Science.gov

Sample records for 2-mum doppler dial

  1. Correction of Doppler-broadened Rayleigh backscattering effects in H2O dial measurements

    NASA Technical Reports Server (NTRS)

    Ansmann, A.; Bosenberg, J.

    1986-01-01

    A general method of solutions for treating effects of Doppler-broadened Rayleigh backscattering in H2O Differential Absorption Lidar (DIAL) measurements are described and discussed. Errors in vertical DIAL measuremtns caused by this laser line broadening effect can be very large and, therfore, this effect has to be accounted for accurately. To analyze and correct effects of Doppler-broadened Rayleigh backscattering in DIAL experiments, a generalized DIAL approximation was derived starting from a lidar equation, which includes Doppler broadening. To evaluate the accuracy of H2O DIAL measurements, computer simulations were performed. It was concluded that correction of Doppler broadened Rayleigh backscattering is possible with good accuracy in most cases of tropospheric H2O DIAL measurements, but great care has to be taken when layers with steep gradients of Mie backscattering like clouds or inversion layers are present.

  2. Influence of Rayleigh-Doppler broadening on the selection of H2O dial system parameters

    NASA Technical Reports Server (NTRS)

    Ismail, S.; Browell, E. V.

    1986-01-01

    Computer simulations have enabled the performance of a H2O Differential Absorption Lidar (DIAL) system to be studied by spectrally analyzing the forward propagating and backscattered laser energy. The simulations were done for a high altitude (21 km) DIAL system operating in a nadir-viewing mode. The influence of Rayleigh Doppler broadening on DIAL measurement accuracies were evaluated and show that the Rayleigh broadening influence, which can be corrected to first order in regions free of large aerosol gradients, reduces the sensitivity of DIAL H2O measurement errors in the upper tropospheric region. The ability to correct the Rayleigh broadening and the selection of H2O DIAL parameters when all the systematic effects are combined, were discussed.

  3. Combined 2-micron Dial and Doppler Lidar: Application to the Atmosphere of Earth or Mars

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Koch, Grady J.; Ismail, Syed; Kavaya, Michael; Yu, Jirong; Wood, Sidney A.; Emmitt, G. David

    2006-01-01

    A concept is explored for combining the Doppler and DIAL techniques into a single, multifunctional instrument. Wind, CO2 concentration, and aerosol density can all be measured. Technology to build this instrument is described, including the demonstration of a prototype lidar. Applications are described for use in the Earth science. The atmosphere of Mars can also be studied, and results from a recently-developed simulation model of performance in the Martian atmosphere are presented.

  4. Direct Detection 1.6?m DIAL / Doppler Lidar for Measurements of CO2 Concentration and Wind Profiles (Invited)

    NASA Astrophysics Data System (ADS)

    Shibata, Y.; Nagasawa, C.; Abo, M.

    2013-12-01

    Knowledge of present carbon sources and sinks including their spatial distribution and their variation in time is one of the essential information for predicting future CO2 atmospheric concentration levels. Moreover, wind information is an important parameter for transport simulations and inverse estimation of surface CO2 flux. The differential absorption lidar (DIAL) and the Doppler wind lidar with the range resolution is expected to measure atmospheric CO2 profiles and wind profiles in the atmospheric boundary layer and lower troposphere from a ground platform. We have succeeded to develop a scanning 1.6 μm DIAL and incoherent Doppler lidar system for simultaneously measuring CO2 concentration and wind speed profiles. Our 1.6 μm DIAL system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd: YAG laser with high repetition rate (500 Hz) and the receiving optics that included the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode, a fiber Bragg grating (FBG) filter to detect a Doppler shift, and a 25 cm telescope [1] [2]. We had developed an optical parametric oscillator (OPO) system for 1.6 μm CO2 DIAL[3]. To achieve continuous tuning of the resonant OPO output without mode hopping, it is necessary to vary the OPO cavity length synchronously with the seed-frequency. On the other hand, the OPG does not require a cavity and instead rely on sufficient conversion efficiency to be obtained with a single pass through the crystal. The single-frequency oscillation of the OPG was achieved by injection seeding. The CO2-DIAL was operated with the range-height indicator (RHI) mode, and the 2-D measurement provided inhomogeneity in the boundary layer. Vertical CO2 concentration profiles and wind profiles were also measured simultaneously. The elevation angle was fixed at 52 deg and CO2 concentration profiles were obtained up to 1 km altitude with 200 m height resolution. Vertical

  5. IR DIAL performance modeling

    SciTech Connect

    Sharlemann, E.T.

    1994-07-01

    We are developing a DIAL performance model for CALIOPE at LLNL. The intent of the model is to provide quick and interactive parameter sensitivity calculations with immediate graphical output. A brief overview of the features of the performance model is given, along with an example of performance calculations for a non-CALIOPE application.

  6. Preliminary DIAL model

    SciTech Connect

    Gentry, S.; Taylor, J.; Stephenson, D.

    1994-06-01

    A unique end-to-end LIDAR sensor model has been developed supporting the concept development stage of the CALIOPE UV DIAL and UV laser-induced-fluorescence (LIF) efforts. The model focuses on preserving the temporal and spectral nature of signals as they pass through the atmosphere, are collected by the optics, detected by the sensor, and processed by the sensor electronics and algorithms. This is done by developing accurate component sub-models with realistic inputs and outputs, as well as internal noise sources and operating parameters. These sub-models are then configured using data-flow diagrams to operate together to reflect the performance of the entire DIAL system. This modeling philosophy allows the developer to have a realistic indication of the nature of signals throughout the system and to design components and processing in a realistic environment. Current component models include atmospheric absorption and scattering losses, plume absorption and scattering losses, background, telescope and optical filter models, PMT (photomultiplier tube) with realistic noise sources, amplifier operation and noise, A/D converter operation, noise and distortion, pulse averaging, and DIAL computation. Preliminary results of the model will be presented indicating the expected model operation depicting the October field test at the NTS spill test facility. Indications will be given concerning near-term upgrades to the model.

  7. Characterization of 2-mum DNA of Saccharomyces cerevisiae by restriction fragment analysis and integration in an Escherichia coli plasmid.

    PubMed Central

    Hollenberg, C P; Degelmann, A; Kustermann-Kuhn, B; Royer, H D

    1976-01-01

    Electrophoretic analysis of EcoRI and HindIII restriction fragments of 2-mum supercoiled DNA of Saccharomyces cerevisiae indicated that this class of DNA is heterogeneous and probably consists of two types of molecules. Integration of the 2-mum yeast DNA in E. coli plasmid pCR1 directly showed that existence of two types of molecules as each of these could be individually inserted into separate bacterial plasmids. The difference between the two types of 2-mum circles is due to an inversion of about 1.6 X 10(6) daltons. The inversion is flanked by a reversed duplicated sequence of 0.45 X 10(6) daltons. Possible implications of this structure are dicussed. Images PMID:778854

  8. Radium dial workers

    SciTech Connect

    Rowland, R.E.; Lucas, H.F. Jr.

    1982-01-01

    The population of radium dial workers who were exposed to radium 30 to 50 years ago are currently being followed by the Center for Human Radiobiology at the Argonne National Laboratory. It is not clear that radium has induced additional malignancies in this population, other than the well-known bone sarcomas and head carcinomas, but elevated incidence rates for multiple myeloma and cancers of the colon, rectum, stomach, and breast suggest that radium might be involved. Continued follow-up of this population may resolve these questions. Finally, the question of the effect of fetal irradiation on the offspring of these women remains to be resolved. No evidence exists to suggest that any effects have occurred, but there is no question that a chronic irradiation of the developing fetus did take place. No formal follow-up of these children has yet been initiated.

  9. Dial Access Libraries; Their Use and Utility

    ERIC Educational Resources Information Center

    Pearson, Karl M.; Bloch, Alice D.

    1974-01-01

    Medical dial access libraries (DALs) are an innovative information service for health professionals. This report is an evaluation of the general value, effectiveness, and efficiency of the dial access services. (Author/PG)

  10. Assesment of dial data collection and analysis techniques

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Woods, P. T.

    1986-01-01

    The key issues in all areas of Differential Absorption Lidar (DIAL) data collection and analysis techniques were examined. This included consideration of the practical and theoretical limitations of DIAL and the range of possible DIAL measurements.

  11. Data and Information Access Link (DIAL)

    NASA Astrophysics Data System (ADS)

    Suresh, R.; Di, L.; McDonald, K.

    2001-05-01

    The Data and Information Access Link (DIAL) is a web based package of software tools for geospatial data storage, visualization and distribution. The DIAL software provides a web based easy to use software solution to small data producers to organize and distribute remote sensing data and metadata. DIAL system can handle heterogeneous types of remote sensing and field campaign data for Earth science applications. DIAL works with image data, grid, swath, and tabular, multidimensional array and point data. The DIAL system supports NASA's Earth Observing System and Data and Information System (EOSDIS) data standards HDF- EOS, Hierarchical Data Format (HDF), and network Common Data Format (netCDF). Data format translators are also available between HDF-EOS and Arc-Info, Geo-tiff, and shape formats. DIAL software works with data from the EOS Terra, LANDSAT 7, TRMM, SeaWiFS missions and many other types of legacy data from NASA. DIAL software is freely available for users. DIAL features: Catalog services: Spatial, temporal, and parameter-based search; Catalog search at inventory and directory levels; Automatic creation of metadata catalog; Supports ODBC/JDBC compatible databases for storing metadata/catalog; User-friendly Java search interface with query preview. Data services: On-line access to data and metadata; Single- and multi-granule subsetting and sub sampling based on array coordinates or record numbers; Single- and multi-granule sub setting and sub sampling based on geographic/map coordinates and physical parameters; Browse and dynamic/interactive visualization of data; Animation of time series or multi dimensional data; Interactive color composites of multi-spectral data; Overlay of coastal and political boundaries; On-line downloading of data in multiple formats; X-Y plotting for non-image data. DIAL can work as a standalone application or in a distributed environment. DIAL is integrated with NASA's Earth Science Data Gateway (EDG) providing support for the

  12. A pulsed CO2 Doppler lidar for boundary layer monitoring

    NASA Technical Reports Server (NTRS)

    Pearson, Guy N.

    1992-01-01

    A monostatic, master oscillator power amplifier (MOPA), CO2 pulsed Doppler lidar was constructed and tested. The system is compact (120 x 60 cm), operates at high pulse repetition rates (greater than 1 kHz) and is intended for simultaneous Doppler/Differential Absorption Lidar (DIAL) monitoring of the planetary boundary layer. Details of the system design, hard target calibrations, and aerosol returns are presented.

  13. Mid-wave infrared DIAL noise phenomenology

    SciTech Connect

    Magnotta, F., Morris, J.R., Neuman, W.A., Scharlemann, E.T.

    1997-07-23

    LLNL has utilized optical parametric oscillator technology to develop and field a rapidly-tunable mid-wave infrared (MWIR) DIAL system. The system can be tuned at up to 1 KHz over the 3.3-3.8 micron spectral region, where hydrogen-bond stretching modes provide spectroscopic signatures for a wide variety of chemicals. We have fielded the DIAL system on the LLNL site with targets at horizontal ranges of up to 2 km. We have collected data on noise levels and correlations and their dependences on range, turbulence, and receiver aperture size. In this paper we describe some of the implications of this data for MWIR DIAL phenomenology. In particular, the interplay of turbulence and speckle to produce the observed noise fluctuations at short ranges (<500 m) is presented.

  14. Advanced Atmospheric Water Vapor DIAL Detection System

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Elsayed-Ali, Hani E.; DeYoung, Russell J. (Technical Monitor)

    2000-01-01

    Measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The remote sensing Differential Absorption Lidar (DIAL) technique is a powerful method to perform such measurement from aircraft and space. This thesis describes a new advanced detection system, which incorporates major improvements regarding sensitivity and size. These improvements include a low noise advanced avalanche photodiode detector, a custom analog circuit, a 14-bit digitizer, a microcontroller for on board averaging and finally a fast computer interface. This thesis describes the design and validation of this new water vapor DIAL detection system which was integrated onto a small Printed Circuit Board (PCB) with minimal weight and power consumption. Comparing its measurements to an existing DIAL system for aerosol and water vapor profiling validated the detection system.

  15. 47 CFR 51.215 - Dialing parity: Cost recovery.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Dialing parity: Cost recovery. 51.215 Section... (CONTINUED) INTERCONNECTION Obligations of All Local Exchange Carriers § 51.215 Dialing parity: Cost recovery. (a) A LEC may recover the incremental costs necessary for the implementation of toll dialing...

  16. 47 CFR 51.213 - Toll dialing parity implementation plans.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Toll dialing parity implementation plans. 51... parity implementation plans. (a) A LEC must file a plan for providing intraLATA toll dialing parity... dialing parity within a state until the implementation plan has been approved by the appropriate...

  17. 47 CFR 51.213 - Toll dialing parity implementation plans.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Toll dialing parity implementation plans. 51... parity implementation plans. (a) A LEC must file a plan for providing intraLATA toll dialing parity... dialing parity within a state until the implementation plan has been approved by the appropriate...

  18. 47 CFR 51.215 - Dialing parity: Cost recovery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Dialing parity: Cost recovery. 51.215 Section... (CONTINUED) INTERCONNECTION Obligations of All Local Exchange Carriers § 51.215 Dialing parity: Cost recovery. (a) A LEC may recover the incremental costs necessary for the implementation of toll dialing...

  19. 47 CFR 51.213 - Toll dialing parity implementation plans.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Toll dialing parity implementation plans. 51... parity implementation plans. (a) A LEC must file a plan for providing intraLATA toll dialing parity... dialing parity within a state until the implementation plan has been approved by the appropriate...

  20. 47 CFR 51.215 - Dialing parity: Cost recovery.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Dialing parity: Cost recovery. 51.215 Section... (CONTINUED) INTERCONNECTION Obligations of All Local Exchange Carriers § 51.215 Dialing parity: Cost recovery. (a) A LEC may recover the incremental costs necessary for the implementation of toll dialing...

  1. 47 CFR 51.209 - Toll dialing parity.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Toll dialing parity. 51.209 Section 51.209... Obligations of All Local Exchange Carriers § 51.209 Toll dialing parity. (a) A LEC shall implement throughout each state in which it offers telephone exchange service intraLATA and interLATA toll dialing...

  2. 47 CFR 51.209 - Toll dialing parity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Toll dialing parity. 51.209 Section 51.209... Obligations of All Local Exchange Carriers § 51.209 Toll dialing parity. (a) A LEC shall implement throughout each state in which it offers telephone exchange service intraLATA and interLATA toll dialing...

  3. 47 CFR 51.209 - Toll dialing parity.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Toll dialing parity. 51.209 Section 51.209... Obligations of All Local Exchange Carriers § 51.209 Toll dialing parity. (a) A LEC shall implement throughout each state in which it offers telephone exchange service intraLATA and interLATA toll dialing...

  4. 47 CFR 51.205 - Dialing parity: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Dialing parity: General. 51.205 Section 51.205... Obligations of All Local Exchange Carriers § 51.205 Dialing parity: General. A local exchange carrier (LEC) shall provide local and toll dialing parity to competing providers of telephone exchange service...

  5. 47 CFR 51.213 - Toll dialing parity implementation plans.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Toll dialing parity implementation plans. 51... parity implementation plans. (a) A LEC must file a plan for providing intraLATA toll dialing parity... dialing parity within a state until the implementation plan has been approved by the appropriate...

  6. 47 CFR 51.205 - Dialing parity: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Dialing parity: General. 51.205 Section 51.205... Obligations of All Local Exchange Carriers § 51.205 Dialing parity: General. A local exchange carrier (LEC) shall provide local and toll dialing parity to competing providers of telephone exchange service...

  7. 47 CFR 51.215 - Dialing parity: Cost recovery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Dialing parity: Cost recovery. 51.215 Section... (CONTINUED) INTERCONNECTION Obligations of All Local Exchange Carriers § 51.215 Dialing parity: Cost recovery. (a) A LEC may recover the incremental costs necessary for the implementation of toll dialing...

  8. 47 CFR 51.205 - Dialing parity: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Dialing parity: General. 51.205 Section 51.205... Obligations of All Local Exchange Carriers § 51.205 Dialing parity: General. A local exchange carrier (LEC) shall provide local and toll dialing parity to competing providers of telephone exchange service...

  9. 47 CFR 51.213 - Toll dialing parity implementation plans.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Toll dialing parity implementation plans. 51... parity implementation plans. (a) A LEC must file a plan for providing intraLATA toll dialing parity... dialing parity within a state until the implementation plan has been approved by the appropriate...

  10. 47 CFR 51.209 - Toll dialing parity.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Toll dialing parity. 51.209 Section 51.209... Obligations of All Local Exchange Carriers § 51.209 Toll dialing parity. (a) A LEC shall implement throughout each state in which it offers telephone exchange service intraLATA and interLATA toll dialing...

  11. 47 CFR 51.205 - Dialing parity: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Dialing parity: General. 51.205 Section 51.205... Obligations of All Local Exchange Carriers § 51.205 Dialing parity: General. A local exchange carrier (LEC) shall provide local and toll dialing parity to competing providers of telephone exchange service...

  12. 47 CFR 51.215 - Dialing parity: Cost recovery.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Dialing parity: Cost recovery. 51.215 Section... (CONTINUED) INTERCONNECTION Obligations of All Local Exchange Carriers § 51.215 Dialing parity: Cost recovery. (a) A LEC may recover the incremental costs necessary for the implementation of toll dialing...

  13. 47 CFR 51.209 - Toll dialing parity.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Toll dialing parity. 51.209 Section 51.209... Obligations of All Local Exchange Carriers § 51.209 Toll dialing parity. (a) A LEC shall implement throughout each state in which it offers telephone exchange service intraLATA and interLATA toll dialing...

  14. 47 CFR 51.205 - Dialing parity: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Dialing parity: General. 51.205 Section 51.205... Obligations of All Local Exchange Carriers § 51.205 Dialing parity: General. A local exchange carrier (LEC) shall provide local and toll dialing parity to competing providers of telephone exchange service...

  15. FY05 FM Dial Summary Report

    SciTech Connect

    Harper, Warren W.; Strasburg, Jana D.; Golovich, Elizabeth C.; Thompson, Jason S.; Stewart, Timothy L.; Batdorf, Michael T.

    2005-12-01

    Pacific Northwest National Laboratory's Infrared Sensors team is focused on developing methods for standoff detection of nuclear proliferation. In FY05, PNNL continued the development of the FM DIAL (frequency-modulated differential absorption LIDAR) experiment. Additional improvements to the FM DIAL trailer provided greater stability during field campaigns which made it easier to explore new locations for field campaigns. In addition to the Hanford Townsite, successful experiments were conducted at the Marine Science Laboratory in Sequim, WA and the Nevada Test Site located outside Las Vegas, NV. The range of chemicals that can be detected by FM DIAL has also increased. Prior to FY05, distributed feedback quantum cascade lasers (DFB-QCL) were used in the FM DIAL experiments. With these lasers, only simple chemicals with narrow (1-2 cm-1) absorption spectra, such as CO2 and N2O, could be detected. Fabry-Perot (FP) QC lasers have much broader spectra (20-40 cm-1) which allows for the detection of larger chemicals and a wider array of chemicals that can be detected. A FP-QCL has been characterized and used during initial studies detecting DMMP (dimethyl methylphosphonate).

  16. Tuning the dials of Synthetic Biology

    PubMed Central

    Arpino, James A. J.; Hancock, Edward J.; Anderson, James; Barahona, Mauricio; Stan, Guy-Bart V.; Polizzi, Karen

    2013-01-01

    Synthetic Biology is the ‘Engineering of Biology’ – it aims to use a forward-engineering design cycle based on specifications, modelling, analysis, experimental implementation, testing and validation to modify natural or design new, synthetic biology systems so that they behave in a predictable fashion. Motivated by the need for truly plug-and-play synthetic biological components, we present a comprehensive review of ways in which the various parts of a biological system can be modified systematically. In particular, we review the list of ‘dials’ that are available to the designer and discuss how they can be modelled, tuned and implemented. The dials are categorized according to whether they operate at the global, transcriptional, translational or post-translational level and the resolution that they operate at. We end this review with a discussion on the relative advantages and disadvantages of some dials over others. PMID:23704788

  17. Airborne water vapor DIAL system development

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.; Ponsardin, Patrick; Grossmann, Benoist E.

    1990-01-01

    A differential absorption lidar (DIAL) system developed at NASA Langley Research Center for the remote measurement of atmospheric H2O and aerosols from an aircraft is briefly discussed. This DIAL system utilizes a Nd:YAG laser-pumped dye laser as the off-line transmitter and a narrowband, tunable Alexandrite laser as the on-line transmitter. A 1-m monochromator and a multipass absorption cell are used to position the on-line laser to the center of the H2O line. The receiver system has a 14-in. diameter, f/7 Celestron telescope to collect the backscattered laser light and focus in into the detector optics. Return signals are converted to electrical signals by the optical detector and are digitalized and stored on magnetic tape. The results of fligh tests of the system are shown.

  18. Correlation of DIAL Ozone Observations with Lightning

    NASA Technical Reports Server (NTRS)

    Peterson, Harold S.; Kuang, Shi; Koshak, William J.; Newchurch, Mike

    2014-01-01

    The purpose of this project is to see whether ozone maxima measured by the DIfferential Absorption Lidar (DIAL) instrument in Huntsville, AL may be traced back to lightning events occurring 24-48 hours beforehand. The methodology is to start with lidar measurements of ozone from DIAL. The HYbrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model is then used to determine the origin of these ozone maxima 24-48 hours prior. Data from the National Lightning Detection Network (NLDN) are used to examine the presence/absence of lightning along the trajectory. This type of analysis suggests that lightning-produced NOx may be responsible for some of the ozone maxima over Huntsville.

  19. Correlation of DIAL Ozone Observations with Lightning

    NASA Technical Reports Server (NTRS)

    Peterson, Harold; Kuang, Shi; Koshak, William; Newchurch, Michael

    2013-01-01

    The purpose of this project is to see whether ozone maxima measured by the DIfferential Absorption Lidar (DIAL) instrument in Huntsville, AL may be traced back to lightning events occurring 24- 48 hours beforehand. The methodology is to start with lidar measurements of ozone from DIAL as well as ozonesonde measurements. The HYbrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model is then used to determine the origin of these ozone maxima 24-48 hours prior. Data from the National Lightning Detection Network (NLDN) are used to examine the presence/absence of lightning along the trajectory. This type of analysis suggests that lightning-produced NOx may be responsible for some of the ozone maxima over Huntsville.

  20. D0 Cryogenic Auto Dialing Alarm System

    SciTech Connect

    Markely, D.; /Fermilab

    1992-08-03

    The Automatic Dialing system purchased by D0 is intended to help make the D0 cryogenic system operate unattended by cryogenic operating personnel. The auto dialer is completely programmable and is voice synthesized. The auto dialer was purchased with 32 bistable inputs, but is expandable to 64 bistable inputs with the purchase of more electronic cards at an approximate cost of $260 per card (8 bistable inputs). The auto dialer also has the capability for analog inputs, analog outputs, and bistable outputs none of which D0 uses or intends to use. The auto dialer can be called on its operating phone line to describe current alarms with the proper password. The Auto Dialer can dial lab extensions, lab pagers, and any number outside the lab. It cannot dial a long distance pager. The auto dialer monitors alarms and alarm conditions via the T1565 PLC, upon an alarm condition it initiates a phone calling sequence of preprogrammed lists with assigned priorities. When someone is reached, the auto dialer describes the individual alarm it is calling for, by a preprogrammed set of words for that individual alarm, spoken by a female voice. The called person then has a chance to acknowledge the alarm over the telephone, if the alarm is not acknowledged the auto dialer will disconnect and call the next person on the list. The auto dialer will continue to cycle through the list until it is acknowledged, reset, or the alarm condition no longer exists.

  1. Lidar/DIAL detection of bomb factories

    NASA Astrophysics Data System (ADS)

    Fiorani, Luca; Puiu, Adriana; Rosa, Olga; Palucci, Antonio

    2013-10-01

    One of the aims of the project BONAS (BOmb factory detection by Networks of Advanced Sensors) is to develop a lidar/DIAL (differential absorption lidar) to detect precursors employed in the manufacturing of improvised explosive devices (IEDs). At first, a spectroscopic study has been carried out: the infrared (IR) gas phase spectrum of acetone, one of the more important IED precursors, has been procured from available databases and checked with cell measurements. Then, the feasibility of a lidar/DIAL for the detection of acetone vapors has been shown in laboratory, simulating the experimental conditions of a field campaign. Eventually, having in mind measurements in a real scenario, an interferent study has been performed, looking for all known compounds that share with acetone IR absorption in the spectral band selected for its detection. Possible interfering species were investigated, simulating both urban and industrial atmospheres and limits of acetone detection in both environments were identified. This study confirmed that a lidar/DIAL can detect low concentration of acetone at considerable distances.

  2. Doppler echocardiography

    SciTech Connect

    Labovitz, A.J.; Williams, G.A.

    1988-01-01

    The authors are successful in presenting a basic book on clinical quantitative Doppler echocardiography. It is not intended to be a comprehensive text, but it does cover clinical applications in a succinct fashion. Only the more common diseases in the adult are considered. The subjects are presented logically and are easy to comprehend. The illustrations are good, and the book is paperbound. The basic principles of Doppler echocardiography are presented briefly. The book ends with chapters on left ventricular function (stroke volume and cardiac output), congenital heart disease, and color Doppler echo-cardiography. There are numerous references and a good glossary and index.

  3. Automated alexandrite transmitter for airborne DIAL experiments

    NASA Technical Reports Server (NTRS)

    Degnan, John J.

    1988-01-01

    An account is given of the performance characteristics and development status of an automated dual alexandrite laser transmitter that is to be carried aloft by NASA's ER-2 research aircraft for water vapor DIAL experiments; these efforts are part of NASA's Lidar Atmospheric Sensing Experiment (LASE). The LASE transmitter encompasses control unit, thermal unit, and two lamp driver unit subsystems. Major reductions in system size and weight relative to commercially available alexandrite lasers were necessary; a total weight of only 330 lbs has been achieved. Attention is given to subsystem flight test results.

  4. 47 CFR 51.207 - Local dialing parity.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Local dialing parity. 51.207 Section 51.207 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Obligations of All Local Exchange Carriers § 51.207 Local dialing parity. A LEC shall permit...

  5. 47 CFR 51.207 - Local dialing parity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Local dialing parity. 51.207 Section 51.207 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Obligations of All Local Exchange Carriers § 51.207 Local dialing parity. A LEC shall permit...

  6. 47 CFR 51.207 - Local dialing parity.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Local dialing parity. 51.207 Section 51.207 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Obligations of All Local Exchange Carriers § 51.207 Local dialing parity. A LEC shall permit...

  7. 47 CFR 51.207 - Local dialing parity.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Local dialing parity. 51.207 Section 51.207 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Obligations of All Local Exchange Carriers § 51.207 Local dialing parity. A LEC shall permit...

  8. 47 CFR 51.207 - Local dialing parity.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Local dialing parity. 51.207 Section 51.207 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Obligations of All Local Exchange Carriers § 51.207 Local dialing parity. A LEC shall permit...

  9. DIAL Measurements of Free-Tropospheric Ozone Profiles in Huntsville, AL

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John; Newchurch, Michael J.; Johnson, Steve

    2007-01-01

    A tropospheric ozone Differential Absorption Lidar (DIAL) system, developed jointly by NASA and the University of Alabama at Huntsville (UAH), measures free-tropospheric ozone profiles between 4-10 km. Located at 192 meters altitude in the Regional Atmospheric Profiling Laboratory for Discovery (RAPCD) on the UAH campus in Huntsville, AL, USA, this tropospheric ozone lidar operates under both daytime and nighttime conditions. Frequent coincident ozonesonde flights and theoretical calculations provide evidence to indicate the retrieval accuracy ranges from better than 8% at 4km to 40%-60% at 10 kin with 750-m vertical resolution and 30-minute integration. With anticipated improvements to allow retrievals at both higher and lower altitudes, this ozone lidar, along with co-located aerosol and Doppler Wind Lidars, will provide a unique 18 dataset for investigations of PBL and free-tropospheric chemical and dynamic processes.

  10. Frequency agile OPO-based transmitters for multiwavelength DIAL

    SciTech Connect

    Velsko, S.P.; Ruggiero, A.; Herman, M.

    1996-09-01

    We describe a first generation mid-infrared transmitter with pulse to pulse frequency agility and both wide and narrow band capability. This transmitter was used to make multicomponent Differential Absorption LIDAR (DIAL) measurements in the field.

  11. Frequency agile OPO-based transmitters for multiwavelength DIAL

    SciTech Connect

    Velsko, S.P.; Ruggiero, A.; Herman, M.

    1996-09-01

    We describe a first generation mid-infrared transmitter with pulse-to- pulse frequency agility and both wide and narrow band capability. This transmitter was used to make multicomponent DIAL measurements in the field.

  12. Educational Materials Development in Primary Science: Dial Thermometer Instructional Unit

    ERIC Educational Resources Information Center

    Franks, Frank L.; Huff, Roger

    1976-01-01

    Described in the fourth of a series of articles dealing with primary science instructional materials for visually handicapped students, is a field test (with 61 Ss in grades 2 to 4) of a dial thermometer instructional unit. (IM)

  13. 18. OPERATOR'S SIDE OF 48' MILL STAND SHOWING DIALS, VERTICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. OPERATOR'S SIDE OF 48' MILL STAND SHOWING DIALS, VERTICAL ROLL SCREWDOWN, AND VIEW THROUGH HOUSING TO PINION STAND. Martin Stupich, Photographer, 1989. - U.S. Steel Homestead Works, 48" Plate Mill, Along Monongahela River, Homestead, Allegheny County, PA

  14. Advanced Detector and Waveform Digitizer for Water Vapor DIAL Systems

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1998-01-01

    Measurement of atmospheric water vapor has become a major requirement for understanding moist-air processes. Differential absorption lidar (DIAL) is a technique best suited for the measurement of atmospheric water vapor. NASA Langley Research Center is continually developing improved DIAL systems. One aspect of current development is focused on the enhancement of a DIAL receiver by applying state-of-the-art technology in building a new compact detection system that will be placed directly on the DIAL receiver telescope. The newly developed detection system has the capability of being digitally interfaced with a simple personal computer, using a discrete input/output interface. This has the potential of transmitting digital data over relatively long distances instead of analog signals, which greatly reduces measurement noise. In this paper, we discuss some results from the new compact water vapor DIAL detection system which includes a silicon based avalanche photodiode (APD) detector, a 14-bit, 10-MHz waveform digitizer, a microcontroller and other auxiliary electronics. All of which are contained on a small printed-circuit-board. This will significantly reduce the weight and volume over the current CAMAC system and eventually will be used in a water vapor DIAL system on an unpiloted atmospheric vehicle (UAV) aircraft, or alternatively on an orbiting spacecraft.

  15. Doppler flowmeter

    DOEpatents

    Karplus, H.H.B.; Raptis, A.C.

    1981-11-13

    A Doppler flowmeter impulses an ultrasonic fixed-frequency signal obliquely into a slurry flowing in a pipe and a reflected signal is detected after having been scattered off of the slurry particles, whereby the shift in frequencies between the signals is proportional to the slurry velocity and hence slurry flow rate. This flowmeter filters the Doppler frequency-shift signal, compares the filtered and unfiltered shift signals in a divider to obtain a ratio, and then further compares this ratio against a preset fractional ratio. The flowmeter utilizes a voltage-to-frequency convertor to generate a pulsed signal having a determinable rate of repetition precisely proportional to the divergence of the ratios. The pulsed signal serves as the input control for a frequency-controlled low-pass filter, which provides thereby that the cutoff frequency of the filtered signal is known. The flowmeter provides a feedback control by minimizing the divergence. With the cutoff frequency and preset fractional ratio known, the slurry velocity and hence flow will also be determinable.

  16. Radium dial watches, a potentially hazardous legacy?

    PubMed

    Gillmore, Gavin K; Crockett, Robin; Denman, Tony; Flowers, Alan; Harris, Richard

    2012-09-15

    This study re-examines the risk to health from radium ((226)Ra) dial watches. Ambient dose equivalent rates have been measured for fifteen pocket watches giving results of up to 30 μSv h(-1) at a distance of 2 cm taken with a series 1000 mini-rad from the front face (arithmetic mean ambient dose equivalent for pocket watches being 13.2 μSv h(-1)). A pocket compass gave rise to a similar ambient dose equivalent rate, of 20 μSv h(-1), to the pocket watches, with its cover open. Eighteen wristwatches have also been assessed, but their dose rates are generally much lower (the arithmetic mean being 3.0 μSv h(-1)), although the highest ambient dose equivalent rate noted was 20 μSv h(-1). A phantom experiment using a TLD suggested an effective dose equivalent of 2.2 mSv/y from a 1 μCi (37 kBq) radium dial worn for 16 h/day throughout the year (dose rate 0.375 μSv h(-1)). For this condition we estimated maximum skin dose for our pocket watches as 16 mSv per year, with effective doses of 5.1 mSv and 1.169 mSv when worn in vest and trouser pockets respectively. This assumes exposure from the back of the watch which is generally around 60-67% of that from the front. The maximum skin dose from a wristwatch was 14 mSv, with 4.2 mSv effective dose in vest pocket. Radium ((226)Ra) decays to the radioactive gas radon ((222)Rn), and atmospheric radon concentration measurements taken around a pocket watch in a small sealed glass sphere recorded 18,728 B qm(-3). All watches were placed in a room with a RAD7 real-time radon detector. Radon concentration average was 259±9 Bq m(-3) over 16 h, compared to background average over 24h of 1.02 Bq m(-3). Over 6 weeks highs of the order of 2000 Bq m(-3) were routinely recorded when the heating/ventilation system in the room was operating at reduced rates, peaking at over 3000 Bq m(-3) on several occasions. Estimates of the activity of (226)Ra in the watches ranged from 0.063 to 1.063 μCi (2.31 to 39.31 kBq) for pocket watches and

  17. CALIOPE airborne CO{sub 2} DIAL (CACDI) system design

    SciTech Connect

    Mietz, D.; Archuleta, B.; Archuleta, J.

    1997-09-01

    Los Alamos National Laboratory is currently developing an airborne CO{sub 2} Differential Absorption Lidar (DIAL) system based on second generation technology demonstrated last summer at NTS. The CALIOPE Airborne CO{sub 2} DIAL (CACDI) system requirements have been compiled based on the mission objectives and SONDIAL model trade studies. Subsystem designs have been developed based on flow down from these system requirements, as well as experience gained from second generation ground tests and N-ABLE (Non-proliferation AirBorne Lidar Experiments) airborne experiments. This paper presents the CACDI mission objectives, system requirements, the current subsystem design, and provides an overview of the airborne experimental plan.

  18. External radiation doses received by female radium dial painters

    SciTech Connect

    Rowland, R.E.; Lucas, H.F.; Schlenker, R.A.

    1988-01-01

    While almost all the studies of the dial painters have concentrated on their internally deposited radium, the dial painters also received an external dose from the gamma rays emitted by radium and its daughter products. Each painter worked with a container of paint containing radium in front of her, and a collection of finished dials beside her. Each work station then was a radiation source, and each painter in the room was irradiated by her own sources of radium in front of her, by the radium on every other work station in the room, and by the radium contamination on the floors and desks. Each day that a painter worked she would have received a dose from these external sources which was unrelated to her internally deposited radium, but dependent on her work place. It is the purpose of this study to estimate the external dose in the work place, to determine the dose received from these external sources for each female dial painter from the length of time she worked, and to examine the relationship between external dose and the causes of death.

  19. MediDial cards: a quick win for service improvement

    PubMed Central

    Davies, Mike; Panchal, Sonia

    2014-01-01

    One of the key roles of a junior doctor is co-ordinating the care of their patients and communicating with different departments or specialties within the hospital. To do this, junior doctors often spend a lot of time on a daily basis contacting the hospital switchboard in order to locate a required bleep/extension/fax number, or trying to navigate an intranet based directory which can be difficult to use. We aimed to improve this task for junior doctors as a pilot project for engaging junior doctors in service improvement. Our multi-disciplinary team, led by junior doctors and with the support of the Trust, produced and implemented lanyard (MediDial) cards containing common and relevant (fax, bleep, and extension) numbers for use by junior doctors. Through the introduction of our MediDial cards we not only reduced the frequency junior doctors needed to contact the switchboard on a daily basis, but also the length of time spent waiting to speak to an operator. The MediDial cards were also found to be time saving and more useful than the previous intranet based database. Since the introduction of the MediDial cards, the project has been rolled out across the Trust and presented at Grand Rounds as an example of junior doctor led service improvement, aiming to encourage trainees to engage with quality improvement projects. PMID:26734285

  20. Airborne Dial Remote Sensing of the Arctic Ozone Layer

    NASA Technical Reports Server (NTRS)

    Wirth, Martin; Renger, Wolfgang; Ehret, Gerhard

    1992-01-01

    A combined ozone and aerosol LIDAR was developed at the Institute of Physics of the Atmosphere at the DLR in Oberpfaffenhofen. It is an airborne version, that, based on the DIAL-principle, permits the recording of two-dimensional ozone profiles. This presentation will focus on the ozone-part; the aerosol subsection will be treated later.

  1. DOPPLER WEATHER SYSTEM

    2002-08-05

    The SRS Doppler Weather System consists of a Doppler Server, A Master Server (also known as the Weather Server), several Doppler Slave Servers, and client-side software program called the Doppler Radar Client. This system is used to display near rel-time images taken from the SRS Weather Center's Doppler Radar computer. The Doppler Server is software that resides on the SRS Doppler Computer. It gathers raw data, 24-bit color weather images via screen scraping ever fivemore » minutes as requested by the Master Server. The Doppler Server then reduces the 24-bit color images to 8-bit color using a fixed color table for analysis and compression. This preserves the fidelity of the image color and arranges the colors in specific order for display. At the time of color reduction, the white color used for the city names on the background images are remapped to a different index (color) of white that the white on the weather scale. The Weather Server places a time stamp on the image, then compresses the image and passes it to all Doppler Slave servers. Each of the Doppler Slave servers mainitain a circular buffer of the eight most current images representing the last 40 minutes of weather data. As a new image is added, the oldest drops off. The Doppler Radar Client is an optional install program for any site-wide workstation. When a Client session is started, the Client requests Doppler Slave server assignment from the Master Server. Upon its initial request to the Slave Server, the Client obtains all eight current images and maintains its own circular buffer, updating its images every five minutes as the Doppler Slave is updated. Three background reference images are stored as part of the Client. The Client brings up the appropriate background image, decompresses the doppler data, and displays the doppler data on the background image.« less

  2. DOPPLER WEATHER SYSTEM

    SciTech Connect

    Berlin, Gary J.

    2002-08-05

    The SRS Doppler Weather System consists of a Doppler Server, A Master Server (also known as the Weather Server), several Doppler Slave Servers, and client-side software program called the Doppler Radar Client. This system is used to display near rel-time images taken from the SRS Weather Center's Doppler Radar computer. The Doppler Server is software that resides on the SRS Doppler Computer. It gathers raw data, 24-bit color weather images via screen scraping ever five minutes as requested by the Master Server. The Doppler Server then reduces the 24-bit color images to 8-bit color using a fixed color table for analysis and compression. This preserves the fidelity of the image color and arranges the colors in specific order for display. At the time of color reduction, the white color used for the city names on the background images are remapped to a different index (color) of white that the white on the weather scale. The Weather Server places a time stamp on the image, then compresses the image and passes it to all Doppler Slave servers. Each of the Doppler Slave servers mainitain a circular buffer of the eight most current images representing the last 40 minutes of weather data. As a new image is added, the oldest drops off. The Doppler Radar Client is an optional install program for any site-wide workstation. When a Client session is started, the Client requests Doppler Slave server assignment from the Master Server. Upon its initial request to the Slave Server, the Client obtains all eight current images and maintains its own circular buffer, updating its images every five minutes as the Doppler Slave is updated. Three background reference images are stored as part of the Client. The Client brings up the appropriate background image, decompresses the doppler data, and displays the doppler data on the background image.

  3. A direct detection 1.6μm DIAL with three wavelengths for high accuracy measurements of vertical CO2 concentration and temperature profiles

    NASA Astrophysics Data System (ADS)

    Shibata, Yasukuni; Nagasawa, Chikao; Abo, Makoto

    2013-10-01

    The accurate vertical CO2 profiles in the troposphere are highly desirable in the inverse techniques to improve quantification and understanding of the global budget of CO2 and also global climate changes. Moreover, wind information is an important parameter for transport simulations and inverse estimation of surface CO2 flux. A differential absorption lidar (DIAL) is an attractive method for obtaining vertical CO2 profiles and we have developed an 1.6μm DIAL system to perform simultaneous measurements of CO2 concentration, atmospheric temperature profile and wind profile. The absorption cross sections of gas and air density depends on atmospheric temperature and pressure. Then precise temperature and pressure profiles are necessary for accurate CO2 mixing ratio measurement by DIAL. Laser beams of three wavelengths around a CO2 absorption line are transmitted alternately to the atmosphere for simultaneous measurements of CO2 concentration and temperature. The receiving optics include the near-infrared photomultiplier tube and a fiber Bragg grating (FBG) filter to detect a Doppler shift.

  4. DIAL: A Platform for real-time Laboratory Surveillance

    PubMed Central

    Mukhi, Shamir N; May-Hadford, Jennifer; Plitt, Sabrina; Preiksaitis, Jutta; Lee, Bonita

    2010-01-01

    Laboratory information systems fulfill many of the requirements for individual result management within a public health laboratory. However, access to the systems by data users, timely data extraction, integration, and data analysis are difficult tasks. These difficulties are further complicated by often having multiple laboratory results for specific analytes or related analytes per specimen tested as part of complex laboratory algorithms requiring specialized expertise for result interpretation. We describe DIAL, (Data Integration for Alberta Laboratories), a platform allowing laboratory data to be extracted, interpreted, collated and analyzed in near real-time using secure web based technology, which is adapted from CNPHI’s Canadian Early Warning System (CEWS) technology. The development of DIAL represents a major technical advancement in the public health information management domain, building capacity for laboratory based surveillance. PMID:23569594

  5. Early detection of small forest fire by dial technique

    NASA Astrophysics Data System (ADS)

    Bellecci, C.; Francucci, M.; Gaudio, P.; Gelfusa, M.; Martellucci, S.; Richetta, M.

    2005-10-01

    Forest fires can be the cause of serious environmental and economic damages. For this reason considerable effort has been directed toward forest protection and fire fighting. The means traditionally used for early fire detection mainly consist in human observers dispersed over forest regions. A significant improvement in early warning capabilities could be obtained by using automatic detection apparatus. In order to early detect small forest fires, the use of a dial system will be considered. A first evaluation of the lowest detectable concentration will be estimated by a numerical simulation. The theoretical model will be used also to get the capacities of a dial system in fire surveillance of wooded areas. Fixing the burning rate for several fuels, the maximum range of detection will be evaluated. The results of these simulations will be reported in the paper.

  6. Christian Doppler and the Doppler effect

    NASA Astrophysics Data System (ADS)

    Toman, Kurt

    1984-04-01

    A summary is given of Doppler's life and career. He was born 180 years ago on November 29, 1803, in Salzburg, Austria. He died on March 17, 1853 in Venice. The effect bearing his name was first announced in a presentation before the Royal Bohemian Society of the Sciences in Prague on May 25, 1842. Doppler considered his work a generalization of the aberration theorem as discovered by Bradley. With it came the inference that the perception of physical phenomena can change with the state of motion of the observer. Acceptance of the principle was not without controversy. In 1852, the mathematician Petzval claimed that no useful scientific deductions can be made from Doppler's elementary equations. In 1860, Ernst Mach resolved the misunderstanding that clouded this controversy. The Doppler effect is alive and well. Its role in radio science and related disciplines is enumerated.

  7. Rayleigh-backscattering doppler broadening correction for differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Fan, Lanlan; Zhang, Yinchao; Chen, Siying; Guo, Pan; Chen, He

    2015-11-01

    The spectral broadening by Rayleigh backscattering can cause large changes in water vapor echo signals, causing errors when the water vapor concentration is inversed by differential absorption lidar (DIAL). A correction algorithm is proposed to revise the errors due to the effect of laser spectral broadening. The relative errors of water vapor are calculated in cases of different aerosol distribution and temperature changes before and after correction. The results show that measurement errors due to the Doppler broadening are more than 5% before correction and a 2% measurement error after corrected for the case of a smooth, background aerosol distribution. However, due to the high aerosol gradients and strong temperature inversion, errors can be up to 40% and 10% with no corrections for this effect, respectively. The relative errors can reduce to less than 2% after correction. Hence, the correction algorithm for Rayleigh Doppler broadening can improve detection accuracy in H2O DIAL measurements especially when it is applied to high aerosol concentration or strong temperature inversion.

  8. Efficient 1.6 Micron Laser Source for Methane DIAL

    NASA Technical Reports Server (NTRS)

    Shuman, Timothy; Burnham, Ralph; Nehrir, Amin R.; Ismail, Syed; Hair, Johnathan W.

    2013-01-01

    Methane is a potent greenhouse gas and on a per molecule basis has a warming influence 72 times that of carbon dioxide over a 20 year horizon. Therefore, it is important to look at near term radiative effects due to methane to develop mitigation strategies to counteract global warming trends via ground and airborne based measurements systems. These systems require the development of a time-resolved DIAL capability using a narrow-line laser source allowing observation of atmospheric methane on local, regional and global scales. In this work, a demonstrated and efficient nonlinear conversion scheme meeting the performance requirements of a deployable methane DIAL system is presented. By combining a single frequency 1064 nm pump source and a seeded KTP OPO more than 5 mJ of 1.6 µm pulse energy is generated with conversion efficiencies in excess of 20%. Even without active cavity control instrument limited linewidths (50 pm) were achieved with an estimated spectral purity of 95%. Tunable operation over 400 pm (limited by the tuning range of the seed laser) was also demonstrated. This source demonstrated the critical needs for a methane DIAL system motivating additional development of the technology.

  9. Indoor radon and lung cancer in radium-dial workers

    SciTech Connect

    Neuberger, J.S.; Rundo, J.

    1996-12-31

    Internally deposited radium has long been known to have tumorigenic effects in the form of sarcomas of the bone and carcinomas of the paranasal sinuses and mastoid air cells. However, radium-dial workers were also exposed to radiation hazards other than that occurring from ingestion of the radium paint, namely, external gamma radiation and elevated concentrations of airborne radon. Uranium miners were also exposed to high concentrations of radon in the 1950s and later and numerous cases of lung cancer have occurred in that population. However, unlike the atmosphere in the uranium mines, the air in the dial painting plants was probably rather clean and perhaps not much different from the air in many houses. In view of the current concern over the possibility of lung cancer in the general population being caused by radon (progeny) in houses, it is important to examine the mortality due to this usually fatal disease in the dial workers and to attempt to relate it to their exposure to radon, to the extent that is possible.

  10. Indoor radon and lung cancer in the radium dial workers

    SciTech Connect

    Neuberger, J.S.; Rundo, J.

    1996-12-31

    Internally deposited radium has long been known to have tumorigenic effects in the form of sarcomas of the bone and carcinomas of the paranasal sinuses and mastoid air cells. However, the radium dial workers were also exposed to radiation hazards other than that occurring from ingestion of the radium paint, viz., external gamma radiation and elevated concentrations of airborne radon. The uranium miners were also exposed to high concentrations of radon in the 1950s and later, and numerous cases of lung cancer have occurred in that population. However, unlike the atmosphere in the uranium mines, the air in the dial painting plants was probably rather clean and perhaps not much different from the air in many houses. In view of the current concern over the possibility of lung cancer fin the general population being caused by radon (progeny) in houses, it is important to examine the mortality due to this usually fatal disease in the dial workers and to attempt to relate it to their exposure to radon, to the extent that this is possible.

  11. Advanced Doppler tracking experiments

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.

    1989-01-01

    The Doppler tracking method is currently the only technique available for broadband gravitational wave searches in the approx. 10(exp -4) to 10(exp -1) Hz low frequency band. A brief review is given of the Doppler method, a discussion of the main noise sources, and a review of experience with current spacecraft and the prospects for sensitivity improvements in an advanced Doppler tracking experiment.

  12. Advances in Doppler OCT

    PubMed Central

    Liu, Gangjun; Chen, Zhongping

    2014-01-01

    We review the principle and some recent applications of Doppler optical coherence tomography (OCT). The advances of the phase-resolved Doppler OCT method are described. Functional OCT algorithms which are based on an extension of the phase-resolved scheme are also introduced. Recent applications of Doppler OCT for quantification of flow, imaging of microvasculature and vocal fold vibration, and optical coherence elastography are briefly discussed. PMID:24443649

  13. Doppler and Zeeman Doppler Imaging of Stars

    NASA Astrophysics Data System (ADS)

    Kochukhov, Oleg

    In this chapter we discuss the problem of reconstructing two-dimensional stellar surface maps from the variability of intensity and/or polarisation profiles of spectral lines. We start by outlining the main principles of the scalar Doppler imaging problem concerned with recovering maps of chemical spots, temperature or brightness from the intensity spectra. After presenting the physical and mathematical foundations of this remote sensing method, we review its applications to mapping different types of spots in early-type chemically peculiar and late-type active stars, and non-radial pulsations in early-type stars. We also discuss an extension of Doppler imaging to the problem of recovering vector distributions of stellar magnetic fields from spectropolarimetric observations and review applications of this Zeeman Doppler imaging technique in the context of stellar magnetism studies.

  14. Doppler ultrasound monitoring technology.

    PubMed

    Docker, M F

    1993-03-01

    Developments in the signal processing of Doppler ultrasound used for the detection of fetal heart rate (FHR) have improved the operation of cardiotocographs. These developments are reviewed and the advantages and disadvantages of the various Doppler and signal processing methods are compared.

  15. The Cognitive Doppler.

    ERIC Educational Resources Information Center

    Kozoil, Micah E.

    1989-01-01

    Discusses the learning needs of students in the concrete operational stage in mathematics. Identifies the phenomenon of reduced cognitive performance in an out-of-class environment as the "Cognitive Doppler." Suggests methods of reducing the pronounced effects of the Cognitive Doppler by capitalizing on the students' ability to memorize effective…

  16. Comparison of 2 micron Ho and 10 micron CO2 lidar for atmospheric backscatter and Doppler windshear detection

    NASA Technical Reports Server (NTRS)

    Killinger, Dennis

    1991-01-01

    The development of eye-safe, solid-state Lidar systems is discussed, with an emphasis on Coherent Doppler Lidar for Atmospheric Wind Measurements. The following subject areas are covered: tunable Ho DIAL (Differential Absorption Lidar)/lidar atmospheric measurements; atmospheric turbulence measurements and detector arrays; diurnal measurements of C(sub n)(sup 2) for KSC lidar measurements; and development of single-frequency Ho laser/lidar.

  17. Development of an Airborne Micropulse Water Vapor DIAL

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Ismail, S.

    2012-12-01

    Water vapor plays a key role in many atmospheric processes affecting both weather and climate. Airborne measurements of tropospheric water vapor profiles have been a longstanding observational need to not only the active remote sensing community but also to the meteorological, weather forecasting, and climate/radiation science communities. Microscale measurements of tropospheric water vapor are important for enhancing near term meteorological forecasting capabilities while mesoscale and synopticscale measurements can lead to an enhanced understanding of the complex coupled feedback mechanisms between water vapor, temperature, aerosols, and clouds. To realize tropospheric measurements of water vapor profiles over the microscale-synopticscale areas of meteorological interest, a compact and cost effective airborne micropulse differential absorption lidar (DIAL) is being investigated using newly emerging semiconductor based laser technology. Ground based micropulse DIAL (MPD) measurements of tropospheric water vapor and aerosol profiles up to 6 km and 15 km, respectively, have been previously demonstrated using an all semiconductor based laser transmitter. The DIAL transmitter utilizes a master oscillator power amplifier (MOPA) configuration where two semiconductor seed lasers are used to seed a single pass traveling wave tapered semiconductor optical amplifier (TSOA), producing up to 7μJ pulse energies over a 1 μs pulse duration at a 10 kHz pulse repetition frequency (PRF). Intercomparisons between the ground based instrument measurements and radiosonde profiles demonstrating the MPD performance under varying atmospheric conditions will be presented. Work is currently ongoing to expand upon the ground based MPD concept and to develop a compact and cost effective system capable of deployment on a mid-low altitude aircraft such as the NASA Langley B200 King Air. Initial lab experiments show that a two-three fold increase in the laser energy compared to the ground

  18. Raman-shifted dye laser for water vapor DIAL measurements.

    PubMed

    Grossmann, B E; Singh, U N; Higdon, N S; Cotnoir, L J; Wilkerson, T D; Browell, E V

    1987-05-01

    For improved DIAL measurements of water vapor in the upper troposphere or lower stratosphere, we have generated narrowband (~0.03-cm(-1)) laser radiation at 720- and 940-nm wavelengths by stimulated Raman scattering (SRS) using the narrow linewidth (~0.02-cm(-1)) output of a Nd:YAG-pumped dye laser. For a hydrogen pressure of 350 psi, the first Stokes conversion efficiencies to 940 nm were 20% and 35% when using a conventional and waveguide Raman cell, respectively. We measured the linewidth of the first Stokes line at high cell pressures and inferred collisional broadening coefficients that agree well with those previously measured in spontaneous Raman scattering.

  19. Raman-shifted dye laser for water vapor DIAL measurements

    NASA Technical Reports Server (NTRS)

    Grossmann, B. E.; Singh, U. N.; Cotnoir, L. J.; Wilkerson, T. D.; Higdon, N. S.; Browell, E. V.

    1987-01-01

    For improved DIAL measurements of water vapor in the upper troposphere or lower stratosphere, narrowband (about 0.03/cm) laser radiation at 720- and 940-nm wavelengths was generated by stimulated Raman scattering (SRS), using the narrow linewidth (about 0.02/cm) output of a Nd:YAG-pumped dye laser. For a hydrogen pressure of 350 psi, the first Stokes conversion efficiencies to 940 nm were 20 percent and 35 percent, when using a conventional and waveguide Raman cell, respectively. The linewidth of the first Stokes line at high cell pressures, and the inferred collisional broadening coefficients, agree well with those previously measured in spontaneous Raman scattering.

  20. Appendix E: FM-DIAL Preliminary Detection Sensitivity Measurements

    SciTech Connect

    Harper, Warren W.; Sheen, David M.; Schultz, John F.

    2002-05-09

    This update briefly reports new measurements and analysis that are used to determine the noise equivalent absorbance for the FM-DIAL (frequency modulation – differential absorption light detection and ranging) system. The modeling work that is performed in parallel with the LIDAR experiments provides a useful benchmark to predict the performance of an experimental setup, and a detection sensitivity to strive to realize. Often, the theoretical performance is difficult to obtain experimentally, but with careful design experiments can come close to being limited by fundamental noise sources.

  1. Occupational exposure to dial painters and assemblers of radioluminous timepieces.

    PubMed

    Simpson, R E; Shuman, F G; Moghissi, A A; Blackburn, J A; Bailey, E D

    1983-05-01

    An evaluation of available personnel monitoring data and radium body burden records of dial painters handling an annual average of 1.5 Ci of radium indicates that they received an average of about 2 rem/person whole body exposure, 3 rem to the lungs from radon inhalation and 0.2 rad to the bone from radium body burdens. Among groups of similar workers handling tritium in Texas plants, the highest occupational exposures were about 160 mrem annually per person received by refinishers of tritium dial timepieces and back-lit watch assemblers. Based upon scenarios of exposures to 147Pm, repairers of timepieces containing 147Pm receive about 4.4 X 10(-4) mrem/person/yr whole body dose equivalent. The amounts that they process are in the microcurie range. Although the trend is away from the use of radium as a luminizing activator, there are indications that it is still used in timepieces even as tritium and 147Pm are increasingly being used for this purpose.

  2. 75 FR 33821 - Section 8 Random Digit Dialing Fair Market Rent Surveys

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... URBAN DEVELOPMENT Section 8 Random Digit Dialing Fair Market Rent Surveys AGENCY: Office of the Chief... provides HUD with a fast, inexpensive way to estimate Section 8 Fair Market Rents (FMRs) in areas not... lists the following information: Title of Proposal: Section 8 Random Digit Dialing Fair Market...

  3. Alexandrite laser characterization and airborne lidar developments for water vapor DIAL measurements

    NASA Technical Reports Server (NTRS)

    Ponsardin, P.; Higdon, N. S.; Grossmann, B. E.; Browell, E. V.

    1991-01-01

    The spectral characteristics of an Alexandrite laser used for making water vapor DIAL measurements have been evaluated. The optical servo-system used to lock the laser wavelength on a water vapor absorption line is described. A brief description of the DIAL system is given and the data obtained with this lidar during flight tests in March 1990 are also presented.

  4. Calculus, Radio Dials and the Straight-Line Frequency Variable Capacitor

    ERIC Educational Resources Information Center

    Boyadzhiev, Khristo N.

    2010-01-01

    Most often radio dials of analogue radios are not uniformly graded; the frequencies are cramped on the left side or on the right side. This makes tuning more difficult. Why are dials made this way? We shall see here that simple calculus can help understand this problem and solve it. (Contains 7 figures.)

  5. Doppler radar flowmeter

    DOEpatents

    Petlevich, Walter J.; Sverdrup, Edward F.

    1978-01-01

    A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.

  6. Doppler Lidar (DL) Handbook

    SciTech Connect

    Newsom, RK

    2012-02-13

    The Doppler lidar (DL) is an active remote sensing instrument that provides range- and time-resolved measurements of radial velocity and attenuated backscatter. The principle of operation is similar to radar in that pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is inferred. The radial or line-of-sight velocity of the scatterers is determined from the Doppler frequency shift of the backscattered radiation. The DL uses a heterodyne detection technique in which the return signal is mixed with a reference laser beam (i.e., local oscillator) of known frequency. An onboard signal processing computer then determines the Doppler frequency shift from the spectra of the heterodyne signal. The energy content of the Doppler spectra can also be used to determine attenuated backscatter.

  7. Cosmology with Doppler lensing

    NASA Astrophysics Data System (ADS)

    Bacon, David J.; Andrianomena, Sambatra; Clarkson, Chris; Bolejko, Krzysztof; Maartens, Roy

    2014-09-01

    Doppler lensing is the apparent change in object size and magnitude due to peculiar velocities. Objects falling into an overdensity appear larger on its near side, and smaller on its far side, than typical objects at the same redshifts. This effect dominates over the usual gravitational lensing magnification at low redshift. Doppler lensing is a promising new probe of cosmology, and we explore in detail how to utilize the effect with forthcoming surveys. We present cosmological simulations of the Doppler and gravitational lensing effects based on the Millennium simulation. We show that Doppler lensing can be detected around stacked voids or unvirialized overdensities. New power spectra and correlation functions are proposed which are designed to be sensitive to Doppler lensing. We consider the impact of gravitational lensing and intrinsic size correlations on these quantities. We compute the correlation functions and forecast the errors for realistic forthcoming surveys, providing predictions for constraints on cosmological parameters. Finally, we demonstrate how we can make 3D potential maps of large volumes of the Universe using Doppler lensing.

