, the start-up friction of PMPC-grafted CLPE increased in fetal bovine serum solution, and the damage for PMPC layer was quite noticeable. Interestingly, the start-up friction of PMPC-grafted CLPE was reduced in fetal bovine serum solution containing hyaluronic acid, and the damage of the PMPC layer was suppressed. These results indicate that the rehydration by unloading and hyaluronic acid are elemental in maximizing the lubrication effect of hydrated PMPC layer.

  7. Development of a disposable maglev centrifugal blood pump intended for one-month support in bridge-to-bridge applications: in vitro and initial in vivo evaluation.

    PubMed

    Someya, Takeshi; Kobayashi, Mariko; Waguri, Satoshi; Ushiyama, Tomohiro; Nagaoka, Eiki; Hijikata, Wataru; Shinshi, Tadahiko; Arai, Hirokuni; Takatani, Setsuo

    2009-09-01

    MedTech Dispo, a disposable maglev centrifugal blood pump with two degrees of freedom magnetic suspension and radial magnetic coupling rotation, has been developed for 1-month extracorporeal circulatory support. As the first stage of a two-stage in vivo evaluation, 2-week evaluation of a prototype MedTech Dispo was conducted. In in vitro study, the pump could produce 5 L/min against 800 mm Hg and the normalized index of hemolysis was 0.0054 +/- 0.0008 g/100 L. In in vivo study, the pump, with its blood-contacting surface coated with biocompatible 2-methacryloyloxyethyl phosphorylcholine polymer, was implanted in seven calves in left heart bypass. Pump performance was stable with a mean flow of 4.49 +/- 0.38 L/min at a mean speed of 2072.1 +/- 64.5 rpm. The maglev control revealed its stability in rotor position during normal activity by the calves. During 2 weeks of operation in two calves which survived the intended study period, no thrombus formation was seen inside the pump and levels of plasma free hemoglobin were maintained below 4 mg/dL. Although further experiments are required, the pump demonstrated the potential for sufficient and reliable performance and biocompatibility in meeting the requirements for cardiopulmonary bypass and 1-week circulatory support. PMID:19775262

  8. A large mobility of hydrophilic molecules at the outmost layer controls the protein adsorption and adhering behavior with the actin fiber orientation of human umbilical vein endothelial cells (HUVEC).

    PubMed

    Kakinoki, Sachiro; Seo, Ji-Hun; Inoue, Yuuki; Ishihara, Kazuhiko; Yui, Nobuhiko; Yamaoka, Tetsuji

    2013-01-01

    Adhesion behaviors of human umbilical vein endothelial cells (HUVECs) are interestingly affected by the mobility of hydrophilic chains on the material surfaces. Surfaces with different molecular mobilities were prepared using ABA-type block copolymers consisting polyrotaxane (PRX) or poly(ethylene glycol) (PEG) central block (A block), and amphiphilic anchoring B blocks of poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB). Two different molecular mobilities of the PRX chains were designed by using normal α-cyclodextrin (α-CD) or α-CD whose hydroxyl groups were converted to methoxy groups in a given ratio to improve its molecular mobility (PRX-PMB and OMe-PRX-PMB). The surface mobility of these materials was assessed as the mobility factor (Mf), which is measured by quartz crystal microbalance with dissipation monitoring system. HUVECs adhered on OMe-PRX-PMB surface much more than PRX-PMB and PMB-block-PEG-block-PMB (PEG-PMB) surfaces. These different HUVEC adhesions were correlated with the density of cell-binding site of adsorbed fibronectin. In addition, the alignment of the actin cytoskeleton of adhered HUVECs was strongly suppressed on the PEG-PMB, PRX-PMB, and OMe-PRX-PMB in response to the increased Mf value. Remarkably, the HUVECs adhered on the OMe-PRX-PMB surface with much less actin organization. We concluded that not only the cell adhesion but also the cellular function are regulated by the molecular mobility of the outmost material surfaces. PMID:23796033

  9. Preparation of biointeractive glycoprotein-conjugated hydrogels through metabolic oligosacchalide engineering.

    PubMed

    Iwasaki, Yasuhiko; Matsunaga, Aki; Fujii, Shuetsu

    2014-09-17

    In the current study, synthetic hydrogels containing metabolically engineered glycoproteins of mammalian cells were prepared for the first time and selectin-mediated cell adhesion on the hydrogel was demonstrated. A culture of HL-60 cells was supplemented with an appropriate volume of aqueous solution of N-methacryloyl mannosamine (ManMA) to give a final concentration of 5 mM. The cells were then incubated for 3 days to deliver methacryloyl groups to the glycoproteins of the cells. A transparent hydrogel was formed via redox radical polymerization of methacryloyl functionalized glycoproteins with 2-methacryloyloxyethyl phosphorylcholine and a cross-linker. Conjugation of the glycoproteins into the hydrogel was determined using Coomassie brilliant blue (CBB) and periodic acid-Schiff (PAS) staining. The surface density of P-selectin glycoprotein ligand-1 (PSGL-1) on the hydrogels was also detected using gold-colloid-labeled immunoassay. Finally, selectin-mediated cell adhesion on hydrogels containing glycoproteins was demonstrated. Selectin-mediated cell adhesion is considered an essential step in the progression of various diseases; therefore, hydrogels having glycoproteins could be useful in therapeutic and diagnostic applications.

  10. Alleviation of capsular formations on silicone implants in rats using biomembrane-mimicking coatings.

    PubMed

    Park, Ji Ung; Ham, Jiyeon; Kim, Sukwha; Seo, Ji-Hun; Kim, Sang-Hyon; Lee, Seonju; Min, Hye Jeong; Choi, Sunghyun; Choi, Ra Mi; Kim, Heejin; Oh, Sohee; Hur, Ji An; Choi, Tae Hyun; Lee, Yan

    2014-10-01

    Despite their popular use in breast augmentation and reconstruction surgeries, the limited biocompatibility of silicone implants can induce severe side effects, including capsular contracture - an excessive foreign body reaction that forms a tight and hard fibrous capsule around the implant. This study examines the effects of using biomembrane-mimicking surface coatings to prevent capsular formations on silicone implants. The covalently attached biomembrane-mimicking polymer, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), prevented nonspecific protein adsorption and fibroblast adhesion on the silicone surface. More importantly, in vivo capsule formations around PMPC-grafted silicone implants in rats were significantly thinner and exhibited lower collagen densities and more regular collagen alignments than bare silicone implants. The observed decrease in α-smooth muscle actin also supported the alleviation of capsular formations by the biomembrane-mimicking coating. Decreases in inflammation-related cells, myeloperoxidase and transforming growth factor-β resulted in reduced inflammation in the capsular tissue. The biomembrane-mimicking coatings used on these silicone implants demonstrate great potential for preventing capsular contracture and developing biocompatible materials for various biomedical applications.

  11. Surface Modification of Intraocular Lenses

    PubMed Central

    Huang, Qi; Cheng, George Pak-Man; Chiu, Kin; Wang, Gui-Qin

    2016-01-01

    Objective: This paper aimed to review the current literature on the surface modification of intraocular lenses (IOLs). Data Sources: All articles about surface modification of IOLs published up to 2015 were identified through a literature search on both PubMed and ScienceDirect. Study Selection: The articles on the surface modification of IOLs were included, but those on design modification and surface coating were excluded. Results: Technology of surface modification included plasma, ion beam, layer-by-layer self-assembly, ultraviolet radiation, and ozone. The main molecules introduced into IOLs surface were poly (ethylene glycol), polyhedral oligomeric silsesquioxane, 2-methacryloyloxyethyl phosphorylcholine, TiO2, heparin, F-heparin, titanium, titanium nitride, vinyl pyrrolidone, and inhibitors of cytokines. The surface modification either resulted in a more hydrophobic lens, a more hydrophilic lens, or a lens with a hydrophilic anterior and hydrophobic posterior surface. Advances in research regarding surface modification of IOLs had led to a better biocompatibility in both in vitro and animal experiments. Conclusion: The surface modification is an efficient, convenient, economic and promising method to improve the biocompatibility of IOLs. PMID:26830993

  12. Ultrathin, biomimetic, superhydrophilic layers of cross-linked poly(phosphobetaine) on polyethylene by photografting.

    PubMed

    Yang, Biao; Duan, Xiaobo; Huang, Jijun

    2015-01-27

    Ultrathin, biomimetic, superhydrophilic hydrogel layers, composed of cross-linked poly(2-methacryloyloxyethyl phosphorylcholine), are formed on low-density polyethylene films via ultraviolet-initiated surface graft polymerization. The layers are 19-58 nm thick as revealed by electron microscopy and have three-dimensional networks; the unique network structure, along with its zwitterionic nature, rather than surface roughness results in superhydrophilicity, that is, the water contact angle around 5°. This superhydrophilicity depends on a variety of factors, including the concentration of the monomer and cross-linker, the type of reaction solvents, the reaction and drying time, the intensity of UV light, and the way of measurement of water contact angles. Superhydrophilicity is obtained under a fixed ratio (e.g., 1/1) of the monomer to cross-linker, a reaction time over 120 s, a short drying time, (75%) ethanol as the reaction solvent, and low-intensity UV light, largely because these factors together generate optimal three-dimensional networks of cross-links.

  13. A small diameter, fibrous vascular conduit generated from a poly(ester urethane)urea and phospholipid polymer blend

    PubMed Central

    Hong, Yi; Ye, Sang-Ho; Nieponice, Alejandro; Soletti, Lorenzo; Vorp, David A.; Wagner, William R.

    2009-01-01

    The thrombotic and hyperplastic limitations associated with synthetic small diameter vascular grafts has generated sustained interest in finding a tissue engineering solution for autologous vascular segment generation in situ. One approach is to place a biodegradable scaffold at the site that would provide acute mechanical support while vascular tissue develops. To generate a scaffold that possessed both non-thrombogenic character and mechanical properties appropriate for vascular tissue, a biodegradable poly(ester urethane)urea (PEUU) and non-thromobogenic bioinspired phospholipid polymer, poly(2-methacryloyloxyethyl phosphorylcholine-co-methacryloyloxyethyl butylurethane) (PMBU) were blended at PMBU weight fractions of 0–15% and electrospun to create fibrous scaffolds. The composite scaffolds were flexible with breaking strains exceeding 300%, tensile strengths of 7–10 MPa and compliances of 2.9–4.4 × 10−4 mmHg−1. In vitro platelet deposition on the scaffold surfaces significantly decreased with increasing PMBU content. Rat smooth muscle cell proliferation was also inhibited on PEUU/PMBU blended scaffolds with greater inhibition at higher PMBU content. Fibrous vascular conduits (1.3 mm inner diameter) implanted in the rat abdominal aorta for 8 weeks showed greater patency for grafts with 15% PMBU blending versus PEUU without PMBU (67% versus 40%). A thin neo-intimal layer with endothelial coverage and good anastomotic tissue integration was seen for the PEUU/PMBU vascular grafts. These results are encouraging for further evaluation of this technique in larger diameter applications for longer implant periods. PMID:19181378

  14. The Unusual Conformational Behavior of Polyzwitterionic Brushes in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Mao, Jun; Chen, Wei; Yuan, Guangcui; Yu, Jing; Tirrell, Matthew

    Polyzwitterions constitute a peculiar class of polyelectrolytes, which are electrically neutral polymers containing both a positive and a negative charge on each repeating unit. Surfaces coated with polyzwitterionic brushes are resistant to the nonspecific accumulation of proteins and microorganisms, making them excellent candidates for a wide range of antifouling applications, from biocompatible medical devices to marine coatings. The surrounding environment can dramatically influence the conformational behavior of polyzwitterionic brushes. High-density polyzwitterionic brushes poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) were synthesized using surface initiated atom-transfer radical polymerization, and neutron reflectivity (NR) measurements were performed to investigate the ionic strength dependence of the conformational behaviors of PMPC brushes in monovalent salt solutions. Despite the numerous observations of normal pure polyelectrolyte brushes, NR results showed that both the densely concentrated layer near the substrate surface and the relatively swollen layer into the solution have been observed in different q range in a single neutron reflectivity profile. These results will definitely help us to better understand the relationship between the solution behaviors of zwitterionic polymer brushes and their antifouling properties.

  15. Fabrication of a live cell-containing multilayered polymer hydrogel membrane with micrometer-scale thickness to evaluate pharmaceutical activity.

    PubMed

    Gao, Botao; Konno, Tomohiro; Ishihara, Kazuhiko

    2015-01-01

    We propose a spinning-assisted layer-by-layer method for simple fabrication of a multilayered polymer hydrogel membrane that contains living cells. Hydrogel formation occurred based on the spontaneous cross-linking reaction between two polymers in aqueous solution. A water-soluble 2-methacryloyloxyethyl phosphorylcholine polymer bearing phenylboronic acid groups (PMBV) and poly(vinyl alcohol) (PVA) were used as polymers for hydrogel membrane formation. Changing the number of hydrogel membrane layers, polymer concentration, spinning rate, and processing time for diffusion-dependent gelation of PMBV and PVA facilitated the regulation of the multilayered polymer hydrogel membrane thickness and morphology. We concluded that a multilayered polymer hydrogel membrane prepared using 5.0 wt% PMBV and 5.0 wt% PVA at a spinning rate of 2000 rpm was suitable for precise spatial control of cells in single layers. This multilayered polymer hydrogel membrane was used to prepare a single cell-laden layer to minimize barriers to the diffusion of bioactive compounds while preserving the three-dimensional (3-D) context. The pharmaceutical effects of one of the anticancer agents, paclitaxel, on a human cervical cancer line, HeLa cells, were evaluated in vitro, and the usability of this culture model was demonstrated. PMID:26374190

  16. Effects of Surface Modification and Bulk Geometry on the Biotribological Behavior of Cross-Linked Polyethylene: Wear Testing and Finite Element Analysis.

    PubMed

    Watanabe, Kenichi; Kyomoto, Masayuki; Saiga, Kenichi; Taketomi, Shuji; Inui, Hiroshi; Kadono, Yuho; Takatori, Yoshio; Tanaka, Sakae; Ishihara, Kazuhiko; Moro, Toru

    2015-01-01

    The wear and creep deformation resistances of polymeric orthopedic bearing materials are both important for extending their longevity. In this study, we evaluated the wear and creep deformation resistances, including backside damage, of different polyethylene (PE) materials, namely, conventional PE, cross-linked PE (CLPE), and poly(2-methacryloyloxyethyl phosphorylcholine)- (PMPC-) grafted CLPE, through wear tests and finite element analysis. The gravimetric and volumetric degrees of wear of disks (3 or 6 mm in thickness) of these materials against a cobalt-chromium-molybdenum alloy pin were examined using a multidirectional pin-on-disk tester. Cross-linking and PMPC grafting decreased the gravimetric wear of the PE disks significantly. The volumetric wear at the bearing surface and the volumetric penetration in the backside of the 3-mm thick PE disk were higher than those of the 6-mm thick PE disk, regardless of the bearing material. The geometrical changes induced in the PE disks consisted of creep, because the calculated internal von Mises stress at the bearing side of all disks and that at the backside of the 3-mm thick disks exceeded their actual yield strengths. A highly hydrated bearing surface layer, formed by PMPC grafting, and a cross-linking-strengthened substrate of adequate thickness are essential for increasing the wear and creep deformation resistances.

  17. Diffusion-Induced Hydrophilic Conversion of Polydimethylsiloxane/Block-Type Phospholipid Polymer Hybrid Substrate for Temporal Cell-Adhesive Surface.

    PubMed

    Seo, Ji-Hun; Ishihara, Kazuhiko

    2016-08-24

    In this study, diffusion-induced hydrophobic-hydrophilic conversion of the surface of the cross-linked polydimethylsiloxane (PDMS) substrate was realized by employing a simple swelling-deswelling process of PDMS substrate in a block-type polymer solution with the aim of development of a temporal cell-adhesive substrate. The ABA block-type polymer composed of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) segment and PDMS segment with over 70% of dimethylsiloxane unit composition could be successfully incorporated in the PDMS substrate during the swelling-deswelling process to prepare the PDMS/phospholipid block copolymer hybrid substrates. During the aging process of the PDMS substrate for 4 days in aqueous medium, its surface property changed gradually from hydrophobic to hydrophilic. X-ray photoelectron spectroscopy and atomic force microscopy data provided strong evidence that the time-dependent hydrophilic conversion of the PDMS/block-type phospholipid polymer hybrid substrate was induced by the diffusion of the hydrophilic PMPC segment in the block-type polymer to be tethered on the substrate. During the hydrophilic conversion process, surface-adsorbed fibronectin was gradually desorbed from the substrate surface, and this resulted in successful detachment of two-dimensional connected cell crowds. PMID:27488537

  18. Development of a disposable maglev centrifugal blood pump intended for one-month support in bridge-to-bridge applications: in vitro and initial in vivo evaluation.

    PubMed

    Someya, Takeshi; Kobayashi, Mariko; Waguri, Satoshi; Ushiyama, Tomohiro; Nagaoka, Eiki; Hijikata, Wataru; Shinshi, Tadahiko; Arai, Hirokuni; Takatani, Setsuo

    2009-09-01

    MedTech Dispo, a disposable maglev centrifugal blood pump with two degrees of freedom magnetic suspension and radial magnetic coupling rotation, has been developed for 1-month extracorporeal circulatory support. As the first stage of a two-stage in vivo evaluation, 2-week evaluation of a prototype MedTech Dispo was conducted. In in vitro study, the pump could produce 5 L/min against 800 mm Hg and the normalized index of hemolysis was 0.0054 +/- 0.0008 g/100 L. In in vivo study, the pump, with its blood-contacting surface coated with biocompatible 2-methacryloyloxyethyl phosphorylcholine polymer, was implanted in seven calves in left heart bypass. Pump performance was stable with a mean flow of 4.49 +/- 0.38 L/min at a mean speed of 2072.1 +/- 64.5 rpm. The maglev control revealed its stability in rotor position during normal activity by the calves. During 2 weeks of operation in two calves which survived the intended study period, no thrombus formation was seen inside the pump and levels of plasma free hemoglobin were maintained below 4 mg/dL. Although further experiments are required, the pump demonstrated the potential for sufficient and reliable performance and biocompatibility in meeting the requirements for cardiopulmonary bypass and 1-week circulatory support.

  19. Effects of Surface Modification and Bulk Geometry on the Biotribological Behavior of Cross-Linked Polyethylene: Wear Testing and Finite Element Analysis

    PubMed Central

    Watanabe, Kenichi; Kyomoto, Masayuki; Saiga, Kenichi; Taketomi, Shuji; Inui, Hiroshi; Kadono, Yuho; Takatori, Yoshio; Tanaka, Sakae; Ishihara, Kazuhiko; Moro, Toru

    2015-01-01

    The wear and creep deformation resistances of polymeric orthopedic bearing materials are both important for extending their longevity. In this study, we evaluated the wear and creep deformation resistances, including backside damage, of different polyethylene (PE) materials, namely, conventional PE, cross-linked PE (CLPE), and poly(2-methacryloyloxyethyl phosphorylcholine)- (PMPC-) grafted CLPE, through wear tests and finite element analysis. The gravimetric and volumetric degrees of wear of disks (3 or 6 mm in thickness) of these materials against a cobalt-chromium-molybdenum alloy pin were examined using a multidirectional pin-on-disk tester. Cross-linking and PMPC grafting decreased the gravimetric wear of the PE disks significantly. The volumetric wear at the bearing surface and the volumetric penetration in the backside of the 3-mm thick PE disk were higher than those of the 6-mm thick PE disk, regardless of the bearing material. The geometrical changes induced in the PE disks consisted of creep, because the calculated internal von Mises stress at the bearing side of all disks and that at the backside of the 3-mm thick disks exceeded their actual yield strengths. A highly hydrated bearing surface layer, formed by PMPC grafting, and a cross-linking-strengthened substrate of adequate thickness are essential for increasing the wear and creep deformation resistances. PMID:26583106

  20. Immune response to phosphorylcholine. VIII. The response CBA/N mice to PC-LPS.

    PubMed

    Köhler, H; Smyk, S; Fung, J

    1981-05-01

    CBA/N mice and F1 crosses of CBA/N X BALB/c with the CBA/N phenotype respond to immunization with PC-LPS with a PC-specific and an anti-bridge antibody production. The PC-specific response in defective CBA/N and NBF1 is devoid of the IgG3 subclass and is not T15 idiotype dominant, whereas normal BALB/c and nondefective NBF1 mice express the T15 dominantly in their anti-PC-LPS response. By the criteria of responsiveness to PC-LPS only and the absence of dominant T15 expression, the precursors in defective NBF1 mice for TI-1 antigen PC-LPS can be characterized as being immature B cells similar to those found in neonatal livers of normal BALB/c or in spleens of chronically idiotype suppressed BALB/c mice. This analogy suggests that the developmental defect in CBA/N mice becomes active during the maturation process before selection for clonal dominance occurs and specialization of precursors for the preferred expression of the IgG3 subclass is completed. Alterations in the T cell compartment may contribute to the immature nature of B cells in the sex-linked immunodeficiency of CBA/N mice.

  1. Immune response to phosphorylcholine. IX. Characterization of hybridoma anti-TEPC15 antibodies.

    PubMed

    Wittner, M K; Bach, M A; Köhler, H

    1982-02-01

    Hybridoma antibodies against the PC-binding T15 BALB/c myeloma protein were raised by cell fusion with anti-T15 A/He immune cells. The idiotype specificity of these monoclonal anti-T15 antibodies was determined with a panel of different myeloma and hybridoma immunoglobulins. Two types of anti-T15 antibodies are seen. One reacts with a number of different IgA myeloma proteins and with serum IgA of certain strains of mice; this reactivity most likely is due to allotypy. The other group consists of anti-T15 antibodies that are specific for the T15 idiotype and are therefore termed anti-idiotypic. The bindings of the anti-idiotype antibodies to T15 were specifically inhibited by T15 (F(ab')2 but not by other PC-binding myeloma proteins of different idiotypes. The relationship of the idiotype-specific anti-T15 antibodies to the PC-binding site of the T15 idiotype was analyzed by hapten inhibition of anti-idiotypic binding and by inhibition of BALB/c anti-PC splenic hemolytic plaque formation. Anti-T15 antibodies, for which the T15 binding is inhibited by PC or PC-BSA, also specifically inhibit anti-PC plaque formation. These antibodies are labeled site and near-site anti-idiotypic antibodies. Site and near-site-specific anti-idiotypic antibodies recognize different idiotopes on the T15 molecules. The possible differential biologic activities of these anti-idiotopes in idiotype network regulation is considered.

  2. Ferritin-Polymer Conjugates: Grafting Chemistry and Integration into Nanoscale Assemblies

    SciTech Connect

    Y Hu; D Samanta; S Parelkar; S Hong; Q Wang; T Russell; T Emrick

    2011-12-31

    Controlled free radical polymerization chemistry is used to graft polymer chains to the corona of horse spleen ferritin (HSF) nanocages. Specifically, poly(methacryloyloxyethyl phosphorylcholine) (polyMPC) and poly(PEG methacrylate) (polyPEGMA) chains are grafted onto the nanocages by atom transfer radical polymerization (ATRP), in which the molecular weight of the polymer grafts is controlled by the monomer-to-initiator feed ratio. PolyMPC and polyPEGMA-grafted ferritin show a generally suppressed inclusion into diblock copolymer films relative to native ferritin, and the polymer coating is seen to mask the ferritin nanocages from antibody recognition. The solubility of polyPEGMA-coated ferritin in organic solvents enables its processing with polystyrene-block-poly(ethylene oxide) copolymers, and selective integration into the PEO domains of microphase-separated copolymer structures.

  3. Significant Heterogeneity and Slow Dynamics of the Unfolded Ubiquitin Detected by the Line Confocal Method of Single-Molecule Fluorescence Spectroscopy.

    PubMed

    Saito, Masataka; Kamonprasertsuk, Supawich; Suzuki, Satomi; Nanatani, Kei; Oikawa, Hiroyuki; Kushiro, Keiichiro; Takai, Madoka; Chen, Po-Ting; Chen, Eric H-L; Chen, Rita P-Y; Takahashi, Satoshi

    2016-09-01

    The conformation and dynamics of the unfolded state of ubiquitin doubly labeled regiospecifically with Alexa488 and Alexa647 were investigated using single-molecule fluorescence spectroscopy. The line confocal fluorescence detection system combined with the rapid sample flow enabled the characterization of unfolded proteins at the improved structural and temporal resolutions compared to the conventional single-molecule methods. In the initial stage of the current investigation, however, the single-molecule Förster resonance energy transfer (sm-FRET) data of the labeled ubiquitin were flawed by artifacts caused by the adsorption of samples to the surfaces of the fused-silica flow chip and the sample delivery system. The covalent coating of 2-methacryloyloxyethyl phosphorylcholine polymer to the flow chip surface was found to suppress the artifacts. The sm-FRET measurements based on the coated flow chip demonstrated that the histogram of the sm-FRET efficiencies of ubiquitin at the native condition were narrowly distributed, which is comparable to the probability density function (PDF) expected from the shot noise, demonstrating the structural homogeneity of the native state. In contrast, the histogram of the sm-FRET efficiencies of the unfolded ubiquitin obtained at a time resolution of 100 μs was distributed significantly more broadly than the PDF expected from the shot noise, demonstrating the heterogeneity of the unfolded state conformation. The variety of the sm-FRET efficiencies of the unfolded state remained even after evaluating the moving average of traces with a window size of 1 ms, suggesting that conformational averaging of the heterogeneous conformations mostly occurs in the time domain slower than 1 ms. Local structural heterogeneity around the labeled fluorophores was inferred as the cause of the structural heterogeneity. The heterogeneity and slow dynamics revealed by the line confocal tracking of sm-FRET might be common properties of the unfolded

  4. Significant Heterogeneity and Slow Dynamics of the Unfolded Ubiquitin Detected by the Line Confocal Method of Single-Molecule Fluorescence Spectroscopy.

    PubMed

    Saito, Masataka; Kamonprasertsuk, Supawich; Suzuki, Satomi; Nanatani, Kei; Oikawa, Hiroyuki; Kushiro, Keiichiro; Takai, Madoka; Chen, Po-Ting; Chen, Eric H-L; Chen, Rita P-Y; Takahashi, Satoshi

    2016-09-01

    The conformation and dynamics of the unfolded state of ubiquitin doubly labeled regiospecifically with Alexa488 and Alexa647 were investigated using single-molecule fluorescence spectroscopy. The line confocal fluorescence detection system combined with the rapid sample flow enabled the characterization of unfolded proteins at the improved structural and temporal resolutions compared to the conventional single-molecule methods. In the initial stage of the current investigation, however, the single-molecule Förster resonance energy transfer (sm-FRET) data of the labeled ubiquitin were flawed by artifacts caused by the adsorption of samples to the surfaces of the fused-silica flow chip and the sample delivery system. The covalent coating of 2-methacryloyloxyethyl phosphorylcholine polymer to the flow chip surface was found to suppress the artifacts. The sm-FRET measurements based on the coated flow chip demonstrated that the histogram of the sm-FRET efficiencies of ubiquitin at the native condition were narrowly distributed, which is comparable to the probability density function (PDF) expected from the shot noise, demonstrating the structural homogeneity of the native state. In contrast, the histogram of the sm-FRET efficiencies of the unfolded ubiquitin obtained at a time resolution of 100 μs was distributed significantly more broadly than the PDF expected from the shot noise, demonstrating the heterogeneity of the unfolded state conformation. The variety of the sm-FRET efficiencies of the unfolded state remained even after evaluating the moving average of traces with a window size of 1 ms, suggesting that conformational averaging of the heterogeneous conformations mostly occurs in the time domain slower than 1 ms. Local structural heterogeneity around the labeled fluorophores was inferred as the cause of the structural heterogeneity. The heterogeneity and slow dynamics revealed by the line confocal tracking of sm-FRET might be common properties of the unfolded

  5. Development of a disposable magnetically levitated centrifugal blood pump (MedTech Dispo) intended for bridge-to-bridge applications--two-week in vivo evaluation.

    PubMed

    Nagaoka, Eiki; Someya, Takeshi; Kitao, Takashi; Kimura, Taro; Ushiyama, Tomohiro; Hijikata, Wataru; Shinshi, Tadahiko; Arai, Hirokuni; Takatani, Setsuo

    2010-09-01

    Last year, we reported in vitro pump performance, low hemolytic characteristics, and initial in vivo evaluation of a disposable, magnetically levitated centrifugal blood pump, MedTech Dispo. As the first phase of the two-stage in vivo studies, in this study we have carried out a 2-week in vivo evaluation in calves. Male Holstein calves with body weight of 62.4–92.2 kg were used. Under general anesthesia, a left heart bypass with a MedTech Dispo pump was instituted between the left atrium and the descending aorta via left thoracotomy. Blood-contacting surface of the pump was coated with a 2-methacryloyloxyethyl phosphorylcholine polymer. Post-operatively, with activated clotting time controlled at 180–220 s using heparin and bypass flow rate maintained at 50 mL/kg/min, plasma-free hemoglobin (Hb), coagulation, and major organ functions were analyzed for evaluation of biocompatibility. The animals were electively sacrificed at the completion of the 2-week study to evaluate presence of thrombus inside the pump,together with an examination of major organs. To date, we have done 13 MedTech Dispo implantations, of which three went successfully for a 2-week duration. In these three cases, the pump produced a fairly constant flow of 50 mL/Kg/min. Neurological disorders and any symptoms of thromboembolism were not seen. Levels of plasma-free Hb were maintained very low. Major organ functions remained within normal ranges. Autopsy results revealed no thrombus formation inside the pump. In the last six cases, calves suffered from severe pneumonia and they were excluded from the analysis. The MedTech Dispo pump demonstrated sufficient pump performance and biocompatibility to meet requirements for 1-week circulatory support. The second phase (2-month in vivo study) is under way to prove the safety and efficacy of MedTech Dispo for 1-month applications.

  6. Comprehensive Genetic Analysis of Early Host Body Reactions to the Bioactive and Bio-Inert Porous Scaffolds

    PubMed Central

    Ehashi, Tomo; Takemura, Taro; Hanagata, Nobutaka; Minowa, Takashi; Kobayashi, Hisatoshi; Ishihara, Kazuhiko; Yamaoka, Tetsuji

    2014-01-01

    To design scaffolds for tissue regeneration, details of the host body reaction to the scaffolds must be studied. Host body reactions have been investigated mainly by immunohistological observations for a long time. Despite of recent dramatic development in genetic analysis technologies, genetically comprehensive changes in host body reactions are hardly studied. There is no information about host body reactions that can predict successful tissue regeneration in the future. In the present study, porous polyethylene scaffolds were coated with bioactive collagen or bio-inert poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB) and were implanted subcutaneously and compared the host body reaction to those substrates by normalizing the result using control non-coat polyethylene scaffold. The comprehensive analyses of early host body reactions to the scaffolds were carried out using a DNA microarray assay. Within numerous genes which were expressed differently among these scaffolds, particular genes related to inflammation, wound healing, and angiogenesis were focused upon. Interleukin (IL)-1β and IL-10 are important cytokines in tissue responses to biomaterials because IL-1β promotes both inflammation and wound healing and IL-10 suppresses both of them. IL-1β was up-regulated in the collagen-coated scaffold. Collagen-specifically up-regulated genes contained both M1- and M2-macrophage-related genes. Marked vessel formation in the collagen-coated scaffold was occurred in accordance with the up-regulation of many angiogenesis-inducible factors. The DNA microarray assay provided global information regarding the host body reaction. Interestingly, several up-regulated genes were detected even on the very bio-inert PMB-coated surfaces and those genes include inflammation-suppressive and wound healing-suppressive IL-10, suggesting that not only active tissue response but also the inert response may relates to these genetic regulations. PMID:24454803

  7. Multivariate economic performance assessment of an MPC controlled electric arc furnace.

    PubMed

    Wei, Donghui; Craig, Ian K; Bauer, Margret

    2007-06-01

    Economic performance is very important to advanced process control projects investigating whether the investment of control technology is worthwhile. In this paper economic performance assessment of a simulated electric arc furnace is conducted. The dependence of controlled variables and the corresponding economic impact are highlighted.

  8. VizieR Online Data Catalog: 100-Mpc-scale structures of radio galaxies (Brand+, 2003)

    NASA Astrophysics Data System (ADS)

    Brand, K.; Rawlings, S.; Hill, G. J.; Lacy, M.; Mitchell, E.; Tufts, J.

    2003-09-01

    The TONS08 survey is in one of the areas covered by the 7CRS (Willott et al., 2002MNRAS.335.1120W) and the TexOx-1000 (TOOT) survey (Hill & Rawlings, 2002, ASP Conf. Proc., Leiden. Astron. Soc. Pac., San Francisco). It covers the region 08h 10m 20s <= RA <= 08h 29m 20s and 24{deg} 10' 00" <= DE<= 29{deg} 30' 00" (J2000). Unlike the low-frequency-selected 7CRS and TOOT, the TONS08 survey is selected at 1.4GHz from the NVSS. (1 data file).

  9. Gaia16amw is a previously missed, old core-collapse SN at 20 Mpc

    NASA Astrophysics Data System (ADS)

    Fraser, M.; Mattila, S.; Hodgkin, S. T.; Harrison, D.; Wyrzykowski, L.; Kostrzewa-Rutkowska, Z.; Blagorodnova, N.

    2016-05-01

    We obtained a low resolution spectrum of Gaia16amw using the robotic Liverpool Telescope + SPRAT (R~350; 400-800 nm) on the night of 2016 May 17. The spectrum reveals broad [O I] emission at 6300,6364, and [Ca II] at 7291,7324.

  10. Robust MPC for a non-linear system - a neural network approach

    NASA Astrophysics Data System (ADS)

    Luzar, Marcel; Witczak, Marcin

    2014-12-01

    The aim of the paper is to design a robust actuator fault-tolerant control for a non-linear discrete-time system. Considered system is described by the Linear Parameter-Varying (LPV) model obtained with recurrent neural network. The proposed solution starts with a discretetime quasi-LPV system identification using artificial neural network. Subsequently, the robust controller is proposed, which does not take into account actuator saturation level and deals with the previously estimated faults. To check if the compensation problem is feasible, the robust invariant set is employed, which takes into account actuator saturation level. When the current state does not belong to the set, then a predictive control is performed in order to make such set larger. This makes it possible to increase the domain of attraction, which makes the proposed methodology an efficient solution for the fault-tolerant control. The last part of the paper presents an experimental results regarding wind turbines.

  11. MPC and A enhancements for the Murmansk shipping company icebreaker fleet

    SciTech Connect

    Bartoch, O; Bondarev, N; Caskey, D; Forehand, M; Lambert, D; Maltsev, V; O'Brien, M: Gardner, B; Tittemore, G

    1999-07-06

    The United States and the Russian Federation entered into a cooperative agreement in 1994 that resulted in a nuclear weapons non-proliferation program within the United States (US) Department of Energy (DOE) currently known as the Russia/Newly Independent States (NIS) Nuclear Material Security Task Force. In 1996, a project was initiated with the Murmansk Shipping Company to enhance material protection, control, and accounting of highly enriched nuclear fuel assemblies used for the Icebreaker Fleet. The commissioning ceremony for this project is scheduled for August 1999. This paper describes the physical protection, material control, and accounting measures implemented for the Icebreaker Fleet.

  12. 75 FR 42339 - List of Approved Spent Fuel Storage Casks: NAC-MPC System, Revision 6

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ... closure ring for redundant closure into the Transportable Storage Canister (TSC) design; modification of the TSC and basket design to accommodate up to 68 La Crosse Boiling Water Reactor spent fuel... undamaged and damaged fuel assemblies; minor design modifications to the Vertical Concrete Cask...

  13. A unique isolated dwarf spheroidal galaxy at D = 1.9 Mpc

    NASA Astrophysics Data System (ADS)

    Makarov, Dmitry; Makarova, Lidia; Sharina, Margarita; Uklein, Roman; Tikhonov, Anton; Guhathakurta, Puragra; Kirby, Evan; Terekhova, Natalya

    2012-09-01

    We present a photometric and spectroscopic study of the unique isolated nearby dwarf spheroidal (dSph) galaxy KKR 25. The galaxy was resolved into stars with Hubble Space Telescope/Wide Field Planetary Camera 2 including old red giant branch and red clump. We have constructed a model of the resolved stellar populations and measured the star formation rate and metallicity as a function of time. The main star formation activity period occurred about 12.6-13.7 Gyr ago. These stars are mostly metal poor, with a mean metallicity [Fe/H] ˜ -1 to -1.6 dex. About 60 per cent of the total stellar mass was formed during this event. There are indications of intermediate-age star formation in KKR 25 between 1 and 4 Gyr with no significant signs of metal enrichment for these stars. Long-slit spectroscopy was carried out using the Russian 6-m telescope of the integrated starlight and bright individual objects in the galaxy. We have discovered a planetary nebula (PN) in KKR 25. This is the first known PN in a dSph galaxy outside the Local Group. We have measured its oxygen abundance 12 + log (O/H) = 7.60 ± 0.07 dex and a radial velocity Vh = -79 km s-1. We have analysed the stellar density distribution in the galaxy body. The galaxy has an exponential surface brightness profile with a central light depression. We discuss the evolutionary status of KKR 25, which belongs to a rare class of very isolated dwarf galaxies with spheroidal morphology.

  14. Prediction-driven coordination of distributed MPC controllers for linear unconstrained dynamic systems

    NASA Astrophysics Data System (ADS)

    Marcos, Natalia I.; Fraser Forbes, J.; Guay, Martin

    2014-08-01

    In this paper, a coordinated-distributed model predictive control (CDMPC) scheme is proposed for discrete-time, linear, unconstrained dynamic systems. The proposed control scheme incorporates a coordinator that communicates with local CDMPC controllers. With the assistance of the coordinator, the local CDMPC controllers adjust their calculated control actions iteratively to achieve the optimal plant-wide operation. A 'prediction-driven' algorithm is used to coordinate the local CDMPC controllers. Convergence of the prediction-driven algorithm is shown along with a stability analysis of the closed-loop system under coordinated-distributed control. A simulation example is used to illustrate the effectiveness of the proposed coordinated-distributed control scheme.

  15. A distributed model predictive control (MPC) fault reconfiguration strategy for formation flying satellites

    NASA Astrophysics Data System (ADS)

    Esfahani, N. R.; Khorasani, K.

    2016-05-01

    In this paper, an active distributed (also referred to as semi-decentralised) fault recovery control scheme is proposed that employs inaccurate and unreliable fault information into a model-predictive-control-based design. The objective is to compensate for the identified actuator faults that are subject to uncertainties and detection time delays, in the attitude control subsystems of formation flying satellites. The proposed distributed fault recovery scheme is developed through a two-level hierarchical framework. In the first level, or the agent level, the fault is recovered locally to maintain as much as possible the design specifications, feasibility, and tracking performance of all the agents. In the second level, or the formation level, the recovery is carried out by enhancing the entire team performance. The fault recovery performance of our proposed distributed (semi-decentralised) scheme is compared with two other alternative schemes, namely the centralised and the decentralised fault recovery schemes. It is shown that the distributed (semi-decentralised) fault recovery scheme satisfies the recovery design specifications and also imposes lower fault compensation control effort cost and communication bandwidth requirements as compared to the centralised scheme. Our proposed distributed (semi-decentralised) scheme also outperforms the achievable performance capabilities of the decentralised scheme. Simulation results corresponding to a network of four precision formation flight satellites are also provided to demonstrate and illustrate the advantages of our proposed distributed (semi-decentralised) fault recovery strategy.

  16. Preparation of biocompatible zwitterionic block copolymer vesicles by direct dissolution in water and subsequent silicification within their membranes.

    PubMed

    Du, Jianzhong; Armes, Steven P

    2009-08-18

    The facile preparation of block copolymer vesicles in pure water and their subsequent stabilization by sol-gel chemistry within the vesicle membrane is described. An amphiphilic biocompatible zwitterionic diblock copolymer, poly(epsilon-caprolactone)-block-poly[2-(methacryloyloxy)ethyl phosphorylcholine], PCL-b-PMPC, was synthesized by (i) ring-opening polymerization of epsilon-caprolactone, (ii) end-group modification by esterification, and (iii) atom transfer radical polymerization (ATRP) of 2-(methacryloyloxy)ethyl phosphorylcholine (MPC). Unusually, block copolymer vesicles were formed instantly upon adding dried copolymer powder into hot water without using organic cosolvents, pH adjustment, or even stirring. This protocol is much more convenient than previously reported methods such as solvent-switching and film rehydration. The PCL vesicle membrane is moderately hydrophobic and fully biodegradable. The highly biocompatible PMPC chains are expressed on both the exterior and interior surface of the membrane. These vesicles can be stabilized by aqueous sol-gel chemistry within the hydrophobic PCL vesicle membrane by using tetramethyl orthosilicate (TMOS) as the silica precursor in the absence of any external catalyst. The water-immiscible TMOS precursor is initially solubilized within the hydrophobic membrane prior to its in situ transformation into silica. The vesicles were characterized by 1H NMR spectroscopy, atomic force microscopy, transmission electron microscopy, and dynamic light scattering.

  17. Microwave assisted preparation of magnesium phosphate cement (MPC) for orthopedic applications: a novel solution to the exothermicity problem.

    PubMed

    Zhou, Huan; Agarwal, Anand K; Goel, Vijay K; Bhaduri, Sarit B

    2013-10-01

    There are two interesting features of this paper. First, we report herein a novel microwave assisted technique to prepare phosphate based orthopedic cements, which do not generate any exothermicity during setting. The exothermic reactions during the setting of phosphate cements can cause tissue damage during the administration of injectable compositions and hence a solution to the problem is sought via microwave processing. This solution through microwave exposure is based on a phenomenon that microwave irradiation can remove all water molecules from the alkaline earth phosphate cement paste to temporarily stop the setting reaction while preserving the active precursor phase in the formulation. The setting reaction can be initiated a second time by adding aqueous medium, but without any exothermicity. Second, a special emphasis is placed on using this technique to synthesize magnesium phosphate cements for orthopedic applications with their enhanced mechanical properties and possible uses as drug and protein delivery vehicles. The as-synthesized cements were evaluated for the occurrences of exothermic reactions, setting times, presence of Mg-phosphate phases, compressive strength levels, microstructural features before and after soaking in (simulated body fluid) SBF, and in vitro cytocompatibility responses. The major results show that exposure to microwaves solves the exothermicity problem, while simultaneously improving the mechanical performance of hardened cements and reducing the setting times. As expected, the cements are also found to be cytocompatible. Finally, it is observed that this process can be applied to calcium phosphate cements system (CPCs) as well. Based on the results, this microwave exposure provides a novel technique for the processing of injectable phosphate bone cement compositions.

  18. Microwave assisted preparation of magnesium phosphate cement (MPC) for orthopedic applications: a novel solution to the exothermicity problem.

    PubMed

    Zhou, Huan; Agarwal, Anand K; Goel, Vijay K; Bhaduri, Sarit B

    2013-10-01

    There are two interesting features of this paper. First, we report herein a novel microwave assisted technique to prepare phosphate based orthopedic cements, which do not generate any exothermicity during setting. The exothermic reactions during the setting of phosphate cements can cause tissue damage during the administration of injectable compositions and hence a solution to the problem is sought via microwave processing. This solution through microwave exposure is based on a phenomenon that microwave irradiation can remove all water molecules from the alkaline earth phosphate cement paste to temporarily stop the setting reaction while preserving the active precursor phase in the formulation. The setting reaction can be initiated a second time by adding aqueous medium, but without any exothermicity. Second, a special emphasis is placed on using this technique to synthesize magnesium phosphate cements for orthopedic applications with their enhanced mechanical properties and possible uses as drug and protein delivery vehicles. The as-synthesized cements were evaluated for the occurrences of exothermic reactions, setting times, presence of Mg-phosphate phases, compressive strength levels, microstructural features before and after soaking in (simulated body fluid) SBF, and in vitro cytocompatibility responses. The major results show that exposure to microwaves solves the exothermicity problem, while simultaneously improving the mechanical performance of hardened cements and reducing the setting times. As expected, the cements are also found to be cytocompatible. Finally, it is observed that this process can be applied to calcium phosphate cements system (CPCs) as well. Based on the results, this microwave exposure provides a novel technique for the processing of injectable phosphate bone cement compositions. PMID:23910345

  19. 75 FR 57841 - List of Approved Spent Fuel Storage Casks: NAC-MPC System, Revision 6, Confirmation of Effective...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... INFORMATION CONTACT: Jayne M. McCausland, Office of Federal and State Materials and Environmental Management... #0; Federal Register #0; #0; #0;This section of the FEDERAL REGISTER contains regulatory documents #0;having general applicability and legal effect, most of which are keyed #0;to and codified in the Code...

  20. Rantiga Osservatorio, Tincana (MPC-D03): Observations and searching for small Solar System bodies using a remotely controlled telescope

    NASA Astrophysics Data System (ADS)

    Zolnowski, M.; Kusiak, M.

    2014-07-01

    Rantiga Osservatorio is the first Polish project aimed at discovering and observing small solar-system objects, including near-Earth objects and comets. The observatory officially started in March 2012, as a result of cooperation between two amateur astronomers: Michal Zolnowski and Michal Kusiak. Subsequently, our station received official designation D03 assigned by the IAU's Minor Planet Center. The equipment is installed in northern Italy, on the border between Emilia-Romagna and Tuscany, in the small village of Tincana at an altitude of 643 m. The heart of the observatory is a 0.4-meter reflector f/3.8, mounted on Paramount ME and CCD camera SBIG STX-16803. The equipment is controlled by an industrial computer connected to the internet, and software allowing for automation and remote control of the telescope from Poland. It is also the first Polish amateur observatory which has been used for the discoveries of potentially new asteroids since 1949. Between 2012 and 2013, Rantiga Osservatorio made it possible to submit over 13,000 astrometric measurements of 3,500 asteroids, and we also reported 1,151 candidates for potentially unknown objects. During our presentation, we would like to introduce details of design and several enhancements to allow a convenient and safe way to control an observing session from anywhere in the world using a smartphone.

