Science.gov

Sample records for 2-nitroimidazole hypoxic cell

  1. Design of antiangiogenic hypoxic cell radiosensitizers: 2-nitroimidazoles containing a 2-aminomethylene-4-cyclopentene-1,3-dione moiety.

    PubMed

    Uto, Yoshihiro; Nagasawa, Hideko; Jin, Cheng-Zhe; Nakayama, Shinichi; Tanaka, Ayako; Kiyoi, Saori; Nakashima, Hitomi; Shimamura, Mariko; Inayama, Seiichi; Fujiwara, Tomoya; Takeuchi, Yoshio; Uehara, Yoshimasa; Kirk, Kenneth L; Nakata, Eiji; Hori, Hitoshi

    2008-06-01

    We designed chiral 2-nitroimidazole derivatives containing a 2-aminomethylene-4-cyclopentene-1,3-dione moiety as antiangiogenic hypoxic cell radiosensitizers. Based on results of molecular orbital calculations, the 2-aminomethylene-4-cyclopentene-1,3-dione moiety is expected to show high electrophilicity comparable to that of the 2-methylene-4-cyclopentene-1,3-dione moiety included in TX-1123 and tyrphostin AG17. We evaluated the antiangiogenic and radiosensitizing effects of the new compounds, along with other biological properties including their activities as hypoxic cytotoxicities and protein tyrosine kinase (PTK) inhibitory activities. Among the compounds tested, 5 (TX-2036) proved to be the strongest antiangiogenic hypoxic cell radiosensitizer. All the other chiral 2-nitroimidazole derivatives having 2-aminomethylene-4-cyclopentene-1,3-dione moiety tested were also antiangiogenic hypoxic cell radiosensitizers. The PTK inhibitory activity of 5 (TX-2036) showed this to be a promising and potent EGFR kinase inhibitor, having an IC(50) value of lower than 2microM. This compound also was an Flt-1 kinase inhibitor having an IC(50) value of lower than 20microM. Our results show that these chiral 2-nitroimidazole derivatives that contain the 2-aminomethylene-4-cyclopentene-1,3-dione moiety as a potent antiangiogenic pharmacophoric descriptor are promising lead candidates for the development of antiangiogenic hypoxic cell radiosensitizers.

  2. Bioreductive metabolism of AF-2[2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide] combined with 2-nitroimidazoles. Implications for use as hypoxic cell markers.

    PubMed

    Koch, C J; Giandomenico, A R; Iyengar, C W

    1993-09-14

    Metabolism of misonidazole under hypoxic conditions depletes the parent drug and causes about 4% of the reduced-drug-products to form adducts with cellular macromolecules (binding), and this process has been used to detect hypoxia in cells and tissues. The nitrofuran, AF-2 [2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide] has been shown to increase both the metabolic depletion of misonidazole and its binding. In the present study, factors which might affect this process have been examined, in an in vitro system, to test the hypothesis that metabolic depletion of misonidazole could limit its ability to diffuse freely to the hypoxic cell population. Drastic reductions in glucose concentrations from their normal value of 5-10 mM to less than 0.5 mM had no significant effect on the metabolism of either misonidazole or AF-2. Similarly, glucose concentration did not influence the binding of misonidazole, even when concentrations of both oxygen (extreme hypoxia) and glucose were near zero--a very toxic biochemical environment. Similarly, the metabolism of the nitroheterocyclics had no effect on glucose consumption. The bioreductive depletion of misonidazole in extreme hypoxia appeared to be independent of drug concentration between 25 and 100 microM: this nearly zero-order rate of drug metabolism prevented the possibility of working at constant drug concentration. AF-2 exacerbated this effect by greatly enhancing the metabolic depletion of misonidazole. AF-2 was found to increase both the metabolic depletion and binding of misonidazole by the same factor. An unexpected finding was that metabolism of etanidazole, a 2-nitroimidazole closely related to misonidazole, was not enhanced by AF-2. Micromolar amounts of oxygen inhibited the reductive activation of AF-2, and also the interaction between AF-2 and misonidazole. Our results suggest that metabolic depletion of nitroheterocyclics could influence their ability to diffuse adequately to hypoxic tissues, particularly at the low

  3. Induction of mutations in V79-4 mammalian cells under hypoxic and aerobic conditions by the cytotoxic 2-nitroimidazole-aziridines, RSU-1069 and RSU-1131. The influence of cellular glutathione.

    PubMed

    Sapora, O; Paone, A; Maggi, A; Jenner, T J; O'Neill, P

    1992-10-06

    Incubation of the 2-nitroimidazole-aziridine, RSU-1069 [1-(2-nitro-1-imidazolyl)-3-(1-aziridinyl)-2-propanol], and its monomethylaziridine analogue, RSU-1131 [1-(2-nitro-1-imidazolyl)-3-(1-(2-methylaziridinyl))-2-propanol], with V79-4 mammalian cells for 2 hr under aerobic or hypoxic conditions induces mutations as measured at the hypoxanthine phosphoribosyl transferase locus. The ability of these agents to induce mutations is increased by a factor of 12-14 under hypoxic conditions. The increased cytotoxicity of these agents under hypoxic conditions was confirmed following a 2 hr incubation period. Decreasing the glutathione (GSH) content of the cells with buthionine-(S,R)-sulphoximine to < 1% of the control generally results in an increase in the cytotoxicity and mutagenicity of these agents under both aerobic and hypoxic conditions. Since these agents do not modify the cellular GSH levels, it is inferred that the thiols partially detoxify through removal of a reactive metabolite of the agents, under hypoxic conditions, or removal of known DNA adducts, and not through their interaction with the agents themselves. Under aerobic conditions, the formation of mutations is consistent with the established monofunctional action of these agents whereas under hypoxic conditions the bifunctional action predominates for mutation induction, based upon the large differential aerobic:hypoxic effect. From a comparison of the number of mutations per lethal event, the effect of thiol depletion is more pronounced for cytotoxicity than for mutation induction by these agents. In summary, these agents are considered to be weak mutagens towards V79-4 cells under aerobic conditions when compared with other DNA alkylating agents, although they are more potent under anoxic conditions.

  4. Preparation, toxicity and mutagenicity of 1-methyl-2-nitrosoimidazole. A toxic 2-nitroimidazole reduction product.

    PubMed

    Noss, M B; Panicucci, R; McClelland, R A; Rauth, A M

    1988-07-01

    1-Methyl-2-nitrosoimidazole (INO), the 2-electron reduction product of 1-methyl-2-nitroimidazole (INO2), was prepared by electrochemical reduction of INO2 to 2-hydroxylamino-1-methyl-imidazole (INHOH), followed by back oxidation with iodine. Although stable in crystalline form, INO reacted in water, phosphate-buffered saline, and mammalian cell growth medium. Half-lives for decay were determined by UV-visible spectroscopy. INO was found to be highly toxic towards Chinese hamster ovary (CHO) cells, concentrations of 10-60 microM producing significant cytotoxicity. The rate of INO decay was found to be increased in the presence of CHO cells. INO was also toxic and mutagenic towards Salmonella typhimurium TA-100. When compared on a molar basis to the parent nitro compound INO2, and the 4- and 6-electron reduction products INHOH and 2-amino-1-methylimidazole (INH2), INO was by far (two orders of magnitude) the most toxic under aerobic conditions. These results suggest that the nitroso reduction product of 2-nitroimidazoles may be the reduced species responsible for hypoxic cell selective toxicity of 2-nitroimidazoles.

  5. Optical isomers of a new 2-nitroimidazole nucleoside analog (PR-350 series): Radiosensitization efficiency and toxicity

    SciTech Connect

    Oya, Natsuo; Sasai, Keisuke; Shibata, Toru

    1995-08-30

    A new 2-nitroimidazole nucleoside radiosensitizer, PR-350 (1-[1{prime},3{prime},4{prime}-trihydroxy-2{prime}-butoxy]-methyl-2-nitroimidazole), has been reported to be as efficient as and less toxic than etanidazole. This compound is racemic, and it was recently optically resolved into two isomers, PR-68 (2{prime}R,3{prime}S type) and PR-69 (2{prime}S,3{prime}R type). The other two isomers, PR-28 (2{prime}S,3{prime}S type) and PR-44 (2{prime}R,3{prime}R type), were asymmetrically synthesized. In the present study, we investigated the properties, sensitizing activity, and toxicity of PR-350 and the four optical isomers in comparison with those of other 2-nitroimidazole hypoxic cell radiosensitizers, etanidazole, KU-2285, KIN-804, and RP-170. Because PR-350 and PR-28 can be industrially synthesized, we evaluated whether either of these two drugs are suitable for further investigation. In vivo radiosensitizing activity differed among the four optical isomers, which appeared to be due, at least in part, to differences in lipophilicity. Although PR-28 was the least toxic, its low sensitization efficiency does not warrant clinical trials. Among the PR compounds, PR-68 appears to be most efficient, but optical resolution of PR-68 from PR-350 is expensive, and asymmetrical synthesis of PR-68 is not established. Therefore, PR-350 seems to be most suitable for further investigation among the PR-350 series compounds, considering its higher efficiency compared with PR-28 and PR-44, and established synthesis. 28 refs., 7 figs., 1 tab.

  6. Imaging Mass Spectrometry Revealed the Accumulation Characteristics of the 2-Nitroimidazole-Based Agent “Pimonidazole” in Hypoxia

    PubMed Central

    Yoshioka, Takeshi; Feng, Fei; Zhao, Songji; Higashino, Kenichi; Numata, Yoshito; Kuge, Yuji

    2016-01-01

    Hypoxia, or low oxygen concentration, is a key factor promoting tumor progression and angiogenesis and resistance of cancer to radiotherapy and chemotherapy. 2-Nitroimidazole-based agents have been widely used in pathological and nuclear medicine examinations to detect hypoxic regions in tumors; in particular, pimonidazole is used for histochemical staining of hypoxic regions. It is considered to accumulate in hypoxic cells via covalent binding with macromolecules or by forming reductive metabolites after reduction of its nitro group. However, the detailed mechanism of its accumulation remains unknown. In this study, we investigated the accumulation mechanism of pimonidazole in hypoxic tumor tissues in a mouse model by mass spectrometric analyses including imaging mass spectrometry (IMS). Pimonidazole and its reductive metabolites were observed in the tumor tissues. However, their locations in the tumor sections were not similar to the positively stained areas in pimonidazole-immunohistochemistry, an area considered hypoxic. The glutathione conjugate of reduced pimonidazole, a low-molecular-weight metabolite of pimonidazole, was found in tumor tissues by LC-MS analysis, and our IMS study determined that the intratumor localization of the glutathione conjugate was consistent with the area positively immunostained for pimonidazole. We also found complementary localization of the glutathione conjugate and reduced glutathione (GSH), implying that formation of the glutathione conjugate occurred in the tumor tissue. These results suggest that in hypoxic tumor cells, pimonidazole is reduced at its nitro group, followed by conjugation with GSH. PMID:27580239

  7. Imaging Mass Spectrometry Revealed the Accumulation Characteristics of the 2-Nitroimidazole-Based Agent "Pimonidazole" in Hypoxia.

    PubMed

    Masaki, Yukiko; Shimizu, Yoichi; Yoshioka, Takeshi; Feng, Fei; Zhao, Songji; Higashino, Kenichi; Numata, Yoshito; Kuge, Yuji

    2016-01-01

    Hypoxia, or low oxygen concentration, is a key factor promoting tumor progression and angiogenesis and resistance of cancer to radiotherapy and chemotherapy. 2-Nitroimidazole-based agents have been widely used in pathological and nuclear medicine examinations to detect hypoxic regions in tumors; in particular, pimonidazole is used for histochemical staining of hypoxic regions. It is considered to accumulate in hypoxic cells via covalent binding with macromolecules or by forming reductive metabolites after reduction of its nitro group. However, the detailed mechanism of its accumulation remains unknown. In this study, we investigated the accumulation mechanism of pimonidazole in hypoxic tumor tissues in a mouse model by mass spectrometric analyses including imaging mass spectrometry (IMS). Pimonidazole and its reductive metabolites were observed in the tumor tissues. However, their locations in the tumor sections were not similar to the positively stained areas in pimonidazole-immunohistochemistry, an area considered hypoxic. The glutathione conjugate of reduced pimonidazole, a low-molecular-weight metabolite of pimonidazole, was found in tumor tissues by LC-MS analysis, and our IMS study determined that the intratumor localization of the glutathione conjugate was consistent with the area positively immunostained for pimonidazole. We also found complementary localization of the glutathione conjugate and reduced glutathione (GSH), implying that formation of the glutathione conjugate occurred in the tumor tissue. These results suggest that in hypoxic tumor cells, pimonidazole is reduced at its nitro group, followed by conjugation with GSH.

  8. Flow cytometric evaluation of hypoxic cells in solid experimental tumours using fluorescence immunodetection.

    PubMed Central

    Hodgkiss, R. J.; Jones, G.; Long, A.; Parrick, J.; Smith, K. A.; Stratford, M. R.; Wilson, G. D.

    1991-01-01

    Numerous methods have been proposed for the detection of hypoxic cells using nitroimidazoles labelled with both radioactive and stable isotopes where the isotopic label becomes bound as a result of reductive metabolism of the nitro group. A new probe for hypoxia, 7-(4'-(2-nitroimidazol-l-yl)-butyl)-theophylline, is described where an immunologically recognisable hapten (theophylline) is covalently linked to a 2-nitroimidazole. Bioreduction of the nitroimidazole leads to binding of bioreductive metabolites, and hence the theophylline side-chain, to intracellular molecules. Immunochemical procedures are then used to stain cells containing the bound theophylline using an FITC-conjugated anti-serum. Flow cytometric analysis of stained cells is facilitated by co-staining cellular DNA, which allows discrimination of single cells in the sample and rejection of cell clumps and debris. The alternative use of an immunoperoxidase-conjugated anti-serum has been used to demonstrate the localisation of hypoxic cells in frozen tumour sections. Images Figure 8 PMID:1989649

  9. Clinical perspectives for the use of new hypoxic cell sensitizers

    SciTech Connect

    Brown, J.M.

    1982-09-01

    Experience with high pressure oxygen in combination with radiotherapy has shown that, for some tumors at least, the presence of hypoxic cells is a limiting factor in the ability to cure these tumors even with conventional daily fractionation. This suggests that hypoxic cell radiosensitizers, of which misonidazole (MISO) is the prototype drug, may play a role in improving the cure-rate of some tumors when combined with daily fractionation. Even for those tumors for which no improvement is seen when combined with daily fractionation, it is likely that there will be an important role for these sensitizers by using them in combination with regimens of only a few dose fractions. Because of the limiting side effects of neuropathy, a less toxic radiosensitizer than MISO is required to gain the full clinical benefit of these drugs. A possible way of achieving this is to reduce the lipid solubility (lipophilicity) of the compounds while still retaining their electron-affinity. This reduces the concentration of drug in the neural tissues (brain, peripheral nerves) without affecting the tumor concentration. However, if the lipophilicity is too low, the drugs are unable to enter the hypoxic cells and hence lose their radiosensitivity efficiency. It would appear that a lipophilicity given by an octanol:water partition coefficient of approximately 0.04 is optimum (cf. MISO = 0.43) with the 2-nitroimidazole amide SR-2508 the best in this series. Tumor levels of this drug of at least 7-8 times those obtained with MISO should be attainable clinically for no increase in neurotoxicity. Another property of electron-affinic sensitizers shows clinical promise. This is their ability to preferentially sensitize tumors compared to normal tissues to the cytotoxic action of several chemotherapeutic agents.

  10. Assessment of the repair and damage of DNA induced by parent and reduced RSU-1069, a 2-nitroimidazole-aziridine.

    PubMed

    O'Neill, P; Cunniffe, S M

    1989-04-01

    The cellular repair and damage of DNA induced by parent and reduced RSU-1069, a 2-nitroimidazole-aziridine, was assessed at both the molecular and cellular level. At the molecular level, after in vitro incubation with parent or reduced RSU-1069, plasmid DNA was transfected into Escherichia coli (AB1157) with subsequent selection for gene expression. For equivalent levels of DNA strand breakage following such treatment it is evident from the relative transformation frequencies that interactions with reduced RSU-1069 lead to DNA damage consistent with bifunctional action of a metabolite(s). At the cellular level, the cytoxicity of RSU-1069 was determined for a series of repair deficient mutants of E. coli under both aerobic and hypoxic conditions. The differential aerobic:hypoxic cytotoxicity ratio is approximately 3. We conclude that the repair of cellular DNA damage induced by RSU-1069 involves activation of the gene products under the control of the recA gene and not those under the control of the ada gene. The ability of cellular systems to repair damage induced by RSU-1069 may play a significant role in determining its efficiency to act as a hypoxic cell radiosensitizer and a hypoxia selective cytotoxin.

  11. Radiosensitization by a new nucleoside analogue: 1-(2-hydroxy-1-(hydroxymethyl)ethoxy)methyl-2-nitroimidazole (RP-170)

    SciTech Connect

    Murayama, C.; Suzuki, A.; Suzuki, T.; Miyata, Y.; Sakaguchi, M.; Tanabe, Y.; Tanaka, N.; Mori, T. )

    1989-09-01

    A new potent hypoxic cell sensitizer, a 2-nitroimidazole nucleoside analogue having methoxyglycerol as a sugar moiety at the N-1 position of the imidazole ring (RP-170), has been synthesized. Its radiosensitizing activities in vitro and in vivo were investigated and compared with those of misonidazole (MISO) and etanidazole (SR-2508). As might be expected from the almost identical electron affinities of the three compounds, they were equally effective against hypoxic EMT6 cells in vitro. The in vivo-in vitro excision analysis showed that RP-170 was also as effective as MISO and etanidazole to radiosensitize solid tumor cells in vivo. An intraperitoneal administration of 200 mg/kg of RP-170 and an intravenous administration of the same dose of etanidazole showed an equal sensitizer-enhancement ratio of 1.51 to solid EMT6/KU tumors. Its effectiveness was also demonstrated by growth delay assay using solid SCCVII tumors. As predicted from the low partition coefficient, RP-170 and etanidazole showed apparently lower toxicity in vivo than MISO; their LD50/14 were 4.3, 4.8, and 1.8 g/kg in our experiment, respectively. Moreover, RP-170 showed fast clearance from serum in mice (t1/2 = 10.24 min) and poor penetration into neural tissues. Although RP-170 does not show any advantages over etanidazole in terms of sensitization or toxicity, RP-170 might be preferable under certain circumstances because it can be given orally.

  12. Studies of methyl 2-nitroimidazole-1-acetohydroxamate (KIN-804) 1: effect on free radical scavenging system in mice bearing Ehrlich ascites carcinoma.

    PubMed

    Abu-Zeid, M; Hori, H; Nagasawa, H; Uto, Y; Inayama, S

    2000-02-01

    Methyl 2-nitroimidazole-1-acetohydroxamate (KIN-804) is a 2-nitroimidazole derivative containing a hydroxamate side chain designed to enhance the radiosensitization response of hypoxic cells. The possible sensitization of tumor tissue by KIN-804 can be evaluated through investigation of the levels of the free radical scavengers; namely, glutathione (GSH) and its complex enzyme system including glutathione reductase (GR) and glutathione peroxidase (GSH-Px), as well as glucose-6-phosphate dehydrogenase (G-6-PD). Female albino mice were inoculated with Ehrlich carcinoma in the thigh. Administration of KIN-804 (i.p. 80 mg/kg body weight) was carried out 20 min before localized irradiation of 10 Gy. The data revealed that KIN-804 administration, followed or not by gamma irradiation, resulted in a significant decrease in GSH content in tumor tissues associated with inhibition in GR and G-6-PD activities. Blood GSH-Px was enhanced in tumor inoculated mice and the administration of KIN-804 returned it to the normal value. These changes were more noticeable in tumor bearing mice exposed to both KIN-804 and irradiation.

  13. Marking hypoxic cells for complement and cytotoxic T lymphocyte-mediated lysis: using pimonidazole.

    PubMed Central

    Chou, S. C.; Flood, P. M.; Raleigh, J. A.

    1996-01-01

    Artificial antigens are created when 2-nitroimidazoles bind to hypoxic cells. These antigens have been used in the immunodetection of tumour hypoxia but they might also serve to stimulate immune lysis of hypoxic tumour cells by complement- and cell-mediated processes. In order to test this hypothesis, lymphocytes isolated from the spleens of C3H/HeN mice that had been immunised with pimonidazole-labelled 3152-PRO cells were subcultured and tested for their ability to lyse chromium-51 loaded, pimonidazole-labelled 3152-PRO cells in an in vitro assay. In a parallel study, commercially available, rabbit complement was tested for its ability to lyse pimonidazole-labelled V79-4 cells in the presence of monoclonal antibodies which recognise protein adducts of reductively activated pimonidazole. Complement-mediated cell lysis was measured by means of an MTT assay. Complement-mediated and cell-mediated lysis was observed at pimonidazole concentrations which, in themselves, do not produce cell killing. PMID:8763883

  14. 2-Nitroimidazole-ruthenium polypyridyl complex as a new conjugate for cancer treatment and visualization.

    PubMed

    Mazuryk, Olga; Maciuszek, Monika; Stochel, Grażyna; Suzenet, Franck; Brindell, Małgorzata

    2014-05-01

    A novel long-lifetime highly luminescent ruthenium polypyridyl complex containing 2-nitroimidazole moiety [Ru(dip)2(bpy-2-nitroIm)]Cl2 (dip=4,7-diphenyl-1,10-phenanthroline, bpy-2-nitroIm=4-[3-(2-nitro-1H-imidazol-1-yl)propyl]-2,2'-bipyridine) has been designed cancer treatment and imaging. The luminescence properties of the synthesized compound strongly depend on the oxygen concentration. Under oxygen-free conditions quantum yield of luminescence and the average lifetime of emission were found to be 0.034 and 1.9 μs, respectively, which is ca. three times higher in comparison to values obtained in air-equilibrated solution. The binding properties of the investigated ruthenium complex to human serum albumin have been studied and the apparent binding constant for the formation of the protein-ruthenium adduct was determined to be 1.1×10(5)M(-1). The quantum yield and the average lifetime of emission are greatly enhanced upon binding of ruthenium compound to the protein. The DNA binding studies revealed two distinguished binding modes which lead to a decrease in luminescence intensity of ruthenium complex up to 60% for [DNA]/[Ru]<2, and enhancement of emission for [DNA]/[Ru]>80. Preliminary biological studies confirmed fast and efficient accumulation of the ruthenium complex inside cells. Furthermore, the ruthenium complex was found to be relatively cytotoxic with LD50 of 12 and 13 μM for A549 and CT26 cell lines, respectively, under normoxic conditions. The retention and cellular uptake of ruthenium complex is enhanced under hypoxic conditions and its LD50 decreases to 8 μM for A549 cell line. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Lipid Accumulation in Hypoxic Tissue Culture Cells

    PubMed Central

    Gordon, Gerald B.; Barcza, Maureen A.; Bush, Marilyn E.

    1977-01-01

    Lipid droplets have long been recognized by light microscopy to accumulate in hypoxic cells both in vivo and in vitro. In the present tissue culture experiments, correlative electron microscopic observations and lipid analyses were performed to determine the nature and significance of lipid accumulation in hypoxia. Strain L mouse fibroblasts were grown in suspension culture, both aerobically and under severe oxygen restriction obtained by gassing cultures daily with an 8% CO2-92% nitrogen mixture. After 48 hours, hypoxic cells showed an increase in total lipid/protein ratio of 42% over control cells. Most of this increase was accounted for by an elevation in the level of cellular triglyceride from 12.3 ± 0.9 μg/mg cell protein in aerobic cultures to 41.9 ± 0.7 in the hypoxic cultures, an increase of 240%. Levels of cellular free fatty acids (FFA) were 96% higher in the hypoxic cultures. No significant changes in the levels of cellular phospholipid or cholesterol were noted. Electron microscopic examination revealed the accumulation of homogeneous cytoplasmic droplets. The hypoxic changes were reversible upon transferring the cultures to aerobic atmospheres with disappearance of the lipid. These experiments indicate that hypoxic injury initially results in triglyceride and FFA accumulation from an inability to oxidize fatty acids taken up from the media and not from autophagic processes, as described in other types of cell injury associated with the sequestration of membranous residues and intracellular cholesterol and phospholipid accumulation. ImagesFigure 3Figure 4Figure 5Figure 6Figure 7Figure 1Figure 2 PMID:196505

  16. Priming of the Cells: Hypoxic Preconditioning for Stem Cell Therapy.

    PubMed

    Wei, Zheng Z; Zhu, Yan-Bing; Zhang, James Y; McCrary, Myles R; Wang, Song; Zhang, Yong-Bo; Yu, Shan-Ping; Wei, Ling

    2017-10-05

    Stem cell-based therapies are promising in regenerative medicine for protecting and repairing damaged brain tissues after injury or in the context of chronic diseases. Hypoxia can induce physiological and pathological responses. A hypoxic insult might act as a double-edged sword, it induces cell death and brain damage, but on the other hand, sublethal hypoxia can trigger an adaptation response called hypoxic preconditioning or hypoxic tolerance that is of immense importance for the survival of cells and tissues. This review was based on articles published in PubMed databases up to August 16, 2017, with the following keywords: "stem cells," "hypoxic preconditioning," "ischemic preconditioning," and "cell transplantation." Original articles and critical reviews on the topics were selected. Hypoxic preconditioning has been investigated as a primary endogenous protective mechanism and possible treatment against ischemic injuries. Many cellular and molecular mechanisms underlying the protective effects of hypoxic preconditioning have been identified. In cell transplantation therapy, hypoxic pretreatment of stem cells and neural progenitors markedly increases the survival and regenerative capabilities of these cells in the host environment, leading to enhanced therapeutic effects in various disease models. Regenerative treatments can mobilize endogenous stem cells for neurogenesis and angiogenesis in the adult brain. Furthermore, transplantation of stem cells/neural progenitors achieves therapeutic benefits via cell replacement and/or increased trophic support. Combinatorial approaches of cell-based therapy with additional strategies such as neuroprotective protocols, anti-inflammatory treatment, and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the recent progress regarding cell types and applications in regenerative medicine as well as future applications.

  17. Radiosensitization of hypoxic bacterial cells by nitroimidazoles of low lipophilicity: steady-state and rapid-mix studies

    SciTech Connect

    Anderson, R.F.; Patel, K.B.; Sehmi, D.S.

    1981-03-01

    Radiosensitization of hypoxic bacterial cells by five 2-nitroimidazoles, with similar reduction potentials to misonidazole but having lower lipophilicites, has been measured in Escherichia coli AB 1157 and Streptococcus lactis 712. Sensitization efficiency progressively decreased with decreasing lepophilicity in E. coli but not in S. lactis. This difference is discussed in terms of the differing membrane properties of the two bacteria; E. coli resembled a multicompartment model, as would also be expected with mammalian cells. Rapid-mix experiments are described which show that the radiosensitization observed after experiments are described which show that the radiosensitization observed after preirradiation contact times between ca. 3 and 30 msec is dependent on the lipophilicity of the sensitizer, higher lipophilicity resulting in a lower contact time being required for radiosensitization. This result and the observation that a highly lipophilic compound affects only half the full oxygen enhancement level after short contact times suggest that part of the sensitization process occurs in a lipophilic compartment of the cell.

  18. Evaluation of nitrobenzimidazoles as hypoxic cell radiosensitizers

    SciTech Connect

    Wright, J.; Frank, L.R.; Bush, D.; Harrison, G.H.

    1983-07-01

    Radiobiological and pharmacokinetic assays were performed to determine the potential of 2-nitrobenzimidazole (NBI) as a hypoxic cell radiosensitizing agent. As judged by comparing survival curve slopes of Serratia marcescens irradiated under aerated and hypoxic conditions, the NBI enhancement ratio (ER) at 2 mM concentration was 2.4 +/- 0.2, compared with an oxygen enhancement ratio of 3.3 +/- 0.3. 2,5-Dinitrobenzimidazole (DNBI) was investigated in vitro; its ER was 3.0 +/- 0.3 at 4 mM concentration. Very poor tissue penetration of DNBI precluded further testing in vivo. Acute toxic signs appeared in C3H/HeJ mice following ip injection of NBI at 100 mg/kg. These would be partly attributable to the stress caused by the high pH of the injection vehicle. The LD50 was estimated to be 125-150 mg/kg. Mammary adenocarcinoma tumors grown in the flanks of these mice exhibited maximum NBI levels at 5 min postinjection (ip). Peak tumor radiosensitization occurred in the interval between 5 and 10 min postinjection. The ER for tumor regrowth delay was 2.1 +/- 0.3 following 50 mg/kg injected into mice 5 min before irradiation. Functional evaluation up to 40 days after treatment revealed no evidence of neurological deficit.

  19. Characterization and properties of monoammine nitroimidazole complexes of platinum (PtCl sub 2 (NH sub 3 )(NO sub 2 Im)). Crystal and molecular structure of cis-Amminedichloro(1-((((2-hydroxyethyl)amino)carbonyl)methyl)-2-nitroimidazole)platinum(II)

    SciTech Connect

    Rochon, F.D.; Pichang Kong; Melanson, R. ); Skov, K.A. ); Farrell, N. )

    1991-11-27

    The characterization of monoammine(nitroimidazole)platinum(II) complexes of structure (PtCl{sub 2}(NH{sub 3})(NO{sub 2}Im)) (NO{sub 2}Im = 1-((((2-hydroxyethyl)amino)carbonyl)methyl)-2-nitroimidazole, Etanidazole (I), 1-(2-nitro-1-imidazolyl)-3-methoxy2-propanol, Misonidazole (II), and 1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole, Metronidazole (III)) is reported. Both is cis and trans isomers may be isolated for II and III. The crystal structure of cis-amminedichloro(1-((((2-hydroxyethyl)amino)carbonyl)methyl)-2-nitroimidazole)platinum(II) has been determined by X-ray diffraction. The crystals are orthorhombic, space group Pnab with cell dimensions a = 14.867 (7) {angstrom}, b = 9.915 (5) {angstrom}, c = 19.015 (9) {angstrom}, and Z = 8. The structure was refined to R = 0.062 and R{sub w} = 0.052. Platinum has the expected square-planar coordination. The Pt-Cl bond trans to the nitroimidazole ligand is shorter (2.269 (3) {angstrom}) than normal. The dihedral angle between the platinum plane and the imidazole ring is 111{degree}, while the nitro group makes an angle of 31{degree} with the imidazole ring plane. Electrochemistry and {sup 195}Pt NMR data are also reported. The relevance of the chemical properties to their biological properties as radiosensitizers and hypoxic cytotoxins is discussed.

  20. Targeting tumor hypoxia with 2-nitroimidazole-indocyanine green dye conjugates

    PubMed Central

    Xu, Yan; Zanganeh, Saeid; Mohammad, Innus; Aguirre, Andres; Wang, Tianheng; Yang, Yi; Kuhn, Liisa; Smith, Michael B.

    2013-01-01

    Abstract. Tumor hypoxia is a major indicator of treatment resistance to chemotherapeutic drugs, and fluorescence optical tomography has tremendous potential to provide clinically useful, functional information by identifying tumor hypoxia. The synthesis of a 2-nitroimidazole-indocyanine green conjugate using a piperazine linker (piperazine-2-nitroimidazole-ICG) capable of robust fluorescent imaging of tumor hypoxia is described. In vivo mouse tumor imaging studies were completed and demonstrate an improved imaging capability of the new dye relative to an earlier version of the dye that was synthesized with an ethanolamine linker (ethanolamine-2-nitroimidazole-ICG). Mouse tumors located at imaging depths of 1.5 and 2.0 cm in a turbid medium were imaged at various time points after intravenous injection of the dyes. On average, the reconstructed maximum fluorescence concentration of the tumors injected with piperazine-2-nitroimidazole-ICG was twofold higher than that injected with ethanolamine-2-nitroimidazole-ICG within 3 h postinjection period and 1.6 to 1.7 times higher beyond 3 h postinjection. The untargeted bis-carboxylic acid ICG completely washed out after 3 h postinjection. Thus, the optimal window to assess tumor hypoxia is beyond 3 h postinjection. These findings were supported with fluorescence images of histological sections of tumor samples and an immunohistochemistry technique for identifying tumor hypoxia. PMID:23764695

  1. Targeting tumor hypoxia with 2-nitroimidazole-indocyanine green dye conjugates

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Zanganeh, Saeid; Mohammad, Innus; Aguirre, Andres; Wang, Tianheng; Yang, Yi; Kuhn, Liisa; Smith, Michael B.; Zhu, Quing

    2013-06-01

    Tumor hypoxia is a major indicator of treatment resistance to chemotherapeutic drugs, and fluorescence optical tomography has tremendous potential to provide clinically useful, functional information by identifying tumor hypoxia. The synthesis of a 2-nitroimidazole-indocyanine green conjugate using a piperazine linker (piperazine-2-nitroimidazole-ICG) capable of robust fluorescent imaging of tumor hypoxia is described. In vivo mouse tumor imaging studies were completed and demonstrate an improved imaging capability of the new dye relative to an earlier version of the dye that was synthesized with an ethanolamine linker (ethanolamine-2-nitroimidazole-ICG). Mouse tumors located at imaging depths of 1.5 and 2.0 cm in a turbid medium were imaged at various time points after intravenous injection of the dyes. On average, the reconstructed maximum fluorescence concentration of the tumors injected with piperazine-2-nitroimidazole-ICG was twofold higher than that injected with ethanolamine-2-nitroimidazole-ICG within 3 h postinjection period and 1.6 to 1.7 times higher beyond 3 h postinjection. The untargeted bis-carboxylic acid ICG completely washed out after 3 h postinjection. Thus, the optimal window to assess tumor hypoxia is beyond 3 h postinjection. These findings were supported with fluorescence images of histological sections of tumor samples and an immunohistochemistry technique for identifying tumor hypoxia.

  2. Glyoxylic compounds as radiosensitizers of hypoxic cells

    SciTech Connect

    Cornago, M.P.; Lopez Zumel, M.C.; Alvarez, M.V.; Izquierdo, M.C. )

    1990-06-01

    The radiosensitizing effect of five glyoxal derivatives on the survival of TC-SV40 cells has been measured, under aerobic and hypoxic conditions. A toxicity study was previously performed in order to use nontoxic concentrations. The OER for the TC-SV40 cells was 2.74. None of the glyoxylic compounds showed radiosensitizing activity under aerobic conditions while in hypoxia their radiosensitizing factors decreased in the order phenylglyoxylic acid (1.68 at 8 x 10(-3) mole dm-3) greater than phenylglyoxal (1.55 at 5 x 10(-6) mole dm-3) greater than 2-2' furil (1.48 at 5 x 10(-5) mole dm-3) greater than glyoxylic acid (1.39 at 1 x 10(-3) mole dm-3) greater than glyoxal (1.30 at 5 x 10(-5) mole dm-3). The dose-modifying factors were also determined at two equimolar concentrations 5 x 10(-5) and 5 x 10(-6) mole dm-3. A concentration effect was noticed for all the compounds although their relative radiosensitizing activity kept, independently of the concentration, the same order noted above. Glyoxals with aromatic or heterocyclic rings exert a greater radiosensitization than the others. The acidic compounds have less radiosensitizing activity than their aldehydic counterparts. Interaction of these glyoxals with NPSH cellular groups was tested and the low degree of inhibition shows that this mechanism would contribute very little, if any, to the radiosensitization effect.

  3. Stem cells, telomerase regulation and the hypoxic state.

    PubMed

    Mathews, Juanita; Davy, Philip M C; Gardner, Lauren H; Allsopp, Richard C

    2016-01-01

    The cellular response to a hypoxic environment is regulated by hypoxia inducible factors. Hypoxia inducible factor 1 alpha (Hif1alpha) in particular, is tightly regulated by the hypoxic environment in most cells, and plays an important role in regulating the stress response of cells to hypoxia. Interestingly, substantial observations are now emerging that point to an important role for Hif1alpha in stem cells, including embryonic stem cells, neuronal stem cells and hematopoietic stem cells. Notably, Hif1alpha has been shown to enhance self renewal of stem cells, mediate a shift to glycolytic metabolism, and promote telomerase expression.

  4. Pharmacokinetics and metabolism of the mixed-function hypoxic cell sensitizer prototype RSU 1069 in mice.

    PubMed

    Walton, M I; Workman, P

    1988-01-01

    RSU 1069 is a leading compound in the class of mixed-function hypoxic cell sensitizers. Possessing an alkylating aziridine function as well as a nitro group, it represents an important prototype molecule for new sensitizer development. Using a novel HPLC assay for RSU 1069 and its metabolites with a cyanopropyl column, we studied the detailed pharmacokinetics and metabolism of this drug in mice. An i.v. dose of 100 mg kg-1 produced peak plasma concentrations of about 100 micrograms ml-1. Absorption was rapid after i.p. injection but peak plasma concentrations were some three- to fourfold lower, giving an i.p. bioavailability of 55%. The elimination t1/2 was route-dependent; e.g. after 50 mg kg-1 the t1/2 was 37.2 and 22.4 min for the i.v. and i.p. routes respectively (P less than 0.001). There was also an indication of dose-dependent kinetics, with a 37% increase in elimination t1/2 when the i.p. dose was doubled from 50 to 100 mg kg-1. Oral bioavailability was low. The volume of distribution was 0.65-1.31 ml g-1 at 50 mg kg-1, but tissue penetration was limited. Brain/plasma ratios ranged from 9.3% to 66.8%, while the mean steady-state tumour/plasma ratio was 28.4%, a value considerably less than the 80%-100% ratios occurring with the neutral 2-nitroimidazole misonidazole. About 18% and 8% of a dose were excreted as the parent drug and the ring-opened hydrolysis product (RSU 1137) in the 8 h urine, indicating the likelihood of extensive metabolism via aziridine-ring removal and nitroreduction. RSU 1137 was also detected in mouse plasma and tissues and, in contrast to the aziridine ring-intact parent compound, gave tumour/plasma ratios of 100%. These studies should provide a pharmacokinetic basis for the evaluation and development of improved mixed-function sensitizers.

  5. Proline oxidase promotes tumor cell survival in hypoxic tumor microenvironments

    PubMed Central

    Liu, Wei; Glunde, Kristine; Bhujwalla, Zaver M.; Raman, Venu; Sharma, Anit; Phang, James M.

    2012-01-01

    Proline is a readily released stress substrate that can be metabolized by proline oxidase (POX) to generate either reactive oxygen species to induce apoptosis or autophagy or ATP during times of nutrient stress. However, the contribution of proline metabolism to tumorigenesis in hypoxic microenvironments has not been explored. In this study, we investigated the different functions of POX under hypoxia and glucose depletion. We found that hypoxia induced POX expression in cancer cells in vitro and that POX upregulation co-localized with hypoxic tissues in vivo. In addition, the combination of hypoxia and low-glucose showed additive effects on POX expression. Similar to conditions of low glucose, hypoxia-mediated POX induction was dependent on AMP-activated protein kinase (AMPK) activation, but was independent of HIF-1α and HIF-2α. Under low-glucose and combined low-glucose and hypoxic conditions, proline catabolized by POX was used preferentially for ATP production, whereas under hypoxia, POX mediated autophagic signaling for survival by generating ROS. Although the specific mechanism was different for hypoxia and glucose deprivation, POX consistently contributed to tumor cell survival under these conditions. Together, our findings offer new insights into the metabolic reprogramming of tumor cells present within a hostile microenvironment and suggest that proline metabolism is a potential target for cancer therapeutics. PMID:22609800

  6. Osteopontin traffic in hypoxic renal epithelial cells.

    PubMed

    Hampel, Dierk J; Sansome, Christine; Romanov, Victor I; Kowalski, Aaron J; Denhardt, David T; Goligorsky, Michael S

    2003-01-01

    Osteopontin (OPN), a secretory RGD-containing phosphoprotein, is induced in acute renal injury where it plays a renoprotective role. To investigate in depth the mode of OPN secretion under stress conditions, we analyzed OPN traffic in human renal proximal tubular epithelial cells (RPTEC). Western blot analysis and fluorescence microscopy revealed trace amounts of OPN in intact cells, whereas cytoplasmic OPN levels were significantly increased after 24-48 h hypoxia. Immunoelectron microscopy of RPTEC showed predominantly apical localization of gold-labeled OPN under normal conditions. Hypoxia (24 h) increased 2.5-fold immunodetectable gold-labeled OPN at the apical plasma membrane; further reoxygenation (2 h) augmented apical and basolateral labeling 2- and 10-fold, respectively. Analysis of apical and basolateral medium conditioned by RPTEC grown on semipermeable membranes using a specially developed ELISA showed a global decrease in secreted OPN after hypoxia, which recovered following 2 h reoxygenation. Agents known to disrupt the function of the Golgi apparatus (brefeldin A, monensin) or actin cytoskeleton (cytochalasin B) significantly inhibited OPN-GFP secretion in normoxic cells. In cells recovering from hypoxia, however, OPN secretion required functional Golgi apparatus, but was not affected by cytochalasin B. These findings demonstrate that stress inhibits OPN secretion by the process dependent on the functional Golgi apparatus and actin cytoskeleton; recovery restores OPN secretion, although its polarity may become perturbed. Copyright 2003 S. Karger AG, Basel

  7. Hypoxic preconditioning enhances neural stem cell transplantation therapy after intracerebral hemorrhage in mice.

    PubMed

    Wakai, Takuma; Narasimhan, Purnima; Sakata, Hiroyuki; Wang, Eric; Yoshioka, Hideyuki; Kinouchi, Hiroyuki; Chan, Pak H

    2016-12-01

    Previous studies have shown that intraparenchymal transplantation of neural stem cells ameliorates neurological deficits in animals with intracerebral hemorrhage. However, hemoglobin in the host brain environment causes massive grafted cell death and reduces the effectiveness of this approach. Several studies have shown that preconditioning induced by sublethal hypoxia can markedly improve the tolerance of treated subjects to more severe insults. Therefore, we investigated whether hypoxic preconditioning enhances neural stem cell resilience to the hemorrhagic stroke environment and improves therapeutic effects in mice. To assess whether hypoxic preconditioning enhances neural stem cell survival when exposed to hemoglobin, neural stem cells were exposed to 5% hypoxia for 24 hours before exposure to hemoglobin. To study the effectiveness of hypoxic preconditioning on grafted-neural stem cell recovery, neural stem cells subjected to hypoxic preconditioning were grafted into the parenchyma 3 days after intracerebral hemorrhage. Hypoxic preconditioning significantly enhanced viability of the neural stem cells exposed to hemoglobin and increased grafted-cell survival in the intracerebral hemorrhage brain. Hypoxic preconditioning also increased neural stem cell secretion of vascular endothelial growth factor. Finally, transplanted neural stem cells with hypoxic preconditioning exhibited enhanced tissue-protective capability that accelerated behavioral recovery. Our results suggest that hypoxic preconditioning in neural stem cells improves efficacy of stem cell therapy for intracerebral hemorrhage.

  8. Comparison of hypoxic cell radiosensitizers, KIN-804, KIN-844, KIN-806 and TX-1877, on brain and liver metabolizing capacities in mice bearing Ehrlich ascites carcinoma.

    PubMed

    Abou-Bedair, Farid Ahmed; Hori, Hitoshi; Nagasawa, Hideko; Uto, Yoshihiro; Abu-Zeid, Medhat; Inayama, Seiichi

    2002-05-01

    The biochemical effects of the 2-nitroimidazole hypoxic cell radiosensitizers KIN-804, KIN-806, and their analogues KIN-844 and TX-1877 on brain acetylcholinesterase (AChE) and hepatic free radical scavenging systems, such as reduced glutathione (GSH) and glucose-6-phosphate dehydrogenase (G-6-PDH) levels, and hepatic antioxidants, such as superoxide dismutase (SOD) and catalase, were evaluated in Ehrlich ascites carcinoma (EAC)-bearing Swiss albino mice. The assay of brain AChE revealed nonsignificant changes with all drugs examined. To evaluate the hepatic metabolic capacity, groups of mice were divided into control, EAC-inoculated, 10-Gy local gamma-irradiated, and KIN-804, KIN-844, KIN-806, or TX-1877 (50 mg/kg body weight, i.p.) groups, and gamma-irradiation was combined with each drug. EAC inoculation markedly suppressed GSH, G-6-PDH, SOD, and catalase levels. On the other hand, treatment with gamma-irradiation significantly enhanced them. The treatment of EAC-bearing mice with each drug alone in the absence of gamma-irradiation revealed that KIN-806 and its derivative TX-1877 showed antitumor activity through their significant recovery of GSH and SOD levels, respectively, in the EAC-bearing mice group. Similarly, the combined treatment of EAC-bearing mice with gamma-irradiation with each of the drugs tested showed that KIN-806 and TX-1877 significantly increased GSH and SOD, and to a lesser extent G-6-PDH and catalase levels. On the other hand, KIN-804 and KIN-844 had only a nonsignificant effect on all parameters examined. In conclusion, these data reveal that the administration of KIN-806 and TX-1877 with or without subsequent gamma-irradiation, resulted in significant recovery of GSH and SOD activities that were inhibited by EAC inoculation.

  9. Design and synthesis of 2-nitroimidazoles with variable alkylating and acylating functionality.

    PubMed

    Winters, Thomas; Sercel, Anthony; Suto, Carla; Elliott, William; Leopold, Wilbur; Leopold, Judith; Showalter, Hollis

    2014-01-01

    The synthesis of a small series of 2-nitroimidazoles in which the β-amino alcohol side chain was amidated with a range of alkylating/acylating functionality is described. Synthetic methodologies were developed that generally provided for selective N-acyl versus N,O-bisacyl products. In vitro, target analogs showed minimal radiosensitization activity, with only a few exhibiting a sensitizer enhancement ratio (SER) >2.0 and C(1.6) values comparable to reference agents RB-6145 and RSU-1069. In an assay to determine potential to alkylate biomolecules, representative analogs showed <1% of the alkylating activity of RSU-1069. In vivo, one analog showed an enhancement ratio of 1.6 relative to vehicle control when tested in B6C3F1 mice with an implanted KHT sarcoma. The data reinforce prior findings that there is a correlation between alkylation potential and in vivo activity.

  10. Catabolic pathway for 2-nitroimidazole involves a novel nitrohydrolase that also confers drug resistance.

    PubMed

    Qu, Yi; Spain, Jim C

    2011-04-01

    Antibiotic resistance in pathogens can be mediated by catabolic enzymes thought to originate from soil bacteria, but the physiological functions and evolutionary origins of the enzymes in natural ecosystems are poorly understood. 2-Nitroimidazole (2NI) is a natural antibiotic and an analogue of the synthetic nitroimidazoles used for treatment of tuberculosis, Chagas' disease and cancer. Mycobacterium sp. JS330 was isolated from soil based on its ability to use 2NI as a sole growth substrate. The initial step in the degradation pathway is the hydrolytic denitration of 2NI to produce imidazol-2-one and nitrite. The amino acid sequence of 2NI nitrohydrolase is highly divergent from those of biochemically characterized enzymes, and it confers drug resistance when it is heterologously expressed in Escherichia coli. The unusual enzymatic reaction seems likely to determine the flux of nitroimidazole in natural ecosystems and also represents the discovery of a previously unreported drug resistance mechanism in soil before its identification in clinical situations.

  11. Reconstitution activity of hypoxic cultured human cord blood CD34-positive cells in NOG mice

    SciTech Connect

    Shima, Haruko; Takubo, Keiyo; Iwasaki, Hiroko; Yoshihara, Hiroki; Gomei, Yumiko; Hosokawa, Kentaro; Arai, Fumio; Takahashi, Takao; Suda, Toshio

    2009-01-16

    Hematopoietic stem cells (HSCs) reside in hypoxic areas of the bone marrow. However, the role of hypoxia in the maintenance of HSCs has not been fully characterized. We performed xenotransplantation of human cord blood cells cultured in hypoxic or normoxic conditions into adult NOD/SCID/IL-2R{gamma}{sup null} (NOG) mice. Hypoxic culture (1% O{sub 2}) for 6 days efficiently supported the maintenance of HSCs, although cell proliferation was suppressed compared to the normoxic culture. In contrast, hypoxia did not affect in vitro colony-forming ability. Upregulation of a cell cycle inhibitor, p21, was observed in hypoxic culture. Immunohistochemical analysis of recipient bone marrow revealed that engrafted CD34{sup +}CD38{sup -} cord blood HSCs were hypoxic. Taken together, these results demonstrate the significance of hypoxia in the maintenance of quiescent human cord blood HSCs.

  12. Hypoxic culture conditions enhance the generation of regulatory T cells

    PubMed Central

    Neildez-Nguyen, Thi My Anh; Bigot, Jérémy; Da Rocha, Sylvie; Corre, Guillaume; Boisgerault, Florence; Paldi, Andràs; Galy, Anne

    2015-01-01

    The generation of large amounts of induced CD4+ CD25+ Foxp3+ regulatory T (iTreg) cells is of great interest for several immunotherapy applications, therefore a better understanding of signals controlling iTreg cell differentiation and expansion is required. There is evidence that oxidative metabolism may regulate several key signalling pathways in T cells. This prompted us to investigate the effects of oxygenation on iTreg cell generation by comparing the effects of atmospheric (21%) or of low (5%) O2 concentrations on the phenotype of bead-stimulated murine splenic CD4+ T cells from Foxp3-KI-GFP T-cell receptor transgenic mice. The production of intracellular reactive oxygen species was shown to play a major role in the generation of iTreg cells, a process characterized by increased levels of Sirt1, PTEN and Glut1 on the committed cells, independently of the level of oxygenation. The suppressive function of iTreg cells generated either in atmospheric or low oxygen levels was equivalent. However, greater yields of iTreg cells were obtained under low oxygenation, resulting from a higher proliferative rate of the committed Treg cells and higher levels of Foxp3, suggesting a better stability of the differentiation process. Higher expression of Glut1 detected on iTreg cells generated under hypoxic culture conditions provides a likely explanation for the enhanced proliferation of these cells as compared to those cultured under ambient oxygen. Such results have important implications for understanding Treg cell homeostasis and developing in vitro protocols for the generation of Treg cells from naive T lymphocytes. PMID:25243909

  13. Hypoxic-Preconditioned Bone Marrow Stem Cell Medium Significantly Improves Outcome After Retinal Ischemia in Rats.

    PubMed

    Roth, Steven; Dreixler, John C; Mathew, Biji; Balyasnikova, Irina; Mann, Jacob R; Boddapoti, Venkat; Xue, Lai; Lesniak, Maciej S

    2016-06-01

    We have previously demonstrated the protective effect of bone marrow stem cell (BMSC)-conditioned medium in retinal ischemic injury. We hypothesized here that hypoxic preconditioning of stem cells significantly enhances the neuroprotective effect of the conditioned medium and thereby augments the protective effect in ischemic retina. Rats were subjected to retinal ischemia by increasing intraocular pressure to 130 to 135 mm Hg for 55 minutes. Hypoxic-preconditioned, hypoxic unconditioned, or normoxic medium was injected into the vitreous 24 hours after ischemia ended. Recovery was assessed 7 days after injections by comparing electroretinography measurements, histologic examination, and apoptosis (TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay). To compare proteins secreted into the medium in the groups and the effect of hypoxic exposure, we used rat cytokine arrays. Eyes injected with hypoxic BMSC-conditioned medium 24 hours after ischemia demonstrated significantly enhanced return of retinal function, decreased retinal ganglion cell layer loss, and attenuated apoptosis compared to those administered normoxic or hypoxic unconditioned medium. Hypoxic-preconditioned medium had 21 significantly increased protein levels compared to normoxic medium. The medium from hypoxic-preconditioned BMSCs robustly restored retinal function and prevented cell loss after ischemia when injected 24 hours after ischemia. The protective effect was even more pronounced than in our previous studies of normoxic conditioned medium. Prosurvival signals triggered by the secretome may play a role in this neuroprotective effect.

  14. Hypoxic-Preconditioned Bone Marrow Stem Cell Medium Significantly Improves Outcome After Retinal Ischemia in Rats

    PubMed Central

    Roth, Steven; Dreixler, John C.; Mathew, Biji; Balyasnikova, Irina; Mann, Jacob R.; Boddapati, Venkat; Xue, Lai; Lesniak, Maciej S.

    2016-01-01

    Purpose We have previously demonstrated the protective effect of bone marrow stem cell (BMSC)-conditioned medium in retinal ischemic injury. We hypothesized here that hypoxic preconditioning of stem cells significantly enhances the neuroprotective effect of the conditioned medium and thereby augments the protective effect in ischemic retina. Methods Rats were subjected to retinal ischemia by increasing intraocular pressure to 130 to 135 mm Hg for 55 minutes. Hypoxic-preconditioned, hypoxic unconditioned, or normoxic medium was injected into the vitreous 24 hours after ischemia ended. Recovery was assessed 7 days after injections by comparing electroretinography measurements, histologic examination, and apoptosis (TUNEL, terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling assay). To compare proteins secreted into the medium in the groups and the effect of hypoxic exposure, we used rat cytokine arrays. Results Eyes injected with hypoxic BMSC–conditioned medium 24 hours after ischemia demonstrated significantly enhanced return of retinal function, decreased retinal ganglion cell layer loss, and attenuated apoptosis compared to those administered normoxic or hypoxic unconditioned medium. Hypoxic-preconditioned medium had 21 significantly increased protein levels compared to normoxic medium. Conclusions The medium from hypoxic-preconditioned BMSCs robustly restored retinal function and prevented cell loss after ischemia when injected 24 hours after ischemia. The protective effect was even more pronounced than in our previous studies of normoxic conditioned medium. Prosurvival signals triggered by the secretome may play a role in this neuroprotective effect. PMID:27367588

  15. Hypoxic cell sensitizers and heavy charged-particle radiations.

    PubMed Central

    Chapman, J. D.; Urtasun, R. C.; Blakely, E. A.; Smith, K. C.; Tobias, C. A.

    1978-01-01

    Stationary-phase populations of Chinese hamster V-79 cells were irradiated with 250 kV X-rays and the Bragg peaks (spread to a width of 4 cm) of energetic He-, C-, Ne-, and A-ion beams produced at the 184-inch cyclotron and BEVALAC at Lawrence Berkeley Laboratory. Survival curves were generated with each radiation for cells suspended in air-saturated and nitrogen-saturated medium with and without sensitizer present. The oxygen enhancement ratios (OERs) measured for X-rays with 1mM metronidazole and 0.5 mM misonidazole were 2.0 and 1.6 respectively. The OERs without sensitizer for He-, C-, Ne-, and A-ion Bragg peaks were 2.4, 1.7, 1.6 and 1.4 respectively. For each type of radiation tested the presence of hypoxic-cell sensitizers resulted in an additional reduction in the measured OERs, indicating that these drugs should be of benefit in the radiotherapy planned with these and other high LET radiations. PMID:277223

  16. Hypoxia-activated prodrug TH-302 decreased survival rate of canine lymphoma cells under hypoxic condition.

    PubMed

    Yamazaki, Hiroki; Lai, Yu-Chang; Tateno, Morihiro; Setoguchi, Asuka; Goto-Koshino, Yuko; Endo, Yasuyuki; Nakaichi, Munekazu; Tsujimoto, Hajime; Miura, Naoki

    2017-01-01

    We tested the hypotheses that hypoxic stimulation enhances growth potentials of canine lymphoma cells by activating hypoxia-inducible factor 1α (HIF-1α), and that the hypoxia-activated prodrug (TH-302) inhibits growth potentials in the cells. We investigated how hypoxic culture affects the growth rate, chemoresistance, and invasiveness of canine lymphoma cells and doxorubicin (DOX)-resistant lymphoma cells, and influences of TH-302 on survival rate of the cells under hypoxic conditions. Our results demonstrated that hypoxic culture upregulated the expression of HIF-1α and its target genes, including ATP-binding cassette transporter B1 (ABCB1), ATP-binding cassette transporter G2 (ABCG2), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and survivin, and enhanced the growth rate, DOX resistance, and invasiveness of the cells. Additionally, TH-302 decreased the survival rate of the cells under hypoxic condition. Our studies suggest that hypoxic stimulation may advance the tumorigenicity of canine lymphoma cells, favoring malignant transformation. Therefore, the data presented may contribute to the development of TH-302-based hypoxia-targeting therapies for canine lymphoma.

  17. Testing of new hypoxic cell sensitizers in vivo

    SciTech Connect

    Stone, H.B.; Sinesi, M.S.

    1982-07-01

    We tested five agents as potential sensitizers of hypoxic cells in vivo in mammary tumors in C3H mice in comparison with misonidazole. The LD/sub 50/2/ for desmethylmisonidazole was 2.7 mg/g body wt, compared to 1.3 for misonidazole. It was as effective in reducing the TCD/sub 50/ of MDAH-MCa-4 as were equitoxic doses of misonidazole. the LD/sub 50/2/ of SR-2508 was 3.3 mg/g and was as effective a sensitizer as misonidazole. Ro 07-0741 was more toxic, with an LD/sub 50/2/ of 0.6 mg/g, but was as effective as misonidazole at equitoxic doses. NP-1 was also more toxic than misonidazole (LA/sub 50/2/ = 04 mg/g) but was a less effective sensitizer. Rotenone, which causes sensitization by inhibiting cellular respiration, thus increasing the diffusion distance of oxygen, was extremely toxic (LD/sub 50/2/ - 0.003 mg/g), and systemic respiratory inhibition and the radioprotective effects of the dimethyl sulfoxide used to dissolve it rendered it totally ineffective as a sensitizer in vivo.

  18. Effects of bevacizumab on endoplasmic reticulum stress in hypoxic retinal pigment epithelial cells.

    PubMed

    Park, Joo-Hee; Kim, Moosang; Oh, Jong-Hyun

    2017-01-01

    To investigate the effects of bevacizumab on endoplasmic reticulum (ER) stress in human retinal pigment epithelial (RPE) cells cultured under hypoxic conditions. RPE cells (ARPE-19) were cultured under hypoxic conditions (1% O2) with or without bevacizumab (0.3125 mg/mL) for 24 and 48 h. Cell viability was measured by a PrestoBlue assay. The expression of vascular endothelial growth factor (VEGF), binding protein/glucose-regulated protein 78 (BiP/GRP78), and C/EBP homologous protein-10 (CHOP) mRNA was measured by quantitative real-time polymerase chain reaction (qRT-PCR). BiP/GRP78 and CHOP protein levels in the cells were assessed by western blot. VEGF protein in the media was quantified by enzyme-linked immunosorbent assay (ELISA). Under hypoxic conditions, cell viability decreased and mRNA and protein levels of VEGF, BiP/GRP78, and CHOP increased compared to those under normoxic conditions. Bevacizumab improved cell viability and reduced the expression of VEGF mRNA under hypoxic conditions. Bevacizumab also reduced the expression of both mRNA and protein of two ER stress indicators, BiP/GRP78 and CHOP, under hypoxic conditions. Bevacizumab mitigated ER stress in human RPE cells cultured under hypoxic conditions. This effect may be involved in the improved cell viability and reduction of VEGF expression after bevacizumab treatment of hypoxic RPE cells in vitro. However, the effects of bevacizumab on RPE cells under experimental conditions are unlikely to be clinically equivalent to those in the human eye.

  19. Acute Hypoxic Stress Affects Migration Machinery of Tissue O2-Adapted Adipose Stromal Cells

    PubMed Central

    Lobanova, Margarita V.; Andreeva, Elena R.

    2016-01-01

    The ability of mesenchymal stromal (stem) cells (MSCs) to be mobilised from their local depot towards sites of injury and to participate in tissue repair makes these cells promising candidates for cell therapy. Physiological O2 tension in an MSC niche in vivo is about 4–7%. However, most in vitro studies of MSC functional activity are performed at 20% O2. Therefore, this study focused on the effects of short-term hypoxic stress (0.1% O2, 24 h) on adipose tissue-derived MSC motility at tissue-related O2 level. No significant changes in integrin expression were detected after short-term hypoxic stress. However, O2 deprivation provoked vimentin disassembly and actin polymerisation and increased cell stiffness. In addition, hypoxic stress induced the downregulation of ACTR3, DSTN, MACF1, MID1, MYPT1, NCK1, ROCK1, TIAM1, and WASF1 expression, the products of which are known to be involved in leading edge formation and cell translocation. These changes were accompanied by the attenuation of targeted and nontargeted migration of MSCs after short-term hypoxic exposure, as demonstrated in scratch and transwell migration assays. These results indicate that acute hypoxic stress can modulate MSC function in their native milieu, preventing their mobilisation from sites of injury. PMID:28115943

  20. Mesenchymal stem cells from a hypoxic culture improve and engraft Achilles tendon repair.

    PubMed

    Huang, Tung-Fu; Yew, Tu-Lai; Chiang, En-Rung; Ma, Hsiao-Li; Hsu, Chih-Yuan; Hsu, Shan-Hui; Hsu, Yuan-Tong; Hung, Shih-Chieh

    2013-05-01

    Bone marrow-derived mesenchymal stem cells (MSCs) from humans cultured under hypoxic conditions increase bone healing capacity. Rat MSCs cultured under hypoxic conditions increase the tendon healing potential after transplantation into injured Achilles tendons. Controlled laboratory study. Biomechanical testing, histological analysis, and bromodeoxyuridine (BrdU) labeling/collagen immunohistochemistry were performed to demonstrate that augmentation of an Achilles tendon rupture site with hypoxic MSCs increases healing capacity compared with normoxic MSCs and controls. Fifty Sprague-Dawley rats were used for the experiments, with 2 rats as the source of bone marrow MSCs. The cut Achilles tendons in the rats were equally divided into 3 groups: hypoxic MSC, normoxic MSC, and nontreated (vehicle control). The uncut tendons served as normal uncut controls. Outcome measures included mechanical testing in 24 rats, histological analysis, and BrdU labeling/collagen immunohistochemistry in another 24 rats. The ultimate failure load in the hypoxic MSC group was significantly greater than that in the nontreated or normoxic MSC group at 2 weeks after incision (2.1 N/mm(2) vs 1.1 N/mm(2) or 1.9 N/mm(2), respectively) and at 4 weeks after incision (5.5 N/mm(2) vs 1.7 N/mm(2) or 2.7 N/mm(2), respectively). The ultimate failure load in the hypoxic MSC group at 4 weeks after incision (5.5 N/mm(2)) was close to but still significantly less than that of the uncut tendon (7.2 N/mm(2)). Histological analysis as determined by the semiquantitative Bonar histopathological grading scale revealed that the hypoxic MSC group underwent a significant improvement in Achilles tendon healing both at 2 and 4 weeks when compared with the nontreated or normoxic MSC group via statistical analysis. Immunohistochemistry further demonstrated that the hypoxic and normoxic MSC groups had stronger immunostaining for type I and type III collagen than did the nontreated group both at 2 and 4 weeks after

  1. Topological characterization of electron density, electrostatic potential and intermolecular interactions of 2-nitroimidazole: an experimental and theoretical study.

    PubMed

    Kalaiarasi, Chinnasamy; Pavan, Mysore S; Kumaradhas, Poomani

    2016-10-01

    An experimental charge density distribution of 2-nitroimidazole was determined from high-resolution X-ray diffraction and the Hansen-Coppens multipole model. The 2-nitroimidazole compound was crystallized and a high-angle X-ray diffraction intensity data set has been collected at low temperature (110 K). The structure was solved and further, an aspherical multipole model refinement was performed up to octapole level; the results were used to determine the structure, bond topological and electrostatic properties of the molecule. In the crystal, the molecule exhibits a planar structure and forms weak and strong intermolecular hydrogen-bonding interactions with the neighbouring molecules. The Hirshfeld surface of the molecule was plotted, which explores different types of intermolecular interactions and their strength. The topological analysis of electron density at the bond critical points (b.c.p.) of the molecule was performed, from that the electron density ρbcp(r) and the Laplacian of electron density ∇(2)ρbcp(r) at the b.c.p.s of the molecule have been determined; these parameters show the charge concentration/depletion of the nitroimidazole bonds in the crystal. The electrostatic parameters like atomic charges and the dipole moment of the molecule were calculated. The electrostatic potential surface of the molecule has been plotted, and it displays a large electronegative region around the nitro group. All the experimental results were compared with the corresponding theoretical calculations performed using CRYSTAL09.

  2. Hypoxic conditions induce a cancer-like phenotype in human breast epithelial cells.

    PubMed

    Vaapil, Marica; Helczynska, Karolina; Villadsen, René; Petersen, Ole W; Johansson, Elisabet; Beckman, Siv; Larsson, Christer; Påhlman, Sven; Jögi, Annika

    2012-01-01

    Solid tumors are less oxygenated than their tissue of origin. Low intra-tumor oxygen levels are associated with worse outcome, increased metastatic potential and immature phenotype in breast cancer. We have reported that tumor hypoxia correlates to low differentiation status in breast cancer. Less is known about effects of hypoxia on non-malignant cells. Here we address whether hypoxia influences the differentiation stage of non-malignant breast epithelial cells and potentially have bearing on early stages of tumorigenesis. Normal human primary breast epithelial cells and immortalized non-malignant mammary epithelial MCF-10A cells were grown in a three-dimensional overlay culture on laminin-rich extracellular matrix for up to 21 days at normoxic or hypoxic conditions. Acinar morphogenesis and expression of markers of epithelial differentiation and cell polarization were analyzed by immunofluorescence, immunohistochemistry, qPCR and immunoblot. In large ductal carcinoma in situ patient-specimens, we find that epithelial cells with high HIF-1α levels and multiple cell layers away from the vasculature are immature compared to well-oxygenated cells. We show that hypoxic conditions impaired acinar morphogenesis of primary and immortalized breast epithelial cells grown ex vivo on laminin-rich matrix. Normoxic cultures formed polarized acini-like spheres with the anticipated distribution of marker proteins associated with mammary epithelial polarization e.g. α6-integrin, laminin 5 and Human Milk Fat Globule/MUC1. At hypoxia, cells were not polarized and the sub-cellular distribution pattern of the marker proteins rather resembled that reported in vivo in breast cancer. The hypoxic cells remained in a mitotic state, whereas proliferation ceased with acinar morphogenesis at normoxia. We found induced expression of the differentiation repressor ID1 in the undifferentiated hypoxic MCF-10A cell structures. Acinar morphogenesis was associated with global histone deacetylation

  3. Cytosine Deaminase/5-Fluorocytosine Exposure Induces Bystander and Radiosensitization Effects in Hypoxic Glioblastoma Cells in vitro

    SciTech Connect

    Chen, Jennifer K.; Hu, Lily J.; Wang Dongfang; Lamborn, Kathleen R.; Deen, Dennis F. . E-mail: dennisdeen@juno.com

    2007-04-01

    Purpose: Treatment of glioblastoma (GBM) is limited by therapeutic ratio; therefore, successful therapy must be specifically cytotoxic to cancer cells. Hypoxic cells are ubiquitous in GBM, and resistant to radiation and chemotherapy, and, thus, are logical targets for gene therapy. In this study, we investigated whether cytosine deaminase (CD)/5-fluorocytosine (5-FC) enzyme/prodrug treatment induced a bystander effect (BE) and/or radiosensitization in hypoxic GBM cells. Methods and Materials: We stably transfected cells with a gene construct consisting of the SV40 minimal promoter, nine copies of a hypoxia-responsive element, and the yeast CD gene. During hypoxia, a hypoxia-responsive element regulates expression of the CD gene and facilitates the conversion of 5-FC to 5-fluorouracil, a highly toxic antimetabolite. We used colony-forming efficiency (CFE) and immunofluorescence assays to assess for BE in co-cultures of CD-expressing clone cells and parent, pNeo- or green fluorescent protein-stably transfected GBM cells. We also investigated the radiosensitivity of CD clone cells treated with 5-FC under hypoxic conditions, and we used flow cytometry to investigate treatment-induced cell cycle changes. Results: Both a large BE and radiosensitization occurred in GBM cells under hypoxic conditions. The magnitude of the BE depended on the number of transfected cells producing CD, the functionality of the CD, the administered concentration of 5-FC, and the sensitivity of cell type to 5-fluorouracil. Conclusion: Hypoxia-inducible CD/5-FC therapy in combination with radiation therapy shows both a pronounced BE and a radiosensitizing effect under hypoxic conditions.

  4. Resistance of hypoxic cells to ionizing radiation is influenced by homologous recombination status

    SciTech Connect

    Sprong, Debbie; Janssen, Hilde L.; Vens, Conchita; Begg, Adrian C. . E-mail: a.begg@nki.nl

    2006-02-01

    Purpose: To determine the role of DNA repair in hypoxic radioresistance. Methods and Materials: Chinese hamster cell lines with mutations in homologous recombination (XRCC2, XRCC3, BRAC2, RAD51C) or nonhomologous end-joining (DNA-PKcs) genes were irradiated under normoxic (20% oxygen) and hypoxic (<0.1% oxygen) conditions, and the oxygen enhancement ratio (OER) was calculated. In addition, Fanconi anemia fibroblasts (complementation groups C and G) were compared with fibroblasts from nonsyndrome patients. RAD51 foci were studied using immunofluorescence. Results: All hamster cell lines deficient in homologous recombination showed a decrease in OER (1.5-2.0 vs. 2.6-3.0 for wild-types). In contrast, the OER for the DNA-PKcs-deficient line was comparable to wild-type controls. The two Fanconi anemia cell strains also showed a significant reduction in OER. The OER for RAD51 foci formation at late times after irradiation was considerably lower than that for survival in wild-type cells. Conclusion: Homologous recombination plays an important role in determining hypoxic cell radiosensitivity. Lower OERs have also been reported in cells deficient in XPF and ERCC1, which, similar to homologous recombination genes, are known to play a role in cross-link repair. Because Fanconi anemia cells are also sensitive to cross-linking agents, this strengthens the notion that the capacity to repair cross-links determines hypoxic radiosensitivity.

  5. Will hyperthermia conquer the elusive hypoxic cell? Implications of heat effects on tumor and normal-tissue microcirculation.

    PubMed

    Dewhirst, M W; Ozimek, E J; Gross, J; Cetas, T C

    1980-12-01

    In tumor radiobiology, the hypoxic cell has become especially important because of recent evidence of acute hypoxic regions within experimental tumors. The impact of hyperthermia on the development of acute hypoxia is discussed. Two experiments for studying hyperthermia and hypoxia in tumors are presented. Knowledge of the microenvironment of tumor cells will be necessary to understand and improve tumor control.

  6. PKA activity exacerbates hypoxia-induced ROS formation and hypoxic injury in PC-12 cells.

    PubMed

    Gozal, Evelyne; Metz, Cynthia J; Dematteis, Maurice; Sachleben, Leroy R; Schurr, Avital; Rane, Madhavi J

    2017-09-05

    Hypoxia is a primary factor in many pathological conditions. Hypoxic cell death is commonly attributed to metabolic failure and oxidative injury. cAMP-dependent protein kinase A (PKA) is activated in hypoxia and regulates multiple enzymes of the mitochondrial electron transport chain, thus may be implicated in cellular energy depletion and hypoxia-induced cell death. Wild type (WT) PC-12 cells and PKA activity-deficient 123.7 PC-12 cells were exposed to 3, 6, 12 and 24h hypoxia (0.1% or 5% O2). Hypoxia, at 24h 0.1% O2, induced cell death and increased reactive oxygen species (ROS) in WT PC-12 cells. Despite lower ATP levels in normoxic 123.7 cells than in WT cells, hypoxia only decreased ATP levels in WT cells. However, menadione-induced oxidative stress similarly affected both cell types. While mitochondrial COX IV expression remained consistently higher in 123.7 cells, hypoxia decreased COX IV expression in both cell types. N-acetyl cysteine antioxidant treatment blocked hypoxia-induced WT cell death without preventing ATP depletion. Transient PKA catα expression in 123.7 cells partially restored hypoxia-induced ROS but did not alter ATP levels or COX IV expression. We conclude that PKA signaling contributes to hypoxic injury, by regulating oxidative stress rather than by depleting ATP levels. Therapeutic strategies targeting PKA signaling may improve cellular adaptation and recovery in hypoxic pathologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Inhibition of hypoxia-induced miR-155 radiosensitizes hypoxic lung cancer cells.

    PubMed

    Babar, Imran A; Czochor, Jennifer; Steinmetz, Allison; Weidhaas, Joanne B; Glazer, Peter M; Slack, Frank J

    2011-11-15

    miR-155 is a prominent microRNA (miRNA) that regulates genes involved in immunity and cancer-related pathways. miR-155 is overexpressed in lung cancer, which correlates with poor patient prognosis. It is unclear how miR-155 becomes increased in lung cancers and how this increase contributes to reduced patient survival. Here, we show that hypoxic conditions induce miR-155 expression in lung cancer cells and trigger a corresponding decrease in a validated target, FOXO3A. Furthermore, we find that increased levels of miR-155 radioprotects lung cancer cells, while inhibition of miR-155 radiosensitizes these cells. Moreover, we reveal a therapeutically important link between miR-155 expression, hypoxia, and irradiation by demonstrating that anti-miR-155 molecules also sensitize hypoxic lung cancer cells to irradiation. Our study helps explain how miR-155 becomes elevated in lung cancers, which contain extensive hypoxic microenvironments, and demonstrates that inhibition of miR-155 may have important therapeutic potential as a means to radiosensitize hypoxic lung cancer cells.

  8. Modification of SR 2508 sensitization in hypoxic V79 cells by manipulation of glutathione levels

    SciTech Connect

    Phillips, T.L.; Mitchell, J.B.; DeGraff, W.G.; Russo, A.; Albright, N.; Rajpal, R.

    1989-05-01

    This series of experiments employed the hypoxic cell sensitizer SR 2508 in concentrations ranging from 0.1 to 10 mM and V-79 cells irradiated in air or made hypoxic in glass syringes, then irradiated with 15 MV X rays. Using a series of survival curves measured at the various concentrations, K curves relating sensitizer enhancement ratio (SER) to SR 2508 concentration were calculated with normal GSH levels or with depletion of GSH to 0% using 1 mM buthionine sulfoximine (BSO) or elevation to 200% of normal using 1 mM oxothiazolidine carboxylate (OTZ). Survival curves were fitted by computer, allowing calculation of standard errors for the SER values. The depletion of GSH by BSO sensitized hypoxic and aerated cells significantly and caused more than additive enhancement of SR 2508 sensitization in hypoxic cells. Elevation of GSH with OTZ protects cells irradiated in air or hypoxia and reduces the SER obtained with SR 2508. The results further support the importance of GSH levels in influencing sensitization by nitroimidazoles.

  9. Pharmacokinetics of SPECT radiopharmaceuticals for imaging hypoxic tissues.

    PubMed

    Wiebe, L I; Stypinski, D

    1996-09-01

    Although hypoxia has been known for decades to play an important role in the outcome of radiotherapy in oncology, and inspite of the contribution of hypoxia to a myriad of pathologies that involve vascular disease, the selective imaging of hypoxic tissue has attained prominence only within the past decade. Contemporary research in the hypoxia imaging field is based largely on radiosensitizer research of the 1960's and 1970's. Early sensitizer research identified a family of nitro-organic compounds, the N-1 substituted 2-nitroimidazoles as candidate drugs. The early champion, and still the reference standard for therapeutic radiosensitization of hypoxic tumor cells is misonidazole (MISO). Its peripheral neurotoxicity led to failure in clinical studies, but its biological, biophysical and biochemical properties have been investigated in detail and serve as a basis for further design, not only of sensitizers, but of diagnostic radiopharmaceuticals for imaging tissue hypoxia. Pharmacokinetic characterization of radiopharmaceuticals, specifically radiopharmaceuticals for imaging tissue hypoxia, has not been a central theme in their development. The advent of PET, through which quantitative determinations first became possible, opened the field for both descriptive and analytical radiopharmacokinetic studies. In SPECT, however, this approach is still undergoing refinement. This paper addresses some of the underlying issues in radiopharmaceutical pharmacokinetics. There is a paucity of published radiopharmacokinetic data for SPECT hypoxia imaging agents. Consequently, the pharmacokinetic issues for MISO are presented as a basis for development of pharmacokinetics for the chemically-related imaging agents. Properties of an hypoxia marker are described from a pharmacokinetic viewpoint, a theoretical model for descriptive pharmacokinetics is introduced and finally, recent pharmacokinetic studies from our laboratory are described.

  10. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice

    PubMed Central

    Sonveaux, Pierre; Végran, Frédérique; Schroeder, Thies; Wergin, Melanie C.; Verrax, Julien; Rabbani, Zahid N.; De Saedeleer, Christophe J.; Kennedy, Kelly M.; Diepart, Caroline; Jordan, Bénédicte F.; Kelley, Michael J.; Gallez, Bernard; Wahl, Miriam L.; Feron, Olivier; Dewhirst, Mark W.

    2008-01-01

    Tumors contain oxygenated and hypoxic regions, so the tumor cell population is heterogeneous. Hypoxic tumor cells primarily use glucose for glycolytic energy production and release lactic acid, creating a lactate gradient that mirrors the oxygen gradient in the tumor. By contrast, oxygenated tumor cells have been thought to primarily use glucose for oxidative energy production. Although lactate is generally considered a waste product, we now show that it is a prominent substrate that fuels the oxidative metabolism of oxygenated tumor cells. There is therefore a symbiosis in which glycolytic and oxidative tumor cells mutually regulate their access to energy metabolites. We identified monocarboxylate transporter 1 (MCT1) as the prominent path for lactate uptake by a human cervix squamous carcinoma cell line that preferentially utilized lactate for oxidative metabolism. Inhibiting MCT1 with α-cyano-4-hydroxycinnamate (CHC) or siRNA in these cells induced a switch from lactate-fueled respiration to glycolysis. A similar switch from lactate-fueled respiration to glycolysis by oxygenated tumor cells in both a mouse model of lung carcinoma and xenotransplanted human colorectal adenocarcinoma cells was observed after administration of CHC. This retarded tumor growth, as the hypoxic/glycolytic tumor cells died from glucose starvation, and rendered the remaining cells sensitive to irradiation. As MCT1 was found to be expressed by an array of primary human tumors, we suggest that MCT1 inhibition has clinical antitumor potential. PMID:19033663

  11. Glutathione depletion, radiosensitization, and misonidazole potentiation in hypoxic Chinese hamster ovary cells by buthionine sulfoximine

    SciTech Connect

    Clark, E.P.; Epp, E.R.; Biaglow, J.E.; Morse-Gaudio, M.; Zachgo, E.

    1984-05-01

    Buthionine sulfoximine (BSO) inhibits the synthesis of glutathione (GSH), the major nonprotein sulfhydryl (NPSH) present in most mammalian cells. BSO exposures used in these experiments were not cytotoxic with the one exception that 2.0 mM BSO/24 hr reduced cell viability to approx.50%. However, alterations in either the cell doubling time(s) or the cell age density distribution(s) were not observed with the BSO exposures used to determine its radiosensitizing effect. BSO significantly radiosensitized hypoxic, but not aerobic, CHO cells when the GSH and NPSH concentrations were reduced to <10 and 20% of control, respectively, and maximum radiosensitivity was even achieved with ..mu..M concentrations of BSO. Furthermore, BSO exposure also enhanced the radiosensitizing effect of various concentrations of misonidazole on hypoxic CHO cells.

  12. Hypoxic stress up-regulates Kir2.1 expression and facilitates cell proliferation in brain capillary endothelial cells

    SciTech Connect

    Yamamura, Hideto; Suzuki, Yoshiaki; Yamamura, Hisao; Asai, Kiyofumi; Imaizumi, Yuji

    2016-08-05

    The blood-brain barrier (BBB) is mainly composed of brain capillary endothelial cells (BCECs), astrocytes and pericytes. Brain ischemia causes hypoxic encephalopathy and damages BBB. However, it remains still unclear how hypoxia affects BCECs. In the present study, t-BBEC117 cells, an immortalized bovine brain endothelial cell line, were cultured under hypoxic conditions at 4–5% oxygen for 72 h. This hypoxic stress caused hyperpolarization of resting membrane potential. Patch-clamp recordings revealed a marked increase in Ba{sup 2+}-sensitive inward rectifier K{sup +} current in t-BBEC117 cells after hypoxic culture. Western blot and real-time PCR analyses showed that Kir2.1 expression was significantly up-regulated at protein level but not at mRNA level after the hypoxic culture. Ca{sup 2+} imaging study revealed that the hypoxic stress enhanced store-operated Ca{sup 2+} (SOC) entry, which was significantly reduced in the presence of 100 μM Ba{sup 2+}. On the other hand, the expression of SOC channels such as Orai1, Orai2, and transient receptor potential channels was not affected by hypoxic stress. MTT assay showed that the hypoxic stress significantly enhanced t-BBEC117 cell proliferation, which was inhibited by approximately 60% in the presence of 100 μM Ba{sup 2+}. We first show here that moderate cellular stress by cultivation under hypoxic conditions hyperpolarizes membrane potential via the up-regulation of functional Kir2.1 expression and presumably enhances Ca{sup 2+} entry, resulting in the facilitation of BCEC proliferation. These findings suggest potential roles of Kir2.1 expression in functional changes of BCECs in BBB following ischemia. -- Highlights: •Hypoxic culture of brain endothelial cells (BEC) caused membrane hyperpolarization. •This hyperpolarization was due to the increased expression of Kir2.1 channels. •Hypoxia enhanced store-operated Ca{sup 2+} (SOC) entry via Kir2.1 up-regulation. •Expression levels of putative SOC

  13. T-Cell Activation under Hypoxic Conditions Enhances IFN-γ Secretion

    PubMed Central

    Roman, Jessica; Rangasamy, Tirumalai; Guo, Jia; Sugunan, Siva; Meednu, Nida; Packirisamy, Gopinath; Shimoda, Larissa A.; Golding, Amit; Semenza, Gregg; Georas, Steve N.

