Science.gov

Sample records for 2-min tidal breathing

  1. Patient-specific simulation of tidal breathing

    NASA Astrophysics Data System (ADS)

    Walters, M.; Wells, A. K.; Jones, I. P.; Hamill, I. S.; Veeckmans, B.; Vos, W.; Lefevre, C.; Fetitia, C.

    2016-03-01

    Patient-specific simulation of air flows in lungs is now straightforward using segmented airways trees from CT scans as the basis for Computational Fluid Dynamics (CFD) simulations. These models generally use static geometries, which do not account for the motion of the lungs and its influence on important clinical indicators, such as airway resistance. This paper is concerned with the simulation of tidal breathing, including the dynamic motion of the lungs, and the required analysis workflow. Geometries are based on CT scans obtained at the extremes of the breathing cycle, Total Lung Capacity (TLC) and Functional Residual Capacity (FRC). It describes how topologically consistent geometries are obtained at TLC and FRC, using a `skeleton' of the network of airway branches. From this a 3D computational mesh which morphs between TLC and FRC is generated. CFD results for a number of patient-specific cases, healthy and asthmatic, are presented. Finally their potential use in evaluation of the progress of the disease is discussed, focusing on an important clinical indicator, the airway resistance.

  2. Pulse pressure variation to predict fluid responsiveness in spontaneously breathing patients: tidal vs. forced inspiratory breathing.

    PubMed

    Hong, D M; Lee, J M; Seo, J H; Min, J J; Jeon, Y; Bahk, J H

    2014-07-01

    We evaluated whether pulse pressure variation can predict fluid responsiveness in spontaneously breathing patients. Fifty-nine elective thoracic surgical patients were studied before induction of general anaesthesia. After volume expansion with hydroxyethyl starch 6 ml.kg(-1) , patients were defined as responders by a ≥ 15% increase in the cardiac index. Haemodynamic variables were measured before and after volume expansion and pulse pressure variations were calculated during tidal breathing and during forced inspiratory breathing. Median (IQR [range]) pulse pressure variation during forced inspiratory breathing was significantly higher in responders (n = 29) than in non-responders (n = 30) before volume expansion (18.2 (IQR 14.7-18.2 [9.3-31.3])% vs. 10.1 (IQR 8.3-12.6 [4.8-21.1])%, respectively, p < 0.001). The receiver-operating characteristic curve revealed that pulse pressure variation during forced inspiratory breathing could predict fluid responsiveness (area under the curve 0.910, p < 0.0001). Pulse pressure variation measured during forced inspiratory breathing can be used to guide fluid management in spontaneously breathing patients.

  3. Physiological techniques for detecting expiratory flow limitation during tidal breathing.

    PubMed

    Koulouris, N G; Hardavella, G

    2011-09-01

    Patients with severe chronic obstructive pulmonary disease (COPD) often exhale along the same flow-volume curve during quiet breathing as they do during the forced expiratory vital capacity manoeuvre, and this has been taken as an indicator of expiratory flow limitation at rest (EFL(T)). Therefore, EFL(T), namely attainment of maximal expiratory flow during tidal expiration, occurs when an increase in transpulmonary pressure causes no increase in expiratory flow. EFL(T) leads to small airway injury and promotes dynamic pulmonary hyperinflation, with concurrent dyspnoea and exercise limitation. In fact, EFL(T) occurs commonly in COPD patients (mainly in Global Initiative for Chronic Obstructive Lung Disease III and IV stage), in whom the latter symptoms are common, but is not exclusive to COPD, since it can also be detected in other pulmonary and nonpulmonary diseases like asthma, acute respiratory distress syndrome, heart failure and obesity, etc. The existing up to date physiological techniques of assessing EFL(T) are reviewed in the present work. Among the currently available techniques, the negative expiratory pressure has been validated in a wide variety of settings and disorders. Consequently, it should be regarded as a simple, noninvasive, practical and accurate new technique.

  4. Measuring tidal breathing parameters using a volumetric vest in neonates with and without lung disease.

    PubMed

    Olden, C; Symes, E; Seddon, P

    2010-11-01

    Lung function measurement is difficult in unsedated infants; tidal breathing parameters are a useful non-invasive surrogate, but even these measurements cause disturbance from applying a facemask. We investigated a novel volumetric vest system (FloRight), which measures volume changes of the respiratory system from changes in the magnetic fields induced by current-carrying coils around the entire chest and abdomen. Using a facemask and ultrasonic flowmeter as comparator, we assessed the validity and repeatability of tidal breathing parameters measured by FloRight in 10 healthy newborn infants during natural sleep. We also assessed the effect of a facemask on tidal volume and tidal expiratory flow parameters. To assess the ability of the FloRight system to detect disease, we compared the healthy infants with 11 infants suffering from bronchopulmonary dysplasia. Tidal parameters with the FloRight vest corresponded closely with facemask measurements. Mean difference, mask minus vest, for tidal volume was 0.096 ml (P < 0.05), with limits of agreement +4.5 to -4.3 ml. Coefficient of repeatability was similar for mask and vest measurements. Tidal volume measured by FloRight with mask in place (20.6 ml) was significantly higher than without mask (16.1 ml), but tidal expiratory flow parameters were not altered. FloRight measurements of tidal parameters were markedly different between the two groups of infants, with tidal volume per Kg significantly higher and tidal expiratory flow parameters significantly lower. Our findings suggest that the FloRight system is able to measure tidal breathing parameters accurately, in healthy newborn infants, without prior calibration on the infant. It appears to have at least sufficient sensitivity to detect severe respiratory disease.

  5. Tidal breathing patterns derived from structured light plethysmography in COPD patients compared with healthy subjects

    PubMed Central

    Motamedi-Fakhr, Shayan; Wilson, Rachel C; Iles, Richard

    2017-01-01

    Purpose Differences in tidal breathing patterns have been reported between patients with chronic obstructive pulmonary disease (COPD) and healthy individuals using traditional measurement techniques. This feasibility study examined whether structured light plethysmography (SLP) – a noncontact, light-based technique – could also detect differences in tidal breathing patterns between patients with COPD and healthy subjects. Patients and methods A 5 min period of tidal (quiet) breathing was recorded in each patient with COPD (n=31) and each healthy subject (n=31), matched for age, body mass index, and sex. For every participant, the median and interquartile range (IQR; denoting within-subject variability) of 12 tidal breathing parameters were calculated. Individual data were then combined by cohort and summarized by its median and IQR. Results After correction for multiple comparisons, inspiratory time (median tI) and its variability (IQR of tI) were lower in patients with COPD (p<0.001 and p<0.01, respectively) as were ratios derived from tI (tI/tE and tI/tTot, both p<0.01) and their variability (p<0.01 and p<0.05, respectively). IE50SLP (the ratio of inspiratory to expiratory flow at 50% tidal volume calculated from the SLP signal) was higher (p<0.001) in COPD while SLP-derived time to reach peak tidal expiratory flow over expiratory time (median tPTEFSLP/tE) was shorter (p<0.01) and considerably less variable (p<0.001). Thoraco–abdominal asynchrony was increased (p<0.05) in COPD. Conclusion These early observations suggest that, like traditional techniques, SLP is able to detect different breathing patterns in COPD patients compared with subjects with no respiratory disease. This provides support for further investigation into the potential uses of SLP in assessing clinical conditions and interventions. PMID:28096696

  6. Influence of end-expiratory level and tidal volume on gravitational ventilation distribution during tidal breathing in healthy adults.

    PubMed

    Schnidrig, Silvia; Casaulta, Carmen; Schibler, Andreas; Riedel, Thomas

    2013-03-01

    Our understanding of regional filling of the lung and regional ventilation distribution is based on studies using stepwise inhalation of radiolabelled tracer gases, magnetic resonance imaging and positron emission tomography. We aimed to investigate whether these differences in ventilation distribution at different end-expiratory levels (EELs) and tidal volumes (V (T)s) held also true during tidal breathing. Electrical impedance tomography (EIT) measurements were performed in ten healthy adults in the right lateral position. Five different EELs with four different V (T)s at each EEL were tested in random order, resulting in 19 combinations. There were no measurements for the combination of the highest EEL/highest V (T). EEL and V (T) were controlled by visual feedback based on airflow. The fraction of ventilation directed to different slices of the lung (VENT(RL1)-VENT(RL8)) and the rate of the regional filling of each slice versus the total lung were analysed. With increasing EEL but normal tidal volume, ventilation was preferentially distributed to the dependent lung and the filling of the right and left lung was more homogeneous. With increasing V (T) and maintained normal EEL (FRC), ventilation was preferentially distributed to the dependent lung and regional filling became more inhomogeneous (p < 0.05). We could demonstrate that regional and temporal ventilation distribution during tidal breathing was highly influenced by EEL and V (T).

  7. Correlational analysis of electroencephalographic and end-tidal carbon dioxide signals during breath-hold exercise.

    PubMed

    Morelli, Maria Sole; Vanello, Nicola; Giannoni, Alberto; Frijia, Francesca; Hartwig, Valentina; Maestri, Michelangelo; Bonanni, Enrica; Carnicelli, Luca; Positano, Vincenzo; Passino, Claudio; Emdin, Michele; Landini, Luigi

    2015-01-01

    The central mechanism of breathing control is not totally understood. Several studies evaluated the correlation between electroencephalographic (EEG) power spectra and respiratory signals by performing resting state tasks or adopting hypercapnic/hypoxic stimuli. The observation of brain activity during voluntary breath hold tasks, might be an useful approach to highlight the areas involved in mechanism of breath regulation. Nevertheless, studies of brain activity with EEG could present some limitations due to presence of severe artifacts. When artifact rejection methods, as independent component analysis, cannot reliably clean EEG data, it is necessary to exclude noisy segments. In this study, global field power in the delta band and end-tidal CO2 were derived from EEG and CO2 signals respectively in 4 healthy subjects during a breath-hold task. The cross correlation function between the two signals was estimated taking into account the presence of missing samples. The statistical significance of the correlation coefficients at different time lags was assessed using surrogate data. Some simulations are introduced to evaluate the effect of missing data on the correlational analysis and their results are discussed. Results obtained on subjects show a significant correlation between changes in EEG power in the delta band and end-tidal CO2. Moreover, the changes in end-tidal CO2 were found to precede those of global field power. These results might help to better understand the cortical mechanisms involved in the control of breathing.

  8. Electromagnetic inductance plethysmography is well suited to measure tidal breathing in infants

    PubMed Central

    Eriksen, Morten; Olsen, Merete S.; Markestad, Trond; Halvorsen, Thomas

    2016-01-01

    Reliable, accurate and noninvasive methods for measuring lung function in infants are desirable. Electromagnetic inductance plethysmography has been used to perform infant spirometry and VoluSense Pediatrics (VSP) (VoluSense, Bergen, Norway) represents an updated version of this technique. We aimed to examine its accuracy compared to a validated system measuring airflow via a facemask using an ultrasonic flowmeter. We tested 30 infants with postmenstrual ages between 36 to 43 weeks and weights from 2.3 to 4.8 kg, applying both methods simultaneously and applying VSP alone. Agreement between the methods was calculated using Bland–Altman analyses and we also estimated the effect of applying the mask. Mean differences for all breathing parameters were within ±5.5% and limits of agreement between the two methods were acceptable, except perhaps for peak tidal expiratory flow (PTEF). Application of the facemask significantly increased tidal volume, minute ventilation, PTEF, the ratio of inspiratory to expiratory time and the ratio of expiratory flow at 50% of expired volume to PTEF. VSP accurately measured tidal breathing parameters and seems well suited for tidal breathing measurements in infants under treatment with equipment that precludes the use of a facemask. PMID:28053968

  9. Electromagnetic inductance plethysmography is well suited to measure tidal breathing in infants.

    PubMed

    Bentsen, Mariann H L; Eriksen, Morten; Olsen, Merete S; Markestad, Trond; Halvorsen, Thomas

    2016-10-01

    Reliable, accurate and noninvasive methods for measuring lung function in infants are desirable. Electromagnetic inductance plethysmography has been used to perform infant spirometry and VoluSense Pediatrics (VSP) (VoluSense, Bergen, Norway) represents an updated version of this technique. We aimed to examine its accuracy compared to a validated system measuring airflow via a facemask using an ultrasonic flowmeter. We tested 30 infants with postmenstrual ages between 36 to 43 weeks and weights from 2.3 to 4.8 kg, applying both methods simultaneously and applying VSP alone. Agreement between the methods was calculated using Bland-Altman analyses and we also estimated the effect of applying the mask. Mean differences for all breathing parameters were within ±5.5% and limits of agreement between the two methods were acceptable, except perhaps for peak tidal expiratory flow (PTEF). Application of the facemask significantly increased tidal volume, minute ventilation, PTEF, the ratio of inspiratory to expiratory time and the ratio of expiratory flow at 50% of expired volume to PTEF. VSP accurately measured tidal breathing parameters and seems well suited for tidal breathing measurements in infants under treatment with equipment that precludes the use of a facemask.

  10. A dual mode breath sampler for the collection of the end-tidal and dead space fractions.

    PubMed

    Salvo, P; Ferrari, C; Persia, R; Ghimenti, S; Lomonaco, T; Bellagambi, F; Di Francesco, F

    2015-06-01

    This work presents a breath sampler prototype automatically collecting end-tidal (single and multiple breaths) or dead space air fractions (multiple breaths). This result is achieved by real time measurements of the CO2 partial pressure and airflow during the expiratory and inspiratory phases. Suitable algorithms, used to control a solenoid valve, guarantee that a Nalophan(®) bag is filled with the selected breath fraction even if the subject under test hyperventilates. The breath sampler has low pressure drop (<0.5 kPa) and uses inert or disposable components to avoid bacteriological risk for the patients and contamination of the breath samples. A fully customisable software interface allows a real time control of the hardware and software status. The performances of the breath sampler were evaluated by comparing (a) the CO2 partial pressure calculated during the sampling with the CO2 pressure measured off-line within the Nalophan(®) bag; (b) the concentrations of four selected volatile organic compounds in dead space, end-tidal and mixed breath fractions. Results showed negligible deviations between calculated and off-line CO2 pressure values and the distributions of the selected compounds into dead space, end-tidal and mixed breath fractions were in agreement with their chemical-physical properties.

  11. 4DCT-based assessment of regional airflow distribution in healthy human lungs during tidal breathing

    NASA Astrophysics Data System (ADS)

    Choi, Jiwoong; Jahani, Nariman; Choi, Sanghun; Hoffman, Eric; Lin, Ching-Long

    2014-11-01

    Nonlinear dynamics of regional airflow distribution in healthy human lungs are studied with four-dimensional computed tomography (4DCT) quantitative imaging of four subjects. During the scanning session, subjects continuously breathed with tidal volumes controlled by the dual piston system. For each subject, 10 instantaneous volumetric image data sets (5 inspiratory and 5 expiratory phases) were reconstructed. A mass-preserving image registration was then applied to pairs of these image data to construct a breathing lung model. Regional distributions of local flow rate fractions are computed from time-varying local air volumes. The 4DCT registration-based method provides the link between local and global air volumes of the lung, allowing derivation of time-varying regional flow rates during the tidal breathing for computational fluid dynamics analysis. The local flow rate fraction remains greater in the lower lobes than in the upper lobes, being qualitatively consistent with those derived from three static CT (3SCT) images (Yin et al. JCP 2013). However, unlike 3SCT, the 4DCT data exhibit lung hysteresis between inspiration and expiration, providing more sensitive measures of regional ventilation and lung mechanics. NIH Grants U01-HL114494, R01-HL094315 and S10-RR022421.

  12. A tidal breathing model of the inert gas sinewave technique for inhomogeneous lungs.

    PubMed

    Whiteley, J P; Gavaghan, D J; Hahn, C E

    2001-01-01

    The tidal breathing model conservation of mass equations for the sinewave technique have been described for a homogeneous alveolar compartment by Gavaghan and Hahn, 1996 [Gavaghan, D.J., Hahn, C.E.W., 1996. A tidal breathing model of the forced inspired gas sinewave technique. Respir. Physiol. 106, 209-221]. We develop these equations first to a multi-discrete alveolar compartment lung model and then to a lung model with a continuous distribution of volume, ventilation and perfusion. The effect on the output parameters of a multi-compartment model is discussed, and the results are compared to those derived from the conventional continuous-ventilation model. Using the barely soluble gas argon as the tracer gas, an empirical index of alveolar inhomogeneity is presented which uses the end-expired and mixed-expired partial pressures on each breath. This index distinguishes between a narrow unimodal distribution of ventilation-volume, a wide unimodal distribution of ventilation-volume and a bimodal distribution of ventilation-volume. By using Monte Carlo simulations, this index is shown to be stable to experimental error of realistic magnitude.

  13. Assessment of regional ventilation and deformation using 4D-CT imaging for healthy human lungs during tidal breathing.

    PubMed

    Jahani, Nariman; Choi, Sanghun; Choi, Jiwoong; Iyer, Krishna; Hoffman, Eric A; Lin, Ching-Long

    2015-11-15

    This study aims to assess regional ventilation, nonlinearity, and hysteresis of human lungs during dynamic breathing via image registration of four-dimensional computed tomography (4D-CT) scans. Six healthy adult humans were studied by spiral multidetector-row CT during controlled tidal breathing as well as during total lung capacity and functional residual capacity breath holds. Static images were utilized to contrast static vs. dynamic (deep vs. tidal) breathing. A rolling-seal piston system was employed to maintain consistent tidal breathing during 4D-CT spiral image acquisition, providing required between-breath consistency for physiologically meaningful reconstructed respiratory motion. Registration-derived variables including local air volume and anisotropic deformation index (ADI, an indicator of preferential deformation in response to local force) were employed to assess regional ventilation and lung deformation. Lobar distributions of air volume change during tidal breathing were correlated with those of deep breathing (R(2) ≈ 0.84). Small discrepancies between tidal and deep breathing were shown to be likely due to different distributions of air volume change in the left and the right lungs. We also demonstrated an asymmetric characteristic of flow rate between inhalation and exhalation. With ADI, we were able to quantify nonlinearity and hysteresis of lung deformation that can only be captured in dynamic images. Nonlinearity quantified by ADI is greater during inhalation, and it is stronger in the lower lobes (P < 0.05). Lung hysteresis estimated by the difference of ADI between inhalation and exhalation is more significant in the right lungs than that in the left lungs.

  14. Assessment of regional ventilation and deformation using 4D-CT imaging for healthy human lungs during tidal breathing

    PubMed Central

    Jahani, Nariman; Choi, Jiwoong; Iyer, Krishna; Hoffman, Eric A.

    2015-01-01

    This study aims to assess regional ventilation, nonlinearity, and hysteresis of human lungs during dynamic breathing via image registration of four-dimensional computed tomography (4D-CT) scans. Six healthy adult humans were studied by spiral multidetector-row CT during controlled tidal breathing as well as during total lung capacity and functional residual capacity breath holds. Static images were utilized to contrast static vs. dynamic (deep vs. tidal) breathing. A rolling-seal piston system was employed to maintain consistent tidal breathing during 4D-CT spiral image acquisition, providing required between-breath consistency for physiologically meaningful reconstructed respiratory motion. Registration-derived variables including local air volume and anisotropic deformation index (ADI, an indicator of preferential deformation in response to local force) were employed to assess regional ventilation and lung deformation. Lobar distributions of air volume change during tidal breathing were correlated with those of deep breathing (R2 ≈ 0.84). Small discrepancies between tidal and deep breathing were shown to be likely due to different distributions of air volume change in the left and the right lungs. We also demonstrated an asymmetric characteristic of flow rate between inhalation and exhalation. With ADI, we were able to quantify nonlinearity and hysteresis of lung deformation that can only be captured in dynamic images. Nonlinearity quantified by ADI is greater during inhalation, and it is stronger in the lower lobes (P < 0.05). Lung hysteresis estimated by the difference of ADI between inhalation and exhalation is more significant in the right lungs than that in the left lungs. PMID:26316512

  15. Investigating in vivo airway wall mechanics during tidal breathing with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Robertson, Claire; Lee, Sang-Won; Ahn, Yeh-Chan; Mahon, Sari; Chen, Zhongping; Brenner, Matthew; George, Steven C.

    2011-10-01

    Optical coherence tomography (OCT) is a nondestructive imaging technique offering high temporal and spatial resolution, which makes it a natural choice for assessing tissue mechanical properties. We have developed methods to mechanically analyze the compliance of the rabbit trachea in vivo using tissue deformations induced by tidal breathing, offering a unique tool to assess the behavior of the airways during their normal function. Four-hundred images were acquired during tidal breathing with a custom-built endoscopic OCT system. The surface of the tissue was extracted from a set of these images via image processing algorithms, filtered with a bandpass filter set at respiration frequency to remove cardiac and probe motion, and compared to ventilatory pressure to calculate wall compliance. These algorithms were tested on elastic phantoms to establish reliability and reproducibility. The mean tracheal wall compliance (in five animals) was 1.3+/-0.3×10-5 (mm Pa)-1. Unlike previous work evaluating airway mechanics, this new method is applicable in vivo, noncontact, and loads the trachea in a physiological manner. The technique may have applications in assessing airway mechanics in diseases such as asthma that are characterized by significant airway remodeling.

  16. Evaluation of an end-tidal portable ETCO2 colorimetric breath indicator (COLIBRI).

    PubMed

    Rabitsch, Werner; Nikolic, Ajsa; Schellongowski, Peter; Kofler, Julia; Kraft, Peter; Krenn, Claus G; Staudinger, Thomas; Locker, Gottfried J; Knöbl, Paul; Hofbauer, Roland; Frass, Michael

    2004-01-01

    Evaluation of tube position is important after in-hospital and prehospital emergency intubation. Colorimetric breath indicators are devices for immediate control of tube positioning by showing a color change according to end-tidal CO2 (ETCO2) concentrations. We hypothesized that colorimetric breath indicators can yield reliable results for confirmation of tube position. The aim of this study was to evaluate the effectiveness and safety of a new colorimetric breath indicator (Colibri, ICOR AB, Bromma, Sweden) in 147 patients during general anesthesia, in critically ill patients, during transport to in-hospital interventions, and in a study design after insertion of a second tube into the esophagus in long-term ventilated patients. The Colibri was attached between the respective airway and ventilatory tubing. Seventy-three patients were investigated during general anesthesia, 39 patients were observed during long-term ventilation with an average duration of 33 hours, in 15 patients during transport to an intervention for up to 4 hours, and in 20 long-term ventilated patients at the medical intensive-care unit after insertion of a second tube intentionally into the esophagus with the help of a laryngoscope. The Colibri worked well in all groups investigated and showed no false results in the group with tubes inserted into the trachea and esophagus. Data suggest that the Colibri might serve as a valuable tool for evaluating and controlling tube position. This device is independent of power supply or electronic equipment, portable, small, and immediately ready for use.

  17. Upper extremity muscle tone and response of tidal volume during manually assisted breathing for patients requiring prolonged mechanical ventilation

    PubMed Central

    Morino, Akira; Shida, Masahiro; Tanaka, Masashi; Sato, Kimihiro; Seko, Toshiaki; Ito, Shunsuke; Ogawa, Shunichi; Yokoi, Yuka; Takahashi, Naoaki

    2015-01-01

    [Purpose] The aim of the present study was to examine, in patients requiring prolonged mechanical ventilation, if the response of tidal volume during manually assisted breathing is dependent upon both upper extremity muscle tone and the pressure intensity of manually assisted breathing. [Subjects] We recruited 13 patients on prolonged mechanical ventilation, and assessed their upper extremity muscle tone using the modified Ashworth scale (MAS). The subjects were assigned to either the low MAS group (MAS≤2, n=7) or the high MAS group (MAS≥3, n=6). [Methods] The manually assisted breathing technique was applied at a pressure of 2 kgf and 4 kgf. A split-plot ANOVA was performed to compare the tidal volume of each pressure during manually assisted breathing between the low and the high MAS groups. [Results] Statistical analysis showed there were main effects of the upper extremity muscle tone and the pressure intensity of the manually assisted breathing technique. There was no interaction between these factors. [Conclusion] Our findings reveal that the tidal volume during the manually assisted breathing technique for patients with prolonged mechanical ventilation depends upon the patient’s upper extremity muscle tone and the pressure intensity. PMID:26357431

  18. Spectral characteristics of airway opening and chest wall tidal flows in spontaneously breathing preterm infants.

    PubMed

    Habib, Robert H; Pyon, Kee H; Courtney, Sherry E; Aghai, Zubair H

    2003-05-01

    We compared the harmonic content of tidal flows measured simultaneously at the mouth and chest wall in spontaneously breathing very low birth weight infants (n = 16, 1,114 +/- 230 g, gestation age: 28 +/- 2 wk). Airway opening flows were measured via face mask-pneumotachograph (P-tach), whereas chest wall flows were derived from respiratory inductance plethysmography (RIP) excursions. Next, for each, we computed two spectral shape indexes: 1) harmonic distortion (k(d); k(d,P-tach) and k(d,RIP), respectively) defines the extent to which flows deviated from a single sine wave, and 2) the exponent of the power law (s; s(P-tach) and s(RIP), respectively), describing the spectral energy vs. frequency. P-tach and RIP flow spectra exhibited similar power law functional forms consistently in all infants. Also, mouth [s(P-tach) = 3.73 +/- 0.23% (95% confidence interval), k(d,P-tach) = 38.8 +/- 4.6%] and chest wall (s(RIP) = 3.51 +/- 0.30%, k(d,RIP) = 42.8 +/- 4.8%) indexes were similar and highly correlated (s(RIP) = 1.17 x s(P-tach) + 0.85; r(2) = 0.81; k(d,RIP) = 0.90 x k(d,P-tach) + 8.0; r(2) = 0.76). The corresponding time to peak tidal expiratory flow-to-expiratory time ratio (0.62 +/- 0.08) was higher than reported in older infants. The obtained s and k(d) values are similar to those reported in older and/or larger chronic lung disease infants, yet appreciably lower than for 1-mo-old healthy infants of closer age and/or size; this indicated increased complexity of tidal flows in very low birth weight babies. Importantly, we found equivalent flow spectral data from mouth and chest wall tidal flows. The latter are desirable because they avoid face mask artificial effects, including leaks around it, they do not interfere with ventilatory support delivery, and they may facilitate longer measurements that are useful in control of breathing assessment.

  19. Tidal volume single-breath washin of SF6 and CH4 in transient microgravity

    NASA Technical Reports Server (NTRS)

    Dutrieue, Brigitte; Paiva, Manuel; Verbanck, Sylvia; Le Gouic, Marine; Darquenne, Chantal; Prisk, G. Kim

    2003-01-01

    We performed tidal volume single-breath washins (SBW) by using tracers of different diffusivity and varied the time spent in microgravity (microG) before the start of the tests to look for time-dependent effects. SF(6) and CH(4) phase III slopes decreased by 35 and 26%, respectively, in microG compared with 1 G (P < 0.05), and the slope difference between gases disappeared. There was no effect of time in microG, suggesting that neither the hypergravity period preceding microG nor the time spent in microG affected gas mixing at volumes near functional residual capacity. In previous studies using SF(6) and He (Lauzon A-M, Prisk GK, Elliott AR, Verbanck S, Paiva M, and West JB. J Appl Physiol 82: 859-865, 1997), the vital capacity SBW showed an increase in slope difference between gases in transient microG, the opposite of the decrease in sustained microG. In contrast, tidal volume SBW showed a decrease in slope difference in both microG conditions. Because it is only the behavior of the more diffusive gas that differed between maneuvers and microG conditions, we speculate that, in the previous vital capacity SBW, the hypergravity period preceding the test in transient microG provoked conformational changes at low lung volumes near the acinar entrance.

  20. Analysis of tidal breathing flow volume loops for automated lung-function diagnosis in infants.

    PubMed

    Leonhardt, Steffen; Ahrens, Peter; Kecman, Vojislav

    2010-08-01

    Lung-function analysis in the age group below 5 years has not yet found its way into clinical routine. One possible candidate for routine lung testing in this age group is the analysis of tidal breathing flow-volume (TBFV) loops, a technique that has not yet proven to be capable of detecting obstructive and other lung disorders at an early stage. We present a new set of mathematical features useful to analyze TBFV loops. These new features attempt to describe more complex properties of the loops, thus imitating medical judgment of the curves (e.g., "round," "triangular," etc.) in a "linguistic" manner. Furthermore, we introduce support vector machines (SVMs) as a method for automated classification of diseases. In a retrospective clinical trial on 195 spontaneously breathing infants aged 3 to 24 months, the discriminant power of individual features and the overall diagnostic performance of SVMs is investigated and compared with the results obtained with traditional Bayes' classifiers. We demonstrate that the proposed new features perform better in all examined disease groups and that depending on the disease, the classification error can be reduced by up to 50%. We conclude that TBFV loops may have a much stronger discriminant power than previously thought.

  1. Effects of posture on chest-wall configuration and motion during tidal breathing in normal men

    PubMed Central

    Takashima, Sachie; Nozoe, Masafumi; Mase, Kyoshi; Kouyama, Yusuke; Matsushita, Kazuhiro; Ando, Hiroshi

    2017-01-01

    [Purpose] The purpose of this study was to clarify the impact of postural changes during tidal breathing on the configuration and motion of chest-wall in order to further breathing motion evaluation. [Subjects and Methods] Chest-wall configuration and motion in the supine, right lateral, and sitting positions were measured using optoelectronic plethysmography in 15 healthy adult men. [Results] The anteroposterior diameters of the chest wall were significantly lower in the supine position for the pulmonary and abdominal rib cages, whereas the mediolateral diameters in the lateral position were lowest for the abdominal rib cage. Regarding chest-wall motion, both craniocaudal and anteroposterior motions of the anterior surface of the pulmonary and abdominal rib cages were significantly greater in the sitting position. Regarding motion of the left lateral abdominal rib cage, lateral motion was greatest in the lateral position. [Conclusion] Chest-wall configuration and motion changed according to posture in healthy men, particularly in the pulmonary and abdominal rib cages. PMID:28210033

  2. Can tidal breathing with deep inspirations of intact airways create sustained bronchoprotection or bronchodilation?

    PubMed

    Harvey, Brian C; Parameswaran, Harikrishnan; Lutchen, Kenneth R

    2013-08-15

    Fluctuating forces imposed on the airway smooth muscle due to breathing are believed to regulate hyperresponsiveness in vivo. However, recent animal and human isolated airway studies have shown that typical breathing-sized transmural pressure (Ptm) oscillations around a fixed mean are ineffective at mitigating airway constriction. To help understand this discrepancy, we hypothesized that Ptm oscillations capable of producing the same degree of bronchodilation as observed in airway smooth muscle strip studies requires imposition of strains larger than those expected to occur in vivo. First, we applied increasingly larger amplitude Ptm oscillations to a statically constricted airway from a Ptm simulating normal functional residual capacity of 5 cmH2O. Tidal-like oscillations (5-10 cmH2O) imposed 4.9 ± 2.0% strain and resulted in 11.6 ± 4.8% recovery, while Ptm oscillations simulating a deep inspiration at every breath (5-30 cmH2O) achieved 62.9 ± 12.1% recovery. These same Ptm oscillations were then applied starting from a Ptm = 1 cmH2O, resulting in approximately double the strain for each oscillation amplitude. When extreme strains were imposed, we observed full recovery. On combining the two data sets, we found a linear relationship between strain and resultant recovery. Finally, we compared the impact of Ptm oscillations before and after constriction to Ptm oscillations applied only after constriction and found that both loading conditions had a similar effect on narrowing. We conclude that, while sufficiently large strains applied to the airway wall are capable of producing substantial bronchodilation, the Ptm oscillations necessary to achieve those strains are not expected to occur in vivo.

  3. Can tidal breathing with deep inspirations of intact airways create sustained bronchoprotection or bronchodilation?

    PubMed Central

    Parameswaran, Harikrishnan; Lutchen, Kenneth R.

    2013-01-01

    Fluctuating forces imposed on the airway smooth muscle due to breathing are believed to regulate hyperresponsiveness in vivo. However, recent animal and human isolated airway studies have shown that typical breathing-sized transmural pressure (Ptm) oscillations around a fixed mean are ineffective at mitigating airway constriction. To help understand this discrepancy, we hypothesized that Ptm oscillations capable of producing the same degree of bronchodilation as observed in airway smooth muscle strip studies requires imposition of strains larger than those expected to occur in vivo. First, we applied increasingly larger amplitude Ptm oscillations to a statically constricted airway from a Ptm simulating normal functional residual capacity of 5 cmH2O. Tidal-like oscillations (5–10 cmH2O) imposed 4.9 ± 2.0% strain and resulted in 11.6 ± 4.8% recovery, while Ptm oscillations simulating a deep inspiration at every breath (5–30 cmH2O) achieved 62.9 ± 12.1% recovery. These same Ptm oscillations were then applied starting from a Ptm = 1 cmH2O, resulting in approximately double the strain for each oscillation amplitude. When extreme strains were imposed, we observed full recovery. On combining the two data sets, we found a linear relationship between strain and resultant recovery. Finally, we compared the impact of Ptm oscillations before and after constriction to Ptm oscillations applied only after constriction and found that both loading conditions had a similar effect on narrowing. We conclude that, while sufficiently large strains applied to the airway wall are capable of producing substantial bronchodilation, the Ptm oscillations necessary to achieve those strains are not expected to occur in vivo. PMID:23722710

  4. Length oscillation mimicking periodic individual deep inspirations during tidal breathing attenuates force recovery and adaptation in airway smooth muscle.

    PubMed

    Raqeeb, Abdul; Solomon, Dennis; Paré, Peter D; Seow, Chun Y

    2010-11-01

    Airway smooth muscle (ASM) is able to generate maximal force under static conditions, and this isometric force can be maintained over a large length range due to length adaptation. The increased force at short muscle length could lead to excessive narrowing of the airways. Prolonged exposure of ASM to submaximal stimuli also increases the muscle's ability to generate force in a process called force adaptation. To date, the effects of length and force adaptation have only been demonstrated under static conditions. In the mechanically dynamic environment of the lung, ASM is constantly subjected to periodic stretches by the parenchyma due to tidal breathing and deep inspiration. It is not known whether force recovery due to muscle adaptation to a static environment could occur in a dynamic environment. In this study the effect of length oscillation mimicking tidal breathing and deep inspiration was examined. Force recovery after a length change was attenuated in the presence of length oscillation, except at very short lengths. Force adaptation was abolished by length oscillation. We conclude that in a healthy lung (with intact airway-parenchymal tethering) where airways are not allowed to narrow excessively, large stretches (associated with deep inspiration) may prevent the ability of the muscle to generate maximal force that would occur under static conditions irrespective of changes in mean length; mechanical perturbation on ASM due to tidal breathing and deep inspiration, therefore, is the first line of defense against excessive bronchoconstriction that may result from static length and force adaptation.

  5. Methods for Assessing Expiratory Flow Limitation during Tidal Breathing in COPD Patients.

    PubMed

    Koulouris, Nickolaos G; Kaltsakas, Georgios; Palamidas, Anastasios F; Gennimata, Sofia-Antiopi

    2012-01-01

    Patients with severe COPD often exhale along the same flow-volume curve during quite breathing as during forced expiratory vital capacity manoeuvre, and this has been taken as indicating expiratory flow limitation at rest (EFL(T)). Therefore, EFL(T), namely, attainment of maximal expiratory flow during tidal expiration, occurs when an increase in transpulmonary pressure causes no increase in expiratory flow. EFL(T) leads to small airway injury and promotes dynamic pulmonary hyperinflation with concurrent dyspnoea and exercise limitation. In fact, EFL(T) occurs commonly in COPD patients (mainly in GOLD III and IV stage) in whom the latter symptoms are common. The existing up-to-date physiological methods for assessing expiratory flow limitation (EFL(T)) are reviewed in the present work. Among the currently available techniques, the negative expiratory pressure (NEP) has been validated in a wide variety of settings and disorders. Consequently, it should be regarded as a simple, non invasive, most practical, and accurate new technique.

  6. Exploratory analysis of nonlinear coupling between EEG global field power and end-tidal carbon dioxide in free breathing and breath-hold tasks.

    PubMed

    Morelli, Maria Sole; Valenza, Gaetano; Greco, Alberto; Giannoni, Alberto; Passino, Claudio; Emdin, Michele; Scilingo, Enzo Pasquale; Vanello, Nicola; Morelli, Maria Sole; Valenza, Gaetano; Greco, Alberto; Giannoni, Alberto; Passino, Claudio; Emdin, Michele; Scilingo, Enzo Pasquale; Vanello, Nicola; Morelli, Maria Sole; Passino, Claudio; Greco, Alberto; Vanello, Nicola; Valenza, Gaetano; Giannoni, Alberto; Emdin, Michele; Scilingo, Enzo Pasquale

    2016-08-01

    Brain activations underlying control of breathing are not completely known. Furthermore, the coupling between neural and respiratory dynamics is usually estimated through linear correlation measures, thus totally disregarding possible underlying nonlinear interactions. To overcome these limitations, in this preliminary study we propose a nonlinear coupling analysis of simultaneous recordings of electroencephalographic (EEG) and respiratory signals at rest and after variation of carbon dioxide (CO2) level. Specifically, a CO2 increase was induced by a voluntary breath hold task. EEG global field power (GFP) in different frequency bands and end-tidal CO2 (PETCO2) were estimated in both conditions. The maximum information coefficient (MIC) and MIC-ρ(2) (where ρ represents the Pearson's correlation coefficient) between the two signals were calculated to identify generic associations (i.e. linear and nonlinear correlations) and nonlinear correlations, respectively. With respect to a free breathing state, our results suggest that a breath hold state is characterized by an increased coupling between respiration activity and specific EEG oscillations, mainly involving linear and nonlinear interactions in the delta band (1-4 Hz), and prevalent nonlinear interactions in the alpha band (8-13 Hz).

  7. Exploratory analysis of nonlinear coupling between EEG global field power and end-tidal carbon dioxide in free breathing and breath-hold tasks.

    PubMed

    Morelli, Maria Sole; Valenza, Gaetano; Greco, Alberto; Giannoni, Alberto; Passino, Claudio; Emdin, Michele; Scilingo, Enzo Pasquale; Vanello, Nicola

    2016-08-01

    Brain activations underlying control of breathing are not completely known. Furthermore, the coupling between neural and respiratory dynamics is usually estimated through linear correlation measures, thus totally disregarding possible underlying nonlinear interactions. To overcome these limitations, in this preliminary study we propose a nonlinear coupling analysis of simultaneous recordings of electroencephalographic (EEG) and respiratory signals at rest and after variation of carbon dioxide (CO2) level. Specifically, a CO2 increase was induced by a voluntary breath hold task. EEG global field power (GFP) in different frequency bands and end-tidal CO2 (PETCO2) were estimated in both conditions. The maximum information coefficient (MIC) and MIC-ρ2 (where ρ represents the Pearson's correlation coefficient) between the two signals were calculated to identify generic associations (i.e. linear and nonlinear correlations) and nonlinear correlations, respectively. With respect to a free breathing state, our results suggest that a breath hold state is characterized by an increased coupling between respiration activity and specific EEG oscillations, mainly involving linear and nonlinear interactions in the delta band (1-4 Hz), and prevalent nonlinear interactions in the alpha band (8-13 Hz).

  8. A MATLAB toolbox for correcting within-individual effects of respiration rate and tidal volume on respiratory sinus arrhythmia during variable breathing.

    PubMed

    Schulz, Stefan M; Ayala, Erica; Dahme, Bernhard; Ritz, Thomas

    2009-11-01

    Respiratory sinus arrhythmia (RSA) is a common estimator of vagal outflow to the heart, dependent on parasympathetic activity. During variable breathing, both respiration rate and tidal volume contribute substantially to within-individual RSA variance. A respiratory control method allows for within-individual correction of the time-domain index of RSA. rsaToolbox is a set of MATLAB programs for scoring respiration-corrected RSA using measurements of cardiac interbeat intervals, respiratory-cycle times, and tidal volumes, recorded at different paced-breathing frequencies. The within-individual regression of RSA divided by tidal volume upon total respiratory cycle time is then used to estimate the baseline vagal tone for each breath of a given total respiratory-cycle time. During a subsequent analysis, the difference between the observed RSA (divided by the tidal volume at each breath) and the RSA divided by the tidal volume that was predicted by the baseline equation serves as an estimate of changes in vagal tone. rsaToolbox includes a graphical user interface for intuitive handling. Modular implementation of the algorithm also allows for flexible integration within other analytic strategies or for batch processing.

  9. Controlled breathing protocols probe human autonomic cardiovascular rhythms

    NASA Technical Reports Server (NTRS)

    Cooke, W. H.; Cox, J. F.; Diedrich, A. M.; Taylor, J. A.; Beightol, L. A.; Ames, J. E. 4th; Hoag, J. B.; Seidel, H.; Eckberg, D. L.

    1998-01-01

    The purpose of this study was to determine how breathing protocols requiring varying degrees of control affect cardiovascular dynamics. We measured inspiratory volume, end-tidal CO2, R-R interval, and arterial pressure spectral power in 10 volunteers who followed the following 5 breathing protocols: 1) uncontrolled breathing for 5 min; 2) stepwise frequency breathing (at 0.3, 0.25, 0.2, 0.15, 0.1, and 0.05 Hz for 2 min each); 3) stepwise frequency breathing as above, but with prescribed tidal volumes; 4) random-frequency breathing (approximately 0.5-0.05 Hz) for 6 min; and 5) fixed-frequency breathing (0.25 Hz) for 5 min. During stepwise breathing, R-R interval and arterial pressure spectral power increased as breathing frequency decreased. Control of inspired volume reduced R-R interval spectral power during 0.1 Hz breathing (P < 0.05). Stepwise and random-breathing protocols yielded comparable coherence and transfer functions between respiration and R-R intervals and systolic pressure and R-R intervals. Random- and fixed-frequency breathing reduced end-tidal CO2 modestly (P < 0.05). Our data suggest that stringent tidal volume control attenuates low-frequency R-R interval oscillations and that fixed- and random-rate breathing may decrease CO2 chemoreceptor stimulation. We conclude that autonomic rhythms measured during different breathing protocols have much in common but that a stepwise protocol without stringent control of inspired volume may allow for the most efficient assessment of short-term respiratory-mediated autonomic oscillations.

  10. The effects of three models of airway disease on tidal breathing flow-volume loops of thoroughbred horses.

    PubMed

    Guthrie, A J; Beadle, R E; Bateman, R D; White, C E

    1995-01-01

    The effects of histamine and methacholine aerosols and of a fixed inspiratory resistance on tidal breathing flow-volume loops (TBFVL) were investigated using 18 unsedated, standing, healthy thoroughbred horses. The data were first analysed using traditional flow-volume loop indices and then reduced using standardized factor scoring coefficients obtained in a previous study in this laboratory using similar experimental techniques. On the basis of resting TBFVL analysis, the degree of pulmonary dysfunction caused by inhalation of histamine and methacholine aerosols with concentrations of 10 and 2 mg/ml, respectively, was similar. The fixed resistance also caused significant changes in the resting spirogram and TBFVL indices, suggesting that this model may prove valuable for further studies involving upper respiratory tract (URT) conditions. Administration of histamine and methacholine aerosols resulted in significant changes in all factor scores, although most of the observed changes were due to the effects of these aerosols on the respiratory rate. These findings re-emphasize the importance of the effects of respiratory rate on pulmonary mechanics. Application of the resistance resulted in significant changes in factor score 3, the 'inspiratory' factor, which lends support to the validity of this model for URT conditions. The close agreement between the factor scores obtained under controlled conditions in this study and in a previous study in this laboratory confirms that the factor analysis used for both of these studies provides an adequate means of reducing TBFVL data obtained from thoroughbred horses. The large intra- and inter-individual variation observed both with the indices of TBFVL and with the factor scores limits the potential of these variables for detecting individual animals with obstructive airway disease. Re-evaluation of these indices under the stress of exercise may reduce the variability observed in these data and may increase the magnitude of

  11. Evaluation the effect of breathing filters on end-tidal carbon dioxide during inferior abdominal surgery in infants and changes of tidal volume and respiratory rate needs for preventing of increasing end-tidal carbon dioxide

    PubMed Central

    Sajedi, Parvin; Abooei, Mohsen; Shafa, Amir; Karbalaei, Mahboobeh; Babaei, Atefeh

    2016-01-01

    Background: The aim of this study was to prevent of increasing end-tidal carbon dioxide (ETCO2) with changing of vital capacity and respiratory rate when using of birthing filter in infants. Materials and Methods: In a randomized clinical trial study, ninety-four infant’ patients were studied in three groups. Basic values, such as peak inspiratory pressure, tidal volume, minute ventilation, respiratory rate, and partial pressure of ET CO2 (PETCO2) level had been evaluated after intubation, 10 min after intubation and 10 min after filter insertion. In the first group, patients only observed for changing in ETCO2 level. In the second and the third groups, respiratory rates and tidal volume had been increased retrospectively, until that ETCO2 ≤35 mmHg was received. We used ANOVA, Chi-square, and descriptive tests for data analysis. P < 0.05 was considered statistically significant. Results: Tidal volume 10 min after filter insertion was statistically higher in Group 3 (145.0 ± 26.3 ml) versus 129.3 ± 38.9 ml in Group 1 and 118.7 ± 20.8 ml in Group 2 (P = 0.02). Furthermore, respiratory rate at this time was statistically higher in Group 2 (25.82 ± 0.43) versus Groups 1 and 3 (21.05 ± 0.20 ml and 21.02 ± 0.60 ml, respectively) (P = 0.001). Minute volume and PETCO2 level were statistically significant between Group 1 and the other two groups after filter insertion (P = 0.01 and P = 0.00,1 respectively). Conclusion: With changing the vital capacity and respiratory rate we can control PETCO2 level ≤35 mmHg during using of birthing filters in infants. We recommend this instrument during anesthesia of infants. PMID:28255323

  12. Standardization procedure for the nasal nitric oxide measurement method using Niox MINO® and the tidal-breathing technique with velum-closure.

    PubMed

    Gelardi, M; Abbattista, G; Quaranta, V N; Quaranta, N; Seccia, V; Buttafava, S; Frati, F; Ciprandi, G

    2016-01-01

    Nitric oxide (NO) is a molecule that performs many functions in the human body. The entire respiratory tract can produce NO, but the highest production occurs in the upper respiratory tract, in the paranasal sinuses in particular. The aim of the present study was to assess a new nasal NO (nNO) measurement method using the Niox MINO Nasal® device (Aerocrine AB, Solna, Sweden) and a special procedure, in order to compare the nNO values obtained in 32 healthy subjects with the values found in the international literature. The measured normal nNO values were equal to 426.76±143.27 ppb, with a 95% confidence interval [160.22-733.30]. Males had an average nNO value equal to 446.76±133.63 [178.64 – 714.02], whereas in females the average value was 403.80±154.90 [94.00-713.60]. This study allows us to confirm that we have been able to establish the normal range of nitric oxide quantity produced in the nasal/sinus cavities of healthy individuals using the Niox MINO Nasal® device and tidal-breathing with velum-closure manoeuvre.

  13. Bad Breath

    MedlinePlus

    ... Emergency Room? What Happens in the Operating Room? Bad Breath KidsHealth > For Kids > Bad Breath A A ... visit your dentist or doctor . continue What Causes Bad Breath? Here are three common causes of bad ...

  14. Collection of breath for hydrogen estimation.

    PubMed

    Gardiner, A J; Tarlow, M J; Sutherland, I T; Sammons, H G

    1981-02-01

    The breath hydrogen test is used in gastroenterological investigation, particularly for sugar malabsorption, transit time, and the investigation of small-bowel bacterial overgrowth. Several methods of collecting breath from infants and children for hydrogen assay have been described. Four such techniques (postnasal catheter, nasal prong, Rahn-Otis end-tidal sampler, and modification of a party toy--the 'Wiggins's blowout') were compared with breath collection using the Haldane-Priestley tube. Multiple sampling of breath from 3 adults was performed after initial lactulose loads to increase breath hydrogen excretion. The variability between the different assay techniques was less than the inherent variability of repeated breath hydrogen assays using the same technique. Each technique is therefore adequate for breath hydrogen collection; we recommend the Rahn-Otis end-tidal sampler in young infants and children, and the Haldane-Priestley tube in older children, since these were most acceptable to the children and their parents.

  15. Breathing difficulty

    MedlinePlus

    ... difficulty in which you make a high-pitched sound when you breathe out. Causes Shortness of breath has many different causes. For ... episode have a similar pattern? Does breathing difficulty cause you to wake up at ... or wheezing sounds while breathing? Tests that may be ordered include: ...

  16. Breathing Problems

    MedlinePlus

    ... getting enough air. Sometimes you can have mild breathing problems because of a stuffy nose or intense ... panic attacks Allergies If you often have trouble breathing, it is important to find out the cause.

  17. Bad Breath

    MedlinePlus

    ... breath? Maybe you shouldn't have put extra onions on your hamburger at lunch. What's a kid ... bad breath: foods and drinks, such as garlic, onions, cheese, orange juice, and soda poor dental hygiene ( ...

  18. Breath-by-breath measurement of particle deposition in the lung of spontaneously breathing rats.

    PubMed

    Karrasch, S; Eder, G; Bolle, I; Tsuda, A; Schulz, H

    2009-10-01

    A number of deposition models for humans, as well as experimental animals, have been described. However, no breath-by-breath deposition measurement in rats has been reported to date. The objective of this study is to determine lung deposition of micrometer-sized particles as a function of breathing parameters in the adult rat lung. A new aerosol photometry system was designed to measure deposition of nonhygroscopic, 2-mum sebacate particles in anesthetized, intubated, and spontaneously breathing 90-day-old Wistar-Kyoto rats placed in a size-adjusted body plethysmograph box. Instrumental dead space of the system was minimized down to 310 microl (i.e., approximately 20% of respiratory dead space). The system allows continuous monitoring of particle concentration in the respired volume. Breathing parameters, such as respiratory rate (f), tidal volume (Vt), as well as inspiration/expiration times, were also monitored at different levels of anesthesia. The results showed that Vt typically varied between 1.5 and 4.0 ml for regular breathing and between 4.0 and 10.0 ml for single-sigh breaths; f ranged from 40 to 200 breaths/min. Corresponding deposition values varied between 5 and 50%, depending on breath-by-breath breathing patterns. The best fit of deposition (D) was achieved by a bilinear function of Vt and f and found to be D = 11.0 - 0.09.f + 3.75.Vt. We conclude that our approach provides more realistic conditions for the measurement of deposition than conventional models using ventilated animals and allows us to analyze the correlation between breath-specific deposition and spontaneous breathing patterns.

  19. Lamaze Breathing

    PubMed Central

    Lothian, Judith A.

    2011-01-01

    Lamaze breathing historically is considered the hallmark of Lamaze preparation for childbirth. This column discusses breathing in the larger context of contemporary Lamaze. Controlled breathing enhances relaxation and decreases perception of pain. It is one of many comfort strategies taught in Lamaze classes. In restricted birthing environments, breathing may be the only nonpharmacological comfort strategy available to women. Conscious breathing and relaxation, especially in combination with a wide variety of comfort strategies, can help women avoid unnecessary medical intervention and have a safe, healthy birth. PMID:22379360

  20. Wetlands: Tidal

    USGS Publications Warehouse

    Conner, William H.; Krauss, Ken W.; Baldwin, Andrew H.; Hutchinson, Stephen

    2014-01-01

    Tidal wetlands are some of the most dynamic areas of the Earth and are found at the interface between the land and sea. Salinity, regular tidal flooding, and infrequent catastrophic flooding due to storm events result in complex interactions among biotic and abiotic factors. The complexity of these interactions, along with the uncertainty of where one draws the line between tidal and nontidal, makes characterizing tidal wetlands a difficult task. The three primary types of tidal wetlands are tidal marshes, mangroves, and freshwater forested wetlands. Tidal marshes are dominated by herbaceous plants and are generally found at middle to high latitudes of both hemispheres. Mangrove forests dominate tropical coastlines around the world while tidal freshwater forests are global in distribution. All three wetland types are highly productive ecosystems, supporting abundant and diverse faunal communities. Unfortunately, these wetlands are subject to alteration and loss from both natural and anthropogenic causes.