  1. SPIRITS16tn: Spitzer Discovery of a Possible Supernova in Messier 108 at 8.8 Mpc

    NASA Astrophysics Data System (ADS)

    Jencson, J. E.; Adams, S.; Kasliwal, M. M.; Tinyanont, S.; Cao, Y.; Prince, T.; Lau, R. M.; Perley, D.; Masci, F.; Helou, G.; Armus, L.; Surace, J.; Dyk, S. D. Van; Cody, A.; Boyer, M. L.; Khan, R.; Bond, H. E.; Monson, A.; Bally, J.; Levesque, E.; Williams, R.; Whitelock, P. A.; Mohamed, S.; Gehrz, R. D.; Amodeo, S.; Shenoy, D.; Carlon, R.; Cass, A.; Corgan, D.; Dykhoff, D.; Faella, J.; Gburek, T.; Smith, N.; Cantiello, M.; Langer, N.; Ofek, E.; Johansson, J.; Parthasarathy, M.; Fox, O.; Hsiao, E.; Phillips, M.; Morrell, N.; Gonzalez, C.; Contreras, C.

    2016-08-01

    We report the discovery of a possible, nearby supernova in Messier 108 (NGC 3556) designated as SPIRITS16tn. This luminous infrared transient was discovered during ongoing monitoring of nearby galaxies with the Spitzer InfraRed Intensive Transients Survey (SPIRITS; ATEL#6644, Kasliwal et al. 2016, ApJ submitted), using the Infrared Array Camera on the Spitzer Space Telescope.

  2. Spontaneous Packaging and Hypothermic Storage of Mammalian Cells with a Cell-Membrane-Mimetic Polymer Hydrogel in a Microchip.

    PubMed

    Xu, Yan; Mawatari, Kazuma; Konno, Tomohiro; Kitamori, Takehiko; Ishihara, Kazuhiko

    2015-10-21

    Currently, continuous culture/passage and cryopreservation are two major, well-established methods to provide cultivated mammalian cells for experiments in laboratories. Due to the lack of flexibility, however, both laboratory-oriented methods are unable to meet the need for rapidly growing cell-based applications, which require cell supply in a variety of occasions outside of laboratories. Herein, we report spontaneous packaging and hypothermic storage of mammalian cells under refrigerated (4 °C) and ambient conditions (25 °C) using a cell-membrane-mimetic methacryloyloxyethyl phosphorylcholine (MPC) polymer hydrogel incorporated within a glass microchip. Its capability for hypothermic storage of cells was comparatively evaluated over 16 days. The results reveal that the cytocompatible MPC polymer hydrogel, in combination with the microchip structure, enabled hypothermic storage of cells with quite high viability, high intracellular esterase activity, maintained cell membrane integrity, and small morphological change for more than 1 week at 4 °C and at least 4 days at 25 °C. Furthermore, the stored cells could be released from the hydrogel and exhibited the ability to adhere to a surface and achieve confluence under standard cell culture conditions. Both hypothermic storage conditions are ordinary flexible conditions which can be easily established in places outside of laboratories. Therefore, cell packaging and storage using the hydrogel incorporated within the microchip would be a promising miniature and portable solution for flexible supply and delivery of small amounts of cells from bench to bedside.

  3. Polyelectrolyte brushes: a novel stable lubrication system in aqueous conditions.

    PubMed

    Kobayashi, Motoyasu; Terada, Masami; Takahara, Atsushi

    2012-01-01

    Surface-initiated controlled radical copolymerizations of 2-dimethylaminoethyl methacrylate (DMAEMA), 2-(methacryloyloxy)ethyl phosphorylcholine (MPC), 2-(methacryloyloxy)ethyltrimethylammonium chloride) (MTAC), and 3-sulfopropyl methacrylate potassium salt (SPMK) were carried out on a silicon wafer and glass ball to prepare polyelectrolyte brushes with excellent water wettability. The frictional coefficient of the polymer brushes was recorded on a ball-on-plate type tribometer by linear reciprocating motion of the brush specimen at a selected velocity of 1.5 x 10(-3) m s-1 under a normal load of 0.49 N applied to the stationary glass ball (d = 10 mm) at 298 K. The poly(DMAEMA-co-MPC) brush partially cross-linked by bis(2-iodoethoxy)ethane maintained a relatively low friction coefficient around 0.13 under humid air (RH > 75%) even after 200 friction cycles. The poly(SPMK) brush revealed an extremely low friction coefficient around 0.01 even after 450 friction cycles. We supposed that the abrasion of the brush was prevented owing to the good affinity of the poly(SPMK) brush for water forming a water lubrication layer, and electrostatic repulsive interactions among the brushes bearing sulfonic acid groups. Furthermore, the poly(SPMK-co-MTAC) brush with a chemically cross-linked structure showed a stable low friction coefficient in water even after 1400 friction cycles under a normal load of 139 MPa, indicating that the cross-linking structure improved the wear resistance of the brush layer.

  4. Spontaneous Packaging and Hypothermic Storage of Mammalian Cells with a Cell-Membrane-Mimetic Polymer Hydrogel in a Microchip.

    PubMed

    Xu, Yan; Mawatari, Kazuma; Konno, Tomohiro; Kitamori, Takehiko; Ishihara, Kazuhiko

    2015-10-21

    Currently, continuous culture/passage and cryopreservation are two major, well-established methods to provide cultivated mammalian cells for experiments in laboratories. Due to the lack of flexibility, however, both laboratory-oriented methods are unable to meet the need for rapidly growing cell-based applications, which require cell supply in a variety of occasions outside of laboratories. Herein, we report spontaneous packaging and hypothermic storage of mammalian cells under refrigerated (4 °C) and ambient conditions (25 °C) using a cell-membrane-mimetic methacryloyloxyethyl phosphorylcholine (MPC) polymer hydrogel incorporated within a glass microchip. Its capability for hypothermic storage of cells was comparatively evaluated over 16 days. The results reveal that the cytocompatible MPC polymer hydrogel, in combination with the microchip structure, enabled hypothermic storage of cells with quite high viability, high intracellular esterase activity, maintained cell membrane integrity, and small morphological change for more than 1 week at 4 °C and at least 4 days at 25 °C. Furthermore, the stored cells could be released from the hydrogel and exhibited the ability to adhere to a surface and achieve confluence under standard cell culture conditions. Both hypothermic storage conditions are ordinary flexible conditions which can be easily established in places outside of laboratories. Therefore, cell packaging and storage using the hydrogel incorporated within the microchip would be a promising miniature and portable solution for flexible supply and delivery of small amounts of cells from bench to bedside. PMID:26436637

  5. Einstein Observatory SSS and MPC observations of the complex X-ray spectra of Seyfert galaxies. [Solid State Spectrometer and Monitor Proportional Counter

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Weaver, K. A.; Mushotzky, R. F.; Holt, S. S.; Madejski, G. M.

    1991-01-01

    The X-ray spectra of 25 Seyfert galaxies measured with the Solid State Spectrometer on the Einstein Observatory have been investigated. This new investigation utilizes simultaneous data from the Monitor Proportional Counter, and automatic correction for systematic effects in the Solid State Spectrometer which were previously handled subjectively. It is found that the best-fit single-power-law indices generally agree with those previously reported, but that soft excesses of some form are inferred for about 48 percent of the sources. One possible explanation of the soft excess emission is a blend of soft X-ray lines, centered around 0.8 keV. The implications of these results for accretion disk models are discussed.

  6. Polyelectrolyte brushes: a novel stable lubrication system in aqueous conditions.

    PubMed

    Kobayashi, Motoyasu; Terada, Masami; Takahara, Atsushi

    2012-01-01

    Surface-initiated controlled radical copolymerizations of 2-dimethylaminoethyl methacrylate (DMAEMA), 2-(methacryloyloxy)ethyl phosphorylcholine (MPC), 2-(methacryloyloxy)ethyltrimethylammonium chloride) (MTAC), and 3-sulfopropyl methacrylate potassium salt (SPMK) were carried out on a silicon wafer and glass ball to prepare polyelectrolyte brushes with excellent water wettability. The frictional coefficient of the polymer brushes was recorded on a ball-on-plate type tribometer by linear reciprocating motion of the brush specimen at a selected velocity of 1.5 x 10(-3) m s-1 under a normal load of 0.49 N applied to the stationary glass ball (d = 10 mm) at 298 K. The poly(DMAEMA-co-MPC) brush partially cross-linked by bis(2-iodoethoxy)ethane maintained a relatively low friction coefficient around 0.13 under humid air (RH > 75%) even after 200 friction cycles. The poly(SPMK) brush revealed an extremely low friction coefficient around 0.01 even after 450 friction cycles. We supposed that the abrasion of the brush was prevented owing to the good affinity of the poly(SPMK) brush for water forming a water lubrication layer, and electrostatic repulsive interactions among the brushes bearing sulfonic acid groups. Furthermore, the poly(SPMK-co-MTAC) brush with a chemically cross-linked structure showed a stable low friction coefficient in water even after 1400 friction cycles under a normal load of 139 MPa, indicating that the cross-linking structure improved the wear resistance of the brush layer. PMID:23285641

  7. Blending in with the Body.

    ERIC Educational Resources Information Center

    Lewis, Andrew L.; Driver, Mike

    2002-01-01

    Explains the basics of the biocompatibility of products that are used to replace body parts and mimic the biology of the human body. Describes where phosphorylcholine coating technology is used commercially in the body and discuses the use of phosphorylcholine in lenses and blood. (Contains 12 references.) (YDS)

  8. Hollow Fiber Membrane Modification with Functional Zwitterionic Macromolecules for Improved Thromboresistance in Artificial Lungs

    PubMed Central

    Ye, Sang-Ho; Arazawa, David T.; Zhu, Yang; Shankarraman, Venkat; Malkin, Alexander D.; Kimmel, Jeremy D.; Gamble, Lara J.; Ishihara, Kazuhiko; Federspiel, William J.; Wagner, William R.

    2015-01-01

    Respiratory assist devices seek optimized performance in terms of gas transfer efficiency and thromboresistance to minimize device size and reduce complications associated with inadequate blood biocompatibility. The exchange of gas with blood occurs at the surface of the hollow fiber membranes (HFMs) used in these devices. In this study, three zwitterionic macromolecules were attached to HFM surfaces to putatively improve thromboresistance: (1) carboxyl-functionalized zwitterionic phosphorylcholine (PC) and (2) sulfobetaine (SB) macromolecules (mPC or mSB-COOH) prepared by a simple thiol-ene radical polymerization and (3) a low-molecular weight sulfobetaine (SB)-co-methacrylic acid (MA) block copolymer (SBMAb-COOH) prepared by reversible addition–fragmentation chain transfer (RAFT) polymerization. Each macromolecule type was covalently immobilized on an aminated commercial HFM (Celg-A) by a condensation reaction, and HFM surface composition changes were analyzed by X-ray photoelectron spectroscopy. Thrombotic deposition on the HFMs was investigated after contact with ovine blood in vitro. The removal of CO2 by the HFMs was also evaluated using a model respiratory assistance device. The HFMs conjugated with zwitterionic macromolecules (Celg-mPC, Celg-mSB, and Celg-SBMAb) showed expected increases in phosphorus or sulfur surface content. Celg-mPC and Celg-SBMAb experienced rates of platelet deposition significantly lower than those of unmodified (Celg-A, >95% reduction) and heparin-coated (>88% reduction) control HFMs. Smaller reductions were seen with Celg-mSB. The CO2 removal rate for Celg-SBMAb HFMs remained comparable to that of Celg-A. In contrast, the rate of removal of CO2 for heparin-coated HFMs was significantly reduced. The results demonstrate a promising approach to modifying HFMs using zwitterionic macromolecules for artificial lung devices with improved thromboresistance without degradation of gas transfer. PMID:25669307

  9. Hollow fiber membrane modification with functional zwitterionic macromolecules for improved thromboresistance in artificial lungs.

    PubMed

    Ye, Sang-Ho; Arazawa, David T; Zhu, Yang; Shankarraman, Venkat; Malkin, Alexander D; Kimmel, Jeremy D; Gamble, Lara J; Ishihara, Kazuhiko; Federspiel, William J; Wagner, William R

    2015-03-01

    Respiratory assist devices seek optimized performance in terms of gas transfer efficiency and thromboresistance to minimize device size and reduce complications associated with inadequate blood biocompatibility. The exchange of gas with blood occurs at the surface of the hollow fiber membranes (HFMs) used in these devices. In this study, three zwitterionic macromolecules were attached to HFM surfaces to putatively improve thromboresistance: (1) carboxyl-functionalized zwitterionic phosphorylcholine (PC) and (2) sulfobetaine (SB) macromolecules (mPC or mSB-COOH) prepared by a simple thiol-ene radical polymerization and (3) a low-molecular weight sulfobetaine (SB)-co-methacrylic acid (MA) block copolymer (SBMAb-COOH) prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization. Each macromolecule type was covalently immobilized on an aminated commercial HFM (Celg-A) by a condensation reaction, and HFM surface composition changes were analyzed by X-ray photoelectron spectroscopy. Thrombotic deposition on the HFMs was investigated after contact with ovine blood in vitro. The removal of CO2 by the HFMs was also evaluated using a model respiratory assistance device. The HFMs conjugated with zwitterionic macromolecules (Celg-mPC, Celg-mSB, and Celg-SBMAb) showed expected increases in phosphorus or sulfur surface content. Celg-mPC and Celg-SBMAb experienced rates of platelet deposition significantly lower than those of unmodified (Celg-A, >95% reduction) and heparin-coated (>88% reduction) control HFMs. Smaller reductions were seen with Celg-mSB. The CO2 removal rate for Celg-SBMAb HFMs remained comparable to that of Celg-A. In contrast, the rate of removal of CO2 for heparin-coated HFMs was significantly reduced. The results demonstrate a promising approach to modifying HFMs using zwitterionic macromolecules for artificial lung devices with improved thromboresistance without degradation of gas transfer. PMID:25669307

  10. Hollow fiber membrane modification with functional zwitterionic macromolecules for improved thromboresistance in artificial lungs.

    PubMed

    Ye, Sang-Ho; Arazawa, David T; Zhu, Yang; Shankarraman, Venkat; Malkin, Alexander D; Kimmel, Jeremy D; Gamble, Lara J; Ishihara, Kazuhiko; Federspiel, William J; Wagner, William R

    2015-03-01

    Respiratory assist devices seek optimized performance in terms of gas transfer efficiency and thromboresistance to minimize device size and reduce complications associated with inadequate blood biocompatibility. The exchange of gas with blood occurs at the surface of the hollow fiber membranes (HFMs) used in these devices. In this study, three zwitterionic macromolecules were attached to HFM surfaces to putatively improve thromboresistance: (1) carboxyl-functionalized zwitterionic phosphorylcholine (PC) and (2) sulfobetaine (SB) macromolecules (mPC or mSB-COOH) prepared by a simple thiol-ene radical polymerization and (3) a low-molecular weight sulfobetaine (SB)-co-methacrylic acid (MA) block copolymer (SBMAb-COOH) prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization. Each macromolecule type was covalently immobilized on an aminated commercial HFM (Celg-A) by a condensation reaction, and HFM surface composition changes were analyzed by X-ray photoelectron spectroscopy. Thrombotic deposition on the HFMs was investigated after contact with ovine blood in vitro. The removal of CO2 by the HFMs was also evaluated using a model respiratory assistance device. The HFMs conjugated with zwitterionic macromolecules (Celg-mPC, Celg-mSB, and Celg-SBMAb) showed expected increases in phosphorus or sulfur surface content. Celg-mPC and Celg-SBMAb experienced rates of platelet deposition significantly lower than those of unmodified (Celg-A, >95% reduction) and heparin-coated (>88% reduction) control HFMs. Smaller reductions were seen with Celg-mSB. The CO2 removal rate for Celg-SBMAb HFMs remained comparable to that of Celg-A. In contrast, the rate of removal of CO2 for heparin-coated HFMs was significantly reduced. The results demonstrate a promising approach to modifying HFMs using zwitterionic macromolecules for artificial lung devices with improved thromboresistance without degradation of gas transfer.

  11. Antimicrobial Graft Copolymer Gels.

    PubMed

    Harvey, Amanda C; Madsen, Jeppe; Douglas, C W Ian; MacNeil, Sheila; Armes, Steven P

    2016-08-01

    In view of the growing worldwide rise in microbial resistance, there is considerable interest in designing new antimicrobial copolymers. The aim of the current study was to investigate the relationship between antimicrobial activity and copolymer composition/architecture to gain a better understanding of their mechanism of action. Specifically, the antibacterial activity of several copolymers based on 2-(methacryloyloxy)ethyl phosphorylcholine [MPC] and 2-hydroxypropyl methacrylate (HPMA) toward Staphylococcus aureus was examined. Both block and graft copolymers were synthesized using either atom transfer radical polymerization or reversible addition-fragmentation chain transfer polymerization and characterized via (1)H NMR, gel permeation chromatography, rheology, and surface tensiometry. Antimicrobial activity was assessed using a range of well-known assays, including direct contact, live/dead staining, and the release of lactate dehydrogenase (LDH), while transmission electron microscopy was used to study the morphology of the bacteria before and after the addition of various copolymers. As expected, PMPC homopolymer was biocompatible but possessed no discernible antimicrobial activity. PMPC-based graft copolymers comprising PHPMA side chains (i.e. PMPC-g-PHPMA) significantly reduced both bacterial growth and viability. In contrast, a PMPC-PHPMA diblock copolymer comprising a PMPC stabilizer block and a hydrophobic core-forming PHPMA block did not exhibit any antimicrobial activity, although it did form a biocompatible worm gel. Surface tensiometry studies and LDH release assays suggest that the PMPC-g-PHPMA graft copolymer exhibits surfactant-like activity. Thus, the observed antimicrobial activity is likely to be the result of the weakly hydrophobic PHPMA chains penetrating (and hence rupturing) the bacterial membrane. PMID:27409712

  12. Immunoresponses to Neisseria meningitidis epitopes: primary versus secondary antiphosphorylcholine responses.

    PubMed Central

    Faro, J; Seoane, R; Puentes, E; Martínez Ubeira, F; Regueiro, B J

    1985-01-01

    Specific antiphosphorylcholine immune responses were found to be elicited by different Neisseria meningitidis group B M986 preparations. Our results suggest the functional presence of phosphorylcholine in the bacteria. The immune responses, mostly immunoglobulin M, were measured with a plaque-forming cell assay. The secondary phosphorylcholine-specific immune response induced by intact meningococci was significantly lower than the primary phosphorylcholine-specific immune response induced by the same antigens. This suppression is priming time dependent and does not represent an early switching to the expression of other classes of immunoglobulins. PMID:2580791

  13. Synthesis, characterization and application of a novel starch-based flocculant with high flocculation and dewatering properties.

    PubMed

    Wang, Jian-Ping; Yuan, Shi-Jie; Wang, Yi; Yu, Han-Qing

    2013-05-15

    Flocculation process is one of the most widely used techniques for water and wastewater treatment, and also for sludge dewatering. Synthesis of natural biopolymers or modification of natural biopolymers as environmentally friendly flocculants is highly desired in the field of environmental protection. In this work, a water soluble copolymer flocculant, STC-g-PDMC (starch-graft-poly (2-methacryloyloxyethyl) trimethyl ammonium chloride) was synthesized through grafting a monomer, (2-methacryloyloxyethyl) trimethyl ammonium chloride (DMC), onto starch initiated by potassium persulphate. Acetone and ethanol were used for copolymer precipitation and purification in the synthesis, which diminished the toxicity during the synthesis process. The graft copolymer was characterized using Fourier-transform infrared spectroscopy, (1)H nuclear magnetic resonance, X-ray powder diffraction, thermogravimetric analysis and elemental analysis. The prepared STC-g-PDMC exhibited a highly effective flocculation capability for kaolin suspensions compared with starch and polyacrylamide as control. The charge neutralization effect played an important role in the flocculation process at low flocculant dosages. When it was used as dewatering agent for anaerobic sludge, the conditioned sludge could be easily filtered after the dosage reached 0.696% of the dry weight of sludge. Such a graft copolymer is a promising green agent for wastewater treatment and sludge dewatering applications.

  14. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg Effect and colon cancer cell growth

    PubMed Central

    Schell, John C.; Olson, Kristofor A.; Jiang, Lei; Hawkins, Amy J.; Van Vranken, Jonathan G.; Xie, Jianxin; Egnatchik, Robert A.; Earl, Espen G.; Deberardinis, Ralph J.; Rutter, Jared

    2014-01-01

    Summary Cancer cells are typically subject to profound metabolic alterations, including the Warburg effect wherein cancer cells oxidize a decreased fraction of the pyruvate generated from glycolysis. We show herein that the mitochondrial pyruvate carrier (MPC), composed of the products of the MPC1 and MPC2 genes, modulates fractional pyruvate oxidation. MPC1 is deleted or underexpressed in multiple cancers and correlates with poor prognosis. Cancer cells re-expressing MPC1 and MPC2 display increased mitochondrial pyruvate oxidation, with no changes in cell growth in adherent culture. MPC re-expression exerted profound effects in anchorage-independent growth conditions, however, including impaired colony formation in soft agar, spheroid formation, and xenograft growth. We also observed a decrease in markers of stemness and traced the growth effects of MPC expression to the stem cell compartment. We propose that reduced MPC activity is an important aspect of cancer metabolism, perhaps through altering the maintenance and fate of stem cells. PMID:25458841

  15. Adsorption and desorption behavior of asphaltene on polymer-brush-immobilized surfaces.

    PubMed

    Higaki, Yuji; Hatae, Kaoru; Ishikawa, Tatsuya; Takanohashi, Toshimasa; Hayashi, Jun-ichiro; Takahara, Atsushi

    2014-11-26

    The adsorption behavior of a model compound for surface-active component of asphaltenes, N-(1-hexylheptyl)-N'-(12-carboxylicdodecyl) perylene-3,4,9,10-tetracarboxylic bisimide (C5Pe), and detachment behavior of asphaltene deposit films for high-density polymer brushes were investigated. Zwitterionic poly(3-(N-2-methacryloyloxyethyl-N,N-dimethyl)ammonatopropanesulfonate (PMAPS) brushes and hydrophobic poly(n-hexyl methacrylate) (PHMA) brushes exhibit less C5Pe adsorption than poly(methyl methacrylate) (PMMA). The asphaltene deposit films on the PHMA brush detached in a model oil (toluene/n-heptane=1/4 (v/v)), and the asphaltene films on the PMAPS brush detached in water. The antifouling character was explained by the interface free energy for the polymer-brush/asphaltenes (γSA) and polymer-brush/toluene (γSO). PMID:25370500

  16. Inedible cellulose-based biomass resist material amenable to water-based processing for use in electron beam lithography

    SciTech Connect

    Takei, Satoshi Maki, Hirotaka; Sugahara, Kigen; Ito, Kenta; Hanabata, Makoto

    2015-07-15

    An electron beam (EB) lithography method using inedible cellulose-based resist material derived from woody biomass has been successfully developed. This method allows the use of pure water in the development process instead of the conventionally used tetramethylammonium hydroxide and anisole. The inedible cellulose-based biomass resist material, as an alternative to alpha-linked disaccharides in sugar derivatives that compete with food supplies, was developed by replacing the hydroxyl groups in the beta-linked disaccharides with EB-sensitive 2-methacryloyloxyethyl groups. A 75 nm line and space pattern at an exposure dose of 19 μC/cm{sup 2}, a resist thickness uniformity of less than 0.4 nm on a 200 mm wafer, and low film thickness shrinkage under EB irradiation were achieved with this inedible cellulose-based biomass resist material using a water-based development process.

  17. Inedible cellulose-based biomass resist material amenable to water-based processing for use in electron beam lithography

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Maki, Hirotaka; Sugahara, Kigen; Ito, Kenta; Hanabata, Makoto

    2015-07-01

    An electron beam (EB) lithography method using inedible cellulose-based resist material derived from woody biomass has been successfully developed. This method allows the use of pure water in the development process instead of the conventionally used tetramethylammonium hydroxide and anisole. The inedible cellulose-based biomass resist material, as an alternative to alpha-linked disaccharides in sugar derivatives that compete with food supplies, was developed by replacing the hydroxyl groups in the beta-linked disaccharides with EB-sensitive 2-methacryloyloxyethyl groups. A 75 nm line and space pattern at an exposure dose of 19 μC/cm2, a resist thickness uniformity of less than 0.4 nm on a 200 mm wafer, and low film thickness shrinkage under EB irradiation were achieved with this inedible cellulose-based biomass resist material using a water-based development process.

  18. Adsorption and desorption behavior of asphaltene on polymer-brush-immobilized surfaces.

    PubMed

    Higaki, Yuji; Hatae, Kaoru; Ishikawa, Tatsuya; Takanohashi, Toshimasa; Hayashi, Jun-ichiro; Takahara, Atsushi

    2014-11-26

    The adsorption behavior of a model compound for surface-active component of asphaltenes, N-(1-hexylheptyl)-N'-(12-carboxylicdodecyl) perylene-3,4,9,10-tetracarboxylic bisimide (C5Pe), and detachment behavior of asphaltene deposit films for high-density polymer brushes were investigated. Zwitterionic poly(3-(N-2-methacryloyloxyethyl-N,N-dimethyl)ammonatopropanesulfonate (PMAPS) brushes and hydrophobic poly(n-hexyl methacrylate) (PHMA) brushes exhibit less C5Pe adsorption than poly(methyl methacrylate) (PMMA). The asphaltene deposit films on the PHMA brush detached in a model oil (toluene/n-heptane=1/4 (v/v)), and the asphaltene films on the PMAPS brush detached in water. The antifouling character was explained by the interface free energy for the polymer-brush/asphaltenes (γSA) and polymer-brush/toluene (γSO).

  19. New distances to galaxies in the Centaurus A group

    NASA Astrophysics Data System (ADS)

    Karachentsev, I. D.; Sharina, M. E.; Dolphin, A. E.; Grebel, E. K.; Geisler, D.; Guhathakurta, P.; Hodge, P. W.; Karachentseva, V. E.; Sarajedini, A.; Seitzer, P.

    2002-04-01

    We present Hubble Space Telescope/WFPC2 images of seventeen dwarf galaxies in the Centaurus A group. Their distances derived from the magnitudes of the tip of the red giant branch are 5.2 Mpc (KK112), 3.2 Mpc (ESO 321-014), 3.5 Mpc (KK179), 3.4 Mpc (NGC 5102), 4.6 Mpc (KK200), 3.7 Mpc (ESO 324-024), 4.7 Mpc (KK208), 4.6 Mpc (ESO 444-084), 4.4 Mpc (IC 4316), 4.5 Mpc (NGC 5264), 3.6 Mpc (KK211), 3.6 Mpc (KK213), 3.4 Mpc (ESO 325-011), 3.8 Mpc (KK217), 4.0 Mpc (KK221), 4.8 Mpc (NGC 5408), and 3.6 Mpc (PGC 51659). The galaxies are concentrated in two spatially separated groups around NGC 5128 = Cen A and NGC 5236 = M 83. The Cen A group itself has a mean distance of 3.63+/- 0.07 Mpc, a velocity dispersion of 89 km s-1, a mean projected radius of 263 kpc, an estimated orbital mass of 2.1x 1012 Msun, and an orbital mass-to-blue luminosity ratio of 64 Msun/Lsun. For the M 83 group we derived a mean distance of 4.57+/- 0.05 Mpc, a velocity dispersion of 62 km s-1, a mean projected radius of 142 kpc, an estimated orbital mass of 0.8x 1012 Msun, and Morb/LB = 37 Msun/Lsun. The M 83 group moves away from the Cen A group, which yields a radius of the zero-velocity surface of the Cen A group of R0 < 1.26 Mpc. The total mass within R0, M0 < 2.7x 1012 Msun, agrees with the orbital mass estimate. The centroids of both the groups have very small peculiar velocities, (+18+/- 24) km s-1 (Cen A) and (-17+/-27) km s-1 (M 83) with respect to the local Hubble flow with H0 = 70 km s-1 Mpc-1. Based on observations made with the NASA/ESA Hubble Space Telescope. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. Figure 3 is only available in electronic form at http://www.edpsciences.org

  20. Evaluation of chain architectures and charge properties of various starch-based flocculants for flocculation of humic acid from water.

    PubMed

    Wu, Hu; Liu, Zhouzhou; Yang, Hu; Li, Aimin

    2016-06-01

    Three different starch-based flocculants with various chain architectures and charge properties have been prepared through etherification, graft copolymerization, or their combination. Two of the flocculants (starch-graft-poly[(2-methacryloyloxyethyl) trimethyl ammonium chloride] and starch-3-chloro-2-hydroxypropyl triethyl ammonium chloride, denoted as STC-g-PDMC and STC-CTA respectively) are cationic, and another one (carboxymethyl starch-graft-poly[(2-methacryloyloxyethyl) trimethyl ammonium chloride], denoted as CMS-g-PDMC) is amphoteric. Those three flocculants have shown far different flocculation efficiency and floc properties for the removal of humic acid (HA) from water due to their distinct structural features. The effects of pH, flocculant dose, and initial HA concentration have been studied systematically. Accordingly, STC-g-PDMC and CMS-g-PDMC with strongly cationic branch chains have much better flocculation performance than polyaluminum chloride (PAC) and STC-CTA, the latter of which features linear chain architecture and strongly cationic pieces lying on its chain backbone. It indicates that the architecture of cationic branch chains plays an important role in HA flocculation due to their significantly enhanced bridging effects. Moreover, STC-g-PDMC has higher HA removal efficiency and better floc properties than CMS-g-PDMC, suggesting that charge neutralization effects make notable contributions to HA removal and that the additional anionic pieces on CMS-g-PDMC can weaken its flocculation performance. In addition, STC-g-PDMC used as coagulant aid for PAC has also been tried, which observably reduces the optimal dose of the inorganic coagulant.

  1. Is metastatic pancreatic cancer an untargetable malignancy?

    PubMed Central

    Kourie, Hampig Raphael; Gharios, Joseph; Elkarak, Fadi; Antoun, Joelle; Ghosn, Marwan

    2016-01-01

    Metastatic pancreatic cancer (MPC) is one of the most aggressive malignancies, known to be chemo-resistant and have been recently considered resistant to some targeted therapies (TT). Erlotinib combined to gemcitabine is the only targeted therapy that showed an overall survival benefit in MPC. New targets and therapeutic approaches, based on new-TT, are actually being evaluated in MPC going from immunotherapy, epigenetics, tumor suppressor gene and oncogenes to stromal matrix regulators. We aim in this paper to present the major causes rendering MPC an untargetable malignancy and to focus on the new therapeutic modalities based on TT in MPC. PMID:26989465

  2. Requirement for the Mitochondrial Pyruvate Carrier in Mammalian Development Revealed by a Hypomorphic Allelic Series.

    PubMed

    Bowman, Caitlyn E; Zhao, Liang; Hartung, Thomas; Wolfgang, Michael J

    2016-08-01

    Glucose and oxygen are two of the most important molecules transferred from mother to fetus during eutherian pregnancy, and the metabolic fates of these nutrients converge at the transport and metabolism of pyruvate in mitochondria. Pyruvate enters the mitochondrial matrix through the mitochondrial pyruvate carrier (MPC), a complex in the inner mitochondrial membrane that consists of two essential components, MPC1 and MPC2. Here, we define the requirement for mitochondrial pyruvate metabolism during development with a progressive allelic series of Mpc1 deficiency in mouse. Mpc1 deletion was homozygous lethal in midgestation, but Mpc1 hypomorphs and tissue-specific deletion of Mpc1 presented as early perinatal lethality. The allelic series demonstrated that graded suppression of MPC resulted in dose-dependent metabolic and transcriptional changes. Steady-state metabolomics analysis of brain and liver from Mpc1 hypomorphic embryos identified compensatory changes in amino acid and lipid metabolism. Flux assays in Mpc1-deficient embryonic fibroblasts also reflected these changes, including a dramatic increase in mitochondrial alanine utilization. The mitochondrial alanine transaminase GPT2 was found to be necessary and sufficient for increased alanine flux upon MPC inhibition. These data show that impaired mitochondrial pyruvate transport results in biosynthetic deficiencies that can be mitigated in part by alternative anaplerotic substrates in utero. PMID:27215380

  3. The effects of central metals on the photophysical and nonlinear optical properties of reduced graphene oxide-metal(II) phthalocyanine hybrids.

    PubMed

    Song, Weina; He, Chunying; Dong, Yongli; Zhang, Wang; Gao, Yachen; Wu, Yiqun; Chen, Zhimin

    2015-03-21

    Reduced graphene oxide-metal(II) phthalocyanine (RGO-MPc, M = Cu, Zn and Pb) hybrid materials have been prepared by the covalent functionalization method. The resultant RGO-MPc hybrids are characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared, ultraviolet-visible absorption and fluorescence spectroscopy. The RGO-MPc hybrids exhibit strong fluorescence quenching by means of the photo-induced electron transfer or the energy transfer (PET/ET) process between the RGO and MPc moieties. The PET/ET process particularly depends on the fluorescence quantum yield of MPc molecules with different central metals. The nonlinear optical (NLO) properties of the RGO-MPc hybrids are investigated by using the Z-scan technique at 532 nm with 4 ns laser pulses. The results show that the NLO properties of MPc molecules increase in the order of Zn < Pb < Cu, but the RGO-MPc hybrids exhibit NLO performance in the inverse sequence of Zn > Pb > Cu, implying that the NLO response arising from the efficient PET/ET process between RGO and MPc may play a more important role in the NLO properties of RGO-MPc hybrids than that originating from the MPc moiety.

  4. Two cases of matrix-producing carcinoma showing chondromyxoid matrix in cytological specimens

    PubMed Central

    Tajima, Shogo; Koda, Kenji

    2015-01-01

    Matrix-producing carcinoma (MPC) is extremely rare. Limited reports have described the cytological aspects of MPC. Herein, we present 2 cases of MPC, both of which showed ring-enhancement on magnetic resonance imaging (MRI) and chondromyxoid matrix on cytological specimens. In these cases, the diagnosis of MPC was preoperatively suspected. Recognizing extracellular matrix as chondromyxoid matrix on the cytological specimen is important in making a distinction between MPC and mucinous carcinoma. They share some features on cytology and MRI (ring-enhancement) but have different prognoses and involve different approaches for obtaining histological specimens for neoadjuvant therapy. The reason for the different approaches for obtaining the histological specimens is that tumor cells usually distribute peripherally in MPC in contrast to the relatively uniform distribution of mucinous carcinoma. Therefore, it would be helpful if the diagnosis of MPC can be suspected by examination of the cytological specimen. PMID:26379985

  5. Galaxy flow in the Canes Venatici I cloud

    NASA Astrophysics Data System (ADS)

    Karachentsev, I. D.; Sharina, M. E.; Dolphin, A. E.; Grebel, E. K.; Geisler, D.; Guhathakurta, P.; Hodge, P. W.; Karachentseva, V. E.; Sarajedini, A.; Seitzer, P.

    2003-02-01

    We present an analysis of Hubble Space Telescope/WFPC2 images of eighteen galaxies in the Canes Venatici I cloud. We derive their distances from the luminosity of the tip of the red giant branch stars with a typical accuracy of ~ 12%. The resulting distances are 3.9 Mpc (UGC 6541), 4.9 Mpc (NGC 3738), 3.0 Mpc (NGC 3741), 4.5 Mpc (KK 109), >6.3 Mpc (NGC 4150), 4.2 Mpc (UGC 7298), 4.5 Mpc (NGC 4244), 4.6 Mpc (NGC 4395), 4.9 Mpc (UGC 7559), 4.2 Mpc (NGC 4449), 4.4 Mpc (UGC 7605), 4.6 Mpc (IC 3687), 4.7 Mpc (KK 166), 4.7 Mpc (NGC 4736), 4.2 Mpc (UGC 8308), 4.3 Mpc (UGC 8320), 4.6 Mpc (NGC 5204), and 3.2 Mpc (UGC 8833). The CVn I cloud has a mean radial velocity of 286 +/- 9 km s-1, a mean distance of 4.1 +/- 0.2 Mpc, a radial velocity dispersion of 50 km s-1, a mean projected radius of 760 kpc, and a total blue luminosity of 2.2 x 1010 Lsun . Assuming virial or closed orbital motions for the galaxies, we estimated their virial and their orbital mass-to-luminosity ratio to be 176 and 88 Msun /Lsun , respectively. However, the CVn I cloud is characterized by a crossing time of 15 Gyr, and is thus far from a state of dynamical equilibrium. The large crossing time for the cloud, its low content of dSph galaxies (<6%), and the almost ``primordial'' shape of its luminosity function show that the CVn I complex is in a transient dynamical state, driven rather by the free Hubble expansion than by galaxy interactions. Based on observations made with the NASA/ESA Hubble Space Telescope. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. Figures 1 and 2 are only available in electronic form at http://www.edpsciences.org

  6. Differential regulation of mitochondrial pyruvate carrier genes modulates respiratory capacity and stress tolerance in yeast.

    PubMed

    Timón-Gómez, Alba; Proft, Markus; Pascual-Ahuir, Amparo

    2013-01-01

    Mpc proteins are highly conserved from yeast to humans and are necessary for the uptake of pyruvate at the inner mitochondrial membrane, which is used for leucine and valine biosynthesis and as a fuel for respiration. Our analysis of the yeast MPC gene family suggests that amino acid biosynthesis, respiration rate and oxidative stress tolerance are regulated by changes in the Mpc protein composition of the mitochondria. Mpc2 and Mpc3 are highly similar but functionally different: Mpc2 is most abundant under fermentative non stress conditions and important for amino acid biosynthesis, while Mpc3 is the most abundant family member upon salt stress or when high respiration rates are required. Accordingly, expression of the MPC3 gene is highly activated upon NaCl stress or during the transition from fermentation to respiration, both types of regulation depend on the Hog1 MAP kinase. Overexpression experiments show that gain of Mpc2 function leads to a severe respiration defect and ROS accumulation, while Mpc3 stimulates respiration and enhances tolerance to oxidative stress. Our results identify the regulated mitochondrial pyruvate uptake as an important determinant of respiration rate and stress resistance.

  7. Microstructural Changes in High-Protein Nutrition Bars Formulated with Extruded or Toasted Milk Protein Concentrate.

    PubMed

    Banach, J C; Clark, S; Lamsal, B P

    2016-02-01

    Milk protein concentrates with more than 80% protein (that is, MPC80) are underutilized as the primary protein source in high-protein nutrition bars as they impart crumbliness and cause hardening during storage. High-protein nutrition bar texture changes are often associated with internal protein aggregations and macronutrient phase separation. These changes were investigated in model high-protein nutrition bars formulated with MPC80 and physically modified MPC80s. High-protein nutrition bars formulated with extruded MPC80s hardened slower than those formulated with toasted or unmodified MPC80. Extruded MPC80 had reduced free sulfhydryl group exposure, whereas measurable increases were seen in the toasted MPC80. High-protein nutrition bar textural performance may be related to the number of exposed free sulfhydryl groups in MPC80. Protein aggregations resulting from ingredient modification and high-protein nutrition bar storage were studied with sodium dodecyl sulfate polyacrylamide gel electrophoresis. Disulfide-based protein aggregations and changes in free sulfhydryl concentration were not consistently relatable to high-protein nutrition bar texture change. However, the high-protein nutrition bars formulated with extruded MPC80 were less prone to phase separations, as depicted by confocal laser scanning microscopy, and underwent less texture change during storage than those formulated with toasted or unmodified MPC80.

  8. Preparation, characterization and protein sorption of photo-crosslinked cell membrane-mimicking chitosan-based hydrogels.

    PubMed

    Zhao, Yunfei; Ma, Liubo; Zeng, Rong; Tu, Mei; Zhao, Jianhao

    2016-10-20

    Photocrosslinkable biomimetic chitosan derivative, glycidyl methacrylate-phosphorylcholine-chitosan (PCCs-GMA) was synthesized through the combination of Atherton-Todd reaction for coupling phosphorylcholine and ring opening reaction of epoxides for attaching GMA, and confirmed by (1)H and (31)P NMR and Fourier transform infrared (FTIR) spectroscopy. The photo-crosslinking reaction of PCCs-GMA with different degree of substitution (DS) of GMA allowed the formation of biomimetic hydrogels with tunable mechanical and swelling properties. Cold crystallization behaviors ascribed to their restrained freezing bound water were investigated using differential scanning calorimetry (DSC). The rheological and swelling behaviors, hemolysis as well as protein sorption of PCCs-GMA hydrogels were investigated in terms of the DS of GMA, using fibrinogen, bovine serum albumin and lysozyme as model proteins. Low irreversible protein sorption and non hemolytic results indicated that photo-crosslinked PCCs-GMA hydrogels may offer a promising candidate material with resistance to protein fouling in biomedical applications. PMID:27474563

  9. Preparation, characterization and protein sorption of photo-crosslinked cell membrane-mimicking chitosan-based hydrogels.

    PubMed

    Zhao, Yunfei; Ma, Liubo; Zeng, Rong; Tu, Mei; Zhao, Jianhao

    2016-10-20

    Photocrosslinkable biomimetic chitosan derivative, glycidyl methacrylate-phosphorylcholine-chitosan (PCCs-GMA) was synthesized through the combination of Atherton-Todd reaction for coupling phosphorylcholine and ring opening reaction of epoxides for attaching GMA, and confirmed by (1)H and (31)P NMR and Fourier transform infrared (FTIR) spectroscopy. The photo-crosslinking reaction of PCCs-GMA with different degree of substitution (DS) of GMA allowed the formation of biomimetic hydrogels with tunable mechanical and swelling properties. Cold crystallization behaviors ascribed to their restrained freezing bound water were investigated using differential scanning calorimetry (DSC). The rheological and swelling behaviors, hemolysis as well as protein sorption of PCCs-GMA hydrogels were investigated in terms of the DS of GMA, using fibrinogen, bovine serum albumin and lysozyme as model proteins. Low irreversible protein sorption and non hemolytic results indicated that photo-crosslinked PCCs-GMA hydrogels may offer a promising candidate material with resistance to protein fouling in biomedical applications.

  10. Loss of Mitochondrial Pyruvate Carrier 2 in the Liver Leads to Defects in Gluconeogenesis and Compensation via Pyruvate-Alanine Cycling.

    PubMed

    McCommis, Kyle S; Chen, Zhouji; Fu, Xiaorong; McDonald, William G; Colca, Jerry R; Kletzien, Rolf F; Burgess, Shawn C; Finck, Brian N

    2015-10-01

    Pyruvate transport across the inner mitochondrial membrane is believed to be a prerequisite for gluconeogenesis in hepatocytes, which is important for the maintenance of normoglycemia during prolonged food deprivation but also contributes to hyperglycemia in diabetes. To determine the requirement for mitochondrial pyruvate import in gluconeogenesis, mice with liver-specific deletion of mitochondrial pyruvate carrier 2 (LS-Mpc2(-/-)) were generated. Loss of MPC2 impaired, but did not completely abolish, hepatocyte conversion of labeled pyruvate to TCA cycle intermediates and glucose. Unbiased metabolomic analyses of livers from fasted LS-Mpc2(-/-) mice suggested that alterations in amino acid metabolism, including pyruvate-alanine cycling, might compensate for the loss of MPC2. Indeed, inhibition of pyruvate-alanine transamination further reduced mitochondrial pyruvate metabolism and glucose production by LS-Mpc2(-/-) hepatocytes. These data demonstrate an important role for MPC2 in controlling hepatic gluconeogenesis and illuminate a compensatory mechanism for circumventing a block in mitochondrial pyruvate import.

  11. Preparation of iron bound succinylated milk protein concentrate and evaluation of its stability.

    PubMed

    Shilpashree, B G; Arora, Sumit; Sharma, Vivek; Bajaj, Rajesh Kumar; Tomar, S K

    2016-04-01

    Major problems associated with the fortification of soluble iron salts include chemical reactivity and incompatibility with other components. Milk protein concentrate (MPC) are able to bind significant amount of iron due to the presence of both casein and whey protein. MPC in its native state possess very poor solubility, therefore, succinylated derivatives of MPC (succ. MPC) were also used for the preparation of protein-iron complex. Preparation of the complex involved centrifugation (to remove insoluble iron), ultrafiltration (to remove unbound iron) and lyophilisation (to attain in dry form). Iron binding ability of MPC enhanced significantly (P<0.05) upon succinylation. Stability of bound iron from both varieties of complexes was monitored under different conditions encountered during processing. Higher stability (P<0.05) of bound iron was observed in succ. MPC-iron complex than native protein complex. This method could be adopted for the production of stable iron enriched protein, an organic iron source. PMID:26593557

  12. Preparation of iron bound succinylated milk protein concentrate and evaluation of its stability.

    PubMed

    Shilpashree, B G; Arora, Sumit; Sharma, Vivek; Bajaj, Rajesh Kumar; Tomar, S K

    2016-04-01

    Major problems associated with the fortification of soluble iron salts include chemical reactivity and incompatibility with other components. Milk protein concentrate (MPC) are able to bind significant amount of iron due to the presence of both casein and whey protein. MPC in its native state possess very poor solubility, therefore, succinylated derivatives of MPC (succ. MPC) were also used for the preparation of protein-iron complex. Preparation of the complex involved centrifugation (to remove insoluble iron), ultrafiltration (to remove unbound iron) and lyophilisation (to attain in dry form). Iron binding ability of MPC enhanced significantly (P<0.05) upon succinylation. Stability of bound iron from both varieties of complexes was monitored under different conditions encountered during processing. Higher stability (P<0.05) of bound iron was observed in succ. MPC-iron complex than native protein complex. This method could be adopted for the production of stable iron enriched protein, an organic iron source.

  13. Attempts to locate residues in complementarity-determining regions of antibody combining sites that make contact with antigen.

    PubMed

    Kabat, E A; Wu, T T; Bilofsky, H

    1976-02-01

    From collected data on variable region sequences of heavy chains of immunoglobulins, the probability of random associations of any two amino-acid residues in the complementarity-determining segments was computed, and pairs of residues occurring significantly more frequently than expected were selected by computer. Significant associations between Phe 32 and Tyr 33, Phe 32 and Glu 35, and Tyr 33 and Glu 35 were found in six proteins, all of which were mouse myeloma proteins which bound phosphorylcholine (= phosphocholine). From the x-ray structure of McPC603, Tyr 33 and Glu 35 are contacting residues; a seventh phosphorylcholine-binding mouse myeloma protein also contained Phe 32 and Tyr 33 but position 35 had only been determined as Glx and thus this position had not been selected. Met 34 occurred in all seven phosphorylcholine-binding myeoma proteins but was also present at this position in 29 other proteins and thus was not selected; it is seen in the x-ray structure not to be a contacting residue. The role of Phe 32 is not obvious but it could have some conformational influence. A human phosphorylcholine-binding myeloma protien also had Phe, Tyr, and Met at positions 32, 33, and 34, but had Asp instead of Glu at position 35 and showed a lower binding constant. The ability to use sequence data to locate residues in complementarity-determing segments making contact with antigenic determinants and those playing essentially a structural role would contribute substantially to the understanding of antibody specificity. PMID:1061162

  14. Attempts to locate residues in complementarity-determining regions of antibody combining sites that make contact with antigen.