  8. Raman-shifted dye laser for water vapor DIAL measurements

    SciTech Connect

    Grossmann, B.E.; Singh, U.N.; Higdon, N.S.; Cotnoir, L.J.; Wilkerson, T.D.; Browell, E.V.

    1987-05-01

    For improved DIAL measurements of water vapor in the upper troposphere or lower stratosphere, we have generated narrowband (--0.03-cm/sup -1/) laser radiation at 720- and 940-nm wavelengths by stimulated Raman scattering (SRS) using the narrow linewidth (--0.02-cm/sup -1/) output of a Nd:YAG-pumped dye laser. For a hydrogen pressure of 350 psi, the first Stokes conversion efficiencies to 940 nm were 20% and 35% when using a conventional and waveguide Raman cell, respectively. We measured the linewidth of the first Stokes line at high cell pressures and inferred collisional broadening coefficients that agree well with those previously measured in spontaneous Raman scattering.

  9. Statistical evaluation and modeling of Internet dial-up traffic

    NASA Astrophysics Data System (ADS)

    Faerber, Johannes; Bodamer, Stefan; Charzinski, Joachim

    1999-08-01

    In times of Internet access being a popular consumer applications even for `normal' residential users, some telephone exchanges are congested by customers using modem or ISDN dial-up connections to their Internet Service Providers. In order to estimate the number of additional lines and switching capacity required in an exchange or a trunk group, Internet access traffic must be characterized in terms of holding time and call interarrival time distributions. In this paper, we analyze log files tracing the usage of the central ISDN access line pool at University of Stuttgart for a period of six months. Mathematical distributions are fitted to the measured data and the fit quality is evaluated with respect to the blocking probability caused by the synthetic traffic in a multiple server loss system. We show how the synthetic traffic model scales with the number of subscribers and how the model could be applied to compute economy of scale results for Internet access trunks or access servers.

  10. Diode laser based water vapor DIAL using modulated pulse technique

    NASA Astrophysics Data System (ADS)

    Pham, Phong Le Hoai; Abo, Makoto

    2014-11-01

    In this paper, we propose a diode laser based differential absorption lidar (DIAL) for measuring lower-tropospheric water vapor profile using the modulated pulse technique. The transmitter is based on single-mode diode laser and tapered semiconductor optical amplifier with a peak power of 10W around 800nm absorption band, and the receiver telescope diameter is 35cm. The selected wavelengths are compared to referenced wavelengths in terms of random error and systematic errors. The key component of modulated pulse technique, a macropulse, is generated with a repetition rate of 10 kHz, and the modulation within the macropulse is coded according to a pseudorandom sequence with 100ns chip width. As a result, we evaluate both single pulse modulation and pseudorandom coded pulse modulation technique. The water vapor profiles conducted from these modulation techniques are compared to the real observation data in summer in Japan.

  11. III-V Compound Detectors for CO2 DIAL Measurements

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Abedin, M. Nurul; Sulima, Oleg V.; Ismail, Syed; Singh, Upendra N.

    2005-01-01

    Profiling of atmospheric carbon dioxide (CO2) is important for understanding the natural carbon cycle on Earth and its influence on global warming and climate change. Differential absorption lidar is a powerful remote sensing technique used for profiling and monitoring atmospheric constituents. Recently there has been an interest to apply this technique, at the 2 m wavelength, for investigating atmospheric CO2. This drives the need for high quality detectors at this wavelength. Although 2 m detectors are commercially available, the quest for a better detector is still on. The detector performance, regarding quantum efficiency, gain and associated noise, affects the DIAL signal-to-noise ratio and background signal, thereby influencing the instrument sensitivity and dynamic range. Detectors based on the III-V based compound materials shows a strong potential for such application. In this paper the detector requirements for a long range CO2 DIAL profiles will be discussed. These requirements were compared to newly developed III-V compound infrared detectors. The performance of ternary InGaSb pn junction devices will be presented using different substrates, as well as quaternary InGaAsSb npn structure. The performance study was based on experimental characterization of the devices dark current, spectral response, gain and noise. The final results are compared to the current state-of-the-art InGaAs technology. Npn phototransistor structure showed the best performance, regarding the internal gain and therefore the device signal-to-noise ratio. 2-micrometers detectivity as high as 3.9 x 10(exp 11) cmHz(sup 1/2)/W was obtained at a temperature of -20 C and 4 V bias voltage. This corresponds to a responsivity of 2650 A/W with about 60% quantum efficiency.

  12. Alexandrite laser transmitter development for airborne water vapor DIAL measurements

    NASA Technical Reports Server (NTRS)

    Chyba, Thomas H.; Ponsardin, Patrick; Higdon, Noah S.; DeYoung, Russell J.; Browell, Edward V.

    1995-01-01

    In the DIAL technique, the water vapor concentration profile is determined by analyzing the lidar backscatter signals for laser wavelengths tuned 'on' and 'off' a water vapor absorption line. Desired characteristics of the on-line transmitted laser beam include: pulse energy greater than or equal to 100 mJ, high-resolution tuning capability (uncertainty less than 0.25 pm), good spectral stability (jitter less than 0.5 pm about the mean), and high spectral purity (greater than 99 percent). The off-line laser is generally detuned less than 100 pm away from the water vapor line. Its spectral requirements are much less stringent. In our past research, we developed and demonstrated the airborne DIAL technique for water vapor measurements in the 720-nm spectral region using a system based on an alexandrite laser as the transmitter for the on-line wavelength and a Nd:YAG laser-pumped dye laser for the off-line wavelength. This off-line laser has been replaced by a second alexandrite laser. Diode lasers are used to injection seed both lasers for frequency and linewidth control. This eliminates the need for the two intracavity etalons utilized in our previous alexandrite laser and thereby greatly reduces the risk of optical damage. Consequently, the transmitted pulse energy can be substantially increased, resulting in greater measurement range, higher data density, and increased measurement precision. In this paper, we describe the diode injection seed source, the two alexandrite lasers, and the device used to line lock the on-line seed source to the water vapor absorption feature.

  13. Ultrasonic Doppler Modes

    NASA Astrophysics Data System (ADS)

    Tortoli, Piero; Fidanzati, Paolo; Luca, Bassi

    Any US equipment includes Doppler facilities capable of providing information about moving structures inside the human body. In most cases, the primary interest is in the investigation of blood flow dynamics, since this may be helpful for early diagnosis of cardiovascular diseases. However, there is also an increasing interest in tracking the movements of human tissues, since such movements can give an indirect evaluation of their elastic properties, which are valuable indicators of the possible presence of pathologies. This paper aims at presenting an overview of the different ways in which the Doppler technique has been developed and used in medical ultrasound (US), from early continuous wave (CW) systems to advanced pulsed wave (PW) colour-Doppler equipment. In particular, the most important technical features and clinical applications of CW, single-gate PW, multi-gate PW and flow-imaging systems are reviewed. The main signal processing approaches used for detection of Doppler frequencies are described, including time-domain and frequency-domain (spectral) methods, as well as novel strategies like, e.g., harmonic Doppler mode, which have been recently introduced to exploit the benefits of US contrast agents.

  14. Development of Field-deployable Diode-laser-based Water Vapor Dial

    NASA Astrophysics Data System (ADS)

    Pham Le Hoai, Phong; Abo, Makoto; Sakai, Tetsu

    2016-06-01

    In this paper, a field-deployable diode-laser-based differential absorption lidar (DIAL) has been developed for lower-tropospheric water vapor observation in Tokyo, Japan. A photoacoustic cell is used for spectroscopy experiment around absorption peaks of 829.022 nm and 829.054 nm. The water vapor density extracted from the observational data agrees with the referenced radiosonde data. Furthermore, we applied modulated pulse technique for DIAL transmitter. It enables DIAL to measure water vapor profile for both low and high altitude regions.

  15. Laser Doppler projection tomography.

    PubMed

    Zeng, Yaguang; Xiong, Ke; Lu, Xuanlong; Feng, Guanping; Han, Dingan; Wu, Jing

    2014-02-15

    We propose a laser Doppler projection tomography (LDPT) method to obtain visualization of three-dimensional (3D) flowing structures. With LDPT, the flowing signal is extracted by a modified laser Doppler method, and the 3D flowing image is reconstructed by the filtered backprojection algorithm. Phantom experiments are performed to demonstrate that LDPT is able to obtain 3D flowing structure with higher signal-to-noise ratio and spatial resolution. Our experiment results display its potentially useful application to develop 3D label-free optical angiography for the circulation system of live small animal models or microfluidic experiments.

  16. Linear operating region in the ozone dial photon counting system

    NASA Technical Reports Server (NTRS)

    Andrawis, Madeleine

    1995-01-01

    Ozone is a relatively unstable molecule found in Earth's atmosphere. An ozone molecule is made up of three atoms of oxygen. Depending on where ozone resides, it can protect or harm life on Earth. High in the atmosphere, about 15 miles up, ozone acts as a shield to protect Earth's surface from the sun's harmful ultraviolet radiation. Without this shield, we would be more susceptible to skin cancer, cataracts, and impaired immune systems. Closer to Earth, in the air we breathe, ozone is a harmful pollutant that causes damage to lung tissue and plants. Since the early 1980's, airborne lidar systems have been used for making measurements of ozone. The differential absorption lidar (DIAL) technique is used in the remote measurement of O3. This system allows the O3 to be measured as function of the range in the atmosphere. Two frequency-doubled Nd:YAG lasers are used to pump tunable dye lasers. The lasers are operating at 289 nm for the DIAL on-line wavelength of O3, and the other one is operated at 300 nm for the off-line wavelength. The DIAL wavelengths are produced in sequential laser pulses with a time separation of 300 micro s. The backscattered laser energy is collected by telescopes and measured using photon counting systems. The photon counting system measures the light signal by making use of the photon nature of light. The output pulse from the Photo-Multiplier Tube (PE), caused by a photon striking the PMT photo-cathode, is amplified and passed to a pulse height discriminator. The peak value of the pulse is compared to a reference voltage (discrimination level). If the pulse amplitude exceeds the discrimination level, the discriminator generates a standard pulse which is counted by the digital counter. Non-linearity in the system is caused by the overlapping of pulses and the finite response time of the electronics. At low count rates one expects the system to register one event for each output pulse from the PMT corresponding to a photon incident upon the

  17. Comparison of ozone profiles obtained with NIES DIAL and SAGE II measurements

    NASA Technical Reports Server (NTRS)

    Nakane, Hideaki; Sasano, Yasuhiro; Hayashida-Amano, Sachiko; Sugimoto, Nobuo; Matsui, Ichiro; Minato, Atsushi; Mccormick, M. P.

    1993-01-01

    Ozone profiles obtained with the Differential Absorption Lidar (DIAL) system at the National Institute for Environmental Studies (NIES) (Tsukuba, Japan) were compared with data provided by the satellite sensor SAGE II. The SAGE II data were selected based on criteria of spatial and temporal differences between the DIAL and the SAGE II measurements: five degrees in latitude and 15 degrees in longitude, within a latitudinal band from 31 deg to 41 deg N, and within one, three and five days after or before the DIAL measurements. Results show very good agreement for the individual and the zonal-mean profiles. The average mean difference between the DIAL and the SAGE II measurements over the altitudes 15-50 km was about 10 percent.

  18. Correlative Stratospheric Ozone Measurements with the Airborne UV DIAL System during TOTE/VOTE

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Fenn, Marta A.; Browell, Edward V.; McGee, Thomas J.; Singh, Upendra N.; Gross, Michael R.; McDermid, I. Stuart; Froidevaux, Lucien; Wang, Pi-Huang

    1998-01-01

    The airborne UV differential absorption lidar (DIAL) system participated in the Tropical Ozone Transport Experiment/Vortex Ozone Transport Experiment (TOTE/VOTE) in late 1995/early 1996. This mission afforded the opportunity to compare the DIAL system's stratospheric ozone measuring capability with other remote-sensing instruments through correlative measurements over a latitude range from the tropics to the Arctic. These instruments included ground-based DIAL and space-based stratospheric instruments: HALOE; MLS; and SAGE II. The ozone profiles generally agreed within random error estimates for the various instruments in the middle of the profiles in the tropics, but regions of significant systematic differences, especially near or below the tropopause or at the higher altitudes were also found. The comparisons strongly suggest that the airborne UV DIAL system can play a valuable role as a mobile lower-stratospheric ozone validation instrument.

  19. Atmospheric probing by Doppler radar

    NASA Technical Reports Server (NTRS)

    Lhermitte, R. M.

    1969-01-01

    A survey is presented of the application of Doppler techniques to the study of atmospheric phenomena. Particular emphasis is placed on the requirement of adequate digital processing means for the Doppler signal and the Doppler data which are acquired at a very high rate. The need is discussed of a two or three Doppler method as an ultimate approach to the problem of observing the three-dimensional field of particle motion inside convective storms.

  20. Finnish Meteorological Institute Doppler Lidar

    SciTech Connect

    Ewan OConnor

    2015-03-27

    This doppler lidar system provides co-polar and cross polar attenuated backscatter coefficients,signal strength, and doppler velocities in the cloud and in the boundary level, including uncertainties for all parameters. Using the doppler beam swinging DBS technique, and Vertical Azimuthal Display (VAD) this system also provides vertical profiles of horizontal winds.

  1. The Doppler Pendulum Experiment

    ERIC Educational Resources Information Center

    Lee, C. K.; Wong, H. K.

    2011-01-01

    An experiment to verify the Doppler effect of sound waves is described. An ultrasonic source is mounted at the end of a simple pendulum. As the pendulum swings, the rapid change of frequency can be recorded by a stationary receiver using a simple frequency-to-voltage converter. The experimental results are in close agreement with the Doppler…

  2. Photonic doppler velocimetry

    SciTech Connect

    Lowry, M E; Molau, N E; Sargis, P D; Strand, O T; Sweider, D

    1999-01-01

    We are developing a novel fiber-optic approach to laser Doppler velocimetry as a diagnostic for high explosives tests. Using hardware that was originally developed for the telecommunications industry, we are able to measure surface velocities ranging from centimeters per second to kilometers per second. Laboratory measurements and field trials have shown excellent agreement with other diagnostics.

  3. Ultrasonic colour Doppler imaging

    PubMed Central

    Evans, David H.; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been found to be of great value in assessing blood flow in many clinical conditions. Although the method for obtaining the velocity information is in many ways similar to the method for obtaining the anatomical information, it is technically more demanding for a number of reasons. It also has a number of weaknesses, perhaps the greatest being that in conventional systems, the velocities measured and thus displayed are the components of the flow velocity directly towards or away from the transducer, while ideally the method would give information about the magnitude and direction of the three-dimensional flow vectors. This review briefly introduces the principles behind colour Doppler imaging and describes some clinical applications. It then describes the basic components of conventional colour Doppler systems and the methods used to derive velocity information from the ultrasound signal. Next, a number of new techniques that seek to overcome the vector problem mentioned above are described. Finally, some examples of vector velocity images are presented. PMID:22866227

  4. Frequency-agile CO2 DIAL for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Carr, Lewis W.; Fletcher, Leland; Crittenden, Max; Carlisle, Clinton B.; Gotoff, Steve W.; Reyes, Felix; D'Amico, Francis

    1994-06-01

    SRI International has designed and developed a fully automated frequency-agile CO2 DIAL (differential absorption lidar) system. The system sensor head consists of a single, frequency- agile, CO2, TEA laser; a 10-inch receiver telescope, a liquid-nitrogen-cooled HgCdTe detector; and a transmit energy monitor. The sensor head and its auxiliary equipment (including the data acquisition and processing system, laser power supply, and water cooler) are mounted in a Grumman-Olson 11-ft step van. The self-contained, mobile system can be used to detect and quantify many volatile organic compounds (VOCs) at parts per million sensitivities over open-path ranges to 5 km. Characterization and demonstration of the system is ongoing. However, data collected on benzene, toluene, xylene, methanol, ethyl acetate, acetic anhydride, and other VOCs will be described herein. The system could be used by industry and government agencies in stand-off monitoring to map VOC emission sources and transport patterns into surrounding communities. A single mobile system could be used for several locations to verify compliance with environmental regulations such as the 1990 Clean Air Act Amendments.

  5. Survival times of pre-1950 US women radium dial workers

    SciTech Connect

    Stehney, A.F.

    1994-05-01

    Survival times of US women radium dial workers to the end of 1989 were examined by life table methods. Included were 1301 women rust employed before 1930 and 1242 first employed in 1930-1949. Expected numbers of deaths were estimated from age- and time-specific death rates for US white females. In the early group, 85 deaths from the well-known radium-induced cancers - bone sarcomas and head carcinomas - were observed, but only 724 deaths from aH other causes were observed vs 755 expected. Life shortening ({plus_minus}S.E.) of 1.8 {plus_minus}0.5 y compared to the general population of US white females was calculated from the time distribution of all deaths in the pre-1930 group. In the 1930--1949 group, 350 deaths were observed vs 343 expected and no bone sarcomas or head carcinomas occurred. Among women who survived at least 2 y after rust measurement of body radium, a significant excess of observed vs expected deaths was found only for radium intakes greater than 1.85 MBq of {sup 226}Ra + {sup 228}Ra, and no trend of deaths or reduction of life expectancy was found with length of employment.

  6. Development of a Compact, Ground-Based Ozone DIAL System

    NASA Technical Reports Server (NTRS)

    Chyba, T. H.; Zenker, T.; McCray, C. L.; Lee, H. R.; Thomas, B.; Elivert, R.; Higdon, N. Scott; Richter, D. A.; Fishman, J.

    1998-01-01

    We are developing a portable, eye-safe, ground-based ozone lidar instrument specialized for ozone differential absorption lidar (DIAL) measurements in the troposphere. This prototype instrument is intended to operate at remote field sites and to serve as the basic unit for future monitoring projects requiring multi-instrument networks, such as that proposed for the Global Tropospheric Ozone Project (GTOP). GTOP is currently being formulated by a scientific panel of the International Global Atmospheric Chemistry Project to meet its goal to better understand the processes that control the global distribution of tropospheric ozone. In order for the lidar to be widely deployed in networks, it must be fairly easy to use and maintain as well as being cost-competitive with ground station launching ozone sondes which operate several times a day. To achieve these goals, emphasis is placed upon the incorporation of: (1) all-solid state transmitters which can reliably produce 20-40 mJ pulses; (2) a highly efficient, narrow-bandpass receiver; (3) dual analog and photon-counting detector channels; and (4) flexible, user-friendly control software.

  7. Flight tests of the Digital Integrated Automatic Landing System (DIALS)

    NASA Technical Reports Server (NTRS)

    Halyo, N.

    1984-01-01

    The design, development, implementation and flight tests of the Digital Integrated Automatic Landing System (DIALS) are discussed. The system was implemented and flight tested on the Transport Systems Research Vehicle (TSRV), a Boeing 737-100. The design uses modern optimal control methods. The direct digital design obtained uses a 10 Hz rate for the sampling of sensors and the control commands. The basic structure of the control law consists of a steady state Kalman filter followed by a control gain matrix. The sensor information used includes Microwave Landing System (MLS) position, attitude, calibrated airspeed, and body accelerations. The phases of the final approach considered are localized and steep glideslope capture (which may be performed simultaneously or independently), localizer and glideslope track, crab/decrab, and flare to touchdown. The system can capture, track, and flare from conventional, as well as steep, glideslopes ranging from 2.5 deg to 5.5 deg. All of the modes of the control law including the Kalman filters were implemented on the TSRV flight computers which use fixed point arithmetic with 16 bit words. The implementation considerations are described as well as an analysis of the flight test results.

  8. Laser Doppler flowmetry imaging

    NASA Astrophysics Data System (ADS)

    Nilsson, Gert E.; Wardell, Karin

    1994-02-01

    A laser Doppler perfusion imager has been developed that makes possible mapping of tissue blood flow over surfaces with extensions up to about 12 cm X 12 cm. The He-Ne laser beam scans the tissue under study throughout 4096 measurement sites. A fraction of the backscattered and Doppler broadened light is detected by a photo diode positioned about 20 cm above the tissue surface. After processing, a signal that scales linearly with perfusion is stored in a computer and a color coded image of the spatial tissue perfusion is shown on a monitor. A full format scan is completed in about 4.5 minutes. Algorithms for calculating perfusion profiles and averages as well as substraction of one image from another, form an integral part of the system data analysis software. The perfusion images can also be exported to other software packages for further processing and analysis.

  9. Doppler radar results

    NASA Technical Reports Server (NTRS)

    Bracalente, Emedio M.

    1992-01-01

    The topics are covered in viewgraph form and include the following: (1) a summary of radar flight data collected; (2) a video of combined aft cockpit, nose camera, and radar hazard displays; (3) a comparison of airborne radar F-factor measurements with in situ and Terminal Doppler Weather Radar (TDWR) F-factors for some sample events; and (4) a summary of wind shear detection performance.

  10. Holographic laser Doppler ophthalmoscopy.

    PubMed

    Simonutti, M; Paques, M; Sahel, J A; Gross, M; Samson, B; Magnain, C; Atlan, M

    2010-06-15

    We report laser Doppler ophthalmoscopic fundus imaging in the rat eye with near-IR heterodyne holography. Sequential sampling of the beat of the reflected radiation against a frequency-shifted optical local oscillator is made onto an array detector. Wide-field maps of fluctuation spectra in the 10 Hz to 25 kHz band exhibit angiographic contrasts in the retinal vascular tree without requirement of an exogenous marker.

  11. Characterization of an Ozone DIAL Receiver for Operation on an Unpiloted Atmospheric Vehicle

    NASA Technical Reports Server (NTRS)

    Goldschmidt, Soenke; DeYoung, Russell J.

    1998-01-01

    Laser remote sensing from aircraft has become a very important technique for observing ozone in the environment. NASA Langley has an active aircraft based research program which presently uses Nd:YAG-pumped dye lasers that are then doubled into the UV to probe both the stratosphere and troposphere for ozone using the differential absorption lidar (DIAL) technique. This large system can only fly on large (NASA DC-8, Electra) aircraft and has been deployed on many missions throughout the world. In the future it will be desirable to fly autonomous, lightweight, compact ozone DIAL instruments on unpiloted atmospheric vehicles (UAV) aircraft. Such aircraft could fly at high altitudes for extended times collecting science data without risk to the operator. Cost for such missions may be substantially reduced over present large aircraft based missions. Presently there are no ozone DIAL systems capable of flying on an UAV aircraft. In order to facilitate UAV missions, small more efficient laser transmitters need to be developed that emit approximately 25mJ near 300nm for each of the DIAL 'on' and 'off' line pulses. Also lightweight, compact DIAL receiver systems need to be built and demonstrated. Such receiver systems may incorporate fiber optic coupled telescopes for maximum light gathering capability per unit area, high quantum efficiency gated photomultiplier tubes with reasonable gain and very narrow-band filters for background light rejection with high light throughput. A compact high-performance 16-bit digitizer and a data storage system are also required. A conceptional design of such a UAV DIAL instrument is presented. Here a pulsed UV laser emits pulses into the atmosphere where elastic scattering occurs which results in light being scattered into the receiver telescope. The subject of this paper is the design, construction and testing of a robust, compact ozone DIAL receiver system that would be a prototype for eventual use in a UAV aircraft.

  12. Doppler Optical Coherence Tomography

    PubMed Central

    Leitgeb, Rainer A.; Werkmeister, René M.; Blatter, Cedric; Schmetterer, Leopold

    2014-01-01

    Optical Coherence Tomography (OCT) has revolutionized ophthalmology. Since its introduction in the early 1990s it has continuously improved in terms of speed, resolution and sensitivity. The technique has also seen a variety of extensions aiming to assess functional aspects of the tissue in addition to morphology. One of these approaches is Doppler OCT (DOCT), which aims to visualize and quantify blood flow. Such extensions were already implemented in time domain systems, but have gained importance with the introduction of Fourier domain OCT. Nowadays phase-sensitive detection techniques are most widely used to extract blood velocity and blood flow from tissues. A common problem with the technique is that the Doppler angle is not known and several approaches have been realized to obtain absolute velocity and flow data from the retina. Additional studies are required to elucidate which of these techniques is most promising. In the recent years, however, several groups have shown that data can be obtained with high validity and reproducibility. In addition, several groups have published values for total retinal blood flow. Another promising application relates to non-invasive angiography. As compared to standard techniques such as fluorescein and indocyanine-green angiography the technique offers two major advantages: no dye is required and depth resolution is required is provided. As such Doppler OCT has the potential to improve our abilities to diagnose and monitor ocular vascular diseases. PMID:24704352

  13. Laser double Doppler flowmeter

    NASA Astrophysics Data System (ADS)

    Poffo, L.; Goujon, J.-M.; Le Page, R.; Lemaitre, J.; Guendouz, M.; Lorrain, N.; Bosc, D.

    2014-05-01

    The Laser Doppler flowmetry (LDF) is a non-invasive method for estimating the tissular blood flow and speed at a microscopic scale (microcirculation). It is used for medical research as well as for the diagnosis of diseases related to circulatory system tissues and organs including the issues of microvascular flow (perfusion). It is based on the Doppler effect, created by the interaction between the laser light and tissues. LDF measures the mean blood flow in a volume formed by the single laser beam, that penetrate into the skin. The size of this measurement volume is crucial and depends on skin absorption, and is not directly reachable. Therefore, current developments of the LDF are focused on the use of always more complex and sophisticated signal processing methods. On the other hand, laser Double Doppler Flowmeter (FL2D) proposes to use two laser beams to generate the measurement volume. This volume would be perfectly stable and localized at the intersection of the two laser beams. With FL2D we will be able to determine the absolute blood flow of a specific artery. One aimed application would be to help clinical physicians in health care units.

  14. Doppler optical coherence tomography.

    PubMed

    Leitgeb, Rainer A; Werkmeister, René M; Blatter, Cedric; Schmetterer, Leopold

    2014-07-01

    Optical Coherence Tomography (OCT) has revolutionized ophthalmology. Since its introduction in the early 1990s it has continuously improved in terms of speed, resolution and sensitivity. The technique has also seen a variety of extensions aiming to assess functional aspects of the tissue in addition to morphology. One of these approaches is Doppler OCT (DOCT), which aims to visualize and quantify blood flow. Such extensions were already implemented in time domain systems, but have gained importance with the introduction of Fourier domain OCT. Nowadays phase-sensitive detection techniques are most widely used to extract blood velocity and blood flow from tissues. A common problem with the technique is that the Doppler angle is not known and several approaches have been realized to obtain absolute velocity and flow data from the retina. Additional studies are required to elucidate which of these techniques is most promising. In the recent years, however, several groups have shown that data can be obtained with high validity and reproducibility. In addition, several groups have published values for total retinal blood flow. Another promising application relates to non-invasive angiography. As compared to standard techniques such as fluorescein and indocyanine-green angiography the technique offers two major advantages: no dye is required and depth resolution is required is provided. As such Doppler OCT has the potential to improve our abilities to diagnose and monitor ocular vascular diseases. PMID:24704352

  15. Characterization of the DialGuard device for endotoxin removal in hemodialysis.

    PubMed

    Szathmary, Susan; Hegyi, Edit; Amoureux, Marie-Claude; Rajapakse, Nandani; Chicorka, Lisa; Szalai, Gyorgy; Reszegi, Katalin; Derbyshire, Zachary; Paluh, Janet; Dodson, Bryce; Grandics, Peter

    2004-01-01

    Bacterial pyrogens, capable of penetrating dialyzer membranes, are responsible for a systemic inflammatory reaction in hemodialysis patients. Dialyzer reuse, involving rinsing of the dialyzer with pyrogen-containing water, may exacerbate this situation. Studies of the mechanism of action of endotoxin suggest that it irreversibly damages the vascular endothelium. The novel endotoxin removal method described here, is based on affinity-binding of endotoxin by the adsorbent ClarEtox, a USP Class VI-certified resin that is the active component of the medical device DialGuard. Under standard hemodialysis operating conditions, challenge of DialGuard with Pseudomonas maltophilia supernatant-spiked dialysate, containing 35-193 EU/ml endotoxin, resulted in endotoxin levels below 0.05 EU/ml in the treated dialysate. DialGuard was able to decrease endotoxin concentrations in the dialysate from a range of 2.39-8.49 to <0.005 EU/ml. DialGuard supports high fluid velocities at low back pressures and can be sanitized using the heat sanitization cycle of hemodialysis machines. DialGuard offers a simple, user-friendly way to reduce the concentration of endotoxin in dialysate and water for dialysis at a low cost.

  16. Laser Doppler diagnostics for orthodontia

    NASA Astrophysics Data System (ADS)

    Ryzhkova, Anastasia V.; Lebedeva, Nina G.; Sedykh, Alexey V.; Ulyanov, Sergey S.; Lepilin, Alexander V.; Kharish, Natalia A.

    2004-06-01

    The results of statistical analysis of Doppler spectra of intensity fluctuations of light, scattered from mucous membrane of oral cavity of healthy volunteers and patients, abused by the orthodontic diseases, are presented. Analysis of Doppler spectra, obtained from tooth pulp of patients, is carried out. New approach to monitoring of blood microcirculation in orthodontics is suggested. Influence of own noise of Doppler measuring system on formation of the output signal is studied.

  17. Calling for Help? Considering Function and Meaning when Patients Drunk-Dial Psychotherapists

    PubMed Central

    Serafini, Kelly; LaPaglia, Donna; Steinfeld, Matthew

    2013-01-01

    Drunk-dialing is a term documented in both popular culture and academic literatures to describe a behavior in which a person contacts another individual by phone while intoxicated. In our collective clinical experience we have found that clients drunk-dial their clinicians too, particularly while in substance use treatment, and yet there is a noticeable absence of research on the topic to guide clinical decision-making within a process-based understanding of these events. As the parameters within which psychotherapy takes place become increasingly technologized, a literature base to document clients’ idiosyncratic use of technology will become increasingly necessary and useful. We provide a brief review of the existing research on drunk-dialing and conclude with specific questions to guide future research and practice. PMID:24023519

  18. Effect of differential spectral reflectance on DIAL measurements using topographic targets.

    PubMed

    Grant, W B

    1982-07-01

    Differential absorption lidar (DIAL) measurements of atmospheric gases and temperature made using topographic targets to provide the backscattered signal are subject to errors from the differential spectral reflectance of the target materials. The magnitude of this effect is estimated for a number of DIAL measurements reported in the literature. Calculations are presented for several topographic targets. In general the effect on a DIAL measurement increases directly with increasing wavelength and laser line separation, and inversely with differential absorption coefficient and distance to the target. The effect can be minimized by using tunable or isotope lasers to reduce the laser line separation or by using additional reference wavelengths to determine the surface differential spectral reflectance. PMID:20396041

  19. Effect of differential spectral reflectance on DIAL measurements using topographic targets. [Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Grant, W. B.

    1982-01-01

    Differential absorption lidar (DIAL) measurements of atmospheric gases and temperature made using topographic targets to provide the backscattered signal are subject to errors from the differential spectral reflectance of the target materials. The magnitude of this effect is estimated for a number of DIAL measurements reported in the literature. Calculations are presented for several topographic targets. In general the effect on a DIAL measurement increases directly with increasing wavelength and laser line separation, and inversely with differential absorption coefficient and distance to the target. The effect can be minimized by using tunable or isotope lasers to reduce the laser line separation or by using additional reference wavelengths to determine the surface differential spectral reflectance.

  20. Laser Doppler velocimetry primer

    NASA Technical Reports Server (NTRS)

    Bachalo, William D.

    1985-01-01

    Advanced research in experimental fluid dynamics required a familiarity with sophisticated measurement techniques. In some cases, the development and application of new techniques is required for difficult measurements. Optical methods and in particular, the laser Doppler velocimeter (LDV) are now recognized as the most reliable means for performing measurements in complex turbulent flows. And such, the experimental fluid dynamicist should be familiar with the principles of operation of the method and the details associated with its application. Thus, the goals of this primer are to efficiently transmit the basic concepts of the LDV method to potential users and to provide references that describe the specific areas in greater detail.

  1. DialBetics With a Multimedia Food Recording Tool, FoodLog

    PubMed Central

    Waki, Kayo; Aizawa, Kiyoharu; Kato, Shigeko; Fujita, Hideo; Lee, Hanae; Kobayashi, Haruka; Ogawa, Makoto; Mouri, Keisuke; Kadowaki, Takashi; Ohe, Kazuhiko

    2015-01-01

    Background: Diabetes self-management education is an essential element of diabetes care. Systems based on information and communication technology (ICT) for supporting lifestyle modification and self-management of diabetes are promising tools for helping patients better cope with diabetes. An earlier study had determined that diet improved and HbA1c declined for the patients who had used DialBetics during a 3-month randomized clinical trial. The objective of the current study was to test a more patient-friendly version of DialBetics, whose development was based on the original participants’ feedback about the previous version of DialBetics. Method: DialBetics comprises 4 modules: data transmission, evaluation, exercise input, and food recording and dietary evaluation. Food recording uses a multimedia food record, FoodLog. A 1-week pilot study was designed to determine if usability and compliance improved over the previous version, especially with the new meal-input function. Results: In the earlier 3-month, diet-evaluation study, HbA1c had declined a significant 0.4% among those who used DialBetics compared with the control group. In the current 1-week study, input of meal photos was higher than with the previous version (84.8 ± 13.2% vs 77.1% ± 35.1% in the first 2 weeks of the 3-month trial). Interviews after the 1-week study showed that 4 of the 5 participants thought the meal-input function improved; the fifth found input easier, but did not consider the result an improvement. Conclusions: DialBetics with FoodLog was shown to be an effective and convenient tool, its new meal-photo input function helping provide patients with real-time support for diet modification. PMID:25883164

  2. MyOcean Internal Information System (Dial-P)

    NASA Astrophysics Data System (ADS)

    Blanc, Frederique; Jolibois, Tony; Loubrieu, Thomas; Manzella, Giuseppe; Mazzetti, Paolo; Nativi, Stefano

    2010-05-01

    , trajectory, station, grid, etc., which will be implemented in netCDF format. SeaDataNet is recommending ODV and NetCDF formats. Another problem related to data curation and interoperability is the possibility to use common vocabularies. Common vocabularies are developed in many international initiatives, such as GEMET (promoted by INSPIRE as a multilingual thesaurus), UNIDATA, SeaDataNet, Marine Metadata Initiative (MMI). MIS is considering the SeaDataNet vocabulary as a base for interoperability. Four layers of different abstraction levels of interoperability an be defined: - Technical/basic: this layer is implemented at each TAC or MFC through internet connection and basic services for data transfer and browsing (e.g FTP, HTTP, etc). - Syntactic: allowing the interchange of metadata and protocol elements. This layer corresponds to a definition Core Metadata Set, the format of exchange/delivery for the data and associated metadata and possible software. This layer is implemented by the DIAL-P logical interface (e.g. adoption of INSPIRE compliant metadata set and common data formats). - Functional/pragmatic: based on a common set of functional primitives or on a common set of service definitions. This layer refers to the definition of services based on Web services standards. This layer is implemented by the DIAL-P logical interface (e.g. adoption of INSPIRE compliant network services). - Semantic: allowing to access similar classes of objects and services across multiple sites, with multilinguality of content as one specific aspect. This layer corresponds to MIS interface, terminology and thesaurus. Given the above requirements, the proposed solution is a federation of systems, where the individual participants are self-contained autonomous systems, but together form a consistent wider picture. A mid-tier integration layer mediates between existing systems, adapting their data and service model schema to the MIS. The developed MIS is a read-only system, i.e. does not allow

  3. MyOcean Internal Information System (Dial-P)

    NASA Astrophysics Data System (ADS)

    Blanc, Frederique; Jolibois, Tony; Loubrieu, Thomas; Manzella, Giuseppe; Mazzetti, Paolo; Nativi, Stefano

    2010-05-01

    , trajectory, station, grid, etc., which will be implemented in netCDF format. SeaDataNet is recommending ODV and NetCDF formats. Another problem related to data curation and interoperability is the possibility to use common vocabularies. Common vocabularies are developed in many international initiatives, such as GEMET (promoted by INSPIRE as a multilingual thesaurus), UNIDATA, SeaDataNet, Marine Metadata Initiative (MMI). MIS is considering the SeaDataNet vocabulary as a base for interoperability. Four layers of different abstraction levels of interoperability an be defined: - Technical/basic: this layer is implemented at each TAC or MFC through internet connection and basic services for data transfer and browsing (e.g FTP, HTTP, etc). - Syntactic: allowing the interchange of metadata and protocol elements. This layer corresponds to a definition Core Metadata Set, the format of exchange/delivery for the data and associated metadata and possible software. This layer is implemented by the DIAL-P logical interface (e.g. adoption of INSPIRE compliant metadata set and common data formats). - Functional/pragmatic: based on a common set of functional primitives or on a common set of service definitions. This layer refers to the definition of services based on Web services standards. This layer is implemented by the DIAL-P logical interface (e.g. adoption of INSPIRE compliant network services). - Semantic: allowing to access similar classes of objects and services across multiple sites, with multilinguality of content as one specific aspect. This layer corresponds to MIS interface, terminology and thesaurus. Given the above requirements, the proposed solution is a federation of systems, where the individual participants are self-contained autonomous systems, but together form a consistent wider picture. A mid-tier integration layer mediates between existing systems, adapting their data and service model schema to the MIS. The developed MIS is a read-only system, i.e. does not allow

  4. Single frequency and wavelength stabilized near infrared laser source for water vapor DIAL remote sensing application

    NASA Astrophysics Data System (ADS)

    Chuang, Ti; Walters, Brooke; Shuman, Tim; Losee, Andrew; Schum, Tom; Puffenberger, Kent; Burnham, Ralph

    2015-02-01

    Fibertek has demonstrated a single frequency, wavelength stabilized near infrared laser transmitter for NASA airborne water vapor DIAL application. The application required a single-frequency laser transmitter operating at 935 nm near infrared (NIR) region of the water vapor absorption spectrum, capable of being wavelength seeded and locked to a reference laser source and being tuned at least 100 pm across the water absorption spectrum for DIAL on/off measurements. Fibertek is building a laser transmitter system based on the demonstrated results. The laser system will be deployed in a high altitude aircraft (ER-2 or UAV) to autonomously perform remote, long duration and high altitude water vapor measurements.

  5. The Six-Point Dial of Treatment: A Useful Framework for Novice Therapists

    PubMed Central

    Witte, Tracy K.; Gordon, Kathryn H.; Joiner, Thomas E.

    2010-01-01

    The six-point dial of treatment described in this case report was developed to guide graduate student psychological trainees through treatment and includes the following components: assessment of dangerousness, diagnosis, diagnosis-based treatment, ongoing evaluation of treatment response, obstacles to treatment, and motivation. In this case report, we describe the dial of treatment and present a case study of a client with paranoid schizophrenia (John) who presented at a graduate student training clinic to illustrate how this framework can be successfully applied. John has exhibited marked improvement, based on both objective measures and clinician judgment of global functioning. PMID:20563280

  6. ANL Doppler flowmeter

    NASA Astrophysics Data System (ADS)

    Karplus, H. B.; Raptis, A. C.; Lee, S.; Simpson, T.

    1985-10-01

    A flowmeter has been developed for measuring flow velocity in hot slurries. The flowmeter works on an ultrasonic Doppler principle in which ultrasound is injected into the flowing fluid through the solid pipe wall. Isolating waveguides separate the hot pipe from conventional ultrasonic transducers. Special clamp-on high-temperature transducers also can be adapted to work well in this application. Typical flows in pilot plants were found to be laminar, giving rise to broad-band Doppler spectra. A special circuit based on a servomechanism sensor was devised to determine the frequency average of such a broad spectrum. The device was tested at different pilot plants. Slurries with particulates greater than 70 microns (0.003 in.) yielded good signals, but slurries with extremely fine particulates were unpredictable. Small bubbles can replace the coarse particles to provide a good signal if there are not too many. Successful operation with very fine particulate slurries may have been enhanced by the presence of microbubbles.

  7. Doppler Beats or Interference Fringes?

    ERIC Educational Resources Information Center

    Kelly, Paul S.

    1979-01-01

    Discusses the following: another version of Doppler beats; alternate proof of spin-1 sin-1/2 problems; some mechanisms related to Dirac's strings; Doppler redshift in oblique approach of source and observer; undergraduate experiment on noise thermometry; use of the time evolution operator; resolution of an entropy maximization controversy;…

  8. Brief history of vector Doppler

    NASA Astrophysics Data System (ADS)

    Dunmire, Barbrina; Beach, Kirk W.

    2001-05-01

    Since the development of the directional Doppler by McLeod in 1967, methods of acquiring, analyzing, and displaying blood velocity information have been under constant exploration. These efforts are motivated by a variety of interest and objectives including, to: a) simplify clinical examination, examiner training, and study interpretation, b) provide more hemodynamic information, and c) reduce examination variability and improve accuracy. The vector Doppler technique has been proposed as one potential avenue to achieve these objects. Vector Doppler systems are those that determine the true 2D or 3D blood flow velocity by combining multiple independent velocity component measurements. Most instruments can be divided into two broad categories: 1) cross-beam and 2) time-domain. This paper provides a brief synopsis of the progression of vector Doppler techniques, from its onset in 1970 to present, as well as possible avenues for future work. This is not intended to be a comprehensive review of all vector Doppler systems.

  9. Mortality from cancers of major sites in female radium dial workers

    SciTech Connect

    Stebbings, J.H.; Lucas, H.F.; Stehney, A.F.

    1984-01-01

    The female radium dial workers have now experienced significant mortality from cancers other than the bone sarcomas and head carcinomas long known to be radium induced. The relationships of radium exposure to mortality from cancers of the stomach, pancreas, colon, rectum, liver, lung, breast, cervix, and corpus uteri, and from leukemia were studied in 1,285 pre-1930 dial workers. Mortality was compared with that expected from rates for US white females, with and without adjustment for local area mortality rates, and with mortality in dial workers exposed from 1930 to 1949. For the 693 cases whose body content of radium has been measured since 1955, dose-response relationships of cancer to systemic intake of radium and duration of employment were examined. Liver, pancreatic, cervical, and uterine cancers were clearly unrelated to radium exposure. Other cancers of the digestive tract appeared to be indirectly, if at all, associated with work in radium facilities. Lung cancer requires further investigation; inhalation exposures of the dial workers were reviewed. Analyses of the breast cancer data uncovered several observations inconsistent with the previously suggested causal association with radium exposure. Multiple myeloma was also reviewed. A threefold excess risk of death due to multiple myeloma has occurred, but is more closely correlated with duration of employment (a surrogate for external gamma radiation) than with radium intake.

  10. Mid-IR DIAL for high-resolution mapping of explosive precursors

    NASA Astrophysics Data System (ADS)

    Mitev, V.; Babichenko, S.; Bennes, J.; Borelli, R.; Dolfi-Bouteyre, A.; Fiorani, L.; Hespel, L.; Huet, T.; Palucci, A.; Pistilli, M.; Puiu, A.; Rebane, O.; Sobolev, I.

    2013-10-01

    A DIAL instrument on a moving platform is seen as a valuable remote sensing component in a sensor network for area monitoring, targeting sites involved in unauthorised explosive manufacturing. Such instrument will perform the area mapping of the vapour concentration of key substances, known to be used as precursors in explosive fabrication, such as acetone and nitromethane. The IR spectra of acetone and nitromethane vapours have been defined from available spectroscopy databases and from laboratory measurements as showing optimal spectral band for the DIAL operation in the spectral range of 3.0 μm - 3.5 μm. The DIAL operation has been numerically simulated, with inputs based on the HITRAN database, the U.S. Standard Atmosphere and aerosol simulation software package OPAC. A combination of OPO and OPA has been chosen as a transmitter, where the idler wavelength is used for probing, with wavelength tuning in sequence. A scanner mounted on top of the coaxially aligned laser and receiver, is capable of covering almost 360 degrees horizontally and +/-30 degrees vertically. The detection is performed by a photovoltaic photodiode with 4-stage cooling, with a signal digitalisation having 14 bit amplitude resolution and 125 Ms/s sampling rate. Here we present the development and the first test of the DIAL instrument.

  11. DIAL remotely sensed ethylene: featuring ozone-ethylene dynamics and correlation in presence of NOx

    NASA Astrophysics Data System (ADS)

    Gasmi, Taieb; Alonso, C. G.; Gonzalez Urena, Angel

    2003-12-01

    Ethylene has been monitored with a single-ended CO2-TEA laser-based DIAL system using a topographic target. The direct correlation between ozone concentration and ethylene/NOx ratio were demonstrated. Our work brings an additional confirmation of concurrent VOC/NOx and NOx-limited regimes in the generation of excess ozone.

  12. I 5683 you: dialing phone numbers on cell phones activates key-concordant concepts.

    PubMed

    Topolinski, Sascha

    2011-03-01

    When people perform actions, effects associated with the actions are activated mentally, even if those effects are not apparent. This study tested whether sequences of simulations of virtual action effects can be integrated into a meaning of their own. Cell phones were used to test this hypothesis because pressing a key on a phone is habitually associated with both digits (dialing numbers) and letters (typing text messages). In Experiment 1, dialing digit sequences induced the meaning of words that share the same key sequence (e.g., 5683, LOVE). This occurred even though the letters were not labeled on the keypad, and participants were not aware of the digit-letter correspondences. In Experiment 2, subjects preferred dialing numbers implying positive words (e.g., 37326, DREAM) over dialing numbers implying negative words (e.g., 75463, SLIME). In Experiment 3, subjects preferred companies with phone numbers implying a company-related word (e.g., LOVE for a dating agency, CORPSE for a mortician) compared with companies with phone numbers implying a company-unrelated word. PMID:21270449

  13. I 5683 you: dialing phone numbers on cell phones activates key-concordant concepts.

    PubMed

    Topolinski, Sascha

    2011-03-01

    When people perform actions, effects associated with the actions are activated mentally, even if those effects are not apparent. This study tested whether sequences of simulations of virtual action effects can be integrated into a meaning of their own. Cell phones were used to test this hypothesis because pressing a key on a phone is habitually associated with both digits (dialing numbers) and letters (typing text messages). In Experiment 1, dialing digit sequences induced the meaning of words that share the same key sequence (e.g., 5683, LOVE). This occurred even though the letters were not labeled on the keypad, and participants were not aware of the digit-letter correspondences. In Experiment 2, subjects preferred dialing numbers implying positive words (e.g., 37326, DREAM) over dialing numbers implying negative words (e.g., 75463, SLIME). In Experiment 3, subjects preferred companies with phone numbers implying a company-related word (e.g., LOVE for a dating agency, CORPSE for a mortician) compared with companies with phone numbers implying a company-unrelated word.

  14. Airborne water vapor DIAL system and measurements of water and aerosol profiles

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.

    1991-01-01

    The Lidar Applications Group at NASA Langley Research Center has developed a differential absorption lidar (DIAL) system for the remote measurement of atmospheric water vapor (H2O) and aerosols from an aircraft. The airborne H2O DIAL system is designed for extended flights to perform mesoscale investigations of H2O and aerosol distributions. This DIAL system utilizes a Nd:YAG-laser-pumped dye laser as the off-line transmitter and a narrowband, tunable Alexandrite laser as the on-line transmitter. The dye laser has an oscillator/amplifier configuration which incorporates a grating and prism in the oscillator cavity to narrow the output linewidth to approximately 15 pm. This linewidth can be maintained over the wavelength range of 725 to 730 nm, and it is sufficiently narrow to satisfy the off-line spectral requirements. In the Alexandrite laser, three intracavity tuning elements combine to produce an output linewidth of 1.1 pm. These spectral devices include a five-plate birefringent tuner, a 1-mm thick solid etalon and a 1-cm air-spaced etalon. A wavelength stability of +/- 0.35 pm is achieved by active feedback control of the two Fabry-Perot etalons using a frequency stabilized He-Ne laser as a wavelength reference. The three tuning elements can be synchronously scanned over a 150 pm range with microprocessor-based scanning electronics. Other aspects of the DIAL system are discussed.

  15. The McCarron-Dial System--An Approach to Clinical, Vocational, and Educational Evaluation.

    ERIC Educational Resources Information Center

    Dial, Jack G.; And Others

    The McCarron-Dial System is useful for both vocational and clinical evaluation of neuropsychologically disabled adults. Five factors (verbal-cognitive, sensory, motor, emotional, and integration coping) are used to predict vocational competency, which is measured by work samples and behavior scales, during the first twelve months of a client's…

  16. Development and Evaluation of a High Sensitivity DIAL System for Profiling Atmospheric CO2

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Koch, Grady J.; Refaat, Tamer F.; Abedin, M. N.; Yu, Jirong; Singh, Upendra N.

    2008-01-01

    A ground-based 2-micron Differential Absorption Lidar (DIAL) CO2 profiling system for atmospheric boundary layer studies and validation of space-based CO2 sensors is being developed and tested at NASA Langley Research Center as part of the NASA Instrument Incubator Program. To capture the variability of CO2 in the lower troposphere a precision of 1-2 ppm of CO2 (less than 0.5%) with 0.5 to 1 km vertical resolution from near surface to free troposphere (4-5 km) is one of the goals of this program. In addition, a 1% (3 ppm) absolute accuracy with a 1 km resolution over 0.5 km to free troposphere (4-5 km) is also a goal of the program. This DIAL system leverages 2-micron laser technology developed under NASA's Laser Risk Reduction Program (LRRP) and other NASA programs to develop new solid-state laser technology that provides high pulse energy, tunable, wavelength-stabilized, and double-pulsed lasers that are operable over pre-selected temperature insensitive strong CO2 absorption lines suitable for profiling of lower tropospheric CO2. It also incorporates new high quantum efficiency, high gain, and relatively low noise phototransistors, and a new receiver/signal processor system to achieve high precision DIAL measurements. This presentation describes the capabilities of this system for atmospheric CO2 and aerosol profiling. Examples of atmospheric measurements in the lidar and DIAL mode will be presented.

  17. Synthetic Array Heterodyne Detection: Developments within the Caliope CO{sub 2} DIAL Program

    SciTech Connect

    Rehse, S.J.; Strauss, E.M.

    1995-09-01

    A new technique, Synthetic Array Heterodyne Detection, offers a wider field of view and improved signal to noise for coherent DIAL systems by reducing speckle interference. We have implemented a synthetic multi-pixel array using a CO{sub 2} laser on a single element HgCdTe photodiode.

  18. Can-Dial. An experiment in health education and cancer control.

    PubMed Central

    Wilkinson, G S; Mirand, E A; Graham, S

    1976-01-01

    A dial-access public information system providing information about cancer to the populace has been developed by Roswell Park Memorial Institute. The system is comprised of a tape library consisting of 36 pre-recorded tapes in English on a variety of cancer-related topics and Spanish translations of 28 of the tapes. Interested persons can select and listen to topics of their choice over the telephone. Telephones are manned by operators 16 hours a day, 7 days a week. Persons who call are asked to volunteer certain descriptive information such as name, address, telephone number, sex, age, occupation, and source of information about Can-Dial. These data are used in evaluating the program. Two types of evaluation are being conducted. The first entails a constant monitoring of the system based upon information collected by operators concerning each call. The second type consists of interviews with a sample of callers and a sample of noncallers for the purpose of comparing the characteristics of both groups and ascertaining the impact of Can-Dial on the behavior of its users. Preliminary assessments indicate that Can-Dial is being used by all socioeconomic status groups, by more urban than rural residents, and by the younger rather than older age groups. In its first 23 months of operation, the system handled more than 68,700 calls, at an average cost of $1.58 per call. A tentative conclusion is that Can-Dial is fulfilling a public need and may have a favorable impact in improving health behavior. PMID:818658

  19. GEOS-3 Doppler difference tracking

    NASA Technical Reports Server (NTRS)

    Rosenbaum, B.

    1977-01-01

    The Doppler difference method as applied to track the GEOS 3 spacecraft is discussed. In this method a pair of 2 GHz ground tracking stations simultaneously track a spacecraft beacon to generate an observable signal in which bias and instability of the carrier frequency cancel. The baselines are formed by the tracking sites at Bermuda, Rosman, and Merritt Island. Measurements were made to evaluate the effectiveness of the Doppler differencing procedure in tracking a beacon target with the high dynamic rate of the GEOS 3 orbit. Results indicate the precision of the differenced data to be at a level comparable to the conventional precise two way Doppler tracking.

  20. Digital Doppler measurement with spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Hinedi, Sami M.; Labelle, Remi C.; Bevan, Roland P.; Del Castillo, Hector M.; Chong, Dwayne C.

    1991-01-01

    Digital and analog phase-locked loop (PLL) receivers were operated in parallel, each tracking the residual carrier from a spacecraft. The PLL tracked the downlink carrier and measured its instantaneous phase. This information, combined with a knowledge of the uplink carrier and the transponder ratio, permitted the computation of a Doppler observable. In this way, two separate Doppler measurements were obtained for one observation window. The two receivers agreed on the magnitude of the Doppler effect to within 1 mHz. There was less jitter on the data from the digital receiver. This was due to its smaller noise bandwidth. The demonstration and its results are described.

  1. Dual-Doppler Feasibility Study

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa L.

    2012-01-01

    When two or more Doppler weather radar systems are monitoring the same region, the Doppler velocities can be combined to form a three-dimensional (3-D) wind vector field thus providing for a more intuitive analysis of the wind field. A real-time display of the 3-D winds can assist forecasters in predicting the onset of convection and severe weather. The data can also be used to initialize local numerical weather prediction models. Two operational Doppler Radar systems are in the vicinity of Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS); these systems are operated by the 45th Space Wing (45 SW) and the National Weather Service Melbourne, Fla. (NWS MLB). Dual-Doppler applications were considered by the 45 SW in choosing the site for the new radar. Accordingly, the 45th Weather Squadron (45 WS), NWS MLB and the National Aeronautics and Space Administration tasked the Applied Meteorology Unit (AMU) to investigate the feasibility of establishing dual-Doppler capability using the two existing systems. This study investigated technical, hardware, and software requirements necessary to enable the establishment of a dual-Doppler capability. Review of the available literature pertaining to the dual-Doppler technique and consultation with experts revealed that the physical locations and resulting beam crossing angles of the 45 SW and NWS MLB radars make them ideally suited for a dual-Doppler capability. The dual-Doppler equations were derived to facilitate complete understanding of dual-Doppler synthesis; to determine the technical information requirements; and to determine the components of wind velocity from the equation of continuity and radial velocity data collected by the two Doppler radars. Analysis confirmed the suitability of the existing systems to provide the desired capability. In addition, it is possible that both 45 SW radar data and Terminal Doppler Weather Radar data from Orlando International Airport could be used to alleviate any

  2. Doppler tracking of planetary spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.

    1992-01-01

    This article concerns the measurement of Doppler shift on microwave links that connect planetary spacecraft with the Deep Space Network. Such measurements are made by tracking the Doppler effect with phase-locked loop receivers. A description of equipment and techniques as well as a summary of the appropriate mathematical models are given. The two-way Doppler shift is measured by transmitting a highly-stable microwave (uplink) carrier from a ground station, having the spacecraft coherently transpond this carrier, and using a phase-locked loop receiver at the ground station to track the returned (downlink) carrier. The largest sources of measurement error are usually plasma noise and thermal noise. The plasma noise, which may originate in the ionosphere or the solar corona, is discussed; and a technique to partially calibrate its effect, involving the use of two simultaneous downlink carriers that are coherently related, is described. Range measurements employing Doppler rate-aiding are also described.

  3. Doppler characteristics of sea clutter.

    SciTech Connect

    Raynal, Ann Marie; Doerry, Armin Walter

    2010-06-01

    Doppler radars can distinguish targets from clutter if the target's velocity along the radar line of sight is beyond that of the clutter. Some targets of interest may have a Doppler shift similar to that of clutter. The nature of sea clutter is different in the clutter and exo-clutter regions. This behavior requires special consideration regarding where a radar can expect to find sea-clutter returns in Doppler space and what detection algorithms are most appropriate to help mitigate false alarms and increase probability of detection of a target. This paper studies the existing state-of-the-art in the understanding of Doppler characteristics of sea clutter and scattering from the ocean to better understand the design and performance choices of a radar in differentiating targets from clutter under prevailing sea conditions.

  4. Mathematical Models for Doppler Measurements

    NASA Technical Reports Server (NTRS)

    Lear, William M.

    1987-01-01

    Error analysis increases precision of navigation. Report presents improved mathematical models of analysis of Doppler measurements and measurement errors of spacecraft navigation. To take advantage of potential navigational accuracy of Doppler measurements, precise equations relate measured cycle count to position and velocity. Drifts and random variations in transmitter and receiver oscillator frequencies taken into account. Mathematical models also adapted to aircraft navigation, radar, sonar, lidar, and interferometry.

  5. Theory and operation of the real-time data acquisition system for the NASA-LaRC differential absorption lidar (DIAL)

    NASA Technical Reports Server (NTRS)

    Butler, C.

    1986-01-01

    The improvement of computer hardware and software of the NASA Multipurpose Differential Absorption Lidar (DIAL) system is documented. The NASA DIAL system is undergoing development and experimental deployment at NASA Langley Research Center for the remote measurement of atmospheric trace gas concentrations from ground and aircraft platforms. A viable DIAL system was developed capable of remotely measuring O3 and H2O concentrations from an aircraft platform. Test flights of the DIAL system were successfully performed onboard the NASA Goddard Flight Center Electra aircraft from 1980 to 1985. The DIAL Data Acquisition System has undergone a number of improvements over the past few years. These improvements have now been field tested. The theory behind a real time computer system as it applies to the needs of the DIAL system is discussed. This report is designed to be used as an operational manual for the DIAL DAS.

  6. High Resolution Doppler Lidar

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Grant supported the development of an incoherent lidar system to measure winds and aerosols in the lower atmosphere. During this period the following activities occurred: (1) an active feedback system was developed to improve the laser frequency stability; (2) a detailed forward model of the instrument was developed to take into account many subtle effects, such as detector non-linearity; (3) a non-linear least squares inversion method was developed to recover the Doppler shift and aerosol backscatter without requiring assumptions about the molecular component of the signal; (4) a study was done of the effects of systematic errors due to multiple etalon misalignment. It was discovered that even for small offsets and high aerosol loadings, the wind determination can be biased by as much as 1 m/s. The forward model and inversion process were modified to account for this effect; and (5) the lidar measurements were validated using rawinsonde balloon measurements. The measurements were found to be in agreement within 1-2 m/s.