  1. Syllable-Related Breathing in Infants in the Second Year of Life

    ERIC Educational Resources Information Center

    Parham, Douglas F.; Buder, Eugene H.; Oller, D. Kimbrough; Boliek, Carol A.

    2011-01-01

    Purpose: This study explored whether breathing behaviors of infants within the 2nd year of life differ between tidal breathing and breathing supporting single unarticulated syllables and canonical/articulated syllables. Method: Vocalizations and breathing kinematics of 9 infants between 53 and 90 weeks of age were recorded. A strict selection…

  2. Alveolar gas composition and exchange during deep breath-hold diving and dry breath holds in elite divers.

    PubMed

    Ferretti, G; Costa, M; Ferrigno, M; Grassi, B; Marconi, C; Lundgren, C E; Cerretelli, P

    1991-02-01

    End tidal O2 and CO2 (PETCO2) pressures, expired volume, blood lactate concentration ([Lab]), and arterial blood O2 saturation [dry breath holds (BHs) only] were assessed in three elite breath-hold divers (ED) before and after deep dives and BH and in nine control subjects (C; BH only). After the dives (depth 40-70 m, duration 88-151 s), end-tidal O2 pressure decreased from approximately 140 Torr to a minimum of 30.6 Torr, PETCO2 increased from approximately 25 Torr to a maximum of 47.0 Torr, and expired volume (BTPS) ranged from 1.32 to 2.86 liters. Pulmonary O2 exchange was 455-1,006 ml. CO2 output approached zero. [Lab] increased from approximately 1.2 mM to at most 6.46 mM. Estimated power output during dives was 513-929 ml O2/min, i.e. approximately 20-30% of maximal O2 consumption. During BH, alveolar PO2 decreased from approximately 130 to less than 30 Torr in ED and from 125 to 45 Torr in C. PETCO2 increased from approximately 30 to approximately 50 Torr in both ED and C. Contrary to C, pulmonary O2 exchange in ED was less than resting O2 consumption, whereas CO2 output approached zero in both groups. [Lab] was unchanged. Arterial blood O2 saturation decreased more in ED than in C. ED are characterized by increased anaerobic metabolism likely due to the existence of a diving reflex.

  3. Breathing exercises: influence on breathing patterns and thoracoabdominal motion in healthy subjects

    PubMed Central

    Vieira, Danielle S. R.; Mendes, Liliane P. S.; Elmiro, Nathália S.; Velloso, Marcelo; Britto, Raquel R.; Parreira, Verônica F.

    2014-01-01

    BACKGROUND: The mechanisms underlying breathing exercises have not been fully elucidated. OBJECTIVES: To evaluate the impact of four on breathing exercises (diaphragmatic breathing, inspiratory sighs, sustained maximal inspiration and intercostal exercise) the on breathing pattern and thoracoabdominal motion in healthy subjects. METHOD: Fifteen subjects of both sexes, aged 23±1.5 years old and with normal pulmonary function tests, participated in the study. The subjects were evaluated using the optoelectronic plethysmography system in a supine position with a trunk inclination of 45° during quiet breathing and the breathing exercises. The order of the breathing exercises was randomized. Statistical analysis was performed by the Friedman test and an ANOVA for repeated measures with one factor (breathing exercises), followed by preplanned contrasts and Bonferroni correction. A p<0.005 value was considered significant. RESULTS: All breathing exercises significantly increased the tidal volume of the chest wall (Vcw) and reduced the respiratory rate (RR) in comparison to quiet breathing. The diaphragmatic breathing exercise was responsible for the lowest Vcw, the lowest contribution of the rib cage, and the highest contribution of the abdomen. The sustained maximal inspiration exercise promoted greater reduction in RR compared to the diaphragmatic and intercostal exercises. Inspiratory sighs and intercostal exercises were responsible for the highest values of minute ventilation. Thoracoabdominal asynchrony variables increased significantly during diaphragmatic breathing. CONCLUSIONS: The results showed that the breathing exercises investigated in this study produced modifications in the breathing pattern (e.g., increase in tidal volume and decrease in RR) as well as in thoracoabdominal motion (e.g., increase in abdominal contribution during diaphragmatic breathing), among others. PMID:25590447

  4. Bad Breath

    MedlinePlus

    ... for lunch. But certain strong-smelling foods like onions and garlic can cause bad breath. So can ... leave behind strong smells, like cabbage, garlic, raw onions, and coffee. If you’re trying to lose ...

  5. Breath odor

    MedlinePlus

    ... drain their stomach. The breath may have an ammonia-like odor (also described as urine-like or " ... Is there a specific odor (such as fish, ammonia, fruit, feces, or alcohol)? Have you recently eaten ...

  6. Tidal Energy.

    ERIC Educational Resources Information Center

    Impact of Science on Society, 1987

    1987-01-01

    States that tidal power projects are feasible in a relatively limited number of locations around the world. Claims that together they could theoretically produce the energy equivalent to more than one million barrels of oil per year. (TW)

  7. How to breathe when you are short of breath

    MedlinePlus

    Pursed lip breathing; COPD - pursed lip breathing; Emphysema - pursed lip breathing; Chronic bronchitis - pursed lip breathing; Pulmonary fibrosis - pursed lip breathing; Interstitial lung disease - pursed lip breathing; Hypoxia - pursed lip breathing; ...

  8. Medical Issues: Breathing

    MedlinePlus

    ... support & care > living with sma > medical issues > breathing Breathing Breathing problems are the most common cause of illness for children with SMA. Breathing Risks In healthy individuals, the muscles between the ...

  9. [Investigation of the structure breathing pattern in competitive exercises have athletes kettlebell Lifters].

    PubMed

    Tikhonov, V F; Agafonkina, T V

    2014-01-01

    The aim of the research is to determine the breathing pattern characteristics of kettlebell athletes. The main indicators were identified: breathing frequency (f), tidal volume (VT), minute ventilation (VE). We also searched for the dependence of these parameters using the weight of kettlebells and skill of the athletes.We used the spirograph SMP-21/01-"R-D" for qualitative and quantitative evaluation of the miain indicators of kettlebell athletes breathing patterns. Athletes who achieved Masters of Sports (MS) and candidate masters of sport (CMS), their changes in breathing during exercise occurs mainly on two parameters--the frequeincy of breathing and tidal yolume. We found out while the weight of the kettlebell increases the breathing frequen- cy increases and tidal volume decreases. Athletes who achieved International Masters of Sports (MSIC), they dominated the change of one parameter of breathing--on the tidalivolume, which increases from 0.7 +/- 0.11 to 1.2 +/- 0.11 (p < 001). In MSIC athletes tidal volume is approximately to level of 1.2 +/- 0.1, which invariably leads to an increase in breathing frequency. We discovered transition forms of breathing in competition exercises of Kettlebell sport. In our opinion high performance level of athletes is related to undergoing breathing regulation, trying constantly to keep same level of gas composition in functional residual capacity (FRC) at a time ofperforming competition exercises. This research highlights the importance of improving breathing patterns for Kettlebell athletes if they want to improve performance.

  10. Tidal Meanders

    NASA Astrophysics Data System (ADS)

    Marani, M.; Lanzoni, S.; Zandolin, D.; Seminara, S.; Rinaldo, A.

    Observational evidence is presented on the geometry of meandering tidal channels evolved within coastal wetlands characterized by different tidal, hydrodynamic, to- pographic, vegetational and ecological features. New insight is provided on the ge- ometrical properties of tidal meanders, with possible dynamic implications on their evolution. In particular, it is shown that large spatial gradients of leading flow rates induce important spatial variabilities of meander wavelengths and widths, while their ratio remains remarkably constant in the range of scales of observation. This holds regardless of changes in width and wavelength up to two orders of magnitude. This suggests a locally adapted evolution, involving the morphological adjustment to the chief landforming events driven by local hydrodynamics. The spectral analysis of lo- cal curvatures reveals that Kinoshita's model curve does not fit tidal meanders due to the presence of even harmonics, in particular the second mode. Geometric parameters are constructed that are suitable to detect possible geomorphic signatures of the tran- sitions from ebb- to flood-dominated hydrodynamics, here related to the skewness of the tidal meander. Trends in skewness, however, prove elusive to measure and fail to show detectable patterns. We also study comparatively the spatial patterns of evolu- tion of the ratios of channel width to depth, and the ratio of width to local radius of curvature. Interestingly, the latter ratio exhibits consistency despite sharp differences in channel incision. Since the degree of incision, epitomized by the width-to-depth ratio, responds to the relevant erosion and migrations mechanisms and is much sen- sitive to vegetation and sediment properties, it is noticeable that we observe a great variety of landscape carving modes and yet recurrent planar features like constant width/curvature and wavelength/width ratios.

  11. Breathing and Relaxation

    MedlinePlus

    ... Home Health Insights Stress & Relaxation Breathing and Relaxation Breathing and Relaxation Make an Appointment Ask a Question ... level is often dependent on his or her breathing pattern. Therefore, people with chronic lung conditions may ...

  12. Deep breathing after surgery

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000440.htm Deep breathing after surgery To use the sharing features on ... way to do so is by doing deep breathing exercises. Deep breathing keeps your lungs well-inflated ...

  13. Rapid shallow breathing

    MedlinePlus

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Shallow, rapid breathing has many possible medical causes, including: Asthma Blood clot in an artery in the lung Choking Chronic obstructive ...

  14. Voluntary control of breathing does not alter vagal modulation of heart rate

    NASA Technical Reports Server (NTRS)

    Patwardhan, A. R.; Evans, J. M.; Bruce, E. N.; Eckberg, D. L.; Knapp, C. F.

    1995-01-01

    Variations in respiratory pattern influence the heart rate spectrum. It has been suggested, hence, that metronomic respiration should be used to correctly assess vagal modulation of heart rate by using spectral analysis. On the other hand, breathing to a metronome has been reported to increase heart rate spectral power in the high- or respiratory frequency region; this finding has led to the suggestion that metronomic respiration enhances vagal tone or alters vagal modulation of heart rate. To investigate whether metronomic breathing complicates the interpretation of heart rate spectra by altering vagal modulation, we recorded the electrocardiogram and respiration from eight volunteers during three breathing trials of 10 min each: 1) spontaneous breathing (mean rate of 14.4 breaths/min); 2) breathing to a metronome at the rate of 15, 18, and 21 breaths/min for 2, 6, and 2 min, respectively; and 3) breathing to a metronome at the rate of 18 breaths/min for 10 min. Data were also collected from eight volunteers who breathed spontaneously for 20 min and breathed metronomically at each subject's mean spontaneous breathing frequency for 20 min. Results from the three 10-min breathing trials showed that heart rate power in the respiratory frequency region was smaller during metronomic breathing than during spontaneous breathing. This decrease could be explained fully by the higher breathing frequencies used during trials 2 and 3 of metronomic breathing. When the subjects breathed metronomically at each subject's mean breathing frequency, the heart rate powers during metronomic breathing were similar to those during spontaneous breathing. Our results suggest that vagal modulation of heart rate is not altered and vagal tone is not enhanced during metronomic breathing.

  15. [Irregular breathing during the cardiopulmonary exercise test - from mildly irregular breathing pattern to periodic breathing of oscillatory ventilation type].

    PubMed

    Várnay, František; Mífková, Leona; Homolka, Pavel; Dobšák, Petr

    2017-01-01

    The fluctuating course of tidal volume (VT), breathing frequency (DF) and minute ventilation (VE) during the cardio-pulmonary exercise test using a ramp incremental protocol occurs not only in patients, but relatively frequently also in healthy individuals. It can account for a number of irregularities in the course of the curves VO2, VCO2 and in particular of those of ventilatory equivalents for O2 and CO2 (EQO2, EQCO2) as well as curves of partial pressure of end-tidal oxygen and partial pressure of end-tidal carbon dioxide (PETO2, PETCO2), which are also used, inter alia, to establish ventilatory thresholds. The presence of exercise oscillatory ventilation (EOV) reflects the severity of heart failure and it is an independent predictor of the increased morbidity, cardiac and total mortality and sudden death caused by heart failure. However there is not a generally accepted universal definition of EOV available at present, as different criteria are used. We have not found a comparison which would indicate whether and how the "strength" of the prognostic criteria for EOV - established according to different methods - differs. Therefore it is very important to specify what method, or what criteria were used in the establishment of EOV.Key words: breathing pattern - EOV - exercise oscillatory ventilation - periodic breathing.

  16. Expiratory tidal volume displayed on Bird 8400 STi can exceed the preset tidal volume due to cardiogenic oscillation: a lung model study.

    PubMed

    Imanaka, Hideaki; Takeuchi, Muneyuki; Tachibana, Kazuya; Nishimura, Masaji

    2004-01-01

    We noticed that monitored tidal volumes often exceeded preset tidal volumes in patients with large cardiogenic oscillation. To investigate whether triggering modes affect this discrepancy, we simulated cardiogenic oscillation of 90 breaths/min in a lung model, which was ventilated with a Bird 8400 STi ventilator (Bird, Palm Springs, CA, USA). The magnitude of cardiogenic oscillation was defined as peak expiratory flow fluctuation at the lung model. Two respiratory rates (5 and 10 breaths/min) and two triggering modes (flow-triggering and pressure-triggering) were applied, while tidal volume was set at 500 ml. We recorded tidal volume on a ventilator monitor and calculated the discrepancy from the set tidal volume. We also measured fluctuation in flow and airway opening pressure created by cardiogenic oscillation. During flow-triggering, larger flow fluctuation and smaller airway pressure fluctuation were observed compared with during pressure-triggering. During flow-triggering, the discrepancy between monitored tidal volume and set value ranged from 0 to +327 ml at 5 breaths/min, and from 0 to +105 ml at 10 breaths/min. There was a linear correlation between the magnitude of cardiogenic oscillation and the overestimation of tidal volume. By contrast, during pressure-triggering, the discrepancy was small. In conclusion, tidal volume is overestimated during flow-triggering but not during pressure-triggering when cardiogenic oscillation is large.

  17. Tidal power in Argentina

    SciTech Connect

    Aisiks, E.G.

    1993-03-01

    This presentation describes the tidal power potential of Argentina and the current status of its utilization. The topics of the presentation include tidal power potential, electric production of the region and the Argentine share of production and consumption, conventional hydroelectric potential, economic feasibility of tidal power production, and the general design and feasibility of a tidal power plant planned for the San Jose Gulf.

  18. Breath hydrogen reflects canine intestinal ischemia.

    PubMed

    Perman, J A; Waters, L A; Harrison, M R; Yee, E S; Heldt, G P

    1981-09-01

    The relationship between breath hydrogen excretion and intestinal ischemia was investigated in nine mechanically ventilated dogs under pentobarbital anesthesia. An ileal segment was isolated in situ, ligated at each end, and insufflated with hydrogen. Expired air was collected at intervals. Blood volume was reduced 30% by three successive equivalent hemorrhages 10 min apart. Local bowel ischemia was produced by clamping the blood supply to the isolated segment for 10 min. Graded hemorrhage produced step-wise reductions in breath hydrogen concentration, to 77 +/- 13, 66 +/- 15, and 35 +/- 8% (mean +/- S.E.) of baseline after the first, second, and third hemorrhages, respectively. These reductions correlated highly (r = 0.84; P less than 0.01) with declines in mean aortic blood pressure. Occlusion of blood supply caused a significant (P less than 0.025) decrease in breath hydrogen concentration and excretion to 39 +/- 14% of baseline. Termination of occlusion was followed within 2 min by a 7-fold increase in breath H2 concentration above the original baseline, probably reflecting reactive hyperemia. Breath hydrogen measurements appear to reflect functional (hemorrhagic shock-induced) and mechanical (vascular occlusion induced) enteric ischemia in dogs.

  19. Tidal Asteroseismology

    NASA Astrophysics Data System (ADS)

    Burkart, Joshua

    2012-01-01

    The recently discovered Kepler system KOI-54 is a face-on eccentric binary consisting of two similar A stars. Its lightcurve exhibits 20 tidally excited pulsations at perfect harmonics of the orbital frequency, and another 10 nonharmonic pulsations. Analysis of such data is a new form of asteroseismology in which oscillation amplitudes and phases rather than frequencies contain information that can be mined to constrain stellar properties. I will discuss the physics of mode excitation and the range of harmonics expected to be observed. I will then show the results of numerical modeling of the pulsation spectrum, using a nonadiabatic stellar oscillation code including rotation in the "traditional approximation", which qualitatively reproduce the observations. I will discuss the evolutionary history of the KOI-54 system, and will show that the system is likely in a state of stochastic dynamical pseudosynchronization with stellar spin periods of 1.5 days, significantly faster than the classical theoretical prediction of 2.5 days. Time permitting, I will also address the nonharmonic pulsations observed in KOI-54, and show that they can be produced by nonlinear three-mode coupling.

  20. A fibre-optic oxygen sensor for monitoring human breathing.

    PubMed

    Chen, Rongsheng; Formenti, Federico; Obeid, Andy; Hahn, Clive E W; Farmery, Andrew D

    2013-09-01

    The development and construction of a tapered-tip fibre-optic fluorescence based oxygen sensor is described. The sensor is suitable for fast and real-time monitoring of human breathing. The sensitivity and response time of the oxygen sensor were evaluated in vitro with a gas pressure chamber system, where oxygen partial pressure was rapidly changed between 5 and 15 kPa, and then in vivo in five healthy adult participants who synchronized their breathing to a metronome set at 10, 20, 30, 40, 50, and 60 breaths min(-1). A Datex Ultima medical gas analyser was used to monitor breathing rate as a comparator. The sensor's response time in vitro was less than 150 ms, which allows accurate continuous measurement of inspired and expired oxygen pressure. Measurements of breathing rate by means of our oxygen sensor and of the Datex Ultima were in strong agreement. The results demonstrate that the device can reliably resolve breathing rates up to 60 breaths min(-1), and that it is a suitable cost-effective alternative for monitoring breathing rates and end-tidal oxygen partial pressure in the clinical setting. The rapid response time of the sensor may allow its use for monitoring rapid breathing rates as occur in children and the newborn.

  1. Minimizing Shortness of Breath

    MedlinePlus

    ... postures and exposure to environmental irritants. Pursed-Lip Breathing One focus of occupational therapy is to teach ... the accessory muscles and manage respiratory symptoms. Monitor Breathing During an activity, it is important to pause ...

  2. Breathing difficulty - lying down

    MedlinePlus

    Waking at night short of breath; Paroxysmal nocturnal dyspnea; PND; Difficulty breathing while lying down; Orthopnea ... obstructive pulmonary disease (COPD) Cor pulmonale Heart failure ... conditions that lead to it) Panic disorder Sleep apnea Snoring

  3. What Causes Bad Breath?

    MedlinePlus

    ... A Week of Healthy Breakfasts Shyness What Causes Bad Breath? KidsHealth > For Teens > What Causes Bad Breath? A A A en español ¿Qué es lo que provoca el mal aliento? Bad breath, or halitosis , can be a major problem, ...

  4. Hypoxia switches episodic breathing to singlet breathing in red-eared slider turtles (Trachemys scripta) via a tropisetron-sensitive mechanism.

    PubMed

    Johnson, Stephen M; Krisp, Ashley R; Bartman, Michelle E

    2015-02-01

    Hypoxia-induced changes in the chelonian breathing pattern are poorly understood. Thus, breathing was measured in freely swimming adult red-eared slider turtles breathing air prior to breathing nitrogen for 4h. Ventilation increased 10-fold within 10min due to increased breath frequency and tidal volume. Breaths/episode decreased by ∼50% within after 1h of hypoxia while the number of singlet breaths increased from 3.1±1.6singlets/h to a maximum of 66.1±23.5singlets/h. Expiratory and inspiratory duration increased during hypoxia. For doublet and triplet breaths, expiratory duration increased during the first breath only, while inspiratory duration increased for all breaths. Tropisetron (5-HT3 receptor antagonist, 5mg/kg) administration prior to hypoxia attenuated the hypoxia-induced increase in singlet breath frequency. Along with results from previous in vitro studies, this study suggests that 5-HT3 receptor activation may be required for the hypoxia-induced increase in singlet breathing pattern in red-eared slider turtles.

  5. Breathing metabolic simulator

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G.; Hendricks, C. M.; Morison, W. B.

    1972-01-01

    The development of a breathing metabolic simulator (BMS) is reported. This BMS simulates all of the breathing and metabolic parameters required for complete evaluation and test of life support and resuscitation equipment. It is also useful for calibrating and validating mechanical and gaseous pulmonary function test procedures. Breathing rate, breathing depth, breath velocity contour, oxygen uptake, and carbon dioxide release are all variable over wide ranges simulating conditions from sleep to hard work with respiratory exchange ratios covering the range from hypoventilation. In addition, all of these parameters are remotely controllable to facilitate use of the device in hostile or remote environments. The exhaled breath is also maintained at body temperature and a high humidity. The simulation is accurate to the extent of having a variable functional residual capacity independent of other parameters.

  6. Implementation of Fowler's method for end-tidal air sampling.

    PubMed

    Di Francesco, F; Loccioni, C; Fioravanti, M; Russo, A; Pioggia, G; Ferro, M; Roehrer, I; Tabucchi, S; Onor, M

    2008-09-01

    The design, realization and testing of a CO(2)-triggered breath sampler, capable of a separate collection of dead space and end-tidal air on multiple breaths, is presented. This sampling procedure has advantages in terms of the sample volume, insights regarding the origin of compounds, increased reproducibility and higher concentrations of compounds. The high quality of design and the speed of the components ensure a breath-by-breath estimate of dead volume, as well as the comfort and safety of the subject under test. The system represents a valid tool to contribute to the development of a standardized sampling protocol needed to compare results obtained by the various groups in this field.

  7. Air-breathing adaptation in a marine Devonian lungfish

    PubMed Central

    Clement, Alice M.; Long, John A.

    2010-01-01

    Recent discoveries of tetrapod trackways in 395 Myr old tidal zone deposits of Poland (Niedźwiedzki et al. 2010 Nature 463, 43–48 (doi:10.1038/nature.08623)) indicate that vertebrates had already ventured out of the water and might already have developed some air-breathing capacity by the Middle Devonian. Air-breathing in lungfishes is not considered to be a shared specialization with tetrapods, but evolved independently. Air-breathing in lungfishes has been postulated as starting in Middle Devonian times (ca 385 Ma) in freshwater habitats, based on a set of skeletal characters involved in air-breathing in extant lungfishes. New discoveries described herein of the lungfish Rhinodipterus from marine limestones of Australia identifies the node in dipnoan phylogeny where air-breathing begins, and confirms that lungfishes living in marine habitats had also developed specializations to breathe air by the start of the Late Devonian (ca 375 Ma). While invasion of freshwater habitats from the marine realm was previously suggested to be the prime cause of aerial respiration developing in lungfishes, we believe that global decline in oxygen levels during the Middle Devonian combined with higher metabolic costs is a more likely driver of air-breathing ability, which developed in both marine and freshwater lungfishes and tetrapodomorph fishes such as Gogonasus. PMID:20147310

  8. Comparison of maximal oxygen consumption with oral and nasal breathing.

    PubMed

    Morton, A R; King, K; Papalia, S; Goodman, C; Turley, K R; Wilmore, J H

    1995-09-01

    The major cause of exercise-induced asthma (EIA) is thought to be the drying and cooling of the airways during the 'conditioning' of the inspired air. Nasal breathing increases the respiratory system's ability to warm and humidity the inspired air compared to oral breathing and reduces the drying and cooling effects of the increased ventilation during exercise. This will reduce the severity of EIA provoked by a given intensity and duration of exercise. The purpose of the study was to determine the exercise intensity (%VO2 max) at which healthy subjects, free from respiratory disease, could perform while breathing through the nose-only and to compare this with mouth-only and mouth plus nose breathing. Twenty subjects (11 males and 9 females) ranging from 18-55 years acted as subjects in this study. They were all non-smokers and non-asthmatic. At the time of the study, all subjects were involved in regular physical activity and were classified, by a physician, as free from nasal polyps or other nasal obstruction. The percentage decrease in maximal ventilation with nose-only breathing compare to mouth and mouth plus nose breathing was three times the percentage decrease in maximal oxygen consumption. The pattern of nose-only breathing at maximal work showed a small reduction in tidal volume and large reduction in breathing frequency. Nasal breathing resulted in a reduction in FEO2 and an increase in FECO2. While breathing through the nose-only, all subjects could attain a work intensity great enough to produce an aerobic training effect (based on heart rate and percentage of VO2 max).

  9. From breathing to respiration.

    PubMed

    Fitting, Jean-William

    2015-01-01

    The purpose of breathing remained an enigma for a long time. The Hippocratic school described breathing patterns but did not associate breathing with the lungs. Empedocles and Plato postulated that breathing was linked to the passage of air through pores of the skin. This was refuted by Aristotle who believed that the role of breathing was to cool the heart. In Alexandria, breakthroughs were accomplished in the anatomy and physiology of the respiratory system. Later, Galen proposed an accurate description of the respiratory muscles and the mechanics of breathing. However, his heart-lung model was hampered by the traditional view of two non-communicating vascular systems - veins and arteries. After a period of stagnation in the Middle Ages, knowledge progressed with the discovery of pulmonary circulation. The comprehension of the purpose of breathing progressed by steps thanks to Boyle and Mayow among others, and culminated with the contribution of Priestley and the discovery of oxygen by Lavoisier. Only then was breathing recognized as fulfilling the purpose of respiration, or gas exchange. A century later, a controversy emerged concerning the active or passive transfer of oxygen from alveoli to the blood. August and Marie Krogh settled the dispute, showing that passive diffusion was sufficient to meet the oxygen needs.

  10. Breathing-metabolic simulator

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G.; Hendricks, C. M.; Morison, W. B.

    1972-01-01

    Breathing-metabolic simulator was developed to be used for evaluation of life support equipment. Apparatus simulates human breathing rate and controls temperature and humidity of exhaled air as well as its chemical composition. All functions are designed to correspond to various degrees of human response.

  11. What Controls Your Breathing?

    MedlinePlus

    ... Explore How the Lungs Work What Are... The Respiratory System What Happens When You Breathe What Controls Your Breathing Lung Diseases & Conditions Clinical Trials Links Related Topics Asthma Bronchitis COPD How the Heart Works Respiratory Failure Send a link to NHLBI to someone ...

  12. Shortness of Breath

    MedlinePlus

    Symptoms Shortness of breath By Mayo Clinic Staff Few sensations are as frightening as not being able to get enough air. Shortness of breath — known medically as dyspnea — is often described as an intense tightening in the chest, air hunger or a ...

  13. TIDEV: Tidal Evolution package

    NASA Astrophysics Data System (ADS)

    Cuartas-Restrepo, P.; Melita, M.; Zuluaga, J.; Portilla, B.; Sucerquia, M.; Miloni, O.

    2016-09-01

    TIDEV (Tidal Evolution package) calculates the evolution of rotation for tidally interacting bodies using Efroimsky-Makarov-Williams (EMW) formalism. The package integrates tidal evolution equations and computes the rotational and dynamical evolution of a planet under tidal and triaxial torques. TIDEV accounts for the perturbative effects due to the presence of the other planets in the system, especially the secular variations of the eccentricity. Bulk parameters include the mass and radius of the planet (and those of the other planets involved in the integration), the size and mass of the host star, the Maxwell time and Andrade's parameter. TIDEV also calculates the time scale that a planet takes to be tidally locked as well as the periods of rotation reached at the end of the spin-orbit evolution.

  14. Breathing metabolic simulator.

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G., Jr.; Hendricks, C. M.; Morison, W. B.

    1971-01-01

    Description of a device for simulation of the human breathing and metabolic parameters required for the evaluation of respiratory diagnostic, monitoring, support and resuscitation equipment. The remotely controlled device allows wide variations in breathing rate and depth, breath velocity contour, oxygen uptake and carbon dioxide release to simulate conditions from sleep to hard work, with respiration exchange ratios ranging from hypoventilation to hyperventilation. It also reduces the cost of prolonged testing when simulation chambers with human subjects require three shifts of crews and standby physicians. Several block diagrams of the device and subsystems are given.

  15. Breathing pattern and ventilatory control in chronic tetraplegia.

    PubMed

    Spungen, Ann M; Bauman, William A; Lesser, Marvin; McCool, F Dennis

    2009-01-01

    Blunted ventilatory responses to carbon dioxide indicate that respiratory control is impaired when ventilation is stimulated in individuals with tetraplegia; however, respiratory control during resting breathing has not been extensively studied in this population. Our objective was to evaluate respiratory control and sigh frequency during resting breathing in persons with tetraplegia. A prospective, two-group comparative study was performed. Breathing pattern was assessed in ten outpatients with chronic tetraplegia and eight age- and gender-matched able-bodied controls. Subjects were noninvasively monitored for 1 h, while seated and at rest. Tidal volume (V(T)) was calculated from the sum of the anteroposterior displacements of the rib cage and abdomen and the axial displacement of the chest wall. Inspiratory time (T(I)), V(T), and the ratio of V(T) to inspiratory time (V(T)/T(I)) were calculated breath by breath. A sigh was defined as any breath greater than two or more times an individual's mean V(T). Minute ventilation, V(T)/T(I), and sigh frequency were reduced in tetraplegia compared with controls (5.24 +/- 1.15 vs. 7.16 +/- 1.29 L/min, P < 0.005; 208 +/- 45 vs. 284 +/- 47 ml/s, P < 0.005; and 11 +/- 7 vs. 42 +/- 19 sighs/h, P < 0.0005, respectively). V(T)/T(I) was associated with sigh frequency in both groups (tetraplegia: R = 0.88; P = 0.001 and control: R = 0.70; P < 0.05). We concluded that reductions in minute ventilation, V(T)/T(I), and sigh frequency suggest that respiratory drive is diminished during resting breathing in subjects with tetraplegia. These findings extend prior observations of disordered respiratory control during breathing stimulated by CO(2) in tetraplegia to resting breathing.

  16. A Novel Method for Extracting Respiration Rate and Relative Tidal Volume from Infrared Thermography

    PubMed Central

    Lewis, Gregory F.; Gatto, Rodolfo G.; Porges, Stephen W.

    2010-01-01

    In psychophysiological research, measurement of respiration has been dependent on transducers having direct contact with the participant. The current study provides empirical data demonstrating that a noncontact technology, infrared video thermography, can accurately estimate breathing rate and relative tidal volume across a range of breathing patterns. Video tracking algorithms were applied to frame-by-frame thermal images of the face to extract time series of nostril temperature and to generate breath-by-breath measures of respiration rate and relative tidal volume. The thermal indices of respiration were contrasted with criterion measures collected with inductance plethysmography. The strong correlations observed between the technologies demonstrate the potential use of facial video thermography as a noncontact technology to monitor respiration. PMID:21214587

  17. Breath-Holding Spells

    MedlinePlus

    ... cause kids to stop breathing and sometimes lose consciousness for up to a minute. In the most ... pose a choking hazard once your child regains consciousness roll your child over onto his or her ...

  18. Breathing - slowed or stopped

    MedlinePlus

    ... who is not responsive is called cardiac (or cardiopulmonary) arrest. In infants and children, the most common ... brain inflammation and infection that affects vital brain functions) Gastroesophageal reflux (heartburn) Holding one's breath Meningitis (inflammation ...

  19. Breathing difficulties - first aid

    MedlinePlus

    ... the wound. Bandage such wounds at once. A "sucking" chest wound allows air to enter the person's ... things you can do to help prevent breathing problems: If you have a history of severe allergic ...

  20. Shortness of Breath

    MedlinePlus

    ... with blood clots in the legs or pelvis (deep venous thrombosis), debilitating medical conditions, immobility, or inherited ... it hard for a person to take a deep breath, which usually results in retention of carbon ...

  1. Shortness-of-Breath

    MedlinePlus

    ... can lead to shortness of breath include anxiety, panic attacks, anemia and even constipation. The experience of shortness ... are used to treat patients with anxiety or panic attacks. Other commonly used drugs include bronchodilators to widen ...

  2. Breath-Holding Spells

    MedlinePlus

    ... Lessons? Visit KidsHealth in the Classroom What Other Parents Are Reading Your Child's Development (Birth to 3 Years) Feeding Your 1- to 3-Month-Old Feeding Your 4- to 7-Month-Old Feeding Your 8- to 12-Month-Old Feeding Your 1- to 2-Year-Old Breath-Holding ... > For Parents > Breath-Holding Spells Print A A A What's ...

  3. Slow breathing and hypoxic challenge: cardiorespiratory consequences and their central neural substrates.

    PubMed

    Critchley, Hugo D; Nicotra, Alessia; Chiesa, Patrizia A; Nagai, Yoko; Gray, Marcus A; Minati, Ludovico; Bernardi, Luciano

    2015-01-01

    Controlled slow breathing (at 6/min, a rate frequently adopted during yoga practice) can benefit cardiovascular function, including responses to hypoxia. We tested the neural substrates of cardiorespiratory control in humans during volitional controlled breathing and hypoxic challenge using functional magnetic resonance imaging (fMRI). Twenty healthy volunteers were scanned during paced (slow and normal rate) breathing and during spontaneous breathing of normoxic and hypoxic (13% inspired O2) air. Cardiovascular and respiratory measures were acquired concurrently, including beat-to-beat blood pressure from a subset of participants (N = 7). Slow breathing was associated with increased tidal ventilatory volume. Induced hypoxia raised heart rate and suppressed heart rate variability. Within the brain, slow breathing activated dorsal pons, periaqueductal grey matter, cerebellum, hypothalamus, thalamus and lateral and anterior insular cortices. Blocks of hypoxia activated mid pons, bilateral amygdalae, anterior insular and occipitotemporal cortices. Interaction between slow breathing and hypoxia was expressed in ventral striatal and frontal polar activity. Across conditions, within brainstem, dorsal medullary and pontine activity correlated with tidal volume and inversely with heart rate. Activity in rostroventral medulla correlated with beat-to-beat blood pressure and heart rate variability. Widespread insula and striatal activity tracked decreases in heart rate, while subregions of insular cortex correlated with momentary increases in tidal volume. Our findings define slow breathing effects on central and cardiovascular responses to hypoxic challenge. They highlight the recruitment of discrete brainstem nuclei to cardiorespiratory control, and the engagement of corticostriatal circuitry in support of physiological responses that accompany breathing regulation during hypoxic challenge.

  4. Slow Breathing and Hypoxic Challenge: Cardiorespiratory Consequences and Their Central Neural Substrates

    PubMed Central

    Critchley, Hugo D.; Nicotra, Alessia; Chiesa, Patrizia A.; Nagai, Yoko; Gray, Marcus A.; Minati, Ludovico; Bernardi, Luciano

    2015-01-01

    Controlled slow breathing (at 6/min, a rate frequently adopted during yoga practice) can benefit cardiovascular function, including responses to hypoxia. We tested the neural substrates of cardiorespiratory control in humans during volitional controlled breathing and hypoxic challenge using functional magnetic resonance imaging (fMRI). Twenty healthy volunteers were scanned during paced (slow and normal rate) breathing and during spontaneous breathing of normoxic and hypoxic (13% inspired O2) air. Cardiovascular and respiratory measures were acquired concurrently, including beat-to-beat blood pressure from a subset of participants (N = 7). Slow breathing was associated with increased tidal ventilatory volume. Induced hypoxia raised heart rate and suppressed heart rate variability. Within the brain, slow breathing activated dorsal pons, periaqueductal grey matter, cerebellum, hypothalamus, thalamus and lateral and anterior insular cortices. Blocks of hypoxia activated mid pons, bilateral amygdalae, anterior insular and occipitotemporal cortices. Interaction between slow breathing and hypoxia was expressed in ventral striatal and frontal polar activity. Across conditions, within brainstem, dorsal medullary and pontine activity correlated with tidal volume and inversely with heart rate. Activity in rostroventral medulla correlated with beat-to-beat blood pressure and heart rate variability. Widespread insula and striatal activity tracked decreases in heart rate, while subregions of insular cortex correlated with momentary increases in tidal volume. Our findings define slow breathing effects on central and cardiovascular responses to hypoxic challenge. They highlight the recruitment of discrete brainstem nuclei to cardiorespiratory control, and the engagement of corticostriatal circuitry in support of physiological responses that accompany breathing regulation during hypoxic challenge. PMID:25973923

  5. Influence of the respiratory route on the resting breathing pattern in humans.

    PubMed

    Rodenstein, D O; Mercenier, C; Stănescu, D C

    1985-01-01

    It has been shown that the pattern of breathing is modified when breathing through a mouthpiece (MP) with a noseclip (NC), although the reasons for this are not clear. We studied 14 healthy naïve subjects during unrestrained breathing, while connected to a spirometer without NC, and while connected to a spirometer with NC. Breathing pattern, studied with an inductive plethysmograph (Respitrace), was recorded during 4 min in each case, once a steady state was attained. During unrestrained breathing, all subjects breathed exclusively through the nose. During spirometric testing without NC, 9 of 14 subjects still breathed through the nose only (since the oropharynx is closed by the soft palate and the tongue, and flow proceeds through the nose). Tidal volume (VT), frequency (f), minute ventilation (VE), inspiratory time, mean inspiratory flow, and duty cycle (Tl/Ttot) were not different during the first 2 procedures (p greater than 0.1 by analysis of variance). By contrast, during spirometric testing with NC, mean VT increased from 530 (during unrestrained breathing) to 700 ml (p less than 0.02), whereas f decreased from 14.9 to 13.6 breaths X min-1 (p greater than 0.05), VE did not change, and Tl/Tot increased from 37 to 41% (p less than 0.05). These data suggest that the change in the pattern of breathing depends on the breathing route. To further confirm this, we asked 8 separate subjects to simply breathe through either the nose or the mouth (half of them starting with mouth breathing, half with nose breathing) while respiration was monitored with the Respitrace without any connection to the airways.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Theme and variations: amphibious air-breathing intertidal fishes.

    PubMed

    Martin, K L

    2014-03-01

    Over 70 species of intertidal fishes from 12 families breathe air while emerging from water. Amphibious intertidal fishes generally have no specialized air-breathing organ but rely on vascularized mucosae and cutaneous surfaces in air to exchange both oxygen and carbon dioxide. They differ from air-breathing freshwater fishes in morphology, physiology, ecology and behaviour. Air breathing and terrestrial activity are present to varying degrees in intertidal fish species, correlated with the tidal height of their habitat. The gradient of amphibious lifestyle includes passive remainers that stay in the intertidal zone as tides ebb, active emergers that deliberately leave water in response to poor aquatic conditions and highly mobile amphibious skipper fishes that may spend more time out of water than in it. Normal terrestrial activity is usually aerobic and metabolic rates in air and water are similar. Anaerobic metabolism may be employed during forced exercise or when exposed to aquatic hypoxia. Adaptations for amphibious life include reductions in gill surface area, increased reliance on the skin for respiration and ion exchange, high affinity of haemoglobin for oxygen and adjustments to ventilation and metabolism while in air. Intertidal fishes remain close to water and do not travel far terrestrially, and are unlikely to migrate or colonize new habitats at present, although in the past this may have happened. Many fish species spawn in the intertidal zone, including some that do not breathe air, as eggs and embryos that develop in the intertidal zone benefit from tidal air emergence. With air breathing, amphibious intertidal fishes survive in a variable habitat with minimal adjustments to existing structures. Closely related species in different microhabitats provide unique opportunities for comparative studies.

  7. Force oscillations simulating breathing maneuvers do not prevent force adaptation.

    PubMed

    Pascoe, Chris; Jiao, Yuekan; Seow, Chun Y; Paré, Peter D; Bossé, Ynuk

    2012-07-01

    Airway inflammation in patients with asthma exposes the airway smooth muscle (ASM) to a variety of spasmogens. These spasmogens increase ASM tone, which can lead to force adaptation. Length oscillations of ASM, which occur in vivo due to breathing maneuvers, can attenuate force adaptation. However, in the presence of tone, the force oscillations required to achieve these length oscillations may be unphysiologic (i.e., magnitude greater than the ones achieved due to the swings in transpulmonary pressure required for breathing). In the present study, we applied force oscillations simulating the tension oscillations experienced by the wall of a fourth-generation airway during tidal breathing with or without deep inspirations (DI) to ASM. The goal was to investigate whether force adaptation occurs in conditions mimicking breathing maneuvers. Tone was induced by carbachol (average, 20 nM), and the force-generating capacity of the ASM was assessed at 5-minute intervals before and after carbachol administration using electrical field stimulations (EFS). The results show that force oscillations applied before the introduction of tone had a small effect on the force produced by EFS (declined to 96.8% [P > 0.05] and 92.3% [P < 0.05] with and without DI, respectively). The tone induced by carbachol transiently decreased after a DI and declined significantly (P < 0.05) due to tidal breathing oscillations (25%). These force oscillations did not prevent force adaptation (gain of force of 11.2 ± 2.2 versus 13.5 ± 2.7 and 11.2 ± 3.0% in static versus dynamic conditions with or without DI, respectively). The lack of effect of simulated breathing maneuvers on force adaptation suggests that this gain in ASM force may occur in vivo and could contribute to the development of airway hyperresponsiveness.

  8. Tidal alignment of galaxies

    SciTech Connect

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  9. Tidal alignment of galaxies

    SciTech Connect

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš E-mail: zvlah@stanford.edu

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used 'nonlinear alignment model,' finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the 'GI' term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  10. White light from an electroluminescent diode made from poly(3(4-octylphenyl)-2,2min -bithiophene) and an oxadiazole derivative

    NASA Astrophysics Data System (ADS)

    Berggren, M.; Gustafsson, G.; Inganas, O.; Andersson, M. R.; Hjertberg, T.; Wennerstrom, O.

    1994-12-01

    We report on an electroluminescent diode emitting red, green, and blue light simultaneously. The device is based on a thin polymer layer, poly(3-(4-octylphenyl)-2,2 min-bithiophene) and a thick molecular layer, 2-(4-biphenylyl)-5-(4-tertbutyl-phenyl)1,3,5-oxadiazole. The quantum efficiency for light conversion is 0.3% and the turn-on voltage for light emission is 7 V. In this arcitcle we present electric and spectroscopic characterizations. A mechanism for the light emission, based on electron and hole recombination between the two organic layers, is proposed.

  11. The effect of inspiratory muscle fatigue on breathing pattern and ventilatory response to CO2.

    PubMed Central

    Mador, M J; Tobin, M J

    1992-01-01

    1. The effects of inducing inspiratory muscle fatigue on the subsequent breathing pattern were examined during resting unstimulated breathing and during CO2 rebreathing. In addition, we examined whether induction of inspiratory muscle fatigue alters CO2 responsiveness. 2. Global inspiratory muscle fatigue and diaphragmatic fatigue were achieved by having subjects breathe against an inspiratory resistive load while generating a predetermined fraction of either their maximal mouth pressure or maximal transdiaphragmatic pressure until they were unable to generate the target pressure. 3. Induction of inspiratory muscle fatigue had no effect on the subsequent breathing pattern during either unstimulated breathing or during CO2 rebreathing. 4. Following induction of inspiratory muscle fatigue, the slope of the ventilatory response to CO2 was significantly decreased from 18.8 +/- 3.3 during control to 13.8 +/- 2.1 l min-1 (% end-tidal CO2 concentration)-1 with fatigue (P < 0.02). PMID:1484352

  12. Heart rate variability and muscle sympathetic nerve activity response to acute stress: the effect of breathing

    PubMed Central

    DeBeck, Lindsay D.; Petersen, Stewart R.; Jones, Kelvin E.; Stickland, Michael K.

    2016-01-01

    Previous research has suggested a relationship between low-frequency power of heart rate variability (HRV; LF in normalized units, LFnu) and muscle sympathetic nerve activity (MSNA). However, investigations have not systematically controlled for breathing, which can modulate both HRV and MSNA. Accordingly, the aims of this experiment were to investigate the possibility of parallel responses in MSNA and HRV (LFnu) to selected acute stressors and the effect of controlled breathing. After data were obtained at rest, 12 healthy males (28 ± 5 yr) performed isometric handgrip exercise (30% maximal voluntary contraction) and the cold pressor test in random order, and were then exposed to hypoxia (inspired fraction of O2 = 0.105) for 7 min, during randomly assigned spontaneous and controlled breathing conditions (20 breaths/min, constant tidal volume, isocapnic). MSNA was recorded from the peroneal nerve, whereas HRV was calculated from ECG. At rest, controlled breathing did not alter MSNA but decreased LFnu (P < 0.05 for all) relative to spontaneous breathing. MSNA increased in response to all stressors regardless of breathing. LFnu increased with exercise during both breathing conditions. During cold pressor, LFnu decreased when breathing was spontaneous, whereas in the controlled breathing condition, LFnu was unchanged from baseline. Hypoxia elicited increases in LFnu when breathing was controlled, but not during spontaneous breathing. The parallel changes observed during exercise and controlled breathing during hypoxia suggest that LFnu may be an indication of sympathetic outflow in select conditions. However, since MSNA and LFnu did not change in parallel with all stressors, a cautious approach to the use of LFnu as a marker of sympathetic activity is warranted. PMID:20410469

  13. Heart rate variability and muscle sympathetic nerve activity response to acute stress: the effect of breathing.

    PubMed

    DeBeck, Lindsay D; Petersen, Stewart R; Jones, Kelvin E; Stickland, Michael K

    2010-07-01

    Previous research has suggested a relationship between low-frequency power of heart rate variability (HRV; LF in normalized units, LFnu) and muscle sympathetic nerve activity (MSNA). However, investigations have not systematically controlled for breathing, which can modulate both HRV and MSNA. Accordingly, the aims of this experiment were to investigate the possibility of parallel responses in MSNA and HRV (LFnu) to selected acute stressors and the effect of controlled breathing. After data were obtained at rest, 12 healthy males (28 +/- 5 yr) performed isometric handgrip exercise (30% maximal voluntary contraction) and the cold pressor test in random order, and were then exposed to hypoxia (inspired fraction of O(2) = 0.105) for 7 min, during randomly assigned spontaneous and controlled breathing conditions (20 breaths/min, constant tidal volume, isocapnic). MSNA was recorded from the peroneal nerve, whereas HRV was calculated from ECG. At rest, controlled breathing did not alter MSNA but decreased LFnu (P < 0.05 for all) relative to spontaneous breathing. MSNA increased in response to all stressors regardless of breathing. LFnu increased with exercise during both breathing conditions. During cold pressor, LFnu decreased when breathing was spontaneous, whereas in the controlled breathing condition, LFnu was unchanged from baseline. Hypoxia elicited increases in LFnu when breathing was controlled, but not during spontaneous breathing. The parallel changes observed during exercise and controlled breathing during hypoxia suggest that LFnu may be an indication of sympathetic outflow in select conditions. However, since MSNA and LFnu did not change in parallel with all stressors, a cautious approach to the use of LFnu as a marker of sympathetic activity is warranted.

  14. Breathing evaluation and retraining as an adjunct to manual therapy.

    PubMed

    McLaughlin, Laurie; Goldsmith, Charlie H; Coleman, Kimberly

    2011-02-01

    Back and neck pain are extremely common reasons for patients seeking manual therapy treatment. Epidemiological evidence supports a link between breathing difficulties and back pain. Since trunk muscles perform both postural and breathing functions, it is theorized that disruption in one function can negatively impact the other. Altered breathing mechanics can change respiratory chemistry and therefore pH causing smooth muscle constriction, altered electrolyte balance and decreased tissue oxygenation. These changes can profoundly impact any body system. Increased excitability in the muscular and nervous systems may be most relevant to a manual therapist. Respiratory function can be tested via capnography which measures CO₂ at the end of exhale known as End Tidal CO₂ (ETCO₂). ETCO₂ closely reflects arterial CO₂ in people with normal cardiopulmonary function. A case series of twenty nine outpatients with neck or back pain who had plateaued with manual therapy and exercise were identified all of whom were found to have low ETCO₂. Breathing retraining improved ETCO₂, pain and function in all patients with 93% achieving at least a clinically important change in either pain or function. Screening for breathing dysfunction using capnography may improve patient outcomes in those patients where manual therapy, exercise and education do not provide full resolution of symptoms.

  15. AN APPROACH FOR CLASSIFYING TIDAL REGIMES BASED ON TIDAL CONSTITUENTS

    EPA Science Inventory

    Tidal fluctuations can be one of the dominant physical processes in estuaries. This paper presents a numerical classification of tidal regimes that can be used to summarize local conditions and facilitate comparisons among locations. Tide predictions are customarily calculated ...

  16. Breathing Like a Fish

    ERIC Educational Resources Information Center

    Katsioloudis, Petros J.

    2010-01-01

    Being able to dive and breathe underwater has been a challenge for thousands of years. In 1980, Fuji Systems of Tokyo developed a series of prototype gills for divers as a way of demonstrating just how good its membranes are. Even though gill technology has not yet reached the point where recipients can efficiently use implants to dive underwater,…

  17. Breathing metabolic simulator

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G., Jr.; Hendricks, C. M.; Morison, W. B.

    1972-01-01

    A description is given of an automatic computer controlled second generation breathing metabolic simulator (BMS). The simulator is used for evaluating and testing respiratory diagnostic, monitoring, support, and resuscitation equipment. Any desired sequence of metabolic activities can be simulated on the device for up to 15 hours. The computer monitors test procedures and provides printouts of test results.

  18. Metabolic breath analyzer

    NASA Technical Reports Server (NTRS)

    Perry, C. L.

    1971-01-01

    Instrument measures metabolic breathing rate and dynamics of human beings in atmospheres ranging from normal air to 100 percent oxygen at ambient pressures from 14.7 to 3.0 psia. Measurements are made at rest or performing tasks up to maximum physical capacity under either zero or normal gravity.

  19. The Air We Breathe

    NASA Technical Reports Server (NTRS)

    Davila, Dina

    2010-01-01

    Topics discussed include NASA mission to pioneer the future in space exploration, scientific discovery and aeronautics research; the role of Earth's atmosphere, atmospheric gases, layers of the Earth's atmosphere, ozone layer, air pollution, effects of air pollution on people, the Greenhouse Effect, and breathing on the International Space Station.

  20. Life and Breath

    ERIC Educational Resources Information Center

    Ellis, Helen D.

    1974-01-01

    This article describes a public education program combining the screening process and a follow-up program for teaching victims of emphysema and other respiratory diseases how to better their living condition through proper breathing, avoidance of air pollutants and cigarette smoking, and taking better care of themselves physically. (PD)

  1. Factors influencing breath ammonia determination.

    PubMed

    Solga, Steven F; Mudalel, Matthew; Spacek, Lisa A; Lewicki, Rafal; Tittel, Frank; Loccioni, Claudio; Russo, Adolfo; Risby, Terence H

    2013-09-01

    Amongst volatile compounds (VCs) present in exhaled breath, ammonia has held great promise and yet it has confounded researchers due to its inherent reactivity. Herein we have evaluated various factors in both breath instrumentation and the breath collection process in an effort to reduce variability. We found that the temperature of breath sampler and breath sensor, mouth rinse pH, and mode of breathing to be important factors. The influence of the rinses is heavily dependent upon the pH of the rinse. The basic rinse (pH 8.0) caused a mean increase of the ammonia concentration by 410 ± 221 ppb. The neutral rinse (pH 7.0), slightly acidic rinse (pH 5.8), and acidic rinse (pH 2.5) caused a mean decrease of the ammonia concentration by 498 ± 355 ppb, 527 ± 198 ppb, and 596 ± 385 ppb, respectively. Mode of breathing (mouth-open versus mouth-closed) demonstrated itself to have a large impact on the rate of recovery of breath ammonia after a water rinse. Within 30 min, breath ammonia returned to 98 ± 16% that of the baseline with mouth open breathing, while mouth closed breathing allowed breath ammonia to return to 53 ± 14% of baseline. These results contribute to a growing body of literature that will improve reproducibly in ammonia and other VCs.