    PubMed

    Kabat, E A; Wu, T T; Bilofsky, H

    1976-02-01

    From collected data on variable region sequences of heavy chains of immunoglobulins, the probability of random associations of any two amino-acid residues in the complementarity-determining segments was computed, and pairs of residues occurring significantly more frequently than expected were selected by computer. Significant associations between Phe 32 and Tyr 33, Phe 32 and Glu 35, and Tyr 33 and Glu 35 were found in six proteins, all of which were mouse myeloma proteins which bound phosphorylcholine (= phosphocholine). From the x-ray structure of McPC603, Tyr 33 and Glu 35 are contacting residues; a seventh phosphorylcholine-binding mouse myeloma protein also contained Phe 32 and Tyr 33 but position 35 had only been determined as Glx and thus this position had not been selected. Met 34 occurred in all seven phosphorylcholine-binding myeoma proteins but was also present at this position in 29 other proteins and thus was not selected; it is seen in the x-ray structure not to be a contacting residue. The role of Phe 32 is not obvious but it could have some conformational influence. A human phosphorylcholine-binding myeloma protien also had Phe, Tyr, and Met at positions 32, 33, and 34, but had Asp instead of Glu at position 35 and showed a lower binding constant. The ability to use sequence data to locate residues in complementarity-determing segments making contact with antigenic determinants and those playing essentially a structural role would contribute substantially to the understanding of antibody specificity.

  15. Department of Energy Nuclear Material Protection, Control, and Accounting Program at the Mangyshlak Atomic Energy Complex, Aktau, Republic of Kazakhstan

    SciTech Connect

    Case, R.; Berry, R.B.; Eras, A.

    1998-08-01

    As part of the Cooperative Threat Reduction Nuclear Material Protection, Control, and Accounting (MPC and A) Program, the US Department of Energy and Mangyshlak Atomic Energy Complex (MAEC), Aktau, Republic of Kazakstan have cooperated to enhance existing MAEC MPC and A features at the BN-350 liquid-metal fast-breeder reactor. This paper describes the methodology of the enhancement activities and provides representative examples of the MPC and A augmentation implemented at the MAEC.

  16. Synthesis of zwitterionic polymer-based amphiphilic triblock copolymers by atom transfer radical polymerization for production of extremely stable nanoemlusions

    NASA Astrophysics Data System (ADS)

    Lee, Jin Yong; Kim, Ji Eun; Kim, Jin Woong

    2015-03-01

    In fields of soft matter, there have been growing interests in utilizing amphiphilic block copolymers due to their intriguing properties, such as surface activity as well as self-assembly. In this work, we synthesize a series of poly (2-(methacryloyloxy) ethyl phosphorylcholine)- b-poly (ɛ-caprolactone)- b-poly (2-(methacryloyloxy) ethyl phosphorylcholine) (PMPC- b-PCL- b-PMPC) triblock copolymers by using atom transfer radical polymerization (ATRP). We have a particular interest in using poly (2-(methacryloyloxy) ethyl phosphorylcholine) (PMPC) as a hydrophilic block, since it can have both electrostatic repulsion and steric repulsion in complex fluid systems. Assembling them at the oil-water interface by using the phase inversion method enables production of highly stable nanoemulsions. From the analyses of the crystallography and self-assembly behavior, we have found that the triblock copolymers assemble to form a flexible but tough molecular thin film at the interface, which is essential for the remarkable improvement in the emulsion stability.

  17. Mitochondrial pyruvate carrier in Trypanosoma brucei.

    PubMed

    Štáfková, Jitka; Mach, Jan; Biran, Marc; Verner, Zdeněk; Bringaud, Frédéric; Tachezy, Jan

    2016-05-01

    Pyruvate is a key product of glycolysis that regulates the energy metabolism of cells. In Trypanosoma brucei, the causative agent of sleeping sickness, the fate of pyruvate varies dramatically during the parasite life cycle. In bloodstream forms, pyruvate is mainly excreted, whereas in tsetse fly forms, pyruvate is metabolized in mitochondria yielding additional ATP molecules. The character of the molecular machinery that mediates pyruvate transport across mitochondrial membrane was elusive until the recent discovery of mitochondrial pyruvate carrier (MPC) in yeast and mammals. Here, we characterized pyruvate import into mitochondrion of T. brucei. We identified mpc1 and mpc2 homologs in the T. brucei genome with attributes of MPC protein family and we demonstrated that both proteins are present in the mitochondrial membrane of the parasite. Investigations of mpc1 or mpc2 gene knock-out cells proved that T. brucei MPC1/2 proteins facilitate mitochondrial pyruvate transport. Interestingly, MPC is expressed not only in procyclic trypanosomes with fully activated mitochondria but also in bloodstream trypanosomes in which most of pyruvate is excreted. Moreover, MPC appears to be essential for bloodstream forms, supporting the recently emerging picture that the functions of mitochondria in bloodstream forms are more diverse than it was originally thought. PMID:26748989

  18. Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Shao, Yuyan; Wang, Xiqing; Engelhard, Mark; Wang, Chongmin; Dai, Sheng; Liu, Jun; Yang, Zhenguo; Lin, Yuehe

    We demonstrate an excellent performance of nitrogen-doped mesoporous carbon (N-MPC) for energy storage in vanadium redox flow batteries. Mesoporous carbon (MPC) is prepared using a soft-template method and doped with nitrogen by heat-treating MPC in NH 3. N-MPC is characterized with X-ray photoelectron spectroscopy and transmission electron microscopy. The redox reaction of [VO] 2+/[VO 2] + is characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The electrocatalytic kinetics of the redox couple [VO] 2+/[VO 2] + is significantly enhanced on N-MPC electrode compared with MPC and graphite electrodes. The reversibility of the redox couple [VO] 2+/[VO 2] + is greatly improved on N-MPC (0.61 for N-MPC vs. 0.34 for graphite), which is expected to increase the energy storage efficiency of redox flow batteries. Nitrogen doping facilitates the electron transfer on electrode/electrolyte interface for both oxidation and reduction processes. N-MPC is a promising material for redox flow batteries. This also opens up new and wider applications of nitrogen-doped carbon.

  19. Effect of acetylation and succinylation on solubility profile, water absorption capacity, oil absorption capacity and emulsifying properties of mucuna bean (Mucuna pruriens) protein concentrate.

    PubMed

    Lawal, O S; Adebowale, K O

    2004-04-01

    Mucuna protein concentrate was acylated with succinic and acetic anhydride. The effects of acylation on solubility, water absorption capacity, oil absorption capacity and emulsifying properties were investigated. The pH-dependent solubility profile of unmodified mucuna protein concentrate (U-mpc) showed a decrease in solubility with decrease in pH and resolubilisation at pH values acidic to isoelectric pH (pH 4). Apart from pH 2, both acetylated mucuna protein concentrates (A-mpc) and succinylated mucuna protein concentrate (S-mpc) had improved solubility over the unmodified derivative. Acylation increased the water absorption capacity (WAC) at all levels of ionic strength (0.1-1.0 M). WAC of the protein samples increased with increase in ionic strength up to 0.2 M after which a decline occurred with increase in ionic strength from 0.4-1.0 M. When protein solutions were prepared in salts of various ions, increase in WAC followed the Hofmeister series in the order: NaSCN < NaClO4 < NaI < NaBr < NaCl < Na2SO. Acetylation improved the oil absorption capacity while the lipophilic tendency reduced the following succinylation. Emulsifying capacity increased with increase in concentration up to 2, 4 and 5% w/v for U-mpc, A-mpc and S-mpc, respectively, after which an increase in concentration reduced the emulsifying capacity. Both acetylation and succinylation significantly (P < 0.05) improved the emulsifying capacity at pH 4-10. Initial increase in ionic strength up to 0.4 M for U-mpc and 0.4 M for A-mpc and S-mpc increased the emulsion capacity progressively. Further increase in ionic strength reduced emulsion capacity (EC). Contrary to the effect of various salts on WAC, increase in EC generally follows the series Na2SO4 < NaCl < NaBr < NaI < NaClO4 < NaSCN. At all levels of ionic strength studied, S-mpc had a better emulsifying activity (EA) than both A-mpc and U-mpc. EA and emulsifying stability (ES) were pH-dependent. Maximum EA and ES were recorded at pH 10. ES of

  20. Searching for the Optimal Predictor of Ciprofloxacin Resistance in Klebsiella pneumoniae by Using In Vitro Dynamic Models

    PubMed Central

    Strukova, Elena N.; Portnoy, Yury A.; Romanov, Andrey V.; Edelstein, Mikhail V.; Zinner, Stephen H.

    2015-01-01

    There is growing evidence of applicability of the hypothesis of the mutant selection window (MSW), i.e., the range between the MIC and the mutant prevention concentration (MPC), within which the enrichment of resistant mutants is most probable. However, it is not clear if MPC-based pharmacokinetic variables are preferable to the respective MIC-based variables as interstrain predictors of resistance. To examine the predictive power of the ratios of the area under the curve (AUC24) to the MPC and to the MIC, the selection of ciprofloxacin-resistant mutants of three Klebsiella pneumoniae strains with different MPC/MIC ratios was studied. Each organism was exposed to twice-daily ciprofloxacin for 3 days at AUC24/MIC ratios that provide peak antibiotic concentrations close to the MIC, between the MIC and the MPC, and above the MPC. Resistant K. pneumoniae mutants were intensively enriched at an AUC24/MIC ratio of 60 to 360 h (AUC24/MPC ratio from 2.5 to 15 h) but not at the lower or higher AUC24/MIC and AUC24/MPC ratios, in accordance with the MSW hypothesis. AUC24/MPC and AUC24/MIC relationships with areas under the time courses of ciprofloxacin-resistant K. pneumoniae (AUBCM) were bell shaped. These relationships predict highly variable “antimutant” AUC24/MPC ratios (20 to 290 h) compared to AUC24/MIC ratios (1,310 to 2,610 h). These findings suggest that the potential of the AUC24/MPC ratio as an interstrain predictor of K. pneumoniae resistance is lower than that of the AUC24/MIC ratio. PMID:26643328

  1. Embryonic Lethality of Mitochondrial Pyruvate Carrier 1 Deficient Mouse Can Be Rescued by a Ketogenic Diet

    PubMed Central

    Krznar, Petra; Hörl, Manuel; Ammar, Zeinab; Montessuit, Sylvie; Pierredon, Sandra; Zamboni, Nicola; Martinou, Jean-Claude

    2016-01-01

    Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic profiles, and both defects could be restored by reexpression of MPC1. Labeling experiments using 13C-labeled glucose and glutamine demonstrated that MPC deficiency causes increased glutaminolysis and reduced contribution of glucose-derived pyruvate to the TCA cycle. Morphological defects were observed in mutant embryonic brains, together with major alterations of their metabolome including lactic acidosis, diminished TCA cycle intermediates, energy deficit and a perturbed balance of neurotransmitters. Strikingly, these changes were reversed when the pregnant dams were fed a ketogenic diet, which provides acetyl-CoA directly to the TCA cycle and bypasses the need for a functional MPC. This allowed the normal gestation and development of MPC deficient pups, even though they all died within a few minutes post-delivery. This study establishes the MPC as a key player in regulating the metabolic state necessary for embryonic development, neurotransmitter balance and post-natal survival. PMID:27176894

  2. 46 CFR 178.340 - Stability standards for pontoon vessels on protected waters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... applicability requirements of § 178.320 of this part must be in the condition described in § 178.330(a) of this...: Mpc = /2; or Mw = (P) (A) (H) Where: Mpc = passenger and crew heeling moment in foot-pounds (kilogram..., superstructure and area bounded by railings and structural canopies); and H = Height, in feet (meters), of...

  3. Reductive desorption of thiolate from monolayer protected gold clusters.

    PubMed

    Quinn, Bernadette M; Kontturi, Kyösti

    2004-06-16

    The "electrochemical potential window" of monolayer-protected gold cluster (MPC) nanoelectrodes is probed where the electrified liquid-liquid interface is used as the detector. The first observation of the reductive desorption of thiolate at negative MPC core charge is reported.

  4. The Development of Similarity: Testing the Prediction of a Computational Model of Metaphor Comprehension

    ERIC Educational Resources Information Center

    Purser, Harry R. M.; Thomas, Michael S. C.; Snoxall, Sarah; Mareschal, Denis

    2009-01-01

    An empirical study is presented that tests a novel prediction generated by the Metaphor-by-Pattern-Completion (MPC) connectionist model of metaphor comprehension (Thomas & Mareschal, 2001). The MPC model predicts a developmental progression in the way that children process metaphors, from a preference for basic-level metaphors to a preference for…

  5. 40 CFR 427.72 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... consecutive days shall not exceed— Metric units (kg/mpc of product) COD 0.14 0.09 TSS 0.06 .04 pH (1) (1) English units (lb/mpc of product) COD 0.30 0.18 TSS 0.13 .08 pH (1) (1) 1 Within the range 6.0 to 9.0....

  6. A Robustly Stabilizing Model Predictive Control Algorithm

    NASA Technical Reports Server (NTRS)

    Ackmece, A. Behcet; Carson, John M., III

    2007-01-01

    A model predictive control (MPC) algorithm that differs from prior MPC algorithms has been developed for controlling an uncertain nonlinear system. This algorithm guarantees the resolvability of an associated finite-horizon optimal-control problem in a receding-horizon implementation.

  7. Embryonic Lethality of Mitochondrial Pyruvate Carrier 1 Deficient Mouse Can Be Rescued by a Ketogenic Diet.

    PubMed

    Vanderperre, Benoît; Herzig, Sébastien; Krznar, Petra; Hörl, Manuel; Ammar, Zeinab; Montessuit, Sylvie; Pierredon, Sandra; Zamboni, Nicola; Martinou, Jean-Claude

    2016-05-01

    Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic profiles, and both defects could be restored by reexpression of MPC1. Labeling experiments using 13C-labeled glucose and glutamine demonstrated that MPC deficiency causes increased glutaminolysis and reduced contribution of glucose-derived pyruvate to the TCA cycle. Morphological defects were observed in mutant embryonic brains, together with major alterations of their metabolome including lactic acidosis, diminished TCA cycle intermediates, energy deficit and a perturbed balance of neurotransmitters. Strikingly, these changes were reversed when the pregnant dams were fed a ketogenic diet, which provides acetyl-CoA directly to the TCA cycle and bypasses the need for a functional MPC. This allowed the normal gestation and development of MPC deficient pups, even though they all died within a few minutes post-delivery. This study establishes the MPC as a key player in regulating the metabolic state necessary for embryonic development, neurotransmitter balance and post-natal survival. PMID:27176894

  8. Hydrogen- and oxygen-related effects in phthalocyanine crystals: formation of carrier traps and a change in the magnetic state.

    PubMed

    Tsetseris, Leonidas

    2014-02-21

    The performance of organic semiconductors as electronic materials is very sensitive to impurity incorporation and reactions. Here we show using first-principles calculations that hydrogen and oxygen impurities introduce distinct changes in the electronic properties of metal phthalocyanines (MPc), a family of organic semiconductors renowned for their light conversion efficiency. Selective adsorption of hydrogen atoms on pyridinic nitrogen atoms of MPc molecules, namely zinc and copper phthalocyanines, modifies the magnetic state of the latter and generates carrier trap states deep in the band gap of MPc crystals. Reactions with O atoms have a lesser effect on MPc electronic properties, while intercalated oxygen molecules give rise to traps below the conduction band minimum. The results identify H and O impurities as important degradation culprits for MPc-based systems, in agreement with pertinent experiments. PMID:24413162

  9. Modeling a multivariable reactor and on-line model predictive control.

    PubMed

    Yu, D W; Yu, D L

    2005-10-01

    A nonlinear first principle model is developed for a laboratory-scaled multivariable chemical reactor rig in this paper and the on-line model predictive control (MPC) is implemented to the rig. The reactor has three variables-temperature, pH, and dissolved oxygen with nonlinear dynamics-and is therefore used as a pilot system for the biochemical industry. A nonlinear discrete-time model is derived for each of the three output variables and their model parameters are estimated from the real data using an adaptive optimization method. The developed model is used in a nonlinear MPC scheme. An accurate multistep-ahead prediction is obtained for MPC, where the extended Kalman filter is used to estimate system unknown states. The on-line control is implemented and a satisfactory tracking performance is achieved. The MPC is compared with three decentralized PID controllers and the advantage of the nonlinear MPC over the PID is clearly shown.

  10. Synthesis and characterization of chitosan-g-N-methyl piperazinium chloride: A hybrid flocculant.

    PubMed

    Dharani, Muthumanickam; Balasubramanian, Sengottuvelan

    2015-11-01

    Flocculation is one of the most widely applied techniques for water treatment. Flocculants based on natural polymer has received more attention due to their eco-friendliness in recent years. New water soluble N-methyl piperazinium chloride grafted chitosan flocculant (chitosan-g-N-MPC) was successfully synthesized and thoroughly characterized using FTIR, NMR and powder X-ray diffraction analytical techniques. Incorporation of N-MPC enhanced the ionic character of the chitosan backbone and improved its water solubility. The flocculation performance of chitosan-g-N-MPC was tested against bentonite suspension. The flocculation performance of chitosan-g-N-MPC was investigated under various pH conditions. Turbidity and zeta potential measurements were employed to investigate the flocculation behavior of the chitosan-g-N-MPC. The characteristics of the industrial wastewater before and after flocculation were analyzed. The morphology of the polymer and flocs were studied by TEM analysis.

  11. Real-time control of combined surface water quantity and quality: polder flushing.

    PubMed

    Xu, M; van Overloop, P J; van de Giesen, N C; Stelling, G S

    2010-01-01

    In open water systems, keeping both water depths and water quality at specified values is critical for maintaining a 'healthy' water system. Many systems still require manual operation, at least for water quality management. When applying real-time control, both quantity and quality standards need to be met. In this paper, an artificial polder flushing case is studied. Model Predictive Control (MPC) is developed to control the system. In addition to MPC, a 'forward estimation' procedure is used to acquire water quality predictions for the simplified model used in MPC optimization. In order to illustrate the advantages of MPC, classical control [Proportional-Integral control (PI)] has been developed for comparison in the test case. The results show that both algorithms are able to control the polder flushing process, but MPC is more efficient in functionality and control flexibility. PMID:20182064

  12. Metal organic frameworks/macroporous carbon composites with enhanced stability properties and good electrocatalytic ability for ascorbic acid and hemoglobin.

    PubMed

    Zhang, Yufan; Nsabimana, Anaclet; Zhu, Liande; Bo, Xiangjie; Han, Ce; Li, Mian; Guo, Liping

    2014-11-01

    The thermal, water and electrochemical stability of Cu-based metal organic frameworks (Cu-MOFs) confined in macroporous carbon (MPC) hybrids has been investigated. Thermogravimetric analyses, X-Ray diffraction, scanning electron microscopy, and cyclic voltammetry were employed to confirm the stability of pure Cu-MOFs, MPC, and Cu-MOFs-MPC. As compared to pure Cu-MOFs, the porous composite materials of MPC and Cu-MOFs interact and seem to form new materials having homogenous structure and chemistry, which show structural stability in aqueous media and electrochemical stability in phosphate buffer solution (PBS pH 7.4). The detection of ascorbic acid and hemoglobin is performed as an electrochemical probe, indicating Cu-MOFs-MPC holds great promise for the design of electrochemical sensors.

  13. Click synthesis of neutral, cationic, and zwitterionic poly(propargyl glycolide)-co-poly(ɛ-caprolactone)-based aliphatic polyesters as antifouling biomaterials.

    PubMed

    Tu, Qin; Wang, Jian-Chun; Liu, Rui; Chen, Yun; Zhang, Yanrong; Wang, Dong-En; Yuan, Mao-Sen; Xu, Juan; Wang, Jinyi

    2013-08-01

    With the development of polymer-based biomaterials, aliphatic polyesters have attracted considerable interest because of their non-toxicity, non-allergenic property, and good biocompatibility. However, the hydrophobic nature and the lack of side chain functionalities of aliphatic polyesters limit their biomedical applications. In this study, we prepared four new polyesters: poly(sulfobetaine methacrylate)-, poly(2-methacryloyloxyethyl phosphotidylcholine)-, poly(ethylene glycol)-, and quaternized poly[(2-dimethylamino)ethyl methacrylate]-grafted poly(propargyl glycolide)-co-poly(ɛ-caprolactone). Their synthesis was conducted through ring-opening polymerization of acetylene-functionalized lactones and subsequent graft of bioactive units using click chemistry. The chemical structures of the polyesters were characterized through nuclear magnetic resonance and Fourier-transform infrared spectroscopy, and their physical properties (including molecular weight, glass transition temperature, and melting point) were determined using gel permeation chromatography and differential scanning calorimetry. For studies on their hydrophilicity, stability, and anti-bioadhesive property, a series of polymeric surfaces of these polyesters was prepared by coating them onto glass substrates. The hydrophilicity and stability of these polyester surfaces were examined by contact angle measurements and attenuated total reflection Fourier-transform infrared spectroscopy. Their anti-bioadhesive property was investigated through protein adsorption, as well as cellular and bacterial adhesion assays. The prepared polyesters showed good hydrophilicity and long-lasting stability, as well as significant anti-fouling property. The newly prepared polyesters could be developed as promising anti-fouling materials with extensive biomedical applications. PMID:23511626

  14. Chain dimensions in free and immobilized brush states of polysulfobetaine in aqueous solution at various salt concentrations

    NASA Astrophysics Data System (ADS)

    Terayama, Y.; Arita, H.; Ishikawa, T.; Kikuchi, M.; Mitamura, K.; Kobayashi, M.; Yamada, N. L.; Takahara, A.

    2011-01-01

    The chain dimensions of free and immobilized polysulfobetaine in aqueous solution at various salt concentrations were investigated by size-exclusion chromatography with multiangle light scattering and neutron reflectivity measurement, respectively. The dependence of the z-average mean square radius of gyration (z1/2) on the weight-average molecular weight (Mw) of free poly(3-(N-2-methacryloyloxyethyl-N,N-dimethyl)ammonatopropanesulfo-nate) (MAPS) in aqueous solution at salt concentrations of 74, 100, 200, and 500 mM was described by the perturbed wormlike chain model using the chain stiffness parameter λ-1 the molar mass per unit contour length ML, and the excluded volume effect B. B increased from 0 to 1.8 nm with increasing salt concentration to 500 mM due to the screening of attractive electrostatic interaction between ammonium cations and sulfonyl anions by salt ions. The swollen structure of the poly(MAPS) brush in D2O changed from a shrunken state to a relatively extended state with increasing salt concentration from 0 to 500 mM NaCl/D2O solution. The thickness of the swollen poly(MAPS) brush in 500 mM NaCl/D2O was 9.0 times greater than 2z1/2 of free poly(MAPS) due to high osmotic pressure generated by the excluded volume effect of densely grafted polymer chains.

  15. Thermoresponsive amperometric glucose biosensor.

    PubMed

    Pinyou, Piyanut; Ruff, Adrian; Pöller, Sascha; Barwe, Stefan; Nebel, Michaela; Alburquerque, Natalia Guerrero; Wischerhoff, Erik; Laschewsky, André; Schmaderer, Sebastian; Szeponik, Jan; Plumeré, Nicolas; Schuhmann, Wolfgang

    2016-03-01

    The authors report on the fabrication of a thermoresponsive biosensor for the amperometric detection of glucose. Screen printed electrodes with heatable gold working electrodes were modified by a thermoresponsive statistical copolymer [polymer I: poly(ω-ethoxytriethylenglycol methacrylate-co-3-(N,N-dimethyl-N-2-methacryloyloxyethyl ammonio) propanesulfonate-co-ω-butoxydiethylenglycol methacrylate-co-2-(4-benzoyl-phenoxy)ethyl methacrylate)] with a lower critical solution temperature of around 28 °C in aqueous solution via electrochemically induced codeposition with a pH-responsive redox-polymer [polymer II: poly(glycidyl methacrylate-co-allyl methacrylate-co-poly(ethylene glycol)methacrylate-co-butyl acrylate-co-2-(dimethylamino)ethyl methacrylate)-[Os(bpy)2(4-(((2-(2-(2-aminoethoxy)ethoxy)ethyl)amino)methyl)-N,N-dimethylpicolinamide)](2+)] and pyrroloquinoline quinone-soluble glucose dehydrogenase acting as biological recognition element. Polymer II bears covalently bound Os-complexes that act as redox mediators for shuttling electrons between the enzyme and the electrode surface. Polymer I acts as a temperature triggered immobilization matrix. Probing the catalytic current as a function of the working electrode temperature shows that the activity of the biosensor is dramatically reduced above the phase transition temperature of polymer I. Thus, the local modulation of the temperature at the interphase between the electrode and the bioactive layer allows switching the biosensor from an on- to an off-state without heating of the surrounding analyte solution. PMID:26702635

  16. Evaluation of a novel chitosan-based flocculant with high flocculation performance, low toxicity and good floc properties.

    PubMed

    Yang, Zhen; Li, Haijiang; Yan, Han; Wu, Hu; Yang, Hu; Wu, Qian; Li, Haibo; Li, Aimin; Cheng, Rongshi

    2014-07-15

    In this work, a novel chitosan-based flocculant, carboxymethyl chitosan-graft-poly[(2-methacryloyloxyethyl) trimethyl ammonium chloride] (CMC-g-PDMC), was designed and prepared successfully. Flocculation performance of CMC-g-PDMC was systematically evaluated using kaolin suspension, humic acid (HA) solution and kaolin-HA mixed suspension as synthetic wastewater under acidic, neutral and alkaline conditions, respectively. The experimental results demonstrated that CMC-g-PDMC exhibited lower optimal dosage, higher contaminant removal efficiency, wider applicable pH range, lower effluent toxicity and better floc properties for handling and disposal, in comparison with polyaluminum chloride. The high flocculation performance of CMC-g-PDMC was ascribed to two structural advantages of improved both positive charges and molecular weight. In addition, flocs characteristics including flocs formation, breakage, regrowth and fractal structure, were studied by an in-situ light scattering system during the flocculation process. Detailed analysis clearly illuminated the differences and relationship among floc size, fractal dimension and floc strength. Based on analysis of floc properties in combination with zeta potential measurements, flocculation mechanisms in different synthetic wastewater at various pHs were deeply discussed: charge neutralization or patching played the key role under different conditions, and the relationship between flocculation mechanisms and floc properties has been built. The effective and environment-friendly flocculant bear significant application potentials in water treatment fields.

  17. Modeling and optimization of the flocculation processes for removal of cationic and anionic dyes from water by an amphoteric grafting chitosan-based flocculant using response surface methodology.

    PubMed

    Wu, Hu; Yang, Ran; Li, Ruihua; Long, Chao; Yang, Hu; Li, Aimin

    2015-09-01

    In this study, an amphoteric grafting chitosan-based flocculant (carboxymethyl chitosan-graft-poly(2-methacryloyloxyethyl) trimethyl ammonium chloride, denoted as CMC-g-PDMC) was applied to removal of the anionic and cationic dyes, acid Green 25 (AG25) and Basic Bright Yellow (7GL), from water. Flocculation conditions have been optimized by response surface methodology (RSM) on the basis of central composite design (CCD) using flocculant dosage, initial solution pH and temperature as input variables. The second-order and cubic regression models, which have been both tested by the analysis of variance (ANOVA), were constructed to link the output response (the dye removal factor) with the aforementioned input variables, respectively. The second-order regression model well described the process of AG25 removal, whereas the cubic one is more suitable for that of 7GL. The effects of those variables on the flocculation performance of CMC-g-PDMC for removal of the two dyes containing opposite charges from aqueous solutions have been studied, and the flocculation mechanisms including the interactive effects between various influencing factors have been discussed in detail also.

  18. The effect of the physicochemical properties of bioactive electroconductive hydrogels on the growth and proliferation of attachment dependent cells.

    PubMed

    Kotanen, Christian N; Wilson, A Nolan; Dong, Chenbo; Dinu, Cerasela-Zoica; Justin, Gusphyl A; Guiseppi-Elie, Anthony

    2013-09-01

    The physicochemical properties of soft electrode materials for the abio-bio interface of advanced biosensors and next generation bionic devices in the form of electroconductive hydrogels (ECH) of interpenetrating networks of polypyrrole formed within poly(hydroxyethylmethacrylate)-based hydrogels were examined. The 1.5 mol% UV-crosslinked tetraethyleneglycol diacrylate (TEGDA) (step 1) poly(HEMA) and the electropolymerized (step 2) polypyrrole co-networks were covalently joined by the inclusion of a bifunctional monomer (1.5 mol%), 2-methacryloyloxyethyl-4(3-pyrrolyl)butanate (MPB) that served to covalently link the two networks. The optical absorbance, degree of hydration, the frequency dependent electrical impedance and the elastic modulus were examined as a function of electropolymerization charge density (step 2) (1-900 mC/cm(2)) used to prepare the linked, interpenetrating co-networks. The absorption at 430 nm showed a monotonic increase with electropolymerization charge density and correlated with the increase in elastic modulus [56 (± 32)-499 (± 293) kPa], the decrease in % hydration (68-0%) and the decrease in membrane electrical resistance. Polypyrrole (PPy) grows initially from the gel-electrode interface to fill voids within the hydrogel and ultimately onto the surface of the hydrogel. Growth of attachment dependent Rhabdomyosarcoma (RMS13) and pheochromocytoma (PC 12) cells reflects this evolution, showing an increase to a maximal value and then to decrease again at high electropolymerization charge density.

  19. Self-Assembled Antimicrobial and biocompatible copolymer films on Titanium

    PubMed Central

    Pfaffenroth, Cornelia; Winkel, Andreas; Dempwolf, Wibke; Gamble, Lara J.; Castner, David G.; Stiesch, Meike; Menzel, Henning

    2013-01-01

    Biofilm formation on biomedical devices such as dental implants can result in serious infections and finally in device failure. Polymer coatings which provide antimicrobial action to surfaces without compromising the compatibility with human tissue are of great interest. Copolymers of 4-vinyl-N-hexylpyridinium bromide and dimethyl(2-methacryloyloxyethyl) phosphonate are interesting candidates in this respect. These copolymers form ultrathin polycationic layers on titanium surfaces. As the copolymerization reaction is almost ideal statistical, copolymers with varying compositions can be synthesized and immobilized onto titanium surfaces for comprehensive screening concerning antimicrobial activity and biocompatibility. Copolymer films on titanium were characterized by contact angle measurements, ellipsometry and X-ray photoelectron spectroscopy. Antibacterial properties were assessed by investigation of adherence of S. mutans which represents a strain found in the human oral cavity. Biocompatibility was rated based on human gingival fibroblast adhesion, proliferation and cell morphology. Depending on polymer composition the coatings displayed a behavior ranging from biocompatibility equal to titanium but no antibacterial action to highly antimicrobial activity but poor biocompatibility. By balancing these two opposing effects by tailoring chemical composition, copolymer coatings were fabricated, which were able to inhibit the growth of S. mutans on the surface significantly but still show a sufficient attachment of gingival fibroblasts. PMID:21818855

  20. Effect of soluble calcium and lactose on limiting flux and serum protein removal during skim milk microfiltration.

    PubMed

    Adams, Michael C; Hurt, Emily E; Barbano, David M

    2015-11-01

    The tendency of calcium to promote microfiltration (MF) membrane fouling is well documented, but the role of lactose has not been studied. Milk protein concentrate that is 85% protein on a dry basis (MPC85) contains less calcium and lactose than skim milk. Our objectives were to determine the effects of skim milk soluble calcium and lactose concentrations on the limiting fluxes (LF) and serum protein (SP) removal factors of 0.1-µm ceramic graded permeability membranes. The MF was fed with 3 different milks: skim milk, liquid MPC85 that had been standardized to the protein content of skim milk with reverse osmosis water (MPC), and liquid MPC85 that had been standardized to the protein and lactose contents of skim milk with reverse osmosis water and lactose monohydrate (MPC+L). Retentate and permeate were continuously recycled to the feed tank. The LF for each feed was determined by increasing flux once per hour from 55 kg·m(-2)·h(-1) until flux did not increase with increasing transmembrane pressure. Temperature, pressure drop across the membrane length, and protein concentration in the retentate recirculation loop were maintained at 50°C, 220 kPa, and 8.77 ± 0.2%, respectively. Experiments were replicated 3 times and the Proc GLM procedure of SAS was used for statistical analysis. An increase in LF between skim milk (91 kg·m(-2)·h(-1)) and MPC+L (124 kg·m(-2)·h(-1)) was associated with a reduction in soluble calcium. The LF of MPC+L was lower than the LF of MPC (137 kg·m(-2)·h(-1)) due to the higher viscosity contributed by lactose. Permeates produced from the MPC and MPC+L contained more protein than the skim milk permeate due to the transfer of caseins from the micelles into the reduced-calcium sera of the MPC and MPC+L. A SP removal factor was calculated by dividing true protein in the permeate by SP in the permeate portion of the feed to describe the ease of SP passage through the membrane. No differences in SP removal factors were detected among the

  1. A possible instance of sexual dimorphism in the tails of two oviraptorosaur dinosaurs.

    PubMed

    Persons, W Scott; Funston, Gregory F; Currie, Philip J; Norell, Mark A

    2015-03-31

    The hypothesis that oviraptorosaurs used tail-feather displays in courtship behavior previously predicted that oviraptorosaurs would be found to display sexually dimorphic caudal osteology. MPC-D 100/1002 and MPC-D 100/1127 are two specimens of the oviraptorosaur Khaan mckennai. Although similar in absolute size and in virtually all other anatomical details, the anterior haemal spines of MPC-D 100/1002 exceed those of MPC-D 100/1127 in ventral depth and develop a hitherto unreported "spearhead" shape. This dissimilarity cannot be readily explained as pathologic and is too extreme to be reasonably attributed to the amount of individual variation expected among con-specifics. Instead, this discrepancy in haemal spine morphology may be attributable to sexual dimorphism. The haemal spine form of MPC-D 100/1002 offers greater surface area for caudal muscle insertions. On this basis, MPC-D 100/1002 is regarded as most probably male, and MPC-D 100/1127 is regarded as most probably female.

  2. Mineralized polymer composites as biogenic bone substitute material

    NASA Astrophysics Data System (ADS)

    Shah, Rushita; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2015-05-01

    Mineralized polymer composites (MPC) are recognized as potential fillers of bone defects. Though bioceramics exhibits quite a good bone-bonding and vascularization, it is considered to be too stiff and brittle for using alone. Thus, the use of polymer scaffold instead of bioceramics has several advantages including combining the osteoconductivity and bone-bonding potential of the inorganic phase with the porosity and interconnectivity of the three-dimensional construction. Aiming the advantages of ceramic-polymer composite scaffolds, the calcium carbonate (CaCO3) based biomineralized scaffold was prepared, where the PVP-CMC hydrogel was used as an extracellular matrix. This paper is reported about the morphology, swelling trend (in physiological solution) and viscoelastic behavior of (90 min mineralized) MPC. The dry MPC are off-white, coarse in texture, comparatively less flexible than the original PVP-CMC based hydrogel film, and the deposition of granular structures on the surface of the hydrogel film confirms about the development of biomineralized scaffold/polymer composites. Irrespective of thickness, the dry MPC shows higher values of swelling ratio within 30 min, which varies between 200-250 approximately. The dynamic viscoelastic nature of freshly prepared MPC was investigated applying 1% and 10% strain. At higher strain the viscoelastic moduli (G' and G") show significant change, and the nature of MPC turns from elastic to viscous. Based on the observed basic properties, the MPC (calcite based polymer composites) can be recommended for the treatment of adyanamic bone disorder.

  3. Offset-Free Model Predictive Control of Open Water Channel Based on Moving Horizon Estimation

    NASA Astrophysics Data System (ADS)

    Ekin Aydin, Boran; Rutten, Martine

    2016-04-01

    Model predictive control (MPC) is a powerful control option which is increasingly used by operational water managers for managing water systems. The explicit consideration of constraints and multi-objective management are important features of MPC. However, due to the water loss in open water systems by seepage, leakage and evaporation a mismatch between the model and the real system will be created. These mismatch affects the performance of MPC and creates an offset from the reference set point of the water level. We present model predictive control based on moving horizon estimation (MHE-MPC) to achieve offset free control of water level for open water canals. MHE-MPC uses the past predictions of the model and the past measurements of the system to estimate unknown disturbances and the offset in the controlled water level is systematically removed. We numerically tested MHE-MPC on an accurate hydro-dynamic model of the laboratory canal UPC-PAC located in Barcelona. In addition, we also used well known disturbance modeling offset free control scheme for the same test case. Simulation experiments on a single canal reach show that MHE-MPC outperforms disturbance modeling offset free control scheme.

  4. Expression Regulation of Polycistronic lee3 Genes of Enterohaemorrhagic Escherichia coli

    PubMed Central

    Sun, Wei-Sheng W.; Chen, Jenn-Wei; Wu, Yi-Chih; Tsai, Hsing-Yuan; Kuo, Yu-Liang; Syu, Wan-Jr

    2016-01-01

    Enterohaemorrhagic Escherichia coli O157:H7 (EHEC) carries a pathogenic island LEE that is consisted mainly of five polycistronic operons. In the lee3 operon, mpc is the first gene and has been reported to down regulate the type-3 secretion system of EHEC when its gene product is over-expressed. Furthermore, mpc has been suggested to have a regulation function via translation but the mechanism remains unclear. To clarify this hypothesis, we dissected the polycistron and examined the translated products. We conclude that translation of mpc detrimentally governs the translation of the second gene, escV, which in turn affects the translation of the third gene, escN. Then sequentially, escN affects the expression of the downstream genes. Furthermore, we located a critical cis element within the mpc open-reading frame that plays a negative role in the translation-dependent regulation of lee3. Using qRT-PCR, we found that the amount of mpc RNA transcript present in EHEC was relatively limited when compared to any other genes within lee3. Taken together, when the transcription of LEE is activated, expression of mpc is tightly controlled by a restriction of the RNA transcript of mpc, translation of which is then critical for the efficient production of the operon’s downstream gene products. PMID:27182989

  5. A possible instance of sexual dimorphism in the tails of two oviraptorosaur dinosaurs

    PubMed Central

    IV, W. Scott Persons; Funston, Gregory F.; Currie, Philip J.; Norell, Mark A.

    2015-01-01

    The hypothesis that oviraptorosaurs used tail-feather displays in courtship behavior previously predicted that oviraptorosaurs would be found to display sexually dimorphic caudal osteology. MPC-D 100/1002 and MPC-D 100/1127 are two specimens of the oviraptorosaur Khaan mckennai. Although similar in absolute size and in virtually all other anatomical details, the anterior haemal spines of MPC-D 100/1002 exceed those of MPC-D 100/1127 in ventral depth and develop a hitherto unreported “spearhead” shape. This dissimilarity cannot be readily explained as pathologic and is too extreme to be reasonably attributed to the amount of individual variation expected among con-specifics. Instead, this discrepancy in haemal spine morphology may be attributable to sexual dimorphism. The haemal spine form of MPC-D 100/1002 offers greater surface area for caudal muscle insertions. On this basis, MPC-D 100/1002 is regarded as most probably male, and MPC-D 100/1127 is regarded as most probably female. PMID:25824625

  6. Mesoporous magnesium silicate-incorporated poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) bioactive composite beneficial to osteoblast behaviors.

    PubMed

    Niu, Yunfei; Dong, Wei; Guo, Han; Deng, Yuhu; Guo, Lieping; An, Xiaofei; He, Dawei; Wei, Jie; Li, Ming

    2014-01-01

    Mesoporous magnesium silicate (m-MS) and poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) composite (m-MPC) was synthesized by solvent casting method. The results suggest that the mechanical properties of compressive strength and elastic modulus, as well as hydrophilicity, of the m-MPC increased with increase of m-MS content in the composites. In addition, the weight loss of the m-MPC improved significantly with the increase of m-MS content during composite soaking in phosphate-buffered saline for 10 weeks, indicating that incorporation of m-MS into PCL-PEG-PCL could enhance the degradability of the m-MPC. Moreover, the m-MPC with 40 w% m-MS could induce a dense and continuous apatite layer on its surface after soaking in simulated body fluid for 5 days, which was better than m-MPC 20 w% m-MS, exhibiting excellent in vitro bioactivity. In cell cultural experiments, the results showed that the attachment and viability ratio of MG63 cells on m-MPC increased significantly with the increase of m-MS content, showing that the addition of m-MS into PCL-PEG-PCL could promote cell attachment and proliferation. The results suggest that the incorporation of m-MS into PCL-PEG-PCL could produce bioactive composites with improved hydrophilicity, degradability, bioactivity, and cytocompatibility.

  7. Magnetic properties of the magnetophotonic crystal based on bismuth iron garnet

    NASA Astrophysics Data System (ADS)

    Popova, Elena; Magdenko, Liubov; Niedoba, Halina; Deb, Marwan; Dagens, Béatrice; Berini, Bruno; Vanwolleghem, Mathias; Vilar, Christèle; Gendron, François; Fouchet, Arnaud; Scola, Joseph; Dumont, Yves; Guyot, Marcel; Keller, Niels

    2012-11-01

    This article reports on the magnetism of continuous and patterned bismuth iron garnet (Bi3Fe5O12 or BIG) thin films for magnetophotonic crystal (MPC) applications. The exact knowledge of the magnetic properties is crucial for the design of fully functional MPC. BIG thin films were grown on several types of isostructural substrates by pulsed laser deposition. The growth conditions and bismuth transfer were optimized to obtain good quality magneto-optically active films compatible with nanostructuring process. MPC were successfully fabricated from BIG/GGG(001) films with low roughness and high Faraday rotation. Magnetic characteristics (magnetization, anisotropy, magnetic domains, magnetization reversal) of the continuous BIG films and MPC were extensively studied and compared to the results of the micromagnetic simulations performed for MPC with different anisotropy. The present study shows that the fabrication of the MPC structure lowers the magnetocrystalline and uniaxial in-plane anisotropies and induces a partial out-of-plane magnetization. External field smaller than 2000 G is sufficient to ensure the out-of-plane saturation of magnetization for optimum device operation, in agreement with micromagnetic calculations. The experimentally determined magnetic properties of MPC are fully compatible with the device operation.

  8. No-carrier-added carbon-11-labeled sn-1,2- and sn-1,3-diacylglycerols by (11C)propyl ketene method

    SciTech Connect

    Imahori, Y.; Fujii, R.; Ueda, S.; Ido, T.; Nishino, H.; Moriyama, Y.; Yamamoto, Y.L.; Nakahashi, H. )

    1991-08-01

    This article describes the preparation of sn-1,2-(11C)diacylglycerols and sn-1,3-(11C)diacylglycerols by a no-carrier-added reaction based on a labeling method using (1-11C)propyl ketene, which is one of the most potent acylating agents. (1-11C)Propyl ketene was produced by pyrolytic decomposition of (1-11C)butyric acid and was trapped in pyridine containing L-alpha-palmitoyl-lysophosphatidylcholine, producing L-alpha-palmitoyl-2-(1-11C)butyryl-sn-glycero-3-phosphorylcholine. The authors adopted an enzymatic reaction to remove the phosphorylcholine, in which L-alpha-palmitoyl-2-(1-11C)butyryl-sn-glycero-3-phosphorylcholine was incubated with phospholipase C, hydrolyzing to produce 1-palmitoyl-sn-2-(1-11C)butyrylglycerol. Total synthesis time was about 50 minutes and the specific activity was estimated at 93 GBq/mumol (2.5 Ci/mumol) at end of synthesis. Radiochemical yield was 3.8% based on the trapped 11CO2. sn-1,3-(11C)Diacylglycerol was also synthesized by (1-11C)propyl ketene reaction with 1-palmitoyl-sn-glycerol in a single procedure. The regional brain tissue radioactivities obtained in sn-1,2-(11C)diacylglycerol were higher than those of sn-1,3-(11C)diacylglycerol, and the regional values varied widely. In autoradiography of brain slices from conscious rats, sn-1,2-(11C)diacylglycerol incorporation sites were discretely localized, especially in the amygdala, cerebral cortex, and hippocampus, suggesting that intensive neuronal processing occurred in these areas on the basis of phosphatidylinositol turnover.

  9. Analysis of Mitochondrial Proteins in the Surviving Myocardium after Ischemia Identifies Mitochondrial Pyruvate Carrier Expression as Possible Mediator of Tissue Viability.

    PubMed

    Fernández-Caggiano, Mariana; Prysyazhna, Oleksandra; Barallobre-Barreiro, Javier; CalviñoSantos, Ramón; Aldama López, Guillermo; Generosa Crespo-Leiro, Maria; Eaton, Philip; Doménech, Nieves

    2016-01-01

    The endogenous mechanisms contributing to tissue survival following myocardial infarction are not fully understood. We investigated the alterations in the mitochondrial proteome after ischemia-reperfusion (I/R) and its possible implications on cell survival. Mitochondrial proteomic analysis of cardiac tissue from an in vivo porcine I/R model found that surviving tissue in the peri-infarct border zone showed increased expression of several proteins. Notably, these included subunits of the mitochondrial pyruvate carrier (MPC), namely MPC1 and MPC2. Western blot, immunohistochemistry, and mRNA analysis corroborated the elevated expression of MPC in the surviving tissue. Furthermore, MPC1 and MPC2 protein levels were found to be markedly elevated in the myocardium of ischemic cardiomyopathy patients. These findings led to the hypothesis that increased MPC expression is cardioprotective due to enhancement of mitochondrial pyruvate uptake in the energy-starved heart following I/R. To test this, isolated mouse hearts perfused with a modified Krebs buffer (containing glucose, pyruvate, and octanoate as metabolic substrates) were subjected to I/R with or without the MPC transport inhibitor UK5099. UK5099 increased myocardial infarction and attenuated post-ischemic recovery of left ventricular end-diastolic pressure. However, aerobically perfused control hearts that were exposed to UK5099 did not modulate contractile function, although pyruvate uptake was blocked as evidenced by increased cytosolic lactate and pyruvate levels. Our findings indicate that increased expression of MPC leads to enhanced uptake and utilization of pyruvate during I/R. We propose this as a putative endogenous mechanism that promotes myocardial survival to limit infarct size.