  7. High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.

    1999-01-01

    This report summarizes the accomplishments of the High Resolution Doppler Imager (HRDI) on UARS spacecraft during the period 4/l/96 - 3/31/99. During this period, HRDI operation, data processing, and data analysis continued, and there was a high level of vitality in the HRDI project. The HRDI has been collecting data from the stratosphere, mesosphere, and lower thermosphere since instrument activation on October 1, 1991. The HRDI team has stressed three areas since operations commenced: 1) operation of the instrument in a manner which maximizes the quality and versatility of the collected data; 2) algorithm development and validation to produce a high-quality data product; and 3) scientific studies, primarily of the dynamics of the middle atmosphere. There has been no significant degradation in the HRDI instrument since operations began nearly 8 years ago. HRDI operations are fairly routine, although we have continued to look for ways to improve the quality of the scientific product, either by improving existing modes, or by designing new ones. The HRDI instrument has been programmed to collect data for new scientific studies, such as measurements of fluorescence from plants, measuring cloud top heights, and lower atmosphere H2O.

  8. [Doppler ultrasound of penis arteries].

    PubMed

    Jünemann, K P; Siegsmund, M; Löbelenz, M; Alken, P

    1990-05-01

    In addition to pharmaco testing, pharmaco-Doppler sonography of the penile arteries is part of the basic work-up for erectile dysfunction. Insufficient training with the Doppler method, lack of standardized criteria for evaluation of the penis, and analysis of the Doppler curves all make it difficult to use Doppler sonography for the evaluation of impotent men. The aim of this study was to explain the principal criteria of the method and demonstrate the most important details for analyzing the form of the Doppler waves. Pharmaco-Doppler sonography includes the evaluation of blood-flow velocities within the dorsal and deep cavernous arteries of the penis before and after intracavernous application of a vasoactive drug. The following main criteria have proven to be most important for analysis of the Doppler curves: evaluation of the amplitude height, the actual wave form, differences between the left and right arteries and along the individual vessel, amplitude increase, and elevation of the curve baseline after pharmaco stimulation. The most frequent mistakes made during evaluation of the penile arteries are changes in the probe angle, pressure put on the artery by the probe during evaluation and a false estimation of the evaluation time after pharmaco stimulation. Recently, duplex sonography of the penile arteries has been introduced, and this method allows an accurate measurement of the blood-flow velocity and arterial diameter changes before and after application of the drug. Furthermore, additional calculation of the resistancy index permits determination of the vascular resistance and optimizes the evaluation of the penile arterial status. The technical details, the method, and the analyzation criteria are all explained in detail.

  9. Field Testing of a Two-Micron DIAL System for Profiling Atmospheric Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Ismail, Syed; Koch, Grady J.; Diaz, Liza; Davis, Ken; Rubio, Manuel

    2010-01-01

    A 2-m DIAL system has been developed at NASA Langley Research Center through the NASA Instrument Incubator Program. The system utilizes a tunable 2-m pulsed laser and an IR phototransistor for the transmitter and the receiver, respectively. The system targets the CO2 absorption line R22 in the 2.05-m band. Field experiments were conducted at West Branch, Iowa, for evaluating the system for CO2 measurement by comparison with in-situ sensors. The CO2 in-situ sensors were located on the NOAA's WBI tower at 31, 99 and 379 m altitudes, besides the NOAA s aircraft was sampling at higher altitudes. Preliminary results demonstrated the capabilities of the DIAL system in profiling atmospheric CO2 using the 2-m wavelength. Results of these experiments will be presented and discussed.

  10. Hybrid column generation and large neighborhood search for the dial-a-ride problem

    PubMed Central

    Parragh, Sophie N.; Schmid, Verena

    2013-01-01

    Demographic change towards an ever aging population entails an increasing demand for specialized transportation systems to complement the traditional public means of transportation. Typically, users place transportation requests, specifying a pickup and a drop off location and a fleet of minibuses or taxis is used to serve these requests. The underlying optimization problem can be modeled as a dial-a-ride problem. In the dial-a-ride problem considered in this paper, total routing costs are minimized while respecting time window, maximum user ride time, maximum route duration, and vehicle capacity restrictions. We propose a hybrid column generation and large neighborhood search algorithm and compare different hybridization strategies on a set of benchmark instances from the literature. PMID:23471127

  11. Diode-laser-based water vapor differential absorption lidar (DIAL) profiler evaluation

    NASA Astrophysics Data System (ADS)

    Spuler, S.; Weckwerth, T.; Repasky, K. S.; Nehrir, A. R.; Carbone, R.

    2012-12-01

    We are in the process of evaluating the performance of an eye-safe, low-cost, diode-laser-based, water vapor differential absorption lidar (DIAL) profiler. This class of instrument may be capable of providing continuous water vapor and aerosol backscatter profiles at high vertical resolution in the atmospheric boundary layer (ABL) for periods of months to years. The technology potentially fills a national long term observing facility gap and could greatly benefit micro- and meso-meteorology, water cycle, carbon cycle and, more generally, biosphere-hydrosphere-atmosphere interaction research at both weather and climate variability time scales. For the evaluation, the Montana State University 3rd generation water vapor DIAL was modified to enable unattended operation for a period of several weeks. The performance of this V3.5 version DIAL was tested at MSU and NCAR in June and July of 2012. Further tests are currently in progress with Howard University at Beltsville, Maryland; and with the National Weather Service and Oklahoma University at Dallas/Fort Worth, Texas. The presentation will include a comparison of DIAL profiles against meteorological "truth" at the aforementioned locations including: radiosondes, Raman lidars, microwave and IR radiometers, AERONET and SUOMINET systems. Instrument reliability, uncertainty, systematic biases, detection height statistics, and environmental complications will be evaluated. Performance will be judged in the context of diverse scientific applications that range from operational weather prediction and seasonal climate variability, to more demanding climate system process studies at the land-canopy-ABL interface. Estimating the extent to which such research and operational applications can be satisfied with a low cost autonomous network of similar instruments is our principal objective.

  12. Two Wavelength Ti:sapphire Laser for Ozone DIAL Measurements from Aircraft

    NASA Technical Reports Server (NTRS)

    Situ, Wen; DeYoung, Russel J.

    1998-01-01

    Laser remote sensing of ozone from aircraft has proven to be a valuable technique for understanding the distribution and dynamics of ozone in the atmosphere. Presently the differential absorption lidar (DIAL) technique, using dual ND:YAG lasers that are doubled to pump dye lasers which in turn are doubled into the UV for the "on" and "off' line lasers, is used on either the NASA DC-8 or P-3 aircraft. Typically, the laser output for each line is 40-mJ and this is split into two beams, one looking up and the other downward, each beam having about 20-mJ. The residual ND:YAG (1.06 micron) and dye laser energies are also transmitted to obtain information on the atmospheric aerosols. While this system has operated well, there are several system characteristics that make the system less than ideal for aircraft operations. The system, which uses separate "on" and "off" line lasers, is quite large and massive requiring valuable aircraft volume and weight. The dye slowly degrades with time requiring replacement. The laser complexity requires a number of technical people to maintain the system performance. There is also the future interest in deploying an ozone DIAL system in an Unpiloted Atmospheric Vehicle (UAV) which would require a total payload mass of less than 150 kg and power requirement of less than 1500 W. A laser technology has emerged that could potentially provide significant enhancements over the present ozone DIAL system. The flashlamp pumped Ti:sapphire laser system is an emerging technology that could reduce the mass and volume over the present system and also provide a system with fewer conversion steps, reducing system complexity. This paper will discuss preliminary results from a flashlamp-pumped Ti:sapphire laser constructed as a radiation source for a UV DIAL system to measure ozone.

  13. Compartment A123, ship's laundry view aft to forward. Large dial ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Compartment A-123, ship's laundry view aft to forward. Large dial at left center appears to be a timer for controlling washing machine at lower right. Low, round machine to the left of the washer is a centrifuge used for spin drying laundry. Laundry was not part of original equipment but was added in the refurbishment of 1899. (024) - USS Olympia, Penn's Landing, 211 South Columbus Boulevard, Philadelphia, Philadelphia County, PA

  14. Design and development of a compact lidar/DIAL system for aerial surveillance of urban areas

    NASA Astrophysics Data System (ADS)

    Gaudio, P.; Gelfusa, M.; Malizia, A.; Richetta, M.; Antonucci, A.; Ventura, P.; Murari, A.; Vega, J.

    2013-10-01

    Recently surveying large areas in an automatic way, for early detection of harmful chemical agents, has become a strategic objective of defence and public health organisations. The Lidar-Dial techniques are widely recognized as a cost-effective alternative to monitor large portions of the atmosphere but, up to now, they have been mainly deployed as ground based stations. The design reported in this paper concerns the development of a Lidar-Dial system compact enough to be carried by a small airplane and capable of detecting sudden releases in air of harmful and/or polluting substances. The proposed approach consists of continuous monitoring of the area under surveillance with a Lidar type measurement. Once a significant increase in the density of backscattering substances is revealed, it is intended to switch to the Dial technique to identify the released chemicals and to determine its concentration. In this paper, the design of the proposed system is described and the simulations carried out to determine its performances are reported. For the Lidar measurements, commercially available Nd- YAG laser sources have already been tested and their performances, in combination with avalanche photodiodes, have been experimentally verified to meet the required specifications. With regard to the DIAL measurements, new compact CO2 laser sources are being investigated. The most promising candidate presents an energy per pulse of about 50 mJ typical, sufficient for a range of at least 500m. The laser also provides the so called "agile tuning" option that allows to quickly tune the wavelength. To guarantee continuous, automatic surveying of large areas, innovative solutions are required for the data acquisition, self monitoring of the system and data analysis. The results of the design, the simulations and some preliminary tests illustrate the potential of the chosen, integrated approach.

  15. Doppler echocardiography in stress testing.

    PubMed

    Teague, S M

    1991-06-01

    Doppler ultrasound may have a role in the stress testing laboratory for the identification of patients with coronary disease through the assessment of dynamic ventricular systolic function. Quantitative systolic ejection phase indexes of maximal acceleration, peak velocity, and volume of blood ejected from the left ventricle can be obtained in the exercising patient. Trials comparing stress Doppler ultrasound with ST-segment changes, gated blood pool radionuclide or echocardiographic studies of ejection fraction or wall motion abnormality, and thallium scintigraphic perfusion defects have returned comparable or better sensitivity and specificity referencing coronary angiography. Graded treadmill exercise, stationary bicycle exercise, and pharmacological stress (dipyridamole) have been used. The normal Doppler stress response is a near linear increase in peak ejection velocity with increasing cardiac work, as reflected in heart rate. Patients with coronary artery disease show blunted augmentation of Doppler ejection dynamics between rest and peak stress, and the degree of blunting appears to be proportional to the anatomic extent of coronary disease and the magnitude of ventricular perfusion and performance impairment. Stress Doppler ultrasound achieves diagnostic power for coronary disease with ultrasonic technology, inexpensive equipment, without ionizing radiation, and few personnel.

  16. Ultra Narrowband Optical Filters for Water Vapor Differential Absorption Lidar (DIAL) Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Stenholm, Ingrid; DeYoung, Russell J.

    2001-01-01

    Differential absorption lidar (DIAL) systems are being deployed to make vertical profile measurements of atmospheric water vapor from ground and airborne platforms. One goal of this work is to improve the technology of such DIAL systems that they could be deployed on space-based platforms. Since background radiation reduces system performance, it is important to reduce it. One way to reduce it is to narrow the bandwidth of the optical receiver system. However, since the DIAL technique uses two or more wavelengths, in this case separated by 0.1 nm, a fixed-wavelength narrowband filter that would encompass both wavelengths would be broader than required for each line, approximately 0.02 nm. The approach employed in this project is to use a pair of tunable narrowband reflective fiber Bragg gratings. The Bragg gratings are germanium-doped silica core fiber that is exposed to ultraviolet radiation to produce index-of-refraction changes along the length of the fiber. The gratings can be tuned by stretching. The backscattered laser radiation is transmitted through an optical circulator to the gratings, reflected back to the optical circulator by one of the gratings, and then sent to a photodiode. The filter reflectivities were >90 percent, and the overall system efficiency was 30 percent.

  17. A new frontier in CO2 flux measurements using a highly portable DIAL laser system

    PubMed Central

    Queiβer, Manuel; Granieri, Domenico; Burton, Mike

    2016-01-01

    Volcanic CO2 emissions play a key role in the geological carbon cycle, and monitoring of volcanic CO2 fluxes helps to forecast eruptions. The quantification of CO2 fluxes is challenging due to rapid dilution of magmatic CO2 in CO2-rich ambient air and the diffuse nature of many emissions, leading to large uncertainties in the global magmatic CO2 flux inventory. Here, we report measurements using a new DIAL laser remote sensing system for volcanic CO2 (CO2DIAL). Two sites in the volcanic zone of Campi Flegrei (Italy) were scanned, yielding CO2 path-amount profiles used to compute fluxes. Our results reveal a relatively high CO2 flux from Campi Flegrei, consistent with an increasing trend. Unlike previous methods, the CO2DIAL is able to measure integrated CO2 path-amounts at distances up to 2000 m using virtually any solid surface as a reflector, whilst also being highly portable. This opens a new frontier in quantification of geological and anthropogenic CO2 fluxes. PMID:27652775

  18. Planetary Doppler Imaging

    NASA Astrophysics Data System (ADS)

    Murphy, N.; Jefferies, S.; Hart, M.; Hubbard, W. B.; Showman, A. P.; Hernandez, G.; Rudd, L.

    2014-12-01

    Determining the internal structure of the solar system's gas and ice giant planets is key to understanding their formation and evolution (Hubbard et al., 1999, 2002, Guillot 2005), and in turn the formation and evolution of the solar system. While internal structure can be constrained theoretically, measurements of internal density distributions are needed to uncover the details of the deep interior where significant ambiguities exist. To date the interiors of giant planets have been probed by measuring gravitational moments using spacecraft passing close to, or in orbit around the planet. Gravity measurements are effective in determining structure in the outer envelope of a planet, and also probing dynamics (e.g. the Cassini and Juno missions), but are less effective in probing deep structure or the presence of discrete boundaries. A promising technique for overcoming this limitation is planetary seismology (analogous to helioseismology in the solar case), postulated by Vorontsov, 1976. Using trapped pressure waves to probe giant planet interiors allows insight into the density and temperature distribution (via the sound speed) down to the planetary core, and is also sensitive to sharp boundaries, for example at the molecular to metallic hydrogen transition or at the core-envelope interface. Detecting such boundaries is not only important in understanding the overall structure of the planet, but also has implications for our understanding of the basic properties of matter at extreme pressures. Recent Doppler measurements of Jupiter by Gaulme et al (2011) claimed a promising detection of trapped oscillations, while Hedman and Nicholson (2013) have shown that trapped waves in Saturn cause detectable perturbations in Saturn's C ring. Both these papers have fueled interest in using seismology as a tool for studying the solar system's giant planets. To fully exploit planetary seismology as a tool for understanding giant planet structure, measurements need to be made

  19. Diode-Laser-Based Differential Absorption Lidar (DIAL) for Long Term Autonomous Field Deployment

    NASA Astrophysics Data System (ADS)

    Moen, D.; Repasky, K. S.; Spuler, S.; Nehrir, A. R.

    2015-12-01

    The rapidly changing spatial and temporal distribution of water vapor in the planetary boundary layer influences dynamical and physical processes that drive weather phenomena, general circulation patterns, radiative transfer, and the global water cycle. The ability to measure the water vapor distribution continuously within the lower troposphere has been identified as a high priority measurement capability needed by both the weather forecasting and climate science communities. This presentation provides an update on an economical and compact diode-laser-based differential absorption lidar (DIAL) which has demonstrated the capability of meeting these high priority measurement needs. The DIAL instrument utilizes two continuous wave distributed feedback diode lasers to injection seed a current modulated tapered semiconductor optical amplifier. An improved switching time between the on-line and off-line wavelength, on the order of 16.7 ms, allows the instrument to retrieve water vapor profiles in rapidly changing atmospheric conditions. A shared telescope design based on a 40.64 cm diameter Dobsonian telescope allows the outgoing beam to be eye-safe at the exit of the telescope. The DIAL receiver utilizes the Dobsonian telescope to collect the scattered light and direct it through an optical narrow bandpass filter (NBF) and a Fabry-Perot etalon with a free spectral range of 0.1 nm which is equal to the wavelength difference between the on-line and off-line DIAL wavelengths. A beam splitter directs 90% of the scattered light through a second NBF, and couples it onto a fiber coupled avalanche photodiode (APD), providing a far field measurement. The remaining 10% of the light passing through the beam splitter is incident on a free space coupled APD, providing a wider field of view for water vapor measurements at lower altitudes. The two channel receiver allows water vapor measurement between 500 m and 4 km/6km during daytime/nighttime operation, respectively. The DIAL

  20. A Fast, Locally Adaptive, Interactive Retrieval Algorithm for the Analysis of DIAL Measurements

    NASA Astrophysics Data System (ADS)

    Samarov, D. V.; Rogers, R.; Hair, J. W.; Douglass, K. O.; Plusquellic, D.

    2010-12-01

    Differential absorption light detection and ranging (DIAL) is a laser-based tool which is used for remote, range-resolved measurement of particular gases in the atmosphere, such as carbon-dioxide and methane. In many instances it is of interest to study how these gases are distributed over a region such as a landfill, factory, or farm. While a single DIAL measurement only tells us about the distribution of a gas along a single path, a sequence of consecutive measurements provides us with information on how that gas is distributed over a region, making DIAL a natural choice for such studies. DIAL measurements present a number of interesting challenges; first, in order to convert the raw data to concentration it is necessary to estimate the derivative along the path of the measurement. Second, as the distribution of gases across a region can be highly heterogeneous it is important that the spatial nature of the measurements be taken into account. Finally, since it is common for the set of collected measurements to be quite large it is important for the method to be computationally efficient. Existing work based on Local Polynomial Regression (LPR) has been developed which addresses the first two issues, but the issue of computational speed remains an open problem. In addition to the latter, another desirable property is to allow user input into the algorithm. In this talk we present a novel method based on LPR which utilizes a variant of the RODEO algorithm to provide a fast, locally adaptive and interactive approach to the analysis of DIAL measurements. This methodology is motivated by and applied to several simulated examples and a study out of NASA Langley Research Center (LaRC) looking at the estimation of aerosol extinction in the atmosphere. A comparison study of our method against several other algorithms is also presented. References Chaudhuri, P., Marron, J.S., Scale-space view of curve estimation, Annals of Statistics 28 (2000) 408-428. Duong, T., Cowling

  1. Differential Doppler as a diagnostic

    SciTech Connect

    Dzieciuch, M.; Munk, W. )

    1994-10-01

    Differential Doppler compression and travel time of individual peaks in the arrival sequence (relative to an overall average) are measured for the 5500-km acoustic transmissions from a moving source at Heard Island to Christmas (Crab) Island. The differentials cannot be explained by simple adiabatic propagation models. A hybrid theory, coupling polar and temperate models at the Antarctic Front can account for some of the qualitative features. Differential Doppler could be a useful tool for identifying ray arrivals. 10 refs., 11 figs., 3 tabs.

  2. Right Ventricular Tissue Doppler in Space Flight

    NASA Technical Reports Server (NTRS)

    Garcia, Kathleen M.; Hamilton, Douglas R.; Sargsyan, Ashot E.; Ebert, Douglas; Martin, David S.; Barratt, Michael R.; Martin, David S.; Bogomolov, Valery V.; Dulchavsky, Scott A.; Duncan, J. Michael

    2010-01-01

    The presentation slides review normal physiology of the right ventricle in space, general physiology of the right ventricle; difficulties in imaging the heart in space, imaging methods, tissue Doppler spectrum, right ventricle tissue Doppler, and Rt Tei Index.

  3. Theory and operation of the real-time data acquisition system for the NASA-LaRC differential absorption lidar (DIAL)

    NASA Technical Reports Server (NTRS)

    Butler, Carolyn; Spencer, Randall

    1988-01-01

    The improvement of computer hardware and software of the NASA Multipurpose Differential Absorption Lidar (DIAL) system is documented. The NASA DIAL system has undergone development and experimental deployment at NASA/Langley Res. Center for the remote measurement of atmospheric trace gas concentrations from ground and aircraft platforms. A viable DIAL system was developed capable of remotely measuring O3 and H2O concentrations from an aircraft platform. The DIAL Data Acquisition System (DAS) has undergone a number of improvements also. Due to the participation of the DIAL in the Global Tropospheric Experiment, modifications and improvements of the system were tested and used both in the lab and in air. Therefore, this is an operational manual for the DIAL DAS.

  4. Understanding Doppler Broadening of Gamma Rays

    SciTech Connect

    Rawool-Sullivan, Mohini; Sullivan, John P.

    2014-07-03

    Doppler-broadened gamma ray peaks are observed routinely in the collection and analysis of gamma-ray spectra. If not recognized and understood, the appearance of Doppler broadening can complicate the interpretation of a spectrum and the correct identification of the gamma ray-emitting material. We have conducted a study using a simulation code to demonstrate how Doppler broadening arises and provide a real-world example in which Doppler broadening is found. This report describes that study and its results.

  5. The Doppler Effect--A New Approach

    ERIC Educational Resources Information Center

    Allen, J.

    1973-01-01

    Discusses the Doppler effect as it applies to different situations, such as a stationary source of sound with the observer moving, a stationary observer, and the sound source and observer both moving. Police radar, satellite surveillance radar, radar astronomy, and the Doppler navigator, are discussed as applications of Doppler shift. (JR)

  6. Airborne cw Doppler lidar (ADOLAR)

    NASA Astrophysics Data System (ADS)

    Rahm, Stefan; Werner, Christian; Nagel, E.; Herrmann, H.; Klier, M.; Knott, H. P.; Haering, R.; Wildgruber, J.

    1994-12-01

    During the last 10 years the DLR container LDA (Laser Doppler Anemometer) was used for many wind related measurements in the atmospheric boundary layer. The experience out of this were used to construct an airborne Doppler lidar ADOLAR. Based on the available Doppler lidars it is now proposed to perform a campaign to demonstrate the concept of the spaceborne sensor ALADIN, and to answer some questions concerning the signal quality from clouds, water and land. For the continuous wave CO2 laser, the energy is focused by the telescope into the region of investigation. Some of the radiation is back scattered by small aerosol particles drifting with the wind speed through the sensing volume. The back scattered radiation is collected by the telescope and detected by coherent technique. With the laser Doppler method one gets the radial wind component. To determine the magnitude and direction of the horizontal wind, some form of scanning in azimuth and elevation is required. To keep the airborne system compact, the transceiver optics is directly coupled to a wedge scanner which provides the conical scan with the axis in Nadir direction from the aircraft. The system ADOLAR was tested in 1994. Results of the flight over the lake Ammersee are presented and are compared with the data of the inertial reference system of the aircraft.

  7. Simulating photospheric Doppler velocity fields

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    1988-01-01

    A method is described for constructing artificial data that realistically simulate photospheric velocity fields. The velocity fields include rotation, differential rotation, meridional circulation, giant cell convection, supergranulation, convective limb shift, p-mode oscillations, and observer motion. Data constructed by this method can be used for testing algorithms designed to extract and analyze these velocity fields in real Doppler velocity data.

  8. JAWS multiple Doppler derived winds

    NASA Technical Reports Server (NTRS)

    Elmore, Kimberly L.

    1987-01-01

    An elementary working knowledge is given of the advantages and limitations of the multiple Doppler radar analyses that have recently become available from the Joint Airport Weather Studies (JAWS) project. What Doppler radar is and what it does is addressed and the way Doppler radars were used in the JAWS project to gather wind shear data is described. The working definition of wind shear used is winds that affect aircraft flight over a span of 15 to 45 seconds and turbulence is defined as air motion that cause abrupt aircraft motions. The JAWS data current available contain no turbulence data. The concept of multiple Doppler analysis and the geometry of how it works are described, followed by an explanation of how data gathered in radar space are interpolated to a common Cartesian coordinate system and the limitations involved. A discussion is also presented of the analysis grid and how it was constructed. What the user actually gets is discussed, followed by a discussion of the expected errors in the three orthogonal wind components. Finally, a discussion is presented of why JAWS data are significant.

  9. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.; Wilcox, J. M.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect are made at the Stanford Solar Observatory. These observations show no variations in the rotation rate that exceed the observational error of about 1%. The average rotation rate is indistinguishable from that of sunspots and large-scale magnetic field structures.

  10. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect mode at the Sanford Solar Observatory are presented. These observations show no variations in the rotation rate that exceed the observational error of about one percent. The average rotation rate is indistinguishable from that of sunspots and large scale magnetic field structures.

  11. Human polarimetric micro-doppler

    NASA Astrophysics Data System (ADS)

    Tahmoush, David; Silvious, Jerry

    2011-06-01

    Modern radars can pick up target motions other than just the principle target Doppler; they pick out the small micro-Doppler variations as well. These can be used to visually identify both the target type as well as the target activity. We model and measure some of the micro-Doppler motions that are amenable to polarimetric measurement. Understanding the capabilities and limitations of radar systems that utilize micro-Doppler to measure human characteristics is important for improving the effectiveness of these systems at securing areas. In security applications one would like to observe humans unobtrusively and without privacy issues, which make radar an effective approach. In this paper we focus on the characteristics of radar systems designed for the estimation of human motion for the determination of whether someone is loaded. Radar can be used to measure the direction, distance, and radial velocity of a walking person as a function of time. Detailed radar processing can reveal more characteristics of the walking human. The parts of the human body do not move with constant radial velocity; the small micro-Doppler signatures are timevarying and therefore analysis techniques can be used to obtain more characteristics. Looking for modulations of the radar return from arms, legs, and even body sway are being assessed by researchers. We analyze these techniques and focus on the improved performance that fully polarimetric radar techniques can add. We perform simulations and fully polarimetric measurements of the varying micro-Doppler signatures of humans as a function of elevation angle and azimuthal angle in order to try to optimize this type of system for the detection of arm motion, especially for the determination of whether someone is carrying something in their arms. The arm is often bent at the elbow, providing a surface similar to a dihedral. This is distinct from the more planar surfaces of the body and allows us to separate the signals from the arm (and

  12. A New Technique for the Retrieval of Near Surface Water Vapor Using DIAL Measurements

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Kooi, Susan; Ferrare, Richard; Winker, David; Hair, Johnathan; Nehrir, Amin; Notari, Anthony; Hostetler, Chris

    2015-01-01

    Water vapor is one of the most important atmospheric trace gas species and influences radiation, climate, cloud formation, surface evaporation, precipitation, storm development, transport, dynamics, and chemistry. For improvements in NWP (numerical weather prediction) and climate studies, global water vapor measurements with higher accuracy and vertical resolution are needed than are currently available. Current satellite sensors are challenged to characterize the content and distribution of water vapor in the Boundary Layer (BL) and particularly near the first few hundred meters above the surface within the BL. These measurements are critically needed to infer surface evaporation rates in cloud formation and climate studies. The NASA Langley Research Center Lidar Atmospheric Sensing Experiment (LASE) system, which uses the Differential Absorption Lidar (DIAL) technique, has demonstrated the capability to provide high quality water vapor measurements in the BL and across the troposphere. A new retrieval technique is investigated to extend these DIAL water vapor measurements to the surface. This method uses signals from both atmospheric backscattering and the strong surface returns (even over low reflectivity oceanic surfaces) using multiple gain channels to cover the large signal dynamic range. Measurements can be made between broken clouds and in presence of optically thin cirrus. Examples of LASE measurements from a variety of conditions encountered during NASA hurricane field experiments over the Atlantic Ocean are presented. Comparisons of retrieved water vapor profiles from LASE near the surface with dropsonde measurements show very good agreement. This presentation also includes a discussion of the feasibility of developing space-based DIAL capability for high resolution water vapor measurements in the BL and above and an assessment of the technology needed for developing this capability.

  13. Preliminary results of a lidar-dial integrated system for the automatic detection of atmospheric pollutants

    NASA Astrophysics Data System (ADS)

    Gaudio, P.; Gelfusa, M.; Richetta, M.

    2012-11-01

    In the last decades, atmospheric pollution in urban and industrial areas has become a major concern of both developed and developing countries. In this context, surveying relative large areas in an automatic way is an increasing common objective of public health organisations. The Lidar-Dial techniques are widely recognized as a cost-effective approach to monitor large portions of the atmosphere and, for example, they have been successful applied to the early detection of forest fire. The studies and preliminary results reported in this paper concern the development of an integrated Lidar-Dial system able to detect sudden releases in air of harmful and polluting substances. The propose approach consists of continuous monitoring of the area under surveillance with a Lidar type measurement (by means of a low cost system). Once a significant increase in the density of a pollutant is revealed, the Dial technique is used to identify the released chemicals. In this paper, the specifications of the proposed station are discussed. The most stringent requirement is the need for a very compact system with a range of at least 600-700 m. Of course, the optical wavelengths must be in an absolute eye-safe range for humans. A conceptual design of the entire system is described and the most important characteristic of the main elements are provided. In particular the capability of the envisaged laser sources, Nd:YAG and CO2 lasers, to provide the necessary quality of the measurements is carefully assessed. Since the detection of dangerous substances must be performed in an automatic way, the monitoring station will be equipped with an adequate set of control and communication devices for independent autonomous operation. The results of the first preliminary tests illustrate the potential of the chosen approach.

  14. Narrow linewidth UV laser transmitter for ozone DIAL remote sensing application

    NASA Astrophysics Data System (ADS)

    Chuang, Ti; Hansell, Joe; Shuman, Tim; Schum, Tom; Puffenberger, Kent; Burnham, Ralph

    2016-03-01

    Fibertek has demonstrated a dual-wavelength narrow linewidth UV laser transmitter for NASA airborne ozone DIAL remote sensing application. The application requires two narrow linewidth lasers in the UV region between 300 nm and 320 nm with at least 12 nm separation between the two wavelengths. Each UV laser was based on a novel ring structure incorporating an optical parametric oscillator (OPO) and a sum frequency generator (SFG). The fundamental pump source of the UV laser was a single frequency 532 nm laser, which was frequency-doubled from a diode-pumped, injection-seeded single frequency Nd:YAG laser operating at 1064 nm and 50 Hz repetition rate. The ring frequency converters generated UV wavelengths at 304 nm and 316 nm respectively. The demonstrated output energies were 2.6 mJ for 304 nm and 2.3 mJ for 316 nm UV lines, with room to potentially achieve more energy for each laser. Linewidth narrowing was achieved using a volume Bragg grating as the output coupler of the OPO in each ring oscillator. We obtained spectral linewidths (FWHM) of 0.12 nm for the 304 nm line and 0.1 nm for the 316 nm line, and the UV energy conversion efficiencies of 12.2% and 9.1%. Fibertek built an airborne DIAL transmitter based on the reported demonstration, which was a single optical module with dual-wavelength output at the demonstrated wavelengths. NASA plans to field the UV laser transmitter as a key component of the High Spectral Resolution Lidar-II (HSRL-II) high altitude airborne instrument to perform autonomous global ozone DIAL remote sensing field campaigns.

  15. Azimuthal Doppler Effect in Optical Vortex Spectroscopy

    NASA Astrophysics Data System (ADS)

    Aramaki, Mitsutoshi; Yoshimura, Shinji; Toda, Yasunori; Morisaki, Tomohiro; Terasaka, Kenichiro; Tanaka, Masayoshi

    2015-11-01

    Optical vortices (OV) are a set of solutions of the paraxial Helmholtz equation in the cylindrical coordinates, and its wave front has a spiral shape. Since the Doppler shift is caused by the phase change by the movement in a wave field, the observer in the OV, which has the three-dimensional structured wave front, feels a three-dimensional Doppler effect. Since the multi-dimensional Doppler components are mixed into a single Doppler spectrum, development of a decomposition method is required. We performed a modified saturated absorption spectroscopy to separate the components. The OV and plane wave are used as a probe beam and pump beam, respectively. Although the plane-wave pump laser cancels the z-direction Doppler shift, the azimuthal Doppler shift remains in the saturated dip. The spatial variation of the dip width gives the information of the azimuthal Doppler shift. The some results of optical vortex spectroscopy will be presented.

  16. MS-DIAL: Data Independent MS/MS Deconvolution for Comprehensive Metabolome Analysis

    PubMed Central

    Tsugawa, Hiroshi; Cajka, Tomas; Kind, Tobias; Ma, Yan; Higgins, Brendan; Ikeda, Kazutaka; Kanazawa, Mitsuhiro; VanderGheynst, Jean; Fiehn, Oliver; Arita, Masanori

    2015-01-01

    Data-independent acquisition (DIA) in liquid chromatography tandem mass spectrometry (LC-MS/MS) provides more comprehensive untargeted acquisition of molecular data. Here we provide an open-source software pipeline, MS-DIAL, to demonstrate how DIA improves simultaneous identification and quantification of small molecules by mass spectral deconvolution. For reversed phase LC-MS/MS, our program with an enriched LipidBlast library identified total 1,023 lipid compounds from nine algal strains to highlight their chemotaxonomic relationships. PMID:25938372

  17. DIAL measurements of the vertical ozone distribution at the Siberian lidar station

    NASA Astrophysics Data System (ADS)

    Romanovskii, O. A.; Burlakov, V. D.; Dolgii, S. I.; Kharchenko, O. V.; Nevzorov, A. A.; Nevzorov, A. V.

    2015-10-01

    The paper presents the results of DIAL measurements of the vertical ozone distribution at the Siberian lidar station. Sensing is performed according to the method of differential absorption and scattering at wavelength pair of 299/341 nm, which are, respectively, the first and second Stokes components of SRS conversion of 4th harmonic of Nd:YAG laser (266 nm) in hydrogen. Lidar with receiving mirror 0.5 m in diameter is used to implement sensing of vertical ozone distribution in altitude range of 6-16 km. The temperature correction of zone absorption coefficients is introduced in the software to reduce the retrieval errors.

  18. Aperture averaging of optical scintillations in CO{sub 2} DIAL

    SciTech Connect

    Nelson, D.H.; Petrin, R.R.; Schmitt, M.J.; Whitehead, M.C.; Walters, D.L.

    1997-10-01

    Atmospheric turbulence causes several effects on a propagating laser beam. The authors have previously studied the effects of beam spreading and beam wander, and feel they have a good understanding of their impact on CO{sub 2} DIAL. Another effect is scintillation where atmospheric turbulence causes irradiance fluctuations within the envelope of the beam profile. They believe that scintillation at the target plays an important role in LIDAR return statistics. A Huygens-Fresnel wave optics computer simulation for propagating beams through atmospheric optical turbulence has been previously developed. They modify this simulation to include the effects of reflective speckle and examine its application in comparison with experimental data.

  19. Central nervous system tumors and related intracranial pathologies in radium dial workers

    SciTech Connect

    Stebbings, J.H.; Semkiw, W.

    1988-01-01

    Among the female radiation workers in the radium dial industry there is no overall excess of brain or central nervous system tumors. A significant excess did appear, however, in one of three major cohorts; the excess was not due to an excess of gliomas and cannot be ascribed with certainty to radium or external radiation. A significant proportional excess of tumors outside the brain was observed, and is consistent with irradiation of nervous system tissue from adjacent bone. Early deaths from brain abscess or mastoiditis, which are coded as diseases of the nervous system and sense organs, were observed. 12 refs., 11 tabs.

  20. Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols

    NASA Technical Reports Server (NTRS)

    Mcgee, Thomas J.; Gross, Michael; Ferrare, Richard; Heaps, William; Singh, Upendra

    1993-01-01

    Since the eruption of Mt. Pinatubo in June, 1991, measurements of atmospheric species which depend on Rayleigh scattering of radiation, have been severely compromised where the volcanic aerosol cloud exists. For the GSFC stratospheric ozone lidar, this has meant that ozone determination has been impossible below approximately 30 km. The GSFC lidar has been modified to detect Raman scattering from nitrogen molecules from transmitted laser wavelengths. The instrument transmits two laser wavelengths at 308 nm and 351 nm, and detects returns at four wavelengths; 308 nm, 332 nm, 351 nm, and 382 nm. Using this technique in conjunction with the Rayleigh DIAL measurement, ozone profiles have been measured between 15 and 50 km.

  1. Measurement of Lower-Atmospheric CO2 Concentration Distribution Using a Compact 1.6 μm DIAL

    NASA Astrophysics Data System (ADS)

    Shibata, Yasukuni; Nagasawa, Chikao; Abo, Makoto

    2016-06-01

    Knowledge of present carbon sources and sinks including their spatial distribution and their variation in time is one of the essential information for predicting future CO2 atmospheric concentration levels. The differential absorption lidar (DIAL) is expected to measure atmospheric CO2 profiles in the atmospheric boundary layer and lower troposphere from a ground platform. We have succeeded to develop a compact 1.6 μm DIAL system for measuring CO2 concentration profiles in the lower atmosphere. This 1.6 μm DIAL system consists of the optical parametric generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate and the receiving optics that included the near-infrared photomultiplier tube operating at the analog mode and a 25 cm telescope. CO2 concentration profiles were obtained up to 2.5 km altitude.

  2. Doppler ultrasound evaluation in preeclampsia

    PubMed Central

    2013-01-01

    Background Worldwide preeclampsia (PE) is the leading cause of maternal death and affects 5 to 8% of pregnant women. PE is characterized by elevated blood pressure and proteinuria. Doppler Ultrasound (US) evaluation has been considered a useful method for prediction of PE; however, there is no complete data about the most frequently altered US parameters in the pathology. The aim of this study was to evaluate the uterine, umbilical, and the middle cerebral arteries using Doppler US parameters [resistance index (RI), pulsatility index (PI), notch (N), systolic peak (SP) and their combinations] in pregnant women, in order to make a global evaluation of hemodynamic repercussion caused by the established PE. Results A total of 102 pregnant Mexican women (65 PE women and 37 normotensive women) were recruited in a cases and controls study. Blood velocity waveforms from uterine, umbilical, and middle cerebral arteries, in pregnancies from 24 to 37 weeks of gestation were recorded by trans-abdominal examination with a Toshiba Ultrasound Power Vision 6000 SSA-370A, with a 3.5 MHz convex transducer. Abnormal general Doppler US profile showed a positive association with PE [odds ratio (OR) = 2.93, 95% confidence interval (CI) = 1.2 - 7.3, P = 0.021)], and a specificity and predictive positive value of 89.2% and 88.6%, respectively. Other parameters like N presence, RI and PI of umbilical artery, as well as the PI of middle cerebral artery, showed differences between groups (P values < 0.05). Conclusion General Doppler US result, as well as N from uterine vessel, RI from umbilical artery, and PI from umbilical and middle cerebral arteries in their individual form, may be considered as tools to determine hemodynamic repercussion caused by PE. PMID:24252303

  3. Analysis of Doppler lidar data

    NASA Technical Reports Server (NTRS)

    Rothermel, J.

    1985-01-01

    Dual Doppler lidar analyses of data taken by pulsed lidars demonstrated feasibility of deriving wind fields from coordinated lidar scans. Limited case histories of thunderstorm outflows were obtained. Co-located comparison between Marshall Space Flight Center lidar and NCAR 5.5 cm radar demonstrated desirability of lidar in cases of marginal radar reflectivity in clear air and low-elevation scans. Analysis continued on backscattered intensity and velocity measurements made from April 1983 to February 1984. A slant path method was used to calculate vertical profiles of volumetric backscatter and adsorption in the lower troposphere. High-quality VAD scans were identified as candidates for investigating feasibility of calculating horizontal motion fields using single Doppler lidar. Activities during FY-85 also included participation in Fall 1984 airborne Doppler lidar flight experiments. Preliminary data review was begun using McIdas system. Analysis of backscatter and absorpiton profiles continues. Focus is on understanding spatial and temporal variations, as well as frequency distribution, of backscatter at several tropospheric levels. Results from this study provide input to evaluation of clean/dirty airmass hypothesis of aerosol distribution. Assistance is being given to preparation of a comprehensive, global backscatter measurement plan. Analysis of data from Fall 1984 flight experiments is just beginning. Work has begun on preprocessing data to minimize errors due to electro-optic modulator malfunction during flights.

  4. Development of an Ozone UV DIAL System at the High Altitude Research Station Jungfraujoch

    NASA Astrophysics Data System (ADS)

    Bartlome, M.; Simeonov, V.; Parlange, M.; van den Bergh, H.

    2009-04-01

    An ozone UV Differential Absorption Lidar (DIAL) system is developed and added to the existing multi-wavelength Lidar operated at the High Altitude Research Station Jungfraujoch (HARSJ, 3580 m ASL, 46.55° N, 7.98° E). The system is based on a quadrupled Nd:YAG laser (Continuum Powerlite 8000) providing the laser emission of 266 nm at a repetition rate of 10 Hz. The initial radiation is focused through a high pressure Nitrogen-Raman cell responsible for the generation of the DIAL wavelengths suitable for ozone detection (284, 304 nm) by the stimulated Raman scattering technique. The 76 cm diameter Cassegrain telescope in the HARSJ's astronomical dome is used as receiver for measurements up to the tropopause. The existing multi-wavelength polychromator fixed at the telescopes rear end is equipped with the additional ozone detection channel. The performance of the system is illustrated by inter-comparison with an ECC ozone sonde launched by the Swiss Meteorological Institute at Payerne (SMI, 491 m ASL, 46.83°N, 6.96 E). The retrieved data are found to be in good agreement with the balloon sounding and cover an altitude range of 2 to 10 km above the HARSJ. Since the scientific community disagrees about the real amount of air mass exchange driven by stratosphere troposphere exchange (STE), this new instrument is capable to supply the STE research with remote sensing data from an unique location.

  5. InGaAsSb Detectors Characterization for 2-Micron CO2 Lidar/DIAL Applications

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Abedin, M. Nurul; Koch, Grady J.; Singh, Upendra N.

    2003-01-01

    Recent interest in monitoring atmospheric CO2 focuses attention on infrared remote sensing using the 2-micron lidar/differential absorption lidar (DIAL) technique. Quantum detectors are critical components in this technique, and many research efforts concentrate on developing such devices for the 2-micron wavelength. Characterization results of InGaAsSb quantum detectors for the 2-micron wavelength range are presented, including experimental setup and procedure. Detectors are prototype devices manufactured by using separate absorption and multiplication (SAM) structures. Characterization experiments include V-I measurements, spectral response and its variation with bias voltage and temperature, noise measurements, noise-equivalent-power (NEP) and detectivity calculations, and signal-to-noise ratio (SNR) estimation. A slight increase in the output signal occurred with increased bias voltage and was associated with a noise level increase. Cooling down the detectors reduces noise and shifts the cutoff wavelength to shorter values. Further improvement in the design and manufacturing process, by increasing the device gain and lowering its noise level, is necessary to meet the required CO2 lidar/DIAL specifications.

  6. Multiple myeloma, leukemia, and breast cancer among the US radium dial workers

    SciTech Connect

    Stebbings, J.H.; Lucas, H.F.; Stehney, A.F.

    1983-01-01

    The relationships of radium exposure to mortality from multiple myeloma, leukemia, and breast cancer were studied in three cohorts of female dial workers defined by year of first employment. Mortality was compared with that expected from US white female rates, with and without adjustment for local mortality rates. Dose-response relationships of these cancers to systemic intake of radium were determined in workers whose body burdens had been measured in vivo since 1955. Incident cases of multiple myeloma occurred in the pre-1930 cohort; however, analyses of body burdens and durations of employment suggest that external radiation was more likely to have been responsible than was internal radium. Leukemia incidence and mortality have not been elevated overall among the female dial workers, either in the pre-1930 or the post-1930 cohorts, but cases have tended to occur early and in subjects with higher body burdens. Extensive analyses of breast cancer data have uncovered several observations weighing against a causal interpretation of the association between radium and breast cancer.

  7. Simulation study for the monitoring of industrial exhaust dispersion using a DIAL system

    NASA Astrophysics Data System (ADS)

    Veerabuthiran, S.; Jindal, Mukesh Kumar; Dudeja, Jai Paul; Dubey, Deepak Kumar; Kumar, Anil

    2006-12-01

    Computer simulations have been carried out to optimize the IR Differential Absorption Lidar (DIAL) system in order to measure the gaseous pollutants released by the industries. The concentration of the gaseous pollutants due to elevated sources is computed using the Gaussian dispersion model. For given atmospheric conditions and stack physical parameters, the downwind distance (x) at which the SO II reaches the safe limit of its toxicity has been computed at given other two coordinates (y, z) with respect to chimney. The gaseous pollutants released by the industries will be effectively monitored by the proposed DIAL system, which will be placed at New Delhi (28.35 degrees N, 77.12 degrees E), India. The performance of the Lidar has been optimized based on the various system parameters incorporating the atmospheric conditions and stack physical parameters. Further, the backscattered return powers at on- & -off line wavelengths, the required energy to be transmitted and the position at which the lidar system should be posted have been computed in order to monitor SO II.

  8. Compact Ozone Differential Absorption Lidar (DIAL) Transmitter Using Solid-State Dye Polymers

    NASA Technical Reports Server (NTRS)

    Jones, Alton L., Jr.; DeYoung, Russell J.; Elsayid-Ele, Hani

    2001-01-01

    A new potential DIAL laser transmitter is described that uses solid-state dye laser materials to make a simpler, more compact, lower mass laser system. Two solid-state dye laser materials were tested to evaluate their performance in a laser oscillator cavity end pumped by a pulsed Nd:YAG laser at 532 nm. The polymer host polymethyl-methacrylate was injected with a pyrromethene laser dye, PM 580, or PM 597. A narrowband laser oscillator cavity was constructed to produce visible wavelengths of 578 and 600 nm which were frequency doubled into the UV region (299 or 300 nm) by using a BBO crystal, resulting in a maximum energy of 11 mJ at a wavelength of 578 nm when pumped by the Nd:YAG laser at an energy of 100 mJ (532 nm). A maximum output energy of 378 microJ was achieved in the UV region at a wavelength of 289 nm but lasted only 2000 laser shots at a repetition rate of 10 Hz. The results are promising and show that a solid-state dye laser based ozone DIAL system is possible with improvements in the design of the laser transmitter.

  9. The portable P300 dialing system based on tablet and Emotiv Epoc headset.

    PubMed

    Tong Jijun; Zhang Peng; Xiao Ran; Ding Lei

    2015-08-01

    A Brain-computer interface (BCI) is a novel communication system that translates brain signals into a control signal. Now with the appearance of the commercial EEG headsets and mobile smart platforms (tablet, smartphone), it is possible to develop the mobile BCI system, which can greatly improve the life quality of patients suffering from motor disease, such as amyotrophic lateral scleroses (ALS), multiple sclerosis, cerebral palsy and head trauma. This study adopted a 14-channel Emotiv EPOC headset and Microsoft surface pro 3 to realize a dialing system, which was represented by 4×3 matrices of alphanumeric characters. The performance of the online portable dialing system based on P300 is satisfying. The average classification accuracy reaches 88.75±10.57% in lab and 73.75±16.94% in metro, while the information transfer rate (ITR) reaches 7.17±1.80 and 5.05±2.17 bits/min respectively. This means the commercial EEG headset and tablet has good prospect in developing real time BCI system in realistic environments.

  10. Selection of an averaging technique by simulation study of a DIAL system for toxic agents monitoring

    NASA Astrophysics Data System (ADS)

    Dudeja, Jai Paul; Jindal, Mukesh Kumar; Veerabuthiran, S.

    2007-10-01

    Differential Absorption Lidar (DIAL) is a very effective technique for standoff detection of various toxic agents in the atmosphere. The Lidar backscattered signal received usually has poor signal to noise (SNR) ratio. In order to improve the SNR, statistical averaging over a number of laser pulses is employed. The aim of the present work is to select a particular statistical averaging technique, which is most suitable in removing the noise in Lidar return signals. The DIAL system considered here uses laser transmitters based on OPO based (2-5 μm) and TEA CO2 (9-11μm) lasers. Eight commonly used chemical warfare agents including five nerve agents and three blister agents have been considered here as examples of toxic agents. A Graphical User Interface (GUI) software has been developed in LabVIEW to simulate return signals mixed with the expected noise levels. A toxic agent cloud with a given thickness and concentration has been assumed to be detected in the ambient atmospheric conditions at various ranges up to 5 Km. Data for 200 pulses per agent was stored in the computer memory. Various known statistical averaging techniques were used and number concentrations of particular agent have been computed and compared with ideal Lidar return signal values. This exercise was repeated for all the eight agents and based on the results obtained; the most suitable averaging technique has been selected.

  11. Translation and adaptation to Portuguese of the haemodialysis patient assessment tool - CUDYR-DIAL.

    PubMed

    Figueiredo, Ana Elizabeth Prado Lima; Rocha, Késia; Araya, Silvia Barrios; Catoni, Maria Isabel; Schilling, Maria Cristina Lore; Urbanetto, Janete de Souza

    2016-03-01

    Objective To translate and culturally adapt the tool Categorización de usuario según dependencia y riesgo en unidades de hemodiálisis (CUDYR-DIAL) into Brazilian Portuguese. Method This is a methodological study for the translation and cultural adaptation or localization of the instrument CUDYR-DIAL. Results In the pre-test stage, three nurses applied the instrument to 78 patients of the haemodialysis unit of the São Lucas Hospital of the Pontifícia Universidade Católica do Rio Grande do Sul. The average scores of each item were compared and no statistically significant differences were found in the data of the three evaluators, which demonstrates that the score of each professional in each item converges to the same value. Considering the estimation of reliability, Cronbach's alpha determined for the 14 items of the scale presented a minimum of 0.796 and a maximum of 0.799. Conclusion The instrument was translated, but the cultural adaptation was not necessary. It presents good reliability and will contribute to qualify the care of haemodialysis patients. PMID:27074311

  12. Characterising the experience of interaction: an evaluation of automotive rotary dials.

    PubMed

    Wellings, Tom; Pitts, Matthew J; Williams, Mark A

    2012-01-01

    Optimising sensory product qualities is a priority for automotive manufacturers when developing human-machine interfaces, as user experience frameworks consider sensory aesthetics to be a main influencing factor of the overall judgement of product appeal. This empirical study examines whether users' overall judgements of product appeal can be predicted from measures of non-visual aesthetic qualities. Ninety-one UK owners of Supermini segment cars assessed five examples of rotary temperature dials. Factor analysis gave four clear factors common across all samples, of which 'unrefined loudness' and 'positivity/precision' predicted up to 26% variance in the hedonic score; both factors were similarly important in the regression models. Significant differences in appeal were observed between the samples; however, there were no effects due to age or gender. Practitioner Summary: The research shows that the overall appeal of automotive rotary dials is partially predicted by their non-visual aesthetics. These findings are applicable to the design of any products where improving the user experience is a goal, as it demonstrates that user experience models are applicable to product domains other than computing and information technology.

  13. Detection and monitoring of pollutant sources with Lidar/Dial techniques

    NASA Astrophysics Data System (ADS)

    Gaudio, P.; Gelfusa, M.; Malizia, A.; Parracino, S.; Richetta, M.; De Leo, L.; Perrimezzi, C.; Bellecci, C.

    2015-11-01

    It's well known that air pollution due to anthropogenic sources can have adverse effects on humans and the ecosystem. Therefore, in the last years, surveying large regions of the atmosphere in an automatic way has become a strategic objective of various public health organizations for early detection of pollutant sources in urban and industrial areas. The Lidar and Dial techniques have become well established laser based methods for the remote sensing of the atmosphere. They are often implemented to probe almost any level of the atmosphere and to acquire information to validate theoretical models about different topics of atmospheric physics. They can also be used for environment surveying by monitoring particles, aerosols and molecules. The aim of the present work is to demonstrate the potential of these methods to detect pollutants emitted from local sources (such as particulate and/or chemical compounds) and to evaluate their concentration. This is exemplified with the help of experimental data acquired in an industrial area in the south of Italy by mean of experimental campaign by use of pollutants simulated source. For this purpose, two mobile systems Lidar and Dial have been developed by the authors. In this paper there will be presented the operating principles of the system and the results of the experimental campaign.

  14. Introducing heterogeneous users and vehicles into models and algorithms for the dial-a-ride problem.

    PubMed

    Parragh, Sophie N

    2011-08-01

    Dial-a-ride problems deal with the transportation of people between pickup and delivery locations. Given the fact that people are subject to transportation, constraints related to quality of service are usually present, such as time windows and maximum user ride time limits. In many real world applications, different types of users exist. In the field of patient and disabled people transportation, up to four different transportation modes can be distinguished. In this article we consider staff seats, patient seats, stretchers and wheelchair places. Furthermore, most companies involved in the transportation of the disabled or ill dispose of different types of vehicles. We introduce both aspects into state-of-the-art formulations and branch-and-cut algorithms for the standard dial-a-ride problem. Also a recent metaheuristic method is adapted to this new problem. In addition, a further service quality related issue is analyzed: vehicle waiting time with passengers aboard. Instances with up to 40 requests are solved to optimality. High quality solutions are obtained with the heuristic method.

  15. InGaAsSb Detectors' Characterization for 2-Micron CO2 Lidar/DIAL Applications

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Abedin, M. Nurul; Koch, Grady J.; Singh, Upendra N.

    2003-01-01

    Recent interest in monitoring atmospheric CO2 focuses attention on infrared remote sensing using the 2-micron lidar/differential absorption lidar (DIAL) technique. Quantum detectors are critical components in this technique, and many research efforts concentrate on developing such devices for the 2-micron wavelength. Characterization results of InGaAsSb quantum detectors for the 2-micron wavelength range are presented, including experimental setup and procedure. Detectors are prototype devices manufactured by using separate absorption and multiplication (SAM) structures. Characterization experiments include V-I measurements, spectral response and its variation with bias voltage and temperature, noise measurements, noise-equivalent-power (NEP) and detectivity calculations, and signal-to-noise ratio (SNR) estimation. A slight increase in the output signal occurred with increased bias voltage and was associated with a noise level increase. Cooling down the detectors reduces noise and shifts the cutoff wavelength to shorter values. Further improvement in the design and manufacturing process, by increasing the device gain and lowering its noise level, is necessary to meet the required CO2 lidar/DIAL specifications.

  16. Observation of atmospheric ozone by dial with Raman lasers pumped by a KrF laser

    NASA Technical Reports Server (NTRS)

    Maeda, M.; Shibata, T.

    1986-01-01

    Since the XeCl excimer laser (308 nm) was first used in Differential Absorption Lidar (DIAL) for stratospheric ozone detection, the XeCl ozone lidar became a useful tool for the monitoring of the stratospheric ozone concentration. Shorter wavelength lasers are needed for the observation of ozone in the troposphere where the ozone concentration is about one order of magnitude smaller than in the stratosphere. In 1983, tropospheric ozone was observed with the combination of the second Stokes line (290.4 nm) of stimulated Raman scattering from methane pumped by a KrF laser and the XeCl laser line. The measurement of the ozone distribution from ground to 30 km was reported, using three Stokes lines of Raman lasers pumped by a KrF laser. At wavelengths shorter than 295 nm, the background solar radiation is effectively suppressed by atmospheric ozone. Such a solar-blind effect can be expected when two wavelengths 277 and 290.4 nm are used for DIAL ozone detection. A preliminary measurement of the day time ozone distribution in the troposphere is presented using these wavelengths generated by a KrF laser with a Raman shifter. Analysis using the lidar equation predicts the maximum detectable range is 7 km.

  17. Development of the Lidar Atmospheric Sensing Experiment (LASE): An Advanced Airborne DIAL Instrument

    NASA Technical Reports Server (NTRS)

    Moore, Alvah S., Jr.; Brown, Kevin E.; Hall, William M.; Barnes, James C.; Edwards, William C.; Petway, Larry B.; Little, Alan D.; Luck, William S., Jr.; Jones, Irby W.; Antill, Charles W., Jr.

    1997-01-01

    The Lidar Atmospheric Sensing Experiment (LASE) Instrument is the first fully-engineered, autonomous Differential Absorption Lidar (DIAL) System for the measurement of water vapor in the troposphere (aerosol and cloud measurements are included). LASE uses a double-pulsed Ti:Sapphire laser for the transmitter with a 30 ns pulse length and 150 mJ/pulse. The laser beam is "seeded" to operate on a selected water vapor absorption line in the 815-nm region using a laser diode and an onboard absorption reference cell. A 40 cm diameter telescope collects the backscattered signals and directs them onto two detectors. LASE collects DIAL data at 5 Hz while onboard a NASA/Ames ER-2 aircraft flying at altitudes from 16-21 km. LASE was designed to operate autonomously within the environment and physical constraints of the ER-2 aircraft and to make water vapor profile measurements across the troposphere to better than 10% accuracy. LASE has flown 19 times during the development of the instrument and the validation of the science data. This paper describes the design, operation, and reliability of the LASE Instrument.

  18. On-line wavelength calibration of pulsed laser for CO2 DIAL sensing

    NASA Astrophysics Data System (ADS)

    Han, Ge; Gong, Wei; Lin, Hong; Ma, Xin; Xiang, Chengzhi

    2014-12-01

    Accurate on-line wavelength calibration is a crucial procedure for sensing atmospheric CO2 using the DIAL technique. Drastic fluctuations in the intensity of a pulsed laser pose a great challenge for accurate on-line wavelength determination and stabilization, resulting in CO2 retrievals lacking the desired accuracy for global climate change and carbon cycle research. To tackle this problem, a two-stage wavelength calibration method based on Voigt fitting was proposed in this work. Simulation analysis demonstrated that the proposed method is superior to the conventional method and provides wavelength calibration results with an accuracy of 0.1 pm when the noise level does not exceed than 5 %. This conclusion was confirmed through experiments with real signals. Furthermore, simulation analysis revealed that the proposed method could yield results with an accuracy of 0.1 pm by increasing the number of sample points, even for signals with noise levels of up to 20 %. This is a promising feature that could facilitate the development of DIAL systems without gas cells.

  19. Real-time atmospheric absorption spectra for in-flight tuning of an airborne dial system

    NASA Technical Reports Server (NTRS)

    Dombrowski, M.; Walden, H.; Schwemmer, G. K.; Milrod, J.; Korb, C. L.

    1986-01-01

    Real-time measurements of atmospheric absorption spectra are displayed and used to precisely calibrate and fix the frequency of an Alexandrite laser to specific oxygen absorption features for airborne Differential Absorption Lidar (DIAL) measurements of atmospheric pressure and temperature. The DIAL system used contains two narrowband tunable Alexandrite lasers: one is electronically scanned to tune to oxygen absorption features for on-line signals while the second is used to obtain off-line (nonabsorbed) atmospheric return signals. The lidar operator may select the number of shots to be averaged, the altitude, and altitude interval over which the signals are averaged using single key stroke commands. The operator also determines exactly which oxygen absorption lines are scanned by comparing the line spacings and relative strengths with known line parameters, thus calibrating the laser wavelength readout. The system was used successfully to measure the atmospheric pressure profile on the first flights of this lidar, November 20, and December 9, 1985, aboard the NASA Wallops Electra aircraft.