    2010-01-01

    Secondary lymphoid organs and peripheral tissues are characterized by hypoxic microenvironments, both in the steady state and during inflammation. Although hypoxia regulates T-cell metabolism and survival, very little is known about whether or how hypoxia influences T-cell activation. We stimulated mouse CD4+ T cells in vitro with antibodies directed against the T-cell receptor (CD3) and CD28 under normoxic (20% O2) and hypoxic (1% O2) conditions. Here we report that stimulation under hypoxic conditions augments the secretion of effector CD4+ T-cell cytokines, especially IFN-γ. The enhancing effects of hypoxia on IFN-γ secretion were independent of mouse strain, and were also unaffected using CD4+ T cells from mice lacking one copy of the gene encoding hypoxia-inducible factor-1α. Using T cells from IFN-γ receptor–deficient mice and promoter reporter studies in transiently transfected Jurkat T cells, we found that the enhancing effects of hypoxia on IFN-γ expression were not due to effects on IFN-γ consumption or proximal promoter activity. In contrast, deletion of the transcription factor, nuclear erythroid 2 p45–related factor 2 attenuated the enhancing effect of hypoxia on IFN-γ secretion and other cytokines. We conclude that hypoxia is a previously underappreciated modulator of effector cytokine secretion in CD4+ T cells. PMID:19372249

  14. Quantitative measurement of redox potential in hypoxic cells using SERS nanosensors

    NASA Astrophysics Data System (ADS)

    Jiang, Jing; Auchinvole, Craig; Fisher, Kate; Campbell, Colin J.

    2014-09-01

    Hypoxia is considered to be a reductive disorder of cells that is caused either by a lack of oxygen or by the dysregulation of metabolic pathways and is thought to play a role in the pathology of diseases including stroke and cancer. One aspect of hypoxia that remains poorly investigated is the dysregulation of cellular redox potential and its role in controlling biological pathway activation. Since there is currently no way of quantitatively measuring the intracellular redox potential of hypoxic cells, this provided us with the motivation to develop optical nanosensors whose Surface-Enhanced Raman (SER) spectrum provides a quantitative measure of redox potential in hypoxic cells. Our nanosensors are made from organic reporter molecules that show oxidation-state-dependent changes in the Raman spectrum and are chemically adsorbed onto gold nanoshells. These nanosensors can be taken up by cells, and by collecting the SER spectrum we can calculate the localised intracellular redox potential from single hypoxic cells in a non-invasive, reversible way.Hypoxia is considered to be a reductive disorder of cells that is caused either by a lack of oxygen or by the dysregulation of metabolic pathways and is thought to play a role in the pathology of diseases including stroke and cancer. One aspect of hypoxia that remains poorly investigated is the dysregulation of cellular redox potential and its role in controlling biological pathway activation. Since there is currently no way of quantitatively measuring the intracellular redox potential of hypoxic cells, this provided us with the motivation to develop optical nanosensors whose Surface-Enhanced Raman (SER) spectrum provides a quantitative measure of redox potential in hypoxic cells. Our nanosensors are made from organic reporter molecules that show oxidation-state-dependent changes in the Raman spectrum and are chemically adsorbed onto gold nanoshells. These nanosensors can be taken up by cells, and by collecting the SER

  15. Stereotactic Ablative Radiotherapy Should Be Combined With a Hypoxic Cell Radiosensitizer

    SciTech Connect

    Brown, J. Martin; Diehn, Maximilian; Loo, Billy W.

    2010-10-01

    Purpose: To evaluate the effect of tumor hypoxia on the expected level of cell killing by regimens of stereotactic ablative radiotherapy (SABR) and to determine the extent to which the negative effect of hypoxia could be prevented using a clinically available hypoxic cell radiosensitizer. Results and Discussion: We have calculated the expected level of tumor cell killing from regimens of SABR, both with and without the assumption that 20% of the tumor cells are hypoxic, using the standard linear quadratic model and the universal survival curve modification. We compare the results obtained with our own clinical data for lung tumors of different sizes and with published data from other studies. We also have calculated the expected effect on cell survival of adding the hypoxic cell sensitizer etanidazole at clinically achievable drug concentrations. Modeling tumor cell killing with any of the currently used regimens of SABR produces results that are inconsistent with the majority of clinical findings if tumor hypoxia is not considered. However, with the assumption of tumor hypoxia, the expected level of cell killing is consistent with clinical data. For only some of the smallest tumors are the clinical data consistent with no tumor hypoxia, but there could be other reasons for the sensitivity of these tumors. The addition of etanidazole at clinically achievable tumor concentrations produces a large increase in the expected level of tumor cell killing from the large radiation doses used in SABR. Conclusions: The presence of tumor hypoxia is a major negative factor in limiting the curability of tumors by SABR at radiation doses that are tolerable to surrounding normal tissues. However, this negative effect of hypoxia could be overcome by the addition of clinically tolerable doses of the hypoxic cell radiosensitizer etanidazole.

  16. Hypoxic conditioned medium of placenta-derived mesenchymal stem cells protects against scar formation.

    PubMed

    Du, Lili; Lv, Runxiao; Yang, Xiaoyi; Cheng, Shaohang; Ma, Tingxian; Xu, Jing

    2016-03-15

    Scar formation after wound repair affects people's daily life. Mesenchymal stem cells were reported to have a beneficial role in attenuating the scar formation. In the present study, placenta-derived mesenchymal stem cells (PMSCs) were isolated and the effects of hypoxic conditioned medium of PMSCs on scar formation were explored. To evaluate the effect of hypoxia on PMSCs, proliferation of PMSCs was detected by trypan blue staining and the HIF-1α level was detected by western blot. Then in vivo scar formation assay was performed and the histopathologic changes were evaluated by HE staining and levels of TGF-β1 and collagen I were detected by quantitative real-time PCR. The IL-10 level was detected by ELISA and then migration of HFF-1 cells was detected by wound healing assay after treatment with IL-10 or IL-10 antibody. Our study showed that hypoxic conditioned medium of PMSCs reduced scar formation in vivo and inhibited the proliferation and migration of skin fibroblasts in vitro. Further mechanism study showed that, the level of IL-10 was affected by hypoxia, treatment with IL-10 mimicked the function of hypoxic conditioned medium of PMSCs and inhibition of IL-10 reversed the protective role of hypoxic conditioned medium of PMSCs. Thus, hypoxic conditioned medium of PMSCs may perform the protective role against scar formation through IL-10. Our study reveals a possible mechanism of the protective effect of PMSCs against scar formation and provides evidence for the hypothesis that PMSCs may be a promising therapy for the treatment of wounds. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Bone marrow long label-retaining cells reside in the sinusoidal hypoxic niche

    SciTech Connect

    Kubota, Yoshiaki; Takubo, Keiyo; Suda, Toshio

    2008-02-08

    In response to changing signals, quiescent hematopoietic stem cells (HSCs) can be induced to an activated cycling state and provide multi-lineage hematopoietic cells to the whole body via blood vessels. However, the precise localization of quiescent HSCs in bone marrow microenvironment is not fully characterized. Here, we performed whole-mount immunostaining of bone marrow and found that BrdU label-retaining cells (LRCs) definitively reside in the sinusoidal hypoxic zone distant from the 'vascular niche'. Although LRCs expressed very low level of a well-known HSC marker, c-kit in normal circumstances, myeloablation by 5-FU treatment caused LRCs to abundantly express c-kit and proliferate actively. These results demonstrate that bone marrow LRCs reside in the sinusoidal hypoxic niche, and function as a regenerative cell pool of HSCs.

  18. Downregulation of Metabolic Activity Increases Cell Survival Under Hypoxic Conditions: Potential Applications for Tissue Engineering

    PubMed Central

    Kim, Jaehyun; Andersson, Karl-Erik; Jackson, John D.; Lee, Sang Jin; Atala, Anthony

    2014-01-01

    A major challenge to the success of cell-based implants for tissue regeneration is an insufficient supply of oxygen before host vasculature is integrated into the implants, resulting in premature cell death and dysfunction. Whereas increasing oxygenation to the implants has been a major focus in the field, our strategy is aimed at lowering oxygen consumption by downregulating cellular metabolism of cell-based implants. Adenosine, which is a purine nucleoside that functions as an energy transferring molecule, has been reported to increase under hypoxia, resulting in reducing the adenosine triphosphate (ATP) demands of the Na+/K+ ATPase. In the present study, we investigated whether adenosine could be used to downregulate cellular metabolism to achieve prolonged survival under hypoxic conditions. Murine myoblasts (C2C12) lacking a self-survival mechanism were treated with adenosine under 0.1% hypoxic stress. The cells, cultured in the presence of 5 mM adenosine, maintained their viability under hypoxia, and regained their normal growth and function of forming myotubes when transferred to normoxic conditions at day 11 without further supply of adenosine, whereas nontreated cells failed to survive. An increase in adenosine concentrations shortened the onset of reproliferation after transfer to normoxic conditions. This increase correlated with an increase in metabolic downregulation during the early phase of hypoxia. A higher intracellular ATP level was observed in adenosine-treated cells throughout the duration of hypoxia. This strategy of increasing cell survival under hypoxic conditions through downregulating cellular metabolism may be utilized for cell-based tissue regeneration applications as well as protecting tissues against hypoxic injuries. PMID:24524875

  19. Multipotent adult progenitor cells for hypoxic-ischemic injury in the preterm brain.

    PubMed

    Jellema, Reint K; Ophelders, Daan R M G; Zwanenburg, Alex; Nikiforou, Maria; Delhaas, Tammo; Andriessen, Peter; Mays, Robert W; Deans, Robert; Germeraad, Wilfred T V; Wolfs, Tim G A M; Kramer, Boris W

    2015-12-23

    Preterm infants are at risk for hypoxic-ischemic encephalopathy. No therapy exists to treat this brain injury and subsequent long-term sequelae. We have previously shown in a well-established pre-clinical model of global hypoxia-ischemia (HI) that mesenchymal stem cells are a promising candidate for the treatment of hypoxic-ischemic brain injury. In the current study, we investigated the neuroprotective capacity of multipotent adult progenitor cells (MAPC®), which are adherent bone marrow-derived cells of an earlier developmental stage than mesenchymal stem cells and exhibiting more potent anti-inflammatory and regenerative properties. Instrumented preterm sheep fetuses were subjected to global hypoxia-ischemia by 25 min of umbilical cord occlusion at a gestational age of 106 (term ~147) days. During a 7-day reperfusion period, vital parameters (e.g., blood pressure and heart rate; baroreceptor reflex) and (amplitude-integrated) electroencephalogram were recorded. At the end of the experiment, the preterm brain was studied by histology. Systemic administration of MAPC therapy reduced the number and duration of seizures and prevented decrease in baroreflex sensitivity after global HI. In addition, MAPC cells prevented HI-induced microglial proliferation in the preterm brain. These anti-inflammatory effects were associated with MAPC-induced prevention of hypomyelination after global HI. Besides attenuation of the cerebral inflammatory response, our findings showed that MAPC cells modulated the peripheral splenic inflammatory response, which has been implicated in the etiology of hypoxic-ischemic injury in the preterm brain. In a pre-clinical animal model MAPC cell therapy improved the functional and structural outcome of the preterm brain after global HI. Future studies should establish the mechanism and long-term therapeutic effects of neuroprotection established by MAPC cells in the developing preterm brain exposed to HI. Our study may form the basis for future

  20. Taurine buffers glutamate homeostasis in retinal cells in vitro under hypoxic conditions.

    PubMed

    Chen, Fang; Mi, Mantian; Zhang, Qianyong; Wei, Na; Chen, Ka; Xu, Hongxia; Yuan, Jialin; Zhou, Yong; Lang, Haibin; Yu, Xiaoping; Wang, Bin; Wang, Jian; Tang, Yong; Chang, Hui

    2010-01-01

    We investigated whether taurine indirectly protects neurons under hypoxia by affecting retinal Müller cells, which are known to play important roles in the regulation of retinal glutamate content. Retinal cells isolated from rats were exposed to hypoxia for 24 h. We evaluated the retinal neuron survival, glutamate content in cultures with and without taurine under hypoxic conditions. The glutamate clearance function correlated with the expression of glutamine synthetase (GS) mRNA and L-glutamate/L-aspartate transporter (GLAST) mRNA. Immunohistochemical staining of glial fibrillary acidic protein (GFAP), vimentin and S-100 protein was performed to examine cytoskeletal changes in retinal Müller cells. Retinal neurons treated with taurine exhibited significantly higher survival rates than those without taurine under hypoxia. Taurine inhibited the upregulation of GFAP and vimentin, and inhibited the downregulation of GLAST, GS and the nuclear-cytoplasmic ratio of S-100 under hypoxia. In addition, taurine inhibited the upregulation of the glutamate content in neurons and retinal Müller cells upon hypoxic exposure. These data suggest that hypoxic damage to cultured retinal cells is decreased by taurine. The neuroprotection by taurine may relate to buffering glutamate homeostasis via modulation of the glutamate clearance by retinal Müller cells. Copyright 2010 S. Karger AG, Basel.

  1. Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice.

    PubMed

    Chen, Lei; Xu, Yingbin; Zhao, Jingling; Zhang, Zhaoqiang; Yang, Ronghua; Xie, Julin; Liu, Xusheng; Qi, Shaohai

    2014-01-01

    Growing evidence indicates that bone marrow-derived mesenchymal stem cells (BM-MSCs) enhance wound repair via paracrine. Because the extent of environmental oxygenation affects the innate characteristics of BM-MSCs, including their stemness and migration capacity, the current study set out to elucidate and compare the impact of normoxic and hypoxic cell-culture conditions on the expression and secretion of BM-MSC-derived paracrine molecules (e.g., cytokines, growth factors and chemokines) that hypothetically contribute to cutaneous wound healing in vivo. Semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) analyses of normoxic and hypoxic BM-MSCs and their conditioned medium fractions showed that the stem cells expressed and secreted significantly higher amounts of basic fibroblast growth factor (bFGF),vascular endothelial growth factor A (VEGF-A) interleukin 6 (IL-6) and interleukin 8 (IL-8) under hypoxic conditions. Moreover, hypoxic BM-MSC-derived conditioned medium (hypoCM) vs. normoxic BM-MSC-derived conditioned medium (norCM) or vehicle control medium significantly enhanced the proliferation of keratinocytes, fibroblasts and endothelial cells, the migration of keratinocytes, fibroblasts, endothelial cells and monocytes, and the formation of tubular structures by endothelial cells cultured on Matrigel matrix. Consistent with these in vitro results, skin wound contraction was significantly accelerated in Balb/c nude mice treated with topical hypoCM relative to norCM or the vehicle control. Notably increased in vivo cell proliferation, neovascularization as well as recruitment of inflammatory macrophages and evidently decreased collagen I, and collagen III were also found in the hypoCM-treated group. These findings suggest that BM-MSCs promote murine skin wound healing via hypoxia-enhanced paracrine.

  2. Hypoxic Conditions Induce a Cancer-Like Phenotype in Human Breast Epithelial Cells

    PubMed Central

    Vaapil, Marica; Helczynska, Karolina; Villadsen, René; Petersen, Ole W.; Johansson, Elisabet; Beckman, Siv; Larsson, Christer; Påhlman, Sven; Jögi, Annika

    2012-01-01

    Introduction Solid tumors are less oxygenated than their tissue of origin. Low intra-tumor oxygen levels are associated with worse outcome, increased metastatic potential and immature phenotype in breast cancer. We have reported that tumor hypoxia correlates to low differentiation status in breast cancer. Less is known about effects of hypoxia on non-malignant cells. Here we address whether hypoxia influences the differentiation stage of non-malignant breast epithelial cells and potentially have bearing on early stages of tumorigenesis. Methods Normal human primary breast epithelial cells and immortalized non-malignant mammary epithelial MCF-10A cells were grown in a three-dimensional overlay culture on laminin-rich extracellular matrix for up to 21 days at normoxic or hypoxic conditions. Acinar morphogenesis and expression of markers of epithelial differentiation and cell polarization were analyzed by immunofluorescence, immunohistochemistry, qPCR and immunoblot. Results In large ductal carcinoma in situ patient-specimens, we find that epithelial cells with high HIF-1α levels and multiple cell layers away from the vasculature are immature compared to well-oxygenated cells. We show that hypoxic conditions impaired acinar morphogenesis of primary and immortalized breast epithelial cells grown ex vivo on laminin-rich matrix. Normoxic cultures formed polarized acini-like spheres with the anticipated distribution of marker proteins associated with mammary epithelial polarization e.g. α6-integrin, laminin 5 and Human Milk Fat Globule/MUC1. At hypoxia, cells were not polarized and the sub-cellular distribution pattern of the marker proteins rather resembled that reported in vivo in breast cancer. The hypoxic cells remained in a mitotic state, whereas proliferation ceased with acinar morphogenesis at normoxia. We found induced expression of the differentiation repressor ID1 in the undifferentiated hypoxic MCF-10A cell structures. Acinar morphogenesis was associated with

  3. Lethal or protective effects of prolonged treatment with hypoxic cell sensitizers

    SciTech Connect

    Edgren, M.R.

    1995-12-31

    AK-2123 [N-(2-methoxyethyl)-2-(3-nitro-1-triazolyl)acetamide] is a hypoxic cell radiosensitizer which is currently being tested in several oncology clinics and which has a lower toxicity than misonidazole (MISO) in vivo. The positive experiences reported recently certainly warrant further clinical evaluations. The experimental observations reported so far need further experimental studies to clarify the sensitization mechanism, especially as recent intratumoral strategies used in the clinical administration of the sensitizers can result in a large local concentration of the drug that may persist for a prolonged period of time between and after radiation exposures. Model experiments in vitro using V79 cells were performed with AK-2123 under these conditions. Misonidazole (MISO) and metronidazole (METRO), well known hypoxic cell radiosensitizers, were used for comparison of the effects. Clonogenic survival and induction and repair of DNA damage were used as end-points.

  4. Chromosomal variability of human mesenchymal stem cells cultured under hypoxic conditions

    PubMed Central

    Ueyama, Hanae; Horibe, Tomohisa; Hinotsu, Shiro; Tanaka, Tomoaki; Inoue, Takeomi; Urushihara, Hisashi; Kitagawa, Akira; Kawakami, Koji

    2012-01-01

    Abstract Bone marrow derived human mesenchymal stem cells (hMSCs) have attracted great interest from both bench and clinical researchers because of their pluripotency and ease of expansion ex vivo. However, these cells do finally reach a senescent stage and lose their multipotent potential. Proliferation of these cells is limited up to the time of their senescence, which limits their supply, and they may accumulate chromosomal changes through ex vivo culturing. The safe, rapid expansion of hMSCs is critical for their clinical application. Chromosomal aberration is known as one of the hallmarks of human cancer, and therefore it is important to understand the chromosomal stability and variability of ex vivo expanded hMSCs before they are used widely in clinical applications. In this study, we examined the effects of culturing under ambient (20%) or physiologic (5%) O2 concentrations on the rate of cell proliferation and on the spontaneous transformation of hMSCs in primary culture and after expansion, because it has been reported that culturing under hypoxic conditions accelerates the propagation of hMSCs. Bone marrow samples were collected from 40 patients involved in clinical research. We found that hypoxic conditions promote cell proliferation more favourably than normoxic conditions. Chromosomal aberrations, including structural instability or aneuploidy, were detected in significantly earlier passages under hypoxic conditions than under normoxic culture conditions, suggesting that amplification of hMSCs in a low-oxygen environment facilitated chromosomal instability. Furthermore, smoothed hazard-function modelling of chromosomal aberrations showed increased hazard after the fourth passage under both sets of culture conditions, and showed a tendency to increase the detection rate of primary karyotypic abnormalities among donors aged 60 years and over. In conclusion, we propose that the continuous monitoring of hMSCs will be required before they are used in

  5. Autocrine production of IL-11 mediates tumorigenicity in hypoxic cancer cells

    PubMed Central

    Onnis, Barbara; Fer, Nicole; Rapisarda, Annamaria; Perez, Victor S.; Melillo, Giovanni

    2013-01-01

    IL-11 and its receptor, IL-11Ra, are expressed in human cancers; however, the functional role of IL-11 in tumor progression is not known. We found that IL11 is a hypoxia-inducible, VHL-regulated gene in human cancer cells and that expression of IL11 mRNA was dependent, at least in part, on HIF-1. A cooperative interaction between HIF-1 and AP-1 mediated transcriptional activation of the IL11 promoter. Additionally, we found that human cancer cells expressed a functional IL-11Ra subunit, which triggered signal transduction either by exogenous recombinant human IL-11 or by autocrine production of IL-11 in cells cultured under hypoxic conditions. Silencing of IL11 dramatically abrogated the ability of hypoxia to increase anchorage-independent growth and significantly reduced tumor growth in xenograft models. Notably, these results were phenocopied by partial knockdown of STAT1 in a human prostate cancer cell line (PC3), suggesting that this pathway may play an important role in mediating the effects of IL-11 under hypoxic conditions. In conclusion, these results identify IL11 as an oxygen- and VHL-regulated gene and provide evidence of a pathway “hijacked” by hypoxic cancer cells that may contribute to tumor progression. PMID:23549086

  6. Erdosteine protects rat testis tissue from hypoxic injury by reducing apoptotic cell death.

    PubMed

    Guven, A; Ickin, M; Uzun, O; Bakar, C; Balbay, E Gulec; Balbay, O

    2014-02-01

    The purpose of this study was to examine the effects of hypobaric hypoxia on testis morphology and the effects of erdosteine on testis tissue. Caspase-3 and hypoxia-inducible factor 1α expressions were detected by immunohistochemistry. Adult male Wistar rats were placed in a hypobaric hypoxic chamber. Rats in the erdosteine group were exposed to the same conditions and treated orally with erdosteine (20 mg kg(-1) daily) at the same time from the first day of hypoxic exposure for 2 weeks. The normoxia group was evaluated as the control. The hypoxia group showed decreased height of spermatogenic epithelium in some seminiferous tubules, vacuolisation in spermatogenic epithelial cells, deterioration and gaps in the basal membrane and an increase in blood vessels in the interstitial area. The erdosteine group showed amelioration of both epithelial cell vacuolisation and basal membrane deterioration. Numbers of hypoxia-inducible factor 1α-immunostained Sertoli and Leydig cells were significantly higher in the hypoxia group than in the erdosteine group. The number of seminiferous tubules with caspase-3-immunostained germ cells was highest in the hypoxia group and decreased in the erdosteine and normoxia groups respectively. Based on these observations, erdosteine protects testis tissue from hypoxic injury by reducing apoptotic cell death.

  7. Metformin increases PDH and suppresses HIF-1α under hypoxic conditions and induces cell death in oral squamous cell carcinoma

    PubMed Central

    Guimarães, Talita Antunes; Farias, Lucyana Conceição; Santos, Eliane Sobrinho; de Carvalho Fraga, Carlos Alberto; Orsini, Lissur Azevedo; de Freitas Teles, Leandro; Feltenberger, John David; de Jesus, Sabrina Ferreira; de Souza, Marcela Gonçalves; Sousa Santos, Sérgio Henrique; de Paula, Alfredo Maurício Batista

    2016-01-01

    Background Metformin is a biguanide, belonging to the oral hypoglycemic agents and is a widely used in the treatment of type 2 diabetes. Evidence indicate that Metformin inhibits cell proliferation in several human cancers and inhibits the Warburg phenomenon in tumor cells. Results Low PDH levels were observed in OSCC, and Metformin promotes an increase in PDH levels in hypoxic conditions. Metformin also reduced HIF-1α mRNA and protein levels. Metformin demonstrated antiproliferative effects, inhibited migration, increased the number of apoptotic cells and increased the transcription of caspase 3. Objective The present study aims to explore the effects of Metformin in hypoxic conditions. Specifically, we focused on pyruvate dehydrogenase (PDH), (hypoxia-inducible factor 1α) HIF-1α levels and the oral squamous cell carcinoma (OSCC) cell phenotype. Additionally, we also investigated a theoretical consequence of Metformin treatment. Methods PDH levels in patients with OSCC and oral dysplasia were evaluated. Metformin was administered in vitro to test the effect of Metformin under hypoxic conditions. The results were complemented by Bioinformatics analyses. Conclusions In conclusion, our current findings show that Metformin reduces HIF-1α gene expression and increases PDH expression. Metformin inhibits cell proliferation and migration in the OSCC cell line model. Additionally, Metformin enhances the number of apoptotic cells and caspase 3 levels. Interestingly enough, Metformin did not increase the mutant p53 levels under hypoxic conditions. PMID:27474170

  8. Hypoxic stress, brain vascular system, and β-amyloid: a primary cell culture study.

    PubMed

    Muche, Abebe; Bürger, Susanne; Arendt, Thomas; Schliebs, Reinhard

    2015-01-01

    This study stresses the hypothesis whether hypoxic events contribute to formation and deposition of β-amyloid (Aβ) in cerebral blood vessels by affecting the processing of endothelial amyloid precursor protein (APP). Therefore, cerebral endothelial cells (ECs) derived from transgenic Tg2576 mouse brain, were subjected to short periods of hypoxic stress, followed by assessment of formation and secretion of APP cleavage products sAPPα, sAPPβ, and Aβ as well as the expression of endothelial APP. Hypoxic stress of EC leads to enhanced secretion of sAPPβ into the culture medium as compared to normoxic controls, which is accompanied by increased APP expression, induction of vascular endothelial growth factor (VEGF) synthesis, nitric oxide production, and differential changes in endothelial p42/44 (ERK1/2) expression. The hypoxia-mediated up-regulation of p42/44 at a particular time of incubation was accompanied by a corresponding down-regulation of the phosphorylated form of p42/44. To reveal any role of hypoxia-induced VEGF in endothelial APP processing, ECs were exposed by VEGF. VEGF hardly affected the amount of sAPPβ and Aβ(1-40) secreted into the culture medium, whereas the suppression of the VEGF receptor action by SU-5416 resulted in decreased release of sAPPβ and Aβ(1-40) in comparison to control incubations, suggesting a role of VEGF in controlling the activity of γ-secretase, presumably via the VEGF receptor-associated tyrosine kinase. The data suggest that hypoxic stress represents a mayor risk factor in causing Aβ deposition in the brain vascular system by favoring the amyloidogenic route of endothelial APP processing. The hypoxic-stress-induced changes in β-secretase activity are presumably mediated by altering the phosphorylation status of p42/44, whereas the stress-induced up-regulation of VEGF appears to play a counteracting role by maintaining the balance of physiological APP processing.

  9. Galectin-3 Up-Regulation in Hypoxic and Nutrient Deprived Microenvironments Promotes Cell Survival

    PubMed Central

    Ikemori, Rafael Yamashita; Machado, Camila Maria Longo; Furuzawa, Karina Mie; Nonogaki, Suely; Osinaga, Eduardo; Umezawa, Kazuo; de Carvalho, Marcelo Alex; Verinaud, Liana; Chammas, Roger

    2014-01-01

    Galectin-3 (gal-3) is a β-galactoside binding protein related to many tumoral aspects, e.g. angiogenesis, cell growth and motility and resistance to cell death. Evidence has shown its upregulation upon hypoxia, a common feature in solid tumors such as glioblastoma multiformes (GBM). This tumor presents a unique feature described as pseudopalisading cells, which accumulate large amounts of gal-3. Tumor cells far from hypoxic/nutrient deprived areas express little, if any gal-3. Here, we have shown that the hybrid glioma cell line, NG97ht, recapitulates GBM growth forming gal-3 positive pseudopalisades even when cells are grafted subcutaneously in nude mice. In vitro experiments were performed exposing these cells to conditions mimicking tumor areas that display oxygen and nutrient deprivation. Results indicated that gal-3 transcription under hypoxic conditions requires previous protein synthesis and is triggered in a HIF-1α and NF-κB dependent manner. In addition, a significant proportion of cells die only when exposed simultaneously to hypoxia and nutrient deprivation and demonstrate ROS induction. Inhibition of gal-3 expression using siRNA led to protein knockdown followed by a 1.7–2.2 fold increase in cell death. Similar results were also found in a human GBM cell line, T98G. In vivo, U87MG gal-3 knockdown cells inoculated subcutaneously in nude mice demonstrated decreased tumor growth and increased time for tumor engraftment. These results indicate that gal-3 protected cells from cell death under hypoxia and nutrient deprivation in vitro and that gal-3 is a key factor in tumor growth and engraftment in hypoxic and nutrient-deprived microenvironments. Overexpression of gal-3, thus, is part of an adaptive program leading to tumor cell survival under these stressing conditions. PMID:25369297

  10. Ribosome profiling reveals translational regulation of mammalian cells in response to hypoxic stress.

    PubMed

    Jiang, Zhiwen; Yang, Jiaqi; Dai, Aimei; Wang, Yuming; Li, Wei; Xie, Zhi

    2017-08-21

    Retinal pigment epithelium (RPE) cells transfer oxygen and nutrients from choroid to the neural retina. Reduced oxygen to RPE perturbs development and functions of blood vessels in retina. Previous efforts of genome-wide studies have been largely focused on transcriptional changes of cells in response to hypoxia. Recently developed ribosome profiling provides an opportunity to study genome-wide translational changes. To gain systemic insights into the transcriptional and translational regulation of cellular in response to hypoxic stress, we used simultaneous RNA sequencing and ribosome profiling on an RPE cells line, ARPE-19, under hypoxia condition. Both HIF-1α and EPAS1 (HIF-2α) proteins were stabilized in ARPE-19 under hypoxic stress treatment at 1 h, 2 h and 4 h. Analysis of simultaneous RNA sequencing and ribosome profiling data showed genome-wide gene expression changes at both transcriptional and translational levels. Comparative analysis of ribosome profiling and RNA-seq data revealed that hypoxia induced changes of more genes at the translational than the transcriptional levels. Ribosomes densities at 5' untranslated region (UTR) significantly increased under hypoxic stress. Interestingly, the increase in ribosome densities at 5' UTR is positively correlated with the presence of upstream open reading frames (uORFs) in the 5' UTR of mRNAs. Our results characterized translational profiles of mRNAs for a RPE cell line in response to hypoxia. In particular, uORFs play important roles in the regulation of translation efficiency by affecting ribosomes loading onto mRNAs. This study provides the first attempt to understand translational response of mammalian cells under hypoxic condition.

  11. Opiorphin is a master regulator of the hypoxic response in corporal smooth muscle cells

    PubMed Central

    Fu, Shibo; Tar, Moses Tarndie; Melman, Arnold; Davies, Kelvin Paul

    2014-01-01

    Men with sickle cell disease (SCD) risk developing priapism. Recognizing that SCD is a disease of hypoxia, we investigated the effect of hypoxia on gene expression in corporal smooth muscle (CSM) cells. Rat CSM cells in vitro were treated with CoCl2 or low oxygen tension to mimic hypoxia. Hypoxic conditions increased expression of genes previously associated with priapism in animal models. Variable coding sequence a1 (Vcsa1; the rat opiorphin homologue, sialorphin), hypoxia-inducible factor 1a (Hif-1a), and A2B adenosine receptor (a2br) were increased by 10-, 4-, and 6-fold, respectively, by treatment with CoCl2, whereas low oxygen tension caused increases in expression of 3-, 4-, and 1.5-fold, respectively. Sialorphin-treated CSM cells increased expression of Hif-1a and a2br by 4-fold, and vcsa1-siRNA treatment reduced expression by ∼50%. Using a Hif-1a inhibitor, we demonstrated up-regulation of a2br by sialorphin is dependent on Hif-1a, and knockdown of vcsa1 expression with vcsa1-siRNA demonstrated that hypoxic-up-regulation of Hif-1a is dependent on vcsa1. In CSM from a SCD mouse, there was 15-fold up-regulation of opiorphin at a life stage prior to priapism. We conclude that in CSM, opiorphins are master regulators of the hypoxic response. Opiorphin up-regulation in response to SCD-associated hypoxia activates CSM “relaxant” pathways; excessive activation of these pathways results in priapism.—Fu, S., Tar, M. T., Melman, A., Davies, K. P. Opiorphin is a master regulator of the hypoxic response in corporal smooth muscle cells. PMID:24803544

  12. A cellular Potts model analyzing differentiated cell behavior during in vivo vascularization of a hypoxic tissue.

    PubMed

    Scianna, Marco; Bassino, Eleonora; Munaron, Luca

    2015-08-01

    Angiogenesis, the formation of new blood vessel networks from existing capillary or post-capillary venules, is an intrinsically multiscale process occurring in several physio-pathological conditions. In particular, hypoxic tissue cells activate downstream cascades culminating in the secretion of a wide range of angiogenic factors, including VEGF isoforms. Such diffusive chemicals activate the endothelial cells (ECs) forming the external walls of the nearby vessels that chemotactically migrate toward the hypoxic areas of the tissue as multicellular sprouts. A functional network eventually emerges by further branching and anastomosis processes. We here propose a CPM-based approach reproducing selected features of the angiogenic progression necessary for the reoxygenation of a hypoxic tissue. Our model is able to span the different scale involved in the angiogenic progression as it incorporates reaction-diffusion equations for the description of the evolution of microenvironmental variables in a discrete mesoscopic cellular Potts model (CPM) that reproduces the dynamics of the vascular cells. A key feature of this work is the explicit phenotypic differentiation of the ECs themselves, distinguished in quiescent, stalk and tip. The simulation results allow identifying a set of key mechanisms underlying tissue vascularization. Further, we provide evidence that the nascent pattern is characterized by precise topological properties. Finally, we link abnormal sprouting angiogenesis with alteration in selected cell behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Phytoglobins Improve Hypoxic Root Growth by Alleviating Apical Meristem Cell Death.

    PubMed

    Mira, Mohamed M; Hill, Robert D; Stasolla, Claudio

    2016-11-01

    Hypoxic root growth in maize (Zea mays) is influenced by the expression of phytoglobins (ZmPgbs). Relative to the wild type, suppression of ZmPgb1.1 or ZmPgb1.2 inhibits the growth of roots exposed to 4% oxygen, causing structural abnormalities in the root apical meristems. These effects were accompanied by increasing levels of reactive oxygen species (ROS), possibly through the transcriptional induction of four Respiratory Burst Oxidase Homologs TUNEL-positive nuclei in meristematic cells indicated the involvement of programmed cell death (PCD) in the process. These cells also accumulated nitric oxide and stained heavily for ethylene biosynthetic transcripts. A sharp increase in the expression level of several 1-aminocyclopropane synthase (ZmAcs2, ZmAcs6, and ZmAcs7), 1-aminocyclopropane oxidase (Aco15, Aco20, Aco31, and Aco35), and ethylene-responsive (ZmErf2 and ZmEbf1) genes was observed in hypoxic ZmPgb-suppressing roots, which overproduced ethylene. Inhibiting ROS synthesis with diphenyleneiodonium or ethylene perception with 1-methylcyclopropene suppressed PCD, increased BAX inhibitor-1, an effective attenuator of the death programs in eukaryotes, and restored root growth. Hypoxic roots overexpressing ZmPgbs had the lowest level of ethylene and showed a reduction in ROS staining and TUNEL-positive nuclei in the meristematic cells. These roots retained functional meristems and exhibited the highest growth performance when subjected to hypoxic conditions. Collectively, these results suggest a novel function of Pgbs in protecting root apical meristems from hypoxia-induced PCD through mechanisms initiated by nitric oxide and mediated by ethylene via ROS. © 2016 American Society of Plant Biologists. All Rights Reserved.

  14. Phytoglobins Improve Hypoxic Root Growth by Alleviating Apical Meristem Cell Death1[OPEN

    PubMed Central

    Stasolla, Claudio

    2016-01-01

    Hypoxic root growth in maize (Zea mays) is influenced by the expression of phytoglobins (ZmPgbs). Relative to the wild type, suppression of ZmPgb1.1 or ZmPgb1.2 inhibits the growth of roots exposed to 4% oxygen, causing structural abnormalities in the root apical meristems. These effects were accompanied by increasing levels of reactive oxygen species (ROS), possibly through the transcriptional induction of four Respiratory Burst Oxidase Homologs. TUNEL-positive nuclei in meristematic cells indicated the involvement of programmed cell death (PCD) in the process. These cells also accumulated nitric oxide and stained heavily for ethylene biosynthetic transcripts. A sharp increase in the expression level of several 1-aminocyclopropane synthase (ZmAcs2, ZmAcs6, and ZmAcs7), 1-aminocyclopropane oxidase (Aco15, Aco20, Aco31, and Aco35), and ethylene-responsive (ZmErf2 and ZmEbf1) genes was observed in hypoxic ZmPgb-suppressing roots, which overproduced ethylene. Inhibiting ROS synthesis with diphenyleneiodonium or ethylene perception with 1-methylcyclopropene suppressed PCD, increased BAX inhibitor-1, an effective attenuator of the death programs in eukaryotes, and restored root growth. Hypoxic roots overexpressing ZmPgbs had the lowest level of ethylene and showed a reduction in ROS staining and TUNEL-positive nuclei in the meristematic cells. These roots retained functional meristems and exhibited the highest growth performance when subjected to hypoxic conditions. Collectively, these results suggest a novel function of Pgbs in protecting root apical meristems from hypoxia-induced PCD through mechanisms initiated by nitric oxide and mediated by ethylene via ROS. PMID:27702845

  15. Macrophages are recruited to hypoxic tumor areas and acquire a Pro-Angiogenic M2-Polarized phenotype via hypoxic cancer cell derived cytokines Oncostatin M and Eotaxin

    PubMed Central

    Tripathi, Chakrapani; Tewari, Brij Nath; Kanchan, Ranjana Kumari; Baghel, Khemraj Singh; Nautiyal, Naveen; Shrivastava, Richa; Kaur, Harbeer; Bhatt, Madan Lal Bramha; Bhadauria, Smrati

    2014-01-01

    TAMs, a unique and distinct M2-skewed myeloid population of tumor stroma, exhibiting pro-tumor functions is fast emerging as a potential target for anti-cancer immunotherapy. Macrophage-recruitment and M2-polarization represent key TAMs-related phenomenon that are amenable to therapeutic intervention. However successful translation of these approaches into effective therapeutic regimen requires better characterization of tumor-microenvironment derived signals that regulate macrophage recruitment and their polarization. Owing to hypoxic milieu being a persistent feature of tumor-microenvironment and a major contributor to malignancy and treatment resistance, the current study was planned with an aim to decipher tumor cell responses to hypoxia vis-a-vis macrophage homing and phenotype switching. Here, we show that hypoxia-primed cancer cells chemoattract and polarize macrophages to pro-angiogenic M2-polarized subtype via Eotaxin and Oncostatin M. Concordantly, hypoxic regions of human breast-cancer specimen exhibited elevated Eotaxin and Oncostatin M levels with concurrently elevated M2-macrophage content. Blockade of Eotaxin/Oncostatin M not only prevented hypoxic breast-cancer cells from recruiting and polarizing macrophages towards an M2-polarized phenotype and retarded tumor progression in 4T1/BALB/c-syngenic-mice-model of breast-cancer but also enhanced the efficacy of anti-angiogenic Bevacizumab. The findings established these two cytokines as novel targets for devising effective anticancer therapy particularly for tumors that are refractory or develop resistance to anti-angiogenic therapeutics. PMID:25051364

  16. Inhibition of Cx43 mediates protective effects on hypoxic/reoxygenated human neuroblastoma cells.

    PubMed

    Vicario, Nunzio; Calabrese, Giovanna; Zappalà, Agata; Parenti, Carmela; Forte, Stefano; Graziano, Adriana Carol Eleonora; Vanella, Luca; Pellitteri, Rosalia; Cardile, Venera; Parenti, Rosalba

    2017-10-01

    Olfactory ensheathing cells (OECs), a special population of glial cells, are able to synthesise several trophic factors exerting a neuroprotective action and promoting growth and functional recovery in both in vitro and in vivo models. In the present work, we investigated the neuroprotective effects of OEC-conditioned medium (OEC-CM) on two different human neuron-like cell lines, SH-SY5Y and SK-N-SH (neuroblastoma cell lines), under normoxic and hypoxic conditions. In addition, we also focused our attention on the role of connexins (Cxs) in the neuroprotective processes. Our results confirmed OEC-CM mediated neuroprotection as shown by cell adherence, proliferation and cellular viability analyses. Reduced connexin 43 (Cx43) levels in OEC-CM compared to unconditioned cells in hypoxic conditions prompted us to investigate the role of Cx43-Gap junctions (GJs) and Cx43-hemichannels (HCs) in hypoxic/reoxygenation injury using carbenoxolone (non-selective GJ inhibitor), ioxynil octanoato (selective Cx43-GJ inhibitor) and Gap19 (selective Cx43-HC inhibitor). We found that Cx43-GJ and Cx43-HC inhibitors are able to protect SH-SY5Y and allow to these cultures to overcome the injury. Our findings support the hypothesis that both OEC-CM and the inhibition of Cx43-GJs and Cx43-HCs offer a neuroprotective effect by reducing Cx43-mediated cell-to-cell and cell-to-extracellular environment communications. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  17. [SOS response of DNA repair and genetic cell instability under hypoxic conditions].

    PubMed

    Vasil'eva, S V; Strel'tsova, D A

    2011-01-01

    The SOS DNA repair pathway is induced in E. coli as a multifunctional cell response to a wide variety of signals: UV, X or gamma-irradiation, mitomycin C or nalidixic acid treatment, thymine starvation, etc. Triggering of the system can be used as a general and early sign of DNA damage. Additionally, the SOS-response is known to be an "error-prone" DNA repair pathway and one of the sources of genetic instability. Hypoxic conditions are established to be the major factor of genetic instability as well. In this paper we for the first time studied the SOS DNA repair response under hypoxic conditions induced by the well known aerobic SOS-inducers. The SOS DNA repair response was examined as a reaction of E. coli PQ37 [sfiA::lacZ] cells to UVC, NO-donating agents and 4NQO. Here we provide evidence that those agents were able to induce the SOS DNA repair response in E. coli at anaerobic growth conditions. The process does not depend on the transcriptional activity of the universal protein of E. col anaerobic growth Fnr [4Fe-4S]2+ or can not be referred to as an indicator of genetic instability in hypoxic conditions.

  18. A comparative immunological analysis of CoCl2 treated cells with in vitro hypoxic exposure.

    PubMed

    Shweta; Mishra, K P; Chanda, S; Singh, S B; Ganju, L

    2015-02-01

    The hypoxic preconditioning of mammalian cells has been shown to have beneficial effects against hypoxic injuries. However, very little information is available on the comparative analysis of immunological responses to hypoxic and hypoxia mimetic exposure. Therefore, in the present study, mouse peritoneal macrophages and splenocytes were subjected to hypoxia exposure (0.5 % O2) and hypoxia mimetic Cobalt chloride (CoCl2) treatment to evaluate their effect on immune response and delineate the underlying signaling mechanisms. The results obtained indicated that super oxide generation increased while TLR4 expression and cell surface markers like CD25, CD40 and CD69 were suppressed in both the treatments as compared to normoxia. Cobalt chloride treatment increased NF-κB expression, nitric oxide (NO) and iNOS expression, cytokines TNF-α and IL-6 as compared to hypoxia exposure. Our study showed that CoCl2 stabilizes HIF-1α to create hypoxia like conditions but it mainly influences the inflammatory response via NF-κB signaling pathway by skewing the production of proinflammatory molecules like TNF-α, IL-6 and NO.

  19. Periostin Promotes Neural Stem Cell Proliferation and Differentiation following Hypoxic-Ischemic Injury.

    PubMed

    Ma, Si-Min; Chen, Long-Xia; Lin, Yi-Feng; Yan, Hu; Lv, Jing-Wen; Xiong, Man; Li, Jin; Cheng, Guo-Qiang; Yang, Yi; Qiu, Zi-Long; Zhou, Wen-Hao

    2015-01-01

    Neural stem cell (NSC) proliferation and differentiation are required to replace neurons damaged or lost after hypoxic-ischemic events and recover brain function. Periostin (POSTN), a novel matricellular protein, plays pivotal roles in the survival, migration, and regeneration of various cell types, but its function in NSCs of neonatal rodent brain is still unknown. The purpose of this study was to investigate the role of POSTN in NSCs following hypoxia-ischemia (HI). We found that POSTN mRNA levels significantly increased in differentiating NSCs. The proliferation and differentiation of NSCs in the hippocampus is compromised in POSTN knockout mice. Moreover, NSC proliferation and differentiation into neurons and astrocytes significantly increased in cultured NSCs treated with recombinant POSTN. Consistently, injection of POSTN into neonatal hypoxic-ischemic rat brains stimulated NSC proliferation and differentiation in the subventricular and subgranular zones after 7 and 14 days of brain injury. Lastly, POSTN treatment significantly improved the spatial learning deficits of rats subjected to HI. These results suggest that POSTN significantly enhances NSC proliferation and differentiation after HI, and provides new insights into therapeutic strategies for the treatment of hypoxic-ischemic encephalopathy.

  20. Hypoxic stellate cells of pancreatic cancer stroma regulate extracellular matrix fiber organization and cancer cell motility.

    PubMed

    Sada, Masafumi; Ohuchida, Kenoki; Horioka, Kohei; Okumura, Takashi; Moriyama, Taiki; Miyasaka, Yoshihiro; Ohtsuka, Takao; Mizumoto, Kazuhiro; Oda, Yoshinao; Nakamura, Masafumi

    2016-03-28

    Desmoplasia and hypoxia in pancreatic cancer mutually affect each other and create a tumor-supportive microenvironment. Here, we show that microenvironment remodeling by hypoxic pancreatic stellate cells (PSCs) promotes cancer cell motility through alteration of extracellular matrix (ECM) fiber architecture. Three-dimensional (3-D) matrices derived from PSCs under hypoxia exhibited highly organized parallel-patterned matrix fibers compared with 3-D matrices derived from PSCs under normoxia, and promoted cancer cell motility by inducing directional migration of cancer cells due to the parallel fiber architecture. Microarray analysis revealed that procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) in PSCs was the gene that potentially regulates ECM fiber architecture under hypoxia. Stromal PLOD2 expression in surgical specimens of pancreatic cancer was confirmed by immunohistochemistry. RNA interference-mediated knockdown of PLOD2 in PSCs blocked parallel fiber architecture of 3-D matrices, leading to decreased directional migration of cancer cells within the matrices. In conclusion, these findings indicate that hypoxia-induced PLOD2 expression in PSCs creates a permissive microenvironment for migration of cancer cells through architectural regulation of stromal ECM in pancreatic cancer.

  1. Cell physiology regulation by hypoxia inducible factor-1: Targeting oxygen-related nanomachineries of hypoxic cells.

    PubMed

    Eskandani, Morteza; Vandghanooni, Somayeh; Barar, Jaleh; Nazemiyeh, Hossein; Omidi, Yadollah

    2017-06-01

    Any dysfunctionality in maintaining the oxygen homeostasis by mammalian cells may elicit hypoxia/anoxia, which results in inescapable oxidative stress and possible subsequent detrimental impacts on certain cells/tissues with high demands to oxygen molecules. The ischemic damage in turn can trigger initiation of a number of diseases including organs ischemia, metabolic disorders, inflammatory diseases, different types of malignancies, and alteration in wound healing process. Thus, full comprehension of molecular mechanism(s) and cellular physiology of the oxygen homeostasis is the cornerstone of the mammalian cells metabolism, energetic pathways and health and disease conditions. An imbalance in oxygen content within the cellular microenvironment activates a cascade of molecular events that are often compensated, otherwise pathologic condition occurs through a complexed network of biomolecules. Hypoxia inducible factor-1 (HIF-1) plays a key transcriptional role in the adaptation of cell physiology in relation with the oxygen content within a cell. In this current study, we provide a comprehensive review on the molecular mechanisms of oxygen sensing and homeostasis and the impacts of HIF-1 in hypoxic/anoxic conditions. Moreover, different molecular and biochemical responses of the cells to the surrounding environment are discussed in details. Finally, modern technological approaches for targeting the hypoxia related proteins are articulated. Copyright © 2017. Published by Elsevier B.V.

  2. The Antiproliferative and Colony-suppressive Activities of STAT3 Inhibitors in Human Cancer Cells Is Compromised Under Hypoxic Conditions.

    PubMed

    Tian, Jilai; Xiao, Hui; Wu, Ruohan; Cao, Yang; Li, Chenglong; Xu, Ronald; Pierson, Christopher R; Finlay, Jonathan L; Yang, Fang; Gu, Ning; Lin, Jiayuh

    2017-02-01

    Constitutive activation of signal transducer and activator of transcription 3 (STAT3) has been indicated as a novel cancer drug target, since it plays an important role in diverse oncogenic processes including survival, cell proliferation and migration. Emerging STAT3 inhibitors have demonstrated efficacy in cancer cells and animal tumor models. It is well known that most solid tumors are characterized by hypoxia, but it is not clear if hypoxic conditions affect activity of STAT3 inhibitors. To examine this, two STAT3 inhibitors were tested to investigate their inhibitory efficacy in cancer cells grown under hypoxic conditions compared with those without hypoxia. Cell proliferation, colony formation and western blot assays were performed to examine the differences in the cell viability, proliferation and proteins in the STAT3 pathway. Under hypoxic conditions, the half-maximal inhibitory concentration values for both STAT3 inhibitors were increased compared to normoxic conditions in human pancreatic cancer, medulloblastoma and sarcoma cell lines. In addition, the ability of both STAT3 inhibitors to inhibit colony formation in pancreatic cancer, medulloblastoma and sarcoma cell lines was reduced under hypoxic conditions when compared to cells under normoxic conditions. Furthermore, there was an increase in phosphorylated STAT3 levels in cancer cells under hypoxic conditions, suggesting this may be one of the mechanisms of resistance. In summary, the results presented here provide a novel finding of STAT3 inhibitor activity under hypoxic conditions and indicate that under such low oxygen conditions, the anticancer efficacy of STAT3 inhibitors was indeed hampered. These results highlight the need to develop new therapeutic strategies to overcome the resistance of cancer cells to STAT3 inhibitors under hypoxic conditions. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. Polyphyllin D exerts potent anti-tumour effects on Lewis cancer cells under hypoxic conditions.

    PubMed

    Ma, D-D; Lu, H-X; Xu, L-S; Xiao, W

    2009-01-01

    Paris polyphylla has been used to treat cancer in China for many years and components of the plant, such as polyphyllin D, may have potent antiproliferative effects in vitro. To investigate the potential antitumour effects of polyphyllin D on cancer cells under hypoxia, Lewis lung cancer cells and mouse tracheal epithelial cells were cultured with or without polyphyllin D under normoxic and hypoxic conditions. Proliferation and apoptosis of cells were assayed. Real-time reverse transcription-polymerase chain reaction was used to quantify the expression of hypoxia-inducible factor 1 alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) mRNA. Polyphyllin D decreased cell proliferation, increased apoptosis and inhibited expression of HIF-1alpha and VEGF mRNAs in Lewis cells. These effects were greater under hypoxic than normoxic conditions. Polyphyllin D did not show a cytotoxic effect in non-tumour cells (mouse skin fibroblasts and tracheal epithelial cells). These results suggest that polyphyllin D potentially has anticancer effects in vitro under hypoxia.

  4. Neuroprotection in hypoxic-ischemic brain injury targeting glial cells.

    PubMed

    Herrera, María Inés; Mucci, Sofia; Barreto, George E; Kolliker-Frers, Rodolfo; Capani, Francisco

    2017-07-27

    Brain injury constitutes a disabling health condition of several etiologies. One of the major causes of brain injury is hypoxia-ischemia. Until recently, pharmacological treatments were solely focused on neurons. In the last decades, glial cells started to be considered as alternative targets for neuroprotection. Novel treatments for hypoxia-ischemia intend to modulate reactive forms of glial cells, and/or potentiate their recovery response. In this review, we summarize these neuroprotective strategies in hypoxia-ischemia and discuss their mechanisms of action. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. The hypoxic microenvironment upgrades stem-like properties of ovarian cancer cells

    PubMed Central

    2012-01-01

    Background To study whether hypoxia influences the stem-like properties of ovarian cancer cells and their biological behavior under hypoxia. Method Ovarian cancer cell lines ES-2 and OVCAR-3 were cultivated in different oxygen tensions for proliferation, cell cycling and invasion analyses. The clonogenic potential of cells was examined by colony formation and sphere formation assays. Stem cell surface markers, SP and CD44bright and CD44dim cells were analyzed by flow cytometry. Protein expression of HIF-1α, HIF-2α, Ot3/4 and Sox2 were investigated by Western blotting. Results Both cell lines cultivated at hypoxic condition grew relatively slowly with extended G0/G1 phase. However, if the cells were pre-treated under 1% O2 for 48 hrs before brought back to normoxia, the cells showed significantly higher proliferation rate with higher infiltration capability, and significant more colonies and spheres, in comparison to the cells always cultivated under normoxia. CD44bright cells expressed significantly higher levels of Oct3/4 and Sox2 than the CD44dim cells and formed significantly more clones and spheres examined in vitro. Hypoxic treatment of the cells resulted in stronger CD44 expression in both cell lines, and stronger CD133 expression in the OVCAR-3 cell line. In parallel with these findings, significantly increased number of side population (SP) cells and up-regulated expression of Oct3/4 and Sox2 in both ES-2 and OVCAR-3 cell lines were observed. Conclusion We conclude that ovarian cancer cells survive hypoxia by upgrading their stem-like properties through up-regulation of stemness-related factors and behave more aggressively when brought back to higher oxygen environment. PMID:22642602

  6. Isolation and characterization of 2-nitroimidazole produced by Streptomyces species as an inhibitor of both carbonic anhydrase and shell formation in the barnacle Balanus amphitrite.

    PubMed

    Fukushima, Mari; Ozaki, Noriaki; Ikeda, Hiroyuki; Furihata, Keiko; Hayakawa, Yoichi; Sakuda, Shohei; Nagasawa, Hiromichi

    2002-03-01

    Carbonic anhydrase is thought to be involved in the process of calcium carbonate deposition in calcified tissues of many organisms. Barnacles form hard calcified shells for protection against predation, and represent a class of marine-fouling animals. In order to inhibit barnacle growth by inhibiting shell formation, we searched for carbonic anhydrase inhibitors from microbial secondary metabolites. A simple assay for assessing carbonic-anhydrase-inhibiting activity was developed. Screening of many microorganisms isolated from soil with this assay resulted in a microbial strain that produced a carbonic anhydrase inhibitor. This strain was identified as Streptomyces eurocidicus mf294. The inhibitor was isolated through 4 purification steps and identified as 2-nitroimidazole on the basis of spectroscopic data. 2-Nitroimidazole inhibited barnacle carbonic anhydrase dose-dependently and complete inhibition was reached at the concentration of 1 x 10(-5) M. 2-Nitroimidazole did not affect settlement or metamorphosis of barnacle larvae, but inhibited shell formation at concentrations higher than 1 x 10(-4) M. These findings strongly support the idea that carbonic anhydrase is involved in calcification.

  7. Hypoxic preconditioning of human cardiosphere-derived cell sheets enhances cellular functions via activation of the PI3K/Akt/mTOR/HIF-1α pathway

    PubMed Central

    Tanaka, Yuya; Hosoyama, Tohru; Mikamo, Akihito; Kurazumi, Hiroshi; Nishimoto, Arata; Ueno, Koji; Shirasawa, Bungo; Hamano, Kimikazu

    2017-01-01

    Cell sheet technology is a promising therapeutic strategy for the treatment of ischemic diseases such as myocardial infarction. We recently developed a novel protocol, termed “hypoxic preconditioning,” capable of augmenting the therapeutic efficacy of cell sheets. Following this protocol, the pro-angiogenic and anti-fibrotic activity of cell sheets were enhanced by brief incubation of cell sheets under hypoxic culture conditions. However, the precise molecular mechanism underlying the hypoxic preconditioning of cell sheets is unclear. In the present study, we examined signal transducers in cell sheets to identify those responsive to hypoxic preconditioning, using cardiosphere-derived cell (CDC) sheets. We initially tested whether sheet-like structures were suitable for hypoxic preconditioning by comparing them with individual cells. Hypoxic preconditioning was more effective in sheeted cells than in individual cells. Expression of hypoxia inducible factor-1α (HIF-1α) and mammalian target of rapamycin (mTOR) were induced upon hypoxic preconditioning of cell sheets, as was the phosphoinositide 3-kinase (PI3K)/Akt pathway. In addition, hypoxic preconditioning increased phosphorylation of epidermal growth factor receptor (EGFR) and heat shock protein 60 (HSP60) in CDC sheets. Our findings provide novel insights into the utility of hypoxic preconditioning in cell sheet-based technologies for the treatment of ischemic diseases. PMID:28337294

  8. Priming adult stem cells by hypoxic pretreatments for applications in regenerative medicine.

    PubMed

    Muscari, Claudio; Giordano, Emanuele; Bonafè, Francesca; Govoni, Marco; Pasini, Alice; Guarnieri, Carlo

    2013-08-29

    The efficiency of regenerative medicine can be ameliorated by improving the biological performances of stem cells before their transplantation. Several ex-vivo protocols of non-damaging cell hypoxia have been demonstrated to significantly increase survival, proliferation and post-engraftment differentiation potential of stem cells. The best results for priming cultured stem cells against a following, otherwise lethal, ischemic stress have been obtained with brief intermittent episodes of hypoxia, or anoxia, and reoxygenation in accordance with the extraordinary protection afforded by the conventional maneuver of ischemic preconditioning in severely ischemic organs. These protocols of hypoxic preconditioning can be rather easily reproduced in a laboratory; however, more suitable pharmacological interventions inducing stem cell responses similar to those activated in hypoxia are considered among the most promising solutions for future applications in cell therapy. Here we want to offer an up-to-date review of the molecular mechanisms translating hypoxia into beneficial events for regenerative medicine. To this aim the involvement of epigenetic modifications, microRNAs, and oxidative stress, mainly activated by hypoxia inducible factors, will be discussed. Stem cell adaptation to their natural hypoxic microenvironments (niche) in healthy and neoplastic tissues will be also considered.

  9. Cyctotoxicities of mitomycin C and x rays to aerobic and hypoxic cells in vitro

    SciTech Connect

    Rockwell, S.

    1982-01-01

    Aerobic and hypoxic EMT6 mouse mammary tumor cells in exponential growth in vitro were used to study cell survival after treatment with radiation (250k V X rays) and mitomycin C in various combinations. The cytotoxicities of the two agents were found to be additive as judged by comparing dose-response curves for each agent alone with survival curves after combination therapy and by isobologram analysis. The cytotoxicities resulting from combination treatments were found to be independent of the sequence of the treatments or the interval between treatments.

  10. Radiation-induced changes in nucleoid halo diameteres of aerobic and hypoxic SF-126 human brain tumor cells

    SciTech Connect

    Wang, J.; Basu, H.S.; Hu, L.; Feuerstein, B.G.; Deen, D.F.

    1995-02-01

    Nucleoid halo diameters were measured to assay changes in DNA supercoiling in human brain tumor cell line SF-126 after irradiation under aerobic or hypoxic conditions. In unirradiated aerobic cells, a typical propidium iodide titration curve showed that with increasing concentrations of propodium iodide, the halo diameter increased and then decreased with the unwinding and subsequent rewinding of DNA supercoils. In irradiated cells, the rewinding of DNA supercoils was inhibited, resulting in an increased halo diameter, in a radiation dose-dependent manner. To produce equal increases in halo diameter required about a threefold higher radiation dose in hypoxic cells than in aerobic cells. Quantitatively similiar differences in the radiation sensitivities of hypoxic and aerobic cells were demonstrated by a colony-forming efficiency assay. These findings suggest that the nucleoid halo assay may be used as a rapid measure of the inherent radiation sensitivity of human tumors. 22 refs., 5 figs.

  11. Hypoxic Preconditioning Increases Survival and Pro-Angiogenic Capacity of Human Cord Blood Mesenchymal Stromal Cells In Vitro

    PubMed Central

    Bader, Andreas Matthäus; Klose, Kristin; Bieback, Karen; Korinth, Dirk; Schneider, Maria; Seifert, Martina; Choi, Yeong-Hoon; Kurtz, Andreas; Falk, Volkmar; Stamm, Christof

    2015-01-01

    Hypoxic preconditioning was shown to improve the therapeutic efficacy of bone marrow-derived multipotent mesenchymal stromal cells (MSCs) upon transplantation in ischemic tissue. Given the interest in clinical applications of umbilical cord blood-derived MSCs, we developed a specific hypoxic preconditioning protocol and investigated its anti-apoptotic and pro-angiogenic effects on cord blood MSCs undergoing simulated ischemia in vitro by subjecting them to hypoxia and nutrient deprivation with or without preceding hypoxic preconditioning. Cell number, metabolic activity, surface marker expression, chromosomal stability, apoptosis (caspases-3/7 activity) and necrosis were determined, and phosphorylation, mRNA expression and protein secretion of selected apoptosis and angiogenesis-regulating factors were quantified. Then, human umbilical vein endothelial cells (HUVEC) were subjected to simulated ischemia in co-culture with hypoxically preconditioned or naïve cord blood MSCs, and HUVEC proliferation was measured. Migration, proliferation and nitric oxide production of HUVECs were determined in presence of cord blood MSC-conditioned medium. Cord blood MSCs proved least sensitive to simulated ischemia when they were preconditioned for 24 h, while their basic behavior, immunophenotype and karyotype in culture remained unchanged. Here, “post-ischemic” cell number and metabolic activity were enhanced and caspase-3/7 activity and lactate dehydrogenase release were reduced as compared to non-preconditioned cells. Phosphorylation of AKT and BAD, mRNA expression of BCL-XL, BAG1 and VEGF, and VEGF protein secretion were higher in preconditioned cells. Hypoxically preconditioned cord blood MSCs enhanced HUVEC proliferation and migration, while nitric oxide production remained unchanged. We conclude that hypoxic preconditioning protects cord blood MSCs by activation of anti-apoptotic signaling mechanisms and enhances their angiogenic potential. Hence, hypoxic preconditioning

  12. Opiorphin is a master regulator of the hypoxic response in corporal smooth muscle cells.

    PubMed

    Fu, Shibo; Tar, Moses Tarndie; Melman, Arnold; Davies, Kelvin Paul

    2014-08-01

    Men with sickle cell disease (SCD) risk developing priapism. Recognizing that SCD is a disease of hypoxia, we investigated the effect of hypoxia on gene expression in corporal smooth muscle (CSM) cells. Rat CSM cells in vitro were treated with CoCl2 or low oxygen tension to mimic hypoxia. Hypoxic conditions increased expression of genes previously associated with priapism in animal models. Variable coding sequence a1 (Vcsa1; the rat opiorphin homologue, sialorphin), hypoxia-inducible factor 1a (Hif-1a), and A2B adenosine receptor (a2br) were increased by 10-, 4-, and 6-fold, respectively, by treatment with CoCl2, whereas low oxygen tension caused increases in expression of 3-, 4-, and 1.5-fold, respectively. Sialorphin-treated CSM cells increased expression of Hif-1a and a2br by 4-fold, and vcsa1-siRNA treatment reduced expression by ∼50%. Using a Hif-1a inhibitor, we demonstrated up-regulation of a2br by sialorphin is dependent on Hif-1a, and knockdown of vcsa1 expression with vcsa1-siRNA demonstrated that hypoxic-up-regulation of Hif-1a is dependent on vcsa1. In CSM from a SCD mouse, there was 15-fold up-regulation of opiorphin at a life stage prior to priapism. We conclude that in CSM, opiorphins are master regulators of the hypoxic response. Opiorphin up-regulation in response to SCD-associated hypoxia activates CSM "relaxant" pathways; excessive activation of these pathways results in priapism.

  13. The extracellular matrix is a novel attribute of endothelial progenitors and of hypoxic mature endothelial cells

    PubMed Central

    Kusuma, Sravanti; Zhao, Stephen; Gerecht, Sharon

    2012-01-01

    Extracellular matrix (ECM) production is critical to preserve the function and integrity of mature blood vessels. Toward the engineering of blood vessels, studies have centered on ECM production by supporting cells, whereas few studies implicate endothelial cells (ECs) with ECM synthesis. Here, we elucidate variations between cultured human arterial, venous, and progenitor ECs with respect to ECM deposition assembly, composition, and response to biomolecular and physiological factors. Our studies reveal that progenitor ECs, endothelial colony-forming cells (ECFCs), deposit collagen IV, fibronectin, and laminin that assemble to an organized weblike structure, as confirmed by decellularized cultures. Mature ECs only express these ECM proteins intracellularly. ECFC-derived ECM is abrogated in response to TGFβ signaling inhibition and actin cytoskeleton disruption. Hypoxic (1%) and physiological (5%) O2 tension stimulate ECM deposition from mature ECs. Interestingly, deposition of collagen I is observed only under 5% O2 tension. ECM production from all ECs is found to be regulated by hypoxia-inducible factors 1α and 2α but differentially in the different cell lines. Collectively, we suggest that ECM deposition and assembly by ECs is dependent on maturation stage and oxygen supply and that these findings can be harnessed to advance engineered vascular therapeutics.—Kusuma, S., Zhao, S., Gerecht, S. The extracellular matrix is a novel attribute of endothelial progenitors and of hypoxic mature endothelial cells. PMID:22919069

  14. System for measuring oxygen consumption rates of mammalian cells in static culture under hypoxic conditions.

    PubMed

    Kagawa, Yuki; Miyahara, Hirotaka; Ota, Yuri; Tsuneda, Satoshi

    2016-01-01

    Estimating the oxygen consumption rates (OCRs) of mammalian cells in hypoxic environments is essential for designing and developing a three-dimensional (3-D) cell culture system. However, OCR measurements under hypoxic conditions are infrequently reported in the literature. Here, we developed a system for measuring OCRs at low oxygen levels. The system injects nitrogen gas into the environment and measures the oxygen concentration by an optical oxygen microsensor that consumes no oxygen. The developed system was applied to HepG2 cells in static culture. Specifically, we measured the spatial profiles of the local dissolved oxygen concentration in the medium, then estimated the OCRs of the cells. The OCRs, and also the pericellular oxygen concentrations, decreased nonlinearly as the oxygen partial pressure in the environment decreased from 19% to 1%. The OCRs also depended on the culture period and the matrix used for coating the dish surface. Using this system, we can precisely estimate the OCRs of various cell types under environments that mimic 3-D culture conditions, contributing crucial data for an efficient 3-D culture system design.

  15. Therapeutic effect of human umbilical cord mesenchymal stem cells on neonatal rat hypoxic-ischemic encephalopathy.

    PubMed

    Zhang, Xinhua; Zhang, Qinfen; Li, Wei; Nie, Dekang; Chen, Weiwei; Xu, Chunxiang; Yi, Xin; Shi, Jinhong; Tian, Meiling; Qin, Jianbing; Jin, Guohua; Tu, Wenjuan

    2014-01-01

    The therapeutic potential of umbilical cord blood mesenchymal stem cells has been studied in several diseases. However, the possibility that human umbilical cord Wharton's jelly-derived mesenchymal stem cells (hUCMSCs) can be used to treat neonatal hypoxic-ischemic encephalopathy (HIE) has not yet been investigated. This study focuses on the potential therapeutic effect of hUCMSC transplantation in a rat model of HIE. Dermal fibroblasts served as cell controls. HIE was induced in neonatal rats aged 7 days. hUCMSCs labeled with Dil were then transplanted into the models 24 hr or 72 hr post-HIE through the peritoneal cavity or the jugular vein. Behavioral testing revealed that hUCMSC transplantation but not the dermal fibroblast improved significantly the locomotor function vs. vehicle controls. Animals receiving cell grafts 24 hr after surgery showed a more significant improvement than at 72 hr. More hUCMSCs homed to the ischemic frontal cortex following intravenous administration than after intraperitoneal injection. Differentiation of engrafted cells into neurons was observed in and around the infarct region. Gliosis in ischemic regions was significantly reduced after hUCMSC transplantation. Administration of ganglioside (GM1) enhanced the behavioral recovery on the base of hUCMSC treatment. These results demonstrate that intravenous transplantation of hUCMSCs at an early stage after HIE can improve the behavior of hypoxic-ischemic rats and decrease gliosis. Ganglioside treatment further enhanced the recovery of neurological function following hUCMSC transplantation.

  16. Radiosensitization of EMT6 cells by four platinum complexes

    SciTech Connect

    Teicher, B.A.; Rockwell, S.; Lee, J.B.

    1985-05-01

    The compounds described here are dichloro complexes of bivalent platinum with one or two potentially radiosensitizing ligands. The radiosensitization of oxygenated and hypoxic exponentially growing EMT6 cells in vitro was measured. The dose modifying factors obtained with 200 ..mu..M and 400 ..mu..M trans-bis(2-nitroimidazole)dichloroplatinum II (NIPt) in hypoxic cells were 1.5 and 2.1, respectively. For trans-bis(2-amino-5-nitrothiazole)dichloroplatinum II (Plant) under the same conditions, the dose modifying factor was 1.5 at 200 ..mu..M and 1.8 at 400 ..mu..M. Neither compound sensitized oxygenated cells when tested similar protocols. Unlike the trans complexes (1,2-diamino-4-nitrobenzene)dichloroplatinum II (Plato) was cytotoxic toward the hypoxic cells in the absence of X rays. The time course of cytotoxicity for 100 ..mu..M Plato in exponentially growing cells showed rapid killing of hypoxic cells, and much less toxicity toward oxygenated cells. In radiosensitization studies, dose modifying factors of 1.6 and 2.0 were found with 200 ..mu..M and 400 ..mu..M Plato in hypoxic cells. The compound did not sensitize aerobic cells. The well-known platinum complex cis-dipyridinedichloroplatinum II (PyPt) represents a cis-platinum heterocyclic aromatic complex that does not have a nitro-functionality. The dose modifying factor obtained with 400 ..mu..M PyPt in hypoxic cells was 1.7. On a molar basis, the nitro-functional platinum complexes appear to be more effective as hypoxic cell radiosensitizers than the corresponding free ligands.

  17. The radiosensitizing and toxic effects of RSU-1069 on hypoxic cells in a murine tumor.

    PubMed

    Chaplin, D J; Durand, R E; Stratford, I J; Jenkins, T C

    1986-07-01

    RSU-1069 is one of a group of compounds of particular interest in radiobiology, since it combines the nitroimidazole ring with a side chain bearing a monofunctional alkylating agent. This compound has been shown to be a potent radiosensitizer both in vitro and in vivo. Furthermore, it has recently been shown to be an effective hypoxic cell cytotoxin in vitro. Our studies have been carried out using the SCCVII squamous carcinoma implanted subcutaneously in C3H mice, using a technique we recently developed which facilitates isolation of tumor cell subpopulations from known locations relative to the tumor blood supply. The response of the separated tumor subpopulations was assessed using a soft agar clonogenic assay. For radiosensitization studies, RSU-1069 was administered i.p. at 0.5 mumol/g 20 min before irradiation and the tumors excised 20 min after irradiation. For toxicity studies, tumors were excised 16-18 hr after RSU-1069 administration. The results obtained to date clearly demonstrate that RSU-1069 is an efficient hypoxic cell radiosensitizer and cytotoxin in this murine tumor and has little effect on well perfused (i.e., oxic) cells.

  18. Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions

    SciTech Connect

    Ren Hongying; Cai Huiguo; Han Zhongchao; Yang Renchi; Zhao, Qinjun; Cao Ying; Li Jing; Zhou Cixiang; Liao Lianming; Jia Mingyue; Zhao Qian; Chen Guoqiang . E-mail: chengq@shsmu.edu.cn; Zhao, R.C. |. E-mail: chunhuaz@public.tpt.tj.cn

    2006-08-18

    Low oxygen tension is a potent differentiation inducer of numerous cell types and an effective stimulus of many gene expressions. Here, we described that under 8% O{sub 2}, bone marrow stromal cells (MSCs) exhibited proliferative and morphologic changes. The level of differentiated antigen H-2Dd and the number of G{sub 2}/S/M phase cells increased evidently under 8% O{sub 2} condition. Also, the proportion of wide, flattened, and epithelial-like cells (which were alkaline phosphatase staining positive) in MSCs increased significantly. When cultured in adipogenic medium, there was a 5- to 6-fold increase in the number of lipid droplets under hypoxic conditions compared with that in normoxic culture. We also demonstrated the existence of MSC differentiation under hypoxic conditions by electron microscopy. Expression of Oct4 was inhibited under 8% O{sub 2} condition, but after adipocyte differentiation in normoxic culture and hypoxia-mimicking agents cobalt chloride (CoCl{sub 2}) and deferoxamine mesylate (DFX) treatments, Oct4 was still expressed in MSCs. These results indicate hypoxia accelerates MSC differentiation and hypoxia and hypoxia-mimicking agents exert different effects on MSC differentiation.

  19. Experimental study on the cryopreservation of LLC-PK1 epithelial cells with hypoxic UW solution.

    PubMed

    Wan, Chidan; Wang, Chunyou; Liu, Tao; Wang, Hongbo; Yang, Zhiyong

    2007-08-01

    The effects of oxygen partial pressure on cryopreservation of the cells with organ preservation solution were explored. Hypoxic UW solution was made by purging the UW solution with argon. The pig proximal tubule epithelial cells (LLC-PK1 cells) were cryopreserved in hypoxic UW solution (Ar-UW group) or standard UW solution (UW group) at 4 degrees C for 48 h. Trypan blue staining and LDH detection were performed to evaluate the injury of the cells. The results showed that the oxygen partial pressure in Ar-UW group was significantly declined from 242+/-6 mmHg to 83+/-10 mmHg. After cryopreservation at 4 degrees C for 48 h, LDH leakage rate and Trypan blue-stained rate in Ar-UW group were (11.3+/-3.4)% and (10.5+/-4.7)%, respectively, which were significantly lower than in UW group [(49.5+/-6.9)% and (47.6+/-9.3)% respectively, both P<0.01]. It was concluded that lower oxygen partial pressure of UW solution was more beneficial to the cryopreservation of LLC.

  20. SENP1 desensitizes hypoxic ovarian cancer cells to cisplatin by up-regulating HIF-1α

    PubMed Central

    Ao, Qilin; Su, Wenjing; Guo, Shuang; Cai, Lei; Huang, Lei

    2015-01-01

    Hypoxia-inducible factor 1 alpha (HIF-1α) is closely related to chemoresistance of ovarian cancers. Although it is reported that HIF-1α can be regulated by Sentrin/SUMO-specific protease 1 (SENP1), the effects of SENP1 on HIF-1α is still controversial. In this study, we identified that SENP1 positively regulated the expression of HIF-1α by deSUMOylation and weakened the sensitivity of hypoxic ovarian cancer cells to cisplatin. These results indicate that SENP1 is a positive regulator of HIF-1α and plays a negative role in ovarian cancer chemotherapy. PMID:26548925

  1. 660 nm red light-enhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment.

    PubMed

    Li, Xianchao; Hou, Wensheng; Wu, Xiaoying; Jiang, Wei; Chen, Haiyan; Xiao, Nong; Zhou, Ping

    2014-02-01

    Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hypoxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efficiencies are relatively low. Red or near-infrared light from 600-1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the treatment of hypoxic-ischemic brain damage. In this study, the migration and colonization of cultured bone marrow mesenchymal stem cells on primary neurons after oxygen-glucose deprivation were detected using Transwell assay. The results showed that, after a 40-hour irradiation under red light-emitting diodes at 660 nm and 60 mW/cm(2), an increasing number of green fluorescence-labeled bone marrow mesenchymal stem cells migrated towards hypoxic-ischemic damaged primary neurons. Meanwhile, neonatal rats with hypoxic-ischemic brain damage were given an intraperitoneal injection of 1 × 10(6) bone marrow mesenchymal stem cells, followed by irradiation under red light-emitting diodes at 660 nm and 60 mW/cm(2) for 7 successive days. Shuttle box test results showed that, after phototherapy and bone marrow mesenchymal stem cell transplantation, the active avoidance response rate of hypoxic-ischemic brain damage rats was significantly increased, which was higher than that after bone marrow mesenchymal stem cell transplantation alone. Experimental findings indicate that 660 nm red light emitting diode irradiation promotes the migration of bone marrow mesenchymal stem cells, thereby enhancing the contribution of cell transplantation in the treatment of hypoxic-ischemic brain damage.

  2. Mineralization of bone-related SaOS-2 cells under physiological hypoxic conditions.

    PubMed

    Müller, Werner E G; Schröder, Heinz C; Tolba, Emad; Diehl-Seifert, Bärbel; Wang, Xiaohong

    2016-01-01

    Inorganic polyphosphate (polyP) is a physiological energy-rich polymer with multiple phosphoric anhydride bonds. In cells such as bone-forming osteoblasts, glycolysis is the main pathway generating metabolic energy in the form of ATP. In the present study, we show that, under hypoxic culture conditions, the growth/viability of osteoblast-like SaOS-2 cells is not impaired. The addition of polyP to those cells, administered as amorphous calcium polyP nanoparticles (aCa-polyP-NP; approximate size 100 nm), significantly increased the proliferation of the cells. In the presence of polyP, the cells produce significant levels of lactate, the end product of anaerobic glycolysis. Under those conditions, an eight-fold increase in the steady-state level of the membrane-associated carbonic anhydrase IX is found, as well as a six-fold induction of the hypoxia-inducible factor 1. Consequently, biomineral formation onto the SaOS-2 cells decreases under low oxygen tension. If the polyP nanoparticles are added to the cells, the degree of mineralization is enhanced. These changes had been measured also in human mesenchymal stem cells. The assumption that the bicarbonate, generated by the carbonic anhydrase in the presence of polyP under low oxygen, is deposited as a constituent of the bioseeds formed during initial hydroxyapatite formation is corroborated by the identification of carbon besides of calcium, oxygen and phosphorus in the initial biomineral deposit onto the cells using the sensitive technology of high-resolution energy dispersive spectrometry mapping. Based on these data, we conclude that polyP is required for the supply of metabolic energy during bone mineral formation under physiological, hypoxic conditions, acting as a 'metabolic fuel' for the cells to grow. © 2015 FEBS.

  3. Selective toxicity of 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide toward hypoxic mammalian cells

    SciTech Connect

    Rauth, A.M.; Mohindra, J.K.

    1981-12-01

    The chemotherapeutic agent 5-(3,3-dimethyl-1-triazeno)-imidazole-4-carboxamide (DTIC) is used in the treatment of malignant melanoma where response rates of 15 to 30% have been reported. Some current interest exists in combining DTIC chemotherapy with localized high-dose (800 rads)-per-fraction radiotherapy in the treatment of unresectable metastatic melanoma. The present work investigates the radiosensitizing and chemotherapeutic properties of DTIC in an in vitro system using Chinese hamster ovary or HeLa cells and in vivo, using the KHT transplantable murine tumor. No evidence of a radiosensitizing effect of DTIC was found towards hypoxic or aerobic cells either in vitro or in vivo. In vitro, high drug concentrations (1 mg/ml) were approximately 5 times more effective in killing hypoxic Chinese hamster ovary or HeLa cells than in killing aerobic cells over exposure times of 0 to 12 hr. The degree of toxicity was drug dose and temperature dependent but was not highly dependent on cell number or cell type. In vivo plasma levels of DTIC were measured with high-pressure liquid chromatography after i.p. injection of drug into C3H mice. At the highest drug doses tested, near the 50% lethal dose in mice for DTIC (0.5 mg/g), the drug was toxic to both aerobic and hypoxic tumor cells with some evidence of increased toxicity towards hypoxic cells. The present work suggests that DTIC may be more efficiently activated under hypoxic conditions as compared to aerobic conditions. The increased toxicity of DTIC under hypoxic versus aerobic conditions may prove to be a feature of this drug that can be exploited in its clinical use and in the design of new analogs of DTIC.