  10. Microparticle content of platelet concentrates is predicted by donor microparticles and is altered by production methods and stress.

    PubMed

    Maurer-Spurej, Elisabeth; Larsen, Rune; Labrie, Audrey; Heaton, Andrew; Chipperfield, Kate

    2016-08-01

    In circulation, shedding of microparticles from a variety of viable cells can be triggered by pathological activation of inflammatory processes, by activation of coagulation or complement systems, or by physical stress. Elevated microparticle content (MPC) in donor blood might therefore indicate a clinical condition of the donor which, upon transfusion, might affect the recipient. In blood products, elevated MPC might also represent product stress. Surprisingly, the MPC in blood collected from normal blood donors is highly variable, which raises the question whether donor microparticles are present in-vivo and transfer into the final blood component, and how production methods and post-production processing might affect the MPC. We measured MPC using ThromboLUX in (a) platelet-rich plasma (PRP) of 54 apheresis donors and the corresponding apheresis products, (b) 651 apheresis and 646 pooled platelet concentrates (PCs) with plasma and 414 apheresis PCs in platelet additive solution (PAS), and (c) apheresis PCs before and after transportation, gamma irradiation, and pathogen inactivation (N = 8, 7, and 12 respectively). ThromboLUX-measured MPC in donor PRP and their corresponding apheresis PC samples were highly correlated (r = 0.82, P = .001). The average MPC in pooled PC was slightly lower than that in apheresis PC and substantially lower in apheresis PC stored with PAS rather than plasma. Mirasol Pathogen Reduction treatment significantly increased MPC with age. Thus, MPC measured in donor samples might be a useful predictor of product stability, especially if post-production processes are necessary. PMID:27470708

  11. The Material Protection, Control and Accounting Sustainability Program Implementation at the Electrochemical Plant

    SciTech Connect

    Sirotenko, Vladimir; Antonov, Eduard; Sirotenko, Alexei; Kukartsev, Alexander; Krivenko, Vladimir; Dabbs, Richard D.; Carroll, Michael F.; Garrett, Albert G.; Patrick, Scott W.; Ku, Esther M.

    2008-06-10

    Joint efforts by the Electrochemical Plant (ECP) in Zelenogorsk, Russia, and the United States Department of Energy National Nuclear Security Administration (US DOE/NNSA) Material Protection, Control and Accounting (MPC&A) Program to upgrade ECP security systems began in 1996. The commissioning of major MPC&A systems at ECP occurred in December 2004. Since that time, the US Project Team (USPT) and ECP personnel have focused jointly on the development and implementation of an enterprise-wide MPC&A Sustainability Program (SP) that address the seven essential MPC&A Program sustainability elements. This paper describes current operational experience at the ECP with the full implementation of the site SP utilizing an earned-value methodology. In support of this site program, ECP has established a Document Control Program (DCP) for sustainability-related documents; developed a robust master Work Breakdown Structure (WBS) that outlines all ECP MPC&A sustainability activities; and chartered an Enterprise-Wide Sustainability Working Group (ESWG) The earned value methodology uses ECP-completed (and USPT-verified) analyses to assess project performance on a quarterly basis. The MPC&A SP, presently operational through a contract between ECP and the Los Alamos National Laboratory (LANL), incorporates the seven essential MPC&A Program sustainability elements and governs all sustainability activities associated with MPC&A systems at ECP. The site SP is designed to ensure over the near term the upgraded MPC&A systems continuous operation at ECP as funding transitions from US-assisted to fully Russian supported and sustained.

  12. Nature's motility blockers: controlling human sperm motility machinery from the outside. Chemical characterization of a peritoneal fluid lipid that induces sperm immobilization.

    PubMed

    Keller, F; Togni, G; Soldati, G; Balmelli, T; Medici, G; Rose, K; Balerna, M

    1997-03-01

    A molecule isolated from the peritoneal fluids of women undergoing laparoscopy for in-vitro fertilization techniques has been chemically characterized and identified as 1-palmitic-3-phosphorylcholine (lysophosphatidylcholine, LPC). This lipid is able, at physiological concentrations, to completely inhibit sperm motility in vitro in a dose-dependent way. Synthetic LPC induced rapid and complete arrest of sperm motility when added to sperm suspensions at physiological concentrations without any damage to cell membranes. Taken together, these results suggest that LPC may represent a previously unrecognized in-vivo modulator of human sperm motility.

  13. Investigation of cellular and protein interactions with model self-assembled monolayer surfaces

    NASA Astrophysics Data System (ADS)

    Tegoulia, Vassiliki Apostolou

    Self-assembled monolayers (SAMs) of alkanethiolates on gold have been used to investigate the effect of substrate surface properties on bacterial and blood cell adhesion in the presence and absence of blood proteins. Protein adsorption and binding strength on SAMs as well as complement activation by these model surfaces were also studied. It is hoped that information gained, regarding factors that influence biological processes, will lead to strategies for designing materials and surfaces that specifically inhibit cell adhesion and protein adsorption. Single component SAMs of the general formula HS(CH2) 10X, where X = CH3, CH2OH. COOH and CH2(OCH 2CH2)3OH, and two component mixed SAMs created from binary solutions of HS(CH2), OCH3 and HS(CH 2)10CH2OH, were used. Adhesion was investigated under well-defined flow conditions. Adhesion was found to be higher for the hydrophobic methyl and minimal for the tri(ethyleneoxide) terminated SAM. Preincubation of the SAMs with fibrinogen led to an increase in cell adhesion for bacteria and a decrease for leukocyte adhesion. The effect of surface chemistry on protein adsorption was studied for three blood proteins, fibrinogen, fibronectin and albumin. Adsorption was found to be higher on the hydrophobic CH3 surface and lower but comparable for the other surfaces while proteins adsorbed strongly on all surfaces. SAMs were also used to evaluate complement activation by foreign surfaces. The hydroxyl rich SAMs were found to activate complement more significantly than the anionic carboxyl and the hydrophobic methyl terminated SAMs. A surface modification was introduced to incorporate a zwitterionic phosphorylcholine (PC) group on a hydroxyl monolayer in an effort to create a biomimetic surface that could minimize cell adhesion and protein adsorption. The good antifouling properties of the phosphorylcholine modified surface led to the synthesis of a novel phosphorylcholine functionalized thiol. Single component and two component

  14. Surface-initiated polymerization within mesoporous silica spheres for the modular design of charge-neutral polymer particles.

    PubMed

    Müllner, Markus; Cui, Jiwei; Noi, Ka Fung; Gunawan, Sylvia T; Caruso, Frank

    2014-06-01

    We report a templating approach for the preparation of functional polymer replica particles via surface-initiated polymerization in mesoporous silica templates. Subsequent removal of the template resulted in discrete polymer particles. Furthermore, redox-responsive replica particles could be engineered to disassemble in a reducing environment. Particles, made of poly(methacryloyloxyethyl phosphorylcholine) (PMPC) or poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA), exhibited very low association to human cancer cells (below 5%), which renders the reported charge-neutral polymer particles a modular and versatile class of highly functional carriers with potential applications in drug delivery.

  15. Cyto-mechanoresponsive polyelectrolyte multilayer films.

    PubMed

    Davila, Johanna; Chassepot, Armelle; Longo, Johan; Boulmedais, Fouzia; Reisch, Andreas; Frisch, Benoît; Meyer, Florent; Voegel, Jean-Claude; Mésini, Philippe J; Senger, Bernard; Metz-Boutigue, Marie-Hélène; Hemmerlé, Joseph; Lavalle, Philippe; Schaaf, Pierre; Jierry, Loïc

    2012-01-11

    Cell adhesion processes take place through mechanotransduction mechanisms where stretching of proteins results in biological responses. In this work, we present the first cyto-mechanoresponsive surface that mimics such behavior by becoming cell-adhesive through exhibition of arginine-glycine-aspartic acid (RGD) adhesion peptides under stretching. This mechanoresponsive surface is based on polyelectrolyte multilayer films built on a silicone sheet and where RGD-grafted polyelectrolytes are embedded under antifouling phosphorylcholine-grafted polyelectrolytes. The stretching of this film induces an increase in fibroblast cell viability and adhesion. PMID:22188330

  16. The Gas Monitoring of the Besiii Drift Chamber

    NASA Astrophysics Data System (ADS)

    Wang, Xianggao; Chen, Chang; Chen, Yuanbo; Wu, Zhi; Gu, Yunting; Ma, Xiaoyan; Jin, Yan; Liu, Rongguang; Tang, Xiao; Wang, Lan; Zhu, Qiming

    Two monitoring proportional counters (MPCs), installed at the inlet and outlet of the gas system of BESIII drift chamber (DC), were used to monitor the operation of the BESIII DC successfully and effectively as reported in this paper. The ratio of Gout/Gin (full energy photoelectron peak position of 55Fe 5.9 keV X-ray in inlet MPC as Gin and outlet MPC as Gout) is used as the main monitoring parameter. The MPC method is very useful for the gas detector system.

  17. Peritoneal culture alters Streptococcus pneumoniae protein profiles and virulence properties

    NASA Technical Reports Server (NTRS)

    Orihuela, C. J.; Janssen, R.; Robb, C. W.; Watson, D. A.; Niesel, D. W.

    2000-01-01

    We have examined the properties of Streptococcus pneumoniae cultured in the murine peritoneal cavity and compared its virulence-associated characteristics to those of cultures grown in vitro. Analysis of mRNA levels for specific virulence factors demonstrated a 2.8-fold increase in ply expression and a 2.2-fold increase in capA3 expression during murine peritoneal culture (MPC). Two-dimensional gels and immunoblots using convalescent-phase patient sera and murine sera revealed distinct differences in protein production in vivo (MPC). MPC-grown pneumococci adhered to A549 epithelial cell lines at levels 10-fold greater than those cultured in vitro.

  18. Compression zone of a magnetoplasma compressor as a source of extreme UV radiation

    SciTech Connect

    Garkusha, I. E.; Chebotarev, V. V.; Solyakov, D. G.; Petrov, Yu. V.; Ladygina, M. S.; Marchenko, A. K.; Staltsov, V. V.; Yelisyeyev, D. V.

    2012-02-15

    Results from experimental studies of extreme UV (EUV) radiation from the compression zone of a magnetoplasma compressor (MPC) operating with xenon are presented. Two MPC operating modes that differ in the method of xenon injection into the discharge were studied. It is shown that EUV radiation in the wavelength range of 5-80 nm is emitted from the compression zone. In the MPC operating mode with local xenon injection directly into the compression zone surrounded by helium plasma, the radiation power reaches it peak value of 16-18 kW in the wavelength range of 12.2-15.8 nm.

  19. Asteroid Lightcurve Analysis at the Danhenge Observatory Apr - Aug 2011

    NASA Astrophysics Data System (ADS)

    Coley, Daniel

    2012-01-01

    The lightcurves for three main-belt asteroids, 1413 Roucarie, 3385 Bronnina, and 39890 Bobstephens. All observations were taken from the DanHenge Observatory, one of 13 observatories at Goat Mountain Astronomical Research Station (GMARS - MPC G79).

  20. Nonequilibrium and nonlinear defect states in microcavity-polariton condensates.

    PubMed

    Chen, Ting-Wei; Jheng, Shih-Da; Hsieh, Wen-Feng; Cheng, Szu-Cheng

    2016-05-01

    The nonequilibrium and nonlinear defect modes (NNDMs), localized by a defect in a nonequilibrium microcavity-polariton condensate (MPC), are studied. There are three analytic solutions of NNDMs in a point defect: the bright NNDM, a bound state with two dark solitons for an attractive potential, and a gray soliton bound by a defect for a repulsive potential. We find that the stable NNDMs in a nonequilibrium MPC are the bright NNDM and gray soliton bound by a defect. The bright NNDM, which has the hyperbolic cotangent form, is a bright localized state existing in a uniform MPC. The bright NNDM is a unique state occurring in a nonequilibrium MPC that has pump-dissipation and repulsive-nonlinearity characters. No such state can exist in an equilibrium system with repulsive nonlinearity. PMID:27300887

  1. Experimental quadrotor flight performance using computationally efficient and recursively feasible linear model predictive control

    NASA Astrophysics Data System (ADS)

    Jaffery, Mujtaba H.; Shead, Leo; Forshaw, Jason L.; Lappas, Vaios J.

    2013-12-01

    A new linear model predictive control (MPC) algorithm in a state-space framework is presented based on the fusion of two past MPC control laws: steady-state optimal MPC (SSOMPC) and Laguerre optimal MPC (LOMPC). The new controller, SSLOMPC, is demonstrated to have improved feasibility, tracking performance and computation time than its predecessors. This is verified in both simulation and practical experimentation on a quadrotor unmanned air vehicle in an indoor motion-capture testbed. The performance of the control law is experimentally compared with proportional-integral-derivative (PID) and linear quadratic regulator (LQR) controllers in an unconstrained square manoeuvre. The use of soft control output and hard control input constraints is also examined in single and dual constrained manoeuvres.

  2. Model-Predictive Cascade Mitigation in Electric Power Systems With Storage and Renewables-Part II: Case-Study

    SciTech Connect

    Almassalkhi, MR; Hiskens, IA

    2015-01-01

    The novel cascade-mitigation scheme developed in Part I of this paper is implemented within a receding-horizon model predictive control (MPC) scheme with a linear controller model. This present paper illustrates the MPC strategy with a case-study that is based on the IEEE RTS-96 network, though with energy storage and renewable generation added. It is shown that the MPC strategy alleviates temperature overloads on transmission lines by rescheduling generation, energy storage, and other network elements, while taking into account ramp-rate limits and network limitations. Resilient performance is achieved despite the use of a simplified linear controller model. The MPC scheme is compared against a base-case that seeks to emulate human operator behavior.

  3. Multiparticle collision dynamics simulations of viscoelastic fluids: shear-thinning Gaussian dumbbells.

    PubMed

    Kowalik, Bartosz; Winkler, Roland G

    2013-03-14

    The structural, dynamical, and rheological properties are studied of a multiparticle collision dynamics (MPC) fluid composed of shear-thinning Gaussian dumbbells. MPC is a mesoscale hydrodynamic simulation technique, which has successfully been applied in simulations of a broad range of complex fluids with Newtonian solvent. The MPC particles are replaced by Gaussian dumbbells, where we enforce a constant mean square length even under nonequilibrium conditions, which leads to shear thinning. This conserves the simplicity and efficiency of the original MPC fluid dynamics, since the analytical solution is known of Newton's equations of motion of the Gaussian dumbbells. Moreover, analytically obtained nonequilibrium structural, dynamical, and rheological properties are presented of Gaussian dumbbells under shear flow within the preaveraging approximation of hydrodynamic interactions. The comparison of the analytical and simulation results shows good agreement, with small deviations only due to the preaveraging approximation. In particular, we observe shear thinning and a nonzero second normal stress coefficient.

  4. Electronic transport properties of (fluorinated) metal phthalocyanine

    NASA Astrophysics Data System (ADS)

    Fadlallah, M. M.; Eckern, U.; Romero, A. H.; Schwingenschlögl, U.

    2016-01-01

    The magnetic and transport properties of the metal phthalocyanine (MPc) and F16MPc (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and Ag) families of molecules in contact with S-Au wires are investigated by density functional theory within the local density approximation, including local electronic correlations on the central metal atom. The magnetic moments are found to be considerably modified under fluorination. In addition, they do not depend exclusively on the configuration of the outer electronic shell of the central metal atom (as in isolated MPc and F16MPc) but also on the interaction with the leads. Good agreement between the calculated conductance and experimental results is obtained. For M = Ag, a high spin filter efficiency and conductance is observed, giving rise to a potentially high sensitivity for chemical sensor applications.

  5. Implementation of model predictive control for resistive wall mode stabilization on EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.

    2015-10-01

    A model predictive control (MPC) method for stabilization of the resistive wall mode (RWM) in the EXTRAP T2R reversed-field pinch is presented. The system identification technique is used to obtain a linearized empirical model of EXTRAP T2R. MPC employs the model for prediction and computes optimal control inputs that satisfy performance criterion. The use of a linearized form of the model allows for compact formulation of MPC, implemented on a millisecond timescale, that can be used for real-time control. The design allows the user to arbitrarily suppress any selected Fourier mode. The experimental results from EXTRAP T2R show that the designed and implemented MPC successfully stabilizes the RWM.

  6. Revisiting constraints on small scale perturbations from big-bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Inomata, Keisuke; Kawasaki, Masahiro; Tada, Yuichiro

    2016-08-01

    We revisit the constraints on the small scale density perturbations (1 04 Mpc-1≲k ≲1 05 Mpc-1 ) from the modification of the freeze-out value of the neutron-proton ratio at the big-bang nucleosynthesis era. Around the freeze-out temperature T ˜0.5 MeV , the universe can be divided into several local patches that have different temperatures since any perturbation that enters the horizon after the neutrino decoupling has not diffused yet. Taking account of this situation, we calculate the freeze-out value in detail. We find that the small scale perturbations decrease the n -p ratio in contrast to previous works. With the use of the latest observed 4He abundance, we obtain the constraint on the power spectrum of the curvature perturbations as ΔR2≲0.018 on 1 04 Mpc-1≲k ≲1 05 Mpc-1 .

  7. Model-Predictive Cascade Mitigation in Electric Power Systems With Storage and Renewables-Part I: Theory and Implementation

    SciTech Connect

    Almassalkhi, MR; Hiskens, IA

    2015-01-01

    A novel model predictive control (MPC) scheme is developed for mitigating the effects of severe line-overload disturbances in electrical power systems. A piece-wise linear convex approximation of line losses is employed to model the effect of transmission line power flow on conductor temperatures. Control is achieved through a receding-horizon model predictive control (MPC) strategy which alleviates line temperature overloads and thereby prevents the propagation of outages. The MPC strategy adjusts line flows by rescheduling generation, energy storage and controllable load, while taking into account ramp-rate limits and network limitations. In Part II of this paper, the MPC strategy is illustrated through simulation of the IEEE RTS-96 network, augmented to incorporate energy storage and renewable generation.

  8. Using the IAEA Safety Culture Model as a Basis for Security Culture

    SciTech Connect

    De Castro, Kara; Thurmond, Paul; de Boer, Gloria; Mladineo, Stephen V.

    2008-08-01

    In the last ten years, the practice of nuclear material physical protection control and accounting (MPC&A) in Russia has significantly changed. Under the cooperative US-Russian MPC&A Program, the MPC&A Culture Project team has developed the fundamentals of a pilot program to strengthen MPC&A Culture at nuclear sites. The pilot program is based on the IAEA Safety Culture Principles and Model Characteristics. There has been some debate on how easily these are transferable to Security Culture. While there may be operational differences, culture characteristics remain the same. This paper will compare and contrast the two cultures of Safety and Security, taking into consideration the unique characteristics of each discipline.

  9. Nonequilibrium and nonlinear defect states in microcavity-polariton condensates

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Wei; Jheng, Shih-Da; Hsieh, Wen-Feng; Cheng, Szu-Cheng

    2016-05-01

    The nonequilibrium and nonlinear defect modes (NNDMs), localized by a defect in a nonequilibrium microcavity-polariton condensate (MPC), are studied. There are three analytic solutions of NNDMs in a point defect: the bright NNDM, a bound state with two dark solitons for an attractive potential, and a gray soliton bound by a defect for a repulsive potential. We find that the stable NNDMs in a nonequilibrium MPC are the bright NNDM and gray soliton bound by a defect. The bright NNDM, which has the hyperbolic cotangent form, is a bright localized state existing in a uniform MPC. The bright NNDM is a unique state occurring in a nonequilibrium MPC that has pump-dissipation and repulsive-nonlinearity characters. No such state can exist in an equilibrium system with repulsive nonlinearity.

  10. Magnetic Mesoporous Photonic Cellulose Films.

    PubMed

    Giese, Michael; Blusch, Lina K; Schlesinger, Maik; Meseck, Georg R; Hamad, Wadood Y; Arjmand, Mohammad; Sundararaj, Uttandaraman; MacLachlan, Mark J

    2016-09-13

    Novel hybrid materials of cellulose and magnetic nanoparticles (NPs) were synthesized and characterized. The materials combine the chiral nematic structural features of mesoporous photonic cellulose (MPC) with the magnetic properties of cobalt ferrite (CoFe2O4). The photonic, magnetic, and dielectric properties of the hybrid materials were investigated during the dynamic swelling and deswelling of the MPC films. It was observed that the dielectric properties of the generated MPC films increased tremendously following swelling in water, endorsing efficient swelling ability of the generated mesoporous films. The high magnetic permeability of the developed MPC films in conjunction with their superior dielectric properties, predominantly in the swollen state, makes them interesting for electromagnetic interference shielding applications. PMID:27588561

  11. Synergy of spaceborne remote sensing and airborne in situ observations for the study of Arctic mixed phase clouds at regional and small scales

    NASA Astrophysics Data System (ADS)

    Mioche, G.; Jourdan, O.; Delanoë, J.; Gourbeyre, C.; Dupuy, R.; Guyot, G.; Szczap, F.; Schwarzenboeck, A.

    2015-12-01

    Clouds radiation feedback processes in the Arctic have been identified as one of the greatest sources of uncertainties in the prediction of global climate in GCMs. In particular, mixed phase clouds (MPC) occur very frequently at low-level altitudes in the Arctic, representing between 30% and 50% of the clouds all along the year. However, the characterization of MPC on the whole Arctic region is not yet accurate enough to better understand cloud-radiation interactions. Thus, the knowledge of arctic MPC properties has to be improved. The aim of this study is to characterize MPC properties from regional scale to small scale. This work is based on the synergy of spaceborne active remote sensing (CALIPSO/CloudSat) and airborne in situ observations. We will present results about the time and space variability and vertical distribution of MPC over the entire Arctic region, with a focus on the Svalbard region. The influence of the seasonal cycle as well as surface type (open sea, sea ice, land) on the MPC occurrences will also be investigated. Then, this study will focus on a statistical analysis of MPC clouds properties based on in situ measurements carried out during several airborne campaigns in Svalbard region (14 flights corresponding to 54 vertical profiles). This will provide a detailed characterization of microphysical and optical properties of MPC, discriminating liquid and ice phases. Small scale processes occurring in arctic clouds will be also studied. Finally, accurate profiles of relevant clouds parameters (optical depth, liquid/water fraction, ice crystals morphology, ice and liquid water contents…) will be assessed to contribute to the improvement of clouds representation in global and mesoscale models and to improve airborne and spatial remote sensing retrievals algorithms.

  12. LYα FOREST TOMOGRAPHY FROM BACKGROUND GALAXIES: THE FIRST MEGAPARSEC-RESOLUTION LARGE-SCALE STRUCTURE MAP AT z > 2

    SciTech Connect

    Lee, Khee-Gan; Hennawi, Joseph F.; Eilers, Anna-Christina; Stark, Casey; White, Martin; Prochaska, J. Xavier; Schlegel, David J.; Arinyo-i-Prats, Andreu; Suzuki, Nao; Croft, Rupert A. C.; Caputi, Karina I.; Cassata, Paolo; Ilbert, Olivier; Le Brun, Vincent; Le Fèvre, Olivier; Garilli, Bianca; Koekemoer, Anton M.; Maccagni, Dario; Nugent, Peter; and others

    2014-11-01

    We present the first observations of foreground Lyα forest absorption from high-redshift galaxies, targeting 24 star-forming galaxies (SFGs) with z ∼ 2.3-2.8 within a 5' × 14' region of the COSMOS field. The transverse sightline separation is ∼2 h {sup –1} Mpc comoving, allowing us to create a tomographic reconstruction of the three-dimensional (3D) Lyα forest absorption field over the redshift range 2.20 ≤ z ≤ 2.45. The resulting map covers 6 h {sup –1} Mpc × 14 h {sup –1} Mpc in the transverse plane and 230 h {sup –1} Mpc along the line of sight with a spatial resolution of ≈3.5 h {sup –1} Mpc, and is the first high-fidelity map of a large-scale structure on ∼Mpc scales at z > 2. Our map reveals significant structures with ≳ 10 h {sup –1} Mpc extent, including several spanning the entire transverse breadth, providing qualitative evidence for the filamentary structures predicted to exist in the high-redshift cosmic web. Simulated reconstructions with the same sightline sampling, spectral resolution, and signal-to-noise ratio recover the salient structures present in the underlying 3D absorption fields. Using data from other surveys, we identified 18 galaxies with known redshifts coeval with our map volume, enabling a direct comparison with our tomographic map. This shows that galaxies preferentially occupy high-density regions, in qualitative agreement with the same comparison applied to simulations. Our results establish the feasibility of the CLAMATO survey, which aims to obtain Lyα forest spectra for ∼1000 SFGs over ∼1 deg{sup 2} of the COSMOS field, in order to map out the intergalactic medium large-scale structure at (z) ∼ 2.3 over a large volume (100 h {sup –1} Mpc){sup 3}.

  13. Preview Scheduled Model Predictive Control For Horizontal Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Laks, Jason H.

    This research investigates the use of model predictive control (MPC) in application to wind turbine operation from start-up to cut-out. The studies conducted are focused on the design of an MPC controller for a 650˜KW, three-bladed horizontal axis turbine that is in operation at the National Renewable Energy Laboratory's National Wind Technology Center outside of Golden, Colorado. This turbine is at the small end of utility scale turbines, but it provides advanced instrumentation and control capabilities, and there is a good probability that the approach developed in simulation for this thesis, will be field tested on the actual turbine. A contribution of this thesis is a method to combine the use of preview measurements with MPC while also providing regulation of turbine speed and cyclic blade loading. A common MPC technique provides integral-like control to achieve offset-free operation. At the same time in wind turbine applications, multiple studies have developed "feed-forward" controls based on applying a gain to an estimate of the wind speed changes obtained from an observer incorporating a disturbance model. These approaches are based on a technique that can be referred to as disturbance accommodating control (DAC). In this thesis, it is shown that offset-free tracking MPC is equivalent to a DAC approach when the disturbance gain is computed to satisfy a regulator equation. Although the MPC literature has recognized that this approach provides "structurally stable" disturbance rejection and tracking, this step is not typically divorced from the MPC computations repeated each sample hit. The DAC formulation is conceptually simpler, and essentially uncouples regulation considerations from MPC related issues. This thesis provides a self contained proof that the DAC formulation (an observer-controller and appropriate disturbance gain) provides structurally stable regulation.

  14. Synergy of spaceborne remote sensing and airborne in situ observations for the study of Arctic mixed phase clouds at regional and small scales

    NASA Astrophysics Data System (ADS)

    Mioche, G.; Jourdan, O.; Delanoë, J.; Gourbeyre, C.; Dupuy, R.; Guyot, G.; Szczap, F.; Schwarzenboeck, A.

    2014-12-01

    Clouds radiation feedback processes in the Arctic have been identified as one of the greatest sources of uncertainties in the prediction of global climate in GCMs. In particular, mixed phase clouds (MPC) occur very frequently at low-level altitudes in the Arctic, representing between 30% and 50% of the clouds all along the year. However, the characterization of MPC on the whole Arctic region is not yet accurate enough to better understand cloud-radiation interactions. Thus, the knowledge of arctic MPC properties has to be improved. The aim of this study is to characterize MPC properties from regional scale to small scale. This work is based on the synergy of spaceborne active remote sensing (CALIPSO/CloudSat) and airborne in situ observations. We will present results about the time and space variability and vertical distribution of MPC over the entire Arctic region, with a focus on the Svalbard region. The influence of the seasonal cycle as well as surface type (open sea, sea ice, land) on the MPC occurrences will also be investigated. Then, this study will focus on a statistical analysis of MPC clouds properties based on in situ measurements carried out during several airborne campaigns in Svalbard region (14 flights corresponding to 54 vertical profiles). This will provide a detailed characterization of microphysical and optical properties of MPC, discriminating liquid and ice phases. Small scale processes occurring in arctic clouds will be also studied. Finally, accurate profiles of relevant clouds parameters (optical depth, liquid/water fraction, ice crystals morphology, ice and liquid water contents…) will be assessed to contribute to the improvement of clouds representation in global and mesoscale models and to improve airborne and spatial remote sensing retrievals algorithms.

  15. The Correlation Function of Galaxy Clusters and Detection of Baryon Acoustic Oscillations

    NASA Astrophysics Data System (ADS)

    Hong, T.; Han, J. L.; Wen, Z. L.; Sun, L.; Zhan, H.

    2012-04-01

    We calculate the correlation function of 13,904 galaxy clusters of z <= 0.4 selected from the cluster catalog of Wen et al. The correlation function can be fitted with a power-law model ξ(r) = (r/R 0)-γ on the scales of 10 h -1 Mpc <= r <= 50 h -1 Mpc, with a larger correlation length of R 0 = 18.84 ± 0.27 h -1 Mpc for clusters with a richness of R >= 15 and a smaller length of R 0 = 16.15 ± 0.13 h -1 Mpc for clusters with a richness of R >= 5. The power-law index of γ = 2.1 is found to be almost the same for all cluster subsamples. A pronounced baryon acoustic oscillations (BAO) peak is detected at r ~ 110 h -1 Mpc with a significance of ~1.9σ. By analyzing the correlation function in the range of 20 h -1 Mpc <= r <= 200 h -1 Mpc, we find that the constraints on distance parameters are Dv (zm = 0.276) = 1077 ± 55(1σ) Mpc and h = 0.73 ± 0.039(1σ), which are consistent with the cosmology derived from Wilkinson Microwave Anisotropy Probe (WMAP) seven-year data. However, the BAO signal from the cluster sample is stronger than expected and leads to a rather low matter density Ω m h 2 = 0.093 ± 0.0077(1σ), which deviates from the WMAP7 result by more than 3σ. The correlation function of the GMBCG cluster sample is also calculated and our detection of the BAO feature is confirmed.

  16. THE CORRELATION FUNCTION OF GALAXY CLUSTERS AND DETECTION OF BARYON ACOUSTIC OSCILLATIONS

    SciTech Connect

    Hong, T.; Han, J. L.; Wen, Z. L.; Sun, L.; Zhan, H.

    2012-04-10

    We calculate the correlation function of 13,904 galaxy clusters of z {<=} 0.4 selected from the cluster catalog of Wen et al. The correlation function can be fitted with a power-law model {xi}(r) = (r/R{sub 0}){sup -{gamma}} on the scales of 10 h{sup -1} Mpc {<=} r {<=} 50 h{sup -1} Mpc, with a larger correlation length of R{sub 0} = 18.84 {+-} 0.27 h{sup -1} Mpc for clusters with a richness of R {>=} 15 and a smaller length of R{sub 0} = 16.15 {+-} 0.13 h{sup -1} Mpc for clusters with a richness of R {>=} 5. The power-law index of {gamma} = 2.1 is found to be almost the same for all cluster subsamples. A pronounced baryon acoustic oscillations (BAO) peak is detected at r {approx} 110 h{sup -1} Mpc with a significance of {approx}1.9{sigma}. By analyzing the correlation function in the range of 20 h{sup -1} Mpc {<=} r {<=} 200 h{sup -1} Mpc, we find that the constraints on distance parameters are D{sub v} (z{sub m} = 0.276) = 1077 {+-} 55(1{sigma}) Mpc and h = 0.73 {+-} 0.039(1{sigma}), which are consistent with the cosmology derived from Wilkinson Microwave Anisotropy Probe (WMAP) seven-year data. However, the BAO signal from the cluster sample is stronger than expected and leads to a rather low matter density {Omega}{sub m} h{sup 2} = 0.093 {+-} 0.0077(1{sigma}), which deviates from the WMAP7 result by more than 3{sigma}. The correlation function of the GMBCG cluster sample is also calculated and our detection of the BAO feature is confirmed.

  17. Self-Reliability and Motivation in a Nuclear Security Culture Enhancement Program

    SciTech Connect

    Crawford,C.; de Boer,G.; De Castro, K; Landers, Ph.D., J; Rogers, E

    2009-10-19

    The threat of nuclear terrorism has become a global concern. Many countries continue to make efforts to strengthen nuclear security by enhancing systems of nuclear material protection, control, and accounting (MPC&A). Though MPC&A systems can significantly upgrade nuclear security, they do not eliminate the "human factor." This paper will describe some of the key elements of a comprehensive, sustainable nuclear security culture enhancement program and how implementation can mitigate the insider threat.

  18. Monitored Retrievable Storage/Multi-Purpose Canister analysis: Simulation and economics of automation

    SciTech Connect

    Bennett, P.C.; Stringer, J.B.

    1994-03-01

    Robotic automation is examined as a possible alternative to manual spent nuclear fuel, transport cask and Multi-Purpose canister (MPC) handling at a Monitored Retrievable Storage (MRS) facility. Automation of key operational aspects for the MRS/MPC system are analyzed to determine equipment requirements, through-put times and equipment costs is described. The economic and radiation dose impacts resulting from this automation are compared to manual handling methods.

  19. Competitive binding of pentraxins and IgM to newly exposed epitopes on late apoptotic cells.

    PubMed

    Ciurana, Caroline L F; Hack, C Erik

    2006-01-01

    A random distribution of phospholipids among the inner and outer leaflet of the cell membrane occurs during apoptosis and is known as membrane flip-flop. Flip-flopped cells have binding sites for various plasma proteins, such as IgM and the pentraxins C-reactive protein (CRP) and serum amyloid P component (SAP). In this study, we investigated whether pentraxins and IgM antibodies recognize the same binding sites on apoptotic cells, and whether phospholipids constitute these binding sites. Except for SAP which also bound to early apoptotic cells, pentraxins and IgM preferentially bound to late apoptotic cells. Competition experiments with different phosphatemonoesters revealed that CRP and SAP as well as part of the IgM bound to the phospholipids head groups, SAP mainly to phosphorylethanolamine, CRP to phosphorylcholine and phosphorylethanolamine and to a lesser extent to phosphorylserine, and IgM to phosphorylcholine and phosphorylserine. These results were confirmed in experiments in which proteins were adsorbed from plasma with artificial phospholipids particles. IgM and the pentraxins variably competed for the same binding sites on late apoptotic cells, SAP having the highest and CRP the lowest apparent affinity. We conclude that CRP, SAP, and part of the IgM bind to the phospholipid head groups exposed on apoptotic cells. This shared specificity as well as their shared capability to activate complement, suggest that IgM and the pentraxins CRP and SAP exert similar functions in the removal of apoptotic cells.

  20. Designing Anti-inflammatory Drugs from Parasitic Worms: A Synthetic Small Molecule Analogue of the Acanthocheilonema viteae Product ES-62 Prevents Development of Collagen-Induced Arthritis

    PubMed Central

    2013-01-01

    In spite of increasing evidence that parasitic worms may protect humans from developing allergic and autoimmune diseases and the continuing identification of defined helminth-derived immunomodulatory molecules, to date no new anti-inflammatory drugs have been developed from these organisms. We have approached this matter in a novel manner by synthesizing a library of drug-like small molecules based upon phosphorylcholine, the active moiety of the anti-inflammatory Acanthocheilonema viteae product, ES-62, which as an immunogenic protein is unsuitable for use as a drug. Following preliminary in vitro screening for inhibitory effects on relevant macrophage cytokine responses, a sulfone-containing phosphorylcholine analogue (11a) was selected for testing in an in vivo model of inflammation, collagen-induced arthritis (CIA). Testing revealed that 11a was as effective as ES-62 in protecting DBA/1 mice from developing CIA and mirrored its mechanism of action in downregulating the TLR/IL-1R transducer, MyD88. 11a is thus a novel prototype for anti-inflammatory drug development. PMID:24228757

  1. Organelle membranes from germinating castro bean endosperm

    SciTech Connect

    Donaldson, R.P.; Tully, R.E.; Young, O.A.; Beevers, H.

    1981-01-01

    Glyoxysome ghosts were isolated from germinating castor bean endosperms using established methods. Electron microscopic examination showed that some matrix material was retained within the glyoxysomal membrane. Two cytochrome reductases and phosphorylcholine glyceride transferase co-sedimented with the alkaline lipase, a known component of the glyoxysome membrane, in sucrose gradient centrifugation of osmotically shocked glyoxysomes. The activities of these enzymes in the glyoxysome membranes were compared to those in the endoplasmic reticulum relative to phospholipid content. On this basis, the phosphorylcholine glyceride transferase was 10-fold more active in the endoplasmic reticulum, whereas the lipase was 50-fold more active in the glyoxysome membrane. The cytochrome reductases were only 2-fold more active in the endoplasmic reticulum, indicating that they are components of the two membranes. Difference spectroscopy of the glyoxysome membrane suspension revealed the presence of a b5-type cytochrome similar to that found in the endoplasmic reticulum. Since the glyoxysome membrane is apparently derived from the endoplasmic reticulum, components of the endoplasmic reticulum such as these are likely to be incorporated into the glyoxysome membrane during biogenesis. Enzyme activites involving the cofactors NADH or CoA were measurable in broken, but not in intact, glyoxysomes. Thus, it appears that cofactors for enzymes within the organelle cannot pass through the membrane.

  2. Mitochondrial metabolism of pyruvate is essential for regulating glucose-stimulated insulin secretion.

    PubMed

    Patterson, Jessica N; Cousteils, Katelyn; Lou, Jennifer W; Manning Fox, Jocelyn E; MacDonald, Patrick E; Joseph, Jamie W

    2014-05-01

    It is well known that mitochondrial metabolism of pyruvate is critical for insulin secretion; however, we know little about how pyruvate is transported into mitochondria in β-cells. Part of the reason for this lack of knowledge is that the carrier gene was only discovered in 2012. In the current study, we assess the role of the recently identified carrier in the regulation of insulin secretion. Our studies show that β-cells express both mitochondrial pyruvate carriers (Mpc1 and Mpc2). Using both pharmacological inhibitors and siRNA-mediated knockdown of the MPCs we show that this carrier plays a key role in regulating insulin secretion in clonal 832/13 β-cells as well as rat and human islets. We also show that the MPC is an essential regulator of both the ATP-regulated potassium (KATP) channel-dependent and -independent pathways of insulin secretion. Inhibition of the MPC blocks the glucose-stimulated increase in two key signaling molecules involved in regulating insulin secretion, the ATP/ADP ratio and NADPH/NADP(+) ratio. The MPC also plays a role in in vivo glucose homeostasis as inhibition of MPC by the pharmacological inhibitor α-cyano-β-(1-phenylindol-3-yl)-acrylate (UK5099) resulted in impaired glucose tolerance. These studies clearly show that the newly identified mitochondrial pyruvate carrier sits at an important branching point in nutrient metabolism and that it is an essential regulator of insulin secretion. PMID:24675076

  3. Loss of Mitochondrial Pyruvate Carrier 2 in the Liver Leads to Defects in Gluconeogenesis and Compensation via Pyruvate-Alanine Cycling.

    PubMed

    McCommis, Kyle S; Chen, Zhouji; Fu, Xiaorong; McDonald, William G; Colca, Jerry R; Kletzien, Rolf F; Burgess, Shawn C; Finck, Brian N

    2015-10-01

    Pyruvate transport across the inner mitochondrial membrane is believed to be a prerequisite for gluconeogenesis in hepatocytes, which is important for the maintenance of normoglycemia during prolonged food deprivation but also contributes to hyperglycemia in diabetes. To determine the requirement for mitochondrial pyruvate import in gluconeogenesis, mice with liver-specific deletion of mitochondrial pyruvate carrier 2 (LS-Mpc2(-/-)) were generated. Loss of MPC2 impaired, but did not completely abolish, hepatocyte conversion of labeled pyruvate to TCA cycle intermediates and glucose. Unbiased metabolomic analyses of livers from fasted LS-Mpc2(-/-) mice suggested that alterations in amino acid metabolism, including pyruvate-alanine cycling, might compensate for the loss of MPC2. Indeed, inhibition of pyruvate-alanine transamination further reduced mitochondrial pyruvate metabolism and glucose production by LS-Mpc2(-/-) hepatocytes. These data demonstrate an important role for MPC2 in controlling hepatic gluconeogenesis and illuminate a compensatory mechanism for circumventing a block in mitochondrial pyruvate import. PMID:26344101

  4. Commissioning of the upgraded CSC Endcap Muon Port Cards at CMS

    NASA Astrophysics Data System (ADS)

    Ecklund, K.; Liu, J.; Madorsky, A.; Matveev, M.; Michlin, B.; Padley, P.; Rorie, J.

    2016-01-01

    There are 180 1.6 Gbps optical links from 60 Muon Port Cards (MPC) to the Cathode Strip Chamber Track Finder (CSCTF) in the original system. Before the upgrade each MPC was able to provide up to three trigger primitives from a cluster of nine CSC chambers to the Level 1 CSCTF. With an LHC luminosity increase to 1035 cm-2s-1 at full energy of 7 TeV/beam, the simulation studies suggest that we can expect two or three times more trigger primitives per bunch crossing from the front-end electronics. To comply with this requirement, the MPC, CSCTF, and optical cables need to be upgraded. The upgraded MPC allows transmission of up to 18 trigger primitives from the peripheral crate. This feature would allow searches for physics signatures of muon jets that require more trigger primitives per trigger sector. At the same time, it is very desirable to preserve all the old optical links for compatibility with the older Track Finder during transition period at the beginning of Run 2. Installation of the upgraded MPC boards and the new optical cables has been completed at the CMS detector in the summer of 2014. We describe the final design of the new MPC mezzanine FPGA, its firmware, and results of tests in laboratory and in situ with the old and new CSCTF boards.

  5. Prefrontal cortex self-stimulation and energy balance.

    PubMed

    McGregor, I S; Atrens, D M

    1991-12-01

    The relation between sulcal prefrontal cortex (SPC) and medial prefrontal cortex (MPC) self-stimulation and energy balance was investigated in rats. SPC but not MPC self-stimulation induced feeding but not the gnawing of wooden blocks. SPC but not MPC self-stimulation enhanced weight gain over several weeks of exposure to stimulation. Food deprivation (48 hr but not 24 hr) increased SPC self-stimulation rates under a 5-s fixed-interval reinforcement schedule and decreased current thresholds for SPC self-stimulation. MPC self-stimulation was unaffected by food deprivation. Insulin (4 U/kg) and 2-deoxy-D-glucose (300 mg/kg) inhibited both SPC and MPC self-stimulation, probably through interfering with performance. Satiety induced by prolonged intake of a sweetened solution or deprivation-induced feeding moderately facilitated SPC self-stimulation. Overall, it appears that SPC but not MPC self-stimulation modulates, and is modulated by, energy balance. PMID:1777106

  6. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds.

    PubMed

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-Ting; Hebert, Vincent R; Zhang, Jinwen; Wolcott, Michael P; Quintero, Melissa; Ramasamy, Karthikeyan K; Chen, Xiaowen; Zhang, Xiao

    2016-07-25

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  7. Short-term optimal operation of water systems using ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Raso, L.; Schwanenberg, D.; van de Giesen, N. C.; van Overloop, P. J.

    2014-09-01

    Short-term water system operation can be realized using Model Predictive Control (MPC). MPC is a method for operational management of complex dynamic systems. Applied to open water systems, MPC provides integrated, optimal, and proactive management, when forecasts are available. Notwithstanding these properties, if forecast uncertainty is not properly taken into account, the system performance can critically deteriorate. Ensemble forecast is a way to represent short-term forecast uncertainty. An ensemble forecast is a set of possible future trajectories of a meteorological or hydrological system. The growing ensemble forecasts’ availability and accuracy raises the question on how to use them for operational management. The theoretical innovation presented here is the use of ensemble forecasts for optimal operation. Specifically, we introduce a tree based approach. We called the new method Tree-Based Model Predictive Control (TB-MPC). In TB-MPC, a tree is used to set up a Multistage Stochastic Programming, which finds a different optimal strategy for each branch and enhances the adaptivity to forecast uncertainty. Adaptivity reduces the sensitivity to wrong forecasts and improves the operational performance. TB-MPC is applied to the operational management of Salto Grande reservoir, located at the border between Argentina and Uruguay, and compared to other methods.

  8. Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse

    SciTech Connect

    Morgan, J.E.; Hoffman, E.P.; Partridge, T.A. )

    1990-12-01

    Dystrophin deficiency in skeletal muscle of the x-linked dystrophic (mdx) mouse can be partially remedied by implantation of normal muscle precursor cells (mpc). However, it is difficult to determine whether this biochemical rescue results in any improvement in the structure or function of the treated muscle, because the vigorous regeneration of mdx muscle more than compensates for the degeneration. By using x-ray irradiation to prevent mpc proliferation, it is possible to study loss of mdx muscle fibers without the complicating effect of simultaneous fiber regeneration. Thus, improvements in fiber survival resulting from any potential therapy can be detected easily. Here, we have implanted normal mpc, obtained from newborn mice, into such preirradiated mdx muscles, finding that it is far more extensively permeated and replaced by implanted mpc than is nonirradiated mdx muscle; this is evident both from analysis of glucose-6-phosphate isomerase isoenzyme markers and from immunoblots and immunostaining of dystrophin in the treated muscles. Incorporation of normal mpc markedly reduces the loss of muscle fibers and the deterioration of muscle structure which otherwise occurs in irradiated mdx muscles. Surprisingly, the regenerated fibers are largely peripherally nucleated, whereas regenerated mouse skeletal muscle fibers are normally centrally nucleated. We attribute this regeneration of apparently normal muscle to the tendency of newborn mouse mpc to recapitulate their neonatal ontogeny, even when grafted into 3-wk-old degenerating muscle.

  9. Intelligent Engine Systems: Adaptive Control

    NASA Technical Reports Server (NTRS)

    Gibson, Nathan

    2008-01-01

    We have studied the application of the baseline Model Predictive Control (MPC) algorithm to the control of main fuel flow rate (WF36), variable bleed valve (AE24) and variable stator vane (STP25) control of a simulated high-bypass turbofan engine. Using reference trajectories for thrust and turbine inlet temperature (T41) generated by a simulated new engine, we have examined MPC for tracking these two reference outputs while controlling a deteriorated engine. We have examined the results of MPC control for six different transients: two idle-to-takeoff transients at sea level static (SLS) conditions, one takeoff-to-idle transient at SLS, a Bode power command and reverse Bode power command at 20,000 ft/Mach 0.5, and a reverse Bode transient at 35,000 ft/Mach 0.84. For all cases, our primary focus was on the computational effort required by MPC for varying MPC update rates, control horizons, and prediction horizons. We have also considered the effects of these MPC parameters on the performance of the control, with special emphasis on the thrust tracking error, the peak T41, and the sizes of violations of the constraints on the problem, primarily the booster stall margin limit, which for most cases is the lone constraint that is violated with any frequency.