  2. The effects of environmental temperature, hypoxia, and hypercapnia on the breathing pattern of saltwater crocodiles (Crocodylus porosus).

    PubMed

    Munns, S L; Frappell, P B; Evans, B K

    1998-01-01

    This study aimed to describe the effects of change in environmental temperature, hypoxia, and hypercapnia on the breathing pattern of Crocodylus porosus. Increased environmental temperature, hypoxia, and hypercapnia each caused an increase in minute ventilation and changes in breathing pattern. Breathing frequency increased and the duration of the nonventilatory period decreased in response to all three conditions. Under hypercapnia tidal volume also increased, with no change in rate of inspiration. The number of breaths per breathing burst decreased with increased temperature but remained unaltered under hypoxia. Hypercapnia reduced the number of breaths per burst at 20 degrees C, but the number did not decrease further at 30 degrees C. The results support the idea that the responses to increased temperature, hypoxia, and hypercapnia are under separate control but that some effects of hypercapnia and temperature may involve a common regulatory pathway.

  3. Breathing-Synchronized Delivery: A Potential Four-Dimensional Tomotherapy Treatment Technique

    SciTech Connect

    Zhang Tiezhi . E-mail: tiezhi.zhang@beaumont.edu; Lu Weiguo; Olivera, Gustavo H.; Keller, Harry; Jeraj, Robert; Manon, Rafael; Mehta, Minesh; Mackie, Thomas R.; Paliwal, Bhudatt

    2007-08-01

    Purpose: To introduce a four-dimensional (4D) tomotherapy treatment technique with improved motion control and patient tolerance. Methods and Materials: Computed tomographic images at 10 breathing phases were acquired for treatment planning. The full exhalation phase was chosen as the planning phase, and the CT images at this phase were used as treatment-planning images. Region of interest delineation was the same as in traditional treatment planning, except that no breathing motion margin was used in clinical target volume-planning target volume expansion. The correlation between delivery and breathing phases was set assuming a constant gantry speed and a fixed breathing period. Deformable image registration yielded the deformation fields at each phase relative to the planning phase. With the delivery/breathing phase correlation and voxel displacements at each breathing phase, a 4D tomotherapy plan was obtained by incorporating the motion into inverse treatment plan optimization. A combined laser/spirometer breathing tracking system has been developed to monitor patient breathing. This system is able to produce stable and reproducible breathing signals representing tidal volume. Results: We compared the 4D tomotherapy treatment planning method with conventional tomotherapy on a static target. The results showed that 4D tomotherapy can achieve dose distributions on a moving target similar to those obtained with conventional delivery on a stationary target. Regular breathing motion is fully compensated by motion-incorporated breathing-synchronized delivery planning. Four-dimensional tomotherapy also has close to 100% duty cycle and does not prolong treatment time. Conclusion: Breathing-synchronized delivery is a feasible 4D tomotherapy treatment technique with improved motion control and patient tolerance.

  4. Effects of Inspired CO2 and Breathing Resistance on Neurocognitive and Postural Stability in U.S. Navy Divers

    DTIC Science & Technology

    2015-08-01

    than five consecutive breaths caused a safety abort . Upon stopping the endurance exercise, the duration of exercise was recorded, the ergometer...participants performed balance testing. Divers who terminated exercise due to severe symptoms or because of a safety abort were immediately switched... abort -level end-tidal CO2) or ANAM equipment malfunction. Table 3. Descriptive statistics for the ANAM subtests Subtest Breathing Condition N

  5. Combined sensing platform for advanced diagnostics in exhaled mouse breath

    NASA Astrophysics Data System (ADS)

    Fortes, Paula R.; Wilk, Andreas; Seichter, Felicia; Cajlakovic, Merima; Koestler, Stefan; Ribitsch, Volker; Wachter, Ulrich; Vogt, Josef; Radermacher, Peter; Carter, Chance; Raimundo, Ivo M.; Mizaikoff, Boris

    2013-03-01

    Breath analysis is an attractive non-invasive strategy for early disease recognition or diagnosis, and for therapeutic progression monitoring, as quantitative compositional analysis of breath can be related to biomarker panels provided by a specific physiological condition invoked by e.g., pulmonary diseases, lung cancer, breast cancer, and others. As exhaled breath contains comprehensive information on e.g., the metabolic state, and since in particular volatile organic constituents (VOCs) in exhaled breath may be indicative of certain disease states, analytical techniques for advanced breath diagnostics should be capable of sufficient molecular discrimination and quantification of constituents at ppm-ppb - or even lower - concentration levels. While individual analytical techniques such as e.g., mid-infrared spectroscopy may provide access to a range of relevant molecules, some IR-inactive constituents require the combination of IR sensing schemes with orthogonal analytical tools for extended molecular coverage. Combining mid-infrared hollow waveguides (HWGs) with luminescence sensors (LS) appears particularly attractive, as these complementary analytical techniques allow to simultaneously analyze total CO2 (via luminescence), the 12CO2/13CO2 tracer-to-tracee (TTR) ratio (via IR), selected VOCs (via IR) and O2 (via luminescence) in exhaled breath, yet, establishing a single diagnostic platform as both sensors simultaneously interact with the same breath sample volume. In the present study, we take advantage of a particularly compact (shoebox-size) FTIR spectrometer combined with novel substrate-integrated hollow waveguide (iHWG) recently developed by our research team, and miniaturized fiberoptic luminescence sensors for establishing a multi-constituent breath analysis tool that is ideally compatible with mouse intensive care stations (MICU). Given the low tidal volume and flow of exhaled mouse breath, the TTR is usually determined after sample collection via gas

  6. Emergency Response Breathing Apparatus

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Aerospace Design & Development, Inc.'s (ADD's) SCAMP was developed under an SBIR contract through Kennedy Space Center. SCAMP stands for Supercritical Air Mobility Pack. The technology came from the life support fuel cell support systems used for the Apollo and Space Shuttle programs. It uses supercritical cryogenic air and is able to function in microgravity environments. SCAMP's self-contained breathing apparatus(SCBA) systems are also ground-based and can provide twice as much air than traditional SCBA's due to its high-density capacity. The SCAMP system was designed for use in launch pad emergency rescues. ADD also developed a protective suit for use with SCAMP that is smaller and lighter system than the old ones. ADD's SCAMP allows for body cooling and breathing from the supercritical cryogenic air, requiring no extra systems. The improvement over the traditional SCBA allows for a reduction of injuries, such as heat stress, and makes it easier for rescuers to save lives.

  7. [TMJ, eating and breathing].

    PubMed

    Cheynet, F

    2016-09-01

    The study of the relationship between temporomandibular joints (TMJ), mastication and ventilation and the involvement of these two functions in the genesis of primary Temporomandibular Disorders (TMD) and in some dentofacial deformities, was initiated in France, more than 30years, by Professor Raymond Gola. Once criticized the weakness of the scientific literature in this domain, the originality of the TMJ within the masticatory system is recalled with its huge adaptation potential to very different biomechanical constraints according to the age and masticatory activities during the day. But the biomechanics of the masticatory system does not stop at night and the positions of the mandible and head during sleep should be studied carefully. In case of nocturnal mouth breathing with open mouth, the predominant sleeping position (generating small but long-term strengths) may be deleterious to the condyle-disc complex, to the surrounding muscles and the occlusal relationships. Some condyle-disc displacements and asymmetric malocclusions occur in this long portion of life what sleep, especially as oral breathing leads to a lot of dysfunctions (low position of the tongue, labio-lingual dysfunctions, exacerbation of bruxism sleep…). The aim of this work was to share our multidisciplinary experience of the biomechanical consequences of the nocturnal mouth breathing on the face involving orthodontists, maxillofacial surgeons, ENT, allergists, speech therapists, physiotherapists and radiologists.

  8. Developments in tidal power

    NASA Astrophysics Data System (ADS)

    Charlier, R. H.

    Successful, planned, and potential tidal power plants and sites are discussed. Units are in operation in France and Russia, with the French plant using reversible blade turbines being used as a design guide for plants in Argentina and Australia. The U.S. is studying the feasibility of a plant in Passamaquaddy Bay, and Canada is pursuing construction of a plant in the Bay of Fundy. The Severn River in Great Britain is receiving a site study, and over a hundred plants have been built as local power systems in China. Bulb-type turbines, which enhance the volume emptying and filling the retaining basin, are considered as the highest performing power unit. Simpler one-way flow turbines have been suggested as more economical to install. Governmental, institutional, and investor impediments to tidal power plant are explored.

  9. Tidal Heating in Enceladus

    NASA Astrophysics Data System (ADS)

    Meyer, Jennifer; Wisdom, J.

    2007-07-01

    The heating in Enceladus in an equilibrium resonant configuration with other saturnian satellites can be estimated independently of the physical properties of Enceladus. Our results update the values obtained for the equilibrium tidal heating found by Lissauer et al. (1984) and Peale (2003). We find that equilibrium tidal heating cannot account for the heat that is observed to be coming from Enceladus, and current heating rates are even less for conventional estimates of the Love number for Enceladus. Even allowing for a much larger dynamic Love number, as can occur in viscoelastic models (Ross and Schubert, 1989), the equilibrium tidal heating is less than the heat observed to be coming from Enceladus. One resolution is that the tidal equilibrium is unstable and that the system oscillates about equilibrium. Yoder (1981) suggested that Enceladus might oscillate about equilibrium if the Q of Enceladus is stress dependent. An alternate suggestion was made by Ojakangas and Stevenson (1986), who emphasized the possible temperature dependence of Q. In these models Enceladus would now be releasing heat stored during a recent high eccentricity phase. However, we have shown that the Ojakangas and Stevenson model does not produce oscillations for parameters appropriate for Enceladus. Other low-order resonance configurations are possible for the saturnian satellites in the past. These include the 3:2 Mimas-Enceladus and the 3:4 Enceladus-Tethys resonances. The latter resonance has no equilibrium because the orbits are diverging, and the former has an equilibrium heating rate of only 0.48 GW. So equilibrium heating at past resonances is no more successful at explaining past resurfacing events than equilibrium heating is at explaining the present activity.

  10. Breath-stacking increases the depth and duration of chest expansion by incentive spirometry.

    PubMed

    Baker, W L; Lamb, V J; Marini, J J

    1990-02-01

    Although the objective of incentive spirometry is to achieve and hold high lung volumes, many patients with pain or weakness are unable to sustain the effort needed to perform effective exercises. We questioned whether using a one-way valve to prevent exhalation would allow rest between inspiratory efforts and cause volume to cumulate during successive tidal efforts, improving both the depth and duration of the inspiratory maneuver. We studied 26 cooperative but naive patients recovering from surgery, trauma, or critical illness whose pain or weakness impaired ability to achieve and sustain deep inspiration. All subjects breathed via mouthpiece from a spirometer prefilled with 100% oxygen. Three different maneuvers were performed in random order by all subjects: (1) standard inspiratory capacity without valve or inspiratory hold, (2) inspiratory capacity (IC) with breathholding aided by a one-way valve, and (3) uncoached breath-stacking, during which successive tidal breaths were cumulated by one-way valving. A fourth maneuver was added in the last 13 subjects studied: an initial coached IC effort with subsequent valved stacking of tidal efforts. When compared with IC, "breath stacking" (valved) maneuvers increased inspired volume by an average of 15 to 20% (p less than 0.05). More importantly, there was a severalfold increase in the time over which high lung volume was sustained (p less than 0.001). Our results indicate that one-way valving helps to achieve and sustain deep inspiration, even in uncoached patients.

  11. Relativistic tidal disruption events

    NASA Astrophysics Data System (ADS)

    Levan, A.

    2012-12-01

    In March 2011 Swift detected an extremely luminous and long-lived outburst from the nucleus of an otherwise quiescent, low luminosity (LMC-like) galaxy. Named Swift J1644+57, its combination of high-energy luminosity (1048 ergs s-1 at peak), rapid X-ray variability (factors of >100 on timescales of 100 seconds) and luminous, rising radio emission suggested that we were witnessing the birth of a moderately relativistic jet (Γ ˜ 2 - 5), created when a star is tidally disrupted by the supermassive black hole in the centre of the galaxy. A second event, Swift J2058+0516, detected two months later, with broadly similar properties lends further weight to this interpretation. Taken together this suggests that a fraction of tidal disruption events do indeed create relativistic outflows, demonstrates their detectability, and also implies that low mass galaxies can host massive black holes. Here, I briefly outline the observational properties of these relativistic tidal flares observed last year, and their evolution over the first year since their discovery.

  12. Overland Tidal Power Generation Using Modular Tidal Prism

    SciTech Connect

    Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

    2010-03-01

    Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (≈ 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

  13. Tidal Venuses: triggering a climate catastrophe via tidal heating.

    PubMed

    Barnes, Rory; Mullins, Kristina; Goldblatt, Colin; Meadows, Victoria S; Kasting, James F; Heller, René

    2013-03-01

    Traditionally, stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here, we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high-enough levels to induce a runaway greenhouse for a long-enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets "Tidal Venuses" and the phenomenon a "tidal greenhouse." Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits (i.e., with negligible tidal heating) in the habitable zone (HZ). However, these planets are not habitable, as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulated the evolution of hypothetical planetary systems in a quasi-continuous parameter distribution and found that we could constrain the history of the system by statistical arguments. Planets orbiting stars with masses<0.3 MSun may be in danger of desiccation via tidal heating. We have applied these concepts to Gl 667C c, a ∼4.5 MEarth planet orbiting a 0.3 MSun star at 0.12 AU. We found that it probably did not lose its water via tidal heating, as orbital stability is unlikely for the high eccentricities required for the tidal greenhouse. As the inner edge of the HZ is defined by the onset of a runaway or moist greenhouse powered by radiation, our results represent a fundamental revision to the HZ for noncircular orbits. In the appendices we review (a) the moist and runaway greenhouses, (b) hydrogen escape, (c) stellar mass-radius and mass-luminosity relations, (d) terrestrial planet mass-radius relations, and (e) linear tidal theories.

  14. Ventilatory inhomogeneity determined from multiple-breath washouts during sustained microgravity on Spacelab SLS-1

    NASA Technical Reports Server (NTRS)

    Prisk, G. Kim; Guy, Harold J. B.; Elliott, Ann R.; Paiva, Manuel; West, John B.

    1995-01-01

    We used multiple-breath N2 washouts (MBNW) to study the homogeneity of ventilation in four normal humans (mean age 42.5 yr) before, during, and after 9 days of exposure to microgravity on Spacelab Life Sciences-1. Subjects performed 20-breath MBNW at tidal volumes of approximately 700 ml and 12-breath MBNW at tidal volumes of approximately 1,250 ml. Six indexes of ventilatory inhomogeneity were derived from data from (1) distribution of specific ventilation (SV) from mixed-expired and (2) end-tidal N2, (3) change of slope of N2 washout (semilog plot) with time, (4) change of slope of normalized phase III of successive breaths, (5) anatomic lead dead space, and (6) Bohr dead space. Significant ventilatory inhomogeneity was seen in the standing position at normal gravity (1 G). When we compared standing 1 G with microgravity, the distributions of SV became slightly narrower, but the difference was not significant. Also, there were no significant changes in the change of slope of the N2 washout, change of normalized phase III slopes, or the anatomic and Bohr dead spaces. By contrast, transition from the standing to supine position in 1 G resulted in significantly broader distributions of SV and significantly greater changes in the changes in slope of the N2 washouts, indicating more ventilatory inhomogeneity in that posture. Thus these techniques can detect relatively small changes in ventilatory inhomogeneity. We conclude that the primary determinants of ventilatory inhomogeneity during tidal breathing in the upright posture are not gravitational in origin.

  15. Probing plasmonic breathing modes optically

    SciTech Connect

    Krug, Markus K. Reisecker, Michael; Hohenau, Andreas; Ditlbacher, Harald; Trügler, Andreas; Hohenester, Ulrich; Krenn, Joachim R.

    2014-10-27

    The confinement of surface plasmon modes in flat nanoparticles gives rise to plasmonic breathing modes. With a vanishing net dipole moment, breathing modes do not radiate, i.e., they are optically dark. Having thus escaped optical detection, breathing modes were only recently revealed in silver nanodisks with electron energy loss spectroscopy in an electron microscope. We show that for disk diameters >200 nm, retardation induced by oblique optical illumination relaxes the optically dark character. This makes breathing modes and thus the full plasmonic mode spectrum accessible to optical spectroscopy. The experimental spectroscopy data are in excellent agreement with numerical simulations.

  16. Recognition of synodic and tropical tidal periodicities in tidal rhythmites

    SciTech Connect

    Archer, A.W. ); Kvale, E.P. ); Johnson, H.P. )

    1990-05-01

    Tidal processes are capable of producing bedding that records individual tidal events; however, only within the last decade have tidal cycles, such as neap-spring periodicities become widely recognized. Such cycles have been documented within thinly laminated, vertically accreted siltstones. The laminae exhibit systematic patterns of thickening and thinning that have been equated to the lunar orbital period (synodic month). However, modem tides are subject to periodicities other than the synodic month and such additional periods can be the causative mechanism for neap-spring tidal periods. Gravitational interactions of the earth, moon, and sun generate tides that fluctuate with periods that correspond to the phases of the moon (synodic month), declination of the moon (tropical month), and distance of the moon from the earth (anomalistic month). Although harmonic analyses of semidiurnal tidal data indicate that such systems are controlled by synodic factors, there are also indications that diurnal systems can be controlled by tropical factors. Thus neap-spring periods are not only related to lunar phase (synodic month), but can be related to tropical month (lunar declination) in diurnal systems. Analysis of laminae-thickness periodicities in a variety of Pennsylvanian tidal rhythmites, which include apparent examples of diurnal as well as semidiurnal tidal patterns, indicates similarities to modern tidal systems. For example, semidiurnal tidal rhythmites exhibit not only synodic periodicities but also exhibit a weaker, tropical periodicity. Conversely, within rhythmites that exhibit a diurnal pattern, it is not completely clear whether tropical or synodic periodicities are being expressed.

  17. Dissipation of Tidal Energy

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The moon's gravity imparts tremendous energy to the Earth, raising tides throughout the global oceans. What happens to all this energy? This question has been pondered by scientists for over 200 years, and has consequences ranging from the history of the moon to the mixing of the oceans. Richard Ray at NASA's Goddard Space Flight Center, Greenbelt, Md. and Gary Egbert of the College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Ore. studied six years of altimeter data from the TOPEX/Poseidon satellite to address this question. According to their report in the June 15 issue of Nature, about 1 terawatt, or 25 to 30 percent of the total tidal energy dissipation, occurs in the deep ocean. The remainder occurs in shallow seas, such as on the Patagonian Shelf. 'By measuring sea level with the TOPEX/Poseidon satellite altimeter, our knowledge of the tides in the global ocean has been remarkably improved,' said Richard Ray, a geophysicist at Goddard. The accuracies are now so high that this data can be used to map empirically the tidal energy dissipation. (Red areas, above) The deep-water tidal dissipation occurs generally near rugged bottom topography (seamounts and mid-ocean ridges). 'The observed pattern of deep-ocean dissipation is consistent with topographic scattering of tidal energy into internal motions within the water column, resulting in localized turbulence and mixing', said Gary Egbert an associate professor at OSU. One important implication of this finding concerns the possible energy sources needed to maintain the ocean's large-scale 'conveyor-belt' circulation and to mix upper ocean heat into the abyssal depths. It is thought that 2 terawatts are required for this process. The winds supply about 1 terawatt, and there has been speculation that the tides, by pumping energy into vertical water motions, supply the remainder. However, all current general circulation models of the oceans ignore the tides. 'It is possible that properly

  18. End-tidal CO2 in some aquatic mammals of large size.

    PubMed

    Mortola, Jacopo P; Seguin, Julie

    2009-01-01

    While resting on land or at the water surface, the breathing frequency (f) of aquatic mammals of medium and large size is lower than in terrestrial mammals of similar body weight (W), the difference widening with the increase in W. The allometric function for aquatic mammals is f proportional to W(-0.42) (f, breaths/min, W, kg) and that of terrestrial species is f proportional to W(-0.25). We asked whether or not resting breathing at such low f would entail high values of alveolar CO2. End-tidal alveolar CO2 pressure, taken as representative of alveolar CO2 pressure, PaCO2, was measured from the expired gas during resting breathing in captive specimens of aquatic species trained to rest in proximity of their keepers, either on land (walrus and sea lion) or at the water surface (dolphin, orca, beluga and hippopotamus). Their f during the recordings ranged from less than 1 (orca) to 6 (walrus) breaths/min. The average PaCO2 values ranged from 32 to 42 mm Hg, the peaks being a few mm Hg higher. These values were similar or slightly higher than literature data of many terrestrial species, with no relation to the animal f or W. The quasi-normality of PaCO2 in large aquatic species breathing at rest, despite their exceptionally low f and normal metabolism, can be explained mainly by two factors, their large tidal volume/W, about three times the average terrestrial value, and their peculiar breathing pattern with sustained high lung volume during the expiratory pause. This latter is key in avoiding a substantial rise in PaCO2 during the inter-breath pause.

  19. Pressure support ventilation decreases inspiratory work of breathing during general anesthesia and spontaneous ventilation.

    PubMed

    Christie, J M; Smith, R A

    1992-08-01

    Spontaneous ventilation may offer advantages over controlled mechanical ventilation (CMV), but increase in work of breathing may diminish its usefulness. During general anesthesia, respiratory depression and increased work of breathing often preclude spontaneous ventilation, and patients then receive CMV. We compared the inspiratory work of breathing of anesthetized patients who breathed with pressure support ventilation (PSV) with that associated with a demand gas flow and a standard anesthesia circle system. We studied nine consenting patients who underwent general inhaled anesthesia with or without regional supplementation. An anesthesia/ventilator system (Siemens 900D, Solna, Sweden) provided PSV (5 cm H2O) or demand gas flow during spontaneous inspiration. Gas flow during demand breathing and PSV was initiated when inspiration produced a 2-cm H2O reduction in airway pressure. An anesthesia machine (Dräger Narkomed 3, Telford, Pa.) provided a gas flow rate of 6 L/min through a standard semiclosed circle system. Airway pressure, airway gas flow rate, and esophageal pressure were continuously transduced, and data or signals were conveyed to a computer. Tidal volume and respiratory rate were computed from the flow curve. The inspiratory work of breathing was calculated as the integral of the area subserved by a plot of esophageal pressure and tidal volume during inspiration. Heart rate and mean arterial blood pressure were recorded, and arterial blood was sampled for gas tension and pH analysis. No differences were found in pHa, Paco2, Pao2, tidal volume, respiratory rate, heart rate, or mean arterial blood pressure among the three modes of ventilation.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Compressed breathing gas and liquefied breathing... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing gas and liquefied breathing gas containers; minimum requirements. (a) Compressed breathing gas...

  1. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Compressed breathing gas and liquefied breathing... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing gas and liquefied breathing gas containers; minimum requirements. (a) Compressed breathing gas...

  2. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Compressed breathing gas and liquefied breathing... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing gas and liquefied breathing gas containers; minimum requirements. (a) Compressed breathing gas...

  3. Sleep-Disordered Breathing

    PubMed Central

    Markov, Dimitri; Doghramji, Karl

    2006-01-01

    Sleep disorders are becoming more prevalent. There is an overlap of symptoms related to obstructive sleep apnea syndrome (OSAS) and many psychiatric conditions. Complaints of excessive sleepiness, insomnia, cognitive dysfunction, and depressive symptoms can be related to both disease states. Obstructive sleep apnea syndrome is characterized by repetitive disruption of sleep by cessation of breathing and was first described in the 19th century by bedside observation during sleep. Physicians observed this cessation of breathing while the patient slept and postulated that these episodes were responsible for subsequent complaints of sleepiness. OSAS can coexist with major depressive disorder, exacerbate depressive symptoms, or be responsible for a large part of the symptom complex of depression. Additionally, in schizophrenia, sleep apnea may develop as a result of chronic neuroleptic treatment and its effect on gains in body weight, a major risk factor for the development of OSAS. It is important to recognize the signs and symptoms of sleep apnea, namely excessive daytime sleepiness, snoring, and witnessed apneas. Recognition of the existence of sleep apnea, prompt referral to a sleep specialist, and ultimately treatment of an underlying sleep disorder, such as OSAS, can ameliorate symptoms of psychiatric disease. PMID:20975818

  4. SU-E-J-178: A Normalization Method Can Remove Discrepancy in Ventilation Function Due to Different Breathing Patterns

    SciTech Connect

    Qu, H; Yu, N; Stephans, K; Xia, P

    2014-06-01

    Purpose: To develop a normalization method to remove discrepancy in ventilation function due to different breathing patterns. Methods: Twenty five early stage non-small cell lung cancer patients were included in this study. For each patient, a ten phase 4D-CT and the voluntarily maximum inhale and exhale CTs were acquired clinically and retrospectively used for this study. For each patient, two ventilation maps were calculated from voxel-to-voxel CT density variations from two phases of the quiet breathing and two phases of the extreme breathing. For the quiet breathing, 0% (inhale) and 50% (exhale) phases from 4D-CT were used. An in-house tool was developed to calculate and display the ventilation maps. To enable normalization, the whole lung of each patient was evenly divided into three parts in the longitude direction at a coronal image with a maximum lung cross section. The ratio of cumulated ventilation from the top one-third region to the middle one-third region of the lung was calculated for each breathing pattern. Pearson's correlation coefficient was calculated on the ratios of the two breathing patterns for the group. Results: For each patient, the ventilation map from the quiet breathing was different from that of the extreme breathing. When the cumulative ventilation was normalized to the middle one-third of the lung region for each patient, the normalized ventilation functions from the two breathing patterns were consistent. For this group of patients, the correlation coefficient of the normalized ventilations for the two breathing patterns was 0.76 (p < 0.01), indicating a strong correlation in the ventilation function measured from the two breathing patterns. Conclusion: For each patient, the ventilation map is dependent of the breathing pattern. Using a regional normalization method, the discrepancy in ventilation function induced by the different breathing patterns thus different tidal volumes can be removed.

  5. Consciously controlled breathing decreases the high-frequency component of heart rate variability by inhibiting cardiac parasympathetic nerve activity.

    PubMed

    Sasaki, Konosuke; Maruyama, Ryoko

    2014-01-01

    Heart rate variability (HRV), the beat-to-beat alterations in heart rate, comprises sympathetic and parasympathetic nerve activities of the heart. HRV analysis is used to quantify cardiac autonomic regulation. Since respiration could be a confounding factor in HRV evaluation, some studies recommend consciously controlled breathing to standardize the method. However, it remains unclear whether controlled breathing affects HRV measurement. We compared the effects of controlled breathing on HRV with those of spontaneous breathing. In 20 healthy volunteers, we measured respiratory frequency (f), tidal volume, and blood pressure (BP) and recorded electrocardiograms during spontaneous breathing (14.8 ± 0.7 breaths/min) and controlled breathing at 15 (0.25 Hz) and 6 (0.10 Hz) breaths/min. Compared to spontaneous breathing, controlled breathing at 0.25 Hz showed a higher heart rate and a lower high-frequency (HF) component, an index of parasympathetic nerve activity, although the f was the same. During controlled breathing at 0.10 Hz, the ratio of the low frequency (LF) to HF components (LF/HF), an index of sympathetic nerve activity, increased greatly and HF decreased, while heart rate and BP remained almost unchanged. Thus, controlled breathing at 0.25 Hz, which requires mental concentration, might inhibit parasympathetic nerve activity. During controlled breathing at 0.10 Hz, LF/HF increases because some HF subcomponents are synchronized with f and probably move into the LF band. This increment leads to misinterpretation of the true autonomic nervous regulation. We recommend that the respiratory pattern of participants should be evaluated before spectral HRV analysis to correctly understand changes in autonomic nervous regulation.

  6. Association between the rapid shallow breathing index and extubation success in patients with traumatic brain injury

    PubMed Central

    dos Reis, Helena França Correia; Almeida, Mônica Lajana Oliveira; da Silva, Mário Ferreira; Moreira, Julião Oliveira; Rocha, Mário de Seixas

    2013-01-01

    Objective To investigate the association between the rapid shallow breathing index and successful extubation in patients with traumatic brain injury. Methods This study was a prospective study conducted in patients with traumatic brain injury of both genders who underwent mechanical ventilation for at least two days and who passed a spontaneous breathing trial. The minute volume and respiratory rate were measured using a ventilometer, and the data were used to calculate the rapid shallow breathing index (respiratory rate/tidal volume). The dependent variable was the extubation outcome: reintubation after up to 48 hours (extubation failure) or not (extubation success). The independent variable was the rapid shallow breathing index measured after a successful spontaneous breathing trial. Results The sample comprised 119 individuals, including 111 (93.3%) males. The average age of the sample was 35.0±12.9 years old. The average duration of mechanical ventilation was 8.1±3.6 days. A total of 104 (87.4%) participants achieved successful extubation. No association was found between the rapid shallow breathing index and extubation success. Conclusion The rapid shallow breathing index was not associated with successful extubation in patients with traumatic brain injury. PMID:24213084

  7. Effects of breathing patterns and light exercise on linear and nonlinear heart rate variability.

    PubMed

    Weippert, Matthias; Behrens, Kristin; Rieger, Annika; Kumar, Mohit; Behrens, Martin

    2015-08-01

    Despite their use in cardiac risk stratification, the physiological meaning of nonlinear heart rate variability (HRV) measures is not well understood. The aim of this study was to elucidate effects of breathing frequency, tidal volume, and light exercise on nonlinear HRV and to determine associations with traditional HRV indices. R-R intervals, blood pressure, minute ventilation, breathing frequency, and respiratory gas concentrations were measured in 24 healthy male volunteers during 7 conditions: voluntary breathing at rest, and metronome guided breathing (0.1, 0.2 and 0.4 Hz) during rest, and cycling, respectively. The effect of physical load was significant for heart rate (HR; p < 0.001) and traditional HRV indices SDNN, RMSSD, lnLFP, and lnHFP (p < 0.01 for all). It approached significance for sample entropy (SampEn) and correlation dimension (D2) (p < 0.1 for both), while HRV detrended fluctuation analysis (DFA) measures DFAα1 and DFAα2 were not affected by load condition. Breathing did not affect HR but affected all traditional HRV measures. D2 was not affected by breathing; DFAα1 was moderately affected by breathing; and DFAα2, approximate entropy (ApEn), and SampEn were strongly affected by breathing. DFAα1 was strongly increased, whereas DFAα2, ApEn, and SampEn were decreased by slow breathing. No interaction effect of load and breathing pattern was evident. Correlations to traditional HRV indices were modest (r from -0.14 to -0.67, p < 0.05 to <0.01). In conclusion, while light exercise does not significantly affect short-time HRV nonlinear indices, respiratory activity has to be considered as a potential contributor at rest and during light dynamic exercise.

  8. Study of airflow in the trachea of idealized model of human tracheobronchial airways during breathing cycle

    NASA Astrophysics Data System (ADS)

    Elcner, Jakub; Lizal, Frantisek; Jedelsky, Jan; Jicha, Miroslav

    2015-05-01

    The article deals with a numerical simulation and its verification by experiments in the trachea of idealized geometry of tracheobronchial airways by using unsteady RANS method. The breathing cycle was simulated by sinusoidal function with period of 4 seconds and tidal volume of 0.5 litres of air, which corresponds to breathing during resting condition. Results were compared with experiments measured by laser-Doppler velocimeter in eight points of four cross sections in the trachea. Model consists of the mouth cavity, larynx and tracheobronchial tree down to fourth generation of branching.

  9. Hydrogen breath test in schoolchildren.

    PubMed

    Douwes, A C; Schaap, C; van der Klei-van Moorsel, J M

    1985-04-01

    The frequency of negative hydrogen breath tests due to colonic bacterial flora which are unable to produce hydrogen was determined after oral lactulose challenge in 98 healthy Dutch schoolchildren. There was a negative result in 9.2%. The probability of a false normal lactose breath test (1:77) was calculated from these results together with those from a separate group of children with lactose malabsorption (also determined by hydrogen breath test). A study of siblings and mothers of subjects with a negative breath test did not show familial clustering of this condition. Faecal incubation tests with various sugars showed an increase in breath hydrogen greater than 100 parts per million in those with a positive breath test while subjects with a negative breath test also had a negative faecal incubation test. The frequency of a false negative hydrogen breath test was higher than previously reported, but this does not affect the superiority of this method of testing over the conventional blood glucose determination.

  10. BREATHE to Understand©

    ERIC Educational Resources Information Center

    Swisa, Maxine

    2015-01-01

    BREATHE is an acronym for Breathe, Reflect, Empathize, Accept, Thank, Hearten, Engage. The addition of Understand allows for a holistic approach to living a healthy and balanced life both inside and outside the classroom. This paper took form as a result of my personal, spiritual journey, as well as my teaching practice. I noticed that the…

  11. Breath in the technoscientific imaginary.

    PubMed

    Rose, Arthur

    2016-12-01

    Breath has a realist function in most artistic media. It serves to remind the reader, the viewer or the spectator of the exigencies of the body. In science fiction (SF) literature and films, breath is often a plot device for human encounters with otherness, either with alien peoples, who may not breathe oxygen, or environments, where there may not be oxygen to breathe. But while there is a technoscientific quality to breath in SF, especially in its attention to physiological systems, concentrating on the technoscientific threatens to occlude other, more affective aspects raised by the literature. In order to supplement the tendency to read SF as a succession of technoscientific accounts of bodily experience, this paper recalls how SF texts draw attention to the affective, non-scientific qualities of breath, both as a metonym for life and as a metaphor for anticipation. Through an engagement with diverse examples from SF literature and films, this article considers the tension between technoscientific and affective responses to breath in order to demonstrate breath's co-determinacy in SF's blending of scientific and artistic discourses.

  12. What Happens When You Breathe?

    MedlinePlus

    ... Explore How the Lungs Work What Are... The Respiratory System What Happens When You Breathe What Controls Your Breathing Lung Diseases & Conditions Clinical Trials Links Related Topics Asthma Bronchitis COPD How the Heart Works Respiratory Failure Send a link to NHLBI to someone ...

  13. Breath in the technoscientific imaginary

    PubMed Central

    Rose, Arthur

    2016-01-01

    Breath has a realist function in most artistic media. It serves to remind the reader, the viewer or the spectator of the exigencies of the body. In science fiction (SF) literature and films, breath is often a plot device for human encounters with otherness, either with alien peoples, who may not breathe oxygen, or environments, where there may not be oxygen to breathe. But while there is a technoscientific quality to breath in SF, especially in its attention to physiological systems, concentrating on the technoscientific threatens to occlude other, more affective aspects raised by the literature. In order to supplement the tendency to read SF as a succession of technoscientific accounts of bodily experience, this paper recalls how SF texts draw attention to the affective, non-scientific qualities of breath, both as a metonym for life and as a metaphor for anticipation. Through an engagement with diverse examples from SF literature and films, this article considers the tension between technoscientific and affective responses to breath in order to demonstrate breath's co-determinacy in SF's blending of scientific and artistic discourses. PMID:27542677

  14. Clinical applications of breath testing

    PubMed Central

    Paschke, Kelly M; Mashir, Alquam

    2010-01-01

    Breath testing has the potential to benefit the medical field as a cost-effective, non-invasive diagnostic tool for diseases of the lung and beyond. With growing evidence of clinical worth, standardization of methods, and new sensor and detection technologies the stage is set for breath testing to gain considerable attention and wider application in upcoming years. PMID:21173863

  15. Patient's breath controls comfort devices

    NASA Technical Reports Server (NTRS)

    Schrader, M.; Carpenter, B.; Nichols, C. D.

    1972-01-01

    Patient assist system for totally disabled persons was developed which permits a person, so paralyzed as to be unable to move, to activate by breathing, a call system to summon assistance, turn the page of a book, ajust his bed, or do any one of a number of other things. System consists of patient assist control and breath actuated switch.

  16. Conservation of tidal marshes

    SciTech Connect

    Daiber, F.C.

    1986-01-01

    This book is the first attempt to examine collectively the various uses and the consequences of marsh conservation efforts. Author Franklin Daiber emphasizes tidal marsh conservation from a holistic perspective rather than from the perspective of a single purpose or special economic interest. He addresses a topic receiving increasing attention, namely the concept of open marsh management as a means of controlling mosquito production without harmful effects on other marsh organisms. Topics considered include: water management; dikes, impoundments, ponds and ditches; reclaimed land and impoundments; ditching and ponding for mosquito control; sewage disposal and waste treatment; dredge material for wetland restoration; insecticides; oil pollution; and petroleum hydrocarbon interactions.

  17. Tidal heating of Ariel

    NASA Astrophysics Data System (ADS)

    Tittemore, William C.

    1990-09-01

    During evolution through the 4:1 commensurability early in the history of the Uranian system, over 3.8 billion years ago, tidal heating may have raised the internal temperature of Ariel by up to about 20 K; the internal temperature of Ariel may already have been high in virtue of both accretional and radiogenic heating. The additional increase in Ariel's temperature could then have triggered the geological activity that led to a late resurfacing, by decreasing lithospheric thickness and exacerbating thermal stresses on it to the point where observed cracks and faults formed.

  18. Tidal Energy Research

    SciTech Connect

    Stelzenmuller, Nickolas; Aliseda, Alberto; Palodichuk, Michael; Polagye, Brian; Thomson, James; Chime, Arshiya; Malte, Philip

    2014-03-31

    This technical report contains results on the following topics: 1) Testing and analysis of sub-scale hydro-kinetic turbines in a flume, including the design and fabrication of the instrumented turbines. 2) Field measurements and analysis of the tidal energy resource and at a site in northern Puget Sound, that is being examined for turbine installation. 3) Conceptual design and performance analysis of hydro-kinetic turbines operating at high blockage ratio, for use for power generation and flow control in open channel flows.

  19. Tidal heating of Ariel

    NASA Technical Reports Server (NTRS)

    Tittemore, William C.

    1990-01-01

    During evolution through the 4:1 commensurability early in the history of the Uranian system, over 3.8 billion years ago, tidal heating may have raised the internal temperature of Ariel by up to about 20 K; the internal temperature of Ariel may already have been high in virtue of both accretional and radiogenic heating. The additional increase in Ariel's temperature could then have triggered the geological activity that led to a late resurfacing, by decreasing lithospheric thickness and exacerbating thermal stresses on it to the point where observed cracks and faults formed.

  20. Tidal Power Exploitation in Korea

    NASA Astrophysics Data System (ADS)

    Choi, Byung Ho; Kim, Kyeong Ok; Choi, Jae Cheon

    The highest tides in South Korea are found along the northwest coast between latitudes 36-38 degrees and the number of possible sites for tidal range power barrages to create tidal basins is great due to irregular coastlines with numerous bays. At present Lake Sihwa tidal power plant is completed. The plant is consisted of 10 bulb type turbines with 8 sluice gates. The installed capacity of turbines and generators is 254MW and annual energy output expected is about 552.7 GWh taking flood flow generation scheme. Three other TPP projects are being progressed at Garolim Bay (20 turbines with 25.4MW capacity), Kangwha (28 turbines with 25.4MW capacity), Incheon (44 or 48 turbines with 30 MW capacity) and project features will be outlined here. The introduction of tidal barrages into four major TPP projects along the Kyeonggi bay will render wide range of potential impacts. Preliminary attempts were performed to quantify these impacts using 2 D hydrodynamic model demonstrating the changes in tidal amplitude and phase under mean tidal condition, associated changes in residual circulation (indicator for SPM and pollutant dispersion), bottom stress (indicator for bedload movement), and tidal front (positional indicator for bio-productivity) in both shelf scale and local context. Tidal regime modeling system for ocean tides in the seas bordering the Korean Peninsula is designed to cover an area that is broad in scope and size, yet provide a high degree of resolution in strong tidal current region including off southwestern tip of the Peninsula (Uldolmok , Jangjuk, Wando-Hoenggan), Daebang Sudo (Channel) and Kyeonggi Bay. With this simulation system, real tidal time simulation of extended springneap cycles was performed to estimate spatial distribution of tidal current power potentials in terms of power density, energy density and then extrapolated annual energy density.

  1. TIDAL AND TIDALLY AVERAGED CIRCULATION CHARACTERISTICS OF SUISUN BAY, CALIFORNIA.

    USGS Publications Warehouse

    Smith, Lawrence H.; Cheng, Ralph T.

    1987-01-01

    Availability of extensive field data permitted realistic calibration and validation of a hydrodynamic model of tidal circulation and salt transport for Suisun Bay, California. Suisun Bay is a partially mixed embayment of northern San Francisco Bay located just seaward of the Sacramento-San Joaquin Delta. The model employs a variant of an alternating direction implicit finite-difference method to solve the hydrodynamic equations and an Eulerian-Lagrangian method to solve the salt transport equation. An upwind formulation of the advective acceleration terms of the momentum equations was employed to avoid oscillations in the tidally averaged velocity field produced by central spatial differencing of these terms. Simulation results of tidal circulation and salt transport demonstrate that tides and the complex bathymetry determine the patterns of tidal velocities and that net changes in the salinity distribution over a few tidal cycles are small despite large changes during each cycle.

  2. Breathing zone air sampler

    DOEpatents

    Tobin, John

    1989-01-01

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  3. Breathing zone air sampler

    SciTech Connect

    Tobin, J.

    1989-08-22

    A sampling apparatus is presented which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  4. Tidal Pools--Miniature Oceans

    ERIC Educational Resources Information Center

    Plake, Linda Perry

    1977-01-01

    A comprehensive discussion of the biological activity in tidal pools is provided. The importance of environmental factors such as oxygen supply, temperature, salinity, and light is detailed. Plants and animals that might be found in a tidal pool are identified and described. (BT)

  5. DTP: a Tidal Power Revolution

    NASA Astrophysics Data System (ADS)

    Steijn, Robbert; Hulsbergen, Kees; van Banning, Gijs

    2013-04-01

    Tidal power can significantly contribute to the global mix of sustainable energy resources. It is climate-independent, fully predictable, and if designed properly it is environmentally friendly and socio-economically feasible. The two traditional methods of exploiting tidal power are Tidal Barrage and Tidal Stream. This study deals with an alternative Third Method, named Dynamic Tidal Power (DTP), which contrary to the other methods, utilises the oscillating character of tides, or more precisely: the acceleration inherent to unsteady flow. DTP uses a long dam (order of tens of km's), attached and perpendicular to a coast with shore-parallel tidal currents, to generate a local hydraulic head. This time-varying head is used to generate electricity in a more or less standard way with turbines and generators placed in (many) dam openings. For a first impression only: typical installed power for one DTP is more than 10 GW with electricity output > 2.1010 kWh/y and construction costs of ca. 1 EUR/W. The physical mechanism behind the creation of the head has been described by Hulsbergen e.a., (2012). Following a heuristic approach based on analytical work done by Kolkman (unpubl.), and output from numerical tidal models, Hulsbergen (2012) concluded that the maximum head (near the coast), is: hmax = 6,8*?*D*Vmax/(g*T), with Vmax the maximum alongshore flow velocity during the tidal cycle, T the tidal period and D the length of dam. Such simple relationship was also found by Mei (2012) who made a rigorous analysis of a process-based model. After a thorough reflection on DTP, this study will first check the above formula for hmax , by comparing its predictions with the output from various numerical tidal models. Any differences will be analysed in the study through an evaluation of the dominant physical processes and the schematisations inherent to both the analytical and the numerical models. The study will also address the effect of the openings in the dam, as well as the

  6. Tidal Venuses: Triggering a Climate Catastrophe via Tidal Heating

    PubMed Central

    Mullins, Kristina; Goldblatt, Colin; Meadows, Victoria S.; Kasting, James F.; Heller, René

    2013-01-01

    Abstract Traditionally, stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here, we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high-enough levels to induce a runaway greenhouse for a long-enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets “Tidal Venuses” and the phenomenon a “tidal greenhouse.” Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits (i.e., with negligible tidal heating) in the habitable zone (HZ). However, these planets are not habitable, as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulated the evolution of hypothetical planetary systems in a quasi-continuous parameter distribution and found that we could constrain the history of the system by statistical arguments. Planets orbiting stars with masses<0.3 MSun may be in danger of desiccation via tidal heating. We have applied these concepts to Gl 667C c, a ∼4.5 MEarth planet orbiting a 0.3 MSun star at 0.12 AU. We found that it probably did not lose its water via tidal heating, as orbital stability is unlikely for the high eccentricities required for the tidal greenhouse. As the inner edge of the HZ is defined by the onset of a runaway or moist greenhouse powered by radiation, our results represent a fundamental revision to the HZ for noncircular orbits. In the appendices we review (a) the moist and runaway greenhouses, (b) hydrogen escape, (c) stellar mass-radius and mass-luminosity relations, (d) terrestrial planet mass-radius relations, and (e) linear tidal theories. Key Words: Extrasolar terrestrial

  7. Slow breathing as a means to improve orthostatic tolerance: a randomized sham-controlled trial.

    PubMed

    Lucas, Samuel J E; Lewis, Nia C S; Sikken, Elisabeth L G; Thomas, Kate N; Ainslie, Philip N

    2013-07-15

    Endogenous oscillations in blood pressure (BP) and cerebral blood flow have been associated with improved orthostatic tolerance. Although slow breathing induces such responses, it has not been tested as a therapeutic strategy to improve orthostatic tolerance. With the use of a randomized, crossover sham-controlled design, we tested the hypothesis that breathing at six breaths/min (vs. spontaneous breathing) would improve orthostatic tolerance via inducing oscillations in mean arterial BP (MAP) and cerebral blood flow. Sixteen healthy participants (aged 25 ± 4 yr; mean ± SD) had continuous beat-to-beat measurements of middle cerebral artery blood velocity (MCAv), BP (finometer), heart rate (ECG), and end-tidal carbon dioxide partial pressure during an incremental orthostatic stress test to presyncope by combining head-up tilt with incremental lower-body negative pressure. Tolerance time to presyncope was improved (+15%) with slow breathing compared with spontaneous breathing (29.2 ± 5.4 vs. 33.7 ± 6.0 min; P < 0.01). The improved tolerance was reflected in elevations in low-frequency (LF; 0.07-0.2 Hz) oscillations of MAP and mean MCAv, improved metrics of dynamic cerebrovascular control (increased LF phase and reduced LF gain), and a reduced rate of decline for MCAv (-0.60 ± 0.27 vs. -0.99 ± 0.51 cm·s(-1)·min(-1); P < 0.01) and MAP (-0.50 ± 0.37 vs. -1.03 ± 0.80 mmHg/min; P = 0.01 vs. spontaneous breathing) across time from baseline to presyncope. Our findings show that orthostatic tolerance can be improved within healthy individuals with a simple, nonpharmacological breathing strategy. The mechanisms underlying this improvement are likely mediated via the generation of negative intrathoracic pressure during slow and deep breathing and the related beneficial impact on cerebrovascular and autonomic function.

  8. Galileo's tidal theory.

    PubMed

    Naylor, Ron

    2007-03-01

    The aim of Galileo's tidal theory was to show that the tides were produced entirely by the earth's motion and thereby to demonstrate the physical truth of Copernicanism. However, in the Dialogue Concerning the Two Chief World Systems Galileo did not explain some of the most significant aspects of the theory completely. As a consequence, the way the theory works has long been disputed. Though there exist a number of interpretations in the literature, the most widely accepted are based on ideas that are not explicitly articulated by Galileo in the Dialogue. This essay attempts to understand the way the theory functions in terms of Galilean physics. It is an interpretation of the theory based solely on Galileo's arguments--and one that reveals it to have had some unrecognized consequences. This interpretation indicates that Galileo's theory would not have worked in the manner he described in the Dialogue.

  9. Tidal Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Houck, James R.; Higdon, Sarah

    2004-09-01

    Tidal Dwarf Galaxies (TDG's) are formed from material stripped from the disks of spiral galaxies, which are undergoing tidal interactions with a nearby companion. These galaxies provide important clues to our understanding of galaxy formation, evolution and cosmic recycling. Using the IRS we will measure the star formation activity in 6 TDG candidates. We will measure the ionization state ( [NeII] 12.8 um, [NeIII] 15.6 um and [NeV] 14.3um and [OIV] 25.9 um), the density in the ionized gas ([SIII] 18.7um/33.5um), the PAH fractions at 5.5-9um and 11-12.2um and possibly (optimistic here!) molecular hydrogen emission form PDRs at H2 (S0) 28um and H2 (S1) at 17um. In addition to the IRS observations we will map both the Guitar and Stephan's Quintet with IRAC. This will enable us to compare the PAH fraction in the dwarf galaxy to that of its parent. Similarly we will compare our observation of the proposed TDG at the southern tip of NGC 4038 with the GT observations of the central region of the Antennae. This program compliments two existing GT programmes: 1) the high-Z program - these observations enable us to observe in fine detail the nearby/present day analogs of galaxy formation in the early universe. 2) Blue Compact Dwarf programme - On first inpsection BCD's and TDG's appear the same: BCDs are similar in size to TDG's, but TDG's may not have a large dark matter halo component (affecting the long term stability of an object) and BCD's typically have a much lower metallicity. We will be able to compare the star formation activity in terms of the ionization state and PAH fraction in the two galaxy types.

  10. Lung function, breathing pattern, and gas exchange in interstitial lung disease.

    PubMed Central

    Javaheri, S; Sicilian, L

    1992-01-01

    BACKGROUND: The aim of this study was to determine the relation between the severity of abnormalities in ventilatory function tests and tidal breathing pattern and gas exchange indices in interstitial lung disease. METHODS: Pulmonary function, ventilation, carbon dioxide production, oxygen consumption, arterial blood gas tensions, and pH were measured during resting steady state conditions in 60 patients with proved interstitial lung disease. Patients were categorised by forced vital capacity (FVC) (percentage of predicted values) as having a mild, moderate, or severe restrictive defect with means (SD) of 71% (4%), 57% (4%), and 41% (7%) of predicted values, respectively. RESULTS: FVC varied from 29% to 79% of predicted values and from 0.99 l to 4.32 l. The two measurements of FVC correlated strongly with most static lung volumes and with transfer factor for carbon monoxide. Mean respiratory rates (per minute) and tidal volumes (ml) were 17 (4) and 484 (131), 20 (4) and 460 (139), and 23 (5) and 377 (109) in mild, moderate, and severe restrictive defects, respectively. FVC correlated negatively with respiratory rate and positively with tidal volume. Arterial carbon dioxide tension ranged from 30 to 49 mm Hg; only two patients were hypercapnic. Mean arterial oxygen tensions were not significantly different among the three groups, and there were no significant correlations between forced expiratory volume in one second or FVC and arterial carbon dioxide tension or carbon dioxide production. CONCLUSION: Low values of FVC were associated with increased respiratory rate and decreased tidal volume; this pattern of breathing mimics external elastic loading, suggesting that mechanoreceptors may contribute to the rapid and shallow pattern of breathing in interstitial lung disease. Hypercapnia seems to be rare in interstitial lung disease even when functional impairment is severe and tidal volume is small. The increased respiratory rate is important in maintaining adequate

  11. Fiber optic sensor for the assessment of breathing effort

    NASA Astrophysics Data System (ADS)

    Babchenko, Anatoly; Turinvenko, Sergei; Khanokh, Boris; Nitzan, Meir

    1995-01-01

    Several methods have been developed for the qualitative and quantitative measurement of breathing effort. The most useful kind of breathing pattern monitor includes devices for recording chest and abdomen dimension changes, such as impedance plethysmography and respiratory induction plethysmography. These devices can measure the tidal volume in relative terms, and even measure it in absolute terms after suitable calibration. In this study a novel method for measuring chest circumference based on an optical fiber is presented. The sensor is based on the measurement of light transmitted through a bent optical fiber, which is connected to an elastic band, wrapped around the chest, and whose radius of curvature changes due to the respiratory act. The amount of transmitted light is related to the radius of curvature of the fiber which depends on the chest circumference. The output of the respiratory sensor was checked qualitatively by changing the respiration rate and depth. The changes in breathing effort were clearly demonstrated in the sensor output recording. The respiratory effort was also correlated with the heart rate, measured by photoplethysmography. Statistically significant correlation was found between the lungs' volume and the heart rate, but the correlation coefficient was not high.