  4. Isoflurane alters proximal tubular cell susceptibility to toxic and hypoxic forms of attack.

    PubMed

    Zager, R A; Burkhart, K M; Conrad, D S

    1999-01-01

    Fluorinated anesthetics can profoundly alter plasma membrane structure and function, potentially impacting cell injury responses. Because major surgery often precipitates acute renal failure, this study assessed whether the most commonly used fluorinated anesthetic, isoflurane, alters tubular cell responses to toxic and hypoxic attack. Mouse proximal tubule segments were incubated under control conditions or with a clinically relevant isoflurane dose. Cell viability (lactate dehydrogenase release), deacylation (fatty acid, such as C20:4 levels), and adenosine triphosphate (ATP) concentrations were assessed under one or more of the following conditions: (a) exogenous phospholipase A2 (PLA2) or C20:4 addition, (b) Ca2+ overload (A23187 ionophore), (c) increased metabolic work (Na ionophore), and (d) hypoxia- or antimycin A-induced attack. Isoflurane's effect on NBD phosphatidylserine uptake (an index of plasma membrane aminophospholipid translocase activity) was also assessed. Isoflurane alone caused trivial deacylation and no lactate dehydrogenase release. However, it strikingly sensitized to both PLA2- and A23187-induced deacylation and cell death. Isoflurane also exacerbated C20:4's direct membrane lytic effect. Under conditions of mild ATP depletion (Na ionophore-induced increased ATP consumption; PLA2-induced mitochondrial suppression), isoflurane provoked moderate/severe ATP reductions and cell death. Conversely, under conditions of maximal ATP depletion (hypoxia, antimycin), isoflurane conferred a modest cytoprotective effect. Isoflurane blocked aminophospholipid translocase activity, which normally maintains plasma membrane lipid asymmetry (that is, preventing its "flip flop"). Isoflurane profoundly and differentially affects tubular cell responses to toxic and hypoxic attack. Direct drug-induced alterations in lipid trafficking/plasma membrane orientation and in cell energy production are likely involved. Although the in vivo relevance of these findings

  5. Effect of nitroimidazole sensitizers on in vitro glycolytic metabolism of hypoxic squamous cell carcinoma.

    PubMed

    Minn, H; Clavo, A C; Fisher, S J; Wahl, R L

    2000-01-01

    Two nitroimidazole compounds, misonidazole (MISO) and nimorazole (NIMO), were evaluated for their potential to modify uptake of [5,6-3H] 2-fluoro-2-deoxy-D-glucose (3H-FDG) in the human squamous carcinoma cell line UT-SCC-5 exposed to increasing levels of hypoxia. UT-SCC-5 cells were incubated with 0-10 mM of MISO or NIMO under normal or reduced oxygen concentrations of 20%, 1.5%, or 0% with 5% CO2 for 6 h, after which 74 KBq of 3H-FDG was added in media for 1 h. In the presence of normal concentrations of O2, both sensitizers increased 3H-FDG uptake by up to 178% (MISO) or 84% (NIMO) when compared with untreated cells. In anoxia, MISO decreased 3H-FDG uptake to 35% of that of control whereas NIMO-treated cells showed a respective decrease in tracer uptake to 62%. Clonogenic assays clearly indicated that MISO was toxic and NIMO moderately toxic for hypoxic cells, whereas both sensitizers exerted only a very modest effect on survival of fully oxygenated cells. Our findings indicate that nitroimidazole treatment consistently increases 3H-FDG uptake into UT-SCC-5 cells under normal oxygen concentrations. In hypoxia, the observed decrease in tracer uptake is dependent on both the level of ambient oxygen and drug concentration and may reflect both direct toxicity and inhibition of glycolysis. The observations may be useful for further applications of 18F-FDG positron emission tomography (PET) to monitor effects of hypoxic cell radiosensitizers on tumor metabolism in vivo.

  6. Production of proteolytic enzymes in mast cells, fibroblasts, vascular smooth muscle and endothelial cells cultivated under normoxic or hypoxic conditions.

    PubMed

    Maxová, H; Bačáková, L; Lisá, V; Novotná, J; Tomášová, H; Vízek, M; Herget, J

    2010-01-01

    Matrix metalloproteinases (MMPs) is a family of proteolytic enzymes involved in remodeling of extracellular matrix. Although proteolytic enzymes are produced by many cell types, mast cells seem to be more important than other types in remodeling of pulmonary arteries during hypoxia. Therefore, we tested in vitro production of MMPs and serine proteases in four cell types (mast cells, fibroblasts, vascular smooth muscle cells and endothelial cells) cultivated for 48 h under normoxic or hypoxic (3% O2) conditions. MMP-13 was visualized by immunohistochemistry, MMP-2 and MMP-9 were detected by zymography in cell lysates. Enzymatic activities (MMPs, tryptase and chymase) were estimated in the cultivation media. Hypoxia had a minimal effect on total MMP activity in the cultivation media of all types of cells, but immunofluorescence revealed higher intensity of MMP-13 in the cells exposed to hypoxia except of fibroblasts. Tryptase activity was three times higher and chymase activity twice higher in mast cells cultivated in hypoxia than in those cultured in normoxia. Among all cell types studied here, mast cells are the most abundant source of proteolytic enzymes under normoxic and hypoxic conditions. Moreover, in these cells hypoxia increases the production of both specific serine proteases tryptase and chymase, which can act as MMPs activators.

  7. Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-β and miR23a transfer

    PubMed Central

    Berchem, Guy; Noman, Muhammad Zaeem; Bosseler, Manon; Paggetti, Jerome; Baconnais, Sonia; Le cam, Eric; Nanbakhsh, Arash; Moussay, Etienne; Mami-Chouaib, Fathia; Janji, Bassam; Chouaib, Salem

    2016-01-01

    ABSTRACT Tumor-derived microvesicles (TD-MVs) are key mediators which are shed by cancer cells and can sensitize neighboring cells in the tumor microenvironment. TD-MVs are extracellular vesicles composed of exosomes and MVs and promote cancer invasion and metastasis. Intratumoral hypoxia is an integral component of all solid tumors. The relationship between hypoxic tumor-shed MVs and NK-mediated cytotoxicity remains unknown. In this paper, we reported that MVs derived from hypoxic tumor cells qualitatively differ from those derived from normoxic tumor cells. Using multiple tumor models, we showed that hypoxic MVs inhibit more NK cell function as compared to normoxic MVs. Hypoxic TD-MVs package two immunosuppressive factors involved in the impairment of natural killer (NK) cell cytotoxicity against different tumor cells in vitro and in vivo. We showed that following their uptake by NK cells, hypoxic TD-MVs transfer TGF-β1 to NK cells, decreasing the cell surface expression of the activating receptor NKG2D, thereby inhibiting NK cell function. MicroRNA profiling revealed the presence of high levels of miR-210 and miR-23a in hypoxic TD-MVs. We demonstrated that miR-23a in hypoxic TD-MVs operates as an additional immunomosuppressive factor, since it directly targets the expression of CD107a in NK cells. To our knowledge, this is the first study to show that hypoxic tumor cells by secreting MVs can educate NK cells and decrease their antitumor immune response. This study highlights the existence of a novel mechanism of immune suppression mediated by hypoxic TD-MVs and further improves our understanding of the immunosuppressive mechanisms prevailing in the hypoxic tumor microenvironment. PMID:27141372

  8. Important role of PLC-γ1 in hypoxic increase in intracellular calcium in pulmonary arterial smooth muscle cells

    PubMed Central

    Yadav, Vishal R.; Song, Tengyao; Joseph, Leroy; Mei, Lin; Zheng, Yun-Min

    2013-01-01

    An increase in intracellular calcium concentration ([Ca2+]i) in pulmonary arterial smooth muscle cells (PASMCs) induces hypoxic cellular responses in the lungs; however, the underlying molecular mechanisms remain incompletely understood. We report, for the first time, that acute hypoxia significantly enhances phospholipase C (PLC) activity in mouse resistance pulmonary arteries (PAs), but not in mesenteric arteries. Western blot analysis and immunofluorescence staining reveal the expression of PLC-γ1 protein in PAs and PASMCs, respectively. The activity of PLC-γ1 is also augmented in PASMCs following hypoxia. Lentiviral shRNA-mediated gene knockdown of mitochondrial complex III Rieske iron-sulfur protein (RISP) to inhibit reactive oxygen species (ROS) production prevents hypoxia from increasing PLC-γ1 activity in PASMCs. Myxothiazol, a mitochondrial complex III inhibitor, reduces the hypoxic response as well. The PLC inhibitor U73122, but not its inactive analog U73433, attenuates the hypoxic vasoconstriction in PAs and hypoxic increase in [Ca2+]i in PASMCs. PLC-γ1 knockdown suppresses its protein expression and the hypoxic increase in [Ca2+]i. Hypoxia remarkably increases inositol 1,4,5-trisphosphate (IP3) production, which is blocked by U73122. The IP3 receptor (IP3R) antagonist 2-aminoethoxydiphenyl borate (2-APB) or xestospongin-C inhibits the hypoxic increase in [Ca2+]i. PLC-γ1 knockdown or U73122 reduces H2O2-induced increase in [Ca2+]i in PASMCs and contraction in PAs. 2-APB and xestospongin-C produce similar inhibitory effects. In conclusion, our findings provide novel evidence that hypoxia activates PLC-γ1 by increasing RISP-dependent mitochondrial ROS production in the complex III, which causes IP3 production, IP3R opening, and Ca2+ release, playing an important role in hypoxic Ca2+ and contractile responses in PASMCs. PMID:23204067

  9. Molecular Characterization of Hypoxic Alveolar Epithelial Cells After Lung Contusion Indicates an Important Role for HIF-1α.

    PubMed

    Sherman, Matthew A; Suresh, Madathilparambil V; Dolgachev, Vladislav A; McCandless, Lane K; Xue, Xiang; Ziru, Li; Machado-Aranda, David; Shah, Yatrik M; Raghavendran, Krishnan

    2016-11-01

    To understand the fate and regulation of hypoxic type II alveolar epithelial cells (AECs) after lung contusion (LC). LC due to thoracic trauma is a major risk factor for the development of acute respiratory distress syndrome. AECs have recently been implicated as a primary driver of inflammation in LC. The main pathological consequence of LC is hypoxia, and a key mediator of adaptation to hypoxia is hypoxia-inducible factor (HIF)-1. We have recently published that HIF-1α is a major driver of acute inflammation after LC through type II AEC. LC was induced in wild-type mice (C57BL/6), luciferase-based hypoxia reporter mice (ODD-Luc), and HIF-1α conditional knockout mice. The degree of hypoxia was assessed using hypoxyprobe and in vivo imaging system. The fate of hypoxic AEC was evaluated by luciferase dual staining with caspases-3 and Ki-67, terminal deoxynucleotidyl transferase dUTP nick end labeling, and flow cytometry with ApoStat. NLRP-3 expression was determined by western blot. Laser capture microdissection was used to isolate AECs in vivo, and collected RNA was analyzed by Q-PCR for HIF-related pathways. Global hypoxia was present after LC, but hypoxic foci were not uniform. Hypoxic AECs preferentially undergo apoptosis. There were significant reductions in NLRP-3 in HIF-1α conditional knockout mice. The expression of proteins involved in HIF-related pathways and inflammasome activation were significantly increased in hypoxic AECs. These are the first in vivo data to identify, isolate, and characterize hypoxic AECs. HIF-1α regulation through hypoxic AECs is critical to the initiation of acute inflammation after LC.

  10. Important role of PLC-γ1 in hypoxic increase in intracellular calcium in pulmonary arterial smooth muscle cells.

    PubMed

    Yadav, Vishal R; Song, Tengyao; Joseph, Leroy; Mei, Lin; Zheng, Yun-Min; Wang, Yong-Xiao

    2013-02-01

    An increase in intracellular calcium concentration ([Ca(2+)](i)) in pulmonary arterial smooth muscle cells (PASMCs) induces hypoxic cellular responses in the lungs; however, the underlying molecular mechanisms remain incompletely understood. We report, for the first time, that acute hypoxia significantly enhances phospholipase C (PLC) activity in mouse resistance pulmonary arteries (PAs), but not in mesenteric arteries. Western blot analysis and immunofluorescence staining reveal the expression of PLC-γ1 protein in PAs and PASMCs, respectively. The activity of PLC-γ1 is also augmented in PASMCs following hypoxia. Lentiviral shRNA-mediated gene knockdown of mitochondrial complex III Rieske iron-sulfur protein (RISP) to inhibit reactive oxygen species (ROS) production prevents hypoxia from increasing PLC-γ1 activity in PASMCs. Myxothiazol, a mitochondrial complex III inhibitor, reduces the hypoxic response as well. The PLC inhibitor U73122, but not its inactive analog U73433, attenuates the hypoxic vasoconstriction in PAs and hypoxic increase in [Ca(2+)](i) in PASMCs. PLC-γ1 knockdown suppresses its protein expression and the hypoxic increase in [Ca(2+)](i). Hypoxia remarkably increases inositol 1,4,5-trisphosphate (IP(3)) production, which is blocked by U73122. The IP(3) receptor (IP(3)R) antagonist 2-aminoethoxydiphenyl borate (2-APB) or xestospongin-C inhibits the hypoxic increase in [Ca(2+)](i). PLC-γ1 knockdown or U73122 reduces H(2)O(2)-induced increase in [Ca(2+)](i) in PASMCs and contraction in PAs. 2-APB and xestospongin-C produce similar inhibitory effects. In conclusion, our findings provide novel evidence that hypoxia activates PLC-γ1 by increasing RISP-dependent mitochondrial ROS production in the complex III, which causes IP(3) production, IP(3)R opening, and Ca(2+) release, playing an important role in hypoxic Ca(2+) and contractile responses in PASMCs.

  11. Polysialic acid sustains cancer cell survival and migratory capacity in a hypoxic environment

    PubMed Central

    Elkashef, Sara M.; Allison, Simon J.; Sadiq, Maria; Basheer, Haneen A.; Ribeiro Morais, Goreti; Loadman, Paul M.; Pors, Klaus; Falconer, Robert A.

    2016-01-01

    Polysialic acid (polySia) is a unique carbohydrate polymer expressed on the surface of NCAM (neuronal cell adhesion molecule) in a number of cancers where it modulates cell-cell and cell-matrix adhesion, migration, invasion and metastasis and is strongly associated with poor clinical prognosis. We have carried out the first investigation into the effect of polySia expression on the behaviour of cancer cells in hypoxia, a key source of chemoresistance in tumours. The role of polysialylation and associated tumour cell migration and cell adhesion were studied in hypoxia, along with effects on cell survival and the potential role of HIF-1. Our findings provide the first evidence that polySia expression sustains migratory capacity and is associated with tumour cell survival in hypoxia. Initial mechanistic studies indicate a potential role for HIF-1 in sustaining polySia-mediated migratory capacity, but not cell survival. These data add to the growing body of evidence pointing to a crucial role for the polysialyltransferases (polySTs) in neuroendocrine tumour progression and provide the first evidence to suggest that polySia is associated with an aggressive phenotype in tumour hypoxia. These results have significant potential implications for polyST inhibition as an anti-metastatic therapeutic strategy and for targeting hypoxic cancer cells. PMID:27611649

  12. Enhanced Retinal Ganglion Cell Survival in Glaucoma by Hypoxic Postconditioning After Disease Onset.

    PubMed

    Gidday, Jeffrey M; Zhang, Lihong; Chiang, Chia-Wen; Zhu, Yanli

    2015-04-01

    The neuroprotective efficacy of adaptive epigenetics, wherein beneficial gene expression changes are induced by nonharmful "conditioning" stimuli, is now well established in several acute, preclinical central nervous system injury models. Recently, in a mouse model of glaucoma, we demonstrated retinal ganglion cell (RGC) protection by repetitively "preconditioning" with hypoxia prior to disease onset, indicating an epigenetic approach may also yield benefits in chronic neurodegenerative disease. Herein, we determined whether presenting the repetitive hypoxic stimulus after disease initiation [repetitive hypoxic "postconditioning" (RH-Post)] could afford similar functional and morphologic protection against glaucomatous RGC injury. Chronic elevations in intraocular pressure (IOP) were induced unilaterally in adult male C57BL/6 mice by episcleral vein ligation. Mice were randomized to an RH-Post [1 h of systemic hypoxia (11% oxygen) every other day, starting 4 days after IOP elevation] or an untreated control group. After 3 weeks of experimental glaucoma, the 21-27% reduction and 5-25% prolongation in flash visual-evoked potential amplitudes and latencies, respectively, and the 30% impairment in visual acuity were robustly improved in RH-Post-treated mice, as was the 17% loss in RGC soma number and 20% reduction in axon integrity. These protective effects were observed without RH-Post affecting IOP. The present findings demonstrate that functional and morphologic protection of RGCs can be realized by stimulating epigenetic responses during the early stages of disease, and thus constitute a new conceptual approach to glaucoma therapeutics.

  13. Relaxing the formation of hypoxic bottom water with sediment microbial fuel cells.

    PubMed

    Touch, Narong; Hibino, Tadashi; Morimoto, Yuki; Kinjo, Nobutaka

    2017-02-08

    The method of improving bottom water environment using industrial wastes to suppress diffusion substances from bottom sediment has recently captured the attention of many researchers. In this study, wastewater discharge-derived sediment was used to examine an alternative approach involving the use of sediment microbial fuel cells (SMFCs) in relaxing the formation of hypoxic bottom water, and removing reduced substances from sediment. Concentrations of dissolved oxygen (DO) and other ions were measured in overlying water and sediment pore water with and without the application of SMFCs. The results suggest that SMFCs can markedly reduce hydrogen sulfide and manganese ion concentrations in overlying water, and decrease the depletions of redox potential and DO concentration. In addition, SMFCs can dissolve ferric compounds in the sediment and thereby release the ferric ion available to fix phosphate in the sediment. Our results indicate that SMFCs can be used as an alternative method to relax the formation of hypoxic bottom water and to remove reduced substances from the sediment, thus improving the quality of both water and sediment environments.

  14. Pluripotent and Multipotent Stem Cells Display Distinct Hypoxic miRNA Expression Profiles

    PubMed Central

    Agrawal, Rahul; Dale, Tina P.; Al-Zubaidi, Mohammed A.; Benny Malgulwar, Prit; Forsyth, Nicholas R.; Kulshreshtha, Ritu

    2016-01-01

    MicroRNAs are reported to have a crucial role in the regulation of self-renewal and differentiation of stem cells. Hypoxia has been identified as a key biophysical element of the stem cell culture milieu however, the link between hypoxia and miRNA expression in stem cells remains poorly understood. We therefore explored miRNA expression in hypoxic human embryonic and mesenchymal stem cells (hESCs and hMSCs). A total of 50 and 76 miRNAs were differentially regulated by hypoxia (2% O2) in hESCs and hMSCs, respectively, with a negligible overlap of only three miRNAs. We found coordinate regulation of precursor and mature miRNAs under hypoxia suggesting their regulation mainly at transcriptional level. Hypoxia response elements were located upstream of 97% of upregulated hypoxia regulated miRNAs (HRMs) suggesting hypoxia-inducible-factor (HIF) driven transcription. HIF binding to the candidate cis-elements of specific miRNAs under hypoxia was confirmed by Chromatin immunoprecipitation coupled with qPCR. Role analysis of a subset of upregulated HRMs identified linkage to reported inhibition of differentiation while a downregulated subset of HRMs had a putative role in the promotion of differentiation. MiRNA-target prediction correlation with published hypoxic hESC and hMSC gene expression profiles revealed HRM target genes enriched in the cytokine:cytokine receptor, HIF signalling and pathways in cancer. Overall, our study reveals, novel and distinct hypoxia-driven miRNA signatures in hESCs and hMSCs with the potential for application in optimised culture and differentiation models for both therapeutic application and improved understanding of stem cell biology. PMID:27783707

  15. Oxygen tension-independent protection against hypoxic cell killing in rat liver by low sodium.

    PubMed

    Ferrigno, Andrea; Di Pasqua, Laura G; Berardo, Clarissa; Siciliano, Veronica; Richelmi, Plinio; Vairetti, Mariapia

    2017-05-30

    The role of Na+ in hypoxic injury was evaluated by a time-course analysis of damage in isolated livers perfused with N2-saturated buffer containing standard (143 mM) or low (25 mM) Na+ levels. Trypan blue uptake was used to detect non-viable cells. Under hypoxia with standard-Na+, trypan blue uptake began at the border between pericentral areas and periportal regions and increased in the latter zone; using a low-Na+ buffer, no trypan blue zonation occurred but a homogenous distribution of dye was found associated with sinusoidal endothelial cell (SEC) staining. A decrease in hyaluronic acid (HA) uptake, index of SEC damage, was observed using a low-Na+ buffer. A time dependent injury was confirmed by an increase in LDH and TBARS levels with standard-Na+ buffer. Using low-Na+ buffer, SEC susceptibility appears elevated under hypoxia and hepatocytes was protected, in an oxygen independent manner.

  16. Preliminary research on 1-(4-bromo-2-nitroimidazol-1-yl)-3-[(18)F]fluoropropan-2-ol as a novel brain hypoxia PET tracer in a rodent model of stroke.

    PubMed

    Nieto, Elena; Delgado, Mercedes; Sobrado, Mónica; de Ceballos, María L; Alajarín, Ramón; García-García, Luis; Kelly, James; Lizasoain, Ignacio; Pozo, Miguel A; Álvarez-Builla, Julio

    2015-08-28

    The synthesis of the new radiotracer precursor 4-Br-NITTP and the radiolabeling of the new tracer 1-(4-bromo-2-nitroimidazol-1-yl)-3-[(18)F]fluoropropan-2-ol (4-Br-[(18)F]FMISO) is reported. The cyclic voltammetry behaviour, neuronal cell toxicity, transport through the brain endothelial cell monolayer, in vivo PET imaging and preliminary calculations of the tracer uptake for a rodent model of stroke were studied for the new compound and the results were compared to those obtained with [(18)F]FMISO, the current gold standard PET hypoxia tracer. The new PET brain hypoxia tracer is more easily reduced, has higher CLogP than [(18)F]FMISO and it diffuses more rapidly through brain endothelial cells. The new compound is non-toxic to neuronal cells and it allows the in vivo mapping of stroke in mice with higher sensitivity. 4-Br-[(18)F]FMISO is a good candidate for further development in ischemic stroke.

  17. Influence of the hypoxic cell sensitizer misonidazole on the proliferation of well-oxygenated cells in vitro during prolonged exposure.

    PubMed Central

    Deys, B. F.; Stap, J.

    1979-01-01

    Analysis of time-lapse cinematographic film permitted the construction of pedigrees from 88 well oxygenated cells of a mouse osteosarcoma (MOS). These cells have been chronically treated with various concentrations of the hypoxic cell sensitizer misonidazole (MIS) over periods of up to 96 h. At concentrations of 0.5 and 7 mM there is a 2--3 h increase in cell-cycle time. Concentrations of 2 mM show an intermitotic time delay of 7.6--10.3 h. At 4 mM cells divided only once. With increasing drug concentration there was an increase in the number of abnormal mitoses. These results were compared with cloning efficiency (PE) experiments. PE at 0.5 mM is 80%, at 1 mM 40 and at 2 mM is reduced to 4%. Cells treated with 2mM MIS over a period of 28.6 h resume their normal cycle when the drug is washed from the culture. This may indicate that DNA is not a major target for MIS. It is concluded that this hypoxic cell sensitizer is also toxic for MOS cells in well oxygenated conditions. PMID:292453

  18. Hepatocytes Determine the Hypoxic Microenvironment and Radiosensitivity of Colorectal Cancer Cells Through Production of Nitric Oxide That Targets Mitochondrial Respiration

    SciTech Connect

    Jiang, Heng; Verovski, Valeri N.; Leonard, Wim; Law, Ka Lun; Vermeersch, Marieke; Storme, Guy; Van den Berge, Dirk; Gevaert, Thierry; Sermeus, Alexandra; De Ridder, Mark

    2013-03-01

    Purpose: To determine whether host hepatocytes may reverse hypoxic radioresistance through nitric oxide (NO)-induced oxygen sparing, in a model relevant to colorectal cancer (CRC) liver metastases. Methods and Materials: Hepatocytes and a panel of CRC cells were incubated in a tissue-mimetic coculture system with diffusion-limited oxygenation, and oxygen levels were monitored by an oxygen-sensing fluorescence probe. To activate endogenous NO production, cocultures were exposed to a cytokine mixture, and the expression of inducible nitric oxide synthase was analyzed by reverse transcription–polymerase chain reaction, Western blotting, and NO/nitrite production. The mitochondrial targets of NO were examined by enzymatic activity. To assess hypoxic radioresponse, cocultures were irradiated and reseeded for colonies. Results: Resting hepatocytes consumed 10-40 times more oxygen than mouse CT26 and human DLD-1, HT29, HCT116, and SW480 CRC cells, and thus seemed to be the major effectors of hypoxic conditioning. As a result, hepatocytes caused uniform radioprotection of tumor cells at a 1:1 ratio. Conversely, NO-producing hepatocytes radiosensitized all CRC cell lines more than 1.5-fold, similar to the effect of selective mitochondrial inhibitors. The radiosensitizing effect was associated with a respiratory self-arrest of hepatocytes at the level of aconitase and complex II, which resulted in profound reoxygenation of tumor cells through oxygen sparing. Nitric oxide–producing hepatocytes were at least 10 times more active than NO-producing macrophages to reverse hypoxia-induced radioresistance. Conclusions: Hepatocytes were the major determinants of the hypoxic microenvironment and radioresponse of CRC cells in our model of metabolic hypoxia. We provide evidence that reoxygenation and radiosensitization of hypoxic CRC cells can be achieved through oxygen sparing induced by endogenous NO production in host hepatocytes.

  19. Lung tumorigenic response of strain A mice exposed to hypoxic cell sensitizers alone and in combination with gamma-radiation

    SciTech Connect

    Mian, T.A.; Theiss, J.C.; Grdina, D.J.

    1983-01-01

    The influence of metronidazole, misonidazole, and desmethylmisonidazole on the induction of lung adenomas in the strain A mouse was examined. Two dose levels of the hypoxic cell sensitizers, 0.2 and 0.6 mg/g, were used either alone or in combination with 900 rads of gamma-radiation in a fractionated dose schedule of twice a week for 3 weeks. In the groups of mice which received hypoxic cell sensitizers only, the prevalence and the mean number of lung tumors per mouse were somewhat increased (p less than 0.10) in the group receiving the higher dose (0.6 mg/g) of misonidazole but was not significantly different from results for the control animals in the other two sensitizer groups. The combination of hypoxic cell sensitizer and radiation did not show any significant enhancement of lung tumor response when compared with the group which received radiation only. The dose of radiation used in this study significantly enhanced lung tumor formation in mice when compared with that in the control group. Thus, under the experimental exposure conditions used in this investigation, which were somewhat similar to the exposure conditions occurring in clinical treatment, each of the hypoxic cell sensitizers tested failed to sensitize significantly the mice to the carcinogenic effects of gamma-radiation.

  20. A redox-silent analogue of tocotrienol inhibits hypoxic adaptation of lung cancer cells.

    PubMed

    Kashiwagi, Korehito; Harada, Kayono; Yano, Yoshihisa; Kumadaki, Itsumaro; Hagiwara, Kiyokazu; Takebayashi, Jun; Kido, Wakiko; Virgona, Nantiga; Yano, Tomohiro

    2008-01-25

    We have previously reported that a redox-silent analogue of alpha-tocotrienol (T3), 6-O-carboxypropyl-alpha-tocotrienol (T3E) shows more potential anti-carcinogenic property than T3 in a lung cancer cell (A549 cell). However, the mechanisms by which T3E exerts its potential anti-carcinogenic effect is still unclear. As tumor malignancy is associated with hypoxia adaptation, in this study, we examined whether T3E could suppress survival and invasion in A549 cells under hypoxia. Hypoxia treatment drastically-induced activation of the protein tyrosine kinase, Src, and its regulated signaling required for hypoxia adaptation of A549 tumor cells. The survival and invasion capacity of the tumor cells under hypoxia was suppressed by T3E via the inactivation of Src. More specifically, T3E-dependent inhibition of Src-induced Akt activation contributed to suppression of cell survival under hypoxia, and the reduction of fibrinolytic factors such as plasminogen activator-1(PAI-1) via the decrease of hypoxia-inducible factor-2alpha by T3E led to inhibition of hypoxic invasion. Overall these results suggest that T3E suppresses hypoxia adaptation of A549 cells by the inhibition in hypoxia-induced activation of Src signaling.

  1. Metabolic studies and neurotoxicity in tumors and brain of mice after hypoxic cell sensitizers

    SciTech Connect

    Streffer, C.; Tamulevicius, P. )

    1994-06-15

    The effects of the radiosensitizers RK-28 and RP-170, both 2-nitroimidazole nucleoside analogues, and KU-2285, a fluorinated 2-nitroimidazole, as well as etanidazole (ETA) on glucose metabolism in mouse tumors and brain were studied to assess their degree of neurotoxicity. Adult male C57B1 mice received differing doses of the above sensitizers IP. Blood, brain, and tumor samples were removed at various times and the levels of glycolytic metabolites determined. Glucose uptake and phosphorylation in brain were measured by the 2-deoxyglucose method of Sokoloff et al. RP-170 showed neither signs of toxicity nor significant alterations in glucose metabolism in brain or tumor at doses up to 4 g/kg b.w. up to 4 h. By contrast, RK-28 was extremely neurotoxic at a dose of 1 g/kg b.w. with a high degree of lethality, resulting in a highly significant increase in the brain glucose level from 0.38 [mu]mol/g to 2.20 [mu]mol/g 2 h after administration, whereas that in the tumor was decreased. KU-2285 and ETA were significantly less toxic than RK-28 at this dose, as reflected in a lower increase in the brain glucose level (0.60 [mu]mol/g), although KU-2285 approaches that of RK-28 (1.43 [mu]mol/g) after 2 h following a dose of 2 g/kg b.w. However, in contrast to the other sensitizers, KU-2285 concomitantly also resulted in a highly significant continuous increase in tumor glucose levels. Labeled [sup 3]H-2deoxyglucose studies showed that RP-170 neither markedly affected the uptake of total radioactivity into the brain nor its degree of phosphorylation whereas, KU-2285 (2 g/kg) and RK-28 (1 g/kg) decreased uptake by [approximately]50% and phosphorylation approximately 3 and 4-fold, respectively. At doses of 1 g/kg, ETA and KU-2285 showed no significant changes in these parameters. This indicates a decreased level of neurotoxicity. 9 refs., 1 fig., 5 tabs.

  2. Efficient Monte Carlo modelling of individual tumour cell propagation for hypoxic head and neck cancer

    NASA Astrophysics Data System (ADS)

    Tuckwell, W.; Bezak, E.; Yeoh, E.; Marcu, L.

    2008-09-01

    A Monte Carlo tumour model has been developed to simulate tumour cell propagation for head and neck squamous cell carcinoma. The model aims to eventually provide a radiobiological tool for radiation oncology clinicians to plan patient treatment schedules based on properties of the individual tumour. The inclusion of an oxygen distribution amongst the tumour cells enables the model to incorporate hypoxia and other associated parameters, which affect tumour growth. The object oriented program FORTRAN 95 has been used to create the model algorithm, with Monte Carlo methods being employed to randomly assign many of the cell parameters from probability distributions. Hypoxia has been implemented through random assignment of partial oxygen pressure values to individual cells during tumour growth, based on in vivo Eppendorf probe experimental data. The accumulation of up to 10 million virtual tumour cells in 15 min of computer running time has been achieved. The stem cell percentage and the degree of hypoxia are the parameters which most influence the final tumour growth rate. For a tumour with a doubling time of 40 days, the final stem cell percentage is approximately 1% of the total cell population. The effect of hypoxia on the tumour growth rate is significant. Using a hypoxia induced cell quiescence limit which affects 50% of cells with and oxygen levels less than 1 mm Hg, the tumour doubling time increases to over 200 days and the time of tumour growth for a clinically detectable tumour (109 cells) increases from 3 to 8 years. A biologically plausible Monte Carlo model of hypoxic head and neck squamous cell carcinoma tumour growth has been developed for real time assessment of the effects of multiple biological parameters which impact upon the response of the individual patient to fractionated radiotherapy.

  3. Kalkitoxin Inhibits Angiogenesis, Disrupts Cellular Hypoxic Signaling, and Blocks Mitochondrial Electron Transport in Tumor Cells

    PubMed Central

    Morgan, J. Brian; Liu, Yang; Coothankandaswamy, Veena; Mahdi, Fakhri; Jekabsons, Mika B.; Gerwick, William H.; Valeriote, Frederick A.; Zhou, Yu-Dong; Nagle, Dale G.

    2015-01-01

    The biologically active lipopeptide kalkitoxin was previously isolated from the marine cyanobacterium Moorea producens (Lyngbya majuscula). Kalkitoxin exhibited N-methyl-d-aspartate (NMDA)-mediated neurotoxicity and acted as an inhibitory ligand for voltage-sensitive sodium channels in cultured rat cerebellar granule neurons. Subsequent studies revealed that kalkitoxin generated a delayed form of colon tumor cell cytotoxicity in 7-day clonogenic cell survival assays. Cell line- and exposure time-dependent cytostatic/cytotoxic effects were previously observed with mitochondria-targeted inhibitors of hypoxia-inducible factor-1 (HIF-1). The transcription factor HIF-1 functions as a key regulator of oxygen homeostasis. Therefore, we investigated the ability of kalkitoxin to inhibit hypoxic signaling in human tumor cell lines. Kalkitoxin potently and selectively inhibited hypoxia-induced activation of HIF-1 in T47D breast tumor cells (IC50 5.6 nM). Mechanistic studies revealed that kalkitoxin inhibits HIF-1 activation by suppressing mitochondrial oxygen consumption at electron transport chain (ETC) complex I (NADH-ubiquinone oxidoreductase). Further studies indicate that kalkitoxin targets tumor angiogenesis by blocking the induction of angiogenic factors (i.e., VEGF) in tumor cells. PMID:25803180

  4. DNA damage in wounded, hypoxic and acidotic human skin fibroblast cell cultures after low laser irradiation

    NASA Astrophysics Data System (ADS)

    Hawkins Evans, D.; Mbene, A.; Zungu, I.; Houreld, N.; Abrahamse, H.

    2009-02-01

    Phototherapy has become more popular and widely used in the treatment of a variety of medical conditions. To ensure sound results as evidence of its effectiveness, well designed experiments must be conducted when determining the effect of phototherapy. Cell culture models such as hypoxic, acidotic and wounded cell cultures simulating different disease conditions including ischemic heart disease, diabetes and wound healing were used to determine the effect of laser irradiation on the genetic integrity of the cell. Even though phototherapy has been found to be beneficial in a wide spectrum of conditions, it has been shown to induce DNA damage. However, this damage appears to be repairable. The risk lies in the fact that phototherapy may help the medical condition initially but damage DNA at the same time leaving undetected damage that may result in late onset, more severe, induced medical conditions including cancer. Human skin fibroblasts were cultured and used to induce a wound (by the central scratch model), hypoxic (by incubation in an anaerobic jar, 95% N2 and 5% O2) and acidotic (reducing the pH of the media to 6.7) conditions. Different models were irradiated using a Helium-Neon (632.8 nm) laser with a power density of 2.07 mW/cm2 and a fluence of 5 J/cm2 or 16 J/cm2. The effect of the irradiation was determined using the Comet assay 1 and 24 h after irradiation. In addition, the Comet assay was performed with the addition of formamidopyrimidine glycosylase (FPG) obviating strand brakes in oxidized bases at a high fluence of 16 J/cm2. A significant increase in DNA damage was seen in all three injured models at both 1 and 24 h post-irradiation when compared to the normal un-injured cells. However, when compared to non-irradiated controls the acidotic model showed a significant decrease in DNA damage 24 h after irradiation indicating the possible induction of cellular DNA repair mechanisms. When wounded cells were irradiated with higher fluences of 16 J/cm2

  5. Cytoprotective effects of calbindin-D(28k) against antimycin-A induced hypoxic injury in proximal tubular cells.

    PubMed

    Wu, Ming-Ju; Lai, Li-Wen; Lien, Yeong-Hau H

    2002-06-21

    Intracellular calcium plays an important role on the pathogenesis of hypoxia-induced cellular injury. Calbindin-D(28k), a cytosolic vitamin D-dependent calcium binding protein, can serve as a buffer to limit a surge in intracellular Ca2+ concentration ([Ca2+]i) induced by various stimulations. To evaluate the possible cytoprotective effect of calbindin-D(28k) against hypoxic injury in proximal tubular cells, a plasmid containing calbindin-D(28k) cDNA under the control of CMV immediate-early gene promoter was transfected into the murine proximal tubular epithelial (MCT) cells. The expression of calbindin-D(28k) in the transfected cells was verified with Northern blot analysis, Western blot analysis, and immunofluorescent staining. The non-transfected and transfected MCT cells were subjected to chemical hypoxia induced by antimycin A (10 microM) and glucose deprivation for 30-120 min. The transfection of calbindin-D(28k) reduced lactate dehydrogenase (LDH) release by 41%, 41%, 24%, and 24%, respectively, at 30, 60, 90 and 120 min after hypoxia when compared to the non-transfected cells (all p < 0.05). Cell viability after hypoxic injury was also significantly higher in transfected cells than non-transfected cells. Transfection with the plasmid without calbindin-D(28k) cDNA did not affect LDH release or cell viability after chemical hypoxic injury. [Ca+2]i was measured ratiometrically with fura-2 after exposure to chemical hypoxia. The rate of initial rise in [Ca2+]i and final [Ca+2]i at 30-120 min were significantly lowered in transfected cells. In conclusion, this study demonstrated that transfection of calbindin-D(28k) gene into MCT cells provide protective effects against chemical hypoxic injury probably through its buffering effects on [Ca+2]i.

  6. Evaluation of the antineoplastic activity of gallic acid in oral squamous cell carcinoma under hypoxic conditions.

    PubMed

    Guimaraes, Talita A; Farias, Lucyana C; Fraga, Carlos A; Feltenberger, John D; Melo, Geraldo A; Coletta, Ricardo D; Souza Santos, Sergio H; de Paula, Alfredo M B; Guimaraes, Andre L

    2016-06-01

    The purpose of the current study was to develop and test a theoretical model that could explain the mechanism of action of gallic acid (GA) in the oral squamous cell carcinoma context for the first time. The theoretical model was developed using bioinformatics and interaction network analysis to evaluate the effect of GA on oral squamous cell carcinoma. In a second step to confirm theoretical results, migration, invasion, proliferation, and gene expression (Col1A1, E-cadherin, HIF-1α, and caspase-3) were performed under normoxic and hypoxic conditions. Our study indicated that treatment with GA resulted in the inhibition of cell proliferation, migration, and invasion in neoplastic cells. Observation of the molecular mechanism showed that GA upregulates E-cadherin expression and downregulates Col1A1 and HIF-1α expression, suggesting that GA might be a potential anticancer compound. In conclusion, the present study demonstrated that GA significantly reduces cell proliferation, invasion, and migration by increasing E-cadherin and repressing Col1A1.

  7. SIRT1 is required for mitochondrial biogenesis reprogramming in hypoxic human pulmonary arteriolar smooth muscle cells.

    PubMed

    Li, Pengyun; Liu, Yan; Burns, Nana; Zhao, Ke-Seng; Song, Rui

    2017-03-22

    Although recent studies have reported that mitochondria are putative oxygen sensors underlying hypoxic pulmonary vasoconstriction, little is known concerning the sirtuin 1 (SIRT1)-mediated mitochondrial biogenesis regulatory program in pulmonary arteriolar smooth muscle cells (PASMCs) during hypoxia/reoxygenation (H/R). We investigated the epigenetic regulatory mechanism of mitochondrial biogenesis and function in human PASMCs during H/R. Human PASMCs were exposed to hypoxia of 24-48 h and reoxygenation of 24-48 h. The expression of SIRT1 was reduced in a time-dependent manner. Mitochondrial transcription factor A (TFAM) expression was increased during hypoxia and decreased during reoxygenation, while the release of TFAM was increased in a time-dependent manner. Lentiviral overexpression of SIRT1 preserved SIRT3 deacetylase activity in human PASMCs exposed to H/R. Knockdown of PGC-1α suppressed the effect of SIRT1 on SIRT3 activity. Knockdown of SIRT3 abrogated SIRT1-mediated deacetylation of cyclophilin D (CyPD). Notably, knockdown of SIRT3 or PGC-1α suppressed the incremental effect of SIRT1 on mitochondrial TFAM, mitochondrial DNA (mtDNA) content and cellular ATP levels. Importantly, polydatin restored SIRT1 levels in human PASMCs exposed to H/R. Knockdown of SIRT1 suppressed the effect of polydatin on mitochondrial TFAM, mtDNA content and cellular ATP levels. In conclusion, SIRT1 expression is decreased in human PASMCs during H/R. TFAM expression in mitochondria is reduced and the release of TFAM is increased by H/R. PGC-1α/SIRT3/CyPD mediates the protective effect of SIRT1 on expression and release of TFAM and mitochondrial biogenesis and function. Polydatin improves mitochondrial biogenesis and function by enhancing SIRT1 expression in hypoxic human PASMCs.

  8. Human bone marrow stem cells cultured under hypoxic conditions present altered characteristics and enhanced in vivo tissue regeneration.

    PubMed

    Lee, Jung-Seok; Park, Jung-Chul; Kim, Tae-Wan; Jung, Byung-Joo; Lee, Youngseok; Shim, Eun-Kyung; Park, Soyon; Choi, Eun-Young; Cho, Kyoo-Sung; Kim, Chang-Sung

    2015-09-01

    Human bone marrow mesenchymal stem cells (hBMSCs) were isolated from bone marrow of the vertebral body. The hBMSCs were cultured under either hypoxic (1% O2) or normoxic (21% O2; control) conditions and the characteristics as mesenchymal stem cells were compared. Results revealed that hypoxia reduced proliferative potential and colony-forming efficiency of hBMSCs, and significantly enhanced osteogenic and chondrogenic differentiation. The hBMSCs enhanced the regenerative potential of bone in vivo. In vitro synthesis of soluble and insoluble collagen was significantly increased in the hypoxic condition. In vivo collagen tissue regeneration was also enhanced under the hypoxic condition, with concomitant increased expressions of various subtypes of collagen and lysyl-oxidase family mRNA. MicroRNA assays revealed that miR-155-5p, which negatively regulates HIF-1α, was significantly highly expressed. These observations demonstrate that hBMSCs obtained from human vertebrae exhibit altered characteristics under hypoxic conditions, and each factor contributing to hBMSC-mediated tissue healing should be evaluated with the goal of allowing their clinical application.

  9. [Hypoxic preconditioning of stem cells as a new approach to increase the efficacy of cell therapy for myocardial infarction].

    PubMed

    Maslov, L N; Podoksenov, Iu K; Portnichenko, A G; Naumova, A V

    2013-01-01

    During the last decade, stem cell research has developed at an accelerated pace. Various types of stem cells have been tested for myocardial infarction therapy. Despite the preclinical benefits of cell therapy success in clinical trials remains modest. The main obstacles to regeneration of the infarcted heart using stem cells are: 1) not every stem cell type can differentiate into cardiomyocytes; and 2) low survival rates of transplanted cells, due to the harsh environment of the infarcted myocardium. Hypoxic preconditioning (HP) has been shown to improve transplantation efficacy of mesenchymal stem cells and cardiac progenitor cells in animal models of myocardial infarction. It has also been shown that transplantation of preconditioned cells decreases infarct size, prevents postinfarction remodeling of the heart, and positively modulates development of ischemic cardiomyopathy. Hypoxic preconditioning also prevents extensive death of transplanted cells due to necrosis and apoptosis during long-term hypoxia or oxidative stress. The protective effect of HP is based on three main processes: (1) modification of cell phenotypes to help survival during hypoxia (enhancement of HIF-1alpha expression, ERK1/2 and Akt activation, enhancement of erythropoietin receptor expression and erythropoietin production, and an elevation in levels of antiapoptotic proteins Bcl-2 and Bcl-xL); (2) upregulation of various secretable factors including the vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF), and expression of VEGF-2 and HGF-receptors; (3) enhancement in the formation of CXCR4 and CXCR7 receptors, which play an important role in mobilization and homing of stem cells in the ischemic region.

  10. Hypoxic culture conditions induce increased metabolic rate and collagen gene expression in ACL-derived cells.

    PubMed

    Kowalski, Tomasz J; Leong, Natalie L; Dar, Ayelet; Wu, Ling; Kabir, Nima; Khan, Adam Z; Eliasberg, Claire D; Pedron, Andrew; Karayan, Ashant; Lee, Siyoung; Di Pauli von Treuheim, Theodor; Jiacheng, Jin; Wu, Ben M; Evseenko, Denis; McAllister, David R; Petrigliano, Frank A

    2016-06-01

    There has been substantial effort directed toward the application of bone marrow and adipose-derived mesenchymal stromal cells (MSCs) in the regeneration of musculoskeletal tissue. Recently, resident tissue-specific stem cells have been described in a variety of mesenchymal structures including ligament, tendon, muscle, cartilage, and bone. In the current study, we systematically characterize three novel anterior cruciate ligament (ACL)-derived cell populations with the potential for ligament regeneration: ligament-forming fibroblasts (LFF: CD146(neg) , CD34(neg) CD44(pos) , CD31(neg) , CD45(neg) ), ligament perivascular cells (LPC: CD146(pos) CD34(neg) CD44(pos) , CD31(neg) , CD45(neg) ) and ligament interstitial cells (LIC: CD34(pos) CD146(neg) , CD44(pos) , CD31(neg) , CD45(neg) )-and describe their proliferative and differentiation potential, collagen gene expression and metabolism in both normoxic and hypoxic environments, and their trophic potential in vitro. All three groups of cells (LIC, LPC, and LFF) isolated from adult human ACL exhibited progenitor cell characteristics with regard to proliferation and differentiation potential in vitro. Culture in low oxygen tension enhanced the collagen I and III gene expression in LICs (by 2.8- and 3.3-fold, respectively) and LFFs (by 3- and 3.5-fold, respectively) and increased oxygen consumption rate and extracellular acidification rate in LICs (by 4- and 3.5-fold, respectively), LFFs (by 5.5- and 3-fold, respectively), LPCs (by 10- and 4.5-fold, respectively) as compared to normal oxygen concentration. In summary, this study demonstrates for the first time the presence of three novel progenitor cell populations in the adult ACL that demonstrate robust proliferative and matrix synthetic capacity; these cells may play a role in local ligament regeneration, and consequently represent a potential cell source for ligament engineering applications. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc

  11. Collagen density regulates xenobiotic and hypoxic response of mammary epithelial cells

    PubMed Central

    Curran, Colleen S.; Carrillo, Esteban R.; Ponik, Suzanne M.; Keely, Patricia J.

    2014-01-01

    Breast density, where collagen I is the dominant component, is a significant breast cancer risk factor. Cell surface integrins interact with collagen, activate focal adhesion kinase (FAK), and downstream cell signals associated with xenobiotics (AhR, ARNT) and hypoxia (HIF-1α, ARNT). We examined if mammary cells cultured in high density (HD) or low density (LD) collagen gels affected xenobiotic or hypoxic responses. ARNT production was significantly reduced by HD culture and in response to a FAK inhibitor. Consistent with a decrease in ARNT, AhR and HIF-1α reporter activation and VEGF production was lower in HD compared to LD. However, P450 production was enhanced in HD and induced by AhR and HIF-1α agonists, possibly in response to increased NF-kB activaton. Thus, collagen density differentially regulates downstream cell signals of AhR and HIF-1α by modulating the activity of FAK, the release of NF-kB transcriptional factors, and the levels of ARNT. PMID:25481308

  12. Collagen density regulates xenobiotic and hypoxic response of mammary epithelial cells.

    PubMed

    Curran, Colleen S; Carrillo, Esteban R; Ponik, Suzanne M; Keely, Patricia J

    2015-01-01

    Breast density, where collagen I is the dominant component, is a significant breast cancer risk factor. Cell surface integrins interact with collagen, activate focal adhesion kinase (FAK), and downstream cell signals associated with xenobiotics (AhR, ARNT) and hypoxia (HIF-1α, ARNT). We examined if mammary cells cultured in high density (HD) or low density (LD) collagen gels affected xenobiotic or hypoxic responses. ARNT production was significantly reduced by HD culture and in response to a FAK inhibitor. Consistent with a decrease in ARNT, AhR and HIF-1α reporter activation and VEGF production was lower in HD compared to LD. However, P450 production was enhanced in HD and induced by AhR and HIF-1α agonists, possibly in response to increased NF-κB activaton. Thus, collagen density differentially regulates downstream cell signals of AhR and HIF-1α by modulating the activity of FAK, the release of NF-κB transcriptional factors, and the levels of ARNT.

  13. Post-irradiation hypoxic incubation of X-irradiated MOLT-4 cells reduces apoptotic cell death by changing the intracellular redox state and modulating SAPK/JNK pathways.

    PubMed

    Hamasu, T; Inanami, O; Tsujitani, M; Yokoyama, K; Takahashi, E; Kashiwakura, I; Kuwabara, M

    2005-05-01

    To elucidate radiobiological effects of hypoxia on X-ray-induced apoptosis, MOLT-4 cells were treated under four set of conditions: (1) both X irradiation and incubation under normoxia, (2) X irradiation under hypoxia and subsequent incubation under normoxia, (3) X irradiation under normoxia and subsequent incubation under hypoxia, and (4) both X irradiation and incubation under hypoxia, and the induction of apoptosis was examined by fluorescence microscopy. About 28-33% apoptosis was observed in cells treated under conditions 1 and 2, but this value was significantly reduced to around 18-20% in cells treated under conditions 3 and 4, suggesting that post-irradiation hypoxic incubation rather than hypoxic irradiation mainly caused the reduction of apoptosis. The activation and expression of apoptosis signal-related molecules SAPK/JNK, Fas and caspase-3 were also suppressed by hypoxic incubation. Effects of hypoxic incubation were canceled when cells were treated under conditions 3 and 4 with an oxygen-mimicking hypoxic cell radiosensitizer, whereas the addition of N-acetyl-L-cysteine again reduced the induction of apoptosis. From these results it was concluded that hypoxia reduced the induction of apoptosis by changing the intracellular redox state, followed by the regulation of apoptotic signals in X-irradiated MOLT-4 cells.

  14. Hypoxia-induced angiotensin II by the lactate-chymase-dependent mechanism mediates radioresistance of hypoxic tumor cells

    PubMed Central

    Xie, Guozhu; Liu, Ying; Yao, Qiwei; Zheng, Rong; Zhang, Lanfang; Lin, Jie; Guo, Zhaoze; Du, Shasha; Ren, Chen; Yuan, Quan; Yuan, Yawei

    2017-01-01

    The renin-angiotensin system (RAS) is a principal determinant of arterial blood pressure and fluid and electrolyte balance. RAS component dysregulation was recently found in some malignancies and correlated with poor patient outcomes. However, the exact mechanism of local RAS activation in tumors is still unclear. Here, we find that the local angiotensin II predominantly exists in the hypoxic regions of tumor formed by nasopharyngeal carcinoma CNE2 cells and breast cancer MDA-MB-231 cells, where these tumor cells autocrinely produce angiotensin II by a chymase-dependent rather than an angiotensin converting enzyme-dependent mechanism. We further demonstrate in nasopharyngeal carcinoma CNE2 and 5–8F cells that this chymase-dependent effect is mediated by increased levels of lactate, a by-product of glycolytic metabolism. Finally, we show that the enhanced angiotensin II plays an important role in the intracellular accumulation of HIF-1α of hypoxic nasopharyngeal carcinoma cells and mediates the radiation-resistant phenotype of these nasopharyngeal carcinoma cells. Thus, our findings reveal the critical role of hypoxia in producing local angiotensin II by a lactate-chymase-dependent mechanism and highlight the importance of local angiotensin II in regulating radioresistance of hypoxic tumor cells. PMID:28205588

  15. Mild hypothermia combined with neural stem cell transplantation for hypoxic-ischemic encephalopathy: neuroprotective effects of combined therapy

    PubMed Central

    Wang, Lin; Jiang, Feng; Li, Qifeng; He, Xiaoguang; Ma, Jie

    2014-01-01

    Neural stem cell transplantation is a useful treatment for ischemic stroke, but apoptosis often occurs in the hypoxic-ischemic environment of the brain after cell transplantation. In this study, we determined if mild hypothermia (27–28°C) can increase the survival rate of neural stem cells (1.0 × 105/μL) transplanted into neonatal mice with hypoxic-ischemic encephalopathy. Long-term effects on neurological functioning of the mice were also examined. After mild hypothermia combined with neural stem cell transplantation, we observed decreased expression levels of inflammatory factor nuclear factor-kappa B and apoptotic factor caspase-3, reduced cerebral infarct volumes, increased survival rate of transplanted cells, and marked improvements in neurological function. Thus, the neuroprotective effects of mild hypothermia combined with neural stem cell transplantation are superior to those of monotherapy. Moreover, our findings suggest that the neuroprotective effects of mild hypothermia combined with neural stem cell transplantation on hypoxic-ischemic encephalopathy are achieved by anti-inflammatory and anti-apoptotic mechanisms. PMID:25422635

  16. Immunosuppressive capabilities of mesenchymal stromal cells are maintained under hypoxic growth conditions and after gamma irradiation.

    PubMed

    Nold, Philipp; Hackstein, Holger; Riedlinger, Tabea; Kasper, Cornelia; Neumann, Anne; Mernberger, Marco; Fölsch, Christian; Schmitt, Jan; Fuchs-Winkelmann, Susanne; Barckhausen, Christina; Killer, Madeleine; Neubauer, Andreas; Brendel, Cornelia

    2015-02-01

    The discovery of regenerative and immunosuppressive capacities of mesenchymal stromal cells (MSCs) raises hope for patients with tissue-damaging or severe, treatment-refractory autoimmune disorders. We previously presented a method to expand human MSCs in a bioreactor under standardized Good Manufacturing Practice conditions. Now we characterized the impact of critical treatment conditions on MSCs with respect to immunosuppressive capabilities and proliferation. MSC proliferation and survival after γ irradiation were determined by 5-carboxyfluorescein diacetate N-succinimidyl ester and annexinV/4',6-diamidino-2-phenylindole (DAPI) staining, respectively. T-cell proliferation assays were used to assess the effect of γ irradiation, passaging, cryopreservation, post-thaw equilibration time and hypoxia on T-cell suppressive capacities of MSCs. Quantitative polymerase chain reaction and β-galactosidase staining served as tools to investigate differences between immunosuppressive and non-immunosuppressive MSCs. γ irradiation of MSCs abrogated their proliferation while vitality and T-cell inhibitory capacity were preserved. Passaging and long cryopreservation time decreased the T-cell suppressive function of MSCs, and postthaw equilibration time of 5 days restored this capability. Hypoxic culture markedly increased MSC proliferation without affecting their T-cell-suppressive capacity and phenotype. Furthermore, T-cell suppressive MSCs showed higher CXCL12 expression and less β-galactosidase staining than non-suppressive MSCs. We demonstrate that γ irradiation is an effective strategy to abrogate MSC proliferation without impairing the cells' immunosuppressive function. Hypoxia significantly enhanced MSC expansion, allowing for transplantation of MSCs with low passage number. In summary, our optimized MSC expansion protocol successfully addressed the issues of safety and preservation of immunosuppressive MSC function after ex vivo expansion for therapeutic purposes

  17. Stromal cell-derived factor-1-directed bone marrow mesenchymal stem cell migration in response to inflammatory and/or hypoxic stimuli

    PubMed Central

    Yu, Yang; Wu, Rui-Xin; Gao, Li-Na; Xia, Yu; Tang, Hao-Ning; Chen, Fa-Ming

    2016-01-01

    ABSTRACT Directing cell trafficking toward a target site of interest is critical for advancing stem cell therapy in clinical theranostic applications. In this study, we investigated the effects of inflammatory and/or hypoxic stimuli on the migration of bone marrow mesenchymal stem cells (BMMSCs) during in vitro culture and after in vivo implantation. Using tablet scratch experiments and observations from a transwell system, we found that both inflammatory and hypoxic stimuli significantly enhanced cell migration. However, the combination of inflammatory and hypoxic stimuli did not result in a synergistic effect. The presence of stromal cell-derived factor-1 (SDF-1) significantly enhanced cell migration irrespective of the incubation conditions, and these positive effects could be blocked by treatment with AMD3100. Based on a time course experiment, we found that preconditioning cells with either inflammatory or hypoxic stimuli for 24 h or with both stimuli for 12 h led to high levels of chemokine receptor type 4 (CXCR4) expression. In vivo studies further demonstrated that pretreatment of BMMSCs with inflammatory and/or hypoxic stimuli resulted in an increased number of systemically injected cells migrating toward skin injuries, and local SDF-1 administration significantly increased cell migration. These findings suggest that in vitro control of either inflammatory or hypoxic stimuli has significant potential to enhance SDF-1-directed BMMSC migration via the upregulation of CXCR4 expression. Although combining the stimuli did not necessarily lead to a synergistic effect, the potential to reduce the dose and time required for cell preconditioning indicates that combinations of various strategies warrant further exploration. PMID:26745021

  18. A Red-Light-Activated Ruthenium-Caged NAMPT Inhibitor Remains Phototoxic in Hypoxic Cancer Cells.

    PubMed

    Lameijer, Lucien N; Ernst, Daniël; Hopkins, Samantha L; Meijer, Michael S; Askes, Sven H C; Le Dévédec, Sylvia E; Bonnet, Sylvestre

    2017-09-11

    We describe two water-soluble ruthenium complexes, [1]Cl2 and [2]Cl2 , that photodissociate to release a cytotoxic nicotinamide phosphoribosyltransferase (NAMPT) inhibitor with a low dose (21 J cm(-2) ) of red light in an oxygen-independent manner. Using a specific NAMPT activity assay, up to an 18-fold increase in inhibition potency was measured upon red-light activation of [2]Cl2 , while [1]Cl2 was thermally unstable. For the first time, the dark and red-light-induced cytotoxicity of these photocaged compounds could be tested under hypoxia (1 % O2 ). In skin (A431) and lung (A549) cancer cells, a 3- to 4-fold increase in cytotoxicity was found upon red-light irradiation for [2]Cl2 , whether the cells were cultured and irradiated with 1 % or 21 % O2 . These results demonstrate the potential of photoactivated chemotherapy for hypoxic cancer cells, in which classical photodynamic therapy, which relies on oxygen activation, is poorly efficient. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  19. Hypoxic regulation of RIOK3 is a major mechanism for cancer cell invasion and metastasis

    PubMed Central

    Singleton, Dean C.; Rouhi, Pegah; Zois, Christos E.; Haider, Syed; Li, Ji-Liang; Kessler, Benedikt M.; Cao, Yihai; Harris, Adrian L.

    2014-01-01

    Hypoxia is a common feature of locally advanced breast cancers and is associated with increased metastasis and poorer survival. Stabilisation of Hypoxia-Inducible Factor-1α (HIF1α) in tumours causes transcriptional changes in numerous genes that function at distinct stages of the metastatic cascade. We demonstrate that expression of RIOK3 was increased during hypoxic exposure in a HIF1α-dependent manner. RIOK3 was localised to distinct cytoplasmic aggregates in normoxic cells and underwent redistribution to the leading edge of the cell in hypoxia with a corresponding change in the organisation of the actin cytoskeleton. Depletion of RIOK3 expression caused MDA-MB-231 to become elongated and this morphological change was due to a loss of protraction at the trailing edge of the cell. This phenotypic change resulted in reduced cell migration in 2D cultures and inhibition of cell invasion through 3D extracellular matrix. Proteomic analysis identified interactions of RIOK3 with actin and several actin-binding factors including tropomyosins (TPM3 and TPM4) and tropomodulin 3 (TMOD3). Depletion of RIOK3 in cells resulted in fewer and less organised actin filaments. Analysis of these filaments showed reduced association of TPM3, particularly during hypoxia, suggesting that RIOK3 regulates actin filament specialisation. RIOK3 depletion reduced the dissemination of MDA-MB-231 cells in both a zebrafish model of systemic metastasis and a mouse model of pulmonary metastasis. These findings demonstrate that RIOK3 is necessary for maintaining actin cytoskeletal organisation required for migration and invasion, biological processes that are necessary for hypoxia-driven metastasis. PMID:25486436

  20. Inhibition of JNK Sensitizes Hypoxic Colon Cancer Cells to DNA-Damaging Agents.

    PubMed

    Vasilevskaya, Irina A; Selvakumaran, Muthu; Hierro, Lucia Cabal; Goldstein, Sara R; Winkler, Jeffrey D; O'Dwyer, Peter J

    2015-09-15

    We showed previously that in HT29 colon cancer cells, modulation of hypoxia-induced stress signaling affects oxaliplatin cytotoxicity. To further study the significance of hypoxia-induced signaling through JNK, we set out to investigate how modulation of kinase activities influences cellular responses of hypoxic colon cancer cells to cytotoxic drugs. In a panel of cell lines, we investigated effects of pharmacologic and molecular inhibition of JNK on sensitivity to oxaliplatin, SN-38, and 5-FU. Combination studies for the drugs and JNK inhibitor CC-401 were carried out in vitro and in vivo. Hypoxia-induced JNK activation was associated with resistance to oxaliplatin. CC-401 in combination with chemotherapy demonstrates synergism in colon cancer cell lines, although synergy is not always hypoxia specific. A more detailed analysis focused on HT29 and SW620 (responsive), and HCT116 (nonresponsive) lines. In HT29 and SW620 cells, CC-401 treatment results in greater DNA damage in the sensitive cells. In vivo, potentiation of bevacizumab, oxaliplatin, and the combination by JNK inhibition was confirmed in HT29-derived mouse xenografts, in which tumor growth delay was greater in the presence of CC-401. Finally, stable introduction of a dominant negative JNK1, but not JNK2, construct into HT29 cells rendered them more sensitive to oxaliplatin under hypoxia, suggesting differing input of JNK isoforms in cellular responses to chemotherapy. These findings demonstrate that signaling through JNK is a determinant of response to therapy in colon cancer models, and support the testing of JNK inhibition to sensitize colon tumors in the clinic. ©2015 American Association for Cancer Research.

  1. Hypoxic human cancer cells are sensitized to BH-3 mimetic–induced apoptosis via downregulation of the Bcl-2 protein Mcl-1

    PubMed Central

    Harrison, Luke R.E.; Micha, Dimitra; Brandenburg, Martin; Simpson, Kathryn L.; Morrow, Christopher J.; Denneny, Olive; Hodgkinson, Cassandra; Yunus, Zaira; Dempsey, Clare; Roberts, Darren; Blackhall, Fiona; Makin, Guy; Dive, Caroline

    2011-01-01

    Solid tumors contain hypoxic regions in which cancer cells are often resistant to chemotherapy-induced apoptotic cell death. Therapeutic strategies that specifically target hypoxic cells and promote apoptosis are particularly appealing, as few normal tissues experience hypoxia. We have found that the compound ABT-737, a Bcl-2 homology domain 3 (BH-3) mimetic, promotes apoptotic cell death in human colorectal carcinoma and small cell lung cancer cell lines exposed to hypoxia. This hypoxic induction of apoptosis was mediated through downregulation of myeloid cell leukemia sequence 1 (Mcl-1), a Bcl-2 family protein that serves as a biomarker for ABT-737 resistance. Downregulation of Mcl-1 in hypoxia was independent of hypoxia-inducible factor 1 (HIF-1) activity and was consistent with decreased global protein translation. In addition, ABT-737 induced apoptosis deep within tumor spheroids, consistent with an optimal hypoxic oxygen tension being necessary to promote ABT-737–induced cell death. Tumor xenografts in ABT-737–treated mice also displayed significantly more apoptotic cells within hypoxic regions relative to normoxic regions. Synergies between ABT-737 and other cytotoxic drugs were maintained in hypoxia, suggesting that this drug may be useful in combination with chemotherapeutic agents. Taken together, these findings suggest that Mcl-1–sparing BH-3 mimetics may induce apoptosis in hypoxic tumor cells that are resistant to other chemotherapeutic agents and may have a role in combinatorial chemotherapeutic regimens for treatment of solid tumors. PMID:21393866

  2. PIM Kinase Inhibitors Kill Hypoxic Tumor Cells by Reducing Nrf2 Signaling and Increasing Reactive Oxygen Species.

    PubMed

    Warfel, Noel A; Sainz, Alva G; Song, Jin H; Kraft, Andrew S

    2016-07-01

    Intratumoral hypoxia is a significant obstacle to the successful treatment of solid tumors, and it is highly correlated with metastasis, therapeutic resistance, and disease recurrence in cancer patients. As a result, there is an urgent need to develop effective therapies that target hypoxic cells within the tumor microenvironment. The Proviral Integration site for Moloney murine leukemia virus (PIM) kinases represent a prosurvival pathway that is upregulated in response to hypoxia, in a HIF-1-independent manner. We demonstrate that pharmacologic or genetic inhibition of PIM kinases is significantly more toxic toward cancer cells in hypoxia as compared with normoxia. Xenograft studies confirm that PIM kinase inhibitors impede tumor growth and selectively kill hypoxic tumor cells in vivo Experiments show that PIM kinases enhance the ability of tumor cells to adapt to hypoxia-induced oxidative stress by increasing the nuclear localization and activity of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), which functions to increase the expression of antioxidant genes. Small molecule PIM kinase inhibitors prevent Nrf2 from accumulating in the nucleus, reducing the transcription of cytoprotective genes and leading to the build-up of intracellular reactive oxygen species (ROS) to toxic levels in hypoxic tumor cells. This toxic effect of PIM inhibitors can be successfully blocked by ROS scavengers, including N-acetyl cystine and superoxide dismutase. Thus, inhibition of PIM kinases has the potential to oppose hypoxia-mediated therapeutic resistance and induce cell death in the hypoxic tumor microenvironment. Mol Cancer Ther; 15(7); 1637-47. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. Ultrasound mediated delivery of oxygen and LLL12 loaded stimuli responsive microdroplets for the treatment of hypoxic cancer cells

    PubMed Central

    Xu, Jinshun; Yuan, Shuai; Tian, Jilai; Martin, Kyle A.; Song, Jinhua; Li, Chenglong; Wang, Zhigang; Lin, Jiayuh; Si, Ting; Xu, Ronald X.

    2017-01-01

    LLL12 exhibits high specificity for inhibiting STAT3 phosphorylation and dimerization, and inducing apoptosis to constitutively activated STAT3 cancer cells without cytotoxicity to normal cells with dormant STAT3. However, clinical deployment of LLL12 in cancer treatment is hindered by its low bioavailability and hypoxia-induced resistance. To overcome these limitations, we encapsulate both oxygen and LLL12 in stimuli responsive microdroplets (SRMs) by a gas-driven coaxial flow focusing (CFF) process for ultrasound mediated treatment of hypoxic cancer cells. Our benchtop experiments demonstrate that the CFF process is able to produce SRMs with uniform size distribution, large oxygen loading capacity, high LLL12 encapsulation efficiency, well protection of bioactivity, and steadily long shelf time. The in vitro therapeutic studies in pancreatic cancer cells (PANC-1 and CAPAN-1) demonstrate the immediate release of oxygen and LLL12 in exposure to therapeutic ultrasound pulses as well as the improved anticancer effects under hypoxic conditions. The findings suggest that the proposed oxygen and LLL12 loaded SRMs provide a promising drug delivery strategy for more effective treatment of hypoxic cancer cells. PMID:28322306

  4. Ultrasound mediated delivery of oxygen and LLL12 loaded stimuli responsive microdroplets for the treatment of hypoxic cancer cells.

    PubMed

    Xu, Jinshun; Yuan, Shuai; Tian, Jilai; Martin, Kyle A; Song, Jinhua; Li, Chenglong; Wang, Zhigang; Lin, Jiayuh; Si, Ting; Xu, Ronald X

    2017-03-21

    LLL12 exhibits high specificity for inhibiting STAT3 phosphorylation and dimerization, and inducing apoptosis to constitutively activated STAT3 cancer cells without cytotoxicity to normal cells with dormant STAT3. However, clinical deployment of LLL12 in cancer treatment is hindered by its low bioavailability and hypoxia-induced resistance. To overcome these limitations, we encapsulate both oxygen and LLL12 in stimuli responsive microdroplets (SRMs) by a gas-driven coaxial flow focusing (CFF) process for ultrasound mediated treatment of hypoxic cancer cells. Our benchtop experiments demonstrate that the CFF process is able to produce SRMs with uniform size distribution, large oxygen loading capacity, high LLL12 encapsulation efficiency, well protection of bioactivity, and steadily long shelf time. The in vitro therapeutic studies in pancreatic cancer cells (PANC-1 and CAPAN-1) demonstrate the immediate release of oxygen and LLL12 in exposure to therapeutic ultrasound pulses as well as the improved anticancer effects under hypoxic conditions. The findings suggest that the proposed oxygen and LLL12 loaded SRMs provide a promising drug delivery strategy for more effective treatment of hypoxic cancer cells.

  5. Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury.

    PubMed

    Chang, Ching-Ping; Chio, Chung-Ching; Cheong, Chong-Un; Chao, Chien-Ming; Cheng, Bor-Chieh; Lin, Mao-Tsun

    2013-02-01

    Bone-marrow-derived human MSCs (mesenchymal stem cells) support repair when administered to animals with TBI (traumatic brain injury) in large part through secreted trophic factors. We directly tested the ability of the culture medium (or secretome) collected from human MSCs under normoxic or hypoxic conditions to protect neurons in a rat model of TBI. Concentrated conditioned medium from cultured human MSCs or control medium was infused through the tail vein of rats subjected to TBI. We have demonstrated that MSCs cultured in hypoxia were superior to those cultured in normoxia in inducing expression of both HGF (hepatocyte growth factor) and VEGF (vascular endothelial growth factor) in the cultured medium. We showed further that rats treated with the secretome from both normoxic- and hypoxic-preconditioned MSCs performed significantly better than the controls in both motor and cognitive functional test. Subsequent post-mortem evaluation of brain damage at the 4-day time point confirmed that both normoxic- and hypoxic-preconditioned MSC secretome-treated rats had significantly greater numbers of newly forming neurons, but significantly less than the controls in brain damaged volume and apoptosis. The TBI rats treated with hypoxic-preconditioned MSC secretome performed significantly better in both motor and cognitive function tests and neurogenesis, and had significantly less brain damage than the TBI rats treated with the normoxic-preconditioned MSC secretome. Collectively, these findings suggest that MSCs secrete bioactive factors, including HGF and VEGF, that stimulate neurogenesis and improve outcomes of TBI in a rat model. Hypoxic preconditioning enhances the secretion of these bioactive factors from the MSCs and the therapeutic potential of the cultured MSC secretome in experimental TBI.

  6. Transplantation of hypoxic preconditioned neural stem cells benefits functional recovery via enhancing neurotrophic secretion after spinal cord injury in rats.

    PubMed

    Fan, Wei-Li; Liu, Peng; Wang, Guan; Pu, Jung-Ang; Xue, Xin; Zhao, Jian-Hua

    2017-09-08

    Spinal cord injury (SCI) is a debilitating, costly, and common pathological condition that affects the function of central nervous system (CNS). To date, there are few promising therapeutic strategies available for SCI. To look for a suitable therapeutic strategy, we have developed a sublethal hypoxic preconditioning procedure using Fluorescence-activated cell sorting (FACS) analysis, LDH releasing and cell viability assays in vitro. Meanwhile, we have examined the benefits of neural stem cells (NSCs) transplantation prior to hypoxic preconditioning on functional recovery and potential mechanism via MRI screening, H&E and Nissl staining, immunofluorescence staining and Elisa assays. Our data showed that transplantation of hypoxic prconditioned NSCs could enhance neuronal survival, especially 5-TH(+) and ChAT(+) neurons, in the injured spinal cord to reinforce functional benefits. The hypoxia exposure upregulated HIF-1α, neurotrophic and growth factors including neurotrophin-3 (NT-3), glial cell-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) in vitro and in vivo. Furthermore, functional recovery, including locomotor and hypersensitivities to mechanical and thermal stimulation assessed via behavioral and sensory tests, improved significantly in rats with engraftment of NSCs after hypoxia exposure from day 14 post-SCI, compared with the control and N-NSCs groups. In short, the approach employed in this study could result in functional recovery via upregulating neurotrophic and growth factors, which implies that hypoxic preconditioning strategy could serve as an effective and feasible strategy for cell-based therapy in the treatment of SCI in rats. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. The repair of DNA damage induced in V79 mammalian cells by the nitroimidazole-aziridine, RSU-1069. Implications for radiosensitization.

    PubMed

    Jenner, T J; O'Neill, P; Crump, P W; Fielden, E M; Sapora, O; Santodonato, L

    1991-10-09

    The induction and repair of single (ssb) and double (dsb) strand breaks in DNA under aerobic or hypoxic conditions have been determined using sucrose sedimentation techniques following incubation of V79 mammalian cells with RSU-1069 or misonidazole, representative of a conventional 2-nitroimidazole radiosensitizer, for 1-1.5 hr at either 293 or 277 degrees K and subsequent irradiation at 277 degrees K. In all cases, the dose dependences for the induction of strand breaks are linear and consistent with an enhancement in the yield of DNA damage induced by the 2-nitroimidazoles under hypoxic conditions. With RSU-1069 at 293 degrees K, the dose dependence of ssb is displaced reflecting DNA damage induced during pre-incubation. From these dependences, it is evident that the enhanced radiosensitization by RSU-1069 may not be accounted for in terms of accumulation of the agent at DNA. From the repair studies, DNA breaks induced by RSU-1069 in the absence of radiation have been shown to persist for at least 3 hr. With a combination of RSU-1069 and radiation under hypoxic conditions, the repair timescale of the induced breaks is significantly longer and an increase in the residual yields of both ssb and dsb (at 2-3 hr) was observed when compared with the observation in the presence of misonidazole or oxygen. From these studies, it is inferred that the enhanced radiosensitization of RSU-1069 at 293 degrees K is a consequence of the formation of non-repairable DNA damage together with a modification of the repairability of the radiation-induced DNA breaks.

  8. Cytocidal effects of misonidazole, Ro 03-8799, and RSU-1164 on euoxic and hypoxic BP-8 murine sarcoma cells at normal and elevated temperatures.

    PubMed

    Hofer, K G; Lakkis, M; Hofer, M G

    1989-04-15

    Euoxic and hypoxic BP-8 murine sarcoma cells were exposed for up to 3 hours to various concentrations of three nitroimidazole derivatives (misonidazole, Ro 03-8799, RSU-1164) at normal or elevated incubation temperatures. Cell survival was monitored with the iodine 125 (125I)-iododeoxyuridine prelabeling assay. When cell lethality was evaluated as a function of drug molarity, the three nitroimidazoles displayed widely different toxicities, but when expressed in terms of toxicity ratio between euoxic and hypoxic cells, all three drugs showed nearly identical toxicity differentials of 16 to 18 in 1-hour drug incubation experiments. Prolonging the treatment period to 3 hours did not change the euoxic/hypoxic toxicity ratio for misonidazole and Ro 03-8799, but with RSU-1164 the toxicity ratio was increased significantly from 16 (1 hour) to 73 (3 hours). This increase was attributed to the bifunctional action of RSU-1164 as a combined electron-affinic and alkylating agent, with the alkylation component of cell killing becoming more pronounced after prolonged drug incubation under hypoxic conditions. Combined administration of hyperthermia and nitroimidazoles increased drug-induced cell lethality for all three agents, but did not materially change the relative toxicity differential between euoxic and hypoxic cells. In short, based on cellular toxicity data, Ro 03-8799 appears to offer no advantage over misonidazole as a selective cytocidal agent for hypoxic cells, but RSU-1164 does provide a moderate therapeutic advantage.

  9. [Effect of telomerase activation on biological behaviors of neural stem cells in rats with hypoxic-ischemic insults].

    PubMed

    Meng, Jun-Jie; Li, Shi-Ping; Zhao, Feng-Yan; Tong, Yu; Mu, De-Zhi; Qu, Yi

    2017-02-01

    To investigate the effect of telomerase activation on biological behaviors of neural stem cells after hypoxic-ischemic insults. The neural stem cells passaged in vitro were divided into four groups: control, oxygen-glucose deprivation (OGD), OGD+cycloastragenol (CAG) high concentration (final concentration of 25 μM), and OGD+CAG low concentration (final concentration of 10 μM). The latter three groups were subjected to OGD. Telomerase reverse transcriptase (TERT) expression level was evaluated by Western blot. Telomerase activity was detected by telomerase repeat amplification protocol (TRAP). Cell number and neural sphere diameter were measured under a microscope. The activity of lactate dehydrogenase (LDH) was examined by chemiluminescence. Cell proliferation rate and apoptosis were detected by flow cytometry. After OGD insults, obvious injury of neural stem cells was observed, including less cell number, smaller neural sphere, more dead cells, lower proliferation rate and decreased survival rate. In CAG-treated groups, there were higher TERT expression level and telomerase activity compared with the control group (P<0.05). In comparison with the OGD group, CAG treatment attenuated cell loss (P<0.05) and neural sphere diameter decrease (P<0.05), promoted cell proliferation (P<0.05), and increased cell survival rate (P<0.05). Low and high concentrations of CAG had similar effects on proliferation and survival of neural stem cells (P>0.05). In the normal cultural condition, CAG treatment also enhanced TERT expression (P<0.05) and increased cell numbers (P<0.05) and neural sphere diameter (P<0.05) compared with the control group. Telomerase activation can promote the proliferation and improve survival of neural stem cells under the state of hypoxic-ischemic insults, suggesting telomerase activators might be potential agents for the therapy of hypoxic-ischemic brain injury.

  10. In vivo click reaction between Tc-99m-labeled azadibenzocyclooctyne-MAMA and 2-nitroimidazole-azide for tumor hypoxia targeting.

    PubMed

    Sun, Wenjing; Chu, Taiwei

    2015-10-15

    The bioactivity of nitroimidazole in Tc-99m-labeled 2-nitroimidazole, a traditional solid tumor hypoxia-imaging agent for single photon emission computed tomography (SPECT), is reduced by the presence of large ligand and metallic radionuclide, exhibiting lower tumor-to-nontumor ratios. In an effort to solve this general problem, a pretargeting strategy based on click chemistry (strain-promoted cyclooctyne-azide cycloaddition) was applied. The functional click synthons were synthesized as pretargeting components: an azide group linked to 2-nitroimidazole (2NIM-Az) serves for tumor hypoxia-targeting and azadibenzocyclooctyne conjugated with monoamine monoamide dithiol ligand (AM) functions as radiolabeling and binding group to azides in vivo. 2NIM-triazole-MAMA was obtained from in vitro click reaction with a reaction rate constant of 0.98M(-1)s(-1). AM and 2NIM-triazole-MAMA were radiolabeled with Tc-99m. The hypoxia-pretargeting biodistribution was studied in Kunming mice bearing S180 tumor; (99m)Tc-AM and (99m)Tc-triazole-2NIM were used as blank control and conventional control. Compared to the control groups, the pretargeting experiment exhibits the best radio-uptake and retention in tumor, with higher tumor-to-muscle and tumor-to-blood ratios (up to 8.55 and 1.44 at 8h post-(99m)Tc-complex-injection, respectively). To some extent, the pretargeting strategy protects the bioactivity of nitroimidazole and therefore provides an innovative approach for the development of tumor hypoxia-SPECT imaging agents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Investigation of the modifying effects of vitamin A and hypoxic cell sensitizers in radiation carcinogenesis in mice

    SciTech Connect

    Mian, T.A.

    1982-01-01

    The effect of vitamin A (retinyl acetate) and three hypoxic cell sensitizers (metronidazole, misonidazole and desmethylmisonidazole) on lung tumor development in strain A mice exposed to radiation was assessed. In experiments involving vitamin A, two groups of mice were fed a low vitamin A diet (< 100 IU/100g diet) while the two other groups were fed a high vitamin A diet (800 IU/100 g diet). After two weeks one group maintained on the high vitamin A diet and one group maintained on the low vitamin A diet were given an acute dose of 500 rad of gamma radiation to the thoracic region. Mice were killed, their lungs were removed and the number of surface adenomas were counted. There was a significant increase in the number of mice bearing lung tumors and the mean number of lung tumors per mouse in the irradiated group maintained on the high vitamin A diet at 40 weeks post irradiation as compared to the irradiated group maintained on a low vitamin A diet. In the other experiment two dose levels of the hypoxic cell sensitizers, 0.2 mg/g and 0.6 mg/g, were used either alone or in combination with 900 rad of gamma radiation in a fractionated dose schedule of twice a week for three weeks. In the groups of mice which received hypoxic cell sensitizers only, the prevalence and the mean number of lung tumors per mouse were somewhat increased in the higher dose group (0.6 mg/g) of misonidazole but was not significantly different from the control animals in the other two sensitizer groups. The combination of hypoxic cell sensitizer and radiation did not show any significant enhancement of lung tumor response when compared with the group which received radiation only. The dose of radiation used in this study significantly enhanced lung tumor formation in mice when compared with the control group.