  10. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds.

    PubMed

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-Ting; Hebert, Vincent R; Zhang, Jinwen; Wolcott, Michael P; Quintero, Melissa; Ramasamy, Karthikeyan K; Chen, Xiaowen; Zhang, Xiao

    2016-07-25

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated. PMID:27373451

  11. π0 Reconstruction using the Muon Piston Calorimeter Extension

    NASA Astrophysics Data System (ADS)

    Dixit, Dhruv; Phenix Collaboration

    2015-10-01

    The Muon-Piston Calorimeter Extension (MPC-EX) is a new detector in the PHENIX experiment at the Relativistic Heavy Ion Collider that was installed for the recent Run 15 of the experiment. In polarized p+p and polarized p+A collisions, an important measurement is the yield and momentum distribution of direct photons. Unaffected by the strong force, direct photons traverse the dense medium in the collision zone mostly unchanged, thereby providing information about the initial stages of the collision. However, there is a huge background of photons from other sources, primarily π0 which decay into two photons. The opening angle between the decay photons becomes smaller with higher energies of the original π0. For energies greater than ~20 GeV, the Muon Piston Calorimeter (MPC) cannot distinguish the two decay photons from a single photon, as their showers merge. The MPC-EX, an 8-layer tungsten and silicon sensor sandwich in front of the MPC, can measure and image the shower development, and help distinguish between direct photons and π0 decay photons up to higher energies than the MPC alone. We will describe the MPC-EX detector and its readout, and present the calibration procedures applied to the data in order to obtain the π0 spectrum. This project was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

  12. Synthesis and nanorod growth of n-type phthalocyanine on ultrathin metal films by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Koshiba, Yasuko; Nishimoto, Mihoko; Misawa, Asuka; Misaki, Masahiro; Ishida, Kenji

    2016-03-01

    The thermal behavior of 1,2,4,5-tetracyanobenzene (TCNB), the synthesis of metal-2,3,9,10,16,17,23,24-octacyanophthalocyanine-metal [MPc(CN)8-M] (M = Cu, Fe, Ni) complexes by the tetramerization of TCNB, and the growth of MPc(CN)8-M nanorods were investigated. By chemical vapor deposition (CVD) in vacuum, MPc(CN)8 molecules were synthesized and MPc(CN)8-M nanorods were formed on all substrates. Among them, CuPc(CN)8 molecules were synthesized in high yield, and CuPc(CN)8-Cu nanorods were deposited uniformly and in high density, with diameters and lengths of 70-110 and 200-700 nm, respectively. The differences in the growth of MPc(CN)8-M nanorods were mainly attributed to the stability of the MPc(CN)8-M complex, the oxidation of ultrathin metal films, and the diffusion of metal atoms. Additionally, the tetramerization of TCNB by CVD at atmospheric pressure was performed on ultrathin Cu films, and the synthesis of CuPc(CN)8 molecules was observed by in situ UV-vis spectroscopy. CVD under atmospheric pressure is also useful for the synthesis of CuPc(CN)8 molecules.

  13. Estimation of the protein content of US imports of milk protein concentrates.

    PubMed

    Bailey, K W

    2003-12-01

    Recent declines in milk prices in the United States have sparked renewed concern that imports of milk protein concentrates (MPC) are increasingly entering the United States with very low tariff rates and is having an adverse impact on the US dairy industry. Milk protein concentrates are used in the United States in many different products, including the starter culture of cheese, or in nonstandard cheeses such as baker's cheese, ricotta, Feta and Hispanic cheese, processed cheese foods, and nutritional products. One of the difficult aspects of trying to assess the impact of MPC imports on the US dairy industry is to quantify the protein content of these imports. The protein content of MPC imports typically ranges from 40 to 88%. The purpose of this study is to develop a methodology that can be used to estimate the protein content of MPC on a country by country basis. Such an estimate would not only provide information regarding the quantity of protein entering the United States, but would also provide a profile of low- and high-value MPC importers. This is critical for market analysis, since it is the lower valued MPC imports that more directly displaces US-produced skim milk powder.

  14. Magnetophotocurrent in Organic Bulk Heterojunction Photovoltaic Cells at Low Temperatures and High Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Khachatryan, B.; Devir-Wolfman, A. H.; Tzabari, L.; Tessler, N.; Vardeny, Z. V.; Ehrenfreund, E.

    2016-04-01

    We study high-field (up to B ˜8.5 T ) magnetophotocurrent (MPC) related to photogenerated polaron pairs (PPs) in the temperature range T =10 - 320 K in organic bulk heterojunction photovoltaic cells. We find that in the high-field regime (B >1 T ), MPC (B ) response increases with B for temperature T >200 K but decreases with B at T <200 K . MPC (B ) response does not saturate even at the highest field studied, at all T . We attribute the observed high-field MPC (B ) response to two competing mechanisms within the PP spin states: (a) a spin-mixing mechanism caused by the difference in the donor-acceptor (or positive-negative polarons) g factors (the so-called "Δ g mechanism"), and (b) the spin polarization induced by thermal population of the PP Zeeman split levels. The nonsaturating MPC (B ) response at high fields and high temperatures indicates that there exist charge-transfer excitons (CTEs) with decay time in the subnanosecond time domain. With decreasing temperature, the CTE decay time sharply increases, thereby promoting an increase of the thermal spin-polarization contribution to the MPC (B ) response.

  15. Urine cytology of micropapillary carcinoma of the urinary bladder.

    PubMed

    Sakuma, Takahiko; Furuta, Michiko; Mimura, Akihiro; Tanigawa, Naoto; Takamizu, Ryuichi; Kawano, Kiyoshi

    2011-11-01

    A case of micropapillary carcinoma (MPC) of urinary bladder is presented, in which the urine smear was studied in detail in an attempt to better characterize the cytologic findings of MPC. When the voided urine was examined in low power, cancer cells were scattered in the specimens as compact papillary/spheroidal clusters composed of pleomorphic cancer cells. Solitary carcinoma cells were occasionally observed. High power view of the smear revealed that the papillae/spheroids consisted of high-grade urothelial carcinoma cells. The cancer cells had pleomorphic nuclei with coarsely granular chromatin and thickened, irregular nuclear membrane, and thick cytoplasm. Histologically, the tumor in the resected bladder appeared as small nests with surrounding hallo both in the luminal surface and in the site of wall involvement. These tightly bound papillary/spheroidal clusters comprised of highly atypical cancer cells were the most specific cytologic finding in the urine of MPC, which were considered as a key diagnostic clue of MPC. The background of the urine smear showed numerous granulocytes and bacilli compatible with cystitis, which is a previously known complication of MPC. Differential diagnoses of MPC from those with pertinent cytologic findings such as conventional UC (including glandular differentiation), and primary/secondary adenocarcinoma of urinary bladder are discussed with a brief review of literature.

  16. Compression of digital chest radiographs with a mixture of principal components neural network: evaluation of performance.

    PubMed

    Dony, R D; Coblentz, C L; Nabmias, C; Haykin, S

    1996-11-01

    The performance of a new, neural network-based image compression method was evaluated on digital radiographs for use in an educational environment. The network uses a mixture of principal components (MPC) representation to effect optimally adaptive transform coding of an image and has significant computational advantages over other techniques. Nine representative digital chest radiographs were compressed 10:1, 20:1, 30:1, and 40:1 with the MPC method. The five versions of each image, including the original, were shown simultaneously, in random order, to each of seven radiologists, who rated each one on a five-point scale for image quality and visibility of pathologic conditions. One radiologist also ranked four versions of each of the nine images in terms of the severity of distortion: The four versions represented 30:1 and 40:1 compression with the MPC method and with the classic Karhunen-Loève transform (KLT). Only for the images compressed 40:1 with the MPC method were there any unacceptable ratings. Nevertheless, the images compressed 40:1 received a top score in 26%-33% of the evaluations. Images compressed with the MPC method were rated better than or as good as images compressed with the KLT technique 17 of 18 times. Four of nine times, images compressed 40:1 with the MPC method were rated as good as or better than images compressed 30:1 with the KLT technique.

  17. Preparation of Sulfobetaine-Grafted PVDF Hollow Fiber Membranes with a Stably Anti-Protein-Fouling Performance

    PubMed Central

    Li, Qian; Lin, Han-Han; Wang, Xiao-Lin

    2014-01-01

    Based on a two-step polymerization method, two sulfobetaine-based zwitterionic monomers, including 3-(methacryloylamino) propyl-dimethyl-(3-sulfopropyl) ammonium hydroxide (MPDSAH) and 2-(methacryloyloxyethyl) ethyl-dimethyl-(3-sulfopropyl) ammonium (MEDSA), were successfully grafted from poly(vinylidene fluoride) (PVDF) hollow fiber membrane surfaces in the presence of N,N′-methylene bisacrylamide (MBAA) as a cross-linking agent. The mechanical properties of the PVDF membrane were improved by the zwitterionic surface layers. The surface hydrophilicity of PVDF membranes was significantly enhanced and the polyMPDSAH-g-PVDF membrane showed a higher hydrophilicity due to the higher grafting amount. Compared to the polyMEDSA-g-PVDF membrane, the polyMPDSAH-g-PVDF membrane showed excellent significantly better anti-protein-fouling performance with a flux recovery ratio (RFR) higher than 90% during the cyclic filtration of a bovine serum albumin (BSA) solution. The polyMPDSAH-g-PVDF membrane showed an obvious electrolyte-responsive behavior and its protein-fouling-resistance performance was improved further during the filtration of the protein solution with 100 mmol/L of NaCl. After cleaned with a membrane cleaning solution for 16 days, the grafted MPDSAH layer on the PVDF membrane could be maintain without any chang; however, the polyMEDSA-g-PVDF membrane lost the grafted MEDSA layer after this treatment. Therefore, the amide group of sulfobetaine, which contributed significantly to the higher hydrophilicity and stability, was shown to be imperative in modifying the PVDF membrane for a stable anti-protein-fouling performance via the two-step polymerization method. PMID:24957171

  18. Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles

    PubMed Central

    Cheng, Lei; Weir, Michael D.; Xu, Hockin H. K.; Antonucci, Joseph M.; Kraigsley, Alison M.; Lin, Nancy J.; Lin-Gibson, Sheng; Zhou, Xuedong

    2012-01-01

    Objectives Calcium and phosphate ion-releasing resin composites are promising for remineralization. However, there has been no report on incorporating antibacterial agents to these composites. The objective of this study was to develop antibacterial and mechanically-strong nanocomposites incorporating a quaternary ammonium dimethacrylate (QADM), nanoparticles of silver (NAg), and nanoparticles of amorphous calcium phosphate (NACP). Methods The QADM, bis(2-methacryloyloxyethyl) dimethylammonium bromide (ionic dimethacrylate-1), was synthesized from 2-(N,N-dimethylamino)ethyl methacrylate and 2-bromoethyl methacrylate. Ng was synthesized by dissolving Ag 2-ethylhexanoate salt in 2-(tertbutylamino)ethyl methacrylate. Mechanical properties were measured in three-point flexure with bars of 2×2×25 mm (n = 6). Composite disks (diameter = 9 mm, thickness = 2 mm) were inoculated with Streptococcus mutans. The metabolic activity and lactic acid production of biofilms were measured (n = 6). Two commercial composites were used as controls. Results Flexural strength and elastic modulus of NACP+QADM, NACP+NAg, and NACP+QADM+NAg matched those of commercial composites with no antibacterial property (p > 0.1). The NACP+QADM+NAg composite decreased the titer counts of adherent S. mutans biofilms by an order of magnitude, compared to the commercial composites (p < 0.05). The metabolic activity and lactic acid production of biofilms on NACP+QADM+NAg composite were much less than those on commercial composites (p < 0.05). Combining QADM and NAg rendered the nanocomposite more strongly antibacterial than either agent alone (p < 0.05). Significance QADM and NAg were incorporated into calcium phosphate composite for the first time. NACP+QADM+NAg was strongly-antibacterial and greatly reduced the titer counts, metabolic activity, and acid production of S. mutans biofilms, while possessing mechanical properties similar to commercial composites. These nanocomposites are promising to have

  19. Planck 2015 results. XIX. Constraints on primordial magnetic fields

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Chluba, J.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Florido, E.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kim, J.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Shiraishi, M.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-08-01

    We compute and investigate four types of imprint of a stochastic background of primordial magnetic fields (PMFs) on the cosmic microwave background (CMB) anisotropies: the impact of PMFs on the CMB temperature and polarization spectra, which is related to their contribution to cosmological perturbations; the effect on CMB polarization induced by Faraday rotation; the impact of PMFs on the ionization history; magnetically-induced non-Gaussianities and related non-zero bispectra; and the magnetically-induced breaking of statistical isotropy. We present constraints on the amplitude of PMFs that are derived from different Planck data products, depending on the specific effect that is being analysed. Overall, Planck data constrain the amplitude of PMFs to less than a few nanoGauss, with different bounds that depend on the considered model. In particular, individual limits coming from the analysis of the CMB angular power spectra, using the Planck likelihood, are B1 Mpc < 4.4 nG (where B1 Mpc is the comoving field amplitude at a scale of 1 Mpc) at 95% confidence level, assuming zero helicity. By considering the Planck likelihood, based only on parity-even angular power spectra, we obtain B1 Mpc < 5.6 nG for a maximally helical field. For nearly scale-invariant PMFs we obtain B1 Mpc < 2.0 nG and B1 Mpc < 0.9 nG if the impact of PMFs on the ionization history of the Universe is included in the analysis. From the analysis of magnetically-induced non-Gaussianity, we obtain three different values, corresponding to three applied methods, all below 5 nG. The constraint from the magnetically-induced passive-tensor bispectrum is B1 Mpc < 2.8 nG. A search for preferred directions in the magnetically-induced passive bispectrum yields B1 Mpc < 4.5 nG, whereas the compensated-scalar bispectrum gives B1 Mpc < 3 nG. The analysis of the Faraday rotation of CMB polarization by PMFs uses the Planck power spectra in EE and BB at 70 GHz and gives B1 Mpc < 1380 nG. In our final analysis, we

  20. TU-C-BRE-02: A Novel, Highly Efficient and Automated Quality Assurance Tool for Modern Linear Accelerators

    SciTech Connect

    Goddu, S; Sun, B; Yaddanapudi, S; Kamal, G; Mutic, S; Baltes, C; Rose, S; Stinson, K

    2014-06-15

    Purpose: Quality assurance (QA) of complex linear accelerators is critical and highly time consuming. Varian’s Machine Performance Check (MPC) uses IsoCal phantom to test geometric and dosimetric aspects of the TrueBeam systems in <5min. In this study we independently tested the accuracy and robustness of the MPC tools. Methods: MPC is automated for simultaneous image-acquisition, using kV-and-MV onboard-imagers (EPIDs), while delivering kV-and-MV beams in a set routine of varying gantry, collimator and couch angles. MPC software-tools analyze the images to test: i) beam-output and uniformity, ii) positional accuracy of isocenter, EPIDs, collimating jaws (CJs), MLC leaves and couch and iii) rotational accuracy of gantry, collimator and couch. 6MV-beam dose-output and uniformity were tested using ionization-chamber (IC) and ICarray. Winston-Lutz-Tests (WLT) were performed to measure isocenter-offsets caused by gantry, collimator and couch rotations. Positional accuracy of EPIDs was evaluated using radio-opaque markers of the IsoCal phantom. Furthermore, to test the robustness of the MPC tools we purposefully miscalibrated a non-clinical TrueBeam by introducing errors in beam-output, energy, symmetry, gantry angle, couch translations, CJs and MLC leaves positions. Results: 6MV-output and uniformity were within ±0.6% for most measurements with a maximum deviation of ±1.0%. Average isocenter-offset caused by gantry and collimator rotations was 0.316±0.011mm agreeing with IsoLock (0.274mm) and WLT (0.41mm). Average rotation-induced couch-shift from MPC was 0.378±0.032mm agreeing with WLT (0.35mm). MV-and-kV imager-offsets measured by MPC were within ±0.15mm. MPC predicted all machine miscalibrations within acceptable clinical tolerance. MPC detected the output miscalibrations within ±0.61% while the MLC and couch positions were within ±0.06mm and ±0.14mm, respectively. Gantry angle miscalibrations were detected within ±0.1°. Conclusions: MPC is a useful tool

  1. Comparison of Advanced Distillation Control Methods, Final Technical Report

    SciTech Connect

    Dr. James B. Riggs

    2000-11-30

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to evaluate configuration selections for single-ended and dual-composition control, as well as to compare conventional and advanced control approaches. In addition, a simulator of a main fractionator was used to compare the control performance of conventional and advanced control. For each case considered, the controllers were tuned by using setpoint changes and tested using feed composition upsets. Proportional Integral (PI) control performance was used to evaluate the configuration selection problem. For single ended control, the energy balance configuration was found to yield the best performance. For dual composition control, nine configurations were considered. It was determined that the use of dynamic simulations is required in order to identify the optimum configuration from among the nine possible choices. The optimum configurations were used to evaluate the relative control performance of conventional PI controllers, MPC (Model Predictive Control), PMBC (Process Model-Based Control), and ANN (Artificial Neural Networks) control. It was determined that MPC works best when one product is much more important than the other, while PI was superior when both products were equally important. PMBC and ANN were not found to offer significant advantages over PI and MPC. MPC was found to outperform conventional PI control for the main fractionator. MPC was applied to three industrial columns: one at Phillips Petroleum and two at Union Carbide. In each case, MPC was found to significantly outperform PI controls. The major advantage of the MPC controller is its ability to effectively handle a complex set of constraints and control objectives.

  2. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the correlation function of LOWZ and CMASS galaxies in Data Release 12

    NASA Astrophysics Data System (ADS)

    Cuesta, Antonio J.; Vargas-Magaña, Mariana; Beutler, Florian; Bolton, Adam S.; Brownstein, Joel R.; Eisenstein, Daniel J.; Gil-Marín, Héctor; Ho, Shirley; McBride, Cameron K.; Maraston, Claudia; Padmanabhan, Nikhil; Percival, Will J.; Reid, Beth A.; Ross, Ashley J.; Ross, Nicholas P.; Sánchez, Ariel G.; Schlegel, David J.; Schneider, Donald P.; Thomas, Daniel; Tinker, Jeremy; Tojeiro, Rita; Verde, Licia; White, Martin

    2016-04-01

    We present distance scale measurements from the baryon acoustic oscillation signal in the constant stellar mass and low-redshift sample samples from the Data Release 12 of the Baryon Oscillation Spectroscopic Survey. The total volume probed is 14.5 Gpc3, a 10 per cent increment from Data Release 11. From an analysis of the spherically averaged correlation function, we infer a distance to z = 0.57 of D_V(z)r^fid_d/r_d = 2028± 21 Mpc and a distance to z = 0.32 of D_V(z)r^fid_d/r_d = 1264± 22 Mpc assuming a cosmology in which r^fid_d = 147.10 Mpc. From the anisotropic analysis, we find an angular diameter distance to z = 0.57 of D_A(z)r^fid_d/r_d = 1401± 21 Mpc and a distance to z = 0.32 of 981 ± 20 Mpc, a 1.5 and 2.0 per cent measurement, respectively. The Hubble parameter at z = 0.57 is H(z)r_d/r^fid_d = 100.3± 3.7 km s-1 Mpc-1 and its value at z = 0.32 is 79.2 ± 5.6 km s-1 Mpc-1, a 3.7 and 7.1 per cent measurement, respectively. These cosmic distance scale constraints are in excellent agreement with a Λ cold dark matter model with cosmological parameters released by the recent Planck 2015 results.

  3. Structure-function relationships affecting the sensing mechanism of monolayer-protected cluster doped xerogel amperometric glucose biosensors.

    PubMed

    DiPasquale, Luke T; Poulos, Nicholas G; Hall, Jackson R; Minocha, Aastha; Bui, Tram Anh; Leopold, Michael C

    2015-07-15

    A systematic study of the structure-function relationships critical to understanding the sensing mechanism of 1st generation amperometric glucose biosensors with an embedded nanoparticle (NP) network is presented. Xerogel-based films featuring embedded glucose oxidase enzyme and doped with alkanethiolate-protected gold NPs, known as monolayer protected clusters (MPCs), exhibit significantly enhanced performance compared to analogous systems without NPs including higher sensitivity, faster response time, and extended linear/dynamic ranges. The proposed mechanism involves diffusion of the glucose to glucose oxidase within the xerogel, enzymatic reaction production of H2O2 with subsequent diffusion to the embedded network of MPCs where it is oxidized, an event immediately reported via fast electron transfer (ET) through the MPC system to the working electrode. Various aspects of the film construct and strategy are systematically probed using amperometry, voltammetry, and solid-state electronic conductivity measurements, including the effects of MPC peripheral chain length, MPC functionalization via place-exchange reaction, MPC core size, and the MPC density or concentration within the xerogel composite films. The collective results of these experiments support the proposed mechanism and identify interparticle spacing and the electronic communication through the MPC network is the most significant factor in the sensing scheme with the diffusional aspects of the mechanism that may be affected by film/MPC hydrophobicity and functionality (i.e., glucose and H2O2 diffusion) shown to be less substantial contributors to the overall enhanced performance. Understanding the structure-function relationships of effective sensing schemes allows for the employment of the strategy for future biosensor design toward clinically relevant targets.

  4. Structure-function relationships affecting the sensing mechanism of monolayer-protected cluster doped xerogel amperometric glucose biosensors.

    PubMed

    DiPasquale, Luke T; Poulos, Nicholas G; Hall, Jackson R; Minocha, Aastha; Bui, Tram Anh; Leopold, Michael C

    2015-07-15

    A systematic study of the structure-function relationships critical to understanding the sensing mechanism of 1st generation amperometric glucose biosensors with an embedded nanoparticle (NP) network is presented. Xerogel-based films featuring embedded glucose oxidase enzyme and doped with alkanethiolate-protected gold NPs, known as monolayer protected clusters (MPCs), exhibit significantly enhanced performance compared to analogous systems without NPs including higher sensitivity, faster response time, and extended linear/dynamic ranges. The proposed mechanism involves diffusion of the glucose to glucose oxidase within the xerogel, enzymatic reaction production of H2O2 with subsequent diffusion to the embedded network of MPCs where it is oxidized, an event immediately reported via fast electron transfer (ET) through the MPC system to the working electrode. Various aspects of the film construct and strategy are systematically probed using amperometry, voltammetry, and solid-state electronic conductivity measurements, including the effects of MPC peripheral chain length, MPC functionalization via place-exchange reaction, MPC core size, and the MPC density or concentration within the xerogel composite films. The collective results of these experiments support the proposed mechanism and identify interparticle spacing and the electronic communication through the MPC network is the most significant factor in the sensing scheme with the diffusional aspects of the mechanism that may be affected by film/MPC hydrophobicity and functionality (i.e., glucose and H2O2 diffusion) shown to be less substantial contributors to the overall enhanced performance. Understanding the structure-function relationships of effective sensing schemes allows for the employment of the strategy for future biosensor design toward clinically relevant targets. PMID:25819004

  5. High prevalence of TERT promoter mutations in micropapillary urothelial carcinoma.

    PubMed

    Nguyen, Doreen; Taheri, Diana; Springer, Simeon; Cowan, Morgan; Guner, Gunes; Mendoza Rodriguez, Maria Angelica; Wang, Yuxuan; Kinde, Isaac; VandenBussche, Christopher J; Olson, Matthew T; Ricardo, Bernardo F P; Cunha, Isabela; Fujita, Kazutoshi; Ertoy, Dilek; Kinzler, Kenneth W; Bivalacqua, Trinity J; Papadopoulos, Nickolas; Vogelstein, Bert; Netto, George J

    2016-10-01

    Somatic activating mutations in the promoter of the telomerase reverse transcriptase (TERT) gene are the most common genetic alterations in urothelial carcinoma (UC) of the bladder and upper urinary tract. Little is known, however, about TERT-mutation status in the relatively uncommon but clinically aggressive micropapillary (MPC) variant. We evaluated the presence of TERT promoter mutations in MPC of the bladder and upper urinary tract. A retrospective search of our archives for MPC and UC with micropapillary features (2005-2014) was performed. All slides were reviewed to confirm the histologic diagnosis. Thirty-three specimens from 31 patients had FFPE blocks available for DNA analysis and were included in the study. Intratumoral areas of non-micropapillary histology were also evaluated when present. Samples were analyzed with Safe-SeqS, a sequencing error reduction technology, and sequenced using the Illumina MiSeq platform. TERT promoter mutations were detected in all specimens with pure MPC (18 of 18) and UC with focal micropapillary features (15 of 15). Similar to conventional UC, the predominant mutations identified occurred at positions -124 (C228T) (85 %) and -146 (C250T) (12 %) bp upstream of the TERT ATG start site. In heterogeneous tumors with focal variant histology, intratumoral concordant mutations were found in variant (MPC and non-MPC) and corresponding conventional UC. We found TERT promoter mutations, commonly found in conventional UC, to be frequently present in MPC. Our finding of concordant intratumoral mutational alterations in cases with focal variant histology lends support to the common oncogenesis origin of UC and its variant histology. PMID:27520411

  6. Influence of baryons on the spatial distribution of matter: higher order correlation functions

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-Jun; Pan, Jun

    2012-12-01

    Physical processes involving baryons could leave a non-negligible imprint on the distribution of cosmic matter. A series of simulated data sets at high resolution with identical initial conditions are employed for count-in-cell analysis, including one N-body pure dark matter run, one with only adiabatic gas and one with dissipative processes. Variances and higher order cumulants Sn of dark matter and gas are estimated. It is found that physical processes with baryons mainly affect distributions of dark matter at scales less than 1 h-1 Mpc. In comparison with the pure dark matter run, adiabatic processes alone strengthen the variance of dark matter by ~ 10% at a scale of 0.1 h-1 Mpc, while the Sn parameters of dark matter only mildly deviate by a few percent. The dissipative gas run does not differ much from the adiabatic run in terms of variance for dark matter, but renders significantly different Sn parameters describing the dark matter, bringing about a more than 10% enhancement to S3 at 0.1 h-1 Mpc and z = 0 and being even larger at a higher redshift. Distribution patterns of gas in two hydrodynamical simulations are quite different. Variance of gas at z = 0 decreases by ~ 30% in the adiabatic simulation but by ~ 60% in the nonadiabatic simulation at 0.1 h-1 Mpc. The attenuation is weaker at larger scales but is still obvious at ~ 10 h-1 Mpc. Sn parameters of gas are biased upward at scales < ~ 4 h-1 Mpc, and dissipative processes show an ~ 84% promotion at z = 0 to S3 at 0.1 h-1 Mpc in contrast with the ~ 7% change in the adiabatic run. The segregation in clustering between gas and dark matter could have dramatic implications on modeling distributions of galaxies and relevant cosmological applications demanding fine details of matter distribution in a strongly nonlinear regime.

  7. Development of a method to characterize high-protein dairy powders using an ultrasonic flaw detector.

    PubMed

    Hauser, M; Amamcharla, J K

    2016-02-01

    Dissolution behavior of high-protein dairy powders plays a critical role for achieving functional and nutritional characteristics of a finished food product. Current methods for evaluating powder dissolution properties are time consuming, difficult to reproduce, and subjective. Ultrasound spectroscopy is a rapid and precise method, but requires expensive equipment and skilled technicians to carry out the tests. In the present study, an ultrasonic flaw detector (UFD) was used as an economical alternative to characterize the powder dissolution properties. The objective of study was to develop a method to characterize the dissolution behavior of milk protein concentrate (MPC) using a UFD. The experimental setup included a UFD connected to a 1-MHz immersion transducer that was kept a constant distance from a reflector plate. To validate the method, 2 batches of MPC80 from a commercial manufacturer were procured and stored at 25 and 40°C for 4 wk. Focus beam reflectance measurement and solubility index were used as reference methods. Relative ultrasound velocity and ultrasound attenuation were acquired during the dissolution of MPC samples. To characterize the MPC dissolution, 4 parameters including standard deviation of relative velocity, area under the attenuation curve, and peak attenuation were extracted from ultrasound data. As the storage temperature and time increased, the area under the attenuation curve and peak height decreased, indicating a loss of solubility. The proposed UFD-based method was able to capture the changes in dissolution of MPC during storage at 25 and 40°C. It was observed that a high-quality MPC had a low standard deviation and a larger area under the attenuation curve. As the MPC aged at 40°C, the particle dispersion rate decreased and, consequently, an increase in standard deviation and reduction in area were observed. Overall, the UFD can be a low-cost method to characterize the dissolution behavior of high-protein dairy powders.

  8. FOLFIRINOX in Locally Advanced and Metastatic Pancreatic Cancer: A Single Centre Cohort Study

    PubMed Central

    Rombouts, SJ; Mungroop, TH; Heilmann, MN; van Laarhoven, HW; Busch, OR; Molenaar, IQ; Besselink, MG; Wilmink, JW

    2016-01-01

    Introduction: FOLFIRINOX is emerging as new standard of care for fit patients with locally advanced pancreatic cancer (LAPC) and metastatic pancreatic cancer (MPC). However, some of the physicians are reluctant to use FOLFIRINOX due to high toxicity rates reported in earlier studies. We reviewed our experience with FOLFIRINOX in LAPC and MPC, focussing on dose adjustments, toxicity and efficacy. Methods: We reviewed all patients with LAPC or MPC treated with FOLFIRINOX in our institution between April 2011 and December 2015. Unresectability (stage III and IV) was determined by the institution's multidisciplinary team for pancreatic cancer. Results: Fifty patients (18 LAPC and 32 MPC) were enrolled, with a median age of 55 years (IQR 49-66) and WHO performance status of 0/1. FOLFIRINOX was given as first-line treatment in 82% of patients. Dose modifications were applied in 90% of patients. The median number of completed cycles was 8 (IQR 5-9). Grade 3-4 toxicity occurred in 52% and grade 5 toxicity in 2%. The response rate was 25% (12% in LAPC, 32% in MPC). Median overall survival and progression-free survival were 14.8 and 10.3 months in LAPC, and 9.0 and 5.9 months in MPC, respectively. Overall 1- and 2-year survival was 65% and 10% in LAPC and 40% and 5% in MPC. Within the LAPC group, 6 patients (33%) underwent local ablative therapy and 1 patient (6%) a resection, leading to a median survival of 21.8 months. Conclusion: FOLFIRINOX treatment with nearly routine dose modification was associated with acceptable toxicity rates, relatively high response rates and an encouraging overall survival.

  9. Perceptual detection as a dynamical bistability phenomenon: A neurocomputational correlate of sensation

    PubMed Central

    Deco, Gustavo; Pérez-Sanagustín, Mar; de Lafuente, Victor; Romo, Ranulfo

    2007-01-01

    Recent studies that combined psychophysical/neurophysiological experiments [de Lafuente V, Romo R (2005) Nat Neurosci 8:1698–1703] analyzed the responses from single neurons, recorded in several cortical areas of parietal and frontal lobes, while trained monkeys reported the presence or absence of a mechanical vibration of varying amplitude applied to skin of one fingertip. The analysis showed that the activity of primary somatosensory cortex neurons covaried with the stimulus strength but did not covary with the animal's perceptual reports. In contrast, the activity of medial premotor cortex (MPC) neurons did not covary with the stimulus strength but did covary with the animal's perceptual reports. Here, we address the question of how perceptual detection is computed in MPC. In particular, we regard perceptual detection as a bistable neurodynamical phenomenon reflected in the activity of MPC. We show that the activity of MPC is consistent with a decision-making-like scenario of fluctuation-driven computation that causes a probabilistic transition between two bistable states, one corresponding to the case in which the monkey detects the sensory input, the other corresponding to the case in which the monkey does not. Moreover, the high variability activity of MPC neurons both within and between trials reflects stochastic fluctuations that may play a crucial role in the monkey's probabilistic perceptual reports. PMID:18077434

  10. Effects of the pesticides captan, deltamethrin, isoproturon, and pirimicarb on the microbial community of a freshwater sediment.

    PubMed

    Widenfalk, Anneli; Svensson, Jonas M; Goedkoop, Willem

    2004-08-01

    In three microcosm experiments, we exposed microbial communities of a natural sediment to environmentally relevant concentrations of the fungicide captan, the herbicide isoproturon, and the insecticides deltamethrin and pirimicarb. Exposure concentrations were estimated negligible concentrations (NCs), maximum permissible concentrations (MPCs), and 100 times MPC (100MPC). Experimental endpoints were microbial community respiration and biomass, bacterial activity, and denitrification. All four pesticides inhibited bacterial activity by 20 to 24% at MPC, which corresponded to concentrations in the range of microg/kg dry-weight sediment. Treatments with deltamethrin and isoproturon showed inhibiting effects on bacterial activity at NC exposures. Surprisingly, for captan, deltamethrin, and isoproturon, this inhibiting effect was not observed at 100MPC treatments. Microbial biomass was negatively effected in MPC treatments with deltamethrin and in NC treatments with isoproturon. The tested pesticides did not affect community respiration and denitrification rates. These results show that exposure to the tested pesticides may induce toxic responses in sediment microbial communities at concentrations that are predicted to be environmentally safe.

  11. Comparative minimum inhibitory and mutant prevention drug concentrations of enrofloxacin, ceftiofur, florfenicol, tilmicosin and tulathromycin against bovine clinical isolates of Mannheimia haemolytica.

    PubMed

    Blondeau, J M; Borsos, S; Blondeau, L D; Blondeau, B J J; Hesje, C E

    2012-11-01

    Mannheimia haemolytica is the most prevalent cause of bovine respiratory disease (BRD) and this disease accounts for 75% of morbidity, 50-70% of feedlot deaths and is estimated to cost up to $1 billion dollars annually in the USA. Antimicrobial therapy is essential for reducing morbidity, mortality and impacting on the financial burden of this disease. Due to the concern of increasing antimicrobial resistance, investigation of antibacterial agents for their potential for selecting for resistance is of paramount importance. A novel in vitro measurement called the mutant prevention concentration (MPC) defines the antimicrobial drug concentration necessary to block the growth of the least susceptible cells present in high density (≥10(7) colony forming units/ml) bacterial populations such as those seen in acute infection. We compared the minimum inhibitory concentration (MIC) and MPC values for 5 antimicrobial agents (ceftiofur, enrofloxacin, florfenicol, tilmicosin, tulathromycin) against 285 M. haemolytica clinical isolates. The MIC(90)/MPC(90) values for each agent respectively were as follows: 0.016/2, 0.125/1, 2/≥16, 8/≥32, 2/8. Dosing to achieve MPC concentrations (where possible) may serve to reduce the selection of bacterial subpopulations with reduced antimicrobial susceptibility. The rank order of potency based on MIC(90) values was ceftiofur > enrofloxacin > florfenicol = tulathromycin > tilmicosin. The rank order of potency based on MPC(90) values was enrofloxacin > ceftiofur > tulathromycin > florfenicol ≥ tilmicosin. PMID:22677482

  12. Model predictive control of bidirectional isolated DC-DC converter for energy conversion system

    NASA Astrophysics Data System (ADS)

    Akter, Parvez; Uddin, Muslem; Mekhilef, Saad; Tan, Nadia Mei Lin; Akagi, Hirofumi

    2015-08-01

    Model predictive control (MPC) is a powerful and emerging control algorithm in the field of power converters and energy conversion systems. This paper proposes a model predictive algorithm to control the power flow between the high-voltage and low-voltage DC buses of a bidirectional isolated full-bridge DC-DC converter. The predictive control algorithm utilises the discrete nature of the power converters and predicts the future nature of the system, which are compared with the references to calculate the cost function. The switching state that minimises the cost function is selected for firing the converter in the next sampling time period. The proposed MPC bidirectional DC-DC converter is simulated with MATLAB/Simulink and further verified with a 2.5 kW experimental configuration. Both the simulation and experimental results confirm that the proposed MPC algorithm of the DC-DC converter reduces reactive power by avoiding the phase shift between primary and secondary sides of the high-frequency transformer and allow power transfer with unity power factor. Finally, an efficiency comparison is performed between the MPC and dual-phase-shift-based pulse-width modulation controlled DC-DC converter which ensures the effectiveness of the MPC controller.

  13. Digging Soil Experiments for Micro Hydraulic Excavators based on Model Predictive Tracking Control

    NASA Astrophysics Data System (ADS)

    Tomatsu, Takumi; Nonaka, Kenichiro; Sekiguchi, Kazuma; Suzuki, Katsumasa

    2016-09-01

    Recently, the increase of burden to operators and lack of skilled operators are the issue in the work of the hydraulic excavator. These problems are expected to be improved by autonomous control. In this paper, we present experimental results of hydraulic excavators using model predictive control (MPC) which incorporates servo mechanism. MPC optimizes digging operations by the optimal control input which is calculated by predicting the future states and satisfying the constraints. However, it is difficult for MPC to cope with the reaction force from soil when a hydraulic excavator performs excavation. Servo mechanism suppresses the influence of the constant disturbance using the error integration. However, the bucket tip deviates from a specified shape by the sudden change of the disturbance. We can expect that the tracking performance is improved by combining MPC and servo mechanism. Path-tracking controls of the bucket tip are performed using the optimal control input. We apply the proposed method to the Komatsu- made micro hydraulic excavator PC01 by experiments. We show the effectiveness of the proposed method through the experiment of digging soil by comparing servo mechanism and pure MPC with the proposed method.

  14. Characterization of mixed-phase clouds using remote sensing and vertical soundings

    NASA Astrophysics Data System (ADS)

    Andronache, Constantin

    2016-04-01

    Mixed-phase clouds (MPC) consist of both liquid droplets and ice crystals at temperatures below 0 deg C. Observations show that such clouds are present in many regions of the world, have seasonal variations, and account for a significant fraction of the global cloud coverage. They can impact cloud electrification and aircraft icing. The mix consisting of ice particles, liquid droplets, and water vapor, is unstable, and such clouds tend to have a relatively short lifetime in most situations at mid-latitudes. In contrast, observations of low-level stratiform MPC in Arctic regions revealed remarkable persistence, with significant potential impact on radiative fluxes. The phase composition of MPC is essential for cloud parameters retrievals by radar and lidar and is particularly relevant for climate modeling. It is influenced by cloud condensation nuclei (CCN), ice nuclei (IN) particles, cloud dynamics, and has implications for the cloud life cycle. The complexity of dynamics and microphysics involved in MPC is addressed with new observational and modeling tools. Among these techniques, the remote sensing methods provide an increasing set of parameters, covering large regions of the world. Satellite data and aircraft in situ measurements in deep convective clouds suggest that highly supercooled water droplets can exist in strong continental convective storms. In this study, we show cases of convective clouds and discuss the possibility of MPC characterization using ground based radar and satellite remote sensing data, aided by vertical sounding analysis.

  15. United States-Russian laboratory-to-laboratory cooperation on protection, control, and accounting for naval nuclear materials

    SciTech Connect

    Sukhoruchkin, V.; Yurasov, N.; Goncharenko, Y.; Mullen, M.; McConnell, D.

    1996-12-31

    In March 1995, the Russian Navy contacted safeguards experts at the Kurchatov Institute (KI) and proposed the initiation of work to enhance nuclear materials protection, control, and accounting (MPC and A) at Russian Navy facilities. Because of KI`s successful experience in laboratory-to-laboratory MPC and A cooperation with US Department of Energy Laboratories, the possibility of US participation in the work with the Russian Navy was explored. Several months later, approval was received from the US Government and the Russian Navy to proceed with this work on a laboratory-to-laboratory basis through Kurchatov Institute. As a first step in the cooperation, a planning meeting occurred at KI in September, 1995. Representatives from the US Department of Energy (DOE), the US Department of Defense (DOD), the Russian Navy, and KI discussed several areas for near-term cooperative work, including a vulnerability assessment workshop and a planning study to identify and prioritize near-term MPC and A enhancements that might be implemented at Russian facilities which store or handle unirradiated highly enriched uranium fuel for naval propulsion applications. In subsequent meetings, these early proposals have been further refined and extended. This MPC and A cooperation will now include enhanced protection and control features for storage facilities and refueling service ships, computerized accounting systems for naval fuel, methods and equipment for rapid inventories, improved security of fresh fuel during truck transportation, and training. This paper describes the current status and future plans for MPC and A cooperation for naval nuclear materials.

  16. Effect of Monophasic Pulsed Current on Heel Pain and Functional Activities caused by Plantar Fasciitis

    PubMed Central

    Alotaibi, Abdullah K.; Petrofsky, Jerrold S.; Daher, Noha S.; Lohman, Everett; Laymon, Michael; Syed, Hasan M.

    2015-01-01

    Background Plantar fasciitis (PF) is a soft tissue disorder considered to be one of the most common causes of inferior heel pain. The aim of this study was to investigate the effect of monophasic pulsed current (MPC) and MPC coupled with plantar fascia-specific stretching exercises (SE) on the treatment of PF. Material/Methods Forty-four participants (22 women and 22 men, with a mean age of 49 years) diagnosed with PF were randomly assigned to receive MPC (n=22) or MPC coupled with plantar fascia-specific SE (n=22). Prior to and after 4 weeks of treatment, participants underwent baseline evaluation; heel pain was evaluated using a visual analogue scale (VAS), heel tenderness threshold was quantified using a handheld pressure algometer (PA), and functional activities level was assessed using the Activities of Daily Living subscale of the Foot and Ankle Ability Measure (ADL/FAAM). Results Heel pain scores showed a significant reduction in both groups compared to baseline VAS scores (P<0.001). Heel tenderness improved significantly in both groups compared with baseline PA scores (P<0.001). Functional activity level improved significantly in both groups compared with baseline (ADL/FAAM) scores (P<0.001). However, no significant differences existed between the 2 treatment groups in all post-intervention outcome measures. Conclusions This trial showed that MPC is useful in treating inferior heel symptoms caused by PF. PMID:25791231

  17. A Mixture of Ethanol Extracts of Persimmon Leaf and Citrus junos Sieb Improves Blood Coagulation Parameters and Ameliorates Lipid Metabolism Disturbances Caused by Diet-Induced Obesity in C57BL/6J Mice.

    PubMed

    Kim, Ae Hyang; Kim, Hye Jin; Ryu, Ri; Han, Hye Jin; Han, Young Ji; Lee, Mi-Kyung; Choi, Myung-Sook; Park, Yong Bok

    2016-02-01

    This study investigated the effects of a flavonoid-rich ethanol extract of persimmon leaf (PL), an ethanol extract of Citrus junos Sieb (CJS), and a PL-CJS mixture (MPC) on mice fed a highfat diet (HFD). We sought to elucidate the mechanisms of biological activity of these substances using measurements of blood coagulation indices and lipid metabolism parameters. C57BL/6J mice were fed a HFD with PL (0.5% (w/w)), CJS (0.1% (w/w)), or MPC (PL 0.5%, CJS 0.1% (w/w)) for 10 weeks. In comparison with data obtained for mice in the untreated HFD group, consumption of MPC remarkably prolonged the activated partial thromboplastin time (aPTT) and prothrombin time (PT), whereas exposure to PL prolonged aPTT only. Lower levels of plasma total cholesterol, hepatic cholesterol, and erythrocyte thiobarbituric acid-reactive substances, hepatic HMG-CoA reductase, and decreased SREBP-1c gene expression were observed in mice that received PL and MPC supplements compared with the respective values detected in the untreated HFD animals. Our results indicate that PL and MPC may have beneficial effects on blood circulation and lipid metabolism in obese mice. PMID:26699754

  18. Chitosan-based dressings loaded with neurotensin--an efficient strategy to improve early diabetic wound healing.

    PubMed

    Moura, Liane I F; Dias, Ana M A; Leal, Ermelindo C; Carvalho, Lina; de Sousa, Hermínio C; Carvalho, Eugénia

    2014-02-01

    One important complication of diabetes mellitus is chronic, non-healing diabetic foot ulcers (DFUs). This study aims to develop and use dressings based on chitosan derivatives for the sustained delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. Three different derivatives, namely N-carboxymethyl chitosan, 5-methyl pyrrolidinone chitosan (MPC) and N-succinyl chitosan, are presented as potential biomaterials for wound healing applications. Our results show that MPC has the best fluid handling capacity and delivery profile, also being non-toxic to Raw 264.7 and HaCaT cells. NT-loaded and non-loaded MPC dressings were applied to control/diabetic wounds to evaluate their in vitro/in vivo performance. The results show that the former induced more rapid healing (50% wound area reduction) in the early phases of wound healing in diabetic mice. A NT-loaded MPC foam also reduced expression of the inflammatory cytokine TNF-α (P<0.001) and decreased the amount of inflammatory infiltrate on day 3. On day 10 MMP-9 was reduced in diabetic skin (P<0.001), significantly increasing fibroblast migration and collagen (COL1A1, COL1A2 and COL3A1) expression and deposition. These results suggest that MPC-based dressings may work as an effective support for sustained NT release to reduce DFUs. PMID:24121197

  19. Comparative minimum inhibitory and mutant prevention drug concentrations of enrofloxacin, ceftiofur, florfenicol, tilmicosin and tulathromycin against bovine clinical isolates of Mannheimia haemolytica.

    PubMed

    Blondeau, J M; Borsos, S; Blondeau, L D; Blondeau, B J J; Hesje, C E

    2012-11-01

    Mannheimia haemolytica is the most prevalent cause of bovine respiratory disease (BRD) and this disease accounts for 75% of morbidity, 50-70% of feedlot deaths and is estimated to cost up to $1 billion dollars annually in the USA. Antimicrobial therapy is essential for reducing morbidity, mortality and impacting on the financial burden of this disease. Due to the concern of increasing antimicrobial resistance, investigation of antibacterial agents for their potential for selecting for resistance is of paramount importance. A novel in vitro measurement called the mutant prevention concentration (MPC) defines the antimicrobial drug concentration necessary to block the growth of the least susceptible cells present in high density (≥10(7) colony forming units/ml) bacterial populations such as those seen in acute infection. We compared the minimum inhibitory concentration (MIC) and MPC values for 5 antimicrobial agents (ceftiofur, enrofloxacin, florfenicol, tilmicosin, tulathromycin) against 285 M. haemolytica clinical isolates. The MIC(90)/MPC(90) values for each agent respectively were as follows: 0.016/2, 0.125/1, 2/≥16, 8/≥32, 2/8. Dosing to achieve MPC concentrations (where possible) may serve to reduce the selection of bacterial subpopulations with reduced antimicrobial susceptibility. The rank order of potency based on MIC(90) values was ceftiofur > enrofloxacin > florfenicol = tulathromycin > tilmicosin. The rank order of potency based on MPC(90) values was enrofloxacin > ceftiofur > tulathromycin > florfenicol ≥ tilmicosin.