  12. A nomogram for assessment of breathing patterns during treadmill exercise

    PubMed Central

    Naranjo, J; Centeno, R; Galiano, D; Beaus, M

    2005-01-01

    Objective: To assess the breathing patterns of trained athletes under different conditions. The hypothesis is that the breathing pattern during a progressive treadmill exercise is independent of the protocol, at least in healthy people, and can be assessed using a nomogram. Methods: A total of 43 male and 21 female athletes from different sports were studied. They performed one of two different protocols (steps or ramp) on a treadmill. The two protocols started at the same speed and had the same rate of increase in work. During the test, the expired air was analysed for CO2 and O2. Ventilation (VE) was continuously recorded, and tidal volume (Vt) and breathing frequency (BF) at the same intensity were analysed for both protocols, as well as Vt/Ti and Ti/Ttot. Results: No significant differences were observed in Vt and BF between the two protocols in either the men or women at any level (confidence intervals up to 0.958 in all the groups). Ti/Ttot remained constant, and all increases in VE were strongly related to the respective increases in Vt/Ti. Plots of data for men and women showed a curvilinear relation between Vt and BF which could be fitted with an exponential function with a strong correlation (R2 = 0.98 for men and 0.97 for women). Conclusions: Graphic expression of Vt v BF is a useful nomogram for the routine assessment of ventilatory response during exercise in healthy trained subjects. PMID:15665202

  13. Automated 4D lung computed tomography reconstruction during free breathing for conformal radiation therapy

    NASA Astrophysics Data System (ADS)

    El Naqa, Issam M.; Low, Daniel A.; Christensen, Gary E.; Parikh, Parag J.; Song, Joo Hyun; Nystrom, Michelle M.; Lu, Wei; Deasy, Joseph O.; Hubenschmidt, James P.; Wahab, Sasha H.; Mutic, Sasa; Singh, Anurag K.; Bradley, Jeffrey D.

    2004-04-01

    We are developing 4D-CT to provide breathing motion information (trajectories) for radiation therapy treatment planning of lung cancer. Potential applications include optimization of intensity-modulated beams in the presence of breathing motion and intra-fraction target volume margin determination for conformal therapy. The images are acquired using a multi-slice CT scanner while the patient undergoes simultaneous quantitative spirometry. At each couch position, the CT scanner is operated in ciné mode and acquires up to 15 scans of 12 slices each. Each CT scan is associated with the measured tidal volume for retrospective reconstruction of 3D CT scans at arbitrary tidal volumes. The specific tasks of this project involves the development of automated registration of internal organ motion (trajectories) during breathing. A modified least-squares based optical flow algorithm tracks specific features of interest by modifying the eigenvalues of gradient matrix (gradient structural tensor). Good correlations between the measured motion and spirometry-based tidal volume are observed and evidence of internal hysteresis is also detected.

  14. C-130J Breathing Resistance Study

    DTIC Science & Technology

    2016-05-01

    the long breathing hose configurations did not provide acceptable breathing resistance in a significant majority of test conditions. 15...requirements in the Air Standard. In general, breathing resistance of the system with the long breathing hoses did not meet the Air Standard

  15. Visualizing Breath using Digital Holography

    NASA Astrophysics Data System (ADS)

    Hobson, P. R.; Reid, I. D.; Wilton, J. B.

    2013-02-01

    Artist Jayne Wilton and physicists Peter Hobson and Ivan Reid of Brunel University are collaborating at Brunel University on a project which aims to use a range of techniques to make visible the normally invisible dynamics of the breath and the verbal and non-verbal communication it facilitates. The breath is a source of a wide range of chemical, auditory and physical exchanges with the direct environment. Digital Holography is being investigated to enable a visually stimulating articulation of the physical trajectory of the breath as it leaves the mouth. Initial findings of this research are presented. Real time digital hologram replay allows the audience to move through holographs of breath-born particles.

  16. Liquid-Air Breathing Apparatus

    NASA Technical Reports Server (NTRS)

    Mills, Robert D.

    1990-01-01

    Compact unit supplies air longer than compressed-air unit. Emergency breathing apparatus stores air as cryogenic liquid instead of usual compressed gas. Intended for firefighting or rescue operations becoming necessary during planned potentially hazardous procedures.

  17. Shortness of Breath and Eating

    MedlinePlus

    ... 877-CALL NJH (877.225.5654) Submit About Us Careers Patient Portal Login Patients & ... of breath can make eating hard work. If you use all your energy preparing a healthy meal, you may find yourself ...

  18. Recent progress in tidal modeling

    NASA Technical Reports Server (NTRS)

    Vial, F.; Forbes, J. M.

    1989-01-01

    Recent contributions to tidal theory during the last five years are reviewed. Specific areas where recent progress has occurred include: the action of mean wind and dissipation on tides, interactions of other waves with tides, the use of TGCM in tidal studies. Furthermore, attention is put on the nonlinear interaction between semidiurnal and diurnal tides. Finally, more realistic thermal excitation and background wind and temperature models have been developed in the past few years. This has led to new month-to-month numerical simulations of the semidiurnal tide. Some results using these models are presented and compared with ATMAP tidal climatologies.

  19. Linearity of electrical impedance tomography during maximum effort breathing and forced expiration maneuvers.

    PubMed

    Ngo, Chuong; Leonhardt, Steffen; Zhang, Tony; Lüken, Markus; Misgeld, Berno; Vollmer, Thomas; Tenbrock, Klaus; Lehmann, Sylvia

    2017-01-01

    Electrical impedance tomography (EIT) provides global and regional information about ventilation by means of relative changes in electrical impedance measured with electrodes placed around the thorax. In combination with lung function tests, e.g. spirometry and body plethysmography, regional information about lung ventilation can be achieved. Impedance changes strictly correlate with lung volume during tidal breathing and mechanical ventilation. Initial studies presumed a correlation also during forced expiration maneuvers. To quantify the validity of this correlation in extreme lung volume changes during forced breathing, a measurement system was set up and applied on seven lung-healthy volunteers. Simultaneous measurements of changes in lung volume using EIT imaging and pneumotachography were obtained with different breathing patterns. Data was divided into a synchronizing phase (spontaneous breathing) and a test phase (maximum effort breathing and forced maneuvers). The EIT impedance changes correlate strictly with spirometric data during slow breathing with increasing and maximum effort ([Formula: see text]) and during forced expiration maneuvers ([Formula: see text]). Strong correlations in spirometric volume parameters [Formula: see text] ([Formula: see text]), [Formula: see text]/FVC ([Formula: see text]), and flow parameters PEF, [Formula: see text], [Formula: see text], [Formula: see text] ([Formula: see text]) were observed. According to the linearity during forced expiration maneuvers, EIT can be used during pulmonary function testing in combination with spirometry for visualisation of regional lung ventilation.

  20. Variability of the breathing pattern in newborn rats: effects of ambient temperature in normoxia or hypoxia.

    PubMed

    Cameron, Y L; Merazzi, D; Mortola, J P

    2000-06-01

    We hypothesized that the inter-breath variability of the breathing pattern in newborn rats varied with temperature and oxygenation. Breathing pattern was recorded in 4-day-old rats by airflow plethysmography, during normoxia in warm (control) and cold conditions, or during hypoxia (inspired O2 = 10%) in warm or cold conditions, each lasting 15 min. The warm phase (36 degrees C) either preceded or followed the cold (24 degrees C). Time-domain analysis was applied to 500 continuous breaths recorded toward the end of each phase. All parameters describing the breathing pattern (instantaneous ventilation, tidal volume, and inspiratory and expiratory time) had lower variability when the condition differed from control i.e. in cold or hypoxia, with no correlation with the absolute level of ventilation. The difference in variability between warm-normoxia and the other conditions was reduced when cold preceded the warm phase. Gaseous metabolism was increased in cold because of thermogenesis. When the cold preceded the warm phase the increased thermogenesis partly persisted into the warm phase, raising the metabolic level. We conclude that the variability of the breathing pattern in newborn rats 1) does not depend on the absolute level of ventilation, and 2) is reduced by the increased chemical stimuli occurring during cold-hypermetabolism or hypoxia. In normoxia in warm condition metabolic and chemical stimuli are low, and the variability is the highest. The results are in agreement with the clinical observations of a higher incidence of apneic episodes in infants during warm conditions.

  1. Effects of slow deep breathing at high altitude on oxygen saturation, pulmonary and systemic hemodynamics.

    PubMed

    Bilo, Grzegorz; Revera, Miriam; Bussotti, Maurizio; Bonacina, Daniele; Styczkiewicz, Katarzyna; Caldara, Gianluca; Giglio, Alessia; Faini, Andrea; Giuliano, Andrea; Lombardi, Carolina; Kawecka-Jaszcz, Kalina; Mancia, Giuseppe; Agostoni, Piergiuseppe; Parati, Gianfranco

    2012-01-01

    Slow deep breathing improves blood oxygenation (Sp(O2)) and affects hemodynamics in hypoxic patients. We investigated the ventilatory and hemodynamic effects of slow deep breathing in normal subjects at high altitude. We collected data in healthy lowlanders staying either at 4559 m for 2-3 days (Study A; N = 39) or at 5400 m for 12-16 days (Study B; N = 28). Study variables, including Sp(O2) and systemic and pulmonary arterial pressure, were assessed before, during and after 15 minutes of breathing at 6 breaths/min. At the end of slow breathing, an increase in Sp(O2) (Study A: from 80.2±7.7% to 89.5±8.2%; Study B: from 81.0±4.2% to 88.6±4.5; both p<0.001) and significant reductions in systemic and pulmonary arterial pressure occurred. This was associated with increased tidal volume and no changes in minute ventilation or pulmonary CO diffusion. Slow deep breathing improves ventilation efficiency for oxygen as shown by blood oxygenation increase, and it reduces systemic and pulmonary blood pressure at high altitude but does not change pulmonary gas diffusion.

  2. Enceladus' tidal dissipation revisited

    NASA Astrophysics Data System (ADS)

    Tobie, Gabriel; Behounkova, Marie; Choblet, Gael; Cadek, Ondrej; Soucek, Ondrej

    2016-10-01

    A series of chemical and physical evidence indicates that the intense activity at Enceladus' South Pole is related to a subsurface salty water reservoir underneath the tectonically active ice shell. The detection of a significant libration implies that this water reservoir is global and that the average ice shell thickness is about 20-25km (Thomas et al. 2016). The interpretation of gravity and topography data further predicts large variations in ice shell thickness, resulting in a shell potentially thinner than 5 km in the South Polar Terrain (SPT) (Cadek et al. 2016). Such an ice shell structure requires a very strong heat source in the interior, with a focusing mechanism at the SPT. Thermal diffusion through the ice shell implies that at least 25-30 GW is lost into space by passive diffusion, implying a very efficient dissipation mechanism in Enceladus' interior to maintain such an ocean/ice configuration thermally stable.In order to determine in which conditions such a large dissipation power may be generated, we model the tidal response of Enceladus including variable ice shell thickness. For the rock core, we consider a wide range of rheological parameters representative of water-saturated porous rock materials. We demonstrate that the thinning toward the South Pole leads to a strong increase in heat production in the ice shell, with a optimal thickness obtained between 1.5 and 3 km, depending on the assumed ice viscosity. Our results imply that the heat production in the ice shell within the SPT may be sufficient to counterbalance the heat loss by diffusion and to power eruption activity. However, outside the SPT, a strong dissipation in the porous core is required to counterbalance the diffusive heat loss. We show that about 20 GW can be generated in the core, for an effective viscosity of 1012 Pa.s, which is comparable to the effective viscosity estimated in water-saturated glacial tills on Earth. We will discuss the implications of this revisited tidal

  3. Tidal disruption of inviscid planetesimals

    NASA Technical Reports Server (NTRS)

    Boss, A. P.; Cameron, A. G. W.; Benz, W.

    1991-01-01

    In view of previous efforts' demonstration that strongly dissipative planetesimals are immune to tidal disruption, an examination is presently conducted of the complementary case of inviscid planetesimals arising from collisions that are sufficiently energetic to entirely melt the resulting planetesimal and debris. The tidal disruption is numerically simulated by means of the smoothed particle hydrodynamics (SPH) code of Cameron and Benz (1991), concentrating on the tidal disruption of 0.01 earth-mass planetesimals passing by the earth with variations in the impact parameter at perigee and velocity at infinity. The SPH models show that tidal forces during a close encounter can efficiently convert orbital angular momentum into spin angular momentum, thereby initiating equatorial mass-shedding to inviscid planetesimals that have been spun up beyond the limit of rotational stability.

  4. On funneling of tidal channels

    NASA Astrophysics Data System (ADS)

    Lanzoni, S.; D'Alpaos, A.

    2015-03-01

    Tidal channels dissect the tidal landscape and exert a crucial control on the morphodynamic evolution of these landscapes. Improving our understanding of channel equilibrium morphology is therefore an important issue for both theoretical and practical reasons. We analyze the case of a tidal channel dissecting a relatively short, unvegetated tidal flat characterized by microtidal conditions and a negligible external sediment supply. The three-dimensional equilibrium configuration of the channel is determined on the basis of a hydrodynamic model, describing the cross-sectional distribution of the longitudinal bed shear stresses, coupled with a morphodynamic model retaining the description of the main physical processes shaping the channel and the adjacent intertidal platform. Both channel bed and width are allowed to adapt to the flow field so that an equilibrium altimetric and planimetric configuration is eventually obtained, when erosion becomes negligibly small, and asymptotically constant elevations are reached everywhere within the domain. Model results reproduce several observed channel characteristics of geomorphic relevance, such as the relationship between channel cross-sectional area and the flowing tidal prism, the scaling of the width-to-depth ratio with channel width, and the longitudinal distributions of bed elevations and channel widths. In analogy with empirical evidence from estuaries, tidal channel funneling is usually assumed to be described by an exponential trend. Our theoretical analyses, modeling results, and observational evidence suggest that a linear relationship also provides a good approximation to describe longitudinal variations in channel width for short tidal channels. Longitudinal bed profiles characterized by a strong planform funneling tend to attain an upward concavity, whereas a low degree of convergence implies an almost linear profile. Finally, the model allows one to analyze the influence of environmental conditions (sediment

  5. Tidal Power for San Francisco

    DTIC Science & Technology

    2003-09-01

    venturi created by design of the subsea tidal station. All mechanical moving parts for the system are on land including conventional air-driven...energy has a global resource base of approximately 30 Tera Watt (TW) (see Table 1). TABLE 1. GLOBAL RENEWABLE RESOURCES Resource Potential...www.sfports.wr.usgs.gov) couples over 20 years of USGS tidal data with a 3-D computational model [4] to provide real-time information from deployed instruments in SF

  6. Standardization of exhaled breath condensate (EBC) collection using a feedback regulated breathing pattern

    EPA Science Inventory

    Collection of exhaled breath condensate (EBC) fluid by cooling of expired breath is a potentially valuable approach for the detection of biomarkers associated with disease or exposure to xenobiotics. EBC is generally collected using unregulated breathing patterns, perceived to el...

  7. [Variability of breathing pattern during inspiratory elastic load].

    PubMed

    D'Negri, Carlos E; Pessolano, Fernando A; De Vito, Eduardo L

    2009-01-01

    In humans, lung ventilation exhibits breath-to-breath variability and dynamics that are nonlinear, complex and chaotic. Our objective was to characterize the breathing pattern variational activity in anesthetized dogs (n: 8) breathing through threshold inspiratory elastic load (7 to 50 cm H2O). Starting from flow signal and tracheal and esophageal pressures, we analyzed inspiratory time (Ti), timing (expiratory time, Te; total time, Ttot; and Ti/Ttot) and central drive (Vt/Ti) and variables related to it (tidal volume, Vt and pulmonary ventilation, Ve). We measured gross variability (variances), low frequency oscillations (spectral analysis), and short term memory (autocorrelation analysis). Loading decreased variance of the mean values of Te, Ttot, Vt and Vt/Ti (p < 0.05); the mean of variances for Ti/Ttot increased (p < 0.005) while it decreased for Vt and Vt/Ti (p < 0.05). In general, percent of data recordings with low frequency oscillations (OB%) decreased (p < 0.02). During heavy load, timing parameters percent of data recordings with autocorrelations (AU%) did not change, but Vt and its related parameters decreased their AU% (p < 0.005). There was a positive correlation (r: 0.955, p < 0.001) between the existence of low frequency oscillations and autocorrelations for Vt and its related parameters, while timing variables did not show such a correlation. In conclusion, threshold elastic load induced a monotonous respiratory pattern. The short term memory decreased during inspiratory stage while increased during expiratory stage. These changes occurred during anesthesia suggesting that certain suprapontine structures may not be obligatory to induce them.

  8. Correlated Variability in the Breathing Pattern and End-Expiratory Lung Volumes in Conscious Humans

    PubMed Central

    Dellaca, Raffaele L.; Aliverti, Andrea; Lo Mauro, Antonella; Lutchen, Kenneth R.; Pedotti, Antonio; Suki, Bela

    2015-01-01

    In order to characterize the variability and correlation properties of spontaneous breathing in humans, the breathing pattern of 16 seated healthy subjects was studied during 40 min of quiet breathing using opto-electronic plethysmography, a contactless technology that measures total and compartmental chest wall volumes without interfering with the subjects breathing. From these signals, tidal volume (VT), respiratory time (TTOT) and the other breathing pattern parameters were computed breath-by-breath together with the end-expiratory total and compartmental (pulmonary rib cage and abdomen) chest wall volume changes. The correlation properties of these variables were quantified by detrended fluctuation analysis, computing the scaling exponentα. VT, TTOT and the other breathing pattern variables showed α values between 0.60 (for minute ventilation) to 0.71 (for respiratory rate), all significantly lower than the ones obtained for end-expiratory volumes, that ranged between 1.05 (for rib cage) and 1.13 (for abdomen) with no significant differences between compartments. The much stronger long-range correlations of the end expiratory volumes were interpreted by a neuromechanical network model consisting of five neuron groups in the brain respiratory center coupled with the mechanical properties of the respiratory system modeled as a simple Kelvin body. The model-based α for VT is 0.57, similar to the experimental data. While the α for TTOT was slightly lower than the experimental values, the model correctly predicted α for end-expiratory lung volumes (1.045). In conclusion, we propose that the correlations in the timing and amplitude of the physiological variables originate from the brain with the exception of end-expiratory lung volume, which shows the strongest correlations largely due to the contribution of the viscoelastic properties of the tissues. This cycle-by-cycle variability may have a significant impact on the functioning of adherent cells in the

  9. Correlated variability in the breathing pattern and end-expiratory lung volumes in conscious humans.

    PubMed

    Dellaca, Raffaele L; Aliverti, Andrea; Lo Mauro, Antonella; Lutchen, Kenneth R; Pedotti, Antonio; Suki, Bela

    2015-01-01

    In order to characterize the variability and correlation properties of spontaneous breathing in humans, the breathing pattern of 16 seated healthy subjects was studied during 40 min of quiet breathing using opto-electronic plethysmography, a contactless technology that measures total and compartmental chest wall volumes without interfering with the subjects breathing. From these signals, tidal volume (VT), respiratory time (TTOT) and the other breathing pattern parameters were computed breath-by-breath together with the end-expiratory total and compartmental (pulmonary rib cage and abdomen) chest wall volume changes. The correlation properties of these variables were quantified by detrended fluctuation analysis, computing the scaling exponenta. VT, TTOT and the other breathing pattern variables showed α values between 0.60 (for minute ventilation) to 0.71 (for respiratory rate), all significantly lower than the ones obtained for end-expiratory volumes, that ranged between 1.05 (for rib cage) and 1.13 (for abdomen) with no significant differences between compartments. The much stronger long-range correlations of the end expiratory volumes were interpreted by a neuromechanical network model consisting of five neuron groups in the brain respiratory center coupled with the mechanical properties of the respiratory system modeled as a simple Kelvin body. The model-based α for VT is 0.57, similar to the experimental data. While the α for TTOT was slightly lower than the experimental values, the model correctly predicted α for end-expiratory lung volumes (1.045). In conclusion, we propose that the correlations in the timing and amplitude of the physiological variables originate from the brain with the exception of end-expiratory lung volume, which shows the strongest correlations largely due to the contribution of the viscoelastic properties of the tissues. This cycle-by-cycle variability may have a significant impact on the functioning of adherent cells in the

  10. Breast movement during normal and deep breathing, respiratory training and set up errors: implications for external beam partial breast irradiation.

    PubMed

    Chopra, S; Dinshaw, K A; Kamble, R; Sarin, R

    2006-09-01

    This study was designed to evaluate interfraction and intrafraction breast movement and to study the effect of respiratory training on respiratory indices. Five patients were immobilized in supine position in a vacuum bag and three-dimensional set up errors, respiratory movement of the breast during normal and deep breathing, tidal volume and breath hold time were recorded. All patients underwent respiratory training and all the respiratory indices were re-evaluated at the end of training. Cumulative maximum movement error (CMME) was calculated by adding directional maximum set up error and maximum post training movement during normal breathing. The mean set up deviation was 1.3 mm (SD +/- 0.5 mm), 1.3 mm (SD +/- 0.3 mm) and 4.4 mm (SD +/- 2.6 mm) in the mediolateral, superoinferior and anteroposterior dimensions. Pre-training mean of the maximum marker movement during normal breathing was 1.07 mm, 1.94 mm and 1.86 mm in the mediolateral, superoinferior and anteroposterior dimensions. During deep breathing these values were 2 mm, 5.5 mm and 4.8 mm. While respiratory training had negligible effect on breast movement during normal breathing, it resulted in a modest reduction during deep breathing (p = 0.2). The mean CMME recorded for these patients was 3.4 mm, 4.5 mm and 7.1 mm in the mediolateral, superoinferior and anteroposterior dimension. Respiratory training also resulted in an increase in breath hold time from a mean of 31 s to 44 s (p = 0.04) and tidal volume from a mean of 560 cm(3) to 1160 cm(3) (p = 0.04). With patients immobilized in the vacuum bag the CMMEs are relatively less. Individualized directional margins may aid in reduction of planning target volume (PTV).

  11. Prospective targeting and control of end-tidal CO2 and O2 concentrations

    PubMed Central

    Slessarev, Marat; Han, Jay; Mardimae, Alexandra; Prisman, Eitan; Preiss, David; Volgyesi, George; Ansel, Cliff; Duffin, James; Fisher, Joseph A

    2007-01-01

    Current methods of forcing end-tidal PCO2 (PETCO2) and PO2 (PETO2) rely on breath-by-breath adjustment of inspired gas concentrations using feedback loop algorithms. Such servo-control mechanisms are complex because they have to anticipate and compensate for the respiratory response to a given inspiratory gas concentration on a breath-by-breath basis. In this paper, we introduce a low gas flow method to prospectively target and control PETCO2 and PETO2 independent of each other and of minute ventilation in spontaneously breathing humans. We used the method to change PETCO2 from control (40 mmHg for PETCO2 and 100 mmHg for PETO2) to two target PETCO2 values (45 and 50 mmHg) at iso-oxia (100 mmHg), PETO2 to two target values (200 and 300 mmHg) at normocapnia (40 mmHg), and PETCO2 with PETO2 simultaneously to the same targets (45 with 200 mmHg and 50 with 300 mmHg). After each targeted value, PETCO2 and PETO2 were returned to control values. Each state was maintained for 30 s. The average difference between target and measured values for PETCO2 was ± 1 mmHg, and for PETO2 was ± 4 mmHg. PETCO2 varied by ± 1 mmHg and PETO2 by ± 5.6 mmHg (s.d.) over the 30 s stages. This degree of control was obtained despite considerable variability in minute ventilation between subjects (± 7.6 l min−1). We conclude that targeted end-tidal gas concentrations can be attained in spontaneously breathing subjects using this prospective, feed-forward, low gas flow system. PMID:17446225

  12. Tidal disruption event demographics

    NASA Astrophysics Data System (ADS)

    Kochanek, C. S.

    2016-09-01

    We survey the properties of stars destroyed in tidal disruption events (TDEs) as a function of black hole (BH) mass, stellar mass and evolutionary state, star formation history and redshift. For M_{BH} ≲ 10^7 M_{⊙}, the typical TDE is due to a M* ˜ 0.3 M⊙ M-dwarf, although the mass function is relatively flat for M_{ast } ≲ M_{⊙}. The contribution from older main-sequence stars and sub-giants is small but not negligible. From MBH ≃ 107.5-108.5 M⊙, the balance rapidly shifts to higher mass stars and a larger contribution from evolved stars, and is ultimately dominated by evolved stars at higher BH masses. The star formation history has little effect until the rates are dominated by evolved stars. TDE rates should decline very rapidly towards higher redshifts. The volumetric rate of TDEs is very high because the BH mass function diverges for low masses. However, any emission mechanism which is largely Eddington-limited for low BH masses suppresses this divergence in any observed sample and leads to TDE samples dominated by MBH ≃ 106.0-107.5 M⊙ BHs with roughly Eddington peak accretion rates. The typical fall-back time is relatively long, with 16 per cent having tfb < 10-1 yr (37 d), and 84 per cent having longer time-scales. Many residual rate discrepancies can be explained if surveys are biased against TDEs with these longer tfb, which seems very plausible if tfb has any relation to the transient rise time. For almost any BH mass function, systematic searches for fainter, faster time-scale TDEs in smaller galaxies, and longer time-scale TDEs in more massive galaxies are likely to be rewarded.

  13. Tidal Boundary Conditions in SEAWAT

    USGS Publications Warehouse

    Mulligan, Ann E.; Langevin, Christian; Post, Vincent E.A.

    2011-01-01

    SEAWAT, a U.S. Geological Survey groundwater flow and transport code, is increasingly used to model the effects of tidal motion on coastal aquifers. Different options are available to simulate tidal boundaries but no guidelines exist nor have comparisons been made to identify the most effective approach. We test seven methods to simulate a sloping beach and a tidal flat. The ocean is represented in one of the three ways: directly using a high hydraulic conductivity (high-K) zone and indirect simulation via specified head boundaries using either the General Head Boundary (GHB) or the new Periodic Boundary Condition (PBC) package. All beach models simulate similar water fluxes across the upland boundary and across the sediment-water interface although the ratio of intertidal to subtidal flow is different at low tide. Simulating a seepage face results in larger intertidal fluxes and influences near-shore heads and salinity. Major differences in flow occur in the tidal flat simulations. Because SEAWAT does not simulate unsaturated flow the water table only rises via flow through the saturated zone. This results in delayed propagation of the rising tidal signal inland. Inundation of the tidal flat is delayed as is flow into the aquifer across the flat. This is severe in the high-K and PBC models but mild in the GHB models. Results indicate that any of the tidal boundary options are fine if the ocean-aquifer interface is steep. However, as the slope of that interface decreases, the high-K and PBC approaches perform poorly and the GHB boundary is preferable.

  14. TIDAL LIMITS TO PLANETARY HABITABILITY

    SciTech Connect

    Barnes, Rory; Jackson, Brian; Greenberg, Richard; Raymond, Sean N.

    2009-07-20

    The habitable zones (HZs) of main-sequence stars have traditionally been defined as the range of orbits that intercept the appropriate amount of stellar flux to permit surface water on a planet. Terrestrial exoplanets discovered to orbit M stars in these zones, which are close-in due to decreased stellar luminosity, may also undergo significant tidal heating. Tidal heating may span a wide range for terrestrial exoplanets and may significantly affect conditions near the surface. For example, if heating rates on an exoplanet are near or greater than that on Io (where tides drive volcanism that resurfaces the planet at least every 1 Myr) and produce similar surface conditions, then the development of life seems unlikely. On the other hand, if the tidal heating rate is less than the minimum to initiate plate tectonics, then CO{sub 2} may not be recycled through subduction, leading to a runaway greenhouse that sterilizes the planet. These two cases represent potential boundaries to habitability and are presented along with the range of the traditional HZ for main-sequence, low-mass stars. We propose a revised HZ that incorporates both stellar insolation and tidal heating. We apply these criteria to GJ 581 d and find that it is in the traditional HZ, but its tidal heating alone may be insufficient for plate tectonics.

  15. Follow your breath: Respiratory interoceptive accuracy in experienced meditators

    PubMed Central

    DAUBENMIER, JENNIFER; SZE, JOCELYN; KERR, CATHERINE E.; KEMENY, MARGARET E.; MEHLING, WOLF

    2014-01-01

    Attention to internal bodily sensations is a core feature of mindfulness meditation. Previous studies have not detected differences in interoceptive accuracy between meditators and nonmeditators on heartbeat detection and perception tasks. We compared differences in respiratory interoceptive accuracy between meditators and nonmeditators in the ability to detect and discriminate respiratory resistive loads and sustain accurate perception of respiratory tidal volume during nondistracted and distracted conditions. Groups did not differ in overall performance on the detection and discrimination tasks; however, meditators were more accurate in discriminating the resistive load with the lowest ceiling effect. Meditators were also more accurate during the nondistracted tracking task at a lag time of 1 s following the breath. Results provide initial support for the notion that meditators have greater respiratory interoceptive accuracy compared to nonmeditators. PMID:23692525

  16. Can Breath Test Detect Stomach Cancers Earlier?

    MedlinePlus

    ... news/fullstory_163342.html Can Breath Test Detect Stomach Cancers Earlier? New technology may also spot esophageal ... 2017 (HealthDay News) -- A breath test to detect stomach and esophageal cancers shows promise, researchers say. The ...

  17. FEV manoeuvre induced changes in breath VOC compositions: an unconventional view on lung function tests

    PubMed Central

    Sukul, Pritam; Schubert, Jochen K.; Oertel, Peter; Kamysek, Svend; Taunk, Khushman; Trefz, Phillip; Miekisch, Wolfram

    2016-01-01

    Breath volatile organic compound (VOC) analysis can open a non-invasive window onto pathological and metabolic processes in the body. Decades of clinical breath-gas analysis have revealed that changes in exhaled VOC concentrations are important rather than disease specific biomarkers. As physiological parameters, such as respiratory rate or cardiac output, have profound effects on exhaled VOCs, here we investigated VOC exhalation under respiratory manoeuvres. Breath VOCs were monitored by means of real-time mass-spectrometry during conventional FEV manoeuvres in 50 healthy humans. Simultaneously, we measured respiratory and hemodynamic parameters noninvasively. Tidal volume and minute ventilation increased by 292 and 171% during the manoeuvre. FEV manoeuvre induced substance specific changes in VOC concentrations. pET-CO2 and alveolar isoprene increased by 6 and 21% during maximum exhalation. Then they decreased by 18 and 37% at forced expiration mirroring cardiac output. Acetone concentrations rose by 4.5% despite increasing minute ventilation. Blood-borne furan and dimethyl-sulphide mimicked isoprene profile. Exogenous acetonitrile, sulphides, and most aliphatic and aromatic VOCs changed minimally. Reliable breath tests must avoid forced breathing. As isoprene exhalations mirrored FEV performances, endogenous VOCs might assure quality of lung function tests. Analysis of exhaled VOC concentrations can provide additional information on physiology of respiration and gas exchange. PMID:27311826

  18. Induction of periodic breathing during sleep causes upper airway obstruction in humans.

    PubMed

    Onal, E; Burrows, D L; Hart, R H; Lopata, M

    1986-10-01

    To test the hypothesis that occlusive apneas result from sleep-induced periodic breathing in association with some degree of upper airway compromise, periodic breathing was induced during non-rapid-eye-movement (NREM) sleep by administering hypoxic gas mixtures with and without applied external inspiratory resistance (9 cmH2O X l-1 X s) in five normal male volunteers. In addition to standard polysomnography for sleep staging and respiratory pattern monitoring, esophageal pressure, tidal volume (VT), and airflow were measured via an esophageal catheter and pneumotachograph, respectively, with the latter attached to a tight-fitting face mask, allowing calculation of total pulmonary system resistance (Rp). During stage I/II NREM sleep minimal period breathing was evident in two of the subjects; however, in four subjects during hypoxia and/or relief from hypoxia, with and without added resistance, pronounced periodic breathing developed with waxing and waning of VT, sometimes with apneic phases. Resistive loading without hypoxia did not cause periodicity. At the nadir of periodic changes in VT, Rp was usually at its highest and there was a significant linear relationship between Rp and 1/VT, indicating the development of obstructive hypopneas. In one subject without added resistance and in the same subject and in another during resistive loading, upper airway obstruction at the nadir of the periodic fluctuations in VT was observed. We conclude that periodic breathing resulting in periodic diminution of upper airway muscle activity is associated with increased upper airway resistance that predisposes upper airways to collapse.

  19. FEV manoeuvre induced changes in breath VOC compositions: an unconventional view on lung function tests

    NASA Astrophysics Data System (ADS)

    Sukul, Pritam; Schubert, Jochen K.; Oertel, Peter; Kamysek, Svend; Taunk, Khushman; Trefz, Phillip; Miekisch, Wolfram

    2016-06-01

    Breath volatile organic compound (VOC) analysis can open a non-invasive window onto pathological and metabolic processes in the body. Decades of clinical breath-gas analysis have revealed that changes in exhaled VOC concentrations are important rather than disease specific biomarkers. As physiological parameters, such as respiratory rate or cardiac output, have profound effects on exhaled VOCs, here we investigated VOC exhalation under respiratory manoeuvres. Breath VOCs were monitored by means of real-time mass-spectrometry during conventional FEV manoeuvres in 50 healthy humans. Simultaneously, we measured respiratory and hemodynamic parameters noninvasively. Tidal volume and minute ventilation increased by 292 and 171% during the manoeuvre. FEV manoeuvre induced substance specific changes in VOC concentrations. pET-CO2 and alveolar isoprene increased by 6 and 21% during maximum exhalation. Then they decreased by 18 and 37% at forced expiration mirroring cardiac output. Acetone concentrations rose by 4.5% despite increasing minute ventilation. Blood-borne furan and dimethyl-sulphide mimicked isoprene profile. Exogenous acetonitrile, sulphides, and most aliphatic and aromatic VOCs changed minimally. Reliable breath tests must avoid forced breathing. As isoprene exhalations mirrored FEV performances, endogenous VOCs might assure quality of lung function tests. Analysis of exhaled VOC concentrations can provide additional information on physiology of respiration and gas exchange.

  20. Tidal variations of earth rotation

    NASA Technical Reports Server (NTRS)

    Yoder, C. F.; Williams, J. G.; Parke, M. E.

    1981-01-01

    The periodic variations of the earths' rotation resulting from the tidal deformation of the earth by the sun and moon were rederived including terms with amplitudes of 0.002 millisec and greater. The series applies to the mantle, crust, and oceans which rotate together for characteristic tidal periods; the scaling parameter is the ratio of the fraction of the Love number producing tidal variations in the moment of inertia of the coupled mantle and oceans (k) to the dimensionless polar moment of inertia of the coupled moments (C). The lunar laser ranging data shows that k/C at monthly and fortnightly frequencies equals 0.99 + or - 0.15 and 0.99 + or - 0.20 as compared to the theoretical value of 0.94 + or - 0.04.

  1. Tidal disruption of inviscid protoplanets

    NASA Technical Reports Server (NTRS)

    Boss, Alan P.; Cameron, A. G. W.; Benz, W.

    1991-01-01

    Roche showed that equilibrium is impossible for a small fluid body synchronously orbiting a primary within a critical radius now termed the Roche limit. Tidal disruption of orbitally unbound bodies is a potentially important process for planetary formation through collisional accumulation, because the area of the Roche limit is considerably larger then the physical cross section of a protoplanet. Several previous studies were made of dynamical tidal disruption and different models of disruption were proposed. Because of the limitation of these analytical models, we have used a smoothed particle hydrodynamics (SPH) code to model the tidal disruption process. The code is basically the same as the one used to model giant impacts; we simply choose impact parameters large enough to avoid collisions. The primary and secondary both have iron cores and silicate mantles, and are initially isothermal at a molten temperature. The conclusions based on the analytical and numerical models are summarized.

  2. Breathing Problems: An Individualized Program.

    ERIC Educational Resources Information Center

    Vodola, Thomas M.

    As one of the components of the Project ACTIVE (All Children Totally Involved Exercising) Teacher Training Model Kit, the manual is designed to enable the educator to organize, conduct, and evaluate individualized-personalized physical education programs for children (prekindergarten through high school) with breathing problems. An introductory…

  3. Submarines, Spacecraft, and Exhaled Breath

    EPA Science Inventory

    The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled b...

  4. Tidal disruption of dissipative planetesimals

    NASA Technical Reports Server (NTRS)

    Mizuno, H.; Boss, A. P.

    1985-01-01

    A self-consistent numerical model is developed for the tidal disruption of a solid planetesimal. The planetesimal is treated as a highly viscous, slightly compressible fluid whose disturbed parts are an inviscid, pressureless fluid undergoing distortion and disruption. The distortions were constrained to being symmetrical above and below the equatorial plane. The tidal potential is expanded in terms of Legendre polynomials, which eliminates the center of mass acceleration effects, permitting definition of equations of motion in a noninertial frame. Consideration is given to viscous dissipation and to characteristics of the solid-atmosphere boundary. The model is applied to sample cases in one, two and three dimensions.

  5. Tidal disruption of viscous bodies

    NASA Technical Reports Server (NTRS)

    Sridhar, S.; Tremaine, S.

    1992-01-01

    Tidal disruptions are investigated in viscous-fluid planetesimals whose radius is small relative to the distance of closest (parabolic-orbit) approach to a planet. The planetesimal surface is in these conditions always ellipsoidal, facilitating treatment by coupled ODEs which are solvable with high accuracy. While the disrupted planetesimals evolve into needlelike ellipsoids, their density does not decrease. The validity of viscous fluid treatment holds for solid (ice or rock) planetesimals in cases where tidal stresses are greater than material strength, but integrity is maintained by self-gravity.

  6. Functional Analysis and Intervention for Breath Holding.

    ERIC Educational Resources Information Center

    Kern, Lee; And Others

    1995-01-01

    A functional analysis of breath-holding episodes in a 7-year-old girl with severe mental retardation and Cornelia-de-Lange syndrome indicated that breath holding served an operant function, primarily to gain access to attention. Use of extinction, scheduled attention, and a picture card communication system decreased breath holding. (Author/SW)

  7. 21 CFR 868.5620 - Breathing mouthpiece.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breathing mouthpiece. 868.5620 Section 868.5620...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5620 Breathing mouthpiece. (a) Identification. A breathing mouthpiece is a rigid device that is inserted into a patient's mouth and...

  8. 21 CFR 868.5620 - Breathing mouthpiece.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing mouthpiece. 868.5620 Section 868.5620...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5620 Breathing mouthpiece. (a) Identification. A breathing mouthpiece is a rigid device that is inserted into a patient's mouth and...

  9. 21 CFR 868.5620 - Breathing mouthpiece.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breathing mouthpiece. 868.5620 Section 868.5620...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5620 Breathing mouthpiece. (a) Identification. A breathing mouthpiece is a rigid device that is inserted into a patient's mouth and...

  10. 21 CFR 868.5620 - Breathing mouthpiece.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Breathing mouthpiece. 868.5620 Section 868.5620...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5620 Breathing mouthpiece. (a) Identification. A breathing mouthpiece is a rigid device that is inserted into a patient's mouth and...

  11. 21 CFR 868.5620 - Breathing mouthpiece.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Breathing mouthpiece. 868.5620 Section 868.5620...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5620 Breathing mouthpiece. (a) Identification. A breathing mouthpiece is a rigid device that is inserted into a patient's mouth and...

  12. Particle Size Concentration Distribution and Influences on Exhaled Breath Particles in Mechanically Ventilated Patients

    PubMed Central

    Chen, Yi-Fang; Huang, Sheng-Hsiu; Wang, Yu-Ling; Chen, Chun-Wan

    2014-01-01

    Humans produce exhaled breath particles (EBPs) during various breath activities, such as normal breathing, coughing, talking, and sneezing. Airborne transmission risk exists when EBPs have attached pathogens. Until recently, few investigations had evaluated the size and concentration distributions of EBPs from mechanically ventilated patients with different ventilation mode settings. This study thus broke new ground by not only evaluating the size concentration distributions of EBPs in mechanically ventilated patients, but also investigating the relationship between EBP level and positive expiratory end airway pressure (PEEP), tidal volume, and pneumonia. This investigation recruited mechanically ventilated patients, with and without pneumonia, aged 20 years old and above, from the respiratory intensive care unit of a medical center. Concentration distributions of EBPs from mechanically ventilated patients were analyzed with an optical particle analyzer. This study finds that EBP concentrations from mechanically ventilated patients during normal breathing were in the range 0.47–2,554.04 particles/breath (0.001–4.644 particles/mL). EBP concentrations did not differ significantly between the volume control and pressure control modes of the ventilation settings in the mechanically ventilated patients. The patient EBPs were sized below 5 µm, and 80% of them ranged from 0.3 to 1.0 µm. The EBPs concentrations in patients with high PEEP (> 5 cmH2O) clearly exceeded those in patients with low PEEP (≤ 5 cmH2O). Additionally, a significant negative association existed between pneumonia duration and EBPs concentration. However, tidal volume was not related to EBPs concentration. PMID:24475230

  13. Tidal frequency estimation for closed basins

    NASA Technical Reports Server (NTRS)

    Eades, J. B., Jr.

    1978-01-01

    A method was developed for determining the fundamental tidal frequencies for closed basins of water, by means of an eigenvalue analysis. The mathematical model employed, was the Laplace tidal equations.

  14. A respiratory-gated micro-CT comparison of respiratory patterns in free-breathing and mechanically ventilated rats.

    PubMed

    Ford, Nancy L; McCaig, Lynda; Jeklin, Andrew; Lewis, James F; Veldhuizen, Ruud A W; Holdsworth, David W; Drangova, Maria

    2017-01-01

    In this study, we aim to quantify the differences in lung metrics measured in free-breathing and mechanically ventilated rodents using respiratory-gated micro-computed tomography. Healthy male Sprague-Dawley rats were anesthetized with ketamine/xylazine and scanned with a retrospective respiratory gating protocol on a GE Locus Ultra micro-CT scanner. Each animal was scanned while free-breathing, then intubated and mechanically ventilated (MV) and rescanned with a standard ventilation protocol (56 bpm, 8 mL/kg and PEEP of 5 cm H2O) and again with a ventilation protocol that approximates the free-breathing parameters (88 bpm, 2.14 mL/kg and PEEP of 2.5 cm H2O). Images were reconstructed representing inspiration and end expiration with 0.15 mm voxel spacing. Image-based measurements of the lung lengths, airway diameters, lung volume, and air content were compared and used to calculate the functional residual capacity (FRC) and tidal volume. Images acquired during MV appeared darker in the airspaces and the airways appeared larger. Image-based measurements showed an increase in lung volume and air content during standard MV, for both respiratory phases, compared with matched MV and free-breathing. Comparisons of the functional metrics showed an increase in FRC for mechanically ventilated rats, but only the standard MV exhibited a significantly higher tidal volume than free-breathing or matched MV Although standard mechanical ventilation protocols may be useful in promoting consistent respiratory patterns, the amount of air in the lungs is higher than in free-breathing animals. Matching the respiratory patterns with the free-breathing case allowed similar lung morphology and physiology measurements while reducing the variability in the measurements.

  15. Evaluation of Fractional Regional Ventilation Using 4D-CT and Effects of Breathing Maneuvers on Ventilation

    SciTech Connect

    Mistry, Nilesh N.; Diwanji, Tejan; Shi, Xiutao; Pokharel, Sabin; Feigenberg, Steven; Scharf, Steven M.; D'Souza, Warren D.

    2013-11-15

    Purpose: Current implementations of methods based on Hounsfield units to evaluate regional lung ventilation do not directly incorporate tissue-based mass changes that occur over the respiratory cycle. To overcome this, we developed a 4-dimensional computed tomography (4D-CT)-based technique to evaluate fractional regional ventilation (FRV) that uses an individualized ratio of tidal volume to end-expiratory lung volume for each voxel. We further evaluated the effect of different breathing maneuvers on regional ventilation. The results from this work will help elucidate the relationship between global and regional lung function. Methods and Materials: Eight patients underwent 3 sets of 4D-CT scans during 1 session using free-breathing, audiovisual guidance, and active breathing control. FRV was estimated using a density-based algorithm with mass correction. Internal validation between global and regional ventilation was performed by use of the imaging data collected during the use of active breathing control. The impact of breathing maneuvers on FRV was evaluated comparing the tidal volume from 3 breathing methods. Results: Internal validation through comparison between the global and regional changes in ventilation revealed a strong linear correlation (slope of 1.01, R{sup 2} of 0.97) between the measured global lung volume and the regional lung volume calculated by use of the “mass corrected” FRV. A linear relationship was established between the tidal volume measured with the automated breathing control system and FRV based on 4D-CT imaging. Consistently larger breathing volumes were observed when coached breathing techniques were used. Conclusions: The technique presented improves density-based evaluation of lung ventilation and establishes a link between global and regional lung ventilation volumes. Furthermore, the results obtained are comparable with those of other techniques of functional evaluation such as spirometry and hyperpolarized-gas magnetic

  16. Geomorphic modeling of macro-tidal embayment with extensive tidal flats: Skagit Bay, Washington

    DTIC Science & Technology

    2012-09-30

    DISTRIBUTION A: Distribution approved for public release; distribution is unlimited. Geomorphic modeling of macro- tidal embayment with extensive... tidal flats: Skagit Bay, Washington Lyle Hibler Battelle-Pacific Northwest Division Marine Sciences Laboratory Sequim, WA 98382 phone: (360) 681...of muddy tidal flats and to quantify the effects of tidal action, river discharge, and shoreline development (e.g. dikes and jetties) on these

  17. Drive mechanism for production of simulated human breath

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G.; Hendricks, C. M.; Lambert, J. W.; Morison, W. B.

    1972-01-01

    Simulated breath drive mechanism was developed as subsystem to breathing metabolic simulator. Mechanism reproduces complete range of human breath rate, breath depth, and breath waveform, as well as independently controlled functional residual capacity. Mechanism was found capable of simulating various individual human breathing characteristics without any changes of parts.

  18. Correlation of regional breath sound with regional ventilation in emphysema

    SciTech Connect

    Ploysongsang, Y.; Pare, J.A.; Macklem, P.T.

    1982-09-01

    We measured regional breath sound intensities (Ib) by a microphone amplifier system in 8 subjects with emphysema. We also measured regional white noise transmissions (Tn) from the same areas in all subjects. The recorded areas were 5, 10, 15, and 20 cm from the apex of the lung just lateral to the right anterior midclavicular line. Xenon ventilation indexes (xenon tidal raw counts, an index of total regional ventilation; xenon equilibration raw counts, an index of ventilating lung volume; xenon ventilation per unit volume (Vr), an index of ventilation per unit volume) were also recorded from the same areas. The Ib, Tn, Ib/Tn (an index of sound generation), and xenon ventilation indexes were all expressed as a fraction of the mean value of all four recorded areas. The Ib and Ib/Tn correlated best with the xenon tidal raw counts, correlated well with the xenon equilibration raw counts, and correlated poorly with Vr. We conclude that Ib and Ib/Tn can be used to quantify regional ventilation in subjects with emphysema.

  19. Comparison of actual tidal volume in neonatal lung model volume control ventilation using three ventilators.

    PubMed

    Toyama, H; Endo, Y; Ejima, Y; Matsubara, M; Kurosawa, S

    2011-07-01

    In neonates, small changes in tidal volumes (V(T)) may lead to complications. Previous studies have shown a significant difference between ventilator-measured tidal volume and tidal volume delivered (actual V(T)). We evaluated the accuracy of three different ventilators to deliver small V(T) during volume-controlled ventilation. We tested Servo 300, 840 ventilator and Evita 4 Neoflow ventilators with lung models simulating normal and injured neonatal lung compliance models. Gas volume delivered from the ventilator into the test circuit (V(TV)) and actual V(T) to the test lung were measured using Ventrak respiration monitors at set V(T) (30 ml). The gas volume increase of the breathing circuit was then calculated. Tidal volumes of the SV300 and PB840 in both lung models were similar to the set V(T) and the actual tidal volumes in the injured model (20.7 ml and 19.8 ml, respectively) were significantly less than that in the normal model (27.4 ml and 23.4 ml). PB840 with circuit compliance compensation could not improve the actual V(T). V(TV) of the EV4N in the normal and the injured models (37.8 ml and 46.6 ml) were markedly increased compared with set V(T), and actual V(T) were similar to set V(T) in the normal and injured model (30.2 ml and 31.9 ml, respectively). EV4N measuring V(T) close to the lung could match actual V(T) to almost the same value as the set V(T) however the gas volume of the breathing circuit was increased. If an accurate value for the patient's actual V(T) is needed, this V(T) must be measured by a sensor located between the Y-piece and the tracheal tube.

  20. Acute effects of deep breathing for a short duration (2-10 minutes) on pulmonary functions in healthy young volunteers.

    PubMed

    Sivakumar, G; Prabhu, Krishnamoorthi; Baliga, Rekha; Pai, M Kirtana; Manjunatha, S

    2011-01-01

    Breathing is the most vital function for maintenance of life. Slow and deep breathing is an integral part of Pranayama and it reduces dead space ventilation and renews air throughout the lungs. The reported beneficial effects of deep breathing as a part of either long term or short term practice of Pranayama are well documented. However our knowledge about the effects of a few minutes' of deep breathing on human ventilatory parameters is poor. In the present study, we examined the relationship between exposure to short duration of deep breathing and performance on pulmonary function tests before and after the deep breathing. The study was conducted in a homogenous group of 12 volunteers containing 4 females and 8 males who were well trained in pulmonary function testing (PFT) before the start of the study. The volunteers performed deep breathing (DB) exercise for 2, 5 and 10 minutes at the rate of 6 breaths per minute under guidance, and the duration of DB exercise for that day was randomly selected for each group. PFT was done before and after the DB exercise. There was a significant (P < 0.05) increase in vital capacity (VC) after 2 and 5 minutes' DB exercise and a consistent improvement in tidal volume (TV) and minute ventilation (MV) after the DB exercise in all the three groups, though it wasn't statistically significant. There was a significant (P < 0.05) increase in forced vital capacity (FVC) after 2 minutes' of DB exercise and a consistent increase in all the three groups in forced inspiratory vital capacity (FIVC) and peak inspiratory flow rate (PIFR), though this increase was not statistically significant. This shows that deep breathing exercise, even for a few minutes' duration is beneficial for the lung functions.

  1. Low-frequency heart rate variability is related to the breath-to-breath variability in the respiratory pattern.

    PubMed

    Beda, Alessandro; Simpson, David M; Carvalho, Nadja C; Carvalho, Alysson Roncally S

    2014-02-01

    Changes in heart rate variability (HRV) at "respiratory" frequencies (0.15-0.5 Hz) may result from changes in respiration rather than autonomic control. We now investigate if the differences in HRV power in the low-frequency (LF) band (0.05-0.15 Hz, HRV(LF)) can also be predicted by respiration variability, quantified by the fraction of tidal volume power in the LF (V(LF,n)). Three experimental protocols were considered: paced breathing, mental effort tasks, and a repeated attentional task. Significant intra- and interindividual correlations were found between changes in HRV(LF) and V(LF,n) despite all subjects having a respiratory frequency above the LF band. Respiratory parameters (respiratory period, tidal volume, and V(LF,n)) could predict up to 79% of HRV(LF) differences in some cases. This suggests that respiratory variability is another mechanism of HRV(LF) generation, which should be always monitored, assessed, and considered in the interpretation of HRV changes.