  20. A New Raman DIAL Technique for Measuring Stratospheric Ozone in the Presence of Volcanic Aerosols

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Mcgee, Thomas J.; Gross, Michael; Heaps, William S.; Ferrare, Richard

    1992-01-01

    This paper describes a new lidar scheme to measure stratospheric ozone in the presence of heavy volcanic aerosol loading. The eruptions of the Philippine volcano Pinatubo during June 1991 ejected large amounts of sulfur dioxide into the atmosphere to altitudes of at least 30 km. The resulting aerosols have severely affected the measurements of stratospheric ozone when using traditional Rayleigh differential absorption lidar (DIAL) technique, in which the scattering mechanism is almost entirely Rayleigh and which assumes a small amount or no aerosols. In order to extract an ozone profile in the regions below about 30 km where the Rayleigh lidar returns are contaminated by aerosol scattering from Mt. Pinatubo cloud, we have used a Raman lidar technique, where the scattering mechanism depends solely on molecular nitrogen. In this scheme there is no aerosol scattering component to the backscattered lidar return. Using this technique in conjunction with the Rayleigh DIAL measurement, the GSFC stratospheric ozone lidar has measured ozone profiles between 15 and 50 km during the recently held UARS correlative measurement campaign (February-March 1992) at JPL's Table Mountain Facility in California.

  1. First upper Tropospheric and lower Stratospheric Ozone Observations with the UV DIAL System at the High Altitude Research Station Jungfraujoch

    NASA Astrophysics Data System (ADS)

    Bartlome, Marcel; Simeonov, Valentin; Parlange, Marc; van den Bergh, Hubert

    2010-05-01

    An ozone UV Differential Absorption Lidar (DIAL) system was developed and added to the existing multi-wavelength lidar operated at the High Altitude Research Station Jungfraujoch (HARSJ, 3580 m ASL, 46.55° N, 7.98° E). The system uses the quadrupled Nd:YAG laser emission at 266 nm to produce the ozone UV DIAL wavelengths (284, 304 nm) in a high pressure Raman cell filled with N2 by stimulated Raman scattering. The 76 cm diameter Cassegrain telescope in the HARSJ's astronomical dome is used as receiver for measurements up to the tropopause. For the sake of simplicity, the existing multi-wavelength polychromator fixed at the telescope rear end is equipped with the additional ozone detection channel. Thereby, a concave imaging diffraction grating is used for the spectral separation of the ozone UV DIAL wavelengths. With the current design, the ozone UV DIAL system provides hourly-averaged ozone profiles reaching from 6 km to 12 km ASL with a vertical resolution better than 400m at 6 km ASL and 1000m at 12 km ASL. The relative statistical error of the profiles is 10% at 12 km ASL. The performance of the system is illustrated by an inter-comparison with eight quasi simultaneously obtained ECC ozone sonde profiles from the Swiss Meteorological Institute - Payerne (SMI, 491 m ASL, 46.83°N, 6.96 E) 80 km in north western direction from HARSJ. The relative differences between the UV DIAL and the sonde profiles were found to be lower than 20% in a horizontally homogeneous atmosphere. This intercomparison has shown that the ozone UV DIAL system is capable to accurately reproduce the vertical ozone distribution within its operational range domain. An intercomparison with vertical profiles taken in the vicinity of HARSJ by an airplane-borne UV-photometer confirmed the performance of the ozone UV DIAL system. First time series (up to 21 hours) of hourly averaged ozone UV DIAL profiles were taken in August and September 2009. From these measurements, an ozone rich layer of air

  2. The use of rotational optical encoders for dial sensing in the Virtual translumenal Endoscopic Surgical Trainer (VTEST.

    PubMed

    Dargar, Saurabh; Sankaranarayanan, Ganesh; De, Suvranu

    2013-01-01

    Natural orifice translumenal endoscopic surgery (NOTES) is a minimally invasive procedure, known for its scar-less nature and short post operative recovery periods. A critical skill necessary for a NOTES procedure is the surgeon's ability to navigate and gain visualization of the target organ, which is done by moving the endoscope tip using the dials on the handle. We have developed an accurate and high resolution optical encoder based system to measure that dial manipulations, as part of a larger project to develop a VR-NOTES surgical simulator. PMID:23400138

  3. Random-digit dialing for control selection in childhood cancer studies: the geographic proximity and demographics within matched sets.

    PubMed Central

    Sakkinen, P A; Severson, R K; Ross, J A; Robison, L L

    1995-01-01

    The purpose of this analysis was to evaluate the degree of matching in 95 individually matched pairs from a case-control study of childhood leukemia that used random-digit dialing to select control subjects. Both geographic proximity (of each case subject to his or her matched control subject) and differences in socioeconomic status were evaluated. The median distance between matched pairs was 3.2 km. There were no significant differences in distance between matched pairs by urban/rural status and geographic location. For studies of childhood cancer drawn from pediatric referral centers, random-digit dialing appears to provide a suitable control group. PMID:7702122

  4. Test Review: C. Mardell & D. S. Goldenberg. "Speed Developmental Indicators for the Assessment of Learning-Fourth Edition" ("Speed DIAL-4")

    ERIC Educational Resources Information Center

    Doskey, Elena M.; Lagunas, Brenda; SooHoo, Michelle; Lomax, Amanda; Bullick, Stephanie

    2013-01-01

    The Speed DIAL-4 was developed from the Developmental Indicators for the Assessment of Learning, Fourth Edition (DIAL-4), a screening designed to identify children between the ages of 2 years, 6 months through 5 years, 11 months "who are in need of intervention or diagnostic assessment in the following areas: motor, concepts, language,…

  5. Measurement of the Doppler power of flowing blood using ultrasound Doppler devices.

    PubMed

    Huang, Chih-Chung; Chou, Hung-Lung; Chen, Pay-Yu

    2015-02-01

    Measurement of the Doppler power of signals backscattered from flowing blood (henceforth referred to as the Doppler power of flowing blood) and the echogenicity of flowing blood have been used widely to assess the degree of red blood cell (RBC) aggregation for more than 20 y. Many studies have used Doppler flowmeters based on an analogue circuit design to obtain the Doppler shifts in the signals backscattered from flowing blood; however, some recent studies have mentioned that the analogue Doppler flowmeter exhibits a frequency-response problem whereby the backscattered energy is lost at higher Doppler shift frequencies. Therefore, the measured Doppler power of flowing blood and evaluations of RBC aggregation obtained using an analogue Doppler device may be inaccurate. To overcome this problem, the present study implemented a field-programmable gate array-based digital pulsed-wave Doppler flowmeter to measure the Doppler power of flowing blood, in the aim of providing more accurate assessments of RBC aggregation. A clinical duplex ultrasound imaging system that can acquire pulsed-wave Doppler spectrograms is now available, but its usefulness for estimating the ultrasound scattering properties of blood is still in doubt. Therefore, the echogenicity and Doppler power of flowing blood under the same flow conditions were measured using a laboratory pulser-receiver system and a clinical ultrasound system, respectively, for comparisons. The experiments were carried out using porcine blood under steady laminar flow with both RBC suspensions and whole blood. The experimental results indicated that a clinical ultrasound system used to measure the Doppler spectrograms is not suitable for quantifying Doppler power. However, the Doppler power measured using a digital Doppler flowmeter can reveal the relationship between backscattering signals and the properties of blood cells because the effects of frequency response are eliminated. The measurements of the Doppler power and

  6. Performance Of A Doppler-Corrected MDPSK Detector

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.; Jedrey, Thomas C.; Hinedi, Sami; Agan, Martin J.

    1994-01-01

    Report presents theoretical analysis of effect of rate of change of Doppler shift of received multiple-differential-phase-shift-keyed (MDPSK) radio signal on performance of Doppler-corrected differential detector. In particular detector, phase of received signal corrected for Doppler shift by use of Doppler estimator designed to operate in presence of negligibly small Doppler rate.

  7. Doppler effects on periodicities in Saturn's magnetosphere

    NASA Astrophysics Data System (ADS)

    Carbary, J. F.

    2015-11-01

    The magnetosphere of Saturn exhibits a wide variety of periodic phenomena in magnetic fields, charged particles, and radio emissions. The periodicities are observed from a moving spacecraft, so an issue arises about the periodicities being influenced by the Doppler effects. Doppler effects can be investigated using models of the periodicities and then flying the spacecraft through the model, effectively measuring any Doppler phenomena with the simulation. Using 200 days of typical elliptical orbits from the Cassini mission at Saturn, three models were tested: an azimuthal wave (or "searchlight") model, a radial wave (or "pond ripple") model, and a model of an outwardly traveling spiral wave. The azimuthal wave model produced virtually no Doppler effects in the periodicities because its wave vector is nearly perpendicular to the spacecraft trajectory. The radial wave model generated strong Doppler effects of an upshifted and a downshifted signal (a dual period) on either side of the true period, because the wave vector is either parallel or antiparallel to the spacecraft trajectory. Being intermediate to the searchlight and radial waves, the spiral wave produced Doppler effects but only for low wave speeds (<10 RS/h). For higher wave speeds the Doppler effects were not as clear. The Doppler effects can be mitigated by employing only observations beyond ~15 RS where the spacecraft speed is low compared to the wave speed. The observed periodicities over the same 200 day interval do not show evidence of Doppler effects but generally display a single feature at the expected ~10.7 h period.

  8. Reconstruction of N2O and CH4 Content by Dial Measurements at Wavelengths of Overtone CO Laser

    NASA Astrophysics Data System (ADS)

    Romanovskii, O. A.; Matvienko, G. G.; Kharchenko, O. V.; Yakovlev, S. V.

    2016-06-01

    The paper presents the results of laboratory experiments on measurement of absorption and extinction of radiation of the overtone Co laser at wavelengths used for sensing of methane and N2O in the mid-IR spectral range with the differential absorption (DIAL) method, as well as the concentrations of the studied gases reconstructed from the analysis of experimentally obtained absorption coefficients.

  9. Effect of spectral time-lag correlation coefficient and signal averaging on airborne CO2 DIAL measurements

    NASA Astrophysics Data System (ADS)

    Ben-David, Avishai; Vanderbeek, Richard G.; Gotoff, Steven W.; D'Amico, Francis M.

    1997-10-01

    The effects of flight geometry, signal averaging and time- lag correlation coefficient on airborne CO2 dial lidar measurements are shown in simulations and field measurements. These factors have implications for multi- vapor measurements and also for measuring a shingle vapor with a wide absorption spectra for which one would like to make DIAL measurements at many wavelengths across the absorption spectra of the gas. Thus it is of interest to know how many wavelengths and how many groups of wavelengths can be used effectively in DIAL measurements. Our data indicate that for our lidar about 80 wavelengths can be used for DIAL measurements of a stationary vapor. The lidar signal is composed of fluctuations with three time scales: a very short time scale due to system noise which is faster than the data acquisition sampling rate of the receiver, a medium time scale due to atmospheric turbulence, and a long time scale due to slow atmospheric transmission drift from aerosol in homogeneities. The decorrelation time scale of fluctuations for airborne lidar measurements depends on the flight geometry.

  10. An Ozone Differential Absorption Lidar (DIAL) Receiver System for Use on Unpiloted Atmospheric Vehicles

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell J.; Goldschmidt, Soenke

    1999-01-01

    Measurements of global atmosphere ozone concentrations call for flexible lidar systems that can be operated from an unpiloted atmospheric vehicle (UAV) to reduce the cost of measurement missions. A lidar receiver system consisting of a fiber-optic-coupled telescope has been designed and tested for this purpose. The system weight is 13 kg and its volume of 0.06 m 3 would fit into the payload compartment of a Perseus B UAV. The optical efficiency of the telescope is 37 percent at 288 nm and 64 percent at 300 nm. Atmospheric measurements with a DIAL laser system have been performed, and the measured ozone density has matched the data from ozonesondes to an altitude of 7 km.

  11. Single Frequency, Pulsed Laser Diode Transmitter for Dial Water Vapor Measurements at 935nm

    NASA Technical Reports Server (NTRS)

    Switzer, Gregg W.; Cornwell, Donald M., Jr.; Krainak, Michael A.; Abshire, James B.; Rall, Johnathan A. R.

    1998-01-01

    We report a tunable, single frequency, narrow linewidth, pulsed laser diode transmitter at 935.68nm for remote sensing of atmospheric water vapor. The transmitter consists of a CW, tunable, external cavity diode laser whose output is amplified 2OdB using a tapered diode amplifier. The output is pulsed for range resolved DIAL lidar by pulsing the drive current to the diode amplifier at 4kHz with a .5% duty cycle. The output from the transmitter is 36OnJ/pulse and is single spatial mode. It maintains a linewidth of less than 25MHz as its wavelength is tuned across the water vapor absorption line at 935.68nm. The transmitter design and its use in a water vapor measurement will be discussed.

  12. Moving the dial to advance population health equity in New York City Asian American populations.

    PubMed

    Trinh-Shevrin, Chau; Kwon, Simona C; Park, Rebecca; Nadkarni, Smiti Kapadia; Islam, Nadia S

    2015-07-01

    The shift toward a health equity framework for eliminating the health disparities burden of racial/ethnic minority populations has moved away from a disease-focused model to a social determinants framework that aims to achieve the highest attainment of health for all. The New York University Center for the Study of Asian American Health (CSAAH) has identified core themes and strategies for advancing population health equity for Asian American populations in New York City that are rooted in the following: social determinants of health; multisectoral, community-engaged approaches; leveraging community assets; improved disaggregated data collection and access to care; and building sustainability through community leadership and infrastructure-building activities. We describe the strategies CSAAH employed to move the dial on population health equity. PMID:25905858

  13. Moving the Dial to Advance Population Health Equity in New York City Asian American Populations

    PubMed Central

    Trinh-Shevrin, Chau; Kwon, Simona C.; Nadkarni, Smiti Kapadia; Islam, Nadia S.

    2015-01-01

    The shift toward a health equity framework for eliminating the health disparities burden of racial/ethnic minority populations has moved away from a disease-focused model to a social determinants framework that aims to achieve the highest attainment of health for all. The New York University Center for the Study of Asian American Health (CSAAH) has identified core themes and strategies for advancing population health equity for Asian American populations in New York City that are rooted in the following: social determinants of health; multisectoral, community-engaged approaches; leveraging community assets; improved disaggregated data collection and access to care; and building sustainability through community leadership and infrastructure-building activities. We describe the strategies CSAAH employed to move the dial on population health equity. PMID:25905858

  14. Setting up a mobile Lidar (DIAL) system for detecting chemical warfare agents

    NASA Astrophysics Data System (ADS)

    Kavosh Tehrani, M.; Mohammad, M. Malek; Jaafari, E.; Mobashery, A.

    2015-03-01

    The mobile light detection and ranging DIAL system of Malek Ashtar University of Technology has been developed for the detection of chemical warfare agents whose absorption wavelengths are in the range of 9.2-10.8 μm tunable CO2 lasers of the system. In this paper, this system is first described and then ammonia detection is analyzed experimentally. Also, experimental results of detecting a sarin agent simulant, dimethyl-methyl phosphonate (DMMP), are presented. The power levels received from different ranges to detect specific concentrations of NH3 and DMMP have been measured and debated. The primary test results with a 150 ns clipped pulse width by passive pinhole plasma shutter indicate that the system is capable of monitoring several species of pollutants in the range of about 1 km, with a 20 m spatial and 2 min temporal resolution.

  15. Moving the dial to advance population health equity in New York City Asian American populations.

    PubMed

    Trinh-Shevrin, Chau; Kwon, Simona C; Park, Rebecca; Nadkarni, Smiti Kapadia; Islam, Nadia S

    2015-07-01

    The shift toward a health equity framework for eliminating the health disparities burden of racial/ethnic minority populations has moved away from a disease-focused model to a social determinants framework that aims to achieve the highest attainment of health for all. The New York University Center for the Study of Asian American Health (CSAAH) has identified core themes and strategies for advancing population health equity for Asian American populations in New York City that are rooted in the following: social determinants of health; multisectoral, community-engaged approaches; leveraging community assets; improved disaggregated data collection and access to care; and building sustainability through community leadership and infrastructure-building activities. We describe the strategies CSAAH employed to move the dial on population health equity.

  16. Performance evaluation of a 1.6-µm methane DIAL system from ground, aircraft and UAV platforms.

    PubMed

    Refaat, Tamer F; Ismail, Syed; Nehrir, Amin R; Hair, John W; Crawford, James H; Leifer, Ira; Shuman, Timothy

    2013-12-16

    Methane is an efficient absorber of infrared radiation and a potent greenhouse gas with a warming potential 72 times greater than carbon dioxide on a per molecule basis. Development of methane active remote sensing capability using the differential absorption lidar (DIAL) technique enables scientific assessments of the gas emission and impacts on the climate. A performance evaluation of a pulsed DIAL system for monitoring atmospheric methane is presented. This system leverages a robust injection-seeded pulsed Nd:YAG pumped Optical Parametric Oscillator (OPO) laser technology operating in the 1.645 µm spectral band. The system also leverages an efficient low noise, commercially available, InGaAs avalanche photo-detector (APD). Lidar signals and error budget are analyzed for system operation on ground in the range-resolved DIAL mode and from airborne platforms in the integrated path DIAL (IPDA) mode. Results indicate system capability of measuring methane concentration profiles with <1.0% total error up to 4.5 km range with 5 minute averaging from ground. For airborne IPDA, the total error in the column dry mixing ratio is less than 0.3% with 0.1 sec average using ground returns. This system has a unique capability of combining signals from the atmospheric scattering from layers above the surface with ground return signals, which provides methane column measurement between the atmospheric scattering layer and the ground directly. In such case 0.5% and 1.2% total errors are achieved with 10 sec average from airborne platforms at 8 km and 15.24 km altitudes, respectively. Due to the pulsed nature of the transmitter, the system is relatively insensitive to aerosol and cloud interferences. Such DIAL system would be ideal for investigating high latitude methane releases over polar ice sheets, permafrost regions, wetlands, and over ocean during day and night. This system would have commercial potential for fossil fuel leaks detection and industrial monitoring applications

  17. Performance evaluation of a 1.6-µm methane DIAL system from ground, aircraft and UAV platforms.

    PubMed

    Refaat, Tamer F; Ismail, Syed; Nehrir, Amin R; Hair, John W; Crawford, James H; Leifer, Ira; Shuman, Timothy

    2013-12-16

    Methane is an efficient absorber of infrared radiation and a potent greenhouse gas with a warming potential 72 times greater than carbon dioxide on a per molecule basis. Development of methane active remote sensing capability using the differential absorption lidar (DIAL) technique enables scientific assessments of the gas emission and impacts on the climate. A performance evaluation of a pulsed DIAL system for monitoring atmospheric methane is presented. This system leverages a robust injection-seeded pulsed Nd:YAG pumped Optical Parametric Oscillator (OPO) laser technology operating in the 1.645 µm spectral band. The system also leverages an efficient low noise, commercially available, InGaAs avalanche photo-detector (APD). Lidar signals and error budget are analyzed for system operation on ground in the range-resolved DIAL mode and from airborne platforms in the integrated path DIAL (IPDA) mode. Results indicate system capability of measuring methane concentration profiles with <1.0% total error up to 4.5 km range with 5 minute averaging from ground. For airborne IPDA, the total error in the column dry mixing ratio is less than 0.3% with 0.1 sec average using ground returns. This system has a unique capability of combining signals from the atmospheric scattering from layers above the surface with ground return signals, which provides methane column measurement between the atmospheric scattering layer and the ground directly. In such case 0.5% and 1.2% total errors are achieved with 10 sec average from airborne platforms at 8 km and 15.24 km altitudes, respectively. Due to the pulsed nature of the transmitter, the system is relatively insensitive to aerosol and cloud interferences. Such DIAL system would be ideal for investigating high latitude methane releases over polar ice sheets, permafrost regions, wetlands, and over ocean during day and night. This system would have commercial potential for fossil fuel leaks detection and industrial monitoring applications.

  18. Monitoring Tropospheric Ozone Enhancement in the Front Range Using the Gsfc Tropoz DIAL during Discover - AQ 2014

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Hoff, R. M.; Twigg, L.; Sumnicht, G. K.

    2014-12-01

    Tropospheric ozone profiles have been retrieved from the new ground based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Fort Collins, CO from 200 m to 16 km AGL. These measurements were taken as part of NASA's DISCOVER-AQ campaign in July/August 2014. Measurements were made during simultaneous aircraft spirals over the lidar site as well as collocated ozonesonde launches. Ozone enhancement from local sources typically occurred in the mid-afternoon convection period, especially when there was light winds and low cloud cover. Interesting ozone profiles and time series data will be shown. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. Three of these lidars, including the GSFC TROPOZ DIAL, recorded measurements during the DISCOVER-AQ campaign. The GSFC TROPOZ DIAL is based on the Differential Absorption Lidar (DIAL) technique, which currently detects two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm. The DIAL technique exploits this difference between the returned backscatter signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high pressure hydrogen and deuterium. Stimulated Raman Scattering (SRS) within the focus generates a significant fraction of the pump energy at the first Stokes shift. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range resolved number density can be derived.

  19. Doppler photoacoustic and Doppler ultrasound in blood with optical contrast agent

    NASA Astrophysics Data System (ADS)

    Sheinfeld, Adi; Eyal, Avishay

    2013-03-01

    Photoacoustic Doppler flowmetry as well as Doppler ultrasound were performed in acoustic resolution regime on tubes filled with flowing blood with indocyanine green (ICG) at different concentrations. The photoacoustic excitation utilized a pair of directly-modulated fiber-coupled 830nm laser-diodes, modulated with either CW or tone-bursts for depthresolved measurements. The amplitude of the Doppler peak in photoacoustic Doppler measurements was found to be proportional to the ICG concentration. Photoacoustic Doppler was measured in ICG at human safe concentrations, but not in whole blood. Comparing the results between the two modalities implied that using a wavelength with higher optical absorption may improve the photoacoustic signal in blood.

  20. Development of a Mid-Infrared Laser for Range-Resolved Methane DIAL Measurements

    NASA Astrophysics Data System (ADS)

    Brandt, S.; Hannun, R. A.; Smith, J. B.; Dykema, J. A.; Witinski, M. F.; Anderson, J. G.

    2013-12-01

    Obtaining a global, homogenous observational record of atmospheric methane mixing ratio as a function of altitude constitutes a challenging experimental problem. The Total Carbon Column Observing Network (TCCON) as well as several climate satellites such as SCIAMACHY provide global data of ground-level concentrations and atmospheric column averages, mapping the global methane content as part of the carbon cycle. However, recent data from the HIAPER Pole-to-Pole Observations mission (HIPPO) reveals highly variable spatial structure within the vertical profile, that is not captured by satellite or ground-based in situ data. This underscores the need for new approaches for range-resolved methane detection. Differential Absorption LIDAR (DIAL) has proven to be a viable technique for range-resolved greenhouse gas measurements from both ground-based and airborne platforms. In order to achieve the necessary vertical resolution for long-range methane measurements, a high-power, pulsed laser system in the mid-IR has been developed. The optical set-up includes a single-frequency Nd:YAG laser, which pumps a non-linear crystal to generate broadly tunable, mid-IR pulses via Optical Parametric Generation (OPG). A detailed sensitivity analysis, including computational estimates of the requirements for laser linewidth, spectral purity, and frequency stability and an examination of different spectral regions in the mid-IR, will be presented. Depending on the deployment location of such a ground-based DIAL observing system, these measurements would make substantial contributions to a range of carbon cycle science questions, including monitoring of national emissions inventories and quantifying potential increases in methane emissions from natural reservoirs due to changing climate.

  1. Characteristics of direct detection 1.6μm CO2 DIAL with OPG transmitter

    NASA Astrophysics Data System (ADS)

    Nagasawa, C.; Shibata, Y.; Abo, M.

    2015-12-01

    In recent years, there have been significant advances in a QPM nonlinear optical frequency conversion efficienfy. The QPM condition is produced to use periodically poled ferroelectric crystals. An optical parametric oscillator (OPO), amplifier (OPA), and generator (OPG) devices are widely recognized as versatile coherent tunable spectroscopic sources. Many applications of PPLN-parametric radiation sources, such as laser remote sensing and molecular spectroscopy, require broadly tunable and narrow linewidth operation in the infrared region. We developed an optical parametric oscillator (OPO) transmitter for the first 1.6 μm CO2 DIAL. In order to improve the measurement accuracy of CO2 profiles, development of high power and wavelength stabilized laser system has been conducted. We have developed a new high-power 1.6 μm laser transmitter based on a parametric master oscillator-power amplifier (MOPA) system pumped by a LD-pumped Q-switched Nd:YAG laser which has the injection seed laser locked to the iodine absorption line. The master oscillator is the OPG transmitter and the amplifier is the OPA transmitter. Since the OPO transmitter has a cavity mirror, running the system without mode hopping requires complex control of cavity length. By contrast, the OPG transmitter has no cavity mirror, so there is no need to control cavity length. We report detail characteristics of the direct detection 1.6 μm CO2 DIAL with the OPG transmitter. Moreover, we report the technique of the simultaneously measurement temperature profiles with the CO2 concentration profiles using a CO2 absorption profile because of improvement of measurement accuracy of the CO2 concentration. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency.

  2. Airborne Differential Doppler Weather Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Bidwell, S.; Liao, L.; Rincon, R.; Heymsfield, G.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Precipitation Radar aboard the Tropical Rain Measuring Mission (TRMM) Satellite has shown the potential for spaceborne sensing of snow and rain by means of an incoherent pulsed radar operating at 13.8 GHz. The primary advantage of radar relative to passive instruments arises from the fact that the radar can image the 3-dimensional structure of storms. As a consequence, the radar data can be used to determine the vertical rain structure, rain type (convective/stratiform) effective storm height, and location of the melting layer. The radar, moreover, can be used to detect snow and improve the estimation of rain rate over land. To move toward spaceborne weather radars that can be deployed routinely as part of an instrument set consisting of passive and active sensors will require the development of less expensive, lighter-weight radars that consume less power. At the same time, the addition of a second frequency and an upgrade to Doppler capability are features that are needed to retrieve information on the characteristics of the drop size distribution, vertical air motion and storm dynamics. One approach to the problem is to use a single broad-band transmitter-receiver and antenna where two narrow-band frequencies are spaced apart by 5% to 10% of the center frequency. Use of Ka-band frequencies (26.5 GHz - 40 GHz) affords two advantages: adequate spatial resolution can be attained with a relatively small antenna and the differential reflectivity and mean Doppler signals are directly related to the median mass diameter of the snow and raindrop size distributions. The differential mean Doppler signal has the additional property that this quantity depends only on that part of the radial speed of the hydrometeors that is drop-size dependent. In principle, the mean and differential mean Doppler from a near-nadir viewing radar can be used to retrieve vertical air motion as well as the total mean radial velocity. In the paper, we present theoretical calculations for the

  3. Doppler tomography in fusion plasmas and astrophysics

    NASA Astrophysics Data System (ADS)

    Salewski, M.; Geiger, B.; Heidbrink, W. W.; Jacobsen, A. S.; Korsholm, S. B.; Leipold, F.; Madsen, J.; Moseev, D.; Nielsen, S. K.; Rasmussen, J.; Stagner, L.; Steeghs, D.; Stejner, M.; Tardini, G.; Weiland, M.

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion Dα (FIDA) spectroscopy measurements in magnetically confined plasma, the Dα-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright spots, spiral structures and flow patterns. Fusion plasma Doppler tomography has led to an image of the fast-ion velocity distribution function in the tokamak ASDEX Upgrade. This image matched numerical simulations very well. Here we discuss achievements of the Doppler tomography approach, its promise and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography and what can be learned by comparison of these applications.

  4. Inverse Doppler Effects in Broadband Acoustic Metamaterials.

    PubMed

    Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R

    2016-08-31

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with 'flute-like' acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  5. Inverse Doppler Effects in Broadband Acoustic Metamaterials.

    PubMed

    Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R

    2016-01-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with 'flute-like' acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe. PMID:27578317

  6. Observation of the Zero Doppler Effect

    PubMed Central

    Ran, Jia; Zhang, Yewen; Chen, Xiaodong; Fang, Kai; Zhao, Junfei; Chen, Hong

    2016-01-01

    The normal Doppler effect has well-established applications in many areas of science and technology. Recently, a few experimental demonstrations of the inverse Doppler effect have begun to appear in negative-index metamaterials. Here we report an experimental observation of the zero Doppler effect, that is, no frequency shift irrespective of the relative motion between the wave signal source and the detector in a zero-index metamaterial. This unique phenomenon, accompanied by the normal and inverse Doppler effects, is generated by reflecting a wave from a moving discontinuity in a composite right/left-handed transmission line loaded with varactors when operating in the near zero-index passband, or the right/left-handed passband. This work has revealed a complete picture of the Doppler effect in metamaterials and may lead to potential applications in electromagnetic wave related metrology. PMID:27046395

  7. Observation of the Zero Doppler Effect

    NASA Astrophysics Data System (ADS)

    Ran, Jia; Zhang, Yewen; Chen, Xiaodong; Fang, Kai; Zhao, Junfei; Chen, Hong

    2016-04-01

    The normal Doppler effect has well-established applications in many areas of science and technology. Recently, a few experimental demonstrations of the inverse Doppler effect have begun to appear in negative-index metamaterials. Here we report an experimental observation of the zero Doppler effect, that is, no frequency shift irrespective of the relative motion between the wave signal source and the detector in a zero-index metamaterial. This unique phenomenon, accompanied by the normal and inverse Doppler effects, is generated by reflecting a wave from a moving discontinuity in a composite right/left-handed transmission line loaded with varactors when operating in the near zero-index passband, or the right/left-handed passband. This work has revealed a complete picture of the Doppler effect in metamaterials and may lead to potential applications in electromagnetic wave related metrology.

  8. Inverse Doppler Effects in Broadband Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.

    2016-08-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  9. Observation of the Zero Doppler Effect.

    PubMed

    Ran, Jia; Zhang, Yewen; Chen, Xiaodong; Fang, Kai; Zhao, Junfei; Chen, Hong

    2016-04-05

    The normal Doppler effect has well-established applications in many areas of science and technology. Recently, a few experimental demonstrations of the inverse Doppler effect have begun to appear in negative-index metamaterials. Here we report an experimental observation of the zero Doppler effect, that is, no frequency shift irrespective of the relative motion between the wave signal source and the detector in a zero-index metamaterial. This unique phenomenon, accompanied by the normal and inverse Doppler effects, is generated by reflecting a wave from a moving discontinuity in a composite right/left-handed transmission line loaded with varactors when operating in the near zero-index passband, or the right/left-handed passband. This work has revealed a complete picture of the Doppler effect in metamaterials and may lead to potential applications in electromagnetic wave related metrology.

  10. Development of the doppler electron velocimeter: theory.

    SciTech Connect

    Reu, Phillip L.

    2007-03-01

    Measurement of dynamic events at the nano-scale is currently impossible. This paper presents the theoretical underpinnings of a method for making these measurements using electron microscopes. Building on the work of Moellenstedt and Lichte who demonstrated Doppler shifting of an electron beam with a moving electron mirror, further work is proposed to perfect and utilize this concept in dynamic measurements. Specifically, using the concept of ''fringe-counting'' with the current principles of transmission electron holography, an extension of these methods to dynamic measurements is proposed. A presentation of the theory of Doppler electron wave shifting is given, starting from the development of the de Broglie wave, up through the equations describing interference effects and Doppler shifting in electron waves. A mathematical demonstration that Doppler shifting is identical to the conceptually easier to understand idea of counting moving fringes is given by analogy to optical interferometry. Finally, potential developmental experiments and uses of a Doppler electron microscope are discussed.

  11. Observation of the Zero Doppler Effect.

    PubMed

    Ran, Jia; Zhang, Yewen; Chen, Xiaodong; Fang, Kai; Zhao, Junfei; Chen, Hong

    2016-01-01

    The normal Doppler effect has well-established applications in many areas of science and technology. Recently, a few experimental demonstrations of the inverse Doppler effect have begun to appear in negative-index metamaterials. Here we report an experimental observation of the zero Doppler effect, that is, no frequency shift irrespective of the relative motion between the wave signal source and the detector in a zero-index metamaterial. This unique phenomenon, accompanied by the normal and inverse Doppler effects, is generated by reflecting a wave from a moving discontinuity in a composite right/left-handed transmission line loaded with varactors when operating in the near zero-index passband, or the right/left-handed passband. This work has revealed a complete picture of the Doppler effect in metamaterials and may lead to potential applications in electromagnetic wave related metrology. PMID:27046395

  12. Gosling's Doppler pulsatility index revisited.

    PubMed

    Michel, E; Zernikow, B

    1998-05-01

    In Doppler sonography, the physiological meaning of Gosling's pulsatility index (PI) as a measure of downstream resistance is still under dispute. We deliver the theoretical derivation of its physiological significance. We present a mathematical model based on the linked theories of critical closing pressure (CCP) and cerebrovascular impedance, verified in preterm neonates. Mathematical transformation results in a series of equations interrelating several physiological parameters. Instead of indicating cerebrovascular resistance, PI is linked to the ratio of cerebrovascular impedances at the heart rate and at zero frequency. Next to arterial blood pressure, CCP is the principal determinant of PI. PI is identical to the ratio of the alternate and the direct component of the effective driving force. Thus, PI has no distinctive physiological meaning by itself. At present, our model is confined to physiological conditions where the lowest velocity is the end diastolic, and always more than zero.

  13. Laser Doppler dust devil measurements

    NASA Technical Reports Server (NTRS)

    Bilbro, J. W.; Jeffreys, H. B.; Kaufman, J. W.; Weaver, E. A.

    1977-01-01

    A scanning laser doppler velocimeter (SLDV) system was used to detect, track, and measure the velocity flow field of naturally occurring tornado-like flows (dust devils) in the atmosphere. A general description of the dust devil phenomenon is given along with a description of the test program, measurement system, and data processing techniques used to collect information on the dust devil flow field. The general meteorological conditions occurring during the test program are also described, and the information collected on two selected dust devils are discussed in detail to show the type of information which can be obtained with a SLDV system. The results from these measurements agree well with those of other investigators and illustrate the potential for the SLDV in future endeavors.

  14. Optical Doppler tomography and spectral Doppler imaging of localized ischemic stroke in a mouse model

    NASA Astrophysics Data System (ADS)

    Yu, Lingfeng; Nguyen, Elaine; Liu, Gangjun; Rao, Bin; Choi, Bernard; Chen, Zhongping

    2010-02-01

    We present a combined optical Doppler tomography/spectral Doppler imaging modality to quantitatively evaluate the dynamic blood circulation and the artery blockage before and after a localized ischemic stroke in a mouse model. Optical Doppler Tomography (ODT) combines the Doppler principle with optical coherence tomography for noninvasive localization and measurement of particle flow velocity in highly scattering media with micrometer scale spatial resolution. Spectral Doppler imaging (SDI) provides complementary temporal flow information to the spatially distributed flow information of Doppler imaging. Fast, repeated, ODT scans across an entire vessel were performed to record flow dynamic information with high temporal resolution of cardiac cycles. Spectral Doppler analysis of continuous Doppler images demonstrates how the velocity components and longitudinally projected flow-volume-rate change over time for scatters within the imaging volume using spectral Doppler waveforms. Furthermore, vascular conditions can be quantified with various Doppler-angle-independent flow indices. Non-invasive in-vivo mice experiments were performed to evaluate microvascular blood circulation of a localized ischemic stroke mouse model.

  15. Staggered Multiple-PRF Ultrafast Color Doppler.

    PubMed

    Posada, Daniel; Poree, Jonathan; Pellissier, Arnaud; Chayer, Boris; Tournoux, Francois; Cloutier, Guy; Garcia, Damien

    2016-06-01

    Color Doppler imaging is an established pulsed ultrasound technique to visualize blood flow non-invasively. High-frame-rate (ultrafast) color Doppler, by emissions of plane or circular wavefronts, allows severalfold increase in frame rates. Conventional and ultrafast color Doppler are both limited by the range-velocity dilemma, which may result in velocity folding (aliasing) for large depths and/or large velocities. We investigated multiple pulse-repetition-frequency (PRF) emissions arranged in a series of staggered intervals to remove aliasing in ultrafast color Doppler. Staggered PRF is an emission process where time delays between successive pulse transmissions change in an alternating way. We tested staggered dual- and triple-PRF ultrafast color Doppler, 1) in vitro in a spinning disc and a free jet flow, and 2) in vivo in a human left ventricle. The in vitro results showed that the Nyquist velocity could be extended to up to 6 times the conventional limit. We found coefficients of determination r(2) ≥ 0.98 between the de-aliased and ground-truth velocities. Consistent de-aliased Doppler images were also obtained in the human left heart. Our results demonstrate that staggered multiple-PRF ultrafast color Doppler is efficient for high-velocity high-frame-rate blood flow imaging. This is particularly relevant for new developments in ultrasound imaging relying on accurate velocity measurements.

  16. Rotational Doppler effect in nonlinear optics

    NASA Astrophysics Data System (ADS)

    Li, Guixin; Zentgraf, Thomas; Zhang, Shuang

    2016-08-01

    The translational Doppler effect of electromagnetic and sound waves has been successfully applied in measurements of the speed and direction of vehicles, astronomical objects and blood flow in human bodies, and for the Global Positioning System. The Doppler effect plays a key role for some important quantum phenomena such as the broadened emission spectra of atoms and has benefited cooling and trapping of atoms with laser light. Despite numerous successful applications of the translational Doppler effect, it fails to measure the rotation frequency of a spinning object when the probing wave propagates along its rotation axis. This constraint was circumvented by deploying the angular momentum of electromagnetic waves--the so-called rotational Doppler effect. Here, we report on the demonstration of rotational Doppler shift in nonlinear optics. The Doppler frequency shift is determined for the second harmonic generation of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry. We find that the second harmonic generation signal with circular polarization opposite to that of the fundamental beam experiences a Doppler shift of three times the rotation frequency of the optical crystal. This demonstration is of fundamental significance in nonlinear optics, as it provides us with insight into the interaction of light with moving media in the nonlinear optical regime.

  17. Application of a CO2 dial system for infrared detection of forest fire and reduction of false alarm

    NASA Astrophysics Data System (ADS)

    Bellecci, C.; Francucci, M.; Gaudio, P.; Gelfusa, M.; Martellucci, S.; Richetta, M.; Lo Feudo, T.

    2007-04-01

    Forest fires can be the cause of serious environmental and economic damages. For this reason considerable effort has been directed toward forest protection and fire fighting. The means traditionally used for early fire detection mainly consist in human observers dispersed over forest regions. A significant improvement in early warning capabilities could be obtained by using automatic detection apparatus. In order to early detect small forest fires and minimize false alarms, the use of a lidar system and dial technique will be considered. A first evaluation of the lowest detectable concentration will be estimated by numerical simulation. The theoretical model will also be used to get the capability of the dial system to control wooded areas. Fixing the burning rate for several fuels, the maximum range of detection will be evaluated. Finally results of simulations will be reported.

  18. IIP Update: A Packaged Coherent Doppler Wind Lidar Transceiver. Doppler Aerosol WiNd Lidar (DAWN)

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Trieu, Bo C.; Amzajerdian, Farzin; Singh, Upendra N.; Petros, Mulugeta

    2006-01-01

    The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements.

  19. Student Microwave Experiments Involving the Doppler Effect.

    ERIC Educational Resources Information Center

    Weber, F. Neff; And Others

    1980-01-01

    Described is the use of the Doppler Effect with microwaves in the measurement of the acceleration due to gravity of falling objects. The experiments described add to the repertoire of quantitative student microwave experiments. (Author/DS)

  20. High range resolution micro-Doppler analysis

    NASA Astrophysics Data System (ADS)

    Cammenga, Zachary A.; Smith, Graeme E.; Baker, Christopher J.

    2015-05-01

    This paper addresses use of the micro-Doppler effect and the use of high range-resolution profiles to observe complex targets in complex target scenes. The combination of micro-Doppler and high range-resolution provides the ability to separate the motion of complex targets from one another. This ability leads to the differentiation of targets based on their micro-Doppler signatures. Without the high-range resolution, this would not be possible because the individual signatures would not be separable. This paper also addresses the use of the micro-Doppler information and high range-resolution profiles to generate an approximation of the scattering properties of a complex target. This approximation gives insight into the structure of the complex target and, critically, is created without using a pre-determined target model.

  1. Generalized Doppler Formula in a Nonstatic Universe

    ERIC Educational Resources Information Center

    Gross, Peter G.

    1977-01-01

    Derives the general Doppler formula in a nonstatic universe using assumptions of special relativity, homogeneity and isotropy of the universe. Examples of applications to physical cosmology are given. (SL)

  2. Evaluation of a pulsed ultrasonic Doppler flowmeter

    NASA Technical Reports Server (NTRS)

    Wells, M. K.

    1973-01-01

    The in vivo application of the pulsed ultrasound Doppler velocity meter (PUDVM) for measuring arterial velocity waveforms is reported. In particular, the performance of the PUDVM is compared with a hot film anemometer of proven accuracy.

  3. Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 differential absorption lidar (DIAL)

    NASA Astrophysics Data System (ADS)

    Nelson, Douglas H.; Petrin, Roger R.; MacKerrow, Edward P.; Schmitt, Mark J.; Quick, Charles R., Jr.; Zardecki, Andrew; Porch, William M.; Whitehead, Michael C.; Walters, Donald L.

    1998-09-01

    The measurement sensitivity of CO2 differential absorption LIDAR (DIAL) can be affected by a number of different processes. We will address the interaction of two of these processes: effects due to beam propagation through atmospheric turbulence and effects due to reflective speckle. Atmospheric turbulence affects the beam distribution of energy and phase on target. These effects include beam spreading, beam wander and scintillation which can result in increased shot-to-shot signal noise. In addition, reflective speckle alone has a major impact on the sensitivity of CO2 DIAL. The interaction of atmospheric turbulence and reflective speckle is of great importance in the performance of a DIAL system. A Huygens-Fresnel wave optics propagation code has previously been developed at the Naval Postgraduate School that models the effects of atmospheric turbulence as propagation through a series of phase screens with appropriate atmospheric statistical characteristics. This code has been modified to include the effects of reflective speckle. The performance of this modified code with respect to the combined effects of atmospheric turbulence and reflective speckle is examined. Results are compared with a combination of experimental data and analytical models.

  4. Assessing the feasibility and sample quality of a national random-digit dialing cellular phone survey of young adults.

    PubMed

    Gundersen, Daniel A; ZuWallack, Randal S; Dayton, James; Echeverría, Sandra E; Delnevo, Cristine D

    2014-01-01

    The majority of adults aged 18-34 years have only cellular phones, making random-digit dialing of landline telephones an obsolete methodology for surveillance of this population. However, 95% of this group has cellular phones. This article reports on the 2011 National Young Adult Health Survey (NYAHS), a pilot study conducted in the 50 US states and Washington, DC, that used random-digit dialing of cellular phones and benchmarked this methodology against that of the 2011 Behavioral Risk Factor Surveillance System (BRFSS). Comparisons of the demographic distributions of subjects in the NYAHS and BRFSS (aged 18-34 years) with US Census data revealed adequate reach for all demographic subgroups. After adjustment for design factors, the mean absolute deviations across demographic groups were 3 percentage points for the NYAHS and 2.8 percentage points for the BRFSS, nationally, and were comparable for each census region. Two-sided z tests comparing cigarette smoking prevalence revealed no significant differences between NYAHS and BRFSS participants overall or by subgroups. The design effects of the sampling weight were 2.09 for the NYAHS and 3.26 for the BRFSS. Response rates for the NYAHS and BRFSS cellular phone sampling frames were comparable. Our assessment of the NYAHS methodology found that random-digit dialing of cellular phones is a feasible methodology for surveillance of young adults.

  5. Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO{sub 2} differential absorption LIDAR (DIAL)

    SciTech Connect

    Nelson, D.H.; Petrin, R.R.; MacKerrow, E.P.; Schmitt, M.J.; Quick, C.R.; Zardecki, A.; Porch, W.M.; Whitehead, M.; Walters, D.L.

    1998-09-01

    The measurement sensitivity of CO{sub 2} differential absorption LIDAR (DIAL) can be affected by a number of different processes. The authors address the interaction of two of these processes: effects due to beam propagation through atmospheric turbulence and effects due to reflective speckle. Atmospheric turbulence affects the beam distribution of energy and phase on target. These effects include beam spreading, beam wander and scintillation which can result in increased shot-to-shot signal noise. In addition, reflective speckle alone has a major impact on the sensitivity of CO{sub 2} DIAL. The interaction of atmospheric turbulence and reflective speckle is of great importance in the performance of a DIAL system. A Huygens-Fresnel wave optics propagation code has previously been developed at the Naval Postgraduate School that models the effects of atmospheric turbulence as propagation through a series of phase screens with appropriate atmospheric statistical characteristics. This code has been modified to include the effects of reflective speckle. The performance of this modified code with respect to the combined effects of atmospheric turbulence and reflective speckle is examined. Results are compared with a combination of experimental data and analytical models.

  6. Assessing the Feasibility and Sample Quality of a National Random-digit Dialing Cellular Phone Survey of Young Adults

    PubMed Central

    Gundersen, Daniel A.; ZuWallack, Randal S.; Dayton, James; Echeverría, Sandra E.; Delnevo, Cristine D.

    2014-01-01

    The majority of adults aged 18–34 years have only cellular phones, making random-digit dialing of landline telephones an obsolete methodology for surveillance of this population. However, 95% of this group has cellular phones. This article reports on the 2011 National Young Adult Health Survey (NYAHS), a pilot study conducted in the 50 US states and Washington, DC, that used random-digit dialing of cellular phones and benchmarked this methodology against that of the 2011 Behavioral Risk Factor Surveillance System (BRFSS). Comparisons of the demographic distributions of subjects in the NYAHS and BRFSS (aged 18–34 years) with US Census data revealed adequate reach for all demographic subgroups. After adjustment for design factors, the mean absolute deviations across demographic groups were 3 percentage points for the NYAHS and 2.8 percentage points for the BRFSS, nationally, and were comparable for each census region. Two-sided z tests comparing cigarette smoking prevalence revealed no significant differences between NYAHS and BRFSS participants overall or by subgroups. The design effects of the sampling weight were 2.09 for the NYAHS and 3.26 for the BRFSS. Response rates for the NYAHS and BRFSS cellular phone sampling frames were comparable. Our assessment of the NYAHS methodology found that random-digit dialing of cellular phones is a feasible methodology for surveillance of young adults. PMID:24100957

  7. Implementing torsional-mode Doppler ladar.

    PubMed

    Fluckiger, David U

    2002-08-20

    Laguerre-Gaussian laser modes carry orbital angular momentum as a consequence of their helical-phase front screw dislocation. This torsional beam structure interacts with rotating targets, changing the orbital angular momentum (azimuthal Doppler) of the scattered beam because angular momentum is a conserved quantity. I show how to measure this change independently from the usual longitudinal momentum (normal Doppler shift) and derive the apropos coherent mixing efficiencies for monostatic, truncated Laguerre and Gaussian-mode ladar antenna patterns. PMID:12206220

  8. Implementing torsional-mode Doppler ladar

    NASA Astrophysics Data System (ADS)

    Fluckiger, David U.

    2002-08-01

    Laguerre-Gaussian laser modes carry orbital angular momentum as a consequence of their helical-phase front screw dislocation. This torsional beam structure interacts with rotating targets, changing the orbital angular momentum (azimuthal Doppler) of the scattered beam because angular momentum is a conserved quantity. I show how to measure this change independently from the usual longitudinal momentum (normal Doppler shift) and derive the apropos coherent mixing efficiencies for monostatic, truncated Laguerre and Gaussian-mode ladar antenna patterns.

  9. The South African National Digital Seismological System (SANDSS), a dial-up telephone-linked network

    NASA Astrophysics Data System (ADS)

    Fernandez, L. M.; Otto, M. A.; Steyn, J.

    1992-08-01

    The use of automatic telephone lines on a dial-up basis, to connect modified Personal Computers (PCs) to a Control Centre's minicomputer, has been shown to be a reliable, inexpensive method of operating a large Seismological network. Accurate time control is obtained by automatic telephone synchronisation of the real-time clocks of the stations. The network does not operate exactly in real time, but only in "quasi" real time. On a routine basis the data stored by the PCs are transmitted every night (when telephone rates are low) to the processing centre. In emergency cases, the data can be requested at any time by telephone. A set of parameters, such as gain, triggering algorithms constants etc., can be remotely controlled. Results are collected at a rate of 50 samples/s, 16-bit record, and transmitted on an error-free basis at a rate of 2,400 bauds. During a testing period of 2 months the performance of one station in terms of the percentage of seismic events recorded digitally and the total number of events detected on a conventional analog seismogram was 85%, with 91% of regional and local events recorded.

  10. A Fiber-Optic Coupled Telescope for Water Vapor DIAL Receivers

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell J.; Lonn, Frederick

    1998-01-01

    A fiber-optic coupled telescope of low complexity was constructed and tested. The major loss mechanisms of the optical system have been characterized. Light collected by the receiver mirror is focused onto an optical fiber, and the output of the fiber is filtered by an interference filter and then focused onto an APD detector. This system was used in lidar field measurements with a 532-nm Nd:YAG laser beam. The results were encouraging. A numerical model used for calculation of the expected return signal agreed with the lidar return signal obtained. The assembled system was easy to align and operate and weighed about 8 kg for a 30 cm (12") mirror system. This weight is low enough to allow mounting of the fiber-optic telescope receiver system in a UAV. Furthermore, the good agreement between the numerical lidar model and the performance of the actual receiver system, suggests that this model may be used for estimation of the performance of this and other lidar systems in the future. Such telescopes are relatively easy to construct and align. The fiber optic cable allows easy placement of the optical detector in any position. These telescope systems should find widespread use in aircraft and space home DIAL water vapor receiver systems.

  11. All solid-state high-efficiency source for satellite-based UV ozone DIAL

    NASA Astrophysics Data System (ADS)

    Armstrong, Darrell J.; Smith, Arlee V.

    2005-01-01

    During the past several years Sandia National Laboratories has carried out proof-of-concept experiments to demonstrate tunable, efficient, high-energy ultraviolet nanosecond light sources for satellite-based ozone DIAL. We designed our UV sources to generate pulse energies > 200 mJ at 10 Hz in the range of 308-320 nm with optical-to-optical efficiency approaching 25%. We use sum-frequency generation to mix the 532 nm second harmonic of Nd:YAG with near-IR light derived from a self-injection-seeded image-rotating nonplanar-ring optical parametric oscillator. Laboratory configurations using extra- and intra-cavity sum-frequency generation were designed and tested, yielding 1064 nm to 320 nm conversion efficiencies of 21% and 23% respectively, with pulse energies of 190 mJ and 70 mJ. These energies and efficiencies require pump depletion in the parametric oscillator of at least 80% and SFG efficiency approaching 60%. While the results reported here fall slightly short of our original goals, we believe UV pulse energies exceeding 250mJ are possible with additional refinements to our technology. Although the sources tested to date are laboratory prototypes with extensive diagnostics, the core components are compact and mechanically robust and can easily be packaged for satellite deployment.

  12. Dial Measurements of Free-Tropospheric Ozone Profiles in Huntsville, AL

    NASA Technical Reports Server (NTRS)

    Newchurch, Mike; Kuang, Shi; Burris, John; Johnson, Steve; Long, Stephanie

    2008-01-01

    A tropospheric ozone DIfferential Absorption Lidar (DIAL) system has been developed jointly by NASA and the University of Alabama at Huntsville (UAH). Two separated Nd:YAG pumped dye laser systems produce the laser pulses with wavelengths of 285 and 291 nm at 20 Hz frequency. The receiver is a Newtonian telescope with a 40 cm primary and a two-channel aft optics unit. The detection system currently uses photon counting to facilitate operations at the maximum achievable altitude. This lidar measures free-tropospheric ozone profiles between 4-10 km at Regional Atmospheric Profiling Laboratory for Discovery (RAPCD) in UAH campus (ASL 206 m) under both daytime and nighttime conditions. Frequent coincident ozonesonde flights and theoretical calculations provide evidence to indicate the retrieval accuracy ranges from approx.5% at 4 km to approx.60% at 10 km with 750-m vertical resolution and 30-minute integration. Three Hamamatsu 7400 PMTs and analog detection technique will be added on the current system to extend the measurement to approx.100 m above ground to monitor the PBL and lower tropospheric ozone variations.

  13. Growing Cell-Phone Population and Noncoverage Bias in Traditional Random Digit Dial Telephone Health Surveys

    PubMed Central

    Lee, Sunghee; Brick, J Michael; Brown, E Richard; Grant, David

    2010-01-01

    Objective Examine the effect of including cell-phone numbers in a traditional landline random digit dial (RDD) telephone survey. Data Sources The 2007 California Health Interview Survey (CHIS). Data Collection Methods CHIS 2007 is an RDD telephone survey supplementing a landline sample in California with a sample of cell-only (CO) adults. Study Design We examined the degree of bias due to exclusion of CO populations and compared a series of demographic and health-related characteristics by telephone usage. Principal Findings When adjusted for noncoverage in the landline sample through weighting, the potential noncoverage bias due to excluding CO adults in landline telephone surveys is diminished. Both CO adults and adults who have both landline and cell phones but mostly use cell phones appear different from other telephone usage groups. Controlling for demographic differences did not attenuate the significant distinctiveness of cell-mostly adults. Conclusions While careful weighting can mitigate noncoverage bias in landline telephone surveys, the rapid growth of cell-phone population and their distinctive characteristics suggest it is important to include a cell-phone sample. Moreover, the threat of noncoverage bias in telephone health survey estimates could mislead policy makers with possibly serious consequences for their ability to address important health policy issues. PMID:20500221

  14. Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor

    NASA Astrophysics Data System (ADS)

    Spuler, S. M.; Repasky, K. S.; Morley, B.; Moen, D.; Hayman, M.; Nehrir, A. R.

    2015-03-01

    A field-deployable water vapor profiling instrument that builds on the foundation of the preceding generations of diode-laser-based differential absorption lidar (DIAL) laboratory prototypes was constructed and tested. Significant advances are discussed, including a unique shared telescope design that allows expansion of the outgoing beam for eye-safe operation with optomechanical and thermal stability; multistage optical filtering enabling measurement during daytime bright-cloud conditions; rapid spectral switching between the online and offline wavelengths enabling measurements during changing atmospheric conditions; and enhanced performance at lower ranges by the introduction of a new filter design and the addition of a wide field-of-view channel. Performance modeling, testing, and intercomparisons are performed and discussed. In general, the instrument has a 150 m range resolution with a 10 min temporal resolution; 1 min temporal resolution in the lowest 2 km of the atmosphere is demonstrated. The instrument is shown capable of autonomous long-term field operation - 50 days with a > 95% uptime - under a broad set of atmospheric conditions and potentially forms the basis for a ground-based network of eye-safe autonomous instruments needed for the atmospheric sciences research and forecasting communities.

  15. Measurements of the effect of horizontal variability of atmospheric backscatter on dial measurements

    NASA Technical Reports Server (NTRS)

    Schwemmer, G. K.; Korb, C. L.; Dombrowski, M.; Weng, C. Y.

    1986-01-01

    The horizontal variability of atmospheric backscatter may have a substantial effect on how Differential Absorption Lidar (DIAL) data must be taken and analyzed. To minimize errors, lidar pulse pairs are taken with time separations which are short compared to the time scales associated with variations in atmospheric backscatter. To assess the atmospheric variability for time scales which are long compared to the lidar pulse repetition rate, the variance of the lidar return signal in a given channel can be computed. The variances of the on-line, off-line, and ration of the on-line to off-line signals at given altitudes obtained with the dual solid-state Alexandrite laser system were calculated. These evaluations were made for both down-looking aircraft and up-looking ground-based lidar data. Data were taken with 200 microsecond separation between on-line and off-line laser pulses, 30 m altitude resolution, 5 Hz repetition rate, and the signal were normalized for outgoing laser energy.

  16. Doppler micro sense and avoid radar

    NASA Astrophysics Data System (ADS)

    Gorwara, Ashok; Molchanov, Pavlo; Asmolova, Olga

    2015-10-01

    There is a need for small Sense and Avoid (SAA) systems for small and micro Unmanned Aerial Systems (UAS) to avoid collisions with obstacles and other aircraft. The proposed SAA systems will give drones the ability to "see" close up and give them the agility to maneuver through tight areas. Doppler radar is proposed for use in this sense and avoid system because in contrast to optical or infrared (IR) systems Doppler can work in more harsh conditions such as at dusk, and in rain and snow. And in contrast to ultrasound based systems, Doppler can better sense small sized obstacles such as wires and it can provide a sensing range from a few inches to several miles. An SAA systems comprised of Doppler radar modules and an array of directional antennas that are distributed around the perimeter of the drone can cover the entire sky. These modules are designed so that they can provide the direction to the obstacle and simultaneously generate an alarm signal if the obstacle enters within the SAA system's adjustable "Protection Border". The alarm signal alerts the drone's autopilot to automatically initiate an avoidance maneuver. A series of Doppler radar modules with different ranges, angles of view and transmitting power have been designed for drones of different sizes and applications. The proposed Doppler radar micro SAA system has simple circuitry, works from a 5 volt source and has low power consumption. It is light weight, inexpensive and it can be used for a variety of small unmanned aircraft.

  17. Doppler-corrected differential detection system

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K. (Inventor); Divsalar, Dariush (Inventor)

    1991-01-01

    Doppler in a communication system operating with a multiple differential phase-shift-keyed format (MDPSK) creates an adverse phase shift in an incoming signal. An open loop frequency estimation is derived from a Doppler-contaminated incoming signal. Based upon the recognition that, whereas the change in phase of the received signal over a full symbol contains both the differentially encoded data and the Doppler induced phase shift, the same change in phase over half a symbol (within a given symbol interval) contains only the Doppler induced phase shift, and the Doppler effect can be estimated and removed from the incoming signal. Doppler correction occurs prior to the receiver's final output of decoded data. A multiphase system can operate with two samplings per symbol interval at no penalty in signal-to-noise ratio provided that an ideal low pass pre-detection filter is employed, and two samples, at 1/4 and 3/4 of the symbol interval T sub s, are taken and summed together prior to incoming signal data detection.

  18. The Doppler effect in NMR spectroscopy.

    PubMed

    Guéron, Maurice

    2003-02-01

    An NMR sample may be subject to motions, such as those due to sample spinning or to liquid flow. Is the spectrum of such a sample affected by the Doppler effect? The question arises because, instrumental dimensions being much shorter than the wavelength, it is the near-field of the precessing magnetic moment which couples to the receiver coil, rather than the radiated far-field. We expand the near-field into plane propagating waves. For each such wave there is another one with the same amplitude, propagating in the opposite direction. The Doppler shifts are therefore equal and opposite. In the model case of a small fluid sample moving with constant velocity, this leads to a distribution of Doppler shifts which is symmetrical with respect to the unshifted frequency: there is no net spectral shift. We examine the possibility of observing the Doppler distribution in this case. We also consider the case of thermal motion of a gas. We draw attention to the resolved Doppler splitting of molecular rotational transitions in a supersonic burst as observed in a microwave resonator. We also mention briefly the Doppler effect in molecular beam spectroscopy.