  20. Model Predictive Wind Turbine Control with Move-Blocking Strategy for Load Alleviation and Power Leveling

    NASA Astrophysics Data System (ADS)

    Jassmann, U.; Dickler, S.; Zierath, J.; Hakenberg, M.; Abel, D.

    2016-09-01

    This contribution presents a Model Predictive Controller (MPC) with moveblocking strategy for combined power leveling and load alleviation in wind turbine operation with a focus on extreme loads. The controller is designed for a 3 MW wind turbine developed by W2E Wind to Energy GmbH and compared to a baseline controller, using a classic control scheme, which currently operates the wind turbine. All simulations are carried out with a detailed multibody simulation turbine model implemented in alaska/Wind. The performance of the two different controllers is compared using a 50-year Extreme Operation Gust event, since it is one of the main design drivers for the wind turbine considered in this work. The implemented MPC is able to level electrical output power and reduce mechanical loads at the same time. Without de-rating the achieved control results, a move-blocking strategy is utilized and allowed to reduce the computational burden of the MPC by more than 50% compared to a baseline MPC implementation. This even allows to run the MPC on a state of the art Programmable Logic Controller.

  1. The prospective usage of the multi-purpose canister and impacts on the waste management and disposal system

    SciTech Connect

    McLeod, N.B.

    1993-12-31

    The Multi-Purpose Canister (MPC) is designed to be loaded with spent fuel and sealed at reactors and then serve the functions of transport, storage and disposal without reopening. It can be either self-shielded or unshielded, thus requiring compatible overpacks for transport, storage and disposal. The MPC is not a new concept but it may now be viable because of the particular characteristics at Yucca Mountain: larger MPCs are possible because of ramp access to the repository horizon, and the less difficult temperature limits because of in-drift emplacement, rather than borehole emplacement. This paper describes the advantages and disadvantages of adopting the MPC as the principal technology to be employed in the US program. Use of the MPC permits integration of the utility and DOE portions of the system as well as among the elements within the DOE portion. Paradoxically, the principal disadvantage of the MPC is a direct consequence of its merit as an integrating technology. Full integration includes disposability without reopening, and requires that disposability design decisions be made and implemented well in advance of when waste package licensing uncertainties are resolved. There is, therefore, a risk that MPCs loaded prior to waste package licensing will have to be opened. This risk is discussed in terms of probability and consequences and various alternatives for mitigating this risk are discussed.

  2. Instrumental and Sensory Texture Attributes of High-Protein Nutrition Bars Formulated with Extruded Milk Protein Concentrate.

    PubMed

    Banach, J C; Clark, S; Lamsal, B P

    2016-05-01

    Previous instrumental study of high-protein nutrition (HPN) bars formulated with extruded milk protein concentrate (MPC) indicated slower hardening compared to bars formulated with unmodified MPC. However, hardness, and its change during storage, insufficiently characterizes HPN bar texture. In this study, MPC80 was extruded at 2 different conditions and model HPN bars were prepared. A trained sensory panel and instrumental techniques were used to measure HPN bar firmness, crumbliness, fracturability, hardness, cohesiveness, and other attributes to characterize texture change during storage. Extrusion modification, storage temperature, and storage time significantly affected the instrumental and sensory panel measured texture attributes. The HPN bars became firmer and less cohesive during storage. When evaluated at the same storage conditions, the texture attributes of the HPN bars formulated with the different extrudates did not differ significantly from each other. However, textural differences were noted most of the time between the control and the HPN bars formulated with extruded MPC80. An adapted HPN bar crumbliness measurement technique produced results that were correlated with sensory panel measured crumbliness (r = 0.85) and cohesiveness (r = -0.84). Overall, the HPN bars formulated with extruded MPC80 were significantly softer, less crumbly, and more cohesive than the control during storage.

  3. Thin phosphatidylcholine films as background surfaces with further possibilities of functionalization for biomedical applications.

    PubMed

    Tauk, Lara; Thami, Thierry; Ferez, Lynda; Kocer, Armagan; Janot, Jean-Marc; Déjardin, Philippe

    2013-01-01

    Non-specific adsorption is a crucial problem in the biomedical field. To produce surfaces avoiding this phenomenon, we functionalized thin (7-180 nm) poly(methylhydrosiloxane) (PMHS) network films at room temperature (≈20°C) with phospholipids (PL) bearing a phosphorylcholine head. Regardless of their mode of preparation (casting or immersion), all surfaces appeared to be very hydrophilic with a captive air-bubble contact angle stabilized around 40°. The thin films were protein-repellent in phosphate saline buffer pH 7.4 according to analysis by normal scanning confocal fluorescence. Neither was any adsorption or spreading of l-α-phosphatidylcholine liposomes on such films observed. In addition, amino functional groups could be easily attached to the surface remaining available for further functionalization.

  4. Zwitterionic drug nanocarriers: a biomimetic strategy for drug delivery.

    PubMed

    Jin, Qiao; Chen, Yangjun; Wang, Yin; Ji, Jian

    2014-12-01

    Nanomaterials self-assembled from amphiphilic functional copolymers have emerged as safe and efficient nanocarriers for delivery of therapeutics. Surface engineering of the nanocarriers is extremely important for the design of drug delivery systems. Bioinspired zwitterions are considered as novel nonfouling materials to construct biocompatible and bioinert nanocarriers. As an alternative to poly(ethylene glycol) (PEG), zwitterions exhibit some unique properties that PEG do not have. In this review, we highlight recent progress of the design of drug nanocarriers using a zwitterionic strategy. The possible mechanism of stealth properties of zwitterions was proposed. The advantages of zwitterionic drug nanocarriers deriving from phosphorylcholine (PC), carboxybetaine (CB), and sulfobetaine (SB) are also discussed. PMID:25092584

  5. Distributed Pore Chemistry in Porous Organic Polymers

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1998-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The sub-strate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphorylcholine groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic region, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  6. Distributed Pore Chemistry in Porous Organic Polymers in Tissue Culture Flasks

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1999-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclose. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphorylcholine groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  7. Distributed Pore Chemistry in Porous Organic Polymers

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1999-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphorylcholine groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge. wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions. and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  8. Bioengineered Corneas Grafted as Alternatives to Human Donor Corneas in Three High-Risk Patients

    PubMed Central

    Buznyk, Oleksiy; Pasyechnikova, Nataliya; Islam, M Mirazul; Iakymenko, Stanislav; Fagerholm, Per; Griffith, May

    2015-01-01

    Corneas with severe pathologies have a high risk of rejection when conventionally grafted with human donor tissues. In this early observational study, we grafted bioengineered corneal implants made from recombinant human collagen and synthetic phosphorylcholine polymer into three patients for whom donor cornea transplantation carried a high risk of transplant failure. These patients suffered from corneal ulcers and recurrent erosions preoperatively. The implants provided relief from pain and discomfort, restored corneal integrity by promoting endogenous regeneration of corneal tissues, and improved vision in two of three patients. Such implants could in the future be alternatives to donor corneas for high-risk patients, and therefore, merits further testing in a clinical trial. PMID:25996570

  9. Lubrication at physiological pressures by polyzwitterionic brushes.

    PubMed

    Chen, Meng; Briscoe, Wuge H; Armes, Steven P; Klein, Jacob

    2009-03-27

    The very low sliding friction at natural synovial joints, which have friction coefficients of mu < 0.002 at pressures up to 5 megapascals or more, has to date not been attained in any human-made joints or between model surfaces in aqueous environments. We found that surfaces in water bearing polyzwitterionic brushes that were polymerized directly from the surface can have mu values as low as 0.0004 at pressures as high as 7.5 megapascals. This extreme lubrication is attributed primarily to the strong hydration of the phosphorylcholine-like monomers that make up the robustly attached brushes, and may have relevance to a wide range of human-made aqueous lubrication situations.

  10. The immunomodulatory parasitic worm product ES-62 reduces lupus-associated accelerated atherosclerosis in a mouse model

    PubMed Central

    Aprahamian, Tamar R.; Zhong, Xuemei; Amir, Shahzada; Binder, Christoph J.; Chiang, Lo-Ku; Al-Riyami, Lamyaa; Gharakhanian, Raffi; Harnett, Margaret M.; Harnett, William; Rifkin, Ian R.

    2015-01-01

    ES-62 is an anti-inflammatory phosphorylcholine-containing glycoprotein secreted by the filarial nematode Acanthocheilonema viteae. Accelerated atherosclerosis frequently occurs in systemic lupus erythematosus (SLE), resulting in substantial cardiovascular morbidity and mortality. We examined the effects of ES-62 in the gld.apoE−/− mouse model of this condition. Treatment with ES-62 did not substantially modulate renal pathology but caused decreased anti-nuclear autoantibody levels. Moreover, a striking 60% reduction in aortic atherosclerotic lesions was observed, with an associated decrease in macrophages and fibrosis. We believe that these latter findings constitute the first example of a defined parasitic worm product with therapeutic potential in atherosclerosis: ES-62-based drugs may represent a novel approach to control accelerated atherosclerosis in SLE. PMID:25666929

  11. A novel 95-kilodalton antigen of Wuchereria bancrofti infective larvae identified by species-specific monoclonal antibodies.

    PubMed Central

    Burkot, T R; Kwan-Lim, G E; Maizels, R M

    1996-01-01

    CBA and BALB/c mice produced polyspecific and monospecific polyclonal antibody responses, respectively, following immunization with Wuchereria bancrofti stage-3 larvae. Two monoclonal antibodies (MAbs) were produced from the immunized BALB/c mouse. These MAbs (both isotype M) recognized a previously undescribed highly expressed W. bancrofti antigen present in stage-3 larvae. The epitopes bound by the MAbs appear to be species specific for W. bancrofti since the MAbs did not bind to antigens of either nine other nematode species or two vector species in Western blots (immunoblots). Phosphorylcholine epitopes, responsible for immunological cross-reactivity among nematodes, were identified only on a 200-kDa antigen and not on the 95-kDa molecule. The targets of these immunoglobulin M MAbs are not carbohydrate epitopes. PMID:8550196

  12. Glycerophospholipid synthesis: improved general method and new analogs containing photoactivable groups.

    PubMed Central

    Gupta, C M; Radhakrishnan, R; Khorana, H G

    1977-01-01

    Current methods for phospholipid synthesis involving acylation of sn-glycero-3-phosphorylcholine, lysolecithins, and related glycerophosphate esters are not satisfactory. With N,N-dimethyl-4-aminopyridine as a catalyst and moderate amounts of fatty acid anhydrides (1.2-1.5 mol equiv per OH group), diacyl or 1,2-mixed diacylphosphatidylcholines, N-protected phosphatidylethanolamines, and phosphatide acids now can be conveniently prepared in high yields (75-90%). New phospholipids containing photoactivable groups, such as trifluorodiazopropionyl, diazirinophenoxy, 2-nitro-4-azidophenoxy, m-azidophenoxy, and alpha, beta-unsaturated keto groups, in the fatty acyl chains have been prepared. These phospholipids are of interest in studies of lipid-lipid and lipid-protein interactions in biological membranes. PMID:270675

  13. Lubrication at Physiological Pressures by Polyzwitterionic Brushes

    NASA Astrophysics Data System (ADS)

    Chen, Meng; Briscoe, Wuge H.; Armes, Steven P.; Klein, Jacob

    2009-03-01

    The very low sliding friction at natural synovial joints, which have friction coefficients of μ < 0.002 at pressures up to 5 megapascals or more, has to date not been attained in any human-made joints or between model surfaces in aqueous environments. We found that surfaces in water bearing polyzwitterionic brushes that were polymerized directly from the surface can have μ values as low as 0.0004 at pressures as high as 7.5 megapascals. This extreme lubrication is attributed primarily to the strong hydration of the phosphorylcholine-like monomers that make up the robustly attached brushes, and may have relevance to a wide range of human-made aqueous lubrication situations.

  14. Effects of ascorbic acid supplementation on male reproductive system during exposure to hypoxia

    NASA Astrophysics Data System (ADS)

    Havazhagan, G.; Riar, S. S.; Kain, A. K.; Bardhan, Jaya; Thomas, Pauline

    1989-09-01

    Two groups of male rats were exposed to simulated altitudes of 6060 m and 7576 m for 6 h/day for 7 days (intermittent exposure). In two additional groups of animals exposed to the same altitude, 100 mg of ascorbic acid (AA) was fed daily for 5 days prior to the exposure period and also during the exposure period. Rats that did not receive AA showed loss of body weight and weight of reproductive organs after exposure. Sex organs showed atrophy on histological examination and there was a deterioration in spermatozoal quality. There was an increase in alkaline and acid phosphatase, and decrease in protein, sialic acid and glyceryl phosphorylcholine content in various reproductive tissues after exposure. All the above changes in histology and biochemical composition could be partially prevented by AA supplementation. AA supplementation can therefore protect the male reproductive system from deleterious effects of hypoxia. The probable mechanism of action of AA is discussed.

  15. Elevated PC responsive B cells and anti-PC antibody production in transgenic mice harboring anti-PC immunoglobulin genes.

    PubMed

    Pinkert, C A; Manz, J; Linton, P J; Klinman, N R; Storb, U

    1989-12-01

    The rearrangement of heavy and light chain immunoglobulin genes is necessary for the production of functional antibody molecules. The myeloma MOPC 167 produces specific antibodies to the antigen phosphorylcholine (PC), which is present on bacterial surfaces, fungi and other environmental contaminants. Rearranged heavy and light chain immunoglobulin genes cloned from MOPC 167 were microinjected into mouse eggs. Within the resulting transgenic mice, expression of the transgenes were limited to lymphoid tissues. Transgenic mice produced elevated levels of anti-PC antibodies constitutively, at 16 days of age, when normal non-transgenic mice were not fully immunocompetent. A triggering antigenic stimulus was not necessary to evoke anti-PC immunoglobulin production. Additionally, the frequency of PC-responsive B cells in these transgenic mice was further increased upon specific immunization.

  16. Teichoic acid-containing muropeptides from Streptococcus pneumoniae as substrates for the pneumococcal autolysin.

    PubMed Central

    Garcia-Bustos, J F; Tomasz, A

    1987-01-01

    Pneumococcal cell walls in which the normal phosphorylcholine component of the wall teichoic acids is replaced with phosphorylethanolamine cannot absorb the homologous autolytic enzyme and are completely resistant to autolytic degradation (S. Giudicelli and A. Tomasz, J. Bacteriol. 158:1188-1190, 1984). We have now isolated and characterized soluble teichoic acid-containing muropeptides from such cell walls and tested them as substrates for the pneumococcal autolytic enzyme. Both choline- and ethanolamine-containing muropeptides were hydrolyzed to the same extent by the enzyme. Furthermore, free choline concentrations that totally inhibited the digestion of pneumococcal cell walls in vivo and in vitro were without effect when the soluble substrates were used. PMID:2879828

  17. Crystal structure of CbpF, a bifunctional choline-binding protein and autolysis regulator from Streptococcus pneumoniae

    PubMed Central

    Molina, Rafael; González, Ana; Stelter, Meike; Pérez-Dorado, Inmaculada; Kahn, Richard; Morales, María; Campuzano, Susana; Campillo, Nuria E; Mobashery, Shahriar; García, José L; García, Pedro; Hermoso, Juan A

    2009-01-01

    Phosphorylcholine, a crucial component of the pneumococcal cell wall, is essential in bacterial physiology and in human pathogenesis because it binds to serum components of the immune system and acts as a docking station for the family of surface choline-binding proteins. The three-dimensional structure of choline-binding protein F (CbpF), one of the most abundant proteins in the pneumococcal cell wall, has been solved in complex with choline. CbpF shows a new modular structure composed both of consensus and non-consensus choline-binding repeats, distributed along its length, which markedly alter its shape, charge distribution and binding ability, and organizing the protein into two well-defined modules. The carboxy-terminal module is involved in cell wall binding and the amino-terminal module is crucial for inhibition of the autolytic LytC muramidase, providing a regulatory function for pneumococcal autolysis. PMID:19165143

  18. [Inhibition of bacterial lypopolysaccharide-induced inflammation by oxidized lipids].

    PubMed

    Korotaeva, A A; Samokhodskaia, L M; Bochkov, V N

    2007-01-01

    Previous studies demonstrated that oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine inhibits inflammatory effects of the bacterial lipopolisacharide (LPS, endotoxin). In this work we have characterized the anti-endotoxin activity of other classes of oxidized phospholipids with different polar head groups and fatty acid residues. LPS-induced expression of E-selectin on human endothelial cells was inhibited by oxidized phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, and phosphatidic acids. The anti-endotoxin effect insignificantly depended on the type of polyunsaturated fatty acids. Unoxidized phospholipids did not suppress effects of LPS. Thus, the anti-endotoxin activity of oxidized phospholipids crucially depends on the presence of oxidatively modified fatty acid residue. PMID:17436686

  19. Security effectiveness review (SER)

    SciTech Connect

    Kouprianova, I.; Ek, D.; Showalter, R.; Bergman, M.

    1998-08-01

    As part of the on-going DOE/Russian MPC and A activities at the Institute of Physics and Power Engineering (IPPE) and in order to provide a basis for planning MPC and A enhancements, an expedient method to review the effectiveness of the MPC and A system has been adopted. These reviews involve the identification of appropriate and cost-effective enhancements of facilities at IPPE. This effort requires a process that is thorough but far less intensive than a traditional vulnerability assessment. The SER results in a quick assessment of current and needed enhancements. The process requires preparation and coordination between US and Russian analysts before, during, and after information gathering at the facilities in order that the analysis is accurate, effective, and mutually agreeable. The goal of this paper is to discuss the SER process, including the objectives, time scale, and lessons learned at IPPE.

  20. Lithium-ion battery cell-level control using constrained model predictive control and equivalent circuit models

    SciTech Connect

    Xavier, MA; Trimboli, MS

    2015-07-01

    This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggest significant performance improvements might be achieved by extending the result to electrochemical models. (C) 2015 Elsevier B.V. All rights reserved.

  1. Cosmic Reionization on Computers. I. Design and Calibration of Simulations

    NASA Astrophysics Data System (ADS)

    Gnedin, Nickolay Y.

    2014-09-01

    Cosmic Reionization On Computers is a long-term program of numerical simulations of cosmic reionization. Its goal is to model fully self-consistently (albeit not necessarily from the first principles) all relevant physics, from radiative transfer to gas dynamics and star formation, in simulation volumes of up to 100 comoving Mpc, and with spatial resolution approaching 100 pc in physical units. In this method paper, we describe our numerical method, the design of simulations, and the calibration of numerical parameters. Using several sets (ensembles) of simulations in 20 h -1 Mpc and 40 h -1 Mpc boxes with spatial resolution reaching 125 pc at z = 6, we are able to match the observed galaxy UV luminosity functions at all redshifts between 6 and 10, as well as obtain reasonable agreement with the observational measurements of the Gunn-Peterson optical depth at z < 6.

  2. Cerium-based binary and ternary oxides in the transesterification of dimethylcarbonate with phenol.

    PubMed

    Dibenedetto, Angela; Angelini, Antonella; di Bitonto, Luigi; De Giglio, Elvira; Cometa, Stefania; Aresta, Michele

    2014-04-01

    Diphenyl carbonate (DPC) plays a key role in phosgene-free carbonylation processes. It can be produced by transesterification of dimethyl carbonate (DMC) with phenol in the presence of catalysts. Methyl phenyl carbonate (MPC) is first produced that is then converted into DPC by either disproportionation or further transesterification with phenol. Cerium-based bimetallic oxides (with the heterometal being niobium, iron, palladium, or aluminum) are used as catalysts in the transesterification of DMC to synthesize MPC. The catalytic activity is affected by the type and concentration of the heterometal. XPS, IR and elementary analyses are employed to characterize the new catalysts. Differently from pure oxides, the mixed oxides produce a significant increase of the conversion and selectivity towards MPC. PMID:24616260

  3. The distribution of dark matter in the A2256 cluster

    NASA Technical Reports Server (NTRS)

    Henry, J. Patrick; Briel, Ulrich G.; Nulsen, Paul E. J.

    1993-01-01

    Using spatially resolved X-ray spectroscopy, it was determined that the X-ray emitting gas in the rich cluster A2256 is nearly isothermal to a radius of at least 0.76/h Mpc, or about three core radii. These data can be used to measure the distribution of the dark matter in the cluster. It was found that the total mass interior to 0.76/h Mpc and 1.5/h Mpc is (0.5 +/- 0.1 and 1.0 +/- 0.5) x 10(exp 15)/h of the solar mass respectively where the errors encompass the full range allowed by all models used. Thus, the mass appropriate to the region where spectral information was obtained is well determined, but the uncertainties become large upon extrapolating beyond that region. It is shown that the galaxy orbits are midly anisotropic which may cause the beta discrepancy in this cluster.

  4. Giant ringlike radio structures around galaxy cluster Abell 3376.

    PubMed

    Bagchi, Joydeep; Durret, Florence; Neto, Gastão B Lima; Paul, Surajit

    2006-11-01

    In the current paradigm of cold dark matter cosmology, large-scale structures are assembling through hierarchical clustering of matter. In this process, an important role is played by megaparsec (Mpc)-scale cosmic shock waves, arising in gravity-driven supersonic flows of intergalactic matter onto dark matter-dominated collapsing structures such as pancakes, filaments, and clusters of galaxies. Here, we report Very Large Array telescope observations of giant ( approximately 2 Mpc by 1.6 Mpc), ring-shaped nonthermal radio-emitting structures, found at the outskirts of the rich cluster of galaxies Abell 3376. These structures may trace the elusive shock waves of cosmological large-scale matter flows, which are energetic enough to power them. These radio sources may also be the acceleration sites where magnetic shocks are possibly boosting cosmic-ray particles with energies of up to 10(18) to 10(19) electron volts.

  5. The CLU Nearby Galaxy Catalog: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Cook, David O.; Kasliwal, Mansi M.; iPTF

    2016-01-01

    The intermediate Palomar Transient Factory (iPTF) has been undertaking the Census of the Local Universe (CLU) project to complete our survey of galaxies out to 200 Mpc. CLU deploys four contiguous narrow-band filters to search for extended, emission line (Hα) sources across 3π of the sky. The estimated 5σ limiting flux for a point source is 2×10-17 erg s-1 cm-2 (Rau et al., 2009), which corresponds to a star formation rate (SFR) of 10-3 M⊙ yr-1 at a distance of 200 Mpc. Thus, the CLU galaxy catalog will capture 85% of the B-band light and 92% of the Hα luminosity out to 200 Mpc resulting in tens-of-thousands of newly discovered galaxies. We present the narrowband imaging characteristics, the criteria used for selecting galaxy candidates, and a sub-set of newly discovered galaxies that have been spectroscopically confirmed.

  6. Multi input single output model predictive control of non-linear bio-polymerization process

    SciTech Connect

    Arumugasamy, Senthil Kumar; Ahmad, Z.

    2015-05-15

    This paper focuses on Multi Input Single Output (MISO) Model Predictive Control of bio-polymerization process in which mechanistic model is developed and linked with the feedforward neural network model to obtain a hybrid model (Mechanistic-FANN) of lipase-catalyzed ring-opening polymerization of ε-caprolactone (ε-CL) for Poly (ε-caprolactone) production. In this research, state space model was used, in which the input to the model were the reactor temperatures and reactor impeller speeds and the output were the molecular weight of polymer (M{sub n}) and polymer polydispersity index. State space model for MISO created using System identification tool box of Matlab™. This state space model is used in MISO MPC. Model predictive control (MPC) has been applied to predict the molecular weight of the biopolymer and consequently control the molecular weight of biopolymer. The result shows that MPC is able to track reference trajectory and give optimum movement of manipulated variable.

  7. Mapping the universe.

    PubMed

    Geller, M J; Huchra, J P

    1989-11-17

    Maps of the galaxy distribution in the nearby universe reveal large coherent structures. The extent of the largest features is limited only by the size of the survey. Voids with a density typically 20 percent of the mean and with diameters of 5000 km s(-1) are present in every survey large enough to contain them. Many galaxies lie in thin sheet-like structures. The largest sheet detected so far is the "Great Wall" with a minimum extent of 60 h(-1) Mpc x 170 h(-1) Mpc, where h is the Hubble constant in units of 100 km s(-1) Mpc(-1). The frequent occurrence of these structures is one of several serious challenges to our current understanding of the origin and evolution of the large-scale distribution of matter in the universe.

  8. Mapping the universe

    NASA Technical Reports Server (NTRS)

    Geller, Margaret J.; Huchra, John P.

    1989-01-01

    Maps of the galaxy distribution in the nearby universe reveal large coherent structures. The extent of the largest features is limited only by the size of the survey. Voids with a density typically 20 percent of the mean and with diameters of 5000 km/s are present in every survey large enough to contain them. Many galaxies lie in thin sheet-like structures. The largest sheet detected so far is the 'Great Wall' with a minimum extent of 60/h Mpc x 170/h Mpc, where h is the Hubble constant in units of 100 km/s per Mpc. The frequent occurrence of these structures is one of several serious challenges to our current understanding of the origin and evolution of the large-scale distribution of matter in the universe.

  9. DOSE RATES FOR WESTINGHOUSE 17X17 MOX PWR SNF IN A WASTE PACKAGE (SCPB: N/A)

    SciTech Connect

    T.L. Lotz

    1997-01-29

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to estimate the dose rate on and near the surface a Multi-Purpose Canister (MPC) PWR waste package (WP) which is loaded with Westinghouse 17 x 17 mixed oxide (MOX) PWR fuel. The 21 PWR MPC WP is used to provide an upper bound for waste package designs since the 12 PWR MPC WP will have a smaller source term and an equivalent amount of shielding. the objectives of this evaluation are to calculate the requested dose rate(s) and document the calculation in a fashion to allow comparisons to other waste forms and WP designs at a future time.

  10. Big Data

    PubMed Central

    SOBEK, MATTHEW; CLEVELAND, LARA; FLOOD, SARAH; HALL, PATRICIA KELLY; KING, MIRIAM L.; RUGGLES, STEVEN; SCHROEDER, MATTHEW

    2011-01-01

    The Minnesota Population Center (MPC) provides aggregate data and microdata that have been integrated and harmonized to maximize crosstemporal and cross-spatial comparability. All MPC data products are distributed free of charge through an interactive Web interface that enables users to limit the data and metadata being analyzed to samples and variables of interest to their research. In this article, the authors describe the integrated databases available from the MPC, report on recent additions and enhancements to these data sets, and summarize new online tools and resources that help users to analyze the data over time. They conclude with a description of the MPC’s newest and largest infrastructure project to date: a global population and environment data network. PMID:21949459

  11. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport.

    PubMed

    Yang, Chendong; Ko, Bookyung; Hensley, Christopher T; Jiang, Lei; Wasti, Ajla T; Kim, Jiyeon; Sudderth, Jessica; Calvaruso, Maria Antonietta; Lumata, Lloyd; Mitsche, Matthew; Rutter, Jared; Merritt, Matthew E; DeBerardinis, Ralph J

    2014-11-01

    Alternative modes of metabolism enable cells to resist metabolic stress. Inhibiting these compensatory pathways may produce synthetic lethality. We previously demonstrated that glucose deprivation stimulated a pathway in which acetyl-CoA was formed from glutamine downstream of glutamate dehydrogenase (GDH). Here we show that import of pyruvate into the mitochondria suppresses GDH and glutamine-dependent acetyl-CoA formation. Inhibiting the mitochondrial pyruvate carrier (MPC) activates GDH and reroutes glutamine metabolism to generate both oxaloacetate and acetyl-CoA, enabling persistent tricarboxylic acid (TCA) cycle function. Pharmacological blockade of GDH elicited largely cytostatic effects in culture, but these effects became cytotoxic when combined with MPC inhibition. Concomitant administration of MPC and GDH inhibitors significantly impaired tumor growth compared to either inhibitor used as a single agent. Together, the data define a mechanism to induce glutaminolysis and uncover a survival pathway engaged during compromised supply of pyruvate to the mitochondria.

  12. Model predictive control of a wet limestone flue gas desulfurization pilot plant

    SciTech Connect

    Perales, A.L.V.; Ollero, P.; Ortiz, F.J.G.; Gomez-Barea, A.

    2009-06-15

    A model predictive control (MPC) strategy based on a dynamic matrix (DMC) is designed and applied to a wet limestone flue gas desulfurization (WLFGD) pilot plant to evaluate what enhancement in control performance can be achieved with respect to a conventional decentralized feedback control strategy. The results reveal that MPC can significantly improve both reference tracking and disturbance rejection. For disturbance rejection, the main control objective in WLFGD plants, selection of tuning parameters and sample time, is of paramount importance due to the fast effect of the main disturbance (inlet SO{sub 2} load to the absorber) on the most important controlled variable (outlet flue gas SO{sub 2} concentration). The proposed MPC strategy can be easily applied to full-scale WLFGD plants.

  13. Synthesis of biomimetic poly[2-(methacryloyloxy)ethyl phosphorycholine]-coated magnetite nanoparticles via surface-initiated atom transfer radical polymerization.

    PubMed

    Sui, Jie-He; Cao, Chang-Yan; Cai, Wei

    2011-10-01

    Modification of magnetite nanoparticles with biomimetic poly[2-(methacryloyloxy)ethyl phosphorycholine] (poly(MPC)) via surface-initiated atom transfer radical polymerization (ATRP) was carried out. Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analyses (TGA) and zeta potential studies indicated that well defined poly (MPC) was successfully grafted on the surface of magnetite nanoparticles. X-ray diffraction results showed the structure of magnetite nanoparticles after surface modification was not changed. The poly (MPC)-coated magnetite nanoparticles had a mean transmission electron microscopy (TEM) diameter of 11 +/- 1.5 nm. The resulting nanomaterials were superparamagnetic at room temperature, exhibited good colloidal stability in aqueous media and good responsibility to magnetic field. Such magnetite nanoparticles with biomimetic surface have potential application in prolonging circulation time in vivo.

  14. Polyhydroxyalkanoates production by a mixed photosynthetic consortium of bacteria and algae.

    PubMed

    Fradinho, J C; Domingos, J M B; Carvalho, G; Oehmen, A; Reis, M A M

    2013-03-01

    For the first time, a mixed photosynthetic culture (MPC) consisting of a consortium of bacteria and algae was investigated for its capacity to accumulate polyhydroxyalkanoates (PHA). The culture was subjected to a feast and famine regime in an illuminated environment without supplying oxygen or any other electron acceptor. The MPC accumulated PHA during the feast phase and consumed it in the famine phase, where the PHA consumption was made possible due to oxygen production by algae. The internal cycling of carbohydrates was also observed, which was likely linked to bacterial glycogen being used as an additional source of energy for acetate uptake during the feast phase, and restored in the famine phase via PHA degradation. The MPC reached a PHA content of 20%, with a PHA storage yield per acetate similar to aerobic systems, opening up the possibility of a new sunlight-driven PHA production process without the need for aeration.

  15. Mapping the universe.

    PubMed

    Geller, M J; Huchra, J P

    1989-11-17

    Maps of the galaxy distribution in the nearby universe reveal large coherent structures. The extent of the largest features is limited only by the size of the survey. Voids with a density typically 20 percent of the mean and with diameters of 5000 km s(-1) are present in every survey large enough to contain them. Many galaxies lie in thin sheet-like structures. The largest sheet detected so far is the "Great Wall" with a minimum extent of 60 h(-1) Mpc x 170 h(-1) Mpc, where h is the Hubble constant in units of 100 km s(-1) Mpc(-1). The frequent occurrence of these structures is one of several serious challenges to our current understanding of the origin and evolution of the large-scale distribution of matter in the universe. PMID:17812575

  16. Stable propagation of non-Gaussian beams in a multiple-pass cell.

    PubMed

    Takasaki, T; Suda, A; Sato, K; Nagasaka, K; Tashiro, H

    1997-05-20

    To apply annular output beams emitted from an unstable resonator to a multiple-pass cell (MPC) for Raman conversion, we studied the mode-matching condition of non-Gaussian beams to a MPC using beam propagation analysis based on Laguerre-Gaussian functions. During transits of the MPC, the radial profile of an annular beam changes between annular and Airy patterns. Although such behavior indicates that it is impossible to achieve complete mode matching of an annular beam, we found a quasi-mode-matching condition under which the variation of beam size was minimized. The above theoretical analysis was verified experimentally using a CO(2) laser beam prepared for a para-hydrogen Raman laser. PMID:18253356

  17. Silk damping at a redshift of a billion: new limit on small-scale adiabatic perturbations.

    PubMed

    Jeong, Donghui; Pradler, Josef; Chluba, Jens; Kamionkowski, Marc

    2014-08-01

    We study the dissipation of small-scale adiabatic perturbations at early times when the Universe is hotter than T≃0.5  keV. When the wavelength falls below the damping scale k(D)(-1), the acoustic modes diffuse and thermalize, causing entropy production. Before neutrino decoupling, k(D) is primarily set by the neutrino shear viscosity, and we study the effect of acoustic damping on the relic neutrino number, primordial nucleosynthesis, dark-matter freeze-out, and baryogenesis. This sets a new limit on the amplitude of primordial fluctuations of Δ(R)(2)<0.007 at 10(4)  Mpc(-1)≲k≲10(5)  Mpc(-1) and a model-dependent limit of Δ(R)(2)≲0.3 at k≲10(20-25)  Mpc(-1). PMID:25148313

  18. Topology of large-scale structure in seeded hot dark matter models

    NASA Technical Reports Server (NTRS)

    Beaky, Matthew M.; Scherrer, Robert J.; Villumsen, Jens V.

    1992-01-01

    The topology of the isodensity surfaces in seeded hot dark matter models, in which static seed masses provide the density perturbations in a universe dominated by massive neutrinos is examined. When smoothed with a Gaussian window, the linear initial conditions in these models show no trace of non-Gaussian behavior for r0 equal to or greater than 5 Mpc (h = 1/2), except for very low seed densities, which show a shift toward isolated peaks. An approximate analytic expression is given for the genus curve expected in linear density fields from randomly distributed seed masses. The evolved models have a Gaussian topology for r0 = 10 Mpc, but show a shift toward a cellular topology with r0 = 5 Mpc; Gaussian models with an identical power spectrum show the same behavior.

  19. Optimization of microalgal photobioreactor system using model predictive control with experimental validation.

    PubMed

    Yoo, Sung Jin; Jeong, Dong Hwi; Kim, Jung Hun; Lee, Jong Min

    2016-08-01

    To maximize biomass and lipid concentrations, various optimization methods were investigated in microalgal photobioreactor systems under mixotrophic conditions. Lipid concentration was estimated using unscented Kalman filter (UKF) with other measurable sources and subsequently used as lipid data for performing model predictive control (MPC). In addition, the maximized biomass and lipid trajectory obtained by open-loop optimization were used as target trajectory for tracking by MPC. Simulation studies and experimental validation were performed and significant improvements in biomass and lipid productivity were achieved in the case where MPC was applied. However, occurence of a lag phase was observed while manipulating the feed flow rates, which is induced by large amount of inputs. This is an important phenomenon that can lead to model-plant mismatch and requires further study for the optimization of microalgal photobioreactors. PMID:27094678

  20. A microfluidic positioning chamber for long-term live-cell imaging

    PubMed Central

    Hanson, Lindsey; Cui, Lifeng; Xie, Chong; Cui, Bianxiao

    2010-01-01

    We report a microfluidic positioning chamber (MPC) that can rapidly and repeatedly relocate the same imaging area on a microscope stage. The “roof” of the microfluidic chamber was printed with serials of coordinate numbers that act as positioning marks for mammalian cells that grow attached to the “floor” of the microfluidic chamber. MPC cell culture chamber provided a simple solution for tracking the same cell or groups of cells over days or weeks. The positioning marks were used to register time-lapse images of the same imaging area to single-pixel accuracy. Using MPC cell culture chamber, we tracked the migration, division and differentiation of individual PC12 cells for over a week using bright field and fluorescence imaging. PMID:20936672

  1. The distribution of nearby rich clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Huchra, John P.; Geller, Margaret J.

    1992-01-01

    Redshifts are acquired for a complete sample of 351 Abell clusters with tenth-ranked galaxy magnitudes (m10) less than or equal to 16.5, including 115 entirely new cluster redshifts. Analysis of the spatial distribution of these clusters reveals no clustering on scales larger than 75/h Mpc. The correlation length is 20.0 (+/-4.3)/h Mpc, consistent with the results from other surveys. The frequency of voids with radii of order 60/h Mpc or less is consistent with the form and amplitude of the observed two-point correlation function. There is no significant difference between the clustering properties of clusters with RC = 0 and RC not less than 1. A percolation analysis yields 23 superclusters, 17 of which are new. The superclusters are not significantly elongated in the radial direction; large-scale peculiar motions are of order 1000 km/s or less.

  2. Terminal spacecraft rendezvous and capture with LASSO model predictive control

    NASA Astrophysics Data System (ADS)

    Hartley, Edward N.; Gallieri, Marco; Maciejowski, Jan M.

    2013-11-01

    The recently investigated ℓasso model predictive control (MPC) is applied to the terminal phase of a spacecraft rendezvous and capture mission. The interaction between the cost function and the treatment of minimum impulse bit is also investigated. The propellant consumption with ℓasso MPC for the considered scenario is noticeably less than with a conventional quadratic cost and control actions are sparser in time. Propellant consumption and sparsity are competitive with those achieved using a zone-based ℓ1 cost function, whilst requiring fewer decision variables in the optimisation problem than the latter. The ℓasso MPC is demonstrated to meet tighter specifications on control precision and also avoids the risk of undesirable behaviours often associated with pure ℓ1 stage costs.

  3. Giant ringlike radio structures around galaxy cluster Abell 3376.

    PubMed

    Bagchi, Joydeep; Durret, Florence; Neto, Gastão B Lima; Paul, Surajit

    2006-11-01

    In the current paradigm of cold dark matter cosmology, large-scale structures are assembling through hierarchical clustering of matter. In this process, an important role is played by megaparsec (Mpc)-scale cosmic shock waves, arising in gravity-driven supersonic flows of intergalactic matter onto dark matter-dominated collapsing structures such as pancakes, filaments, and clusters of galaxies. Here, we report Very Large Array telescope observations of giant ( approximately 2 Mpc by 1.6 Mpc), ring-shaped nonthermal radio-emitting structures, found at the outskirts of the rich cluster of galaxies Abell 3376. These structures may trace the elusive shock waves of cosmological large-scale matter flows, which are energetic enough to power them. These radio sources may also be the acceleration sites where magnetic shocks are possibly boosting cosmic-ray particles with energies of up to 10(18) to 10(19) electron volts. PMID:17082451

  4. Supervised exercise training reduces oxidative stress and cardiometabolic risk in adults with type 2 diabetes: a randomized controlled trial

    PubMed Central

    Vinetti, Giovanni; Mozzini, Chiara; Desenzani, Paolo; Boni, Enrico; Bulla, Laura; Lorenzetti, Isabella; Romano, Claudia; Pasini, Andrea; Cominacini, Luciano; Assanelli, Deodato

    2015-01-01

    To evaluate the effects of supervised exercise training (SET) on cardiometabolic risk, cardiorespiratory fitness and oxidative stress status in 2 diabetes mellitus (T2DM), twenty male subjects with T2DM were randomly assigned to an intervention group, which performed SET in a hospital-based setting, and to a control group. SET consisted of a 12-month supervised aerobic, resistance and flexibility training. A reference group of ten healthy male subjects was also recruited for baseline evaluation only. Participants underwent medical examination, biochemical analyses and cardiopulmonary exercise testing. Oxidative stress markers (1-palmitoyl-2-[5-oxovaleroyl]-sn-glycero-3-phosphorylcholine [POVPC]; 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphorylcholine [PGPC]) were measured in plasma and in peripheral blood mononuclear cells. All investigations were carried out at baseline and after 12 months. SET yielded a significant modification (p < 0.05) in the following parameters: V'O2max (+14.4%), gas exchange threshold (+23.4%), waist circumference (−1.4%), total cholesterol (−14.6%), LDL cholesterol (−20.2%), fasting insulinemia (−48.5%), HOMA-IR (−52.5%), plasma POVPC (−27.9%) and PGPC (−31.6%). After 12 months, the control group presented a V'O2max and a gas exchange threshold significantly lower than the intervention group. Plasma POVC and PGPC were significantly different from healthy subjects before the intervention, but not after. In conclusion, SET was effective in improving cardiorespiratory fitness, cardiometabolic risk and oxidative stress status in T2DM. PMID:25783765

  5. Supervised exercise training reduces oxidative stress and cardiometabolic risk in adults with type 2 diabetes: a randomized controlled trial.

    PubMed

    Vinetti, Giovanni; Mozzini, Chiara; Desenzani, Paolo; Boni, Enrico; Bulla, Laura; Lorenzetti, Isabella; Romano, Claudia; Pasini, Andrea; Cominacini, Luciano; Assanelli, Deodato

    2015-01-01

    To evaluate the effects of supervised exercise training (SET) on cardiometabolic risk, cardiorespiratory fitness and oxidative stress status in 2 diabetes mellitus (T2DM), twenty male subjects with T2DM were randomly assigned to an intervention group, which performed SET in a hospital-based setting, and to a control group. SET consisted of a 12-month supervised aerobic, resistance and flexibility training. A reference group of ten healthy male subjects was also recruited for baseline evaluation only. Participants underwent medical examination, biochemical analyses and cardiopulmonary exercise testing. Oxidative stress markers (1-palmitoyl-2-[5-oxovaleroyl]-sn-glycero-3-phosphorylcholine [POVPC]; 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphorylcholine [PGPC]) were measured in plasma and in peripheral blood mononuclear cells. All investigations were carried out at baseline and after 12 months. SET yielded a significant modification (p < 0.05) in the following parameters: V'O₂max (+14.4%), gas exchange threshold (+23.4%), waist circumference (-1.4%), total cholesterol (-14.6%), LDL cholesterol (-20.2%), fasting insulinemia (-48.5%), HOMA-IR (-52.5%), plasma POVPC (-27.9%) and PGPC (-31.6%). After 12 months, the control group presented a V'O₂max and a gas exchange threshold significantly lower than the intervention group. Plasma POVC and PGPC were significantly different from healthy subjects before the intervention, but not after. In conclusion, SET was effective in improving cardiorespiratory fitness, cardiometabolic risk and oxidative stress status in T2DM. PMID:25783765

  6. Cleaning of Oil Fouling with Water Enabled by Zwitterionic Polyelectrolyte Coatings: Overcoming the Imperative Challenge of Oil-Water Separation Membranes.

    PubMed

    He, Ke; Duan, Haoran; Chen, George Y; Liu, Xiaokong; Yang, Wensheng; Wang, Dayang

    2015-09-22

    Herein we report a self-cleaning coating derived from zwitterionic poly(2-methacryloyloxylethyl phosphorylcholine) (PMPC) brushes grafted on a solid substrate. The PMPC surface not only exhibits complete oil repellency in a water-wetted state (i.e., underwater superoleophobicity), but also allows effective cleaning of oil fouled on dry surfaces by water alone. The PMPC surface was compared with typical underwater superoleophobic surfaces realized with the aid of surface roughening by applying hydrophilic nanostructures and those realized by applying smooth hydrophilic polyelectrolyte multilayers. We show that underwater superoleophobicity of a surface is not sufficient to enable water to clean up oil fouling on a dry surface, because the latter circumstance demands the surface to be able to strongly bond water not only in its pristine state but also in an oil-wetted state. The PMPC surface is unique with its described self-cleaning performance because the zwitterionic phosphorylcholine groups exhibit exceptional binding affinity to water even when they are already wetted by oil. Further, we show that applying this PMPC coating onto steel meshes produces oil-water separation membranes that are resilient to oil contamination with simply water rinsing. Consequently, we provide an effective solution to the oil contamination issue on the oil-water separation membranes, which is an imperative challenge in this field. Thanks to the self-cleaning effect of the PMPC surface, PMPC-coated steel meshes can not only separate oil from oil-water mixtures in a water-wetted state, but also can lift oil out from oil-water mixtures even in a dry state, which is a very promising technology for practical oil-spill remediation. In contrast, we show that oil contamination on conventional hydrophilic oil-water separation membranes would permanently induce the loss of oil-water separation function, and thus they have to be always used in a completely water-wetted state, which significantly

  7. Heligmosomoides polygyrus elicits a dominant nonprotective antibody response directed against restricted glycan and peptide epitopes.

    PubMed

    Hewitson, James P; Filbey, Kara J; Grainger, John R; Dowle, Adam A; Pearson, Mark; Murray, Janice; Harcus, Yvonne; Maizels, Rick M

    2011-11-01

    Heligmosomoides polygyrus is a widely used gastrointestinal helminth model of long-term chronic infection in mice, which has not been well-characterized at the antigenic level. We now identify the major targets of the murine primary Ab response as a subset of the secreted products in H. polygyrus excretory-secretory (HES) Ag. An immunodominant epitope is an O-linked glycan (named glycan A) carried on three highly expressed HES glycoproteins (venom allergen Ancylostoma-secreted protein-like [VAL]-1, -2, and -5), which stimulates only IgM Abs, is exposed on the adult worm surface, and is poorly represented in somatic parasite extracts. A second carbohydrate epitope (glycan B), present on both a non-protein high molecular mass component and a 65-kDa molecule, is widely distributed in adult somatic tissues. Whereas the high molecular mass component and 65-kDa molecules bear phosphorylcholine, the glycan B epitope itself is not phosphorylcholine. Class-switched IgG1 Abs are found to glycan B, but the dominant primary IgG1 response is to the polypeptides of VAL proteins, including also VAL-3 and VAL-4. Secondary Ab responses include the same specificities while also recognizing VAL-7. Although vaccination with HES conferred complete protection against challenge H. polygyrus infection, mAbs raised against each of the glycan epitopes and against VAL-1, VAL-2, and VAL-4 proteins were unable to do so, even though these specificities (with the exception of VAL-2) are also secreted by tissue-phase L4 larvae. The primary immune response in susceptible mice is, therefore, dominated by nonprotective Abs against a small subset of antigenic epitopes, raising the possibility that these act as decoy specificities that generate ineffective humoral immunity. PMID:21964031

  8. Cleaning of Oil Fouling with Water Enabled by Zwitterionic Polyelectrolyte Coatings: Overcoming the Imperative Challenge of Oil-Water Separation Membranes.