  2. Analysis of Exhaled Breath for Disease Detection

    NASA Astrophysics Data System (ADS)

    Amann, Anton; Miekisch, Wolfram; Schubert, Jochen; Buszewski, Bogusław; Ligor, Tomasz; Jezierski, Tadeusz; Pleil, Joachim; Risby, Terence

    2014-06-01

    Breath analysis is a young field of research with great clinical potential. As a result of this interest, researchers have developed new analytical techniques that permit real-time analysis of exhaled breath with breath-to-breath resolution in addition to the conventional central laboratory methods using gas chromatography-mass spectrometry. Breath tests are based on endogenously produced volatiles, metabolites of ingested precursors, metabolites produced by bacteria in the gut or the airways, or volatiles appearing after environmental exposure. The composition of exhaled breath may contain valuable information for patients presenting with asthma, renal and liver diseases, lung cancer, chronic obstructive pulmonary disease, inflammatory lung disease, or metabolic disorders. In addition, oxidative stress status may be monitored via volatile products of lipid peroxidation. Measurement of enzyme activity provides phenotypic information important in personalized medicine, whereas breath measurements provide insight into perturbations of the human exposome and can be interpreted as preclinical signals of adverse outcome pathways.

  3. Capillary electrophoresis--a new tool for ionic analysis of exhaled breath condensate.

    PubMed

    Kubáň, Petr; Kobrin, Eeva-Gerda; Kaljurand, Mihkel

    2012-12-07

    Exhaled breath condensate has been analyzed for its ionic content by capillary electrophoresis with capacitively coupled contactless conductometric detection. A simple device for collection of small volumes (100-200 μL) of exhaled breath condensate in less than 2 min was developed. A method for simultaneous determination of inorganic cations, inorganic anions and organic anions from the samples using dual-opposite end injection principle with a short fused silica capillary (35 cm, 50 μm I.D.) was developed. A background electrolyte composed of 20mM 2-(N-morpholino)ethanesulfonic acid, 20 mM l-histidine, 30 μM cetyltrimethylammonium bromide and 2mM 18-crown-6 was used. The analysis time was less than 3 min with limits of detection reaching low μM levels for most of the anions and cations. It has been shown that changes of nitrite could be observed in acute inflammation of upper airways and in a person with diagnosed mild chronic obstructive pulmonary disease, while changes of other ions could also be observed. Lactate concentrations could also be monitored and about 4-fold increase of lactate concentration in exhaled breath condensate was determined following an exhaustive cycling exercise. The developed non-invasive sampling of exhaled breath condensate, followed by rapid capillary electrophoretic analysis, could be very useful in lung inflammatory disease screening as well as in monitoring fast metabolic processes such as lactate build-up and removal.

  4. Reconstruction of 4D-CT data sets acquired during free breathing for the analysis of respiratory motion

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Jan; Werner, Rene; Frenzel, Thorsten; Säring, Dennis; Lu, Wei; Low, Daniel; Handels, Heinz

    2006-03-01

    Respiratory motion is a significant source of error in radiotherapy treatment planning. 4D-CT data sets can be useful to measure the impact of organ motion caused by breathing. But modern CT scanners can only scan a limited region of the body simultaneously and patients have to be scanned in segments consisting of multiple slices. For studying free breathing motion multislice CT scans can be collected simultaneously with digital spirometry over several breathing cycles. The 4D data set is assembled by sorting the free breathing multislice CT scans according to the couch position and the tidal volume. But artifacts can occur because there are no data segments for exactly the same tidal volume and all couch positions. We present an optical flow based method for the reconstruction of 4D-CT data sets from multislice CT scans, which are collected simultaneously with digital spirometry. The optical flow between the scans is estimated by a non-linear registration method. The calculated velocity field is used to reconstruct a 4D-CT data set by interpolating data at user-defined tidal volumes. By this technique, artifacts can be reduced significantly. The reconstructed 4D-CT data sets are used for studying inner organ motion during the respiratory cycle. The procedures described were applied to reconstruct 4D-CT data sets for four tumour patients who have been scanned during free breathing. The reconstructed 4D data sets were used to quantify organ displacements and to visualize the abdominothoracic organ motion.

  5. Modeling the tidal and sub-tidal hydrodynamics in a shallow, micro-tidal estuary

    NASA Astrophysics Data System (ADS)

    Rayson, Matthew D.; Gross, Edward S.; Fringer, Oliver B.

    2015-05-01

    The three-dimensional hydrodynamics of Galveston Bay were simulated in two periods of several month duration. The physical setting of Galveston Bay is described by synthesis of long-term observations. Several processes in addition to tidal hydrodynamics and baroclinic circulation processes contribute substantially to the observed variability of currents, water level and salinity. The model was therefore forced with realistic water levels, river discharges, winds, coastal buoyancy currents (due to the Mississippi River plume) and surface heat fluxes. Quantitative metrics were used to evaluate model performance against observations and both spatial and temporal variability in tidal and sub-tidal hydrodynamics were generally well represented by the model. Three different unstructured meshes were tested, a triangular mesh that under-resolved the shipping channel, a triangular mesh that resolved it, and a mixed quadrilateral-triangular grid with approximately equivalent resolution. It is shown that salinity and sub-tidal velocity are better predicted when the important topographic features, such as the shipping channel, are resolved. It was necessary to increase the seabed drag roughness in the mixed quadrilateral-triangular grid simulation to attain similar performance to the equivalent triangular mesh.

  6. Effects of diaphragm breathing exercise and feedback breathing exercise on pulmonary function in healthy adults.

    PubMed

    Yong, Min-Sik; Lee, Hae-Yong; Lee, Yun-Seob

    2017-01-01

    [Purpose] The present study investigated effects of diaphragm breathing exercise and feedback breathing exercise on respiratory function. [Subjects and Methods] Thirty-one subjects were randomly assigned to two groups; the feedback breathing exercise group and the maneuver-diaphragm exercise group. The feedback breathing exercise group was asked to breathe with feedback breathing device, and the maneuver-diaphragm exercise group was asked to perform diaphragm respiration. Respiratory function was evaluated when a subject sat on a chair comfortably. [Results] There was a significant difference in the functional vital capacity and slow vital capacity before and after all breathing exercises. There was a significant between-group difference in functional vital capacity. However, no between-group difference was found in slow vital capacity. [Conclusion] Diaphragm breathing exercise and feedback breathing exercise can affect respiratory function.

  7. Effects of diaphragm breathing exercise and feedback breathing exercise on pulmonary function in healthy adults

    PubMed Central

    Yong, Min-Sik; Lee, Hae-Yong; Lee, Yun-Seob

    2017-01-01

    [Purpose] The present study investigated effects of diaphragm breathing exercise and feedback breathing exercise on respiratory function. [Subjects and Methods] Thirty-one subjects were randomly assigned to two groups; the feedback breathing exercise group and the maneuver-diaphragm exercise group. The feedback breathing exercise group was asked to breathe with feedback breathing device, and the maneuver-diaphragm exercise group was asked to perform diaphragm respiration. Respiratory function was evaluated when a subject sat on a chair comfortably. [Results] There was a significant difference in the functional vital capacity and slow vital capacity before and after all breathing exercises. There was a significant between-group difference in functional vital capacity. However, no between-group difference was found in slow vital capacity. [Conclusion] Diaphragm breathing exercise and feedback breathing exercise can affect respiratory function. PMID:28210046

  8. Tidal flow separation at protruding beach nourishments

    NASA Astrophysics Data System (ADS)

    Radermacher, Max; de Schipper, Matthieu A.; Swinkels, Cilia; MacMahan, Jamie H.; Reniers, Ad J. H. M.

    2017-01-01

    In recent years, the application of large-scale beach nourishments has been discussed, with the Sand Motor in the Netherlands as the first real-world example. Such protruding beach nourishments have an impact on tidal currents, potentially leading to tidal flow separation and the generation of tidal eddies of length scales larger than the nourishment itself. The present study examines the characteristics of the tidal flow field around protruding beach nourishments under varying nourishment geometry and tidal conditions, based on extensive field observations and numerical flow simulations. Observations of the flow field around the Sand Motor, obtained with a ship-mounted current profiler and a set of fixed current profilers, show that a tidal eddy develops along the northern edge of the mega-nourishment every flood period. The eddy is generated around peak tidal flow and gradually gains size and strength, growing much larger than the cross-shore dimension of the coastline perturbation. Based on a 3 week measurement period, it is shown that the intensity of the eddy modulates with the spring-neap tidal cycle. Depth-averaged tidal currents around coastline perturbations are simulated and compared to the field observations. The occurrence and behavior of tidal eddies is derived for a large set of simulations with varying nourishment size and shape. Results show that several different types of behavior exist, characterized by different combinations of the nourishment aspect ratio, the size of the nourishment relative to the tidal excursion length, and the influence of bed friction.

  9. Air-Breathing Rocket Engines

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph depicts an air-breathing rocket engine prototype in the test bay at the General Applied Science Lab facility in Ronkonkoma, New York. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced Space Transportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  10. Running and Breathing in Mammals

    NASA Astrophysics Data System (ADS)

    Bramble, Dennis M.; Carrier, David R.

    1983-01-01

    Mechanical constraints appear to require that locomotion and breathing be synchronized in running mammals. Phase locking of limb and respiratory frequency has now been recorded during treadmill running in jackrabbits and during locomotion on solid ground in dogs, horses, and humans. Quadrupedal species normally synchronize the locomotor and respiratory cycles at a constant ratio of 1:1 (strides per breath) in both the trot and gallop. Human runners differ from quadrupeds in that while running they employ several phase-locked patterns (4:1, 3:1, 2:1, 1:1, 5:2, and 3:2), although a 2:1 coupling ratio appears to be favored. Even though the evolution of bipedal gait has reduced the mechanical constraints on respiration in man, thereby permitting greater flexibility in breathing pattern, it has seemingly not eliminated the need for the synchronization of respiration and body motion during sustained running. Flying birds have independently achieved phase-locked locomotor and respiratory cycles. This hints that strict locomotor-respiratory coupling may be a vital factor in the sustained aerobic exercise of endothermic vertebrates, especially those in which the stresses of locomotion tend to deform the thoracic complex.

  11. Maine Tidal Power Initiative: Environmental Impact Protocols For Tidal Power

    SciTech Connect

    Peterson, Michael Leroy; Zydlewski, Gayle Barbin; Xue, Huijie; Johnson, Teresa R.

    2014-02-02

    The Maine Tidal Power Initiative (MTPI), an interdisciplinary group of engineers, biologists, oceanographers, and social scientists, has been conducting research to evaluate tidal energy resources and better understand the potential effects and impacts of marine hydro-kinetic (MHK) development on the environment and local community. Project efforts include: 1) resource assessment, 2) development of initial device design parameters using scale model tests, 3) baseline environmental studies and monitoring, and 4) human and community responses. This work included in-situ measurement of the environmental and social response to the pre-commercial Turbine Generator Unit (TGU®) developed by Ocean Renewable Power Company (ORPC) as well as considering the path forward for smaller community scale projects.

  12. Modeling airway resistance dynamics after tidal and deep inspirations.

    PubMed

    Thorpe, C William; Salome, Cheryl M; Berend, Norbert; King, Gregory G

    2004-11-01

    Using the forced oscillation technique, we tracked airway resistance continuously during quiet breathing (QB) and deep inspiration (DI), thus observing fluctuations in resistance that may reflect mechanisms of airway stretch and renarrowing. After DI, however, the resistance may be depressed for a period not related to volume changes. We hypothesized that this gradual increase in resistance after DI-induced dilation was determined by a simple time constant. Furthermore, to the extent that this effect reflects dynamic characteristics of airway renarrowing, the resistance change after each tidal inspiration should also be constrained by this temporal limit. A model relating resistance fluctuations to the breathing pattern, including both instantaneous and delayed effects, was developed and applied to data from 14 nonasthmatic and 17 asthmatic subjects (forced expiratory volume in 1 s = 103 +/- 13 and 83 +/- 12%, respectively, means +/- SD) after methacholine challenge (dose 145 +/- 80 and 3.0 +/- 3.4 micromol, respectively) that resulted in respective forced expiratory volume in 1 s reductions of 16 +/- 7 and 24 +/- 6% from baseline. Resistance was measured continuously for 1 min of QB, a DI, followed by a further minute of QB. Resistance values at end expiration (Ree) and end inspiration were calculated. We found that the sequence of Ree after DI was best modeled by a power-law function of time rather than an exponential decay (r2 = 0.82 +/- 0.18 compared with 0.63 +/- 0.16; P < 0.01). Furthermore, the coefficient characterizing this "renarrowing function" was close to equal to the coefficient characterizing the equivalent function of resistance change between each resistance value at end inpiration and subsequent Ree during QB, particularly in the nonasthmatic subjects for whom the intraclass correlation was 0.66. This suggests that the same time-dependent factors determine renarrowing after both large and small breaths.

  13. Simulating hydrodynamics on tidal mudflats

    NASA Astrophysics Data System (ADS)

    Cook, S.; Lippmann, T. C.

    2014-12-01

    Biogeochemical cycling in estuaries is governed by fluxes from both riverine sources and through estuarine sediment deposits. Although estimates from river sources are relatively common and easily sampled, estimates of nutrient fluxes through the fluid-sediment interface are less common and limited to deeper portions of the bays away from intertidal areas. Lack of quantifiable shear stress estimates over intertidal areas limits our overall understanding of nutrient budgets in estuaries. Unfortunately, observation of intertidal hydrodynamics and nutrient fluxes over tidal flats and near the water's edge is difficult owing to the temporally varying and spatially extensive region where the tides inundate, and thus numerical modeling is often employed. In this work, the Regional Ocean Modeling System (ROMS), a three dimensional numerical hydrodynamic model was used to investigate the shear stresses over intertidal mudflats in the Great Bay, a tidally-dominated New England estuary cut by several tidal channels and with over 50% of the estuary exposed at low tide. The ROMS wetting and drying scheme was used to simulate the rising and falling tide on the flats, a successful approach adapted in other regions of the world but not always inclusive of tidal channels. Bathymetric data obtained in 2009 and 2013 was used to define the model grid. Predicted tides are forced at Adam's Pt., a natural constriction in the estuary about 20 km upstream of the mouth and at the entrance to the Great Bay. Of particular interest are fluxes of material on-to and off-of the tidal flats which contribute to water quality conditions in the estuary, and are largely governed by shear stresses that drive nutrient fluxes at the fluid-sediment interface. Basin wide estimates of near-bottom shear stresses can be used to estimate first order nutrient fluxes over a tidal cycle and hence describe general biogeochemical dynamics of the estuary. Future work will include enhanced forcing of currents by

  14. End-tidal PCO2 as an index of psychophysiological activity during VDT data-entry work and relaxation.

    PubMed

    Schleifer, L M; Ley, R

    1994-02-01

    The present study was designed to assess the utility of end-tidal PCO2 (peak concentration of carbon dioxide in a single breath of exhaled air) as an index of psychophysiological activity during performance of a computer-based task and during relaxation. Eleven data-entry operators were monitored continuously for three consecutive, 6 hour work days under the following conditions: (a) during a self-relaxation baseline period; (b) during an abbreviated progressive muscle relaxation period; and (c) during a period of computer-based data-entry work. End-tidal PCO2, respiration frequency, and cardiac inter-beat interval (a measure of heart rate and its variability) were monitored continuously during the three conditions of the study. Self-ratings of relaxation and tension were also monitored at periodic intervals. Consistent with a decrease in psychophysiological arousal, end-tidal PCO2 and self-ratings of relaxation were significantly higher during progressive muscle relaxation than during baseline relaxation. Consistent with an increase in psychophysiological arousal, end-tidal PCO2, cardiac inter-beat interval, and relaxation ratings during data-entry work were significantly lower than during either baseline relaxation or progressive muscle relaxation, while respiration frequency and tension ratings were higher. The findings indicate that end-tidal PCO2 discriminates among different psychophysiological states, and that end-tidal PCO2 may be useful in indexing the stress-health effects of human-computer interactions.

  15. Can breathing-like pressure oscillations reverse or prevent narrowing of small intact airways?

    PubMed

    Harvey, Brian C; Parameswaran, Harikrishnan; Lutchen, Kenneth R

    2015-07-01

    Periodic length fluctuations of airway smooth muscle during breathing are thought to modulate airway responsiveness in vivo. Recent animal and human intact airway studies have shown that pressure fluctuations simulating breathing can only marginally reverse airway narrowing and are ineffective at protecting against future narrowing. However, these previous studies were performed on relatively large (>5 mm diameter) airways, which are inherently stiffer than smaller airways for which a preponderance of airway constriction in asthma likely occurs. The goal of this study was to determine the effectiveness of breathing-like transmural pressure oscillations to reverse induced narrowing and/or protect against future narrowing of smaller, more compliant intact airways. We constricted smaller (luminal diameter = 2.92 ± 0.29 mm) intact airway segments twice with ACh (10(-6) M), once while applying tidal-like pressure oscillations (5-15 cmH2O) before, during, and after inducing constriction (Pre + Post) and again while only imposing the tidal-like pressure oscillation after induced constriction (Post Only). Smaller airways were 128% more compliant than previously studied larger airways. This increased compliance translated into 196% more strain and 76% greater recovery (41 vs. 23%) because of tidal-like pressure oscillations. Larger pressure oscillations (5-25 cmH2O) caused more recovery (77.5 ± 16.5%). However, pressure oscillations applied before and during constriction resulted in the same steady-state diameter as when pressure oscillations were only applied after constriction. These data show that reduced straining of the airways before a challenge likely does not contribute to the emergence of airway hyperreactivity observed in asthma but may serve to sustain a given level of constriction.

  16. Can breathing-like pressure oscillations reverse or prevent narrowing of small intact airways?

    PubMed Central

    Harvey, Brian C.; Parameswaran, Harikrishnan

    2015-01-01

    Periodic length fluctuations of airway smooth muscle during breathing are thought to modulate airway responsiveness in vivo. Recent animal and human intact airway studies have shown that pressure fluctuations simulating breathing can only marginally reverse airway narrowing and are ineffective at protecting against future narrowing. However, these previous studies were performed on relatively large (>5 mm diameter) airways, which are inherently stiffer than smaller airways for which a preponderance of airway constriction in asthma likely occurs. The goal of this study was to determine the effectiveness of breathing-like transmural pressure oscillations to reverse induced narrowing and/or protect against future narrowing of smaller, more compliant intact airways. We constricted smaller (luminal diameter = 2.92 ± 0.29 mm) intact airway segments twice with ACh (10−6 M), once while applying tidal-like pressure oscillations (5–15 cmH2O) before, during, and after inducing constriction (Pre + Post) and again while only imposing the tidal-like pressure oscillation after induced constriction (Post Only). Smaller airways were 128% more compliant than previously studied larger airways. This increased compliance translated into 196% more strain and 76% greater recovery (41 vs. 23%) because of tidal-like pressure oscillations. Larger pressure oscillations (5–25 cmH2O) caused more recovery (77.5 ± 16.5%). However, pressure oscillations applied before and during constriction resulted in the same steady-state diameter as when pressure oscillations were only applied after constriction. These data show that reduced straining of the airways before a challenge likely does not contribute to the emergence of airway hyperreactivity observed in asthma but may serve to sustain a given level of constriction. PMID:25953836

  17. State-dependent control of breathing by the retrotrapezoid nucleus

    PubMed Central

    Burke, Peter GR; Kanbar, Roy; Basting, Tyler M; Hodges, Walter M; Viar, Kenneth E; Stornetta, Ruth L; Guyenet, Patrice G

    2015-01-01

    Key points This study explores the state dependence of the hypercapnic ventilatory reflex (HCVR). We simulated an instantaneous increase or decrease of central chemoreceptor activity by activating or inhibiting the retrotrapezoid nucleus (RTN) by optogenetics in conscious rats. During quiet wake or non-REM sleep, hypercapnia increased both breathing frequency (fR) and tidal volume (VT) whereas, in REM sleep, hypercapnia increased VT exclusively. Optogenetic inhibition of RTN reduced VT in all sleep–wake states, but reduced fR only during quiet wake and non-REM sleep. RTN stimulation always increased VT but raised fR only in quiet wake and non-REM sleep. Phasic RTN stimulation produced active expiration and reduced early expiratory airflow (i.e. increased upper airway resistance) only during wake. We conclude that the HCVR is highly state-dependent. The HCVR is reduced during REM sleep because fR is no longer under chemoreceptor control and thus could explain why central sleep apnoea is less frequent in REM sleep. Abstract Breathing has different characteristics during quiet wake, non-REM or REM sleep, including variable dependence on . We investigated whether the retrotrapezoid nucleus (RTN), a proton-sensitive structure that mediates a large portion of the hypercapnic ventilatory reflex, regulates breathing differently during sleep vs. wake. Electroencephalogram, neck electromyogram, blood pressure, respiratory frequency (fR) and tidal volume (VT) were recorded in 28 conscious adult male Sprague–Dawley rats. Optogenetic stimulation of RTN with channelrhodopsin-2, or inhibition with archaerhodopsin, simulated an instantaneous increase or decrease of central chemoreceptor activity. Both opsins were delivered with PRSX8-promoter-containing lentiviral vectors. RTN and catecholaminergic neurons were transduced. During quiet wake or non-REM sleep, hypercapnia (3 or 6% ) increased both fR and VT whereas, in REM sleep, hypercapnia increased VT exclusively. RTN

  18. Prediction of CBS tidal evolution

    NASA Astrophysics Data System (ADS)

    Dryomova, G. N.

    The time series of basic processes, accompanying the tidal evolution of star components of Close Binary Systems (CBS) are predicted in the framework of evolutionary stellar models by Claret (2004). The series includes the apsidal motion period, timescale of synchronization of axial rotation of a star with the orbital revolution, the orbit circularization timescale, and the age. Data from the catalogues by Svechnikov & Perevozkina (1999) and by Torres, Andersen, Gimenez (2010) are used for testing the sensitivity of the numerical prediction algorithm.

  19. Trans World Tidal Gravity Profile.

    DTIC Science & Technology

    1984-12-31

    America Curitiba (BraziZ) This station, situated at the Universidade Federal do Parana, in the Instituto de Ciencias Geod6sicas under Professor C...SUL COMPOSANTE VEPTICALE ERESIL 29 40 17S 53 49 22W H 700M P 2M 0 330KM DEPOTS SEDIMENTAIRES SUk BASALTE DEPT* DE INGENIERIA RURAL-UNIV. FED. DE SANTA...PRECAMBRIENIGNEISS * UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE - DEPARTAMENTO DE FISICA TRANS WORLD TIDAL GRAVITY PROFILES P. MELCHIOR CENTRO POLITECNICO

  20. Tidally-Induced Thermonuclear Supernovae

    SciTech Connect

    Rosswog, S.; Ramirez-Ruiz, E.; Hix, William Raphael

    2009-01-01

    We discuss the results of 3D simulations of tidal disruptions of white dwarfs by moderate-mass black holes as they may exist in the cores of globular clusters or dwarf galaxies. Our simulations follow self-consistently the hydrodynamic and nuclear evolution from the initial parabolic orbit over the disruption to the build-up of an accretion disk around the black hole. For strong enough encounters (pericentre distances smaller than about 1/3 of the tidal radius) the tidal compression is reversed by a shock and finally results in a thermonuclear explosion. These explosions are not restricted to progenitor masses close to the Chandrasekhar limit, we find exploding examples throughout the whole white dwarf mass range. There is, however, a restriction on the masses of the involved black holes: black holes more massive than 2x105M{circle_dot} swallow a typical 0.6M{circle_dot} white dwarf before their tidal forces can overwhelm the star's selfgravity. Therefore, this mechanism is characteristic for black holes of moderate masses. The material that remains bound to the black hole settles into an accretion disk and produces an Xray flare close to the Eddington limit of L{sub Edd} {approx} 10{sup 41}erg/s (Mbh/1000M{circle_dot}), typically lasting for a few months. The combination of a peculiar thermonuclear supernova together with an X-ray flare thus whistle-blows the existence of such moderate-mass black holes. The next generation of wide field space-based instruments should be able to detect such events.

  1. Effect of tracheostomy tube on work of breathing: Comparison of pre- and post-decannulation

    PubMed Central

    Villalba, Darío; Feld, Viviana; Leiva, Valeria; Scrigna, Mariana; Distéfano, Eduardo; Pratto, Romina; Rodriguez, Matías; Collins, Jesica; Rocco, Ana; Matesa, Amelia; Rossi, Damián; Areas, Laura; Virgilio, Sacha; Golfarini, Nicolás; Gil-Rosetti, Gregorio; Diaz-Ballve, Pablo; Planells, Fernando

    2016-01-01

    Objective: To describe and compare the work of breathing (WOB) during spontaneous breathing under four conditions: (1) breathing through a tracheostomy tube with an inflated cuff, (2) breathing through the upper airway (UA) with a deflated cuff and occluded tube, (3) breathing through the UA with an occluded cuffless tube, and (4) postdecannulation. Patients and Methods: Patients who tolerated an occluded cuffless tube were included. Ventilatory variables and esophageal pressure were recorded. The pressure-time product (PTP), PTP/min, and PTP/min/tidal volume (PTP/min/VT) were measured. Each condition was measured for 5 min with a 15 min time interval between evaluations. Quantitative data are expressed as mean ± standard deviation. Single-factor analysis of variance was used, and the Games-Howell test was used for post hoc analysis of comparisons between group means (P ≤ 0.05). Results: Eight patients were studied under each of the four conditions described above. Statistically significant differences were found for PTP, PTP/min, and PTP/min/VT. In the post hoc analysis for PTP, significant differences among all conditions were found. For PTP/min, there was no significant difference between Conditions 2 and 4 (P = 0.138), and for PTP/min/VT, there was no significant difference between Conditions 1 and 2 (P = 0.072) or between Conditions 2 and 3 (P = 0.106). A trend toward a higher PTP, PTP/min, and PTP/min/VT was observed when breathing through a cuffless tracheostomy tube. Conclusion: The four conditions differed with respect to WOB. Cuff inflation could result in a reduced WOB because there is less dead space. Cuffless tracheostomy tubes generate increased WOB, perhaps due to the material deformity caused by body temperature. PMID:27722109

  2. ARRAY OPTIMIZATION FOR TIDAL ENERGY EXTRACTION IN A TIDAL CHANNEL – A NUMERICAL MODELING ANALYSIS

    SciTech Connect

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea

    2014-04-18

    This paper presents an application of a hydrodynamic model to simulate tidal energy extraction in a tidal dominated estuary in the Pacific Northwest coast. A series of numerical experiments were carried out to simulate tidal energy extraction with different turbine array configurations, including location, spacing and array size. Preliminary model results suggest that array optimization for tidal energy extraction in a real-world site is a very complex process that requires consideration of multiple factors. Numerical models can be used effectively to assist turbine siting and array arrangement in a tidal turbine farm for tidal energy extraction.

  3. Repetitive transcranial magnetic stimulation over the supplementary motor area modifies breathing pattern in response to inspiratory loading in normal humans

    PubMed Central

    Nierat, Marie-Cécile; Hudson, Anna L.; Chaskalovic, Joël; Similowski, Thomas; Laviolette, Louis

    2015-01-01

    In awake humans, breathing depends on automatic brainstem pattern generators. It is also heavily influenced by cortical networks. For example, functional magnetic resonance imaging and electroencephalographic data show that the supplementary motor area becomes active when breathing is made difficult by inspiratory mechanical loads like resistances or threshold valves, which is associated with perceived respiratory discomfort. We hypothesized that manipulating the excitability of the supplementary motor area with repetitive transcranial magnetic stimulation would modify the breathing pattern response to an experimental inspiratory load and possibly respiratory discomfort. Seven subjects (three men, age 25 ± 4) were studied. Breathing pattern and respiratory discomfort during inspiratory loading were described before and after conditioning the supplementary motor area with repetitive stimulation, using an excitatory paradigm (5 Hz stimulation), an inhibitory paradigm, or sham stimulation. No significant change in breathing pattern during loading was observed after sham conditioning. Excitatory conditioning shortened inspiratory time (p = 0.001), decreased tidal volume (p = 0.016), and decreased ventilation (p = 0.003), as corroborated by an increased end-tidal expired carbon dioxide (p = 0.013). Inhibitory conditioning did not affect ventilation, but lengthened expiratory time (p = 0.031). Respiratory discomfort was mild under baseline conditions, and unchanged after conditioning of the supplementary motor area. This is the first study to show that repetitive transcranial magnetic stimulation conditioning of the cerebral cortex can alter breathing pattern. A 5 Hz conditioning protocol, known to enhance corticophrenic excitability, can reduce the amount of hyperventilation induced by inspiratory threshold loading. Further studies are needed to determine whether and under what circumstances rTMS can have an effect on dyspnoea. PMID:26483701

  4. North American tidal power prospects

    NASA Astrophysics Data System (ADS)

    Wayne, W. W., Jr.

    1981-07-01

    Prospects for North American tidal power electrical generation are reviewed. Studies by the US Army Corps of Engineers of 90 possible generation schemes in Cobscook Bay, ME, indicated that maximum power generation rather than dependable capacity was the most economic method. Construction cost estimates for 15 MW bulb units in a single effect mode from basin to the sea are provided; five projects were considered ranging from 110-160 MW. Additional tidal power installations are examined for: Half-Moon Cove, ME (12 MW, 18 ft tide); Cook Inlet, AK, which is shown to pose severe environmental and engineering problems due to fish migration, earthquake hazards, and 300 ft deep silt deposits; and the Bay of Fundy, Canada. This last has a 17.8 MW plant under construction in a 29 ft maximum tide area. Other tidal projects of the Maritime Provinces are reviewed, and it is noted that previous economic evaluations based on an oil price of $16/barrel are in need of revision.

  5. Regulation of frequency and depth of breathing during expiratory threshold loading in cats.

    PubMed

    Grunstein, M M; Wyszogrodski, I; Milic-Emili, J

    1975-05-01

    In six spontaneously breathing anesthetized cats, intermittently subjected to inspiratory elastic loads, we have studied the relationships between tidal volume (VT) and the durations of inspiration (Ti) and breath duration (Ttot) obtained during spontaneous ventilation from resting lung volume (FRCc) and from elevated end-expiratory levels. The latter was elevated by submerging the expiratory breathing line into a column of water, representing the addition of an expiratory threshold load (ETL). The VT vs. Ti relationships obtained at different end-expiratory levels were similar, indicating that during ETL the vagal mechanism regulating Ti responds only to lung volume changes above the new end-expiratory level and is independent of the absolute end-expiratory lung volume. Single vagal fiber recordings suggest that this effect on Ti control may be explained on the basis of adaptation occurring at the level of the pulmonary stretch receptors. The control of Ttot, on the other hand, was found to depend both on the Ti of the preceding breath (phasic component) and on a separate vagal mechanism specifically affecting the duration of expiration (Te) in response to changes in the absolute end-expiratory lung volume. The latter mechanism is functionally inoperative at FRCc.

  6. Regulation of brain blood flow and oxygen delivery in elite breath-hold divers

    PubMed Central

    Willie, Christopher K; Ainslie, Philip N; Drvis, Ivan; MacLeod, David B; Bain, Anthony R; Madden, Dennis; Maslov, Petra Zubin; Dujic, Zeljko

    2015-01-01

    The roles of involuntary breathing movements (IBMs) and cerebral oxygen delivery in the tolerance to extreme hypoxemia displayed by elite breath-hold divers are unknown. Cerebral blood flow (CBF), arterial blood gases (ABGs), and cardiorespiratory metrics were measured during maximum dry apneas in elite breath-hold divers (n=17). To isolate the effects of apnea and IBM from the concurrent changes on ABG, end-tidal forcing (‘clamp') was then used to replicate an identical temporal pattern of decreasing arterial PO2 (PaO2) and increasing arterial PCO2 (PaCO2) while breathing. End-apnea PaO2 ranged from 23  to 37 mm Hg (30±7 mm Hg). Elevation in mean arterial pressure was greater during apnea than during clamp reaching +54±24% versus 34±26%, respectively; however, CBF increased similarly between apnea and clamp (93.6±28% and 83.4±38%, respectively). This latter observation indicates that during the overall apnea period IBM per se do not augment CBF and that the brain remains sufficiently protected against hypertension. Termination of apnea was not determined by reduced cerebral oxygen delivery; despite 40% to 50% reductions in arterial oxygen content, oxygen delivery was maintained by commensurately increased CBF. PMID:25370857

  7. Graph-based retrospective 4D image construction from free-breathing MRI slice acquisitions

    NASA Astrophysics Data System (ADS)

    Tong, Yubing; Udupa, Jayaram K.; Ciesielski, Krzysztof C.; McDonough, Joseph M.; Mong, Andrew; Campbell, Robert M.

    2014-03-01

    4D or dynamic imaging of the thorax has many potential applications [1, 2]. CT and MRI offer sufficient speed to acquire motion information via 4D imaging. However they have different constraints and requirements. For both modalities both prospective and retrospective respiratory gating and tracking techniques have been developed [3, 4]. For pediatric imaging, x-ray radiation becomes a primary concern and MRI remains as the de facto choice. The pediatric subjects we deal with often suffer from extreme malformations of their chest wall, diaphragm, and/or spine, as such patient cooperation needed by some of the gating and tracking techniques are difficult to realize without causing patient discomfort. Moreover, we are interested in the mechanical function of their thorax in its natural form in tidal breathing. Therefore free-breathing MRI acquisition is the ideal modality of imaging for these patients. In our set up, for each coronal (or sagittal) slice position, slice images are acquired at a rate of about 200-300 ms/slice over several natural breathing cycles. This produces typically several thousands of slices which contain both the anatomic and dynamic information. However, it is not trivial to form a consistent and well defined 4D volume from these data. In this paper, we present a novel graph-based combinatorial optimization solution for constructing the best possible 4D scene from such data entirely in the digital domain. Our proposed method is purely image-based and does not need breath holding or any external surrogates or instruments to record respiratory motion or tidal volume. Both adult and children patients' data are used to illustrate the performance of the proposed method. Experimental results show that the reconstructed 4D scenes are smooth and consistent spatially and temporally, agreeing with known shape and motion of the lungs.

  8. Microphonic versus end-tidal carbon dioxide nasal airflow detection in neonates with apnea.

    PubMed

    Toubas, P L; Duke, J C; Sekar, K C; McCaffree, M A

    1990-12-01

    Impedance pneumography in combination with expired CO2 monitoring are commonly used techniques for detecting central and obstructive apnea in infants. In this investigation an American Telephone and Telegraph StarSet-1 3000-ohm self-actuating microphone connected to the end of an infant cannula was used to monitor neonatal nasal airflow to detect breaths and apnea. The microphone was placed in a soundproof container to eliminate environmental sound artifacts. Analyses of 100 breaths from five patient samples during active and quiet sleep showed that there was no significant difference between microphone and expired CO2 recording of respiration. The techniques were 98% and 96% sensitive, respectively. Microphonic detection of nasal airflow identified 27 of the 32 episodes of upper airway obstruction (84.2%) registered by end-tidal CO2 recording. Inspiratory and expiratory events could also be well documented. Microphonic recording of nasal airflow is a reliable and inexpensive technique to detect apnea.

  9. Sleep disordered breathing in pregnancy

    PubMed Central

    2015-01-01

    Key points Sleep disordered breathing (SDB) is common and the severity increases as pregnancy progresses. Frequent snoring, older age and high pre-pregnancy body mass index (>25 kg⋅m−2) could be reliable indicators for SDB in early pregnancy. SDB screening tools, including questionnaires, used in the nonpregnant population have poor predictive ability in pregnancy. Accumulating evidence suggests that SDB during pregnancy may be associated with increased risk of adverse pregnancy outcomes, including gestational diabetes and pre-eclampsia. However, the results should be interpreted cautiously because several studies failed to adjust for potential maternal confounders and have other study limitations. There are no pregnancy-specific practice guidelines for SDB treatment. Many clinicians and practices follow recommendations for the treatment in the general population. Women with pre-existing SDB might need to be reassessed, particularly after the sixth month of pregnancy, because symptoms can worsen with nasal congestion and weight gain. Educational aims To highlight the prevalence and severity of sleep disordered breathing (SDB) in the pregnant population. To inform readers about risk factors for SDB in pregnancy. To explore the impact of SDB on adverse maternal and fetal outcomes, and biological pathways for associated adverse maternal and fetal outcomes. To introduce current management options for SDB in pregnancy, including medical and behavioural approaches. Sleep disordered breathing (SDB) is very common during pregnancy, and is most likely explained by hormonal, physiological and physical changes. Maternal obesity, one of the major risk factors for SDB, together with physiological changes in pregnancy may predispose women to develop SDB. SDB has been associated with poor maternal and fetal outcomes. Thus, early identification, diagnosis and treatment of SDB are important in pregnancy. This article reviews the pregnancy-related changes affecting the

  10. [Breath-analysis tests in gastroenetrological diagnosis].

    PubMed

    Caspary, W F

    1975-12-01

    The introduction of a simple method for analysis of 14CO2 in breath allowed a more widely application of breath-tests in the diagnosis of gastroenterological diseases. During a breath-test a 14C-labelled compound is administered orally and 14CO2 is subsequently measured in breath by discontinuous samplings of 14CO2 by virtue of a trapping solution (hyamine hydroxide). Most helpful tests in gastroenterology are the 14C-glycyl-cholate breath test for detecting increased deconjugation of bile acids due to small intestinal bacterial overgrowth or bile acid malabsorption in ileal resection or Crohn's disease of the ileum, the 14C-lactose breath test in lactase deficiency, whereas the 14C-tripalmitin test seems less helpful in the diagnosis of fat malabsorption. A 14C-aminopyrine breath test may turn out to be a simple and valuable liver function test. Oral loading tests with breath analysis of H2 have shown to be helpful in the diagnosis of carbohydrate malabsorption, determination of intestinal transit time and intestinal gas production. Due to technical reasons (gas-chromatographie analysis) H2-breath analysis is still limited to research centers. Despite low radiation doses after oral administration of 14C-labelled compounds oral loading tests with H2- or 13C-analysis might be preferable in the future.

  11. Breath ammonia measurement in Helicobacter pylori infection.

    PubMed

    Kearney, David J; Hubbard, Todd; Putnam, David

    2002-11-01

    Our aim was to define the utility of breath ammonia measurement in assessing Helicobacter pylori infection. Volunteers breathed into a device containing three fiberoptic NH3 sensors at baseline and after ingesting 300 mg of urea. Breath ammonia levels were compared to the [14C]urea breath test. Thirteen subjects were tested. Before urea ingestion, H. pylori-positive subjects had significantly lower breath ammonia levels than negative subjects (mean +/- SD, 0.04 ppm +/- 0.09 vs 0.49 ppm +/- 0.24, P = 0.002) and had a significantly greater increases in breath ammonia after urea ingestion (range 198-1,494% vs 6-98%). One H. pylori-positive subject underwent treatment and breath ammonia levels shifted from the pattern seen in positive subjects to that seen in negative subjects. In conclusion, breath ammonia measurement for H. Pylori-positive and negative subjects showed distinct patterns. Breath ammonia measurement may be feasible as a diagnostic test for H. pylori.

  12. Calculating rhythmicity of infant breathing using wavelets

    NASA Astrophysics Data System (ADS)

    Macey, Katherine E.; Page, Wyatt H.; Harper, Ronald M.; Macey, Paul M.; Ford, Rodney P. K.

    2000-12-01

    Breathing signals are one set of physiological data that may provide information regarding the mechanisms that cause SIDS. Isolated breathing pauses have been implicated in fatal events. Other features of interest include slow amplitude modulation of the breathing signal, a phenomenon whose origin is unclear, and periodic breathing. The latter describes a repetitive series of apnea, and may be considered an extreme manifestation of amplitude modulation with successive cessations of breathing. Rhythmicity is defined to assess the impact of amplitude modulation on breathing signals and describes the extent to which frequency components remain constant for the duration of the signal. The wavelet transform was used to identify sections of constant frequency components within signals. Rhythmicity can be evaluated for all the frequency components in a signal, for individual frequencies. The rhythmicity of eight breathing epochs from sleeping infants at high and low risk for SIDS was calculated. Initial results show breathing from infants at high risk for SIDS exhibits greater rhythmicity of modulating frequencies than breathing from low risk infants.

  13. TIDAL FRICTION AND TIDAL LAGGING. APPLICABILITY LIMITATIONS OF A POPULAR FORMULA FOR THE TIDAL TORQUE

    SciTech Connect

    Efroimsky, Michael; Makarov, Valeri V. E-mail: vvm@usno.navy.mil

    2013-02-10

    Tidal torques play a key role in rotational dynamics of celestial bodies. They govern these bodies' tidal despinning and also participate in the subtle process of entrapment of these bodies into spin-orbit resonances. This makes tidal torques directly relevant to the studies of habitability of planets and their moons. Our work begins with an explanation of how friction and lagging should be built into the theory of bodily tides. Although much of this material can be found in various publications, a short but self-consistent summary on the topic has been lacking in the hitherto literature, and we are filling the gap. After these preparations, we address a popular concise formula for the tidal torque, which is often used in the literature, for planets or stars. We explain why the derivation of this expression, offered in the paper by Goldreich and in the books by Kaula (Equation (4.5.29)) and Murray and Dermott (Equation (4.159)), implicitly sets the time lag to be frequency independent. Accordingly, the ensuing expression for the torque can be applied only to bodies having a very special (and very hypothetical) rheology which makes the time lag frequency independent, i.e., the same for all Fourier modes in the spectrum of tide. This expression for the torque should not be used for bodies of other rheologies. Specifically, the expression cannot be combined with an extra assertion of the geometric lag being constant, because at finite eccentricities the said assumption is incompatible with the constant-time-lag condition.

  14. 42 CFR 84.79 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing gas; minimum requirements. 84.79 Section...-Contained Breathing Apparatus § 84.79 Breathing gas; minimum requirements. (a) Breathing gas used to supply... respiratory tract irritating compounds. (c) Compressed, gaseous breathing air shall meet the...

  15. 42 CFR 84.79 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing gas; minimum requirements. 84.79 Section...-Contained Breathing Apparatus § 84.79 Breathing gas; minimum requirements. (a) Breathing gas used to supply... respiratory tract irritating compounds. (c) Compressed, gaseous breathing air shall meet the...

  16. 42 CFR 84.85 - Breathing bags; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing bags; minimum requirements. 84.85 Section...-Contained Breathing Apparatus § 84.85 Breathing bags; minimum requirements. (a) Breathing bags shall have.... (b) Breathing bags shall be constructed of materials which are flexible and resistant to...

  17. 42 CFR 84.85 - Breathing bags; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing bags; minimum requirements. 84.85 Section...-Contained Breathing Apparatus § 84.85 Breathing bags; minimum requirements. (a) Breathing bags shall have.... (b) Breathing bags shall be constructed of materials which are flexible and resistant to...

  18. 42 CFR 84.85 - Breathing bags; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing bags; minimum requirements. 84.85 Section...-Contained Breathing Apparatus § 84.85 Breathing bags; minimum requirements. (a) Breathing bags shall have.... (b) Breathing bags shall be constructed of materials which are flexible and resistant to...

  19. 42 CFR 84.85 - Breathing bags; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing bags; minimum requirements. 84.85 Section...-Contained Breathing Apparatus § 84.85 Breathing bags; minimum requirements. (a) Breathing bags shall have.... (b) Breathing bags shall be constructed of materials which are flexible and resistant to...

  20. 42 CFR 84.79 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing gas; minimum requirements. 84.79 Section...-Contained Breathing Apparatus § 84.79 Breathing gas; minimum requirements. (a) Breathing gas used to supply... respiratory tract irritating compounds. (c) Compressed, gaseous breathing air shall meet the...

  1. 42 CFR 84.79 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing gas; minimum requirements. 84.79 Section...-Contained Breathing Apparatus § 84.79 Breathing gas; minimum requirements. (a) Breathing gas used to supply... respiratory tract irritating compounds. (c) Compressed, gaseous breathing air shall meet the...

  2. 42 CFR 84.79 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing gas; minimum requirements. 84.79 Section...-Contained Breathing Apparatus § 84.79 Breathing gas; minimum requirements. (a) Breathing gas used to supply... respiratory tract irritating compounds. (c) Compressed, gaseous breathing air shall meet the...

  3. 42 CFR 84.85 - Breathing bags; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing bags; minimum requirements. 84.85 Section...-Contained Breathing Apparatus § 84.85 Breathing bags; minimum requirements. (a) Breathing bags shall have.... (b) Breathing bags shall be constructed of materials which are flexible and resistant to...

  4. Breathing

    MedlinePlus Videos and Cool Tools

    ... size of the thoracic cavity and decreases the pressure inside. As a result, air rushes in and ... volume of the thoracic cavity decreases, while the pressure within it increases. As a result, the lungs ...

  5. TIDAL NOVAE IN COMPACT BINARY WHITE DWARFS

    SciTech Connect

    Fuller, Jim; Lai Dong

    2012-09-01

    Compact binary white dwarfs (WDs) undergoing orbital decay due to gravitational radiation can experience significant tidal heating prior to merger. In these WDs, the dominant tidal effect involves the excitation of outgoing gravity waves in the inner stellar envelope and the dissipation of these waves in the outer envelope. As the binary orbit decays, the WDs are synchronized from outside in (with the envelope synchronized first, followed by the core). We examine the deposition of tidal heat in the envelope of a carbon-oxygen WD and study how such tidal heating affects the structure and evolution of the WD. We show that significant tidal heating can occur in the star's degenerate hydrogen layer. This layer heats up faster than it cools, triggering runaway nuclear fusion. Such 'tidal novae' may occur in all WD binaries containing a CO WD, at orbital periods between 5 minutes and 20 minutes, and precede the final merger by 10{sup 5}-10{sup 6} years.

  6. Gravitoelectromagnetic analogy based on tidal tensors

    SciTech Connect

    Costa, L. Filipe O.; Herdeiro, Carlos A. R.

    2008-07-15

    We propose a new approach to a physical analogy between general relativity and electromagnetism, based on tidal tensors of both theories. Using this approach we write a covariant form for the gravitational analogues of the Maxwell equations, which makes transparent both the similarities and key differences between the two interactions. The following realizations of the analogy are given. The first one matches linearized gravitational tidal tensors to exact electromagnetic tidal tensors in Minkowski spacetime. The second one matches exact magnetic gravitational tidal tensors for ultrastationary metrics to exact magnetic tidal tensors of electromagnetism in curved spaces. In the third we show that our approach leads to a two-step exact derivation of Papapetrou's equation describing the force exerted on a spinning test particle. Analogous scalar invariants built from tidal tensors of both theories are also discussed.

  7. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Compressed breathing gas and liquefied breathing gas containers; minimum requirements. 84.81 Section 84.81 Public Health PUBLIC HEALTH SERVICE... liquefied breathing gas containers shall meet the minimum requirements of the Department of...

  8. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Compressed breathing gas and liquefied breathing gas containers; minimum requirements. 84.81 Section 84.81 Public Health PUBLIC HEALTH SERVICE... liquefied breathing gas containers shall meet the minimum requirements of the Department of...

  9. Tidal deformability of compact boson stars

    NASA Astrophysics Data System (ADS)

    Sennett, Noah; Steinhoff, Jan; Hinderer, Tanja; Buonanno, Alessandra

    2017-01-01

    Gravitational waves can be used to probe the structure of compact objects in coalescing binary systems. This structure enters the pre-merger waveform through tidal interactions between the two bodies, characterized by each object's tidal deformability. We investigate whether these effects can differentiate binary black holes from systems containing compact boson stars. We compute the tidal deformability for various boson star models, including ultracompact non-topological solitonic solutions.

  10. Calculating lunar retreat rates using tidal rhythmites

    USGS Publications Warehouse

    Kvale, E.P.; Johnson, H.W.; Sonett, C.P.; Archer, A.W.; Zawistoski, A.N.N.

    1999-01-01

    Tidal rhythmites are small-scale sedimenta??r}- structures that can preserve a hierarchy of astronomically induced tidal periods. They can also preserve a record of periodic nontidal sedimentation. If properly interpreted and understood, tidal rhjthmites can be an important component of paleoastronomy and can be used to extract information on ancient lunar orbital dynamics including changes in Earth-Moon distance through geologic time. Herein we present techniques that can be used to calculate ancient Earth-Moon distances. Each of these techniques, when used on a modern high-tide data set, results in calculated estimates of lunar orbital periods and an EarthMoon distance that fall well within 1 percent of the actual values. Comparisons to results from modern tidal data indicate that ancient tidal rhythmite data as short as 4 months can provide suitable estimates of lunar orbital periods if these tidal records are complete. An understanding of basic tidal theory allows for the evaluation of completeness of the ancient tidal record as derived from an analysis of tidal rhythmites. Utilizing the techniques presented herein, it appears from the rock record that lunar orbital retreat slowed sometime during the midPaleozoic. Copyright ??1999, SEPM (Society for Sedimentary Geology).

  11. Protective supplied breathing air garment

    DOEpatents

    Childers, E.L.; Hortenau, E.F. von.

    1984-07-10

    A breathing air garment is disclosed for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap. 17 figs.

  12. Protective supplied breathing air garment

    DOEpatents

    Childers, Edward L.; von Hortenau, Erik F.

    1984-07-10

    A breathing air garment for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap.

  13. Work of Breathing into Snow in the Presence versus Absence of an Artificial Air Pocket Affects Hypoxia and Hypercapnia of a Victim Covered with Avalanche Snow: A Randomized Double Blind Crossover Study.

    PubMed

    Roubík, Karel; Sieger, Ladislav; Sykora, Karel

    2015-01-01

    Presence of an air pocket and its size play an important role in survival of victims buried in the avalanche snow. Even small air pockets facilitate breathing. We hypothesize that the size of the air pocket significantly affects the airflow resistance and work of breathing. The aims of the study are (1) to investigate the effect of the presence of an air pocket on gas exchange and work of breathing in subjects breathing into the simulated avalanche snow and (2) to test whether it is possible to breathe with no air pocket. The prospective interventional double-blinded study involved 12 male volunteers, from which 10 completed the whole protocol. Each volunteer underwent two phases of the experiment in a random order: phase "AP"--breathing into the snow with a one-liter air pocket, and phase "NP"--breathing into the snow with no air pocket. Physiological parameters, fractions of oxygen and carbon dioxide in the airways and work of breathing expressed as pressure-time product were recorded continuously. The main finding of the study is that it is possible to breath in the avalanche snow even with no air pocket (0 L volume), but breathing under this condition is associated with significantly increased work of breathing. The significant differences were initially observed for end-tidal values of the respiratory gases (EtO2 and EtCO2) and peripheral oxygen saturation (SpO2) between AP and NP phases, whereas significant differences in inspiratory fractions occurred much later (for FIO2) or never (for FICO2). The limiting factor in no air pocket conditions is excessive increase in work of breathing that induces increase in metabolism accompanied by higher oxygen consumption and carbon dioxide production. The presence of even a small air pocket reduces significantly the work of breathing.

  14. Work of Breathing into Snow in the Presence versus Absence of an Artificial Air Pocket Affects Hypoxia and Hypercapnia of a Victim Covered with Avalanche Snow: A Randomized Double Blind Crossover Study

    PubMed Central

    2015-01-01

    Presence of an air pocket and its size play an important role in survival of victims buried in the avalanche snow. Even small air pockets facilitate breathing. We hypothesize that the size of the air pocket significantly affects the airflow resistance and work of breathing. The aims of the study are (1) to investigate the effect of the presence of an air pocket on gas exchange and work of breathing in subjects breathing into the simulated avalanche snow and (2) to test whether it is possible to breathe with no air pocket. The prospective interventional double-blinded study involved 12 male volunteers, from which 10 completed the whole protocol. Each volunteer underwent two phases of the experiment in a random order: phase “AP”—breathing into the snow with a one-liter air pocket, and phase “NP”—breathing into the snow with no air pocket. Physiological parameters, fractions of oxygen and carbon dioxide in the airways and work of breathing expressed as pressure-time product were recorded continuously. The main finding of the study is that it is possible to breath in the avalanche snow even with no air pocket (0 L volume), but breathing under this condition is associated with significantly increased work of breathing. The significant differences were initially observed for end-tidal values of the respiratory gases (EtO2 and EtCO2) and peripheral oxygen saturation (SpO2) between AP and NP phases, whereas significant differences in inspiratory fractions occurred much later (for FIO2) or never (for FICO2). The limiting factor in no air pocket conditions is excessive increase in work of breathing that induces increase in metabolism accompanied by higher oxygen consumption and carbon dioxide production. The presence of even a small air pocket reduces significantly the work of breathing. PMID:26666523

  15. Submarines, spacecraft and exhaled breath.

    PubMed

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  16. Tidal disruption of solid bodies

    NASA Technical Reports Server (NTRS)

    Dobrovolskis, Anthony R.