  19. Pulsed Doppler lidar airborne scanner

    NASA Technical Reports Server (NTRS)

    Dimarzio, C. A.; Mcvicker, D. B.; Morrow, C. E.; Negus, C. C.

    1985-01-01

    This report covers the work accomplished during the reporting period on Pulsed Doppler Lidar Airborne Scanner and describes plans for the next reporting period. The objectives during the current phase of the contract are divided into four phases. Phase 1 includes ground testing of the system and analysis of data from the 1981 Severe Storms Test Flights. Phase 2 consists of preflight preparation and planning for the 1983 flight series. The flight test itself will be performed during Phase 3, and Phase 4 consists of post-flight analysis and operation of the system after that flight test. The range profile from five samples taken during Flight 10, around 1700 Z is given. The lowest curve is taken from data collected upwind of Mt. Shasta at about 10,000 feet of altitude, in a clear atmosphere, where no signals were observed. It thus is a good representation of the noise level as a function of range. The next curve was taken downwind of the mountain, and shows evidence of atmospheric returns. There is some question as to whether the data are valid at all ranges, or some ranges are contaminated by the others.

  20. Retroreflector for photonic Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Lagoski, Thomas J.; Coutu, Ronald A., Jr.; Starman, LaVern A.

    2009-08-01

    In order to meet the goals of the Department of Defense (DoD) for smaller and more accurate weapons, numerous projects are currently investigating the miniaturization of weapons and munition fuze components. One of these efforts is to characterize the performance of small detonators. The velocity of the flyer, the key component needed to initiate a detonation sequence, can be measured using a photonic Doppler velocimeter (PDV). The purpose of this research was to develop a microelectromechanical system (MEMS) device that would act as an optimal retroreflective surface for the PDV. Two MEMS solutions were explored: one using the PolyMUMPsTM fabrication process and one in-house fabrication design using silicon on insulator (SOI) wafers. The in-house design consisted of an array of corner reflectors created using an SOI wafer. Each corner reflector consisted of three separate mirror plates which were self-assembled by photoresist pad hinges. When heated to a critical temperature (typically 140-160 °C), the photoresist pads melted and the resulting surface tension caused each mirror to rotate into place. The resulting array of corner reflectors was then coated with a thin layer of gold to increase reflectivity. Despite the successful assembly of a PolyMUMPsTM corner reflector, assembling an array of these reflectors was found to be unfeasible. Although the SOI corner reflector design was completed, these devices were not fabricated in time for testing during this research. However, the bidirectional reflectance distribution function (BRDF) and optical cross section (OCS) of commercially available retroreflective tapes were measured. These results can be used as a baseline comparison for future testing of a fabricated SOI corner reflector array.

  1. The leicester Doppler phantom--a digital electronic phantom for ultrasound pulsed Doppler system testing.

    PubMed

    Gittins, John; Martin, Kevin

    2010-04-01

    Doppler flow and string phantoms have been used to assess the performance of ultrasound Doppler systems in terms of parameters such as sensitivity, velocity accuracy and sample volume registration. However, because of the nature of their construction, they cannot challenge the accuracy and repeatability of modern digital ultrasound systems or give objective measures of system performance. Electronic Doppler phantoms are able to make use of electronically generated test signals, which may be controlled precisely in terms of frequency, amplitude and timing. The Leicester Electronic Doppler Phantom uses modern digital signal processing methods and field programmable gate array technology to overcome some of the limitations of previously described electronic phantoms. In its present form, it is able to give quantitative graphical assessments of frequency response and range gate characteristics, as well as measures of dynamic range and velocity measurement accuracy. The use of direct acoustic coupling eliminates uncertainties caused by Doppler beam effects, such as intrinsic spectral broadening, but prevents their evaluation.

  2. Characterizing the Vertical Processes of Ozone in Colorado's Front Range Using the GSFC Ozone DIAL

    NASA Astrophysics Data System (ADS)

    Sullivan, John T.; McGee, Thomas J.; Hoff, Raymond M.; Sumnicht, Grant; Twigg, Laurence

    2016-06-01

    Although characterizing the interactions of ozone throughout the entire troposphere are important for health and climate processes, there is a lack of routine measurements of vertical profiles within the United States. In order to monitor this lower ozone more effectively, the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) has been developed and validated within the Tropospheric Ozone Lidar Network (TOLNet). Two scientifically interesting ozone episodes are presented that were observed during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER AQ) campaign at Ft. Collins, Colorado. The first case study, occurring between 22-23 July 2014, indicates enhanced concentrations of ozone at Ft. Collins during nighttime hours, which was due to the complex recirculation of ozone within the foothills of the Rocky Mountain region. Although quantifying the ozone increase aloft during recirculation episodes has been historically difficult, results indicate that an increase of 20 - 30 ppbv of ozone at the Ft. Collins site has been attributed to this recirculation. The second case, occurring between Aug 4-8th 2014, characterizes a dynamical exchange of ozone between the stratosphere and the troposphere. This case, along with seasonal model parameters from previous years, is used to estimate the stratospheric contribution to the Rocky Mountain region. Results suggest that a large amount of stratospheric air is residing in the troposphere in the summertime near Ft. Collins, CO. The results also indicate that warmer tropopauses are correlated with an increase in stratospheric air below the tropopause in the Rocky Mountain Region.

  3. Inverse Doppler Effects in Broadband Acoustic Metamaterials

    PubMed Central

    Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.

    2016-01-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe. PMID:27578317

  4. The EVE Doppler Sensitivity and Flare Observations

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Woods, T. N.; Chamberlin, P. C.; Didkovsky, L.; Del Zanna, G.

    2011-01-01

    The Extreme-ultraviolet Variability Experiment (EVE) obtains continuous EUV spectra of the Sun viewed as a star. Its primary objective is the characterization of solar spectral irradiance, but its sensitivity and stability make it extremely interesting for observations of variability on time scales down to the limit imposed by its basic 10 s sample interval. In this paper we characterize the Doppler sensitivity of the EVE data. We find that the 30.4 nm line of He II has a random Doppler error below 0.001 nm (1 pm, better than 10 km/s as a redshift), with ample stability to detect the orbital motion of its satellite, the Solar Dynamics Observatory (SDO). Solar flares also displace the spectrum, both because of Doppler shifts and because of EVE's optical layout, which (as with a slitless spectrograph) confuses position and wavelength. As a flare develops, the centroid of the line displays variations that reflect Doppler shifts and therefore flare dynamics. For the impulsive phase of the flare SOL2010-06-12, we find the line centroid to have a redshift of 16.8 +/- 5.9 km/s relative to that of the flare gradual phase (statistical errors only). We find also that high-temperature lines, such as Fe XXIV 19.2 nm, have well-determined Doppler components for major flares, with decreasing apparent blueshifts as expected from chromospheric evaporation flows.

  5. Applications of Doppler ultrasound during labor.

    PubMed

    Mihu, Dan; Diculescu, Doru; Costin, Nicolae; Mihu, Carmen Mihaela; Blaga, Ligia; Ciortea, Răzvan; Măluţan, Andrei

    2011-06-01

    The information provided by Doppler ultrasound examination during labor permits the understanding of the mechanisms regarding the physiology and pathophysiology of feto-placental exchange and the fetal adaptive systems. There are certain technical difficulties related to intrapartum Doppler ultrasound examination. The investigated sites are the uterine arteries, umbilical arteries, fetal circulation. In diastole, when intrauterine pressure exceeds maternal diastolic pressure, the perfusion pressure of the uterine artery blood flow is no longer present. A progressive decrease in the diastolic component is seen along with an increase in intrauterine pressure from 10 to 60 mmHg. During premature birth or preeclampsia, there are particular changes in the uterine blood flow. A remarkable stability of the umbilical resistance index is found during labor, which shows the permanent presence of feto-placental exchange. Certain correlations can be established between fetal heart rate changes in labor and Doppler ultrasound aspects at the level of umbilical arteries. Doppler examination confirms the concept of reduced cerebral blood flow by the compression of the fetal skull as a cause of decelerations occurring during labor. The decision regarding the extraction of the fetus can only be made by correlating the results of Doppler ultrasound with the other paraclinical methods for the monitoring of the intrapartum fetal status.

  6. Spacecraft Doppler Tracking as a Xylophone Detector

    NASA Technical Reports Server (NTRS)

    Tinto, Massimo

    1996-01-01

    We discuss spacecraft Doppler tracking in which Doppler data recorded on the ground are linearly combined with Doppler measurements made on board a spacecraft. By using the four-link radio system first proposed by Vessot and Levine, we derive a new method for removing from the combined data the frequency fluctuations due to the Earth troposphere, ionosphere, and mechanical vibrations of the antenna on the ground. Our method provides also for reducing by several orders of magnitude, at selected Fourier components, the frequency fluctuations due to other noise sources, such as the clock on board the spacecraft or the antenna and buffeting of the probe by non-gravitational forces. In this respect spacecraft Doppler tracking can be regarded as a xylophone detector. Estimates of the sensitivities achievable by this xylophone are presented for two tests of Einstein's theory of relativity: searches for gravitational waves and measurements of the gravitational red shift. This experimental technique could be extended to other tests of the theory of relativity, and to radio science experiments that rely on high-precision Doppler measurements.

  7. Doppler-corrected differential detection of MPSK

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K.; Divsalar, Dariush

    1989-01-01

    An open-loop technique is presented for estimating and correcting Doppler frequency shift in an M-ary differential phase-shift-keyed (MDPSK) receiver. The novelty of the scheme is based on the observation that whereas the change in phase of the received signal over a full symbol contains the sum of the data (phase) and the Doppler-induced phase shift, the same change in phase over half a symbol (within a given symbol interval) contains only the Doppler-induced phase shift. Thus, by proper processing, the latter can be estimated and removed from the former. Analytical and simulation results are given for the variance of the above estimator, and the error probability performance of the MDPSK receiver is evaluated in the presence of the Doppler correction. Next, the practical considerations associated with the application of this technique on bandlimited Nyquist channels are discussed and incorporated into the final design. It is shown that the receiver can, in the absence of timing jitter, be designed to allow combined Doppler correction and data detection with no penalty due to intersymbol interference (ISI). The effects of ISI due to timing jitter are assessed by computer simulation.

  8. Doppler Imaging of Exoplanets and Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Crossfield, I.; Biller, B.; Schlieder, J.; Deacon, N.; Bonnefoy, M.; Homeier, D.; Allard, F.; Buenzli, E.; Henning, T.; Brandner, W.; Goldman, Bertr; Kopytova, T.

    2014-03-01

    Doppler Imaging produces 2D global maps. When applied to cool planets or more massive brown dwarfs, it can map atmospheric features and track global weather patterns. The first substellar map, of the 2pc-distant brown dwarf Luhman 16B (Crossfeld et al. 2014), revealed patchy regions of thin & thick clouds. Here, I investigate the feasibility of future Doppler Imaging of additional objects. Searching the literature, I find that all 3 of P, v sin i, and variability are published for 22 brown dwarfs. At least one datum exists for 333 targets. The sample is very incomplete below ~L5; we need more surveys to find the best targets for Doppler Imaging! I estimate limiting magnitudes for Doppler Imaging with various hi-resolution near-infrared spectrographs. Only a handful of objects - at the M/L and L/T transitions - can be mapped with current tools. Large telescopes such as TMT and GMT will allow Doppler Imaging of many dozens of brown dwarfs and the brightest exoplanets. More targets beyond type L5 likely remain to be found. Future observations will let us probe the global atmospheric dynamics of many diverse objects.

  9. Compression of polyphase codes with Doppler shift

    NASA Astrophysics Data System (ADS)

    Wirth, W. D.

    It is shown that pulse compression with sufficient Doppler tolerance may be achieved with polyphase codes derived from linear frequency modulation (LFM) and nonlinear frequency modulation (NLFM). Low sidelobes in range and Doppler are required especially for the radar search function. These may be achieved by an LFM derived phase coder together with Hamming weighting or by applying a PNL polyphase code derived from NLFM. For a discrete and known Doppler frequency with an expanded and mismatched reference vector a sidelobe reduction is possible. The compression is then achieved without a loss in resolution. A set up for the expanded reference gives zero sidelobes only in an interval around the signal peak or a least square minimization for all range elements. This version may be useful for target tracking.

  10. Inline Ultrasonic Rheometry by Pulsed Doppler

    SciTech Connect

    Pfund, David M.; Greenwood, Margaret S.; Bamberger, Judith A.; Pappas, Richard A.

    2006-12-22

    This will be a discussion of the non-invasive determination of the viscosity of a non-Newtonian fluid in laminar pipe flow over the range of shear rates present in the pipe. The procedure used requires knowledge of the flow profile in and the pressure drop along a long straight run of pipe. The profile is determined by using a pulsed ultrasonic Doppler velocimeter. This approach is ideal for making non-invasive, real-time measurements for monitoring and control. Rheograms of a shear thinning, thixotropic gel will be presented. The operating parameters and limitations of the Doppler-based instrument will be discussed. The most significant limitation is velocity gradient broadening of the Doppler spectra near the walls of the pipe. This limitation can be significant for strongly shear thinning fluids (depending also on the ratio of beam to pipe diameter and the transducer's insertion angle).

  11. DIAL with heterodyne detection including speckle noise: Aircraft/shuttle measurements of O3, H2O, and NH3 with pulsed tunable CO2 lasers

    NASA Technical Reports Server (NTRS)

    Brockman, P.; Hess, R. V.; Staton, L. D.; Bair, C. H.

    1980-01-01

    Atmospheric trace constituent measurements with higher vertical resolution than attainable with passive radiometers are discussed. Infrared differential absorption lidar (DIAL), which depends on Mie scattering from aerosols, has special advantages for tropospheric and lower stratospheric applications and has great potential importance for measurements from shuttle and aircraft. Differential absorption lidar data reduction involves comparing large amplitude signals which have small differences. The accuracy of the trace constituent concentration inferred from DIAL measurements depends strongly on the errors in determining the amplitude of the signals. Thus, the commonly used SNR expression (signal divided by noise in the absence of signal) is not adequate to describe DIAL measurement accuracy and must be replaced by an expression which includes the random coherent (speckle) noise within the signal. A comprehensive DIAL computer algorithm is modified to include heterodyne detection and speckle noise. Examples for monitoring vertical distributions of O3, H2O, and NH3 using a ground-, aircraft-, or shuttle-based pulsed tunable CO2 laser DIAL system are given.

  12. Velocity precision measurements using laser Doppler anemometry

    NASA Astrophysics Data System (ADS)

    Dopheide, D.; Taux, G.; Narjes, L.

    1985-07-01

    A Laser Doppler Anemometer (LDA) was calibrated to determine its applicability to high pressure measurements (up to 10 bars) for industrial purposes. The measurement procedure with LDA and the experimental computerized layouts are presented. The calibration procedure is based on absolute accuracy of Doppler frequency and calibration of interference strip intervals. A four-quadrant detector allows comparison of the interference strip distance measurements and computer profiles. Further development of LDA is recommended to increase accuracy (0.1% inaccuracy) and to apply the method industrially.

  13. A visual demo of the Doppler effect

    NASA Astrophysics Data System (ADS)

    Papacosta, Pangratios

    2010-09-01

    Most physics teachers are familiar with the standard classroom demonstration of the Doppler effect. We invite students to explain the periodic variation of the pitch produced when we swirl a sounding buzzer over our heads. Students are quick to connect this phenomenon to everyday life experiences such as listening to the sound of the siren of a fast-approaching police car or the bell of an approaching train. In addition to these aural experiences, our understanding of the Doppler effect can be strengthened with a useful visual metaphor.

  14. Doppler imaging using spectrally-encoded endoscopy

    PubMed Central

    Yelin, Dvir; Bouma, B. E.; Rosowsky, J. J.; Tearney, G. J.

    2009-01-01

    The capability to image tissue motion such as blood flow through an endoscope could have many applications in medicine. Spectrally encoded endoscopy (SEE) is a recently introduced technique that utilizes a single optical fiber and miniature diffractive optics to obtain endoscopic images through small diameter probes. Using spectral-domain interferometry, SEE is furthermore capable of three-dimensional volume imaging at video rates. Here we show that by measuring relative spectral phases, this technology can additionally measure Doppler shifts. Doppler SEE is demonstrated in flowing Intralipid phantoms and vibrating middle ear ossicles. PMID:18795020

  15. Observation of the inverse Doppler effect.

    PubMed

    Seddon, N; Bearpark, T

    2003-11-28

    We report experimental observation of an inverse Doppler shift, in which the frequency of a wave is increased on reflection from a receding boundary. This counterintuitive effect has been produced by reflecting a wave from a moving discontinuity in an electrical transmission line. Doppler shifts produced by this system can be varied in a reproducible manner by electronic control of the transmission line and are typically five orders of magnitude greater than those produced by solid objects with kinematic velocities. Potential applications include the development of tunable and multifrequency radiation sources.

  16. Reversed Doppler effect in photonic crystals.

    PubMed

    Reed, Evan J; Soljacić, Marin; Joannopoulos, John D

    2003-09-26

    Nonrelativistic reversed Doppler shifts have never been observed in nature and have only been speculated to occur in pathological systems with simultaneously negative effective permittivity and permeability. This Letter presents a different, new physical phenomenon that leads to a nonrelativistic reversed Doppler shift in light. It arises when light is reflected from a moving shock wave propagating through a photonic crystal. In addition to reflection of a single frequency, multiple discrete reflected frequencies or a 10 GHz periodic modulation can also be observed when a single carrier frequency of wavelength 1 microm is incident.

  17. Broad-band acoustic Doppler current profiler

    USGS Publications Warehouse

    Cobb, E.D.

    1993-01-01

    The broad-band acoustic Doppler current profiler is an instrument that determines velocity based on the Doppler principle by reflecting acoustic signals off sediment particles in the water. The instrument is capable of measuring velocity magnitude and direction throughout a water column and of measuring water depth. It is also capable of bottom tracking and can, therefore, keep track of its own relative position as it is moved across a channel. Discharge measurements can be made quickly and, based on limited tests, accurately with this instrument. ?? 1993.

  18. Laser Doppler And Range Systems For Spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, P. W.; Gagliardi, R. M.

    1990-01-01

    Report discusses two types of proposed laser systems containing active transponders measuring distance (range) and line-of-sight velocity (via Doppler effect) between deep space vehicle and earth-orbiting satellite. Laser system offers diffraction advantage over microwave system. Delivers comparable power to distant receiver while using smaller transmitting and receiving antennas and less-powerful transmitter. Less subject to phase scintillations caused by passage through such inhomogeneous media as solar corona. One type of system called "incoherent" because range and Doppler measurements do not require coherence with laser carrier signals. Other type of system called "coherent" because successful operation requires coherent tracking of laser signals.

  19. Laser Doppler velocimeter aerial spray measurements

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Eberle, W. R.; Howle, R. E.; Shrider, K. R.

    1978-01-01

    An experimental research program for measuring the location, spatial extent, and relative concentration of airborne spray clouds generated by agricultural aircraft is described. The measurements were conducted with a ground-based laser Doppler velocimeter. The remote sensing instrumentation, experimental tests, and the results of the flight tests are discussed. The cross section of the aerial spray cloud and the observed location, extent, and relative concentration of the airborne particulates are presented. It is feasible to use a mobile laser Doppler velocimeter to track and monitor the transport and dispersion of aerial spray generated by an agricultural aircraft.

  20. High Power and Frequency-Agile Optical Parametric Oscillators for Airborne DIAL Measurements of CH4 and H2O

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Shuman, T.; Chuang, T.; Hair, J. W.; Refaat, T. F.; Ismail, S.; Kooi, S. A.; Notari, A.

    2014-12-01

    Atmospheric methane (CH4) has the second largest radiative forcing of the long-lived greenhouse gasses (GHG) after carbon dioxide. However, methane's much shorter atmospheric lifetime and much stronger warming potential make its radiative forcing equivalent to that for CO2 over a 20-year time horizon which makes CH4 a particularly attractive target for mitigation strategies. Similar to CH4, water vapor (H2O) is the most dominant of the short-lived GHG in the atmosphere and plays a key role in many atmospheric processes. Atmospheric H2O concentrations span over four orders of magnitude from the planetary boundary layer where high impact weather initiates to lower levels in the upper troposphere and lower stratosphere (UTLS) where water vapor has significant and long term impacts on the Earth's radiation budget. NASA Langley has fostered the technology development with Fibertek, Inc. to develop frequency agile and high power (> 3 W) pulsed lasers using similar architectures in the 1645 nm and 935 nm spectral bands for DIAL measurements of CH4 and H2O, respectively. Both systems utilize high power 1 kHz pulse repetition frequency Nd:YAG lasers to generate high power laser emission at the desired wavelength via optical parametric oscillators (OPO). The CH4 OPO, currently in its final build stage in a SBIR Phase II program has demonstrated >2 W average power with injection seeding from a distributed feedback (DFB) laser during risk reduction experiments. The H2O OPO has demonstrated high power operation (>2 W) during the SBIR Phase I program while being injection seeded with a DFB laser, and is currently funded via an SBIR Phase II to build a robust system for future integration into an airborne water vapor DIAL system capable of profiling from the boundary layer up to the UTLS. Both systems have demonstrated operation with active OPO wavelength control to allow for optimization of the DIAL measurements for operation at different altitudes and geographic regions. An

  1. Photoacoustic Doppler Effect from Flowing Small Light-Absorbing Particles

    NASA Astrophysics Data System (ADS)

    Fang, Hui; Maslov, Konstantin; Wang, Lihong V.

    2007-11-01

    From the flow of a suspension of micrometer-scale carbon particles, the photoacoustic Doppler shift is observed. As predicted theoretically, the observed Doppler shift equals half of that in Doppler ultrasound and does not depend on the direction of laser illumination. This new physical phenomenon provides a basis for developing photoacoustic Doppler flowmetry, which can potentially be used for detecting fluid flow in optically scattering media and especially low-speed blood flow of relatively deep microcirculation in biological tissue.

  2. Acoustic micro-Doppler radar for human gait imaging.

    PubMed

    Zhang, Zhaonian; Pouliquen, Philippe O; Waxman, Allen; Andreou, Andreas G

    2007-03-01

    A portable acoustic micro-Doppler radar system for the acquisition of human gait signatures in indoor and outdoor environments is reported. Signals from an accelerometer attached to the leg support the identification of the components in the measured micro-Doppler signature. The acoustic micro-Doppler system described in this paper is simpler and offers advantages over the widely used electromagnetic wave micro-Doppler radars.

  3. Chaotic system for self-synchronizing Doppler measurement.

    PubMed

    Carroll, Thomas L

    2005-03-01

    In a radar system, it is necessary to measure both range and velocity of a target. The movement of the target causes a Doppler shift of the radar signal, and the size of the Doppler shift is used to measure the velocity of the target. In this work, a chaotic drive-response system is simulated that detects a Doppler shift in a chaotic signal. The response system can detect Doppler shifts in more than one signal at a time.

  4. Photoacoustic Doppler effect from flowing small light-absorbing particles.

    PubMed

    Fang, Hui; Maslov, Konstantin; Wang, Lihong V

    2007-11-01

    From the flow of a suspension of micrometer-scale carbon particles, the photoacoustic Doppler shift is observed. As predicted theoretically, the observed Doppler shift equals half of that in Doppler ultrasound and does not depend on the direction of laser illumination. This new physical phenomenon provides a basis for developing photoacoustic Doppler flowmetry, which can potentially be used for detecting fluid flow in optically scattering media and especially low-speed blood flow of relatively deep microcirculation in biological tissue.

  5. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... features of continuous wave doppler-effect technology with pulsed-echo effect technology and is intended to... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1550 Ultrasonic pulsed doppler...

  6. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... features of continuous wave doppler-effect technology with pulsed-echo effect technology and is intended to... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1550 Ultrasonic pulsed doppler...

  7. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550... system. (a) Identification. An ultrasonic pulsed doppler imaging system is a device that combines the features of continuous wave doppler-effect technology with pulsed-echo effect technology and is intended...

  8. Doppler instrumentation for measuring blood velocity and flow

    NASA Technical Reports Server (NTRS)

    Gill, R. W.; Hottinger, C. F.; Meindl, J. D.

    1975-01-01

    Doppler ultrasonic blood flowmeters are reviewed in detail. The importance of measurement accuracy for transcutaneous flowmeters and their clinical application is stressed. Doppler imaging was combined with conventional pulse echo imaging, and diagnostic information was extracted from flow signals. The range and extent of applications of Doppler instruments was also presented.

  9. [Phlegmasia alba dolens diagnosed with Doppler ultrasonography].

    PubMed

    Wulff, C; Lorentzen, T; Christensen, E; Pedersen, E B

    1996-11-11

    Differential diagnostic problems may occur in a patient with a cold, pale and swollen leg. Especially when the peripheral blood pressure is reduced, it is particularly difficult to distinguish cases caused by venous thrombosis from those caused by arterial embolism. Colour-Doppler ultra-sonography might be helpful for establishing the correct diagnosis. A case history is presented.

  10. Analysis of Doppler radar windshear data

    NASA Technical Reports Server (NTRS)

    Williams, F.; Mckinney, P.; Ozmen, F.

    1989-01-01

    The objective of this analysis is to process Lincoln Laboratory Doppler radar data obtained during FLOWS testing at Huntsville, Alabama, in the summer of 1986, to characterize windshear events. The processing includes plotting velocity and F-factor profiles, histogram analysis to summarize statistics, and correlation analysis to demonstrate any correlation between different data fields.

  11. Acoustic Doppler discharge-measurement system

    USGS Publications Warehouse

    Simpson, Michael R.; Oltmann, Richard N.; ,

    1990-01-01

    A discharge-measurement system that uses a vessel-mounted acoustic Doppler current profiler has been developed and tested by the U.S. Geological Survey. Discharge measurements using the system require a fraction of the time needed for conventional current-meter discharge measurements and do not require shore-based navigational aids or tag lines for positioning the vessel.

  12. Method for Canceling Ionospheric Doppler Effect

    NASA Technical Reports Server (NTRS)

    Vessot, R. F. C.

    1982-01-01

    Unified transponder system with hydrogen-maser oscillators at both stations can compensate for both motional and ionospheric components of Doppler shift. Appropriate choices of frequency shift in output of mixer m3. System exploits proportionality between dispersive component of frequency shift and reciprocal of frequency to achieve cancellation of dispersive component at output.

  13. Calculating "g" from Acoustic Doppler Data

    ERIC Educational Resources Information Center

    Torres, Sebastian; Gonzalez-Espada, Wilson J.

    2006-01-01

    Traditionally, the Doppler effect for sound is introduced in high school and college physics courses. Students calculate the perceived frequency for several scenarios relating a stationary or moving observer and a stationary or moving sound source. These calculations assume a constant velocity of the observer and/or source. Although seldom…

  14. Spectroscopic observation of the rotational Doppler effect.

    PubMed

    Barreiro, S; Tabosa, J W R; Failache, H; Lezama, A

    2006-09-15

    We report on the first spectroscopic observation of the rotational Doppler shift associated with light beams carrying orbital angular momentum. The effect is evidenced as the broadening of a Hanle electromagnetically induced transparency coherence resonance on Rb vapor when the two incident Laguerre-Gaussian laser beams have opposite topological charges. The observations closely agree with theoretical predictions.

  15. Carotid Doppler evaluation in cerebrovascular disease.

    PubMed Central

    D'Alton, J. G.; Norris, J. W.

    1983-01-01

    The Doppler technique has proven to be a useful noninvasive technique for evaluating the patency of the carotid artery in patients at risk of stroke. The data obtained from 246 carotid Doppler examinations were compared with the angiographic findings in the same patients. The sensitivity, specificity and accuracy were high when the degree of stenosis was greater than 50%, but occlusions were less reliably detected, with 8 (33%) of the 24 being misdiagnosed as high-grade stenoses. Carotid Doppler evaluation guides and accelerates decisions regarding further investigations, such as cerebral angiography. It helps one decide whether a neck bruit is of arterial origin and aids assessment following cerebrovascular surgery. It is not a substitute for cerebral angiography because it poorly visualizes both the posterior and the intracranial circulations and cannot accurately detect low-grade (less than 50%) stenoses or ulcerated arterial plaques. Detection of stenosis in a carotid artery in an otherwise uncertain case is an indication for cerebral angiography, so the Doppler technique will probably increase the number of angiograms performed. However, this technique is also useful in follow-up, being without hazard, and should, therefore, reduce the likelihood of unnecessary angiographic examinations. Images FIG. 2 FIG. 3A FIG. 3B FIG. 5 PMID:6640454

  16. Satellite Doppler data processing using a microcomputer

    NASA Technical Reports Server (NTRS)

    Schmid, P. E.; Lynn, J. J.

    1977-01-01

    A microcomputer which was developed to compute ground radio beacon position locations using satellite measurements of Doppler frequency shift is described. Both the computational algorithms and the microcomputer hardware incorporating these algorithms were discussed. Results are presented where the microcomputer in conjunction with the NIMBUS-6 random access measurement system provides real time calculation of beacon latitude and longitude.

  17. SF 6 leak detection of high-voltage installations using TEA-CO 2 laser-based DIAL

    NASA Astrophysics Data System (ADS)

    Kariminezhad, Hasan; Parvin, Parviz; Borna, Fazel; Bavali, Ali

    2010-04-01

    SF 6 is known as an effective insulator due to its high dielectric strength. Because of this property, it is vastly used in the sealed high-voltage (HV) installations and compact electrical distribution sites. Since then, sensing of SF 6 leakage takes significant environmental and economical advantages due to its high greenhouse effect. Here, we have quantitatively shown that our homemade differential absorption lidar (DIAL), using a pair of pulsed CO 2 lasers, enables us to detect efficiently remote SF 6 effluent up to ppm level. Moreover, the instantaneous spatial distribution of SF 6 emission were recorded at various meteorological conditions to indicate that SF 6 molecules are reluctant to diffuse quickly, willing to accumulate over the ground at definite location. The lidar attenuation and backscattering coefficients were determined for three typical meteorological conditions based on the best fitting using the least-square method. In addition, according to the spectral response, the remote isotopic identification of the abundant 32SF 6 and rare 34SF 6 species were done using dual tunable TEA-CO 2 lasers. Logarithmic derivative and Klett inversion approximations were subsequently used to determine SF 6 concentration based on DIAL equation.

  18. Flight tests of a range-resolved airborne dial with two min-tea CO2 lasers

    NASA Technical Reports Server (NTRS)

    Itabe, T.; Ishizu, M.; Aruga, T.; Igarashi, T.; Asai, K.

    1986-01-01

    It is important to measure regional distributions of ozone concentrations in a short time for understanding a mechanism of photo-chemical smog development. An airborne Differential Absorption Lidar (DIAL) system with two low-power mini-TEA CO2 lasers was developed for measuring three-dimensional distributions of ozone in the lower troposphere. The CO2 DIAL is a nadir-looking system and is designed to measure ozone profiles between ground and airplane by using atmospheric aerosols as a distributed radar target. First flight test with a single laser were conducted in February 1985 over the Tokyo area. The system was operated at an altitude of 5000 ft. Results of the first flight tests show that the height profiles of the received power in the boundary layer were different between over land and ocean. The received power has to be inverted to an expression of a single optical parameter to see real aerosol distributions. Inversion of the lidar signal to the aerosol extinction was performed by using Klett's solution.

  19. UMEL: a new regression tool to identify measurement peaks in LIDAR/DIAL systems for environmental physics applications.

    PubMed

    Gelfusa, M; Gaudio, P; Malizia, A; Murari, A; Vega, J; Richetta, M; Gonzalez, S

    2014-06-01

    Recently, surveying large areas in an automatic way, for early detection of both harmful chemical agents and forest fires, has become a strategic objective of defence and public health organisations. The Lidar and Dial techniques are widely recognized as a cost-effective alternative to monitor large portions of the atmosphere. To maximize the effectiveness of the measurements and to guarantee reliable monitoring of large areas, new data analysis techniques are required. In this paper, an original tool, the Universal Multi Event Locator, is applied to the problem of automatically identifying the time location of peaks in Lidar and Dial measurements for environmental physics applications. This analysis technique improves various aspects of the measurements, ranging from the resilience to drift in the laser sources to the increase of the system sensitivity. The method is also fully general, purely software, and can therefore be applied to a large variety of problems without any additional cost. The potential of the proposed technique is exemplified with the help of data of various instruments acquired during several experimental campaigns in the field.

  20. A MAGNETIC CALIBRATION OF PHOTOSPHERIC DOPPLER VELOCITIES

    SciTech Connect

    Welsch, Brian T.; Fisher, George H.; Sun, Xudong

    2013-03-10

    The zero point of measured photospheric Doppler shifts is uncertain for at least two reasons: instrumental variations (from, e.g., thermal drifts); and the convective blueshift, a known correlation between intensity and upflows. Accurate knowledge of the zero point is, however, useful for (1) improving estimates of the Poynting flux of magnetic energy across the photosphere, and (2) constraining processes underlying flux cancellation, the mutual apparent loss of magnetic flux in closely spaced, opposite-polarity magnetogram features. We present a method to absolutely calibrate line-of-sight (LOS) velocities in solar active regions (ARs) near disk center using three successive vector magnetograms and one Dopplergram coincident with the central magnetogram. It exploits the fact that Doppler shifts measured along polarity inversion lines (PILs) of the LOS magnetic field determine one component of the velocity perpendicular to the magnetic field, and optimizes consistency between changes in LOS flux near PILs and the transport of transverse magnetic flux by LOS velocities, assuming that ideal electric fields govern the magnetic evolution. Previous calibrations fitted the center-to-limb variation of Doppler velocities, but this approach cannot, by itself, account for residual convective shifts at the limb. We apply our method to vector magnetograms of AR 11158, observed by the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory, and find clear evidence of offsets in the Doppler zero point in the range of 50-550 m s{sup -1}. In addition, we note that a simpler calibration can be determined from an LOS magnetogram and Dopplergram pair from the median Doppler velocity among all near-disk-center PIL pixels. We briefly discuss shortcomings in our initial implementation, and suggest ways to address these. In addition, as a step in our data reduction, we discuss the use of temporal continuity in the transverse magnetic field direction to correct apparently

  1. An electronic Doppler signal generator for assessing continuous-wave ultrasonic Doppler flowmeters

    NASA Astrophysics Data System (ADS)

    Smallwood, R. H.; Dixon, P.

    1986-03-01

    The design and performance of the electric Doppler signal generator are described. The features of the CW ultrasonic Doppler flowmeter, which operates in the 2-10 MHz range, that are relevant to the design of the generator are examined. Methods for evaluating the bandwidth, dynamic range, directional separation, and linearity of the zero-crossing detector are discussed. The use of a polyphase network as a phase shifter to generate a single sideband (SSB) signal is analyzed. The SSB generation is performed at a frequency of 100 kHz and the advantages of generation at this frequency are stated. The selection of proper SSB signals for the system is investigated. The performance of the Doppler signal generator is evaluated with a frequency analyzer; sideband rejection ratios and phase error in the quadrature oscillator are calculated. The Doppler generator was applied to a CW flowmeter and output signal levels were measured. The test reveals that the Doppler signal generator's performance exceeds the flowmeter requirements; rejection of the unwanted sideband exceeds 40 dB for Doppler frequencies up to 10 kHz, which is the minimum upper frequency for 10 MHz flowmeters.

  2. The Novel Nonlinear Adaptive Doppler Shift Estimation Technique and the Coherent Doppler Lidar System Validation Lidar

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.

    2006-01-01

    The signal processing aspect of a 2-m wavelength coherent Doppler lidar system under development at NASA Langley Research Center in Virginia is investigated in this paper. The lidar system is named VALIDAR (validation lidar) and its signal processing program estimates and displays various wind parameters in real-time as data acquisition occurs. The goal is to improve the quality of the current estimates such as power, Doppler shift, wind speed, and wind direction, especially in low signal-to-noise-ratio (SNR) regime. A novel Nonlinear Adaptive Doppler Shift Estimation Technique (NADSET) is developed on such behalf and its performance is analyzed using the wind data acquired over a long period of time by VALIDAR. The quality of Doppler shift and power estimations by conventional Fourier-transform-based spectrum estimation methods deteriorates rapidly as SNR decreases. NADSET compensates such deterioration in the quality of wind parameter estimates by adaptively utilizing the statistics of Doppler shift estimate in a strong SNR range and identifying sporadic range bins where good Doppler shift estimates are found. The authenticity of NADSET is established by comparing the trend of wind parameters with and without NADSET applied to the long-period lidar return data.

  3. Progress Toward an Autonomous Field Deployable Diode Laser Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere

    NASA Astrophysics Data System (ADS)

    Repasky, K. S.; Spuler, S.; Nehrir, A. R.; Moen, D.

    2013-12-01

    Water vapor is the most dominant greenhouse gas in the atmosphere and plays an important role in many key atmospheric processes associated with both weather and climate. Water vapor is highly variable in space and time due to large scale transport and biosphere-atmosphere interactions. Having long-term, high-resolution, vertical profiles of water vapor will help to better understand the water vapor structure and variability and its associated impact on weather and climate. A diode laser based differential absorption lidar (DIAL) for full-time water vapor and aerosol profiling in the lower troposphere has been demonstrated at Montana State University. This prototype instrument has the potential to form the basis of a ground based network of eye-safe autonomous instruments that can provide important information on the spatial and temporal variability of water vapor in the lower troposphere. To achieve this potential, major improvements to the prototype instrument need to be implemented and demonstrated including developing a laser transmitter capable of long term operation and modifying the optical receiver to make measurement below 0.5 km. During the past year, work on incorporating a new laser transmitter based on two distributed Bragg reflector (DBR) diode lasers, one operating at the on-line/side-line wavelength and the second operating at the off-line wavelength to injection seed a tapered semiconductor optical amplifier (TSOA) in a master oscillator power amplifier (MOPA) configuration has been completed. Recent work on the optical receiver is driven by the fact that the majority of the atmospheric water vapor resides below 2 km. The current single channel DIAL receiver has a narrow field of view and does not come in to full overlap until approximately 2 km. A two channel DIAL receiver has been designed that will allow the DIAL to achieve full overlap at ranges of less the 0.5 km providing significant improvement to the instrument performance. A discussion of

  4. The medical Doppler in hand surgery: its scientific basis, applications, and the history of its namesake, Christian Johann Doppler.

    PubMed

    Ghori, Ahmer K; Chung, Kevin C

    2007-12-01

    The word Doppler is used synonymously in hand surgery for evaluating patency of vascular structures; however, the science and history behind the Doppler effect are not as well-known. We will present the theories behind the Doppler effect and the history of the person who made this discovery.

  5. The Multiple Doppler Radar Workshop, November 1979.

    NASA Astrophysics Data System (ADS)

    Carbone, R. E.; Harris, F. I.; Hildebrand, P. H.; Kropfli, R. A.; Miller, L. J.; Moninger, W.; Strauch, R. G.; Doviak, R. J.; Johnson, K. W.; Nelson, S. P.; Ray, P. S.; Gilet, M.

    1980-10-01

    The findings of the Multiple Doppler Radar Workshop are summarized by a series of six papers. Part I of this series briefly reviews the history of multiple Doppler experimentation, fundamental concepts of Doppler signal theory, and organization and objectives of the Workshop. Invited presentations by dynamicists and cloud physicists are also summarized.Experimental design and procedures (Part II) are shown to be of critical importance. Well-defined and limited experimental objectives are necessary in view of technological limitations. Specified radar scanning procedures that balance temporal and spatial resolution considerations are discussed in detail. Improved siting for suppression of ground clutter as well as scanning procedures to minimize errors at echo boundaries are discussed. The need for accelerated research using numerically simulated proxy data sets is emphasized.New technology to eliminate various sampling limitations is cited as an eventual solution to many current problems in Part III. Ground clutter contamination may be curtailed by means of full spectral processing, digital filters in real time, and/or variable pulse repetition frequency. Range and velocity ambiguities also may be minimized by various pulsing options as well as random phase transmission. Sidelobe contamination can be reduced through improvements in radomes, illumination patterns, and antenna feed types. Radar volume-scan time can be sharply reduced by means of wideband transmission, phased array antennas, multiple beam antennas, and frequency agility.Part IV deals with synthesis of data from several radars in the context of scientific requirements in cumulus clouds, widespread precipitation, and severe convective storms. The important temporal and spatial scales are examined together with the accuracy required for vertical air motion in each phenomenon. Factors that introduce errors in the vertical velocity field are identified and synthesis techniques are discussed separately for

  6. Doppler lidar results from the San Gorgonio Pass experiments

    NASA Technical Reports Server (NTRS)

    Cliff, W. C.; Skarda, J. R.; Renne, D. S.

    1984-01-01

    During FY-84, the Doppler Lidar data from the San Gorgonio Pass experiments were analyzed, evaluated, and interpreted with regard to signal strength, signal width, magnitude and direction of velocity component and a goodness parameter associated with the expected noise level of the signal. From these parameters, a screening criteria was developed to eliminate questionable data. For the most part analysis supports the validity of Doppler Lidar data obtained at San Gorgonio Pass with respect to the mean velocity magnitude and direction. The question as to whether the Doppler width could be interpreted as a measure of the variance of the turbulence within the Doppler Lidar System (DLS) focal volume was not resolved. The stochastic nature of the Doppler broadening from finite residence time of the particles in the beam as well as other Doppler broadening phenomenon tend to mask the Doppler spread associated with small scale turbulence. Future tests with longer pulses may assist in better understanding.

  7. a Compact Dial LIDAR for Ground-Based Ozone Atmospheric Profiling Measurements

    NASA Astrophysics Data System (ADS)

    De Young, R.; Carrion, W.; Pliutau, D.; Ganoe, R. E.

    2013-12-01

    A compact differential absorption lidar (DIAL) system has been developed at NASA Langley Research Center to provide ozone, aerosol and cloud atmospheric measurements in a mobile trailer for ground-based atmospheric ozone campaigns. This lidar will be integrated into the Air Quality lidar Network (AQLNet) currently made up of four other ozone lidars across the country. The lidar system consists of a UV and green laser transmitter, a telescope and an optical signal receiver box with associated Licel photon counting and analog channels. The laser transmitter consist of a Coherent Evolution 30 TEM00 1-kHz diode pumped Q-switched Nd:YLF inter-cavity doubled laser pumping a Ce:LiCAF tunable UV laser with all the associated power and lidar control support units on a single system rack. A custom-designed Ce:LiCAF tunable UV laser has a wavelength range of 282 to 300-nm that is selectable between two or more wavelengths. The current wavelengths are online 286.4 nm and offline 293.1 nm. The 527-nm visible beam is transmitted into the atmosphere for aerosol measurements. The fourth harmonic 262 nm beam is split by a beamsplitter into two pump beams that pump each face of the Ce:LiCAF crystal. A short laser cavity consisting of a 60% reflective (1m radius of curvature) output mirror, a dispersive prism and a flat HR mirror is used to produce the UV wavelengths. In order to produce different wavelengths, the high-reflectivity rear mirror is mounted on a servo controlled galvanometer motor to allow rapid tuning between the on and offline ozone wavelengths. Typical laser results are 6.8-W at 527-nm, 800-mW at 262-nm and 130-mW at the UV transmitted wavelengths. The lidar receiver system consists of a receiver telescope with a 40-cm diameter parabolic mirror. A fiber optic cable transmits the received signal from the telescope to the receiver box, which houses the detectors. A separate one inch diameter telescope with PMT and filter is used to sample the very near field to allow

  8. Superharmonic microbubble Doppler effect in ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Pouliopoulos, Antonios N.; Choi, James J.

    2016-08-01

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104-5  ×  107 microbubbles ml-1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s-1, prior to the onset of

  9. Superharmonic microbubble Doppler effect in ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Pouliopoulos, Antonios N.; Choi, James J.

    2016-08-01

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104–5  ×  107 microbubbles ml‑1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75–366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s‑1, prior to the onset

  10. Superharmonic microbubble Doppler effect in ultrasound therapy.

    PubMed

    Pouliopoulos, Antonios N; Choi, James J

    2016-08-21

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  10(4)-5  ×  10(7) microbubbles ml(-1)) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s(-1), prior to the onset

  11. Superharmonic microbubble Doppler effect in ultrasound therapy.

    PubMed

    Pouliopoulos, Antonios N; Choi, James J

    2016-08-21

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  10(4)-5  ×  10(7) microbubbles ml(-1)) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s(-1), prior to the onset

  12. Normal Echocardiographic Measurements in a Korean Population Study: Part II. Doppler and Tissue Doppler Imaging

    PubMed Central

    Choi, Jin-Oh; Shin, Mi-Seung; Kim, Mi-Jeong; Jung, Hae Ok; Park, Jeong Rang; Sohn, Il Suk; Kim, Hyungseop; Park, Seong-Mi; Yoo, Nam Jin; Choi, Jung Hyun; Kim, Hyung-Kwan; Cho, Goo-Yeong; Lee, Mi-Rae; Park, Jin-Sun; Shim, Chi Young; Kim, Dae-Hee; Shin, Dae-Hee; Shin, Gil Ja; Shin, Sung Hee; Kim, Kye Hun; Park, Jae-Hyeong; Lee, Sang Yeub; Kim, Woo-Shik

    2016-01-01

    Background Hemodynamic and functional evaluation with Doppler and tissue Doppler study as a part of comprehensive echocardiography is essential but normal reference values have never been reported from Korean normal population especially according to age and sex. Methods Using Normal echOcaRdiographic Measurements in a KoreAn popuLation study subjects, we obtained normal reference values for Doppler and tissue Doppler echocardiography including tricuspid annular velocities according to current guidelines and compared values according to gender and age groups. Results Mitral early diastolic (E) and late diastolic (A) velocity as well as E/A ratio were significantly higher in women compared to those in men. Conversely, mitral peak systolic and late diastolic annular velocity in both septal and lateral mitral annulus were significantly lower in women compared to those in men. However, there were no significant differences in both septal and lateral mitral early diastolic annular (e') velocity between men and women. In both men and women, mitral E velocity and its deceleration time as well as both E/A and E/e' ratio considerably increased with age. There were no significant differences in tricuspid inflow velocities and tricuspid lateral annular velocities between men and women except e' velocity, which was significantly higher in women compared to that in men. However, changes in both tricuspid inflow and lateral annular velocities according to age were similar to those in mitral velocities. Conclusion Since there were significant differences in Doppler and tissue Doppler echocardiographic variables between men and women and changes according to age were even more considerable in both gender groups, normal Doppler echocardiographic values should be differentially applied based on age and sex. PMID:27358707

  13. Design of a Doppler reflectometer for KSTAR

    SciTech Connect

    Lee, K. D. Nam, Y. U.; Seo, Seong-Heon; Kim, Y. S.

    2014-11-15

    A Doppler reflectometer has been designed to measure the poloidal propagation velocity on the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak. It has the operating frequency range of V-band (50-75 GHz) and the monostatic antenna configuration with extraordinary mode (X-mode). The single sideband modulation with an intermediate frequency of 50 MHz is used for the heterodyne measurement with the 200 MHz in-phase and quadrature (I/Q) phase detector. The corrugated conical horn antenna is used to approximate the Gaussian beam propagation and it is installed together with the oversized rectangular waveguides in the vacuum vessel. The first commissioning test of the Doppler reflectometer system on the KSTAR tokamak is planned in the 2014 KSTAR experimental campaign.

  14. ROTATIONAL DOPPLER BEAMING IN ECLIPSING BINARIES

    SciTech Connect

    Groot, Paul J.

    2012-01-20

    In eclipsing binaries the stellar rotation of the two components will cause a rotational Doppler beaming during eclipse ingress and egress when only part of the eclipsed component is covered. For eclipsing binaries with fast spinning components this photometric analog of the well-known spectroscopic Rossiter-McLaughlin effect can exceed the strength of the orbital effect. Example light curves are shown for a detached double white dwarf binary, a massive O-star binary and a transiting exoplanet case, similar to WASP-33b. Inclusion of the rotational Doppler beaming in eclipsing systems is a prerequisite for deriving the correct stellar parameters from fitting high-quality photometric light curves and can be used to determine stellar obliquities as well as, e.g., an independent measure of the rotational velocity in those systems that may be expected to be fully synchronized.

  15. Minior Actinide Doppler Coefficient Measurement Assessment

    SciTech Connect

    Nolan E. Hertel; Dwayne Blaylock

    2008-04-10

    The "Minor Actinide Doppler Coefficient Measurement Assessment" was a Department of Energy (DOE) U-NERI funded project intended to assess the viability of using either the FLATTOP or the COMET critical assembly to measure high temperature Doppler coefficients. The goal of the project was to calculate using the MCNP5 code the gram amounts of Np-237, Pu-238, Pu-239, Pu-241, AM-241, AM-242m, Am-243, and CM-244 needed to produce a 1E-5 in reactivity for a change in operating temperature 800C to 1000C. After determining the viability of using the assemblies and calculating the amounts of each actinide an experiment will be designed to verify the calculated results. The calculations and any doncuted experiments are designed to support the Advanced Fuel Cycle Initiative in conducting safety analysis of advanced fast reactor or acceoerator-driven transmutation systems with fuel containing high minor actinide content.

  16. Design of a Doppler reflectometer for KSTARa)

    NASA Astrophysics Data System (ADS)

    Lee, K. D.; Nam, Y. U.; Seo, Seong-Heon; Kim, Y. S.

    2014-11-01

    A Doppler reflectometer has been designed to measure the poloidal propagation velocity on the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak. It has the operating frequency range of V-band (50-75 GHz) and the monostatic antenna configuration with extraordinary mode (X-mode). The single sideband modulation with an intermediate frequency of 50 MHz is used for the heterodyne measurement with the 200 MHz in-phase and quadrature (I/Q) phase detector. The corrugated conical horn antenna is used to approximate the Gaussian beam propagation and it is installed together with the oversized rectangular waveguides in the vacuum vessel. The first commissioning test of the Doppler reflectometer system on the KSTAR tokamak is planned in the 2014 KSTAR experimental campaign.

  17. Considerations for Calibrating a Laser Doppler Anemometer

    SciTech Connect

    Duncan, Michael L; Keck, Joe

    2010-01-01

    Laser Doppler Anemometers have long been the device-of-choice for air velocity measurements due to their avoidance of turbulence induced by insertion-method air velocity measurement devices. At first glance, the use of a Laser Doppler Anemometer (LDA) for calibrating air velocity meters appears to be a relatively simple and straightforward process. As is typical in most metrological applications the process becomes much more complex when attempting to use the apparatus to make high-performance, metrology measurements. This paper focuses on the considerations for calibration of a LDA beginning with a discussion why an LDA needs to be calibrated. Other areas of discussion include alignment of the optics, dealing with imperfections in the alignment process, establishing the traceability of measurements from the apparatus and design and development of and experiences with using a calibration apparatus.

  18. Pulsed Doppler lidar at QinetiQ

    NASA Astrophysics Data System (ADS)

    Pearson, Guy N.

    2004-12-01

    Recent developments in pulsed Doppler lidar technology for range-resolved aerosol and hard-target imaging applications are presented. Systems based upon CO2 and fiber-optic technologies at wavelengths of 10.6 μm and 1.5 μm respectively are described. Data are presented showing aspects of system and component development as well as recent field deployments.

  19. Doppler Lidar Wind Value-Added Product

    SciTech Connect

    Newsom, R. K.; Sivaraman, C.; Shippert, T. R.; Riihimaki, L. D.

    2015-07-01

    Wind speed and direction, together with pressure, temperature, and relative humidity, are the most fundamental atmospheric state parameters. Accurate measurement of these parameters is crucial for numerical weather prediction. Vertically resolved wind measurements in the atmospheric boundary layer are particularly important for modeling pollutant and aerosol transport. Raw data from a scanning coherent Doppler lidar system can be processed to generate accurate height-resolved measurements of wind speed and direction in the atmospheric boundary layer.

  20. Numerical treatment of Doppler radar signals

    NASA Astrophysics Data System (ADS)

    Gonullu, B.

    1982-12-01

    Doppler radar signal processing algorithms are discussed. The analysis of a moving target identification filter system leads to a fast Fourier transform implementation with a matrix of order eight. The analytic computation of the plot center, the estimation of radial velocity, the logarithmic laws and the multiplication using a PROM table are discussed. Applications of filters with distributed zeroes and of residium arithmetic are examined.

  1. Doppler, Johann Christian Andreas (1803-53)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Born in Salzburg, Austria, Doppler studied and taught mathematics in Vienna. On the verge, because of economic hardship, of emigrating to America, he was offered posts in Prague. Despite huge teaching loads, he was able to carry out some research of his own (in the face of complaints of neglect by his students). In 1842 read a paper to the Royal Bohemian Society `On the colored light of the doubl...

  2. Factor Structure of the DIAL-3: A Test of the Theory-Driven Conceptualization versus an Empirically Driven Conceptualization in a Nationally Representative Sample

    ERIC Educational Resources Information Center

    Assel, Mike A.; Anthony, Jason L.

    2009-01-01

    Using data from the standardization sample of the "Developmental Indicators for the Assessment of Learning--Third Edition" (DIAL-3), this study compared the usefulness of an empirically derived factor structure introduced by Anthony, Assel, and Williams with the author's theoretical conceptualization. Confirmatory factor analyses (CFAs) were…

  3. FirstSearch and NetFirst--Web and Dial-up Access: Plus Ca Change, Plus C'est la Meme Chose?

    ERIC Educational Resources Information Center

    Koehler, Wallace; Mincey, Danielle

    1996-01-01

    Compares and evaluates the differences between OCLC's dial-up and World Wide Web FirstSearch access methods and their interfaces with the underlying databases. Also examines NetFirst, OCLC's new Internet catalog, the only Internet tracking database from a "traditional" database service. (Author/PEN)

  4. Observation of vertcal CO2 concentration profiles in the lower-atmosphere using a compact direct detection 1.6 μm DIAL

    NASA Astrophysics Data System (ADS)

    Nagasawa, C.; Shibata, Y.; Abo, M.

    2015-12-01

    Knowledge of present carbon sources and sinks including their spatial profile and their variation in time is one of the essential informations for predicting future CO2 atmospheric concentration levels. Moewover, for the detailed analysis of forest carbon dynamics and CO2 fluxes of urban area, the CO2 concentration measurement techniques with high spatial and temporal resolution are required in the lower atmosphere. A differential absorption lidar (DIAL) is expected to measure atmospheric CO2 concentration profiles in the atmospheric boundary layer from a ground platform. We have succeeded to develop a compact direct detection 1.6 μm DIAL system for measuring CO2 concentration profiles in the lower atmosphere. This DIAL system consists of the optical parametric generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate and the receiving optics that included the near-infrared photomultiplier tube operating at the analog mode and the 25 cm telescope. We have succeeded in observing the daytime temporal change of vertical CO2 concentration profiles for the range from 0.25 to 2.5 km with integration time of 30 minutes and range resolution of 300 m. This compact direct detection CO2 DIAL is usefull for the estimation of CO2 flux. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency.

  5. Hydrogen doppler spectroscopy using 15N ions

    NASA Astrophysics Data System (ADS)

    Borucki, L.; Becker, H. W.; Gorris, F.; Kubsky, S.; Schulte, W. H.; Rolfs, C.

    The energy spread of atomic and molecular ion beams from the 4 MV Dynamitron tandem accelerator at the Ruhr-Universität Bochum has been studied and in part minimized. Using the ER= 6.40 MeV narrow resonance in 1H(15N,αγ)12C with an 15N energy spread of 4.55 keV, the Doppler broadening for several hydrogen-bearing gases was found to be in good agreement with expectation: e.g. for NH3 gas a rotational-vibrational Doppler width of 10.41 +/- 0.25 keV was observed (theory = 10.4 keV). Studies of the vibrational Doppler widths of H-bonds on a Si <100> surface were performed using a 4πγ-ray detection system together with UHV-chambers for sample preparation, transport, and analysis. The results showed that further improvements in the experimental set-ups are needed for such investigations.

  6. Doppler Lidar for Wind Measurements on Venus

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Emmitt, George D.; Yu, Jirong; Kavaya, Michael J.

    2010-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. This lidar system was recently deployed at Howard University facility in Beltsville, Mary-land, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other sensors will be presented. A simulation and data product for wind measurement at Venus will be presented.

  7. Imaging system considerations in Doppler global velocimetry

    SciTech Connect

    Ford, H.D.; Tatam, R.P.

    1995-12-31

    Doppler Global Velocimetry (DGV) is a full-field optical technique for the measurement of fluid flow velocities. The flow is illuminated using a light sheet, and the Doppler shift imposed on light scattered from moving particles within the sheet is imaged through a cell containing iodine vapor onto a solid-state array camera, thereby converting the Doppler frequency shifts into intensity variations in the image. In this paper, a DGV system is presented based around an argon-ion laser source and a fast digital image-processing system, which allows the DGV velocity map to be updated at camera frame rate. Interpretation of DGV images is complicated by errors which arise at positions some way out in the field of view due to the modified illumination and viewing vectors corresponding to these positions. Typical magnitudes of such errors are calculated. Significant errors can arise for points more than about 5{degree} out from the center of the field of view, and for divergence angles of the illumination beam exceeding about 10{degree} at a distance of 5 cm from the beam axis. Other considerations affecting system accuracy are also discussed.

  8. Doppler compensated underwater acoustic communication system

    NASA Astrophysics Data System (ADS)

    Raj, Anand; George, Binu; Supiya, M. H.; Kurian, James; Pillai, P. R. Saseendran

    2001-05-01

    Spread spectrum methods are used in communication systems to provide a low probability of intercept in hostile environments and multiple access capability in systems shared by many users as well as to provide high processing gain in channels where the transmitted signal is distorted by multipath effects. Such systems serve to be an effective tool for underwater telemetry environments, where multipath propagation effect and Doppler spreading is seen to be more predominant. This paper describes the implementation of a Doppler compensated underwater telemetry system based on CDMA technique. The system consists of multiple CDMA transmitters and a phase locked loop based carrier recoverable CDMA receiver. The effects of the Doppler shift can be compensated by the carrier recovery subsystem in the demodulator, based on PLL technique, which extracts the carrier frequency/phase and simultaneously demodulates the signal. The decision device in the receiver consists of a PN sequence generator as well as a bank of correlators, which are used to determine the data transmitted. The system simulation has been implemented in MATLAB. The advantage of this system is that multiple transmitting stations can transmit simultaneously to a central receiver, thereby increasing the system throughput.