    PubMed

    He, Ke; Duan, Haoran; Chen, George Y; Liu, Xiaokong; Yang, Wensheng; Wang, Dayang

    2015-09-22

    Herein we report a self-cleaning coating derived from zwitterionic poly(2-methacryloyloxylethyl phosphorylcholine) (PMPC) brushes grafted on a solid substrate. The PMPC surface not only exhibits complete oil repellency in a water-wetted state (i.e., underwater superoleophobicity), but also allows effective cleaning of oil fouled on dry surfaces by water alone. The PMPC surface was compared with typical underwater superoleophobic surfaces realized with the aid of surface roughening by applying hydrophilic nanostructures and those realized by applying smooth hydrophilic polyelectrolyte multilayers. We show that underwater superoleophobicity of a surface is not sufficient to enable water to clean up oil fouling on a dry surface, because the latter circumstance demands the surface to be able to strongly bond water not only in its pristine state but also in an oil-wetted state. The PMPC surface is unique with its described self-cleaning performance because the zwitterionic phosphorylcholine groups exhibit exceptional binding affinity to water even when they are already wetted by oil. Further, we show that applying this PMPC coating onto steel meshes produces oil-water separation membranes that are resilient to oil contamination with simply water rinsing. Consequently, we provide an effective solution to the oil contamination issue on the oil-water separation membranes, which is an imperative challenge in this field. Thanks to the self-cleaning effect of the PMPC surface, PMPC-coated steel meshes can not only separate oil from oil-water mixtures in a water-wetted state, but also can lift oil out from oil-water mixtures even in a dry state, which is a very promising technology for practical oil-spill remediation. In contrast, we show that oil contamination on conventional hydrophilic oil-water separation membranes would permanently induce the loss of oil-water separation function, and thus they have to be always used in a completely water-wetted state, which significantly

  9. Temperature-dependent modification of muscle precursor cell behaviour is an underlying reason for lasting effects on muscle cellularity and body growth of teleost fish.

    PubMed

    Steinbacher, Peter; Marschallinger, Julia; Obermayer, Astrid; Neuhofer, Alois; Sänger, Alexandra M; Stoiber, Walter

    2011-06-01

    Temperature is an important factor influencing teleost muscle growth, including a lasting ('imprinted') influence of embryonic thermal experience throughout all further life. However, little is known about the cellular processes behind this phenomenon. The study reported here used digital morphometry and immunolabelling for Pax7, myogenin and H3P to quantitatively examine the effects of thermal history on muscle precursor cell (MPC) behaviour and muscle growth in pearlfish (Rutilus meidingeri) until the adult stage. Fish were reared at three different temperatures (8.5, 13 and 16°C) until hatching and subsequently kept under the same (ambient) thermal conditions. Cellularity data were combined with a quantitative analysis of Pax7+ MPCs including those that were mitotically active (Pax7+/H3P+) or had entered differentiation (Pax7+/myogenin+). The results demonstrate that at hatching, body lengths, fast and slow muscle cross-sectional areas and fast fibre numbers are lower in fish reared at 8.5 and 13°C than at 16°C. During the larval period, this situation changes in the 13°C-fish, so that these fish are finally the largest. The observed effects can be related to divergent cellular mechanisms at the MPC level that are initiated in the embryo during the imprinting period. Embryos of 16°C-fish have reduced MPC proliferation but increased differentiation, and thus give rise to larger hatchlings. However, their limited MPC reserves finally lead to smaller adults. By contrast, embryos of 13°C-fish and, to a lesser extent, 8.5°-fish, show enhanced MPC proliferation but reduced differentiation, thus leading to smaller hatchlings but allowing for a larger MPC pool that can be used for enhanced post-hatching growth, finally resulting in larger adults.

  10. The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters.

    PubMed

    Nancolas, Bethany; Guo, Lili; Zhou, Rong; Nath, Kavindra; Nelson, David S; Leeper, Dennis B; Blair, Ian A; Glickson, Jerry D; Halestrap, Andrew P

    2016-04-01

    Lonidamine (LND) is an anti-tumour drug particularly effective at selectively sensitizing tumours to chemotherapy, hyperthermia and radiotherapy, although its precise mode of action remains unclear. It has been reported to perturb the bioenergetics of cells by inhibiting glycolysis and mitochondrial respiration, whereas indirect evidence suggests it may also inhibit L-lactic acid efflux from cells mediated by members of the proton-linked monocarboxylate transporter (MCT) family and also pyruvate uptake into the mitochondria by the mitochondrial pyruvate carrier (MPC). In the present study, we test these possibilities directly. We demonstrate that LND potently inhibits MPC activity in isolated rat liver mitochondria (Ki2.5 μM) and co-operatively inhibits L-lactate transport by MCT1, MCT2 and MCT4 expressed in Xenopus laevisoocytes with K0.5 and Hill coefficient values of 36-40 μM and 1.65-1.85 respectively. In rat heart mitochondria LND inhibited the MPC with similar potency and uncoupled oxidation of pyruvate was inhibited more effectively (IC50~ 7 μM) than other substrates including glutamate (IC50~ 20 μM). In isolated DB-1 melanoma cells 1-10 μM LND increased L-lactate output, consistent with MPC inhibition, but higher concentrations (150 μM) decreased L-lactate output whereas increasing intracellular [L-lactate] > 5-fold, consistent with MCT inhibition. We conclude that MPC inhibition is the most sensitive anti-tumour target for LND, with additional inhibitory effects on MCT-mediated L-lactic acid efflux and glutamine/glutamate oxidation. Together these actions can account for published data on the selective tumour effects of LND onL-lactate, intracellular pH (pHi) and ATP levels that can be partially mimicked by the established MPC and MCT inhibitor α-cyano-4-hydroxycinnamate (CHC). PMID:26831515

  11. The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters

    PubMed Central

    Nancolas, Bethany; Guo, Lili; Zhou, Rong; Nath, Kavindra; Nelson, David S.; Leeper, Dennis B.; Blair, Ian A.; Glickson, Jerry D.; Halestrap, Andrew P.

    2016-01-01

    Lonidamine (LND) is an anti-tumour drug particularly effective at selectively sensitising tumours to chemotherapy, hyperthermia and radiotherapy, although its precise mode of action remains unclear. It has been reported to perturb the bioenergetics of cells by inhibiting glycolysis and mitochondrial respiration, while indirect evidence suggests it may also inhibit L-lactic acid efflux from cells mediated by members of the proton-linked monocarboxylate transporter (MCT) family and also pyruvate uptake into the mitochondria by the mitochondrial pyruvate carrier (MPC). Here we test these possibilities directly. We demonstrate that LND potently inhibits MPC activity in isolated rat liver mitochondria (Ki 2.5 μM) and cooperatively inhibits L-lactate transport by MCT1, MCT2 and MCT4 expressed in Xenopus laevis oocytes with K0.5 and Hill Coefficient values of 36–40 μM and 1.65–1.85. In rat heart mitochondria LND inhibited the MPC with similar potency and uncoupled oxidation of pyruvate was inhibited more effectively (IC50 ~7 μM) than other substrates including glutamate (IC50 ~20 μM). In isolated DB-1 melanoma cells 1–10 μM LND increased L-lactate output, consistent with MPC inhibition, but higher concentrations (150 μM) decreased L-lactate output while increasing intracellular [L-lactate] > five-fold, consistent with MCT inhibition. We conclude that MPC inhibition is the most sensitive anti-tumour target for LND, with additional inhibitory effects on MCT-mediated L-lactic acid efflux and glutamine/glutamate oxidation. Together these actions can account for published data on the selective tumour effects of LND on L-lactate, intracellular pH (pHi) and ATP levels that can be partially mimicked by the established MPC and MCT inhibitor α-cyano-4-hydroxycinnamate. PMID:26831515

  12. Are peculiar velocity surveys competitive as a cosmological probe?

    NASA Astrophysics Data System (ADS)

    Koda, Jun; Blake, Chris; Davis, Tamara; Magoulas, Christina; Springob, Christopher M.; Scrimgeour, Morag; Johnson, Andrew; Poole, Gregory B.; Staveley-Smith, Lister

    2014-12-01

    Peculiar velocity surveys, which measure galaxy velocities directly from standard candles in addition to redshifts, can provide strong constraints on the growth rate of structure at low redshift. The improvement originates from the physical relationship between galaxy density and peculiar velocity, which substantially reduces cosmic variance. We use Fisher matrix forecasts to show that peculiar velocity data can improve the growth rate constraints by about a factor of 2 compared to density alone for surveys with galaxy number density of 10-2 (h-1 Mpc)-3, if we can use all the information for wavenumber k ≤ 0.2 h Mpc-1. In the absence of accurate theoretical models at k = 0.2 h Mpc- 1, the improvement over redshift-only surveys is even larger - around a factor of 5 for k ≤ 0.1 h Mpc-1. Future peculiar velocity surveys, Transforming Astronomical Imaging surveys through Polychromatic Analysis of Nebulae (TAIPAN), and the all-sky H I surveys, Widefield ASKAP L-band Legacy All-sky Blind Survey (WALLABY) and Westerbork Northern Sky H I Survey (WNSHS), can measure the growth rate to 3 per cent at z ˜ 0.025. Although the velocity subsample is about an order of magnitude smaller than the redshift sample from the same survey, it improves the constraint by 40 per cent compared to the same survey without velocity measurements. Peculiar velocity surveys can also measure the growth rate as a function of wavenumber with 15-30 per cent uncertainties in bins with widths Δk = 0.01 h Mpc-1 in the range k ≤ 0.1 h Mpc-1, which is a large improvement over galaxy density only. Such measurements on very large scales can detect signatures of modified gravity or non-Gaussianity through scale-dependent growth rate or galaxy bias. We test our modelling in detail using N-body simulations.

  13. Cosmic cartography of the large-scale structure with Sloan Digital Sky Survey data release 6

    NASA Astrophysics Data System (ADS)

    Kitaura, Francisco S.; Jasche, Jens; Li, Cheng; Enßlin, Torsten A.; Metcalf, R. Benton; Wandelt, Benjamin D.; Lemson, Gerard; White, Simon D. M.

    2009-11-01

    We present the largest Wiener reconstruction of the cosmic density field made to date. The reconstruction is based on the Sloan Digital Sky Survey (SDSS) data release 6 covering the northern Galactic cap. We use a novel supersampling algorithm to suppress aliasing effects and a Krylov-space inversion method to enable high performance with high resolution. These techniques are implemented in the ARGO computer code. We reconstruct the field over a 500Mpc cube with Mpc grid resolution while accounting for both the angular and the radial selection functions of the SDSS, and the shot noise giving an effective resolution of the order of ~10Mpc. In addition, we correct for the redshift distortions in the linear and non-linear regimes in an approximate way. We show that the commonly used method of inverse weighting the galaxies by the corresponding selection function heads to excess noise in regions where the density of the observed galaxies is small. It is more accurate and conservative to adopt a Bayesian framework in which we model the galaxy selection/detection process to be Poisson binomial. This results in heavier smoothing in regions of reduced sampling density. Our results show a complex cosmic web structure with huge void regions indicating that the recovered matter distribution is highly non-Gaussian. Filamentary structures are clearly visible on scales of up to ~20Mpc. We also calculate the statistical distribution of density after smoothing the reconstruction with Gaussian kernels of different radii rS and find good agreement with a lognormal distribution for 10Mpc <~ rS <~ 30Mpc.

  14. Metallophthalocyanines photosensitize the breakdown of (hydro)peroxides in solution to yield hydroxyl or alkoxyl and peroxyl free radicals via different interaction pathways.

    PubMed

    Gantchev, Tsvetan G; Sharman, Wesley M; van Lier, Johan E

    2003-05-01

    Interactions of organic peroxides (R'OOR) and hydroperoxides (R'OOH), including H2O2, with excited triplet and singlet state metallophthalocyanines (MPc, M = Zn, Al) have been studied by T-T absorption decay and fluorescence quenching. The ensuing photochemical processes result in decomposition of (hydro)peroxides as assessed by photo-EPR (electron paramagnetic resonance) and spin trapping. In argon-saturated apolar solutions and low MPc concentrations, alkoxyl free radicals (*OR) were identified as the primary products of (hydro)peroxide breakdown. Similarly, photosensitized decomposition of symmetric disulfides results in the formation of sulfur-centered radicals. In air-free aqueous solutions, ROOH photosensitization always gave rise to a mixture of hydroxyl and peroxyl radical (*OOR) adducts in varying molar ratios. At high MPc concentrations, both in polar and in apolar solutions, the most abundant products of ROOH decomposition were identified as *OOR. This indicates a change in the predominant interaction pathway, most likely mediated by MPc exciplexes and involving H-atom abstraction from ROOH by MPc-cation radicals. The prevalence of MPc singlet vs. triplet state interactions was confirmed by the much higher singlet quenching rate constants (log kq up to 9.5; vs. log kT < or = 4.5). In contrast to the triplet quenching, singlet quenching rates were found to depend on the (hydro)peroxide structure, following closely the trend of varying *OR yields for different substrates. Thermodynamic calculations were performed to correlate experimental results with models for electronic energy and charge transfer processes in agreement with the Marcus theory (Rhem and Weller approximation) and Savéant's model for a concerted dissociative electron transfer mechanism.

  15. Rapid onset of perfused blood vessels after implantation of ECFCs and MPCs in collagen, PuraMatrix and fibrin provisional matrices.

    PubMed

    Allen, Patrick; Kang, Kyu-Tae; Bischoff, Joyce

    2015-05-01

    We developed an in vivo vascularization model in which human endothelial colony-forming cells (ECFCs) and human mesenchymal progenitor cells (MPCs) form blood vessel networks when co-injected (ECFC + MPC) into nude mice in rat tail type I collagen, bovine fibrin or synthetic peptide PuraMatrix matrices. We used three approaches to determine the onset of functional vascularization when ECFC + MPC suspended in these matrices were implanted in vivo. The first was immunohistochemistry to detect vessels lined by human endothelial cells and filled with red blood cells. The second was in vivo vascular staining by tail vein injection of a mixture of Ulex europaeus agglutinin I (UEA-I), a lectin specific for human endothelium, and Griffonia simplicifolia isolectin B4 (GS-IB4 ), a lectin specific for rodent endothelium. The third approach employed contrast-enhanced ultrasound to measure the perfusion volumes of implants in individual animals over time. Human endothelial-lined tubular structures were detected in vivo on days 1 and 2 after implantation, with perfused human vessels detected on days 3 and 4. Contrast-enhanced ultrasound revealed significant perfusion of ECFC + MPC/collagen implants on days 1-4, at up to 14% perfused vascular volume. ECFC + MPC implanted in fibrin and PuraMatrix matrices also supported perfusion at day 1, as assessed by ultrasound (at 12% and 23% perfused vascular volume, respectively). This model demonstrates that ECFC + MPC suspended in any of the three matrices initiated a rapid onset of vascularization. We propose that ECFC + MPC delivered in vivo provide a means to achieve rapid perfusion of tissue-engineered organs or for in situ tissue repair.

  16. Towards understanding the structure of voids in the cosmic web

    NASA Astrophysics Data System (ADS)

    Einasto, J.; Suhhonenko, I.; Hütsi, G.; Saar, E.; Einasto, M.; Liivamägi, L. J.; Müller, V.; Starobinsky, A. A.; Tago, E.; Tempel, E.

    2011-10-01

    Context. According to the modern cosmological paradigm, cosmic voids form in low density regions between filaments of galaxies and superclusters. Aims: Our goal is to see how density waves of different scale combine to form voids between galaxy systems of various scales. Methods: We perform numerical simulations of structure formation in cubes of size 100, and 256 h-1Mpc, with resolutions 2563 and 5123 particles and cells. To understand the role of density perturbations of various scale, we cut power spectra on scales from 8 to 128 h-1Mpc, using otherwise in all cases identical initial random realisations. Results: We find that small haloes and short filaments form all over the simulation box, if perturbations only on scales as large as 8 h-1Mpc are present. We define density waves of scale ≥ 64 h-1Mpc as large, waves of scale ≃ 32 h-1Mpc as medium scale, and waves of scale ≃ 8 h-1Mpc as small scale, within a factor of two. Voids form in regions where medium- and large-scale density perturbations combine in negative parts of the waves because of the synchronisation of phases of medium- and large-scale density perturbations. In voids, the growth of potential haloes (formed in the absence of large-scale perturbations) is suppressed by the combined negative sections of medium- and large-scale density perturbations, so that their densities are less than the mean density, and thus during the evolution their densities do not increase. Conclusions: The phenomenon of large multi-scale voids in the cosmic web requires the presence of an extended spectrum of primordial density perturbations. The void phenomenon is due to the action of two processes: the synchronisation of density perturbations of medium and large scales, and the suppression of galaxy formation in low-density regions by the combined action of negative sections of medium- and large-scale density perturbations.

  17. Comparison of intravitreal bevacizumab with macular photocoagulation for treatment of diabetic macular edema: a systemic review and Meta-analysis

    PubMed Central

    Liu, Xiang-Dong; Zhou, Xiao-Dong; Wang, Zhi; Shen, Hong-Jie

    2014-01-01

    AIM To further evaluate the efficacy and safety of intravitreal bevacizumab (IVB) versus macular photocoagulation (MPC) in treatment of diabetic macular edema (DME) by Meta-analysis. METHODS Pertinent publications were identified through systemic searches of PubMed, Medline, EMBASE, and the Cochrane Controlled Trials Register up to 30 November, 2013. Changes in central macular thickness (CMT) in µm and best-corrected visual acuity (BCVA) in logMAR equivalents were extracted at 1, 3, 6, 12 and 24mo after initial treatment, and a Meta-analysis was carried out to compare results between groups receiving IVB and MPC. RESULTS Five randomized controlled trial (RCTs) and one high-quality comparative study were identified and included. Our Meta-analysis revealed that both IVB and MPC resulted in the improvements of CMT and BCVA in eyes with DME at 1mo after initial treatment, with IVB being significantly superior to MPC (P=0.01 and 0.02, respectively). The improvements of both measure outcomes at 3, 6, 12 and 24mo after treatment did not vary significantly between the IVB groups and MPC groups (CMT at 3mo, P=0.85; at 6mo, P=0.29; at 12mo, P=0.56; at 24mo, P=0.71; BCVA at 3mo, P=0.31; at 6mo, P= 0.30; at 12mo, P=0.23; at 24mo, P=0.52). However, the number of observed adverse events was low in all studies. CONCLUSION Current evidence shows IVB treatment trends to be more effective in improvements of macular edema and vision in eyes with DME at an earlier follow up (1mo) compared with MPC. At other time, both interventions have comparable efficacy without statistical significances. PMID:25540764

  18. Human vasculogenic cells form functional blood vessels and mitigate adverse remodeling after ischemia reperfusion injury in rats.

    PubMed

    Kang, Kyu-Tae; Coggins, Matthew; Xiao, Chunyang; Rosenzweig, Anthony; Bischoff, Joyce

    2013-10-01

    Cell-based therapies to restore heart function after infarction have been tested in pre-clinical models and clinical trials with mixed results, and will likely require both contractile cells and a vascular network to support them. We and others have shown that human endothelial colony forming cells (ECFC) combined with mesenchymal progenitor cells (MPC) can be used to "bio-engineer" functional human blood vessels. Here we investigated whether ECFC + MPC form functional vessels in ischemic myocardium and whether this affects cardiac function or remodeling. Myocardial ischemia/reperfusion injury (IRI) was induced in 12-week-old immunodeficient rats by ligation of the left anterior descending coronary artery. After 40 min, myocardium was reperfused and ECFC + MPC (2 × 10(6) cells, 2:3 ratio) or PBS was injected. Luciferase assays after injection of luciferase-labeled ECFC + MPC showed that 1,500 ECFC were present at day 14. Human ECFC-lined perfused vessels were directly visualized by femoral vein injection of a fluorescently-tagged human-specific lectin in hearts injected with ECFC + MPC but not PBS alone. While infarct size at day 1 was no different, LV dimensions and heart weight to tibia length ratios were lower in cell-treated hearts compared with PBS at 4 months, suggesting post-infarction remodeling was ameliorated by local cell injection. Fractional shortening, LV wall motion score, and fibrotic area were not different between groups at 4 months. However, pressure-volume loops demonstrated improved cardiac function and reduced volumes in cell-treated animals. These data suggest that myocardial delivery of ECFC + MPC at reperfusion may provide a therapeutic strategy to mitigate LV remodeling and cardiac dysfunction after IRI.

  19. Comparative Mutant Prevention Concentrations of Pradofloxacin and Other Veterinary Fluoroquinolones Indicate Differing Potentials in Preventing Selection of Resistance†

    PubMed Central

    Wetzstein, H.-G.

    2005-01-01

    Pradofloxacin (PRA) is an 8-cyano-fluoroquinolone (FQ) being developed to treat bacterial infections in dogs and cats. Its mutant prevention concentrations (MPC) were determined for Escherichia coli ATCC 8739 at 0.225 μg/ml, and for Staphylococcus aureus ATCC 6538 at 0.55 μg/ml. At drug concentrations equal to or above the MPC, growth (implying selective clonal expansion) of first-step FQ-resistant variants, naturally present in large bacterial populations, was inhibited. MPC90 derived from 10 clinical isolates each of E. coli and Staphylococcus intermedius, the latter species being of greater clinical relevance than S. aureus in companion-animal medicine, amounted to 0.2 to 0.225 and 0.30 to 0.35 μg/ml, respectively. MPCs of other veterinary FQs were assessed to determine relative in vitro potencies. The MPCs of marbofloxacin, enrofloxacin, danofloxacin, sarafloxacin, orbifloxacin, and difloxacin were 1.2-, 1.4-, 2.3-, 2.4-, 5-, and 7-fold higher than the MPC of PRA for E. coli ATCC 8739, and 6-, 6-, 19-, 15-, 15-, and 31-fold higher than the MPC of PRA for S. aureus ATCC 6538, respectively. MPC curves revealed a pronounced heterogeneity in susceptibility within populations of ≥4 × 109 CFU employed, extending to 10-fold above the MICs. The duration of incubation and, for S. aureus, inoculum density profoundly affected the MPCs. With appropriate dosing, PRA may combine high therapeutic efficacy with a high potential for restricting the selection for FQ resistance under field conditions in the species analyzed. PMID:16189094

  20. Comparative mutant prevention concentrations of pradofloxacin and other veterinary fluoroquinolones indicate differing potentials in preventing selection of resistance.

    PubMed

    Wetzstein, H-G

    2005-10-01

    Pradofloxacin (PRA) is an 8-cyano-fluoroquinolone (FQ) being developed to treat bacterial infections in dogs and cats. Its mutant prevention concentrations (MPC) were determined for Escherichia coli ATCC 8739 at 0.225 microg/ml, and for Staphylococcus aureus ATCC 6538 at 0.55 microg/ml. At drug concentrations equal to or above the MPC, growth (implying selective clonal expansion) of first-step FQ-resistant variants, naturally present in large bacterial populations, was inhibited. MPC(90) derived from 10 clinical isolates each of E. coli and Staphylococcus intermedius, the latter species being of greater clinical relevance than S. aureus in companion-animal medicine, amounted to 0.2 to 0.225 and 0.30 to 0.35 microg/ml, respectively. MPCs of other veterinary FQs were assessed to determine relative in vitro potencies. The MPCs of marbofloxacin, enrofloxacin, danofloxacin, sarafloxacin, orbifloxacin, and difloxacin were 1.2-, 1.4-, 2.3-, 2.4-, 5-, and 7-fold higher than the MPC of PRA for E. coli ATCC 8739, and 6-, 6-, 19-, 15-, 15-, and 31-fold higher than the MPC of PRA for S. aureus ATCC 6538, respectively. MPC curves revealed a pronounced heterogeneity in susceptibility within populations of > or =4 x 10(9) CFU employed, extending to 10-fold above the MICs. The duration of incubation and, for S. aureus, inoculum density profoundly affected the MPCs. With appropriate dosing, PRA may combine high therapeutic efficacy with a high potential for restricting the selection for FQ resistance under field conditions in the species analyzed.

  1. Redshift-space distortions in massive neutrino and evolving dark energy cosmologies

    NASA Astrophysics Data System (ADS)

    Upadhye, Amol; Kwan, Juliana; Pope, Adrian; Heitmann, Katrin; Habib, Salman; Finkel, Hal; Frontiere, Nicholas

    2016-03-01

    Large-scale structure surveys in the coming years will measure the redshift-space power spectrum to unprecedented accuracy, allowing for powerful new tests of the Λ cold dark matter (Λ CDM ) picture as well as measurements of particle physics parameters such as the neutrino masses. We extend the time-renormalization-group (RG) perturbative framework to redshift space, computing the power spectrum Ps(k ,μ ) in massive neutrino cosmologies with time-dependent dark energy equations of state w (z ). Time-RG is uniquely capable of incorporating scale-dependent growth into the Ps(k ,μ ) computation, which is important for massive neutrinos as well as modified gravity models. Although changes to w (z ) and the neutrino mass fraction both affect the late-time scale dependence of the nonlinear power spectrum, we find that the two effects depend differently on the line-of-sight angle μ . Finally, we use the hacc N-body code to quantify errors in the perturbative calculations. For a Λ CDM model at redshift z =1 , our procedure predicts the monopole (quadrupole) to 1% accuracy up to a wave number 0.19 h /Mpc (0.28 h /Mpc ), compared to 0.08 h /Mpc (0.07 h /Mpc ) for the Kaiser approximation and 0.19 h /Mpc (0.16 h /Mpc ) for the current state-of-the-art perturbation scheme. Our calculation agrees with the simulated redshift-space power spectrum even for neutrino masses above the current bound, and for rapidly evolving dark energy equations of state, |d w /d z |˜1 . Along with this article, we make our redshift-space time-RG implementation publicly available as the code redtime.

  2. The WiggleZ Dark Energy Survey: the transition to large-scale cosmic homogeneity

    NASA Astrophysics Data System (ADS)

    Scrimgeour, Morag I.; Davis, Tamara; Blake, Chris; James, J. Berian; Poole, Gregory B.; Staveley-Smith, Lister; Brough, Sarah; Colless, Matthew; Contreras, Carlos; Couch, Warrick; Croom, Scott; Croton, Darren; Drinkwater, Michael J.; Forster, Karl; Gilbank, David; Gladders, Mike; Glazebrook, Karl; Jelliffe, Ben; Jurek, Russell J.; Li, I.-hui; Madore, Barry; Martin, D. Christopher; Pimbblet, Kevin; Pracy, Michael; Sharp, Rob; Wisnioski, Emily; Woods, David; Wyder, Ted K.; Yee, H. K. C.

    2012-09-01

    We have made the largest volume measurement to date of the transition to large-scale homogeneity in the distribution of galaxies. We use the WiggleZ survey, a spectroscopic survey of over 200 000 blue galaxies in a cosmic volume of ˜1 h-3 Gpc3. A new method of defining the 'homogeneity scale' is presented, which is more robust than methods previously used in the literature, and which can be easily compared between different surveys. Due to the large cosmic depth of WiggleZ (up to z = 1), we are able to make the first measurement of the transition to homogeneity over a range of cosmic epochs. The mean number of galaxies N(< r) in spheres of comoving radius r is proportional to r3 within 1 per cent, or equivalently the fractal dimension of the sample is within 1 per cent of D2 = 3, at radii larger than 71 ± 8 h-1Mpc at z ˜ 0.2, 70 ± 5 h-1 Mpc at z ˜ 0.4, 81 ± 5 h-1 Mpc at z ˜ 0.6 and 75 ± 4 h-1 Mpc at z ˜ 0.8. We demonstrate the robustness of our results against selection function effects, using a Λ cold dark matter (ΛCDM) N-body simulation and a suite of inhomogeneous fractal distributions. The results are in excellent agreement with both the ΛCDM N-body simulation and an analytical ΛCDM prediction. We can exclude a fractal distribution with fractal dimension below D2 = 2.97 on scales from ˜80 h-1 Mpc up to the largest scales probed by our measurement, ˜300 h-1 Mpc, at 99.99 per cent confidence.

  3. Growth Factor Content in Human Sera Affects the Isolation of Mesangiogenic Progenitor Cells (MPCs) from Human Bone Marrow

    PubMed Central

    Montali, Marina; Barachini, Serena; Panvini, Francesca M.; Carnicelli, Vittoria; Fulceri, Franca; Petrini, Iacopo; Pacini, Simone

    2016-01-01

    Mesangiogenic Progenitor Cells (MPCs) are human bone marrow-derived multipotent cells, isolated in vitro under selective culture conditions and shown to retain both mesengenic and angiogenic potential. MPCs also co-isolated with multipotent stromal cells (MSCs) when bone marrow primary cultures were set up for clinical applications, using human serum (HS) in place of fetal bovine serum (FBS). MPC culture purity (over 95%) is strictly dependent on HS supplementation with significant batch-to-batch variability. In the present paper we screened different sources of commercially available pooled human AB type serum (PhABS) for their ability to promote MPC production under selective culture conditions. As the majority of “contaminating” cells in MPC cultures were represented by MSC-like cells, we hypothesized a role by differentiating agents present in the sera. Therefore, we tested a number of growth factors (hGF) and found that higher concentrations of FGF-2, EGF, PDGF-AB, and VEGF-A as well as lower concentration of IGF-1 give sub-optimal MPC recovery. Gene expression analysis of hGF receptors was also carried out both in MSCs and MPCs, suggesting that FGF-2, EGF, and PDGF-AB could act promoting MSC proliferation, while VEGF-A contribute to MSC-like cell contamination, triggering MPC differentiation. Here we demonstrated that managing hGF contents, together with applying specific receptors inhibitors (Erlotinib-HCl and Nintedanib), could significantly mitigate the batch-to-batch variability related to serum supplementation. These data represent a fundamental milestone in view of manufacturing MPC-based medicinal products. PMID:27800477

  4. L’administration postnatale de corticoïdes pour traiter ou prévenir la maladie pulmonaire chronique chez les prématurés

    PubMed Central

    Jefferies, Ann L

    2012-01-01

    RÉSUMÉ Les corticoïdes sont administrés pendant la période postnatale pour prévenir et traiter la maladie pulmonaire chronique néonatale (MPC) (qu’on appelle aussi dysplasie bronchopulmonaire), une cause importante de mortalité et de morbidité chez les nourrissons prématurés. Puisque l’administration de dexaméthasone ou d’hydrocortisone pendant les sept premiers jours de vie s’associe à un plus grand risque d’infirmité motrice cérébrale, il n’est pas recommandé d’amorcer rapidement une corticothérapie pour prévenir la MPC pendant la période postnatale. Après sept jours de vie, il a été établi que la dexaméthasone réduit le taux de MPC à 36 semaines d’âge postmenstruel et a moins de répercussions sur les issues neurodéveloppementales. Aucun essai n’a évalué si les bienfaits des corticoïdes sont supérieurs à leurs effets indésirables chez les nourrissons à haut risque de MPC ou atteints d’une grave MPC. Il n’est pas recommandé d’administrer systématiquement de la dexaméthasone à tous les enfants sous respirateur, mais les cliniciens peuvent envisager un court traitement à l’aide de faibles doses de dexaméthasone à des nourrissons sélectionnés à haut risque de MPC ou atteints d’une grave MPC. Aucune donnée probante n’indique que l’hydrocortisone est une solution efficace ou sécuritaire pour remplacer la dexaméthasone, et peu de données probantes appuient l’utilisation systématique de corticoïdes en aérosol dans le cadre de la prévention ou du traitement. On peut envisager la corticothérapie en aérosol pour remplacer la dexaméthasone dans le traitement de nourrissons sélectionnés atteints d’une grave MPC. La présente révision remplace le document de principes publié conjointement avec l’American Academy of Pediatrics en 2002.

  5. Department of Energy nuclear material physical protection program in the Republic of Kazakstan

    SciTech Connect

    Eras, A.; Berry, R.B.; Case, R.S.

    1997-09-01

    As part of the joint U.S. and Republic of Kazakstan nuclear Material Protection, Control, and Accounting (MPC{ampersand}A) program, the U.S. Department of Energy (DOE) is providing assistance at four nuclear facilities in Kazakstan. These facilities are the Ulba Metallurgical Plant, the National Nuclear Center (NNC) Institute of Atomic Energy at Kurchatov (IAE-K), the Mangyshlak Atomic Energy Complex (BN-350) Reactor, and the NNC Institute of Atomic Energy at Almaty (IAE-A). This paper describes the DOE MPC{ampersand}A physical protection program at each of the facilities.

  6. Implications of a primordial origin for the dispersion in D/H in quasar absorption systems

    PubMed Central

    Copi, Craig J.; Olive, Keith A.; Schramm, David N.

    1998-01-01

    We explore the difficulties with a primordial origin of variations of D/H in quasar absorption systems. In particular we examine options such as a very large-scale inhomogeneity in the baryon content of the universe. We show that very large-scale (much larger than 1 Mpc) isocurvature perturbations are excluded by current cosmic microwave background observations. Smaller-scale ad hoc perturbations (∼1 Mpc) still may lead to a large dispersion in primordial abundances but are subject to other constraints. PMID:9501162

  7. Planetary nebulae as standard candles. III - The distance to M81

    NASA Technical Reports Server (NTRS)

    Jacoby, George H.; Ciardullo, Robin; Booth, John; Ford, Holland C.

    1989-01-01

    The results of a survey for PN in the nearby Sb galaxy M81 are reported, including the identification of 185 PN candidates. A distance to M81 of 3.50 + or - 0.40 Mpc is derived using the methods outlined by Ciardullo, et al. (1989). This value compares very well with values derived using traditional methods. Based on this agreement, it is concluded that PN are as good as, or better than, other standard candles for deriving distances to galaxies beyond 10 Mpc.

  8. Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory

    SciTech Connect

    Collaboration: Pierre Auger Collaboration

    2013-05-01

    We derive lower bounds on the density of sources of ultra-high energy cosmic rays from the lack of significant clustering in the arrival directions of the highest energy events detected at the Pierre Auger Observatory. The density of uniformly distributed sources of equal intrinsic intensity was found to be larger than ∼ (0.06−5) × 10{sup −4} Mpc{sup −3} at 95% CL, depending on the magnitude of the magnetic deflections. Similar bounds, in the range (0.2−7) × 10{sup −4} Mpc{sup −3}, were obtained for sources following the local matter distribution.

  9. Photoconductivity study of acid on Zinc phthalocyanine pyridine thin films

    NASA Astrophysics Data System (ADS)

    Singh, Sukhwinder; Saini, G. S. S.; Tripathi, S. K.

    2016-05-01

    The Metal Phthalocyanine (MPc) have attracted much interest because of chemical and high thermal stability. Molecules forming a crystal of MPc are held together by weak attractive Vander Waals forces. Organic semiconductors have π conjugate bonds which allow electrons to move via π-electron cloud overlaps. Conduction mechanisms for organic semiconductor are mainly through tunneling; hopping between localized states, mobility gaps, and phonon assisted hopping. The photo conductivity of thin films of these complexes changes when exposed to oxidizing and reducing gases. Arrhenius plot is used to find the thermal activation energy in the intrinsic region and impurity scattering region. Arrhenius plotsare used to find the thermal activation energy.

  10. The Hubble diagram in V for supernovae of Type Ia and the value of H(0) therefrom

    NASA Technical Reports Server (NTRS)

    Sandage, Allan; Tammann, G. A.

    1993-01-01

    The Hubble diagram for Type I supernovae is derived in V and is summarized from the literature in B and in m(pg). The ridge line equation of the diagram in V and the calibration of the absolute magnitudes at maximum are presented. The intrinsic (B - V) color at B maximum light is 0.09 +/- 0.04 mag. The Virgo Cluster distance is derived and found to be 23.9 +/- 2.4 Mpc. This Virgo distance gives the cosmic value of the Hubble constant to be H(0) = 47 +/- 5 km/sec per Mpc.

  11. An information theory based search for homogeneity on the largest accessible scale

    NASA Astrophysics Data System (ADS)

    Sarkar, Suman; Pandey, Biswajit

    2016-11-01

    We analyze the SDSS DR12 quasar catalogue to test the large-scale smoothness in the quasar distribution. We quantify the degree of inhomogeneity in the quasar distribution using information theory based measures and find that the degree of inhomogeneity diminishes with increasing length scales which finally reach a plateau at $\\sim 250 \\, h^{-1}\\, {\\rm Mpc}$. The residual inhomogeneity at the plateau is consistent with that expected for a Poisson point process. Our results indicate that the quasar distribution is homogeneous beyond length scales of $250 \\, h^{-1}\\, {\\rm Mpc}$.

  12. Implications of a primordial origin for the dispersion in D/H in quasar absorption systems.

    PubMed

    Copi, C J; Olive, K A; Schramm, D N

    1998-03-17

    We explore the difficulties with a primordial origin of variations of D/H in quasar absorption systems. In particular we examine options such as a very large-scale inhomogeneity in the baryon content of the universe. We show that very large-scale (much larger than 1 Mpc) isocurvature perturbations are excluded by current cosmic microwave background observations. Smaller-scale ad hoc perturbations (approximately 1 Mpc) still may lead to a large dispersion in primordial abundances but are subject to other constraints.

  13. Model Predictive Control for the Operation of Building Cooling Systems

    SciTech Connect

    Ma, Yudong; Borrelli, Francesco; Hencey, Brandon; Coffey, Brian; Bengea, Sorin; Haves, Philip

    2010-06-29

    A model-based predictive control (MPC) is designed for optimal thermal energy storage in building cooling systems. We focus on buildings equipped with a water tank used for actively storing cold water produced by a series of chillers. Typically the chillers are operated at night to recharge the storage tank in order to meet the building demands on the following day. In this paper, we build on our previous work, improve the building load model, and present experimental results. The experiments show that MPC can achieve reduction in the central plant electricity cost and improvement of its efficiency.

  14. Biochemical and molecular analysis of phospholipase C and phospholipase D activity in mycobacteria.

    PubMed Central

    Johansen, K A; Gill, R E; Vasil, M L

    1996-01-01

    Resurgence of mycobacterial infections in the United States has led to an intense effort to identify potential virulence determinants in the genus Mycobacterium, particularly ones that would be associated with the more virulent species (e.g., Mycobacterium tuberculosis). Thin-layer chromatography (TLC) using radiolabeled phosphatidylcholine and sphingomyelin as substrates indicated that cell extracts of M. tuberculosis contain both phospholipase C (PLC) and phospholipase D (PLD) activities. In contrast, only PLD activity was detected in cell extracts of M. smegmatis. Neither activity was detected in cell-free culture supernatants from these organisms. We and others recently identified two open reading frames in M. tuberculosis with the potential to encode proteins which are highly homologous to the nonhemolytic (PlcN) and hemolytic (PlcH) phospholipase C enzymes of Pseudomonas aeruginosa. In contrast to the plc genes in P. aeruginosa, which are considerably distal to each other (min 34 and 64 on the chromosome), the mycobacterial genes, designated mpcA and mpcB, are tandemly arranged in the same relative orientation and separated by only 191 bp. Both the mpcA and the mpcB genes were individually cloned in M. smegmatis, and PLC activity was expressed from each gene in this organism. Hybridization experiments using the mpcA and the mpcB genes as probes under conditions of moderate stringency identified sequences homologous to these genes in M. bovis, M. bovis BCG, and M. marinum but not in several other Mycobacterium species, including M. smegmatis, M. avium, and M. intracellulare. TLC analysis using radiolabeled substrates indicated that M. bovis and M. marinum cell extracts contain PLC and PLD activities, but only PLD activity was detected in M. bovis BCG cell extracts. Sphingomyelinase activity was also detected in whole-cell extracts of M. tuberculosis, M. marinum, M. bovis, and M. bovis BCG, but this activity was not detected in extracts of M. smegmatis

  15. Use of dry milk protein concentrate in pizza cheese manufactured by culture or direct acidification.

    PubMed

    Shakeel-Ur-Rehman; Farkye, N Y; Yim, B

    2003-12-01

    Milk protein concentrate (MPC) contains high concentrations of casein and calcium and low concentrations of lactose. Enrichment of cheese milk with MPC should, therefore, enhance yields and improve quality. The objectives of this study were: 1) to compare pizza cheese made by culture acidification using standardized whole milk (WM) plus skim milk (SM) versus WM plus MPC; and 2) compare cheese made using WM + MPC by culture acidification to that made by direct acidification. The experimental design is as follows: vat 1 = WM + SM + culture (commercial thermophilic lactic acid bacteria), vat 2 = WM + MPC + culture, and vat 3 = WM + MPC + direct acid (2% citric acid). Each cheese milk was standardized to a protein-to-fat ratio of approximately 1.4. The experiment was repeated three times. Yield and composition of cheeses were determined by standard methods, whereas the proteolysis was assessed by urea polyacrylamide gel electrophoresis (PAGE) and water-soluble N contents. Meltability of the cheeses was determined during 1 mo of storage, in addition to pizza making. The addition of MPC improved the yields from 10.34 +/- 0.57% in vat 1 cheese to 14.50 +/- 0.84% and 16.65 +/- 2.23%, respectively, in vats 2 and 3 and cheeses. The percentage of fat and protein recoveries showed insignificant differences between the treatments, but TS recoveries were in the order, vat 2 > vat 3 > vat 1. Most of the compositional parameters were significantly affected by the different treatments. Vat 2 cheese had the highest calcium and lowest lactose contencentrations. Vat 3 cheese had the best meltability. Vat 1 cheese initially had better meltability than vat 2 cheese; however, the difference became insignificant after 28 d of storage at 4 degrees C. Vat 3 cheese had the softest texture and produced large-sized blisters when baked on pizza. The lowest and highest levels of proteolysis were found in vats 2 and 3 cheeses, respectively. The study demonstrates the use of MPC in pizza cheese

  16. On the Interconnection of Incompatible Solid Finite Element Meshes Using Multipoint Constraints

    NASA Technical Reports Server (NTRS)

    Fox, G. L.

    1985-01-01

    Incompatible meshes, i.e., meshes that physically must have a common boundary, but do not necessarily have coincident grid points, can arise in the course of a finite element analysis. For example, two substructures may have been developed at different times for different purposes and it becomes necessary to interconnect the two models. A technique that uses only multipoint constraints, i.e., MPC cards (or MPCS cards in substructuring), is presented. Since the method uses only MPC's, the procedure may apply at any stage in an analysis; no prior planning or special data is necessary.

  17. Star formation in the cluster CLG0218.3-0510 at z = 1.62 and its large-scale environment: the infrared perspective

    NASA Astrophysics Data System (ADS)

    Santos, J. S.; Altieri, B.; Tanaka, M.; Valtchanov, I.; Saintonge, A.; Dickinson, M.; Foucaud, S.; Kodama, T.; Rawle, T. D.; Tadaki, K.

    2014-03-01

    The galaxy cluster CLG0218.3-0510 at z = 1.62 is one of the most distant galaxy clusters known, with a rich multiwavelength data set that confirms a mature galaxy population already in place. Using very deep, wide-area (20 Mpc × 20 Mpc) imaging by Spitzer MIPS at 24 μm, in conjunction with Herschel five-band imaging from 100 to 500 μm, we investigate the dust-obscured, star formation properties in the cluster and its associated large-scale environment. Our galaxy sample of 693 galaxies at z ˜ 1.62 detected at 24 μm (10 spectroscopic and 683 photo-z) includes both cluster galaxies (i.e. within r < 1 Mpc projected cluster-centric radius) and field galaxies, defined as the region beyond a radius of 3 Mpc. The star formation rates (SFRs) derived from the measured infrared luminosity range from 18 to 2500 M⊙ yr-1, with a median of 55 M⊙ yr-1, over the entire radial range (10 Mpc). The cluster's brightest far-infrared galaxy, taken as the centre of the galaxy system, is vigorously forming stars at a rate of 256 ± 70 M⊙ yr-1, and the total cluster SFR enclosed in a circle of 1 Mpc is 1161 ± 96 M⊙ yr-1. We estimate a dust extinction of ˜3 mag by comparing the SFRs derived from [O II] luminosity with the ones computed from the 24 μm fluxes. We find that the in-falling region (1-3 Mpc) is special: there is a significant decrement (3.5×) of passive relative to star-forming galaxies in this region, and the total SFR of the galaxies located in this region is lower (˜130 M⊙ yr-1 Mpc-2) than anywhere in the cluster or field, regardless of their stellar mass. In a complementary approach, we compute the local galaxy density, Σ5, and find no trend between SFR and Σ5. However, we measure an excess of star-forming galaxies in the cluster relative to the field by a factor of 1.7, that lends support to a reversal of SF-density relation in CLG0218.