  12. Thiopental Inhibits Global Protein Synthesis by Repression of Eukaryotic Elongation Factor 2 and Protects from Hypoxic Neuronal Cell Death

    PubMed Central

    Schwer, Christian I.; Lehane, Cornelius; Guelzow, Timo; Zenker, Simone; Strosing, Karl M.; Spassov, Sashko; Erxleben, Anika; Heimrich, Bernd; Buerkle, Hartmut; Humar, Matjaz

    2013-01-01

    Ischemic and traumatic brain injury is associated with increased risk for death and disability. The inhibition of penumbral tissue damage has been recognized as a target for therapeutic intervention, because cellular injury evolves progressively upon ATP-depletion and loss of ion homeostasis. In patients, thiopental is used to treat refractory intracranial hypertension by reducing intracranial pressure and cerebral metabolic demands; however, therapeutic benefits of thiopental-treatment are controversially discussed. In the present study we identified fundamental neuroprotective molecular mechanisms mediated by thiopental. Here we show that thiopental inhibits global protein synthesis, which preserves the intracellular energy metabolite content in oxygen-deprived human neuronal SK-N-SH cells or primary mouse cortical neurons and thus ameliorates hypoxic cell damage. Sensitivity to hypoxic damage was restored by pharmacologic repression of eukaryotic elongation factor 2 kinase. Translational inhibition was mediated by calcium influx, activation of the AMP-activated protein kinase, and inhibitory phosphorylation of eukaryotic elongation factor 2. Our results explain the reduction of cerebral metabolic demands during thiopental treatment. Cycloheximide also protected neurons from hypoxic cell death, indicating that translational inhibitors may generally reduce secondary brain injury. In conclusion our study demonstrates that therapeutic inhibition of global protein synthesis protects neurons from hypoxic damage by preserving energy balance in oxygen-deprived cells. Molecular evidence for thiopental-mediated neuroprotection favours a positive clinical evaluation of barbiturate treatment. The chemical structure of thiopental could represent a pharmacologically relevant scaffold for the development of new organ-protective compounds to ameliorate tissue damage when oxygen availability is limited. PMID:24167567

  13. Neural stem cells: properties and therapeutic potentials for hypoxic-ischemic brain injury in newborn infants.

    PubMed

    Lee, Il-Shin; Jung, Kwangsoo; Kim, Miri; Park, Kook In

    2010-12-01

    Neural stem cells (NSCs) are defined by their ability to self-renew, to differentiate into cells of all glial and neuronal lineages throughout the neuraxis, and to populate developing or degenerating central nervous system (CNS) regions. The recognition that NSCs propagated in culture could be reimplanted into the mammalian brain, where they might integrate appropriately throughout the mammalian CNS and stably express foreign genes, has unveiled a new role for neural transplantation and gene therapy and a possible strategy for addressing the CNS manifestations of diseases that hitherto had been refractory to intervention. An intriguing phenomenon with possible therapeutic potentials has begun to emerge from our observations of the behavior of NSCs in animal models of neonatal hypoxic-ischemic (HI) brain injury. During phases of active neurodegeneration, factors seem to be transiently elaborated to which NSCs may respond by migrating to degenerating regions and differentiating specifically towards replacement of dying neural cells. NSCs may attempt to repopulate and reconstitute ablated regions. These 'repair mechanisms' may actually reflect the reexpression of basic developmental principles that may be harnessed for therapeutic ends. In addition, NSCs may serve as vehicles for gene delivery and appear capable of simultaneous neural cell replacement and gene therapy (e.g. with factors that might enhance neuronal differentiation, neurites outgrowth, proper connectivity, and/or neuroprotection). When combined with certain synthetic biomaterials, NSCs may be even more effective in 'engineering' the damaged CNS towards reconstitution. We have also cultured human NSCs or progenitors as neurospheres which were derived from fetal cadavers at 13 weeks of gestation, and transplanted them into HI-injured immature brains to investigate their therapeutic potentials in this type of model.

  14. Therapeutic effects of human umbilical cord mesenchymal stem cells transplantation on hypoxic ischemic encephalopathy

    PubMed Central

    Xie, Bingchuan; Gu, Ping; Wang, Wenting; Dong, Ci; Zhang, Lina; Zhang, Jun; Liu, Huimiao; Qiu, Fucheng; Han, Rui; Zhang, Zhenqing; Yan, Baoyong

    2016-01-01

    Objective: Human umbilical cord mesenchymal stem cells (hUC-MSCs) hold substantial promise for the treatment of ischemic neurological disease, but few clinical data are currently available about its therapeutic effects in hypoxic ischemic encephalopathy (HIE). This study is to evaluate the effects of hUC-MSCs transplantation on patients with HIE. Methods A total 22 patients with HIEwere randomly divided into hUC-MSCs transplantation group (n = 12) and control group (n = 10). After isolation, hUC-MSCs were cultured for 3 to 5 passages in vitro and then intravenously administered to HIE patients in the transplantation group, while the control group received routine treatment only. The outcomes of HIE patients were evaluated at designated time points by clinical assessment scales, including NIHSS, Barthel Index, MMSE, HAMA24, HAMD14 and UPDRS. Results: hUC-MSCs were identified by morphological analysis and flow cytometry assays before clinic transplantation. No significant differences of demographic characteristics were observed between the two groups of subjects. Compared to the control group, hUC-MSCs transplantation markedly improved the outcomes of HIE patients leading to better recovery of neurological function, cognition ability, emotional reaction and extrapyramidal function. No significant adverse effects were found in subjects with hUC-MSCs transplantation during a 180-day follow-up period. Conclusion: These data suggest that hUC-MSCs therapy markedly improves the outcomes of patients with HIE, which is potential for the routine treatment of ischemic neurological disease. PMID:27508046

  15. Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signaling.

    PubMed

    Hoffman, David L; Salter, Jason D; Brookes, Paul S

    2007-01-01

    Mitochondria are proposed to play an important role in hypoxic cell signaling. One currently accepted signaling paradigm is that the mitochondrial generation of reactive oxygen species (ROS) increases in hypoxia. This is paradoxical, because oxygen is a substrate for ROS generation. Although the response of isolated mitochondrial ROS generation to [O(2)] has been examined previously, such investigations did not apply rigorous control over [O(2)] within the hypoxic signaling range. With the use of open-flow respirometry and fluorimetry, the current study determined the response of isolated rat liver mitochondrial ROS generation to defined steady-state [O(2)] as low as 0.1 microM. In mitochondria respiring under state 4 (quiescent) or state 3 (ATP turnover) conditions, decreased ROS generation was always observed at low [O(2)]. It is concluded that the biochemical mechanism to facilitate increased ROS generation in response to hypoxia in cells is not intrinsic to the mitochondrial respiratory chain alone but may involve other factors. The implications for hypoxic cell signaling are discussed.

  16. Mesenchymal stem cells protect neurons against hypoxic-ischemic injury via inhibiting parthanatos, necroptosis, and apoptosis, but not autophagy.

    PubMed

    Kong, Deyan; Zhu, Juehua; Liu, Qian; Jiang, Yongjun; Xu, Lily; Luo, Ning; Zhao, Zhenqiang; Zhai, Qijin; Zhang, Hao; Zhu, Mingyue; Liu, Xinfeng

    2017-03-01

    Cellular therapy with mesenchymal stem cells (MSCs) protects cortical neurons against hypoxic-ischemic injury of stroke. Although sorts of efforts have been made to confirm the neuroprotective effect of MSCs on neurons against hypoxic-ischemic injury, the mechanism is until now far away from clear. Here in this study, oxygen-glucose deprivation (OGD)-injured neuron model was applied to mimic the neuronal hypoxic-ischemic injury in vitro. Co-culturing with MSCs in a transwell co-culture system, the OGD injured neurons were rescued by 75.0 %. Further data demonstrated that co-culturing with MSCs protected the cortical neurons from the OGD-induced parthanatos by alleviating apoptosis-inducing factor (AIF) nuclear translocation; attenuated the neuronal necroptosis by down-regulating the expression of the two essential kinases in necroptosis, receptor interacting protein kinase1 (RIP1) and 3 (RIP3); rescued the neurons from apoptosis by deactivating caspase-3; whilst performed no significant influence on OGD-induced neuronal autophagy, according to its failed regulation on Beclin1. In conclusion, MSCs potentially protect the cortical neurons from OGD-injury in vitro, through rescuing neurons from the cell death of parthanatos, necroptosis, and apoptosis, but not autophagy, which could provide some evidence to the mechanism explanation on stem cell treatment for ischemic stroke.

  17. Magnesium sulfate protects oligodendrocyte lineage cells in a rat cell-culture model of hypoxic-ischemic injury.

    PubMed

    Itoh, Kanako; Maki, Takakuni; Shindo, Akihiro; Egawa, Naohiro; Liang, Anna C; Itoh, Naoki; Lo, Eng H; Lok, Josephine; Arai, Ken

    2016-05-01

    Hypoxic-ischemic (HI) brain injury in newborns results in serious damage. Magnesium sulfate has been clinically used as a cyto-protective agent against HI brain injury in newborns in some countries, including Japan. However, it is not clear how magnesium exerts this effect and how it acts on the individual types of cells within the newborn brain. In this study, we exposed cultured rat oligodendrocyte precursor cells to magnesium sulfate during the period when they differentiate into oligodendrocytes, and showed that magnesium-exposed oligodendrocytes exhibited more resistance to HI injury. Our data may support the use of magnesium sulfate in the clinical setting. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  18. Melatonin promotes osteoblast differentiation and mineralization of MC3T3-E1 cells under hypoxic conditions through activation of PKD/p38 pathways.

    PubMed

    Son, Jang-Ho; Cho, Yeong-Cheol; Sung, Iel-Yong; Kim, In-Ryoung; Park, Bong-Soo; Kim, Yong-Deok

    2014-11-01

    Osteoblastic differentiation and bone-forming capacity are known to be suppressed under hypoxic conditions. Melatonin has been shown to influence cell differentiation. A number of in vitro and in vivo studies have suggested that melatonin also has an anabolic effect on bone, by promoting osteoblastic differentiation. However, the precise mechanisms and the signaling pathways involved in this process, particularly under hypoxic conditions, are unknown. This study investigated whether melatonin could promote osteoblastic differentiation and mineralization of preosteoblastic MC3T3-E1 cells under hypoxic conditions. Additionally, we examined the molecular signaling pathways by which melatonin mediates this process. We found that melatonin is capable of promoting differentiation and mineralization of MC3T3-E1 cells cultured under hypoxic conditions. Melatonin upregulated ALP activity and mRNA levels of Alp, Osx, Col1, and Ocn in a time- and concentration-dependent manner. Alizarin red S staining showed that the mineralized matrix in hypoxic MC3T3-E1 cells formed in a manner that was dependent on melatonin concentration. Moreover, melatonin stimulated phosphorylation of p38 Mapk and Prkd1 in these MC3T3-E1 cells. We concluded that melatonin promotes osteoblastic differentiation of MC3T3-E1 cells under hypoxic conditions via the p38 Mapk and Prkd1 signaling pathways. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Identification of a reactive glutathione conjugate as a metabolite of SR-2508 in CHO cells

    SciTech Connect

    Varghese, A.J.; Whitmore, G.F.

    1986-07-01

    Reaction between GSH and the hydroxylamine derivative of SR-2508 results in the formation of two stable conjugates identified as 2-amino-4-S-glutathionyl and 2-amino-5-S-glutathionyl imidazoles. These stable conjugates are apparently formed from a reactive derivative of the hydroxylamine that is sufficiently stable to be isolated after HPLC separation. The physical and chemical properties of this derivative are consistent with it being a GSH conjugate in which the glutathionyl residue is attached to the 2-amino nitrogen of the imidazole moiety through sulphur. With excess GSH, under physiological conditions, it forms a mixture of the two stable GSH conjugates. In CHO cells exposed to SR-2508 under hypoxic conditions, this unstable GSH conjugate has been detected and suggests the possibility of GSH functioning as a carrier of a toxic metabolite of 2-nitroimidazoles under certain conditions.

  20. The Transcription Factor ZNF395 Is Required for the Maximal Hypoxic Induction of Proinflammatory Cytokines in U87-MG Cells.

    PubMed

    Herwartz, Christine; Castillo-Juárez, Paola; Schröder, Linda; Barron, Blanca L; Steger, Gertrud

    2015-01-01

    Hypoxia activates the expression of proangiogenic and survival promoting factors as well as proinflammatory cytokines that support tissue inflammation. Hypoxia and inflammation are associated with tumor progression. The identification of the factors participating in the hypoxia associated inflammation is essential to develop strategies to control tumor hypoxia. The transcription factor ZNF395 was found to be overexpressed in various tumors including glioblastomas particularly in the network of a hypoxic response pointing to a functional role of ZNF395. On the other hand, ZNF395 was suggested to have tumor suppressor activities which may rely on its repression of proinflammatory factors. To address these conflictive observations, we investigated the role of ZNF395 in the expression of proinflammatory cytokines in the astrocytoma cell line U87-MG under hypoxia. We show that ZNF395 is a target gene of the hypoxia inducible factor HIF-1α. By gene expression analysis, RT-PCR and ELISA, we demonstrated that the siRNA-mediated suppression of ZNF395 impairs the hypoxic induction of IL-1β, IL-6, IL-8, and LIF in U87-MG cells. At ambient oxygen concentrations, ZNF395 had no enhancing effect, indicating that this transcriptional activation by ZNF395 is restricted to hypoxic conditions. Our results suggest that ZNF395 contributes to hypoxia associated inflammation by superactivating proinflammatory cytokines.

  1. The Transcription Factor ZNF395 Is Required for the Maximal Hypoxic Induction of Proinflammatory Cytokines in U87-MG Cells

    PubMed Central

    Herwartz, Christine; Castillo-Juárez, Paola; Schröder, Linda; Barron, Blanca L.; Steger, Gertrud

    2015-01-01

    Hypoxia activates the expression of proangiogenic and survival promoting factors as well as proinflammatory cytokines that support tissue inflammation. Hypoxia and inflammation are associated with tumor progression. The identification of the factors participating in the hypoxia associated inflammation is essential to develop strategies to control tumor hypoxia. The transcription factor ZNF395 was found to be overexpressed in various tumors including glioblastomas particularly in the network of a hypoxic response pointing to a functional role of ZNF395. On the other hand, ZNF395 was suggested to have tumor suppressor activities which may rely on its repression of proinflammatory factors. To address these conflictive observations, we investigated the role of ZNF395 in the expression of proinflammatory cytokines in the astrocytoma cell line U87-MG under hypoxia. We show that ZNF395 is a target gene of the hypoxia inducible factor HIF-1α. By gene expression analysis, RT-PCR and ELISA, we demonstrated that the siRNA-mediated suppression of ZNF395 impairs the hypoxic induction of IL-1β, IL-6, IL-8, and LIF in U87-MG cells. At ambient oxygen concentrations, ZNF395 had no enhancing effect, indicating that this transcriptional activation by ZNF395 is restricted to hypoxic conditions. Our results suggest that ZNF395 contributes to hypoxia associated inflammation by superactivating proinflammatory cytokines. PMID:26229239

  2. Preclinical and Clinical Evidence of Mycobacterium tuberculosis Persistence in the Hypoxic Niche of Bone Marrow Mesenchymal Stem Cells after Therapy.

    PubMed

    Garhyan, Jaishree; Bhuyan, Seema; Pulu, Ista; Kalita, Deepjyoti; Das, Bikul; Bhatnagar, Rakesh

    2015-07-01

    Mycobacterium tuberculosis (MTB), the causative agent of pulmonary tuberculosis, is difficult to eliminate by antibiotic therapy. We recently identified CD271(+) bone marrow-mesenchymal stem cells (BM-MSCs) as a potential site of MTB persistence after therapy. Herein, we have characterized the potential hypoxic localization of the post-therapy MTB-infected CD271(+) BM-MSCs in both mice and human subjects. We first demonstrate that in a Cornell model of MTB persistence in mice, green fluorescent protein-labeled virulent MTB-strain H37Rv was localized to pimonidazole (an in vivo hypoxia marker) positive CD271(+) BM-MSCs after 90 days of isoniazid and pyrazinamide therapy that rendered animal's lung noninfectious. The recovered CD271(+) BM-MSCs from post-therapy mice, when injected into healthy mice, caused active tuberculosis infection in the animal's lung. Moreover, MTB infection significantly increased the hypoxic phenotype of CD271(+) BM-MSCs. Next, in human subjects, previously treated for pulmonary tuberculosis, the MTB-containing CD271(+) BM-MSCs exhibited high expression of hypoxia-inducible factor 1α and low expression of CD146, a hypoxia down-regulated cell surface marker of human BM-MSCs. These data collectively demonstrate the potential localization of MTB harboring CD271(+) BM-MSCs in the hypoxic niche, a critical microenvironmental factor that is well known to induce the MTB dormancy phenotype. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. CDKN2B Regulates TGFβ Signaling and Smooth Muscle Cell Investment of Hypoxic Neovessels

    PubMed Central

    Nanda, Vivek; Downing, Kelly P.; Ye, Jianqin; Xiao, Sophia; Kojima, Yoko; Spin, Joshua M.; DiRenzo, Daniel; Nead, Kevin T.; Connolly, Andrew J; Dandona, Sonny; Perisic, Ljubica; Hedin, Ulf; Maegdefessel, Lars; Dalman, Jessie; Guo, Liang; Zhao, XiaoQing; Kolodgie, Frank D.; Virmani, Renu; Davis, Harry R.; Leeper, Nicholas J.

    2015-01-01

    Rationale Genetic variation at the chromosome 9p21 cardiovascular risk locus has been associated with peripheral artery disease (PAD), but its mechanism remains unknown. Objective To determine whether this association is secondary to an increase in atherosclerosis, or is the result of a separate angiogenesis-related mechanism. Methods and Results Quantitative evaluation of human vascular samples revealed that carriers of the 9p21 risk allele possess a significantly higher burden of immature intraplaque microvessels than carriers of the ancestral allele, irrespective of lesion size or patient comorbidity. To determine whether aberrant angiogenesis also occurs under non-atherosclerotic conditions, we performed femoral artery ligation surgery in mice lacking the 9p21 candidate gene, Cdkn2b. These animals developed advanced hind-limb ischemia and digital auto-amputation, secondary to a defect in the capacity of the Cdkn2b-deficient smooth muscle cell (SMC) to support the developing neovessel. Microarray studies identified impaired TGFβ signaling in cultured CDKN2B-deficient cells, as well as TGFβ1 upregulation in the vasculature of 9p21 risk allele carriers. Molecular signaling studies indicated that loss of CDKN2B impairs the expression of the inhibitory factor, SMAD-7, which promotes downstream TGFβ activation. Ultimately, this manifests in the upregulation of a poorly studied effector molecule, TGFβ1-induced-1, which is a TGFβ-‘rheostat’ known to have antagonistic effects on the EC and SMC. Dual knockdown studies confirmed the reversibility of the proposed mechanism, in vitro. Conclusions These results suggest that loss of CDKN2B may not only promote cardiovascular disease through the development of atherosclerosis, but may also impair TGFβ signaling and hypoxic neovessel maturation. PMID:26596284

  4. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions

    SciTech Connect

    Mylonis, Ilias; Lakka, Achillia; Tsakalof, Andreas; Simos, George

    2010-07-16

    Research highlights: {yields} Kaempferol inhibits HIF-1 activity in hepatocarcinoma cells; {yields} Kaempferol causes cytoplasmic mislocalization of HIF-1{alpha} by impairing the MAPK pathway. {yields} Viability of hepatocarcinoma cells under hypoxia is reduced by kaempferol. -- Abstract: Hepatocellular carcinoma (HCC) is characterized by high mortality rates and resistance to conventional treatment. HCC tumors usually develop local hypoxia, which stimulates proliferation of cancer cells and renders them resilient to chemotherapy. Adaptation of tumor cells to the hypoxic conditions depends on the hypoxia-inducible factor 1 (HIF-1). Over-expression of its regulated HIF-1{alpha} subunit, an important target of anti-cancer therapy, is observed in many cancers including HCC and is associated with severity of tumor growth and poor patient prognosis. In this report we investigate the effect of the dietary flavonoid kaempferol on activity, expression levels and localization of HIF-1{alpha} as well as viability of human hepatoma (Huh7) cancer cells. Treatment of Huh7 cells with kaempferol under hypoxic conditions (1% oxygen) effectively inhibited HIF-1 activity in a dose-dependent manner (IC{sub 50} = 5.16 {mu}M). The mechanism of this inhibition did not involve suppression of HIF-1{alpha} protein levels but rather its mislocalization into the cytoplasm due to inactivation of p44/42 MAPK by kaempferol (IC{sub 50} = 4.75 {mu}M). Exposure of Huh7 cells to 10 {mu}{Mu} kaempferol caused significant reduction of their viability, which was remarkably more evident under hypoxic conditions. In conclusion, kaempferol, a non-toxic natural food component, inhibits both MAPK and HIF-1 activity at physiologically relevant concentrations (5-10 {mu}M) and suppresses hepatocarcinoma cell survival more efficiently under hypoxia. It has, therefore, potential as a therapeutic or chemopreventive anti-HCC agent.

  5. Enhancement of DNA damage in mammalian cells upon bioreduction of the nitroimidazole-aziridines RSU-1069 and RSU-1131.

    PubMed

    Jenner, T J; Sapora, O; O'Neill, P; Fielden, E M

    1988-10-15

    The induction of DNA double-(dsb) and single-(ssb) strand breaks by RSU-1069, RSU-1131 and misonidazole in V79 mammalian cells has been investigated using sedimentation in isokinetic sucrose gradients after incubation for various times (1-3 hr) at 310 K under both hypoxic and aerobic conditions. Double strand breaks are produced by RSU-1069 and RSU-1131 predominantly under hypoxic conditions. Comparison of the cellular DNA damage induced by these agents leads to the following facts: (1) the yield of ssb induced by these agents is substantially increased under hypoxia, (2) RSU-1069 and RSU-1131 are much more effective than misonidazole, on a concentration basis, at causing strand breakage both under hypoxic and aerobic conditions; and (3) RSU-1069 is more efficient on a concentration basis than RSU-1131 at inducing both ssb and dsb under both conditions. From these findings and molecular studies it is suggested that these 2-nitroimidazole aziridines act as monofunctional alkylating agents under aerobic conditions, a factor that governs their aerobic cytotoxicity. Under hypoxic conditions, it is suggested that the induction of dsb and crosslinks by these agents (bifunctional character) may play a major role in determining the ability of such agents to act as hypoxia-selective cytotoxins.

  6. Nicotine promotes vascular endothelial growth factor secretion by human trophoblast cells under hypoxic conditions and improves the proliferation and tube formation capacity of human umbilical endothelial cells.

    PubMed

    Zhao, Hongbo; Wu, Lanxiang; Wang, Yahui; Zhou, Jiayi; Li, Ruixia; Zhou, Jiabing; Wang, Zehua; Xu, Congjian

    2017-04-01

    Pre-eclampsia, characterized as defective uteroplacental vascularization, remains the major cause of maternal and fetal mortality and morbidity. Previous epidemiological studies demonstrated that cigarette smoking reduced the risk of pre-eclampsia. However, the molecular mechanism remains elusive. In the present study, it is demonstrated that a low dose of nicotine decreased soluble vascular endothelial growth factor receptor 1 (sFlt1) secretion in human trophoblast cells under hypoxic conditions. Nicotine was then observed to promote vascular endothelial growth factor (VEGF) secretion by reducing sFlt1 secretion and increasing VEGF mRNA transcription. Further data showed that nicotine enhanced hypoxia-mediated hypoxia-inducible factor-1α (HIF-1α) expression and HIF-1α small interfering RNA abrogated nicotine-induced VEGF secretion, indicating that HIF-1α may be responsible for nicotine-mediated VEGF transcription under hypoxic conditions. Moreover, conditioned medium from human trophoblast cells treated with nicotine under hypoxic conditions promoted the proliferation and tube formation capacity of human umbilical endothelial cells (HUVEC) by promoting VEGF secretion. These findings indicate that nicotine may promote VEGF secretion in human trophoblast cells under hypoxic conditions by reducing sFlt1 secretion and up-regulating VEGF transcription and improve the proliferation and tube formation of HUVEC cells, which may contribute to elucidate the protective effect of cigarette smoking against pre-eclampsia. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  7. Exosomes from hypoxic endothelial cells have increased collagen crosslinking activity through up-regulation of lysyl oxidase-like 2.

    PubMed

    de Jong, Olivier G; van Balkom, Bas W M; Gremmels, Hendrik; Verhaar, Marianne C

    2016-02-01

    Exosomes are important mediators of intercellular communication. Additionally, they contain a variety of components capable of interacting with the extracellular matrix (ECM), including integrins, matrix metalloproteinases and members of the immunoglobin superfamily. Despite these observations, research on exosome-ECM interactions is limited. Here, we investigate whether the exosome-associated lysyl oxidase family member lysyl oxidase-like 2 (LOXL2) is involved in ECM remodelling. We found that LOXL2 is present on the exterior of endothelial cell (EC)-derived exosomes, placing it in direct vicinity of the ECM. It is up-regulated twofold in EC-derived exosomes cultured under hypoxic conditions. Intact exosomes from hypoxic EC and LOXL2 overexpressing EC show increased activity in a fluorometric lysyl oxidase enzymatic activity assay as well as in a collagen gel contraction assay. Concordantly, knockdown of LOXL2 in exosome-producing EC in both normal and hypoxic conditions reduces activity of exosomes in both assays. Our findings show for the first time that ECM crosslinking by EC-derived exosomes is mediated by LOXL2 under the regulation of hypoxia, and implicate a role for exosomes in hypoxia-regulated focal ECM remodelling, a key process in both fibrosis and wound healing.

  8. Combination of nicotinamide and hyperthermia to eliminate radioresistant chronically and acutely hypoxic tumor cells

    SciTech Connect

    Horsman, M.R.; Chaplin, D.J.; Overgaard, J. )

    1990-12-01

    The interaction among nicotinamide, radiation, and heat was studied in vivo using a C3H mouse mammary carcinoma grown in the feet of CDF1 mice. Response following local tumor treatment was assessed by tumor control and regrowth delay. Nicotinamide (1000 mg/kg i.p.) produced maximal radiosensitization when injected 30 min to 2 h before irradiation (enhancement ratios (ERs), 1.2-1.5). Radiation damage was also increased by heating tumors (43.5 degrees C for 60 min) 4 h after irradiation (ERs = 1.6-2.6). This combined radiation and heat treatment was enhanced by nicotinamide but the effect depended on the assay procedure, such that although a significant increase was observed with the tumor control assay, only a slight increase was seen using regrowth delay as the end point. The development of moist desquamation in normal feet was used to estimate skin damage after irradiation. Nicotinamide and heat both resulted in a small yet significant increase in skin damage (ERs less than 1.2 and 1.1, respectively). A combined treatment resulted in a greater ER of 1.7, but when compared to the tumor response it still gave a therapeutic gain. A histological fluorescent staining technique was used to assess functional tumor vasculature at two periods in time separated by 20 min. Under normal conditions 7.7% of the vessels in this tumor were functional at one time but not the other. This value was reduced to 2.8% after nicotinamide administration. Since these fluctuations in blood flow can result in acute hypoxia we conclude that while heat eliminates chronically hypoxic tumor cells, nicotinamide probably removes the presence of acute hypoxia.

  9. Factors associated with the preincubation effect of hypoxic cell sensitizers in vitro and their possible implications in chemosensitization

    SciTech Connect

    Roizin-Towle, L.; Biaglow, J.E.; Meltzer, H.L.; Varnes, M.E.

    1984-06-01

    The enhancement of melphalan toxicity was observed by preincubation of V-79-379A cells in spinner culture with multiple doses of misonidazole (miso) or SR-2508 under hypoxic conditions. Chemosensitization was shown to be a function of sensitizer concentration and duration of exposure to the alkylating agent. Cells preincubated with miso not only had lower levels of nonprotein thiols, but also were shown to have altered levels of intracellular calcium and a lower threshold to oxidative stress as measured by toxicity to cysteamine or H/sub 2/O/sub 2/. Preincubated cells, hypoxic cells, and cells receiving moderate hyperthermia (42.5/sup 0/C for 3 hr) all showed increased sensitivity to either cysteamine or H/sub 2/O/sub 2/. The increased killing of preincubated cells by cysteamine was shown to be similar to that of H/sub 2/O/sub 2/, and the dramatic reduction of cysteamine toxicity by catalase indicated H/sub 2/O/sub 2/ was the major reaction associated with this effect. These results indicate that preincubated cells exhibit a variety of biological effects that may significantly influence their response to further treatment with drugs or radiation, especially where peroxidative and free radical mechanisms are involved.

  10. Cancer stem-like cells can be induced through dedifferentiation under hypoxic conditions in glioma, hepatoma and lung cancer

    PubMed Central

    Wang, Pan; Wan, Wen-wu; Xiong, Shuang-Long; Feng, Hua; Wu, Nan

    2017-01-01

    Traditional studies have shown that transcription factors, including SOX-2, OCT-4, KLF-4, Nanog and Lin-28A, contribute to the dedifferentiation and reprogramming process in normal tissues. Hypoxia is a physiological phenomenon that exists in tumors and promotes the expression of SOX-2, OCT-4, KLF-4, Nanog and Lin-28A. Therefore, an interesting question is whether hypoxia as a stimulating factor promotes the process of dedifferentiation and induces the formation of cancer stem-like cells. Studies have shown that OCT-4 and Nanog overexpression induced the formation of cancer stem cell-like cells through dedifferentiation and enhanced malignancy in lung adenocarcinoma, and reprogramming SOX-2 in pancreatic cancer cells also promoted the dedifferentiation process. Therefore, we investigated this phenomenon in glioma, lung cancer and hepatoma cells and found that the transcription factors mentioned above were highly expressed under hypoxic conditions and induced the formation of spheres, which exhibited asymmetric division and cell cycle arrest. The dedifferentiation process induced by hypoxia highlights a new pattern of cancer development and recurrence, demonstrating that all kinds of cancer cells and the hypoxic microenvironment should be taken into consideration when developing tumor therapies. PMID:28179999

  11. Patient-specific modeling and analysis of dynamic behavior of individual sickle red blood cells under hypoxic conditions

    NASA Astrophysics Data System (ADS)

    Li, Xuejin; Du, E.; Li, Zhen; Tang, Yu-Hang; Lu, Lu; Dao, Ming; Karniadakis, George

    2015-11-01

    Sickle cell anemia is an inherited blood disorder exhibiting heterogeneous morphology and abnormal dynamics under hypoxic conditions. We developed a time-dependent cell model that is able to simulate the dynamic processes of repeated sickling and unsickling of red blood cells (RBCs) under physiological conditions. By using the kinetic cell model with parameters derived from patient-specific data, we present a mesoscopic computational study of the dynamic behavior of individual sickle RBCs flowing in a microfluidic channel with multiple microgates. We investigate how individual sickle RBCs behave differently from healthy ones in channel flow, and analyze the alteration of cellular behavior and response to single-cell capillary obstruction induced by cell rheologic rigidification and morphological change due to cell sickling under hypoxic conditions. We also simulate the flow dynamics of sickle RBCs treated with hydroxyurea (HU) and quantify the relative enhancement of hemodynamic performance of HU. This work was supported by the National Institutes of Health (NIH) Grant U01HL114476.

  12. Se-methylselenocysteine sensitizes hypoxic tumor cells to irinotecan by targeting hypoxia-inducible factor 1α

    PubMed Central

    Chintala, Sreenivasulu; Tóth, Károly; Cao, Shousong; Durrani, Farukh A.; Vaughan, Mary M.; Jensen, Randy L.; Rustum, Youcef M.

    2010-01-01

    Purpose Hypoxic tumor cells overexpressing hypoxia-inducible factor 1alpha (HIF-1α) are generally resistant to chemo/radiotherapy. We have reported that Se-methylselenocysteine (MSC) therapeutically enhances the efficacy and selectivity of irinotecan against human tumor xenografts. The aim of this study was to delineate the mechanism responsible for the observed efficacy targeting on HIF-1α and its transcriptionally regulated genes VEGF and CAIX. Methods We investigated the mechanism of HIF-1α inhibition by MSC and its critical role in the therapeutic outcome by generating HIF-1α stable knockdown (KD) human head and neck squamous cell carcinoma, FaDu by transfecting HIF-1α short hairpin RNA. Results While cytotoxic efficacy in combination with methylselenic acid (MSA) with SN-38 (active metabolites of MSC and irinotecan) could not be confirmed in vitro against normoxic tumor cells, the hypoxic tumor cells were more sensitive to the combination. Reduction in HIF-1α either by MSA or shRNA knockdown resulted in significant increase in cytotoxicity of SN38 in vitro against hypoxic, but not the normoxic tumor cells. Similarly, in vivo, either MSC in combination with irinotecan treatment of parental xenografts or HIF-1α KD tumors treated with irinotecan alone resulted in comparable therapeutic response and increase in the long-term survival of mice bearing FaDu xenografts. Conclusions Our results show that HIF-1α is a critical target for MSC and its inhibition was associated with enhanced antitumor activity of irinotecan. Inhibition of HIF-1α appeared to be mediated through stabilization of PHD2, 3 and downregulation of ROS by MSC. Thus, our findings support the development of MSC as a HIF-1α inhibitor in combination chemotherapy. PMID:20066420

  13. Autophagy mediates the beneficial effect of hypoxic preconditioning on bone marrow mesenchymal stem cells for the therapy of myocardial infarction.

    PubMed

    Zhang, Zheng; Yang, Chao; Shen, Mingzhi; Yang, Ming; Jin, Zhitao; Ding, Liping; Jiang, Wei; Yang, Junke; Chen, Haixu; Cao, Feng; Hu, Taohong

    2017-04-18

    Stem cell therapy has emerged as a promising therapeutic strategy for myocardial infarction (MI). However, the poor viability of transplanted stem cells hampers their therapeutic efficacy. Hypoxic preconditioning (HPC) can effectively promote the survival of stem cells. The aim of this study was to investigate whether HPC improved the functional survival of bone marrow mesenchymal stem cells (BM-MSCs) and increased their cardiac protective effect. BM-MSCs, isolated from Tg(Fluc-egfp) mice which constitutively express both firefly luciferase (Fluc) and enhanced green fluorescent protein (eGFP), were preconditioned with HPC (1% O2) for 12 h, 24 h, 36 h, and 48 h, respectively, followed by 24 h of hypoxia and serum deprivation (H/SD) injury. HPC dose-dependently increased the autophagy in BM-MSCs. However, the protective effects of HPC for 24 h are most pronounced. Moreover, hypoxic preconditioned BM-MSCs ((HPC)MSCs) and nonhypoxic preconditioned BM-MSCs ((NPC)MSCs) were transplanted into infarcted hearts. Longitudinal in vivo bioluminescence imaging (BLI) and immunofluorescent staining revealed that HPC enhanced the survival of engrafted BM-MSCs. Furthermore, (HPC)MSCs significantly reduced fibrosis, decreased apoptotic cardiomyocytes, and preserved heart function. However, the beneficial effect of HPC was abolished by autophagy inhibition with 3-methyladenine (3-MA) and Atg7siRNA. This study demonstrates that HPC may improve the functional survival and the therapeutic efficiencies of engrafted BM-MSCs, at least in part through autophagy regulation. Hypoxic preconditioning may serve as a promising strategy for optimizing cell-based cardiac regenerative therapy.

  14. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro

    SciTech Connect

    Yang, Wei; Sun, Ting; Cao, Jianping; Liu, Fenju; Tian, Ye; Zhu, Wei

    2012-05-01

    Hypoxia is a common feature of solid tumors and an important contributor to tumor radioresistance. miR-210 is the most consistently and robustly induced microRNA under hypoxia in different types of tumor cells and normal cells. In the present study, to explore the feasibility of miR-210 as an effective therapeutic target, lentiviral-mediated anti-sense miR-210 gene transfer technique was employed to downregulate miR-210 expression in hypoxic human hepatoma SMMC-7721, HepG2 and HuH7 cells, and phenotypic changes of which were analyzed. Hypoxia led to an increased hypoxia inducible factor-1{alpha} (HIF-1{alpha}) and miR-210 expression and cell arrest in the G{sub 0}/G{sub 1} phase in all cell lines. miR-210 downregulation significantly suppressed cell viability, induced cell arrest in the G{sub 0}/G{sub 1} phase, increased apoptotic rate and enhanced radiosensitivity in hypoxic human hepatoma cells. Moreover, apoptosis-inducing factor, mitochondrion-associated, 3 (AIFM3) was identified as a direct target gene of miR-210. AIFM3 downregulation by siRNA attenuated radiation induced apoptosis in miR-210 downregulated hypoxic human hepatoma cells. Taken together, these data suggest that miR-210 might be a potential therapeutic target and specific inhibition of miR-210 expression in combination with radiotherapy might be expected to exert strong anti-tumor effect on hypoxic human hepatoma cells. -- Highlights: Black-Right-Pointing-Pointer miR-210 downregulation radiosensitized hypoxic hepatoma. Black-Right-Pointing-Pointer AIFM3 was identified as a direct target gene of miR-210. Black-Right-Pointing-Pointer miR-210 might be a therapeutic target to hypoxic hepatoma.

  15. Prevention of mast cell degranulation by disodium cromoglycate attenuates the development of hypoxic pulmonary hypertension in rats exposed to chronic hypoxia.

    PubMed

    Banasová, Alena; Maxová, Hana; Hampl, Václav; Vízek, Martin; Povýsilová, Viera; Novotná, Jana; Vajnerová, Olga; Hnilicková, Olga; Herget, Jan

    2008-01-01

    Chronic hypoxia induces lung vascular remodeling, which results in pulmonary hypertension. Vascular remodeling is associated with collagenolysis and activation of matrix metalloproteinases (MMPs). One of the possible sources of MMPs in hypoxic lung are mast cells. The role of lung mast cell collagenolytic activity in hypoxic pulmonary hypertension was tested by the inhibitor of mast cell degranulation disodium cromoglycate (DSCG). Rats were treated with DSCG in an early or later phase of isobaric hypoxia. Control groups were exposed to hypoxia only or to normoxia. Lung hemodynamics, muscularization and collagen metabolism in the walls of peripheral pulmonary vessels in the lungs were measured. DSCG applied at an early phase of exposure to hypoxia reduced the development of pulmonary hypertension, inhibited muscularization in peripheral pulmonary arteries and decreased the amount of collagen cleavage fragments in prealveolar vessels. Mast cell degranulation plays a role in the initiation of hypoxic pulmonary vascular remodeling. 2008 S. Karger AG, Basel.

  16. Transcriptional Profiling of Hypoxic Neural Stem Cells Identifies Calcineurin-NFATc4 Signaling as a Major Regulator of Neural Stem Cell Biology.

    PubMed

    Moreno, Marta; Fernández, Virginia; Monllau, Josep M; Borrell, Víctor; Lerin, Carles; de la Iglesia, Núria

    2015-08-11

    Neural stem cells (NSCs) reside in a hypoxic microenvironment within the brain. However, the crucial transcription factors (TFs) that regulate NSC biology under physiologic hypoxia are poorly understood. Here we have performed gene set enrichment analysis (GSEA) of microarray datasets from hypoxic versus normoxic NSCs with the aim of identifying pathways and TFs that are activated under oxygen concentrations mimicking normal brain tissue microenvironment. Integration of TF target (TFT) and pathway enrichment analysis identified the calcium-regulated TF NFATc4 as a major candidate to regulate hypoxic NSC functions. Nfatc4 expression was coordinately upregulated by top hypoxia-activated TFs, while NFATc4 target genes were enriched in hypoxic NSCs. Loss-of-function analyses further revealed that the calcineurin-NFATc4 signaling axis acts as a major regulator of NSC self-renewal and proliferation in vitro and in vivo by promoting the expression of TFs, including Id2, that contribute to the maintenance of the NSC state. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Transcriptional Profiling of Hypoxic Neural Stem Cells Identifies Calcineurin-NFATc4 Signaling as a Major Regulator of Neural Stem Cell Biology

    PubMed Central

    Moreno, Marta; Fernández, Virginia; Monllau, Josep M.; Borrell, Víctor; Lerin, Carles; de la Iglesia, Núria

    2015-01-01

    Summary Neural stem cells (NSCs) reside in a hypoxic microenvironment within the brain. However, the crucial transcription factors (TFs) that regulate NSC biology under physiologic hypoxia are poorly understood. Here we have performed gene set enrichment analysis (GSEA) of microarray datasets from hypoxic versus normoxic NSCs with the aim of identifying pathways and TFs that are activated under oxygen concentrations mimicking normal brain tissue microenvironment. Integration of TF target (TFT) and pathway enrichment analysis identified the calcium-regulated TF NFATc4 as a major candidate to regulate hypoxic NSC functions. Nfatc4 expression was coordinately upregulated by top hypoxia-activated TFs, while NFATc4 target genes were enriched in hypoxic NSCs. Loss-of-function analyses further revealed that the calcineurin-NFATc4 signaling axis acts as a major regulator of NSC self-renewal and proliferation in vitro and in vivo by promoting the expression of TFs, including Id2, that contribute to the maintenance of the NSC state. PMID:26235896

  18. Oxidative Stress Promotes Doxorubicin-Induced Pgp and BCRP Expression in Colon Cancer Cells Under Hypoxic Conditions.

    PubMed

    Pinzón-Daza, Martha L; Cuellar-Saenz, Yenith; Nualart, Francisco; Ondo-Mendez, Alejandro; Del Riesgo, Lilia; Castillo-Rivera, Fabio; Garzón, Ruth

    2017-07-01

    P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) are ATP binding cassette (ABC) transporters that are overexpressed in different drug-resistant cancer cell lines. In this study, we investigated whether doxorubicin promotes Pgp and/or BCRP expression to induce drug resistance in colon cancer cells under hypoxic conditions. We analyzed HIF-1α activity via ELISA, Pgp, and BCRP expression by qRT-PCR and the relationship between doxorubicin uptake and ABC transporter expression via confocal microscopy in HT-29WT and HT-29 doxorubicin-resistant colon cancer cells (HT-29DxR). These cells were treated with doxorubicin and/or CoCl2 (chemical hypoxia), and reactive oxygen species inductors. We found that the combination of chemically induced hypoxia and doxorubicin promoted Pgp mRNA expression within 24 h in HT-29WT and HT-29DxR cells. Both doxorubicin and CoCl2 alone or in combination induced Pgp and BCRP expression, as demonstrated via confocal microscopy in each of the above two cell lines. Thus, we surmised that Pgp and BCRP expression may result from synergistic effects exerted by the combination of doxorubicin-induced ROS production and HIF-1α activity under hypoxic conditions. However, HIF-1α activity disruption via the administration of E3330, an APE-1 inhibitor, downregulated Pgp expression and increased doxorubicin delivery to HT-29 cells, where it served as a substrate for Pgp, indicating the existence of an indirect relationship between Pgp expression and doxorubicin accumulation. Thus, we concluded that Pgp and BCRP expression can be regulated via cross-talk between doxorubicin and hypoxia, promoting drug resistance in HT-29 WT, and HT-29DxR cells and that this process may be ROS dependent. J. Cell. Biochem. 118: 1868-1878, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Tanshinone IIA pretreatment renders free flaps against hypoxic injury through activating Wnt signaling and upregulating stem cell-related biomarkers.

    PubMed

    Xu, Zihan; Zhang, Zhenxin; Wu, Lijun; Sun, Yaowen; Guo, Yadong; Qin, Gaoping; Mu, Shengzhi; Fan, Ronghui; Wang, Benfeng; Gao, Wenjie

    2014-10-09

    Partial or total flap necrosis after flap transplantation is sometimes clinically encountered in reconstructive surgery, often as a result of a period of hypoxia that exceeds the tolerance of the flap tissue. In this study, we determine whether tanshinone IIA (TSA) pretreatment can protect flap tissue against hypoxic injury and improve its viability. Primary epithelial cells isolated from the dorsal skin of mice were pretreated with TSA for two weeks. Cell counting kit-8 and Trypan Blue assays were carried out to examine the proliferation of TSA-pretreated cells after exposure to cobalt chloride. Then, Polymerase chain reaction and Western blot analysis were used to determine the expression of β-catenin, GSK-3β, SOX2, and OCT4 in TSA-treated cells. In vivo, after mice were pretreated with TSA for two weeks, a reproducible ischemic flap model was implemented, and the area of surviving tissue in the transplanted flaps was measured. Immunohistochemistry was also conducted to examine the related biomarkers mentioned above. Results show that epidermal cells, pretreated with TSA, showed enhanced resistance to hypoxia. Activation of the Wnt signaling pathway in TSA-pretreated cells was characterized by the upregulation of β-catenin and the downregulation of GSK-3β. The expression of SOX2 and OCT4 controlled by Wnt signaling were also found higher in TSA pretreated epithelial cells. In the reproducible ischaemic flap model, pretreatment with TSA enhanced resistance to hypoxia and increased the area of surviving tissue in transplanted flaps. The expression of Wnt signaling pathway components, stem-cell related biomarkers, and CD34, which are involved in the regeneration of blood vessels, was also upregulated in TSA-pretreated flap tissue. The results show that TSA pretreatment protects free flaps against hypoxic injury and increases the area of surviving tissue by activating Wnt signaling and upregulating stem cell-related biomarkers.

  20. Azobenzene-caged sulforhodamine dyes: a novel class of ‘turn-on’ reactive probes for hypoxic tumor cell imaging

    NASA Astrophysics Data System (ADS)

    Chevalier, Arnaud; Piao, Wen; Hanaoka, Kenjiro; Nagano, Tetsuo; Renard, Pierre-Yves; Romieu, Anthony

    2015-12-01

    New sulforhodamine-based fluorescent ‘turn-on’ probes have been developed for the direct imaging of cellular hypoxia. Rapid access to this novel class of water-soluble ‘azobenzene-caged’ fluorophores was made possible through an easily-implementable azo-coupling reaction between a fluorescent primary arylamine derived from a sulforhodamine 101 scaffold (named SR101-NaphtNH 2 ) and a tertiary aniline whose N-substituents are neutral, cationic, or zwitterionic. The detection mechanism is based on the bioreductive cleavage of the azo bond that restores strong far-red fluorescence (emission maximum at 625 nm) by regenerating the original sulforhodamine SR101-NaphtNH 2 . This valuable fluorogenic response was obtained for the three ‘smart’ probes studied in this work, as shown by an in vitro assay using rat liver microsomes placed under aerobic and then under hypoxic conditions. Most importantly, the probe namely SR101-NaphtNH 2 -Hyp-diMe was successfully applied for imaging the hypoxic status of tumor cells (A549 cells).

  1. PPARγ and RXR ligands disrupt the inflammatory cross-talk in the hypoxic breast cancer stem cells niche.

    PubMed

    Papi, Alessio; De Carolis, Sabrina; Bertoni, Sara; Storci, Gianluca; Sceberras, Virginia; Santini, Donatella; Ceccarelli, Claudio; Taffurelli, Mario; Orlandi, Marina; Bonafé, Massimiliano

    2014-11-01

    Cancer stem cells (CSCs) are affected by the local micro-environment, the niche, in which inflammatory stimuli and hypoxia act as steering factors. Here, two nuclear receptors (NRs) agonists, i.e. pioglitazone (PGZ), a ligand of peroxisome proliferator activated receptor-γ, and 6-OH-11-O-hydroxyphenanthrene (IIF), a ligand of retinoid X receptors, were investigated for their capability to interference with the cross-talk between breast CSCs and the niche compartment. We found that IIF potentiates the ability of PGZ to hamper the mammospheres-forming capability of human breast tumours and MCF7 cancer cells, reducing the expression of CSCs regulatory genes (Notch3, Jagged1, SLUG, Interleukin-6, Apolipoprotein E, Hypoxia inducible factor-1α and Carbonic anhydrase IX). Notably, these effects are not observed in normal-MS obtained from human breast tissue. Importantly, NRs agonists abolish the capability of hypoxic MCF7 derived exosomes to induce a pro-inflammatory phenotype in mammary glands fibroblasts. Moreover, NRs agonist also directly acts on breast tumour associated fibroblasts to downregulate nuclear factor-κB pathway and metalloproteinases (MMP2 and MMP9) expression and activity. In conclusion, NRs agonists disrupt the inflammatory cross-talk of the hypoxic breast CSCs niche. © 2014 Wiley Periodicals, Inc.

  2. Overexpression of cationic amino acid transporter-1 increases nitric oxide production in hypoxic human pulmonary microvascular endothelial cells.

    PubMed

    Cui, Hongmei; Chen, Bernadette; Chicoine, Louis G; Nelin, Leif D

    2011-12-01

    1. The endogenous production of and/or the bioavailability of nitric oxide (NO) is decreased in pulmonary hypertensive diseases. L-arginine (L-arg) is the substrate for NO synthase (NOS). L-arg is transported into cells via the cationic amino acid transporters (CAT), of which there are two isoforms in endothelial cells, CAT-1 and CAT-2. 2. To test the hypothesis that hypoxia will decrease CAT expression and L-arg uptake resulting in decreased NO production in human pulmonary microvascular endothelial cells (hPMVEC), cells were incubated in either normoxia (21% O(2), 5% CO(2), balance N(2)) or hypoxia (1% O(2), 5% CO(2), balance N(2)). 3. The hPMVEC incubated in hypoxia had 80% less NO production than cells incubated in normoxia (P < 0.01). The hPMVEC incubated in hypoxia had significantly lower CAT-2 mRNA levels than normoxic hPMVEC (P < 0.005), and the transport of L-arg was 40% lower in hypoxic than in normoxic hPMVEC (P < 0.01). In hypoxic cells, overexpression of CAT-1 resulted in significantly greater L-arg transport and NO production (P < 0.05). 4. These results demonstrate that in hPMVEC, hypoxia decreased CAT-2 expression, L-arg uptake and NO production. Furthermore, the hypoxia-induced decrease in NO production in hPMVEC can be attenuated by overexpressing CAT in these cells. We speculate that the CAT may represent a novel therapeutic target for treating pulmonary hypertensive disorders. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.

  3. Stem cells decreased neuronal cell death after hypoxic stress in primary fetal rat neurons in vitro.

    PubMed

    Sakai, Tetsuro; Xu, Yan

    2012-01-01

    To explore stem cell-mediated neuronal protection through extracellular signaling pathways by transplanted stem cells, we sought to identify potential candidate molecules responsible for neuronal protection using an in vitro coculture system. Primary fetal rat hippocampal neurons underwent hypoxia (≤1% oxygen) for 96 h nad then were returned to a normoxic condition. The study group then received rat umbilical cord matrix-derived stem cells, while the control group received fresh media only. The experimental group showed decreased neuronal apoptosis compared to the control group [44.5 ± 1.6% vs. 71.0 ± 4.2% (mean ± SD, p = 0.0005) on day 5] and higher neuronal survival (4.9 ± 1.2 cells/100× field vs. 2.2 ± 0.3, p = 0.02 on day 5). Among 90 proteins evaluated using a protein array, stem cell coculture media showed increased protein secretion of TIMP-1 (5.61-fold), TIMP-2 (4.88), CNTF-Rα (3.42), activin A (2.20), fractalkine (2.04), CCR4 (2.02), and decreased secretion in MIP-2 (0.30-fold), AMPK α1 (0.43), TROY (0.48), and TIMP-3 (0.50). This study demonstrated that coculturing stem cells with primary neurons in vitro decreased neuronal cell death after hypoxia with significantly altered protein secretion. The results suggest that stem cells may offer neuronal protection through extracellular signaling.

  4. The Hypoxic Microenvironment Maintains Glioblastoma Stem Cells and Promotes Reprogramming towards a Cancer Stem Cell Phenotype

    PubMed Central

    Heddleston, John M.; Li, Zhizhong; Hjelmeland, Anita B.; Rich, Jeremy N.

    2009-01-01

    Glioblastomas are highly lethal cancers that contain cellular hierarchies with self-renewing cancer stem cells that can propagate tumors in secondary transplant assays. The potential significance of cancer stem cells in cancer biology has been demonstrated by studies showing contributions to therapeutic resistance, angiogenesis, and tumor dispersal. We recently reported that physiologic oxygen levels differentially induce hypoxia inducible factor-2α (HIF2α) levels in cancer stem cells. HIF1α functioned in proliferation and survival of all cancer cells but also was activated in normal neural progenitors suggesting a potentially restricted therapeutic index while HIF2α was essential in only in cancer stem cells and was not expressed by normal neural progenitors demonstrating HIF2α is a cancer stem cell specific target. We now extend these studies to examine the role of hypoxia in regulating tumor cell plasticity. We find that hypoxia promotes the self-renewal capability of the stem and non-stem population as well as promoting a more stem-like phenotype in the non-stem population with increased neurosphere formation as well as upregulation of important stem cell factors, such as OCT4, NANOG, and c-MYC. The importance of HIF2α was further supported as forced expression of non-degradable HIF2α induced a cancer stem cell marker and augmented the tumorigenic potential of the non-stem population. This novel finding may indicate a specific role of HIF2α in promoting glioma tumorigenesis. The unexpected plasticity of the non-stem glioma population and the stem-like phenotype emphasizes the importance of developing therapeutic strategies targeting the microenvironmental influence on the tumor in addition to cancer stem cells. PMID:19770585

  5. Radiosensitization of E. coli B/r by the cytotoxic agent procarbazine: a hypoxic cell sensitizer preferentially toxic to aerobic cells and easily oxidized.

    PubMed Central

    Roberts, P. B.

    1979-01-01

    Procarbazine has been shown to be a hypoxic cell sensitizer of moderate ability in E. coli B/r, with an achievable enhancement ratio of 1.4 at subtoxic concentrations. The drug appears to act in a manner similar to the expected with the electron-affinic radiosensitizers. However, procarbazine and the electron-affinic sensitizers differ in two important respects. Unlike the electron-affinic sensitizers, procarbazine is not easily reduced, but is easily oxidized. It is more toxic to aerobic than to hypoxic cells. At the drug dosages in present clinical use, procarbazine is likely to be only a weak radiosensitizer. The possible implications of the data for the further development of a new class of sensitizers and combination therapy are discussed. PMID:375966

  6. 1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine: An anticancer agent targeting hypoxic cells

    PubMed Central

    Seow, Helen A.; Penketh, Philip G.; Shyam, Krishnamurthy; Rockwell, Sara; Sartorelli, Alan C.

    2005-01-01

    To target malignant cells residing in hypoxic regions of solid tumors, we have designed and synthesized prodrugs generating the cytotoxic alkylating species 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE) after bioreductive activation. We postulate that one of these agents, 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine (KS119), requires enzymatic nitro reduction to produce 90CE, whereas another agent, 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[(4-nitrobenzyloxy)carbonyl]hydrazine (PNBC), can also be activated by nucleophilic attack by thiols such as glutathione (GSH)/GST. We demonstrated that these agents selectively kill hypoxic EMT6 mouse mammary carcinoma and CHO cells. In hypoxia, 50 μM KS119 produced 5 logs of kill of EMT6 cells without discernable cytotoxicity in air; similar effects were observed with CHO cells. PNBC was less efficacious against hypoxic tumor cells and also had some toxicity to aerobic cells, presumably because of GST/thiol activation, making PNBC less interesting as a selective hypoxic-cell cytotoxin. BALB/c mice with established EMT6 solid tumors were used to demonstrate that KS119 could reach and kill hypoxic cells in solid tumors. To gain information on bioreductive enzymes involved in the activation of KS119, cytotoxicity was measured in CHO cell lines overexpressing NADH:cytochrome b5 reductase (NBR), NADPH:cytochrome P450 reductase (NPR), or NAD(P)H: quinone oxidoreductase 1 (NQO1). Increased cytotoxicity occurred in cells overexpressing NBR and NPR, whereas overexpressed NQO1 had no effect. These findings were supported by enzymatic studies using purified NPR and xanthine oxidase to activate KS119. KS119 has significant potential as a hypoxia-selective tumor-cell cytotoxin and is unlikely to cause major toxicity to well oxygenated normal tissues. PMID:15964988

  7. RSU 1069, a 2-nitroimidazole containing an alkylating group: high efficiency as a radio- and chemosensitizer in vitro and in vivo.

    PubMed

    Adams, G E; Ahmed, I; Sheldon, P W; Stratford, I J

    1984-09-01

    Electron affinity as measured by the one-electron reduction potentian, E7(1), is the major factor influencing radiosensitizing efficiency in vitro. RSU 1069 has an electron affinity (E7(1) = 398 mV) similar to misonidazole; however, the ability of this compound to sensitize hypoxic cells is considerably greater in vitro than that of misonidazole, e.g., 0.2 mM RSU 1069 gives an enhancement ratio of greater than 2.0 compared to 1.4 for the same concentration of misonidazole. Radiosensitization studies with the MT tumor in vivo also showed RSU 1069 to be a more efficient sensitizer than misonidazole. An administered dose of 0.08 mg/g RSU 1069 yielded an enhancement of 1.8 to 1.9 using tumor cell survival and tumor cure as end-points. At least a 10-fold higher dose of misonidazole is required for a similar degree of sensitization. Low doses of RSU 1069 also radiosensitize the Lewis lung and B16 experimental tumors. The ability of RSU 1069 to potentiate the cytotoxic action of melphalan and other cytotoxic drugs towards the MT tumor was also examined. RSU 1069 (0.08 mg/g) given to mice 1 hour before melphalan gave an enhancement of 2.8.

  8. MiR-210 promotes a hypoxic phenotype and increases radioresistance in human lung cancer cell lines

    PubMed Central

    Grosso, S; Doyen, J; Parks, S K; Bertero, T; Paye, A; Cardinaud, B; Gounon, P; Lacas-Gervais, S; Noël, A; Pouysségur, J; Barbry, P; Mazure, N M; Mari, B

    2013-01-01

    The resistance of hypoxic cells to radiotherapy and chemotherapy is a major problem in the treatment of cancer. Recently, an additional mode of hypoxia-inducible factor (HIF)-dependent transcriptional regulation, involving modulation of a specific set of micro RNAs (miRNAs), including miR-210, has emerged. We have recently shown that HIF-1 induction of miR-210 also stabilizes HIF-1 through a positive regulatory loop. Therefore, we hypothesized that by stabilizing HIF-1 in normoxia, miR-210 may protect cancer cells from radiation. We developed a non-small cell lung carcinoma (NSCLC)-derived cell line (A549) stably expressing miR-210 (pmiR-210) or a control miRNA (pmiR-Ctl). The miR-210-expressing cells showed a significant stabilization of HIF-1 associated with mitochondrial defects and a glycolytic phenotype. Cells were subjected to radiation levels ranging from 0 to 10 Gy in normoxia and hypoxia. Cells expressing miR-210 in normoxia had the same level of radioresistance as control cells in hypoxia. Under hypoxia, pmiR-210 cells showed a low mortality rate owing to a decrease in apoptosis, with an ability to grow even at 10 Gy. This miR-210 phenotype was reproduced in another NSCLC cell line (H1975) and in HeLa cells. We have established that radioresistance was independent of p53 and cell cycle status. In addition, we have shown that genomic double-strand breaks (DSBs) foci disappear faster in pmiR-210 than in pmiR-Ctl cells, suggesting that miR-210 expression promotes a more efficient DSB repair. Finally, HIF-1 invalidation in pmiR-210 cells removed the radioresistant phenotype, showing that this mechanism is dependent on HIF-1. In conclusion, miR-210 appears to be a component of the radioresistance of hypoxic cancer cells. Given the high stability of most miRNAs, this advantage could be used by tumor cells in conditions where reoxygenation has occurred and suggests that strategies targeting miR-210 could enhance tumor radiosensitization. PMID:23492775

  9. The effects of short-term hypoxia on human mesenchymal stem cell proliferation, viability and p16INK4A mRNA expression: Investigation using a simple hypoxic culture system with a deoxidizing agent

    PubMed Central

    Ito, Akira; Aoyama, Tomoki; Yoshizawa, Makoto; Nagai, Momoko; Tajino, Junichi; Yamaguchi, Shoki; Iijima, Hirotaka; Zhang, Xiangkai; Kuroki, Hiroshi

    2015-01-01

    A hypoxic environment is thought to be important for the maintenance of stemness and suppressing cell senescence, in stem cells. Therefore, a hypoxic condition is induced during cell expansion and/or induction of intended differentiation. However, the induction of these conditions requires a specially equipped hypoxia chamber and expensive gas mixtures, which are expensive and space-consuming. Owing to these restrictions, appropriate hypoxic conditions cannot be provided during cell transportation, which is increasingly required for regenerative medicine. Hence, a simple and economical culture system is required. The purpose of this study was to investigate the effects of short-term hypoxic conditions on human mesenchymal stem cell (MSC) proliferation, viability, and senescence, utilizing the CulturePal system (CulturePal-Zero and CulturePal-Five), a novel and simple hypoxic culture system with a built-in deoxidizing agent. The O2 concentration in the CulturePal-Zero was observed to reduce to <0.1% within 1 h, and to 5% within 24h in the CulturePal-Five system. Cell proliferation under these hypoxic conditions showed a sharp increase at 5% O2 concentration, and no noticeable cell death was observed even at severe hypoxic conditions (<0.1% O2) up to 72h. The p16INK4A (cell senescence marker) mRNA expression was retained under hypoxic conditions up to 72h, but it was up-regulated under normoxic conditions. Interestingly, the p16INK4A expression altered proportionately to the O2 concentration. These results indicated that the short-term hypoxic condition, at an approximate O2 concentration of 5%, would be suitable for promoting cell proliferation and repressing cell senescence, without aggravating the MSC viability. Therefore, the CulturePal systems may be suitable for providing an appropriate hypoxic condition in stem cell research and transportation. PMID:26195892

  10. Lecithin-Bound Iodine Prevents Disruption of Tight Junctions of Retinal Pigment Epithelial Cells under Hypoxic Stress

    PubMed Central

    Sugimoto, Masahiko; Kondo, Mineo

    2016-01-01

    Aim. We investigated whether lecithin-bound iodine (LBI) can protect the integrity of tight junctions of retinal pigment epithelial cells from hypoxia. Method. Cultured human retinal pigment epithelial (ARPE-19) cells were pretreated with LBI. To mimic hypoxic conditions, cells were incubated with CoCl2. We compared the integrity of the tight junctions (TJs) of control to cells with either LBI alone, CoCl2 alone, or LBI + CoCl2. The levels of cytokines in the conditioned media were also determined. Results. Significant decrease in the zonula occludens-1 (ZO-1) intensity in the CoCl2 group compared to the control (5787.7 ± 4126.4 in CoCl2 group versus 29244.6 ± 2981.2 in control; average ± standard deviation). But the decrease was not significant in the LBI + CoCl2 (27189.0 ± 11231.1). The levels of monocyte chemoattractant protein-1 (MCP-1) and Chemokine (C-C Motif) Ligand 11 (CCL-11) were significantly higher in the CoCl2 than in the control (340.8 ± 43.3 versus 279.7 ± 68.3 pg/mL for MCP-1, and 15.2 ± 12.9 versus 12.5 ± 6.1 pg/mL for CCL-11. With LBI pretreatment, the levels of both cytokines were decreased to 182.6 ± 23.8 (MCP-1) and 5.46 ± 1.9 pg/mL for CCL-11). Blockade of MCP-1 or CCL-11 also shows similar result representing TJ protection from hypoxic stress. Conclusions. LBI results in a protective action from hypoxia. PMID:27340563

  11. Hyperbaric oxygen treatment promotes neural stem cell proliferation in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage.

    PubMed

    Feng, Zhichun; Liu, Jing; Ju, Rong

    2013-05-05

    Hyperbaric oxygen therapy for the treatment of neonatal hypoxic-ischemic brain damage has been used clinically for many years, but its effectiveness remains controversial. In addition, the mechanism of this potential neuroprotective effect remains unclear. This study aimed to investigate the influence of hyperbaric oxygen on the proliferation of neural stem cells in the subventricular zone of neonatal Sprague-Dawley rats (7 days old) subjected to hypoxic-ischemic brain damage. Six hours after modeling, rats were treated with hyperbaric oxygen once daily for 7 days. Immunohistochemistry revealed that the number of 5-bromo-2'-deoxyuridine positive and nestin positive cells in the subventricular zone of neonatal rats increased at day 3 after hypoxic-ischemic brain damage and peaked at day 5. After hyperbaric oxygen treatment, the number of 5-bromo-2'-deoxyuridine positive and nestin positive cells began to increase at day 1, and was significantly higher than that in normal rats and model rats until day 21. Hematoxylin-eosin staining showed that hyperbaric oxygen treatment could attenuate pathological changes to brain tissue in neonatal rats, and reduce the number of degenerating and necrotic nerve cells. Our experimental findings indicate that hyperbaric oxygen treatment enhances the proliferation of neural stem cells in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage, and has therapeutic potential for promoting neurological recovery following brain injury.

  12. Activation of AMP-Activated Protein Kinase α and Extracelluar Signal-Regulated Kinase Mediates CB-PIC-Induced Apoptosis in Hypoxic SW620 Colorectal Cancer Cells.

    PubMed

    Cho, Sung-Yun; Lee, Hyo-Jeong; Lee, Hyo-Jung; Jung, Deok-Beom; Kim, Hyunseok; Sohn, Eun Jung; Kim, Bonglee; Jung, Ji Hoon; Kwon, Byoung-Mog; Kim, Sung-Hoon

    2013-01-01

    Here, antitumor mechanism of cinnamaldehyde derivative CB-PIC was elucidated in human SW620 colon cancer cells. CB-PIC significantly exerted cytotoxicity, increased sub-G1 accumulation, and cleaved PARP with apoptotic features, while it enhanced the phosphorylation of AMPK alpha and ACC as well as activated the ERK in hypoxic SW620 cells. Furthermore, CB-PIC suppressed the expression of HIF1 alpha, Akt, and mTOR and activated the AMPK phosphorylation in hypoxic SW620 cells. Conversely, silencing of AMPK α blocked PARP cleavage and ERK activation induced by CB-PIC, while ERK inhibitor PD 98059 attenuated the phosphorylation of AMPK α in hypoxic SW620 cells, implying cross-talk between ERK and AMPK α . Furthermore, cotreatment of CB-PIC and metformin enhanced the inhibition of HIF1 α and Akt/mTOR and the activation of AMPK α and pACC in hypoxic SW620 cells. In addition, CB-PIC suppressed the growth of SW620 cells inoculated in BALB/c athymic nude mice, and immunohistochemistry revealed that CB-PIC treatment attenuated the expression of Ki-67, CD34, and CAIX and increased the expression of pAMPK α in CB-PIC-treated group. Interestingly, CP-PIC showed better antitumor activity in SW620 colon cancer cells under hypoxia than under normoxia, since it may be applied to chemoresistance. Overall, our findings suggest that activation of AMPK α and ERK mediates CB-PIC-induced apoptosis in hypoxic SW620 colon cancer cells.

  13. N-myc Downstream-Regulated Gene 1 (NDRG1) mediates pomegranate juice protection from apoptosis in hypoxic BeWo cells but not in primary human trophoblasts

    PubMed Central

    Chen, Baosheng; Zaveri, Parul G.; Longtine, Mark S.; Nelson, D. Michael

    2015-01-01

    Introduction N-Myc downstream-regulated gene 1 (NDRG1) expression is increased in placentas of human pregnancies with intrauterine growth restriction and in hypoxic cultured primary trophoblasts. We previously showed that elevated NDRG1 decreases trophoblast apoptosis induced by hypoxia. Separately, we found that pomegranate juice (PJ) decreases cell death induced by hypoxia in trophoblasts. Here, we test the hypothesis that PJ protects trophoblasts from hypoxia-induced apoptosis by modulating NDRG1 expression. Methods Quantitative rtPCR was used to investigate the effects of PJ treatment on mRNA levels of 22 candidate genes involved in apoptosis, oxidative stress, and differentiation in trophoblasts. Western blotting and immunofluorescence were used to analyze NDRG1 protein levels. siRNA-mediated NDRG1 knockdown was used to investigate the role of NDRG1 in response to PJ in hypoxic BeWo choriocarcinoma cells and hypoxic cultured primary human trophoblasts. Results The mRNA levels of eight genes were altered, with NDRG1 showing the largest response to PJ and thus, we pursued the role of NDRG1 here. PJ significantly increased NDRG1 protein expression in primary trophoblasts and in BeWo cells. Knockdown of NDRG1 in hypoxic BeWo cells in the presence of PJ yielded increased apoptosis. In contrast, knockdown of NDRG1 in hypoxic primary trophoblasts in the presence of PJ did not increase apoptosis. Discussion We conclude that the PJ-mediated decrease in cell death in hypoxia is partially mediated by NDRG1 in BeWo cells but not in primary trophoblasts. The disparate effects of NDRG1 between BeWo cells and primary trophoblasts indicate caution is required when extrapolating from results obtained with cell lines to primary trophoblasts. PMID:26028238

  14. Activation of AMP-Activated Protein Kinase α and Extracelluar Signal-Regulated Kinase Mediates CB-PIC-Induced Apoptosis in Hypoxic SW620 Colorectal Cancer Cells

    PubMed Central

    Cho, Sung-Yun; Lee, Hyo-Jeong; Lee, Hyo-Jung; Jung, Deok-Beom; Kim, Hyunseok; Sohn, Eun Jung; Kim, Bonglee; Jung, Ji Hoon; Kwon, Byoung-Mog; Kim, Sung-Hoon

    2013-01-01

    Here, antitumor mechanism of cinnamaldehyde derivative CB-PIC was elucidated in human SW620 colon cancer cells. CB-PIC significantly exerted cytotoxicity, increased sub-G1 accumulation, and cleaved PARP with apoptotic features, while it enhanced the phosphorylation of AMPK alpha and ACC as well as activated the ERK in hypoxic SW620 cells. Furthermore, CB-PIC suppressed the expression of HIF1 alpha, Akt, and mTOR and activated the AMPK phosphorylation in hypoxic SW620 cells. Conversely, silencing of AMPKα blocked PARP cleavage and ERK activation induced by CB-PIC, while ERK inhibitor PD 98059 attenuated the phosphorylation of AMPKα in hypoxic SW620 cells, implying cross-talk between ERK and AMPKα. Furthermore, cotreatment of CB-PIC and metformin enhanced the inhibition of HIF1α and Akt/mTOR and the activation of AMPKα and pACC in hypoxic SW620 cells. In addition, CB-PIC suppressed the growth of SW620 cells inoculated in BALB/c athymic nude mice, and immunohistochemistry revealed that CB-PIC treatment attenuated the expression of Ki-67, CD34, and CAIX and increased the expression of pAMPKα in CB-PIC-treated group. Interestingly, CP-PIC showed better antitumor activity in SW620 colon cancer cells under hypoxia than under normoxia, since it may be applied to chemoresistance. Overall, our findings suggest that activation of AMPKα and ERK mediates CB-PIC-induced apoptosis in hypoxic SW620 colon cancer cells. PMID:23589723

  15. Bone marrow-derived mesenchymal stem cells propagate immunosuppressive/anti-inflammatory macrophages in cell-to-cell contact-independent and -dependent manners under hypoxic culture.

    PubMed

    Takizawa, Naoki; Okubo, Naoto; Kamo, Masaharu; Chosa, Naoyuki; Mikami, Toshinari; Suzuki, Keita; Yokota, Seiji; Ibi, Miho; Ohtsuka, Masato; Taira, Masayuki; Yaegashi, Takashi; Ishisaki, Akira; Kyakumoto, Seiko

    2017-09-15

    Immunosuppressive/anti-inflammatory macrophage (Mφ), M2-Mφ that expressed the typical M2-Mφs marker, CD206, and anti-inflammatory cytokine, interleukin (IL)-10, is beneficial and expected tool for the cytotherapy against inflammatory diseases. Here, we demonstrated that bone marrow-derived lineage-positive (Lin+) blood cells proliferated and differentiated into M2-Mφs by cooperation with the bone marrow-derived mesenchymal stem cells (MSCs) under hypoxic condition: MSCs not only promoted proliferation of undifferentiated M2-Mφs, pre-M2-Mφs, in the Lin+ fraction via a proliferative effect of the MSCs-secreted macrophage colony-stimulating factor, but also promoted M2-Mφ polarization of the pre-M2-Mφs through cell-to-cell contact with the pre-M2-Mφs. Intriguingly, an inhibitor for intercellular adhesion molecule (ICAM)-1 receptor/lymphocyte function-associated antigen (LFA)-1, Rwj50271, partially suppressed expression of CD206 in the Lin+ blood cells but an inhibitor for VCAM-1 receptor/VLA-4, BIO5192, did not, suggesting that the cell-to-cell adhesion through LFA-1 on pre-M2-Mφs and ICAM-1 on MSCs was supposed to promoted the M2-Mφ polarization. Thus, the co-culture system consisting of bone marrow-derived Lin+ blood cells and MSCs under hypoxic condition was a beneficial supplier of a number of M2-Mφs, which could be clinically applicable to inflammatory diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The effect of radiosensitizers on the survival response of hypoxic mammalian cells: The low X-ray dose region, hypersensitivity and induced radioresistance

    SciTech Connect

    Skov, K.A.; MacPhail, H.S.; Marples, B.

    1994-04-01

    It has been shown previously that the extent of chemical modification of the hypoxic radiation response is dependent on dose. Some types of sensitizer are more effective at low doses (to 4 Gy) than at higher doses. Since such drugs are possible adjuvants to radiotherapy, the mechanisms responsible for the variable response at clinical doses are summarized, and the effects of cisplatin and buthionine sulfoximine on the purported induced response to radiation in hypoxic cells are presented. Cisplatin at a low, nontoxic concentration (1 {mu}M) appears to abolish the increased radioresistant portion of the survival response. A role for high-mobility-group protein binding by platinum drugs is hypothesized to explain their interaction with radiation, and conversely, it is suggested that the heretofore unexplained different behavior of certain hypoxic sensitizers at low doses could be, at least in part, an effect on the induction of resistance. 36 refs., 2 figs.

  17. A 3D engineered tumour for spatial snap-shot analysis of cell metabolism and phenotype in hypoxic gradients

    PubMed Central

    Rodenhizer, Darren; Gaude, Edoardo; Cojocari, Dan; Mahadevan, Radhakrishnan; Frezza, Christian; Wouters, Bradly G.; McGuigan, Alison P.

    2016-01-01

    The profound metabolic reprogramming that occurs in cancer cells has been investigated primarily in two-dimensional cell cultures, which fail to recapitulate spatial aspects of cell-to-cell interactions as well as tissue gradients present in three-dimensional (3D) tumours. Here, we describe an engineered model to assemble 3D tumours by rolling a scaffold-tumour composite strip. By unrolling the strip, the model can be rapidly disassembled for snap-shot analysis, allowing spatial mapping of cell metabolism in concert with cell phenotype. We also show that the establishment of oxygen gradients within samples are shaped by oxygen-dependent signalling pathways, as well as the consequential variations in cell growth, response to hypoxic gradients extending from normoxia to severe hypoxia, and therapy responsiveness, are consistent with tumours in vivo. Moreover, by using liquid chromatography tandem mass spectrometry, we mapped cellular metabolism and identified spatially defined metabolic signatures of cancer cells to reveal both known and novel metabolic responses to hypoxia. PMID:26595121

  18. Hypoxic Tumor Cell Modulates Its Microenvironment to Enhance Angiogenic and Metastatic Potential by Secretion of Proteins and Exosomes*

    PubMed Central

    Park, Jung Eun; Tan, Hon Sen; Datta, Arnab; Lai, Ruenn Chai; Zhang, Huoming; Meng, Wei; Lim, Sai Kiang; Sze, Siu Kwan

    2010-01-01

    Under hypoxia, tumor cells produce a secretion that modulates their microenvironment to facilitate tumor angiogenesis and metastasis. Here, we observed that hypoxic or reoxygenated A431 carcinoma cells exhibited enhanced angiogenic and metastatic potential such as reduced cell-cell and cell-extracellular matrix adhesion, increased invasiveness, and production of a secretion with increased chorioallantoic membrane angiogenic activity. Consistent with these observations, quantitative proteomics revealed that under hypoxia the tumor cells secreted proteins involved in angiogenesis, focal adhesion, extracellular matrix-receptor interaction, and immune cell recruitment. Unexpectedly, the secreted proteins were predominantly cytoplasmic and membrane proteins. Ultracentrifugation at 100,000 × g precipitated 54% of the secreted proteins and enriched for many exosome-associated proteins such as the tetraspanins and Alix and also proteins with the potential to facilitate angiogenesis and metastasis. Two tetraspanins, CD9 and CD81, co-immunoprecipitated. Together, these data suggested that tumor cells secrete proteins and exosomes with the potential to modulate their microenvironment and facilitate angiogenesis and metastasis. PMID:20124223

  19. A three-dimensional engineered tumour for spatial snapshot analysis of cell metabolism and phenotype in hypoxic gradients

    NASA Astrophysics Data System (ADS)

    Rodenhizer, Darren; Gaude, Edoardo; Cojocari, Dan; Mahadevan, Radhakrishnan; Frezza, Christian; Wouters, Bradly G.; McGuigan, Alison P.

    2016-02-01

    The profound metabolic reprogramming that occurs in cancer cells has been investigated primarily in two-dimensional cell cultures, which fail to recapitulate spatial aspects of cell-to-cell interactions as well as tissue gradients present in three-dimensional tumours. Here, we describe an engineered model to assemble three-dimensional tumours by rolling a scaffold-tumour composite strip. By unrolling the strip, the model can be rapidly disassembled for snapshot analysis, allowing spatial mapping of cell metabolism in concert with cell phenotype. We also show that the establishment of oxygen gradients within samples that are shaped by oxygen-dependent signalling pathways, as well as the consequential variations in cell growth, response to hypoxic gradients extending from normoxia to severe hypoxia, and therapy responsiveness, are consistent with those of tumours in vivo. Moreover, by using liquid chromatography tandem mass spectrometry, we mapped cellular metabolism and identified spatially defined metabolic signatures of cancer cells to reveal both known and novel metabolic responses to hypoxia.

  20. Targeted Identification of Sialoglycoproteins in Hypoxic Endothelial Cells and Validation in Zebrafish Reveal Roles for Proteins in Angiogenesis

    PubMed Central

    Delcourt, Nicolas; Quevedo, Celia; Nonne, Christelle; Fons, Pierre; O'Brien, Donogh; Loyaux, Denis; Diez, Maria; Autelitano, François; Guillemot, Jean-Claude; Ferrara, Pascual; Muriana, Arantza; Callol, Carlos; Hérault, Jean-Pascal; Herbert, Jean-Marc; Favre, Gilles; Bono, Françoise

    2015-01-01

    The formation of new vessels in the tumor, termed angiogenesis, is essential for primary tumor growth and facilitates tumor invasion and metastasis. Hypoxia has been described as one trigger of angiogenesis. Indeed, hypoxia, which is characterized by areas of low oxygen levels, is a hallmark of solid tumors arising from an imbalance between oxygen delivery and consumption. Hypoxic conditions have profound effects on the different components of the tumoral environment. For example, hypoxia is able to activate endothelial cells, leading to angiogenesis but also thereby initiating a cascade of reactions involving neutrophils, smooth muscle cells, and fibroblasts. In addition, hypoxia directly regulates the expression of many genes for which the role and the importance in the tumoral environment remain to be completely elucidated. In this study, we used a method to selectively label sialoglycoproteins to identify new membrane and secreted proteins involved in the adaptative process of endothelial cells by mass spectrometry-based proteomics. We used an in vitro assay under hypoxic condition to observe an increase of protein expression or modifications of glycosylation. Then the function of the identified proteins was assessed in a vasculogenesis assay in vivo by using a morpholino strategy in zebrafish. First, our approach was validated by the identification of sialoglycoproteins such as CD105, neuropilin-1, and CLEC14A, which have already been described as playing key roles in angiogenesis. Second, we identified several new proteins regulated by hypoxia and demonstrated for the first time the pivotal role of GLUT-1, TMEM16F, and SDF4 in angiogenesis. PMID:25384978

  1. Selective Intracellular Delivery of Recombinant Arginine Deiminase (ADI) Using pH-Sensitive Cell Penetrating Peptides To Overcome ADI Resistance in Hypoxic Breast Cancer Cells.