  9. Laser Doppler measurement techniques for spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Gagliardi, Robert M.

    1986-01-01

    Two techniques are proposed for using laser links to measure the relative radial velocity of two spacecraft. The first technique determines the relative radial velocity from a measurement of the two-way Doppler shift on a transponded radio-frequency subcarrier. The subcarrier intensity-modulates reciprocating laser beams. The second technique determines the relative radial velocity from a measurement of the two-way Doppler shift on an optical frequency carrier which is transponded between spacecraft using optical Costas loops. The first technique might be used in conjunction with noncoherent optical communications, while the second technique is compatible with coherent optical communications. The first technique simultaneously exploits the diffraction advantage of laser beams and the maturity of radio-frequency phase-locked loop technology. The second technique exploits both the diffraction advantage of laser beams and the large Doppler effect at optical frequencies. The second technique has the potential for greater accuracy; unfortunately, it is more difficult to implement since it involves optical Costas loops.

  10. Water vapour emission in vegetable fuel: absorption cell measurements and detection limits of our CO II Dial system

    NASA Astrophysics Data System (ADS)

    Bellecci, C.; De Leo, L.; Gaudio, P.; Gelfusa, M.; Lo Feudo, T.; Martellucci, S.; Richetta, M.

    2006-09-01

    Forest fires can be the cause of serious environmental and economic damages. For this reason a considerable effort has been directed toward the forest protection and fire fighting. In the early forest fire detection, Lidar technique present considerable advantages compared to the passive detection methods based on infrared cameras currently in common use, due its higher sensitivity and ability to accurately locate the fire. The combustion phase of the vegetable matter causes a great amount of water vapour emission, thus the water molecule behaviour will be studied to obtain a fire detection system ready and efficient also before the flame propagation. A first evaluation of increment of the water vapour concentration compared to standard one will be estimated by a numerical simulation. These results will be compared with the experimental measurements carried out into a cell with a CO II Dial system, burning different kinds of vegetable fuel. Our results and their comparison will be reported in this paper.

  11. A Ground-Based 2-Micron DIAL System to Profile Tropospheric CO2 and Aerosol Distributions for Atmospheric Studies

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Koch, Grady; Abedin, Nurul; Refaat, Tamer; Rubio, Manuel; Davis, Kenneth; Miller, Charles; Singh, Upendra

    2006-01-01

    System will operate at a temperature insensitive CO2 line (2050.967 nm) with side-line tuning and off-set locking. Demonstrated an order of magnitude improvement in laser line locking needed for high precision measurements, side-line operation, and simultaneously double pulsing and line locking. Detector testing of phototransistor has demonstrated sensitivity to aerosol features over long distances in the atmosphere and resolve features approx. 100m. Optical systems that collect light onto small area detectors work well. Receiver optical designs are being optimized and data acquisition systems developed. CO2 line parameter characterization in progress In situ sensor calibration in progress for validation of DIAL CO2 system.

  12. A Bistatic Multiple-Doppler Radar Network.

    NASA Astrophysics Data System (ADS)

    Wurman, Joshua; Heckman, Stanley; Boccippio, Dennis

    1993-12-01

    A multiple-Doppler radar network can be constructed using only one, traditional, transmitting pencil-beam radar and one or more passive, low-gain, nontransmitting receivers at remote sites. Radiation scattered from the pencil beam of the transmitting radar as it penetrates weather targets can be detected at the receive-only sites as well as at the active transmitter. The Doppler shifts of the radiation received at all the sites can be used to construct two- and three-dimensional wind fields in a manner similar to that used with traditional Doppler radar networks.There are unique scientific advantages to a bistatic multiple-Doppler network: 1) all radial velocity measurements from individual resolution volumes are collected simultaneously since there is only one source of radiation; 2) the intensity of the obliquely scattered radiation can be compared to Rayleigh scattering predictions and used for hail detection; 3) rapid scanning of localized weather phenomena can be aided by elimination of the need to scan with multiple radars.This type of multiple-Doppler radar network also has significant economic advantages. Passive sites contain no high-voltage transmitting equipment or large rotating antennas. They require no operators and much less maintenance. We estimate initial investment costs, and subsequent operational and maintenance costs are less than one-thirtieth that of conventional radars.There are shortcomings particular to these types of networks: 1) passive, low-gain, receiving sites are more sensitive to contamination from transmitter sidelobes and to secondary scattering from weather echoes; 2) low-gain receiving sites are less sensitive to weak weather echoes; 3) Cartesian (u, v, w) wind fields derived from bistatic network data exhibit about twice the expected error as those constructed from data from traditional monostatic networks containing equal numbers of radars. Multiple scattering and sidelobe contamination levels are acceptable in most situations

  13. Differential Absorption Lidar (DIAL) in Alberta: A New Remote Sensing Tool for Wide Area Measurement of Particulates, CO2, and CH4 Emissions from Energy Extraction and Production Sites

    NASA Astrophysics Data System (ADS)

    Wojcik, M.; Lemon, R.; Crowther, B. G.; Valupadas, P.; Fu, L.; Yang, Z.; Huda, Q.; Leung, B.; Chambers, A.

    2014-12-01

    Alberta Environmental Monitoring, Evaluation and Reporting Agency (AEMERA) in cooperation with the Space Dynamics Laboratory (SDL) of Utah State University, have developed a mobile DIAL sensor designed specifically for particle, CO2 and CH4 emissions measurement. Rapid expansion of the oil and gas industry in Alberta, including the oil sands, has challenged the Alberta Government to keep pace in its efforts to monitor and mitigate the environmental impacts of development. The limitations of current monitoring systems has pushed the provincial government to seek out advanced sensing technologies such as differential absorption lidar (DIAL) to help assess the impact of energy development and industrial operations. This instrument is housed inside a 36' trailer and can be quickly staged and used to characterize source emissions and to locate fugitive leaks. DIAL is capable of measuring concentrations for carbon dioxide (CO2) and methane (CH4) at ranges of up to 3 km with a spatial resolution of 1.5 m. DIAL can map both CO2 and CH4, as well as particulate matter (PM) in a linear fashion; by scanning the laser beam in both azimuth and elevation, DIAL can create images of emissions concentrations and ultimately can be used to determine emission factors, locate fugitive leaks, assess plume dispersion and confirm air dispersion modeling. The DIAL system has been deployed at a landfill, a coal-fired power plant, and an oil sands production area. A system overview of the DIAL instrument and recent results will be discussed.

  14. Doppler effect in resonant photoemission from SF6: correlation between Doppler profile and Auger emission anisotropy.

    PubMed

    Kitajima, M; Ueda, K; De Fanis, A; Furuta, T; Shindo, H; Tanaka, H; Okada, K; Feifel, R; Sorensen, S L; Gel'mukhanov, F; Baev, A; Agren, H

    2003-11-21

    Fragmentation of the SF6 molecule upon F 1s excitation has been studied by resonant photoemission. The F atomiclike Auger line exhibits the characteristic Doppler profile that depends on the direction of the photoelectron momentum relative to the polarization vector of the radiation as well as on the photon energy. The measured Doppler profiles are analyzed by the model simulation that takes account of the anisotropy of the Auger emission in the molecular frame. The Auger anisotropy extracted from the data decreases with an increase in the F-SF5 internuclear distance.

  15. Baroreflex regulation measurement using a noninvasive laser Doppler method

    NASA Astrophysics Data System (ADS)

    Hast, Jukka T.; Myllylae, Risto A.; Sorvoja, Hannu; Nissilae, Seppo M.

    2001-05-01

    In this study, a noninvasive laser Doppler measurement method based on the self-mixing effect of a diode laser was used to measure baroreflex regulation, which is manifest in the blood pressure signal as a 0.1 Hz sinusoidal variation. The laser Doppler measurement system was used to measure the movement of the right radial artery of ten volunteers. Variation in blood pressure caused by the baroreflex affects the elastic properties of the arterial wall. When diastolic blood pressure increases, the elasticity of the arterial wall decreases, causing the wall to lose some of its movability. This decreased elasticity reveals itself in the Doppler signal such that when the blood pressure increases, the Doppler frequency decreases and vice versa. The results show, that the laser Doppler method can be used to measure baroreflex regulation. Finally, baroreflex regulation in the Doppler signal is approximately in the inverse phase with respect to variation in diastolic blood pressure.

  16. Applications of Doppler ultrasound in clinical vascular disease

    NASA Technical Reports Server (NTRS)

    Barnes, R. W.; Hokanson, D. E.; Sumner, D. S.; Strandness, D. E., Jr.

    1975-01-01

    Doppler ultrasound has become the most useful and versatile noninvasive technique for objective evaluation of clinical vascular disease. Commercially available continuous-wave instruments provide qualitative and quantitative assessment of venous and arterial disease. Pulsed Doppler ultrasound was developed to provide longitudinal and transverse cross-sectional images of the arterial lumen with a resolution approaching that of conventional X-ray techniques. Application of Doppler ultrasound in venous, peripheral arterial, and cerebrovascular diseases is reviewed.

  17. Doppler and speckle methods for diagnostics in dentistry

    NASA Astrophysics Data System (ADS)

    Ulyanov, Sergey S.; Lepilin, Alexander V.; Lebedeva, Nina G.; Sedykh, Alexey V.; Kharish, Natalia A.; Osipova, Yulia; Karpovich, Alexander

    2002-02-01

    The results of statistical analysis of Doppler spectra of scattered intensity, obtained from tissues of oral cavity membrane of healthy volunteers, are presented. The dependence of the spectral moments of Doppler signal on cutoff frequency is investigated. Some results of statistical analysis of Doppler spectra, obtained from tooth pulp of patients, are presented. New approach for monitoring of blood microcirculation in orthodontics is suggested. Influence of own noise of measuring system on formation of speckle-interferometric signal is studied.

  18. Eliminating Doppler Effects in Synthetic-Aperture Radar Optical Processors

    NASA Technical Reports Server (NTRS)

    Constantindes, N. J.; Bicknell, T. J.

    1984-01-01

    Pair of photodetectors generates correction signals. Instrument detects Doppler shifts in radar and corrects processing parameters so ambiguities caused by shifts not manifested as double or overlapping images.

  19. Reexamination of the Doppler effect through Maxwell's equations.

    PubMed

    Guo, Wei; Aktas, Yildirim

    2012-08-01

    In this work, the electric field emitted from a moving source, an electric point dipole, is analyzed for the purpose of illustrating the physics behind the Doppler effect. It is found that if the (translational) motion of the source is nonrelativistic, the Doppler effect is realized in two steps: the motion of the source first causes the dyadic Green function associated with the electric field to acquire an oscillation frequency in the far-field region of the source, and then the frequency leads to the Doppler effect. It is also demonstrated that the Doppler effect is observable only in the far-field region of the source.

  20. PRECISE DOPPLER MONITORING OF BARNARD'S STAR

    SciTech Connect

    Choi, Jieun; Marcy, Geoffrey W.; Howard, Andrew W.; Isaacson, Howard; McCarthy, Chris; Fischer, Debra A.; Johnson, John A.; Wright, Jason T.

    2013-02-20

    We present 248 precise Doppler measurements of Barnard's Star (Gl 699), the second nearest star system to Earth, obtained from Lick and Keck Observatories during the 25 years between 1987 and 2012. The early precision was 20 m s{sup -1} but was 2 m s{sup -1} during the last 8 years, constituting the most extensive and sensitive search for Doppler signatures of planets around this stellar neighbor. We carefully analyze the 136 Keck radial velocities spanning 8 years by first applying a periodogram analysis to search for nearly circular orbits. We find no significant periodic Doppler signals with amplitudes above {approx}2 m s{sup -1}, setting firm upper limits on the minimum mass (Msin i) of any planets with orbital periods from 0.1 to 1000 days. Using a Monte Carlo analysis for circular orbits, we determine that planetary companions to Barnard's Star with masses above 2 M {sub Circled-Plus} and periods below 10 days would have been detected. Planets with periods up to 2 years and masses above 10 M {sub Circled-Plus} (0.03 M {sub Jup}) are also ruled out. A similar analysis allowing for eccentric orbits yields comparable mass limits. The habitable zone of Barnard's Star appears to be devoid of roughly Earth-mass planets or larger, save for face-on orbits. Previous claims of planets around the star by van de Kamp are strongly refuted. The radial velocity of Barnard's Star increases with time at 4.515 {+-} 0.002 m s{sup -1} yr{sup -1}, consistent with the predicted geometrical effect, secular acceleration, that exchanges transverse for radial components of velocity.

  1. Christian Doppler is 200 years young.

    PubMed

    Bollinger, Alfred; Partsch, Hugo

    2003-11-01

    Christian Doppler was born 200 years ago in Salzburg, Austria, on November 29, 1803, worked in Prague and Vienna and died 150 years ago in Venice. In an article of eight pages he described the principle, which made him famous. It appeared in 1842 with the exotic title: "On the Coloured Light of the Double Stars and Certain Other Stars of the Heaven". The validity of his principle for velocity measurement was confirmed by trumpet sounds produced on a train moving towards and away from the observer. Around 1960 Japanese scientists suggested that flow velocity in blood vessels could be determined by analysing the difference of frequency between emitted and backscattered ultrasound. Rushmer and coworkers built machines suitable for medicine in Seattle, where Eugene Strandness recognized their potential and applied them in first studies. In 1967 the technique jumped to Europe and started to be used worldwide. Already by using continuous wave ultrasound it was possible to diagnose occlusive disease of neck and limb arteries, venous thrombosis and valvular insufficiency with accuracy. Measurements of postestenotic ankle blood pressure were facilitated by Doppler sensing. Over the years more sophisticated instruments were developed. Pulsed emission of ultrasound waves opened a way to study flow velocity profiles across large vessels. By combining the method with A or B mode ultrasound blood flow could be quantified and finally perfused segments of blood vessels visualized. Duplex scanning in its simple and then in its colour coded version is nowadays the standard non-invasive technique that nobody would like to miss. Vascular territories like intracranial, renal and intestinal arteries can also be explored. For the assessment of microvascular flow in skin and mucosae laser Doppler instruments were introduced.

  2. Christian Doppler is 200 years young.

    PubMed

    Bollinger, Alfred; Partsch, Hugo

    2003-11-01

    Christian Doppler was born 200 years ago in Salzburg, Austria, on November 29, 1803, worked in Prague and Vienna and died 150 years ago in Venice. In an article of eight pages he described the principle, which made him famous. It appeared in 1842 with the exotic title: "On the Coloured Light of the Double Stars and Certain Other Stars of the Heaven". The validity of his principle for velocity measurement was confirmed by trumpet sounds produced on a train moving towards and away from the observer. Around 1960 Japanese scientists suggested that flow velocity in blood vessels could be determined by analysing the difference of frequency between emitted and backscattered ultrasound. Rushmer and coworkers built machines suitable for medicine in Seattle, where Eugene Strandness recognized their potential and applied them in first studies. In 1967 the technique jumped to Europe and started to be used worldwide. Already by using continuous wave ultrasound it was possible to diagnose occlusive disease of neck and limb arteries, venous thrombosis and valvular insufficiency with accuracy. Measurements of postestenotic ankle blood pressure were facilitated by Doppler sensing. Over the years more sophisticated instruments were developed. Pulsed emission of ultrasound waves opened a way to study flow velocity profiles across large vessels. By combining the method with A or B mode ultrasound blood flow could be quantified and finally perfused segments of blood vessels visualized. Duplex scanning in its simple and then in its colour coded version is nowadays the standard non-invasive technique that nobody would like to miss. Vascular territories like intracranial, renal and intestinal arteries can also be explored. For the assessment of microvascular flow in skin and mucosae laser Doppler instruments were introduced. PMID:14694774

  3. Current-induced spin wave Doppler shift

    NASA Astrophysics Data System (ADS)

    Bailleul, Matthieu

    2010-03-01

    In metal ferromagnets -namely Fe, Co and Ni and their alloys- magnetism and electrical transport are strongly entangled (itinerant magnetism). This results in a number of properties such as the tunnel and giant magnetoresistance (i.e. the dependence of the electrical resistance on the magnetic state) and the more recently addressed spin transfer (i.e. the ability to manipulate the magnetic state with the help of an electrical current). The spin waves, being the low-energy elementary excitations of any ferromagnet, also exist in itinerant magnets, but they are expected to exhibit some peculiar properties due the itinerant character of the carriers. Accessing these specific properties experimentally could shed a new light on the microscopic mechanism governing itinerant magnetism, which -in turn- could help in optimizing material properties for spintronics applications. As a simple example of these specific properties, it was predicted theoretically that forcing a DC current through a ferromagnetic metal should induce a shift of the frequency of the spin waves [1,2]. This shift can be identified to a Doppler shift undergone by the electron system when it is put in motion by the electrical current. We will show how detailed spin wave measurements allow one to access this current-induced Doppler shift [3]. From an experimental point of view, we will discuss the peculiarities of propagating spin wave spectroscopy experiments carried out at a sub-micrometer length-scale and with MHz frequency resolution. Then, we will discuss the measured value of the Doppler shift in the context of both the old two-current model of spin-polarized transport and the more recent model of adiabatic spin transfer torque. [4pt] [1] P.Lederer and D.L. Mills, Phys.Rev. 148, 542 (1966).[0pt] [2] J. Fernandez-Rossier et al., Phys. Rev. B 69, 174412 (2004)[0pt] [3] V. Vlaminck and M. Bailleul, Science 322, 410 (2008).

  4. Applying Zeeman Doppler imaging to solar spectra

    NASA Astrophysics Data System (ADS)

    Hussain, G. A. J.; Saar, S. H.; Collier Cameron, A.

    2004-03-01

    A new generation of spectro-polarimeters with high throughput (e.g. CFHT/ESPADONS and LBT/PEPSI) is becoming available. This opportunity can be exploited using Zeeman Doppler imaging (ZDI), a technique that inverts time-series of Stokes V spectra to map stellar surface magnetic fields (Semel 1989). ZDI is assisted by ``Least squares deconvolution'' (LSD), which sums up the signal from 1000's of photospheric lines to produce a mean deconvolved profile with higher S:N (Donati & Collier Cameron 1997).

  5. In-suit Doppler technology assessment

    NASA Technical Reports Server (NTRS)

    Schulze, Arthur E.; Greene, Ernest R.; Nadeau, John J.

    1991-01-01

    The objective of this program was to perform a technology assessment survey of non-invasive air embolism detection utilizing Doppler ultrasound methodologies. The primary application of this technology will be a continuous monitor for astronauts while performing extravehicular activities (EVA's). The technology assessment was to include: (1) development of a full understanding of all relevant background research; and (2) a survey of the medical ultrasound marketplace for expertise, information, and technical capability relevant to this development. Upon completion of the assessment, LSR was to provide an overview of technological approaches and R&D/manufacturing organizations.

  6. Respiratory effort energy estimation using Doppler radar.

    PubMed

    Shahhaidar, Ehsaneh; Yavari, Ehsan; Young, Jared; Boric-Lubecke, Olga; Stickley, Cris

    2012-01-01

    Human respiratory effort can be harvested to power wearable biosensors and mobile electronic devices. The very first step toward designing a harvester is to estimate available energy and power. This paper describes an estimation of the available power and energy due to the movements of the torso during breathing, using Doppler radar by detecting breathing rate, torso displacement, torso movement velocity and acceleration along the sagittal movement of the torso. The accuracy of the detected variables is verified by two reference methods. The experimental result obtained from a healthy female human subject shows that the available power from circumferential movement can be higher than the power from the sagittal movement. PMID:23365993

  7. Mobile fiber-optic laser Doppler anemometer.

    PubMed

    Stieglmeier, M; Tropea, C

    1992-07-20

    A laser Doppler anemometer (LDA) has been developed that combines the compactness and low power consumption of laser diodes and avalanche photodiodes with the flexibility and possibility of miniaturization by using fiber-optic probes. The system has been named DFLDA for laser diode fiber LDA and is especially suited for mobile applications, for example, in trains, airplanes, or automobiles. Optimization considerations of fiber-optic probes are put forward and several probe examples are described in detail. Measurement results from three typical applications are given to illustrate the use of the DFLDA. Finally, a number of future configurations of the DFLDA concept are discussed.

  8. The new Adelaide medium frequency Doppler radar

    NASA Astrophysics Data System (ADS)

    Reid, I. M.; Vandepeer, B. G. W.; Dillon, S.; Fuller, B.

    1993-08-01

    The Buckland Park Aerial Array (35 deg S, 138 deg E) is situated about 40 km north of Adelaide on a flat coastal plain. It was designed by Basil Briggs and Graham Elford, and constructed between 1965 and 1968. The first results were published in the late 1960's. Some aspects of the history of the array are described in Briggs (1993). A new MF Doppler Radar utilizing the array has been developed. This paper describes some of the technical details of this new facility.

  9. Catadioptric optics for laser Doppler velocimeter applications

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.

    1989-01-01

    This paper examines the adaptation of low-cost Schmidt-Cassegrain astronomical telescopes to perform the laser-beam-focusing and scattered-light collection tasks associated with dual-beam laser Doppler velocimetry. A generic telescope design is analyzed using ray-tracing methods and Gaussian beam-propagation theory. A straightforward modification procedure to convert from infinite to near unity conjugate-ratio operation with very low residual aberration is identified and tested with a 200-mm-aperture telescope modified for f/10 operation. Performance data for this modified telescope configuration are near the diffraction limit and agree well with predictions.

  10. Respiratory effort energy estimation using Doppler radar.

    PubMed

    Shahhaidar, Ehsaneh; Yavari, Ehsan; Young, Jared; Boric-Lubecke, Olga; Stickley, Cris

    2012-01-01

    Human respiratory effort can be harvested to power wearable biosensors and mobile electronic devices. The very first step toward designing a harvester is to estimate available energy and power. This paper describes an estimation of the available power and energy due to the movements of the torso during breathing, using Doppler radar by detecting breathing rate, torso displacement, torso movement velocity and acceleration along the sagittal movement of the torso. The accuracy of the detected variables is verified by two reference methods. The experimental result obtained from a healthy female human subject shows that the available power from circumferential movement can be higher than the power from the sagittal movement.

  11. Transmission media effects on precise Doppler tracking

    NASA Technical Reports Server (NTRS)

    Callahan, P. S.

    1978-01-01

    The effects of the transmission media - the earth's troposphere and ionosphere, and the solar wind - on precise Doppler tracking are discussed. The charged particle effects can be largely removed by dual frequency observations; however there are limitations to these corrections (besides system noise and/or finite integration times) including the effects of magnetic fields, diffraction, and differential refraction, all of which must be carefully evaluated. The earth's troposphere can contribute an error of delta f/f approximately 10 to the minus 14th power.

  12. Doppler Measurements of the Suns Meridional Flow

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    1996-01-01

    Doppler velocity data obtained with the Global Oscillation Network Group (GONG) instruments in Tucson from 1992 August through 1995 April were analyzed to determine the structure and evolution of the Sun's meridional flow. Individual measurements of the flow were derived from line-of-sight velocity images averaged over 17 minutes to remove the p-mode oscillation signal. Typical flow velocities are poleward at approximately 20 m/s, but the results suggest that episodes may occur with much stronger flows. Such variations may help to explain some of the many disparate reports on the strength and structure of the Sun's meridional flow.

  13. Target motion detecting impulse Doppler radar system

    NASA Astrophysics Data System (ADS)

    Jehle, Robert E.; Hudson, David F.

    1992-03-01

    Radiant energy intermittently emitted from a transmitter is reflected as echo pulses from a moving target being interrogated to produce Doppler signals by counting of photons of the echo pulses during time domain intervals between emission from the transmitter. Such counting of photons is limited to the time domain intervals by operational control of a laser pump through which a reference beam is generated at an energy level activating detectors irradiated by such beam to count the photons absorbed therein after capture of the photons by a receiving antenna.

  14. Target motion detecting impulse Doppler radar system

    NASA Astrophysics Data System (ADS)

    Jehle, Robert E.; Hudson, David F.

    1993-06-01

    Radiant energy intermittently emitted from a transmitter is reflected as echo pulses from a moving target being interrogated to produce Doppler signals by counting of photons of the echo pulses during time domain intervals between emission from the transmitter. Such counting of photons is limited to the time domain intervals by operational control of a laser pump through which a reference beam is generated at an energy level activating detectors irradiated by such beam to count the photons absorbed therein after capture or the photons by a receiving antenna.

  15. Detection of microemboli by transcranial Doppler ultrasound.

    PubMed Central

    Grosset, D G; Georgiadis, D; Kelman, A W; Cowburn, P; Stirling, S; Lees, K R; Faichney, A; Mallinson, A; Quin, R; Bone, I; Pettigrew, L; Brodie, E; MacKay, T; Wheatley, D J

    1996-01-01

    Doppler ultrasound detection of abnormally high-pitched signals within the arterial waveform offers a new method for diagnosis, and potentially for prediction, of embolic complications in at-risk patients. The nature of Doppler "microembolic" signals is of particular interest in patients with prosthetic heart valves, where a high prevalence of these signals is observed. Monitoring the middle cerebral artery with 2-MHz transcranial Doppler ultrasound (TC-2000, Nicolet Biomedical; Warwick, UK), we looked for microemboli signals in 150 patients (95 women and 55 men), and found 1 or more signals during a 30-min recording in 89% of 70 patients with Bjork-Shiley valves (principally monostrut), 54% of 50 patients with Medtronic-Hall valves, and 50% of 30 patients with Carpentier-Edwards valves (p < 0.001, chi 2). In the patients with Bjork-Shiley valves, the mean number of signals per hour was 59 (range, 42-86; 95% confidence interval), which was significantly higher than the mean in patients with Medtronic-Hall and Carpentier-Edwards valves (1.5[range, 0.5-2.5] and 1 [range, 0-5.3], respectively; both p < 0.04, multiple comparisons. Bonferroni correction). In the patients undergoing serial pre- and postoperative studies, the causative role of the valve implant was emphasized. There was no correlation between the number of emboli signals and a prior history of neurologic deficit, cardiac rhythm, previous cardiac surgery, or the intensity of oral anticoagulation, in patients with prosthetic heart valves. In Bjork-Shiley patients, dual (mitral and aortic) valves were associated with more signals than were single valves. In Medtronic-Hall patients, the signal count was greater for valves in the aortic position than it was for valves in the mitral position. Comparative studies of Doppler emboli signals in other clinical settings suggest a difference in composition or size of the underlying maternal between prosthetic valve patients and patients with carotid stenosis. These

  16. Solar Doppler shifts - Sources of continuous spectra

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Harvey, J. W.

    1986-01-01

    Oscillation observations can be used to study nonoscillatory solar phenomena that exhibit Doppler shifts. The paper discusses several effects of these phenomena and their associated temporal and spatial power spectra: (1) they limit the signal-to-noise ratio and sometimes detectability of oscillation modes; (2) there is the potential for better understanding and/or detection of solar phenomena; (3) large-scale convection may spatially modulate oscillation modes, leading to a continuous background spectrum; and (4) in regions of the spectrum where the resolution to separate modes is lacking one can determine upper limits for the integrated effects of modes.

  17. Laser Doppler anemometry measurements in an engine.

    PubMed

    Cole, J B; Swords, M D

    1979-05-15

    A simple and effective technique is reported which allows measurement of the flow field in the cylinder of a motored internal combustion engine with good temporal and spatial resolution. The experiment, a realfringe laser Doppler anemometer, uses photon counting digital autocorrelation for data capture. The experimental autocorrelation functions have been processed using curve-fitting to a Gaussian velocity profile and by direct Fourier transformation without prior assumption of the form. The ability of such a technique to tolerate poor SNRs makes it a likely choice for measurement in firing engines.

  18. Neutral wind results from TIMED Doppler interferometer

    NASA Astrophysics Data System (ADS)

    Killeen, T.; Gablehouse, R.; Gell, D.; Johnson, R.; Niciejewski, R.; Ortland, D.; Wu, Q.; Skinner, W.; Solomon, S.; Kafkalidis, J.

    2003-04-01

    Since the launch of the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite in December 2001, the TIMED Doppler Interferometer (TIDI) has been collecting lower thermosphere and mesospheric data for over a year. After adjustments to the spectral sampling scheme and operational mode, the instrument has been optimized. Efforts have also been made to improve the instrument performance. Preliminary neutral winds from O2 (0-0) have been analyzed. Tidal features and their seasonal variation are shown clearly in the wind data, which are quantitatively consistent with model prediction. We will report our progress on these efforts.

  19. [Color Doppler sonography of focal abdominal lesions].

    PubMed

    Licanin, Zoran; Lincender, Lidija; Djurović, V; Salihefendić, Nizama; Smajlović, Fahrudin

    2004-01-01

    Color Doppler sonography (CDS--spectral, color and power), harmonic imaging techniques (THI, PHI), possibility of 3D analysis of picture, usage of contrast agents, have raised the values of ultrasound as a diagnostic method to a very high level. THI--non-linear gray scale modality, is based on the processing of higher reflected frequencies, that has improved a picture resolution, which is presented with less artifacts and limiting effects of obesity and gases. Ultrasound contrast agents improve analysis of micro and macro circulation of the examined area, and with the assessment of velocity of supply in ROI (wash in), distribution and time of signal weakening (wash out), are significantly increasing diagnostic value of ultrasound. Besides the anatomical and topographic presentation of examined region (color, power), Color Doppler sonography gives us haemodynamic-functional information on vascularisation of that region, as well as on pathologic vascularisation if present. Avascular aspect of a focal pathologic lesion corresponds to a cyst or haematoma, while coloration and positive spectral curve discover that anechogenic lesions actually represents aneurysms, pseudoaneurysms or AVF. In local inflammatory lesion, abscess in an acute phase, CDS shows first increased, and then decreased central perfusion, while in a chronic phase, a pericapsular vascularisation is present. Contribution of CDS in differentiation of hepatic tumors (hemangioma, HCC and metastasis) is very significant. Central color dots along the peripheral blood vessels and the blush phenomenon are characteristics of capillary hemangioma, peritumoral vascular ring "basket" of HCC, and "detour" sign of metastasis. The central artery, RI from 0.45 to 0.60 and radial spreading characterize FNH. Hepatic adenoma is characterized by an intratumoral vein, and rarely by a vascular hallo. Further on, blood velocity in tumor defined by Color Doppler, distinguishes malignant from benign lesion, where 40 cm/s is a

  20. Is Doppler ultrasound useful for evaluating gestational trophoblastic disease?

    PubMed Central

    Lin, Lawrence H; Bernardes, Lisandra S; Hase, Eliane A; Fushida, Koji; Francisco, Rossana P V

    2015-01-01

    Doppler ultrasound is a non-invasive method for evaluating vascularization and is widely used in clinical practice. Gestational trophoblastic neoplasia includes a group of highly vascularized malignancies derived from placental cells. This review summarizes data found in the literature regarding the applications of Doppler ultrasound in managing patients with gestational trophoblastic neoplasia. The PubMed/Medline, Web of Science, Cochrane and LILACS databases were searched for articles published in English until 2014 using the following keywords: “Gestational trophoblastic disease AND Ultrasonography, Doppler.” Twenty-eight articles met the inclusion criteria and were separated into the 4 following groups according to the aim of the study. 1 Doppler ultrasound does not seem to be capable of differentiating partial from complete moles, but it might be useful when evaluating pregnancies in which a complete mole coexists with a normal fetus. 2 There is controversy in the role of uterine artery Doppler velocimetry in the prediction of development of gestational trophoblastic neoplasia. 3 Doppler ultrasound is a useful tool in the diagnosis of gestational trophoblastic neoplasia because abnormal myometrial vascularization and lower uterine artery Doppler indices seem to be correlated with invasive disease. 4 Lower uterine artery Doppler indices in the diagnosis of gestational trophoblastic neoplasia are associated with methotrexate resistance and might play a role in prognosis. CONCLUSION: Several studies support the importance of Doppler ultrasound in the management of patients with gestational trophoblastic neoplasia, particularly the role of Doppler velocimetry in the prediction of trophoblastic neoplasia and the chemoresistance of trophoblastic tumors. Doppler findings should be used as ancillary tools, along with human chorionic gonadotropin assessment, in the diagnosis of gestational trophoblastic neoplasia. PMID:26735221

  1. Optimization of the GSFC TROPOZ DIAL retrieval using synthetic lidar returns and ozonesondes - Part 1: Algorithm validation

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Leblanc, T.; Sumnicht, G. K.; Twigg, L. W.

    2015-04-01

    The main purpose of the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) is to measure the vertical distribution of tropospheric ozone for science investigations. Because of the important health and climate impacts of tropospheric ozone, it is imperative to quantify background photochemical and aloft ozone concentrations, especially during air quality episodes. To better characterize tropospheric ozone, the Tropospheric Ozone Lidar Network (TOLNet) has recently been developed, which currently consists of five different ozone DIAL instruments, including the TROPOZ. This paper addresses the necessary procedures to validate the TROPOZ retrieval algorithm and develops a primary standard for retrieval consistency and optimization within TOLNet. This paper is focused on ensuring the TROPOZ and future TOLNet algorithms are properly quantifying ozone concentrations and the following paper will focus on defining a systematic uncertainty analysis standard for all TOLNet instruments. Although this paper is used to optimize the TROPOZ retrieval, the methodology presented may be extended and applied to most other DIAL instruments, even if the atmospheric product of interest is not tropospheric ozone (e.g. temperature or water vapor). The analysis begins by computing synthetic lidar returns from actual TROPOZ lidar return signals in combination with a known ozone profile. From these synthetic signals, it is possible to explicitly determine retrieval algorithm biases from the known profile, thereby identifying any areas that may need refinement for a new operational version of the TROPOZ retrieval algorithm. A new vertical resolution scheme is presented, which was upgraded from a constant vertical resolution to a variable vertical resolution, in order to yield a statistical uncertainty of <10%. The optimized vertical resolution scheme retains the ability to resolve fluctuations in the known ozone profile and now allows near

  2. Windowed multipole for cross section Doppler broadening

    NASA Astrophysics Data System (ADS)

    Josey, C.; Ducru, P.; Forget, B.; Smith, K.

    2016-02-01

    This paper presents an in-depth analysis on the accuracy and performance of the windowed multipole Doppler broadening method. The basic theory behind cross section data is described, along with the basic multipole formalism followed by the approximations leading to windowed multipole method and the algorithm used to efficiently evaluate Doppler broadened cross sections. The method is tested by simulating the BEAVRS benchmark with a windowed multipole library composed of 70 nuclides. Accuracy of the method is demonstrated on a single assembly case where total neutron production rates and 238U capture rates compare within 0.1% to ACE format files at the same temperature. With regards to performance, clock cycle counts and cache misses were measured for single temperature ACE table lookup and for windowed multipole. The windowed multipole method was found to require 39.6% more clock cycles to evaluate, translating to a 7.9% performance loss overall. However, the algorithm has significantly better last-level cache performance, with 3 fewer misses per evaluation, or a 65% reduction in last-level misses. This is due to the small memory footprint of the windowed multipole method and better memory access pattern of the algorithm.

  3. Comparison of Triature Doppler Velocimetry and VISAR

    SciTech Connect

    Cenobio H Gallegos, Bruce Marshall, Matthew Teel, Vincent T Romero, Abel Diaz, and Michael Berninger

    2010-01-01

    Triature Photonic Doppler Velocimetry (TDV) is an adaptation of Photonic Doppler Velocimetry (PDV) that rejects common-mode data noise after splitting PDV three ways, with each signal 120° out of phase from each other. Testing has demonstrated that TDV also improves temporal resolution from the typical five nanoseconds of PDV to a subnanosecond range. This paper compares the temporal response of TDV with that of PDV and VISAR [velocity interferometer system for any reflector] in an experiment with a subnanosecond (~120-picosecond rise time) shock source. Laboratory tests were performed using a high-power laser on targets of copper and aluminum. A Buce Marshall fast VISAR with a single-point PDV and a prototype TDV were used. A special probe that combined PDV, TDV, and fast VISAR made simultaneous velocity measurements. Breakout velocities of 1.3 km/second on copper and 2.5 km/second on aluminum were observed, where TDV resolved rise times of ~200 ps. This resolution was better than that of a fast VISAR, which can achieve ~500 ps temporal resolution. Test methods and results are presented.

  4. Imaging doppler velocimeter with downward heterodyning in the optical domain

    DOEpatents

    Reu, Phillip L; Hansche, Bruce D

    2013-05-21

    In a Doppler velocimeter, the incoming Doppler-shifted beams are heterodyned to reduce their frequencies into the bandwidth of a digital camera. This permits the digital camera to produce at every sampling interval a complete two-dimensional array of pixel values. This sequence of pixel value arrays provides a velocity image of the target.

  5. A study for developing an ultrasonic Doppler flowmeter

    NASA Astrophysics Data System (ADS)

    Biermans, M.; Bregman, R.

    1984-06-01

    The system parameters for low cost ultrasonic Doppler flowmeters for medical applications were investigated. A flowmeter was built. A phase locked loop is used to find the correct Doppler shift. Laboratory and field tests prove the success of the development, although very often insufficient reflectors exist in the liquids. The accuracy is + or - 5%; the reproducibility is + or - 0.5%.

  6. Micro-Doppler classification of riders and riderless horses

    NASA Astrophysics Data System (ADS)

    Tahmoush, David

    2014-05-01

    Micro-range Micro-Doppler can be used to isolate particular parts of the radar signature, and in this case we demonstrate the differences in the signature between a walking horse versus a walking horse with a rider. Using micro-range micro-Doppler, we can distinguish the radar returns from the rider as separate from the radar returns of the horse.

  7. Investigations of atmospheric dynamics using a CW Doppler sounder array

    NASA Technical Reports Server (NTRS)

    Rao, G. L.

    1974-01-01

    A three-dimensional CW Doppler sounding system currently under operation at the NASA-Marshall Space Flight Center, Alabama is described. The properties of the neutral atmosphere are discussed along with the theory of Doppler sounding technique. Methods of data analyses used to investigate the dynamical phenomena at the ionospheric heights are presented and suggestions for future investigations provided.

  8. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550 Section 892.1550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An ultrasonic pulsed doppler imaging system is a device that combines...

  9. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550 Section 892.1550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An ultrasonic pulsed doppler imaging system is a device that combines...

  10. Functional Doppler optical coherence tomography for cortical blood flow imaging

    NASA Astrophysics Data System (ADS)

    Yu, Lingfeng; Liu, Gangjun; Nguyen, Elaine; Choi, Bernard; Chen, Zhongping

    2010-02-01

    Optical methods have been widely used in basic neuroscience research to study the cerebral blood flow dynamics in order to overcome the low spatial resolution associated with magnetic resonance imaging and positron emission tomography. Although laser Doppler imaging and laser speckle imaging can map out en face cortical hemodynamics and columns, depth resolution is not available. Two-photon microscopy has been used for mapping cortical activity. However, flow measurement requires fluorescent dye injection, which can be problematic. The noninvasive and high resolution tomographic capabilities of optical coherence tomography make it a promising technique for mapping depth resolved cortical blood flow. Here, we present a functional Doppler optical coherence tomography (OCT) imaging modality for quantitative evaluation of cortical blood flow in a mouse model. Fast, repeated, Doppler OCT scans across a vessel of interest were performed to record flow dynamic information with a high temporal resolution of the cardiac cycles. Spectral Doppler analysis of continuous Doppler images demonstrates how the velocity components and longitudinally projected flow-volume-rate change over time, thereby providing complementary temporal flow information to the spatially distributed flow information of Doppler OCT. The proposed functional Doppler OCT imaging modality can be used to diagnose vessel stenosis/blockage or monitor blood flow changes due to pharmacological agents/neuronal activities. Non-invasive in-vivo mice experiments were performed to verify the capabilities of function Doppler OCT.

  11. Solid-state Raman frequency converters for CO2-DIAL systems at 1.6 μm

    NASA Astrophysics Data System (ADS)

    Rhee, Hanjo; Lisinetskii, Victor; Kaminskii, Alexander A.; Eichler, Hans-Joachim

    2009-09-01

    Measurement of the three-dimensional distribution of atmospheric trace gases, especially CO2, is an important factor to improve the accuracy of climate models and to understand the global effects of the greenhouse effect. This can be achieved by differential absorption Lidar (DIAL). The absorption spectrum of CO2 features several suitable absorption lines for a ground-based or air-borne DIAL system working at wavelengths between 1.57 μm and 1.61 μm. An appropriate laser transmitter must emit laser pulses with pulse energies of more than 10 mJ and pulse duration in the nanosecond range. For high spectral purity the bandwidth is required to be less than 60 MHz. OPOs and Er-doped solid-state lasers emit around 1.6 μm, but we describe here alternatively Nd:YAG and Nd:glass laser systems with Raman converters. The use of stimulated Raman scattering in crystalline and ceramic materials is a possibility to shift the wavelength of existing lasers depending on the size of the Raman shift. After the investigation of a large number of Raman-active materials some of them could be identified as promising candidates for the conversion of typical Nd:YAG emission wavelengths, including LiNH2C6H4SO3•H2O, Ba(NO3)2, Li2SO4•H2O, Y(HCOO)3•2H2O, β-BBO and diamond. Our experiments with Ba(NO3)2 showed that the choice of the material should not be restricted to those with an adequate first order Stokes Raman line position, but also second or third order Raman shift should be considered. Development of Raman frequency converters for high pulse energies concentrates on linear and folded resonator designs and seeded Raman amplifiers using the Raman material as a direct amplifier. With Ba(NO3)2 pulse energy up to 116 mJ and 42 % quantum efficiency at the third Stokes wavelength with 1599 nm has been demonstrated. High power operation at 5 W with compensation of thermal lensing was achieved.

  12. DIAL with heterodyne detection including speckle noise: Aircraft/shuttle measurements of O3, H2O, and NH3 with pulsed tunable CO2lasers

    NASA Technical Reports Server (NTRS)

    Brockman, P.; Hess, R. V.; Staton, L. D.; Bair, C. H.

    1980-01-01

    A parametric analysis of DIAL sensitivity with heterodyne detection is presented and comparisons with direct detection are discussed. Examples are given for monitoring vertical distributions of O3, H2O, and NH3 using a ground-, aircraft-, or shuttle-based pulsed tunable CO2 laser DIAL system. Results indicate that maximum sensitivity at minimum laser energy per measurement requires multiple pulse operation with the energy per pulse selected so that the measured photon rate is approximately equal to the detector IF bandwidth. Measurement sensitivities can be maximized and interference effects minimized by fine adjustment of measurement frequencies using the tunability of high pressure lasers. The use of rare isotope lasers minimizes loss due to CO2 atmospheric absorption.

  13. Characteristics of the OPG System USIG Quasiphase-Matched Nonlinear Crystals for 1.6 μm CO2 Dial

    NASA Astrophysics Data System (ADS)

    Shibata, Yasukuni; Nagasawa, Chikao; Abo, Makoto

    2016-06-01

    We have developed a direct detection 1.6 μm differential absorption lidar (DIAL) technique to perform range-resolved measurements of vertical CO2 concentration profiles in the atmosphere. Our 1.6 μm DIAL system consists of the optical parametric generator (OPG) and amplifier (OPA) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz). The OPG system consists of a quasi-phase-matched (QPM) crystal and does not need a cavity. The output power of the OPA system is 6 mJ, the full width at half maximum (FWHM) of the spectrum is about 280 MHz and spectrum purity is 91.0 +- 0.2 ~ 0.5%. CO2 concentration error from fluctuation of the spectrum purity is 0.3% at 6 km altitude and 0.4 % at 10 km altitude.

  14. Embolic Doppler ultrasound signal detection via fractional Fourier transform.

    PubMed

    Gençer, Merve; Bilgin, Gökhan; Aydın, Nizamettin

    2013-01-01

    Computerized analysis of Doppler ultrasound signals can aid early detection of asymptomatic circulating emboli. For analysis, physicians use informative features extracted from Doppler ultrasound signals. Time -frequency analysis methods are useful tools to exploit the transient like signals such as Embolic signals. Detection of discriminative features would be the first step toward automated analysis of embolic Doppler ultrasound signals. The most problematic part of setting up emboli detection system is to differentiate embolic signals from confusing similar wave-like patterns such as Doppler speckle and artifacts caused by tissue movement, probe tapping, speaking etc. In this study, discrete version of fractional Fourier transform is presented as a solution in the detection of emboli in digitized Doppler ultrasound signals. An accurate set of parameters are extracted using short time Fourier transform and fractional Fourier transform and the results are compared to reveal detection quality. Experimental results prove the efficiency of fractional Fourier transform in which discriminative features becomes more evident.

  15. Rotational Doppler effect in x-ray photoionization

    SciTech Connect

    Sun Yuping; Wang Chuankui; Gel'mukhanov, Faris

    2010-11-15

    The energy of the photoelectron experiences a red or blue Doppler shift when the molecule recedes from the detector or approaches him. This results in a broadening of the photoelectron line due to the translational thermal motion. However, the molecules also have rotational degrees of freedom and we show that the translational Doppler effect has its rotational counterpart. This rotational Doppler effect leads to an additional broadening of the spectral line of the same magnitude as the Doppler broadening caused by translational thermal motion. The rotational Doppler broadening as well as the rotational recoil broadening is sensitive to the molecular orbital from which the photoelectron is ejected. This broadening should be taken into account in analysis of x-ray photoemission spectra of super-high resolution and it can be directly observed using x-ray pump-probe spectroscopy.

  16. One way Doppler extractor. Volume 1: Vernier technique

    NASA Technical Reports Server (NTRS)

    Blasco, R. W.; Klein, S.; Nossen, E. J.; Starner, E. R.; Yanosov, J. A.

    1974-01-01

    A feasibility analysis, trade-offs, and implementation for a One Way Doppler Extraction system are discussed. A Doppler error analysis shows that quantization error is a primary source of Doppler measurement error. Several competing extraction techniques are compared and a Vernier technique is developed which obtains high Doppler resolution with low speed logic. Parameter trade-offs and sensitivities for the Vernier technique are analyzed, leading to a hardware design configuration. A detailed design, operation, and performance evaluation of the resulting breadboard model is presented which verifies the theoretical performance predictions. Performance tests have verified that the breadboard is capable of extracting Doppler, on an S-band signal, to an accuracy of less than 0.02 Hertz for a one second averaging period. This corresponds to a range rate error of no more than 3 millimeters per second.

  17. Doppler-cancelled response to VLF gravitational waves

    NASA Technical Reports Server (NTRS)

    Caporali, A.

    1981-01-01

    The interaction of long periodic gravitational waves with a three link microwave system known as the Doppler Cancelling System is discussed. This system, which was developed for a gravitational redshift experiment, uses one-way and two-way Doppler informatin to construct the beat signal of two reference oscillators moving with respect to each other. The geometric optics approximation is used to derive the frequency shift produced on a light signal propagating in a gravitational wave space-time. The signature left on the Doppler-cancelled beat by burst and continuous gravitational waves is analyzed. A comparison is made between the response to gravitational waves of the Doppler Cancelling System and that of a Doppler tracking system which employs two-way, round-trip radio waves. A three-fold repetition of the gravitational wave form is found to be a common feature of the response functions of both systems. These two functions otherwise exhibit interesting differences.

  18. Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms - Part 2: Ozone DIAL uncertainty budget

    NASA Astrophysics Data System (ADS)

    Leblanc, Thierry; Sica, Robert J.; van Gijsel, Joanna A. E.; Godin-Beekmann, Sophie; Haefele, Alexander; Trickl, Thomas; Payen, Guillaume; Liberti, Gianluigi

    2016-08-01

    A standardized approach for the definition, propagation, and reporting of uncertainty in the ozone differential absorption lidar data products contributing to the Network for the Detection for Atmospheric Composition Change (NDACC) database is proposed. One essential aspect of the proposed approach is the propagation in parallel of all independent uncertainty components through the data processing chain before they are combined together to form the ozone combined standard uncertainty. The independent uncertainty components contributing to the overall budget include random noise associated with signal detection, uncertainty due to saturation correction, background noise extraction, the absorption cross sections of O3, NO2, SO2, and O2, the molecular extinction cross sections, and the number densities of the air, NO2, and SO2. The expression of the individual uncertainty components and their step-by-step propagation through the ozone differential absorption lidar (DIAL) processing chain are thoroughly estimated. All sources of uncertainty except detection noise imply correlated terms in the vertical dimension, which requires knowledge of the covariance matrix when the lidar signal is vertically filtered. In addition, the covariance terms must be taken into account if the same detection hardware is shared by the lidar receiver channels at the absorbed and non-absorbed wavelengths. The ozone uncertainty budget is presented as much as possible in a generic form (i.e., as a function of instrument performance and wavelength) so that all NDACC ozone DIAL investigators across the network can estimate, for their own instrument and in a straightforward manner, the expected impact of each reviewed uncertainty component. In addition, two actual examples of full uncertainty budget are provided, using nighttime measurements from the tropospheric ozone DIAL located at the Jet Propulsion Laboratory (JPL) Table Mountain Facility, California, and nighttime measurements from the JPL

  19. Huygens-Fresnel Wave-Optics Simulation of Atmosphere Optical Turbulence and Reflective Speckle in CO{sub 2} Differential Absorption Lidar (DIAL)

    SciTech Connect

    Nelson, D.H.; Petrin, R.R.; MacKerrow, E.P.; Schmitt, M.J.; Foy, B.R.; Koskelo, A.C.; McVey, B.D.; Quick, C.R.; Porch, W.M.; Tiee, J.J.; Fite, C.B.; Archuleta, F.A.; Whitehead, M.C.; Walters, D.L.

    1999-03-23

    The measurement sensitivity of CO{sub 2} differential absorption lidar (DIAL) can be affected by a number of different processes. We have previously developed a Huygens-Fresnel wave optics propagation code to simulate the effects of two of these process: effects caused by beam propagation through atmospheric optical turbulence and effects caused by reflective speckle. Atmospheric optical turbulence affects the beam distribution of energy and phase on target. These effects include beam spreading, beam wander and scintillation which can result in increased shot-to-shot signal noise. In addition, reflective speckle alone has been shown to have a major impact on the sensitivity of CO{sub 2} DIAL. However, in real DIAL systems it is a combination of these phenomena, the interaction of atmospheric optical turbulence and reflective speckle, that influences the results. In this work, we briefly review a description of our model including the limitations along with previous simulation s of individual effects. The performance of our modified code with respect to experimental measurements affected by atmospheric optical turbulence and reflective speckle is examined. The results of computer simulations are directly compared with lidar measurements and show good agreement. In addition, advanced studies have been performed to demonstrate the utility of our model in assessing the effects for different lidar geometries on RMS noise and correlation ''size'' in the receiver plane.

  20. Huygens-Fresnel wave-optics simulation of atmospheric optical turbulence and reflective speckle in CO{sub 2} differential absorption lidar (DIAL)

    SciTech Connect

    Nelson, D.; Petrin, R.; MacKerrow, E.; Schmitt, M.; Foy, B.; Koskelo, A.; McVey, B.; Quick, C.; Porch, W.; Fite, C.; Archuleta, F.; Whitehead, M.; Tiee, J.; Walters, D.

    1999-04-01

    The measurement sensitivity of CO{sub 2} differential absorption lidar (DIAL) can be affected by a number of different processes. The authors have previously developed a Huygens-Fresnel wave optics propagation code to simulate the effects of two of these processes: effects caused by beam propagation through atmospheric optical turbulence and effects caused by reflective speckle. Atmospheric optical turbulence affects the beam distribution of energy and phase on target. These effects include beam spreading, beam wander and scintillation which can result in increased shot-to-shot signal noise. In addition, reflective speckle alone has been shown to have a major impact on the sensitivity of CO{sub 2} DIAL. However, in real DIAL systems it is a combination of these phenomena, the interaction of atmospheric optical turbulence and reflective speckle, that influences the results. The performance of the modified code with respect to experimental measurements affected by atmospheric optical turbulence and reflective speckle is examined. The results of computer simulations are directly compared with lidar measurements. The limitations of the model are also discussed. In addition, studies have been performed to determine the importance of key parameters in the simulation. The results of these studies and their impact on the overall results will be presented.

  1. TIMED Doppler Interferometer: Overview and recent results

    NASA Astrophysics Data System (ADS)

    Killeen, T. L.; Wu, Q.; Solomon, S. C.; Ortland, D. A.; Skinner, W. R.; Niciejewski, R. J.; Gell, D. A.

    2006-10-01

    The Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite carries a limb-scanning Fabry-Perot interferometer designed to perform remote-sensing measurements of upper atmosphere winds and temperatures globally. This instrument is called the TIMED Doppler Interferometer, or TIDI. This paper provides an overview of the TIDI instrument design, on-orbit performance, operational modes, data processing and inversion procedures, and a summary of wind results to date. Daytime and nighttime neutral winds in the mesosphere and lower thermosphere/ionosphere (MLTI) are measured on TIDI using four individual scanning telescopes that collect light from various upper atmosphere airglow layers on both the cold and warm sides of the high-inclination TIMED spacecraft. The light is spectrally analyzed using an ultrastable plane etalon Fabry-Perot system with sufficient spectral resolution to determine the Doppler line characteristics of atomic and molecular emissions emanating from the MLTI. The light from all four telescopes and from an internal calibration field passes through the etalon and is combined on a single image plane detector using a Circle-to-Line Interferometer Optic (CLIO). The four geophysical fields provide orthogonal line-of-sight measurements to either side of the satellite's path and these are analyzed to produce altitude profiles of vector winds in the MLTI. The TIDI wind measurements presented here are from the molecular oxygen (0-0) band, covering the altitude region 85-105 km. The unique TIDI design allows for more extended local time coverage of wind structures than previous wind-measuring instruments from high-inclination satellites. The TIDI operational performance has been nominal except for two anomalies: (1) higher than expected background white light caused by a low-level light leak and (2) ice deposition on cold optical surfaces. Both anomalies are well understood and the instrumental modes and data analysis techniques have been

  2. Integrating stochastic time-dependent travel speed in solution methods for the dynamic dial-a-ride problem

    PubMed Central

    Schilde, M.; Doerner, K.F.; Hartl, R.F.

    2014-01-01

    In urban areas, logistic transportation operations often run into problems because travel speeds change, depending on the current traffic situation. If not accounted for, time-dependent and stochastic travel speeds frequently lead to missed time windows and thus poorer service. Especially in the case of passenger transportation, it often leads to excessive passenger ride times as well. Therefore, time-dependent and stochastic influences on travel speeds are relevant for finding feasible and reliable solutions. This study considers the effect of exploiting statistical information available about historical accidents, using stochastic solution approaches for the dynamic dial-a-ride problem (dynamic DARP). The authors propose two pairs of metaheuristic solution approaches, each consisting of a deterministic method (average time-dependent travel speeds for planning) and its corresponding stochastic version (exploiting stochastic information while planning). The results, using test instances with up to 762 requests based on a real-world road network, show that in certain conditions, exploiting stochastic information about travel speeds leads to significant improvements over deterministic approaches. PMID:25844013

  3. Analysis and design methodology for the development of optimized, direct-detection CO{sub 2} DIAL receivers

    SciTech Connect

    Cooke, B.J.; Laubscher, B.E.; Cafferty, M.

    1996-12-31

    The analysis methodology and corresponding analytical tools for the design of optimized, low-noise, hard target return CO{sub 2} Differential Absorption Lidar (DIAL) receiver systems implementing both single element detectors and multi-pixel imaging arrays for passive/active, remote-sensing applications are presented. System parameters and components composing the receiver include: aperture, focal length, field of view, cold shield requirements, image plane dimensions, pixel dimensions, pixel pitch and fill factor, detection quantum efficiency, optical filter requirements, amplifier and temporal sampling parameters. The performance analysis is accomplished by calculating the system`s CO{sub 2} laser range response, total noise, optical geometric form factor and optical resolution. The noise components include speckle, photon noise due to signal, scene and atmospheric background, cold shield, and electronic noise. System resolution is simulated through cascaded optical transfer functions and includes effects due to atmosphere, optics, image sampling, and system motion. Experimental results of a developmental single-element detector receiver designed to detect 100 ns wide laser pulses (10 - 100 kHz pulse repetition rates) backscattered from hard-targets at nominal ranges of 10 km are presented. The receiver sensitivity is near-background noise limited, given an 8.5-11.5 {mu}m radiant optical bandwidth, with the total noise floor spectrally white for maximum pulse averaging efficiency.

  4. Analysis of ovarian dose of women employed in the radium watch dial industry: A macrodosimetric and microdosimetric approach

    SciTech Connect

    Roeske, J.C.; Stinchcomb, T.G.; Schieve, L.; Keane, A.

    1999-01-01

    In the 1920s, painters in the radium watch dial industry frequently tipped their brushes with their tongues resulting in the ingestion of radium-226 and/or radium-228. Earlier dosimetric studies (1950--1990) attempted to correlate the magnitude of biological effects (e.g., increased cancer incidence) with variations in radium uptake. Recently, there is a renewed interest on the part of epidemiologists studying additional possible effects (e.g., low birthrate and sex ratio). The goal of this work is to review and update the determination of dose to the ovaries from both external and internal radiation hazards in an attempt to correlate ovarian dose with these additional possible effects. The dose to the ovaries can be attributed to four major sources: (1) external gamma irradiation from the containers of radium paint; (2) alpha and (3) beta particle emissions due to sources which decay within the ovaries; and (4) internal gamma irradiation released throughout the body. Data obtained in earlier dosimetric studies on the quantity of Ra-226 and/or Ra-228 ingested were used in this study. Dose is estimated on a macroscopic scale by calculating the average dose deposited within the entire ovary. In addition, a microdosimetric analysis is performed which considers the statistical variation of energy deposited within individual oocyte nuclei. Sources of uncertainty, and the use of these data in new epidemiological studies are discussed.

  5. Spatio-Temporal Variability of Water Vapor in the Free Troposphere Investigated by Dial and Ftir Vertical Soundings

    NASA Astrophysics Data System (ADS)

    Vogelmann, H.; Sussmann, R.; Trickl, T.; Reichert, A.

    2016-06-01

    We report on the free tropospheric spatio-temporal variability of water vapor investigated by the analysis of a five-year period of water vapor vertical soundings above Mt. Zugspitze (2962 m a.s.l., Germany). Our results are obtained from a combination of measurements of vertically integrated water vapor (IWV), recorded with a solar Fourier Transform InfraRed (FTIR) spectrometer and of water vapor profiles recorded with the nearby differential absorption lidar (DIAL). The special geometrical arrangement of one zenith-viewing and one sun-pointing instrument and the temporal resolution of both optical instruments allow for an investigation of the spatio-temporal variability of IWV on a spatial scale of less than one kilometer and on a time scale of less than one hour. We investigated the short-term variability of both IWV and water vapor profiles from statistical analyses. The latter was also examined by case studies with a clear assignment to certain atmospheric processes as local convection or long-range transport. This study is described in great detail in our recent publication [1].

  6. The superiority of combined continuous wave Doppler examination over periorbital Doppler for the detection of extracranial carotid disease.