    1990-01-01

    The problem of stress, strain, and breakup in solid satellites and stray bodies subject to tidal perturbations is presently addressed in view of three novel considerations. After presenting a new analytic solution for the stress tensor in a homogeneous and compressible elastic sphere, where the inclusion of compressibility alters stresses by several percent, realistic failure criteria are noted to demonstrate the general failure of such ductile bodies as iron meteoroids by plastic shear, while brittle ice bodies fail by either tensile or shear fracture. A reexamination of crack propagation after initial failure allows the diverse breakup criteria to be reconciled.

  17. How Does a Hopping Kangaroo Breathe?

    ERIC Educational Resources Information Center

    Giuliodori, Mauricio J.; Lujan, Heidi L.; Janbaih, Hussein; DiCarlo, Stephen E.

    2010-01-01

    We developed a model to demonstrate how a hopping kangaroo breathes. Interestingly, a kangaroo uses less energy to breathe while hopping than while standing still. This occurs, in part, because rather than using muscle power to move air into and out of the lungs, air is pulled into (inspiration) and pushed out of (expiration) the lungs as the…

  18. NASA firefighters breathing system program report

    NASA Technical Reports Server (NTRS)

    Wood, W. B.

    1977-01-01

    Because of the rising incidence of respiratory injury to firefighters, local governments expressed the need for improved breathing apparatus. A review of the NASA firefighters breathing system program, including concept definition, design, development, regulatory agency approval, in-house testing, and program conclusion is presented.

  19. EXHALED BREATH ANALYSIS FOR HUMAN EXPOSURE RESEARCH

    EPA Science Inventory

    Exhaled breath collection and analysis has historically been used in environmental research studies to characterize exposures to volatile organic compounds. The use of this approach is based on the fact that many compounds present in blood are reflected in the breath, and that...

  20. Application of LaserBreath-001 for breath acetone measurement in subjects with diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Wang, Zhennan; Sun, Meixiu; Chen, Zhuying; Zhao, Xiaomeng; Li, Yingxin; Wang, Chuji

    2016-11-01

    Breath acetone is a promising biomarker of diabetes mellitus. With an integrated standalone, on-site cavity ringdown breath acetone analyzer, LaserBreath-001, we tested breath samples from 23 type 1 diabetic (T1D) patients, 312 type 2 diabetic (T2D) patients, 52 healthy subjects. In the cross-sectional studies, the obtained breath acetone concentrations were higher in the diabetic subjects compared with those in the control group. No correlation between breath acetone and simultaneous BG was observed in the T1D, T2D, and healthy subjects. A moderate positive correlation between the mean individual breath acetone concentrations and the mean individual BG levels was observed in the 20 T1D patients without ketoacidosis. In a longitudinal study, the breath acetone concentrations in a T1D patient with ketoacidosis decreased significantly and remained stable during the 5-day hospitalization. The results from a relatively large number of subjects tested indicate that an elevated mean breath acetone concentration exists in diabetic patients in general. Although many physiological parameters affect breath acetone concentrations, fast (<1 min) and on site breath acetone measurement can be used for diabetic screening and management under a specifically controlled condition.

  1. Slow breathing influences cardiac autonomic responses to postural maneuver: Slow breathing and HRV.

    PubMed

    Vidigal, Giovanna Ana de Paula; Tavares, Bruna S; Garner, David M; Porto, Andrey A; Carlos de Abreu, Luiz; Ferreira, Celso; Valenti, Vitor E

    2016-05-01

    Chronic slow breathing has been reported to improve Heart Rate Variability (HRV) in patients with cardiovascular disorders. However, it is not clear regarding its acute effects on HRV responses on autonomic analysis. We evaluated the acute effects of slow breathing on cardiac autonomic responses to postural change manoeuvre (PCM). The study was conducted on 21 healthy male students aged between 18 and 35 years old. In the control protocol, the volunteer remained at rest seated for 15 min under spontaneous breathing and quickly stood up within 3 s and remained standing for 15 min. In the slow breathing protocol, the volunteer remained at rest seated for 10 min under spontaneous breath, then performed slow breathing for 5 min and rapidly stood up within 3 s and remained standing for 15 min. Slow breathing intensified cardiac autonomic responses to postural maneuver.

  2. Computer simulation of breathing systems for divers

    SciTech Connect

    Sexton, P.G.; Nuckols, M.L.

    1983-02-01

    A powerful new tool for the analysis and design of underwater breathing gas systems is being developed. A versatile computer simulator is described which makes possible the modular ''construction'' of any conceivable breathing gas system from computer memory-resident components. The analysis of a typical breathing gas system is demonstrated using this simulation technique, and the effects of system modifications on performance of the breathing system are shown. This modeling technique will ultimately serve as the foundation for a proposed breathing system simulator under development by the Navy. The marriage of this computer modeling technique with an interactive graphics system will provide the designer with an efficient, cost-effective tool for the development of new and improved diving systems.

  3. Impact loading and locomotor-respiratory coordination significantly influence breathing dynamics in running humans.

    PubMed

    Daley, Monica A; Bramble, Dennis M; Carrier, David R

    2013-01-01

    Locomotor-respiratory coupling (LRC), phase-locking between breathing and stepping rhythms, occurs in many vertebrates. When quadrupedal mammals gallop, 1∶1 stride per breath coupling is necessitated by pronounced mechanical interactions between locomotion and ventilation. Humans show more flexibility in breathing patterns during locomotion, using LRC ratios of 2∶1, 2.5∶1, 3∶1, or 4∶1 and sometimes no coupling. Previous studies provide conflicting evidence on the mechanical significance of LRC in running humans. Some studies suggest LRC improves breathing efficiency, but others suggest LRC is mechanically insignificant because 'step-driven flows' (ventilatory flows attributable to step-induced forces) contribute a negligible fraction of tidal volume. Yet, although step-driven flows are brief, they cause large fluctuations in ventilatory flow. Here we test the hypothesis that running humans use LRC to minimize antagonistic effects of step-driven flows on breathing. We measured locomotor-ventilatory dynamics in 14 subjects running at a self-selected speed (2.6±0.1 ms(-1)) and compared breathing dynamics in their naturally 'preferred' and 'avoided' entrainment patterns. Step-driven flows occurred at 1-2X step frequency with peak magnitudes of 0.97±0.45 Ls(-1) (mean ±S.D). Step-driven flows varied depending on ventilatory state (high versus low lung volume), suggesting state-dependent changes in compliance and damping of thoraco-abdominal tissues. Subjects naturally preferred LRC patterns that minimized antagonistic interactions and aligned ventilatory transitions with assistive phases of the step. Ventilatory transitions initiated in 'preferred' phases within the step cycle occurred 2x faster than those in 'avoided' phases. We hypothesize that humans coordinate breathing and locomotion to minimize antagonistic loading of respiratory muscles, reduce work of breathing and minimize rate of fatigue. Future work could address the potential consequences of

  4. Airway dynamics in COPD patients by within-breath impedance tracking: effects of continuous positive airway pressure.

    PubMed

    Lorx, András; Czövek, Dorottya; Gingl, Zoltán; Makan, Gergely; Radics, Bence; Bartusek, Dóra; Szigeti, Szabolcs; Gál, János; Losonczy, György; Sly, Peter D; Hantos, Zoltán

    2017-02-01

    Tracking of the within-breath changes of respiratory mechanics using the forced oscillation technique may provide outcomes that characterise the dynamic behaviour of the airways during normal breathing.We measured respiratory resistance (Rrs) and reactance (Xrs) at 8 Hz in 55 chronic obstructive pulmonary disease (COPD) patients and 20 healthy controls, and evaluated Rrs and Xrs as functions of gas flow (V') and volume (V) during normal breathing cycles. In 12 COPD patients, additional measurements were made at continuous positive airway pressure (CPAP) levels of 4, 8, 14 and 20 hPa.The Rrs and Xrsversus V' and V relationships displayed a variety of loop patterns, allowing characterisation of physiological and pathological processes. The main outcomes emerging from the within-breath analysis were the Xrsversus V loop area (AXV) quantifying expiratory flow limitation, and the tidal change in Xrs during inspiration (ΔXI) reflecting alteration in lung inhomogeneity in COPD. With increasing CPAP, AXV and ΔXI approached the normal ranges, although with a large variability between individuals, whereas mean Rrs remained unchanged.Within-breath tracking of Rrs and Xrs allows an improved assessment of expiratory flow limitation and functional inhomogeneity in COPD; thereby it may help identify the physiological phenotypes of COPD and determine the optimal level of respiratory support.

  5. Validation of the 13C-urea breath test for use in cheetahs (Acinonyx jubatus) with Helicobacter.

    PubMed

    Chatfield, Jenifer; Citino, Scott; Munson, Linda; Konopka, Stanley

    2004-06-01

    Historically, therapeutic monitoring for prescribed eradication treatment of Helicobacter in cheetahs (Acinonyx jubatus) with associated gastritis has been accomplished only through endoscopic biopsies. The 13C-urea breath test (UBT) can offer an alternative to repeated biopsies for therapeutic monitoring. Five male and five female cheetahs and one male Sumatran tiger (Panthera tigris) were studied. All were clinically healthy before and after this investigation. Breath samples of end-tidal expiration were taken before and after administration of a 13C-enriched urea solution through a gastroesophageal tube. Twenty-milliliter breath samples were taken at 10, 20, 30, and 40 min after administration of the urea solution. The results of the breath analysis were compared with the results of rapid urease testing, histopathologic examination, and impression smears of gastric biopsies taken at the time of the breath test. The sensitivity and specificity for the 13C-UBT in this investigation were 100%. and the positive predictive value and negative predictive value were both 100%. Although the 13C-UBT is a good noninvasive diagnostic tool for monitoring the presence of Helicobacter sp. in the gastric mucosa, endoscopy should still be used for initial diagnosis and grading of gastritis and for monitoring the progression of disease in cheetahs. The 13C-UBT is a valuable, simple, accurate, and sensitive tool for monitoring eradication of Helicobacter during therapy for clinical gastritis.

  6. Kozai Cycles and Tidal Friction

    SciTech Connect

    L, K; P.P., E

    2009-07-17

    Several studies in the last three years indicate that close binaries, i.e. those with periods of {approx}< 3 d, are very commonly found to have a third body in attendance. We argue that this proves that the third body is necessary in order to make the inner period so short, and further argue that the only reasonable explanation is that the third body causes shrinkage of the inner period, from perhaps a week or more to the current short period, by means of the combination of Kozai cycles and tidal friction (KCTF). In addition, once KCTF has produced a rather close binary, magnetic braking also combined with tidal friction (MBTF) can decrease the inner orbit further, to the formation of a contact binary or even a merged single star. Some of the products of KCTF that have been suggested, either by others or by us, are W UMa binaries, Blue Stragglers, X-ray active BY Dra stars, and short-period Algols. We also argue that some components of wide binaries are actually merged remnants of former close inner pairs. This may include such objects as rapidly rotating dwarfs (AB Dor, BO Mic) and some (but not all) Be stars.

  7. Tidal streams in triaxial systems

    NASA Astrophysics Data System (ADS)

    Price-Whelan, Adrian M.; Johnston, Kathryn V.; Pearson, Sarah; Kupper, Andreas Hans Wilhelm

    2015-01-01

    Tidal streams form from the steady disruption of stellar systems orbiting within the gravitational field of some parent galaxy. Many streams and debris structures have been discovered in the halo of the Milky Way and have been used to model the potential of the Galaxy. However, few of these models have yet explored the properties of tidal debris in triaxial potentials. The existence of a variety of orbits, resonances, and chaotic regions in such potentials suggest that the morphologies and dispersal timescales of debris could differ significantly from the simpler spherical and oblate cases. In this work we use a series of N-body simulations of stellar systems over a range of masses of disruption in triaxial potentials to understand the influence of the nature and types of orbits on debris morphologies. Our results suggest that the mere existence of the multitude of thin streams already known to orbit the Milky Way provides significant constraints on the classes of triaxial potentials that provide a good representation for its dark matter halo.

  8. Generation of mock tidal streams

    NASA Astrophysics Data System (ADS)

    Fardal, Mark A.; Huang, Shuiyao; Weinberg, Martin D.

    2015-09-01

    In this paper, we discuss a method for the generation of mock tidal streams. Using an ensemble of simulations in an isochrone potential where the actions and frequencies are known, we derive an empirical recipe for the evolving satellite mass and the corresponding mass-loss rate, and the ejection conditions of the stream material. The resulting stream can then be quickly generated either with direct orbital integration, or by using the action-angle formalism. The model naturally produces streaky features within the stream. These are formed due to the radial oscillation of the progenitor and the bursts of stars emitted near pericentre, rather than clumping at particular oscillation phases as sometimes suggested. When detectable, these streaky features are a reliable diagnostic for the stream's direction of motion and encode other information on the progenitor and its orbit. We show several tests of the recipe in alternate potentials, including a case with a chaotic progenitor orbit which displays a marked effect on the width of the stream. Although the specific ejection recipe may need adjusting when elements such as the orbit or satellite density profile are changed significantly, our examples suggest that model tidal streams can be quickly and accurately generated by models of this general type for use in Bayesian sampling.

  9. The indoor air we breathe.

    PubMed Central

    Oliver, L C; Shackleton, B W

    1998-01-01

    Increasingly recognized as a potential public health problem since the outbreak of Legionnaire's disease in Philadelphia in 1976, polluted indoor air has been associated with health problems that include asthma, sick building syndrome, multiple chemical sensitivity, and hypersensitivity pneumonitis. Symptoms are often nonspecific and include headache, eye and throat irritation, chest tightness and shortness of breath, and fatigue. Air-borne contaminants include commonly used chemicals, vehicular exhaust, microbial organisms, fibrous glass particles, and dust. Identified causes include defective building design and construction, aging of buildings and their ventilation systems, poor climate control, inattention to building maintenance. A major contributory factor is the explosion in the use of chemicals in building construction and furnishing materials over the past four decades. Organizational issues and psychological variables often contribute to the problem and hinder its resolution. This article describes the health problems related to poor indoor air quality and offers solutions. Images p398-a p399-a PMID:9769764

  10. Tidal deformations of a spinning compact object

    NASA Astrophysics Data System (ADS)

    Pani, Paolo; Gualtieri, Leonardo; Maselli, Andrea; Ferrari, Valeria

    2015-07-01

    The deformability of a compact object induced by a perturbing tidal field is encoded in the tidal Love numbers, which depend sensibly on the object's internal structure. These numbers are known only for static, spherically-symmetric objects. As a first step to compute the tidal Love numbers of a spinning compact star, here we extend powerful perturbative techniques to compute the exterior geometry of a spinning object distorted by an axisymmetric tidal field to second order in the angular momentum. The spin of the object introduces couplings between electric and magnetic deformations and new classes of induced Love numbers emerge. For example, a spinning object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second order in the spin. The deformations are encoded in a set of inhomogeneous differential equations which, remarkably, can be solved analytically in vacuum. We discuss certain subtleties in defining the tidal Love numbers in general relativity, which are due to the difficulty in separating the tidal field from the linear response of the object in the solution, even in the static case. By extending the standard procedure to identify the linear response in the static case, we prove analytically that the Love numbers of a Kerr black hole remain zero to second order in the spin. As a by-product, we provide the explicit form for a slowly-rotating, tidally-deformed Kerr black hole to quadratic order in the spin, and discuss its geodesic and geometrical properties.

  11. Modified ventilatory response characteristics to exercise in breath-hold divers.

    PubMed

    Roecker, Kai; Metzger, Jule; Scholz, Tobias; Tetzlaff, Kay; Sorichter, Stephan; Walterspacher, Stephan

    2014-09-01

    Specific adjustments to repeated extreme apnea are not fully known and understood. While a blunted ventilatory chemosensitivity to CO2 is described for elite breath-hold divers (BHDs) at rest, it is unclear whether specific adaptations affect their response to dynamic exercise. Eight elite BHDs with a previously validated decrease in CO2 chemosensitivity, 8 scuba divers (SCDs), and 8 matched control subjects were included in a study where markers of ventilatory response, Fowler's dead space, partial pressure of carbon dioxide (pCO2), and blood lactate concentrations during cycle exercise were measured. Maximal power output did not differ between the groups, but lactate threshold (θL) appeared at a significantly lowered respiratory compensation point (RCP) and at a higher VO2 for the BHDs. End-tidal (petCO2) and estimated arterial pCO2 (paCO2) were significantly higher in BHDs at θL, the RCP, and maximum exhaustion. BHDs showed a significantly (P < .01) slower breathing pattern in relation to a given tidal volume at a specific work rate. In summary, BHDs presented signs of a metabolic shift from aerobic to anaerobic energy supply, decreased chemosensitivity during exercise, and a distinct ventilatory-response pattern during cycle exercise that differs from SCDs and controls.

  12. Relativistic theory of tidal Love numbers

    SciTech Connect

    Binnington, Taylor; Poisson, Eric

    2009-10-15

    In Newtonian gravitational theory, a tidal Love number relates the mass multipole moment created by tidal forces on a spherical body to the applied tidal field. The Love number is dimensionless, and it encodes information about the body's internal structure. We present a relativistic theory of Love numbers, which applies to compact bodies with strong internal gravities; the theory extends and completes a recent work by Flanagan and Hinderer, which revealed that the tidal Love number of a neutron star can be measured by Earth-based gravitational-wave detectors. We consider a spherical body deformed by an external tidal field, and provide precise and meaningful definitions for electric-type and magnetic-type Love numbers; and these are computed for polytropic equations of state. The theory applies to black holes as well, and we find that the relativistic Love numbers of a nonrotating black hole are all zero.

  13. Tidal triggering effect on earthquakes occurrence

    NASA Astrophysics Data System (ADS)

    Contadakis, M. E.; Arabelos, D.; Spatalas, S. D.

    2016-01-01

    In this review we present the investigation for the tidal triggering evidence on the earthquakes at various seismic areas of Greece. The result of our analysis using the HiCum method, indicate that the monthly variation of the frequencies of earthquake occurrence is in accordance with the period of the tidal lunar monthly (Mm) variations. The same happens with the corresponding diurnal and semi-diurnal variations of the frequencies of earthquake occurrence with the diurnal (K1), (O1) and semi-diurnal solar (S2) and semidiurnal lunar (M2) tidal variations. The confidence level of the Tidal-Earthquake frequency period compliance is very sensitive to the seismicity of the area and we call it Tidal - Earthquake frequency compliance parameter. We suggest that this parameter may be used in earthquake risk evaluation.

  14. Time-frequency methods and voluntary ramped-frequency breathing: a powerful combination for exploration of human neurophysiological mechanisms

    PubMed Central

    Stankovski, Tomislav; Cooke, William H.; Rudas, László; Stefanovska, Aneta

    2013-01-01

    We experimentally altered the timing of respiratory motoneuron activity as a means to modulate and better understand otherwise hidden human central neural and hemodynamic oscillatory mechanisms. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, tidal carbon dioxide concentrations, and muscle sympathetic nerve activity in 13 healthy supine young men who gradually increased or decreased their breathing frequencies between 0.05 and 0.25 Hz over 9-min periods. We analyzed results with traditional time- and frequency-domain methods, and also with time-frequency methods (wavelet transform, wavelet phase coherence, and directional coupling). We determined statistical significance and identified frequency boundaries by comparing measurements with randomly generated surrogates. Our results support several major conclusions. First, respiration causally modulates both sympathetic (weakly) and vagal motoneuron (strongly) oscillations over a wide frequency range—one that extends well below the frequency of actual breaths. Second, breathing frequency broadly modulates vagal baroreflex gain, with peak gains registered in the low frequency range. Third, breathing frequency does not influence median levels of sympathetic or vagal activity over time. Fourth, phase relations between arterial pressure and sympathetic and vagal motoneurons are unaffected by breathing, and are therefore likely secondary to intrinsic responsiveness of these motoneurons to other synaptic inputs. Finally, breathing frequency does not affect phase coherence between diastolic pressure and muscle sympathetic oscillations, but it augments phase coherence between systolic pressure and R-R interval oscillations over a limited portion of the usual breathing frequency range. These results refine understanding of autonomic oscillatory processes and those physiological mechanisms known as the human respiratory gate. PMID:24114700

  15. Take a breath and take the turn: how breathing meets turns in spontaneous dialogue.

    PubMed

    Rochet-Capellan, Amélie; Fuchs, Susanne

    2014-12-19

    Physiological rhythms are sensitive to social interactions and could contribute to defining social rhythms. Nevertheless, our knowledge of the implications of breathing in conversational turn exchanges remains limited. In this paper, we addressed the idea that breathing may contribute to timing and coordination between dialogue partners. The relationships between turns and breathing were analysed in unconstrained face-to-face conversations involving female speakers. No overall relationship between breathing and turn-taking rates was observed, as breathing rate was specific to the subjects' activity in dialogue (listening versus taking the turn versus holding the turn). A general inter-personal coordination of breathing over the whole conversation was not evident. However, specific coordinative patterns were observed in shorter time-windows when participants engaged in taking turns. The type of turn-taking had an effect on the respective coordination in breathing. Most of the smooth and interrupted turns were taken just after an inhalation, with specific profiles of alignment to partner breathing. Unsuccessful attempts to take the turn were initiated late in the exhalation phase and with no clear inter-personal coordination. Finally, breathing profiles at turn-taking were different than those at turn-holding. The results support the idea that breathing is actively involved in turn-taking and turn-holding.

  16. Take a breath and take the turn: how breathing meets turns in spontaneous dialogue

    PubMed Central

    Rochet-Capellan, Amélie; Fuchs, Susanne

    2014-01-01

    Physiological rhythms are sensitive to social interactions and could contribute to defining social rhythms. Nevertheless, our knowledge of the implications of breathing in conversational turn exchanges remains limited. In this paper, we addressed the idea that breathing may contribute to timing and coordination between dialogue partners. The relationships between turns and breathing were analysed in unconstrained face-to-face conversations involving female speakers. No overall relationship between breathing and turn-taking rates was observed, as breathing rate was specific to the subjects' activity in dialogue (listening versus taking the turn versus holding the turn). A general inter-personal coordination of breathing over the whole conversation was not evident. However, specific coordinative patterns were observed in shorter time-windows when participants engaged in taking turns. The type of turn-taking had an effect on the respective coordination in breathing. Most of the smooth and interrupted turns were taken just after an inhalation, with specific profiles of alignment to partner breathing. Unsuccessful attempts to take the turn were initiated late in the exhalation phase and with no clear inter-personal coordination. Finally, breathing profiles at turn-taking were different than those at turn-holding. The results support the idea that breathing is actively involved in turn-taking and turn-holding. PMID:25385777

  17. Active breathing control (ABC): Determination and reduction of breathing-induced organ motion in the chest

    SciTech Connect

    Gagel, Bernd . E-mail: BGagel@UKAachen.de; Demirel, Cengiz M.P.; Kientopf, Aline; Pinkawa, Michael; Piroth, Marc; Stanzel, Sven; Breuer, Christian; Asadpour, Branka; Jansen, Thomas; Holy, Richard; Wildberger, Joachim E.; Eble, Michael J.

    2007-03-01

    Purpose: Extensive radiotherapy volumes for tumors of the chest are partly caused by interfractional organ motion. We evaluated the feasibility of respiratory observation tools using the active breathing control (ABC) system and the effect on breathing cycle regularity and reproducibility. Methods and Materials: Thirty-six patients with unresectable tumors of the chest were selected for evaluation of the ABC system. Computed tomography scans were performed at various respiratory phases starting at the same couch position without patient movement. Threshold levels were set at minimum and maximum volume during normal breathing cycles and at a volume defined as shallow breathing, reflecting the subjective maximal tolerable reduction of breath volume. To evaluate the extent of organ movement, 13 landmarks were considering using commercial software for image coregistration. In 4 patients, second examinations were performed during therapy. Results: Investigating the differences in a normal breathing cycle versus shallow breathing, a statistically significant reduction of respiratory motion in the upper, middle, and lower regions of the chest could be detected, representing potential movement reduction achieved through reduced breath volume. Evaluating interfraction reproducibility, the mean displacement ranged between 0.24 mm (chest wall/tracheal bifurcation) to 3.5 mm (diaphragm) for expiration and shallow breathing and 0.24 mm (chest wall) to 5.25 mm (diaphragm) for normal inspiration. Conclusions: By modifying regularity of the respiratory cycle through reduction of breath volume, a significant and reproducible reduction of chest and diaphragm motion is possible, enabling reduction of treatment planning margins.

  18. Breath hydrogen excretion in infants with colic.

    PubMed

    Miller, J J; McVeagh, P; Fleet, G H; Petocz, P; Brand, J C

    1989-05-01

    Breath hydrogen excretion as an index of incomplete lactose absorption was measured in 118 healthy infants who were either breast fed or given a formula feed containing lactose, some of whom had colic. Infants with colic (n = 65) were selected on the basis of the mother's report of a history of inconsolable crying lasting several hours each day. Infants in the control group (n = 53) were not reported to cry excessively by their mothers. Breath samples were collected using a face mask sampling device preprandially, and 90 and 150 minutes after the start of a feed. Normalised breath hydrogen concentrations were higher in the group with colic than in the control group at each time point. The median maximum breath hydrogen concentration in the colic group was 29 ppm, and in the control group 11 ppm. The percentage of infants with incomplete lactose absorption (breath hydrogen concentration more than 20 ppm) in the colic group was 62% compared with 32% in the control group. The clinical importance of the observed association between increased breath hydrogen excretion and infantile colic remains to be determined. Increased breath hydrogen excretion indicative of incomplete lactose absorption may be either a cause or an effect of colic in infants.

  19. Breathing and sleep at high altitude.

    PubMed

    Ainslie, Philip N; Lucas, Samuel J E; Burgess, Keith R

    2013-09-15

    We provide an updated review on the current understanding of breathing and sleep at high altitude in humans. We conclude that: (1) progressive changes in pH initiated by the respiratory alkalosis do not underlie early (<48 h) ventilatory acclimatization to hypoxia (VAH) because this still proceeds in the absence of such alkalosis; (2) for VAH of longer duration (>48 h), complex cellular and neurochemical re-organization occurs both in the peripheral chemoreceptors as well as within the central nervous system. The latter is likely influenced by central acid-base changes secondary to the extent of the initial respiratory responses to initial exposure to high altitude; (3) sleep at high altitude is disturbed by various factors, but principally by periodic breathing; (4) the extent of periodic breathing during sleep at altitude intensifies with duration and severity of exposure; (5) complex interactions between hypoxic-induced enhancement in peripheral and central chemoreflexes and cerebral blood flow--leading to higher loop gain and breathing instability--underpin this development of periodic breathing during sleep; (6) because periodic breathing may elevate rather than reduce mean SaO2 during sleep, this may represent an adaptive rather than maladaptive response; (7) although oral acetazolamide is an effective means to reduce periodic breathing by 50-80%, recent studies using positive airway pressure devices to increase dead space, hyponotics and theophylline are emerging but appear less practical and effective compared to acetazolamide. Finally, we suggest avenues for future research, and discuss implications for understanding sleep pathology.

  20. Drinking influences exhaled breath condensate acidity.

    PubMed

    Kullmann, Tamás; Barta, Imre; Antus, Balázs; Horváth, Ildikó

    2008-01-01

    Exhaled breath condensate analysis is a developing method for investigating airway pathology. Impact of food and drink on breath condensate composition has not been systematically addressed. The aim of the study was to follow exhaled breath condensate pH after drinking an acidic and a neutral beverage. Breath condensate, capillary blood, and urine of 12 healthy volunteers were collected before and after drinking either 1 l of coke or 1 l of mineral water. The pH of each sample was determined with a blood gas analyzer. The mean difference between the pH of two breath condensate samples collected within 15 min before drinking was 0.13+/-0.03. Condensate pH decreased significantly from 6.29+/-0.02 to 6.24+/-0.02 (p<0.03) after drinking coke and from 6.37+/-0.03 to 6.22+/-0.04 (p<0.003) after drinking water. Drinking coke induced significant changes in blood and urine pH as well. Drinking influences exhaled breath condensate composition and may contribute to the variability of exhaled breath condensate pH.

  1. Delayed feedback applied to breathing in humans

    NASA Astrophysics Data System (ADS)

    Janson, N. B.; Pototsky, A.; Parkes, C.

    2013-10-01

    We studied the response of healthy volunteers to the delayed feedback generated from the breathing signals. Namely, in the freely-breathing volunteers the breathing signal was recorded, delayed by τ seconds and fed back to the same volunteer in real time in the form of a visual and auditory stimulus of low intensity, i.e. the stimulus was crucially non-intrusive. In each case volunteers were instructed to breathe in the way which was most comfortable for them, and no explanation about the kind of applied stimulus was provided to them. Each volunteer experienced 10 different delay times ranging between 10% and 100% of the average breathing period without external stimulus. It was observed that in a significant proportion of subjects (11 out of 24) breathing was slowed down in the presence of delayed feedback with moderate delay. Also, in 6 objects out of 24 the delayed feedback was able to induce transition from nearly periodic to irregular breathing. These observations are consistent with the phenomena observed in numerical simulation of the models of periodic and chaotic self-oscillations with delays, and also in experiments with simpler self-oscillating systems.

  2. Decreased chewing activity during mouth breathing.

    PubMed

    Hsu, H-Y; Yamaguchi, K

    2012-08-01

    This study examined the effect of mouth breathing on the strength and duration of vertical effect on the posterior teeth using related functional parameters during 3 min of gum chewing in 39 nasal breathers. A CO(2) sensor was placed over the mouth to detect expiratory airflow. When no airflow was detected from the mouth throughout the recording period, the subject was considered a nasal breather and enrolled in the study. Electromyographic (EMG) activity was recorded during 3 min of gum chewing. The protocol was repeated with the nostrils occluded. The strength of the vertical effect was obtained as integrated masseter muscle EMG activity, and the duration of vertical effect was also obtained as chewing stroke count, chewing cycle variation and EMG activity duration above baseline. Baseline activity was obtained from the isotonic EMG activity during jaw movement at 1.6 Hz without making tooth contact. The duration represented the percentage of the active period above baseline relative to the 3-min chewing period. Paired t-test and repeated analysis of variance were used to compare variables between nasal and mouth breathing. The integrated EMG activity and the duration of EMG activity above baseline, chewing stroke count and chewing cycle significantly decreased during mouth breathing compared with nasal breathing (P<0.05). Chewing cycle variance during mouth breathing was significantly greater than nasal breathing (P<0.05). Mouth breathing reduces the vertical effect on the posterior teeth, which can affect the vertical position of posterior teeth negatively, leading to malocclusion.

  3. Optimization of a retrospective technique for respiratory-gated high speed micro-CT of free-breathing rodents.

    PubMed

    Ford, Nancy L; Wheatley, Andrew R; Holdsworth, David W; Drangova, Maria

    2007-10-07

    The objective of this study was to develop a technique for dynamic respiratory imaging using retrospectively gated high-speed micro-CT imaging of free-breathing mice. Free-breathing C57Bl6 mice were scanned using a dynamic micro-CT scanner, comprising a flat-panel detector mounted on a slip-ring gantry. Projection images were acquired over ten complete gantry rotations in 50 s, while monitoring the respiratory motion in synchrony with projection-image acquisition. Projection images belonging to a selected respiratory phase were retrospectively identified and used for 3D reconstruction. The effect of using fewer gantry rotations--which influences both image quality and the ability to quantify respiratory function--was evaluated. Images reconstructed using unique projections from six or more gantry rotations produced acceptable images for quantitative analysis of lung volume, CT density, functional residual capacity and tidal volume. The functional residual capacity (0.15 +/- 0.03 mL) and tidal volumes (0.08 +/- 0.03 mL) measured in this study agree with previously reported measurements made using prospectively gated micro-CT and at higher resolution (150 microm versus 90 microm voxel spacing). Retrospectively gated micro-CT imaging of free-breathing mice enables quantitative dynamic measurement of morphological and functional parameters in the mouse models of respiratory disease, with scan times as short as 30 s, based on the acquisition of projection images over six gantry rotations.

  4. Optimization of a retrospective technique for respiratory-gated high speed micro-CT of free-breathing rodents

    NASA Astrophysics Data System (ADS)

    Ford, Nancy L.; Wheatley, Andrew R.; Holdsworth, David W.; Drangova, Maria

    2007-09-01

    The objective of this study was to develop a technique for dynamic respiratory imaging using retrospectively gated high-speed micro-CT imaging of free-breathing mice. Free-breathing C57Bl6 mice were scanned using a dynamic micro-CT scanner, comprising a flat-panel detector mounted on a slip-ring gantry. Projection images were acquired over ten complete gantry rotations in 50 s, while monitoring the respiratory motion in synchrony with projection-image acquisition. Projection images belonging to a selected respiratory phase were retrospectively identified and used for 3D reconstruction. The effect of using fewer gantry rotations—which influences both image quality and the ability to quantify respiratory function—was evaluated. Images reconstructed using unique projections from six or more gantry rotations produced acceptable images for quantitative analysis of lung volume, CT density, functional residual capacity and tidal volume. The functional residual capacity (0.15 ± 0.03 mL) and tidal volumes (0.08 ± 0.03 mL) measured in this study agree with previously reported measurements made using prospectively gated micro-CT and at higher resolution (150 µm versus 90 µm voxel spacing). Retrospectively gated micro-CT imaging of free-breathing mice enables quantitative dynamic measurement of morphological and functional parameters in the mouse models of respiratory disease, with scan times as short as 30 s, based on the acquisition of projection images over six gantry rotations.

  5. Applications of breath gas analysis in medicine

    NASA Astrophysics Data System (ADS)

    Amann, Anton; Poupart, Guy; Telser, Stefan; Ledochowski, Maximilian; Schmid, Alex; Mechtcheriakov, Sergei

    2004-12-01

    Volatile organic compounds (VOCs) in exhaled breath gas provide valuable information about the subjects' physiological and pathophysiological condition. Proton-transfer-reaction mass spectrometry (PTR-MS) allows rapid and online measurements of these substances. We present results of three studies illustrating the potential of breath gas analysis by PTR-MS in various contexts: long-time online monitoring of VOCs in sleeping subjects suggests that VOC profiles are related to sleep stages. Analysis of VOC concentrations in the breath of carbohydrate malabsorbers emphasizes the role played by bacteria in the gut. Finally, we demonstrate the large intra- and intersubject concentration variability of VOCs by considering one particular mass.

  6. Frequency and time domain analysis of airflow breath patterns in patients with chronic obstructive airway disease.

    PubMed

    Abboud, S; Bruderman, I; Sadeh, D

    1986-06-01

    Airflow patterns from patients with chronic obstructive airway diseases (COAD) and normal subjects were analyzed using time and frequency domain analysis. Data were recorded during tidal breathing with a pause between the breaths, digitized at 320 samples per second (10-bit resolution), and processed with a CDC 6600 computer. The appearance of high-frequency components (10-20 Hz) in the time domain waveform and the spectral curve in the power spectrum were studied. One complete waveform was taken as a reference signal and all subsequent waves were analyzed using the cross-correlation function which was employed via the cross spectrum and the fast Fourier transform algorithm. The energy content from the averaged spectrum and the root mean square (RMS) value from the filtered waveforms were calculated. Our study indicated that the RMS and the power content estimated from a part of the filtered wave (10-20 Hz) which included the time interval from the peak of the expiratory flow (tE) to the end of the flow curve (tN) were significantly greater in normal subjects (n = 13; 0.86 +/- 0.30 X 10(-2) I/s; P less than 0.00005 for RMS value, and 0.76 +/- 0.32 I/s; P less than 0.00005 for the power content) than in patients with chronic airways obstruction (n = 19; 0.40 +/- 0.13 X 10(-2) I/s; for RMS value and 0.35 +/- 0.16 I/s; for the power content). It is concluded that the RMS and the power values of the filtered flow curve during tidal breathing over the time interval tE-tN can detect chronic airway obstruction.

  7. Effect of deep breathing at six breaths per minute on the frequency of premature ventricular complexes.

    PubMed

    Prakash, E Sankaranarayanan; Ravindra, Pattanashetty N; Madanmohan; Anilkumar, R; Balachander, J

    2006-08-28

    Although the effect of reflex increase in vagal tone on the frequency of premature ventricular complexes (PVC) is known, the effect of timed deep breathing on the frequency of PVC has not been reported. We serendipitously discovered that deep breathing at six breaths per minute abolished PVC in an 18-year-old female with frequent PVC, anxiety, and palpitations. In five of a series of 10 consecutive patients with frequent (> or = 10/min) unifocal PVC, deep breathing at 6 breaths/min reduced the frequency of PVC by at least 50%. This is possibly due to increased vagal modulation of sinoatrial and atrioventricular node. However, factors predicting the response to deep breathing, and the mechanisms involved need to be studied in a larger number of patients.

  8. Tidal interactions of inspiraling compact binaries

    NASA Technical Reports Server (NTRS)

    Bildsten, Lars; Cutler, Curt

    1992-01-01

    We discuss the tidal interaction in neutron star-neutron star and neutron star-black hole binaries and argue that they will not be tidally locked during the gravitational inspiral. More specifically, we show that, for inspiraling neutron stars of mass greater than about 1.2 solar mass, the shortest possible tidal synchronization time exceeds the gravitational decay time, so that the neutron star cannot be tidally locked prior to tidal disruption, regardless of its internal viscosity. For smaller mass neutron stars, an implausibly large kinematic viscosity - nearly the speed of light times the stellar radius - is required for tidal locking. We also argue that the mass transfer which occurs when the neutron star reaches the tidal radius will be unstable in neutron star-black hole binaries, and the instability will destroy the neutron star in a few orbital periods. The implications of our work for the detection of these sources by LIGO and other gravitational wave observatories and for the gamma-ray burst scenarios of Paczynski (1986, 1991) are discussed.

  9. Gravitomagnetic tidal currents in rotating neutron stars

    NASA Astrophysics Data System (ADS)

    Poisson, Eric; Douçot, Jean

    2017-02-01

    It was recently revealed that a rotating compact body responds dynamically when it is subjected to a gravitomagnetic tidal field, even when this field is idealized as time independent. The dynamical response is characterized by time-changing internal currents, and it was suspected to originate from zero-frequency g -modes and r -modes driven by the tidal forces. In this paper, we provide additional insights into the phenomenon by examining the tidal response of a rotating body within the framework of post-Newtonian gravity. This approach allows us to develop an intuitive picture for the phenomenon, which relies on the close analogy between post-Newtonian gravity and Maxwell's theory of electromagnetism. In this picture, the coupling between the gravitomagnetic tidal field and the body's rotational velocity is naturally expected to produce an unbalanced Lorentz-like force within the body, and it is this force that is responsible for the tidal currents. The simplicity of the fluid equations in the post-Newtonian setting allows us to provide a complete description of the zero-frequency modes and demonstrate their precise role in the establishment of the tidal currents. We estimate the amplitude of these currents, and find that for neutron-star binaries of relevance to LIGO, the scale of the velocity perturbation is measured in kilometers per second when the rotation period is comparable to 100 milliseconds. This estimate indicates that the tidal currents may have a significant impact on the physics of neutron stars near merger.

  10. Modeling sand bank formation around tidal headlands

    USGS Publications Warehouse

    Signell, Richard P.; Harris, Courtney K.

    2000-01-01

    Sandbanks are often found in the vicinity of coastal headlands around which tidal flows are strong enough to generate significant tidally-forced residual eddies, typically with scales of 2-10 km. One popular hypothesis is that these sandbanks are generated by a 'tidal stirring' mechanism in which the inward-directed pressure gradient associated with these residual eddies produces an inward-directed movement of sand near the seabed. This hypothesis predicts asymmetric sandbank formation when planetary vorticity is significant compared to the relative vorticity of the residual eddies. This mechanism is tested with a numerical sediment transport model, using idealized symmetrical coastline geometry and tidal forcing that represents conditions similar to regions where these tidal headland sandbanks are known to occur. For both suspended and bedload simulations, we find that nearly symmetric sandbanks form, and that the sediment transport patterns that are responsible for building and maintaining the banks are due more the patterns of shear stress and sediment flux that occur over the course of the tidal cycle rather than to the characteristics of the tidally-averaged residual fields. We also find that sediment supply can be an important factor in controlling the nature of the resulting sandbanks.

  11. Tidal river dynamics: Implications for deltas

    NASA Astrophysics Data System (ADS)

    Hoitink, A. J. F.; Jay, D. A.

    2016-03-01

    Tidal rivers are a vital and little studied nexus between physical oceanography and hydrology. It is only in the last few decades that substantial research efforts have been focused on the interactions of river discharge with tidal waves and storm surges into regions beyond the limit of salinity intrusion, a realm that can extend inland hundreds of kilometers. One key phenomenon resulting from this interaction is the emergence of large fortnightly tides, which are forced long waves with amplitudes that may increase beyond the point where astronomical tides have become extinct. These can be larger than the linear tide itself at more landward locations, and they greatly influence tidal river water levels and wetland inundation. Exploration of the spectral redistribution and attenuation of tidal energy in rivers has led to new appreciation of a wide range of consequences for fluvial and coastal sedimentology, delta evolution, wetland conservation, and salinity intrusion under the influence of sea level rise and delta subsidence. Modern research aims at unifying traditional harmonic tidal analysis, nonparametric regression techniques, and the existing understanding of tidal hydrodynamics to better predict and model tidal river dynamics both in single-thread channels and in branching channel networks. In this context, this review summarizes results from field observations and modeling studies set in tidal river environments as diverse as the Amazon in Brazil, the Columbia, Fraser and Saint Lawrence in North America, the Yangtze and Pearl in China, and the Berau and Mahakam in Indonesia. A description of state-of-the-art methods for a comprehensive analysis of water levels, wave propagation, discharges, and inundation extent in tidal rivers is provided. Implications for lowland river deltas are also discussed in terms of sedimentary deposits, channel bifurcation, avulsion, and salinity intrusion, addressing contemporary research challenges.

  12. Effects of positioning uncertainty and breathing on dose delivery and radiation pneumonitis prediction in breast cancer.

    PubMed

    Mavroidis, Panayiotis; Axelsson, Sofie; Hyödynmaa, Simo; Rajala, Juha; Pitkänen, Maunu A; Lind, Bengt K; Brahme, Anders

    2002-01-01

    complication probabilities than the original plans. This means that the true expected complications are often underestimated in clinical practice. The lung density variation during breathing is calculated from the maximal change in average density during tidal breathing. The change in density in the lung due to breathing is shown to have almost no influence on the dose distribution in the lung. The proposed treatment-plan adjustments taking positioning uncertainty and breathing effects into account indicate significant deviations in the dose delivery and the predicted lung complications.

  13. 42 CFR 84.91 - Breathing resistance test; exhalation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing resistance test; exhalation. 84.91...-Contained Breathing Apparatus § 84.91 Breathing resistance test; exhalation. (a) Resistance to exhalation...-circuit apparatus with a breathing machine as described in § 84.88, and the exhalation resistance...

  14. 14 CFR 25.1439 - Protective breathing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Protective breathing equipment. 25.1439... Protective breathing equipment. (a) Fixed (stationary, or built in) protective breathing equipment must be installed for the use of the flightcrew, and at least one portable protective breathing equipment shall...

  15. 46 CFR 197.456 - Breathing supply hoses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Breathing supply hoses. 197.456 Section 197.456 Shipping....456 Breathing supply hoses. (a) The diving supervisor shall insure that— (1) Each breathing supply....5 times its maximum working pressure; (2) Each breathing supply hose assembly, prior to being...

  16. 42 CFR 84.141 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing gas; minimum requirements. 84.141 Section... Respirators § 84.141 Breathing gas; minimum requirements. (a) Breathing gas used to supply supplied-air respirators shall be respirable breathing air and contain no less than 19.5 volume-percent of oxygen....

  17. 42 CFR 84.141 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing gas; minimum requirements. 84.141 Section... Respirators § 84.141 Breathing gas; minimum requirements. (a) Breathing gas used to supply supplied-air respirators shall be respirable breathing air and contain no less than 19.5 volume-percent of oxygen....

  18. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing bag test. 84.88 Section 84.88 Public... RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.88 Breathing bag test. (a) Breathing bags will be tested in an air atmosphere saturated...

  19. 21 CFR 868.5250 - Breathing circuit circulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Breathing circuit circulator. 868.5250 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5250 Breathing circuit circulator. (a) Identification. A breathing circuit circulator is a turbine device that is attached to a closed breathing...

  20. 46 CFR 197.456 - Breathing supply hoses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Breathing supply hoses. 197.456 Section 197.456 Shipping....456 Breathing supply hoses. (a) The diving supervisor shall insure that— (1) Each breathing supply....5 times its maximum working pressure; (2) Each breathing supply hose assembly, prior to being...

  1. 42 CFR 84.141 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing gas; minimum requirements. 84.141 Section... Respirators § 84.141 Breathing gas; minimum requirements. (a) Breathing gas used to supply supplied-air respirators shall be respirable breathing air and contain no less than 19.5 volume-percent of oxygen....

  2. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Breathing system heater. 868.5270 Section 868.5270...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater. (a) Identification. A breathing system heater is a device that is intended to warm breathing gases before they...

  3. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing bag test. 84.88 Section 84.88 Public... RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.88 Breathing bag test. (a) Breathing bags will be tested in an air atmosphere saturated...

  4. 14 CFR 121.337 - Protective breathing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Protective breathing equipment. 121.337... Protective breathing equipment. (a) The certificate holder shall furnish approved protective breathing equipment (PBE) meeting the equipment, breathing gas, and communication requirements contained in...

  5. 14 CFR 25.1439 - Protective breathing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Protective breathing equipment. 25.1439... Protective breathing equipment. (a) Fixed (stationary, or built in) protective breathing equipment must be installed for the use of the flightcrew, and at least one portable protective breathing equipment shall...

  6. 14 CFR 121.337 - Protective breathing equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Protective breathing equipment. 121.337... Protective breathing equipment. (a) The certificate holder shall furnish approved protective breathing equipment (PBE) meeting the equipment, breathing gas, and communication requirements contained in...

  7. 21 CFR 868.5250 - Breathing circuit circulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breathing circuit circulator. 868.5250 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5250 Breathing circuit circulator. (a) Identification. A breathing circuit circulator is a turbine device that is attached to a closed breathing...

  8. 21 CFR 868.5250 - Breathing circuit circulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Breathing circuit circulator. 868.5250 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5250 Breathing circuit circulator. (a) Identification. A breathing circuit circulator is a turbine device that is attached to a closed breathing...

  9. 21 CFR 868.5250 - Breathing circuit circulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breathing circuit circulator. 868.5250 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5250 Breathing circuit circulator. (a) Identification. A breathing circuit circulator is a turbine device that is attached to a closed breathing...

  10. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breathing system heater. 868.5270 Section 868.5270...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater. (a) Identification. A breathing system heater is a device that is intended to warm breathing gases before they...

  11. 42 CFR 84.141 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing gas; minimum requirements. 84.141 Section... Respirators § 84.141 Breathing gas; minimum requirements. (a) Breathing gas used to supply supplied-air respirators shall be respirable breathing air and contain no less than 19.5 volume-percent of oxygen....

  12. 42 CFR 84.91 - Breathing resistance test; exhalation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing resistance test; exhalation. 84.91...-Contained Breathing Apparatus § 84.91 Breathing resistance test; exhalation. (a) Resistance to exhalation...-circuit apparatus with a breathing machine as described in § 84.88, and the exhalation resistance...

  13. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing bag test. 84.88 Section 84.88 Public... RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.88 Breathing bag test. (a) Breathing bags will be tested in an air atmosphere saturated...

  14. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing system heater. 868.5270 Section 868.5270...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater. (a) Identification. A breathing system heater is a device that is intended to warm breathing gases before they...

  15. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing bag test. 84.88 Section 84.88 Public... RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.88 Breathing bag test. (a) Breathing bags will be tested in an air atmosphere saturated...

  16. 14 CFR 121.337 - Protective breathing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Protective breathing equipment. 121.337... Protective breathing equipment. (a) The certificate holder shall furnish approved protective breathing equipment (PBE) meeting the equipment, breathing gas, and communication requirements contained in...

  17. 46 CFR 197.456 - Breathing supply hoses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Breathing supply hoses. 197.456 Section 197.456 Shipping....456 Breathing supply hoses. (a) The diving supervisor shall insure that— (1) Each breathing supply....5 times its maximum working pressure; (2) Each breathing supply hose assembly, prior to being...

  18. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing bag test. 84.88 Section 84.88 Public... RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.88 Breathing bag test. (a) Breathing bags will be tested in an air atmosphere saturated...

  19. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breathing system heater. 868.5270 Section 868.5270...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater. (a) Identification. A breathing system heater is a device that is intended to warm breathing gases before they...

  20. 21 CFR 868.5250 - Breathing circuit circulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing circuit circulator. 868.5250 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5250 Breathing circuit circulator. (a) Identification. A breathing circuit circulator is a turbine device that is attached to a closed breathing...

  1. 14 CFR 121.337 - Protective breathing equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Protective breathing equipment. 121.337... Protective breathing equipment. (a) The certificate holder shall furnish approved protective breathing equipment (PBE) meeting the equipment, breathing gas, and communication requirements contained in...

  2. 42 CFR 84.91 - Breathing resistance test; exhalation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing resistance test; exhalation. 84.91...-Contained Breathing Apparatus § 84.91 Breathing resistance test; exhalation. (a) Resistance to exhalation...-circuit apparatus with a breathing machine as described in § 84.88, and the exhalation resistance...

  3. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Breathing system heater. 868.5270 Section 868.5270...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater. (a) Identification. A breathing system heater is a device that is intended to warm breathing gases before they...

  4. 46 CFR 197.456 - Breathing supply hoses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Breathing supply hoses. 197.456 Section 197.456 Shipping....456 Breathing supply hoses. (a) The diving supervisor shall insure that— (1) Each breathing supply....5 times its maximum working pressure; (2) Each breathing supply hose assembly, prior to being...

  5. 42 CFR 84.141 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing gas; minimum requirements. 84.141 Section... Respirators § 84.141 Breathing gas; minimum requirements. (a) Breathing gas used to supply supplied-air respirators shall be respirable breathing air and contain no less than 19.5 volume-percent of oxygen....

  6. 14 CFR 121.337 - Protective breathing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Protective breathing equipment. 121.337... Protective breathing equipment. (a) The certificate holder shall furnish approved protective breathing equipment (PBE) meeting the equipment, breathing gas, and communication requirements contained in...

  7. 14 CFR 25.1439 - Protective breathing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Protective breathing equipment. 25.1439... Protective breathing equipment. (a) Fixed (stationary, or built in) protective breathing equipment must be installed for the use of the flightcrew, and at least one portable protective breathing equipment shall...

  8. 46 CFR 197.456 - Breathing supply hoses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Breathing supply hoses. 197.456 Section 197.456 Shipping....456 Breathing supply hoses. (a) The diving supervisor shall insure that— (1) Each breathing supply....5 times its maximum working pressure; (2) Each breathing supply hose assembly, prior to being...