    PubMed

    Yeh, Tzyy-Harn; Chen, Yun-Ru; Chen, Szu-Ying; Shen, Wei-Chiang; Ann, David K; Zaro, Jennica L; Shen, Li-Jiuan

    2016-01-04

    Arginine depletion strategies, such as pegylated recombinant arginine deiminase (ADI-PEG20), offer a promising anticancer treatment. Many tumor cells have suppressed expression of a key enzyme, argininosuccinate synthetase 1 (ASS1), which converts citrulline to arginine. These tumor cells become arginine auxotrophic, as they can no longer synthesize endogenous arginine intracellularly from citrulline, and are therefore sensitive to arginine depletion therapy. However, since ADI-PEG20 only depletes extracellular arginine due to low internalization, ASS1-expressing cells are not susceptible to treatment since they can synthesize arginine intracellularly. Recent studies have found that several factors influence ASS1 expression. In this study, we evaluated the effect of hypoxia, frequently encountered in many solid tumors, on ASS1 expression and its relationship to ADI-resistance in human MDA-MB-231 breast cancer cells. It was found that MDA-MB-231 cells developed ADI resistance in hypoxic conditions with increased ASS1 expression. To restore ADI sensitivity as well as achieve tumor-selective delivery under hypoxia, we constructed a pH-sensitive cell penetrating peptide (CPP)-based delivery system to carry ADI inside cells to deplete both intra- and extracellular arginine. The delivery system was designed to activate the CPP-mediated internalization only at the mildly acidic pH (6.5-7) associated with the microenvironment of hypoxic tumors, thus achieving better selectivity toward tumor cells. The pH sensitivity of the CPP HBHAc was controlled by recombinant fusion to a histidine-glutamine (HE) oligopeptide, generating HBHAc-HE-ADI. The tumor distribution of HBHAc-HE-ADI was comparable to ADI-PEG20 in a mouse xenograft model of human breast cancer cells in vivo. In addition, HBHAc-HE-ADI showed increased in vitro cellular uptake in cells incubated in a mildly acidic pH (hypoxic conditions) compared to normal pH (normoxic conditions), which correlated with p

  2. Dedifferentiated Fat Cells as a Novel Source for Cell Therapy to Target Neonatal Hypoxic-Ischemic Encephalopathy.

    PubMed

    Mikrogeorgiou, Alkisti; Sato, Yoshiaki; Kondo, Taiki; Hattori, Tetsuo; Sugiyama, Yuichiro; Ito, Miharu; Saito, Akiko; Nakanishi, Keiko; Tsuji, Masahiro; Kazama, Tomohiko; Kano, Koichiro; Matsumoto, Taro; Hayakawa, Masahiro

    2017-03-09

    Neonatal hypoxic-ischemic (HI) encephalopathy (HIE) remains a major cause of mortality and persistent neurological disabilities in affected individuals. At present, hypothermia is considered to be the only applicable treatment option, although growing evidence suggests that cell-based therapy might achieve better outcomes. Dedifferentiated fat (DFAT) cells are derived from mature adipocytes via a dedifferentiation strategy called ceiling culture. Their abundance and ready availability might make them an ideal therapeutic tool for the treatment of HIE. In the present study, we aimed to determine whether the outcome of HIE can be improved by DFAT cell treatment. HI injury was achieved by ligating the left common carotid artery in 7-day-old rat pups, followed by 1-h exposure to 8% O2. Subsequently, the severity of damage was assessed by diffusion-weighted magnetic resonance imaging to assign animals to equivalent groups. 24 h after hypoxia, DFAT cells were injected at 105 cells/pup into the right external jugular vein. To evaluate brain damage in the acute phase, a group of animals was sacrificed 48 h after the insult, and paraffin sections of the brain were stained to assess several acute injury markers. In the chronic phase, the behavioral outcome was measured by performing a series of behavioral tests. From the 24th day of age, the sensorimotor function was examined by evaluating the initial forepaw placement on a cylinder wall and the latency to falling from a rotarod treadmill. The cognitive function was tested with the novel object recognition (NOR) test. In vitro conditioned medium (CM) prepared from cultured DFAT cells was added at various concentrations to neuronal cell cultures, which were then exposed to oxygen-glucose deprivation (OGD). The number of cells that stained positive for the apoptosis marker active caspase-3 decreased by 73 and 52% in the hippocampus and temporal cortex areas of the brain, respectively, in the DFAT-treated pups. Similarly, the

  3. Interval hypoxic training.

    PubMed

    Bernardi, L

    2001-01-01

    Interval hypoxic training (IHT) is a technique developed in the former Soviet Union, that consists of repeated exposures to 5-7 minutes of steady or progressive hypoxia, interrupted by equal periods of recovery. It has been proposed for training in sports, to acclimatize to high altitude, and to treat a variety of clinical conditions, spanning from coronary heart disease to Cesarean delivery. Some of these results may originate by the different effects of continuous vs. intermittent hypoxia (IH), which can be obtained by manipulating the repetition rate, the duration and the intensity of the hypoxic stimulus. The present article will attempt to examine some of the effects of IH, and, whenever possible, compare them to those of typical IHT. IH can modify oxygen transport and energy utilization, alter respiratory and blood pressure control mechanisms, induce permanent modifications in the cardiovascular system. IHT increases the hypoxic ventilatory response, increase red blood cell count and increase aerobic capacity. Some of these effects might be potentially beneficial in specific physiologic or pathologic conditions. At this stage, this technique appears interesting for its possible applications, but still largely to be explored for its mechanisms, potentials and limitations.

  4. Metabolic profiling reveals potential metabolic markers associated with Hypoxia Inducible Factor-mediated signalling in hypoxic cancer cells

    PubMed Central

    Armitage, Emily G.; Kotze, Helen L.; Allwood, J. William; Dunn, Warwick B.; Goodacre, Royston; Williams, Kaye J.

    2015-01-01

    Hypoxia inducible factors (HIFs) plays an important role in oxygen compromised environments and therefore in tumour survival. In this research, metabolomics has been applied to study HIFs metabolic function in two cell models: mouse hepatocellular carcinoma and human colon carcinoma, whereby the metabolism has been profiled for a range of oxygen potentials. Wild type cells have been compared to cells deficient in HIF signalling to reveal its effect on cellular metabolism under normal oxygen conditions as well as low oxygen, hypoxic and anoxic environments. Characteristic responses to hypoxia that were conserved across both cell models involved the anti-correlation between 2-hydroxyglutarate, 2-oxoglutarate, fructose, hexadecanoic acid, hypotaurine, pyruvate and octadecenoic acid with 4-hydroxyproline, aspartate, cysteine, glutamine, lysine, malate and pyroglutamate. Further to this, network-based correlation analysis revealed HIF specific pathway responses to each oxygen condition that were also conserved between cell models. From this, 4-hydroxyproline was revealed as a regulating hub in low oxygen survival of WT cells while fructose appeared to be in HIF deficient cells. Pathways surrounding these hubs were built from the direct connections of correlated metabolites that look beyond traditional pathways in order to understand the mechanism of HIF response to low oxygen environments. PMID:26508589

  5. Metabolic profiling reveals potential metabolic markers associated with Hypoxia Inducible Factor-mediated signalling in hypoxic cancer cells.

    PubMed

    Armitage, Emily G; Kotze, Helen L; Allwood, J William; Dunn, Warwick B; Goodacre, Royston; Williams, Kaye J

    2015-10-28

    Hypoxia inducible factors (HIFs) plays an important role in oxygen compromised environments and therefore in tumour survival. In this research, metabolomics has been applied to study HIFs metabolic function in two cell models: mouse hepatocellular carcinoma and human colon carcinoma, whereby the metabolism has been profiled for a range of oxygen potentials. Wild type cells have been compared to cells deficient in HIF signalling to reveal its effect on cellular metabolism under normal oxygen conditions as well as low oxygen, hypoxic and anoxic environments. Characteristic responses to hypoxia that were conserved across both cell models involved the anti-correlation between 2-hydroxyglutarate, 2-oxoglutarate, fructose, hexadecanoic acid, hypotaurine, pyruvate and octadecenoic acid with 4-hydroxyproline, aspartate, cysteine, glutamine, lysine, malate and pyroglutamate. Further to this, network-based correlation analysis revealed HIF specific pathway responses to each oxygen condition that were also conserved between cell models. From this, 4-hydroxyproline was revealed as a regulating hub in low oxygen survival of WT cells while fructose appeared to be in HIF deficient cells. Pathways surrounding these hubs were built from the direct connections of correlated metabolites that look beyond traditional pathways in order to understand the mechanism of HIF response to low oxygen environments.

  6. Mammea E/BB, an isoprenylated dihydroxycoumarin protonophore that potently uncouples mitochondrial electron transport, disrupts hypoxic signaling in tumor cells.

    PubMed

    Du, Lin; Mahdi, Fakhri; Jekabsons, Mika B; Nagle, Dale G; Zhou, Yu-Dong

    2010-11-29

    The mammea-type coumarin mammea E/BB (1) was found to inhibit both hypoxia-induced and iron chelator-induced hypoxia-inducible factor-1 (HIF-1) activation in human breast tumor T47D cells with IC(50) values of 0.96 and 0.89 μM, respectively. Compound 1 suppressed the hypoxic induction of secreted VEGF protein (T47D cells) and inhibited cell viability/proliferation in four human tumor cell lines. Compound 1 (at 5 and 20 μM) inhibited human breast tumor MDA-MB-231 cell migration. While the mechanisms that underlie their biological activities have remained unknown, prenylated mammea coumarins have been shown to be cytotoxic to human tumor cells, suppress tumor growth in animal models, and display a wide variety of antimicrobial effects. Mechanistic studies revealed that 1 appears to exert an assemblage of cellular effects by functioning as an anionic protonophore that potently uncouples mitochondrial electron transport and disrupts mitochondrial signaling in human tumor cell lines.

  7. Mammea E/BB, An Isoprenylated Dihydroxycoumarin Protonophore that Potently Uncouples Mitochondrial Electron Transport Disrupts Hypoxic Signaling in Tumor Cells

    PubMed Central

    Du, Lin; Mahdi, Fakhri; Jekabsons, Mika B.; Nagle, Dale G.; Zhou, Yu-Dong

    2010-01-01

    The mammea-type coumarin mammea E/BB (1) was found to inhibit both hypoxia-induced and iron chelator-induced hypoxia-inducible factor-1 (HIF-1) activation in human breast tumor T47D cells with IC50 values of 0.96 and 0.89 µM, respectively. Compound 1 suppressed the hypoxic induction of secreted VEGF protein (T47D cells) and inhibited cell viability/proliferation in four human tumor cell lines. Compound 1 (at 5 and 20 µM) inhibited human breast tumor MDA-MB-231 cell migration. While the mechanisms that underlay their biological activities have remained unknown, prenylated mammea coumarins have been shown to be cytotoxic to human tumor cells, suppress tumor growth in animal models, and display a wide variety of antimicrobial effects. Mechanistic studies revealed that 1 appears to exert an assemblage of cellular effects by functioning as an anionic protonophore that potently uncouples mitochondrial electron transport and disrupts mitochondrial signaling in human tumor cell lines. PMID:20929261

  8. [Leptin promotes the proliferation of airway smooth muscle cells and the expressions of HIF-1α and NF-κB of hypoxic rats].

    PubMed

    Shi, Ruirui; Chen, Xianfeng; Zhu, Jiechen; Chen, Lin; Zhu, Shuyang

    2015-01-01

    To investigate the effect of leptin on the proliferation of airway smooth muscle cells (ASMCs) and the expressions of hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-kappa B (NF-κB) of hypoxic rats. The rat ASMCs were cultured under normoxic and hypoxic states. The hypoxic cells were divided into hypoxia group, leptin 50 μg/L hypoxia group (L50 group), leptin 100 μg/L hypoxia group (L100 group), leptin 200 μg/L hypoxia group (L200 group), leptin 200 μg/L and leptin receptor antibody hypoxia group (ob-R antibody group) by random number table. All the groups are cultured for 24 hours. Then the CCK-8 method was used to assay cell proliferation rate, and Western blotting and real-time RT-PCR to measure the expressions of HIF-1α and NF-κB at protein and mRNA levels. Compared with the normoxic group, each hypoxia group had significantly increased cell proliferation . Compared with the hypoxia group, cell proliferation rate was significantly raised in L50, L100 and L200 groups, and it was positively correlated with the concentration (r=0.992). Compared with L50, L100 and L200 groups, the ob-R antibody group showed significantly decreased cell proliferation rate. Compared with the normoxic group, each hypoxic group has increased expressions of HIF-1α and NF-κB mRNA and proteins; compared with the hypoxia group, the expressions were significantly elevated in the L50, L100 and L200 groups and showed a positive correlation with the concentration; but the expressions were reduced in the ob-R antibody group as compared with L50, L100 and L200 groups. Leptin can promote rat ASMCs proliferation and the expressions of HIF-1α and NF-κB under hypoxic condition.

  9. Improvement of neuronal cell survival by astrocyte-derived exosomes under hypoxic and ischemic conditions depends on prion protein.

    PubMed

    Guitart, Kathrin; Loers, Gabriele; Buck, Friedrich; Bork, Ute; Schachner, Melitta; Kleene, Ralf

    2016-06-01

    Prion protein (PrP) protects neural cells against oxidative stress, hypoxia, ischemia, and hypoglycemia. In the present study we confirm that cultured PrP-deficient neurons are more sensitive to oxidative stress than wild-type neurons and present the novel findings that wild-type, but not PrP-deficient astrocytes protect wild-type cerebellar neurons against oxidative stress and that exosomes released from stressed wild-type, but not from stressed PrP-deficient astrocytes reduce neuronal cell death induced by oxidative stress. We show that neuroprotection by exosomes of stressed astrocytes depends on exosomal PrP but not on neuronal PrP and that astrocyte-derived exosomal PrP enters into neurons, suggesting neuronal uptake of astrocyte-derived exosomes. Upon exposure of wild-type astrocytes to hypoxic or ischemic conditions PrP levels in exosomes were increased. By mass spectrometry and Western blot analysis, we detected increased levels of 37/67 kDa laminin receptor, apolipoprotein E and the ribosomal proteins S3 and P0, and decreased levels of clusterin/apolipoprotein J in exosomes from wild-type astrocytes exposed to oxygen/glucose deprivation relative to exosomes from astrocytes maintained under normoxic conditions. The levels of these proteins were not altered in exosomes from stressed PrP-deficient astrocytes relative to unstressed PrP-deficient astrocytes. These results indicate that PrP in astrocytes is a sensor for oxidative stress and mediates beneficial cellular responses, e.g. release of exosomes carrying PrP and other molecules, resulting in improved survival of neurons under hypoxic and ischemic conditions.

  10. Hypoxic radiosensitization: adored and ignored.

    PubMed

    Overgaard, Jens

    2007-09-10

    Since observations from the beginning of the last century, it has become well established that solid tumors may contain oxygen-deficient hypoxic areas and that cells in such areas may cause tumors to become radioresistant. Identifying hypoxic cells in human tumors has improved by the help of new imaging and physiologic techniques, and a substantial amount of data indicates the presence of hypoxia in many types of human tumors, although with a considerable heterogeneity among individual tumors. Controlled clinical trials during the last 40 years have indicated that this source of radiation resistance can be eliminated or modified by normobaric or hyperbaric oxygen or by the use of nitroimidazoles as hypoxic radiation sensitizers. More recently, attention has been given to hypoxic cytotoxins, a group of drugs that selectively or preferably destroys cells in a hypoxic environment. An updated systematic review identified 10,108 patients in 86 randomized trials designed to modify tumor hypoxia in patients treated with curative attempted primary radiation therapy alone. Overall modification of tumor hypoxia significantly improved the effect of radiotherapy, with an odds ratio of 0.77 (95% CI, 0.71 to 0.86) for the outcome of locoregional control and with an associated significant overall survival benefit (odds ratio = 0.87; 95% CI, 0.80 to 0.95). No significant influence was found on the incidence of distant metastases or on the risk of radiation-related complications. Ample data exist to support a high level of evidence for the benefit of hypoxic modification. However, hypoxic modification still has no impact on general clinical practice.

  11. Tumour necrosis factor-α suppresses the hypoxic response by NF-κB-dependent induction of inhibitory PAS domain protein in PC12 cells.

    PubMed

    Goryo, Kenji; Torii, Satoru; Yasumoto, Ken-Ichi; Sogawa, Kazuhiro

    2011-09-01

    Inflammation is often accompanied by hypoxia. However, crosstalk between signalling pathways activated by inflammation and signalling events that control adaptive response to hypoxia is not fully understood. Here we show that exposure to tumour necrosis factor-α (TNF-α) activates expression of the inhibitory PAS domain protein (IPAS) to suppress the hypoxic response caused by hypoxia-inducible factor (HIF)-1 and HIF-2 in rat pheochromocytoma PC12 cells but not in human hepatoma Hep3B cells. This induction of IPAS was dependent on the nuclear factor-κB (NF-κB) pathway and attenuated hypoxic induction of HIF-1 target genes such as tyrosine hydroxylase (TH) and vascular endothelial growth factor (VEGF). HIF-dependent reporter activity in hypoxia was also decreased following TNF-α treatment. Knockdown of IPAS mRNA by small interfering RNA (siRNA) restored the TNF-α-suppressed hypoxic response. These results indicate that TNF-α is a cell-type specific suppressor of HIFs and suggest a novel crosstalk between stimulation by inflammatory mediators and HIF-dependent hypoxic response.

  12. Serum- and stromal cell-free hypoxic generation of embryonic stem cell-derived hematopoietic cells in vitro, capable of multilineage repopulation of immunocompetent mice.

    PubMed

    Lesinski, Dietrich Armin; Heinz, Niels; Pilat-Carotta, Sandra; Rudolph, Cornelia; Jacobs, Roland; Schlegelberger, Brigitte; Klump, Hannes; Schiedlmeier, Bernhard

    2012-08-01

    Induced pluripotent stem cells (iPSCs) may become a promising source for the generation of patient-specific hematopoietic stem cells (HSCs) in vitro. A crucial prerequisite will be the availability of reliable protocols for the directed and efficient differentiation toward HSCs. So far, the most robust strategy for generating HSCs from pluripotent cells in vitro has been established in the mouse model involving ectopic expression of the human transcription factor HOXB4. However, most differentiation protocols include coculture on a xenogenic stroma cell line and the use of animal serum. Involvement of any of both would pose a major barrier to the translation of those protocols to human autologous iPSCs intended for clinical use. Therefore, we asked whether long-term repopulating HSCs can, in principle, be generated from embryonic stem cells without stroma cells or serum. Here, we showed that long-term multilineage engraftment could be accomplished in immunocompetent mice when HSCs were generated in serum-free medium without stroma cell support and when hypoxic conditions were used. Under those conditions, HOXB4(+) embryonic stem cell-derived hematopoietic stem and progenitor cells were immunophenotypically similar to definitive bone marrow resident E-SLAM(+) (CD150(+)CD48(-)CD45(+)CD201(+)) HSCs. Thus, our findings may ease the development of definitive, adult-type HSCs from pluripotent stem cells, entirely in vitro.

  13. Overexpression of HIF-1α in mesenchymal stem cells contributes to repairing hypoxic-ischemic brain damage in rats.

    PubMed

    Lin, Deju; Zhou, Liping; Wang, Biao; Liu, Lizhen; Cong, Li; Hu, Chuanqin; Ge, Tingting; Yu, Qin

    2017-01-01

    Preclinical researches on mesenchymal stem cells (MSCs) transplantation, which is used to treat hypoxic-ischemic (HI) brain damage, have received inspiring achievements. However, the insufficient migration of active cells to damaged tissues has limited their potential therapeutic effects. There are some evidences that hypoxia inducible factor-1 alpha (HIF-1α) promotes the viability and migration of the cells. Here, we aim to investigate whether overexpression of HIF-1α in MSCs could improve the viability and migration capacity of cells, and its therapeutic efficiency on HI brain damage. In the study, MSCs with HIF-1α overexpression was achieved by recombinant lentiviral vector and transplanted to the rats subsequent to HI. Our data indicated that overexpression of HIF-1α promoted the viability and migration of MSCs, HIF-1α overexpressed MSCs also had a stronger therapeutic efficiency on HI brain damaged treatment by mitigating the injury on behavioral and histological changes evoked by HI insults, accompanied with more MSCs migrating to cerebral damaged area. This study demonstrated that HIF-1α overexpression could increase the MSCs' therapeutic efficiency in HI and the promotion of the cells' directional migration to cerebral HI area by overexpression may be responsible for it, which showed that transplantation of MSCs with HIF-1α overexpression is an attractive therapeutic option to treat HI-induced brain injury in the future.

  14. Human bone marrow-derived mesenchymal stem cells display enhanced clonogenicity but impaired differentiation with hypoxic preconditioning.

    PubMed

    Boyette, Lisa B; Creasey, Olivia A; Guzik, Lynda; Lozito, Thomas; Tuan, Rocky S

    2014-02-01

    Stem cells are promising candidate cells for regenerative applications because they possess high proliferative capacity and the potential to differentiate into other cell types. Mesenchymal stem cells (MSCs) are easily sourced but do not retain their proliferative and multilineage differentiative capabilities after prolonged ex vivo propagation. We investigated the use of hypoxia as a preconditioning agent and in differentiating cultures to enhance MSC function. Culture in 5% ambient O(2) consistently enhanced clonogenic potential of primary MSCs from all donors tested. We determined that enhanced clonogenicity was attributable to increased proliferation, increased vascular endothelial growth factor secretion, and increased matrix turnover. Hypoxia did not impact the incidence of cell death. Application of hypoxia to osteogenic cultures resulted in enhanced total mineral deposition, although this effect was detected only in MSCs preconditioned in normoxic conditions. Osteogenesis-associated genes were upregulated in hypoxia, and alkaline phosphatase activity was enhanced. Adipogenic differentiation was inhibited by exposure to hypoxia during differentiation. Chondrogenesis in three-dimensional pellet cultures was inhibited by preconditioning with hypoxia. However, in cultures expanded under normoxia, hypoxia applied during subsequent pellet culture enhanced chondrogenesis. Whereas hypoxic preconditioning appears to be an excellent way to expand a highly clonogenic progenitor pool, our findings suggest that it may blunt the differentiation potential of MSCs, compromising their utility for regenerative tissue engineering. Exposure to hypoxia during differentiation (post-normoxic expansion), however, appears to result in a greater quantity of functional osteoblasts and chondrocytes and ultimately a larger quantity of high-quality differentiated tissue.

  15. Sustained radiosensitization of hypoxic glioma cells after oxygen pretreatment in an animal model of glioblastoma and in vitro models of tumor hypoxia.

    PubMed

    Clarke, Ryon H; Moosa, Shayan; Anzivino, Matthew; Wang, Yi; Floyd, Desiree Hunt; Purow, Benjamin W; Lee, Kevin S

    2014-01-01

    Glioblastoma multiforme (GBM) is the most common and lethal form of brain cancer and these tumors are highly resistant to chemo- and radiotherapy. Radioresistance is thought to result from a paucity of molecular oxygen in hypoxic tumor regions, resulting in reduced DNA damage and enhanced cellular defense mechanisms. Efforts to counteract tumor hypoxia during radiotherapy are limited by an attendant increase in the sensitivity of healthy brain tissue to radiation. However, the presence of heightened levels of molecular oxygen during radiotherapy, while conventionally deemed critical for adjuvant oxygen therapy to sensitize hypoxic tumor tissue, might not actually be necessary. We evaluated the concept that pre-treating tumor tissue by transiently elevating tissue oxygenation prior to radiation exposure could increase the efficacy of radiotherapy, even when radiotherapy is administered after the return of tumor tissue oxygen to hypoxic baseline levels. Using nude mice bearing intracranial U87-luciferase xenografts, and in vitro models of tumor hypoxia, the efficacy of oxygen pretreatment for producing radiosensitization was tested. Oxygen-induced radiosensitization of tumor tissue was observed in GBM xenografts, as seen by suppression of tumor growth and increased survival. Additionally, rodent and human glioma cells, and human glioma stem cells, exhibited prolonged enhanced vulnerability to radiation after oxygen pretreatment in vitro, even when radiation was delivered under hypoxic conditions. Over-expression of HIF-1α reduced this radiosensitization, indicating that this effect is mediated, in part, via a change in HIF-1-dependent mechanisms. Importantly, an identical duration of transient hyperoxic exposure does not sensitize normal human astrocytes to radiation in vitro. Taken together, these results indicate that briefly pre-treating tumors with elevated levels of oxygen prior to radiotherapy may represent a means for selectively targeting radiation

  16. Orexins protect neuronal cell cultures against hypoxic stress: an involvement of Akt signaling.

    PubMed

    Sokołowska, Paulina; Urbańska, Anna; Biegańska, Kaja; Wagner, Waldemar; Ciszewski, Wojciech; Namiecińska, Magdalena; Zawilska, Jolanta B

    2014-01-01

    Orexins A and B are peptides produced mainly by hypothalamic neurons that project to numerous brain structures. We have previously demonstrated that rat cortical neurons express both types of orexin receptors, and their activation by orexins initiates different intracellular signals. The present study aimed to determine the effect of orexins on the Akt kinase activation in the rat neuronal cultures and the significance of that response in neurons subjected to hypoxic stress. We report the first evidence that orexins A and B stimulated Akt in cortical neurons in a concentration- and time-dependent manner. Orexin B more potently than orexin A increased Akt phosphorylation, but the maximal effect of both peptides on the kinase activation was very similar. Next, cultured cortical neurons were challenged with cobalt chloride, an inducer of reactive oxygen species and hypoxia-mediated signaling pathways. Under conditions of chemical hypoxia, orexins potently increased neuronal viability and protected cortical neurons against oxidative stress. Our results also indicate that Akt kinase plays an important role in the pro-survival effects of orexins in neurons, which implies a possible mechanism of the orexin-induced neuroprotection.

  17. Mitochondrial DNA damage and a hypoxic response are induced by CoCl2 in rat neuronal PC12 cells

    PubMed Central

    Wang, Guichun; Hazra, Tapas K.; Mitra, Sankar; Lee, Heung-Man; Englander, Ella W.

    2000-01-01

    Generation of reactive oxygen species (ROS) and activation of a transcriptional program that mimics the hypoxic response have been documented in cultured cells in the presence of cobalt chloride. We found that in the presence of hypoxia-mimicking concentrations of CoCl2, mitochondrial but not nuclear DNA damage is induced in rat neuronal, PC12 cells. To our knowledge, this is the first documentation of induction of mitochondrial DNA (mtDNA) damage under these conditions. Likewise, we provide the first evidence for elevation of MYH, the mammalian homolog of the Escherichia coli MutY DNA glycosylase, in mammalian cells. Recently, the human MYH was implicated in repair of oxidative DNA damage and shown to carry a mitochondrial localization sequence. Here, an induction of mtDNA damage and a time-dependent increase in the MYH level were detected with exposure of cells to 100 µM CoCl2. In addition, the levels of proteins involved in cellular responses to hypoxia, ROS and nuclear DNA damage; hypoxia-inducible factor 1α (HIF-1α), p53, p21 and PCNA were also modulated temporally. Earlier studies suggested that the mtDNA is a primary target for oxidative damage. Our findings extend these observations and suggest that activation of DNA repair processes is associated with the presence of mtDNA damage. PMID:10773083

  18. Mitochondrial DNA damage and a hypoxic response are induced by CoCl(2) in rat neuronal PC12 cells.

    PubMed

    Wang, G; Hazra, T K; Mitra, S; Lee, H M; Englander, E W

    2000-05-15

    Generation of reactive oxygen species (ROS) and activation of a transcriptional program that mimics the hypoxic response have been documented in cultured cells in the presence of cobalt chloride. We found that in the presence of hypoxia-mimicking concentrations of CoCl(2), mitochondrial but not nuclear DNA damage is induced in rat neuronal, PC12 cells. To our knowledge, this is the first documentation of induction of mitochondrial DNA (mtDNA) damage under these conditions. Likewise, we provide the first evidence for elevation of MYH, the mammalian homolog of the Escherichia coli MutY DNA glycosylase, in mammalian cells. Recently, the human MYH was implicated in repair of oxidative DNA damage and shown to carry a mitochondrial localization sequence. Here, an induction of mtDNA damage and a time-dependent increase in the MYH level were detected with exposure of cells to 100 microM CoCl(2). In addition, the levels of proteins involved in cellular responses to hypoxia, ROS and nuclear DNA damage; hypoxia-inducible factor 1alpha(HIF-1alpha), p53, p21 and PCNA were also modulated temporally. Earlier studies suggested that the mtDNA is a primary target for oxidative damage. Our findings extend these observations and suggest that activation of DNA repair processes is associated with the presence of mtDNA damage.

  19. Human neural stem cell grafts modify microglial response and enhance axonal sprouting in neonatal hypoxic-ischemic brain injury.

    PubMed

    Daadi, Marcel M; Davis, Alexis S; Arac, Ahmet; Li, Zongjin; Maag, Anne-Lise; Bhatnagar, Rishi; Jiang, Kewen; Sun, Guohua; Wu, Joseph C; Steinberg, Gary K

    2010-03-01

    Hypoxic-ischemic (HI) brain injury in newborn infants represents a major cause of cerebral palsy, development delay, and epilepsy. Stem cell-based therapy has the potential to rescue and replace the ischemic tissue caused by HI and to restore function. However, the mechanisms by which stem cell transplants induce functional recovery are yet to be elucidated. In the present study, we sought to investigate the efficacy of human neural stem cells derived from human embryonic stem cells in a rat model of neonatal HI and the mechanisms enhancing brain repair. The human neural stem cells were genetically engineered for in vivo molecular imaging and for postmortem histological tracking. Twenty-four hours after the induction of HI, animals were grafted with human neural stem cells into the forebrain. Motor behavioral tests were performed the fourth week after transplantation. We used immunocytochemistry and neuroanatomical tracing to analyze neural differentiation, axonal sprouting, and microglia response. Treatment-induced changes in gene expression were investigated by microarray and quantitative polymerase chain reaction. Bioluminescence imaging permitted real time longitudinal tracking of grafted human neural stem cells. HI transplanted animals significantly improved in their use of the contralateral impeded forelimb and in the Rotorod test. The grafts showed good survival, dispersion, and differentiation. We observed an increase of uniformly distributed microglia cells in the grafted side. Anterograde neuroanatomical tracing demonstrated significant contralesional sprouting. Microarray analysis revealed upregulation of genes involved in neurogenesis, gliogenesis, and neurotrophic support. These results suggest that human neural stem cell transplants enhance endogenous brain repair through multiple modalities in response to HI.

  20. Digoxin downregulates NDRG1 and VEGF through the inhibition of HIF-1α under hypoxic conditions in human lung adenocarcinoma A549 cells.

    PubMed

    Wei, Dong; Peng, Jing-Jing; Gao, Hui; Li, Hua; Li, Dong; Tan, Yong; Zhang, Tao

    2013-04-02

    Digoxin, an inhibitor of Na+/K+ ATPase, has been used in the treatment of heart-related diseases (such as congestive heart failure and atrial arrhythmia) for decades. Recently, it was reported that digoxin is also an effective HIF-1α inhibitor. We investigated whether digoxin could suppress tumor cell growth through HIF-1α in non-small cell lung cancer cells (A549 cells) under hypoxic conditions. An MTT assay was used to measure cell viability. RT-PCR and western blotting were performed to analyze the mRNA and protein expression of VEGF, NDRG1, and HIF-1α. HIF-1α nuclear translocation was then determined by EMSA. Digoxin was found to inhibit the proliferation of A549 cells under hypoxic conditions. Our results showed that hypoxia led to the upregulation of VEGF, NDRG1, and HIF-1α both at the mRNA and protein levels. We also found that the hypoxia-induced overexpression of VEGF, NDRG1, and HIF-1α was suppressed by digoxin in a concentration-dependent manner. As expected, our EMSA results demonstrated that under hypoxic conditions HIF-1α nuclear translocation was also markedly reduced by digoxin in a concentration-dependent manner. Our results suggest that digoxin downregulated hypoxia-induced overexpression of VEGF and NDRG1 at the transcriptional level probably through the inhibition of HIF-1α synthesis in A549 cells.

  1. Inhibition of Hypoxia Inducible Factor Alpha and Astrocyte-Elevated Gene-1 Mediates Cryptotanshinone Exerted Antitumor Activity in Hypoxic PC-3 Cells

    PubMed Central

    Lee, Hyo-Jeong; Jung, Deok-Beom; Sohn, Eun Jung; Kim, Hanna Hyun; Park, Moon Nyeo; Lew, Jae-Hwan; Lee, Seok Geun; Kim, Bonglee; Kim, Sung-Hoon

    2012-01-01

    Although cryptotanshinone (CT) was known to exert antitumor activity in several cancers, its molecular mechanism under hypoxia still remains unclear. Here, the roles of AEG-1 and HIF-1α in CT-induced antitumor activity were investigated in hypoxic PC-3 cells. CT exerted cytotoxicity against prostate cancer cells and suppressed HIF-1α accumulation and AEG-1 expression in hypoxic PC-3 cells. Also, AEG-1 was overexpressed in prostate cancer cells. Interestingly, HIF-1α siRNA transfection enhanced the cleavages of caspase-9,3, and PAPR and decreased expression of Bcl-2 and AEG1 induced by CT in hypoxic PC-3 cells. Of note, DMOG enhanced the stability of AEG-1 and HIF-1α during hypoxia. Additionally, CT significantly reduced cellular level of VEGF in PC-3 cells and disturbed tube formation of HUVECs. Consistently, ChIP assay revealed that CT inhibited the binding of HIF-1α to VEGF promoter. Furthermore, CT at 10 mg/kg suppressed the growth of PC-3 cells in BALB/c athymic nude mice by 46.4% compared to untreated control. Consistently, immunohistochemistry revealed decreased expression of Ki-67, CD34, VEGF, carbonic anhydrase IX, and AEG-1 indices in CT-treated group compared to untreated control. Overall, our findings suggest that CT exerts antitumor activity via inhibition of HIF-1α, AEG1, and VEGF as a potent chemotherapeutic agent. PMID:23243443

  2. Insights into the neuroprotective mechanisms of 2-iminobiotin employing an in-vitro model of hypoxic-ischemic cell injury.

    PubMed

    Zitta, Karina; Peeters-Scholte, Cacha; Sommer, Lena; Parczany, Kerstin; Steinfath, Markus; Albrecht, Martin

    2016-12-05

    Several animal models have been used to simulate cerebral hypoxia-ischemia and suggested neuroprotective effects of the biotin analogue 2-iminobiotin (2-IB). The aims of this study were to employ a human in-vitro hypoxia model to confirm protective effects of 2-IB on neuronal cells, determine the optimal neuroprotective concentrations of 2-IB and scrutinize underlying cellular effects of 2-IB. Neuronal IMR-32 cells were exposed to hypoxia employing an enzymatic hypoxia system and were thereafter incubated with various concentrations of 2-IB (10 to 300ng/ml). Cell damage, metabolic activity and generation of reactive oxygen species were quantified using colorimetric/fluorometric lactate dehydrogenase (LDH), tetrazolium-based (MTS) and reactive oxygen species assays. Proteome profiling arrays were performed to evaluate the regulation of cell stress protein expression by hypoxia and 2-IB. Seven hours of hypoxia led to morphological changes in IMR-32 cultures, increased neuronal cell damage (P<0.001), reduction of metabolic activity (P<0.01) and enhanced reactive oxygen species production (P<0.05). Post-hypoxic application of 2-IB (30ng/ml) attenuated hypoxia-induced LDH release (P<0.05) and increased metabolic activity of IMR-32 cells (P<0.05), while reactive oxygen species production was only by trend decreased. Array-based protein expression profiling revealed that 2-IB attenuated the expression of several hypoxia-induced cell stress-associated proteins by more than 25% (pp38α, HIF2α, ADAMTS1, pHSP27, PON2, PON3 and p27). Hypoxia-induced neuronal cell damage can be simulated using the described in-vitro model. 2-IB inhibits hypoxia-mediated neurotoxicity most efficiently at 30ng/ml and the underlying mechanisms involve a downregulation of stress-associated protein expression. Our results suggest 2-IB as a potential drug for the treatment of perinatal hypoxia-ischemia.

  3. Delayed intranasal delivery of hypoxic-preconditioned bone marrow mesenchymal stem cells enhanced cell homing and therapeutic benefits after ischemic stroke in mice.

    PubMed

    Wei, Ning; Yu, Shan Ping; Gu, Xiaohuan; Taylor, Tammi M; Song, Denise; Liu, Xin-Feng; Wei, Ling

    2013-01-01

    Stem cell transplantation therapy has emerged as a potential treatment for ischemic stroke and other neurodegenerative diseases. Effective delivery of exogenous cells and homing of these cells to the lesion region, however, have been challenging issues that hinder the efficacy and efficiency of cell-based therapy. In the present investigation, we tested a delayed treatment of noninvasive and brain-targeted intranasal delivery of bone marrow mesenchymal stem cells (BMSCs) in a mouse focal cerebral ischemia model. The investigation tested the feasibility and effectiveness of intranasal delivery of BMSCs to the ischemic cortex. Hypoxia preconditioning (HP) of BMSCs was performed before transplantation in order to promote their survival, migration, and homing to the ischemic brain region after intranasal transplantation. Hoechst dye-labeled normoxic- or hypoxic-pretreated BMSCs (1 × 10(6) cells/animal) were delivered intranasally 24 h after stroke. Cells reached the ischemic cortex and deposited outside of vasculatures as early as 1.5 h after administration. HP-treated BMSCs (HP-BMSCs) showed a higher level of expression of proteins associated with migration, including CXC chemokine receptor type 4 (CXCR4), matrix metalloproteinase 2 (MMP-2), and MMP-9. HP-BMSCs exhibited enhanced migratory capacities in vitro and dramatically enhanced homing efficiency to the infarct cortex when compared with normoxic cultured BMSCs (N-BMSCs). Three days after transplantation and 4 days after stroke, both N-BMSCs and HP-BMSCs decreased cell death in the peri-infarct region; significant neuroprotection of reduced infarct volume was seen in mice that received HP-BMSCs. In adhesive removal test of sensorimotor functional assay performed 3 days after transplantation, HP-BMSC-treated mice performed significantly better than N-BMSC- and vehicle-treated animals. These data suggest that delayed intranasal administration of stem cells is feasible in the treatment of stroke and hypoxic

  4. Protective Effects of Hydrogen Sulfide in Hypoxic Human Umbilical Vein Endothelial Cells: A Possible Mitochondria-Dependent Pathway

    PubMed Central

    Shen, Yaqi; Guo, Wei; Wang, Zhijun; Zhang, Yuchen; Zhong, Liangjie; Zhu, Yizhun

    2013-01-01

    The aim of the study was to investigate the protective effects of sodium hydrosulfide (NaHS), a H2S donor, against hypoxia-induced injury in human umbilical vein endothelial cells (HUVECs) and also to look into the possible mechanisms by which H2S exerts this protective effect. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and scratch wound healing assay were chosen to measure the cell viability and migration-promoting effects. The fluorescent probe, DCFH-DA and 5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide (JC-1) were applied to detect the reactive oxygen species (ROS) level and mitochondrial membrane potential (ΔΨm). Furthermore, western blots were used to measure the expressions of the apoptosis-related proteins. Under hypoxic conditions, 300 μM and 600 μM of H2S could protect HUVECs against hypoxia-induced injury, as determined by MTT assay. Following the treatment of 60 μM NaHS for 18 h, scratch wound healing assays indicated that the scratch became much narrower than control group. After treatment with 60 μM, 120 μM, and 600 μM NaHS, and hypoxia for 30 min, flow cytometry demonstrated that the ROS concentrations decreased to 95.08% ± 5.52%, 73.14% ± 3.36%, and 73.51% ± 3.05%, respectively, compared with the control group. In addition, the JC-1 assay showed NaHS had a protective effect on mitochondria damage. Additionally, NaHS increased Bcl-2 expression and decreased the expression of Bax, Caspase-3 and Caspase-9 in a dose-dependent way. Our results suggest that H2S can protect endothelial cells and promote migration under hypoxic condition in HUVECs. These effects are partially associated with the preservation of mitochondrial function mediated by regulating the mitochondrial-dependent apoptotic pathway. PMID:23799362

  5. [The process of heme synthesis in bone marrow mesenchymal stem cells cultured under fibroblast growth factor bFGF and hypoxic conditions].

    PubMed

    Poleshko, A G; Lobanok, E S; Mezhevikina, L M; Fesenko, E E; Volotkovskiĭ, I D

    2014-01-01

    It was demonstrated that fibroblast growth factor bFGF influences the process of heme synthesis, the proliferation activity and viability of bone marrow mesenchymal stem cells in culture under hypoxic conditions. The addition of fibroblast growth factor bFGF (7 ng/ml) to the medium under above conditions led to the accumulation of aminolevulinic acid--an early porphyrin and heme precursor, an increase in CD 71 expression--a transferrin receptor, and also a decrease in porphyrin pigments and heme contents--a late precursor and end products of heme synthesis, respectively. It was found that cultivation of the cells under hypoxic conditions and bFGF is an optimum to maintain high viability and proliferation capacity of the mesenchymal stem cells.

  6. Umbilical cord blood mesenchymal stem cells co-modified by TERT and BDNF: a novel neuroprotective therapy for neonatal hypoxic-ischemic brain damage.

    PubMed

    Zhao, Fengyan; Qu, Yi; Liu, Haiting; Du, Baowen; Mu, Dezhi

    2014-11-01

    Hypoxic-ischemic brain damage (HIBD), a leading cause of perinatal disability and death, has limited therapeutic options. Stem cell therapy has been demonstrated as a potential novel therapy for neurological disorders. Compared with other types of stem cells, umbilical cord blood mesenchymal stem cells (UCB-MSCs) have several unique characteristics, such as a higher rate of cell proliferation and clonality. However, the limited life span of UCB-MSCs hinders their clinical application. Therefore, efforts are urgently needed to circumvent this disadvantage. Telomerase reverse transcriptase (TERT), which promotes cell proliferation and survival, plays a protective role in hypoxic-ischemic (HI) brain injury. Thus, it is reasonable to propose that UCB-MSCs modified by exogenous TERT expression might have a longer lifespan and increased viability. Moreover, brain-derived neurotrophic factor (BDNF), a neurotrophin that regulates development, regeneration, survival and maintenance of neurons, facilitates post-injury recovery when administered by infusion or virus-mediated delivery. Therefore, TERT- and BDNF-modified UCB-MSCs may have a longer lifespan and also maintain neural differentiation, thus promoting the recovery of neurological function following hypoxic-ischemic brain damage (HIBD) and thereby representing a new effective strategy for HIBD in neonates. Copyright © 2014. Published by Elsevier Ltd.

  7. Physiological and hypoxic oxygen concentration differentially regulates human c-Kit+ cardiac stem cell proliferation and migration.

    PubMed

    Bellio, Michael A; Rodrigues, Claudia O; Landin, Ana Marie; Hatzistergos, Konstantinos E; Kuznetsov, Jeffim; Florea, Victoria; Valasaki, Krystalenia; Khan, Aisha; Hare, Joshua M; Schulman, Ivonne Hernandez

    2016-12-01

    Cardiac stem cells (CSCs) are being evaluated for their efficacy in the treatment of heart failure. However, numerous factors impair the exogenously delivered cells' regenerative capabilities. Hypoxia is one stress that contributes to inadequate tissue repair. Here, we tested the hypothesis that hypoxia impairs cell proliferation, survival, and migration of human CSCs relative to physiological and room air oxygen concentrations. Human endomyocardial biopsy-derived CSCs were isolated, selected for c-Kit expression, and expanded in vitro at room air (21% O2). To assess the effect on proliferation, survival, and migration, CSCs were transferred to physiological (5%) or hypoxic (0.5%) O2 concentrations. Physiological O2 levels increased proliferation (P < 0.05) but did not affect survival of CSCs. Although similar growth rates were observed in room air and hypoxia, a significant reduction of β-galactosidase activity (-4,203 fluorescent units, P < 0.05), p16 protein expression (0.58-fold, P < 0.001), and mitochondrial content (0.18-fold, P < 0.001) in hypoxia suggests that transition from high (21%) to low (0.5%) O2 reduces senescence and promotes quiescence. Furthermore, physiological O2 levels increased migration (P < 0.05) compared with room air and hypoxia, and treatment with mesenchymal stem cell-conditioned media rescued CSC migration under hypoxia to levels comparable to physiological O2 migration (2-fold, P < 0.05 relative to CSC media control). Our finding that physiological O2 concentration is optimal for in vitro parameters of CSC biology suggests that standard room air may diminish cell regenerative potential. This study provides novel insights into the modulatory effects of O2 concentration on CSC biology and has important implications for refining stem cell therapies. Copyright © 2016 the American Physiological Society.

  8. Hypoxic stress triggers a programmed cell death pathway to induce vascular cavity formation in Pisum sativum roots.

    PubMed

    Sarkar, Purbasha; Gladish, Daniel K

    2012-12-01

    Flooding at warm temperatures induces hypoxic stress in Pisum sativum seedling roots. In response, some undifferentiated cells in the primary root vascular cylinder start degenerating and form a longitudinal vascular cavity. Changes in cellular morphology and cell wall ultrastructure detected previously in the late stages of cavity formation suggest possible involvement of programmed cell death (PCD). In this study, cytological events occurring in the early stages of cavity formation were investigated. Systematic DNA fragmentation, a feature of many PCD pathways, was detected in the cavity-forming roots after 3 h of flooding in situ by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay and in isolated total DNA by gel electrophoresis. High molecular weight DNA fragments of about 20-30 kb were detected by pulse-field gel electrophoresis, but no low-molecular weight internucleosomal DNA fragments were detected by conventional gel electrophoresis. Release of mitochondrial cytochrome c protein into the cytosol, an integral part of mitochondria-dependent PCD pathways, was detected in the cavity-forming roots within 2 h of flooding by fluorescence microscopy of immunolabeled cytochrome c in situ and in isolated mitochondrial and cytosolic protein fractions by western blotting. DNA fragmentation and cytochrome c release remained confined to the undifferentiated cells in center of the root vascular cylinders, even after 24 h of flooding, while outer vascular cylinder cells and cortical cells maintained cellular integrity and normal activity. These findings confirm that hypoxia-induced vascular cavity formation in P. sativum roots involves PCD, and provides a chronological model of cytological events involved in this rare and understudied PCD system.

  9. Astroglial Activation by an Enriched Environment after Transplantation of Mesenchymal Stem Cells Enhances Angiogenesis after Hypoxic-Ischemic Brain Injury

    PubMed Central

    Cho, Sung-Rae; Suh, Hwal; Yu, Ji Hea; Kim, Hyongbum (Henry); Seo, Jung Hwa; Seo, Cheong Hoon

    2016-01-01

    Transplantation of mesenchymal stem cells (MSCs) has paracrine effects; however, the effects are known to be largely limited. Here we investigated the combination effects of cell transplantation and enriched environment (EE) in a model of hypoxic-ischemic brain injury. Brain damage was induced in seven-day-old mice by unilateral carotid artery ligation and exposure to hypoxia (8% O2 for 90 min). At six weeks of age, the mice were randomly assigned to four groups: phosphate-buffered saline (PBS)-control (CON), PBS-EE, MSC-CON, and MSC-EE. Rotarod and grip strength tests were performed to evaluate neurobehavioral functions. Histologic evaluations were also performed to confirm the extent of astrocyte activation and endogenous angiogenesis. An array-based multiplex ELISA and Western blot were used to identify growth factors in vivo and in vitro. Two weeks after treatment, levels of astrocyte density and angiogenic factors were increased in MSC-EE mice, but glial scarring was not increased. Eight weeks after treatment, angiogenesis was increased, and behavioral outcomes were synergistically improved in the MSC-EE group. Astrocytes co-cultured with MSCs expressed higher levels of angiogenic factors than astrocytes cultured alone. The mechanisms of this synergistic effect included enhanced repair processes, such as increased endogenous angiogenesis and upregulation of angiogenic factors released from activated astrocytes. PMID:27649153

  10. SDF-1α/CXCR4 Axis Mediates The Migration of Mesenchymal Stem Cells to The Hypoxic-Ischemic Brain Lesion in A Rat Model.

    PubMed

    Yu, Qin; Liu, Lizhen; Lin, Jie; Wang, Yan; Xuan, Xiaobo; Guo, Ying; Hu, Shaojun

    2015-01-01

    Transplantation of mesenchymal stem cells (MSCs) can promote functional recovery of the brain after hypoxic-ischemic brain damage (HIBD). However, the mechanism regulating MSC migration to a hypoxic-ischemic lesion is poorly understood. Interaction between stromal cell-derived factor-1α (SDF-1α) and its cognate receptor CXC chemokine receptor 4 (CXCR4) is crucial for homing and migration of multiple stem cell types. In this study, we investigate the potential role of SDF-1α/CXCR4 axis in mediating MSC migration in an HIBD model. In this experimental study, we first established the animal model of HIBD using the neonatal rat. Bone marrow MSCs were cultured and labeled with 5-bromo-21-deoxyuridine (BrdU) after which 6×10(6) cells were intravenously injected into the rat. BrdU positive MSCs in the hippocampus were detected by immunohistochemical analyses. The expression of hypoxia-inducible factor-1α (HIF-1α) and SDF-1α in the hippocampus of hypoxic-ischemic rats was detected by Western blotting. To investigate the role of hypoxia and SDF-1α on migration of MSCs in vitro, MSCs isolated from normal rats were cultured in a hypoxic environment (PO2=1%). Migration of MSCs was detected by the transwell assay. The expression of CXCR4 was tested using Western blotting and flow cytometry. BrdU-labeled MSCs were found in the rat brain, which suggested that transplanted MSCs migrated to the site of the hypoxic-ischemic brain tissue. HIF-1α and SDF-1α significantly increased in the hippocampal formations of HIBD rats in a time-dependent manner. They peaked on day 7 and were stably expressed until day 21. Migration of MSCs in vitro was promoted by SDF-1α under hypoxia and inhibited by the CXCR4 inhibitor AMD3100. The expression of CXCR4 on MSCs was elevated by hypoxia stimulation as well as microdosage treatment of SDF-1α. This observation illustrates that SDF-1α/CXCR4 axis mediate the migration of MSCs to a hypoxic-ischemic brain lesion in a rat model.

  11. Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1α-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion.

    PubMed

    Xue, Mei; Li, Xu; Li, Zhengkun; Chen, Wei

    2014-07-01

    Urothelial carcinoma associated 1 (UCA1) has been identified as an oncogenic long noncoding RNA (lncRNA) that is involved in bladder cancer progression and acts as a diagnostic biomarker for bladder carcinoma. Here, we studied the expression and function of lncRNA-UCA1 in the hypoxic microenvironment of bladder cancer. The expression and transcriptional activity of lncRNA-UCA1 were measured by quantitative real-time polymerase chain reaction and luciferase assays. Cell proliferation and apoptosis were evaluated by MTT assays and flow cytometry. Cell migration and invasion were detected by wound healing, migration, and invasion assays. The binding of hypoxia-inducible factor-1α (HIF-1α) to hypoxia response elements (HREs) in the lncRNA-UCA1 promoter was confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation. HRE mutations were generated by using a site-directed mutagenesis kit, and HIF-1α knockdown was mediated by small interfering RNA. The effect of HIF-1α inhibition by YC-1 on lncRNA-UCA1 expression was also examined. LncRNA-UCA1 was upregulated by hypoxia in bladder cancer cells. Under hypoxic conditions, lncRNA-UCA1 upregulation increased cell proliferation, migration, and invasion and inhibited apoptosis. The underlying mechanism of hypoxia-upregulated lncRNA-UCA1 expression was that HIF-1α specifically bound to HREs in the lncRNA-UCA1 promoter. Furthermore, HIF-1α knockdown or inhibition could prevent lncRNA-UCA1 upregulation under hypoxia. These findings revealed the mechanism of lncRNA-UCA1 upregulation in hypoxic bladder cancer cells and suggested that effective blocking of lncRNA-UCA1 expression in the hypoxic microenvironment of bladder cancer could be a novel therapeutic strategy.

  12. Human Neural Stem Cell Grafts Modify Microglial Response and Enhance Axonal Sprouting In Neonatal Hypoxic-Ischemic Brain Injury

    PubMed Central

    Daadi, Marcel M.; Davis, Alexis; Arac, Ahmet; Li, Zongjin; Maag, Anne-Lise; Bhatnagar, Rishi; Jiang, Kewen; Sun, Guohua; Wu, Joseph C; Steinberg, Gary K.

    2017-01-01

    Background and Purpose Hypoxic-Ischemic (HI) brain injury in newborn infants represents a major cause of cerebral palsy, development delay and epilepsy. Stem cell-based therapy has the potential to rescue and replace the ischemic tissue caused by HI and to restore function. However, the mechanisms by which stem cell transplants induce functional recovery are yet to be elucidated. In the present study, we sought to investigate the efficacy of human neural stem cells (hNSCs) derived from human embryonic stem cells (hESCs), in the rat model of neonatal HI and the mechanisms enhancing brain repair. Methods The hNSCs were genetically engineered for in vivo molecular imaging and for postmortem histological tracking. Twenty-four hours after the induction of HI, animals were grafted with hNSCs into the forebrain. Motor behavioral tests were performed the fourth week after transplantation. We used immunocytochemistry and neuroanatomical tracing to analyze neural differentiation, axonal sprouting and microglia response. Treatment-induced changes in gene expression were investigated by microarray and quantitative PCR. Results Bioluminescence imaging (BLI) permitted longitudinal tracking of grafted hNSCs in real time. HI transplanted animals significantly improved in their use of the contralateral impeded forelimb and in the rotarod test. The grafts showed good survival, dispersion and differentiation. We observed an increase of uniformly distributed microglia cells in the grafted side. Anterograde neuronanatomical tracing demonstrated significant contralesional sprouting. Microarray analysis revealed upregulation of genes involved in neurogenesis, gliogenesis and neurotrophic support. Conclusions These results suggest that hNSC transplants enhance endogenous brain repair through multiple modalities in response to HI. PMID:20075340

  13. [The effect of the gas hypoxic mixture GHM-8 on the capacity of the stromal clonogenic cells (CFU-F) in rat bone marrow for postradiation recovery].

    PubMed

    Konopliannikov, A G; Waĭnson, A A; Kolesnikova, A I; Zaĭtsev, V A; Kal'sina, S Sh; Lepekhina, L A

    1993-01-01

    The effect of gas hypoxic mixture, containing 8% of O2 (GHM-8), on the ability of cell precursors of haemopoietic stroma (which form colonies (clones) of fibroblasts (CFU-F) in a culture, and are present in the bone marrow of adult rats) to repair potentially lethal and sublethal radiation damages has been investigated. The recovery of CFU-F from potentially lethal damages, that was studied after their delayed survival in a culture following irradiation of animals, proceeds at nearly the same rate in cells irradiated both in the air and in hypoxic conditions (GHM-8). Fractionated irradiation reduces the radioprotective effect of GHM-8 for CFU-F, particularly for the radioresistant subpopulation; the ability of CFU-F to recover from sublethal radiation damages decreases.

  14. Final report on the United States phase I clinical trial of the hypoxic cell radiosensitizer, misonidazole (Ro-07-0582; NSC No. 261037

    SciTech Connect

    Phillips, T.L.; Wasserman, T.H.; Johnson, R.J.; Levin, V.A.; VanRaalte, G.

    1981-10-15

    The hypoxic cell sensitizer misonidazole began phase I evaluation in the United States in July 1977. One hundred two patients received 104 individual courses of drug. Drug was administered from once to five times per week over time spans from one to six weeks. The individual doses ranged 1 to 5 g/m. The major toxicity noted was neurologic; 49% of evaluable courses showed peripheral neuropathy, and 9% of evaluable courses showed central nervous system effects and/or ototoxicity. In addition, 48 of 102 patients exhibited some degree of nausea and vomiting. The concomitant administration of dexamethasone and phenytoin sodium appeared to lower the incidence of neuropathy. Observations of efficacy were made comparatively in five patients who had multiple lesions treated with and without misonidazole. All five showed increased response in the lesions treated with misonidazole. It is concluded that misonidazole is a reasonably safe and potentially effective hypoxic cell sensitizer whose dose-limiting toxicity is neurologic.

  15. Cold preservation of endothelial cells in sucrose-based solution (SbS) and University of Wisconsin (UW) solutions: comparison of normoxic or hypoxic storage.

    PubMed

    Hawkins, M; Sales, K M; Dijk, S; Fuller, B

    2005-01-01

    Cold preservation of endothelial cells was studied, comparing primary endothelial cells (human umbilical vein endothelial cells - HUVECs) and a continuously growing cell line (ECV304 cells). Viability at the end of 24h cold preservation was measured by dye exclusion, whilst metabolism was assessed by Alamar blue conversion. Two preservation solutions were studied (UW solution) and sucrose-based (SbS) in both cell types. The response was similar in both cell types to preservation under normoxic conditions (with percentage dye exclusion maintained at about 80 percent in both preservation solutions) whereas under hypoxic conditions ECV304 were more sensitive to preservation in UW solution (dye exclusion reduced to 43.5+/-1.4 percent versus 73.6+/-14 percent (P<0.01). Metabolism assessed by Alamar blue conversion after cold preservation and rewarming was similar in both ECV304 and HUVECs after storage under normoxic conditions in UW solution, but in both cell types, metabolism was higher in SbS (P<0.05 and p<0.01) than in UW solution. Under hypoxic conditions, both cell types showed similar recovery of metabolism after storage in either UW or SbS. If the cells (in this case ECV304 under aerobic conditions) were stored for 24h and then allowed to rewarm in either of the respective preservation solutions (UW or SbS for 1h) before the Alamar blue test, metabolism was higher (p less than 0.01) in those exposed to SbS. UW solution and SbS provide similar protection for endothelial cells under hypoxic conditions, but SbS has some advantages under normoxic storage or if the cells experience variable temperatures in the presence of residual preservation solution at the end of cold preservation period.

  16. Remarkable photocytotoxicity in hypoxic HeLa cells by a dipyridophenazine copper(II) Schiff base thiolate.

    PubMed

    Lahiri, Debojyoti; Majumdar, Ritankar; Mallick, Dibyendu; Goswami, Tridib K; Dighe, Rajan R; Chakravarty, Akhil R

    2011-08-01

    Copper(II) complexes [Cu(satp)(L)] (1-3) of a Schiff base thiolate (salicylidene-2-aminothiophenol, H2satp) and phenanthroline bases (L), viz. 1,10-phenanthroline (phen in 1), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 2) and dipyrido[3,2-a:2',3'-c]phenazine (dppz in 3), were prepared, characterized and their anaerobic DNA photocleavage activity and hypoxic photocytotoxicity studied. The redox active complexes show the Cu(II)-Cu(I) couple near -0.5 V for 1 and near 0.0 V vs. SCE (saturated calomel electrode) for 2 and 3. The one-electron paramagnetic complexes (~1.85 μB) are avid DNA binders giving Kb values within 1.0×10(5)-8.0×10(5) M(-1). Thermal melting and viscosity data along with molecular docking calculations suggest DNA groove and/or partial intercalative binding of the complexes. The complexes show anaerobic DNA cleavage activity in red light under argon via type-I pathway, while DNA photocleavage in air proceeds via hydroxyl radical pathway. The DFT (density functional theory) calculations reveal a thyil radical pathway for the anaerobic DNA photocleavage activity and suggest the possibility of generation of a transient copper(I) species due to bond breakage between the copper and sulfur to generate the thyil radical. An oxidation of the copper(I) species is likely by oxygen in an aerobic medium or by the buffer medium in an anaerobic condition. Complex 3 exhibits significant photocytotoxicity in HeLa cells (IC50=8.3(±1.0) μM) in visible light, while showing lower dark toxicity (IC50=17.2(±1.0) μM). A significant reduction in the dark toxicity is observed under hypoxic cellular conditions (IC50=30.0(±1.0) μM in dark), while retaining its photocytotoxicity (IC50=8.0(±1.0) μM).

  17. Brusatol inhibits HIF-1 signaling pathway and suppresses glucose uptake under hypoxic conditions in HCT116 cells

    PubMed Central

    Lu, Yapeng; Wang, Bo; Shi, Qian; Wang, Xueting; Wang, Dang; Zhu, Li

    2016-01-01

    Hypoxia-inducible factor-1 (HIF-1) is an important transcription factor that induces adaptive responses upon low oxygen conditions in human cancers and triggers off a poor prognostic outcome of conventional treatments. In this study, we discovered for the first time that brusatol (BRU), a quassinoid extracted from Brucea Esters, has the capability to inhibit HIF-1 signaling pathway. We found that BRU concentration-dependently down-regulated HIF-1α protein levels under hypoxia or CoCl2-induced mimic hypoxia in HCT116 cells without causing significant cytotoxicity. Besides, the transactivation activity of HIF-1 was suppressed by BRU under hypoxic conditions, as well as the expression of HIF-1 target genes, including VEGF, GLUT1, HK2 and LDHA. In addition, BRU can also decrease glucose consumption under hypoxia through inhibition of HIF-1 signaling pathway. Further studies revealed that the inhibitory effect of BRU on HIF-1 signaling pathway might be attributed to promoting degradation of HIF-1α. Interestingly, intracellular reactive oxygen species (ROS) levels and mitochondrial ROS level were both decreased by BRU treatment, indicating the involvment of mitochondrial ROS regulation in the action of BRU. Taken together, these results provided clear evidence for BRU-mediated HIF-1α regulation and suggested its therapeutic potential in colon tumors. PMID:27982118

  18. Grape seed procyanidin extract attenuates hypoxic pulmonary hypertension by inhibiting oxidative stress and pulmonary arterial smooth muscle cells proliferation.

    PubMed

    Jin, Haifeng; Liu, Mingcheng; Zhang, Xin; Pan, Jinjin; Han, Jinzhen; Wang, Yudong; Lei, Haixin; Ding, Yanchun; Yuan, Yuhui

    2016-10-01

    Hypoxia-induced oxidative stress and excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) play important roles in the pathological process of hypoxic pulmonary hypertension (HPH). Grape seed procyanidin extract (GSPE) possesses antioxidant properties and has beneficial effects on the cardiovascular system. However, the effect of GSPE on HPH remains unclear. In this study, adult Sprague-Dawley rats were exposed to intermittent chronic hypoxia for 4 weeks to mimic a severe HPH condition. Hemodynamic and pulmonary pathomorphology data showed that chronic hypoxia significantly increased right ventricular systolic pressures (RVSP), weight of the right ventricle/left ventricle plus septum (RV/LV+S) ratio and median width of pulmonary arteries. GSPE attenuated the elevation of RVSP, RV/LV+S, and reduced the pulmonary vascular structure remodeling. GSPE also increased the levels of SOD and reduced the levels of MDA in hypoxia-induced HPH model. In addition, GSPE suppressed Nox4 mRNA levels, ROS production and PASMCs proliferation. Meanwhile, increased expression of phospho-STAT3, cyclin D1, cyclin D3 and Ki67 in PASMCs caused by hypoxia was down-regulated by GSPE. These results suggested that GSPE might potentially prevent HPH via antioxidant and antiproliferative mechanisms. Copyright © 2016. Published by Elsevier Inc.

  19. ERN1 knockdown modifies the hypoxic regulation of TP53, MDM2, USP7 and PERP gene expressions in U87 glioma cells.

    PubMed

    Danilovskyi, S V; Minchenko, D O; Moliavko, O S; Kovalevska, O V; Karbovskyi, L L; Minchenko, O H

    2014-01-01

    Endoplasmic reticulum stress and hypoxia are necessary components of malignant tumors growth and suppression of ERN1 (from endoplasmic reticulum to nuclei-1) signalling pathway, which is linked to the apoptosis and cell death processes, significantly decreases proliferative processes. Glioma cells with ERN1 knockdown were used in order to investigate the effect of ERNI blockade on the expression of TP53, MDM2, PERP, and USP7 genes and its hypoxic regulation. We have studied the expression of TP53 (tumor protein 53), MDM2 (TP53 E3 ubiquitin protein ligase homolog), PERP (TP53 apoptosis effector), and USP7 (ubiquitin specific peptidase 7) genes, which are related to cell proliferation and apoptosis, in glioma cells with ERN1 knockdown under hypoxic condition. It was shown that blockade of ERNI gene function in U87 glioma cells intensified the expression of TP53 and USP7 genes, but decreased the expression ofMDM2 and PERP genes. Thus, an enhanced expression of TP53 gene in ERN1 knockdown glioma cells correlates with the decreased level of ubiquitin ligase MDM2 and increased expression level of USP7 which deubiquitinates TP53 and MDM2 and induces TP53-dependent cell growth repression and apoptosis. At the same time, the expression levels of TP53, MDM2, and USP7 genes do not change significantly in glioma cells with suppression of endoribonuclease activity only, but PERP gene expression is strongly increased. Moreover, the expression of TP53 and UPS7 genes is decreased in hypoxic conditions in control glioma cells only; however, MDM2 and PERP gene expressions are increased in both cell types, being more significant in ERN1 knockdown cells. Thus, the expression of genes encoding TP53 and related to TP53 factors depends upon the endoplasmic reticulum stress signaling as well as on hypoxia, and correlates with suppression of glioma growth under ERN1 knockdown.

  20. In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain.

    PubMed

    Theus, Michelle Hedrick; Wei, Ling; Cui, Lin; Francis, Kevin; Hu, Xinyang; Keogh, Christine; Yu, Shan Ping

    2008-04-01

    Hypoxic preconditioning (HP) and stem cell transplantation have been extensively studied as individual therapies for ischemic stroke. The present investigation is an initial effort to combine these methods to achieve increased therapeutic effects after brain ischemia. Sublethal in vitro hypoxia pretreatment significantly enhanced the tolerance of neurally-differentiating embryonic stem (ES) cells and primary bone marrow mesenchymal stem cells (BMSC) to apoptotic cell death (40-50% reduction in cell death and caspase-3 activation). The HP protective effects on cultured cells lasted for at least 6 days. HP increased secretion of erythropoietin (EPO) and upregulated expression of bcl-2, hypoxia-inducible factor (HIF-1alpha), erythropoietin receptor (EPOR), neurofilament (NF), and synaptophysin in ES cell-derived neural progenitor cells (ES-NPCs). The HP cytoprotective effect was diminished by blocking EPOR, while pretreatment of ES-NPCs with recombinant human EPO mimicked the HP effect. HP-primed ES-NPCs survived better 3 days after transplantation into the ischemic brain (30-40% reduction in cell death and caspase-3 activation). Finally, transplanted HP-primed ES-NPCs exhibited extensive neuronal differentiation in the ischemic brain, accelerated and enhanced recovery of sensorimotor function when compared to transplantation of non-HP-treated ES-NPCs. The cell-priming strategy aimed to promote transplanted cell survival and their tissue repair capability provides a simple yet effective way of optimizing cell transplantation therapy.

  1. Hypoxic Preconditioning Enhances the Benefit of Cardiac Progenitor-Cell Therapy for Treatment of Myocardial Infarction by Inducing CXCR4 Expression

    PubMed Central

    Tang, Yao Liang; Zhu, Wuqiang; Cheng, Min; Chen, Lijuan; Zhang, John; Sun, Tao; Kishore, Raj; Phillips, M. Ian; Losordo, Douglas W.; Qin, Gangjian

    2009-01-01

    Myocardial infarction (MI) rapidly depletes the endogenous cardiac progenitor-cell pool, and the inefficient recruitment of exogenously administered progenitor cells limits the effectiveness of cardiac-cell therapy. Recent reports indicate that interactions between the CXC chemokine stromal-cell–derived factor 1 (SDF-1) and its receptor CXC chemokine receptor 4 (CXCR4) critically mediate the ischemia-induced recruitment of bone-marrow—derived circulating stem/progenitor cells, but the expression of CXCR4 in cardiac progenitor cells is very low. Here, we studied the influence of hypoxia on CXCR4 expression in cardiac progenitor cells, on the recruitment of intravenously administered cells to ischemic heart tissue, and on the preservation of heart function in a murine MI model. We found that hypoxic preconditioning increased CXCR4 expression in cardiosphere-derived, Lin−/c-kit+ progenitor (CLK) cells and markedly augmented CLK-cell migration (in vitro) and recruitment (in vivo) to the ischemic myocardium. Four weeks after surgically induced MI, infarct size and heart function were significantly better in mice administered hypoxia-preconditioned CLK cells than in mice treated with cells cultured under normoxic conditions. Furthermore, these effects were largely abolished by the addition of a CXCR4 inhibitor, indicating that the benefits of hypoxic preconditioning are mediated by the SDF-1/CXCR4 axis, and that therapies targeting this axis may enhance cardiac-progenitor-cell—based regenerative therapy. PMID:19407239

  2. Source-Dependent Intracellular Distribution of Iron in Lens Epithelial Cells Cultured Under Normoxic and Hypoxic Conditions

    PubMed Central

    Goralska, Małgorzata; Nagar, Steven; Fleisher, Lloyd N.; Mzyk, Philip; McGahan, M. Christine

    2013-01-01

    Purpose. Intracellular iron trafficking and the characteristics of iron distribution from different sources are poorly understood. We previously determined that the lens removes excess iron from fluids of inflamed eyes. In the current study, we examined uptake and intracellular distribution of 59Fe from iron transport protein transferrin or ferric chloride (nontransferrin-bound iron [NTBI]) in cultured canine lens epithelial cells (LECs). Because lens tissue physiologically functions under low oxygen tension, we also tested effects of hypoxia on iron trafficking. Excess iron, not bound to proteins, can be damaging to cells due to its ability to catalyze formation of reactive oxygen species. Methods. LECs were labeled with 59Fe-Tf or 59FeCl3 under normoxic or hypoxic conditions. Cell lysates were fractioned into mitochondria-rich, nuclei-rich, and cytosolic fractions. Iron uptake and its subcellular distribution were measured by gamma counting. Results. 59Fe accumulation into LECs labeled with 59Fe-Tf was 55-fold lower as compared with that of 59FeCl3. Hypoxia (24 hours) decreased uptake of iron from transferrin but not from FeCl3. More iron from 59FeCl3 was directed to the mitochondria-rich fraction (32.6%–47.7%) compared with 59Fe from transferrin (10.6%–12.6%). The opposite was found for the cytosolic fraction (8.7%–18.3% and 54.2%–46.6 %, respectively). Hypoxia significantly decreased iron accumulation in the mitochondria-rich fraction of LECs labeled with 59Fe-Tf . Conclusions. There are source-dependent differences in iron uptake and trafficking. Uptake and distribution of NTBI are not as strictly regulated as that of iron from transferrin. Excessive exposure to NTBI, which could occur in pathological conditions, may oxidatively damage organelles, particularly mitochondria. PMID:24194187

  3. Source-dependent intracellular distribution of iron in lens epithelial cells cultured under normoxic and hypoxic conditions.

    PubMed

    Goralska, Małgorzata; Nagar, Steven; Fleisher, Lloyd N; Mzyk, Philip; McGahan, M Christine

    2013-11-19

    Intracellular iron trafficking and the characteristics of iron distribution from different sources are poorly understood. We previously determined that the lens removes excess iron from fluids of inflamed eyes. In the current study, we examined uptake and intracellular distribution of ⁵⁹Fe from iron transport protein transferrin or ferric chloride (nontransferrin-bound iron [NTBI]) in cultured canine lens epithelial cells (LECs). Because lens tissue physiologically functions under low oxygen tension, we also tested effects of hypoxia on iron trafficking. Excess iron, not bound to proteins, can be damaging to cells due to its ability to catalyze formation of reactive oxygen species. LECs were labeled with ⁵⁹Fe-Tf or ⁵⁹FeCl₃ under normoxic or hypoxic conditions. Cell lysates were fractioned into mitochondria-rich, nuclei-rich, and cytosolic fractions. Iron uptake and its subcellular distribution were measured by gamma counting. ⁵⁹Fe accumulation into LECs labeled with ⁵⁹Fe-Tf was 55-fold lower as compared with that of ⁵⁹FeCl₃. Hypoxia (24 hours) decreased uptake of iron from transferrin but not from FeCl₃. More iron from ⁵⁹FeCl₃ was directed to the mitochondria-rich fraction (32.6%-47.7%) compared with ⁵⁹Fe from transferrin (10.6%-12.6%). The opposite was found for the cytosolic fraction (8.7%-18.3% and 54.2%-46.6 %, respectively). Hypoxia significantly decreased iron accumulation in the mitochondria-rich fraction of LECs labeled with ⁵⁹Fe-Tf . There are source-dependent differences in iron uptake and trafficking. Uptake and distribution of NTBI are not as strictly regulated as that of iron from transferrin. Excessive exposure to NTBI, which could occur in pathological conditions, may oxidatively damage organelles, particularly mitochondria.

  4. Identification of miRNAs Involved in the Protective Effect of Sevoflurane Preconditioning Against Hypoxic Injury in PC12 Cells.

    PubMed

    Sun, Yingying; Li, Yuanhai; Liu, Lei; Wang, Yiqiao; Xia, Yingjing; Zhang, Lingli; Ji, Xuewu

    2015-11-01

    The mechanism of sevoflurane preconditioning-induced neuroprotection is poorly understood. This study was aimed at identifying microRNAs (miRNAs) involved in the protective effect of sevoflurane preconditioning against hypoxic injury using the miRCURYTM LNA Array. The screened differentially expressed miRNAs were further validated using qRT-PCR. Finally, after transfection of miRNA (miR-101a or miR-34b) mimics or inhibitor, MTT and flow cytometry assays were used to evaluate cell survival and apoptosis in sevoflurane preconditioning. qRT-PCR confirmed the changes in expression of differentially expressed miRNAs that were screened by the microarray: down-regulation of rno-miR-101a, rno-miR-106b, and rno-miR-294 and up-regulation of rno-miR-883, rno-miR-16, and rno-miR-34b. MiR-101a and miR-34b were the most differentially expressed miRNAs. Sevoflurane preconditioning-inhibited apoptosis and preconditioning-enhanced cell viability of PC12 cells were significantly attenuated by transfection of miR-101a mimetic or miR-34b inhibitors, but were significantly enhanced by transfection of miR-34b mimetic. Therefore, a number of miRNAs, including miR-101a and miR-34b, might play important roles in the neuroprotection induced by sevoflurane preconditioning. Such miRNAs might provide novel targets for preventive and therapeutic strategies against cerebral ischemia-reperfusion injury.

  5. Effect of barbiturates on hydroxyl radicals, lipid peroxidation, and hypoxic cell death in human NT2-N neurons.

    PubMed

    Almaas, R; Saugstad, O D; Pleasure, D; Rootwelt, T

    2000-03-01

    Barbiturates have been shown to be neuroprotective in several animal models, but the underlying mechanisms are unknown. In this study, the authors investigated the effect of barbiturates on free radical scavenging and attempted to correlate this with their neuroprotective effects in a model of hypoxic cell death in human NT2-N neurons. Hydroxyl radicals were generated by ascorbic acid and iron and were measured by conversion of salicylate to 2,3-dihydroxybenzoic acid. The effect of barbiturates on lipid peroxidation measured as malondialdehyde and 4-hydroxynon-2-enal was also investigated. Hypoxia studies were then performed on human NT2-N neurons. The cells were exposed to 10 h of hypoxia or combined oxygen and glucose deprivation for 3 or 5 h in the presence of thiopental (50-600 microM), methohexital (50-400 microM), phenobarbital (10-400 microM), or pentobarbital (10-400 microM), and cell death was evaluated after 24 h by lactate dehydrogenase release. Pentobarbital, phenobarbital, methohexital, and thiopental dose-dependently inhibited formation of 2,3-dihydroxybenzoic acid and iron-stimulated lipid peroxidation. There were significant but moderate differences in antioxidant action between the barbiturates. While phenobarbital (10-400 microM) and pentobarbital (10-50 microM) increased lactate dehydrogenase release after combined oxygen and glucose deprivation, thiopental and methohexital protected the neurons at all tested concentrations. At a higher concentration (400 microM), pentobarbital also significantly protected the neurons. At both 50 and 400 microM, thiopental and methohexital protected the NT2-N neurons significantly better than phenobarbital and pentobarbital. Barbiturates differ markedly in their neuroprotective effects against combined oxygen and glucose deprivation in human NT2-N neurons. The variation in neuroprotective effects could only partly be explained by differences in antioxidant action.

  6. Hypoxic preconditioning protects cardiomyocytes against hypoxia/reoxygenation-induced cell apoptosis via sphingosine kinase 2 and FAK/AKT pathway.

    PubMed

    Zhang, Ruxin; Li, Ling; Yuan, Li; Zhao, Min

    2016-02-01

    Previous studies have demonstrated that hypoxic preconditioning (HPC) alleviates hypoxia/reoxygenation (H/R) injury. However, the impact and mechanism involved were not fully understood. This study aimed to evaluate the effect of HPC on H/R injury in cardiomyocytes and investigate the molecular mechanisms involved. In our study, primary neonatal rat cardiomyocytes were isolated and characterized by immunofluorescence staining. We established H/R models in vitro to mimic ischemia/reperfusion (I/R) injury in vivo. Primary cardiomyocytes were exposed to HPC and then subjected to H/R. SphK2 expression was determined by quantitative real-time PCR and Western blotting. Cell apoptosis was measured by Hoechst staining. H9c2 cells were transfected with SphK2 siRNA or pcDNA3.1-SphK2 plasmid. The transfection efficiency was evaluated 48h post-transfection. After H/R, cell apoptosis rate was determined by Annexin V-FITC/PI and caspase-3/-9 activity was measured. The activation of FAK/AKT pathway was evaluated by Western blotting. Our results showed that HPC significantly increased SphK2 expression in primary cardiomyocytes under normal or H/R condition and protected against H/R-induced cell apoptosis, whereas SphK2 inhibitor K145 abolished the cardioprotective effect of HPC. HPC markedly reduced the cell apoptosis rate of H9c2, decreased the activities of caspase-3 and -9 and increased p-FAK and p-AKT levels, which were reversed by SphK2 knockdown. Additionally, SphK2 overexpression exerted a similar effect with HPC on cell apoptosis and FAK/AKT. Inhibition of H9c2 cell apoptosis induced by HPC and SphK2 overexpression was abolished by PI3K/AKT inhibitor LY294002. These results indicate that HPC may protect cardiomyocytes against H/R injury via SphK2 and the downstream FAK/AKT signaling pathway. Our findings provided important evidences for the protective role of HPC in ameliorating myocardial H/R injury. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Can hypoxia-PET map hypoxic cell density heterogeneity accurately in an animal tumor model at a clinically obtainable image contrast?

    PubMed

    Busk, Morten; Horsman, Michael R; Jakobsen, Steen; Hansen, Kim V; Bussink, Johan; van der Kogel, Albert; Overgaard, Jens

    2009-09-01

    PET allows non-invasive mapping of tumor hypoxia, but the combination of low resolution, slow tracer adduct-formation and slow clearance of unbound tracer remains problematic. Using a murine tumor with a hypoxic fraction within the clinical range and a tracer post-injection sampling time that results in clinically obtainable tumor-to-reference tissue activity ratios, we have analyzed to what extent inherent limitations actually compromise the validity of PET-generated hypoxia maps. Mice bearing SCCVII tumors were injected with the PET hypoxia-marker fluoroazomycin arabinoside (FAZA), and the immunologically detectable hypoxia marker, pimonidazole. Tumors and reference tissue (muscle, blood) were harvested 0.5, 2 and 4h after FAZA administration. Tumors were analyzed for global (well counter) and regional (autoradiography) tracer distribution and compared to pimonidazole as visualized using immunofluorescence microscopy. Hypoxic fraction as measured by pimonidazole staining ranged from 0.09 to 0.32. FAZA tumor to reference tissue ratios were close to unity 0.5h post-injection but reached values of 2 and 6 when tracer distribution time was prolonged to 2 and 4h, respectively. A fine-scale pixel-by-pixel comparison of autoradiograms and immunofluorescence images revealed a clear spatial link between FAZA and pimonidazole-adduct signal intensities at 2h and later. Furthermore, when using a pixel size that mimics the resolution in PET, an excellent correlation between pixel FAZA mean intensity and density of hypoxic cells was observed already at 2h post-injection. Despite inherent weaknesses, PET-hypoxia imaging is able to generate quantitative tumor maps that accurately reflect the underlying microscopic reality (i.e., hypoxic cell density) in an animal model with a clinical realistic image contrast.

  8. Influence of high-altitude hypoxic environments on the survival of cochlear hair cells and spiral ganglion neurons in rats

    PubMed Central

    Fan, Dongyan; Ren, Hailong; Danzeng, Dunzhu; Li, Haonan; Wang, Ping

    2016-01-01

    The aim of the present study was to observe the histological changes in the peripheral auditory system in rats at different time-points after relocating from low altitude to high altitude (3,600 m). The general physical condition of the rats was observed and cochlear tissue samples were obtained every month. The morphology and survival of the cochlear hair cells (HCs) were observed using cochlear surface preparation at 1, 30, 90, 120, 150 and 180 days after moving to the plateau area. Changes in spiral ganglion neurons (SGNs) were detected at different time-points using immunofluorescence technology on frozen sections. No obvious morphological changes were observed in the cochlear HCs within 1–3 months of the rats moving to the plateau area, and there was little loss of outer HCs (OHCs) at 3 months. Cell swelling, dislocation and loss of cochlear OHCs were apparent at 4 months, and the losses of cochlear OHCs and inner HCs (IHCs) were 54 and 39%, respectively at 6 months. The loss of SGNs was observed at 3 months, and there was a loss of 28–35% of SGNs during 3–6 months. Thus, a high-altitude hypoxic environment influenced the cochlear HCs in rats after moving to the plateau area in a time-dependent manner. The damage to SGNs occurred earlier than the HCs, although SGN damage was not aggravated with time. Furthermore, compared with cochlear HCs, cochlear SGNs were identified to be markedly more sensitive to hypoxia, and exerted an adaptive mechanism to protect neurons from hypoxia. PMID:28101341

  9. Influence of high-altitude hypoxic environments on the survival of cochlear hair cells and spiral ganglion neurons in rats.