  18. Pentosan polysulfate promotes proliferation and chondrogenic differentiation of adult human bone marrow-derived mesenchymal precursor cells

    PubMed Central

    2010-01-01

    Introduction This study was undertaken to determine whether the anti-osteoarthritis drug pentosan polysulfate (PPS) influenced mesenchymal precursor cell (MPC) proliferation and differentiation. Methods Human MPCs were maintained in monolayer, pellet or micromass cultures (MMC) for up to 10 days with PPS at concentrations of 0 to 20 μg/ml. MPC viability and proliferation was assessed using the WST-1 assay and 3H-thymidine incorporation into DNA, while apoptosis was monitored by flow cytometry. Proteoglycan (PG) biosynthesis was determined by 35SO42- incorporation and staining with Alcian blue. Proteoglycan and collagen type I and collagen type II deposition in pellet cultures was also examined by Toluidine blue and immunohistochemical staining, respectively. The production of hyaluronan (HA) by MPCs in MMC was assessed by ELISA. The relative outcome of PPS, HA, heparin or dextran sulfate (DS) on PG synthesis was compared in 5-day MMC. Gene expression of MPCs in 7-day and 10-day MMC was examined using real-time PCR. MPC differentiation was investigated by co-culturing with PPS in osteogenic or adipogenic inductive culture media for 28 days. Results Significant MPC proliferation was evident by day 3 at PPS concentrations of 1 to 5 μg/ml (P < 0.01). In the presence of 1 to 10 μg/ml PPS, a 38% reduction in IL-4/IFNγ-induced MPC apoptosis was observed. In 5-day MMC, 130% stimulation of PG synthesis occurred at 2.5 μg/ml PPS (P < 0.0001), while 5.0 μg/ml PPS achieved maximal stimulation in the 7-day and 10-day cultures (P < 0.05). HA and DS at ≥ 5 μg/ml inhibited PG synthesis (P < 0.05) in 5-day MMC. Collagen type II deposition by MMC was significant at ≥ 0.5 μg/ml PPS (P < 0.001 to 0.05). In MPC-PPS pellet cultures, more PG, collagen type II but less collagen type I was deposited than in controls. Real-time PCR results were consistent with the protein data. At 5 and 10 μg/ml PPS, MPC osteogenic differentiation was suppressed (P < 0.01). Conclusions This is

  19. Non-gaussian statistics of pencil beam surveys

    NASA Technical Reports Server (NTRS)

    Amendola, Luca

    1994-01-01

    We study the effect of the non-Gaussian clustering of galaxies on the statistics of pencil beam surveys. We derive the probability from the power spectrum peaks by means of Edgeworth expansion and find that the higher order moments of the galaxy distribution play a dominant role. The probability of obtaining the 128 Mpc/h periodicity found in pencil beam surveys is raised by more than one order of magnitude, up to 1%. Further data are needed to decide if non-Gaussian distribution alone is sufficient to explain the 128 Mpc/h periodicity, or if extra large-scale power is necessary.

  20. VizieR Online Data Catalog: HAPLESS galaxies sample (Clark+, 2015)

    NASA Astrophysics Data System (ADS)

    Clark, C. J. R.; Dunne, L.; Gomez, H. L.; Maddox, S.; de Vis, P.; Smith, M. W. L.; Eales, S. A.; Baes, M.; Bendo, G. J.; Bourne, N.; Driver, S. P.; Dye, S.; Furlanetto, C.; Grootes, M. W.; Ivison, R. J.; Schofield, S. P.; Robotham, A. S. G.; Rowlands, K.; Valiante, E.; Vlahakis, C.; van der Werf, P.; Wright, A. H.; de Zotti, G.

    2016-01-01

    Observations for H-ATLAS were carried out in parallel mode at 100 and 160um with the Photodetector Array Camera and Spectrometer (PACS) and at 250, 350 and 500um with the Spectral and Photometric Imaging REceiver (SPIRE) instruments on board Herschel. A sample of 42 galaxies was assembled from the H-ATLAS Phase-1 Version-3 catalogue in the distance range 15Mpc. We wished to sample a volume local enough that we retained sensitivity to the lowest-mass and coldest sources, populations not previously well studied, and our upper distance limit of 46Mpc serves this purpose well. (1 data file).

  1. Spatial Correlation Function of the Chandra Selected Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Yang, Y.; Mushotzky, R. F.; Barger, A. J.; Cowie, L. L.

    2006-01-01

    We present the spatial correlation function analysis of non-stellar X-ray point sources in the Chandra Large Area Synoptic X-ray Survey of Lockman Hole Northwest (CLASXS). Our 9 ACIS-I fields cover a contiguous solid angle of 0.4 deg(exp 2) and reach a depth of 3 x 10(exp -15) erg/square cm/s in the 2-8 keV band. We supplement our analysis with data from the Chandra Deep Field North (CDFN). The addition of this field allows better probe of the correlation function at small scales. A total of 233 and 252 sources with spectroscopic information are used in the study of the CLASXS and CDFN fields respectively. We calculate both redshift-space and projected correlation functions in co-moving coordinates, averaged over the redshift range of 0.1 < z < 3.0, for both CLASXS and CDFN fields for a standard cosmology with Omega(sub Lambda) = 0.73,Omega(sub M) = 0.27, and h = 0.71 (H(sub 0) = 100h km/s Mpc(exp -1). The correlation function for the CLASXS field over scales of 3 Mpc< s < 200 Mpc can be modeled as a power-law of the form xi(s) = (S/SO)(exp - gamma), with gamma = 1.6(sup +0.4 sub -0.3) and S(sub o) = 8.0(sup +.14 sub -1.5) Mpc. The redshift-space correlation function for CDFN on scales of 1 Mpc< s < 100 Mpc is found to have a similar correlation length so = 8.55(sup +0.74 sub -0.74) Mpc, but a shallower slope (gamma = 1.3 +/- 0.1). The real-space correlation functions derived from the projected correlation functions, are found to be tau(sub 0 = 8.1(sup +1.2 sub -2.2) Mpc, and gamma = 2.1 +/- 0.5 for the CLASXS field, and tau(sub 0) = 5.8(sup +.1.0 sub -1.5) Mpc, gamma = 1.38(sup +0.12 sub -0.14 for the CDFN field. By comparing the real- and redshift-space correlation functions in the combined CLASXS and CDFN samples, we are able to estimate the redshift distortion parameter Beta = 0.4 +/- 0.2 at an effective redshift z = 0.94. We compare the correlation functions for hard and soft spectra sources in the CLASXS field and find no significant difference between the

  2. Surface modification of medical implant materials with hydrophilic polymers for enhanced biocompatibility and delivery of therapeutic agents

    NASA Astrophysics Data System (ADS)

    Urbaniak, Daniel J.

    2004-11-01

    In the research reported here, the surface modification of medical grade poly(dimethyl siloxane), polyetherurethane, and stainless steel through gamma-radiation grafting of hydrophilic polymers was investigated. Emphasis was placed on developing improved and simplified surface modification methods that produce more stable and more bioacceptible hydrophilic graft surfaces. As a result of this research, new surface modification techniques were developed that yield significantly improved surface stability unachievable using previous surface modification techniques. The surface modification of poly(dimethyl siloxane) with hydrophilic polymers was carried out using gamma radiation initiated graft polymerization. The addition of alkali metal hydroxides afforded a unique way to enhance the grafting of N-vinyl-2 pyrrolidone, dimethylacryamide, 2-methacryloyloxyethyl phosphoryl choline, N,N-dimethyl-N-(methacryloyloxyethyl)-N-(3-sulfopropyl)-ammonium-betaine, N,N-dimethyl-N-(methacrylamidopropyl)-N-(3-sulfopropyl)-ammonium-betaine, and copolymers thereof to silicones. Ethanolamine was found to further enhance the grafting of some hydrophilic polymers to silicone. The resulting hydrophilic surface grafts were resistant to hydrophobic surface rearrangement. This process overcomes previous problems inherent in silicone surface modification. The technique was also found to moderately enhance the grafting of hydrophilic monomers to polyetherurethane and to 316-L stainless steel. The surface modification of 316-L stainless steel was further enhanced by treating the substrates with a chromium III methacrylate bonding agent prior to irradiation. The coatings were evaluated for their potential use as depots for delivering therapeutic agents. The release of ofloxacin from surface-modified poly(dimethyl siloxane) and dexamethasone from surface-modified 316-L stainless steel was evaluated by in-vitro experiments. Therapeutic levels of drugs were released from surface-modified specimens

  3. THE ORIENTATION OF DISK GALAXIES AROUND LARGE COSMIC VOIDS

    SciTech Connect

    Varela, Jesus; Betancort-Rijo, Juan; Trujillo, Ignacio; Ricciardelli, Elena

    2012-01-10

    Using a large sample of galaxies from the the seventh data release of the Sloan Digital Sky Survey (SDSS-DR7), we have analyzed the alignment of disk galaxies around cosmic voids. We have constructed a complete sample of cosmic voids (devoid of galaxies brighter than M{sub r} - 5log h = -20.17) with radii larger than 10 h{sup -1} Mpc up to redshift 0.12. Disk galaxies in shells around these voids have been used to look for particular alignments between the angular momentum of the galaxies and the radial direction of the voids. We find that disk galaxies around voids larger than {approx}> 15 h{sup -1} Mpc within distances not much larger than 5 h{sup -1} Mpc from the surface of the voids present a significant tendency to have their angular momenta aligned with the void's radial direction with a significance {approx}> 98.8% against the null hypothesis. The strength of this alignment is dependent on the void's radius and for voids with a radius {approx}< 15 h{sup -1} Mpc the distribution of the orientation of the galaxies is compatible with a random distribution. Finally, we find that this trend observed in the alignment of galaxies is similar to the one observed for the minor axis of dark matter halos around cosmic voids found in cosmological simulations, suggesting a possible link in the evolution of both components.

  4. The mitochondrial pyruvate carrier in health and disease: To carry or not to carry?

    PubMed

    Bender, Tom; Martinou, Jean-Claude

    2016-10-01

    Mitochondria play a key role in energy metabolism, hosting the machinery for oxidative phosphorylation, the most efficient cellular pathway for generating ATP. A major checkpoint in this process is the transport of pyruvate produced by cytosolic glycolysis into the mitochondrial matrix, which is accomplished by the recently identified mitochondrial pyruvate carrier (MPC). As the gatekeeper for pyruvate entry into mitochondria, the MPC is thought to be of fundamental importance in establishing the metabolic programming of a cell. This is especially relevant in the context of the aerobic glycolysis, also known as the Warburg effect, which is a hallmark in many types of cancer, and MPC loss of function promotes cancer growth. Moreover, mitochondrial pyruvate uptake is needed for efficient hepatic gluconeogenesis and the regulation of blood glucose levels. In this review we discuss recent advances in our knowledge of the MPC, and we argue that it may offer a promising target in diseases like cancer and type 2 diabetes. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.

  5. A giant ring-like structure at 0.78 < z < 0.86 displayed by GRBs

    NASA Astrophysics Data System (ADS)

    Balázs, L. G.; Bagoly, Z.; Hakkila, J. E.; Horváth, I.; Kóbori, J.; Rácz, I. I.; Tóth, L. V.

    2015-09-01

    According to the cosmological principle (CP), Universal large-scale structure is homogeneous and isotropic. The observable Universe, however, shows complex structures even on very large scales. The recent discoveries of structures significantly exceeding the transition scale of 370 Mpc pose a challenge to the CP. We report here the discovery of the largest regular formation in the observable Universe; a ring with a diameter of 1720 Mpc, displayed by 9 gamma-ray bursts (GRBs), exceeding by a factor of 5 the transition scale to the homogeneous and isotropic distribution. The ring has a major diameter of 43° and a minor diameter of 30° at a distance of 2770 Mpc in the 0.78 < z < 0.86 redshift range, with a probability of 2 × 10-6 of being the result of a random fluctuation in the GRB count rate. Evidence suggests that this feature is the projection of a shell on to the plane of the sky. Voids and string-like formations are common outcomes of large-scale structure. However, these structures have maximum sizes of 150 Mpc, which are an order of magnitude smaller than the observed GRB ring diameter. Evidence in support of the shell interpretation requires that temporal information of the transient GRBs be included in the analysis. This ring-shaped feature is large enough to contradict the CP. The physical mechanism responsible for causing it is unknown.

  6. Hypermedia for Teaching--A European Collaborative Venture.

    ERIC Educational Resources Information Center

    Barker, Philip; Bartolome, Antonio

    The "Hypermedia for Teaching" project is a European collaborative venture designed to produce a hypermedia learning package that is published on CD-ROM. Two versions of the package are to be developed. One of these is intended to be used on a multimedia personal computer (MPC), while the other is to be used in conjunction with commercially…

  7. Physical protection design and analysis training for the former Soviet Union

    SciTech Connect

    Soo Hoo, M.S.; Chapek, J.F.; Ebel, P.E.

    1996-08-01

    Since 1978, Sandia National Laboratories has provided training courses in the systematic design of Physical Protection Systems (PPS). One such course, the International Training Course (TC) on the Physical Protection of Nuclear Facilities and Materials, is sponsored by the Department of Energy`s International Safeguards Division , the International Atomic Energy Agency, and the Department of State. Since 1978, twelve 3- and 4-week classes have been conducted by Sandia for these sponsors. One- and two-week adaptations of this course have been developed for other customers, and, since 1994, nine of these abbreviated courses have been presented in the Russian language to participants from the Former Soviet Union (SU). These courses have been performed in support of the Department of Energy`s program on Material Protection, Control and Accounting (MPC&A) for the Russian Federation and the Newly Independent States. MPC&A physical protection training assumes participants have more narrowly defined backgrounds. In using affective approaches, the overall goal of training in the context of the MPC&A Program is to develop modern and effective, indigenous capabilities for physical protection system design and analysis within the SU. This paper contrasts the cognitive and affective approaches to training and indicates why different approaches are required for the ITC and the MPC&A Programs.

  8. iPTF discovery of iPTF15ayt, a young Type II Supernova showing flash-spectroscopy signatures, and an HST target

    NASA Astrophysics Data System (ADS)

    Gal-Yam, A.; Sagiv, I.; Yaron, O.; Horesh, A.; Ofek, E.; Taddia, F.; Amanullah, R.; Petrushevska, T.; Ferretti, R.; Kulkarni, S. R.; Kasliwal, M.; Cao, Y.; Perley, D.; Cenko, S. B.; Ben-Ami, S.; iPTF Collaboration

    2015-05-01

    The intermediate Palomar Transient Factory (ATel#4807) reports the discovery of iPTF15ayt, a young type II SN in a nearby galaxy (redshift z=0.045715, mean distance modulus DM=36.52, metric distance d~202 Mpc; NED).

  9. Gravitational wave quasinormal mode from Population III massive black hole binaries in various models of population synthesis

    NASA Astrophysics Data System (ADS)

    Kinugawa, Tomoya; Nakano, Hiroyuki; Nakamura, Takashi

    2016-10-01

    Focusing on the remnant black holes after merging binary black holes, we show that ringdown gravitational waves of Population III binary black hole mergers can be detected at the rate of 5.9-500 events yr(SFR/(10M yr Mpc))ṡ([f/(1+f)]/0.33) for various parameters and functions. This rate is estimated for events with SNR>8 for second-generation gravitational wave detectors such as KAGRA. Here, SFR and f are the peak value of the Population III star formation rate and the fraction of binaries, respectively. When we consider only events with SNR>35, the event rate becomes 0.046-4.21 events yr(SFR/(10M yr Mpc))ṡ([f/(1+f)]/0.33). This suggest that for a remnant black hole spin of q>0.95 we have an event rate of quasinormal modes with SNR>35 of less than 0.037 events yr(SFR/(10M yr Mpc))ṡ([f/(1+f)]/0.33), while it is 3-30 events yr(SFR/(10M yr Mpc))ṡ([f/(1+f)]/0.33) for third-generation detectors such as the Einstein Telescope. If we detect many Population III binary black hole mergers, it may be possible to constrain the Population III binary evolution paths not only by the mass distribution but also by the spin distribution.

  10. Magnetic porous carbon nanocomposites derived from metal-organic frameworks as a sensing platform for DNA fluorescent detection.

    PubMed

    Tan, Hongliang; Tang, Gonge; Wang, Zhixiong; Li, Qian; Gao, Jie; Wu, Shimeng

    2016-10-12

    Metal-organic frameworks (MOFs) have emerged as very fascinating functional materials due to their tunable nature and diverse applications. In this work, we prepared a magnetic porous carbon (MPC) nanocomposite by employing iron-containing MOFs (MIL-88A) as precursors through a one-pot thermolysis method. It was found that the MPC can absorb selectively single-stranded DNA (ssDNA) probe to form MPC/ssDNA complex and subsequently quench the labelled fluorescent dye of the ssDNA probe, which is resulted from the synergetic effect of magnetic nanoparticles and carbon matrix. Upon the addition of complementary target DNA, however, the absorbed ssDNA probe could be released from MPC surface by forming double-stranded DNA with target DNA, and accompanied by the recovery of the fluorescence of ssDNA probe. Based on these findings, a sensing platform with low background signal for DNA fluorescent detection was developed. The proposed sensing platform exhibits high sensitivity with detection limit of 1 nM and excellent selectivity to specific target DNA, even single-base mismatched nucleotide can be distinguished. We envision that the presented study would provide a new perspective on the potential applications of MOF-derived nanocomposites in biomedical fields.

  11. What We've Learned from LIGO's Detection of Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Shawhan, Peter S.; LIGO Scientific Collaboration, Virgo Collaboration

    2016-06-01

    The twin Advanced LIGO detectors captured their first clear gravitational-wave event on September 14, 2015 -- a truly remarkable signal from two heavy stellar-mass black holes merging at a distance of about 400 Mpc. I will present a high-level summary of what we have learned from this signal and general observations so far.

  12. Exploring Effects of High School Students' Mathematical Processing Skills and Conceptual Understanding of Chemical Concepts on Algorithmic Problem Solving

    ERIC Educational Resources Information Center

    Gultepe, Nejla; Yalcin Celik, Ayse; Kilic, Ziya

    2013-01-01

    The purpose of the study was to examine the effects of students' conceptual understanding of chemical concepts and mathematical processing skills on algorithmic problem-solving skills. The sample (N = 554) included grades 9, 10, and 11 students in Turkey. Data were collected using the instrument "MPC Test" and with interviews. The…

  13. Performance and stability of mask process correction for EBM-7000

    NASA Astrophysics Data System (ADS)

    Saito, Yasuko; Chen, George; Wang, Jen-Shiang; Bai, Shufeng; Howell, Rafael; Li, Jiangwei; Tao, Jun; VanDenBroeke, Doug; Wiley, Jim; Takigawa, Tadahiro; Ohnishi, Takayuki; Kamikubo, Takashi; Hara, Shigehiro; Anze, Hirohito; Hattori, Yoshiaki; Tamamushi, Shuichi

    2010-05-01

    In order to support complex optical masks today and EUV masks in the near future, it is critical to correct mask patterning errors with a magnitude of up to 20nm over a range of 2000nm at mask scale caused by short range mask process proximity effects. A new mask process correction technology, MPC+, has been developed to achieve the target requirements for the next generation node. In this paper, the accuracy and throughput performance of MPC+ technology is evaluated using the most advanced mask writing tool, the EBM-70001), and high quality mask metrology . The accuracy of MPC+ is achieved by using a new comprehensive mask model. The results of through-pitch and through-linewidth linearity curves and error statistics for multiple pattern layouts (including both 1D and 2D patterns) are demonstrated and show post-correction accuracy of 2.34nm 3σ for through-pitch/through-linewidth linearity. Implementing faster mask model simulation and more efficient correction recipes; full mask area (100cm2) processing run time is less than 7 hours for 32nm half-pitch technology node. From these results, it can be concluded that MPC+ with its higher precision and speed is a practical technology for the 32nm node and future technology generations, including EUV, when used with advance mask writing processes like the EBM-7000.

  14. Model Predictive Control considering Reachable Range of Wheels for Leg / Wheel Mobile Robots

    NASA Astrophysics Data System (ADS)

    Suzuki, Naito; Nonaka, Kenichiro; Sekiguchi, Kazuma

    2016-09-01

    Obstacle avoidance is one of the important tasks for mobile robots. In this paper, we study obstacle avoidance control for mobile robots equipped with four legs comprised of three DoF SCARA leg/wheel mechanism, which enables the robot to change its shape adapting to environments. Our previous method achieves obstacle avoidance by model predictive control (MPC) considering obstacle size and lateral wheel positions. However, this method does not ensure existence of joint angles which achieves reference wheel positions calculated by MPC. In this study, we propose a model predictive control considering reachable mobile ranges of wheels positions by combining multiple linear constraints, where each reachable mobile range is approximated as a convex trapezoid. Thus, we achieve to formulate a MPC as a quadratic problem with linear constraints for nonlinear problem of longitudinal and lateral wheel position control. By optimization of MPC, the reference wheel positions are calculated, while each joint angle is determined by inverse kinematics. Considering reachable mobile ranges explicitly, the optimal joint angles are calculated, which enables wheels to reach the reference wheel positions. We verify its advantages by comparing the proposed method with the previous method through numerical simulations.

  15. Retrieving cosmological signal using cosmic flows

    NASA Astrophysics Data System (ADS)

    Bouillot, V.; Alimi, J.-M.

    2011-12-01

    To understand the origin of the anomalously high bulk flow at large scales, we use very large simulations in various cosmological models. To disentangle between cosmological and environmental effects, we select samples with bulk flow profiles similar to the observational data Watkins et al. (2009) which exhibit a maximum in the bulk flow at 53 h^{-1} Mpc. The estimation of the cosmological parameters Ω_M and σ_8, done on those samples, is correct from the rms mass fluctuation whereas this estimation gives completely false values when done on bulk flow measurements, hence showing a dependance of velocity fields on larger scales. By drawing a clear link between velocity fields at 53 h^{-1} Mpc and asymmetric patterns of the density field at 85 h^{-1} Mpc, we show that the bulk flow can depend largely on the environment. The retrieving of the cosmological signal is achieved by studying the convergence of the bulk flow towards the linear prediction at very large scale (˜ 150 h^{-1} Mpc).

  16. Influence of perfusion on high-intensity focused ultrasound prostate ablation: a first-pass MRI study.

    PubMed

    Wiart, Marlène; Curiel, Laura; Gelet, Albert; Lyonnet, Denis; Chapelon, Jean-Yves; Rouvière, Olivier

    2007-07-01

    Our aim was to evaluate the influence of regional prostate blood flow (rPBF) on high-intensity focused ultrasound (HIFU) treatment outcome. A total of 48 patients with clinically localized prostate cancer were examined by dynamic contrast-enhanced (DCE)-MRI prior to HIFU therapy. A prostate-specific antigen (PSA) nadir threshold of 0.2 ng/ml was used to define the populations of responders and nonresponders. A dedicated tracer kinetic model, namely "monoexponential plus constant" (MPC) deconvolution, was implemented to provide quantitative estimates of rPBF. The results were compared with those obtained by semiquantitative (steepest slope, mean gradient) and quantitative (Fermi deconvolution) approaches. Of the four methods studied, quantitative rPBF obtained by MPC deconvolution proved the most sensitive to the perfusion changes encountered in this study. Furthermore, blood-flow values obtained with MPC deconvolution in the prostate and muscle (12 +/- 8 and 5 +/- 3 ml/min/100 g, respectively) were in good agreement with literature data. The mean pretreatment rPBF obtained with MPC deconvolution was significantly higher in nonresponders compared to responders (16 +/- 9 vs. 10 +/- 6 ml/min/100 g), suggesting a correlation between baseline perfusion and treatment outcome. The present work describes and validates the use of dynamic MRI to estimate rPBF in patients, which in the future may help to refine the conduct of HIFU therapy.

  17. 5.0 GHz Continuum eEVN Observations of the Recoiling Supermassive Black Hole Candidate SDSSS J113323.97+550415.8

    NASA Astrophysics Data System (ADS)

    Perez-Torres, M.; Piconcelli, N. Ramirez-Olivencia E.; Alberdi, A.; Komossa, S.; Herrero-Illana, R.

    2015-04-01

    We report electronic European VLBI Network (eEVN) radio observations of the recoiling supermassive black hole (SMBH) candidate SDSSS J113323.97+550415.8 (=SDSS1133), in the outskirts of the nearby (D=28.9 Mpc) galaxy Mrk 177 (Koss et al.

  18. EVN measurements show no evidence for radio emission from the Type Ia SN 2014J

    NASA Astrophysics Data System (ADS)

    Perez-Torres, M.; Lundqvist, P.; Paragi, Z.; Bjornsson, C. I.; Fransson, C.; Alberdi, A.; Argo, M. K.; Beswick, R.; Guirado, J. C.; Marcaide, J. M.; Martí-Vidal, I.; Muxlow, T. W. M.; Ros, E.; Ryder, S.; Schmidt, B.

    2014-05-01

    We report deep electronic European VLBI Network (eEVN) radio observations of the Type Ia SN 2014J, which was discovered on 21.8 January 2014, about 6.8 days after its explosion (see http://www.k-itagaki.jp/psn-m82.jpg) in the nearby (D=3.5 Mpc) galaxy NGC 3034 = M82 ...

  19. Multi-objective optimal design of online PID controllers using model predictive control based on the group method of data handling-type neural networks

    NASA Astrophysics Data System (ADS)

    Majdabadi-Farahani, V.; Hanif, M.; Gholaminezhad, I.; Jamali, A.; Nariman-Zadeh, N.

    2014-10-01

    In this paper, model predictive control (MPC) is used for optimal selection of proportional-integral-derivative (PID) controller gains. In conventional tuning methods a history of response error of the system under control in the passed time is measured and used to adjust PID parameters in order to improve the performance of the system in proceeding time. But MPC obviates this characteristic of classic PID. In fact MPC tries to tune the controller by predicting the system's behaviour some time steps ahead. In this way, PID parameters are adjusted before any real error occurs in the system's response. For this purpose, polynomial meta-models based on the evolved group method of data handling neural networks are obtained to simply simulate the time response of the dynamic system. Moreover, a non-dominated sorting genetic algorithm has been used in a multi-objective Pareto optimisation to select the parameters of the MPC which are prediction horizon, control horizon and relation of weight of Δ u and error, to minimise simultaneously two objective functions that are control effort and integral time absolute error of the system response. The results mentioned at the end obviously declare that the proposed method surpasses conventional tuning methods for PID controllers, and Pareto optimal selection of predictive parameters also improves the performance of the introduced method.

  20. Microstructure and magnetic properties of soft magnetic powder cores of amorphous and nanocrystalline alloys

    NASA Astrophysics Data System (ADS)

    Liu, Yapi; Yi, Yide; Shao, Wei; Shao, Yanfang

    2013-03-01

    With the development of modern ferromagnetic technology, soft magnetic powder cores (MPCs) of amorphous and nanocrystalline alloys have been intensively studied for their excellent soft magnetic properties such as high flux density, low coercivity and reduced core loss due to amorphous state and nanocrystalline grains of 10-20 nm dispersed in a residual amorphous matrix. In this paper, the microstructures and soft magnetic properties, i.e., maximum magnetic induction Bm, effective permeability μe, DC-bias properties and volume power losses PCV of MPCs made from amorphous powder of gas atomization and nanocrystalline powder of pulverized melt-spun ribbon were investigated and also compared on the basis of the same level of μe. It is found that μe of both kinds of MPC keeps unchanged up to 1 MHz. The amorphous MPC has lower PCV at lower frequency range, while the nanocrystalline MPC has lower PCV at high frequency range instead. Also, the nanocrystalline MPC has better DC-bias property. Moreover, the DC magnetic properties and the changes of PCV of both MPCs with frequency and flux density are also studied. Furthermore, the electromagnetic characteristics, the microstructures and the mechanisms accounting for these phenomena of both MPCs are also discussed.

  1. Correlaciones cruzadas quasar-galaxia y AGN-galaxia

    NASA Astrophysics Data System (ADS)

    Martínez, H. J.; Merchán, M. E.; Valotto, C. A.; García Lambas, D.

    We compute quasar-galaxy and AGN-galaxy cross-correlation functions for samples taken from the Véron-Cetty & Véron (1998) catalog of quasars and active galaxies, using tracer galaxies taken from the Edinburgh/Durham Southern Catalog. The sample of active galaxy targets shows positive correlation at projected separations rp < 6 h-1 ~Mpc consistent with the usual power-law. On the other hand, we do not find a statistically significant positive quasar-galaxy correlation signal except in the range 3 h-1 Mpc < rp < 6 h-1 Mpc where we find similar AGN-galaxy and quasar-galaxy correlation amplitudes. At separations rp<3~h-1 ~Mpc a strong decline of quasar-galaxy correlations is observed, suggesting a significant local influence of quasars in galaxy formation. In an attempt to reproduce the observed cross-correlation between quasars and galaxies, we have performed CDM cosmological hydrodynamical simulations and tested the viability of a scenario based on the model developed by Silk & Rees (1998). In this scheme a fraction of the energy released by quasars is considered to be transferred into the baryonic component of the intergalactic medium in the form of winds. The results of the simulations suggest that the shape of the observed quasar-galaxy cross-correlation function could be understood in a scenario where a substantial amount of energy is transferred to the medium at the redshift of maximum quasar activity.

  2. Einstein Observations of Galactic supernova remnants

    NASA Technical Reports Server (NTRS)

    Seward, Frederick D.

    1990-01-01

    This paper summarizes the observations of Galactic supernova remnants with the imaging detectors of the Einstein Observatory. X-ray surface brightness contours of 47 remnants are shown together with gray-scale pictures. Count rates for these remnants have been derived and are listed for the HRI, IPC, and MPC detectors.

  3. Dark energy and the structure of the Coma cluster of galaxies

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Bisnovatyi-Kogan, G. S.; Teerikorpi, P.; Valtonen, M. J.; Byrd, G. G.; Merafina, M.

    2013-05-01

    Context. We consider the Coma cluster of galaxies as a gravitationally bound physical system embedded in the perfectly uniform static dark energy background as implied by ΛCDM cosmology. Aims: We ask if the density of dark energy is high enough to affect the structure of a large and rich cluster of galaxies. Methods: We base our work on recent observational data on the Coma cluster, and apply our theory of local dynamical effects of dark energy, including the zero-gravity radius RZG of the local force field as the key parameter. Results: 1) Three masses are defined that characterize the structure of a regular cluster: the matter mass MM, the dark-energy effective mass MDE (<0), and the gravitating mass MG (=MM + MDE). 2) A new matter-density profile is suggested that reproduces the observational data well for the Coma cluster in the radius range from 1.4 Mpc to 14 Mpc and takes the dark energy background into account. 3) Using this profile, we calculate upper limits for the total size of the Coma cluster, R ≤ RZG ≈ 20 Mpc, and its total matter mass, MM ≲ MM(RZG) = 6.2 × 1015 M⊙. Conclusions: The dark energy antigravity affects the structure of the Coma cluster strongly at large radii R ≳ 14 Mpc and should be considered when its total mass is derived.

  4. LG Solid Oxide Fuel Cell (SOFC) Model Development

    SciTech Connect

    Haberman, Ben; Martinez-Baca, Carlos; Rush, Greg

    2013-05-31

    This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.

  5. Predictive and Neural Predictive Control of Uncertain Systems

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul G.

    2000-01-01

    Accomplishments and future work are:(1) Stability analysis: the work completed includes characterization of stability of receding horizon-based MPC in the setting of LQ paradigm. The current work-in-progress includes analyzing local as well as global stability of the closed-loop system under various nonlinearities; for example, actuator nonlinearities; sensor nonlinearities, and other plant nonlinearities. Actuator nonlinearities include three major types of nonlineaxities: saturation, dead-zone, and (0, 00) sector. (2) Robustness analysis: It is shown that receding horizon parameters such as input and output horizon lengths have direct effect on the robustness of the system. (3) Code development: A matlab code has been developed which can simulate various MPC formulations. The current effort is to generalize the code to include ability to handle all plant types and all MPC types. (4) Improved predictor: It is shown that MPC design using better predictors that can minimize prediction errors. It is shown analytically and numerically that Smith predictor can provide closed-loop stability under GPC operation for plants with dead times where standard optimal predictor fails. (5) Neural network predictors: When neural network is used as predictor it can be shown that neural network predicts the plant output within some finite error bound under certain conditions. Our preliminary study shows that with proper choice of update laws and network architectures such bound can be obtained. However, much work needs to be done to obtain a similar result in general case.

  6. Legionella longbeachae serogroup 1 infections linked to potting compost.

    PubMed

    Lindsay, D S J; Brown, A W; Brown, D J; Pravinkumar, S J; Anderson, E; Edwards, G F S

    2012-02-01

    Four cases of legionellosis caused by Legionella longbeachae serogroup (sg) 1 were identified in Scotland from 2008 to 2010. All case patients had exposure to commercially manufactured growing media or potting soils, commonly known as multipurpose compost (MPC), in greenhouse conditions, prior to disease onset. Two patients had been using the same brand of MPC but the clinical isolates were distinct genotypically by amplified fragment length polymorphism (AFLP) analysis. However, an indistinguishable AFLP profile was also found in an environmental isolate from the supply of MPC used by each patient. The third patient was diagnosed by immunofluorescent antibody serology only; however, the MPC to which this patient was exposed contained L. longbeachae sg 1 in large quantities (80 000 c.f.u. g(-1)). The fourth patient was L. longbeachae sg 1 culture-positive, but L. longbeachae was not identified from 10 samples of garden composting material. As compost is commonly used, but L. longbeachae infection seemingly rare, further work is required to ascertain (i) the prevalence and predictors of L. longbeachae in compost and (ii) the conditions which facilitate transmission and generate an aerosol of the bacteria. As most cases of legionellosis are diagnosed by urinary antigen that is Legionella pneumophila-specific and does not detect infection with L. longbeachae, patients in cases of community-acquired pneumonia with a history of compost exposure should have serum and respiratory samples sent to a specialist Legionella reference laboratory for analysis.

  7. Inverse simulation system for manual-controlled rendezvous and docking based on artificial neural network

    NASA Astrophysics Data System (ADS)

    Zhou, Wanmeng; Wang, Hua; Tang, Guojin; Guo, Shuai

    2016-09-01

    The time-consuming experimental method for handling qualities assessment cannot meet the increasing fast design requirements for the manned space flight. As a tool for the aircraft handling qualities research, the model-predictive-control structured inverse simulation (MPC-IS) has potential applications in the aerospace field to guide the astronauts' operations and evaluate the handling qualities more effectively. Therefore, this paper establishes MPC-IS for the manual-controlled rendezvous and docking (RVD) and proposes a novel artificial neural network inverse simulation system (ANN-IS) to further decrease the computational cost. The novel system was obtained by replacing the inverse model of MPC-IS with the artificial neural network. The optimal neural network was trained by the genetic Levenberg-Marquardt algorithm, and finally determined by the Levenberg-Marquardt algorithm. In order to validate MPC-IS and ANN-IS, the manual-controlled RVD experiments on the simulator were carried out. The comparisons between simulation results and experimental data demonstrated the validity of two systems and the high computational efficiency of ANN-IS.

  8. Magnetic porous carbon nanocomposites derived from metal-organic frameworks as a sensing platform for DNA fluorescent detection.

    PubMed

    Tan, Hongliang; Tang, Gonge; Wang, Zhixiong; Li, Qian; Gao, Jie; Wu, Shimeng

    2016-10-12

    Metal-organic frameworks (MOFs) have emerged as very fascinating functional materials due to their tunable nature and diverse applications. In this work, we prepared a magnetic porous carbon (MPC) nanocomposite by employing iron-containing MOFs (MIL-88A) as precursors through a one-pot thermolysis method. It was found that the MPC can absorb selectively single-stranded DNA (ssDNA) probe to form MPC/ssDNA complex and subsequently quench the labelled fluorescent dye of the ssDNA probe, which is resulted from the synergetic effect of magnetic nanoparticles and carbon matrix. Upon the addition of complementary target DNA, however, the absorbed ssDNA probe could be released from MPC surface by forming double-stranded DNA with target DNA, and accompanied by the recovery of the fluorescence of ssDNA probe. Based on these findings, a sensing platform with low background signal for DNA fluorescent detection was developed. The proposed sensing platform exhibits high sensitivity with detection limit of 1 nM and excellent selectivity to specific target DNA, even single-base mismatched nucleotide can be distinguished. We envision that the presented study would provide a new perspective on the potential applications of MOF-derived nanocomposites in biomedical fields. PMID:27662768

  9. GDNF-induced leukemia inhibitory factor can mediate differentiation via the MEK/ERK pathway in pheochromocytoma cells derived from nf1-heterozygous knockout mice.

    PubMed

    Park, Jong-In; Powers, James F; Tischler, Arthur S; Strock, Christopher J; Ball, Douglas W; Nelkin, Barry D

    2005-02-01

    Glial cell line-derived neurotrophic factor (GDNF) can induce neuron-like differentiation of mouse pheochromocytoma (MPC) cell lines derived from mice with a heterozygous knockout mutation of nf1, the murine counterpart of the human gene mutated in neurofibromatosis type 1 (NF1). Here, we show that GDNF-induced differentiation in the MPC 862L cell line is mediated by the MEK/extracellular signal-regulated kinase (ERK) pathway. Neurite outgrowth, increased expression of growth-associated protein 43, and decreased incorporation of bromodeoxyuridine (BrdU) were induced by treatment with GDNF, H-RasV12, or a constitutively active MEK2. GDNF also induces leukemia inhibitory factor (LIF) via the MEK/ERK pathway, and LIF itself can elicit these differentiative changes via a cell-extrinsic autocrine/paracrine pathway. Treatment with anti-LIF neutralizing antibody depleted the differentiative activity of the conditioned medium from cells stimulated for MEK/ERK signaling, while recombinant LIF could induce differentiation in MPC cells, indicating that LIF is the sole factor with differentiative activity. LIF could activate MEK1/2 and STAT3, but LIF-induced differentiation was blocked only by the MEK1/2-specific inhibitor U0126, indicating that the MEK/ERK pathway is necessary for LIF action in MPC cells. Our findings suggest that LIF may be utilized for signaling mediated by GDNF and may be important in the pathobiology of neuroendocrine tumors.

  10. 1-Bit processing based model predictive control for fractionated satellite missions

    NASA Astrophysics Data System (ADS)

    Bai, Xueliang; Wu, Xiaofeng

    2014-02-01

    The model predictive control (MPC) has great advantages in dealing with complex control constraints. However, traditional MPCs are too complex to implement in real-time embedded systems. This is especially true for nano-satellites due to limited on-board resources. This paper introduces a novel 1-bit processing based MPC (OBMPC) algorithm for a fractionated satellite mission, which can significantly reduce online calculations by removing multiply operations. The resulted pulse signals can be used to drive the actuator directly. The quantized state feedback fits the OBMPC in the frame work of quantized MPC. The stability issues and the design criterion are discussed in this paper. The simulation is based on a 2U CubeSat model in a fractionated satellite structure, in which the payload and actuators are separated from the controller and controlled via wireless inter-satellite link (ISL). Compared to the equivalent traditional MPC controller, FPGA implementation based performance analysis shows that OBMPC is feasible for fractionated satellite missions.

  11. T-S fuzzy model predictive speed control of electrical vehicles.

    PubMed

    Khooban, Mohammad Hassan; Vafamand, Navid; Niknam, Taher

    2016-09-01

    This paper proposes a novel nonlinear model predictive controller (MPC) in terms of linear matrix inequalities (LMIs). The proposed MPC is based on Takagi-Sugeno (TS) fuzzy model, a non-parallel distributed compensation (non-PDC) fuzzy controller and a non-quadratic Lyapunov function (NQLF). Utilizing the non-PDC controller together with the Lyapunov theorem guarantees the stabilization issue of this MPC. In this approach, at each sampling time a quadratic cost function with an infinite prediction and control horizon is minimized such that constraints on the control input Euclidean norm are satisfied. To show the merits of the proposed approach, a nonlinear electric vehicle (EV) system with parameter uncertainty is considered as a case study. Indeed, the main goal of this study is to force the speed of EV to track a desired value. The experimental data, a new European driving cycle (NEDC), is used in order to examine the performance of the proposed controller. First, the equivalent TS model of the original nonlinear system is derived. After that, in order to evaluate the proficiency of the proposed controller, the achieved results of the proposed approach are compared with those of the conventional MPC controller and the optimal Fuzzy PI controller (OFPI), which are the latest research on the problem in hand. PMID:27167988

  12. Mesenchymal progenitor cells derived from synovium and infrapatellar fat pad as a source for superficial zone cartilage tissue engineering: analysis of superficial zone protein/lubricin expression.

    PubMed

    Lee, Sang Yang; Nakagawa, Toshiyuki; Reddi, A Hari

    2010-01-01

    Superficial zone protein (SZP) is a boundary lubricant of articular cartilage in joints. As SZP at the surface of articular cartilage plays an important role in the normal function of synovial joints, the localization of SZP-secreting cells at the surface of tissue-engineered cartilage is prerequisite. The aim of this study was to identify suitable progenitor cell sources for tissue engineering of superficial zone cartilage. We investigated whether mesenchymal progenitor cells (MPCs) from synovium and infrapatellar fat pad (IFP) have the potential for secretion of SZP after chondrogenic differentiation in an aggregate pellet culture system. SZP was immunolocalized in pellets from synovium-MPCs and IFP-MPCs. The enzyme-linked immunosorbent assay analysis of SZP demonstrated that chondrogenically differentiated synovium-MPC and IFP-MPC pellets secreted SZP into media. Real-time polymerase chain reaction analysis showed significant upregulation of SZP mRNA in synovium-MPC and IFP-MPC pellets after chondrogenic differentiation. The synovium-MPCs demonstrated the higher colony-forming, proliferative, and chondrogenic potential, and exhibited greater SZP secretion after chondrogenic induction compared with IFP-MPCs. In conclusion, both synovium and IFP are promising cell sources for tissue engineering of superficial zone cartilage.

  13. Microwave photocatalytic degradation of Rhodamine B using TiO2 supported on activated carbon: mechanism implication.

    PubMed

    He, Zhong; Yang, Shaogui; Ju, Yongming; Sun, Cheng

    2009-01-01

    The photocatalytic degradation of Rhodamine B (RhB) was carried out using TiO2 supported on activated carbon (TiO2-AC) under microwave irradiation. Composite catalyst TiO2-AC was prepared and characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET). In the process of microwave-enhanced photocatalysis (MPC), RhB (30 mg/L) was almost completely decoloured in 10 min, and the mineralization efficiency was 96.0% in 20 min. The reaction rate constant of RhB in MPC using TiO2-AC by pseudo first-order reaction kinetics was 4.16 times of that using Degussa P25. Additionally, according to gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) identification, the major intermediates of RhB in MPC included two kinds of N-de-ethylation intermediates (N,N-diethyl-N'-ethyl-rhodamine (DER)), oxalic acid, malonic acid, succinic acid, and phthalic acid, maleic acid, 3-nitrobenzoic acid, and so on. The degradation of RhB in MPC was mainly attributed to the destruction of the conjugated structure, and then the intermediates transformed to acid molecules which were mineralized to water and carbon dioxide.

  14. Lightcurves of Jovian Trojan Asteroids from the Center for Solar System Studies: L4 Greek Camp and Spies

    NASA Astrophysics Data System (ADS)

    Stephens, Robert D.; Coley, Daniel R.; Warner, Brian D.; French, Linda, M.

    2016-10-01

    Jovian Trojan asteroids larger than ~ 30 km were studied from the Center for Solar System Studies (CS3, MPC U81). Lightcurves for 30 Trojan asteroids in the L4 (Greek) cloud were between May and June 2016. These were mostly from the L4 "Greek" cloud, but several were L5 "Trojan" cloud lightcurves not previously published.

  15. Lightcurve Analysis of 1654 Bojeva

    NASA Astrophysics Data System (ADS)

    Hayes-Gehrke, Melissa N.; Austin, Devona; Bowers, Carl; Cleary, Andrew; Dilks, Andrew; Dzurilla, Anne; Friedenberg, Meir; Isakower, Sadie; Davy-Coore, Kaydra; Kee, Andrew; Leonhartt, Greg; Rajpara, Sumit; Ricciardi, Christine; Wolf, Jacob; Zohery, Vivian

    2016-04-01

    Photometric observations of main-belt asteroid 1654 Bojeva were made over six nights during 2015 October and November. Remote observations were made using iTelescope Observatory (MPC H06) in Mayhill, New Mexico. Lightcurve analysis using MPO Canopus found a possible rotation period of 10.5559 ± 0.0137 h with an amplitude of 0.27 mag.

  16. Functional Characteristics of Milk Protein Concentrates and Their Modification.

    PubMed

    Uluko, Hankie; Liu, Lu; Lv, Jia-Ping; Zhang, Shu-Wen

    2016-05-18

    A major deterrent to the usage of milk protein concentrate (MPC), a high-protein milk product with increasing demand as a food and sports drink ingredient, has been its poor functional characteristics when compared with other milk protein products such as whey protein concentrate and sodium caseinates. This review discusses the recent research on functional properties of MPC, focusing on factors that may contribute to the poor functional characteristics before, during, and after production. Current research, methods employed, and new understanding on the causes of poor solubility of MPC at mild temperatures (about 20°C) has been presented, including loss of solubility during storage as these areas have received unprecedented attention over the past decade, and also affects other useful functional properties of MPC, such as emulsifying properties, gelation, and foaming. Processing methods, which include heat treatment, high-pressure application, microwave heating, ultrasound application, and enzyme and salts modification, have been used or have potential to modify or improve the functional properties of MPCs. Future research on the effects of these processing methods on the functional properties, including effects of enzyme hydrolysis on bitterness and bioactivity, has also been discussed. PMID:26048645

  17. Off-center observers versus supernovae in inhomogeneous pressure universes

    SciTech Connect

    Balcerzak, Adam; Dabrowski, Mariusz P.; Denkiewicz, Tomasz

    2014-09-10

    Exact luminosity distance and apparent magnitude formulae are applied to the Union2 557 supernovae sample in order to constrain the possible position of an observer outside of the center of symmetry in spherically symmetric inhomogeneous pressure Stephani universes, which are complementary to inhomogeneous density Lemaître-Tolman-Bondi (LTB) void models. Two specific models are investigated. The first allows a barotropic equation of state at the center of symmetry without the need to specify a scale factor function (model IIA). The second has no barotropic equation of state at the center, but has an explicit dust-like scale factor evolution (model IIB). It is shown that even at 3σ CL, an off-center observer cannot be further than about 4.4 Gpc away from the center of symmetry, which is comparable to the reported size of a void in LTB models with the most likely value of the distance from the center at about 341 Mpc for model IIA and 68 Mpc for model IIB. The off-center observer cannot be farther away from the center than about 577 Mpc for model IIB at 3σ CL. It is determined that the best-fit parameters which characterize inhomogeneity are Ω{sub inh} = 0.77 (dimensionless: model IIA) and α = 7.31 × 10{sup –9} (s km{sup –1}){sup 2/3} Mpc{sup –4/3} (model IIB).

  18. Real-time implementation of model predictive control on Maricopa-Stanfield irrigation and drainage district's WM canal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water resources are limited in many agricultural areas. One method to improve the effective use of water is to improve delivery service from irrigation canals. This can be done by applying automatic control methods that control the gates in an irrigation canal. The model predictive control MPC is ...

  19. Integrated Sensing & Controls for Coal Gasification - Development of Model-Based Controls for GE's Gasifier & Syngas Cooler. Topical Rerport for Phase III

    SciTech Connect

    Kumar, Aditya

    2011-02-17

    This Topical Report for the final Phase III of the program summarizes the results from the Task 3