  9. 21 CFR 862.3050 - Breath-alcohol test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Breath-alcohol test system. 862.3050 Section 862....3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened to measure alcohol in the human breath. Measurements obtained by this device are used in...

  10. 21 CFR 862.3050 - Breath-alcohol test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breath-alcohol test system. 862.3050 Section 862....3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened to measure alcohol in the human breath. Measurements obtained by this device are used in...

  11. 21 CFR 862.3050 - Breath-alcohol test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breath-alcohol test system. 862.3050 Section 862....3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened to measure alcohol in the human breath. Measurements obtained by this device are used in...

  12. 21 CFR 862.3050 - Breath-alcohol test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Breath-alcohol test system. 862.3050 Section 862....3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened to measure alcohol in the human breath. Measurements obtained by this device are used in...

  13. 21 CFR 862.3050 - Breath-alcohol test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breath-alcohol test system. 862.3050 Section 862....3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened to measure alcohol in the human breath. Measurements obtained by this device are used in...

  14. 42 CFR 84.72 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing tubes; minimum requirements. 84.72 Section 84.72 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL...-Contained Breathing Apparatus § 84.72 Breathing tubes; minimum requirements. Flexible breathing tubes...

  15. 42 CFR 84.72 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing tubes; minimum requirements. 84.72 Section 84.72 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL...-Contained Breathing Apparatus § 84.72 Breathing tubes; minimum requirements. Flexible breathing tubes...

  16. 42 CFR 84.72 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing tubes; minimum requirements. 84.72 Section 84.72 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL...-Contained Breathing Apparatus § 84.72 Breathing tubes; minimum requirements. Flexible breathing tubes...

  17. 42 CFR 84.72 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing tubes; minimum requirements. 84.72 Section 84.72 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL...-Contained Breathing Apparatus § 84.72 Breathing tubes; minimum requirements. Flexible breathing tubes...

  18. 42 CFR 84.72 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing tubes; minimum requirements. 84.72 Section 84.72 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL...-Contained Breathing Apparatus § 84.72 Breathing tubes; minimum requirements. Flexible breathing tubes...

  19. Breathing Problems - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Breathing Problems URL of this page: https://medlineplus.gov/languages/breathingproblems.html Other topics A-Z A B ...

  20. Portable breathing apparatus for coal mines

    NASA Technical Reports Server (NTRS)

    Vandolah, R. W.

    1972-01-01

    The state of the art in portable oxygen breathing equipment is reported. Considered are self-containing as well as chemically generating oxygen sources and their effectiveness and limitations in mine rescue operations.

  1. Healthy Living: Helping Your Child Breathe Easier

    MedlinePlus

    ... cystic fibrosis. In terms of childhood disease, the respiratory system is the most critical. Here are some tips ... or “irritants” can cause the muscles of the respiratory system to contract, narrowing the airways. Breathing through these ...

  2. Breathing exercises for adults with asthma.

    PubMed

    2015-11-01

    Asthma is a common long-term condition that remains poorly controlled in many people despite the availability of pharmacological interventions, evidence-based treatment guidelines and care pathways.(1) There is considerable public interest in the use of non-pharmacological approaches for the treatment of asthma.(2) A survey of people with asthma reported that many have used complementary and alternative medicine, often without the knowledge of their clinical team.(3) Such interventions include breathing techniques, herbal products, homeopathy and acupuncture. The role of breathing exercises within the management of asthma has been controversial, partly because early claims of effectiveness were exaggerated.(4) UK national guidance and international guidelines on the management of asthma have included the option of breathing exercise programmes as an adjuvant to pharmacological treatment.(5,6) Here we discuss the types of breathing exercises used and review the evidence for their effectiveness.

  3. Fetal cardiac autonomic control during breathing and non-breathing epochs: the effect of maternal exercise.

    PubMed

    Gustafson, Kathleen M; May, Linda E; Yeh, Hung-wen; Million, Stephanie K; Allen, John J B

    2012-07-01

    We explored whether maternal exercise during pregnancy moderates the effect of fetal breathing movements on fetal cardiac autonomic control assessed by metrics of heart rate (HR) and heart rate variability (HRV). Thirty women were assigned to Exercise or Control group (n=15/group) based on the modifiable physical activity questionnaire (MPAQ). Magnetocardiograms (MCG) were recorded using a dedicated fetal biomagnetometer. Periods of fetal breathing activity and apnea were identified using the fetal diaphragmatic magnetomyogram (dMMG) as a marker. MCG R-waves were marked. Metrics of fetal HR and HRV were compared using 1 breathing and 1 apneic epoch/fetus. The main effects of group (Exercise vs. Control) and condition (Apnea vs. Breathing) and their interactions were explored. Fetal breathing resulted in significantly lower fetal HR and higher vagally-mediated HRV. Maternal exercise resulted in significantly lower fetal HR, higher total HRV and vagally-mediated HRV with no difference in frequency band ratios. Significant interactions between maternal exercise and fetal breathing were found for metrics summarizing total HRV and a parasympathetic metric. Post hoc comparison showed no group difference during fetal apnea. Fetal breathing was associated with a loss of Total HRV in the Control group and no difference in the Exercise group. Both groups show enhanced vagal function during fetal breathing; greater in the Exercise group. During in utero breathing movements, the fetus of the exercising mother has enhanced cardiac autonomic function that may give the offspring an adaptive advantage.

  4. Controlled Frequency Breathing Reduces Inspiratory Muscle Fatigue.

    PubMed

    Burtch, Alex R; Ogle, Ben T; Sims, Patrick A; Harms, Craig A; Symons, Thorburn B; Folz, Rodney J; Zavorsky, Gerald S

    2016-08-16

    Controlled frequency breathing (CFB) is a common swim training modality involving holding one's breath for about 7 to 10 strokes before taking another breath. We sought to examine the effects of CFB training on reducing respiratory muscle fatigue. Competitive college swimmers were randomly divided into either the CFB group that breathed every 7 to 10 strokes, or a control group that breathed every 3-4 strokes. Twenty swimmers completed the study. The training intervention included 5-6 weeks (16 sessions) of 12x50-m repetitions with breathing 8-10 breaths per 50m (control group), or 2-3 breaths per 50-m (CFB group). Inspiratory muscle fatigue was defined as the decrease in maximal inspiratory mouth-pressure (MIP) between rest and 46s after a 200 yard free-style swimming race [115s (SD 7)]. Aerobic capacity, pulmonary diffusing capacity, and running economy were also measured pre and post-training. Pooled results demonstrated a 12% decrease in MIP at 46s post-race [-15 (SD 14) cm H2O, Effect size = -0.48, p < 0.01]. After four weeks of training, only the CFB group prevented a decline in MIP values pre to 46 s post-race [-2 (13) cm H2O, p > 0.05]. However, swimming performance, aerobic capacity, pulmonary diffusing capacity, and running economy did not improve (p > 0.05) post-training in either group. In conclusion, CFB training appears to prevent inspiratory muscle fatigue yet no difference was found in performance outcomes.

  5. [Sleep-disordered breathing and dentofacial development].

    PubMed

    Cobo Plana, Juan; de Carlos Villafranca, Félix

    2010-12-01

    Humans breathe an average of 20 times per minute, totalling about 30,000 times a day, and swallow nearly 2,000 times a day. These functions are vital for life. Growing children must adapt their developing structures to various destabilizing processes. When these factors outweigh the compensatory mechanisms, growth may become unbalanced by favoring the development of pathological processes such as sleep breathing disorders.

  6. Exhaled breath analysis for lung cancer

    PubMed Central

    Sutedja, Tom G.; Zimmerman, Paul V.

    2013-01-01

    Early diagnosis of lung cancer results in improved survival compared to diagnosis with more advanced disease. Early disease is not reliably indicated by symptoms. Because investigations such as bronchoscopy and needle biopsy have associated risks and substantial costs, they are not suitable for population screening. Hence new easily applicable tests, which can be used to screen individuals at risk, are required. Biomarker testing in exhaled breath samples is a simple, relatively inexpensive, non-invasive approach. Exhaled breath contains volatile and non-volatile organic compounds produced as end-products of metabolic processes and the composition of such compounds varies between healthy subjects and subjects with lung cancer. Many studies have analysed the patterns of these compounds in exhaled breath. In addition studies have also reported that the exhaled breath condensate (EBC) can reveal gene mutations or DNA abnormalities in patients with lung cancer. This review has summarised the scientific evidence demonstrating that lung cancer has distinct chemical profiles in exhaled breath and characteristic genetic changes in EBC. It is not yet possible to accurately identify individuals with lung cancer in at risk populations by any of these techniques. However, analysis of both volatile organic compounds in exhaled breath and of EBC have great potential to become clinically useful diagnostic and screening tools for early stage lung cancer detection. PMID:24163746

  7. Swimming in air-breathing fishes.

    PubMed

    Lefevre, S; Domenici, P; McKenzie, D J

    2014-03-01

    Fishes with bimodal respiration differ in the extent of their reliance on air breathing to support aerobic metabolism, which is reflected in their lifestyles and ecologies. Many freshwater species undertake seasonal and reproductive migrations that presumably involve sustained aerobic exercise. In the six species studied to date, aerobic exercise in swim flumes stimulated air-breathing behaviour, and there is evidence that surfacing frequency and oxygen uptake from air show an exponential increase with increasing swimming speed. In some species, this was associated with an increase in the proportion of aerobic metabolism met by aerial respiration, while in others the proportion remained relatively constant. The ecological significance of anaerobic swimming activities, such as sprinting and fast-start manoeuvres during predator-prey interactions, has been little studied in air-breathing fishes. Some species practise air breathing during recovery itself, while others prefer to increase aquatic respiration, possibly to promote branchial ion exchange to restore acid-base balance, and to remain quiescent and avoid being visible to predators. Overall, the diversity of air-breathing fishes is reflected in their swimming physiology as well, and further research is needed to increase the understanding of the differences and the mechanisms through which air breathing is controlled and used during exercise.

  8. Optoacoustic 13C-breath test analyzer

    NASA Astrophysics Data System (ADS)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  9. Monitoring breath markers under controlled conditions.

    PubMed

    Righettoni, Marco; Ragnoni, Alessandro; Güntner, Andreas T; Loccioni, Claudio; Pratsinis, Sotiris E; Risby, Terence H

    2015-10-15

    Breath analysis has the potential to detect and monitor diseases as well as to reduce the corresponding medical costs while improving the quality of a patient's life. Herein, a portable prototype, consisting of a commercial breath sampler modified to work as a platform for solid-state gas sensors was developed. The sensor is placed close to the mouth (<10 cm) and minimizes the mouth-to-sensor path to avoid contamination and dilution of the target breath marker. Additionally with an appropriate cooling concept, even high sensor operating temperatures (e.g. 350 °C) could be used. Controlled sampling is crucial for accurate repeatable analysis of the human breath and these concerns have been addressed by this novel prototype. The device helps a subject control their exhaled flow rate which increases reproducibility of intra-subject breath samples. The operation of this flame-made selective chemo-resistive gas sensor is demonstrated by the detection of breath acetone.

  10. Precise control of end-tidal carbon dioxide levels using sequential rebreathing circuits.

    PubMed

    Somogyi, R B; Vesely, A E; Preiss, D; Prisman, E; Volgyesi, G; Azami, T; Iscoe, S; Fisher, J A; Sasano, H

    2005-12-01

    Anaesthesiologists have traditionally been consulted to help design breathing circuits to attain and maintain target end-tidal carbon dioxide (P(ET)CO2). The methodology has recently been simplified by breathing circuits that sequentially deliver fresh gas (not containing carbon dioxide (CO2)) and reserve gas (containing CO2). Our aim was to determine the roles of fresh gas flow, reserve gas PCO2 and minute ventilation in the determination of P(ET)CO2. We first used a computer model of a non-rebreathing sequential breathing circuit to determine these relationships. We then tested our model by monitoring P(ET)CO2 in human volunteers who increased their minute ventilation from resting to five times resting levels. The optimal settings to maintain P(ET)CO2 independently of minute ventilation are 1) fresh gas flow equal to minute ventilation minus anatomical deadspace ventilation, and 2) reserve gas PCO2 equal to alveolar PCO2. We provide an equation to assist in identifying gas settings to attain a target PCO2. The ability to precisely attain and maintain a target PCO2 (isocapnia) using a sequential gas delivery circuit has multiple therapeutic and scientific applications.

  11. Contributions of tidal lung inflation to human R-R interval and arterial pressure fluctuations.

    PubMed

    Koh, J; Brown, T E; Beightol, L A; Eckberg, D L

    1998-01-19

    We studied the effects of mechanical lung inflation on respiratory frequency R-R interval and arterial pressure fluctuations in nine healthy young adults undergoing elective orthopedic surgery. We conducted this research to define the contribution of pulmonary and thoracic stretch receptor input to respiratory sinus arrhythmia. We compared fast Fourier transform spectral power during three modes of ventilation: (1) spontaneous, frequency-controlled (0.25 Hz) breathing, (2) intermittent positive pressure ventilation (0.25 Hz, with a tidal volume of 8 ml/kg) and (3) high frequency jet ventilation (5.0 Hz, 2.5 kg/cm2), after sedation and vecuronium paralysis. Mean R-R intervals, arterial pressures and arterial blood gas levels were comparable during all three breathing conditions. Respiratory frequency systolic pressure spectral power was comparable during spontaneous breathing and conventional mechanical ventilation, but was significantly reduced during high frequency jet ventilation (P < 0.05). Respiratory frequency R-R interval spectral power (used as an index of respiratory sinus arrhythmia) declined dramatically with sedation and muscle paralysis (P < 0.05), but was greater during conventional mechanical, than high frequency jet ventilation (P < 0.05). These results suggest that although phasic inputs from pulmonary and thoracic stretch receptors make a statistically significant contribution to respiratory sinus arrhythmia, that contribution is small.

  12. Contributions of tidal lung inflation to human R-R interval and arterial pressure fluctuations

    NASA Technical Reports Server (NTRS)

    Koh, J.; Brown, T. E.; Beightol, L. A.; Eckberg, D. L.

    1998-01-01

    We studied the effects of mechanical lung inflation on respiratory frequency R-R interval and arterial pressure fluctuations in nine healthy young adults undergoing elective orthopedic surgery. We conducted this research to define the contribution of pulmonary and thoracic stretch receptor input to respiratory sinus arrhythmia. We compared fast Fourier transform spectral power during three modes of ventilation: (1) spontaneous, frequency-controlled (0.25 Hz) breathing, (2) intermittent positive pressure ventilation (0.25 Hz, with a tidal volume of 8 ml/kg) and (3) high frequency jet ventilation (5.0 Hz, 2.5 kg/cm2), after sedation and vecuronium paralysis. Mean R-R intervals, arterial pressures and arterial blood gas levels were comparable during all three breathing conditions. Respiratory frequency systolic pressure spectral power was comparable during spontaneous breathing and conventional mechanical ventilation, but was significantly reduced during high frequency jet ventilation (P < 0.05). Respiratory frequency R-R interval spectral power (used as an index of respiratory sinus arrhythmia) declined dramatically with sedation and muscle paralysis (P < 0.05), but was greater during conventional mechanical, than high frequency jet ventilation (P < 0.05). These results suggest that although phasic inputs from pulmonary and thoracic stretch receptors make a statistically significant contribution to respiratory sinus arrhythmia, that contribution is small.

  13. Lunar Tidal Deformation and the Deep Interior

    NASA Astrophysics Data System (ADS)

    Williams, James G.; Konopliv, Alex S.; Park, Ryan; Boggs, Dale H.; Asmar, Sami W.; Yuan, Dah-Ning; Ratcliff, James; Watkins, Michael M.; Smith, David E.; Zuber, Maria

    2016-10-01

    The gravitational attractions of the Earth and Sun raise tides on the Moon. The amplitudes of vertical tidal variations are typically 0.1 to 0.15 m in size. The GRAIL mission determines the potential Love number k2 = 0.02422 with <1% uncertainty. Models with a crust, mantle, deep dissipating region, and fluid core can match the k2. Lunar Laser Ranging determines tidal dissipation Q=38 at 1 month period and Q=41 at 1 yr. Dissipation in the deep mantle appears to cause the low tidal Q and Q versus tidal period is a clue about the dissipation mechanism. The dissipating region has an upper radius of at least 535 km. The vertical displacement Love number h2 is detected.

  14. Cullinan Ranch Tidal Marsh Restoration Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Cullinan Ranch Tidal Marsh Restoration Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  15. Upper limb kinematic differences between breathing and non-breathing conditions in front crawl sprint swimming.

    PubMed

    McCabe, Carla B; Sanders, Ross H; Psycharakis, Stelios G

    2015-11-26

    The purpose of this study was to determine whether the breathing action in front crawl (FC) sprint swimming affects the ipsilateral upper limb kinematics relative to a non-breathing stroke cycle (SC). Ten male competitive swimmers performed two 25m FC sprints: one breathing to their preferred side (Br) and one not breathing (NBr). Both swim trials were performed through a 6.75m(3) calibrated space and recorded by six gen-locked JVC KY32 CCD cameras. A paired t-test was used to assess statistical differences between the trials, with a confidence level of p<0.05 accepted as significant. Swimmers were slower (3%) when breathing. Within the entry phase, swimmers had a slower COM horizontal velocity (3.3%), less shoulder flexion (8%), abduction (33%) and roll (4%) when breathing. The pull phase was longer in duration (14%) swimmers had a shallower hand path (11%), less shoulder abduction (11%), a slower hand vertical acceleration (30%) and slower centre of mass (COM) horizontal velocity (3%) when breathing. In the push phase, swimmers had a smaller elbow range of motion (ROM) (38%), faster backwards hand speed (25%) and faster hand vertical acceleration (33%) when breathing. Swimmers rolled their shoulders more (12%) in the recovery phase when breathing. This study confirms that swim performance is compromised by the inclusion of taking a breath in sprint FC swimming. It was proposed that swimmers aim to orient their ipsilateral shoulder into a stronger position by stretching and rolling the shoulders more in the entry phase whilst preparing to take a breath. Swimmers should focus on lengthening the push phase by extending the elbow more and not accelerating the hand too quickly upwards when preparing to inhale.

  16. RESP-24: a computer program for the investigation of 24-h breathing abnormalities in heart failure patients.

    PubMed

    Maestri, R; Pinna, G D; Robbi, E; Varanini, M; Emdin, M; Raciti, M; La Rovere, M T

    2002-05-01

    In this paper, we describe a computer program (RESP-24) specifically devised to assess the prevalence and characteristics of breathing disorders in ambulant chronic heart failure patients during the overall 24 h period. The system works on a single channel respiratory signal (RS) recorded through a Holter-like portable device. In the pre-processing stage RESP-24 removes noise, baseline drift and motion artefacts from the RS using a non-linear filter, enhances respiratory frequency components through high-pass filtering and derives an instantaneous tidal volume (ITV) signal. The core processing is devoted to the identification and classification of the breathing pattern into periodic breathing (PB), normal breathing or non-classifiable breathing using a 60 s segmentation, and to the identification and estimation of apnea and hypopnea events. Sustained episodes of PB are detected by cross analysis of both the spectral content and time behavior of the ITV signal. User-friendly interactive facilities allow all the results of the automatic analysis procedure to be edited. The final report provides a set of standard and non-standard parameters quantifying breathing abnormalities during the 24 h period, the night-time and the day-time, including the apnea/hypopnea index, the apnea index, the total time spent in apnea or in hypopnea and the prevalence of non-apneic and apneic PB. The accuracy of these measurements was appraised on a data set of 14 recordings, by comparing them with those provided by a trained analyst. The mean and standard deviation of the error of the automatic procedure were below respectively 6 and 8% of the reference value for all parameters considered and the mean total classification accuracy was 92%. In most cases, the individual error was <12%. We conclude that measurements provided automatically by the RESP-24 software are suitable for screening purposes and clinical trials, although a preventive check of signal quality should be recommended.

  17. Half Moon Cove Tidal Project. Feasibility report

    SciTech Connect

    Not Available

    1980-11-01

    The proposed Half Moon Cove Tidal Power Project would be located in a small cove in the northern part of Cobscook Bay in the vicinity of Eastport, Maine. The project would be the first tidal electric power generating plant in the United States of America. The basin impounded by the barrier when full will approximate 1.2 square miles. The average tidal range at Eastport is 18.2 feet. The maximum spring tidal range will be 26.2 feet and the neap tidal range 12.8 feet. The project will be of the single pool-type single effect in which generation takes place on the ebb tide only. Utilizing an average mean tidal range of 18.2 feet the mode of operation enables generation for approximately ten and one-half (10-1/2) hours per day or slightly in excess of five (5) hours per tide. The installed capacity will be 12 MW utilizing 2 to 6 MW units. An axial flow, or Bulb type of turbine was selected for this study.

  18. TIDAL INTERACTIONS IN MERGING WHITE DWARF BINARIES

    SciTech Connect

    Piro, Anthony L.

    2011-10-20

    The recently discovered system J0651 is the tightest known detached white dwarf (WD) binary. Since it has not yet initiated Roche-lobe overflow, it provides a relatively clean environment for testing our understanding of tidal interactions. I investigate the tidal heating of each WD, parameterized in terms of its tidal Q parameter. Assuming that the heating can be radiated efficiently, the current luminosities are consistent with Q {sub 1} {approx} 7 x 10{sup 10} and Q {sub 2} {approx} 2 x 10{sup 7}, for the He and C/O WDs, respectively. Conversely, if the observed luminosities are merely from the cooling of the WDs, these estimated values of Q represent the upper limits. A large Q {sub 1} for the He WD means its spin velocity will be slower than that expected if it was tidally locked, which, since the binary is eclipsing, may be measurable via the Rossiter-McLaughlin effect. After one year, gravitational wave emission shifts the time of eclipses by 5.5 s, but tidal interactions cause the orbit to shrink more rapidly, changing the time by up to an additional 0.3 s after a year. Future eclipse timing measurements may therefore infer the degree of tidal locking.

  19. Tidal wave transformations in the German Bight

    NASA Astrophysics Data System (ADS)

    Stanev, Emil V.; Al-Nadhairi, Rahma; Staneva, Joanna; Schulz-Stellenfleth, Johannes; Valle-Levinson, Arnoldo

    2014-07-01

    Mesoscale and submesoscale dynamics associated with tidal wave transformations were addressed in the German Bight using numerical simulations. Tidal gauge and velocity observations in several locations were used to validate the numerical model. A downscaling approach included analysis of simulations with horizontal resolutions of 1, 0.4, and 0.2 km. It was shown that the modified tidal wave lost most of its energy after reflection or refraction over the eastern part of the German Bight. Energy loss resulted in a pronounced change of the wave's spectral composition and generation of overtides. Tidal oscillations were modified by mesoscale processes associated with bathymetric channels. Semidiurnal and quarterdiurnal tides revealed very different spatial patterns. The former were aligned with the bathymetric channels, while the latter were rather "patchy" and had about half the spatial scales. In numerous areas around the bathymetric channels, the major axis of the M4 ellipses was normal or at some angle with the major axis of the M2 ellipses. Thus, higher harmonics developed "orthogonal" patterns that drove secondary circulations. Moreover, the ratio between spring and neap tidal amplitudes was relatively low in the Wadden Sea, showing reduced sensitivity of this very shallow area to fortnightly tidal variations. It was demonstrated that simulated hydrodynamics patterns help explain the physical mechanism shaping the median grain size distribution in the German Bight.

  20. VISCOELASTIC MODELS OF TIDALLY HEATED EXOMOONS

    SciTech Connect

    Dobos, Vera; Turner, Edwin L.

    2015-05-01

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life has been intensely studied on solar system moons such as Europa or Enceladus where the surface ice layer covers a tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. To study the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models because it takes into account the temperature dependence of the tidal heat flux and the melting of the inner material. Using this model, we introduced the circumplanetary Tidal Temperate Zone (TTZ), which strongly depends on the orbital period of the moon and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ using both models. We have found that the viscoelastic model predicts 2.8 times more exomoons in the TTZ with orbital periods between 0.1 and 3.5 days than the fixed Q model for plausible distributions of physical and orbital parameters. The viscoelastic model provides more promising results in terms of habitability because the inner melting of the body moderates the surface temperature, acting like a thermostat.

  1. Adsorption of desflurane by the silica gel filters in breathing circuits: an in vitro study

    PubMed Central

    Song, Seok Young; Lim, Bo Reum

    2015-01-01

    Background During general anesthesia, a heated breathing circuit (HBC) is used to replace the heat and moisture exchange function of the upper airway. One HBC uses an air dryer filter that employs silica gel (SG) as a desiccant. SG is capable of adsorbing many organic compounds. Therefore, we undertook an in vitro study of the adsorption of desflurane by SG filters. Methods An HBC was connected to an anesthesia machine, and a test lung was connected to the circuit. The test lung was mechanically ventilated with 2 or 4 L/min of fresh gas flow, with and without the air dryer filter. Desflurane was administered at a 6 vol% on the vaporizer dial setting. The experiment was repeated 15 times in each group. The end-tidal concentrations were measured during the experiments. The air dryer filter weights were measured before and after the experiments, and the times required to achieve the specific end-tidal desflurane concentrations were determined. Results Significant differences in the end-tidal concentrations of desflurane were observed between the control and filter groups (P < 0.001). The filter weights increased significantly after the experiments (P < 0.001). The times required to achieve the same end-tidal desflurane concentrations were different with the application of the air dryer filter (P < 0.001). Conclusions The adsorption of desflurane with the use of an air dryer filter was verified in this in vitro study. Careful attention is needed when using air dryer gel filters during general anesthesia. PMID:26045931

  2. The fast exercise drive to breathe.

    PubMed

    Duffin, James

    2014-02-01

    This paper presents a personal view of research into the exercise drive to breathe that can be observed to act immediately to increase breathing at the start of rhythmic exercise. It is based on a talk given at the Experimental Biology 2013 meeting in a session entitled 'Recent advances in understanding mechanisms regulating breathing during exercise'. This drive to breathe has its origin in a combination of central command, whereby voluntary motor commands to the exercising muscles produce a concurrent respiratory drive, and afferent feedback, whereby afferent information from the exercising muscles affects breathing. The drive at the start and end of rhythmic exercise is proportional to limb movement frequency, and its magnitude decays as exercise continues so that the immediate decrease of ventilation at the end of exercise is about 60% of the immediate increase at the start. With such evidence for the effect of this fast drive to breathe at the start and end of rhythmic exercise, its existence during exercise is hypothesised. Experiments to test this hypothesis have, however, provided debatable evidence. A fast drive to breathe during both ramp and sine wave changes in treadmill exercise speed and grade appears to be present in some individuals, but is not as evident in the general population. Recent sine-wave cycling experiments show that when cadence is varied sinusoidally the ventilation response lags by about 10 s, whereas when pedal loading is varied ventilation lags by about 30 s. It therefore appears that limb movement frequency is effective in influencing ventilation during exercise as well as at the start and end of exercise.

  3. Exercise carbon dioxide (CO2) retention with inhaled CO2 and breathing resistance.

    PubMed

    Shykoff, Barbara E; Warkander, Dan E

    2012-01-01

    Combined effects on respiratory minute ventilation (VE)--and thus, on end-tidal carbon dioxide partial pressure (P(ET)CO2)--of breathing resistance and elevated inspired carbon dioxide (CO2) had not been determined during heavy exercise. In this Institutional Review Board-approved, dry, sea-level study, 12 subjects in each of three phases exercised to exhaustion at 85% peak oxygen uptake while V(E) and P(ET)CO2 were measured. Participants inhaled 0%, 1%, 2% or 3% CO2 in air, or 0% or 2% CO2 in oxygen, with or without breathing resistance, mimicking the U.S. Navy's MK 16 rebreather underwater breathing apparatus (UBA). Compared to air baseline (0% inspired CO2 in air without resistance): (1) Oxygen decreased baseline V(E) (p < 0.01); (2) Inspired CO2 increased V(E) and P(ET)CO2 (p < 0.01); (3) Resistance decreased V(E) (p < 0.01); (4) Inspired CO2 with resistance elevated P(ET)CO2 (p < 0.01). In air, V(E) did not change from that with resistance alone. In oxygen, V(E) returned to oxygen baseline. End-exercise P(ET)CO2 exceeded 60 Torr (8.0 kPa) in three tests. Subjects identified hypercapnia poorly. Results support dual optimization of arterial carbon dioxide partial pressure and respiratory effort. Because elevated CO2 may not increase V(E) if breathing resistance and VE are high, rebreather UBA safety requires very low inspired CO2.

  4. Hydrodynamics and sediment suspension in shallow tidal channels intersecting a tidal flat

    NASA Astrophysics Data System (ADS)

    Pieterse, Aline; Puleo, Jack A.; McKenna, Thomas E.

    2016-05-01

    A field study was conducted on a tidal flat intersected by small tidal channels (depth <0.1 m, width <2 m) within a tidal marsh. Data were collected in the channels, and on the adjacent tidal flat that encompasses approximately 1600 m2 in planform area. Hydrodynamic processes and sediment suspension between the channels and adjacent flat were compared. Shear stress and turbulent kinetic energy were computed from high frequency velocity measurements. Maximum water depth at the field site varied from 0.11 m during the lowest neap high tide to 0.58 m during a storm event. In the channel intersecting the tidal flat, the shear stress, turbulence and along-channel velocity were ebb dominant; e.g. 0.33 m/s peak velocity for ebb compared to 0.19 m/s peak velocity for flood. Distinct pulses in velocity occurred when the water level was near the tidal flat level. The velocity pulse during flood tide occurred at a higher water level than during ebb tide. No corresponding velocity pulse on the tidal flat was observed. Sediment concentrations peaked at the beginning and end of each tidal cycle, and often had a secondary peak close to high tide, assumed to be related to sediment advection. The influence of wind waves on bed shear stress and sediment suspension was negligible. Water levels were elevated during a storm event such that the tidal flat remained inundated for 4 tidal cycles. The water did not drain from the tidal flat into the channels during the storm, and no velocity pulses occurred. Along-channel velocities, turbulent kinetic energy, and shear stresses were therefore smaller in the channels during storm conditions than during non-storm conditions.

  5. Effects of aerial hypoxia and temperature on pulmonary breathing pattern and gas exchange in the South American lungfish, Lepidosiren paradoxa.

    PubMed

    da Silva, Glauber S F; Ventura, Daniela A D N; Zena, Lucas A; Giusti, Humberto; Glass, Mogens L; Klein, Wilfried

    2017-05-01

    The South American lungfish Lepidosiren paradoxa is an obligatory air-breathing fish possessing well-developed bilateral lungs, and undergoing seasonal changes in its habitat, including temperature changes. In the present study we aimed to evaluate gas exchange and pulmonary breathing pattern in L. paradoxa at different temperatures (25 and 30°C) and different inspired O2 levels (21, 12, 10, and 7%). Normoxic breathing pattern consisted of isolated ventilatory cycles composed of an expiration followed by 2.4±0.2 buccal inspirations. Both expiratory and inspiratory tidal volumes reached a maximum of about 35mlkg(-1), indicating that L. paradoxa is able to exchange nearly all of its lung air in a single ventilatory cycle. At both temperatures, hypoxia caused a significant increase in pulmonary ventilation (V̇E), mainly due to an increase in respiratory frequency. Durations of the ventilatory cycle and expiratory and inspiratory tidal volumes were not significantly affected by hypoxia. Expiratory time (but not inspiratory) was significantly shorter at 30°C and at all O2 levels. While a small change in oxygen consumption (V̇O2) could be noticed, the carbon dioxide release (V̇CO2, P=0.0003) and air convection requirement (V̇E/V̇O2, P=0.0001) were significantly affected by hypoxia (7% O2) at both temperatures, when compared to normoxia, and pulmonary diffusion capacity increased about four-fold due to hypoxic exposure. These data highlight important features of the respiratory system of L. paradoxa, capable of matching O2 demand and supply under different environmental change, as well as help to understand the evolution of air breathing in lungfish.

  6. Factors Influencing Continuous Breath Signal in Intubated and Mechanically-Ventilated Intensive Care Unit Patients Measured by an Electronic Nose

    PubMed Central

    Leopold, Jan Hendrik; Abu-Hanna, Ameen; Colombo, Camilla; Sterk, Peter J.; Schultz, Marcus J.; Bos, Lieuwe D. J.

    2016-01-01

    Introduction: Continuous breath analysis by electronic nose (eNose) technology in the intensive care unit (ICU) may be useful in monitoring (patho) physiological changes. However, the application of breath monitoring in a non-controlled clinical setting introduces noise into the data. We hypothesized that the sensor signal is influenced by: (1) humidity in the side-stream; (2) patient-ventilator disconnections and the nebulization of medication; and (3) changes in ventilator settings and the amount of exhaled CO2. We aimed to explore whether the aforementioned factors introduce noise into the signal, and discuss several approaches to reduce this noise. Methods: Study in mechanically-ventilated ICU patients. Exhaled breath was monitored using a continuous eNose with metal oxide sensors. Linear (mixed) models were used to study hypothesized associations. Results: In total, 1251 h of eNose data were collected. First, the initial 15 min of the signal was discarded. There was a negative association between humidity and Sensor 1 (Fixed-effect β: −0.05 ± 0.002) and a positive association with Sensors 2–4 (Fixed-effect β: 0.12 ± 0.001); the signal was corrected for this noise. Outliers were most likely due to noise and therefore removed. Sensor values were positively associated with end-tidal CO2, tidal volume and the pressure variables. The signal was corrected for changes in these ventilator variables after which the associations disappeared. Conclusion: Variations in humidity, ventilator disconnections, nebulization of medication and changes of ventilator settings indeed influenced exhaled breath signals measured in ventilated patients by continuous eNose analysis. We discussed several approaches to reduce the effects of these noise inducing variables. PMID:27556467

  7. Ecological sounds affect breath duration more than artificial sounds.

    PubMed

    Murgia, Mauro; Santoro, Ilaria; Tamburini, Giorgia; Prpic, Valter; Sors, Fabrizio; Galmonte, Alessandra; Agostini, Tiziano

    2016-01-01

    Previous research has demonstrated that auditory rhythms affect both movement and physiological functions. We hypothesized that the ecological sounds of human breathing can affect breathing more than artificial sounds of breathing, varying in tones for inspiration and expiration. To address this question, we monitored the breath duration of participants exposed to three conditions: (a) ecological sounds of breathing, (b) artificial sounds of breathing having equal temporal features as the ecological sounds, (c) no sounds (control). We found that participants' breath duration variability was reduced in the ecological sound condition, more than in the artificial sound condition. We suggest that ecological sounds captured the timing of breathing better than artificial sounds, guiding as a consequence participants' breathing. We interpreted our results according to the Theory of Event Coding, providing further support to its validity, and suggesting its possible extension in the domain of physiological functions which are both consciously and unconsciously controlled.

  8. Respiratory muscle function and control of breathing in patients with acromegaly.

    PubMed

    Iandelli, I; Gorini, M; Duranti, R; Bassi, F; Misuri, G; Pacini, F; Rosi, E; Scano, G

    1997-05-01

    Increase in lung size has been described in acromegalic patients, but data on respiratory muscle function and control of breathing are relatively scarce. Lung volumes, arterial blood gas tensions, and respiratory muscle strength and activation during chemical stimulation were investigated in a group of 10 patients with acromegaly, and compared with age- and sex-matched normal controls. Inspiratory muscle force was evaluated by measuring pleural (Ppl,sn) and transdiaphragmatic (Pdi,sn) pressures during maximal sniffs. Dynamic pleural pressure swing (Ppl,sw) was expressed both as absolute value and as percentage of Ppl,sn. Expiratory muscle force was assessed in terms of maximal expiratory pressure (MEP). In 8 of the 10 patients, ventilatory and respiratory muscle responses to hyperoxic progressive hypercapnia and to isocapnic progressive hypoxia were also evaluated. Large lungs, defined as total lung capacity (TLC) greater than predicted (above 95% confidence limits), were found in five patients. Inspiratory or expiratory muscle force was below normal limits in all but three patients. During unstimulated tidal breathing, respiratory frequency (fR) and mean inspiratory flow (tidal volume/inspiratory time (VT/tI)) were greater, while inspiratory time (tI) was shorter than in controls. Minute ventilation (V'E) and mean inspiratory flow response slopes to hypercapnia were normal In contrast, four patients had reduced delta(VT/tI)/arterial oxygen saturation (Sa,O2) and three had reduced deltaV'E/Sa,O2. Ppl,sw(%Ppl,sn) response slopes to increasing end-tidal carbon dioxide tension (PET,CO2) and decreasing Sa,O2 did not differ from the responses of the normal subjects, suggesting normal central chemoresponsiveness. At a PET,CO2 of 8 kPa or an Sa,O2 of 80%, patients had greater fR and lower tI compared with controls. Pdi,sn and Ppl,sn related both to deltaV'E/deltaSa,O2 (r=0.729 and r=0.776, respectively) and delta(VT/tI)/deltaSa,O2 (r=0.860 and r=0.90, respectively). Pdi

  9. Regulatory issues on breath tests and updates of recent advances on [13C]-breath tests.

    PubMed

    Modak, Anil S

    2013-09-01

    Over the last decade non invasive diagnostic phenotype [(13)C]-breath tests as well as tests using endogenous volatile organic compounds (VOCs) in breath have been researched extensively. However, only three breath tests have been approved by the FDA over the last 15 years. Despite the potential benefits of these companion diagnostic tests (CDx) for evaluation of drug metabolizing enzyme activities and standalone diagnostic tests for disease diagnosis to personalize medicine, the clinical and commercial development of breath tests will need to overcome a number of regulatory, financial and scientific hurdles prior to their acceptance into routine clinical practice. The regulatory agencies (FDA and EMEA) need to adapt and harmonize their approval process for companion diagnostic tests as well as standalone diagnostic breath tests for personalized medicine. The Center for Devices and Radiological Health has deemed any breath test that involves a labeled (13)C substrate/drug and a device requires a Pre Market Approval (PMA), which is analogous to an approved New Drug Application. A PMA is in effect, a private license granted to the applicant for marketing a particular medical device. Any breath test with endogenous VOCs along with a device can be approved via the 510(k) application. A number of (13)C breath tests with clinical applications have been researched recently and results have been published in reputed journals. Diagnostic companies will need to invest the necessary financial resources to develop and get regulatory approval for diagnostic breath tests capable of identifying responders/non responders for FDA approved drugs with narrow therapeutic indices (personalized medicine) or for evaluating the activity of drug metabolizing P450 polymorphic enzymes or for diagnosing diseases at an early stage or for monitoring the efficacy of medications. The financial success of these diagnostic breath tests will then depend entirely on how the test is marketed to

  10. Gaseous contaminant distribution in the breathing zone.

    PubMed

    Ojima, Jun

    2012-01-01

    Conventionally, the "breathing zone" is defined as the zone within a 0.3 m (or 10 inches) radius of a worker's nose and mouth, and it has been generally assumed that a contaminant in the breathing zone is homogeneous and its concentration is equivalent to the concentration inhaled by the worker. However, several studies have mentioned that the concentration is not uniform in the breathing zone when a worker is close to the contaminant source. In order to examine the spatial variability of contaminant concentrations in a worker's breathing zone, comparative measurements of personal exposure were carried out in a laboratory. In experiment, ethanol vapor was released in front of a model worker (human subject and mockup mannequin) and the vapor concentrations were measured at two different sampling points, at the nose and at the chest, in the breathing zone. Then, the effects of the sampling location and the body temperature on the exposure were observed. The ratios of nose concentration to chest concentration for the human subject and the mannequin were 0-0.2 and 0.12, respectively. The exposure level of the mannequin was about 5.5-9.3 times higher than that of the human subject.

  11. Plant distributions along salinity and tidal gradients in Oregon tidal marshes

    EPA Science Inventory

    Accurately modeling climate change effects on tidal marshes in the Pacific Northwest requires understanding how plant assemblages and species are presently distributed along gradients of salinity and tidal inundation. We outline on-going field efforts by the EPA and USGS to dete...

  12. Correlations between the circadian patterns of body temperature, metabolism and breathing in rats.

    PubMed

    Mortola, Jacopo P

    2007-02-15

    It had been demonstrated previously that the circadian patterns of activity and state of arousal are not essential for the manifestation of the daily patterns of pulmonary ventilation (V(E)), tidal volume (V(T)) and breathing frequency (f). In this study we investigated the extent of the linkage between the circadian pattern of breathing and those of body temperature (T(b)) and metabolic rate (oxygen consumption, V(O2), and carbon dioxide production, V(CO2)). Rats were instrumented for measurements of T(b) (by telemetry), and placed in a chamber for continuous 13-day period of measurement of breathing (by a modification of the barometric methodology), and of V(O2) and V(CO2) (by an open flow method). After the first 4 days in control conditions under a 12 h light:12 h dark (L:D) cycle, a perturbation was introduced on day 4, with an L-phase prolongation of 12 h, and on day 9, with an D-phase prolongation of 12 h. During the control days 1-4, all variables had daily oscillations (higher values in D), in phase with each other. During the perturbations (days 4-13), changes in T(b), V(O2) and V(CO2), averaged over the whole period, correlated significantly better with f than with V(T). Day-by-day X-Y loops indicated that V (E), V(T) and f could lead significantly the changes of T(b), V(O2) and V(CO2), and that these relations changed throughout the perturbation period. In addition, f and V(T) did not change necessarily in phase with each other. It is concluded that neither the oscillation in T(b) nor that in metabolism can be considered the direct cause of the daily oscillation of breathing. Presumably, the circadian pattern of breathing reflects the interplay of the daily patterns of many variables, none acting as the primary guide of the breathing daily rhythm.

  13. Technologies for Clinical Diagnosis Using Expired Human Breath Analysis

    PubMed Central

    Mathew, Thalakkotur Lazar; Pownraj, Prabhahari; Abdulla, Sukhananazerin; Pullithadathil, Biji

    2015-01-01

    This review elucidates the technologies in the field of exhaled breath analysis. Exhaled breath gas analysis offers an inexpensive, noninvasive and rapid method for detecting a large number of compounds under various conditions for health and disease states. There are various techniques to analyze some exhaled breath gases, including spectrometry, gas chromatography and spectroscopy. This review places emphasis on some of the critical biomarkers present in exhaled human breath, and its related effects. Additionally, various medical monitoring techniques used for breath analysis have been discussed. It also includes the current scenario of breath analysis with nanotechnology-oriented techniques. PMID:26854142

  14. Decompression sickness following breath-hold diving.

    PubMed

    Schipke, J D; Gams, E; Kallweit, Oliver

    2006-01-01

    Despite convincing evidence of a relationship between breath-hold diving and decompression sickness (DCS), the causal connection is only slowly being accepted. Only the more recent textbooks have acknowledged the risks of repetitive breath-hold diving. We compare four groups of breath-hold divers: (1) Japanese and Korean amas and other divers from the Pacific area, (2) instructors at naval training facilities, (3) spear fishers, and (4) free-dive athletes. While the number of amas is likely decreasing, and Scandinavian Navy training facilities recorded only a few accidents, the number of spear fishers suffering accidents is on the rise, in particular during championships or using scooters. Finally, national and international associations (e.g., International Association of Free Drives [IAFD] or Association Internationale pour Le Developpment De L'Apnee [AIDA]) promote free-diving championships including deep diving categories such as constant weight, variable weight, and no limit. A number of free-diving athletes, training for or participating in competitions, are increasingly accident prone as the world record is presently set at a depth of 171 m. This review presents data found after searching Medline and ISI Web of Science and using appropriate Internet search engines (e.g., Google). We report some 90 cases in which DCS occurred after repetitive breath-hold dives. Even today, the risk of suffering from DCS after repetitive breath-hold diving is often not acknowledged. We strongly suggest that breath-hold divers and their advisors and physicians be made aware of the possibility of DCS and of the appropriate therapeutic measures to be taken when DCS is suspected. Because the risk of suffering from DCS increases depending on depth, bottom time, rate of ascent, and duration of surface intervals, some approaches to assess the risks are presented. Regrettably, none of these approaches is widely accepted. We propose therefore the development of easily manageable

  15. Breath testing and personal exposure--SIFT-MS detection of breath acetonitrile for exposure monitoring.

    PubMed

    Storer, Malina; Curry, Kirsty; Squire, Marie; Kingham, Simon; Epton, Michael

    2015-05-26

    Breath testing has potential for the rapid assessment of the source and impact of exposure to air pollutants. During the development of a breath test for acetonitrile using selected ion flow tube mass spectrometry (SIFT-MS) raised acetonitrile concentrations in the breath of volunteers were observed that could not be explained by known sources of exposure. Workplace/laboratory exposure to acetonitrile was proposed since this was common to the volunteers with increased breath concentrations. SIFT-MS measurements of acetonitrile in breath and air were used to confirm that an academic chemistry laboratory was the source of exposure to acetonitrile, and quantify the changes that occurred to exhaled acetonitrile after exposure. High concentrations of acetonitrile were detected in the air of the chemistry laboratory. However, concentrations in the offices were not significantly different across the campus. There was a significant difference in the exhaled acetonitrile concentrations of people who worked in the chemistry laboratories (exposed) and those who did not (non-exposed). SIFT-MS testing of air and breath made it possible to determine that occupational exposure to acetonitrile in the chemistry laboratory was the cause of increased exhaled acetonitrile. Additionally, the sensitivity was adequate to measure the changes to exhaled amounts and found that breath concentrations increased quickly with short exposure and remained increased even after periods of non-exposure. There is potential to add acetonitrile to a suite of VOCs to investigate source and impact of poor air quality.

  16. Carbon sequestration by Australian tidal marshes

    PubMed Central

    Macreadie, Peter I.; Ollivier, Q. R.; Kelleway, J. J.; Serrano, O.; Carnell, P. E.; Ewers Lewis, C. J.; Atwood, T. B.; Sanderman, J.; Baldock, J.; Connolly, R. M.; Duarte, C. M.; Lavery, P. S.; Steven, A.; Lovelock, C. E.

    2017-01-01

    Australia’s tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia’s tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha−1 (range 14–963 Mg OC ha−1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha−1 yr−1. Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia’s 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2-equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr−1, with a CO2-equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes. PMID:28281574

  17. Ridges and tidal stress on Io

    USGS Publications Warehouse

    Bart, G.D.; Turtle, E.P.; Jaeger, W.L.; Keszthelyi, L.P.; Greenberg, R.

    2004-01-01

    Sets of ridges of uncertain origin are seen in twenty-nine high-resolution Galileo images, which sample seven locales on Io. These ridges are on the order of a few kilometers in length with a spacing of about a kilometer. Within each locale, the ridges have a consistent orientation, but the orientations vary from place to place. We investigate whether these ridges could be a result of tidal flexing of Io by comparing their orientations with the peak tidal stress orientations at the same locations. We find that ridges grouped near the equator are aligned either north-south or east-west, as are the predicted principal stress orientations there. It is not clear why particular groups run north-south and others east-west. The one set of ridges observed far from the equator (52?? S) has an oblique azimuth, as do the tidal stresses at those latitudes. Therefore, all observed ridges have similar orientations to the tidal stress in their region. This correlation is consistent with the hypothesis that tidal flexing of Io plays an important role in ridge formation. ?? 2004 Elsevier Inc. All rights reserved.

  18. Tidal characteristics of the gulf of Tonkin

    NASA Astrophysics Data System (ADS)

    Minh, Nguyen Nguyet; Patrick, Marchesiello; Florent, Lyard; Sylvain, Ouillon; Gildas, Cambon; Damien, Allain; Van Uu, Dinh

    2014-12-01

    The Gulf of Tonkin, situated in the South China Sea, is a zone of strong ecological, touristic and economic interest. Improving our knowledge of its hydro-sedimentary processes is of great importance to the sustainable development of the area. The scientific objective of this study is to revisit the dominant physical processes that characterize tidal dynamics in the Gulf of Tonkin using a high-resolution model and combination of all available data. Particular attention is thus given to model-data cross-examination using tidal gauges and coastal satellite altimetry and to model calibration derived from a set of sensitivity experiments to model parameters. The tidal energy budget of the gulf (energy flux and dissipation) is then analyzed and its resonance properties are evaluated and compared with idealized models and observations. Then, the tidal residual flow in both Eulerian and Lagrangian frameworks is evaluated. Finally, the problem of tidal frontogenesis is addressed to explain the observed summer frontal structures in chlorophyll concentrations.

  19. The Debris Streams from Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Coughlin, Eric

    2016-01-01

    When a star comes within a critical distance of a supermassive black hole, the tidal force exerted by the hole overcomes the stellar self-gravity. The star is subsequently torn apart, creating a stream of tidally-shredded debris that initially recedes from the hole, eventually returns to pericenter, forms an accretion disk and generates a highly luminous event that can sometimes be accompanied by the production of relativistic jets. This entire process is known as a tidal disruption event (TDE), and dozens of these events have already been observed. I will discuss my most recent work that has analyzed the tidal disruption process, and in particular I will focus on the results of numerical and analytical investigations that show that the streams of debris produced during TDEs can be gravitationally unstable. Specifically, I will describe how compressive motions augment the importance of self-gravity not long after the star is disrupted, resulting in the fragmentation of the debris stream into small-scale clumps. These findings will be discussed in the context of the observational signatures of tidal disruption events, and I will also relate these results to my past investigations concerning accretion disk formation and jet launching during TDEs.

  20. Carbon sequestration by Australian tidal marshes.

    PubMed

    Macreadie, Peter I; Ollivier, Q R; Kelleway, J J; Serrano, O; Carnell, P E; Ewers Lewis, C J; Atwood, T B; Sanderman, J; Baldock, J; Connolly, R M; Duarte, C M; Lavery, P S; Steven, A; Lovelock, C E

    2017-03-10

    Australia's tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia's tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha(-1) (range 14-963 Mg OC ha(-1)). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha(-1) yr(-1). Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia's 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2-equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr(-1), with a CO2-equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes.

  1. Tidal Response of Preliminary Jupiter Model

    NASA Astrophysics Data System (ADS)

    Wahl, Sean M.; Hubbard, William B.; Militzer, Burkhard

    2016-11-01

    In anticipation of improved observational data for Jupiter’s gravitational field, from the Juno spacecraft, we predict the static tidal response for a variety of Jupiter interior models based on ab initio computer simulations of hydrogen-helium mixtures. We calculate hydrostatic-equilibrium gravity terms, using the non-perturbative concentric Maclaurin Spheroid method that eliminates lengthy expansions used in the theory of figures. Our method captures terms arising from the coupled tidal and rotational perturbations, which we find to be important for a rapidly rotating planet like Jupiter. Our predicted static tidal Love number, {k}2=0.5900, is ˜10% larger than previous estimates. The value is, as expected, highly correlated with the zonal harmonic coefficient J 2, and is thus nearly constant when plausible changes are made to the interior structure while holding J 2 fixed at the observed value. We note that the predicted static k 2 might change, due to Jupiter’s dynamical response to the Galilean moons, and find reasons to argue that the change may be detectable—although we do not present here a theory of dynamical tides for highly oblate Jovian planets. An accurate model of Jupiter’s tidal response will be essential for interpreting Juno observations and identifying tidal signals from effects of other interior dynamics of Jupiter’s gravitational field.

  2. Carbon sequestration by Australian tidal marshes

    NASA Astrophysics Data System (ADS)

    Macreadie, Peter I.; Ollivier, Q. R.; Kelleway, J. J.; Serrano, O.; Carnell, P. E.; Ewers Lewis, C. J.; Atwood, T. B.; Sanderman, J.; Baldock, J.; Connolly, R. M.; Duarte, C. M.; Lavery, P. S.; Steven, A.; Lovelock, C. E.

    2017-03-01

    Australia’s tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia’s tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha‑1 (range 14–963 Mg OC ha‑1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha‑1 yr‑1. Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia’s 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2-equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr‑1, with a CO2-equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes.