    PubMed

    Fan, Dongyan; Ren, Hailong; Danzeng, Dunzhu; Li, Haonan; Wang, Ping

    2016-12-01

    The aim of the present study was to observe the histological changes in the peripheral auditory system in rats at different time-points after relocating from low altitude to high altitude (3,600 m). The general physical condition of the rats was observed and cochlear tissue samples were obtained every month. The morphology and survival of the cochlear hair cells (HCs) were observed using cochlear surface preparation at 1, 30, 90, 120, 150 and 180 days after moving to the plateau area. Changes in spiral ganglion neurons (SGNs) were detected at different time-points using immunofluorescence technology on frozen sections. No obvious morphological changes were observed in the cochlear HCs within 1-3 months of the rats moving to the plateau area, and there was little loss of outer HCs (OHCs) at 3 months. Cell swelling, dislocation and loss of cochlear OHCs were apparent at 4 months, and the losses of cochlear OHCs and inner HCs (IHCs) were 54 and 39%, respectively at 6 months. The loss of SGNs was observed at 3 months, and there was a loss of 28-35% of SGNs during 3-6 months. Thus, a high-altitude hypoxic environment influenced the cochlear HCs in rats after moving to the plateau area in a time-dependent manner. The damage to SGNs occurred earlier than the HCs, although SGN damage was not aggravated with time. Furthermore, compared with cochlear HCs, cochlear SGNs were identified to be markedly more sensitive to hypoxia, and exerted an adaptive mechanism to protect neurons from hypoxia.

  10. uPAR induces epithelial–mesenchymal transition in hypoxic breast cancer cells

    PubMed Central

    Lester, Robin D.; Jo, Minji; Montel, Valérie; Takimoto, Shinako; Gonias, Steven L.

    2007-01-01

    Hypoxia activates genetic programs that facilitate cell survival; however, in cancer, it may promote invasion and metastasis. In this study, we show that breast cancer cells cultured in 1.0% O2 demonstrate changes consistent with epithelial–mesenchymal transition (EMT). Snail translocates to the nucleus, and E-cadherin is lost from plasma membranes. Vimentin expression, cell migration, Matrigel invasion, and collagen remodeling are increased. Hypoxia-induced EMT is accompanied by increased expression of the urokinase-type plasminogen activator receptor (uPAR) and activation of cell signaling factors downstream of uPAR, including Akt and Rac1. Glycogen synthase kinase-3β is phosphorylated, and Snail expression is increased. Hypoxia-induced EMT is blocked by uPAR gene silencing and mimicked by uPAR overexpression in normoxia. Antagonizing Rac1 or phosphatidylinositol 3-kinase also inhibits development of cellular properties associated with EMT in hypoxia. Breast cancer cells implanted on chick chorioallantoic membranes and treated with CoCl2, to model hypoxia, demonstrate increased dissemination. We conclude that in hypoxia, uPAR activates diverse cell signaling pathways that cooperatively induce EMT and may promote cancer metastasis. PMID:17664334

  11. Enhanced Healing of Rat Calvarial Bone Defects with Hypoxic Conditioned Medium from Mesenchymal Stem Cells through Increased Endogenous Stem Cell Migration via Regulation of ICAM-1 Targeted-microRNA-221

    PubMed Central

    Chang, Woochul; Kim, Ran; Park, Sang In; Jung, Yu Jin; Ham, Onju; Lee, Jihyun; Kim, Ji Hyeong; Oh, Sekyung; Lee, Min Young; Kim, Jongmin; Park, Moon-Seo; Chung, Yong-An; Hwang, Ki-Chul; Maeng, Lee-So

    2015-01-01

    The use of conditioned medium from mesenchymal stem cells may be a feasible approach for regeneration of bone defects through secretion of various components of mesenchymal stem cells such as cytokines, chemokines, and growth factors. Mesenchymal stem cells secrete and accumulate multiple factors in conditioned medium under specific physiological conditions. In this study, we investigated whether the conditioned medium collected under hypoxic condition could effectively influence bone regeneration through enhanced migration and adhesion of endogenous mesenchymal stem cells. Cell migration and adhesion abilities were increased through overexpression of intercellular adhesion molecule-1 in hypoxic conditioned medium treated group. Intercellular adhesion molecule-1 was upregulated by microRNA-221 in mesenchymal stem cells because microRNAs are key regulators of various biological functions via gene expression. To investigate the effects in vivo, evaluation of bone regeneration by computed tomography and histological assays revealed that osteogenesis was enhanced in the hypoxic conditioned medium group relative to the other groups. These results suggest that behavioral changes of endogenous mesenchymal stem cells through microRNA-221 targeted-intercellular adhesion molecule-1 expression under hypoxic conditions may be a potential treatment for patients with bone defects. PMID:26062554

  12. Enhanced Healing of Rat Calvarial Bone Defects with Hypoxic Conditioned Medium from Mesenchymal Stem Cells through Increased Endogenous Stem Cell Migration via Regulation of ICAM-1 Targeted-microRNA-221.

    PubMed

    Chang, Woochul; Kim, Ran; Park, Sang In; Jung, Yu Jin; Ham, Onju; Lee, Jihyun; Kim, Ji Hyeong; Oh, Sekyung; Lee, Min Young; Kim, Jongmin; Park, Moon-Seo; Chung, Yong-An; Hwang, Ki-Chul; Maeng, Lee-So

    2015-07-01

    The use of conditioned medium from mesenchymal stem cells may be a feasible approach for regeneration of bone defects through secretion of various components of mesenchymal stem cells such as cytokines, chemokines, and growth factors. Mesenchymal stem cells secrete and accumulate multiple factors in conditioned medium under specific physiological conditions. In this study, we investigated whether the conditioned medium collected under hypoxic condition could effectively influence bone regeneration through enhanced migration and adhesion of endogenous mesenchymal stem cells. Cell migration and adhesion abilities were increased through overexpression of intercellular adhesion molecule-1 in hypoxic conditioned medium treated group. Intercellular adhesion molecule-1 was upregulated by microRNA-221 in mesenchymal stem cells because microRNAs are key regulators of various biological functions via gene expression. To investigate the effects in vivo, evaluation of bone regeneration by computed tomography and histological assays revealed that osteogenesis was enhanced in the hypoxic conditioned medium group relative to the other groups. These results suggest that behavioral changes of endogenous mesenchymal stem cells through microRNA-221 targeted-intercellular adhesion molecule-1 expression under hypoxic conditions may be a potential treatment for patients with bone defects.

  13. FoxO proteins mediate hypoxic induction of connective tissue growth factor in endothelial cells.

    PubMed

    Samarin, Jana; Wessel, Julia; Cicha, Iwona; Kroening, Sven; Warnecke, Christina; Goppelt-Struebe, Margarete

    2010-02-12

    Hypoxia, a driving force in neovascularization, promotes alterations in gene expression mediated by hypoxia-inducible factor (HIF)-1alpha. Connective tissue growth factor (CTGF, CCN2) is a modulator of endothelial cell growth and migration, but its regulation by hypoxia is poorly understood. Therefore, we analyzed signaling pathways involved in the regulation of CTGF by hypoxia in endothelial cells. Exposure to low oxygen tension or treatment with the hypoxia-mimetic dimethyloxalyl glycine (DMOG) stabilized HIF-1alpha and up-regulated CTGF in human umbilical vein endothelial cells and in a murine microvascular endothelial cell line. Induction of CTGF correlated with a HIF-dependent increase in protein and mRNA levels, and nuclear accumulation of the transcription factor FoxO3a. By contrast, gene expression and cellular localization of FoxO1 were not significantly altered by hypoxia. Expression of CTGF was strongly reduced by siRNA silencing of FoxO1 or FoxO3a. Furthermore, nuclear exclusion of FoxO1/3a transcription factors by inhibition of serine/threonine protein phosphatases by okadaic acid inhibited CTGF expression, providing evidence for both FoxO proteins as regulators of CTGF expression. The DMOG-stimulated induction of CTGF was further increased when endothelial cells were co-incubated with transforming growth factor-beta, an activator of Smad signaling. Activation of RhoA-Rho kinase signaling by the microtubule-disrupting drug combretastatin A4 also enhanced the DMOG-induced CTGF expression, thus placing CTGF induction by hypoxia in a network of interacting signaling pathways. Our findings provide evidence that FoxO1, hypoxia-stimulated expression of FoxO3a and its nuclear accumulation are required for the induction of CTGF by hypoxia in endothelial cells.

  14. DNA Damage Is a Prerequisite for p53-Mediated Proteasomal Degradation of HIF-1α in Hypoxic Cells and Downregulation of the Hypoxia Marker Carbonic Anhydrase IX

    PubMed Central

    Kaluzová, Milota; Kaluz, Stefan; Lerman, Michael I.; Stanbridge, Eric J.

    2004-01-01

    We investigated the relationship between the tumor suppressor p53 and the hypoxia-inducible factor-1 (HIF-1)-dependent expression of the hypoxia marker, carbonic anhydrase IX (CAIX). MCF-7 (wt p53) and Saos-2 (p53-null) cells displayed similar induction of CAIX expression and CA9 promoter activity under hypoxic conditions. Activation of p53 by the DNA damaging agent mitomycin C (MC) was accompanied by a potent repression of CAIX expression and the CA9 promoter in MCF-7 but not in Saos-2 cells. The activated p53 mediated increased proteasomal degradation of HIF-1α protein, resulting in considerably lower steady-state levels of HIF-1α protein in hypoxic MCF-7 cells but not in Saos-2 cells. Overexpression of HIF-1α relieved the MC-induced repression in MCF-7 cells, confirming regulation at the HIF-1α level. Similarly, CA9 promoter activity was downregulated by MC in HCT 116 p53+/+ but not the isogenic p53−/− cells. Activated p53 decreased HIF-1α protein levels by accelerated proteasome-dependent degradation without affecting significantly HIF-1α transcription. In summary, our results demonstrate that the presence of wtp53 under hypoxic conditions has an insignificant effect on the stabilization of HIF-1α protein and HIF-1-dependent expression of CAIX. However, upon activation by DNA damage, wt p53 mediates an accelerated degradation of HIF-1α protein, resulting in reduced activation of CA9 transcription and, correspondingly, decreased levels of CAIX protein. A model outlining the quantitative relationship between p53, HIF-1α, and CAIX is presented. PMID:15199132

  15. Erythropoietin is a JAK2 and ERK1/2 effector that can promote renal tumor cell proliferation under hypoxic conditions.

    PubMed

    Miyake, Makito; Goodison, Steve; Lawton, Adrienne; Zhang, Ge; Gomes-Giacoia, Evan; Rosser, Charles J

    2013-09-03

    Erythropoietin (EPO) provides an alternative to transfusion for increasing red blood cell mass and treating anemia in cancer patients. However, recent studies have reported increased adverse events and/or reduced survival in patients receiving both EPO and chemotherapy, potentially related to EPO-induced cancer progression. Additional preclinical studies that elucidate the possible mechanism underlying EPO cellular growth stimulation are needed. Using commercial tissue microarray (TMA) of a variety of cancers and benign tissues, EPO and EPO receptor immunohistochemical staining was performed. Furthermore using a panel of human renal cells (Caki-1, 786-O, 769-P, RPTEC), in vitro and in vivo experiments were performed with the addition of EPO in normoxic and hypoxic states to note phenotypic and genotypic changes. EPO expression score was significantly elevated in lung cancer and lymphoma (compared to benign tissues), while EPOR expression score was significantly elevated in lymphoma, thyroid, uterine, lung and prostate cancers (compared to benign tissues). EPO and EPOR expression scores in RCC and benign renal tissue were not significantly different. Experimentally, we show that exposure of human renal cells to recombinant EPO (rhEPO) induces cellular proliferation, which we report for the first time, is further enhanced in a hypoxic state. Mechanistic investigations revealed that EPO stimulates the expression of cyclin D1 while inhibiting the expression of p21cip1 and p27kip1 through the phosphorylation of JAK2 and ERK1/2, leading to a more rapid progression through the cell cycle. We also demonstrate an increase in the growth of renal cell carcinoma xenograft tumors when systemic rhEPO is administered. In summary, we elucidated a previously unidentified mechanism by which EPO administration regulates progression through the cell cycle, and show that EPO effects are significantly enhanced under hypoxic conditions.

  16. Erythropoietin is a JAK2 and ERK1/2 effector that can promote renal tumor cell proliferation under hypoxic conditions

    PubMed Central

    2013-01-01

    Background Erythropoietin (EPO) provides an alternative to transfusion for increasing red blood cell mass and treating anemia in cancer patients. However, recent studies have reported increased adverse events and/or reduced survival in patients receiving both EPO and chemotherapy, potentially related to EPO-induced cancer progression. Additional preclinical studies that elucidate the possible mechanism underlying EPO cellular growth stimulation are needed. Methods Using commercial tissue microarray (TMA) of a variety of cancers and benign tissues, EPO and EPO receptor immunohistochemical staining was performed. Furthermore using a panel of human renal cells (Caki-1, 786-O, 769-P, RPTEC), in vitro and in vivo experiments were performed with the addition of EPO in normoxic and hypoxic states to note phenotypic and genotypic changes. Results EPO expression score was significantly elevated in lung cancer and lymphoma (compared to benign tissues), while EPOR expression score was significantly elevated in lymphoma, thyroid, uterine, lung and prostate cancers (compared to benign tissues). EPO and EPOR expression scores in RCC and benign renal tissue were not significantly different. Experimentally, we show that exposure of human renal cells to recombinant EPO (rhEPO) induces cellular proliferation, which we report for the first time, is further enhanced in a hypoxic state. Mechanistic investigations revealed that EPO stimulates the expression of cyclin D1 while inhibiting the expression of p21cip1 and p27kip1 through the phosphorylation of JAK2 and ERK1/2, leading to a more rapid progression through the cell cycle. We also demonstrate an increase in the growth of renal cell carcinoma xenograft tumors when systemic rhEPO is administered. Conclusions In summary, we elucidated a previously unidentified mechanism by which EPO administration regulates progression through the cell cycle, and show that EPO effects are significantly enhanced under hypoxic conditions. PMID

  17. Neuroprotective effects of oligodendrocyte progenitor cell transplantation in premature rat brain following hypoxic-ischemic injury.

    PubMed

    Chen, Long-Xia; Ma, Si-Min; Zhang, Peng; Fan, Zi-Chuan; Xiong, Man; Cheng, Guo-Qiang; Yang, Yi; Qiu, Zi-Long; Zhou, Wen-Hao; Li, Jin

    2015-01-01

    Periventricular leukomalacia (PVL) is a common ischemic brain injury in premature infants for which there is no effective treatment. The objective of this study was to determine whether transplanted mouse oligodendrocyte progenitor cells (OPCs) have neuroprotective effects in a rat model of PVL. Hypoxia-ischemia (HI) was induced in 3-day-old rat pups by left carotid artery ligation, followed by exposure to 6% oxygen for 2.5 h. Animals were assigned to OPC transplantation or sham control groups and injected with OPCs or PBS, respectively, and sacrificed up to 6 weeks later for immunohistochemical analysis to investigate the survival and differentiation of transplanted OPCs. Apoptosis was evaluated by double immunolabeling of brain sections for caspase-3 and neuronal nuclei (NeuN), while proliferation was assessed using a combination of anti-Nestin and -bromodeoxyuridine antibodies. The expression of brain-derived neurotrophic factor (BDNF) and Bcl-2 was examined 7 days after OPC transplantation. The Morris water maze was used to test spatial learning and memory. The results showed that transplanted OPCs survived and formed a myelin sheath, and stimulated BDNF and Bcl-2 expression and the proliferation of neural stem cells (NSC), while inhibiting HI-induced neuronal apoptosis relative to control animals. Moreover, deficits in spatial learning and memory resulting from HI were improved by OPC transplantation. These results demonstrate an important neuroprotective role for OPCs that can potentially be exploited in cell-based therapeutic approaches to minimize HI-induced brain injury.

  18. Apelin promotes mesenchymal stem cells survival and vascularization under hypoxic-ischemic condition in vitro involving the upregulation of vascular endothelial growth factor.

    PubMed

    Hou, Jingying; Zhong, Tingting; Guo, Tianzhu; Miao, Changqing; Zhou, Changqing; Long, Huibao; Wu, Hao; Zheng, Shaoxin; Wang, Lei; Wang, Tong

    2017-04-01

    Mesenchymal stem cells (MSCs) transplantation has been regarded as an optimal therapeutic approach for cardiovascular disease. However, the inferior survival and low vascularization potential of these cells in the local infarct site reduce the therapeutic efficacy. In this study, we investigated the influence of apelin on MSCs survival and vascularization under hypoxic-ischemic condition in vitro and explored the relevant mechanism. MSCs were obtained from C57BL/6 mice and cultured in vitro. Cells of the third passage were divided into MSCs and MSCs+apelin groups. In the MSCs+apelin group, MSCs were stimulated with apelin-13 (5μM). The two groups experienced exposure to hypoxia (1% O2) and serum deprivation for 24h, using normoxia (20% O2) as a negative control during the process. Human umbilical vein endothelial cells (HUVECs) were used and incubated with conditioned media from both groups to promote vascularization for another 6h. Vascular densities were assessed and relevant biomarkers were detected thereafter. Compared with MSCs group, MSCs+apelin group presented more rapid growth. The proliferation rate was much higher. Cells apoptosis percentage was significantly declined both under normoxic and hypoxic conditions. Media produced from MSCs+apelin group triggered HUVECs to form a larger number of vascular branches on matrigel. The expression and secretion of vascular endothelial growth factor (VEGF) were significantly increased. Apelin could effectively promote MSCs survival and vascularization under hypoxic-ischemic condition in vitro, and this procedure was associated with the upregulation of VEGF. This study provides a new perspective for exploring novel approaches to enhance MSCs survival and vascularization potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Immunosuppression by hypoxic cell radiosensitizers: a phenomenon of potential clinical importance

    SciTech Connect

    Rockwell, S.; Kapp, D.S.

    1982-06-01

    The nitroimidazoles metronidazole, misonidazol, and desmethyl misonidazole are currently undergoing clinical trials as possible adjuncts to radiotherapy. Ongoing clinical trials are evaluating the effectiveness of these agents and also documenting the pharmacokinetics and toxicities of radiosensitizing doses of these drugs in man. A variety of toxic effects have been noted in man, including anorexia, nausea and vomiting, peripheral neuropathy, central nervous system symptoms, ototoxicity, allergy, and fear. Laboratory studies have also suggested that these agents have potential to be mutagenic, carcinogenic, and teratogenic. In the editorial presented, the author attempts to draw attention to an additional toxic effect of nitroimidazoles - the inhibition of cell-mediated immune responses. (JMT)

  20. Radiation dose fractionation studies with hypoxic cell radiosensitizers using a murine tumor. [X-ray; mice

    SciTech Connect

    Hill, R.P.

    1982-03-01

    The ability of five nitroimidazoles, metronidazole (MET), misonidazole (MISO), desmethymisonidazole (DMM), SR 2508 and SR 2555, to sensitize the KHT sarcoma to radiation treatment has been compared for drug doses in the range 0-1.5 g/Kg. Single radiation doses or two different daily fractionation schedules (4 fractions of 5 Gy each or 7 fraction of 3 Gy each) were used; the tumor cell survival was determined using either an in vivo or in vitro colony assay. Each radiation (100 kVp X rays at 11 Gy/min) treatment was given locally, 60-70 min (MET) or 30-40 min (other drugs) after either intraperitoneal (MET, MISO, DMM) or intraveous (SR 2508, SR 2555) injection of the drugs; these times have been shown to be optimum for this tumor. For the single doses and both fractionation schedules the tumor cell survival, following the irradiation treatment, declined as the drug dose increased in the range 0 to 0.75 g/Kg for all the drugs, but above this dose level a plateau was reached and the amount of sensitization remained essentially constant. In this plateau region the reduction in survival achieved was similar for single doses and 5 Gy fraction but was less for 3 Gy fractions, indicating that sensitization was smaller for the smaller dose fractions. For the 4 x 5 Gy fractionation schedule the plateau level of survival was lowest for MISO, DMM and SR 2508, slightly higher for SR 2555 and much higher for MET. For the 3 Gy fractions SR 2508 appeared slightly less effective than MISO and DMM.

  1. HIF2α/EFEMP1 cascade mediates hypoxic effects on breast cancer stem cell hierarchy

    PubMed Central

    Hong, In-Sun; Nam, Jeong-Seok

    2016-01-01

    Breast cancer stem cells (BCSCs) have been shown to contribute to tumor growth, metastasis, and recurrence. They are also markedly resistant to conventional cancer treatments, such as chemotherapy and radiation. Recent studies have suggested that hypoxia is one of the prominent micro-environmental factors that increase the self-renewal ability of BCSCs, partially by enhancing CSC phenotypes. Thus, the identification and development of new therapeutic approaches based on targeting the hypoxia-dependent responses in BCSCs is urgent. Through various in vitro studies, we found that hypoxia specifically up-regulates BCSC sphere formation and a subset of CD44+/CD24−/low CSCs. Hypoxia inducible factors 2α (HIF2α) depletion suppressed CSC-like phenotypes and CSC-mediated drug resistance in breast cancer. Furthermore, the stimulatory effects of hypoxia-induced HIF2α on BCSC sphere formation were successfully attenuated by epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) knockdown. Taken together, these data suggest that HIF2α mediates hypoxia-induced cancer growth/metastasis and that EFEMP1 is a downstream effector of hypoxia-induced HIF2α during breast tumorigenesis. PMID:27270657

  2. Dipyrone Inhibits Neuronal Cell Death and Diminishes Hypoxic/Ischemic Brain Injury

    PubMed Central

    Zhang, Yi; Wang, Xin; Baranov, Sergei V.; Zhu, Shan; Huang, Zhihong; Fellows-Mayle, Wendy; Jiang, Jiying; Day, Arthur L.; Kristal, Bruce S.; Friedlander, Robert M.

    2011-01-01

    Background and Objective Dipyrone is an analgesic and antipyretic drug usually prescribed for patients with inflammatory conditions. We recently identified dipyrone as an anti-apoptotic agent by screening a library of 1040 compounds for their ability to inhibit cytochrome c release from isolated mitochondria. We investigated the potential neuroprotective properties of dipyrone in cerebral ischemia. Methods We evaluated the protective effects of dipyrone in experimental models of neuronal hypoxia/ischemia, including an oxygen/glucose deprivation model in primary cerebrocortical neurons and a focal cerebral ischemia model in mice. Results Dipyrone reduced hypoxia/ischemia injury in both cellular and animal models. Dipyrone inhibited the release of cytochrome c and other mitochondrial apoptogenic factors from mitochondria into the cytoplasm, and attenuated subsequent caspase-9 and caspase-3 activation both in vitro and in vivo. Moreover, dipyrone prevented ischemia-induced changes in Bcl-2 and tBid, and ameliorated OGD-mediated loss of mitochondrial membrane potential. Dipyrone also inhibited ischemia-induced reactive microgliosis. In the cellular models evaluated, dipyrone did not inhibit OGD-induced COX-2 activation. Conclusion This study demonstrates that dipyrone is remarkably neuroprotective in cerebral ischemia, and its COX-independent protective properties are, at least in part, due to the inhibition of mitochondrial cell death cascades. PMID:21552169

  3. Dipyrone inhibits neuronal cell death and diminishes hypoxic/ischemic brain injury.

    PubMed

    Zhang, Yi; Wang, Xin; Baranov, Sergei V; Zhu, Shan; Huang, Zhihong; Fellows-Mayle, Wendy; Jiang, Jiying; Day, Arthur L; Kristal, Bruce S; Friedlander, Robert M

    2011-10-01

    Dipyrone is an analgesic and antipyretic drug usually prescribed for patients with inflammatory conditions. We recently identified dipyrone as an antiapoptotic agent by screening a library of 1040 compounds for their ability to inhibit cytochrome c release from isolated mitochondria. We investigated the potential neuroprotective properties of dipyrone in cerebral ischemia. We evaluated the protective effects of dipyrone in experimental models of neuronal hypoxia/ischemia, including an oxygen/glucose deprivation model in primary cerebrocortical neurons and a focal cerebral ischemia model in mice. Dipyrone reduced hypoxia/ischemia injury in both cellular and animal models. Dipyrone inhibited the release of cytochrome c and other mitochondrial apoptogenic factors from mitochondria into the cytoplasm, and attenuated subsequent caspase-9 and caspase-3 activation both in vitro and in vivo. Moreover, dipyrone prevented ischemia-induced changes in Bcl-2 and tBid, and ameliorated oxygen/glucose deprivation-mediated loss of mitochondrial membrane potential. Dipyrone also inhibited ischemia-induced reactive microgliosis. In the cellular models evaluated, dipyrone did not inhibit oxygen/glucose deprivation-induced cyclooxygenase-2 activation. Dipyrone is remarkably neuroprotective in cerebral ischemia, and its cyclooxygenase-independent protective properties are, at least in part, due to the inhibition of mitochondrial cell death cascades.

  4. Redox stress is not essential for the pseudo-hypoxic phenotype of succinate dehydrogenase deficient cells.

    PubMed

    Selak, Mary A; Durán, Raul V; Gottlieb, Eyal

    2006-01-01

    HIFalpha prolyl hydroxylases (PHDs) are a family of enzymes that regulate protein levels of the alpha subunit of the hypoxia inducible transcription factor (HIF) under different oxygen levels. PHDs catalyse the conversion of a prolyl residue, molecular oxygen and alpha-ketoglutarate to hydroxy-prolyl, carbon dioxide and succinate in a reaction dependent on ferrous iron and ascorbate as cofactors. Recently it was shown that pseudo-hypoxia, HIF induction under normoxic conditions, is an important feature of tumours generated as a consequence of inactivation of the mitochondrial tumour suppressor 'succinate dehydrogenase' (SDH). Two models have been proposed to describe the link between SDH inhibition and HIF activation. Both models suggest that a mitochondrial-generated signal leads to the inhibition of PHDs in the cytosol, however, the models differ in the nature of the proposed messenger. The first model postulates that mitochondrial-generated hydrogen peroxide mediates signal transduction while the second model implicates succinate as the molecular messenger which leaves the mitochondrion and inhibits PHDs in the cytosol. Here we show that pseudo-hypoxia can be observed in SDH-suppressed cells in the absence of oxidative stress and in the presence of effective antioxidant treatment.

  5. Altered Stra13 and Dec2 circadian gene expression in hypoxic cells

    SciTech Connect

    Guillaumond, Fabienne; Lacoche, Samuel; Dulong, Sandrine; Grechez-Cassiau, Aline; Filipski, Elisabeth; Li, Xiao-Mei; Levi, Francis; Berra, Edurne; Delaunay, Franck; Teboul, Michele

    2008-05-16

    The circadian system regulates rhythmically most of the mammalian physiology in synchrony with the environmental light/dark cycle. Alteration of circadian clock gene expression has been associated with tumour progression but the molecular links between the two mechanisms remain poorly defined. Here we show that Stra13 and Dec2, two circadian transcriptional regulators which play a crucial role in cell proliferation and apoptosis are overexpressed and no longer rhythmic in serum shocked fibroblasts treated with CoCl{sub 2,} a substitute of hypoxia. This effect is associated with a loss of circadian expression of the clock genes Rev-erb{alpha} and Bmal1, and the clock-controlled gene Dbp. Consistently, cotransfection assays demonstrate that STRA13 and DEC2 both antagonize CLOCK:BMAL1 dependent transactivation of the Rev-erb{alpha} and Dbp promoters. Using a transplantable osteosarcoma tumour model, we show that hypoxia is associated with altered circadian expression of Stra13, Dec2, Rev-erb{alpha}, Bmal1 and Dbp in vivo. These observations collectively support the notion that overexpression of Stra13 and Dec2 links hypoxia signalling to altered circadian clock gene expression.

  6. HIF2α/EFEMP1 cascade mediates hypoxic effects on breast cancer stem cell hierarchy.

    PubMed

    Kwak, Ji-Hye; Lee, Na-Hee; Lee, Hwa-Yong; Hong, In-Sun; Nam, Jeong-Seok

    2016-07-12

    Breast cancer stem cells (BCSCs) have been shown to contribute to tumor growth, metastasis, and recurrence. They are also markedly resistant to conventional cancer treatments, such as chemotherapy and radiation. Recent studies have suggested that hypoxia is one of the prominent micro-environmental factors that increase the self-renewal ability of BCSCs, partially by enhancing CSC phenotypes. Thus, the identification and development of new therapeutic approaches based on targeting the hypoxia-dependent responses in BCSCs is urgent. Through various in vitro studies, we found that hypoxia specifically up-regulates BCSC sphere formation and a subset of CD44+/CD24-/low CSCs. Hypoxia inducible factors 2α (HIF2α) depletion suppressed CSC-like phenotypes and CSC-mediated drug resistance in breast cancer. Furthermore, the stimulatory effects of hypoxia-induced HIF2α on BCSC sphere formation were successfully attenuated by epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) knockdown. Taken together, these data suggest that HIF2α mediates hypoxia-induced cancer growth/metastasis and that EFEMP1 is a downstream effector of hypoxia-induced HIF2α during breast tumorigenesis.

  7. Novel PI3K and mTOR Inhibitor NVP-BEZ235 Radiosensitizes Breast Cancer Cell Lines under Normoxic and Hypoxic Conditions

    PubMed Central

    Kuger, Sebastian; Cörek, Emre; Polat, Bülent; Kämmerer, Ulrike; Flentje, Michael; Djuzenova, Cholpon S.

    2014-01-01

    In the present study, we assessed, if the novel dual phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitor NVP-BEZ235 radiosensitizes triple negative (TN) MDA-MB-231 and estrogen receptor (ER) positive MCF-7 cells to ionizing radiation under various oxygen conditions, simulating different microenvironments as occurring in the majority of breast cancers (BCs). Irradiation (IR) of BC cells cultivated in hypoxic conditions revealed increased radioresistance compared to normoxic controls. Treatment with NVP-BEZ235 completely circumvented this hypoxia-induced effects and radiosensitized normoxic, reoxygenated, and hypoxic cells to similar extents. Furthermore, NVP-BEZ235 treatment suppressed HIF-1α expression and PI3K/mTOR signaling, induced autophagy, and caused protracted DNA damage repair in both cell lines in all tested oxygen conditions. Moreover, after incubation with NVP-BEZ235, MCF-7 cells revealed depletion of phospho-AKT and considerable signs of apoptosis, which were significantly enhanced by radiation. Our findings clearly demonstrate that NVP-BEZ235 has a clinical relevant potential as a radiosensitizer in BC treatment. PMID:24678241

  8. Laurenditerpenol, a New Diterpene from the Tropical Marine Alga Laurencia intricata Potently Inhibits HIF-1 Mediated Hypoxic Signaling in Breast Tumor Cells

    PubMed Central

    Mohammed, Kaleem A.; Hossain, Chowdhury Faiz; Zhang, Lei; Bruick, Richard K.; Zhou, Yu-Dong; Nagle, Dale G.

    2010-01-01

    The degree of tumor hypoxia correlates with advanced disease stages and treatment resistance. The transcription factor hypoxia-inducible factor-1 (HIF-1) promotes tumor cell adaptation and survival under hypoxic conditions. Therefore, specific HIF-1 inhibitors represent an important new class of potential tumor-selective therapeutic agents. A T47D human breast tumor cell-based reporter assay was used to examine extracts of plants and marine organisms for inhibitors of HIF-1 activation. Bioassay-guided fractionation of the lipid extract of the red alga Laurencia intricata yielded a structurally novel diterpene laurenditerpenol (1). The structure of 1 was determined spectroscopically. The relative configurations of the substituents of each ring system were assigned based on NOESY correlations. The absolute configurations of positions C-1 was determined by the modified Mosher ester procedure (directly in NMR tubes). Compound 1 potently inhibited hypoxia-activated HIF-1 (IC50: 0.4 μM) and hypoxia-induced VEGF (a potent angiogenic factor) in T47D cells. Compound 1 selectively inhibits HIF-1 activation by hypoxia but not iron chelator induced activation. Further, 1 suppresses tumor cell survival under hypoxic conditions without affecting normoxic cell growth. Compound 1 inhibits HIF-1 by blocking the induction of the oxygen-regulated HIF-1α protein. Mitochondrial respiration studies revealed that 1 suppresses oxygen consumption. PMID:15620241

  9. Hypoxic pre-conditioning increases the infiltration of endothelial cells into scaffolds for dermal regeneration pre-seeded with mesenchymal stem cells.

    PubMed

    Fierro, Fernando A; O'Neal, Adam J; Beegle, Julie R; Chávez, Myra N; Peavy, Thomas R; Isseroff, Roslyn R; Egaña, José T

    2015-01-01

    Many therapies using mesenchymal stem cells (MSC) rely on their ability to produce and release paracrine signals with chemotactic and pro-angiogenic activity. These characteristics, however, are mostly studied under standard in vitro culture conditions. In contrast, various novel cell-based therapies imply pre-seeding MSC into bio-artificial scaffolds. Here we describe human bone marrow-derived MSC seeded in Integra matrices, a common type of scaffold for dermal regeneration (SDR). We show and measured the distribution of MSC within the SDR, where cells clearly establish physical interactions with the scaffold, exhibiting constant metabolic activity for at least 15 days. In the SDR, MSC secrete VEGF and SDF-1α and induce transwell migration of CD34(+) hematopoietic/endothelial progenitor cells, which is inhibited in the presence of a CXCR4/SDF-1α antagonist. MSC in SDR respond to hypoxia by altering levels of angiogenic signals such as Angiogenin, Serpin-1, uPA, and IL-8. Finally, we show that MSC-containing SDR that have been pre-incubated in hypoxia show higher infiltration of endothelial cells after implantation into immune deficient mice. Our data show that MSC are fully functional ex vivo when implanted into SDR. In addition, our results strongly support the notion of hypoxic pre-conditioning MSC-containing SDR, in order to promote angiogenesis in the wounds.

  10. IL-4 promotes asymmetric dimethylarginine accumulation, oxo-nitrative stress, and hypoxic response-induced mitochondrial loss in airway epithelial cells.

    PubMed

    Pattnaik, Bijay; Bodas, Manish; Bhatraju, Naveen Kumar; Ahmad, Tanveer; Pant, Richa; Guleria, Randeep; Ghosh, Balaram; Agrawal, Anurag

    2016-07-01

    Obesity is known to increase asthma risk and severity. Increased levels of asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, are associated with mitochondrial toxicity, asthma, and metabolic syndrome. IL-4 upregulates the expression of protein arginine methyltransferases, which are essential for ADMA formation. Importantly, cross-talk between IL-4, ADMA, and mitochondrial dysfunction could explain how obesity and IL-4 can synergize to exacerbate allergic inflammation. We sought to investigate how IL-4, a key asthma-associated cytokine, can influence ADMA-related effects on lungs. BEAS2B (bronchial epithelial) cells were treated with IL-4 followed by ADMA and investigated for oxo-nitrative stress and resultant mitochondrial toxicity after 48 hours by using flow cytometry, confocal imaging, immunoblotting, and fluorimetric assays. IL-4-induced mitotoxicity in BEAS2B cells was significantly higher in the presence of exogenous ADMA. IL-4 treatment led to proteolytic degradation of dimethylarginine dimethylaminohydrolase 2, which catabolizes ADMA. IL-4 pretreatment was associated with increased intracellular ADMA accumulation and increased ADMA-induced mitotoxicity. Airway epithelial cells treated with IL-4 followed by ADMA showed exaggerated oxo-nitrative stress and potent induction of the cellular hypoxic response, despite normoxic conditions. The hypoxic response was associated with reduced mitochondrial function but was reversible by overexpression of the mitochondrial biogenesis factor, mitochondrial transcription factor A. We conclude that IL-4 promotes intracellular ADMA accumulation, leading to mitochondrial loss through oxo-nitrative stress and hypoxic response. This provides a novel understanding of how obesity, with high ADMA levels, and asthma, with high IL-4 levels, might potentiate each other and highlights the potential of mitochondrial-targeted therapeutics in obese subjects with asthma. Copyright © 2016 American

  11. Hypoxic regulation of the expression of genes encoded estrogen related proteins in U87 glioma cells: eff ect of IRE1 inhibition.

    PubMed

    Do, Minchenko; Oo, Riabovol; Oo, Ratushna; Oh, Minchenko

    2017-01-01

    The aim of the present study was to examine the effect of inhibition of endoplasmic reticulum stress signaling, mediated by IRE1 (inositol requiring enzyme 1), which is a central mediator of the unfolded protein response on the expression of genes encoded estrogen related proteins (NRIP1/RIP140, TRIM16/EBBP, ESRRA/NR3B1, FAM162A/E2IG5, PGRMC2/PMBP, and SLC39A6/LIV-1) and their hypoxic regulation in U87 glioma cells for evaluation of their possible significance in the control of glioma cells proliferation. The expression of NRIP1, EBBP, ESRRA, E2IG5, PGRMC2, and SLC39A6 genes in U87 glioma cells, transfected by empty vector pcDNA3.1 (control) and cells without IRE1 signaling enzyme function (transfected by dnIRE1) upon hypoxia, was studied by a quantitative polymerase chain reaction. Inhibition of both enzymatic activities (kinase and endoribonuclease) of IRE1 signaling enzyme function up-regulates the expression of EBBP, E2IG5, PGRMC2, and SLC39A6 genes is in U87 glioma cells in comparison with the control glioma cells, with more significant changes for E2IG5 and PGRMC2 genes. At the same time, the expression of NRIP1 and ESRRA genes is strongly down-regulated in glioma cells upon inhibition of IRE1. We also showed that hypoxia increases the expression of E2IG5, PGRMC2, and EBBP genes and decreases NRIP1 and ESRRA genes expression in control glioma cells. Furthermore, the inhibition of IRE1 in U87 glioma cells decreases the eff ect of hypoxia on the expression of E2IG5 and PGRMC2 genes, eliminates hypoxic regulation of NRIP1 gene, and enhances the sensitivity of ESRRA gene to hypoxic condition. Furthermore, the expression of SLC39A6 gene is resistant to hypoxia in both the glioma cells with and without IRE1 signaling enzyme function. Results of this investigation demonstrate that inhibition of IRE1 signaling enzyme function affects the expression of NRIP1, EBBP, ESRRA, E2IG5, PGRMC2, and SLC39A6 genes in U87 glioma cells in gene specific manner and these changes

  12. A Novel Microfluidic Platform for High-Resolution Imaging of a Three-Dimensional Cell Culture under a Controlled Hypoxic Environment

    PubMed Central

    Funamoto, Kenichi; Zervantonakis, Ioannis K.; Liu, Yuchun; Ochs, Christopher J.; Kim, Choong

    2014-01-01

    Low oxygen tensions experienced in various pathological and physiological conditions are a major stimulus for angiogenesis. Hypoxic conditions play a critical role in regulating cellular behaviour including migration, proliferation and differentiation. This study introduces the use of a microfluidic device that allows for the control of oxygen tension for the study of different three-dimensional (3D) cell cultures for various applications. The device has a central 3D gel region acting as an external cellular matrix, flanked by media channels. On each side, there is a peripheral gas channel through which suitable gas mixtures are supplied to establish a uniform oxygen concentration or gradient within the device. The effects of various parameters, such as gas and media flow rates, device thickness, and diffusion coefficients of oxygen were examined using numerical simulations to determine the characteristics of the microfluidic device. A polycarbonate (PC) film with a low oxygen diffusion coefficient was embedded in the device in proximity above the channels to prevent oxygen diffusion from the incubator environment into the Polydimethylsiloxane (PDMS) device. The oxygen tension in the device was then validated experimentally using a ruthenium-coated (Ru-coated) oxygen-sensing glass cover slip which confirmed the establishment of low uniform oxygen tensions (< 3%) or an oxygen gradient across the gel region. To demonstrate the utility of the microfluidic device for cellular experiments under hypoxic conditions, migratory studies of MDA-MB-231 human breast cancer cells were performed. The microfluidic device allowed for imaging cellular migration with high-resolution, exhibiting an enhanced migration in hypoxia in comparison to normoxia. This microfluidic device presents itself as a promising platform for the investigation of cellular behaviour in a 3D gel scaffold under varying hypoxic conditions. PMID:23023115

  13. Acquisition of tumor cell phenotypic diversity along the EMT spectrum under hypoxic pressure: Consequences on susceptibility to cell-mediated cytotoxicity.

    PubMed

    Terry, Stéphane; Buart, Stéphanie; Tan, Tuan Zea; Gros, Gwendoline; Noman, Muhammad Zaeem; Lorens, James B; Mami-Chouaib, Fathia; Thiery, Jean Paul; Chouaib, Salem

    2017-01-01

    Tumor escape to immunosurveillance and resistance to immune attacks present a major hurdle in cancer therapy, especially in the current era of new cancer immunotherapies. We report here that hypoxia, a hallmark of most solid tumors, orchestrates carcinoma cell heterogeneity through the induction of phenotypic diversity and the acquisition of distinct epithelial-mesenchymal transition (EMT) states. Using lung adenocarcinoma cells derived from a non-metastatic patient, we demonstrated that hypoxic stress induced phenotypic diversity along the EMT spectrum, with induction of EMT transcription factors (EMT-TFs) SNAI1, SNAI2, TWIST1, and ZEB2 in a hypoxia-inducible factor-1α (HIF1A)-dependent or -independent manner. Analysis of hypoxia-exposed tumor subclones, with pronounced epithelial or mesenchymal phenotypes, revealed that mesenchymal subclones exhibited an increased propensity to resist cytotoxic T lymphocytes (CTL), and natural killer (NK) cell-mediated lysis by a mechanism involving defective immune synapse signaling. Additionally, targeting EMT-TFs, or inhibition of TGF-β signaling, attenuated mesenchymal subclone susceptibility to immune attack. Together, these findings uncover hypoxia-induced EMT and heterogeneity as a novel driving escape mechanism to lymphocyte-mediated cytotoxicity, with the potential to provide new therapeutic opportunities for cancer patients.

  14. Estrogen receptor α is a novel target of the Von Hippel-Lindau protein and is responsible for the proliferation of VHL-deficient cells under hypoxic conditions.

    PubMed

    Jung, Youn-Sang; Lee, Su-Jin; Yoon, Min-Ho; Ha, Nam Chul; Park, Bum-Joon

    2012-12-01

    The Von Hippel-Lindau gene (VHL) is frequently deleted or mutated in human renal cell carcinoma (RCC) at the early stage. According to the well-established theory, pVHL acts as a tumor suppressor through its E3 ligase activity, which targets hypoxia-inducing factor-1α (HIF-1α). However, the elevated expression of HIF-1α did not promote cell proliferation, indicating that there would be another target, which could promote cell proliferation at the early cancer stage of RCC. In this study, we show that estrogen receptor-α (ER-α) is a novel proteasomal degradation target of the pVHL E3 ligase. Indeed, the overexpression of VHL suppresses exo- and endogenous ER-α expression, whereas si-pVHL can increase ER-α expression. The negative regulation of pVHL on ER-α expression is achieved by its E3 ligase activity. Thus, pVHL can promote the ER-α ubiquitinylation. In addition, we revealed that ER-α and HIF-1α are competitive substrates of pVHL. Thus, under normal conditions, ER-α overexpression can increase the transcription factor activity of HIF-1α. Under the hypoxic condition, where HIF-1α is not a suitable target of pVHL, ER-α is more rapidly degraded by pVHL. However, in VHL-deficient cells, the expression of ER-α and HIF-1α is retained, so that the hypoxic condition did not suppress cell proliferation obviously compared with cells that are expressing pVHL. Thus, blocking of ER-α using its inhibitor could suppress the proliferation of VHL-deficient cells as effectively as hypoxia-induced growth suppression. Considering our results, blocking of ER-α signaling in VHL-deficient cancer cells would be beneficial for cancer suppression. Indeed, we showed the anti-proliferative effect of Faslodex in VHL-deficient cells.

  15. MicroRNA-190 regulates hypoxic pulmonary vasoconstriction by targeting a voltage-gated K⁺ channel in arterial smooth muscle cells.

    PubMed

    Li, Shan-Shan; Ran, Ya-Juan; Zhang, Dan-Dan; Li, Shu-Zhen; Zhu, Daling

    2014-06-01

    Pulmonary arterial hypertension (PAH) is associated with sustained vasoconstriction, profound structural remodeling of vasculatures and alterations in Ca(2+) homeostasis in arterial smooth muscle cells (SMCs), while the underlying mechanisms are still elusive. By regulating the expression of proteins, microRNAs (miRNAs) are known to play an important role in cell fates including differentiation, apoptosis and proliferation, and may be involved in the development of PAH. Based on our previous study, hypoxia produced a significant increase of the miR-190 level in the pulmonary artery (PA), here, we used synthetic miR-190 to mimic the increase in hypoxic conditions and showed evidence for the effects of miR-190 on pulmonary arterial vasoconstriction and Ca(2+) influx in arterial SMCs. Synthetic miR-190 remarkably enhanced the vasoconstriction responses to phenylephrine (PE) and KCl. The voltage-gated K(+) channel subfamily member, Kcnq5, mRNA was shown to be a target for miR-190. Meanwhile, miR-190 antisense oligos can partially reverse the effects of miR-190 on PASMCs and PAs. Therefore, these results suggest that miR-190 appears to be a positive regulator of Ca(2+) influx, and plays an important role in hypoxic pulmonary vascular constriction. © 2014 Wiley Periodicals, Inc.

  16. Comparative Study on the Protective Effects of Salidroside and Hypoxic Preconditioning for Attenuating Anoxia-Induced Apoptosis in Pheochromocytoma (PC12) Cells.

    PubMed

    Hu, Yao; Lv, Xiumei; Zhang, Jing; Meng, Xianli

    2016-10-30

    BACKGROUND Hypoxia is an important sign that can result from body injuries or a special condition such as being at a high altitude or deep water diving. In the current studies, hypoxic preconditioning (HPC) plays a key role in reducing hypoxia-induced apoptosis. We aimed to study the pharmacologic preconditioning effects of salidroside versus those of HPC in hypoxia-/anoxia-induced apoptosis in PC12 cells (pheochromocytoma). MATERIAL AND METHODS PC12 cells were treated by different experimental conditions: control condition, hypoxia condition, HPC condition, low-/middle-/high-dose condition of salidroside, cyclosporine A (CsA), and oratractyloside (ATR). The cell viability, lactate dehydrogenase (LDH) activity, apoptosis, mitochondrial membrane potential (MMP), intracellular Ca2+, caspase-3 activity, and expression of Bcl-2 were detected in PC12 cells after the hypoxia treatment. Salidroside, extracted from the traditional Chinese herb Rhodiola rosea L, plays an essential role in reducing hypoxia-induced apoptosis in PC12 cells by the mitochondrial pathway. RESULTS Salidroside decreased the apoptosis and increased the viability of hypoxia-induced PC12 cells more effectively than HPC Moreover, salidroside markedly stabilized MMP and intracellular Ca2+, reduced or inhibited LDH and caspase-3 activity, and up-regulated Bcl-2; CsA and ATR showed corresponding function. CONCLUSIONS Salidroside administration restrains apoptosis induced by hypoxia in PC12 cells. The protective effects are mediated by preservation of mitochondrial integrity and MMP to inhibit the excessive Ca2+ influx and caspase-3 activity and to promote the Bcl-2 expression, providing a potential clinical and effective therapeutic mechanism to reduce deaths from ischemic or hypoxic injury.

  17. Comparative Study on the Protective Effects of Salidroside and Hypoxic Preconditioning for Attenuating Anoxia-Induced Apoptosis in Pheochromocytoma (PC12) Cells

    PubMed Central

    Hu, Yao; Lv, Xiumei; Zhang, Jing; Meng, Xianli

    2016-01-01

    Background Hypoxia is an important sign that can result from body injuries or a special condition such as being at a high altitude or deep water diving. In the current studies, hypoxic preconditioning (HPC) plays a key role in reducing hypoxia-induced apoptosis. We aimed to study the pharmacologic preconditioning effects of salidroside versus those of HPC in hypoxia-/anoxia-induced apoptosis in PC12 cells (pheochromocytoma). Material/Methods PC12 cells were treated by different experimental conditions: control condition, hypoxia condition, HPC condition, low-/middle-/high-dose condition of salidroside, cyclosporine A (CsA), and oratractyloside (ATR). The cell viability, lactate dehydrogenase (LDH) activity, apoptosis, mitochondrial membrane potential (MMP), intracellular Ca2+, caspase-3 activity, and expression of Bcl-2 were detected in PC12 cells after the hypoxia treatment. Salidroside, extracted from the traditional Chinese herb Rhodiola rosea L, plays an essential role in reducing hypoxia-induced apoptosis in PC12 cells by the mitochondrial pathway. Results Salidroside decreased the apoptosis and increased the viability of hypoxia-induced PC12 cells more effectively than HPC Moreover, salidroside markedly stabilized MMP and intracellular Ca2+, reduced or inhibited LDH and caspase-3 activity, and up-regulated Bcl-2; CsA and ATR showed corresponding function. Conclusions Salidroside administration restrains apoptosis induced by hypoxia in PC12 cells. The protective effects are mediated by preservation of mitochondrial integrity and MMP to inhibit the excessive Ca2+ influx and caspase-3 activity and to promote the Bcl-2 expression, providing a potential clinical and effective therapeutic mechanism to reduce deaths from ischemic or hypoxic injury. PMID:27794583

  18. Hypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells.

    PubMed

    Michelakis, Evangelos D; Thébaud, Bernard; Weir, E Kenneth; Archer, Stephen L

    2004-12-01

    Hypoxic pulmonary vasoconstriction (HPV) is a widely-conserved mechanism for matching ventilation and perfusion that optimizes systemic PO(2). HPV is elicited by moderate alveolar hypoxia through a mechanism that is intrinsic to the pulmonary circulation, particularly the resistance pulmonary arteries (PA), and is robust even in isolated perfused lungs. Although modulated by the endothelium, HPV persists in denuded PA rings and PA smooth muscle cells (PASMC). Beginning within seconds of hypoxia, HPV plateaus in minutes and persists for hours. During focal hypoxia (e.g. atelectasis), HPV is restricted to the vascular segments serving hypoxic lobes, and diverts blood to better-ventilated segments without causing pulmonary hypertension (PHT). However, with global hypoxia, as occurs at high altitude or in the fetal lung, HPV increases pulmonary vascular resistance (PVR) and may contribute to PHT. This review focuses on a comprehensive Redox Theory of HPV but considers relevant modulatory factors (endothelin), triggering stimuli (cyclic ADP-ribose-induced release of sarcoplasmic reticulum (SR) Ca(2+)) and sustaining pathways (Rho kinase-modulated Ca(2+) sensitization of the contractile apparatus). The Redox Theory proposes that an O(2)-sensor in resistance PASMC (complexes I and III of the mitochondrial electron transport chain (ETC)) generates reactive O(2) species (ROS) in proportion to PO(2). During normoxia, a redox mediator, like hydrogen peroxide (H(2)O(2)), maintains voltage-gated O(2)-sensitive K(+) channels (Kv) in an oxidized open state. Hypoxic withdrawal of ROS inhibits Kv channels, thereby depolarizing PASMCs, activating L-type voltage-gated Ca(2+) channels, enhancing Ca(2+) influx and promoting vasoconstriction. The role of O(2)-sensitive K(+) channels is conserved in most specialized O(2)-sensitive tissues, including the ductus arteriosus and carotid body. The unique occurrence of hypoxic vasoconstriction in the pulmonary circulation relates to the

  19. NOR-1/NR4A3 regulates the cellular inhibitor of apoptosis 2 (cIAP2) in vascular cells: role in the survival response to hypoxic stress.

    PubMed

    Alonso, Judith; Galán, María; Martí-Pàmies, Ingrid; Romero, José María; Camacho, Mercedes; Rodríguez, Cristina; Martínez-González, José

    2016-09-22

    Vascular cell survival is compromised under pathological conditions such as abdominal aortic aneurysm (AAA). We have previously shown that the nuclear receptor NOR-1 is involved in the survival response of vascular cells to hypoxia. Here, we identify the anti-apoptotic protein cIAP2 as a downstream effector of NOR-1. NOR-1 and cIAP2 were up-regulated in human AAA samples, colocalizing in vascular smooth muscle cells (VSMC). While NOR-1 silencing reduced cIAP2 expression in vascular cells, lentiviral over-expression of this receptor increased cIAP2 mRNA and protein levels. The transcriptional regulation of the human cIAP2 promoter was analyzed in cells over-expressing NOR-1 by luciferase reporter assays, electrophoretic mobility shift analysis and chromatin immunoprecipitation, identifying a NGFI-B site (NBRE-358/-351) essential for NOR-1 responsiveness. NOR-1 and cIAP2 were up-regulated by hypoxia and by a hypoxia mimetic showing a similar time-dependent pattern. Deletion and site-directed mutagenesis studies show that NOR-1 mediates the hypoxia-induced cIAP2 expression. While NOR-1 over-expression up-regulated cIAP2 and limited VSMC apoptosis induced by hypoxic stress, cIAP2 silencing partially prevented this NOR-1 pro-survival effect. These results indicate that cIAP2 is a target of NOR-1, and suggest that this anti-apoptotic protein is involved in the survival response to hypoxic stress mediated by NOR-1 in vascular cells.

  20. NOR-1/NR4A3 regulates the cellular inhibitor of apoptosis 2 (cIAP2) in vascular cells: role in the survival response to hypoxic stress

    PubMed Central

    Alonso, Judith; Galán, María; Martí-Pàmies, Ingrid; Romero, José María; Camacho, Mercedes; Rodríguez, Cristina; Martínez-González, José

    2016-01-01

    Vascular cell survival is compromised under pathological conditions such as abdominal aortic aneurysm (AAA). We have previously shown that the nuclear receptor NOR-1 is involved in the survival response of vascular cells to hypoxia. Here, we identify the anti-apoptotic protein cIAP2 as a downstream effector of NOR-1. NOR-1 and cIAP2 were up-regulated in human AAA samples, colocalizing in vascular smooth muscle cells (VSMC). While NOR-1 silencing reduced cIAP2 expression in vascular cells, lentiviral over-expression of this receptor increased cIAP2 mRNA and protein levels. The transcriptional regulation of the human cIAP2 promoter was analyzed in cells over-expressing NOR-1 by luciferase reporter assays, electrophoretic mobility shift analysis and chromatin immunoprecipitation, identifying a NGFI-B site (NBRE-358/-351) essential for NOR-1 responsiveness. NOR-1 and cIAP2 were up-regulated by hypoxia and by a hypoxia mimetic showing a similar time-dependent pattern. Deletion and site-directed mutagenesis studies show that NOR-1 mediates the hypoxia-induced cIAP2 expression. While NOR-1 over-expression up-regulated cIAP2 and limited VSMC apoptosis induced by hypoxic stress, cIAP2 silencing partially prevented this NOR-1 pro-survival effect. These results indicate that cIAP2 is a target of NOR-1, and suggest that this anti-apoptotic protein is involved in the survival response to hypoxic stress mediated by NOR-1 in vascular cells. PMID:27654514

  1. NADPH:cytochrome c (P450) reductase activates tirapazamine (SR4233) to restore hypoxic and oxic cytotoxicity in an aerobic resistant derivative of the A549 lung cancer cell line

    PubMed Central

    Saunders, M P; Patterson, A V; Chinje, E C; Harris, A L; Stratford, I J

    2000-01-01

    Tirapazamine (TPZ, SR4233, WIN 59075) is a bioreductive drug that is activated in regions of low oxygen tension to a cytotoxic radical intermediate. This labile metabolite shows high selective toxicity towards hypoxic cells, such as those found in solid tumours. Under aerobic conditions, redox cycling occurs with subsequent generation of superoxide radicals, which are also cytotoxic. NADPH:cytochrome c (P450) reductase (P450R) is a one-electron reducing enzyme that efficiently activates TPZ. Recently a derivative of the A549 non-small cell lung cancer cell line (A549c50) was generated that showed substantially reduced P450R activity compared to its parental line (Elwell et al (1997) Biochem Pharmacol54: 249–257). Here, it is demonstrated that the A549c50 cells are markedly more resistant to TPZ under both aerobic and hypoxic conditions. In addition, these cells have a dramatically impaired ability to metabolize TPZ to its two-electron reduction product, SR4317, under hypoxic conditions when compared to wild-type cells. P450R activity in the A549c50 cells was reintroduced to similar levels as that seen in the parental A549 cells by transfection of the full-length cDNA for human P450R. These P450R over-expressing cells exhibit restored sensitivity to TPZ under both aerobic and hypoxic conditions, comparable to that found in the original parental A549 cells. Further, the ability of the transfected cells to metabolize TPZ to SR4317 under hypoxic conditions is also shown to be restored. This provides further evidence that P450R can play an important role in the activation, metabolism and toxicity of this lead bioreductive drug. © 2000 Cancer Research Campaign PMID:10682679

  2. Small interfering RNA knockdown of mini-TyrRS and mini-TrpRS effects angiogenesis in human umbilical vein endothelial cells in hypoxic culture.

    PubMed

    Zeng, Rui; Chen, Yu-Cheng; Zeng, Zhi; Liu, Rui; Qiang, Ou; Jiang, Xiao-Fei; Liu, Xiao-Xia; Li, Xian; Wang, Hao-Yu

    2008-03-01

    Aim We studied the role of mini-TyrRS and mini-TrpRS in angiogenesis by using small interfering RNA-mediated mini-TyrRS/mini-TrpRS knockout in hypoxic culture of human umbilical vein endothelial cells. Methods SiRNA was used as the main method to inhibited the gene function. Silencing efficiency was assayed by real-time reverse transcription-polymerase chain reaction and western blotting. The angiogenic activity in vitro was evaluated by transwell migration assay and Matrigel-induced capillary tube formation in hypoxic culture. Cell proliferation was determined by crystal violet staining. Results The results showed that levels of the mini-TyrRS/mini-TrpRS gene and protein in mock transfection group and negative control group were higher, but noticeably decreased in experimental group. However, no significant difference was detected between mock transfection group and negative control group, but there was a statistically significant difference compared with experimental group. For mini-TyrRS-siRNA group, the cell migration, tube formation and the rate of cell proliferation were respectively inhibited by (47.4, 56.3, 65.4, 73.7%), (60.5, 69.1, 75.9, 83.6%) and (40.4, 56.2, 61.2, 68.0%). For mini-TrpRS-siRNA, were respectively increased by (18.0, 33.8, 45.1, 56.4%), (18.3, 31.2, 40.3, 45.7%) and (8.4, 26.4, 38.2, 46.6%). Conclusion These results indicated that angiogenesis is either stimulated by mini-TyrRS or inhibited by mini-TrpRS in matrigel models in hypoxic culture, raising the possibility that mini-TyrRS stimulates a common downstream signaling event. Thus, naturally occurring fragments of two proteins involved in translation, TyrRS and TrpRS, have opposing activity on endothelial cell angiogenesis in the matrigel assays. The opposing activities of the two tRNA synthetases suggest tight regulation of the balance between pro- and anti-angiogenic stimuli.

  3. The Long Non-coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches.

    PubMed

    Mineo, Marco; Ricklefs, Franz; Rooj, Arun K; Lyons, Shawn M; Ivanov, Pavel; Ansari, Khairul I; Nakano, Ichiro; Chiocca, E Antonio; Godlewski, Jakub; Bronisz, Agnieszka

    2016-06-14

    Long non-coding RNAs (lncRNAs) have an undefined role in the pathobiology of glioblastoma multiforme (GBM). These tumors are genetically and phenotypically heterogeneous with transcriptome subtype-specific GBM stem-like cells (GSCs) that adapt to the brain tumor microenvironment, including hypoxic niches. We identified hypoxia-inducible factor 1 alpha-antisense RNA 2 (HIF1A-AS2) as a subtype-specific hypoxia-inducible lncRNA, upregulated in mesenchymal GSCs. Its deregulation affects GSC growth, self-renewal, and hypoxia-dependent molecular reprogramming. Among the HIF1A-AS2 interactome, IGF2BP2 and DHX9 were identified as direct partners. This association was needed for maintenance of expression of their target gene, HMGA1. Downregulation of HIF1A-AS2 led to delayed growth of mesenchymal GSC tumors, survival benefits, and impaired expression of HMGA1 in vivo. Our data demonstrate that HIF1A-AS2 contributes to GSCs' speciation and adaptation to hypoxia within the tumor microenvironment, acting directly through its interactome and targets and indirectly by modulating responses to hypoxic stress depending on the subtype-specific genetic context. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. The long non-coding RNA – HIF1A-AS2 facilitates the maintenance of mesenchymal glioblastoma stem-like cells in hypoxic niches

    PubMed Central

    Mineo, Marco; Ricklefs, Franz; Rooj, Arun K.; Lyons, Shawn M.; Ivanov, Pavel; Ansari, Khairul I.; Nakano, Ichiro; Chiocca, E. Antonio; Godlewski, Jakub; Bronisz, Agnieszka

    2016-01-01

    Long-non-coding RNAs (lncRNAs) have an undefined role in the pathobiology of glioblastoma multiforme (GBM). These tumors are genetically and phenotypically heterogeneous with transcriptome subtype-specific GBM stem-like cells (GSCs) that adapt to the brain tumor microenvironment, including hypoxic niches. We identified hypoxia inducible factor 1 alpha-antisense RNA 2 (HIF1A-AS2) as a subtype-specific hypoxia inducible lncRNA, up-regulated in mesenchymal GSCs. Its deregulation affects GSC growth, self-renewal and hypoxia-dependent molecular reprogramming. Amongst the HIF1A-AS2 interactome, IGF2BP2 and DHX9 were identified as direct partners. This association was needed for maintenance of expression of their target gene, HMGA1. Down-regulation of HIF1A-AS2 led to delayed growth of mesenchymal GSC tumors, survival benefits, and impaired expression of HMGA1 in vivo. Our data demonstrate that HIF1A-AS2 contributes to GSCs’ speciation and adaptation to hypoxia within the tumor microenvironment, acting directly through its interactome/targets and indirectly by modulating responses to hypoxic stress depending on the subtype-specific genetic context. PMID:27264189

  5. The Archipelago Ubiquitin Ligase Subunit Acts in Target Tissue to Restrict Tracheal Terminal Cell Branching and Hypoxic-Induced Gene Expression

    PubMed Central

    Mortimer, Nathan T.; Moberg, Kenneth H.

    2013-01-01

    The Drosophila melanogaster gene archipelago (ago) encodes the F-box/WD-repeat protein substrate specificity factor for an SCF (Skp/Cullin/F-box)-type polyubiquitin ligase that inhibits tumor-like growth by targeting proteins for degradation by the proteasome. The Ago protein is expressed widely in the fly embryo and larva and promotes degradation of pro-proliferative proteins in mitotically active cells. However the requirement for Ago in post-mitotic developmental processes remains largely unexplored. Here we show that Ago is an antagonist of the physiologic response to low oxygen (hypoxia). Reducing Ago activity in larval muscle cells elicits enhanced branching of nearby tracheal terminal cells in normoxia. This tracheogenic phenotype shows a genetic dependence on sima, which encodes the HIF-1α subunit of the hypoxia-inducible transcription factor dHIF and its target the FGF ligand branchless (bnl), and is enhanced by depletion of the Drosophila Von Hippel Lindau (dVHL) factor, which is a subunit of an oxygen-dependent ubiquitin ligase that degrades Sima/HIF-1α protein in metazoan cells. Genetic reduction of ago results in constitutive expression of some hypoxia-inducible genes in normoxia, increases the sensitivity of others to mild hypoxic stimulus, and enhances the ability of adult flies to recover from hypoxic stupor. As a molecular correlate to these genetic data, we find that Ago physically associates with Sima and restricts Sima levels in vivo. Collectively, these findings identify Ago as a required element of a circuit that suppresses the tracheogenic activity of larval muscle cells by antagonizing the Sima-mediated transcriptional response to hypoxia. PMID:23459416

  6. Patterns and Levels of Hypoxia in Head and Neck Squamous Cell Carcinomas and Their Relationship to Patient Outcome

    SciTech Connect

    Evans, Sydney M. V. Du, Kevin L.; Chalian, Ara A.; Mick, Rosemarie; Zhang, Paul J.; Hahn, Stephen M.; Quon, Harry; Lustig, Robert; Weinstein, Gregory S.; Koch, Cameron J.

    2007-11-15

    Purpose: EF5, a 2-nitroimidazole hypoxia marker, was used to study the presence, levels, and prognostic significance of hypoxia in primary head and neck squamous cell tumors. Methods and Materials: Twenty-two patients with newly diagnosed squamous cell carcinoma of the oral cavity, oropharynx, or larynx with at least 2 years of clinical follow-up were included in this study. Quantitative analyses of EF5 immunofluorescence was carried out, and these data were compared with patient outcome. Results: EF5 immunostaining showed substantial intra- and intertumoral hypoxic heterogeneity. The majority of cells in all tumors were well oxygenated. Three patterns of EF5 binding in cells were identified using criteria based on the cellular region that was stained (peripheral or central) and the relationship of binding to necrosis. We tested the association between EF5-binding levels with event-free and overall survival irrespective of the pattern of cellular binding or treatment regimen. Patients with tumors containing EF5-binding regions corresponding to severe hypoxia ({<=}0.1% oxygen) had a shorter event-free survival time than patients with pO{sub 2} values greater than 0.1% (p = 0.032). Nodal status was also predictive for outcome. Conclusions: These data illustrate the potential utility of EF5 binding based on quantitative immunohistochemistry of tissue pO{sub 2} and provide support for the development of noninvasive hypoxia positron emission tomographic studies with fluorine 18-labeled EF5.

  7. Kinetics of a putative hypoxic tissue marker, Technetium-99m-nitroimidazole (BMS181321), in normoxic, hypoxic, ischemic and stunned myocardium

    SciTech Connect

    Kusuoka, Hideo; Hashimoto, Katsuji; Fukuchi, Kazuki

    1994-08-01

    This study focused on the kinetics of the newly developed {sup 99m}TTc-nitroimidazole, propyleneamine oxime-1,2-nitroimidazole (BMS181321) in the different setting of myocardial perfusion states and oxygenation levels, and compared the kinetics of BMS181321 with those of other technetium analogues. The kinetics of BMS181321 were evaluated in isolated perfused rat hearts. Technetium-99m-hexamethyl propyleneamine oxime (HMPAO) and a non-nitroimidazole-containing analogue of BMS 181321 (6-methyl propyleneamine oxime; PAO-6-Me) were used to compare their kinetics with those of BMS181321. BMS181321 cleared quickly from normoxic hearts and the retention in the myocardium 10 min after injection was 0.84% {plus_minus} 0.04% ID/g wet wt (mean {plus_minus} s.e.m.). In contrast, BMS181321 was retained after reperfusion when it was injected before ischemia; the uptake in the myocardium 10 min after reperfusion was significantly greater than in controls (23.9% {plus_minus} 3.9%ID/g wt, p<0.05). These results indicate that {sup 99m}Tc-BMS181321 is well trapped in ischemic myocardium and moderately trapped in hypoxic myocardium, but washed out quickly in stunned myocardium. The residence time influences the amount retained. 14 refs., 7 figs., 1 tab.

  8. Generation of Oxygen Deficiency in Cell Culture Using a Two-Enzyme System to Evaluate Agents Targeting Hypoxic Tumor Cells

    PubMed Central

    Baumann, Raymond P.; Penketh, Philip G.; Seow, Helen A.; Shyam, Krishnamurthy; Sartorelli, Alan C.

    2008-01-01

    The poor and aberrant vascularization of solid tumors makes them susceptible to localized areas of oxygen deficiency that can be considered sites of tumor vulnerability to pro-drugs that are preferentially activated to cytotoxic species under conditions of low oxygenation. To readily facilitate the selection of agents targeted to oxygen-deficient cells in solid tumors, we have developed a simple and convenient two-enzyme system to generate oxygen deficiency in cell cultures. Glucose oxidase is employed to deplete oxygen from the medium by selectively oxidizing glucose and reducing molecular oxygen to hydrogen peroxide; an excess of catalase is also used to scavenge the peroxide molecules. Rapid and sustained depletion of oxygen occurs in medium or buffer, even in the presence of oxygen at the liquid/air interface. Studies using CHO/AA8 Chinese hamster cells, EMT6 murine mammary carcinoma cells, and U251 human glioma cells indicate that this system generates an oxygen deficiency that produces activation of the hypoxia-targeted prodrug KS119. This method of generating oxygen deficiency in cell culture is inexpensive, does not require cumbersome equipment, permits longer incubation times to be used without the loss of sample volume, and should be adaptable for high-throughput screening in 96-well plates. PMID:18959466

  9. Interdependence of HIF-1α and TGF-β/Smad3 signaling in normoxic and hypoxic renal epithelial cell collagen expression

    PubMed Central

    Basu, Rajit K.; Hubchak, Susan; Hayashida, Tomoko; Runyan, Constance E.; Schumacker, Paul T.

    2011-01-01

    Increasing evidence suggests that chronic kidney disease may develop following acute kidney injury and that this may be due, in part, to hypoxia-related phenomena. Hypoxia-inducible factor (HIF) is stabilized in hypoxic conditions and regulates multiple signaling pathways that could contribute to renal fibrosis. As transforming growth factor (TGF)-β is known to mediate renal fibrosis, we proposed a profibrotic role for cross talk between the TGF-β1 and HIF-1α signaling pathways in kidney cells. Hypoxic incubation increased HIF-1α protein expression in cultured human renal tubular epithelial cells and mouse embryonic fibroblasts. TGF-β1 treatment further increased HIF-1α expression in cells treated with hypoxia and also increased HIF-1α in normoxic conditions. TGF-β1 did not increase HIF-1α mRNA levels nor decrease the rate of protein degradation, suggesting that it enhances normoxic HIF-1α translation. TGF-β receptor (ALK5) kinase activity was required for increased HIF-1α expression in response to TGF-β1, but not to hypoxia. A dominant negative Smad3 decreased the TGF-β-stimulated reporter activity of a HIF-1α-sensitive hypoxia response element. Conversely, a dominant negative HIF-1α construct decreased Smad-binding element promoter activity in response to TGF-β. Finally, blocking HIF-1α transcription with a biochemical inhibitor, a dominant negative construct, or gene-specific knockdown decreased basal and TGF-β1-stimulated type I collagen expression, while HIF-1α overexpression increased both. Taken together, our data demonstrate cooperation in signaling between Smad3 and HIF-1α and suggest a new paradigm in which HIF-1α is necessary for normoxic, TGF-β1-stimulated renal cell fibrogenesis. PMID:21209004

  10. Preparation of Nucleosides Derived from 2-Nitroimidazole and d-Arabinose, d-Ribose, and d-Galactose by the Vorbrüggen Method and Their Conversion to Potential Precursors for Tracers To Image Hypoxia

    PubMed Central

    2011-01-01

    2-Nitroimidazole was silylated using hexaethyldisilazane and then reacted with 1-O-acetyl derivatives of d-arabinose, d-ribose, and d-galactose in acetonitrile at mild temperatures (−20 °C to rt), catalyzed by triethylsilyl triflate (Vorbrüggen conditions). The α-anomer was formed in the former case and the β-anomers in the latter two cases (highly) selectively. When d-arabinose and d-ribose were silylated with tert-butyldiphenylsilyl chloride in pyridine at the hydroxyl groups at C-5 and acetylated at the other ones in a one-pot reaction, mixtures of anomeric 1-O-acetyl derivatives were obtained. These were coupled by the Vorbrüggen method and then deblocked at C-5 and tosylated to give precursors for tracers to image hypoxia in four steps without using Hg(CN)2 necessary for other methods. The Vorbrüggen conditions enable a shorter route to azomycin nucleoside analogues than the previous coupling procedures. PMID:21905640

  11. Anti-inflammatory effects of hypoxic-preconditioned human periodontal ligament cells secretome in an experimental model of multiple sclerosis: a key role of IL-37.

    PubMed

    Giacoppo, Sabrina; Thangavelu, Soundara Rajan; Diomede, Francesca; Bramanti, Placido; Conti, Pio; Trubiani, Oriana; Mazzon, Emanuela

    2017-08-23

    Recent research has widely investigated the anti-inflammatory effects of mesenchymal stem cells and their secretory products, termed secretome, in the treatment of multiple sclerosis (MS). The present study examined the capacity of the conditioned medium (CM) collected from human periodontal ligament cells under hypoxic condition medium (H-hPDLSCs-CM) to suppress experimental autoimmune encephalomyelitis (EAE), a murine model of MS. To induce EAE, female C57BL/6 mice were immunized with myelin oligodendroglial glycoprotein peptide35-55 At the onset of symptoms, H-hPDLSCs-CM was infused via the tail vein of mice. Our results demonstrate the efficacy of H-hPDLSCs-CM treatment in diminishing clinical and histologic disease score. A key finding from this study is the marked expression of anti-inflammatory cytokine IL-37, paralleled by the suppression of proinflammatory cytokines in mice with EAE that were treated with H-hPDLSCs-CM. In addition, a consequent modulation of oxidative stress, autophagic, and apoptotic markers was observed in mice with EAE after hPDLSCs-CM administration. In addition, to provide additional evidence of the molecular mechanisms that underlie H-hPDLSCs-CM, we investigated its therapeutic action in scratch injury-exposed NSC-34 neurons, an in vitro model of injury. This model reproduces severe inflammation and oxidative stress conditions as observed after EAE damage. In vitro results corroborate the ability of hPDLSCs-CM to modulate inflammatory, oxidative stress, and apoptotic pathways. Taken together, our findings suggest H-hPDLSCs-CM as a new pharmacologic opportunity for the management of MS.-Giacoppo, S., Thangavelu, S. R., Diomede, F., Bramanti, P., Conti, P., Trubiani, O., Mazzon, E. Anti-inflammatory effects of hypoxic-preconditioned human periodontal ligament cells secretome in an experimental model of multiple sclerosis: a key role of IL-37. © The Author(s).

  12. A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo

    PubMed Central

    Hubert, Christopher G.; Rivera, Maricruz; Spangler, Lisa C.; Wu, Qiulian; Mack, Stephen C.; Prager, Briana C.; Couce, Marta; McLendon, Roger E.; Sloan, Andrew E.; Rich, Jeremy N.

    2016-01-01

    Many cancers feature cellular hierarchies that are driven by tumor-initiating, cancer stem cells (CSCs) and rely on complex interactions with the tumor microenvironment. Standard cell culture conditions fail to recapitulate the original tumor architecture or microenvironmental gradients, and are not designed to retain the cellular heterogeneity of parental tumors. Here, we describe a three-dimensional culture system that supports the long-term growth and expansion of tumor organoids derived directly from glioblastoma specimens, including patient-derived primary cultures, xenografts, genetically engineered glioma models, or patient samples. Organoids derived from multiple regions of patient tumors retain selective tumorigenic potential. Furthermore, organoids could be established directly from brain metastases not typically amenable to in vitro culture. Once formed, tumor organoids grew for months and displayed regional heterogeneity with a rapidly dividing outer region of SOX2+, OLIG2+, and TLX+ cells surrounding a hypoxic core of primarily non-stem senescent cells and diffuse, quiescent CSCs. Notably, non-stem cells within organoids were sensitive to radiation therapy, whereas adjacent CSCs were radioresistant. Orthotopic transplantation of patient-derived organoids resulted in tumors displayed histological features, including single cell invasiveness, that were more representative of the parental tumor compared with those formed from patient-derived sphere cultures. In conclusion, we present a new ex vivo model in which phenotypically diverse stem and non-stem glioblastoma cell populations can be simultaneously cultured to explore new facets of microenvironmental influences and CSC biology. PMID:26896279

  13. Metronidazole (flagyl) and misonidazole (Ro-07-0582): reduction by facultative anaerobes and cytotoxic action on hypoxic bacteria and mammalian cells in vivo.

    PubMed Central

    Basag, S. H.; Dunlop, J. R.; Searle, A. J.; Willson, R. L.

    1978-01-01

    The toxic actions of the "nitro" radiosensitizers, metronidazole and misonidazole on the bacteria E. coli B/r and Serratia marcescens have been investigated under anareobic and aerobic conditions. The rates of reduction of the drugs by suspensions of these bacteria as well as by suspensions microorganisms from the rat caecum have been measured. Both drugs were reduced or were toxic only under anaerobic conditions. In all instances misonidazole was reduced more rapidly than metronidazole but metronidazole was more toxic. It is suggested that these phenomena may model those occurring with hypoxic mammalian cells in vivo and that care should be taken before automatically extrapolating in vitro data to the in vivo situation. PMID:354677

  14. Estrogen receptor α is a novel target of the Von Hippel-Lindau protein and is responsible for the proliferation of VHL-deficient cells under hypoxic conditions

    PubMed Central

    Jung, Youn-Sang; Lee, Su-Jin; Yoon, Min-Ho; Ha, Nam Chul; Park, Bum-Joon

    2012-01-01

    The Von Hippel-Lindau gene (VHL) is frequently deleted or mutated in human renal cell carcinoma (RCC) at the early stage. According to the well-established theory, pVHL acts as a tumor suppressor through its E3 ligase activity, which targets hypoxia-inducing factor-1α (HIF-1α). However, the elevated expression of HIF-1α did not promote cell proliferation, indicating that there would be another target, which could promote cell proliferation at the early cancer stage of RCC. In this study, we show that estrogen receptor-α (ER-α) is a novel proteasomal degradation target of the pVHL E3 ligase. Indeed, the overexpression of VHL suppresses exo- and endogenous ER-α expression, whereas si-pVHL can increase ER-α expression. The negative regulation of pVHL on ER-α expression is achieved by its E3 ligase activity. Thus, pVHL can promote the ER-α ubiquitinylation. In addition, we revealed that ER-α and HIF-1α are competitive substrates of pVHL. Thus, under normal conditions, ER-α overexpression can increase the transcription factor activity of HIF-1α. Under the hypoxic condition, where HIF-1α is not a suitable target of pVHL, ER-α is more rapidly degraded by pVHL. However, in VHL-deficient cells, the expression of ER-α and HIF-1α is retained, so that the hypoxic condition did not suppress cell proliferation obviously compared with cells that are expressing pVHL. Thus, blocking of ER-α using its inhibitor could suppress the proliferation of VHL-deficient cells as effectively as hypoxia-induced growth suppression. Considering our results, blocking of ER-α signaling in VHL-deficient cancer cells would be beneficial for cancer suppression. Indeed, we showed the anti-proliferative effect of Faslodex in VHL-deficient cells. PMID:23159849

  15. NF-κB Signaling is Involved in the Effects of Intranasally Engrafted Human Neural Stem Cells on Neurofunctional Improvements in Neonatal Rat Hypoxic-Ischemic Encephalopathy.

    PubMed

    Ji, Gang; Liu, Ming; Zhao, Xiong-Fei; Liu, Xiao-Yan; Guo, Qi-Lin; Guan, Zhu-Fei; Zhou, Hou-Guang; Guo, Jing-Chun

    2015-12-01

    Hypoxic-ischemic encephalopathy (HIE) is a common neurological disease in infants with persistent neurobehavioral impairments. Studies found that neural stem cell (NSC) therapy benefits HIE rats; however, the mechanisms underlying are still unclear. The current study investigated the efficacy and molecular events of human embryonic neural stem cells (hNSCs) in neonatal hypoxic-ischemic (HI) rats. PKH-26-labeled hNSCs were intranasally delivered to P7 Sprague Dawley rats 24 h after HI. Neurobehavioral tests were performed at the indicated time after delivery: righting reflex and gait testing at D1, 3, 5, and 7; grid walking at D7 and 14; social choice test (SCT) at D28; and Morris water maze from D35 to 40. Protein expression was determined by Western blot analysis. Brain damage was assessed by cresyl violet staining and MBP staining. hNSC distribution and differentiation were observed by in vivo bioluminescence imaging and immunofluorescence staining. (1) hNSCs migrated extensively into brain areas within 24 h after the delivery, survived even at D42 with the majority in ipsi-hemisphere, and could be co-labeled with NeuN or GFAP. (2) hNSCs reduced the upregulation in cytosolic IL-1β, p-IκBα, and NF-κB p65 levels, whereas enhanced nuclear p65 expression in HI rats at D3 after the delivery. (3) hNSCs decreased HI-induced brain tissue loss and white matter injury at D42 after the delivery. (4) hNSCs improved neurological outcomes in HI rats in the tests of righting reflex (within 3 days), gait (D5), grid (D7), SCT (D28), and water maze (D42). Intranasal delivery of hNSCs could prevent HI-induced brain injury and improve neurobehavioral outcomes in neonatal HI rats, which is possibly related to the modulation of NF-κB signaling. © 2015 John Wiley & Sons Ltd.

  16. Modulation of prostaglandin biosynthesis in murine mammary adenocarcinoma tumor cells

    SciTech Connect

    Shalinsky, D.R.