    PubMed Central

    Trockel, U; Hennerici, M; Aulich, A; Sandmann, W

    1984-01-01

    Non-invasive examination of 431 vessels in 333 patients with cerebrovascular disease in all stages was performed in order to compare the reliability of the periorbital Doppler test alone and together with the more difficult insonation of the carotid arteries in the neck (combined Doppler). These findings were compared with those of subsequent arteriography. Extracranial obstructive (greater than 50%) carotid disease was detected with 100% sensitivity by the combined Doppler, but with only 48% sensitivity by the periorbital indirect test. The specific ability of both methods to identify non-stenotic carotid arteries (less than 50%) was similar at about 98%. Only the combined Doppler examination reliably differentiated various degrees of obstruction, comparable to that obtained with arteriography. Non-obstructive plaques could not be detected or excluded by either Doppler test. More refined methods will be necessary for their evaluation. Images PMID:6693913

  7. Phase Doppler Anemometry as an Ejecta Diagnostic

    NASA Astrophysics Data System (ADS)

    Bell, David; Chapman, David

    2015-06-01

    When a shock wave is incident on a free surface, micron sized pieces of the material can be ejected from the surface. Phase Doppler Anemometry (PDA) is being developed to simultaneously measure the size and velocity of the individual shock induced ejecta particles. The measurements will provide an insight into ejecta phenomena. The results from experiments performed on the 13 mm bore light gas gun at the Institute of Shock Physics, Imperial College London are presented. Specially grooved tin targets were shocked at pressures of up to 14 GPa, below the melt on release pressure, to generate ejecta particles. The experiments are the first time that PDA has been successfully fielded on dynamic ejecta experiments. The results and the current state of the art of the technique are discussed along with the future improvements required to further improve performance and increase usability.

  8. DC coupled Doppler radar physiological monitor.

    PubMed

    Zhao, Xi; Song, Chenyan; Lubecke, Victor; Boric-Lubecke, Olga

    2011-01-01

    One of the challenges in Doppler radar systems for physiological monitoring is a large DC offset in baseband outputs. Typically, AC coupling is used to eliminate this DC offset. Since the physiological signals of interest include frequency content near DC, it is not desirable to simply use AC coupling on the radar outputs. While AC coupling effectively removes DC offset, it also introduces a large time delay and distortion. This paper presents the first DC coupled IQ demodulator printed circuit board (PCB) design and measurements. The DC coupling is achieved by using a mixer with high LO to RF port isolation, resulting in a very low radar DC offset on the order of mV. The DC coupled signals from the PCB radar system were successfully detected with significant LNA gain without saturation. Compared to the AC coupled results, the DC coupled results show great advantages of less signal distortion and more accurate rate estimation.

  9. Signal Processing Schemes for Doppler Global Velocimetry

    NASA Technical Reports Server (NTRS)

    Meyers, James F.; Lee, Joseph W.; Cavone, Angelo A.

    1991-01-01

    Two schemes for processing signals obtained from the Doppler global velocimeter are described. The analog approach is a simple, real time method for obtaining an RS-170 video signal containing the normalized intensity image. Pseudo colors are added using a monochromatic frame grabber producing a standard NTSC video signal that can be monitored and/or recorded. The digital approach is more complicated, but maintains the full resolution of the acquisition cameras with the capabilities to correct the signal image for pixel sensitivity variations and to remove of background light. Prototype circuits for each scheme are described and example results from the investigation of the vortical flow field above a 75-degree delta wing presented.

  10. Widefield laser doppler velocimeter: development and theory.

    SciTech Connect

    Hansche, Bruce David; Reu, Phillip L.; Massad, Jordan Elias

    2007-03-01

    The widefield laser Doppler velocimeter is a new measurement technique that significantly expands the functionality of a traditional scanning system. This new technique allows full-field velocity measurements without scanning, a drawback of traditional measurement techniques. This is particularly important for tests in which the sample is destroyed or the motion of the sample is non-repetitive. The goal of creating ''velocity movies'' was accomplished during the research, and this report describes the current functionality and operation of the system. The mathematical underpinnings and system setup are thoroughly described. Two prototype experiments are then presented to show the practical use of the current system. Details of the corresponding hardware used to collect the data and the associated software to analyze the data are presented.

  11. DC coupled Doppler radar physiological monitor.

    PubMed

    Zhao, Xi; Song, Chenyan; Lubecke, Victor; Boric-Lubecke, Olga

    2011-01-01

    One of the challenges in Doppler radar systems for physiological monitoring is a large DC offset in baseband outputs. Typically, AC coupling is used to eliminate this DC offset. Since the physiological signals of interest include frequency content near DC, it is not desirable to simply use AC coupling on the radar outputs. While AC coupling effectively removes DC offset, it also introduces a large time delay and distortion. This paper presents the first DC coupled IQ demodulator printed circuit board (PCB) design and measurements. The DC coupling is achieved by using a mixer with high LO to RF port isolation, resulting in a very low radar DC offset on the order of mV. The DC coupled signals from the PCB radar system were successfully detected with significant LNA gain without saturation. Compared to the AC coupled results, the DC coupled results show great advantages of less signal distortion and more accurate rate estimation. PMID:22254704

  12. Role of transcranial Doppler in cerebrovascular disease.

    PubMed

    Kulkarni, Amit A; Sharma, Vijay K

    2016-01-01

    Transcranial Doppler (TCD) is the only noninvasive modality for the assessment of real-time cerebral blood flow. It complements various anatomic imaging modalities by providing physiological-flow related information. It is relatively cheap, easily available, and can be performed at the bedside. It has been suggested as an essential component of a comprehensive stroke centre. In addition to its importance in acute cerebrovascular ischemia, its role is expanding in the evaluation of cerebral hemodynamics in various disorders of the brain. The "established" clinical indications for the use of TCD include cerebral ischemia, sickle cell disease, detection of right-to-left shunts, subarachnoid hemorrhage, periprocedural or surgical monitoring, and brain death. We present the role of TCD in acute cerebrovascular ischemia, sonothrombolysis, and intracranial stenosis. PMID:27625245

  13. Laser Doppler systems in atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Murty, S. S. R.

    1976-01-01

    The loss of heterodyne signal power for the Marshall Space Flight Center laser Doppler system due to the random changes in the atmospheric index of refraction is investigated. The current status in the physics of low energy laser propagation through turbulent atmosphere is presented. The analysis and approximate evaluation of the loss of the heterodyne signal power due to the atmospheric absorption, scattering, and turbulence are estimated for the conditions of the January 1973 flight tests. Theoretical and experimental signal to noise values are compared. Maximum and minimum values of the atmospheric attenuation over a two way path of 20 km range are calculated as a function of altitude using models of atmosphere, aerosol concentration, and turbulence.

  14. Doppler interpretation of quasar red shifts.

    PubMed

    Zapolsky, H S

    1966-08-01

    The hypothesis that the quasistellar sources (quasars) are local objects moving with velocities close to the speed of light is examined. Provided there is no observational cutoff on apparent bolometric magnitude for the quasars, the transverse Doppler effect leads to the expectation of fewer blue shifts than red shifts for an isotropic distribution of velocities. Such a distribution also yields a function N(z), the number of objects with red shift less than z which is not inconsistent with the present data. On the basis of two extreme assumptions concerning the origin of such rapidly moving sources, we computed curves of red shift plotted against magnitude. In particular, the curve obtained on the assumption that the quasars originated from an explosion in or nearby our own galaxy is in as good agreement with the observations as the curve of cosmological red shift plotted against magnitude.

  15. Microscale Heat Conduction Models and Doppler Feedback

    SciTech Connect

    Hawari, Ayman I.; Ougouag, Abderrafi

    2015-01-22

    The objective of this project is to establish an approach for providing the fundamental input that is needed to estimate the magnitude and time-dependence of the Doppler feedback mechanism in Very High Temperature reactors. This mechanism is the foremost contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic (TRISO) coated particles. Therefore, its correct prediction is essential to the conduct of safety analyses for these reactors. Since the effect is directly dependent on the actual temperature reached by the fuel during transients, the underlying phenomena of heat deposition, heat transfer and temperature rise must be correctly predicted. To achieve the above objective, this project will explore an approach that accounts for lattice effects as well as local temperature variations and the correct definition of temperature and related local effects.

  16. Color Doppler imaging of retinal diseases.

    PubMed

    Dimitrova, Galina; Kato, Satoshi

    2010-01-01

    Color Doppler imaging (CDI) is a widely used method for evaluating ocular circulation that has been used in a number of studies on retinal diseases. CDI assesses blood velocity parameters by using ultrasound waves. In ophthalmology, these assessments are mainly performed on the retrobulbar blood vessels: the ophthalmic, the central retinal, and the short posterior ciliary arteries. In this review, we discuss CDI use for the assessment of retinal diseases classified into the following: vascular diseases, degenerations, dystrophies, and detachment. The retinal vascular diseases that have been investigated by CDI include diabetic retinopathy, retinal vein occlusions, retinal artery occlusions, ocular ischemic conditions, and retinopathy of prematurity. Degenerations and dystrophies included in this review are age-related macular degeneration, myopia, and retinitis pigmentosa. CDI has been used for the differential diagnosis of retinal detachment, as well as the evaluation of retrobulbar circulation in this condition. CDI is valuable for research and is a potentially useful diagnostic tool in the clinical setting.

  17. Hands-Free Transcranial Color Doppler Probe

    NASA Technical Reports Server (NTRS)

    Chin, Robert; Madala, Srihdar; Sattler, Graham

    2012-01-01

    Current transcranial color Doppler (TCD) transducer probes are bulky and difficult to move in tiny increments to search and optimize TCD signals. This invention provides miniature motions of a TCD transducer probe to optimize TCD signals. The mechanical probe uses spherical bearing in guiding and locating the tilting crystal face. The lateral motion of the crystal face as it tilts across the full range of motion was achieved by minimizing the distance between the pivot location and the crystal face. The smallest commonly available metal spherical bearing was used with an outer diameter of 12 mm, a 3-mm tall retaining ring, and 5-mm overall height. Small geared motors were used that would provide sufficient power in a very compact package. After confirming the validity of the basic positioning concept, optimization design loops were completed to yield the final design.

  18. Laser Doppler vibrometer employing active frequency feedback.

    PubMed

    Chijioke, Akobuije; Lawall, John

    2008-09-20

    We present a heterodyne Michelson interferometer for vibration measurement in which feedback is used to obviate the need to unwrap phase data. The Doppler shift of a vibrating target mirror is sensed interferometrically and compensated by means of a voltage-controlled oscillator driving an acousto-optic modulator. For frequencies within the servo bandwidth, the oscillator control voltage provides a direct measurement of the target velocity. Outside the servo bandwidth, phase-sensitive detection is used to evaluate high-frequency displacements. This approach is of great interest for the frequently-occurring situation where vibration amplitudes at low frequency exceed an optical wavelength, but knowledge of the vibration spectrum at high frequency is important as well.

  19. Laser Doppler vibrometer employing active frequency feedback

    SciTech Connect

    Chijioke, Akobuije; Lawall, John

    2008-09-20

    We present a heterodyne Michelson interferometer for vibration measurement in which feedback is used to obviate the need to unwrap phase data. The Doppler shift of a vibrating target mirror is sensed interferometrically and compensated by means of a voltage-controlled oscillator driving an acousto-optic modulator. For frequencies within the servo bandwidth, the oscillator control voltage provides a direct measurement of the target velocity. Outside the servo bandwidth, phase-sensitive detection is used to evaluate high-frequency displacements. This approach is of great interest for the frequently-occurring situation where vibration amplitudes at low frequency exceed an optical wavelength, but knowledge of the vibration spectrum at high frequency is important as well.

  20. Spacecraft Doppler tracking with a VLBI antenna

    NASA Technical Reports Server (NTRS)

    Comoretto, G.; Iess, L.; Bertotti, B.; Brenkle, J. P.; Horton, T.

    1990-01-01

    Preliminary results are reported from Doppler-shift measurements to the Voyager-2 spacecraft at a distance of 26 AU, obtained using the 32-m VLBI antenna at Medicina (Italy) during July and August 1988. The apparatus comprises the el-az antenna, an S-X-band receiver, a hydrogen maser to generate the reference signal, a Mark III VLBI terminal, and a digital tone extractor capable of isolating a tone of known frequency from a noisy signal and giving its phase and amplitude. A signal transmitted in S-band from the NASA Deep Space Network (DSN) station in Australia and retransmitted coherently in X-band by Voyager, was received 7 h 6 min later at Medicina and at the DSN station in Madrid. Sample data are presented graphically and shown to be of generally high quality; further in-depth analysis is under way.

  1. Planar Particle Imaging Doppler Velocimetry Developed

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    2000-01-01

    Two current techniques exist for the measurement of planar, three-component velocity fields. Both techniques require multiple views of the illumination plane in order to extract all three velocity components. Particle image velocimetry (PIV) is a high-resolution, high accuracy, planar velocimetry technique that provides valuable instantaneous velocity information in aeropropulsion test facilities. PIV can provide three-component flow-field measurements using a two-camera, stereo viewing configuration. Doppler global velocimetry (DGV) is another planar velocimetry technique that can provide three component flow-field measurements; however, it requires three detector systems that must be located at oblique angles from the measurement plane. The three-dimensional configurations of either technique require multiple (DGV) or at least large (stereo PIV) optical access ports in the facility in which the measurements are being conducted. Optical access is extremely limited in aeropropulsion test facilities. In many cases, only one optical access port is available. A hybrid measurement technique has been developed at the NASA Glenn Research Center, planar particle image and Doppler velocimetry (PPIDV), which combines elements from both the PIV and DGV techniques into a single detection system that can measure all three components of velocity across a planar region of a flow field through a single optical access port. In the standard PIV technique, a pulsed laser is used to illuminate the flow field at two closely spaced instances in time, which are recorded on a "frame-straddling" camera, yielding a pair of single-exposure image frames. The PIV camera is oriented perpendicular to the light sheet, and the processed PIV data yield the two-component velocity field in the plane of the light sheet. In the standard DGV technique, an injection-seeded Nd:YAG pulsed laser light sheet illuminates the seeded flow field, and three receiver systems are used to measure three components

  2. Wind Field Measurements With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1999-01-01

    In collaboration with lidar atmospheric remote sensing groups at NASA Marshall Space Flight Center and National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, we have developed and flown the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) lidar on the NASA DC-8 research aircraft. The scientific motivations for this effort are: to obtain measurements of subgrid scale (i.e. 2-200 km) processes and features which may be used to improve parameterizations in global/regional-scale models; to improve understanding and predictive capabilities on the mesoscale; and to assess the performance of Earth-orbiting Doppler lidar for global tropospheric wind measurements. MACAWS is a scanning Doppler lidar using a pulsed transmitter and coherent detection; the use of the scanner allows 3-D wind fields to be produced from the data. The instrument can also be radiometrically calibrated and used to study aerosol, cloud, and surface scattering characteristics at the lidar wavelength in the thermal infrared. MACAWS was used to study surface winds off the California coast near Point Arena, with an example depicted in the figure below. The northerly flow here is due to the Pacific subtropical high. The coastal topography interacts with the northerly flow in the marine inversion layer, and when the flow passes a cape or point that juts into the winds, structures called "hydraulic expansion fans" are observed. These are marked by strong variation along the vertical and cross-shore directions. The plots below show three horizontal slices at different heights above sea level (ASL). Bottom plots are enlargements of the area marked by dotted boxes above. The terrain contours are in 200-m increments, with the white spots being above 600-m elevation. Additional information is contained in the original.

  3. Application of wavelet analysis in laser Doppler vibration signal denoising

    NASA Astrophysics Data System (ADS)

    Lan, Yu-fei; Xue, Hui-feng; Li, Xin-liang; Liu, Dan

    2010-10-01

    Large number of experiments show that, due to external disturbances, the measured surface is too rough and other factors make use of laser Doppler technique to detect the vibration signal contained complex information, low SNR, resulting in Doppler frequency shift signals unmeasured, can not be demodulated Doppler phase and so on. This paper first analyzes the laser Doppler signal model and feature in the vibration test, and studies the most commonly used three ways of wavelet denoising techniques: the modulus maxima wavelet denoising method, the spatial correlation denoising method and wavelet threshold denoising method. Here we experiment with the vibration signals and achieve three ways by MATLAB simulation. Processing results show that the wavelet modulus maxima denoising method at low laser Doppler vibration SNR, has an advantage for the signal which mixed with white noise and contained more singularities; the spatial correlation denoising method is more suitable for denoising the laser Doppler vibration signal which noise level is not very high, and has a better edge reconstruction capacity; wavelet threshold denoising method has a wide range of adaptability, computational efficiency, and good denoising effect. Specifically, in the wavelet threshold denoising method, we estimate the original noise variance by spatial correlation method, using an adaptive threshold denoising method, and make some certain amendments in practice. Test can be shown that, compared with conventional threshold denoising, this method is more effective to extract the feature of laser Doppler vibration signal.

  4. Clutter reduction using Doppler sonar in a harbor environment.

    PubMed

    Yang, T C; Schindall, J; Huang, Chen-Fen; Liu, Jin-Yuan

    2012-11-01

    A high frequency experiment was conducted in the Woods Hole Harbor in Massachusetts to evaluate the effectiveness of Doppler sonar for discriminating targets from reverberation. Using a pulsed linear frequency modulated signal, one finds that the matched filtered outputs are filled with high-level discrete backscattered returns, referred to as clutter, which are often confused with the target echo. The high level non-target returns have an amplitude distribution that is heavy-tailed. Using a Doppler-sensitive binary-phase-shift-keying signal coded with an m-sequence, the target echo and clutter can be separated by Doppler and delay, and tracked using the Doppler spectrogram (Dopplergram). The Doppler filtered time series show a background reverberation with a Rayleigh-like amplitude distribution, with an improved signal-to-(peak) reverberation ratio compared with that without Doppler filtering. The reduced reverberation level with Doppler processing decreases the probability of false alarm (Pfa) for a given threshold level. Conversely, for a given Pfa, the higher signal-to-(peak) reverberation ratio implies a higher probability of detection. Transmission loss measurement was conducted to estimate some of the system parameters, e.g., the source level and target strength relative to the noise level.

  5. Clinical Applications of Doppler OCT and OCT Angiography

    NASA Astrophysics Data System (ADS)

    Tan, Ou; Jia, Yali; Wei, Eric; Huang, David

    Doppler optical coherence tomography (OCT) is a functional extension of OCT that allows for the visualization and measurement of blood flow [1, 2]. Phase-resolved Doppler OCT has become a standard algorithm for measuring Doppler shift with Fourier-domain (FD)-OCT because of its high velocity sensitivity [3]. In ophthalmology, several methods have been developed to measure in vivo retinal blood flow using this algorithm. Since Doppler OCT measures only the velocity component parallel to the OCT probe beam, additional information is needed to calculate absolute velocity and volumetric flow rate. One method is to employ two OCT beams with a fixed offset in incidence angles [4, 5]. However, this approach requires special hardware and is not compatible with commercial single-beam OCT systems. Another approach is to use special scan patterns to measure the Doppler angle (angle between the OCT beam and the blood vessel). Some groups used concentric scan patterns [6, 7], while other groups used raster scan patterns [8, 9]. Finally, Srinivasan et al. developed en face Doppler OCT for cerebral blood flow calculation, which obviated the need for Doppler angle estimation [10]. Bauman et al. adapted the method for total retinal blood flow (TRBF) calculation with ultrafast swept-source OCT [11]. In this chapter, we focus our attention on the double-circular scan pattern developed in our research group, which has been used in a number of clinical studies for preliminary demonstration of utility.

  6. Limits on Planetary Companions from Doppler Surveys of Nearby Stars

    NASA Astrophysics Data System (ADS)

    Howard, Andrew W.; Fulton, Benjamin J.

    2016-11-01

    Most of our knowledge of planets orbiting nearby stars comes from Doppler surveys. For spaced-based, high-contrast imaging missions, nearby stars with Doppler-discovered planets are attractive targets. The known orbits tell imaging missions where and when to observe, and the dynamically determined masses provide important constraints for the interpretation of planetary spectra. Quantifying the set of planet masses and orbits that could have been detected will enable more efficient planet discovery and characterization. We analyzed Doppler measurements from Lick and Keck Observatories by the California Planet Survey. We focused on stars that are likely targets for three space-based planet imaging mission concepts studied by NASA—WFIRST-AFTA, Exo-C, and Exo-S. The Doppler targets are primarily F8 and later main sequence stars, with observations spanning 1987-2014. We identified 76 stars with Doppler measurements from the prospective mission target lists. We developed an automated planet search and a methodology to estimate the pipeline completeness using injection and recovery tests. We applied this machinery to the Doppler data and computed planet detection limits for each star as a function of planet minimum mass and semimajor axis. For typical stars in the survey, we are sensitive to approximately Saturn-mass planets inside of 1 au, Jupiter-mass planets inside of ˜3 au, and our sensitivity declines out to ˜10 au. For the best Doppler targets, we are sensitive to Neptune-mass planets in 3 au orbits. Using an idealized model of Doppler survey completeness, we forecast the precision of future surveys of non-ideal Doppler targets that are likely targets of imaging missions. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time has been granted by NASA, the University of California, and the University of Hawaii.

  7. Laser Doppler imaging: usefulness in chronic pain medicine.

    PubMed

    Grothusen, John R; Schwartzman, Robert J

    2011-01-01

    Sympathetic nervous system dysfunction is thought to be a factor in neuropathic pain conditions such as Complex Regional Pain Syndrome and in vascular conditions such as Raynaud's phenomenon. Laser Doppler fluxmetry has been used as a fast non-invasive method to quantify changes in skin capillary blood flow which reflect activation of sympathetically mediated vasoconstriction of the arterioles that supply the capillaries. Studies of dynamic change of skin capillary blood flow with sympathetic activation such as cold or inspiratory gasp have generally used single point laser Doppler systems where the probe is in contact with the skin. The results are a single line tracing representing the capillary flow at a single point on the skin a few millimeters in diameter. Laser Doppler imaging (moorLDI laser Doppler imager, Moor Instruments Ltd.) allows for non-contact recording of skin blood flow of an area as large as 50 centimeters square with a resolution of 256 by 256 pixels and 4 milliseconds per pixel. Most work with laser Doppler imaging has studied changes that occur between successive scans. We have found it useful to look at changes that occur during a scan. In this way we obtain data that is comparable to the time resolution of single point laser Doppler methods, but with the larger spatial information that is available with laser Doppler imaging. We present a small series of case reports in which inspiratory gasp during laser Doppler imaging was able to provide quick, useful and unequivocal clinical information regarding the status of regional bilateral skin capillary response to sympathetic activation. This may be useful for distinguishing sympathetically mediated from sympathetically independent pain. We believe the methods described may provide the basis for future quantitative studies similar to those that use single point laser Doppler methods.

  8. [Feasibility study of the Doppler exploration of the renal artery].

    PubMed

    Milon, P; Clavier, E; Genevois, A; Benozio, M

    1990-03-01

    Using arteriography as a reference, the authors investigate the feasibility of pulsed doppler exploration of the normal or pathological renal arteries in 46 successive patients. The poor sensitivity of pulsed doppler, mainly due to the considerable anatomical variations of the renal pedicle, does not currently allow using this technique for the detection of renal arterial stenosis. When combined with angiography, pulsed doppler becomes a definite asset in therapeutic radiology to help in the choice of a treatment and in follow-up. PMID:2191123

  9. Sub-Doppler laser cooling of potassium atoms

    SciTech Connect

    Landini, M.; Roy, S.; Carcagni, L.; Trypogeorgos, D.; Fattori, M.; Inguscio, M.; Modugno, G.

    2011-10-15

    We investigate the sub-Doppler laser cooling of bosonic potassium isotopes, whose small hyperfine splitting has so far prevented cooling below the Doppler temperature. We find instead that the combination of a dark optical molasses scheme that naturally arises in this kind of system and an adiabatic ramping of the laser parameters allows us to reach sub-Doppler temperatures for small laser detunings. We demonstrate temperatures as low as 25{+-}3 {mu}K and 47{+-}5 {mu}K in high-density samples of the two isotopes {sup 39}K and {sup 41}K, respectively. Our findings should find application to other atomic systems.

  10. Ultrasonic Doppler measurement of renal artery blood flow

    NASA Technical Reports Server (NTRS)

    Freund, W. R.; Beaver, W. L.; Meindl, J. D.

    1976-01-01

    Studies were made of (1) blood flow redistribution during lower body negative pressure (LBNP), (2) the profile of blood flow across the mitral annulus of the heart (both perpendicular and parallel to the commissures), (3) testing and evaluation of a number of pulsed Doppler systems, (4) acute calibration of perivascular Doppler transducers, (5) redesign of the mitral flow transducers to improve reliability and ease of construction, and (6) a frequency offset generator designed for use in distinguishing forward and reverse components of blood flow by producing frequencies above and below the offset frequency. Finally methodology was developed and initial results were obtained from a computer analysis of time-varying Doppler spectra.

  11. Advances in Direct Detection Doppler Lidar Technology and Techniques

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; Einaudi, Franco (Technical Monitor)

    2001-01-01

    In this paper we will describe the ground based Doppler lidar system which is mounted in a modified delivery van to allow field deployment and operations. The system includes an aerosol double edge receiver optimized for aerosol backscatter Doppler measurements at 1064 nm and a molecular double edge receiver which operates at 355 nm. The lidar system will be described including details of the injection seeded diode pumped laser transmitter and the piezoelectrically tunable high spectral resolution Fabry Perot etalon which is used to measure the Doppler shift. Examples of tropospheric wind profiles obtained with the system will also be presented to demonstrate its capabilities.

  12. Considerations pertinent to the Doppler effect for space reactors

    SciTech Connect

    Hwang, R.N.

    1987-01-01

    This paper describes various theoretical aspects pertinent to the estimation of the Doppler effect for space reactors. The distinct characteristics of space reactors give rise to various issues that are not present in the more thoroughly studied Doppler effect of fast breeder reactors. Key issues concerning the existing resonance data and computational models are extensively discussed. Calculations of the Doppler coefficient for a generic space reactor design having features of current designs have also been carried out to illustrate various aspects of practical importance.

  13. Interferometric millimeter wave and THz wave doppler radar

    SciTech Connect

    Liao, Shaolin; Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Elmer, Thomas

    2015-08-11

    A mixerless high frequency interferometric Doppler radar system and methods has been invented, numerically validated and experimentally tested. A continuous wave source, phase modulator (e.g., a continuously oscillating reference mirror) and intensity detector are utilized. The intensity detector measures the intensity of the combined reflected Doppler signal and the modulated reference beam. Rigorous mathematics formulas have been developed to extract bot amplitude and phase from the measured intensity signal. Software in Matlab has been developed and used to extract such amplitude and phase information from the experimental data. Both amplitude and phase are calculated and the Doppler frequency signature of the object is determined.

  14. Relativistic formulation for the Doppler-broadened line profile

    SciTech Connect

    Huang, Young-Sea; Chiue, Juang-Han; Huang, Yi-Chi; Hsiung, Te-Chih

    2010-07-15

    Profiles of spectral lines due to the thermal motion of light-emitting particles are formulated based on the classical and the relativistic Doppler effects, respectively. For the classical case, the well-known Doppler-broadened line profile is reproduced. For the relativistic case, the line profile obtained is asymmetrically broadened with increasing temperature. However, the peak frequency remains unshifted, in contrast to blueshifted, as has been predicted in the current literature. Reasoning is given as to why the relativistic Doppler-broadened line profile currently accepted is probably invalid.

  15. Rotational Doppler Effect and Barnett Field in Spinning NMR

    NASA Astrophysics Data System (ADS)

    Chudo, Hiroyuki; Harii, Kazuya; Matsuo, Mamoru; Ieda, Jun'ichi; Ono, Masao; Maekawa, Sadamichi; Saitoh, Eiji

    2015-04-01

    We report the observation of the rotational Doppler effect using nuclear magnetic resonance (NMR). We have developed a coil-spinning technique that enables measurements by rotating a detector and fixing a sample. We found that the rotational Doppler effect gives rise to NMR frequency shifts equal to the rotation frequency. We formulate the rotational Doppler effect and the Barnett field using a vector model for the nuclear magnetic moment. This formulation reveals that, with just the sample rotating, both effects cancel each other, thereby explaining the absence of an NMR frequency shift in conventional sample-spinning NMR measurements.

  16. An audit of a hospital-based Doppler ultrasound quality control protocol using a commercial string Doppler phantom.

    PubMed

    Cournane, S; Fagan, A J; Browne, J E

    2014-05-01

    Results from a four-year audit of a Doppler quality assurance (QA) program using a commercially available Doppler string phantom are presented. The suitability of the phantom was firstly determined and modifications were made to improve the reliability and quality of the measurements. QA of Doppler ultrasound equipment is very important as data obtained from these systems is used in patient management. It was found that if the braided-silk filament of the Doppler phantom was exchanged with an O-ring rubber filament and the velocity range below 50 cm/s was avoided for Doppler quality control (QC) measurements, then the maximum velocity accuracy (MVA) error and intrinsic spectral broadening (ISB) results obtained using this device had a repeatability of 18 ± 3.3% and 19 ± 3.5%, respectively. A consistent overestimation of the MVA of between 12% and 56% was found for each of the tested ultrasound systems. Of more concern was the variation of the overestimation within each respective transducer category: MVA errors of the linear, curvilinear and phased array probes were in the range 12.3-20.8%, 32.3-53.8% and 27-40.7%, respectively. There is a dearth of QA data for Doppler ultrasound; it would be beneficial if a multicentre longitudinal study was carried out using the same Doppler ultrasound test object to evaluate sensitivity to deterioration in performance measurements. PMID:24156827

  17. The Next Generation Airborne Polarimetric Doppler Radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.

    2013-04-01

    NCAR's Electra Doppler radar (ELDORA) with a dual-beam slotted waveguide array using dual-transmitter, dual-beam, rapid scan and step-chirped waveform significantly improved the spatial scale to 300m (Hildebrand et al. 1996). However, ELDORA X-band radar's penetration into precipitation is limited by attenuation and is not designed to collect polarimetric measurements to remotely estimate microphysics. ELDORA has been placed on dormancy because its airborne platform (P3 587) was retired in January 2013. The US research community has strongly voiced the need to continue measurement capability similar to the ELDORA. A critical weather research area is quantitative precipitation estimation/forecasting (QPE/QPF). In recent years, hurricane intensity change involving eye-eyewall interactions has drawn research attention (Montgomery et al., 2006; Bell and Montgomery, 2006). In the case of convective precipitation, two issues, namely, (1) when and where convection will be initiated, and (2) determining the organization and structure of ensuing convection, are key for QPF. Therefore collocated measurements of 3-D winds and precipitation microphysics are required for achieving significant skills in QPF and QPE. Multiple radars in dual-Doppler configuration with polarization capability estimate dynamical and microphysical characteristics of clouds and precipitation are mostly available over land. However, storms over complex terrain, the ocean and in forest regions are not observable by ground-based radars (Bluestein and Wakimoto, 2003). NCAR/EOL is investigating potential configurations for the next generation airborne radar that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. ELDORA's slotted waveguide array radar is not compatible for dual-polarization measurements. Therefore, the new design has to address both dual-polarization capability and platform requirements to replace the ELDORA system. NCAR maintains a C-130

  18. Multispecies transmitter for DIAL sensing of atmospheric water vapour, methane and carbon dioxide in the 2 μm region

    NASA Astrophysics Data System (ADS)

    Mammez, Dominique; Cadiou, Erwan; Dherbecourt, Jean-Baptiste; Raybaut, Myriam; Melkonian, Jean-Michel; Godard, Antoine; Gorju, Guillaume; Pelon, Jacques; Lefebvre, Michel

    2015-10-01

    Integrated-path differential absorption lidar (IPDIAL) is an attractive technique to monitor greenhouse gases from space. For that purpose, suitable absorption lines have been identified as good candidates around 2.05 μm for CO2, 2.29 μm for CH4, and 2.06 μm for H2O. In this context, we have developed a high energy transmitter around 2 μm based on frequency conversion in a nested cavity doubly resonant optical parametric oscillator (NesCOPO) followed by high energy parametric amplification. This master oscillator power amplifier (MOPA) architecture enables the generation of tunable single-frequency high energy nanosecond pulses (tens of mJ) suitable for atmospheric DIAL applications. Moreover, taking advantage of the wide spectral coverage capability of the NesCOPO, we demonstrate the potential for this single emitter to address the aforementioned spectral lines, without the use of additional seeding devices. The emitter provides energies up to 20 mJ for the signal waves in the vicinity of CO2 and H2O lines, and 16 mJ at 2290 nm for the CH4 line. By implementing a control loop based on a wavemeter frequency measurement, the signal fluctuations can be maintained below 1 MHz rms for 10 s averaging time. Finally, from optical heterodyne analysis of the beat note between our emitter and a stabilized laser diode, the optical parametric source linewidth was estimated to be better than 60 MHz (Full width at half maximum).

  19. A rapidly-tuned, short-pulse-length, high-repetition-rate CO{sub 2} laser for IR dial

    SciTech Connect

    Zaugg, T.; Thompson, D.; Leland, W.T.; Busch, G.

    1997-08-01

    Analysis of noise sources in Differential Absorption LIDAR (DIAL) in the infrared region of the spectrum indicates that the signal-to-noise ratio for direct detection can be improved if multiple-wavelength, short-pulse-length beams are transmitted and received at high repetition rates. Atmospheric effects can be minimized, albedo can be rapidly scanned, and uncorrelated speckle can be acquired at the maximum possible rate. A compact, rugged, RF-excited waveguide laser can produce 15 nanosecond pulses at a 100 kHz rate with sufficient energy per pulse to reach the speckle limit of the signal-to-noise ratio. A high-repetition-rate laser has been procured and will be used to verify these signal and noise scaling relationships at high repetition rates. Current line-tuning devices are mechanical and are capable of switching lines at a rate up to a few hundred Hertz. Acousto-optic modulators, deflectors or tunable filters can be substituted for these mechanical devices in the resonator of a CO{sub 2} laser and used to rapidly line-tune the laser across the 9 and 10 micron bands at a rate as high as 100 kHz. Several configurations for line tuning using acousto-optic and electro-optic devices with and without gratings are presented. The merits of and constraints on each design are also discussed. A pair of large aperture, acousto-optic deflectors has been purchased and the various line-tuning designs will be evaluated in a conventional, glass tube, CO{sub 2} laser, with a view to incorporation into the high-repetition-rate, waveguide laser. A computer model of the dynamics of an RF-excited, short-pulse-length, high-repetition-rate waveguide laser has been developed. The model will be used to test the consequences of various line-tuning designs.

  20. 975nm high-peak power ns-diode laser based MOPA system suitable for water vapor DIAL applications

    NASA Astrophysics Data System (ADS)

    Sumpf, Bernd; Klehr, Andreas; Vu, Thi Nghiem; Erbert, Götz; Tränkle, Günther

    2015-03-01

    Micro-DIAL (differential absorption LIDAR) systems require light sources with peak powers in the range of several 10 W together with a spectral line width smaller than the width of absorption lines under study. For water vapor at atmospheric pressure this width should be smaller than 10 pm at 975 nm. In this paper, an all semiconductor master oscillator power amplifier system at an emission wavelength of 975 nm will be presented. This spectral range was selected with respect to a targeted absorption path length of 5000 m and H2O line strengths. A distributed feedback (DFB) ridge waveguide diode laser operated in continuous wave is used as master oscillator whereas a tapered amplifier consisting of a RW section and a flared section is implemented as power amplifier. The RW section acts as optical gate. The current pulses injected into the RW part have a length of 8 ns and the tapered part is driven with 15 ns long pulses. The delay between the pulses is adjusted for optimal pulse shape. The repetition rate is in both cases 25 kHz. A maximal pulse output power of about 16 W limited by the available current supply is achieved. The spectral line width of the system determined by the properties of the DFB laser is smaller than 10 pm. The tuning range amounts 0.9 nm and a SMSR of 40 dB is observed. From the dependence of the peak power on the power injected into the tapered amplifier, the saturation power is determined to 5.3 mW.

  1. Stroboscopic Doppler tomography of FO AQR

    NASA Astrophysics Data System (ADS)

    Marsh, T. R.; Duck, S. R.

    1996-10-01

    FO Aqr is a close binary star in which a magnetic white dwarf accretes from a cool companion. Light curves and spectra show variations on the orbital frequency, the white dwarf's spin frequency and combinations of the two. It is not clear from observation or theory whether accretion in FO Aqr is mediated by stream, a disc or a combination of both. We have taken 938 spectra of FO Aqr with the 3.9 m AAT. The high signal-to-noise ratio of our spectra enable us to see variations in the lines directly without recourse to phase folding. HeII 4686 shows an 'S'-wave on the orbital period but on top of this sharp features run across from red-to-blue and blue-to-red, the direction reversing with orbital phase. We apply the method of Doppler tomography in an effort to understand these features. To cope with the variations that occur as the white dwarf rotates we compute Doppler images as a function of the orientation of the white dwarf relative to the binary system. The process is analogous to the use of a stroboscope in freezing the motion of rotating objects. In animated form a spot of emission is seen in the region of the gas stream and secondary star. The spot changes brightness and position as the white dwarf rotates. The movement in position is consistent with an azimuthally extended structure extending 120° around the white dwarf. It is this movement that corresponds to the sharp features which run across the 'S'-wave. We show that these features are the cause of variations in the ratio of blue to red-shifted emission that were formerly interpreted as signs of an eclipse in FO Aqr. There is no evidence for a disc in FO Aqr from our data. Models of the secondary star and gas stream go some way to explaining the variations in spot position and flux, but the observed structure appears more extended than the models can fit. We speculate that magnetospheric interaction may help solve this problem. Edward J.P. van den Heuvel

  2. Radiowave Phase Scintillation and Precision Doppler Tracking of Spacecraft

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.

    1997-01-01

    Phase scintillation cause by propagation through irregularities in the solar wind, ionosphere, and tropospher, introduces noise in spacecraft radio science experiments. The observations reported here are uses to refine the propagation noise model for Doppler tracking of deep space probes.

  3. Modifications and Moving Measurements of Mobile Doppler LIDAR

    NASA Astrophysics Data System (ADS)

    Liu, Bing-Yi; Liu, Zhi-Shen; Song, Xiao-Quan; Wu, Song-Hua; Bi, De-Cang; Wang, Xi-Tao; Yin, Qi-Wei; Reitebuch, Oliver

    2010-10-01

    In the last annual report of ID. 5291 LIDAR Cal/Val, a mobile Doppler lidar had been developed for 3D wind measurements by the Chinese partners from Ocean Remote Sensing Institute, Ocean University of China. In this year, in order to further improve the mobility of the mobile Doppler lidar for lidar calibration and validation, both GPS and inertial navigation system are integrated on the vehicle for performing measurements during movement. The modifications of the system and the results of the moving measurements are presented. This work simplifies the construction of the mobile Doppler system and makes the lidar more flexible for ground-based wind measurements and validation with the ADM-Aeolus spaceborne Doppler lidar.

  4. Laser Doppler technology applied to atmospheric environmental operating problems

    NASA Technical Reports Server (NTRS)

    Weaver, E. A.; Bilbro, J. W.; Dunkin, J. A.; Jeffreys, H. B.

    1976-01-01

    Carbon dioxide laser Doppler ground wind data were very favorably compared with data from standard anemometers. As a result of these measurements, two breadboard systems were developed for taking research data: a continuous wave velocimeter and a pulsed Doppler system. The scanning continuous wave laser Doppler velocimeter developed for detecting, tracking and measuring aircraft wake vortices was successfully tested at an airport where it located vortices to an accuracy of 3 meters at a range of 150 meters. The airborne pulsed laser Doppler system was developed to detect and measure clear air turbulence (CAT). This system was tested aboard an aircraft, but jet stream CAT was not encountered. However, low altitude turbulence in cumulus clouds near a mountain range was detected by the system and encountered by the aircraft at the predicted time.

  5. A digital multigate Doppler method for high frequency ultrasound.

    PubMed

    Qiu, Weibao; Ye, Zongying; Yu, Yanyan; Chen, Yan; Chi, Liyang; Mu, Peitian; Li, Guofeng; Wang, Congzhi; Xiao, Yang; Dai, Jiyan; Sun, Lei; Zheng, Hairong

    2014-01-01

    Noninvasive visualization of blood flow with high frequency Doppler ultrasound has been extensively used to assess the morphology and hemodynamics of the microcirculation. A completely digital implementation of multigate pulsed-wave (PW) Doppler method was proposed in this paper for high frequency ultrasound applications. Analog mixer was eliminated by a digital demodulator and the same data acquisition path was shared with traditional B-mode imaging which made the design compact and flexible. Hilbert transform based quadrature demodulation scheme was employed to achieve the multigate Doppler acquisition. A programmable high frequency ultrasound platform was also proposed to facilitate the multigate flow visualization. Experimental results showed good performance of the proposed method. Parabolic velocity gradient inside the vessel and velocity profile with different time slots were acquired to demonstrate the functionality of the multigate Doppler. Slow wall motion was also recorded by the proposed method.

  6. Ambiguity Of Doppler Centroid In Synthetic-Aperture Radar

    NASA Technical Reports Server (NTRS)

    Chang, Chi-Yung; Curlander, John C.

    1991-01-01

    Paper discusses performances of two algorithms for resolution of ambiguity in estimated Doppler centroid frequency of echoes in synthetic-aperture radar. One based on range-cross-correlation technique, other based on multiple-pulse-repetition-frequency technique.

  7. Characterization of pelvic organs by Doppler sonography waveform shape.

    PubMed

    Ronnie, Tepper; Yodfat, Shaharabany; Ron, Shiri; Hershkovitz, Reli

    2010-05-01

    The purpose was to describe blood flow waveform of pelvic organs obtained by Doppler according to their unique characteristics. A prospective study was designed and 79 premenopausal and postmenopausal women were screened. Transvaginal ultrasonography combined with color Doppler was performed. Arterial blood flow of the uterus, fallopian tubes and both ovarian center and periphery were assessed, by a unique computerized program exclusively developed for this research (MATLAB language). Waveform characterization was performed by calculating alpha and beta angles, representing upward curve of each waveform and angles of refraction gamma and delta. alpha to delta angles were found significantly different for each of the pelvic organs. Significant differences in the characteristics of Doppler waveforms were also observed between pre and postmenopausal women. Luteal and follicular phase blood flow waveforms were similar. These findings contribute to our ability to classify the origin of blood vessel by processing Doppler waveforms by a computerized method. PMID:20420968

  8. Coherent Doppler Lidar for Precision Navigation of Spacecrafts

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego; Petway, Larry; Hines, Glenn; Lockhard, George; Barnes, Bruce

    2011-01-01

    A fiber-based coherent Doppler lidar, utilizing an FMCW technique, has been developed and its capabilities demonstrated through two successful helicopter flight test campaigns. This Doppler lidar is expected to play a critical role in future planetary exploration missions because of its ability in providing the necessary data for soft landing on the planetary bodies and for landing missions requiring precision navigation to the designated location on the ground. Compared with radars, the Doppler lidar can provide significantly higher precision velocity and altitude data at a much higher rate without concerns for measurement ambiguity or target clutter. Future work calls for testing the Doppler lidar onboard a rocket-powered free-flyer platform operating in a closed-loop with the vehicle s guidance, navigation, and control (GN&C) unit.

  9. [Postpartal ovarian thrombophlebitis. Value of Doppler ultrasonograph y].

    PubMed

    Renaud-Giono, A; Giraud, J R; Poulain, P; Proudhon, J F; Grall, J Y; Moquet, P Y; Darnault, J P

    1996-01-01

    Thrombophlebitis of the ovarian vein is a well recognized but uncommon complication during the postpartum period. We report a small series and emphasize the contribution of color Doppler and the basic therapeutic measures.

  10. Doppler electron velocimetry : notes on creating a practical tool.

    SciTech Connect

    Reu, Phillip L.; Milster, Tom

    2008-11-01

    The Doppler electron velocimeter (DEV) has been shown to be theoretically possible. This report attempts to answer the next logical question: Is it a practical instrument? The answer hinges upon whether enough electrons are available to create a time-varying Doppler current to be measured by a detector with enough sensitivity and bandwidth. The answer to both of these questions is a qualified yes. A target Doppler frequency of 1 MHz was set as a minimum rate of interest. At this target a theoretical beam current signal-to-noise ratio of 25-to-1 is shown for existing electron holography equipment. A detector is also demonstrated with a bandwidth of 1-MHz at a current of 10 pA. Additionally, a Linnik-type interferometer that would increase the available beam current is shown that would offer a more flexible arrangement for Doppler electron measurements over the traditional biprism.

  11. Doing the Doppler. How to Drive This Concept Home.

    ERIC Educational Resources Information Center

    Koser, John F.

    1990-01-01

    An outdoor activity that demonstrates the Doppler effect is described. Class predictions are verified by actual involvement in collecting data. Presented is a method of analyzing data. Safety concerns are discussed. (KR)

  12. The Doppler Effect: A Consideration of Quasar Redshifts.

    ERIC Educational Resources Information Center

    Gordon, Kurtiss J.

    1980-01-01

    Provides information on the calculation of the redshift to blueshift ratio introduced by the transverse Doppler effect at relativistic speeds. Indicates that this shift should be mentioned in discussions of whether quasars are "local" rather than "cosmological" objects. (GS)

  13. Laser Doppler instrument measures fluid velocity without reference beam

    NASA Technical Reports Server (NTRS)

    Bourquin, K. R.; Shigemoto, F. H.

    1971-01-01

    Fluid velocity is measured by focusing laser beam on moving fluid and measuring Doppler shift in frequency which results when radiation is scattered by particles either originally present or deliberately injected into moving fluid.

  14. Doppler bubble detection and decompression sickness: a prospective clinical trial.

    PubMed

    Bayne, C G; Hunt, W S; Johanson, D C; Flynn, E T; Weathersby, P K

    1985-09-01

    Decompression sickness in human beings exposed to high ambient pressure is thought to follow from gas bubble formation and growth in the body during return to low pressure. Detection of Doppler-shifted ultrasonic reflections in major blood vessels has been promoted as a noninvasive and sensitive indicator of the imminence of decompression sickness. We have conducted a double-blind, prospective clinical trial of Doppler ultrasonic bubble detection in simulated diving using 83 men, of whom 8 were stricken and treated for the clinical disease. Diagnosis based only on the Doppler signals had no correlation with clinical diagnosis. Bubble scores were only slightly higher in the stricken group. The Doppler technique does not appear to be of diagnostic value in the absence of other clinical information.

  15. Exploratory Meeting on Airborne Doppler Lidar Wind Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Fichtel, G. H. (Editor); Kaufman, J. W. (Editor); Vaughan, W. W. (Editor)

    1980-01-01

    The scientific interests and applications of the Airborne Doppler Lidar Wind Velocity Measurement System to severe storms and local weather are discussed. The main areas include convective phenomena, local circulation, atmospheric boundary layer, atmospheric dispersion, and industrial aerodynamics.

  16. Quantitative Measurement of the Doppler Shift at an Ultrasonic Frequency

    ERIC Educational Resources Information Center

    Nerbun, R. C.; Leskovec, R. A.

    1976-01-01

    Discussed is a Doppler shift laboratory experiment for an introductory college physics course. Ultrasonic transducers and a digital phase detector circuit "black box" are used to overcome room noise and "standing waves" and to produce an observable frequency shift. (SL)

  17. Ultrasonic Doppler methods to extract signatures of a walking human.

    PubMed

    Mehmood, Asif; Sabatier, James M; Damarla, Thyagaraju

    2012-09-01

    Extraction of Doppler signatures that characterize human motion has attracted a growing interest in recent years. These Doppler signatures are generated by various components of the human body while walking, and contain unique features that can be used for human detection and recognition. Although, a significant amount of research has been done in radio frequency regime for human Doppler signature extraction, considerably less has been done in acoustics. In this work, 40 kHz ultrasonic sonar is employed to measure the Doppler signature generated by the motion of body segments using different electronic and signal processing schemes. These schemes are based on both analog and digital demodulation with homodyne and heterodyne receiver circuitry. The results and analyses from these different schemes are presented.

  18. Micro-Doppler processing for ultra-wideband radar data

    NASA Astrophysics Data System (ADS)

    Smith, Graeme E.; Ahmad, Fauzia; Amin, Moeness G.

    2012-06-01

    In this paper, we describe an operational pulse Doppler radar imaging system for indoor target localization and classification, and show how a target's micro-Doppler signature (μDS) can be processed when ultra-wideband (UWB) waveforms are employed. Unlike narrowband radars where time-frequency signal representations can be applied to reveal the target time-Doppler frequency signatures, the UWB system permits joint range-time-frequency representation (JRTFR). JRTFR outputs the data in a 3D domain representing range, frequency, and time, allowing both the μDS and high range resolution (HRR) signatures to be observed. We delineate the relationship between the μDS and the HRR signature, showing how they would form a complimentary joint feature for classification. We use real-data to demonstrate the effectiveness of the UWB pulse-Doppler radar, combined with nonstationary signal analyses, in gaining valuable insights into human positioning and motions.

  19. Ultrasonic Doppler methods to extract signatures of a walking human.

    PubMed

    Mehmood, Asif; Sabatier, James M; Damarla, Thyagaraju

    2012-09-01

    Extraction of Doppler signatures that characterize human motion has attracted a growing interest in recent years. These Doppler signatures are generated by various components of the human body while walking, and contain unique features that can be used for human detection and recognition. Although, a significant amount of research has been done in radio frequency regime for human Doppler signature extraction, considerably less has been done in acoustics. In this work, 40 kHz ultrasonic sonar is employed to measure the Doppler signature generated by the motion of body segments using different electronic and signal processing schemes. These schemes are based on both analog and digital demodulation with homodyne and heterodyne receiver circuitry. The results and analyses from these different schemes are presented. PMID:22979839

  20. Monitoring and Analysis of Respiratory Patterns Using Microwave Doppler Radar.

    PubMed

    Lee, Yee Siong; Pathirana, Pubudu N; Steinfort, Christopher Louis; Caelli, Terry

    2014-01-01

    Noncontact detection characteristic of Doppler radar provides an unobtrusive means of respiration detection and monitoring. This avoids additional preparations, such as physical sensor attachment or special clothing, which can be useful for certain healthcare applications. Furthermore, robustness of Doppler radar against environmental factors, such as light, ambient temperature, interference from other signals occupying the same bandwidth, fading effects, reduce environmental constraints and strengthens the possibility of employing Doppler radar in long-term respiration detection, and monitoring applications such as sleep studies. This paper presents an evaluation in the of use of microwave Doppler radar for capturing different dynamics of breathing patterns in addition to the respiration rate. Although finding the respiration rate is essential, identifying abnormal breathing patterns in real-time could be used to gain further insights into respiratory disorders and refine diagnostic procedures. Several known breathing disorders were professionally role played and captured in a real-time laboratory environment using a noncontact Doppler radar to evaluate the feasibility of this noncontact form of measurement in capturing breathing patterns under different conditions associated with certain breathing disorders. In addition to that, inhalation and exhalation flow patterns under different breathing scenarios were investigated to further support the feasibility of Doppler radar to accurately estimate the tidal volume. The results obtained for both experiments were compared with the gold standard measurement schemes, such as respiration belt and spirometry readings, yielding significant correlations with the Doppler radar-based information. In summary, Doppler radar is highlighted as an alternative approach not only for determining respiration rates, but also for identifying breathing patterns and tidal volumes as a preferred nonwearable alternative to the conventional

  1. Monitoring and Analysis of Respiratory Patterns Using Microwave Doppler Radar.

    PubMed

    Lee, Yee Siong; Pathirana, Pubudu N; Steinfort, Christopher Louis; Caelli, Terry

    2014-01-01

    Noncontact detection characteristic of Doppler radar provides an unobtrusive means of respiration detection and monitoring. This avoids additional preparations, such as physical sensor attachment or special clothing, which can be useful for certain healthcare applications. Furthermore, robustness of Doppler radar against environmental factors, such as light, ambient temperature, interference from other signals occupying the same bandwidth, fading effects, reduce environmental constraints and strengthens the possibility of employing Doppler radar in long-term respiration detection, and monitoring applications such as sleep studies. This paper presents an evaluation in the of use of microwave Doppler radar for capturing different dynamics of breathing patterns in addition to the respiration rate. Although finding the respiration rate is essential, identifying abnormal breathing patterns in real-time could be used to gain further insights into respiratory disorders and refine diagnostic procedures. Several known breathing disorders were professionally role played and captured in a real-time laboratory environment using a noncontact Doppler radar to evaluate the feasibility of this noncontact form of measurement in capturing breathing patterns under different conditions associated with certain breathing disorders. In addition to that, inhalation and exhalation flow patterns under different breathing scenarios were investigated to further support the feasibility of Doppler radar to accurately estimate the tidal volume. The results obtained for both experiments were compared with the gold standard measurement schemes, such as respiration belt and spirometry readings, yielding significant correlations with the Doppler radar-based information. In summary, Doppler radar is highlighted as an alternative approach not only for determining respiration rates, but also for identifying breathing patterns and tidal volumes as a preferred nonwearable alternative to the conventional

  2. Monitoring and Analysis of Respiratory Patterns Using Microwave Doppler Radar

    PubMed Central

    Pathirana, Pubudu N.; Steinfort, Christopher Louis; Caelli, Terry

    2014-01-01

    Noncontact detection characteristic of Doppler radar provides an unobtrusive means of respiration detection and monitoring. This avoids additional preparations, such as physical sensor attachment or special clothing, which can be useful for certain healthcare applications. Furthermore, robustness of Doppler radar against environmental factors, such as light, ambient temperature, interference from other signals occupying the same bandwidth, fading effects, reduce environmental constraints and strengthens the possibility of employing Doppler radar in long-term respiration detection, and monitoring applications such as sleep studies. This paper presents an evaluation in the of use of microwave Doppler radar for capturing different dynamics of breathing patterns in addition to the respiration rate. Although finding the respiration rate is essential, identifying abnormal breathing patterns in real-time could be used to gain further insights into respiratory disorders and refine diagnostic procedures. Several known breathing disorders were professionally role played and captured in a real-time laboratory environment using a noncontact Doppler radar to evaluate the feasibility of this noncontact form of measurement in capturing breathing patterns under different conditions associated with certain breathing disorders. In addition to that, inhalation and exhalation flow patterns under different breathing scenarios were investigated to further support the feasibility of Doppler radar to accurately estimate the tidal volume. The results obtained for both experiments were compared with the gold standard measurement schemes, such as respiration belt and spirometry readings, yielding significant correlations with the Doppler radar-based information. In summary, Doppler radar is highlighted as an alternative approach not only for determining respiration rates, but also for identifying breathing patterns and tidal volumes as a preferred nonwearable alternative to the conventional

  3. Using doppler radar images to estimate aircraft navigational heading error

    DOEpatents

    Doerry, Armin W.; Jordan, Jay D.; Kim, Theodore J.

    2012-07-03

    A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.

  4. Doppler velocity measurements from large and small arteries of mice

    PubMed Central

    Reddy, Anilkumar K.; Madala, Sridhar; Entman, Mark L.; Michael, Lloyd H.; Taffet, George E.

    2011-01-01

    With the growth of genetic engineering, mice have become increasingly common as models of human diseases, and this has stimulated the development of techniques to assess the murine cardiovascular system. Our group has developed nonimaging and dedicated Doppler techniques for measuring blood velocity in the large and small peripheral arteries of anesthetized mice. We translated technology originally designed for human vessels for use in smaller mouse vessels at higher heart rates by using higher ultrasonic frequencies, smaller transducers, and higher-speed signal processing. With these methods one can measure cardiac filling and ejection velocities, velocity pulse arrival times for determining pulse wave velocity, peripheral blood velocity and vessel wall motion waveforms, jet velocities for the calculation of the pressure drop across stenoses, and left main coronary velocity for the estimation of coronary flow reserve. These noninvasive methods are convenient and easy to apply, but care must be taken in interpreting measurements due to Doppler sample volume size and angle of incidence. Doppler methods have been used to characterize and evaluate numerous cardiovascular phenotypes in mice and have been particularly useful in evaluating the cardiac and vascular remodeling that occur following transverse aortic constriction. Although duplex ultrasonic echo-Doppler instruments are being applied to mice, dedicated Doppler systems are more suitable for some applications. The magnitudes and waveforms of blood velocities from both cardiac and peripheral sites are similar in mice and humans, such that much of what is learned using Doppler technology in mice may be translated back to humans. PMID:21572013

  5. Unsupervised dealiasing and denoising of color-Doppler data.

    PubMed

    Muth, Stéphan; Dort, Sarah; Sebag, Igal A; Blais, Marie-Josée; Garcia, Damien

    2011-08-01

    Color Doppler imaging (CDI) is the premiere modality to analyze blood flow in clinical practice. In the prospect of producing new CDI-based tools, we developed a fast unsupervised denoiser and dealiaser (DeAN) algorithm for color Doppler raw data. The proposed technique uses robust and automated image post-processing techniques that make the DeAN clinically compliant. The DeAN includes three consecutive advanced and hands-off numerical tools: (1) statistical region merging segmentation, (2) recursive dealiasing process, and (3) regularized robust smoothing. The performance of the DeAN was evaluated using Monte-Carlo simulations on mock Doppler data corrupted by aliasing and inhomogeneous noise. Fifty aliased Doppler images of the left ventricle acquired with a clinical ultrasound scanner were also analyzed. The analytical study demonstrated that color Doppler data can be reconstructed with high accuracy despite the presence of strong corruption. The normalized RMS error on the numerical data was less than 8% even with signal-to-noise ratio as low as 10dB. The algorithm also allowed us to recover highly reliable Doppler flows in clinical data. The DeAN is fast, accurate and not observer-dependent. Preliminary results showed that it is also directly applicable to 3-D data. This will offer the possibility of developing new tools to better decipher the blood flow dynamics in cardiovascular diseases.

  6. [The potential usefulness of transcranial Doppler sonography in cerebrovascular surgery].

    PubMed

    Moritake, K; Yonekawa, Y; Nagasawa, S; Kaneko, T; Handa, H

    1987-07-01

    In 30 patients undergoing neurosurgical intervention, the authors evaluated the hemodynamics in the circle of Willis by transcranial Doppler sonography. By avoiding confusion with collateral effects, the transcranial Doppler sonography yielded direct and more significant information concerning the intracranial hemodynamics than extracranial Doppler sonography. Therefore, it made possible to detect intracranial occlusive lesions with less false findings. It gave us more accurate information on the effectiveness of reconstructive vascular surgery. In two of five consecutive patients with a proven aneurysmal subarachnoid hemorrhage, sound-spectrogram specific to stenosis was detected from the basal cerebral arteries which accompanied increase of the time-mean velocity of the upper spectrum and decrease of S/D ratio. Transcranial Doppler sonography was considered to contribute to the establishment of a protocol for early diagnosis and treatment of vasospasm. Transcranial Doppler sonography was also utilized as a useful tool for classification of arteriovenous malformation from the viewpoint of hemodynamics, namely high-flow or low-flow and with or without steal phenomenon. Transcranial Doppler sonography appears sufficiently promising to justify further development and utilization in cerebrovascular surgery.