  3. Mixed Media Filters for Aircrew Breathing Systems.

    DTIC Science & Technology

    1980-12-01

    F AD-AiLT1 382 UMPQUA RESEARCH CO MYRTLE CREEK OR F/S 6/11 I MIXED MEDIA FILTERS FOR AIRCREW BREATHING SYSTEMS. CU) IDEC 80 G V COLOMBO F33615-76-C...O603 UNCLASSIFIED SAMTR-60-27 NL C Report SAM-TR-80.27 00 lot MIXED MEDIA FILTERS FOR AIRCREW BREATHING SYSTEMS Gerald V. Colombo, M.S. Umpqua Research...Texas 78235 0 ’: 0 010 T .A NOTICES This final report was submitted by Umpqua Research Company, Myrtle Creek, Oregon 97457, under contract F33615-76-C

  4. Medication effects on sleep and breathing.

    PubMed

    Seda, Gilbert; Tsai, Sheila; Lee-Chiong, Teofilo

    2014-09-01

    Sleep respiration is regulated by circadian, endocrine, mechanical and chemical factors, and characterized by diminished ventilatory drive and changes in Pao2 and Paco2 thresholds. Hypoxemia and hypercapnia are more pronounced during rapid eye movement. Breathing is influenced by sleep stage and airway muscle tone. Patient factors include medical comorbidities and body habitus. Medications partially improve obstructive sleep apnea and stabilize periodic breathing at altitude. Potential adverse consequences of medications include precipitation or worsening of disorders. Risk factors for adverse medication effects include aging, medical disorders, and use of multiple medications that affect respiration.

  5. A breathing mode for warped compactifications

    NASA Astrophysics Data System (ADS)

    Underwood, Bret

    2011-10-01

    In general warped compactifications, non-trivial backgrounds for the warp factor and the dilaton break D-dimensional diffeomorphism invariance, so that dilaton fluctuations can be gauged away completely and eaten by the metric. More specifically, the warped volume modulus and the dilaton are not independent, but combine into a single gauge-invariant degree of freedom in the lower dimensional effective theory, the warped breathing mode. This occurs for all strengths of the warping, even the weakly warped limit. This warped breathing mode appears as a natural zero mode deformation of backgrounds sourced by p-branes and affects the identification of the independent degrees of freedom of flux compactifications.

  6. Episodic breathing in alligators: role of sensory feedback.

    PubMed

    Douse, M A; Mitchell, G S

    1992-01-01

    The episodic breathing pattern in many reptiles consists of two or more clustered breaths separated by variable non-ventilatory periods. This pattern is commonly postulated to result from oscillations in lung and/or blood PO2 or PCO2 via chemoreceptor feedback. We tested this hypothesis by monitoring breathing pattern in: (1) awake, undisturbed alligators and (2) sedated alligators (approx. 25 mg/kg pentobarbital, i.p.; 3 days prior to data collection). In sedated alligators, measurements were made: (1) before and after bilateral cervical vagotomy, a procedure that removes peripheral arterial chemoreceptors, CO2-sensitive intrapulmonary chemoreceptors and pulmonary stretch receptors (n = 6); and (2) during unidirectional ventilation (UDV) at high flow rates (greater than 2 L/min), thereby minimizing oscillations in lung and blood PO2 and PCO2 (n = 6). Measurements on sedated alligators were made at 30 and 20 degrees C in each of these conditions. In awake, undisturbed alligators, breathing was typically episodic with 2-7 breaths/cluster, although the pattern was easily altered (increased breaths/cluster) by even seemingly minor disturbances. In sedated alligators, episodic breathing was still evident after vagotomy, but only at increased inspired CO2; at 5% CO2 four of six alligators exhibited episodic breathing consisting of 2-3 breaths/cluster interspersed with occasional single breaths. An episodic breathing pattern was also evident during UDV; at low levels of CO2, 2-4 breaths/cluster interspersed with occasional single breaths were evident in four alligators, while two had 6-8 breaths/cluster. Increasing CO2 in the UDV gas stream generally increased the number of breaths/cluster. After vagotomy, all six alligators could manifest an episodic breathing pattern during UDV in at least one CO2 condition (greater than 2 breaths/cluster interspersed with occasional single breaths). The episodic breathing pattern was very labile, sometimes changing to single breaths

  7. The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time

    USGS Publications Warehouse

    Uncles, R.J.; Stephens, J.A.; Smith, R.E.

    2002-01-01

    It is shown that there is a marked tendency for long, strongly tidal estuaries to have greater suspended particulate matter (SPM) concentrations within their high-turbidity regions than shorter estuaries with comparable tidal ranges at their mouths, or weakly tidal estuaries. Using consistently derived data from 44 estuaries in Europe and the Americas, contours of the logarithm of maximum estuarine SPM concentration are shown to be reasonably smooth when plotted against the logarithm of mean spring tidal range (at the estuary mouth) and the logarithm of estuarine tidal length. Predictions from the plot are compared with published observations made in the Delaware, Scheldt, Rio de la Plata, Gironde, Bay of Fundy, Changjiang (Yangtze), Amazon, Paros Lagoon and the Hawkesbury Estuary and it is shown that, qualitatively, there are no serious discrepancies. Short, weakly tidal estuaries are predicted to have very low 'intrinsic' SPM concentrations. High SPM concentrations in these estuaries would most likely be the result of either locally generated wave resuspension, high freshwater sediment loads due to freshets, or intruding seawater carrying suspended sediments derived from wave activity in the coastal zone. Application of a generic tidal model demonstrates that longer estuaries possess faster tidal currents for a given tidal range at their mouth and, in the presence of a supply of erodable fine sediment, therefore (by implication) produce greater concentrations of SPM that can be accumulated within a turbidity maximum. The same is true if the tidal range is increased for estuaries of a given length. These features are illustrated by comparing surveys of SPM data from two large estuaries possessing greatly different tidal ranges (the microtidal, medium turbidity Potomac and the macrotidal, highly turbid Humber-Ouse) and a third, much smaller but strongly tidal estuary (the low-turbidity Tweed). It is demonstrated that longer estuaries tend to have longer flushing

  8. Carotid body denervation improves autonomic and cardiac function and attenuates disordered breathing in congestive heart failure

    PubMed Central

    Marcus, Noah J; Rio, Rodrigo; Schultz, Evan P; Xia, Xiao-Hong; Schultz, Harold D

    2014-01-01

    In congestive heart failure (CHF), carotid body (CB) chemoreceptor activity is enhanced and is associated with oscillatory (Cheyne–Stokes) breathing patterns, increased sympathetic nerve activity (SNA) and increased arrhythmia incidence. We hypothesized that denervation of the CB (CBD) chemoreceptors would reduce SNA, reduce apnoea and arrhythmia incidence and improve ventricular function in pacing-induced CHF rabbits. Resting breathing, renal SNA (RSNA) and arrhythmia incidence were measured in three groups of animals: (1) sham CHF/sham–CBD (sham–sham); (2) CHF/sham–CBD (CHF–sham); and (3) CHF/CBD (CHF–CBD). Chemoreflex sensitivity was measured as the RSNA and minute ventilatory () responses to hypoxia and hypercapnia. Respiratory pattern was measured by plethysmography and quantified by an apnoea–hypopnoea index, respiratory rate variability index and the coefficient of variation of tidal volume. Sympatho-respiratory coupling (SRC) was assessed using power spectral analysis and the magnitude of the peak coherence function between tidal volume and RSNA frequency spectra. Arrhythmia incidence and low frequency/high frequency ratio of heart rate variability were assessed using ECG and blood pressure waveforms, respectively. RSNA and responses to hypoxia were augmented in CHF–sham and abolished in CHF–CBD animals. Resting RSNA was greater in CHF–sham compared to sham–sham animals (43 ± 5% max vs. 23 ± 2% max, P < 0.05), and this increase was not found in CHF–CBD animals (25 ± 1% max, P < 0.05 vs. CHF–sham). Low frequency/high frequency heart rate variability ratio was similarly increased in CHF and reduced by CBD (P < 0.05). Respiratory rate variability index, coefficient of variation of tidal volume and apnoea–hypopnoea index were increased in CHF–sham animals and reduced in CHF–CBD animals (P < 0.05). SRC (peak coherence) was increased in CHF–sham animals (sham–sham 0.49 ± 0.05; CHF–sham 0.79

  9. Markarian 348: a tidally disturbed seyfert galaxy.

    PubMed

    Simkin, S M; Su, H J; VAN Gorkom, J; Hibbard, J

    1987-03-13

    Combined optical and radio images of galaxies can provide new insights into the sizes, masses, and possible evolution of these objects. Deep optical and neutral hydrogen images of Markarian 348, a type 2 Seyfert galaxy, show that it is a gigantic spiral (perhaps the largest known non-cluster galaxy). Measurements of the neutral hydrogen velocity field and spiral structure, and detection of an optical "tidal plume," all provide evidence that it has been subject to tidal disruption. The measured velocities yield a mass-to-light ratio for this object (within a radius of 130 kiloparsecs from its nucleus) that is similar to the ratio found for the inner regions of most galaxies of similar type. This is one of the few cases where detailed velocity measurements have demonstrated that a galaxy with an active nucleus has been subject to extensive tidal perturbation.

  10. Oceanic tidal signals in magnetic satellite data

    NASA Astrophysics Data System (ADS)

    Wardinski, I.; Lesur, V.

    2015-12-01

    In this study we discuss the observation of oceanic tidal signals in magnetic satellite data. We analyse 10 years of CHAMP satellite data. The detection algorithm is applied on residual signal that remains after the derivation of GRIMM 42 (Lesur et al., 2015). The signals found represent the major tidal constituents, such as the M2 tide. However, other tidal constituents appear to be swallowed by unmodelled external and induced magnetic signal, particularly in equatorial and circumpolar regions. A part of the study also focuses on the temporal variability of the signal detection and its dependence on geomagnetic activity. Possible refinements to the detection algorithm and its applicability to SWARM data are also presented and discussed.

  11. Gravitational circulation in a tidal strait

    USGS Publications Warehouse

    Smith, P.E.; Cheng, R.T.; Burau, J.R.; Simpson, M.R.; ,

    1991-01-01

    Eight months of continuous measurements of tidal current profiles with an acoustic Doppler current profiler (ADCP) were made in Carquinez Strait, California, during 1988 for the purpose of estimating long-term variations in vertical profiles of Eulerian residual currents. Salinity stratification near the ADCP deployment site also was analyzed. The strength of density-driven gravitational circulation and the amount of salinity stratification in the strait varied significantly over the spring-neap tidal cycle. Density currents and stratification were greater during neap tides when vertical mixing from the tide is at a minimum. Landward residual currents along the bottom were observed only during neap tides. Simulations made with a three-dimensional model to supplement the field measurements show a significant, tidally induced lateral variation in residual currents across the strait. The Stokes drift of 1-2 cm/s in the strait is small relative to the speed of gravitational currents.

  12. Tidal Effects in Inspiraling Double White Dwarfs

    NASA Astrophysics Data System (ADS)

    Willems, B.; Kalogera, Vicky; Vecchio, A.; Ivanova, N.; Deloye, C.; Hansen, B.

    2006-12-01

    Despite the overwhelming abundance of double white dwarfs in the LISA gravitational wave frequency band, modeling of their waveforms has remained limited to the point-mass approximation in which gravitational radiation is the only source of systemic orbital angular momentum loss. As a significant fraction of these systems spirals in to periods as short as 5-10 minutes, tidal effects can, however, play an important role in modifying the gravitational wave frequency evolution. The strength of the tidal effects depends strongly on the energy dissipation mechanism damping the tides, which, for white dwarfs, is highly uncertain. In this poster, we present the first results of a systematic study of tidal dissipation in white dwarfs, and the impact of tides on the gravitational wave signal of close double white dwarfs.

  13. DOUBLE TIDAL DISRUPTIONS IN GALACTIC NUCLEI

    SciTech Connect

    Mandel, Ilya; Levin, Yuri E-mail: yuri.levin@monash.edu

    2015-05-20

    A star on a nearly radial trajectory approaching a massive black hole (MBH) gets tidally disrupted if it comes sufficiently close to the MBH. Here we explore what happens to binary stars whose centers of mass approach the MBH on nearly radial orbits. The interaction with the MBH often leads to both stars being disrupted in sequence. We argue that such events could produce light curves that are substantially different from those of the single disruptions, with possible features such as two local maxima. Tidal forces from the MBH can also lead the binary components to collide; these merger products can form highly magnetized stars, whose subsequent tidal disruption may enable prompt jet formation.

  14. Tidal deceleration of the moon's mean motion

    NASA Technical Reports Server (NTRS)

    Cheng, M. K.; Eanes, R. J.; Tapley, B. D.

    1992-01-01

    The secular change in the mean motion of the moon, n, caused by the tidal dissipation in the ocean and solid earth is due primarily to the effect of the diurnal and semidiurnal tides. The long-period ocean tides produce an increase in n, but the effects are only 1 percent of the diurnal and semidiurnal ocean tides. In this investigation, expressions for these effects are obtained by developing the tidal potential in the ecliptic reference system. The computation of the amplitude of equilibrium tide and the phase corrections is also discussed. The averaged tidal deceleration of the moon's mean motion, n, from the most recent satellite ocean tide solutions is -25.25 +/- 0.4 arcseconds/sq century. The value for n inferred from the satellite-determined ocean-tide solution is in good agreement with the value obtained from the analysis of 20 years of lunar laser-ranging observations.

  15. TIDAL TURBULENCE SPECTRA FROM A COMPLIANT MOORING

    SciTech Connect

    Thomson, Jim; Kilcher, Levi; Richmond, Marshall C.; Talbert, Joe; deKlerk, Alex; Polagye, Brian; Guerra, Maricarmen; Cienfuegos, Rodrigo

    2013-06-13

    A compliant mooring to collect high frequency turbulence data at a tidal energy site is evaluated in a series of short demon- stration deployments. The Tidal Turbulence Mooring (TTM) improves upon recent bottom-mounted approaches by suspend- ing Acoustic Doppler Velocimeters (ADVs) at mid-water depths (which are more relevant to tidal turbines). The ADV turbulence data are superior to Acoustic Doppler Current Profiler (ADCP) data, but are subject to motion contamination when suspended on a mooring in strong currents. In this demonstration, passive stabilization is shown to be sufficient for acquiring bulk statistics of the turbulence, without motion correction. With motion cor- rection (post-processing), data quality is further improved; the relative merits of direct and spectral motion correction are dis- cussed.

  16. Meeting Reports for 2013: Recent Advances in Breath Biomarker Research

    EPA Science Inventory

    This article reports the efforts of the breath research community affiliated with the International Association of Breath Research (IABR) in disseminating research results in high profile technical meetings in the United States (US). Specifically, we describe presentations at a ...

  17. ALVEOLAR BREATH SAMPLING AND ANALYSIS IN HUMAN EXPOSURE ASSESSMENT STUDIES

    EPA Science Inventory

    Alveolar breath sampling and analysis can be extremely useful in exposure assessment studies involving volatile organic compounds (VOCs). Over recent years scientists from the EPA's National Exposure Research Laboratory have developed and refined an alveolar breath collection ...

  18. Tidal truncation and barotropic convergence in a channel network tidally driven from opposing entrances

    USGS Publications Warehouse

    Warner, J.C.; Schoellhamer, D.; Schladow, G.

    2003-01-01

    Residual circulation patterns in a channel network that is tidally driven from entrances on opposite sides are controlled by the temporal phasing and spatial asymmetry of the two forcing tides. The Napa/Sonoma Marsh Complex in San Francisco Bay, CA, is such a system. A sill on the west entrance to the system prevents a complete tidal range at spring tides that results in tidal truncation of water levels. Tidal truncation does not occur on the east side but asymmetries develop due to friction and off-channel wetland storage. The east and west asymmetric tides meet in the middle to produce a barotropic convergence zone that controls the transport of water and sediment. During spring tides, tidally averaged water-surface elevations are higher on the truncated west side. This creates tidally averaged fluxes of water and sediment to the east. During neap tides, the water levels are not truncated and the propagation speed of the tides controls residual circulation, creating a tidally averaged flux in the opposite direction. ?? 2003 Elsevier Science B.V. All rights reserved.

  19. Contributions of different tidal interactions to fortnightly variation in tidal duration asymmetry

    NASA Astrophysics Data System (ADS)

    Guo, Wenyun; Song, Dehai; Wang, Xiao Hua; Ding, Pingxing; Ge, Jianzhong

    2016-08-01

    The general framework for identifying tidal duration asymmetry proposed by Song et al. (2011) is extended to express fortnightly variability in duration asymmetry. The extended metrics are verified and studied using observed sea level data at 481 stations worldwide. The results reveal that fortnightly variability is universal and that duration asymmetry can be stronger during neap tide than during spring tide. The fortnightly variability in duration asymmetry is primarily induced by three types of tidal interactions: interactions within the principal tidal constituents, interactions between high-frequency and principal tidal constituents, and interactions between long-period and principal tidal constituents. Among these interactions, the first type is most important at most of the stations and is related to the form number F. The contributions of different interactions can be quantified using their frequencies, amplitudes and phases. Global patterns of the fortnightly variation are illustrated using TOPEX/Poseidon altimetry data. The findings show that remarkable fortnightly variation in the tidal duration asymmetry occurs in most open oceans and is significant around an amphidromic point. The metrics derived in this study can be used to examine any time-varying characteristics in tidal asymmetry (not limited to duration asymmetry) by selecting a suitable frequency threshold.

  20. Tidal evolution of globular clusters. II - The effects of Galactic tidal field and diffusion

    NASA Technical Reports Server (NTRS)

    Oh, K. S.; Lin, D. N. C.

    1992-01-01

    The tidal evolution of globular clusters subject to various degrees of the internal diffusion process is investigated. In cases of negligible diffusion, clusters are found to be tidally truncated to the theoretical tidal radius at perigalacticon. There is no apparent orbital phase dependence of the tidal radius for clusters with eccentric orbits. In clusters with moderately short two-body relaxation time scales, diffusion processes significantly modify the structure of the outer regions in such a way that the limiting radius may be comparable to the tidal radius at apogalacticon. The Galactical tidal torque induces isotropy in the velocity dispersion of the outer regions of the cluster. For relaxed clusters, the velocity dispersion may be isotropic in the core, anisotropic in the envelope and isotropic near the limiting radius. Disk shocking is also very efficient for isotropizing the orbits of stars in the outer cluster regions. Stars with direct orbits are less stable, so that prolonged tidal interaction can lead to apparent retrograde rotation in the outer regions of the cluster.

  1. Unravelling tidal dissipation in gaseous giant planets

    NASA Astrophysics Data System (ADS)

    Guenel, M.; Mathis, S.; Remus, F.

    2014-06-01

    Context. Tidal dissipation in planetary interiors is one of the key physical mechanisms that drive the evolution of star-planet and planet-moon systems. New constraints on this dissipation are now obtained both in the solar and exo-planetary systems. Aims: Tidal dissipation in planets is intrinsically related to their internal structure. Indeed, the dissipation behaves very differently when we compare its properties in solid and fluid planetary layers. Since planetary interiors consist of both types of regions, it is necessary to be able to assess and compare the respective intensity of the reservoir of dissipation in each type of layers. Therefore, in the case of giant planets, the respective contribution of the potential central dense rocky/icy core and of the deep convective fluid envelope must be computed as a function of the mass and the radius of the core. This will allow us to obtain their respective strengths. Methods: Using a method that evaluates the reservoir of dissipation associated to each region, which is a frequency-average of complex tidal Love numbers, we compared the respective contributions of the central core and of the fluid envelope. Results: For Jupiter- and Saturn-like planets, we show that the viscoelastic dissipation in the core could dominate the turbulent friction acting on tidal inertial waves in the envelope. However, the fluid dissipation would not be negligible. This demonstrates that it is necessary to build complete models of tidal dissipation in planetary interiors from their deep interior to their surface without any arbitrary assumptions. Conclusions: We demonstrate how important it is to carefully evaluate the respective strength of each type of dissipation mechanism in planetary interiors and to go beyond the usually adopted ad-hoc models. We confirm the significance of tidal dissipation in the potential dense core of gaseous giant planets.

  2. Tidal evolution of planets around brown dwarfs

    NASA Astrophysics Data System (ADS)

    Bolmont, E.; Raymond, S. N.; Leconte, J.

    2011-11-01

    Context. The tidal evolution of planets orbiting brown dwarfs (BDs) presents an interesting case study because BDs' terrestrial planet forming region is located extremely close-in. In fact, the habitable zones of BDs range from roughly 0.001 to 0.03 AU and for the lowest-mass BDs are located interior to the Roche limit. Aims: In contrast with stars, BDs spin up as they age. Thus, the corotation distance moves inward. This has important implications for the tidal evolution of planets around BDs. Methods: We used a standard equilibrium tidal model to compute the orbital evolution of a large ensemble of planet-BD systems. We tested the effect of numerous parameters such as the initial semi-major axis and eccentricity, the rotation period of the BD, the masses of both the BD and planet, and the tidal dissipation factors. Results: We find that all planets that form at or beyond the corotation distance and with initial eccentricities smaller than ~0.1 are repelled from the BD. Some planets initially interior to corotation can survive if their inward tidal evolution is slower than the BD's spin evolution, but most initially close-in planets fall onto the BD. Conclusions: We find that the most important parameter for the tidal evolution is the initial orbital distance with respect to the corotation distance. Some planets can survive in the habitable zone for Gyr timescales, although in many cases the habitable zone moves inward past the planet's orbit in just tens to hundreds of Myr. Surviving planets can have orbital periods of less than 10 days (as small as 10 h), so they could be observable by transit.

  3. Abnormal Breathing Patterns Predict Extubation Failure in Neurocritically Ill Patients

    PubMed Central

    Punj, Pragya; Nattanmai, Premkumar; George, Pravin

    2017-01-01

    In neurologically injured patients, predictors for extubation success are not well defined. Abnormal breathing patterns may result from the underlying neurological injury. We present three patients with abnormal breathing patterns highlighting failure of successful extubation as a result of these neurologically driven breathing patterns. Recognizing abnormal breathing patterns may be predictive of extubation failure and thus need to be considered as part of extubation readiness. PMID:28348899

  4. Tidal disruption of stars by SMBHs

    NASA Astrophysics Data System (ADS)

    Komossa, S.

    2016-06-01

    The tidal disruption and subsequent accretion of stars by supermassive black holes produces spectacular flares in the X-ray sky. First found with ROSAT, ongoing and upcoming sky surveys will find these events in the 1000s. In X-rays, tidal disruption events (TDEs) provide us with powerful new probes of accretion physics under extreme conditions, of the formation of disk winds, of relativistic effects near the SMBH, and of the presence of supermassive binary black holes. This talk reviews the status of observations, and discusses future prospects. XMM-Newton will continue to play an important role in identifying new events and carry out spectroscopic follow-ups.

  5. Comparison of changes in tidal volume associated with expiratory rib cage compression and expiratory abdominal compression in patients on prolonged mechanical ventilation

    PubMed Central

    Morino, Akira; Shida, Masahiro; Tanaka, Masashi; Sato, Kimihiro; Seko, Toshiaki; Ito, Shunsuke; Ogawa, Shunichi; Takahashi, Naoaki

    2015-01-01

    [Purpose] This study was designed to compare and clarify the relationship between expiratory rib cage compression and expiratory abdominal compression in patients on prolonged mechanical ventilation, with a focus on tidal volume. [Subjects and Methods] The subjects were 18 patients on prolonged mechanical ventilation, who had undergone tracheostomy. Each patient received expiratory rib cage compression and expiratory abdominal compression; the order of implementation was randomized. Subjects were positioned in a 30° lateral recumbent position, and a 2-kgf compression was applied. For expiratory rib cage compression, the rib cage was compressed unilaterally; for expiratory abdominal compression, the area directly above the navel was compressed. Tidal volume values were the actual measured values divided by body weight. [Results] Tidal volume values were as follows: at rest, 7.2 ± 1.7 mL/kg; during expiratory rib cage compression, 8.3 ± 2.1 mL/kg; during expiratory abdominal compression, 9.1 ± 2.2 mL/kg. There was a significant difference between the tidal volume during expiratory abdominal compression and that at rest. The tidal volume in expiratory rib cage compression was strongly correlated with that in expiratory abdominal compression. [Conclusion] These results indicate that expiratory abdominal compression may be an effective alternative to the manual breathing assist procedure. PMID:26311963

  6. The Air We Breathe. Activity Packet.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Environmental Protection, Hartford.

    This packet of materials is intended to provide teachers with an interdisciplinary approach to integrating air quality education into the existing curriculum of Connecticut schools. The unit is designed to complement the student booklet "The Air We Breathe," which is included. A major portion of the document is comprised of teaching…

  7. Crew equipment applications - Firefighter's Breathing System.

    NASA Technical Reports Server (NTRS)

    Smith, W. L.

    1973-01-01

    The Firefighter's Breathing System (FBS) represents a significant step in applying NASA's crew equipment technologists and technologies to civilian sector problems. This paper describes the problem, the utilization of user-design committees as a forum for development of design goals, the design of the FBS, and the field test program to be conducted.

  8. Elastohydrodynamic separation of pleural surfaces during breathing.

    PubMed

    Gouldstone, Andrew; Brown, Richard E; Butler, James P; Loring, Stephen H

    2003-08-14

    To examine effects of lung motion on the separation of pleural surfaces during breathing, we modeled the pleural space in two dimensions as a thin layer of fluid separating a stationary elastic solid and a sliding flat solid surface. The undeformed elastic solid contained a series of bumps, to represent tissue surface features, introducing unevenness in fluid layer thickness. We computed the extent of deformation of the solid as a function of sliding velocity, solid elastic modulus, and bump geometry (wavelength and amplitude). For physiological values of the parameters, significant deformation occurs (i.e. bumps are 'flattened') promoting less variation in fluid thickness and decreased fluid shear stress. In addition, deformation is persistent; bumps of sufficient wavelength, once deformed, require a recovery time longer than a typical breath-to-breath interval to return near their undeformed configuration. These results suggest that in the pleural space during normal breathing, separation of pleural surfaces is promoted by the reciprocating sliding of lung and chest wall.

  9. The Physics of Breath-Hold Diving.

    ERIC Educational Resources Information Center

    Aguilella, Vicente; Aguilella-Arzo, Marcelo

    1996-01-01

    Analyzes physical features of breath-hold diving. Considers the diver's descent and the initial surface dive and presents examples that show the diver's buoyancy equilibrium varying with depth, the driving force supplied by finning, and the effect of friction between the water and the diver. (Author/JRH)

  10. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  11. Quantification of periodic breathing in premature infants

    PubMed Central

    Mohr, Mary A.; Fairchild, Karen D.; Patel, Manisha; Sinkin, Robert A.; Clark, Matthew T.; Moorman, J. Randall; Lake, Douglas E.; Kattwinkel, John; Delos, John B.

    2015-01-01

    Background Periodic breathing (PB), regular cycles of short apneic pauses and breaths, is common in newborn infants. To characterize normal and potentially pathologic PB, we used our automated apnea detection system and developed a novel method for quantifying PB. We identified a preterm infant who died of SIDS and who, on review of her breathing pattern while in the NICU, had exaggerated PB. Methods We analyzed the chest impedance signal for short apneic pauses and developed a wavelet transform method to identify repetitive 10–40 second cycles of apnea/breathing. Clinical validation was performed to distinguish PB from apnea clusters and determine the wavelet coefficient cutoff having optimum diagnostic utility. We applied this method to analyze the chest impedance signals throughout the entire NICU stays of all 70 infants born at 32 weeks’ gestation admitted over a two-and-a-half year period. This group includes an infant who died of SIDS and her twin. Results For infants of 32 weeks’ gestation, the fraction of time spent in PB peaks 7–14 days after birth at 6.5%. During that time the infant that died of SIDS spent 40% of each day in PB and her twin spent 15% of each day in PB. Conclusions This wavelet transform method allows quantification of normal and potentially pathologic PB in NICU patients. PMID:26012526

  12. Fast and accurate exhaled breath ammonia measurement.

    PubMed

    Solga, Steven F; Mudalel, Matthew L; Spacek, Lisa A; Risby, Terence H

    2014-06-11

    This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Together with the quick response time of the monitor, this system is capable of accurately measuring exhaled breath ammonia representative of deep lung systemic levels. Because the system is easy to use and produces real time results, it has enabled experiments to identify factors that influence measurements. For example, mouth rinse and oral pH reproducibly and significantly affect results and therefore must be controlled. Temperature and mode of breathing are other examples. As our understanding of these factors evolves, error is reduced, and clinical studies become more meaningful. This system is very reliable and individual measurements are inexpensive. The sampler is relatively inexpensive and quite portable, but the monitor is neither. This limits options for some clinical studies and provides rational for future innovations.

  13. Contribution to the theory of tidal oscillations of an elastic earth. External tidal potential

    NASA Technical Reports Server (NTRS)

    Musen, P.

    1974-01-01

    The differential equations of the tidal oscillations of the earth were established under the assumption that the interior of the earth is laterally inhomogeneous. The theory was developed using vectorial and dyadic symbolism to shorten the exposition and to reduce the differential equations to a symmetric form convenient for programming and for numerical integration. The formation of tidal buldges on the surfaces of discontinuity and the changes in the internal density produce small periodic variations in the exterior geopotential which are reflected in the motion of artificial satellites. The analoques of Love elastic parameters in the expansion of exterior tidal potential reflect the asymmetric and inhomogeneous structure of the interior of the earth.

  14. General Investigation of Tidal Inlets: Stability of Selected United States Tidal Inlets

    DTIC Science & Technology

    1991-09-01

    years, the US Army Corps of Engineers, through its Civil Works program, has sponsored research into the behavior and character- istics of tidal inlets...73 5 50 Siletz, OR 7-39 to 2-76 4 51 Netarts, OR 7-53 to 7-73 4 Report Organizacion 8. Previous research on tidal inlet stability is summarized in Part...I. 1928. "Inlets on Sandy Coasts," Proceedings of the American Society of Civil Engineers, Vol LIV, pp 505-553. Bruun, P. 1967. Tidal Inlets and

  15. Tidal capture of stars by a massive black hole

    NASA Technical Reports Server (NTRS)

    Novikov, I. D.; Pethick, C. J.; Polnarev, A. G.

    1992-01-01

    The processes leading to tidal capture of stars by a massive black hole and the consequences of these processes in a dense stellar cluster are discussed in detail. When the amplitude of a tide and the subsequent oscillations are sufficiently large, the energy deposited in a star after periastron passage and formation of a bound orbit cannot be estimated directly using the linear theory of oscillations of a spherical star, but rather numerical estimates must be used. The evolution of a star after tidal capture is discussed. The maximum ratio R of the cross-section for tidal capture to that for tidal disruption is about 3 for real systems. For the case of a stellar system with an empty capture loss cone, even in the case when the impact parameter for tidal capture only slightly exceeds the impact parameter for direct tidal disruption, tidal capture would be much more important than tidal disruption.

  16. Tidally-controlled volcanism at Loki Patera, Io?

    NASA Astrophysics Data System (ADS)

    Rhoden, A. R.; Kite, E. S.

    2011-10-01

    We compare the time-varying thermal emission from Io's Loki Patera to calculations of tidal stress caused by Io's orbital eccentricity. Our preliminary analysis supports the hypothesis that tidal stresses influence the timing of Loki emission.

  17. 21 CFR 868.5260 - Breathing circuit bacterial filter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5260 Breathing circuit bacterial filter. (a) Identification. A breathing circuit bacterial filter is a device that is intended to remove... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing circuit bacterial filter....

  18. Control of breathing in the echidna (Tachyglossus aculeatus) during hibernation.

    PubMed

    Nicol, Stewart; Andersen, Niels A

    2003-12-01

    Resting non-hibernating echidnas are characterised by low metabolic rates, but also have a very low respiratory frequency and a variable respiratory minute volume, often resulting in low levels of arterial O(2) and high CO(2). As the echidna lies at one physiological extreme among the hibernators, in terms of its large size and low metabolism and ventilatory requirement when not hibernating, a study of control of breathing during hibernation in echidnas should provide a useful test of the generality of various models. We used non-invasive techniques to study breathing patterns and the control of ventilation in 6 echidnas. Hibernating echidnas (T(b) range 7-10 degrees C) showed episodic breathing with bursts of breaths (average 36+/-16 breaths in 24+/-5 min) followed by a period of apnea (76+/-17 min) then a series (8+/-4) of slow breaths at 14+/-1 min intervals leading up to the next burst. Increasing CO(2) levels in the inspired air increased the number of breaths in a burst, eventually leading to continuous breathing. Inter burst breaths were controlled by O(2): hypoxia increased inter burst breaths, and decreased burst length, while hyperoxia abolished inter burst breaths and increased the apneic period. Overall, while CO(2) was a strong respiratory stimulus in hibernating echidnas, O(2) had little effect on total ventilation, but did have a strong effect on the breathing pattern.

  19. 46 CFR 197.340 - Breathing gas supply.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... diver. (d) A primary breathing gas supply for SCUBA diving must be sufficient to support the diver for...) A diver-carried reserve breathing gas supply for SCUBA diving must be sufficient to allow the diver... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A...

  20. 46 CFR 197.340 - Breathing gas supply.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... diver. (d) A primary breathing gas supply for SCUBA diving must be sufficient to support the diver for...) A diver-carried reserve breathing gas supply for SCUBA diving must be sufficient to allow the diver... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A...

  1. 46 CFR 197.340 - Breathing gas supply.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... diver. (d) A primary breathing gas supply for SCUBA diving must be sufficient to support the diver for...) A diver-carried reserve breathing gas supply for SCUBA diving must be sufficient to allow the diver... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A...

  2. 46 CFR 197.340 - Breathing gas supply.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... diver. (d) A primary breathing gas supply for SCUBA diving must be sufficient to support the diver for...) A diver-carried reserve breathing gas supply for SCUBA diving must be sufficient to allow the diver... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A...

  3. 46 CFR 197.340 - Breathing gas supply.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... diver. (d) A primary breathing gas supply for SCUBA diving must be sufficient to support the diver for...) A diver-carried reserve breathing gas supply for SCUBA diving must be sufficient to allow the diver... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A...

  4. 46 CFR 197.450 - Breathing gas tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Breathing gas tests. 197.450 Section 197.450 Shipping....450 Breathing gas tests. The diving supervisor shall insure that— (a) The output of each air... or modification. (b) Purchased supplies of breathing mixtures supplied to a diver are checked...

  5. 14 CFR 29.1439 - Protective breathing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Protective breathing equipment. 29.1439... Protective breathing equipment. (a) If one or more cargo or baggage compartments are to be accessible in flight, protective breathing equipment must be available for an appropriate crewmember. (b)...

  6. 21 CFR 868.2375 - Breathing frequency monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breathing frequency monitor. 868.2375 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2375 Breathing frequency monitor. (a) Identification. A breathing (ventilatory) frequency monitor is a device intended to measure or monitor a...

  7. 42 CFR 84.122 - Breathing resistance test; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing resistance test; minimum requirements. 84... Masks § 84.122 Breathing resistance test; minimum requirements. (a) Resistance to airflow will be measured in the facepiece or mouthpiece of a gas mask mounted on a breathing machine both before and...

  8. 46 CFR 108.703 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Self-contained breathing apparatus. 108.703 Section 108... DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.703 Self-contained breathing apparatus. (a) Each unit must be equipped with a self-contained breathing apparatus described in § 108.497(a) to use...

  9. 46 CFR 108.635 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Self-contained breathing apparatus. 108.635 Section 108... DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.635 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked: “SELF...

  10. 46 CFR 108.703 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Self-contained breathing apparatus. 108.703 Section 108... DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.703 Self-contained breathing apparatus. (a) Each unit must be equipped with a self-contained breathing apparatus described in § 108.497(a) to use...

  11. 21 CFR 868.5240 - Anesthesia breathing circuit.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Anesthesia breathing circuit. 868.5240 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a) Identification. An anesthesia breathing circuit is a device that is intended to administer medical gases to...

  12. 21 CFR 868.5330 - Breathing gas mixer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breathing gas mixer. 868.5330 Section 868.5330...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5330 Breathing gas mixer. (a) Identification. A breathing gas mixer is a device intended for use in conjunction with a respiratory...

  13. 42 CFR 84.90 - Breathing resistance test; inhalation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing resistance test; inhalation. 84.90...-Contained Breathing Apparatus § 84.90 Breathing resistance test; inhalation. (a) Resistance to inhalation airflow will be measured in the facepiece or mouthpiece while the apparatus is operated by a...

  14. Oral Breathing Challenge in Participants with Vocal Attrition

    ERIC Educational Resources Information Center

    Sivasankar, Mahalakshmi; Fisher, Kimberly V.

    2003-01-01

    Vocal folds undergo osmotic challenge by mouth breathing during singing, exercising, and loud speaking. Just 15 min of obligatory oral breathing, to dry the vocal folds, increases phonation threshold pressure (P[subscript th]) and expiratory vocal effort in healthy speakers (M. Sivasankar & K. Fisher, 2002). We questioned whether oral breathing is…

  15. 21 CFR 868.5260 - Breathing circuit bacterial filter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breathing circuit bacterial filter. 868.5260... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5260 Breathing circuit bacterial filter. (a) Identification. A breathing circuit bacterial filter is a device that is intended to...

  16. 46 CFR 197.312 - Breathing supply hoses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Breathing supply hoses. 197.312 Section 197.312 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.312 Breathing supply hoses. (a) Each breathing supply hose must— (1) Have a maximum working pressure that is equal to or exceeds— (i) The...

  17. 42 CFR 84.122 - Breathing resistance test; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing resistance test; minimum requirements. 84... Masks § 84.122 Breathing resistance test; minimum requirements. (a) Resistance to airflow will be measured in the facepiece or mouthpiece of a gas mask mounted on a breathing machine both before and...

  18. 46 CFR 197.312 - Breathing supply hoses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Breathing supply hoses. 197.312 Section 197.312 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.312 Breathing supply hoses. (a) Each breathing supply hose must— (1) Have a maximum working pressure that is equal to or exceeds— (i) The...

  19. 21 CFR 868.5240 - Anesthesia breathing circuit.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Anesthesia breathing circuit. 868.5240 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a) Identification. An anesthesia breathing circuit is a device that is intended to administer medical gases to...

  20. 46 CFR 108.635 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Self-contained breathing apparatus. 108.635 Section 108... DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.635 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked: “SELF...

  1. 46 CFR 169.736 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Self-contained breathing apparatus. 169.736 Section 169... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.736 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked...

  2. 21 CFR 868.5330 - Breathing gas mixer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Breathing gas mixer. 868.5330 Section 868.5330...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5330 Breathing gas mixer. (a) Identification. A breathing gas mixer is a device intended for use in conjunction with a respiratory...

  3. 42 CFR 84.122 - Breathing resistance test; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing resistance test; minimum requirements. 84... Masks § 84.122 Breathing resistance test; minimum requirements. (a) Resistance to airflow will be measured in the facepiece or mouthpiece of a gas mask mounted on a breathing machine both before and...

  4. 21 CFR 868.5330 - Breathing gas mixer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Breathing gas mixer. 868.5330 Section 868.5330...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5330 Breathing gas mixer. (a) Identification. A breathing gas mixer is a device intended for use in conjunction with a respiratory...

  5. 21 CFR 868.2375 - Breathing frequency monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Breathing frequency monitor. 868.2375 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2375 Breathing frequency monitor. (a) Identification. A breathing (ventilatory) frequency monitor is a device intended to measure or monitor a...

  6. 46 CFR 197.312 - Breathing supply hoses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Breathing supply hoses. 197.312 Section 197.312 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.312 Breathing supply hoses. (a) Each breathing supply hose must— (1) Have a maximum working pressure that is equal to or exceeds— (i) The...

  7. 46 CFR 197.312 - Breathing supply hoses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Breathing supply hoses. 197.312 Section 197.312 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.312 Breathing supply hoses. (a) Each breathing supply hose must— (1) Have a maximum working pressure that is equal to or exceeds— (i) The...

  8. 21 CFR 868.5260 - Breathing circuit bacterial filter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Breathing circuit bacterial filter. 868.5260... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5260 Breathing circuit bacterial filter. (a) Identification. A breathing circuit bacterial filter is a device that is intended to...

  9. 46 CFR 197.450 - Breathing gas tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Breathing gas tests. 197.450 Section 197.450 Shipping....450 Breathing gas tests. The diving supervisor shall insure that— (a) The output of each air... or modification. (b) Purchased supplies of breathing mixtures supplied to a diver are checked...

  10. 21 CFR 868.2375 - Breathing frequency monitor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breathing frequency monitor. 868.2375 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2375 Breathing frequency monitor. (a) Identification. A breathing (ventilatory) frequency monitor is a device intended to measure or monitor a...

  11. 14 CFR 29.1439 - Protective breathing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Protective breathing equipment. 29.1439... Protective breathing equipment. (a) If one or more cargo or baggage compartments are to be accessible in flight, protective breathing equipment must be available for an appropriate crewmember. (b)...

  12. 46 CFR 197.450 - Breathing gas tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Breathing gas tests. 197.450 Section 197.450 Shipping....450 Breathing gas tests. The diving supervisor shall insure that— (a) The output of each air... or modification. (b) Purchased supplies of breathing mixtures supplied to a diver are checked...

  13. 21 CFR 868.5260 - Breathing circuit bacterial filter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breathing circuit bacterial filter. 868.5260... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5260 Breathing circuit bacterial filter. (a) Identification. A breathing circuit bacterial filter is a device that is intended to...

  14. 21 CFR 868.2375 - Breathing frequency monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Breathing frequency monitor. 868.2375 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2375 Breathing frequency monitor. (a) Identification. A breathing (ventilatory) frequency monitor is a device intended to measure or monitor a...

  15. 46 CFR 197.450 - Breathing gas tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Breathing gas tests. 197.450 Section 197.450 Shipping....450 Breathing gas tests. The diving supervisor shall insure that— (a) The output of each air... or modification. (b) Purchased supplies of breathing mixtures supplied to a diver are checked...

  16. 21 CFR 868.5260 - Breathing circuit bacterial filter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Breathing circuit bacterial filter. 868.5260... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5260 Breathing circuit bacterial filter. (a) Identification. A breathing circuit bacterial filter is a device that is intended to...

  17. 46 CFR 169.736 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Self-contained breathing apparatus. 169.736 Section 169... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.736 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked...

  18. 21 CFR 868.2375 - Breathing frequency monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing frequency monitor. 868.2375 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2375 Breathing frequency monitor. (a) Identification. A breathing (ventilatory) frequency monitor is a device intended to measure or monitor a...

  19. 46 CFR 108.635 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Self-contained breathing apparatus. 108.635 Section 108... DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.635 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked: “SELF...

  20. 46 CFR 169.736 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Self-contained breathing apparatus. 169.736 Section 169... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.736 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked...

  1. 21 CFR 868.5240 - Anesthesia breathing circuit.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Anesthesia breathing circuit. 868.5240 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a) Identification. An anesthesia breathing circuit is a device that is intended to administer medical gases to...

  2. 21 CFR 868.5330 - Breathing gas mixer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breathing gas mixer. 868.5330 Section 868.5330...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5330 Breathing gas mixer. (a) Identification. A breathing gas mixer is a device intended for use in conjunction with a respiratory...

  3. 21 CFR 868.5330 - Breathing gas mixer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing gas mixer. 868.5330 Section 868.5330...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5330 Breathing gas mixer. (a) Identification. A breathing gas mixer is a device intended for use in conjunction with a respiratory...

  4. 42 CFR 84.90 - Breathing resistance test; inhalation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing resistance test; inhalation. 84.90...-Contained Breathing Apparatus § 84.90 Breathing resistance test; inhalation. (a) Resistance to inhalation airflow will be measured in the facepiece or mouthpiece while the apparatus is operated by a...

  5. 42 CFR 84.90 - Breathing resistance test; inhalation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing resistance test; inhalation. 84.90...-Contained Breathing Apparatus § 84.90 Breathing resistance test; inhalation. (a) Resistance to inhalation airflow will be measured in the facepiece or mouthpiece while the apparatus is operated by a...

  6. 46 CFR 197.450 - Breathing gas tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Breathing gas tests. 197.450 Section 197.450 Shipping....450 Breathing gas tests. The diving supervisor shall insure that— (a) The output of each air... or modification. (b) Purchased supplies of breathing mixtures supplied to a diver are checked...

  7. 46 CFR 108.703 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Self-contained breathing apparatus. 108.703 Section 108... DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.703 Self-contained breathing apparatus. (a) Each unit must be equipped with a self-contained breathing apparatus described in § 108.497(a) to use...

  8. 14 CFR 29.1439 - Protective breathing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Protective breathing equipment. 29.1439... Protective breathing equipment. (a) If one or more cargo or baggage compartments are to be accessible in flight, protective breathing equipment must be available for an appropriate crewmember. (b)...

  9. 46 CFR 197.312 - Breathing supply hoses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Breathing supply hoses. 197.312 Section 197.312 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.312 Breathing supply hoses. (a) Each breathing supply hose must— (1) Have a maximum working pressure that is equal to or exceeds— (i) The...

  10. Breathing Exercises for Inpatients with Sickle Cell Disease

    PubMed Central

    Matthie, Nadine; Brewer, Cheryl A.; Moura, Vera L.; Jenerette, Coretta M.

    2017-01-01

    Sickle cell disease (SCD) is a painful condition wherein breathing often is compromised. This pilot study supports the premise that individuals with SCD are willing to learn breathing exercises. Medical-surgical nurses should encourage breathing exercises for managing pain and preventing complications. PMID:26306354

  11. 46 CFR 108.703 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.703 Self-contained breathing apparatus. (a) Each unit must be equipped with a self-contained breathing apparatus described in § 108.497(a) to use as... 46 Shipping 4 2011-10-01 2011-10-01 false Self-contained breathing apparatus. 108.703 Section...

  12. 46 CFR 108.703 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.703 Self-contained breathing apparatus. (a) Each unit must be equipped with a self-contained breathing apparatus described in § 108.497(a) to use as... 46 Shipping 4 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 108.703 Section...

  13. 46 CFR 108.635 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.635 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked: “SELF CONTAINED... 46 Shipping 4 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 108.635 Section...

  14. 46 CFR 108.635 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.635 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked: “SELF CONTAINED... 46 Shipping 4 2011-10-01 2011-10-01 false Self-contained breathing apparatus. 108.635 Section...

  15. 46 CFR 169.736 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 169.736 Section 169... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.736 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked...

  16. 46 CFR 169.736 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Self-contained breathing apparatus. 169.736 Section 169... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.736 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked...

  17. 42 CFR 84.90 - Breathing resistance test; inhalation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing resistance test; inhalation. 84.90...-Contained Breathing Apparatus § 84.90 Breathing resistance test; inhalation. (a) Resistance to inhalation... machine as described in § 84.88. (b) The inhalation resistance of open-circuit apparatus shall not...

  18. 42 CFR 84.90 - Breathing resistance test; inhalation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing resistance test; inhalation. 84.90...-Contained Breathing Apparatus § 84.90 Breathing resistance test; inhalation. (a) Resistance to inhalation... machine as described in § 84.88. (b) The inhalation resistance of open-circuit apparatus shall not...

  19. 42 CFR 84.91 - Breathing resistance test; exhalation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing resistance test; exhalation. 84.91...-Contained Breathing Apparatus § 84.91 Breathing resistance test; exhalation. (a) Resistance to exhalation... continuous rate of 85 liters per minute. (b) The exhalation resistance of demand apparatus shall not...

  20. 42 CFR 84.91 - Breathing resistance test; exhalation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing resistance test; exhalation. 84.91...-Contained Breathing Apparatus § 84.91 Breathing resistance test; exhalation. (a) Resistance to exhalation... continuous rate of 85 liters per minute. (b) The exhalation resistance of demand apparatus shall not...

  1. Hands-Off Approaches to Teaching Breath Support.

    ERIC Educational Resources Information Center

    Stufft, William David

    1998-01-01

    Addresses the importance of using a hands-off approach in today's world when teaching music students breath support techniques since any kind of touching might be seen as improper. Provides three different approaches in which students learn intercostal breathing methods. Considers the role of good posture in breath control. (CMK)

  2. 21 CFR 868.5240 - Anesthesia breathing circuit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anesthesia breathing circuit. 868.5240 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a) Identification. An anesthesia breathing circuit is a device that is intended to administer medical gases to...

  3. 21 CFR 868.5240 - Anesthesia breathing circuit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Anesthesia breathing circuit. 868.5240 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a) Identification. An anesthesia breathing circuit is a device that is intended to administer medical gases to...

  4. 42 CFR 84.115 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing tubes; minimum requirements. 84.115 Section 84.115 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL... § 84.115 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with...

  5. 42 CFR 84.152 - Breathing tube test; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing tube test; minimum requirements. 84.152... Respirators § 84.152 Breathing tube test; minimum requirements. (a)(1) Type A and Type B supplied-air respirators shall employ one or two flexible breathing tubes of the nonkinking type which extend from...

  6. 42 CFR 84.132 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing tubes; minimum requirements. 84.132 Section 84.132 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL... Respirators § 84.132 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction...

  7. 42 CFR 84.195 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing tubes; minimum requirements. 84.195 Section 84.195 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL... Cartridge Respirators § 84.195 Breathing tubes; minimum requirements. Flexible breathing tubes used...

  8. 42 CFR 84.195 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing tubes; minimum requirements. 84.195 Section 84.195 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL... Cartridge Respirators § 84.195 Breathing tubes; minimum requirements. Flexible breathing tubes used...

  9. 42 CFR 84.115 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing tubes; minimum requirements. 84.115 Section 84.115 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL... § 84.115 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with...

  10. 21 CFR 868.5280 - Breathing tube support.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breathing tube support. 868.5280 Section 868.5280...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5280 Breathing tube support. (a) Identification. A breathing tube support is a device that is intended to support and anchor a patient's...

  11. 42 CFR 84.172 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing tubes; minimum requirements. 84.172... Air-Purifying Particulate Respirators § 84.172 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with respirators shall be designed and constructed to prevent:...

  12. 42 CFR 84.172 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing tubes; minimum requirements. 84.172... Air-Purifying Particulate Respirators § 84.172 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with respirators shall be designed and constructed to prevent:...

  13. 21 CFR 868.5280 - Breathing tube support.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breathing tube support. 868.5280 Section 868.5280...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5280 Breathing tube support. (a) Identification. A breathing tube support is a device that is intended to support and anchor a patient's...

  14. 42 CFR 84.132 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing tubes; minimum requirements. 84.132 Section 84.132 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL... Respirators § 84.132 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction...

  15. 42 CFR 84.1132 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing tubes; minimum requirements. 84.1132 Section 84.1132 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL... Gas Masks § 84.1132 Breathing tubes; minimum requirements. (a) Flexible breathing tubes used...

  16. 42 CFR 84.152 - Breathing tube test; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing tube test; minimum requirements. 84.152... Respirators § 84.152 Breathing tube test; minimum requirements. (a)(1) Type A and Type B supplied-air respirators shall employ one or two flexible breathing tubes of the nonkinking type which extend from...

  17. 42 CFR 84.1132 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing tubes; minimum requirements. 84.1132 Section 84.1132 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL... Gas Masks § 84.1132 Breathing tubes; minimum requirements. (a) Flexible breathing tubes used...

  18. 42 CFR 84.172 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing tubes; minimum requirements. 84.172... Air-Purifying Particulate Respirators § 84.172 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with respirators shall be designed and constructed to prevent:...

  19. 42 CFR 84.1132 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing tubes; minimum requirements. 84.1132 Section 84.1132 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL... Gas Masks § 84.1132 Breathing tubes; minimum requirements. (a) Flexible breathing tubes used...

  20. 21 CFR 868.5280 - Breathing tube support.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing tube support. 868.5280 Section 868.5280...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5280 Breathing tube support. (a) Identification. A breathing tube support is a device that is intended to support and anchor a patient's...