    1988-01-01

    In efforts to exploit the differential oxygen levels within the subcompartments of solid neoplasms, this project has focused on modulating prostaglandin (PG) biosynthesis under aerobic and hypoxic conditions. Mammary adenocarcinoma tumor cells (Line 4526), either intact or sonicated, were incubated with either 2.0 uM {sup 14}C-arachidonic acid (AA) or 20.0 uM {sup 14}C-PGH{sub 2}, respectively. Following metabolism, products were extracted, separated by thin layer chromatography and analyzed by radiochromatographic scan. PGE{sub 2} was predominantly formed with minimal amounts of PGF{sub 2a} or PGD{sub 2}. Indomethacin and ibuprofen inhibited the PGE{sub 2} formation from AA with an IC{sub 50} value of 6.3 {times} 10{sup {minus}8} and 9.6 {times} 10{sup {minus}5}M, respectively. Suspended cells in glass vials were made hypoxic by flushing with N{sub 2} for varying time intervals to study AA metabolism. A time-dependent inhibition of PG biosynthesis was observed under hypoxia, and by 30 min, the PGE{sub 2} synthesis was reduced by 50% which was further inhibited by indomethacin. Misonidazole, a 2-nitroimidazole analogue, partially reversed the inhibition of PGE{sub 2} synthesis under hypoxia by 49% at 100 uM. However, misonidazole did not affect PG biosynthesis under aerobic conditions. The stimulation of PGE{sub 2} biosynthesis by misonidazole under hypoxia was blocked by indomethacin, suggesting that misonidazole can not act independently of the cyclooxygenase.

  17. BDNF Pretreatment of Human Embryonic-Derived Neural Stem Cells Improves Cell Survival and Functional Recovery After Transplantation in Hypoxic-Ischemic Stroke.

    PubMed

    Rosenblum, Sahar; Smith, Tenille N; Wang, Nancy; Chua, Joshua Y; Westbroek, Erick; Wang, Kendrick; Guzman, Raphael

    2015-01-01

    Intra-arterial neural stem cell (NSC) therapy has the potential to improve long-term outcomes after stroke. Here we evaluate if pretreatment of NSCs with brain-derived neurotrophic factor (BDNF) prior to transplantation improves cell engraftment and functional recovery following hypoxic-ischemic (HI) stroke. Human embryonic-derived NSCs with or without BDNF pretreatment (1 h, 100 ng/ml) were transplanted 3 days after HI stroke. Functional recovery was assessed using the horizontal ladder test. Cell engraftment was evaluated using bioluminescence imaging (BLI) and histological counts of SC121(+) cells. Fluoro-Jade C (FJC) and NeuN stains were used to evaluate neuroprotection. The effect of BDNF on NSCs was analyzed using a migration assay, immunocytochemistry, Luminex proteomic assay, and RT-qPCR.BLI analysis demonstrated significantly higher photon flux in the BDNF-treated NSC group compared to untreated NSC (p = 0.049) and control groups (p = 0.0021) at 1 week after transplantation. Immunohistochemistry confirmed increased transplanted cell survival in the cortex (p = 0.0126) and hippocampus (p = 0.0098) of animals injected with BDNF-treated NSCs compared to untreated NSCs. Behavioral testing revealed that the BDNF-treated NSC group demonstrated increased sensorimotor recovery compared to the untreated NSC and control groups (p < 0.001) over the 1-month period (p < 0.001) following transplantation. A significant improvement in performance was found in the BDNF-treated NSC group compared to the control group at 14, 21, and 28 (p < 0.05) days after transplantation. The cortex and hippocampus of the BDNF-treated NSC group had significantly more SC121(+) NSCs (p = 0.0125, p = 0.0098), fewer FJC(+) neurons (p = 0.0370, p = 0.0285), and a higher percentage of NeuN(+) expression (p = 0.0354) in the cortex compared to the untreated NSC group. BDNF treatment of NSCs resulted in significantly greater migration to SDF-1, secretion of M-CSF, VEGF, and expression of CXCR4

  18. Hypoxia in Tumor Angiogenesis and Metastasis: Evaluation of VEGF and MMP Over-expression and Down-Regulation of HIF-1alpha with RNAi in Hypoxic Tumor Cells

    NASA Astrophysics Data System (ADS)

    Shah, Shruti

    Background: As tumor mass grows beyond a few millimeters in diameter, the angiogenic "switch" is turned on leading to recruitment of blood vessels from surrounding artery and veins. However, the tumor mass is poorly perfused and there are pockets of hypoxia or lower oxygen concentrations relative to normal tissue. Hypoxia-inducing factor-1a (HIF-1a), a transcription factor, is activated when the oxygen concentration is low. Upon activation of HIF-1a, a number of other genes also turn on that allows the tumor to become more aggressive and resistant to therapy. Purpose: The main objectives of this study were to evaluate the effect of hypoxia-induced HIF-1a followed by over-expression of angiogenic and metastatic markers in tumor cells and down-regulation of HIF-1a using nanoparticle-delivered RNA interference therapy. Methods: Human ovarian (SKOV3) and breast (MDA-MB-231) adenocarcinoma cells were incubated under normoxic and hypoxic conditions. Following hypoxia treatment of the cells, HIF-1α, vascular endothelial growth factor (VEGF), matrix metalloproteinase 2 (MMP-2), and MMP-9 expression was analyzed qualitatively and quantitatively. For intracellular delivery of HIF-1a gene silencing small interfering RNA (siRNA), type B gelatin nanoparticles were fabricated using the solvent displacement method and the surface was modified with poly(ethylene glycol) (PEG, Mol. wt. 2kDa). Cellular uptake and distribution of the nanoparticles was observed with Cy3-siRNA loaded, FITC-conjugated gelatin nanoparticles. Cytotoxicity of the nanoparticle formulations was evaluated in both the cell lines. siRNA was transfected in the gelatin nanoparticles under hypoxic conditions. Total cellular protein and RNA were extracted for analysis of HIF1a, VEGF, MMP-2 and MMP-9 expression. Results: MDA-MB-231 and SKOV3 cells show increased expression of HIF1a under hypoxic conditions compared to baseline levels at normoxic conditions. ELISA and western blots of VEGF, MMP-2 and MMP-9 appear to

  19. The anti-necrosis role of hypoxic preconditioning after acute anoxia is mediated by aldose reductase and sorbitol pathway in PC12 cells.

    PubMed

    Wu, Li-Ying; Ma, Zi-Min; Fan, Xue-Lai; Zhao, Tong; Liu, Zhao-Hui; Huang, Xin; Li, Ming-Ming; Xiong, Lei; Zhang, Kuan; Zhu, Ling-Ling; Fan, Ming

    2010-07-01

    It has been demonstrated that hypoxic preconditioning (HP) enhances the survival ability of the organism against the subsequent acute anoxia (AA). However, it is not yet clear whether necrosis induced by AA can be prevented by HP, and what are the underlying mechanisms. In this study, we examined the effect of HP (10% O(2), 48 h) on necrosis induced by AA (0% O(2), 24 h) in PC12 cells. We found that HP delayed the regulatory volume decrease and reduced cell swelling after 24 h of exposure to AA. Since aldose reductase (AR) is involved in cell volume regulation, we detected AR mRNA expression with reverse transcription-polymerase chain reaction (RT-PCR) techniques. The AR mRNA level was dramatically elevated by HP. Furthermore, an HP-induced decrease in cell injury was reversed by berberine chloride (BB), the inhibitor of AR. In addition, sorbitol synthesized from glucose catalyzed by AR is directly related to cell volume regulation. Subsequently, we tested sorbitol content in the cytoplasm. HP clearly elevated sorbitol content, while BB inhibited the elevation induced by HP. Further study showed that a strong inhibitor of sorbitol permease, quinidine, completely reversed the protection induced by HP after AA. These data provide evidence that HP prevents necrosis induced by AA and is mediated by AR and sorbitol pathway.

  20. An anesthesiologist's guide to hypoxic pulmonary vasoconstriction: implications for managing single-lung anesthesia and atelectasis.

    PubMed

    Nagendran, Jayan; Stewart, Ken; Hoskinson, Mike; Archer, Stephen L

    2006-02-01

    Hypoxic pulmonary vasoconstriction is the pulmonary circulation's homeostatic mechanism for matching regional perfusion to ventilation and optimizing systemic PaO2. The role of hypoxic pulmonary vasoconstriction in anesthesiology is reviewed. In hypoxic pulmonary vasoconstriction, airway hypoxia causes resistance pulmonary arteries to constrict, diverting blood to better-oxygenated alveoli. Hypoxic pulmonary vasoconstriction optimizes O2 uptake in atelectasis, pneumonia, asthma, and adult respiratory distress syndrome. During single-lung anesthesia, hypoxic pulmonary vasoconstriction helps maintain systemic oxygenation. When hypoxic pulmonary vasoconstriction is weak, systemic hypoxemia is exacerbated. Although not widely used, the peripheral chemoreceptor agonist almitrine enhances hypoxic pulmonary vasoconstriction and improves PaO2 during single-lung anesthesia. The mechanism of hypoxic pulmonary vasoconstriction involves a redox-based O2 sensor within pulmonary artery smooth muscle cells. Pulmonary artery smooth muscle cells mitochondria vary production of reactive O2 species in proportion to PaO2. Hypoxic withdrawal of these redox second messengers inhibits voltage-gated potassium channels, depolarizing the pulmonary artery smooth muscle cells. Depolarization activates L-type calcium channels, increasing cytosolic calcium and triggering hypoxic pulmonary vasoconstriction. An understanding of hypoxic pulmonary vasoconstriction is clinically relevant for anesthesiologists. Randomized clinical trials with robust endpoints are required to assess strategies for enhancing hypoxic pulmonary vasoconstriction in thoracic surgery patients.

  1. Human Umbilical Cord Blood CD34-Positive Cells as Predictors of the Incidence and Short-Term Outcome of Neonatal Hypoxic-Ischemic Encephalopathy: A Pilot Study

    PubMed Central

    Nasr Eldin, Mohamed Hassan; Amer, Hanaa A.; Abdelhamid, Adel E.; El Houssinie, Moustafa; Ibrahim, Abir

    2017-01-01

    Background and Purpose Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the leading causes of neurological handicap in developing countries. Human umbilical cord blood (hUCB) CD34-positive (CD34+) stem cells exhibit the potential for neural repair. We tested the hypothesis that hUCB CD34+ stem cells and other cell types [leukocytes and nucleated red blood cells (NRBCs)] that are up-regulated during the acute stage of perinatal asphyxia (PA) could play a role in the early prediction of the occurrence, severity, and mortality of HIE. Methods This case-control pilot study investigated consecutive neonates exposed to PA. The hUCB CD34+ cell count in mononuclear layers was assayed using a flow cytometer. Twenty full-term neonates with PA and 25 healthy neonates were enrolled in the study. Results The absolute CD34+ cell count (p=0.02) and the relative CD34+ cell count (CD34+%) (p<0.001) in hUCB were higher in the HIE patients (n=20) than the healthy controls. The hUCB absolute CD34+ cell count (p=0.04), CD34+% (p<0.01), and Hobel risk scores (p=0.04) were higher in patients with moderate-to-severe HIE (n=9) than in those with mild HIE (n=11). The absolute CD34+ cell count was strongly correlated with CD34+% (p<0.001), Hobel risk score (p=0.04), total leukocyte count (TLC) (p<0.001), and NRBC count (p=0.01). CD34+% was correlated with TLC (p=0.02). Conclusions hUCB CD34+ cells can be used to predict the occurrence, severity, and mortality of neonatal HIE after PA. PMID:28079317

  2. Hyperbaric oxygenation promotes neural stem cell proliferation and protects the learning and memory ability in neonatal hypoxic-ischemic brain damage.

    PubMed

    Wei, Lixia; Wang, Jinshen; Cao, Yuntao; Ren, Qing; Zhao, Lili; Li, Xingang; Wang, Jiwen

    2015-01-01

    The aim of our study was to evaluate whether hyperbaric oxygenation (HBO) was an effective therapy for neonatal hypoxic ischemic brain damage (HIBD). Seven-day-old rat pups were divided into 3 groups: sham, hypoxia-ischemia (HI) control and HI-HBO group. HBO was administered for HI rats daily. The pathologic changes in brain tissues were observed by hematoxylin-eosin (H-E) staining. The immunohistochemical staining was applied to detect the Nestin and 5-bromo-2-deoxyuridine (BrdU) positive cells in hippocampal dentate gyrus region. The learning and memory function of rats was examined by Morris water maze. The HI rats showed obvious pathologic changes accompanied by levels decreasing and disorder arrangement of pyramidal cells, glial cells proliferation in postoperative, and nerve nuclei broken, while pathologic changes of rats in sham group was approximate to that in the HI + HBO group that was opposite to the HI group. Compared with the sham group, the Nestin and BrdU positive cells in HBO + HI group at different time points increased significantly (P < 0.01). Learning and memory function of rats in HI group was poor compared with the sham/HI + HBO group (P < 0.01), while that in HI + HBO group was approximate to that in sham group (P > 0.05). HBO treatment improved the learning and memory ability of the HI rats. HBO therapy may be effective for neonatal HIBD treatment.

  3. Implications of Glucose Transporter Protein Type 1 (GLUT1)-Haplodeficiency in Embryonic Stem Cells for Their Survival in Response to Hypoxic Stress

    PubMed Central

    Heilig, Charles; Brosius, Frank; Siu, Brian; Concepcion, Luis; Mortensen, Richard; Heilig, Kathleen; Zhu, Min; Weldon, Richard; Wu, Guimei; Conner, David

    2003-01-01

    Glucose transporter protein type 1 (GLUT1) is a major glucose transporter of the fertilized egg and preimplantation embryo. Haploinsufficiency for GLUT1 causes the GLUT1 deficiency syndrome in humans, however the embryo appears unaffected. Therefore, here we produced heterozygous GLUT1 knockout murine embryonic stem cells (GT1+/−) to study the role of GLUT1 deficiency in their growth, glucose metabolism, and survival in response to hypoxic stress. GT1(−/−) cells were determined to be nonviable. Both the GLUT1 and GLUT3 high-affinity, facilitative glucose transporters were expressed in GT1(+/+) and GT1(+/−) embryonic stem cells. GT1(+/−) demonstrated 49 ± 4% reduction of GLUT1 mRNA. This induced a posttranscriptional, GLUT1 compensatory response resulting in 24 ± 4% reduction of GLUT1 protein. GLUT3 was unchanged. GLUT8 and GLUT12 were also expressed and unchanged in GT1(+/−). Stimulation of glycolysis by azide inhibition of oxidative phosphorylation was impaired by 44% in GT1(+/−), with impaired up-regulation of GLUT1 protein. Hypoxia for up to 4 hours led to 201% more apoptosis in GT1(+/−) than in GT1(+/+) controls. Caspase-3 activity was 76% higher in GT1(+/−) versus GT1(+/+) at 2 hours. Heterozygous knockout of GLUT1 led to a partial GLUT1 compensatory response protecting nonstressed cells. However, inhibition of oxidative phosphorylation and hypoxia both exposed their increased susceptibility to these stresses. PMID:14578187

  4. Avian embryos in hypoxic environments.

    PubMed

    León-Velarde, F; Monge-C, C

    2004-08-12

    Avian embryos at high altitude do not benefit of the maternal protection against hypoxia as in mammals. Nevertheless, avian embryos are known to hatch successfully at altitudes between 4,000 and 6,500 m. This review considers some of the processes that bring about the outstanding modifications in the pressure differences between the environment and mitochondria of avian embryos in hypoxic environments. Among species, some maintain normal levels of oxygen consumption ( VO2) have a high oxygen carrying capacity, lower the air cell-arterial pressure difference ( PAO2 - PaO2 ) with a constant pH. Other species decrease VO2, increase only slightly the oxygen carrying capacity, have a higher PAO2 - PaO2 difference than sea-level embryos and lower the PCO2 and pH. High altitude embryos, and those exposed to hypoxia have an accelerated decline of erythrocyte ATP levels during development and an earlier stimulation of 2,3-BPG synthesis. A higher Bohr effect may ensure high tissue PO2 in the presence of the high-affinity hemoglobin. Independently of the strategy used, they serve together to promote suitable rates of development and successful hatching of high altitude birds in hypoxic environments.

  5. Correlation between the expression of divalent metal transporter 1 and the content of hypoxia-inducible factor-1 in hypoxic HepG2 cells

    PubMed Central

    Li, Zhu; Lai, Zhang; Ya, Ke; Fang, Du; Ho, Yung Wing; Lei, Yang; Ming, Qian Zhong

    2008-01-01

    Abstract Transferrin and transferrin receptor are two key proteins of iron metabolism that have been identified to be hypoxia-inducible genes. Divalent metal transporter 1 (DMT1) is also a key transporter of iron under physiological conditions. In addition, in the 5′ regulatory region of human DMT1 (between −412 and −570), there are two motifs (CCAAAGTGCTGGG) that are similar to hypoxia-inducible factor-1 (HIF-1) binding sites. It was therefore speculated that DMT1 might also be a hypoxia-inducible gene. We investigated the effects of hypoxia and hypoxia/re-oxygenation on the expression of DMT1 and the content of HIF-1alpha in HepG2 cells. As we expected, a very similar tendency in the responses of the expression of HIF-1α, DMT1+IRE (iron response element) and DMT1−IRE proteins to chemical (CoCl2) or physical hypoxia was observed. A highly significant correlation was found between the expression of DMT1 proteins and the contents of HIF-1 in hypoxic cells. After the cells were exposed to hypoxia and subsequent normoxia, no HIF-1α could be detected and a significant decrease in DMT1+IRE expression (P<0.05), but not in DMT1−IRE protein (versus the hypoxia group), was observed. The findings implied that the HIF-1 pathway might have a role in the regulation of DMT1+IRE expression during hypoxia. PMID:18419598

  6. Long noncoding RNA HOTAIR, a hypoxia-inducible factor-1α activated driver of malignancy, enhances hypoxic cancer cell proliferation, migration, and invasion in non-small cell lung cancer.

    PubMed

    Zhou, Chunxia; Ye, Lincai; Jiang, Chuan; Bai, Jie; Chi, Yongbin; Zhang, Haibo

    2015-12-01

    Despite the fact that great advances have been made in the management of non-small cell lung cancer (NSCLC), the prognosis of advanced NSCLC remains very poor. HOX transcript antisense intergenic RNA (HOTAIR) has been identified as an oncogenic long noncoding RNA (lncRNA) that is involved in the progression of a variety of carcinomas and acts as a negative prognostic biomarker. Yet, little is known about the effect of HOTAIR in the hypoxic microenvironment of NSCLC. The expression and promoter activity of HOTAIR were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and luciferase reporter assay. The function of the hypoxia-inducible factor-1α (HIF-1α) binding site to hypoxia-responsive elements (HREs) in the HOTAIR promoter region was tested by luciferase reporter assay with nucleotide substitutions. The binding of HIF-1α to the HOTAIR promoter in vivo was confirmed by chromatin immunoprecipitation assay (CHIP) and electrophoretic mobility shift assay (EMSA). The effect of HIF-1α suppression by small interference RNA or YC-1 on HOTAIR expression was also determined. In the present study, we demonstrated that HOTAIR was upregulated by hypoxia in NSCLC cells. HOTAIR is a direct target of HIF-1α through interaction with putative HREs in the upstream region of HOTAIR in NSCLC cells. Furthermore, HIF-1α knockdown or inhibition could prevent HOTAIR upregulation under hypoxic conditions. Under hypoxic conditions, HOTAIR enhanced cancer cell proliferation, migration, and invasion. These data suggested that suppression of HOTAIR upon hypoxia of NSCLC could be a novel therapeutic strategy.

  7. The role of k+ channels in determining pulmonary vascular tone, oxygen sensing, cell proliferation, and apoptosis: implications in hypoxic pulmonary vasoconstriction and pulmonary arterial hypertension.

    PubMed

    Moudgil, Rohit; Michelakis, Evangelos D; Archer, Stephen L

    2006-12-01

    Potassium channels are tetrameric, membrane-spanning proteins that selectively conduct K+ at near diffusion-limited rates. Their remarkable ionic selectivity results from a highly-conserved K+ recognition sequence in the pore. The classical function of K+ channels is regulation of membrane potential (EM) and thence vascular tone. In pulmonary artery smooth muscle cells (PASMC), tonic K+ egress, driven by a 145/5 mM intracellular/extracellular concentration gradient, contributes to a EM of about -60 mV. It has been recently discovered that K+ channels also participate in vascular remodeling by regulating cell proliferation and apoptosis. PASMC express voltage-gated (Kv), inward rectifier (Kir), calcium-sensitive (KCa), and two-pore (K2P) channels. Certain K+ channels are subject to rapid redox regulation by reactive oxygen species (ROS) derived from the PASMC's oxygen-sensor (mitochondria and/or NADPH oxidase). Acute hypoxic inhibition of ROS production inhibits Kv1.5, which depolarizes EM, opens voltage-sensitive, L-type calcium channels, elevates cytosolic calcium, and initiates hypoxic pulmonary vasoconstriction (HPV). Hypoxia-inhibited K+ currents are not seen in systemic arterial SMCs. Kv expression is also transcriptionally regulated by HIF-1alpha and NFAT. Loss of PASMC Kv1.5 and Kv2.1 contributes to the pathogenesis of pulmonary arterial hypertension (PAH) by causing a sustained depolarization, which increases intracellular calcium and K+, thereby stimulating cell proliferation and inhibiting apoptosis, respectively. Restoring Kv expression (via Kv1.5 gene therapy, dichloroacetate, or anti-survivin therapy) reduces experimental PAH. Electrophysiological diversity exists within the pulmonary circulation. Resistance PASMC have a homogeneous Kv current (including an oxygen-sensitive component), whereas conduit PASMC current is a Kv/KCa mosaic. This reflects regional differences in expression of channel isoforms, heterotetramers, splice variants, and regulatory

  8. Radio-sensitization effect of an mTOR inhibitor, temsirolimus, on lung adenocarcinoma A549 cells under normoxic and hypoxic conditions

    PubMed Central

    Ushijima, Hiroki; Suzuki, Yoshiyuki; Oike, Takahiro; Komachi, Mayumi; Yoshimoto, Yuya; Ando, Ken; Okonogi, Noriyuki; Sato, Hiro; Noda, Shin-ei; Saito, Jun-ichi; Nakano, Takashi

    2015-01-01

    The mammalian target of rapamycin (mTOR) correlates with cell survival under hypoxia and regulates hypoxia-inducible factor-1α (HIF-1α), a key protein in hypoxia-related events. However, the role of mTOR in radio-resistance has not been fully investigated. Therefore, the effect of mTOR on the radio-resistance of cancer cells under hypoxia was evaluated using the mTOR inhibitor temsirolimus. Clonogenic survival was examined in the A549 human lung adenocarcinoma cell line under normoxia or hypoxia, with or without temsirolimus. An oxygen enhancement ratio (OER) was calculated using the D10 values, the doses giving 10% survival. Western blotting was performed to investigate the effect of temsirolimus on mTOR and the HIF-1α pathway under normoxia and hypoxia. A549 cells showed a radio-resistance of 5.1 and 14.2 Gy, as indicated by D10 values under normoxia and hypoxia, respectively; the OER was 2.8. The cell survival rates under hypoxia and with temsirolimus remarkably decreased compared with those under normoxia. The D10 values of the cells under normoxia and hypoxia were 4.8 and 5.4 Gy, respectively (OER = 1.1). mTOR expression was suppressed by temsirolimus under both normoxia and hypoxia. HIF-1α expression decreased under hypoxia in the presence of temsirolimus. These results suggest that temsirolimus can overcome the radio-resistance induced by hypoxia. When the fact that mTOR acts upstream of HIF-1α is considered, our data suggest that the restoration of radiation sensitivity by temsirolimus under hypoxia may be associated with the suppression of the HIF-1α pathway. Temsirolimus could therefore be used as a hypoxic cell radio-sensitizer. PMID:25887043

  9. Intra-discal injection of autologous, hypoxic cultured bone marrow-derived mesenchymal stem cells in five patients with chronic lower back pain: a long-term safety and feasibility study.

    PubMed

    Elabd, Christian; Centeno, Christopher J; Schultz, John R; Lutz, Gregory; Ichim, Thomas; Silva, Francisco J

    2016-09-01

    Chronic low back pain due to disc degeneration represents a major social and economic burden worldwide. The current standard of care is limited to symptomatic relief and no current approved therapy promotes disc regeneration. Bone marrow-derived mesenchymal stem cells (MSCs) are easily accessible and well characterized. These MSCs are multipotent and exhibit great tissue regenerative potential including bone, cartilage, and fibrous tissue regeneration. The use of this cell-based biologic for treating protruding disc herniation and/or intervertebral disc degeneration is a promising therapeutic strategy, due to their known regenerative, immuno-modulatory and anti-inflammatory properties. Five patients diagnosed with degenerative disc disease received an intra-discal injection of autologous, hypoxic cultured, bone marrow-derived mesenchymal stem cells (15.1-51.6 million cells) as part of a previous study. These patients were re-consented to participate in this study in order to assess long-term safety and feasibility of intra-discal injection of autologous, hypoxic cultured, bone marrow-derived mesenchymal stem cells 4-6 years post mesenchymal stem cell infusion. The follow-up study consisted of a physical examination, a low back MRI, and a quality of life questionnaire. Patients' lower back MRI showed absence of neoplasms or abnormalities surrounding the treated region. Based on the physical examination and the quality of life questionnaire, no adverse events were reported due to the procedure or to the stem cell treatment 4-6 years post autologous, hypoxic cultured mesenchymal stem cell infusion. All patients self-reported overall improvement, as well as improvement in strength, post stem cell treatment, and four out of five patients reported improvement in mobility. This early human clinical data suggests the safety and feasibility of the clinical use of hypoxic cultured bone marrow-derived mesenchymal stem cells for the treatment of lower back pain due to

  10. In vivo Assay of the Radiation Sensitivity of Hypoxic Tumour Cells; Influence of γ-rays, Cyclotron Neutrons, Misonidazole, Hyperthermia and Mixed Modalities

    PubMed Central

    Porschen, W.; Gartzen, J.; Gewehr, K.; Mühlensiepen, H.; Weber, H.-J.; Feinendegen, L. E.

    1978-01-01

    Tumour cell death can be evaluated in the living mouse by externally measuring the rate of loss of tumour-bound DNA tracer. By sequentially labelling the tumour-bearing animals with 125IUdR and 131IUdR 50 h apart, the average tumour cells at the time of the second injection are labelled by 125IUdR and the euoxic tumour cells are specifically labelled with 131IUdR. Tumour treatment at this stage of labelling permits the observation of the reaction of euoxic cells and average tumour cells and finally yields data on hypoxic cells and thus on the oxygen enhancement ratio. This information adds to results from tumour control and growth delay. With this technique effects were analysed of 60-Co γ-rays, cyclotron neutrons (E = 6 MeV), misonidazole (500 mg/kg body wt) and hyperthermia (42°C water-bath), or combinations of these. Misonidazole (15 min before irradiation) altered the oxygen enhancement ratio by a factor of 1·5 for γ-rays and of 1·1 for neutrons; when evaluated from tumour-growth delay and TCD-50 misonidazole gave a dose modifying factor of 1·47 for γ-rays and of 1·2-1·3 for neutrons. Based on percentage tumour regression 100 days after treatment, the enhancement ratio from hyperthermia (after irradiation) was 2·75 for γ-rays (at 10 Gray) and 2·2 for neutrons (at 3·2 Gray). For neutrons combined with misonidazole and hyperthermia the ratio was 2·4. These results demonstrate that effects of neutron irradiation may be modified by electron-affinic substances and/or hyperthermia. PMID:277225

  11. DNA damage following combination of radiation with the bioreductive drug AQ4N: possible selective toxicity to oxic and hypoxic tumour cells.

    PubMed Central

    Hejmadi, M. V.; McKeown, S. R.; Friery, O. P.; McIntyre, I. A.; Patterson, L. H.; Hirst, D. G.

    1996-01-01

    AQ4N (1,4-bis-([2-(dimethylamino-N- oxide)ethyl]amino)5,8-dihydroxyanthracene-9,10-dione) is a novel bioreductive agent that can be reduced to a stable, DNA-affinic compound, AQ4. The alkaline comet assay was used to evaluate DNA damage induced by AQ4N and radiation. Cells prepared from freshly excised T50/80 murine tumours were shown to have the ability to reduce AQ4N to a DNA-damaging agent; this had disappeared within 24 h of excision. When T50/80 tumours implanted in BDF mice were exposed to radiation in vivo a considerable amount of DNA damage was present in tumours excised immediately. Minimal levels of DNA damage were detectable in tumours excised after 2-5 h. AQ4N given 30 min before radiation had no appreciable influence on this effect and AQ4N alone caused only a small amount of damage. When AQ4N and radiation were combined an increasing number of damaged cells were seen in tumours excised 24-96 h after irradiation. This was interpreted as evidence of the continued presence of AQ4, or AQ4-induced damage, which was formed in cells hypoxic at the time of administration of AQ4N. AQ4, a potent topoisomerase II inhibitor, would be capable of damaging cells recruited into the cell cycle following radiation damage to the well-oxygenated cells of the tumour. The kinetics of the expression of the DNA damage is consistent with this hypothesis and shows that AQ4 has persistent activity in vivo. PMID:8595165

  12. 3,3'-Diindolylmethane inhibits VEGF expression through the HIF-1α and NF-κB pathways in human retinal pigment epithelial cells under chemical hypoxic conditions.

    PubMed

    Park, Hongzoo; Lee, Dae-Sung; Yim, Mi-Jin; Choi, Yung Hyun; Park, Saegwang; Seo, Su-Kil; Choi, Jung Sik; Jang, Won Hee; Yea, Sung Su; Park, Won Sun; Lee, Chang-Min; Jung, Won-Kyo; Choi, Il-Whan

    2015-07-01

    Oxidative stress in the retinal pigment epithelium (RPE) can lead to the pathological causes of age-related macular degeneration (AMD). Hypoxia induces oxidative damage in retinal pigment epithelial cells (RPE cells). In this study, we investigated the capacity of 3,3'-diindolylmethane (DIM) to reduce the expression of vascular endothelial growth factor (VEGF) under hypoxic conditions, as well as the molecular mechanisms involved. Human RPE cells (ARPE-19 cells) were treated with cobalt chloride (CoCl2, 200 µM) and/or DIM (10 and 20 µM). The production of VEGF was measured by enzyme-linked immunosorbent assay. The translocation of hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-κB (NF-κB) was determined by western blot analysis. The binding activity of HIF-1α and NF-κB was analyzed by electrophoretic mobility shift assay. The phosphorylation levels of mitogen-activated protein kinases (MAPKs) were measured by western blot analysis. The levels of mitochondrial reactive oxygen species (ROS) were detected by fluorescence microplate assay. The results revealed that DIM significantly attenuated the CoCl2-induced expression of VEGF in the ARPE-19 cells. The CoCl2-induced translocation and activation of HIF-1α and NF-κB were also attenuated by treatment with DIM. In addition, DIM inhibited the CoCl2-induced activation of p38 MAPK in the ARPE-19 cells. Pre-treatment with YCG063, a mitochondrial ROS inhibitor, led to the downregulation of the CoCl2-induced production of VEGF by suppressing HIF-1α and NF-κB activity. Taken together, the findings of our study demonstrate that DIM inhibits the CoCl2-induced production of VEGF by suppressing mitochondrial ROS production, thus attenuating the activation of HIF-1α and p38 MAPK/NF-κB.

  13. Transplantation of Human Adipose Tissue-Derived Mesenchymal Stem Cells Restores the Neurobehavioral Disorders of Rats With Neonatal Hypoxic-Ischemic Encephalopathy

    PubMed Central

    Park, Dongsun; Lee, Sun Hee; Bae, Dae Kwon; Yang, Yun-Hui; Yang, Goeun; Kyung, Jangbeen; Kim, Dajeong; Choi, Ehn-Kyoung; Hong, Jin Tae; Shin, Il Seob; Kang, Sung Keun; Ra, Jeong Chan; Kim, Yun-Bae

    2013-01-01

    Improving the effects of human adipose tissue-derived mesenchymal stem cells (ASCs) on the demyelination and neurobehavioral function was investigated in an experimental model of neonatal hypoxic-ischemic encephalopathy (HIE). Seven-day-old male rats were subjected to hypoxia-ischemia-lipopolysaccharide and intracerebroventricularly transplanted with human ASCs (4 × 105 cells/rat) once at postnatal day 10 (PND10) or repeatedly at PND10, 17, 27, and 37. Neurobehavioral abnormalities (at PND20, 30, and 40) and cognitive functions (at PND41–44) were evaluated using multiple test systems. Human ASCs recovered the using ratio of forelimb contralateral to the injured brain, improved locomotor activity, and restored rota-rod performance of HIE animals, in addition to showing a marked improvement of cognitive functions. It was confirmed that transplanted human ASCs migrated to injured areas and differentiated into oligodendrocytes expressing myelin basic protein (MBP). Moreover, transplanted ASCs restored production of growth and neurotrophic factors and expression of decreased inflammatory cytokines, leading to attenuation of host MBP loss. The results indicate that transplanted ASCs restored neurobehavioral functions by producing MBP as well as by preserving host myelins, which might be mediated by ASCs’ anti-inflammatory activity and release of growth and neurotrophic factors. PMID:26858861

  14. Proof of Concept to Isolate and Culture Primary Muscle Cells from Northern Elephant Seals to Study the Mechanisms that Maintain Aerobic Metabolism Under the Hypoxic Conditions of Breath-hold Diving

    DTIC Science & Technology

    2012-09-30

    the skin is first cleaned with betadine scrub. A small area the size of a dime is shaved and one ml of 2 % Lidocaine ; to minimize the trauma to the...cells as compared to terrestrial models. Objective 2 . To test the hypothesis, that varying levels of stimulation and/or hypoxic conditions will...depth of 3-4 inches (the blubber layer is typically 2 inches thick). Once collected, the biopsy will be dipped in 100% ethanol for sterilization

  15. Regulation of HIF-1-Alpha, miR-200, and Markers of Cancer Stem Cells by CDF Under Hypoxic Condition

    DTIC Science & Technology

    2012-04-01

    the formation of prostaspheres, and CSC signature genes in PCa cells. Furthermore, we examined the effect of a novel curcumin -derived analogue (CDF...LNCap) cells. The treatment with CDF, a novel Curcumin -derived analog previously showing an anti-tumor effect in vivo, inhibits the productions of...condition. ● Our novel curcumin -derived analog CDF inhibits cell survival, clonogenicity, cell migration, invasion, angiogenesis, and the self

  16. Uptake of dendrimer-drug by different cell types in the hippocampus after hypoxic-ischemic insult in neonatal mice: Effects of injury, microglial activation and hypothermia.

    PubMed

    Nemeth, Christina L; Drummond, Gabrielle T; Mishra, Manoj K; Zhang, Fan; Carr, Patrice; Garcia, Maxine S; Doman, Sydney; Fatemi, Ali; Johnston, Michael V; Kannan, Rangaramanujam M; Kannan, Sujatha; Wilson, Mary Ann

    2017-10-01

    Perinatal hypoxic-ischemic encephalopathy (HIE) can result in neurodevelopmental disability, including cerebral palsy. The only treatment, hypothermia, provides incomplete neuroprotection. Hydroxyl polyamidoamine (PAMAM) dendrimers are being explored for targeted delivery of therapy for HIE. Understanding the biodistribution of dendrimer-conjugated drugs into microglia, neurons and astrocytes after brain injury is essential for optimizing drug delivery. We conjugated N-acetyl-L-cysteine to Cy5-labeled PAMAM dendrimer (Cy5-D-NAC) and used a mouse model of perinatal HIE to study effects of timing of administration, hypothermia, brain injury, and microglial activation on uptake. Dendrimer conjugation delivered therapy most effectively to activated microglia but also targeted some astrocytes and injured neurons. Cy5-D-NAC uptake was correlated with brain injury in all cell types and with activated morphology in microglia. Uptake was not inhibited by hypothermia, except in CD68+ microglia. Thus, dendrimer-conjugated drug delivery can target microglia, astrocytes and neurons and can be used in combination with hypothermia for treatment of HIE. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Endogenous IL-6 of mesenchymal stem cell improves behavioral outcome of hypoxic-ischemic brain damage neonatal rats by supressing apoptosis in astrocyte

    PubMed Central

    Gu, Yan; He, Mulan; Zhou, Xiaoqin; Liu, Jinngjing; Hou, Nali; Bin, Tan; Zhang, Yun; Li, Tingyu; Chen, Jie

    2016-01-01

    Mesenchymal stem cell (MSC) transplantation reduces the neurological impairment caused by hypoxic-ischemic brain damage (HIBD) via immunomodulation. In the current study, we found that MSC transplantation improved learning and memory function and enhanced long-term potentiation in neonatal rats subjected to HIBD and the amount of IL-6 released from MSCs was far greater than that of other cytokines. However, the neuroprotective effect of MSCs infected with siIL-6-transduced recombinant lentivirus (siIL-6 MSCs) was significantly weakened in the behavioural tests and electrophysiological analysis. Meanwhile, the hippocampal IL-6 levels were decreased following siIL-6 MSC transplantation. In vitro, the levels of IL-6 release and the levels of IL-6R and STAT3 expression were increased in both primary neurons and astrocytes subjected to oxygen and glucose deprivation (OGD) following MSCs co-culture. The anti-apoptotic protein Bcl-2 was upregulated and the pro-apoptotic protein Bax was downregulated in OGD-injured astrocytes co-cultured with MSCs. However, the siIL-6 MSCs suppressed ratio of Bcl-2/Bax in the injured astrocytes and induced apoptosis number of the injured astrocytes. Taken together, these data suggest that the neuroprotective effect of MSC transplantation in neonatal HIBD rats is partly mediated by IL-6 to enhance anti-apoptosis of injured astrocytes via the IL-6/STAT3 signaling pathway. PMID:26766745

  18. Endogenous IL-6 of mesenchymal stem cell improves behavioral outcome of hypoxic-ischemic brain damage neonatal rats by supressing apoptosis in astrocyte.

    PubMed

    Gu, Yan; He, Mulan; Zhou, Xiaoqin; Liu, Jinngjing; Hou, Nali; Bin, Tan; Zhang, Yun; Li, Tingyu; Chen, Jie

    2016-01-14

    Mesenchymal stem cell (MSC) transplantation reduces the neurological impairment caused by hypoxic-ischemic brain damage (HIBD) via immunomodulation. In the current study, we found that MSC transplantation improved learning and memory function and enhanced long-term potentiation in neonatal rats subjected to HIBD and the amount of IL-6 released from MSCs was far greater than that of other cytokines. However, the neuroprotective effect of MSCs infected with siIL-6-transduced recombinant lentivirus (siIL-6 MSCs) was significantly weakened in the behavioural tests and electrophysiological analysis. Meanwhile, the hippocampal IL-6 levels were decreased following siIL-6 MSC transplantation. In vitro, the levels of IL-6 release and the levels of IL-6R and STAT3 expression were increased in both primary neurons and astrocytes subjected to oxygen and glucose deprivation (OGD) following MSCs co-culture. The anti-apoptotic protein Bcl-2 was upregulated and the pro-apoptotic protein Bax was downregulated in OGD-injured astrocytes co-cultured with MSCs. However, the siIL-6 MSCs suppressed ratio of Bcl-2/Bax in the injured astrocytes and induced apoptosis number of the injured astrocytes. Taken together, these data suggest that the neuroprotective effect of MSC transplantation in neonatal HIBD rats is partly mediated by IL-6 to enhance anti-apoptosis of injured astrocytes via the IL-6/STAT3 signaling pathway.

  19. Vasoreparative dysfunction of CD34+ cells in diabetic individuals involves hypoxic desensitization and impaired autocrine/paracrine mechanisms.

    PubMed

    Jarajapu, Yagna P R; Hazra, Sugata; Segal, Mark; Li Calzi, Sergio; LiCalzi, Sergio; Jadhao, Chandra; Jhadao, Chandra; Qian, Kevin; Mitter, Sayak K; Raizada, Mohan K; Boulton, Michael E; Grant, Maria B

    2014-01-01

    We hypothesized that endothelial progenitor cells derived from individuals with diabetes would exhibit functional defects including inability to respond to hypoxia and altered paracrine/autocrine function that would impair the angiogenic potential of these cells. Circulating mononuclear cells isolated from diabetic (n = 69) and nondiabetic (n = 46) individuals were used to grow endothelial colony forming cells (ECFC), early endothelial progenitor cells (eEPCs) and isolate CD34+ cells. ECFCs and eEPCs were established from only 15% of the diabetic individuals tested thus directing our main effort toward examination of CD34+ cells. CD34+ cells were plated in basal medium to obtain cell-free conditioned medium (CM). In CM derived from CD34+ cells of diabetic individuals (diabetic-CM), the levels of stem cell factor, hepatocyte growth factor, and thrombopoietin were lower, and IL-1β and tumor necrosis factor (TNFα) levels were higher than CM derived from nondiabetic individuals (nondiabetic-CM). Hypoxia did not upregulate HIF1α in CD34+ cells of diabetic origin. Migration and proliferation of nondiabetic CD34+ cells toward diabetic-CM were lower compared to nondiabetic-CM. Attenuation of pressure-induced constriction, potentiation of bradykinin relaxation, and generation of cGMP and cAMP in arterioles were observed with nondiabetic-CM, but not with diabetic-CM. Diabetic-CM failed to induce endothelial tube formation from vascular tissue. These results suggest that diabetic subjects with microvascular complications exhibit severely limited capacity to generate ex-vivo expanded endothelial progenitor populations and that the vasoreparative dysfunction observed in diabetic CD34+ cells is due to impaired autocrine/paracrine function and reduced sensitivity to hypoxia.

  20. Glial-Restricted Precursors Protect Neonatal Brain Slices from Hypoxic-Ischemic Cell Death Without Direct Tissue Contact.

    PubMed

    Sweda, Romy; Phillips, Andre W; Marx, Joel; Johnston, Michael V; Wilson, Mary Ann; Fatemi, Ali

    2016-07-01

    Glial-Restricted Precursors (GRPs) are tripotential progenitors that have been shown to exhibit beneficial effects in several preclinical models of neurological disorders, including neonatal brain injury. The mechanisms of action of these cells, however, require further study, as do clinically relevant questions such as timing and route of cell administration. Here, we explored the effects of GRPs on neonatal hypoxia-ischemia during acute and subacute stages, using an in vitro transwell co-culture system with organotypic brain slices exposed to oxygen-glucose deprivation (OGD). OGD-exposed slices that were then co-cultured with GRPs without direct cell contact had decreased tissue injury and cortical cell death, as evaluated by lactate dehydrogenase (LDH) release and propidium iodide (PI) staining. This effect was more pronounced when cells were added during the subacute phase of the injury. Furthermore, GRPs reduced the amount of glutamate in the slice supernatant and changed the proliferation pattern of endogenous progenitor cells in brain slices. In summary, we show that GRPs exert a neuroprotective effect on neonatal hypoxia-ischemia without the need for direct cell-cell contact, thus confirming the rising view that beneficial actions of stem cells are more likely attributable to trophic or immunomodulatory support rather than to long-term integration.

  1. Opiorphin-dependent up-regulation of CD73 (a key enzyme in the adenosine signaling pathway) in corporal smooth muscle cells exposed to hypoxic conditions and in corporal tissue in pre-priapic sickle cell mice

    PubMed Central

    Fu, Shibo; Davies, Kelvin P.

    2015-01-01

    The precise molecular mechanisms underlying priapism associated with sickle cell disease remain to be defined. However, there is increasing evidence that up-regulated activity of the opiorphin and adenosine pathways in corporal tissue, resulting in heighted relaxation of smooth muscle, play an important role in development of priapism. A key enzyme in the adenosine pathway is CD73, an ecto-5-prime-nucleotidase (5-prime-ribonucleotide phosphohydrolase; EC 3.1.3.5) which catalyzes the conversion of adenosine mononucleotides to adenosine. In the present study we investigated how sickle cell disease and hypoxia regulate the interplay between opiorphin and CD73. In the corpora of sickle cell mice we observed significantly elevated expression of both the mouse opiorphin homologue mSmr3a (14-fold) and CD73 (2.2-fold) relative to non-sickle cell controls at a life-stage prior to the exhibition of priapism. Sickle cell disease has a pronounced hypoxic component, therefore we determined if CD73 was also modulated in in vitro corporal smooth muscle (CSM) models of hypoxia. Hypoxia significantly increased CD73 protein and mRNA expression by 1.5-fold and 2-fold, respectively. We previously demonstrated that expression of another component of the adenosine signaling pathway, the adensosine 2B receptor, can be regulated by sialorphin (the rat opiorphin homolologue), and we demonstrate that sialorphin also regulates CD73 expression in a dose and time dependent fashion. Using siRNA to knock-down sialorphin mRNA expression in CSM cells in vitro, we demonstrate that the hypoxic up-regulation of CD73 is dependent on the up-regulation of sialorphin. Overall our data provides further evidence to support a role for opiorphin in CSM in regulating the cellular response regulating response to hypoxia or sickle cell disease by activating smooth muscle relaxant pathways. PMID:25833166

  2. Opiorphin-dependent upregulation of CD73 (a key enzyme in the adenosine signaling pathway) in corporal smooth muscle cells exposed to hypoxic conditions and in corporal tissue in pre-priapic sickle cell mice.

    PubMed

    Fu, S; Davies, K P

    2015-07-01

    The precise molecular mechanisms underlying priapism associated with sickle cell disease remain to be defined. However, there is increasing evidence that upregulated activity of the opiorphin and adenosine pathways in corporal tissue, resulting in heighted relaxation of smooth muscle, have an important role in development of priapism. A key enzyme in the adenosine pathway is CD73, an ecto-5'-nucleotidase (5'-ribonucleotide phosphohydrolase; EC 3.1.3.5) which catalyzes the conversion of adenosine mononucleotides to adenosine. In the present study we investigated how sickle cell disease and hypoxia regulate the interplay between opiorphin and CD73. In the corpora of sickle cell mice we observed significantly elevated expression of both the mouse opiorphin homolog mSmr3a (14-fold) and CD73 (2.2-fold) relative to non-sickle cell controls at a life stage before the exhibition of priapism. Sickle cell disease has a pronounced hypoxic component, therefore we determined if CD73 was also modulated in in vitro corporal smooth muscle (CSM) models of hypoxia. Hypoxia significantly increased CD73 protein and mRNA expression by 1.5-fold and 2-fold, respectively. We previously demonstrated that expression of another component of the adenosine signaling pathway, the adensosine 2B receptor, can be regulated by sialorphin (the rat opiorphin homolologue), and we demonstrate that sialorphin also regulates CD73 expression in a dose- and time-dependent fashion. Using siRNA to knockdown sialorphin mRNA expression in CSM cells in vitro, we demonstrate that the hypoxic upregulation of CD73 is dependent on the upregulation of sialorphin. Overall, our data provide further evidence to support a role for opiorphin in CSM in regulating the cellular response to hypoxia or sickle cell disease by activating smooth muscle relaxant pathways.

  3. Anaerobic respiration sustains mitochondrial membrane potential in a prolyl hydroxylase pathway-activated cancer cell line in a hypoxic microenvironment.

    PubMed

    Takahashi, Eiji; Sato, Michihiko

    2014-02-15

    To elucidate how tumor cells produce energy in oxygen-depleted microenvironments, we studied the possibility of mitochondrial electron transport without oxygen. We produced well-controlled oxygen gradients (ΔO2) in monolayer-cultured cells. We then visualized oxygen levels and mitochondrial membrane potential (ΔΦm) in individual cells by using the red shift of green fluorescent protein (GFP) fluorescence and a cationic fluorescent dye, respectively. In this two-dimensional tissue model, ΔΦm was abolished in cells >500 μm from the oxygen source [the anoxic front (AF)], indicating limitations in diffusional oxygen delivery. This result perfectly matched GFP-determined ΔO2. In cells pretreated with dimethyloxaloylglycine (DMOG), a prolyl hydroxylase domain-containing protein (PHD) inhibitor, the AF was expanded to 1,500-2,000 μm from the source. In these cells, tissue ΔO2 was substantially decreased, indicating that PHD pathway activation suppressed mitochondrial respiration. The expansion of the AF and the reduction of ΔO2 were much more prominent in a cancer cell line (Hep3B) than in the equivalent fibroblast-like cell line (COS-7). Hence, the results indicate that PHD pathway-activated cells can sustain ΔΦm, despite significantly decreased electron flux to complex IV. Complex II inhibition abolished the effect of DMOG in expanding the AF, although tissue ΔO2 remained shallow. Separate experiments demonstrated that complex II plays a substantial role in sustaining ΔΦm in DMOG-pretreated Hep3B cells with complex III inhibition. From these results, we conclude that PHD pathway activation can sustain ΔΦm in an otherwise anoxic microenvironment by decreasing tissue ΔO2 while activating oxygen-independent electron transport in mitochondria.

  4. Sphingosine Kinase-1 Involves the Inhibitory Action of HIF-1α by Chlorogenic Acid in Hypoxic DU145 Cells

    PubMed Central

    Lee, Myoung-Sun; Lee, Seon-Ok; Kim, Kyu-Ri; Lee, Hyo-Jeong

    2017-01-01

    Hypoxia enhances cancer development in a solid tumor. Hypoxia-inducible factor-1 α (HIF-1α) is a transcription factor that is dominantly expressed under hypoxia in solid tumor cells and is a key factor that regulates tumor. HIF-1α regulates several target genes involved in many aspects of cancer progression, including angiogenesis, metastasis, anti-apoptosis and cell proliferation as well as imparts resistance to cancer treatment. In this study, we assessed Crataegus Pinnatifida Bunge var. typical Schneider ethanol extract (CPE) for its anti-cancer effects in hypoxia-induced DU145 human prostate cancer cell line. CPE decreased the abundance of HIF-1α and sphingosine kinase-1 (SPHK-1) in hypoxia-induced prostate cancer DU145 cells. CPE decreased HIF-1α and SPHK-1 as well as SPHK-1 activity. Chlorogenic acid (CA) is one of four major compounds of CPE. Compared to CPE, CA significantly decreased the expression of HIF-1α and SPHK-1 as well as SPHK-1 activity in hypoxia-induced DU145 cells. Furthermore, CA decreased phosphorylation AKT and GSK-3β, which are associated with HIF-1α stabilization and affected SPHK-1 in a concentration-dependent manner. We confirmed the mechanism of CA-induced inhibition of HIF-1α by SPHK-1 signaling pathway using SPHK-1 siRNA and SPHK inhibitor (SKI). CA decreased the secretion and cellular expression of VEGF, thus inhibiting hypoxia-induced angiogenesis. Treatment of DU145cells with SPHK1 siRNA and CA for 48 h decreased cancer cell growth, and the inhibitory action of SPHK siRNA and CA on cell growth was confirmed by decrease in the abundance of Proliferating cell nuclear antigen (PCNA). PMID:28165392

  5. Lysyl oxidase mediates hypoxic control of metastasis.

    PubMed

    Erler, Janine T; Giaccia, Amato J

    2006-11-01

    Hypoxic cancer cells pose a great challenge to the oncologist because they are especially aggressive, metastatic, and resistant to therapy. Recently, we showed that elevation of the extracellular matrix protein lysyl oxidase (LOX) correlates with metastatic disease and is essential for hypoxia-induced metastasis. In an orthotopic rodent model of breast cancer, a small-molecule or antibody inhibitor of LOX abolished metastasis, offering preclinical validation of this enzyme as a therapeutic target.

  6. Prenatal Hypoxic-Ischemic Insult Changes the Distribution and Number of NADPH-Diaphorase Cells in the Cerebellum

    PubMed Central

    Savignon, Tiago; Costa, Everton; Tenorio, Frank; Manhães, Alex C.; Barradas, Penha C.

    2012-01-01

    Astrogliosis, oligodendroglial death and motor deficits have been observed in the offspring of female rats that had their uterine arteries clamped at the 18th gestational day. Since nitric oxide has important roles in several inflammatory and developmental events, here we evaluated NADPH-diaphorase (NADPH-d) distribution in the cerebellum of rats submitted to this hypoxia-ischemia (HI) model. At postnatal (P) day 9, Purkinje cells of SHAM and non-manipulated (NM) animals showed NADPH-d+ labeling both in the cell body and dendritic arborization in folia 1 to 8, while HI animals presented a weaker labeling in both cellular structures. NADPH-d+ labeling in the molecular (ML), and in both the external and internal granular layer, was unaffected by HI at this age. At P23, labeling in Purkinje cells was absent in all three groups. Ectopic NADPH-d+ cells in the ML of folia 1 to 4 and folium 10 were present exclusively in HI animals. This labeling pattern was maintained up to P90 in folium 10. In the cerebellar white matter (WM), at P9 and P23, microglial (ED1+) NADPH-d+ cells, were observed in all groups. At P23, only HI animals presented NADPH-d labeling in the cell body and processes of reactive astrocytes (GFAP+). At P9 and P23, the number of NADPH-d+ cells in the WM was higher in HI animals than in SHAM and NM ones. At P45 and at P90 no NADPH-d+ cells were observed in the WM of the three groups. Our results indicate that HI insults lead to long-lasting alterations in nitric oxide synthase expression in the cerebellum. Such alterations in cerebellar differentiation might explain, at least in part, the motor deficits that are commonly observed in this model. PMID:22540005

  7. T Helper Cell Activation and Expansion Is Sensitive to Glutaminase Inhibition under Both Hypoxic and Normoxic Conditions

    PubMed Central

    Sener, Zeynep; Cederkvist, Fritjof H.; Volchenkov, Roman; Holen, Halvor L.; Skålhegg, Bjørn S.

    2016-01-01

    Immune responses often take place where nutrients and O2 availability are limited. This has an impact on T cell metabolism and influences activation and effector functions. T cell proliferation and expansion are associated with increased consumption of glutamine which is needed in a number of metabolic pathways and regulate various physiological processes. The first step in endogenous glutamine metabolism is reversible and is regulated by glutaminase (GLS1 and GLS2) and glutamine synthase (GLUL). There are two isoforms of GLS1, Kidney type glutaminase (KGA) and Glutaminase C (GAC). The aim of this study is to investigate the expression, localization and role of GLS1 and GLUL in naïve and activated human CD4+ T cells stimulated through the CD3 and CD28 receptors under normoxia and hypoxia. In proliferating cells, GAC was upregulated and KGA was downregulated, and both enzymes were located to the mitochondria irrespective of O2 levels. By contrast GLUL is localized to the cytoplasm and was upregulated under hypoxia. Proliferation was dependent on glutamine consumption, as glutamine deprivation and GLS1 inhibition decreased proliferation and expression of CD25 and CD226, regardless of O2 availability. Again irrespective of O2, GLS1 inhibition decreased the proportion of CCR6 and CXCR3 expressing CD4+ T cells as well as cytokine production. We propose that systemic Th cell activation and expansion might be dependent on glutamine but not O2 availability. PMID:27467144

  8. Hypoxia-inducible factor-1α mediates the toll-like receptor 4 signaling pathway leading to anti-tumor effects in human hepatocellular carcinoma cells under hypoxic conditions

    PubMed Central

    Zhang, Xiaoyu; Li, Shuchen; Li, Mingrong; Huang, Haiying; Li, Jingyuan; Zhou, Changwei

    2016-01-01

    Hypoxia-inducible factor-1α (HIF-1α) and toll-like receptor 4 (TLR4) are involved in numerous mechanisms of cancer biology, including cell proliferation and survival; however the interaction of the two factors under hypoxic conditions remains unclear. The present study investigated the in vitro mechanism that results in the suppression of tumor cell growth and cellular functions when HIF-1α is silenced. In the present study, the human hepatocellular carcinoma HepG2 cell line was transfected with short hairpin RNA (shRNA) against HIF-1α and cultured under hypoxic conditions (1% O2 for 24 h). The expression of HIF-1α and various growth factors, including epidermal growth factor (EGF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2), were examined using quantitative polymerase chain reaction and immunoblotting. Tumor growth was measured using a Cell Counting Kit-8 assay and tumor activity was measured using tumor cell invasion and migration assays. Lipopolysaccharide and TAK-242 were used to activate and inhibit TLR4, respectively, to observe the role of TLR4 in the HIF-1α silenced tumor cells. The expression of TLR4 signaling pathway associates, including myeloid differentiation primary response gene 88 (MyD88), apoptosis signal-regulating kinase 1 (ASK1), p38 mitogen-activated protein kinases and HIF-1α, were analyzed by western blot assay. Under hypoxic conditions, silencing of HIF-1α expression suppressed tumor cell growth and regulated the expression of tumor growth-associated genes, including EGF, HGF, VEGF and FG2. Suppression of tumor cell invasion and migration was also observed in the HIF-1α silenced HepG2 cell line. In addition, TLR4 was identified to be involved in HIF-1α and MyD88 accumulation, and activation of ASK1 and p38 were demonstrated to be critical for TLR4-mediated HIF-1α pathway. In conclusion, silencing of HIF-1α expression may induce anti-tumor effects under hypoxic

  9. Intra-arterial transplantation of human umbilical cord blood mononuclear cells in neonatal hypoxic-ischemic rats.

    PubMed

    Greggio, Samuel; de Paula, Simone; Azevedo, Pâmella Nunes; Venturin, Gianina Teribele; Dacosta, Jaderson Costa

    2014-02-06

    Based on preclinical findings, cellular therapy has become a promising therapeutic approach for neonatal hypoxia-ischemia (HI). However, before translation into the clinical setting, new and effective routes of cell delivery must be determined. Intra-arterial (IA) delivery is an attractive route of cellular administration but has never been used in neonatal HI rats. In this study, we investigated the feasibility of IA transplantation of human umbilical cord blood (HUCB) mononuclear cells for the treatment of long-term behavior dysfunction and brain lesion after neonatal HI. Seven-day-old rats were subjected to a HI model and the animals received HUCB mononuclear cells into the left common carotid artery 24 h after HI insult. At 9 weeks post-HI, intra-arterially transplanted HUCB mononuclear cells significantly improved learning and long-term spatial memory impairments when evaluated by the Morris water maze paradigm. There was no effect of neonatal HI insult or IA procedure on body weight and on motor coordination and balance when evaluated by the accelerating rotarod test. Cellular transplantation by the IA route did not restore neonatal HI-induced brain damage according to stereological volume assessment. Furthermore, HUCB mononuclear cells were tracked in the injured brain and peripheral organs of HI transplanted-rats by nested polymerase chain reaction analysis at different time points. Our findings contribute to the translational knowledge of cell based-therapy in neonatal HI and demonstrate for the first time that IA transplantation into rat pups is a feasible route for cellular delivery and prevents long-term cognitive deficits induced by experimental neonatal HI. © 2013.

  10. A hypoxic signature marks tumors formed by disseminated tumor cells in the BALB-neuT mammary cancer model.

    PubMed

    Msaki, Aichi; Pastò, Anna; Curtarello, Matteo; Arigoni, Maddalena; Barutello, Giuseppina; Calogero, Raffaele Adolfo; Macagno, Marco; Cavallo, Federica; Amadori, Alberto; Indraccolo, Stefano

    2016-05-31

    Metastasis is the final stage of cancer progression. Some evidence indicates that tumor cell dissemination occurs early in the natural history of cancer progression. Disseminated tumor cells (DTC) have been described in the bone marrow (BM) of cancer patients as well as in experimental models, where they correlate with later development of metastasis. However, little is known about the tumorigenic features of DTC obtained at different time points along tumor progression. Here, we found that early DTC isolated from BM of 15-17 week-old Her2/neu transgenic (BALB-neuT) mice were not tumorigenic in immunodeficient mice. In contrast, DTC-derived tumors were easily detectable when late DTC obtained from 19-22 week-old BALB-neuT mice were injected. Angiogenesis, which contributes to regulate tumor dormancy, appeared dispensable to reactivate late DTC, although it accelerated growth of secondary DTC tumors. Compared with parental mammary tumors, gene expression profiling disclosed a distinctive transcriptional signature of late DTC tumors which was enriched for hypoxia-related transcripts and was maintained in ex-vivo cell culture. Altogether, these findings highlight a different tumorigenic potential of early and late DTC in the BALB-neuT model and describe a HIF-1α-related transcriptional signature in DTC tumors, which may render DTC angiogenesis-competent, when placed in a favourable environment.

  11. A hypoxic signature marks tumors formed by disseminated tumor cells in the BALB-neuT mammary cancer model

    PubMed Central

    Msaki, Aichi; Pastò, Anna; Curtarello, Matteo; Arigoni, Maddalena; Barutello, Giuseppina; Calogero, Raffaele Adolfo; Macagno, Marco; Cavallo, Federica

    2016-01-01

    Metastasis is the final stage of cancer progression. Some evidence indicates that tumor cell dissemination occurs early in the natural history of cancer progression. Disseminated tumor cells (DTC) have been described in the bone marrow (BM) of cancer patients as well as in experimental models, where they correlate with later development of metastasis. However, little is known about the tumorigenic features of DTC obtained at different time points along tumor progression. Here, we found that early DTC isolated from BM of 15-17 week-old Her2/neu transgenic (BALB-neuT) mice were not tumorigenic in immunodeficient mice. In contrast, DTC-derived tumors were easily detectable when late DTC obtained from 19-22 week-old BALB-neuT mice were injected. Angiogenesis, which contributes to regulate tumor dormancy, appeared dispensable to reactivate late DTC, although it accelerated growth of secondary DTC tumors. Compared with parental mammary tumors, gene expression profiling disclosed a distinctive transcriptional signature of late DTC tumors which was enriched for hypoxia-related transcripts and was maintained in ex-vivo cell culture. Altogether, these findings highlight a different tumorigenic potential of early and late DTC in the BALB-neuT model and describe a HIF-1α-related transcriptional signature in DTC tumors, which may render DTC angiogenesis-competent, when placed in a favourable environment. PMID:27105499

  12. Prevention of mast cell degranulation by disodium cromoglycate delayed the regression of hypoxic pulmonary hypertension in rats.

    PubMed

    Maxová, Hana; Vasilková, Marianna; Novotná, Jana; Vajnerová, Olga; Bansová, Alena; Vízek, Martin; Herget, Jan

    2010-01-01

    Pulmonary vascular remodeling induced by chronic hypoxia regresses after return to normoxia. This regression is associated with an increased amount of collagenase in pulmonary mast cells and increased collagenolytic and elastolytic activity in the lung tissue. The role of lung mast cells during recovery from chronic hypoxia was tested by the inhibition of their degranulation by disodium cromoglycate (DSCG). Male Wistar rats (n = 46) were exposed to isobaric hypoxia (3 weeks, F(i)O(2) 0.1). Thirteen of them were tested immediately at the end of exposure, 17 were treated with DSCG during the first 4 days of recovery and tested on the 5th or 14th day of recovery, 16 untreated animals were measured at the same time intervals. These groups were compared with 12 animals kept in normoxia. The rats were anesthetized (Thiopental) and their pulmonary arterial blood pressure (PAP), cardiac output and heart weight were tested, as well as the collagen composition of the walls of the peripheral pulmonary arteries. DSCG applied during the first 4 days of recovery from chronic hypoxia blocked the decrease in PAP during the early phase of recovery and had no influence on PAP at a later phase. DSCG administration prevents collagen splitting in peripheral pulmonary vessels at the early phase of recovery. PAP and right ventricle hypertrophy were normalized after 14 days of return to normoxia. Mast cell degranulation plays a role in the regression of pulmonary hypertension during the early phase of recovery from chronic hypoxia. Copyright © 2010 S. Karger AG, Basel.

  13. The Reparative Effects of Neural Stem Cells in Neonatal Hypoxic Ischemic Injury are Not Influenced by Host Gender

    PubMed Central

    Ashwal, Stephen; Ghosh, Nirmalya; Turenius, Christine I.; Dulcich, Melissa; Denham, Christopher M.; Tone, Beatriz; Hartman, Richard; Snyder, Evan Y.; Obenaus, Andre

    2015-01-01

    BACKGROUND Gender is increasingly recognized as an important influence on brain development, disease susceptibility, and response to pharmacologic/rehabilitative treatments. In regenerative medicine, it remains entirely unknown whether there is an interaction between transplanted stem cells and host gender that might bias efficacy and safety in some patients but not others. METHODS We examined the role of recipient gender in a neonatal rat hypoxia-ischemic injury (HII) model, treated with human female neural stem cells (hNSCs), labeled with superparamagnetic iron-oxide (SPIO) particles implanted into the contralateral cerebral ventricle. We monitored HII evolution (by MRI, histopathology, behavioral testing) and hNSC fate (migration, replication, viability). RESULTS Recipient gender after implantation did not influence the volume or location of ischemic injury (1, 30, or 90d) or behavior (90d). SPIO labeling did not influence HII evolution. Implantation had its greatest benefit on mild/moderate injuries which remained stable rather than increasing as in severe HII as is the natural history for such lesions. CONCLUSIONS Our results suggest that hNSC treatment (including using hNSCs that are pre-labeled with iron to allow tracking in real time by MRI) would be equally safe and effective for male and female human newborns with mild-to-moderate HII. PMID:24463490

  14. The effect of hydralazine on the tumor cytotoxicity of the hypoxic cell cytotoxin RSU-1069: evidence for therapeutic gain.

    PubMed

    Chaplin, D J; Acker, B

    1987-04-01

    The effect of the vasodilator hydralazine on both the tumor and systemic toxicity of RSU-1069 has been evaluated in C57B1 mice bearing Lewis lung tumors. The results obtained indicate that both hydralazine and RSU-1069 are cytotoxic to the Lewis lung tumor on their own. However, administration of hydralazine (5 mg/kg PO) at times up to either 3 hr before or 3 hr after RSU-1069 (0.1 mg/g IP) results in a level of cell killing greater than expected from additive effects. This potentiation by hydralazine was observed with doses of RSU-1069 from 0.01 to 0.1 mg/g. The results obtained using excision assays were confirmed using in situ growth delay as the endpoint. Growth delay (+/- s.e.m.) values for tumors to double in volume of 1.5 (+/- 1.2), 2.0 (+/- 1.3) and 6.0 (+/- 0.9) were obtained for hydralazine (5 mg/kg PO) alone, RSU-1069 (0.1 mg/g IP) alone and for hydralazine administered at the same time as RSU-1069 respectively. In contrast to the potentiating effect of hydralazine on the tumor cytotoxicity of RSU-1069, it had no significant effect on the systemic toxicity of RSU-1069 as measured by LD50/30d. No detailed studies to examine the mechanism responsible for the potentiation of tumor cytotoxicity have been performed in the present study. However, the results obtained would be consistent with previous reports that vasodilators such as hydralazine can selectively reduce tumor blood flow and thus oxygenation. Such reduced tumor oxygenation would increase the cytotoxic effects of RSU-1069 which is known to be more toxic to cells at reduced oxygen levels.

  15. Mechanism Governing Human Kappa-Opioid Receptor Expression under Desferrioxamine-Induced Hypoxic Mimic Condition in Neuronal NMB Cells

    PubMed Central

    Babcock, Jennifer; Herrera, Alberto; Coricor, George; Karch, Christopher; Liu, Alexander H.; Rivera-Gines, Aida; Ko, Jane L.

    2017-01-01

    Cellular adaptation to hypoxia is a protective mechanism for neurons and relevant to cancer. Treatment with desferrioxamine (DFO) to induce hypoxia reduced the viability of human neuronal NMB cells. Surviving/attached cells exhibited profound increases of expression of the human kappa-opioid receptor (hKOR) and hypoxia inducible factor-1α (HIF-1α). The functional relationship between hKOR and HIF-1α was investigated using RT-PCR, Western blot, luciferase reporter, mutagenesis, siRNA and receptor-ligand binding assays. In surviving neurons, DFO increased HIF-1α expression and its amount in the nucleus. DFO also dramatically increased hKOR expression. Two (designated as HIFC and D) out of four potential HIF response elements of the hKOR gene (HIFA–D) synergistically mediated the DFO response. Mutation of both elements completely abolished the DFO-induced effect. The CD11 plasmid (containing HIFC and D with an 11 bp spacing) produced greater augmentation than that of the CD17 plasmid (HIFC and D with a 17 bp-spacing), suggesting that a proper topological interaction of these elements synergistically enhanced the promoter activity. HIF-1α siRNA knocked down the increase of endogenous HIF-1α messages and diminished the DFO-induced increase of hKOR expression. Increased hKOR expression resulted in the up-regulation of hKOR protein. In conclusion, the adaptation of neuronal hKOR under hypoxia was governed by HIF-1, revealing a new mechanism of hKOR regulation. PMID:28117678

  16. Tonicity enhancer binding protein (TonEBP) and hypoxia-inducible factor (HIF) coordinate heat shock protein 70 (Hsp70) expression in hypoxic nucleus pulposus cells: role of Hsp70 in HIF-1α degradation.

    PubMed

    Gogate, Shilpa S; Fujita, Nobuyuki; Skubutyte, Renata; Shapiro, Irving M; Risbud, Makarand V

    2012-05-01

    The objective of our study was to examine the regulation of hypoxic expression of heat shock protein 70 (Hsp70) in nucleus pulposus cells and to determine if Hsp70 promoted hypoxia-inducible factor (HIF)-1α degradation. Rat nucleus pulposus cells were maintained in culture in either 21% or 1% oxygen. To determine the regulation of Hsp70 expression by tonicity enhancer binding protein (TonEBP) and HIF-1/2, loss-of-function and gain-of-function experiments and mutational analysis of the Hsp70 promoter were performed. Hypoxia increased Hsp70 expression in nucleus pulposus cells. Noteworthy, hypoxia increased TonEBP transactivation and mutation of TonE motifs blocked hypoxic induction of the Hsp70 promoter. In contrast, mutation of hypoxia response element (HRE) motifs coupled with loss-of-function experiments suggested that HIF-1 and HIF-2 suppressed Hsp70 promoter activity and transcription. Interestingly, HIF-α interferes with TonEBP function and suppresses the inductive effect of TonEBP on the Hsp70 promoter. In terms of Hsp70 function, when treated with Hsp70 transcriptional inhibitor, KNK437, there was an increase in HIF-1α protein stability and transcriptional activity. Likewise, when Hsp70 was overexpressed, the stability of HIF-1α and its transcriptional activity decreased. Hsp70 interacted with HIF-1α under hypoxic conditions and evidenced increased binding when treated with MG132, a proteasomal inhibitor. These results suggest that Hsp70 may promote HIF-1α degradation through the proteasomal pathway in nucleus pulposus cells. In hypoxic and hyperosmolar nucleus pulposus cells, Hsp70, TonEBP, and HIFs form a regulatory loop. We propose that the positive regulation by TonEBP and negative regulation of Hsp70 by HIF-1 and HIF-2 may serve to maintain Hsp70 levels in these cells, whereas Hsp70 may function in controlling HIF-1α homeostasis. Copyright © 2012 American Society for Bone and Mineral Research.

  17. Neural stem cells may be uniquely suited for combined gene therapy and cell replacement: Evidence from engraftment of Neurotrophin-3-expressing stem cells in hypoxic-ischemic brain injury.

    PubMed

    Park, Kook In; Himes, B Timothy; Stieg, Philip E; Tessler, Alan; Fischer, Itzhak; Snyder, Evan Y

    2006-05-01

    Previously, we reported that, when clonal neural stem cells (NSCs) were transplanted into brains of postnatal mice subjected to unilateral hypoxic-ischemic (HI) injury (optimally 3-7 days following infarction), donor-derived cells homed preferentially (from even distant locations) to and integrated extensively within the large ischemic areas that spanned the hemisphere. A subpopulation of NSCs and host cells, particularly in the penumbra, "shifted" their differentiation towards neurons and oligodendrocytes, the cell types typically damaged following asphyxia and least likely to regenerate spontaneously and in sufficient quantity in the "post-developmental" CNS. That no neurons and few oligodendrocytes were generated from the NSCs in intact postnatal cortex suggested that novel signals are transiently elaborated following HI to which NSCs might respond. The proportion of "replacement" neurons was approximately 5%. Neurotrophin-3 (NT-3) is known to play a role in inducing neuronal differentiation during development and perhaps following injury. We demonstrated that NSCs express functional TrkC receptors. Furthermore, the donor cells continued to express a foreign reporter transgene robustly within the damaged brain. Therefore, it appeared feasible that neuronal differentiation of exogenous NSCs (as well as endogenous progenitors) might be enhanced if donor NSCs were engineered prior to transplantation to (over)express a bioactive gene such as NT-3. A subclone of NSCs transduced with a retrovirus encoding NT-3 (yielding >90% neurons in vitro) was implanted into unilaterally asphyxiated postnatal day 7 mouse brain (emulating one of the common causes of cerebral palsy). The subclone expressed NT-3 efficiently in vivo. The proportion of NSC-derived neurons increased to approximately 20% in the infarction cavity and >80% in the penumbra. The neurons variously differentiated further into cholinergic, GABAergic, or glutamatergic subtypes, appropriate to the cortex. Donor

  18. Hypoxic cell radiosensitizers in the treatment of high grade gliomas: a new direction using combined Ro 03-8799 (pimonidazole) and SR 2508 (etanidazole)

    SciTech Connect

    Newman, H.F.; Bleehen, N.M.; Ward, R.; Workman, P.

    1988-09-01

    The hypoxic cell radiosensitizers Ro 03-8799 (pimonidazole) and SR 2508 (etanidazole) have been evaluated for their simultaneous penetration into human brain tumors and surrounding normal tissue. Thirteen patients received a dose of 1 g of each agent, infused over a 10 minute period during neurosurgery. Samples of glioma (20), brain (10) and cerebrospinal fluid (1) were obtained at a mean time (+/- SD) of 31 +/- 18 min from the end of infusion. A 24 hr plasma time course was measured in six patients. Nitroimidazole concentrations were determined by HPLC. For a mean dose of 0.55 g/m2 of each agent, the mean tumor concentrations (+/- SD) were 17.0 +/- 12.0 micrograms/g for Ro 03-8799 and 13.5 +/- 10.9 micrograms/g for SR 2508. The tumor/plasma ratios were 279 +/- 230% and 47 +/- 34% respectively. For adjacent 'normal' brain tissue, the radiosensitizer concentrations were 29.9 +/- 13.1 micrograms/g for Ro 03-8799, and 4.0 +/- 1.7 micrograms/g for SR 2508, and the brain/plasma ratios were 430 +/- 29% and 14 +/- 8% respectively. There was a significant trend towards increasing accumulation of both agents with time, in both tumor and normal brain. Concentrations in cerebrospinal fluid were very low. Plasma pharmacokinetics for Ro 03-8799 were similar to previous experience, but for SR 2508 the terminal half-life was greater in this series by a factor of 1.3. The results confirm that Ro 03-8799 is distributed widely in the central nervous system, and demonstrate that SR 2508 can achieve high tumor concentrations when the blood-brain barrier is compromised. The concentrations achieved with the combination are indicative of a significant advantage over metronidazole, misonidazole, or either agent alone, and normalized to the therapeutic dose of 0.75 g/m2 plus 2.0 g/m2 SR 2508 are consistent with those giving additive sensitization in an in vivo mouse tumor model.

  19. Involvement of gap junctions between smooth muscle cells in sustained hypoxic pulmonary vasoconstriction development: a potential role for 15-HETE and 20-HETE.

    PubMed

    Kizub, Igor V; Lakhkar, Anand; Dhagia, Vidhi; Joshi, Sachindra R; Jiang, Houli; Wolin, Michael S; Falck, John R; Koduru, Sreenivasulu Reddy; Errabelli, Ramu; Jacobs, Elizabeth R; Schwartzman, Michal L; Gupte, Sachin A

    2016-04-15

    In response to hypoxia, the pulmonary artery normally constricts to maintain optimal ventilation-perfusion matching in the lung, but chronic hypoxia leads to the development of pulmonary hypertension. The mechanisms of sustained hypoxic pulmonary vasoconstriction (HPV) remain unclear. The aim of this study was to determine the role of gap junctions (GJs) between smooth muscle cells (SMCs) in the sustained HPV development and involvement of arachidonic acid (AA) metabolites in GJ-mediated signaling. Vascular tone was measured in bovine intrapulmonary arteries (BIPAs) using isometric force measurement technique. Expression of contractile proteins was determined by Western blot. AA metabolites in the bath fluid were analyzed by mass spectrometry. Prolonged hypoxia elicited endothelium-independent sustained HPV in BIPAs. Inhibition of GJs by 18β-glycyrrhetinic acid (18β-GA) and heptanol, nonspecific blockers, and Gap-27, a specific blocker, decreased HPV in deendothelized BIPAs. The sustained HPV was not dependent on Ca(2+) entry but decreased by removal of Ca(2+) and by Rho-kinase inhibition with Y-27632. Furthermore, inhibition of GJs decreased smooth muscle myosin heavy chain (SM-MHC) expression and myosin light chain phosphorylation in BIPAs. Interestingly, inhibition of 15- and 20-hydroxyeicosatetraenoic acid (HETE) synthesis decreased HPV in deendothelized BIPAs. 15-HETE- and 20-HETE-stimulated constriction of BIPAs was inhibited by 18β-GA and Gap-27. Application of 15-HETE and 20-HETE to BIPAs increased SM-MHC expression, which was also suppressed by 18β-GA and by inhibitors of lipoxygenase and cytochrome P450 monooxygenases. More interestingly, 15,20-dihydroxyeicosatetraenoic acid and 20-OH-prostaglandin E2, novel derivatives of 20-HETE, were detected in tissue bath fluid and synthesis of these derivatives was almost completely abolished by 18β-GA. Taken together, our novel findings show that GJs between SMCs are involved in the sustained HPV in BIPAs, and

  20. Phase I study of the combination of two hypoxic cell radiosensitizers, Ro 03-8799 and SR-2508: toxicity and pharmacokinetics

    SciTech Connect

    Newman, H.F.; Bleehen, N.M.; Workman, P.

    1986-07-01

    The hypoxic cell radiosensitizer Ro 03-8799 produces acute central nervous system toxicity which limits repeated doses of the drug to 0.75 g/m/sup 2/, but peripheral neuropathy does not occur. SR-2508 causes no acute effects at doses greater than 3.0 g/m/sup 2/, but causes peripheral neuropathy at cumulative doses of 30 g/m/sup 2/. By combining maximum tolerated doses of each agent, it may be possible to increase efficacy, but not toxicity. Escalating single doses of Ro 03-8799 and SR-2508 were administered to 10 patients. The drugs were infused together in 50 ml of 0.9% saline over 10 min, beginning at 0.5 g/m/sup 2/ of each agent, and proceeding to a fixed dose of 0.75 g/m/sup 2/ Ro 03-8799 with 0.5, 1.0, 2.0, and 3.0 g/m/sup 2/ SR-2508. Four patients experienced the expected acute syndrome related to Ro 03-8799, but the incidence was not increased by escalating doses of SR-2508, and no peripheral neuropathy was seen. Plasma and urine pharmacokinetic studies showed that no drug interaction occurred. Six patients have been given a 9-dose regime over a 3 week period, using 0.75 g/m/sup 2/ Ro 03-8799 and escalating doses of 0.5, 1.0, and 1.5 g/m2 SR-2508. All exhibited the expected acute side effects related to Ro 03-8799, but with no increase at the higher doses of SR-2508. No other toxicity was seen. Plasma pharmacokinetics performed at the beginning and end of the schedule were similar. Biopsies were taken from six superficial tumors following combined radiosensitizer administration. Mean tumor concentrations over the 30 min following the end of infusion were 30 and 72 micrograms/g for Ro 03-8799 and SR-2508, respectively. These values would be expected to translate into an approximate single dose sensitizer enhancement ratio of 1.5 to 1.6, offering a significant gain over the enhancement possible with the drugs given alone.

  1. Hypoxic viscosity and diabetic retinopathy.

    PubMed Central

    Rimmer, T; Fleming, J; Kohner, E M

    1990-01-01

    Diabetic and sickle retinopathy have features in common--for example, venous dilatation, microaneurysms, and capillary closure preceding neovascularisation. Bearing in mind that haemoglobin in poorly controlled diabetes is abnormal and that extremely low oxygen tensions (known to cause sickling) exist in the healthy cat retina, we wished to explore the possibility that diabetic blood, like that of sickle cell disease, may become more viscous when deoxygenated. To do this we measured whole blood viscosity, under oxygenated and deoxygenated conditions, of 23 normal persons, 23 diabetic patients without retinopathy, and 34 diabetic patients with retinopathy. The shear rate used was 230 s-1, which is similar to that thought to prevail in the major retinal veins. The viscosity of blood from normal persons, corrected for packed cell volume, did not change significantly on deoxygenation: mean 4.54 (SD 0.38) cps, versus, 4.57 (0.39) paired t test, p = 0.66. Similarly the blood from diabetics without retinopathy showed no change: 4.42 (0.45) versus 4.42 (0.30), p = 0.98; whereas the blood from patients with retinopathy changed from 4.82 (0.48) to 4.95 (0.63), p = 0.027. The hypoxic viscosity ratio (deoxygenated divided by oxygenated viscosity) correlated with total serum cholesterol (r = 0.44, p = 0.018) but not with HbA1, serum glucose, triglycerides, or age. A disproportionate increase in venous viscosity relative to arterial viscosity would lead to increased intraluminal and transmural pressure and therefore exacerbate leakage across capillary walls. PMID:2378855

  2. Hypoxic viscosity and diabetic retinopathy.

    PubMed

    Rimmer, T; Fleming, J; Kohner, E M

    1990-07-01

    Diabetic and sickle retinopathy have features in common--for example, venous dilatation, microaneurysms, and capillary closure preceding neovascularisation. Bearing in mind that haemoglobin in poorly controlled diabetes is abnormal and that extremely low oxygen tensions (known to cause sickling) exist in the healthy cat retina, we wished to explore the possibility that diabetic blood, like that of sickle cell disease, may become more viscous when deoxygenated. To do this we measured whole blood viscosity, under oxygenated and deoxygenated conditions, of 23 normal persons, 23 diabetic patients without retinopathy, and 34 diabetic patients with retinopathy. The shear rate used was 230 s-1, which is similar to that thought to prevail in the major retinal veins. The viscosity of blood from normal persons, corrected for packed cell volume, did not change significantly on deoxygenation: mean 4.54 (SD 0.38) cps, versus, 4.57 (0.39) paired t test, p = 0.66. Similarly the blood from diabetics without retinopathy showed no change: 4.42 (0.45) versus 4.42 (0.30), p = 0.98; whereas the blood from patients with retinopathy changed from 4.82 (0.48) to 4.95 (0.63), p = 0.027. The hypoxic viscosity ratio (deoxygenated divided by oxygenated viscosity) correlated with total serum cholesterol (r = 0.44, p = 0.018) but not with HbA1, serum glucose, triglycerides, or age. A disproportionate increase in venous viscosity relative to arterial viscosity would lead to increased intraluminal and transmural pressure and therefore exacerbate leakage across capillary walls.