  7. Smoke-Column Observations from Two Forest Fires Using Doppler Lidar and Doppler Radar.

    NASA Astrophysics Data System (ADS)

    Banta, R. M.; Olivier, L. D.; Holloway, E. T.; Kropfli, R. A.; Bartram, B. W.; Cupp, R. E.; Post, M. J.

    1992-11-01

    To demonstrate the usefulness of active remote-sensing systems in observing forest fire plume behavior, we studied two fires, one using a 3.2-cm-wavelength Doppler radar, and one more extensively, using Doppler lidar. Both instruments observed the kinematics of the convection column, including the presence of two different types of rotation in the columns, and monitored the behavior of the smoke plume.The first fire, a forest fire that burned out of control, was observed by the Doppler radar during late-morning and afternoon hours. Strong horizontal ambient winds produced a bent-over convection column, which the radar observed to have strong horizontal flow at its edges and weaker flow along the centerline of the plume. This velocity pattern implies that the column consisted of a pair of counterrotating horizontal vortices (rolls), with rising motion along the centerline and sinking along the edges. The radar tracked the smoke plume for over 30 km. It also provided circular depolarization ratio measurements, which gave information that the scattering particles were mostly flat or needle shaped as viewed by the radar, perhaps pine needles or possibly flat ash platelets being viewed edge on.The second fire, observed over a 5-h period by Doppler lidar, was a prescribed forest fire ignited in the afternoon. During the first hour of the fire the lidar observed many kinematic quantities of the convection column, including flow convergence and anticyclonic whole-column, rotation of the nearly vertical column, with a vorticity of approximately 102 s1 and an estimated peak vertical velocity w of 1 5 m s1. After the first hour ambient meteorological conditions changed, the whole-column rotation ceased, and the convection column and smoke plume bent over toward the lidar in stronger horizontal flow. At two times during this later stage, w was estimated to be 24 and 10 m s1. Lidar observations show that the smoke plume of this second fire initially went straight up in the

  8. Doppler-resolved kinetics of saturation recovery

    DOE PAGES

    Forthomme, Damien; Hause, Michael L.; Yu, Hua -Gen; Dagdigian, Paul J.; Sears, Trevor J.; Hall, Gregory E.

    2015-04-08

    Frequency modulated laser transient absorption has been used to monitor the ground state rotational energy transfer rates of CN radicals in a double-resonance, depletion recovery experiment. When a pulsed laser is used to burn a hole in the equilibrium ground state population of one rotational state without velocity selection, the population recovery rate is found to depend strongly on the Doppler detuning of a narrow-band probe laser. Similar effects should be apparent for any relaxation rate process that competes effectively with velocity randomization. Alternative methods of extracting thermal rate constants in the presence of these non-thermal conditions are evaluated. Totalmore » recovery rate constants, analogous to total removal rate constants in an experiment preparing a single initial rotational level, are in good agreement with quantum scattering calculations, but are slower than previously reported experiments and show qualitatively different rotational state dependence between Ar and He collision partners. As a result, quasi-classical trajectory studies confirm that the differing rotational state dependence is primarily a kinematic effect.« less

  9. Doppler-Resolved Kinetics of Saturation Recovery.

    PubMed

    Forthomme, Damien; Hause, Michael L; Yu, Hua-Gen; Dagdigian, Paul J; Sears, Trevor J; Hall, Gregory E

    2015-07-16

    Frequency-modulated laser transient absorption has been used to monitor the ground-state rotational energy-transfer rates of CN radicals in a double-resonance, depletion recovery experiment. When a pulsed laser is used to burn a hole in the equilibrium ground-state population of one rotational state without velocity selection, the population recovery rate is found to depend strongly on the Doppler detuning of a narrow-band probe laser. Similar effects should be apparent for any relaxation rate process that competes effectively with velocity randomization. Alternative methods of extracting thermal rate constants in the presence of these non-thermal conditions are evaluated. Total recovery rate constants, analogous to total removal rate constants in an experiment preparing a single initial rotational level, are in good agreement with quantum scattering calculations, but are slower than previously reported experiments and show qualitatively different rotational state dependence between Ar and He collision partners. Quasi-classical trajectory studies confirm that the differing rotational state dependence is primarily a kinematic effect.

  10. Doppler-resolved kinetics of saturation recovery

    SciTech Connect

    Forthomme, Damien; Hause, Michael L.; Yu, Hua -Gen; Dagdigian, Paul J.; Sears, Trevor J.; Hall, Gregory E.

    2015-04-08

    Frequency modulated laser transient absorption has been used to monitor the ground state rotational energy transfer rates of CN radicals in a double-resonance, depletion recovery experiment. When a pulsed laser is used to burn a hole in the equilibrium ground state population of one rotational state without velocity selection, the population recovery rate is found to depend strongly on the Doppler detuning of a narrow-band probe laser. Similar effects should be apparent for any relaxation rate process that competes effectively with velocity randomization. Alternative methods of extracting thermal rate constants in the presence of these non-thermal conditions are evaluated. Total recovery rate constants, analogous to total removal rate constants in an experiment preparing a single initial rotational level, are in good agreement with quantum scattering calculations, but are slower than previously reported experiments and show qualitatively different rotational state dependence between Ar and He collision partners. As a result, quasi-classical trajectory studies confirm that the differing rotational state dependence is primarily a kinematic effect.

  11. Doppler radar detection of vortex hazard indicators

    NASA Technical Reports Server (NTRS)

    Nespor, Jerald D.; Hudson, B.; Stegall, R. L.; Freedman, Jerome E.

    1994-01-01

    Wake vortex experiments were conducted at White Sands Missile Range, NM using the AN/MPS-39 Multiple Object Tracking Radar (MOTR). The purpose of these experiments was twofold. The first objective was to verify that radar returns from wake vortex are observed for some time after the passage of an aircraft. The second objective was to verify that other vortex hazard indicators such as ambient wind speed and direction could also be detected. The present study addresses the Doppler characteristics of wake vortex and clear air returns based upon measurements employing MOTR, a very sensitive C-Band phased array radar. In this regard, the experiment was conducted so that the spectral characteristics could be determined on a dwell to-dwell basis. Results are presented from measurements of the backscattered power (equivalent structure constant), radial velocity and spectral width when the aircraft flies transverse and axial to the radar beam. The statistics of the backscattered power and spectral width for each case are given. In addition, the scan strategy, experimental test procedure and radar parameters are presented.

  12. Doppler effect induced spin relaxation boom

    PubMed Central

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-01-01

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures. PMID:26996253

  13. Doppler effect induced spin relaxation boom.

    PubMed

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-03-21

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures.

  14. Doppler effect induced spin relaxation boom

    NASA Astrophysics Data System (ADS)

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-03-01

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures.

  15. Doppler effect induced spin relaxation boom.

    PubMed

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-01-01

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures. PMID:26996253

  16. Muscle activity characterization by laser Doppler Myography

    NASA Astrophysics Data System (ADS)

    Scalise, Lorenzo; Casaccia, Sara; Marchionni, Paolo; Ercoli, Ilaria; Primo Tomasini, Enrico

    2013-09-01

    Electromiography (EMG) is the gold-standard technique used for the evaluation of muscle activity. This technique is used in biomechanics, sport medicine, neurology and rehabilitation therapy and it provides the electrical activity produced by skeletal muscles. Among the parameters measured with EMG, two very important quantities are: signal amplitude and duration of muscle contraction, muscle fatigue and maximum muscle power. Recently, a new measurement procedure, named Laser Doppler Myography (LDMi), for the non contact assessment of muscle activity has been proposed to measure the vibro-mechanical behaviour of the muscle. The aim of this study is to present the LDMi technique and to evaluate its capacity to measure some characteristic features proper of the muscle. In this paper LDMi is compared with standard superficial EMG (sEMG) requiring the application of sensors on the skin of each patient. sEMG and LDMi signals have been simultaneously acquired and processed to test correlations. Three parameters has been analyzed to compare these techniques: Muscle activation timing, signal amplitude and muscle fatigue. LDMi appears to be a reliable and promising measurement technique allowing the measurements without contact with the patient skin.

  17. Satellite Doppler Fixation and International Boundaries

    NASA Astrophysics Data System (ADS)

    Leppard, N. A. G.

    1980-01-01

    International boundaries have seldom been completely defined in geodetic terms. The existence of natural resources, which ignore the arbitrary boundaries of man, assume considerable importance when division of those resources becomes a point of issue between potential owners. This is particularly so when the boundary is illdefined in a geodetic sense. World-wide satellite reference systems, like natural resources, also have little regard for the internally less precise national or international systems. When the one is used to define the location of the other, great care must be taken to ensure equitable division, for financial gain and loss can be considerable. The definition of position is complicated by the existence of the two ephemerides for the N.N.S.S. satellites and the number of alternative reduction procedures available. The definition of the position of the Frigg Gas Field in the North Sea is an example of how the United Kingdom and Norway resolved the geodetic problem of reconciling geodetic and Doppler data.

  18. Recent applications of acoustic Doppler current profilers

    USGS Publications Warehouse

    Oberg, K.A.; Mueller, David S.

    1994-01-01

    A Broadband acoustic Doppler current profiler (BB-ADCP) is a new instrument being used by the U.S. Geological Survey (USGS) to measure stream discharge and velocities, and bathymetry. During the 1993 Mississippi River flood, more than 160 high-flow BB-ADCP measurements were made by the USGS at eight locations between Quincy and Cairo, Ill., from July 19 to August 20, 1993. A maximum discharge of 31,400 m3/s was measured at St. Louis, Mo., on August 2, 1993. A BB-ADCP also has been used to measure leakage through three control structures near Chicago, Ill. These measurements are unusual in that the average velocity for the measured section was as low as 0.03 m/s. BB-ADCP's are also used in support of studies of scour at bridges. During the recent Mississippi River flood, BB-ADCP's were used to measure water velocities and bathymetry upstream from, next to, and downstream from bridge piers at several bridges over the Mississippi River. Bathymetry data were collected by merging location data from Global Positioning System (GPS) receivers, laser tracking systems, and depths measured by the BB-ADCP. These techniques for collecting bathymetry data were used for documenting the channel formation downstream from the Miller City levee break and scour near two bridges on the Mississippi River.

  19. A prospective analysis of free flap monitoring techniques: physical examination, external Doppler, implantable Doppler, and tissue oximetry.

    PubMed

    Lohman, Robert F; Langevin, Claude-Jean; Bozkurt, Mehmet; Kundu, Neilendu; Djohan, Risal

    2013-01-01

    No universally accepted method of flap monitoring exists, and several techniques are in use. Repeated physical examination is most popular and is often supplemented with a handheld, external Doppler, and/or implantable Doppler probes; near-infrared spectroscopy is less commonly used. We investigated the nursing and resident house staff's experience and confidence with physical exam for flap monitoring. Also, a consecutive series of 38 patients with free flaps were monitored using physical examination, external Doppler, implantable arterial and venous Doppler probes, and near-infrared spectroscopy. Five patients developed signs of microvascular complications within 3 days of surgery; all were explored and salvaged. Neither the residents nor the nursing staff were universally trained or experienced in flap monitoring by physical exam. In all patients, changes in the appearance of the flap suggestive of a microvascular complication lagged 30 to 60 minutes after the adjunctive monitoring methods indicated that a problem had occurred. Near-infrared spectroscopy was the first warning sign in four of the five patients. Two patients were explored before thrombosis of the anastomoses occurred. Near-infrared spectroscopy may identify early microvascular complications more reliably than physical examination, external Doppler, or implantable Doppler.

  20. Analysis of airborne Doppler lidar, Doppler radar and tall tower measurements of atmospheric flows in quiescent and stormy weather

    NASA Technical Reports Server (NTRS)

    Bluestein, H. B.; Doviak, R. J.; Eilts, M. D.; Mccaul, E. W.; Rabin, R.; Sundara-Rajan, A.; Zrnic, D. S.

    1986-01-01

    The first experiment to combine airborne Doppler Lidar and ground-based dual Doppler Radar measurements of wind to detail the lower tropospheric flows in quiescent and stormy weather was conducted in central Oklahoma during four days in June-July 1981. Data from these unique remote sensing instruments, coupled with data from conventional in-situ facilities, i.e., 500-m meteorological tower, rawinsonde, and surface based sensors, were analyzed to enhance understanding of wind, waves and turbulence. The purposes of the study were to: (1) compare winds mapped by ground-based dual Doppler radars, airborne Doppler lidar, and anemometers on a tower; (2) compare measured atmospheric boundary layer flow with flows predicted by theoretical models; (3) investigate the kinematic structure of air mass boundaries that precede the development of severe storms; and (4) study the kinematic structure of thunderstorm phenomena (downdrafts, gust fronts, etc.) that produce wind shear and turbulence hazardous to aircraft operations. The report consists of three parts: Part 1, Intercomparison of Wind Data from Airborne Lidar, Ground-Based Radars and Instrumented 444 m Tower; Part 2, The Structure of the Convective Atmospheric Boundary Layer as Revealed by Lidar and Doppler Radars; and Part 3, Doppler Lidar Observations in Thunderstorm Environments.

  1. In-cell measurements of smoke backscattering coefficients using a CO2 laser system for application to lidar-dial forest fire detection

    NASA Astrophysics Data System (ADS)

    Bellecci, Carlo; Gaudio, Pasquale; Gelfusa, Michela; Lo Feudo, Teresa; Murari, Andrea; Richetta, Maria; de Leo, Leonerdo

    2010-12-01

    In the lidar-dial method, the amount of the water vapor present in the smoke of the vegetable fuel is detected to reduce the number of false alarms. We report the measurements of the smoke backscattering coefficients for the CO2 laser lines 10R20 and 10R18 as determined in an absorption cell for two different vegetable fuels (eucalyptus and conifer). These experimental backscattering coefficients enable us to determine the error to be associated to the water vapor measurements when the traditional first-order approximation is assumed. We find that this first-order approximation is valid for combustion rates as low as 100 g/s.

  2. Vertical wind velocity measurements by a Doppler lidar and comparisons with a Doppler sodar.

    PubMed

    Congeduti, F; Fiocco, G; Adriani, A; Guarrella, C

    1981-06-15

    A Doppler lidar based on a single frequency Ar(+) laser and a spherical Fabry-Perot interferometer is used to study the vertical velocity field in the planetary boundary layer. The wind velocity information is obtained by spectral analysis of the aerosol backscatter. The internal consistency of the lidar measurements points to a precision of 0.1 msec(-1) obtained for scans of ~25-sec duration and a good level of the received signal at a height of a few hundred meters and a vertical resolution of 75 m. A Doppler sodar was simultaneously operated to provide independent measurements of vertical velocity. The tests were carried out during nights characterized by horizontal winds <1 msec(-1). The axes of the two systems were displaced by 53 m, and the two beams overlapped only above ~300 m. The values of the correlation coefficient function between the two outputs for 100 data sets were ~0.5. A comparison of the velocity power spectra provided by the two systems shows good agreement at small values of the frequency; at large values, because of the limited spatial resolution of the sodar, its readings were consistently lower than those of the lidar.

  3. Interpreting laser Doppler recordings from free flaps.

    PubMed

    Svensson, H; Holmberg, J; Svedman, P

    1993-01-01

    Although the transfer of free flaps is nowadays accomplished with an increasing degree of safety, thrombosis of the microvascular anastomoses is still a problem. In order to avoid delay in re-operating, various methods for objective blood flow monitoring have been tried, among them Laser Doppler Flowmetry (LDF). When one reviews the literature, it is apparent that opinions differ about whether or not LDF is a reliable technique for this purpose. To focus on the need to interpret continuous recordings, this paper reports our findings in six latissimus dorsi free flaps chosen from our series of LDF monitoring procedures. One uneventful flap, no. 1, had an immediate postoperative LDF value of 4.5 perfusion units (PU). LDF values improved during the recovery period and the graphic recording showed fluctuations due to normal physiological variations of the blood flow in the flap. Another uneventful flap, no. 4, showed the same pattern, though at an appreciably lower level, 2 PU, on average. Flap no. 2 had an acceptably high value of 3.5 PU despite suffering a venous thrombosis. However, the LDF recording showed no fluctuations and the value declined gradually. Another flap, no. 3, showed fluctuations and blood flow was normal although the value decreased to 2.5 PU. In flap no. 5, any value between 2 and 3.5 PU could be obtained merely by adjusting the position of the probe in the holder. In no. 6, the LDF value suddenly dropped, accompanied by a decrease in the total amount of backscattered light, indicating venous obstruction which was confirmed at re-operation.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Right Ventricular Tissue Doppler in Space Flight

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas R.; Barratt, Michael R.; Sargsyan, Ashot E.; Ebert, Douglas; Garcia, Kathleen M.; Martin, David S.; Dulchavsky, Scott A.; Duncan, J. Michael

    2009-01-01

    Tissue Doppler (TD) registers movement of a given sample of cardiac tissue throughout the cardiac cycle. TD spectra of the right ventricle (RV) were obtained from a long-duration ISS crewmember as a portion of an ongoing experiment ("Braslet" test objective). To our knowledge, this is the first report of RV TD conducted in space flight, and the data represent reproducibility and fidelity of this application in space and serve as the first "space normal" data set. Methods RV TD was performed by astronaut scientists remotely guided by an ultrasound expert from Mission Control Center, Houston, TX. In four of the subjects, RV TD was acquired from the free wall near the tricuspid annulus in two separate sessions 4 to 7 days apart. A fifth subject had only one session. All digital DICOM frames were exported for off-line analysis. Systolic (S ), early diastolic (E ) and late diastolic (A ) velocities were measured. RV Tei-index was calculated using diastolic and systolic time intervals as a combined measure of myocardial performance. Results and Discussion The mean values from the first 4 subjects (8 sessions) were used as the on-orbit reference data, and subject 5 was considered as a hypothetical patient for comparison (see Table). The greatest difference was in the early diastolic A (31 %) yet the standard deviation (a) for A amongst the reference subjects was 2.25 (mean = 16.02). Of interest is the Tei index, a simple and feasible indicator of overall ventricular function; it was similar amongst all the subjects. The late diastolic A seems to compensate for the variance in E . Normal Tei index for the RV is < 0.3, yet our data show all but one subject consistently above this level, notwithstanding their nominal responses to daily exercise in microgravity. These data remind us that the physiology of RV preload in altered gravity environments is still not completely understood.

  5. Single Mode, Extreme Precision Doppler Spectrographs

    NASA Astrophysics Data System (ADS)

    Schwab, Christian; Leon-Saval, Sergio G.; Betters, Christopher H.; Bland-Hawthorn, Joss; Mahadevan, Suvrath

    2014-04-01

    The `holy grail' of exoplanet research today is the detection of an earth-like planet: a rocky planet in the habitable zone around a main-sequence star. Extremely precise Doppler spectroscopy is an indispensable tool to find and characterize earth-like planets; however, to find these planets around solar-type stars, we need nearly one order of magnitude better radial velocity (RV) precision than the best current spectrographs provide. Recent developments in astrophotonics (Bland-Hawthorn & Horton 2006, Bland-Hawthorn et al. 2010) and adaptive optics (AO) enable single mode fiber (SMF) fed, high resolution spectrographs, which can realize the next step in precision. SMF feeds have intrinsic advantages over multimode fiber or slit coupled spectrographs: The intensity distribution at the fiber exit is extremely stable, and as a result the line spread function of a well-designed spectrograph is fully decoupled from input coupling conditions, like guiding or seeing variations (Ihle et al. 2010). Modal noise, a limiting factor in current multimode fiber fed instruments (Baudrand & Walker 2001), can be eliminated by proper design, and the diffraction limited input to the spectrograph allows for very compact instrument designs, which provide excellent optomechanical stability. A SMF is the ideal interface for new, very precise wavelength calibrators, like laser frequency combs (Steinmetz et al. 2008, Osterman et al. 2012), or SMF based Fabry-Perot Etalons (Halverson et al. 2013). At near infrared wavelengths, these technologies are ready to be implemented in on-sky instruments, or already in use. We discuss a novel concept for such a spectrograph.

  6. Hands-Free Transcranial Color Doppler Probe

    NASA Technical Reports Server (NTRS)

    Chin, Robert; Madala, Srihdar; Sattler, Graham

    2012-01-01

    Current transcranial color Doppler (TCD) transducer probes are bulky and difficult to move in tiny increments to search and optimize TCD signals. This invention provides miniature motions of a TCD transducer probe to optimize TCD signals. The mechanical probe uses a spherical bearing in guiding and locating the tilting crystal face. The lateral motion of the crystal face as it tilts across the full range of motion was achieved by minimizing the distance between the pivot location and the crystal face. The smallest commonly available metal spherical bearing was used with an outer diameter of 12 mm, a 3-mm tall retaining ring, and 5-mm overall height. Small geared motors were used that would provide sufficient power in a very compact package. After confirming the validity of the basic positioning concept, optimization design loops were completed to yield the final design. A parallel motor configuration was used to minimize the amount of space wasted inside the probe case while minimizing the overall case dimensions. The distance from the front edge of the crystal to the edge of the case was also minimized to allow positioning of the probe very close to the ear on the temporal lobe. The mechanical probe is able to achieve a +/-20deg tip and tilt with smooth repeatable action in a very compact package. The enclosed probe is about 7 cm long, 4 cm wide, and 1.8 cm tall. The device is compact, hands-free, and can be adjusted via an innovative touchscreen. Positioning of the probe to the head is performed via conventional transducer gels and pillows. This device is amendable to having advanced software, which could intelligently focus and optimize the TCD signal.

  7. DOPPLER SIGNATURES OF THE ATMOSPHERIC CIRCULATION ON HOT JUPITERS

    SciTech Connect

    Showman, Adam P.; Lewis, Nikole K.; Fortney, Jonathan J.; Shabram, Megan

    2013-01-01

    The meteorology of hot Jupiters has been characterized primarily with thermal measurements, but recent observations suggest the possibility of directly detecting the winds by observing the Doppler shift of spectral lines seen during transit. Motivated by these observations, we show how Doppler measurements can place powerful constraints on the meteorology. We show that the atmospheric circulation-and Doppler signature-of hot Jupiters splits into two regimes. Under weak stellar insolation, the day-night thermal forcing generates fast zonal jet streams from the interaction of atmospheric waves with the mean flow. In this regime, air along the terminator (as seen during transit) flows toward Earth in some regions and away from Earth in others, leading to a Doppler signature exhibiting superposed blueshifted and redshifted components. Under intense stellar insolation, however, the strong thermal forcing damps these planetary-scale waves, inhibiting their ability to generate jets. Strong frictional drag likewise damps these waves and inhibits jet formation. As a result, this second regime exhibits a circulation dominated by high-altitude, day-to-night airflow, leading to a predominantly blueshifted Doppler signature during transit. We present state-of-the-art circulation models including non-gray radiative transfer to quantify this regime shift and the resulting Doppler signatures; these models suggest that cool planets like GJ 436b lie in the first regime, HD 189733b is transitional, while planets hotter than HD 209458b lie in the second regime. Moreover, we show how the amplitude of the Doppler shifts constrains the strength of frictional drag in the upper atmospheres of hot Jupiters. If due to winds, the {approx}2 km s{sup -1} blueshift inferred on HD 209458b may require drag time constants as short as 10{sup 4}-10{sup 6} s, possibly the result of Lorentz-force braking on this planet's hot dayside.

  8. Cross-correlation Doppler global velocimetry (CC-DGV)

    NASA Astrophysics Data System (ADS)

    Cadel, Daniel R.; Lowe, K. Todd

    2015-08-01

    A flow velocimetry method, cross-correlation Doppler global velocimetry (CC-DGV), is presented as a robust, simplified, and high dynamic range implementation of the Doppler global/planar Doppler velocimetry technique. A sweep of several gigahertz of the vapor absorption spectrum is used for each velocity sample, with signals acquired from both Doppler-shifted scattered light within the flow and a non-Doppler shifted reference beam. Cross-correlation of these signals yields the Doppler shift between them, averaged over the duration of the scan. With presently available equipment, velocities from 0 ms-1 to over 3000 ms-1 can notionally be measured simultaneously, making the technique ideal for high speed flows. The processing routine is shown to be robust against large changes in the vapor pressure of the iodine cell, benefiting performance of the system in facilities where ambient conditions cannot be easily regulated. Validation of the system was performed with measurements of a model wind turbine blade boundary layer made in a 1.83 m by 1.83 m subsonic wind tunnel for which laser Doppler velocimetry (LDV) measurements were acquired alongside the CC-DGV results. CC-DGV uncertainties of ±1.30 ms-1, ±0.64 ms-1, and ±1.11 ms-1 were determined for the orthogonal stream-wise, transverse-horizontal, and transverse-vertical velocity components, and root-mean-square deviations of 2.77 ms-1 and 1.34 ms-1 from the LDV validation results were observed for Reynolds numbers of 1.5 million and 2 million, respectively. Volumetric mean velocity measurements are also presented for a supersonic jet, with velocity uncertainties of ±4.48 ms-1, ±16.93 ms-1, and ±0.50 ms-1 for the orthogonal components, and self-validation done by collapsing the data with a physical scaling.

  9. Peak velocity overestimation and linear-array spectral Doppler.

    PubMed

    Eicke, B M; Kremkau, F W; Hinson, H; Tegeler, C H

    1995-04-01

    Ultrasound instruments are used to evaluate blood flow velocities in the human body. Most clinical instruments perform velocity calculations based on the Doppler principle and measure the frequency shift of a reflected ultrasound beam. Doppler-only instruments use single-frequency, single-crystal transducers. Linear- and annular-array multiple-crystal transducers are used for duplex scanning (simultaneous B-mode image and Doppler). Clinical interpretation relies primarily on determination of peak velocities or frequency shifts as identified by the Doppler spectrum. Understanding of the validity of these measurements is important for instruments in clinical use. The present study examined the accuracy with which several ultrasound instruments could estimate velocities based on the identification of the peak of the Doppler spectrum, across a range of different angles of insonation, on a Doppler string phantom. The string was running in a water tank at constant speeds of 50, 100, and 150 cm/sec and also in a sine wave pattern at 100- or 150-cm/sec amplitude. Angles of insonation were 30, 45, 60, and 70 degrees. The single-frequency, single-crystal transducers (PC Dop 842, 2-MHz pulsed-wave, 4-MHz continuous-wave) provided acceptably accurate velocity estimates at all tested velocities independent of the angle of insonation. All duplex Doppler instruments with linear-array transducers (Philips P700, 5.0-MHz; Hewlett-Packard Sonos 1000, 7.5-MHz; ATL Ultramark 9 HDI, 7.5-MHz) exhibited a consistent overestimation of the true flow velocity due to increasing intrinsic spectral broadening with increasing angle of insonation.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Optimization of the GSFC TROPOZ DIAL retrieval using synthetic lidar returns and ozonesondes - Part 1: Algorithm validation

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Leblanc, T.; Sumnicht, G. K.; Twigg, L. W.

    2015-10-01

    The main purpose of the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) is to measure the vertical distribution of tropospheric ozone for science investigations. Because of the important health and climate impacts of tropospheric ozone, it is imperative to quantify background photochemical ozone concentrations and ozone layers aloft, especially during air quality episodes. For these reasons, this paper addresses the necessary procedures to validate the TROPOZ retrieval algorithm and confirm that it is properly representing ozone concentrations. This paper is focused on ensuring the TROPOZ algorithm is properly quantifying ozone concentrations, and a following paper will focus on a systematic uncertainty analysis. This methodology begins by simulating synthetic lidar returns from actual TROPOZ lidar return signals in combination with a known ozone profile. From these synthetic signals, it is possible to explicitly determine retrieval algorithm biases from the known profile. This was then systematically performed to identify any areas that need refinement for a new operational version of the TROPOZ retrieval algorithm. One immediate outcome of this exercise was that a bin registration error in the correction for detector saturation within the original retrieval was discovered and was subsequently corrected for. Another noticeable outcome was that the vertical smoothing in the retrieval algorithm was upgraded from a constant vertical resolution to a variable vertical resolution to yield a statistical uncertainty of <10 %. This new and optimized vertical-resolution scheme retains the ability to resolve fluctuations in the known ozone profile, but it now allows near-field signals to be more appropriately smoothed. With these revisions to the previous TROPOZ retrieval, the optimized TROPOZ retrieval algorithm (TROPOZopt) has been effective in retrieving nearly 200 m lower to the surface. Also, as compared to the

  11. Role of Gray Scale, Color Doppler and Spectral Doppler in Differentiation Between Malignant and Benign Thyroid Nodules

    PubMed Central

    Palaniappan, Manoj Kumar; Aiyappan, Senthil Kumar

    2016-01-01

    Introduction High resolution ultrasound is the most sensitive imaging test available for the examination of the thyroid gland and due to increase in use of ultrasound more incidental thyroid nodules are diagnosed. In this study we try to establish the specific grayscale, color and spectral Doppler characteristics of malignant and benign thyroid nodules. Aim To determine the specific gray scale characteristics, angioarchitecture and cut-off values of Doppler indices of malignant and benign thyroid nodules. To assess the efficacy of grayscale, Doppler and combined conventional and Doppler using defined criteria in differentiating malignant from benign nodules. Materials and Methods We prospectively examined 194 thyroid nodules which were confirmed on FNAC. Each nodule was described according to size, number, contents, echogenicity, margins, halo, shape, calcification, local infiltration and lymphnode enlargement. Vascularity, RI and PI values of each nodule were assessed on Doppler. Each nodule was characterized as benign, indeterminate or malignant based on grayscale and Doppler characteristics. Cut-off RI and PI values for malignant thyroid nodules were obtained by ROC. Results Out of 194 nodules, 151 nodules were benign and 43 nodules were malignant. Significant relationship was observed between malignancy and hypoechogenicity, irregular margins, taller than wide, thick incomplete halo, micro calcifications, lymphnode enlargement and local infiltration. Intranodular vascularity was a significant criterion to suggest malignancy in thyroid nodules on color Doppler. Malignant nodules had a mean RI of 0.73 and mean PI of 1.3 which were significantly higher than the benign nodules. Accuracy of detecting malignant thyroid nodules by combining gray scale and Doppler is higher than either of them alone. Conclusion Using specific morphological pattern recognition features like microcalcifications, hypoechogenicity, taller than wide, irregular thick halo, lymphadenopathy

  12. Dialing Up Telecommunications Information.

    ERIC Educational Resources Information Center

    Bates, Mary Ellen

    1993-01-01

    Describes how to find accurate, current information about telecommunications industries, products and services, rates and tariffs, and regulatory information using electronic information resources available from the private and public sectors. A sidebar article provides contact information for producers and service providers. (KRN)

  13. Dial "V" for VIPS

    ERIC Educational Resources Information Center

    Collins, Larry

    1972-01-01

    This article is concerned with the Videotape Program Service (VIPS), which will eventually be for public use, and the Resources Materials Bank (RMB), which is intended strictly for teacher use. Both programs are to provide videotape instruction too specific for general television broadcasting. (JA)

  14. Dialing for Dollars.

    ERIC Educational Resources Information Center

    Dervarics, Charles

    1997-01-01

    Historically black colleges and universities need subject expertise and aggressive tactics to win Department of Defense research contracts, despite Pentagon efforts to target black colleges. The colleges compete with institutions whose minority group populations, alone or combined, are a majority of total enrollment. Several approaches useful in…

  15. Temporal enhancement of two-dimensional color doppler echocardiography

    NASA Astrophysics Data System (ADS)

    Terentjev, Alexey B.; Settlemier, Scott H.; Perrin, Douglas P.; del Nido, Pedro J.; Shturts, Igor V.; Vasilyev, Nikolay V.

    2016-03-01

    Two-dimensional color Doppler echocardiography is widely used for assessing blood flow inside the heart and blood vessels. Currently, frame acquisition time for this method varies from tens to hundreds of milliseconds, depending on Doppler sector parameters. This leads to low frame rates of resulting video sequences equal to tens of Hz, which is insufficient for some diagnostic purposes, especially in pediatrics. In this paper, we present a new approach for reconstruction of 2D color Doppler cardiac images, which results in the frame rate being increased to hundreds of Hz. This approach relies on a modified method of frame reordering originally applied to real-time 3D echocardiography. There are no previous publications describing application of this method to 2D Color Doppler data. The approach has been tested on several in-vivo cardiac 2D color Doppler datasets with approximate duration of 30 sec and native frame rate of 15 Hz. The resulting image sequences had equivalent frame rates to 500Hz.

  16. Results of the international ionospheric Doppler sounder network

    NASA Astrophysics Data System (ADS)

    Lastovicka, Jan; Chum, Jaroslav

    2016-07-01

    This paper summarizes main recent results reached by the Czech-lead international network of ionospheric Doppler sounders. The network consists of Doppler sounders in the western half of Czechia (5 measuring paths, 3 frequencies with central receivers in Prague), northern Taiwan (3 transmitters, two separated receivers, 1 frequency), and three similar systems (3 measuring paths with 1 receiver and 1 frequency) in Tucuman (north-western Argentina), Hermanus (the southernmost South Africa) and Luisville (northern South Africa). Three main areas of research have been (1) statistical properties of gravity waves, (2) ionospheric effects of earthquakes, and (3) low latitude/equatorial phenomena. Some results: (1) the theoretically expected dominance of gravity wave propagation against wind has been confirmed; (2) impact of the Tohoku 2001 M9.0 earthquake was registered in the ionosphere over the Czech Republic as long-period infrasound on the distance of about 9000 km from epicenter; analysis of ionospheric infrasound excited by the Nepal 2015 M7.8 earthquake observed by the Czech and Taiwan Doppler sounders showed that the intensity of ionospheric signal is significantly height dependent and that the Doppler shift depends not only on the advection (up and down motion) of the reflecting layer but also on the compression/rarefaction of the electron gas; (3) spread F structures observed by Doppler sounders in Tucuman and Taiwan (both under the crest of equatorial ionization anomaly) provide results consistent with S4 scintillation data and with previous optical, GPS and satellite measurements.

  17. Trans-skull ultrasonic Doppler system aided by fuzzy logic

    NASA Astrophysics Data System (ADS)

    Hata, Yutaka; Nakamura, Masato; Yagi, Naomi; Ishikawa, Tomomoto

    2012-06-01

    This paper describes a trans-skull ultrasonic Doppler system for measuring the blood flow direction in brain under skull. In this system, we use an ultrasonic array probe with the center frequency of 1.0 MHz. The system determines the fuzzy degree of blood flow by Doppler Effect, thereby it locates blood vessel. This Doppler Effect is examined by the center of gravity shift of the frequency magnitudes. In in-vitro experiment, a cow bone was employed as the skull, and three silicon tubes were done as blood vessels, and bubble in water as blood. We received the ultrasonic waves through a protein, the skull and silicon tubes in order. In the system, fuzzy degrees are determined with respect to the Doppler shift, amplitude of the waves and attenuation of the tissues. The fuzzy degrees of bone and blood direction are calculated by them. The experimental results showed that the system successfully visualized the skull and flow direction, compared with the location and flow direction of the phantom. Thus, it detected the flow direction by Doppler Effect under skull, and automatically extracted the region of skull and blood vessel.

  18. High-resolution Doppler model of the human gait

    NASA Astrophysics Data System (ADS)

    Geisheimer, Jonathan L.; Greneker, Eugene F., III; Marshall, William S.

    2002-07-01

    A high resolution Doppler model of the walking human was developed for analyzing the continuous wave (CW) radar gait signature. Data for twenty subjects were collected simultaneously using an infrared motion capture system along with a two channel 10.525 GHz CW radar. The motion capture system recorded three-dimensional coordinates of infrared markers placed on the body. These body marker coordinates were used as inputs to create the theoretical Doppler output using a model constructed in MATLAB. The outputs of the model are the simulated Doppler signals due to each of the major limbs and the thorax. An estimated radar cross section for each part of the body was assigned using the Lund & Browder chart of estimated body surface area. The resultant Doppler model was then compared with the actual recorded Doppler gait signature in the frequency domain using the spectrogram. Comparison of the two sets of data has revealed several identifiable biomechanical features in the radar gait signature due to leg and body motion. The result of the research shows that a wealth of information can be unlocked from the radar gait signature, which may be useful in security and biometric applications.

  19. Response of a Doppler canceling system to plane gravitational waves

    NASA Technical Reports Server (NTRS)

    Caporali, A.

    1982-01-01

    This paper discusses the interaction of long periodic gravitational waves with a three-link microwave system known as the Doppler canceling system. This system, which was developed for a gravitational red-shift experiment, uses one-way and two-way Doppler information to construct the beat signal of two reference oscillators moving with respect to each other. The geometric-optics approximation is used to derive the frequency shift produced on a light signal propagating in a gravitational-wave space-time. The signature left on the Doppler-cancelled beat by bursts and continuous gravitational waves is analyzed. A comparison is made between the response to gravitational waves of the Doppler canceling system and that of a (NASA) Doppler tracking system which employs two-way, round-trip radio waves. A threefold repetition of the gravitational wave form is found to be a common feature of the response functions of both systems. These two functions otherwise exhibit interesting differences.

  20. Influence of speckle effect on doppler velocity measurement

    NASA Astrophysics Data System (ADS)

    Zheng, Zheng; Changming, Zhao; Haiyang, Zhang; Suhui, Yang; Dehua, Zhang; Xingyuan, Zheng; Hongzhi, Yang

    2016-06-01

    In a coherent Lidar system, velocity measurement of a target is achieved by measuring Doppler frequency shift between the echo and local oscillator (LO) signals. The measurement accuracy is proportional to the spectrum width of Doppler signal. Actually, the speckle effect caused by the scattering of laser from a target will broaden the Doppler signal's spectrum and bring uncertainty to the velocity measurement. In this paper, a theoretical model is proposed to predict the broadening of Doppler spectrum with respect to different target's surface and motion parameters. The velocity measurement uncertainty caused by the broadening of spectrum is analyzed. Based on the analysis, we design a coherent Lidar system to measure the velocity of the targets with different surface roughness and transverse velocities. The experimental results are in good agreement with theoretical analysis. It is found that the target's surface roughness and transverse velocity can significantly affect the spectrum width of Doppler signal. With the increase of surface roughness and transverse velocity, the measurement accuracy becomes worse. However, the influence of surface roughness becomes weaker when the spot size of laser beam on the target is smaller.

  1. Ultrasonic bistatic Doppler sonar in air for personnel motion detection

    NASA Astrophysics Data System (ADS)

    Ekimov, Alexander; Hickey, Craig J.

    2012-06-01

    The National Center for Physical Acoustics (NCPA) at the University of Mississippi is working on the application of ultrasonic Doppler sonars in air for personnel motion detection. Two traditional Doppler sonar configurations, a monostatic and a bistatic, are being studied. In the monostatic configuration, the distance between the transmitter and the receiver is small. The proximity of the source to the receiver places a limitation on the system associated with the overloading of the receivers' input due to acoustic energy leakage from the transmitters' output. The maximum range of detection is therefore limited by the dynamic range of the acquisition system. In a bistatic Doppler ultrasonic sonar, the source and receiver are spaced apart and the acoustic energy along the direct path does not constrain the maximum acoustic power level output of the transmitter. In a monostatic configuration the acoustic signal suffers from beam spreading and natural absorption during propagation from the transmitter to the target and from the target back to the receiver. In a bistatic configuration the acoustic propagation is in one direction only and theoretically the detection distance can be twice the monostatic distance. For comparison the experiments of a human walking in a building hallway using the bistatic and monostaic Doppler sonars in air were conducted. The experimental results for human signatures from these Doppler sonars are presented and discussed.

  2. [Color-coded doppler echocardiography in atrial septal defects].

    PubMed

    Kautzner, J; Kozáková, M; Serf, B; Munclinger, M

    1990-04-20

    The magnitude of a left-to-right shunt in atrial septal defects was evaluated independently in catheterizations of the heart according to saturations and characteristics of the shunt stream in colour-flow Doppler echocardiography. The ratio of the pulmonary and systemic flow (Qp/Qs) assessed in 14 patients with atrial septal defects during catheterization correlated significantly with the maximal breadth (r = 0.8; p less than 0.001) and maximum area (r = 0.78; p less than 0.01) of the visualized shunted stream in transthoracic colour-flow Doppler echocardiography. Examination by means of transoesophageal colour-flow Doppler echocardiography in 8 patients revealed a correlation only with the maximal breadth of the shunted stream (r = 0.95; p less than 0.001). The magnitude of the maximum area of the shunted stream in transthoracic colour-flow Doppler echocardiography made it only possible to differentiate patients with a significant and not significant left-to-right shunt, i.e. Qp/Qs greater or smaller than 1.5:1. All patients with a shunt greater than 1.5:1 had a maximal area of the shunted stream greater than 10 sq.cm or 6 sq.cm/sq.m resp. Colour-flow Doppler echocardiography is a suitable method for the semiquantitative evaluation of the haemodynamic significance of atrial septal defects in adult patients.

  3. Modeling and Doppler measurement of X-ray pulsar

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Xu, LuPing; Xie, Qiang

    2011-06-01

    Generally, the Doppler caused by the velocity of the detector leads to distortion of the integrated profile of the X-ray pulsar, on the contrary, if the distortion can be used to measure the Doppler, then the velocity of the detector is easy to be solved. In view of this, the correlation of the periodic error arise from the Doppler and the integrated profile was analyzed, then, based on the Poisson distribution model of the X-ray Pulsar, a new signal model and the concept of the profile entropy was defined. Furthermore, the directly cumulated profile of the signal was modeled with the Doppler as a parameter, and then the Doppler was solved via optimal method. Simultaneously, the performance of phase measurement based on this method was studded. The analysis shows that this method can get rid of the periodic error due to the discrete sampling, and can obtain continuous phase estimation. The experiment verification shows the consistency of the theory and the experiment.

  4. Laser Doppler perfusion monitoring and imaging of blood microcirculation

    NASA Astrophysics Data System (ADS)

    Nilsson, Gert E.; Wardell, Karin

    1994-07-01

    Laser Doppler perfusion monitoring is a method of assessing tissue perfusion based on measurements performed using Doppler broadening of monochromatic light scattered in moving blood cells. Ever since laser Doppler perfusion monitors became available about 15 years ago they have been used in numerous applications in both clinical and laboratory settings. The high spatial resolution has in practice manifested itself as one of the main limitations of the method. The reason for this is the difficulty in attaining reproducible values at successive measurement sites because most skin tissue possesses a substantial variation in blood flow even at adjacent measurement sites. In order to overcome this difficulty the laser Doppler perfusion imager was developed. In this camera-like device, the laser beam successively scans the tissue and the Doppler components of the backscattered light are detected by a remote photodiode. After a scanning procedure is complete, a color-coded perfusion map showing the spatial variation of skin blood flow is displayed on a monitor. The operating principle and early applications of this emerging technology are addressed in further detail.

  5. Chemistry and dynamics of the lower troposphere over North America and the North Atlantic Ocean in fall 1997 observed using an airborne UV DIAL system

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Butler, Carolyn F.; Fenn, Marta A.; Kooi, Susan A.; Browell, Edward V.; Fuelberg, Henry

    1998-01-01

    The NASA Langley Research Center's airborne UV Differential Absorption Lidar (DIAL) system participated in the Subsonic Assessment, Ozone and Nitrogen Oxide Experiment (SONEX) mission from October 13 to November 12, 1997. The purpose of the mission was to study the upper troposphere/lower stratosphere in and near the North Atlantic flight corridor to better understand this region of the atmosphere and how civilian air travel in the corridor might be affecting the atmospheric chemistry. Bases of operations included NASA Ames, California (37.4 deg N, 122.1 deg W); Bangor, Maine (44.8 deg N, 68.8 deg W); Shannon, Ireland (52.7 deg N, 8.9 deg W); and Lajes, Terceira Island, Azores (38.8 deg N, 27.1 deg W). Since the UV DIAL system observes in the nadir as well as the zenith, aerosol and ozone data were obtained from near the Earth's surface to the lower stratosphere. A number of interesting features were noted relating to both chemistry and dynamics of the troposphere, which are reported here.

  6. A Compact Ti:Sapphire Laser With its Third Harmonic Generation (THG) for an Airborne Ozone Differential Absorption Lidar (DIAL) Transmitter

    NASA Technical Reports Server (NTRS)

    Chen, Songsheng; Storm, Mark E.; Marsh, Waverly D.; Petway, Larry B.; Edwards, William C.; Barnes, James C.

    2000-01-01

    A compact and high-pulse-energy Ti:Sapphire laser with its Third Harmonic Generation (THG) has been developed for an airborne ozone differential absorption lidar (DIAL) to study the distributions and concentrations of the ozone throughout the troposphere. The Ti:Sapphire laser, pumped by a frequency-doubled Nd:YAG laser and seeded by a single mode diode laser, is operated either at 867 nm or at 900 nm with a pulse repetition frequency of 20 Hz. High energy laser pulses (more than 110 mJ/pulse) at 867 nm or 900 nm with a desired beam quality have been achieved and utilized to generate its third harmonic at 289nm or 300nm, which are on-line and off-line wavelengths of an airborne ozone DIAL. After being experimentally compared with Beta-Barium Borate (beta - BaB2O4 or BBO) nonlinear crystals, two Lithium Triborate (LBO) crystals (5 x 5 x 20 cu mm) are selected for the Third Harmonic Generation (THG). In this paper, we report the Ti:Sapphire laser at 900 nm and its third harmonic at 300 nm. The desired high ultraviolet (UV) output pulse energy is more than 30 mJ at 300 nm and the energy conversion efficiency from 900 nm to 300 nm is 30%.

  7. 2-μm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application

    NASA Astrophysics Data System (ADS)

    Gibert, Fabien; Edouart, Dimitri; Cénac, Claire; Le Mounier, Florian

    2014-09-01

    We report on the development and the demonstration of a two-wavelength single-frequency laser oscillator based on Ho:YLF crystal. This laser is especially suitable for application as a transmitter in differential absorption lidar (DIAL)/integrated path differential absorption (IPDA) measurements of atmospheric carbon dioxide (CO2) using the R30 CO2 absorption line at 2,050.967 nm. The oscillator consists in a fiber-coupled and free-space solid-state hybrid system and can be used in high-energy middle-rate or moderate-energy high-rate configurations. The latter produced On and Off sequentially single-frequency laser pulses with 13 mJ of energy at a repetition rate of 2 kHz and pulse duration of 42 ns. The pulse energy and frequency stabilities are specially documented in free-running, single-frequency and two-frequency seeding single-mode operations. Standard deviation is 7.7 % for pulse energy and 2 MHz for frequency stability for the two-wavelength seeding operation. Allan variance plot shows that frequency fluctuations are reduced below 70 kHz for 10 s of averaging which is suitable for accurate CO2 DIAL or IPDA measurements.

  8. Signal processing considerations for low signal to noise ratio laser Doppler and phase Doppler signals

    NASA Technical Reports Server (NTRS)

    Ibrahim, K. M.; Wertheimer, G. D.; Bachalo, William D.

    1991-01-01

    The relative performance of current methods used for estimating the phase and the frequency in LDV and phase Doppler applications in low signal to noise ratio conditions is analyzed. These methods include the Fourier analysis and the correlation techniques. Three methods that use the correlation function for frequency and phase estimations are evaluated in terms of accuracy and speed of processing. These methods include: (1) the frequency estimation using zero crossings counting of the auto-correlation function, (2) the Blackman-Tukey method, and (3) the AutoRegressive method (AR). The relative performance of these methods is evaluated and compared with the Fourier analysis method which provides the optimum performance in terms of the Maximum Likelihood (ML) criteria.

  9. Doppler lidar atmospheric wind sensor: reevaluation of a 355-nm incoherent Doppler lidar.

    PubMed

    Rees, D; McDermid, I S

    1990-10-01

    We reevaluate the performance of an incoherent Doppler lidar system operating at 354.7 nm, based on recent but well-proven Nd:YAG laser technology and currently available optical sensors. For measurements in the lower troposphere, up to ~5 km altitude, and also in the Junge-layer of the lower stratosphere, a wind component accuracy of +/- 2 m/s and a vertical resolution of 1 km should be obtained with a single pulse from a 1-J laser, operating at Polar Platform altitudes (700-850 km) and high scan angles (55 degrees ). For wind measurements in the upper troposphere (above ~5 km altitude) and stratosphere (above and below the Junge layer) the concentration of scatterers is much lower and higher energies would be required to maintain +/-2m/s accuracy and 1 km vertical resolution, using single laser pulses. Except for the region in the vicinity of the tropopause (10 km altitude), a 5-J pulse would be appropriate to make measurements in these regions. The worst case is encountered near 10 km altitude, where we calculate that a 15-J pulse would be required. To reduce this energy requirement, we would propose to degrade the altitude resolution from 1 km to 2-3 km, and also to consider averaging multiple pulses. Degrading the vertical and horizontal resolution could provide an acceptable method of obtaining the required wind accuracy without the penalty of using a laser of higher output power. We believe that a Doppler lidar system, employing a near ultraviolet laser with a pulse energy of 5 J, could achieve the performance objectives required by the major potential users of a global space-borne wind observing system.

  10. Automatic human micro-Doppler signature separation by Hough transform

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Jin, Tian; Qiu, Lei; Zhou, Zhimin

    2015-12-01

    The micro-Doppler signature is one of the most prominent information for target classification and identification. As Hough transform (HT) is an efficient tool for detecting weak straight target traces in the image, an HT based algorithm is proposed for micro-Doppler signature separation of multiple persons. Few seconds data is processed at one time to ensure human motion traces approximate to straight lines in the radar slow time-range image. Taking HT to the slow time-range image, each human's motion trace can be recovered through recursively searching the peaks in HT space. Applying time-frequency transform to the range cells around each recovered line, the human micro-Doppler signature can be achieved and separated. Experimental results are given to illustrate the validity of the proposed algorithm.

  11. Non-intrusive Shock Measurements Using Laser Doppler Vibrometers

    NASA Technical Reports Server (NTRS)

    Statham, Shannon M.; Kolaini, Ali R.

    2012-01-01

    Stud mount accelerometers are widely used by the aerospace industry to measure shock environments during hardware qualification. The commonly used contact-based sensors, however, interfere with the shock waves and distort the acquired signature, which is a concern not actively discussed in the community. To alleviate these interference issues, engineers at the Jet Propulsion Laboratory are investigating the use of non-intrusive sensors, specifically Laser Doppler Vibrometers, as alternatives to the stud mounted accelerometers. This paper will describe shock simulation tests completed at the Jet Propulsion Laboratory, compare the measurements from stud mounted accelerometers and Laser Doppler Vibrometers, and discuss the advantages and disadvantages of introducing Laser Doppler Vibrometers as alternative sensors for measuring shock environments.

  12. Effect of surface reflectivity on photonic Doppler velocimetry measurement

    NASA Astrophysics Data System (ADS)

    Wu, Xianqian; Xia, Weiguang; Wang, Xi; Song, Hongwei; Huang, Chenguang

    2014-05-01

    While photonic Doppler velocimetry (PDV) is becoming a common diagnostic for tracking velocity in shock physical experiments, its validity on measuring surfaces with different reflectivity is not studied. This paper investigates the effects of surface reflectivity on PDV measurement for tracking back free surface velocity in laser shock processing. Credible measurement results for coarse polished surfaces with low reflectivity are obtained, whereas fine polished surfaces with relatively high reflectivity lead to heterodyne fringes with high frequency and corresponding unreasonably fast velocities. This phenomenon reported in the paper is somewhat inconsistent with the general view that PDV has remarkable robustness to large changes in surface reflectivity. The reason might be ascribed to multiple reflections of light, which cause the generation of multiple Doppler shifts. The mixing of the reference light and those Doppler-shifted lights brings out high frequency heterodyne fringes resulting in high velocity. Low surface reflectivity is better suited for PDV measurements.

  13. Modeling and processing of laser Doppler reactive hyperaemia signals

    NASA Astrophysics Data System (ADS)

    Humeau, Anne; Saumet, Jean-Louis; L'Huiller, Jean-Pierre

    2003-07-01

    Laser Doppler flowmetry is a non-invasive method used in the medical domain to monitor the microvascular blood cell perfusion through tissue. Most commercial laser Doppler flowmeters use an algorithm calculating the first moment of the power spectral density to give the perfusion value. Many clinical applications measure the perfusion after a vascular provocation such as a vascular occlusion. The response obtained is then called reactive hyperaemia. Target pathologies include diabetes, hypertension and peripheral arterial occlusive diseases. In order to have a deeper knowledge on reactive hyperaemia acquired by the laser Doppler technique, the present work first proposes two models (one analytical and one numerical) of the observed phenomenon. Then, a study on the multiple scattering between photons and red blood cells occurring during reactive hyperaemia is carried out. Finally, a signal processing that improves the diagnosis of peripheral arterial occlusive diseases is presented.

  14. It's all in the past: Deconstructing the temporal Doppler effect.

    PubMed

    Aksentijevic, Aleksandar; Treider, John Melvin Gudnyson

    2016-10-01

    A recent study reported an asymmetry between subjective estimates of future and past distances with passive estimation and virtual movement. The temporal Doppler effect refers to the contraction of future distance judgments relative to past ones. We aimed to replicate the effect using real and imagined motion in both directions as well as different temporal perspectives. To avoid the problem of subjective anchoring, we compared real- and imagined-, ego- and time-moving conditions to a control group. Generally, Doppler-like distortion was only observed in conditions in which the distance between the participant and a frontal target increased. No effects of temporal perspective were observed. The "past-directed temporal Doppler effect" presents a challenge for the current theories of temporal cognition by demonstrating absence of psychological movement into the future. The effect could open new avenues in memory research and serve as a starting point in a systematic examination of how the humans construct future. PMID:27395440

  15. Doppler ultrasonography in lower extremity peripheral arterial disease.

    PubMed

    Verim, Samet; Taşçı, Ilker

    2013-04-01

    Systemic atherosclerosis is a condition which progresses with age, decreases quality of life, and life expectancy. Lower extremity peripheral arterial disease (PAD) is a common manifestation of systemic atherosclerosis in the elderly. These individuals have a 2 to 4 fold higher risk of coronary heart disease and stroke. In addition, systemic atherosclerosis causes overall functional disability including restricted lower extremity movements. When used alone for diagnostic purposes, claudication is an unreliable sign of PAD in all age groups especially the elderly. Moreover, claudication is difficult to define due to the advancing age and degenerative changes in lumbar and peripheral joints. Doppler ultrasonography (US) is an easily available and noninvasive means of arterial visualization in the lower extremities. In this review, supporting evidence for the use of Doppler US in the diagnosis of PAD will be discussed. Past and present recommendations regarding Doppler US in the current PAD guidelines will be overviewed.

  16. An introduction and guide to effective Doppler assessment.

    PubMed

    Benbow, Maureen

    2014-12-01

    Accurate and timely diagnosis of leg ulceration is an essential factor in making evidence-based, effective decisions regarding patient management with the aim of swift wound healing and/or referral to the appropriate specialty. Nurses are professionally responsible for ensuring that patients receive the appropriate assessment and evidence-based management. This article examines the most up-to-date guidance on Doppler ultrasound as a key element of this assessment. Approaches to assessment will be explored, with emphasis on the need to include a Doppler ultrasound as one key element of a larger, holistic assessment. An introduction to the ankle-brachial pressure index (ABPI) will be given, followed by a step-by-step guide to standard procedures for carrying out a full Doppler ultrasound. Alternative options for measuring ABPI are also provided. PMID:25478852

  17. Resting Doppler ankle brachial pressure index measurement: a literature review.

    PubMed

    Sihlangu, Dorcus; Bliss, Julie

    2012-07-01

    Peripheral vascular disease (PVD) is under-diagnosed in primary and acute settings. The use of Doppler ankle brachial pressure index (ABPI) is effective in diagnosing PVD , aid in determining aetiology of leg ulcers and is cost efficient in reducing the effects of atherosclerosis and cardiovascular events. The aim of this literature review was to review practitioners' experience in using Doppler ABPI, different skills used to measure ABPI and to examine practitioners' confidence in ABPI. The findings identified variation in method for Doppler measurement: including position of the artery, arm measurement, resting period and type of equipment for measuring blood pressure, variations in practitioners' training and experience have demonstrated variability in ABPI results. Although limited in number, the studies have demonstrated knowledge gap, and the need for training among health professionals. PMID:22875182

  18. Imaging nanoparticle flow using magneto-motive optical Doppler tomography.

    PubMed

    Kim, Jeehyun; Oh, Junghwan; Milner, Thomas E; Nelson, J Stuart

    2007-01-24

    We introduce a novel approach for imaging solutions of superparamagnetic iron oxide (SPIO) nanoparticles using magneto-motive optical Doppler tomography (MM-ODT). MM-ODT combines an externally applied temporally oscillating high-strength magnetic field with ODT to detect nanoparticles flowing through a microfluidic channel. A solenoid with a cone-shaped ferrite core extensively increased the magnetic field strength (B(max) = 1 T, [Formula: see text]) at the tip of the core and also focused the magnetic field in microfluidic channels containing nanoparticle solutions. Nanoparticle contrast was demonstrated in a microfluidic channel filled with an SPIO solution by imaging the Doppler frequency shift which was observed independently of the nanoparticle flow rate and direction. Results suggest that MM-ODT may be applied to image Doppler shift of SPIO nanoparticles in microfluidic flows with high contrast.

  19. Spaceborne Doppler Precipitation Radar: System Configurations and Performance Analysis

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Im, Eastwood

    2004-01-01

    Knowledge of the global distribution of the vertical velocity of precipitation is important in in the study of energy transportation in the atmosphere, the climate and weather. Such knowledge can only be directly acquired with the use of spaceborne Doppler precipitation radars. Although the high relative speed of the radar with respect to the rainfall particles introduces significant broadening in the Doppler spectrum, recent studies have shown that the average vertical velocity can be measured to acceptable accuracy levels by appropriate selection of radar parameters. Furthermore, methods to correct for specific errors arising from NUBF effects and pointing uncertainties have recently been developed. In this paper we will present the results of the trade studies on the performances of a spaceborne Doppler radar with different system parameters configurations.

  20. Monitoring variations of biological impedances using microwave Doppler radar.

    PubMed

    Thansandote, A; Stuchly, S S; Smith, A M

    1983-08-01

    A microwave Doppler radar for continuously monitoring time-varying biological impedances is described. The radar compares the phase of the signal scattered from a region of biological tissue with that of the transmitted signal. The phase changes of the scattered signal are an indication of the net impedance changes within the test region due to various physiological processes, for example, the displacements of blood vessels during the cardiac cycle. A Doppler radar, equipped with a matched antenna, was tested with a simulation model and its detection characteristic was found to be a sinusoidal function of the antenna-object spacing. Tests with healthy human subjects were also performed at 3 GHz and 10.5 GHz. It was found that the 3 GHz Doppler radar has significantly greater penetration in tissues but is less sensitive to changes of the biological impedance than the 10.5 GHz system.