  3. Cortical region-specific engraftment of embryonic stem cell-derived neural progenitor cells restores axonal sprouting to a subcortical target and achieves motor functional recovery in a mouse model of neonatal hypoxic-ischemic brain injury.

    PubMed

    Shinoyama, Mizuya; Ideguchi, Makoto; Kida, Hiroyuki; Kajiwara, Koji; Kagawa, Yoshiteru; Maeda, Yoshihiko; Nomura, Sadahiro; Suzuki, Michiyasu

    2013-01-01

    Hypoxic-ischemic encephalopathy (HIE) at birth could cause cerebral palsy (CP), mental retardation, and epilepsy, which last throughout the individual's lifetime. However, few restorative treatments for ischemic tissue are currently available. Cell replacement therapy offers the potential to rescue brain damage caused by HI and to restore motor function. In the present study, we evaluated the ability of embryonic stem cell-derived neural progenitor cells (ES-NPCs) to become cortical deep layer neurons, to restore the neural network, and to repair brain damage in an HIE mouse model. ES cells stably expressing the reporter gene GFP are induced to a neural precursor state by stromal cell co-culture. Forty-hours after the induction of HIE, animals were grafted with ES-NPCs targeting the deep layer of the motor cortex in the ischemic brain. Motor function was evaluated 3 weeks after transplantation. Immunohistochemistry and neuroanatomical tracing with GFP were used to analyze neuronal differentiation and axonal sprouting. ES-NPCs could differentiate to cortical neurons with pyramidal morphology and expressed the deep layer-specific marker, Ctip2. The graft showed good survival and an appropriate innervation pattern via axonal sprouting from engrafted cells in the ischemic brain. The motor functions of the transplanted HIE mice also improved significantly compared to the sham-transplanted group. These findings suggest that cortical region specific engraftment of preconditioned cortical precursor cells could support motor functional recovery in the HIE model. It is not clear whether this is a direct effect of the engrafted cells or due to neurotrophic factors produced by these cells. These results suggest that cortical region-specific NPC engraftment is a promising therapeutic approach for brain repair.

  4. Hypoxic Episodes in Bronchopulmonary Dysplasia

    PubMed Central

    Martin, Richard J.; Di Fiore, Juliann M.; Walsh, Michele C.

    2015-01-01

    Hypoxic episodes are troublesome components of bronchopulmonary dysplasia in preterm infants. Immature respiratory control appears to be the major contributor, typically superimposed upon abnormal respiratory function. As a result, relatively short respiratory pauses may precipitate desaturation and accompanying bradycardia. As this population is predisposed to pulmonary hypertension, it is likely that pulmonary vasoconstriction may also play a role in hypoxic episodes. The natural history of intermittent hypoxic episodes has been well characterized in the preterm population at risk for BPD. However, the consequences of these episodes are less clear. Proposed associations of intermittent hypoxia include retinopathy of prematurity, sleep disordered breathing, and neurodevelopmental delay. Future study should address whether these associations are causal relationships. PMID:26593081

  5. Hypoxia-inducible factor-1β (HIF-1β) is upregulated in a HIF-1α-dependent manner in 518A2 human melanoma cells under hypoxic conditions

    SciTech Connect

    Mandl, Markus Kapeller, Barbara; Lieber, Roman; Macfelda, Karin

    2013-04-26

    Highlights: •HIF-1β is a hypoxia-responsive protein in 518A2 human melanoma cells. •HIF-1β is upregulated in a HIF-1α-dependent manner under hypoxic conditions. •HIF-1β is not elevated due to heterodimerization with HIF-1α per se. •HIF-1β inducibility has a biological relevance as judged in Het-CAM model. -- Abstract: Solid tumors include hypoxic areas due to excessive cell proliferation. Adaptation to low oxygen levels is mediated by the hypoxia-inducible factor (HIF) pathway promoting invasion, metastasis, metabolic alterations, chemo-resistance and angiogenesis. The transcription factor HIF-1, the major player within this pathway consists of HIF-1α and HIF-1β. The alpha subunit is continuously degraded under normoxia and becomes stabilized under reduced oxygen supply. In contrast, HIF-1β is generally regarded as constitutively expressed and being present in excess within the cell. However, there is evidence that the expression of this subunit is more complex. The aim of this study was to investigate the role of HIF-1β in human melanoma cells. Among a panel of five different cell lines, in 518A2 cells exposed to the hypoxia-mimetic cobalt chloride HIF-1β was rapidly elevated on protein level. Knockdown experiments performed under cobalt chloride-exposure and hypoxia revealed that this effect was mediated by HIF-1α. The non-canonical relationship between these subunits was further confirmed by pharmacologic inhibition of HIF-1α and by expression of a dominant-negative HIF mutant. Overexpression of HIF-1α showed a time delay in HIF-1β induction, thus arguing for HIF-1β de novo synthesis rather than protein stabilization by heterodimerization. A Hen’s egg test-chorioallantoic membrane model of angiogenesis and invasion indicated a local expression of HIF-1β and implies a biological relevance of these findings. In summary, this study demonstrates the HIF-1α-dependent regulation of HIF-1β under hypoxic conditions for the first time. The

  6. Hypoxic cell sensitization to radiation damage by a new radiosensitizer: cis-dichloro-bis(1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole-N3)platinum(II) (flap).

    PubMed Central

    Bales, J. R.; Sadler, P. J.; Coulson, C. J.; Laverick, M.; Nias, A. H.

    1982-01-01

    A new, stable platinum coordination complex (FLAP) containing the 5-nitroimidazole, metronidazole, has been prepared and characterized. The square-planar platinum(II) complex has two metronidazole molecules and two chlorine atoms in the cis configuration. The properties of FLAP differ significantly from metronidazole alone or other platinum complexes tested in the same system. It has a low toxicity towards Chinese hamster ovary cells and is a very effective radiosensitizer toward hypoxic cells in vitro: a one-h pretreatment with a non-toxic dose of 50 microM gave an enhancement ratio of 2.4. No potentiation of aerated cells to X-irradiation damage was observed after a similar schedule of pretreatment at the higher dose of 100 microM FLAP. PMID:6890846

  7. Tirapazamine: hypoxic cytotoxicity and interaction with radiation as assessed by the micronucleus assay.

    PubMed Central

    Shibata, T.; Shibamoto, Y.; Sasai, K.; Oya, N.; Murata, R.; Takagi, T.; Hiraoka, M.; Takahashi, M.; Abe, M.

    1996-01-01

    We investigated the cytotoxicity and the interaction with low-dose radiation (1-4Gy) of tirapazamine by the in vitro cytokinesis-block micronucleus (MN) assay. Murine SCCVII and human melanoma (G-361) cells were treated with tirapazamine under aerobic or hypoxic conditions for 1 h and the MN frequency was determined using cytochalasin-B. The cells were also treated with or without tirapazamine or KU-2285 (hypoxic cell sensitiser) under hypoxic conditions and irradiated with or without reaeration of the cell suspensions. A dose-dependent increase of MN frequency was observed by tirapazamine treatment and the hypoxic toxicity ratio was about 130 for SCCVII and 37 for G-361. The radiation dose-response curves of MN frequency suggested that the interaction of tirapazamine with irradiation appeared to be essentially additive in both cell lines. In contrast, the dose-response curve became steeper by KU-2285 treatment. Combined effects of tirapazamine and irradiation on the hypoxic cells were much higher than the radiation effect on aerobic cells at low doses, while the effects of KU-2285 did not exceed that of aerobic irradiation. In conclusion, tirapazamine appeared to be superior to hypoxic radiosensitisers at clinically relevant doses, not because of aerobic radiosensitisation but because of its potent hypoxic cytotoxicity additive to radiation effect. PMID:8763848

  8. A Low Protein Diet Increases the Hypoxic Tolerance in Drosophila

    PubMed Central

    Vigne, Paul; Frelin, Christian

    2006-01-01

    Dietary restriction is well known to increase the life span of a variety of organisms from yeast to mammals, but the relationships between nutrition and the hypoxic tolerance have not yet been considered. Hypoxia is a major cause of cell death in myocardial infarction and stroke. Here we forced hypoxia-related death by exposing one-day-old male Drosophila to chronic hypoxia (5% O2) and analysed their survival. Chronic hypoxia reduced the average life span from 33.6 days to 6.3 days when flies were fed on a rich diet. A demographic analysis indicated that chronic hypoxia increased the slope of the mortality trajectory and not the short-term risk of death. Dietary restriction produced by food dilution, by yeast restriction, or by amino acid restriction partially reversed the deleterious action of hypoxia. It increased the life span of hypoxic flies up to seven days, which represented about 25% of the life time of an hypoxic fly. Maximum survival of hypoxic flies required only dietary sucrose, and it was insensitive to drugs such as rapamycin and resveratrol, which increase longevity of normoxic animals. The results thus uncover a new link between protein nutrition, nutrient signalling, and resistance to hypoxic stresses. PMID:17183686

  9. A low protein diet increases the hypoxic tolerance in Drosophila.

    PubMed

    Vigne, Paul; Frelin, Christian

    2006-12-20

    Dietary restriction is well known to increase the life span of a variety of organisms from yeast to mammals, but the relationships between nutrition and the hypoxic tolerance have not yet been considered. Hypoxia is a major cause of cell death in myocardial infarction and stroke. Here we forced hypoxia-related death by exposing one-day-old male Drosophila to chronic hypoxia (5% O(2)) and analysed their survival. Chronic hypoxia reduced the average life span from 33.6 days to 6.3 days when flies were fed on a rich diet. A demographic analysis indicated that chronic hypoxia increased the slope of the mortality trajectory and not the short-term risk of death. Dietary restriction produced by food dilution, by yeast restriction, or by amino acid restriction partially reversed the deleterious action of hypoxia. It increased the life span of hypoxic flies up to seven days, which represented about 25% of the life time of an hypoxic fly. Maximum survival of hypoxic flies required only dietary sucrose, and it was insensitive to drugs such as rapamycin and resveratrol, which increase longevity of normoxic animals. The results thus uncover a new link between protein nutrition, nutrient signalling, and resistance to hypoxic stresses.

  10. Enhanced hypoxic pulmonary vasoconstriction in hypertension.

    PubMed

    Guazzi, M D; Alimento, M; Berti, M; Fiorentini, C; Galli, C; Tamborini, G

    1989-02-01

    In this study, we tested the hypothesis that hypoxic pulmonary vasoconstriction may be enhanced in systemic hypertension. The hypothesis took origin from the following two considerations: alveolar hypoxia constricts the pulmonary vessels by enhancing the Ca2+ penetration across sarcolemma of the smooth muscle cells and systemic high blood pressure is associated with an elevation of tone and reactivity of the lung vessels, which seems to depend on an excessive cytosol free Ca2+ concentration due to alterations in sodium handling and in the Na+-Ca2+ exchange system. These considerations suggest the possibility that the disorders in the biochemistry of smooth muscle contraction in hypertension facilitate the rise of cytosol Ca2+ concentration during alveolar hypoxia, thus resulting in a potentiation of the vasoconstrictor properties of this stimulus. In 43 hypertensive and 17 normotensive men, pulmonary arteriolar resistance has been evaluated during air respiration and after 15 minutes of breathing 17%, 15%, and 12% oxygen in nitrogen. Curves relating changes in pulmonary arteriolar resistance to oxygen breathing contents had similar configuration in the two populations but in hypertension were steeper and significantly shifted to the left, reflecting a lower threshold and an enhanced reactivity. This pattern was not related to differences in severity of the hypoxic stimulus, plasma catecholamine concentration, or hypocapnia and respiratory alkalosis induced by hypoxia and probably was not mediated through alpha-receptor activation. Calcium channel blockade with nifedipine was able to almost abolish both the normotensive and the hypertensive pulmonary vasoconstriction reaction. These findings support the hypothesis that hypoxic pulmonary vasoconstriction may be enhanced in systemic hypertension.

  11. Chronic nicotine blunts hypoxic sensitivity in perinatal rat adrenal chromaffin cells via upregulation of KATP channels: role of alpha7 nicotinic acetylcholine receptor and hypoxia-inducible factor-2alpha.

    PubMed

    Buttigieg, Josef; Brown, Stephen; Holloway, Alison C; Nurse, Colin A

    2009-06-03

    Fetal nicotine exposure blunts hypoxia-induced catecholamine secretion from neonatal adrenomedullary chromaffin cells (AMCs), providing a link between maternal smoking, abnormal arousal responses, and risk of sudden infant death syndrome. Here, we show that the mechanism is attributable to upregulation of K(ATP) channels via stimulation of alpha7 nicotinic ACh receptors (AChRs). These K(ATP) channels open during hypoxia, thereby suppressing membrane excitability. After in utero exposure to chronic nicotine, neonatal AMCs show a blunted hypoxic sensitivity as determined by inhibition of outward K(+) current, membrane depolarization, rise in cytosolic Ca(2+), and catecholamine secretion. However, hypoxic sensitivity could be unmasked in nicotine-exposed AMCs when glibenclamide, a blocker of K(ATP) channels, was present. Both K(ATP) current density and K(ATP) channel subunit (Kir 6.2) expression were significantly enhanced in nicotine-exposed cells relative to controls. The entire sequence could be reproduced in culture by exposing neonatal rat AMCs or immortalized fetal chromaffin (MAH) cells to nicotine for approximately 1 week, and was prevented by coincubation with selective blockers of alpha7 nicotinic AChRs. Additionally, coincubation with inhibitors of protein kinase C and CaM kinase, but not protein kinase A, prevented the effects of chronic nicotine in vitro. Interestingly, chronic nicotine failed to blunt hypoxia-evoked responses in MAH cells bearing short hairpin knockdown (>90%) of the transcription factor, hypoxia-inducible factor-2alpha (HIF-2alpha), suggesting involvement of the HIF pathway. The therapeutic potential of K(ATP) channel blockers was validated in experiments in which hypoxia-induced neonatal mortality in nicotine-exposed pups was significantly reduced after pretreatment with glibenclamide.

  12. Endocannabinoid anandamide mediates hypoxic pulmonary vasoconstriction

    PubMed Central

    Wenzel, Daniela; Matthey, Michaela; Bindila, Laura; Lerner, Raissa; Lutz, Beat; Zimmer, Andreas; Fleischmann, Bernd K.

    2013-01-01

    Endocannabinoids are important regulators of organ homeostasis. Although their role in systemic vasculature has been extensively studied, their impact on pulmonary vessels remains less clear. Herein, we show that the endocannabinoid anandamide (AEA) is a key mediator of hypoxic pulmonary vasoconstriction (HPV) via fatty acid amide hydrolase (FAAH)-dependent metabolites. This is underscored by the prominent vasoconstrictive effect of AEA on pulmonary arteries and strongly reduced HPV in FAAH−/− mice and wild-type mice upon pharmacological treatment with FAAH inhibitor URB597. In addition, mass spectrometry measurements revealed a clear increase of AEA and the FAAH-dependent metabolite arachidonic acid in hypoxic lungs of wild-type mice. We have identified pulmonary vascular smooth muscle cells as the source responsible for hypoxia-induced AEA generation. Moreover, either FAAH−/− mice or wild-type mice treated with FAAH inhibitor URB597 are protected against hypoxia-induced pulmonary hypertension and the concomitant vascular remodeling in the lung. Thus, the AEA/FAAH pathway is an important mediator of HPV and is involved in the generation of pulmonary hypertension. PMID:24167249

  13. Effects of various acute hypoxic conditions on the hemorheological response during exercise and recovery1.

    PubMed

    Moon, Hwang-Woon; Shin, Se-Hyun; Lee, Chul-Hyun; Park, Hun-Young; Sunoo, Sub; Nam, Sang-Seok

    2016-10-05

    Even though exercise hemorheology at hypoxic condition has been considered as a good tool to understand clinical hemorheology, there have been limited studies reported. Previous researches showed that hemorheological variables are closely correlated with oxygen delivery capacity during exercise. The present study investigated hypoxic responses including RBC deformability and aggregation, metabolic parameters and complete blood cell counts at various hypoxic conditions during cycling exercise and recovery. Eleven Korean healthy male subjects performed submaximal bike exercise at sea level (20.9% O2) and under various hypoxic conditions (16.5% O2, 14.5% O2, 12.8% O2, and 11.2% O2) in a random order. The submaximal bike exercise intensity of the subjects was 70% maximum heart rate at sea level. All variables were measured at rest, during exercise and recovery 30-minute, respectively. As oxygen partial pressure decreased, arterial blood oxygen saturation decreased but oxygen uptake did not change much. Heart rate and lactate concentration during exercise increased when oxygen partial pressure is less than or equal to 14.5% O2 condition. Red blood cell (RBC) counts, hemoglobin counts, and hematocrit level were not apparently altered with hypoxic conditions. RBC deformability showed significant alterations at 11.2% O2 conditions compared with other hypoxic conditions during exercise or recovery, except at 10 minutes recovery. However, decreases in oxygen partial pressure did not affect red blood cell aggregation. Therefore, we conclude that alterations in RBC deformability may reduce aerobic capabilities at hypoxic condition.

  14. Phase I/II Trial of Sequential Chemoradiotherapy Using a Novel Hypoxic Cell Radiosensitizer, Doranidazole (PR-350), in Patients With Locally Advanced Non-Small-Cell Lung Cancer (WJTOG-0002)

    SciTech Connect

    Nishimura, Yasumasa Nakagawa, Kazuhiko; Takeda, Koji; Tanaka, Masahiro; Segawa, Yoshihiko; Tsujino, Kayoko; Negoro, Shunichi; Fuwa, Nobukazu; Hida, Toyoaki; Kawahara, Masaaki; Katakami, Nobuyuki; Hirokawa, Keiko; Yamamoto, Nobuyuki; Fukuoka, Masahiro; Ariyoshi, Yutaka

    2007-11-01

    Purpose: This Phase I/II trial was conducted to assess the efficacy and safety of PR-350, a novel hypoxic cell radiosensitizer, when administered with thoracic radiation therapy (RT) after induction chemotherapy (CT) for locally advanced non-small-cell lung cancer (NSCLC). Methods and Materials: Two cycles of cisplatin (80 mg/m{sup 2}) and paclitaxel (180 mg/m{sup 2}), or carboplatin (AUC = 6) and paclitaxel (200 mg/m{sup 2}) were given before RT of 60 Gy in 30 fractions. In the Phase I portion, the starting dosage of PR-350 was 10 daily administrations (2000 mg/m{sup 2}) in combination with RT, and this number was increased in increments of 10 for successive groups to 30 doses. Results: In total, 37 patients were enrolled. In Phase I (n = 20), PR-350 could be administered 30 times with concurrent thoracic RT. Thus, in Phase II (n = 17), PR-350 was administered 30 times. The major toxicity was radiation pneumonitis, with Grade 3 or more pneumonitis noted in 6 patients (16%) including 2 with treatment-related deaths. However, no Grade 3 or more esophageal toxicity was noted, and only Grade 1 peripheral neuropathy was noted in 9 patients (24%). For all 37 patients, the median survival time (MST) and the 2-year survival rate were 15.9 months and 24%, respectively. For 18 patients receiving 21 to 30 doses of PR-350, the MST and 2-year survival rate were 20.9 months and 33%, respectively. Conclusions: Thoracic RT combined with 30 daily administrations of PR-350 after induction CT was well tolerated and promising for locally advanced NSCLC.

  15. HIF-α/MIF and NF-κB/IL-6 axes contribute to the recruitment of CD11b+Gr-1+ myeloid cells in hypoxic microenvironment of HNSCC.

    PubMed

    Zhu, Guiquan; Tang, Yaling; Geng, Ning; Zheng, Min; Jiang, Jian; Li, Ling; Li, Kaide; Lei, Zhengge; Chen, Wei; Fan, Yunlong; Ma, Xiangrui; Li, Longjiang; Wang, Xiaoyi; Liang, Xinhua

    2014-02-01

    CD11b+Gr-1+ myeloid cells have gained much attention due to their roles in tumor immunity suppression as well as promotion of angiogenesis, invasion, and metastases. However, the mechanisms by which CD11b+Gr-1+ myeloid cells recruit to the tumor site have not been well clarified. In the present study, we showed that hypoxia could stimulate the migration of CD11b+Gr-1+ myeloid cells through increased production of macrophage migration inhibitory factor (MIF) and interleukin-6 (IL-6) by head and neck squamous cell carcinoma (HNSCC) cells. Hypoxia-inducible factor-1α (HIF-1α)- and HIF-2α-dependent MIF regulated chemotaxis, differentiation, and pro-angiogenic function of CD11b+Gr-1+ myeloid cells through binding to CD74/CXCR2, and CD74/CXCR4 complexes, and then activating p38/mitogen-activated protein kinase (MAPK) and phosphatidylinositide 3-kinases (PI3K)/AKT signaling pathways. Knockdown (KD) of HIF-1α and HIF-2α in HNSCC cells decreased MIF level but failed to inhibit the CD11b+Gr-1+ myeloid cell migration, because HIF-1α/2α KD enhanced nuclear factor κB (NF-κB) activity that increased IL-6 secretion. Simultaneously blocking NF-κB and HIF-1α/HIF-2α had better inhibitory effect on CD11b+Gr-1+ myeloid cell recruitment in the hypoxic zone than individually silencing HIF-1α/2α or NF-κB. In conclusion, the interaction between HIF-α/MIF and NF-κB/IL-6 axes plays an important role in the hypoxia-induced accumulation of CD11b+Gr-1+ myeloid cells and tumor growth in HNSCC.

  16. Marine Natural Products as Inhibitors of Hypoxic Signaling in Tumors

    PubMed Central

    Nagle, Dale G.; Zhou, Yu-Dong

    2010-01-01

    Marine natural products have become a major source of new chemical entities in the discovery of potential anticancer agents that potently suppress various antitumor molecular targets. As a consequence of insufficient vascularization, hypoxic regions form within rapidly growing solid tumor masses. Specific alterations of gene expression in these hypoxic tumor cells help facilitate the survival and metastatic spread of solid tumors. The transcriptional response to cellular hypoxia is primarily mediated by the transcription factor hypoxia-inducible factor-1 (HIF-1) that regulates the expression of more than 100 genes involved in cellular adaptation and survival under hypoxic stress. Clinical studies in cancer patients indicate that HIF-1 activation is directly correlated with advanced disease stages and treatment resistance. HIF-1 has emerged as an important tumor-selective molecular target for anticancer drug discovery. As a result, natural product-based inhibitors of HIF-1 activation have been identified from plants and microorganisms. Recently, structurally unique natural products from marine sponges, crinoids, and algae have been identified as HIF-1 activation inhibitors. The US National Cancer Institute’s Open Repository of marine invertebrate and algae extracts has proven to be a valuable source of natural product HIF-1 inhibitors. Among the active compounds identified, certain marine natural products have also been shown to suppress the hypoxic induction of HIF-1 target genes such as vascular endothelial growth factor (VEGF). Some of these marine HIF-1 inhibitors act by interfering with the generation of mitochondrial signaling molecules in hypoxic cells. However, the precise mechanisms of action for many newly identified marine natural product HIF-1 inhibitors remain unresolved. PMID:20622986

  17. Neuroprotective Strategies after Neonatal Hypoxic Ischemic Encephalopathy

    PubMed Central

    Dixon, Brandon J.; Reis, Cesar; Ho, Wing Mann; Tang, Jiping; Zhang, John H.

    2015-01-01

    Neonatal hypoxic ischemic encephalopathy (HIE) is a devastating disease that primarily causes neuronal and white matter injury and is among the leading cause of death among infants. Currently there are no well-established treatments; thus, it is important to understand the pathophysiology of the disease and elucidate complications that are creating a gap between basic science and clinical translation. In the development of neuroprotective strategies and translation of experimental results in HIE, there are many limitations and challenges to master based on an appropriate study design, drug delivery properties, dosage, and use in neonates. We will identify understudied targets after HIE, as well as neuroprotective molecules that bring hope to future treatments such as melatonin, topiramate, xenon, interferon-beta, stem cell transplantation. This review will also discuss some of the most recent trials being conducted in the clinical setting and evaluate what directions are needed in the future. PMID:26389893

  18. Intranasal delivery of cell-penetrating anti-NF-κB peptides (Tat-NBD) alleviates infection-sensitized hypoxic-ischemic brain injury.

    PubMed

    Yang, Dianer; Sun, Yu-Yo; Lin, Xiaoyi; Baumann, Jessica M; Dunn, R Scott; Lindquist, Diana M; Kuan, Chia-Yi

    2013-09-01

    Perinatal infection aggravates neonatal hypoxic-ischemic (HI) brain injury and may interfere with therapeutic hypothermia. While the NF-κB signaling pathway has been implicated in microglia activation in infection-sensitized HI, the current therapeutic strategies rely on systemic intervention, which could impair neonatal immunity and increase the risk of severe infection. To devise a brain-targeted anti-NF-κB strategy, we examined the effects of intranasal delivery of tat-NBD peptides in two animal models of neonatal infection-sensitized HI. Kinetic experiments showed that tat-NBD peptides entered the olfactory bulbs rapidly (10-30 min) and peaked in the cerebral cortex around 60 min after intranasal application in P7 rats. Further, intranasal delivery of 1.4 mg/kg tat-NBD, which is only 7% of the intravenous dose in past studies, markedly attenuated NF-κB signaling, microglia activation, and brain damage triggered by HI with 4 or 72 h pre-exposure to the bacterial endotoxin lipopolysaccharide (LPS). In contrast, intranasal delivery of mutant tat-NBD peptides or systemic application of minocycline failed to block LPS-sensitized HI injury. Yet, intranasal delivery of up to 5.6 mg/kg tat-NBD peptides immediately after pure-HI insult showed little protection, likely due to its rapid clearance from the brain and inability to inhibit parenchymal plasminogen activators. Together, these results suggest a novel therapy of infection-sensitized HI brain injury in newborns.

  19. The emerging roles of the ubiquitination/deubiquitination system in tumor radioresistance regarding DNA damage responses, cell cycle regulation, hypoxic responses, and antioxidant properties: Insight into the development of novel radiosensitizing strategies.

    PubMed

    Goto, Yoko; Koyasu, Sho; Kobayashi, Minoru; Harada, Hiroshi

    2017-10-01

    Radiation therapy is one of the first-line treatments for many cancers, with no less than half of cancer patients receiving it in the US. Despite the development of innovative and high-precision radiation therapy strategies, many patients still experience local tumor recurrence after the treatment, at least in part, due to the existence of radioresistant cells in malignant tumor tissues. Among the various biological processes known to induce radioresistance, a post-translational protein modification, ubiquitination, has received marked attention in recent years. Ubiquitination, in which highly conserved ubiquitin polypeptides are covalently attached to their target proteins, has long been recognized as a system to tag unnecessary proteins for 26S proteasome-dependent proteolysis. However, accumulating lines of evidence recently revealed that it acts as a signal molecule in diverse biological processes as well, and its functional disorder was found to cause not only tumor development and various diseases but also tumor radioresistance. The present review summarizes the latest knowledge about how the cancer-related disorder of the ubiquitination systems induces the radioresistance of cancer cells by influencing intrinsic pathways, each of which potentially affects the radioresistance/radiosensitivity of cells, such as DNA damage responses, cell cycle regulation, hypoxic responses, and antioxidant properties. In addition, this review aims to provide insights into how we can exploit the disorders in order to develop novel radiosensitizing strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Human Umbilical Cord-Derived Mesenchymal Stem Cells Improve Learning and Memory Function in Hypoxic-Ischemic Brain-Damaged Rats via an IL-8-Mediated Secretion Mechanism Rather than Differentiation Pattern Induction.

    PubMed

    Zhou, Xiaoqin; Gu, Jialu; Gu, Yan; He, Mulan; Bi, Yang; Chen, Jie; Li, Tingyu

    2015-01-01

    MSCs are a promising therapeutic resource. Paracrine effects and the induction of differentiation patterns are thought to represent the two primary mechanisms underlying the therapeutic effects of mesenchymal stem cell (MSC) transplantation in vivo. However, it is unclear which mechanism is involved in the therapeutic effects of human umbilical cord-derived MSC (hUC-MSC) transplantation. Based on flow cytometry analysis, hUC-MSCs exhibited the morphological characteristics and surface markers of MSCs. Following directed neural induction, these cells displayed a neuron-like morphology and expressed high levels of neural markers. All types of hUC-MSCs, including differentiated and redifferentiated cells, promoted learning and memory function recovery in hypoxic-ischemic brain damaged (HIBD) rats. The hUC-MSCs secreted IL-8, which enhanced angiogenesis in the hippocampus via the JNK pathway. However, the differentiated and redifferentiated cells did not exert significantly greater therapeutic effects than the undifferentiated hUC-MSCs. hUC-MSCs display the biological properties and neural differentiation potential of MSCs and provide therapeutic advantages by secreting IL-8, which participates in angiogenesis in the rat HIBD model. These data suggest that hUC-MSC transplantation improves the recovery of neuronal function via an IL-8-mediated secretion mechanism, whereas differentiation pattern induction was limited. © 2015 S. Karger AG, Basel.

  1. Hypoxic radiosensitizers: substituted styryl derivatives.

    PubMed

    Nudelman, A; Falb, E; Odesa, Y; Shmueli-Broide, N

    1994-10-01

    A number of novel styryl epoxides, N-substituted-styryl-ethanolamines, N-mono and N,N'-bis-(2-hydroxyethyl)-cinnamamides--analogues to the known radiosensitizers RSU-1069, pimonidazole and etanidazole--display selective hypoxic radiosensitizing activity. The styryl group, especially when substituted by electron withdrawing groups, was found to be bioisosteric to the nitroimidazolyl functionality. The most active derivative 2-(2'-nitrophenyl)ethen-1-yl-oxirane 8a displayed a sensitizer enhancement ratio (SER) of 5 relative to misonidazole.

  2. Oral (po) dosing with RSU 1069 or RB 6145 maintains their potency as hypoxic cell radiosensitizers and cytotoxins but reduces systemic toxicity compared with parenteral (ip) administration in mice.

    PubMed

    Cole, S; Stratford, I J; Bowler, J; Nolan, J; Wright, E G; Lorimore, S A; Adams, G E

    1991-07-01

    RB 6145 is a pro-drug of the hypoxic cell radiosensitizer RSU 1069 with reduced systemic toxicity. The maximum tolerated dose (MTD) of RSU 1069 for C3H/He mice was 80 mg/kg (0.38 mmol/kg) ip but 320 mg/kg (1.5 mmol/kg) following po administration. The MTD values of RB 6145 were 350 mg/kg (0.94 mmol/kg) ip and 1 g/kg (2.67 mmol/kg) po. Toxicity of RSU 1069 toward bone marrow stem cells was also less after po administration than after ip administration; 0.1 mmol/kg ip RSU 1069 and 0.38 mmol/kg po RSU 1069 both reduced the surviving fraction of clonogenic CFU-A cells by 50%. Oral administration of RSU 1069 resulted in lower spermatogenic toxicity. No loss of intestinal crypts was detected after ip or po administration of RSU 1069. Some nephrotoxicity was observed in half of the mice given the highest po dose of 1.5 mmol/kg of RSU 1069; this was not observed following the highest ip dose of drug. For RSU 1069 and RB 6145, administered by either route, the maximum hypoxic cell radiosensitization in murine KHT sarcomas, occurred when the drugs were given 45-60 min before 10 Gy of X rays. The degree of radiosensitization produced by a particular dose of either compound was largely independent of the route of administration. Preliminary pharmacokinetic studies, using 3H-RSU 1069, suggested that anti-tumor efficacy correlated with peak blood level of label and concentration in the tumor at the time of irradiation, which were not reduced by po compared with ip administration. Normal tissue toxicity tended to correlate with total exposure over time, which was reduced approximately two-fold by po administration. Oral administration of RSU 1069 or RB 6145, as well as being convenient, may give therapeutic benefit since dose-limiting toxicity in mice was reduced compared with parenteral administration, whereas radiosensitizing activity was less affected.

  3. The anatomy of a hypoxic operator in Saccharomyces cerevisiae.

    PubMed Central

    Deckert, J; Torres, A M; Hwang, S M; Kastaniotis, A J; Zitomer, R S

    1998-01-01

    Aerobic repression of the hypoxic genes of Saccharomyces cerevisiae is mediated by the DNA-binding protein Rox1 and the Tup1/Ssn6 general repression complex. To determine the DNA sequence requirements for repression, we carried out a mutational analysis of the consensus Rox1-binding site and an analysis of the arrangement of the Rox1 sites into operators in the hypoxic ANB1 gene. We found that single base pair substitutions in the consensus sequence resulted in lower affinities for Rox1, and the decreased affinity of Rox1 for mutant sites correlated with the ability of these sites to repress expression of the hypoxic ANB1 gene. In addition, there was a general but not complete correlation between the strength of repression of a given hypoxic gene and the compliance of the Rox1 sites in that gene to the consensus sequence. An analysis of the ANB1 operators revealed that the two Rox1 sites within an operator acted synergistically in vivo, but that Rox1 did not bind cooperatively in vitro, suggesting the presence of a higher order repression complex in the cell. In addition, the spacing or helical phasing of the Rox1 sites was not important in repression. The differential repression by the two operators of the ANB1 gene was found to be due partly to the location of the operators and partly to the sequences between the two Rox1-binding sites in each. Finally, while Rox1 repression requires the Tup1/Ssn6 general repression complex and this complex has been proposed to require the aminoterminal regions of histones H3 and H4 for full repression of a number of genes, we found that these regions were dispensable for ANB1 repression and the repression of two other hypoxic genes. PMID:9832521

  4. Hypoxic Conditioned Medium from Human Amniotic Fluid-Derived Mesenchymal Stem Cells Accelerates Skin Wound Healing through TGF-β/SMAD2 and PI3K/Akt Pathways

    PubMed Central

    Jun, Eun Kyoung; Zhang, Qiankun; Yoon, Byung Sun; Moon, Jai-Hee; Lee, Gilju; Park, Gyuman; Kang, Phil Jun; Lee, Jung Han; Kim, Areee; You, Seungkwon

    2014-01-01

    In a previous study, we isolated human amniotic fluid (AF)-derived mesenchymal stem cells (AF-MSCs) and utilized normoxic conditioned medium (AF-MSC-norCM) which has been shown to accelerate cutaneous wound healing. Because hypoxia enhances the wound healing function of mesenchymal stem cell-conditioned medium (MSC-CM), it is interesting to explore the mechanism responsible for the enhancement of wound healing function. In this work, hypoxia not only increased the proliferation of AF-MSCs but also maintained their constitutive characteristics (surface marker expression and differentiation potentials). Notably, more paracrine factors, VEGF and TGF-β1, were secreted into hypoxic conditioned medium from AF-MSCs (AF-MSC-hypoCM) compared to AF-MSC-norCM. Moreover, AF-MSC-hypoCM enhanced the proliferation and migration of human dermal fibroblasts in vitro, and wound closure in a skin injury model, as compared to AF-MSC-norCM. However, the enhancement of migration of fibroblasts accelerated by AF-MSC-hypoCM was inhibited by SB505124 and LY294002, inhibitors of TGF-β/SMAD2 and PI3K/AKT, suggesting that AF-MSC-hypoCM-enhanced wound healing is mediated by the activation of TGF-β/SMAD2 and PI3K/AKT. Therefore, AF-MSC-hypoCM enhances wound healing through the increase of hypoxia-induced paracrine factors via activation of TGF-β/SMAD2 and PI3K/AKT pathways. PMID:24398984

  5. Hypoxic conditioned medium from human amniotic fluid-derived mesenchymal stem cells accelerates skin wound healing through TGF-β/SMAD2 and PI3K/Akt pathways.

    PubMed

    Jun, Eun Kyoung; Zhang, Qiankun; Yoon, Byung Sun; Moon, Jai-Hee; Lee, Gilju; Park, Gyuman; Kang, Phil Jun; Lee, Jung Han; Kim, Areee; You, Seungkwon

    2014-01-06

    In a previous study, we isolated human amniotic fluid (AF)-derived mesenchymal stem cells (AF-MSCs) and utilized normoxic conditioned medium (AF-MSC-norCM) which has been shown to accelerate cutaneous wound healing. Because hypoxia enhances the wound healing function of mesenchymal stem cell-conditioned medium (MSC-CM), it is interesting to explore the mechanism responsible for the enhancement of wound healing function. In this work, hypoxia not only increased the proliferation of AF-MSCs but also maintained their constitutive characteristics (surface marker expression and differentiation potentials). Notably, more paracrine factors, VEGF and TGF-β1, were secreted into hypoxic conditioned medium from AF-MSCs (AF-MSC-hypoCM) compared to AF-MSC-norCM. Moreover, AF-MSC-hypoCM enhanced the proliferation and migration of human dermal fibroblasts in vitro, and wound closure in a skin injury model, as compared to AF-MSC-norCM. However, the enhancement of migration of fibroblasts accelerated by AF-MSC-hypoCM was inhibited by SB505124 and LY294002, inhibitors of TGF-β/SMAD2 and PI3K/AKT, suggesting that AF-MSC-hypoCM-enhanced wound healing is mediated by the activation of TGF-β/SMAD2 and PI3K/AKT. Therefore, AF-MSC-hypoCM enhances wound healing through the increase of hypoxia-induced paracrine factors via activation of TGF-β/SMAD2 and PI3K/AKT pathways.

  6. Marine Compound Xyloketal B Reduces Neonatal Hypoxic-Ischemic Brain Injury

    PubMed Central

    Xiao, Ai-Jiao; Chen, Wenliang; Xu, Baofeng; Liu, Rui; Turlova, Ekaterina; Barszczyk, Andrew; Sun, Christopher Lf; Liu, Ling; Deurloo, Marielle; Wang, Guan-Lei; Feng, Zhong-Ping; Sun, Hong-Shuo

    2014-01-01

    Neonatal hypoxic-ischemic encephalopathy causes neurodegeneration and brain injury, leading to sensorimotor dysfunction. Xyloketal B is a novel marine compound isolated from a mangrove fungus Xylaria species (no. 2508) with unique antioxidant effects. In this study, we investigated the effects and mechanism of xyloketal B on oxygen-glucose deprivation-induced neuronal cell death in mouse primary cortical culture and on hypoxic-ischemic brain injury in neonatal mice in vivo. We found that xyloketal B reduced anoxia-induced neuronal cell death in vitro, as well as infarct volume in neonatal hypoxic-ischemic brain injury model in vivo. Furthermore, xyloketal B improved functional behavioral recovery of the animals following hypoxic-ischemic insult. In addition, xyloketal B significantly decreased calcium entry, reduced the number of TUNEL-positive cells, reduced the levels of cleaved caspase-3 and Bax proteins, and increased the level of Bcl-2 protein after the hypoxic-ischemic injury. Our findings indicate that xyloketal B is effective in models of hypoxia-ischemia and thus has potential as a treatment for hypoxic-ischemic brain injury. PMID:25546517

  7. Hyperbaric oxygen suppresses hypoxic-ischemic brain damage in newborn rats.

    PubMed

    Zhu, Min; Lu, Mengru; Li, Qing-Jie; Zhang, Zhuo; Wu, Zheng-Zheng; Li, Jie; Qian, Lai; Xu, Yun; Wang, Zhong-Yuan

    2015-01-01

    The optimal therapeutic time-window and protective mechanism of hyperbaric oxygen in hypoxic-ischemic brain damage remain unclear. This study aimed to determine the neuroprotective effects of hyperbaric oxygen. Following hypoxic-ischemic brain damage modeling in neonatal rats, hyperbaric oxygen was administered at 6, 24, 48, and 72 hours and 1 week after hypoxia, respectively, once daily for 1 week. Fourteen days after hypoxic-ischemic brain damage, cell density and apoptosis rate, number of Fas-L+, caspase-8+, and caspase-3+ neuronal cells, levels of nitric oxide, malondialdehyde, and superoxide dismutase in hippocampus were examined. Morris water maze test was conducted 28 days after insult. Significant improvements were found in cell density, rate of apoptosis, oxidative stress markers, FasL, and caspases in rats treated with hyperbaric oxygen within 72 hours compared to hypoxic-ischemic injury. Similarly, time-dependent behavioral amelioration was observed in pups treated with hyperbaric oxygen. Our findings suggest that hyperbaric oxygen protects against hypoxic-ischemic brain damage by inhibiting oxidative stress and FasL-induced apoptosis, and optimal therapeutic time window is within 72 hours after hypoxic-ischemic brain damage.

  8. Antioxidants prevent depression of the acute hypoxic ventilatory response by subanaesthetic halothane in men

    PubMed Central

    Teppema, Luc J; Nieuwenhuijs, Diederik; Sarton, Elise; Romberg, Raymonda; Olievier, Cees N; Ward, Denham S; Dahan, Albert

    2002-01-01

    We studied the effect of the antioxidants (AOX) ascorbic acid (2 g, I.V.) and α-tocopherol (200 mg, P.O.) on the depressant effect of subanaesthetic doses of halothane (0.11 % end-tidal concentration) on the acute isocapnic hypoxic ventilatory response (AHR), i.e. the ventilatory response upon inhalation of a hypoxic gas mixture for 3 min (leading to a haemoglobin saturation of 82 ± 1.8 %) in healthy male volunteers. In the first set of protocols, two groups of eight subjects each underwent a control hypoxic study, a halothane hypoxic study and finally a halothane hypoxic study after pretreatment with AOX (study 1) or placebo (study 2). Halothane reduced the AHR by more than 50 %, from 0.79 ± 0.31 to 0.36 ± 0.14 l min−1 %−1 in study 1 and from 0.79 ± 0.40 to 0.36 ± 0.19 l min−1 %−1 in study 2, P < 0.01 for both. Pretreatment with AOX prevented this depressant effect of halothane in the subjects of study 1 (AHR returning to 0.77 ± 0.32 l min−1 %−1, n.s. from control), whereas placebo (study 2) had no effect (AHR remaining depressed at 0.36 ± 0.27 l min−1 %−1, P < 0.01 from control). In a second set of protocols, two separate groups of eight subjects each underwent a control hypoxic study, a sham halothane hypoxic study and finally a sham halothane hypoxic study after pretreatment with AOX (study 3) or placebo (study 4). In studies 3 and 4, sham halothane did not modify the control hypoxic response, nor did AOX (study 3) or placebo (study 4). The 95 % confidence intervals for the ratio of hypoxic sensitivities, (AOX + halothane):halothane in study 1 and (AOX - sham halothane):sham halothane in study 3, were [1.7, 2.6] and [1.0, 1.2], respectively. Because the antioxidants prevented the reduction of the acute hypoxic response by halothane, we suggest that this depressant effect may be caused by reactive species produced by a reductive metabolism of halothane during hypoxia or that a change in redox state of carotid body cells by the

  9. M(o)TOR of pseudo-hypoxic state in aging: rapamycin to the rescue.

    PubMed

    Leontieva, Olga V; Blagosklonny, Mikhail V

    2014-01-01

    A groundbreaking publication by Sinclair and coworkers has illuminated the pseudo-hypoxic state in aging and its reversibility. Remarkably, these data also fit the mTOR-centered model of aging. Here we discuss that the mTOR pathway can cause cellular pseudo-hypoxic state, manifested by HIF-1 expression and lactate production under normoxia. We found that rapamycin decreased HIF-1 and lactate levels in proliferating and senescent cells in vitro. This reduction was independent from mitochondrial respiration: rapamycin decreased lactate production in normoxia, hypoxia, and in the presence of the OXPHOS inhibitor oligomycin. We suggest that pseudo-hypoxic state is not necessarily caused by mitochondrial dysfunction, but instead mitochondrial dysfunction may be secondary to mTOR-driven hyperfunctions. Clinical applications of rapamycin for reversing pseudo-hypoxic state and lactate acidosis are discussed.

  10. Measuring DNA Replication in Hypoxic Conditions.

    PubMed

    Foskolou, Iosifina P; Biasoli, Deborah; Olcina, Monica M; Hammond, Ester M

    2016-01-01

    It is imperative that dividing cells maintain replication fork integrity in order to prevent DNA damage and cell death. The investigation of DNA replication is of high importance as alterations in this process can lead to genomic instability, a known causative factor of tumor development. A simple, sensitive, and informative technique which enables the study of DNA replication, is the DNA fiber assay, an adaptation of which is described in this chapter. The DNA fiber method is a powerful tool, which allows the quantitative and qualitative analysis of DNA replication at the single molecule level. The sequential pulse labeling of live cells with two thymidine analogues and the subsequent detection with specific antibodies and fluorescence imaging allows direct examination of sites of DNA synthesis. In this chapter, we describe how this assay can be performed in conditions of low oxygen levels (hypoxia)-a physiologically relevant stress that occurs in most solid tumors. Moreover, we suggest ways on how to overcome the technical problems that arise while using the hypoxic chambers.

  11. Culturing CTLs under Hypoxic Conditions Enhances Their Cytolysis and Improves Their Anti-tumor Function.

    PubMed

    Gropper, Yael; Feferman, Tali; Shalit, Tali; Salame, Tomer-Meir; Porat, Ziv; Shakhar, Guy

    2017-09-12

    Cytotoxic T lymphocytes (CTLs) used in immunotherapy are typically cultured under atmospheric O2 pressure but encounter hypoxic conditions inside tumors. Activating CTLs under hypoxic conditions has been shown to improve their cytotoxicity in vitro, but the mechanism employed and the implications for immunotherapy remain unknown. We activated and cultured OT-I CD8 T cells at either 1% or 20% O2. Hypoxic CTLs survived, as well as normoxic ones, in vitro but killed OVA-expressing B16 melanoma cells more efficiently. Hypoxic CTLs contained similar numbers of cytolytic granules and released them as efficiently but packaged more granzyme-B in each granule without producing more perforin. We imaged CTL distribution and motility inside B16-OVA tumors using confocal and intravital 2-photon microscopy and observed no obvious differences. However, mice treated with hypoxic CTLs exhibited better tumor regression and survived longer. Thus, hypoxic CTLs may perform better in tumor immunotherapy because of higher intrinsic cytotoxicity rather than improved migration inside tumors. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Hypoxic preconditioning protects photoreceptors against light damage independently of hypoxia inducible transcription factors in rods.

    PubMed

    Kast, Brigitte; Schori, Christian; Grimm, Christian

    2016-05-01

    Hypoxic preconditioning protects photoreceptors against light-induced degeneration preserving retinal morphology and function. Although hypoxia inducible transcription factors 1 and 2 (HIF1, HIF2) are the main regulators of the hypoxic response, photoreceptor protection does not depend on HIF1 in rods. Here we used rod-specific Hif2a single and Hif1a;Hif2a double knockout mice to investigate the potential involvement of HIF2 in rods for protection after hypoxic preconditioning. To identify potential HIF2 target genes in rods we determined the retinal transcriptome of hypoxic control and rod-specific Hif2a knockouts by RNA sequencing. We show that rods do not need HIF2 for hypoxia-induced increased survival after light exposure. The transcriptomic analysis revealed a number of genes that are potentially regulated by HIF2 in rods; among those were Htra1, Timp3 and Hmox1, candidates that are interesting due to their connection to human degenerative diseases of the retina. We conclude that neither HIF1 nor HIF2 are required in photoreceptors for protection by hypoxic preconditioning. We hypothesize that HIF transcription factors may be needed in other cells to produce protective factors acting in a paracrine fashion on photoreceptor cells. Alternatively, hypoxic preconditioning induces a rod-intrinsic response that is independent of HIF transcription factors.

  13. Using the endocannabinoid system as a neuroprotective strategy in perinatal hypoxic-ischemic brain injury

    PubMed Central

    Lara-Celador, I.; Goñi-de-Cerio, F.; Alvarez, Antonia; Hilario, Enrique

    2013-01-01

    One of the most important causes of brain injury in the neonatal period is a perinatal hypoxic-ischemic event. This devastating condition can lead to long-term neurological deficits or even death. After hypoxic-ischemic brain injury, a variety of specific cellular mechanisms are set in motion, triggering cell damage and finally producing cell death. Effective therapeutic treatments against this phenomenon are still unavailable because of complex molecular mechanisms underlying hypoxic-ischemic brain injury. After a thorough understanding of the mechanism underlying neural plasticity following hypoxic-ischemic brain injury, various neuroprotective therapies have been developed for alleviating brain injury and improving long-term outcomes. Among them, the endocannabinoid system emerges as a natural system of neuroprotection. The endocannabinoid system modulates a wide range of physiological processes in mammals and has demonstrated neuroprotective effects in different paradigms of acute brain injury, acting as a natural neuroprotectant. The aim of this review is to study the use of different therapies to induce long-term therapeutic effects after hypoxic-ischemic brain injury, and analyze the important role of the endocannabinoid system as a new neuroprotective strategy against perinatal hypoxic-ischemic brain injury. PMID:25206720

  14. Differential roles of prostaglandin E-type receptors in activation of hypoxia-inducible factor 1 by prostaglandin E1 in vascular-derived cells under non-hypoxic conditions

    PubMed Central

    Suzuki, Kengo; Nishi, Kenichiro; Takabuchi, Satoshi; Kai, Shinichi; Matsuyama, Tomonori; Kurosawa, Shin; Adachi, Takehiko; Maruyama, Takayuki; Fukuda, Kazuhiko

    2013-01-01

    Prostaglandin E1 (PGE1), known pharmaceutically as alprostadil, has vasodilatory properties and is used widely in various clinical settings. In addition to acute vasodilatory properties, PGE1 may exert beneficial effects by altering protein expression of vascular cells. PGE1 is reported to be a potent stimulator of angiogenesis via upregulation of VEGF expression, which is under the control of the transcription factor hypoxia-inducible factor 1 (HIF-1). However, the molecular mechanisms behind the phenomenon are largely unknown. In the present study, we investigated the mechanism by which PGE1 induces HIF-1 activation and VEGF gene expression in human aortic smooth muscle cells (HASMCs) and human umbilical vein endothelial cells (HUVECs), both vascular-derived cells. HUVECs and HASMCs were treated with PGE1 at clinically relevant concentrations under 20% O2 conditions and HIF-1 protein expression was investigated. Expression of HIF- 1α protein and the HIF-1-downstream genes were low under 20% O2 conditions and increased in response to PGE1 treatment in both HUVECs and HASMCs in a dose- and time-dependent manner under 20% O2 conditions as comparable to exposure to 1% O2 conditions. Studies using EP-receptor-specific agonists and antagonists revealed that EP1 and EP3 are critical to PGE1-induced HIF-1 activation. In vitro vascular permeability assays using HUVECs indicated that PGE1 increased vascular permeability in HUVECs. Thus, we demonstrate that PGE1 induces HIF- 1α protein expression and HIF-1 activation under non-hypoxic conditions and also provide evidence that the activity of multiple signal transduction pathways downstream of EP1 and EP3 receptors is required for HIF-1 activation. PMID:24349900

  15. Hypoxic potentiation of nitrite effects in human vessels and platelets.

    PubMed

    Dautov, Rustem F; Stafford, Irene; Liu, Saifei; Cullen, Hugh; Madhani, M; Chirkov, Yuliy Y; Horowitz, John D

    2014-08-31

    Previous studies in non-human blood vessels and in platelets have demonstrated that under hypoxic conditions release of NO from nitrite (NO2(-)) is potentiated by deoxyhaemoglobin. In the current study, we characterized hypoxic potentiation of NO2(-) effects in human vasculature and platelets in vitro, addressing underlying mechanisms. The vasodilator efficacy of NO2(-), in comparison with glyceryl trinitrate (GTN), was evaluated in vitro, using segments of human saphenous vein. Under hypoxic conditions, there was a leftward shift of the NO2(-) concentration-response curve (EC50: 22 μM in hyperoxia vs 3.5 μM in hypoxia; p<0.01), but no significant potentiation of GTN effect. In the presence of red blood cells, hypoxic potentiation of NO2(-) vasodilator effect was accentuated. In whole blood samples and platelet-rich plasma (PRP) we assessed inhibition of platelet aggregation by NO2(-) (1mM), in comparison with that of sodium nitroprusside (SNP, 10 μM). In individual subjects (n=37), there was a strong correlation (r=0.75, p<0.0001) between anti-aggregatory effects of NO2(-) and SNP in whole blood, signifying that resultant sGC activation underlies biological effect and responses to NO2(-) are diminished in the presence of NO resistance. In PRP, the effects of NO2(-) were less pronounced than in whole blood (p=0.0001), suggesting an important role of Hb (within RBCs) in the bioconversion of NO2(-) to NO. Inhibition of platelet aggregation by NO2(-) was almost 3-fold greater in venous than in arterial blood (p<0.0001), and deoxyHb concentration directly correlated (r=0.69, p=0.013) with anti-aggregatory response. Incremental hypoxia applied to venous blood samples (in hypoxic chamber) caused a progressive increase in both deoxyHb level and anti-aggregatory effect of NO2(-). When subjects inhaled a 12% O2 mixture for 20 min, there was a 3-fold rise in blood deoxyHb fraction (p<0.01). In PRP, response to NO2(-) also increased under hypoxia, and was further enhanced

  16. Involvement of SIRT1 in hypoxic down-regulation of c-Myc and β-catenin and hypoxic preconditioning effect of polyphenols

    SciTech Connect

    Hong, Kyung-Soo; Park, Jun-Ik; Kim, Mi-Ju; Kim, Hak-Bong; Lee, Jae-Won; Dao, Trong Tuan; Oh, Won Keun; Kang, Chi-Dug; Kim, Sun-Hee

    2012-03-01

    SIRT1 has been found to function as a Class III deacetylase that affects the acetylation status of histones and other important cellular nonhistone proteins involved in various cellular pathways including stress responses and apoptosis. In this study, we investigated the role of SIRT1 signaling in the hypoxic down-regulations of c-Myc and β-catenin and hypoxic preconditioning effect of the red wine polyphenols such as piceatannol, myricetin, quercetin and resveratrol. We found that the expression of SIRT1 was significantly increased in hypoxia-exposed or hypoxic preconditioned HepG2 cells, which was closely associated with the up-regulation of HIF-1α and down-regulation of c-Myc and β-catenin expression via deacetylation of these proteins. In addition, blockade of SIRT1 activation using siRNA or amurensin G, a new potent SIRT1 inhibitor, abolished hypoxia-induced HIF-1α expression but increased c-Myc and β-catenin expression. SIRT1 was also found to stabilize HIF-1α protein and destabilize c-Myc, β-catenin and PHD2 under hypoxia. We also found that myricetin, quercetin, piceatannol and resveratrol up-regulated HIF-1α and down-regulated c-Myc, PHD2 and β-catenin expressions via SIRT1 activation, in a manner that mimics hypoxic preconditioning. This study provides new insights of the molecular mechanisms of hypoxic preconditioning and suggests that polyphenolic SIRT1 activators could be used to mimic hypoxic/ischemic preconditioning. -- Graphical abstract: Polyphenols mimicked hypoxic preconditioning by up-regulating HIF-1α and SIRT1 and down-regulating c-Myc, PHD2, and β-catenin. HepG2 cells were pretreated with the indicated doses of myricetin (MYR; A), quercetin (QUR; B), or piceatannol (PIC; C) for 4 h and then exposed to hypoxia for 4 h. Levels of HIF-1α, SIRT1, c-Myc, β-catenin, and PHD2 were determined by western blot analysis. The data are representative of three individual experiments. Highlights: ► SIRT1 expression is increased in hypoxia

  17. Expression and hypoxic regulation of hif1alpha and hif2alpha during early blood and endothelial cell differentiation in chick.

    PubMed

    Ota, Kanako; Nagai, Hiroki; Sheng, Guojun

    2007-08-01

    HIF1 and HIF2 are major mediators for hypoxia sensing and response. Their roles in early differentiation of two key cell types involved in oxygen supply in amniotes, the primitive blood cells and endothelial cells, are unclear. We show that, in pre-circulation avian embryos, hif1alpha and hif2alpha are expressed in embryonic and extraembryonic tissues, respectively. hif2alpha, first identified as epas1, is not present in endothelial cells at any pre-circulation stage under either normoxia or hypoxia conditions. Differentiating blood cells express low levels of hif2alpha under normoxia, but show a strong and rapid upregulation under hypoxia. Blood cell differentiation, however, is not affected under either hypoxia or hyperoxia conditions.

  18. VHL: Cullin-g the hypoxic response.

    PubMed

    Kershaw, Nadia J; Babon, Jeffrey J

    2015-03-03

    Hypoxia inducible factor (HIF)-mediated response to hypoxic conditions is turned off by VHL-mediated ubiquitination of HIFα. To achieve this, VHL binds HIFα and recruits it to a specific E3 ubiquitin ligase complex, a Cullin-RING-ligase. In this issue of Structure, Nguyen et al. provide a structural view of how VHL engages the ligase in order to inhibit the hypoxic response.

  19. Adapting radiotherapy to hypoxic tumours

    NASA Astrophysics Data System (ADS)

    Malinen, Eirik; Søvik, Åste; Hristov, Dimitre; Bruland, Øyvind S.; Rune Olsen, Dag

    2006-10-01

    In the current work, the concepts of biologically adapted radiotherapy of hypoxic tumours in a framework encompassing functional tumour imaging, tumour control predictions, inverse treatment planning and intensity modulated radiotherapy (IMRT) were presented. Dynamic contrast enhanced magnetic resonance imaging (DCEMRI) of a spontaneous sarcoma in the nasal region of a dog was employed. The tracer concentration in the tumour was assumed related to the oxygen tension and compared to Eppendorf histograph measurements. Based on the pO2-related images derived from the MR analysis, the tumour was divided into four compartments by a segmentation procedure. DICOM structure sets for IMRT planning could be derived thereof. In order to display the possible advantages of non-uniform tumour doses, dose redistribution among the four tumour compartments was introduced. The dose redistribution was constrained by keeping the average dose to the tumour equal to a conventional target dose. The compartmental doses yielding optimum tumour control probability (TCP) were used as input in an inverse planning system, where the planning basis was the pO2-related tumour images from the MR analysis. Uniform (conventional) and non-uniform IMRT plans were scored both physically and biologically. The consequences of random and systematic errors in the compartmental images were evaluated. The normalized frequency distributions of the tracer concentration and the pO2 Eppendorf measurements were not significantly different. 28% of the tumour had, according to the MR analysis, pO2 values of less than 5 mm Hg. The optimum TCP following a non-uniform dose prescription was about four times higher than that following a uniform dose prescription. The non-uniform IMRT dose distribution resulting from the inverse planning gave a three times higher TCP than that of the uniform distribution. The TCP and the dose-based plan quality depended on IMRT parameters defined in the inverse planning procedure (fields

  20. Game performance and intermittent hypoxic training.

    PubMed

    Hinckson, E A; Hamlin, M J; Wood, M R; Hopkins, W G

    2007-08-01

    Live high-train low altitude exposure simulated by hypoxic devices may improve athletic performance. In this study, intermittent normobaric hypoxia was achieved with the GO2altitude hypoxicator to determine its effects on sea level performance in rugby players. Ten players were randomly assigned to two groups. Players in each group received 14 sessions of either hypoxic (10-15% O(2)) or normoxic (21% O(2)) exposure at rest over 14 consecutive days in a single blind fashion. Various performance measures were obtained consecutively in a single testing session pre- and post-exposure. Effects of hypoxic exposure on maximum speed and sprint times were trivial (<1.0%) but unclear (90% likely range, +/-5% to +/-9%). In rugby simulation, hypoxic exposure produced impairments of peak power in two scrums (15%, +/-8%; 9%, +/-7%) and impairments of time in offensive sprints (7%, +/-8%) and tackle sprints (11%, +/-9%). Pending further research, rugby players would be unwise to use normobaric intermittent hypoxic exposure to prepare for games at sea level.

  1. The Galvanotactic Migration of Keratinocytes is Enhanced by Hypoxic Preconditioning

    PubMed Central

    Guo, Xiaowei; Jiang, Xupin; Ren, Xi; Sun, Huanbo; Zhang, Dongxia; Zhang, Qiong; Zhang, Jiaping; Huang, Yuesheng

    2015-01-01

    The endogenous electric field (EF)-directed migration of keratinocytes (galvanotaxis) into wounds is an essential step in wound re-epithelialization. Hypoxia, which occurs immediately after injury, acts as an early stimulus to initiate the healing process; however, the mechanisms for this effect, remain elusive. We show here that the galvanotactic migration of keratinocytes was enhanced by hypoxia preconditioning as a result of the increased directionality rather than the increased motility of keratinocytes. This enhancement was both oxygen tension- and preconditioning time-dependent, with the maximum effects achieved using 2% O2 preconditioning for 6 hours. Hypoxic preconditioning (2% O2, 6 hours) decreased the threshold voltage of galvanotaxis to < 25 mV/mm, whereas this value was between 25 and 50 mV/mm in the normal culture control. In a scratch-wound monolayer assay in which the applied EF was in the default healing direction, hypoxic preconditioning accelerated healing by 1.38-fold compared with the control conditions. Scavenging of the induced ROS by N-acetylcysteine (NAC) abolished the enhanced galvanotaxis and the accelerated healing by hypoxic preconditioning. Our data demonstrate a novel and unsuspected role of hypoxia in supporting keratinocyte galvanotaxis. Enhancing the galvanotactic response of cells might therefore be a clinically attractive approach to induce improved wound healing. PMID:25988491

  2. Adaptation of iron requirement to hypoxic conditions at high altitude.

    PubMed

    Gassmann, Max; Muckenthaler, Martina U

    2015-12-15

    Adequate acclimatization time to enable adjustment to hypoxic conditions is one of the most important aspects for mountaineers ascending to high altitude. Accordingly, most reviews emphasize mechanisms that cope with reduced oxygen supply. However, during sojourns to high altitude adjustment to elevated iron demand is equally critical. Thus in this review we focus on the interaction between oxygen and iron homeostasis. We review the role of iron 1) in the oxygen sensing process and erythropoietin (Epo) synthesis, 2) in gene expression control mediated by the hypoxia-inducible factor-2 (HIF-2), and 3) as an oxygen carrier in hemoglobin, myoglobin, and cytochromes. The blood hormone Epo that is abundantly expressed by the kidney under hypoxic conditions stimulates erythropoiesis in the bone marrow, a process requiring high iron levels. To ensure that sufficient iron is provided, Epo-controlled erythroferrone that is expressed in erythroid precursor cells acts in the liver to reduce expression of the iron hormone hepcidin. Consequently, suppression of hepcidin allows for elevated iron release from storage organs and enhanced absorption of dietary iron by enterocytes. As recently observed in sojourners at high altitude, however, iron uptake may be hampered by reduced appetite and gastrointestinal bleeding. Reduced iron availability, as observed in a hypoxic mountaineer, enhances hypoxia-induced pulmonary hypertension and may contribute to other hypoxia-related diseases. Overall, adequate systemic iron availability is an important prerequisite to adjust to high-altitude hypoxia and may have additional implications for disease-related hypoxic conditions. Copyright © 2015 the American Physiological Society.

  3. Learning and cognitive deficits in hypoxic neonatal rats intensified by BAX mediated apoptosis: protective role of glucose, oxygen, and epinephrine.

    PubMed

    Raveendran, Anju Thoppil; Skaria, Paulose Cheramadatikudiyil

    2013-02-01

    Hypoxic brain injury during neonatal development can lead to neuronal damage and produce learning and cognitive impairments. TOPRO-3 staining was used to visualize cell loss and real-time polymerase chain reaction (PCR) analysis of BAX mRNA was used to evaluate the level of apoptosis in the cerebral cortex, cerebellum, brain stem, and striatum of hypoxic neonatal rats and hypoxic rats resuscitated with glucose, oxygen, and epinephrine. The long-term effects of neonatal hypoxic insult on cognition and behavior were studied using Morris water maze experiment on 1-month-old rats exposed to neonatal hypoxia. In hypoxic neonatal rats, a significant cell loss (p < .001) within the brain regions was observed in TOPRO-3 staining and BAX mRNA expression was significantly upregulated (p < .001). Immediate resuscitation of hypoxic neonates with glucose, alone and along with oxygen, significantly downregulated (p < .001) BAX mRNA expression. The BAX expression in epinephrine resuscitated and 100% oxygen resuscitated groups were found to be upregulated in the brain regions. In water maze experiment, 1-month-old rats exposed to neonatal hypoxia spent lesser time in the platform quadrant (p < .001) and showed longer escape latency (p < .001) highlighting the learning and cognitive deficits. Our study revealed the effect of glucose resuscitation alone and along with oxygenation in ameliorating the spatial memory and learning deficits induced by neonatal hypoxic insult mediated brain cell loss.

  4. Effects of chloride channel blockers on hypoxic injury in rat proximal tubules.

    PubMed

    Reeves, W B

    1997-05-01

    These studies examined the pathways and consequences of chloride uptake into proximal tubule cells during in vitro hypoxia. The chloride channel blocker diphenylamine-2-carboxylate (DPC) markedly reduced the degree of hypoxia-induced membrane damage as measured by the release of lactate dehydrogenase (LDH). DPC reduced the release of LDH from hypoxic tubules from 38 +/- 2.7% to 16 +/- 1.7% after 30 minutes of hypoxia (P < 0.001, N = 16) and also reduced 36Cl- uptake by hypoxic tubules. The reduction in LDH release was not associated with better preservation of cell ATP content or with protection against hypoxia-induced DNA damage. Other Cl- channel blockers, such as niflumic acid, 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) and 2-[(2-cyclopentyl-6,7-dichloro-2,3-dihyrdo-2-methyl-1-oxo-1H-in den-5-yl)oxy] acetic acid (IAA-94) provided even greater protection than DPC and were as effective as 2 mM glycine. The Cl- channel blockers appear to act late in the course of hypoxic injury since DNA damage, an early manifestation of injury, is not prevented by the blockers and since addition of the Cl- channel blocker after the hypoxic injury has begun reduces further membrane damage. These results support the conclusion that transport through Cl- channels contributes to hypoxic cell injury in proximal tubular cells.

  5. Regulation of c-jun expression during hypoxic and low-glucose stress.

    PubMed Central

    Ausserer, W A; Bourrat-Floeck, B; Green, C J; Laderoute, K R; Sutherland, R M

    1994-01-01

    Hypoxic stress in tumor cells has been implicated in malignant progression and in the development of therapeutic resistance. We have investigated the effects of acute hypoxic exposure on regulation of the proto-oncogene c-jun in SiHa cells, a human squamous carcinoma cell line. Hypoxic exposure produced increased levels of c-jun mRNA resulting from both message stabilization and transcriptional activation. A superinduction of c-jun message resulted during simultaneous oxygen and glucose deprivation, with several characteristics of an induction mediated by oxidative-stress pathways. This superinduction was blocked by preincubation of cells with the glutathione precursor N-acetyl cysteine or with phorbol 12-myristate 13-acetate, which indicates redox control of c-jun expression and probable involvement of protein kinase C. By gel retardation assay, no increase in AP-1 DNA binding activity was found to be concomitant with the transcriptional activation of c-jun. A lack of increased DNA binding was observed for the consensus AP-1 sequence and for the two AP-1 sequence variants found within the c-Jun promoter. Additionally, hypoxic and low-glucose stress produced no activation of stably transfected AP-1 reporter sequences. Taken together, these results indicate that the transcriptional activation of c-jun during hypoxic and low-glucose stress involves redox control and is unlikely to be mediated by AP-1 recognition elements within the c-jun promoter. Images PMID:8035787

  6. Release of Matrix Metalloproteinases-2 and 9 by S-Nitrosylated Caveolin-1 Contributes to Degradation of Extracellular Matrix in tPA-Treated Hypoxic Endothelial Cells

    PubMed Central

    Bi, Gang; Zhu, Yihui; Jun, Wei; Ma, Wenlin; Wu, Huimin

    2016-01-01

    Intracranial hemorrhage remains the most feared complication in tissue plasminogen activator (tPA) thrombolysis for ischemic stroke. However, the underlying molecular mechanisms are still poorly elucidated. In this study, we reported an important role of caveolin-1 (Cav-1) s-nitrosylation in matrix metalloproteinase (MMP)-2 and 9 secretion from tPA-treated ischemic endothelial cells. Brain vascular endothelial cells (bEND3) were exposed to oxygen-glucose deprivation (OGD) for 2 h before adding recombinant human tPA for 6 h. This treatment induced a significant increase of MMP2 and 9 in the media of bEND3 cells and a simultaneous degradation of fibronectin and laminin β-1, the two main components of extracellular matrix (ECM). Inhibition of MMP2 and 9 with SB-3CT completely blocked the degradation of fibronectin and laminin β-1. ODG+tPA treatment led to Cav-1 shedding from bEND3 cells into the media. Notably, OGD triggered nitric oxide (NO) production and S-nitrosylationof Cav-1 (SNCav-1). Meanwhile tPA induced activation of ERK signal pathway and stimulates the secretion of SNCav-1. Pretreatment of bEND3 cells with C-PTIO (a NO scavenger) or U0126 (a specific ERK inhibitor) significantly reduced OGD-induced S-nitrosylation of Cav-1 in cells and blocked the secretion of Cav-1 and MMP2 and 9 into the media as well as the degradation of fibronectin and laminin β-1 in OGD and tPA-treated cells. These data indicate that OGD-triggered Cav-1 S-nitrosylation interacts with tPA-induced ERK activation to augment MMP2 and 9 secretion and subsequent ECM degradation, which may account for the exacerbation of ischemic blood brain barrier damage following tPA thrombolysis for ischemic stroke. PMID:26881424

  7. Release of Matrix Metalloproteinases-2 and 9 by S-Nitrosylated Caveolin-1 Contributes to Degradation of Extracellular Matrix in tPA-Treated Hypoxic Endothelial Cells.

    PubMed

    Song, Haoming; Cheng, Youjun; Bi, Gang; Zhu, Yihui; Jun, Wei; Ma, Wenlin; Wu, Huimin

    2016-01-01

    Intracranial hemorrhage remains the most feared complication in tissue plasminogen activator (tPA) thrombolysis for ischemic stroke. However, the underlying molecular mechanisms are still poorly elucidated. In this study, we reported an important role of caveolin-1 (Cav-1) s-nitrosylation in matrix metalloproteinase (MMP)-2 and 9 secretion from tPA-treated ischemic endothelial cells. Brain vascular endothelial cells (bEND3) were exposed to oxygen-glucose deprivation (OGD) for 2 h before adding recombinant human tPA for 6 h. This treatment induced a significant increase of MMP2 and 9 in the media of bEND3 cells and a simultaneous degradation of fibronectin and laminin β-1, the two main components of extracellular matrix (ECM). Inhibition of MMP2 and 9 with SB-3CT completely blocked the degradation of fibronectin and laminin β-1. ODG+tPA treatment led to Cav-1 shedding from bEND3 cells into the media. Notably, OGD triggered nitric oxide (NO) production and S-nitrosylationof Cav-1 (SNCav-1). Meanwhile tPA induced activation of ERK signal pathway and stimulates the secretion of SNCav-1. Pretreatment of bEND3 cells with C-PTIO (a NO scavenger) or U0126 (a specific ERK inhibitor) significantly reduced OGD-induced S-nitrosylation of Cav-1 in cells and blocked the secretion of Cav-1 and MMP2 and 9 into the media as well as the degradation of fibronectin and laminin β-1 in OGD and tPA-treated cells. These data indicate that OGD-triggered Cav-1 S-nitrosylation interacts with tPA-induced ERK activation to augment MMP2 and 9 secretion and subsequent ECM degradation, which may account for the exacerbation of ischemic blood brain barrier damage following tPA thrombolysis for ischemic stroke.

  8. The lethal interaction of x ray and penicillin induced lesions following x-irradiation of Escherichia coli B/r in the presence of hypoxic cell sensitizers

    SciTech Connect

    Gillies, N.E.; Obioha, F.I.

    1982-03-01

    When Escherichia coli B/r were x-irradiated under anoxia in the presence of different electron-affinic sensitizers and then incubated in broth containing penicillin (at a concentration that did not kill unirradiated cells) additional killing of the bacteria occurred provided the sensitizers were of relatively high lipophilicity. The overall effect was to increase the efficiency of these sensitizers. It is concluded that sensitizer-dependent latent radiation lesions(s) are produced in membrane components of the cell envelope that interact with damage caused by penicillin in the peptidoglycan layer and this causes the additional lethality.

  9. TCN, an AKT inhibitor, exhibits potent antitumor activity and enhances radiosensitivity in hypoxic esophageal squamous cell carcinoma in vitro and in vivo

    PubMed Central

    Guo, Qing; He, Jia; Shen, Feng; Zhang, Wei; Yang, Xi; Zhang, Chi; Zhang, Qu; Huang, Jun-Xing; Wu, Zheng-Dong; Sun, Xin-Chen; Dai, Sheng-Bin

    2017-01-01

    The aim of the present study was to investigate the radiosensitization effect of triciribine (TCN) on human esophageal squamous cell carcinoma (ESCC) in normoxia or hypoxia and its mechanism. The cytotoxicity and radiosensitization mechanism of TCN were investigated by Cell Counting Kit 8, clonogenic assay, flow cytometry, western blotting (WB) and immunofluorescence staining of phospho-histone H2A.X, Ser139 (γ-H2AX) in ESCC in vitro, while the protein expression levels of AKT, phosphorylated (p)-AKT, hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) were evaluated by WB in vivo. The cytotoxicity of TCN was dose dependent. Upon exposure to TCN, ESCC cells in hypoxia treated with 4-Gy radiotherapy exhibited an evidently higher apoptotic rate than cells subjected to other treatments. TCN could significantly inhibit the protein expression of p-AKT, HIF-1α and VEGF in vitro and in vivo. The present results suggested that TCN can effectively inhibit AKT, p-AKT, HIF-1α and VEGF, thus conferring radiosensitivity to ESCC in vitro and vivo. TCN is considered as an adjuvant in radiotherapy of ESCC in clinical application. PMID:28356983

  10. A lab-on-a-chip for hypoxic patch clamp measurements combined with optical tweezers and spectroscopy- first investigations of single biological cells.

    PubMed

    Alrifaiy, Ahmed; Borg, Johan; Lindahl, Olof A; Ramser, Kerstin

    2015-04-18

    The response and the reaction of the brain system to hypoxia is a vital research subject that requires special instrumentation. With this research subject in focus, a new multifunctional lab-on-a-chip (LOC) system with control over the oxygen content for studies on biological cells was developed. The chip was designed to incorporate the patch clamp technique, optical tweezers and absorption spectroscopy. The performance of the LOC was tested by a series of experiments. The oxygen content within the channels of the LOC was monitored by an oxygen sensor and verified by simultaneously studying the oxygenation state of chicken red blood cells (RBCs) with absorption spectra. The chicken RBCs were manipulated optically and steered in three dimensions towards a patch-clamp micropipette in a closed microfluidic channel. The oxygen level within the channels could be changed from a normoxic value of 18% O 2 to an anoxic value of 0.0-0.5% O 2. A time series of 3 experiments were performed, showing that the spectral transfer from the oxygenated to the deoxygenated state occurred after about 227 ± 1 s and a fully developed deoxygenated spectrum was observed after 298 ± 1 s, a mean value of 3 experiments. The tightness of the chamber to oxygen diffusion was verified by stopping the flow into the channel system while continuously recording absorption spectra showing an unchanged deoxygenated state during 5400 ± 2 s. A transfer of the oxygenated absorption spectra was achieved after 426 ± 1 s when exposing the cell to normoxic buffer. This showed the long time viability of the investigated cells. Successful patching and sealing were established on a trapped RBC and the whole-cell access (Ra) and membrane (Rm) resistances were measured to be 5.033 ± 0.412 M Ω and 889.7 ± 1.74 M Ω respectively.

  11. Microfluidic Platform Generates Oxygen Landscapes for Localized Hypoxic Activation

    PubMed Central

    Rexius, Megan L.; Mauleon, Gerardo; Malik, Asrar B.; Rehman, Jalees; Eddington, David T.

    2014-01-01

    An open-well microfluidic platform generates an oxygen landscape using gas-perfused networks which diffuse across a membrane. The device enables real-time analysis of cellular and tissue responses to oxygen tension to define how cells adapt to heterogeneous oxygen conditions found in the physiological setting. We demonstrate that localized hypoxic activation of cells elicited specific metabolic and gene responses in human microvascular endothelial cells and bone marrow-derived mesenchymal stem cells. A robust demonstration of the compatibility of the device with standard laboratory techniques demonstrates the wide utility of the method. This platform is ideally suited to study real-time cell responses and cell-cell interactions within physiologically relevant oxygen landscapes. PMID:25315003

  12. Microfluidic platform generates oxygen landscapes for localized hypoxic activation.

    PubMed

    Rexius-Hall, Megan L; Mauleon, Gerardo; Malik, Asrar B; Rehman, Jalees; Eddington, David T

    2014-12-21

    An open-well microfluidic platform generates an oxygen landscape using gas-perfused networks which diffuse across a membrane. The device enables real-time analysis of cellular and tissue responses to oxygen tension to define how cells adapt to heterogeneous oxygen conditions found in the physiological setting. We demonstrate that localized hypoxic activation of cells elicited specific metabolic and gene responses in human microvascular endothelial cells and bone marrow-derived mesenchymal stem cells. A robust demonstration of the compatibility of the device with standard laboratory techniques demonstrates the wide utility of the method. This platform is ideally suited to study real-time cell responses and cell-cell interactions within physiologically relevant oxygen landscapes.

  13. 37LRP induces invasion in hypoxic lung adenocarcinoma cancer cells A549 through the JNK/ERK/c-Jun signaling cascade.

    PubMed

    Zhou, Yongan; Wang, Yafang; Zhao, Zhengwei; Wang, Yanxia; Zhang, Ning; Zhang, Helong; Liu, Lili

    2017-06-01

    We previously reported that 37-kDa laminin receptor precursor involved in metastasis of lung adenocarcinoma cancer cells. In this study, we further revealed that hypoxia induced 37-kDa laminin receptor precursor expression and activation of extracellular signal-regulated protein kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase in lung adenocarcinoma cancer cells. In addition, we further demonstrated that the c-Jun N-terminal kinase inhibitor SP600125 and extracellular signal-regulated protein kinase inhibitor U0126 blocked the c-Jun activity and abolished hypoxia-induced 37-kDa laminin receptor precursor expression and promoter activity in a concentration-dependent manner. However, the p38 mitogen-activated protein kinase inhibitor did not affect 37-kDa laminin receptor precursor expression and c-Jun activity in response to hypoxia. Furthermore, downregulated c-Jun expression by short interfering RNA could also inhibit hypoxia-induced 37-kDa laminin receptor precursor expression and transcriptional activity. The inhibition of 37-kDa laminin receptor precursor expression by SP600125 and U0126 could be rescued by c-Jun overexpression. Studies using luciferase promoter constructs revealed a significant increase in the activity of promoter binding in the cells exposed to hypoxia, which was lost in the cells with mutation of the activator protein 1 binding site. Electrophoresis mobility shift assay and chromatin immunoprecipitation demonstrated a functional activator protein 1 binding site within 37-kDa laminin receptor precursor gene regulatory sequence located at -271 relative to the transcriptional initiation point. Hypoxia-induced invasion of A549 cells was inhibited by the pharmacologic inhibitors of c-Jun N-terminal kinase (SP600125) and extracellular signal-regulated protein kinase (U0126) as well as 37-kDa laminin receptor precursor-specific siRNA or antibody. Our results suggest that hypoxia-elicited c-Jun/activator protein 1 regulates

  14. The gene expression profile of inflammatory, hypoxic and metabolic genes predicts the metastatic spread of human head and neck squamous cell carcinoma.

    PubMed

    Clatot, Florian; Gouérant, Sophie; Mareschal, Sylvain; Cornic, Marie; Berghian, Anca; Choussy, Olivier; El Ouakif, Faissal; François, Arnaud; Bénard, Magalie; Ruminy, Philippe; Picquenot, Jean-Michel; Jardin, Fabrice

    2014-03-01

    To assess the prognostic value of the expression profile of the main genes implicated in hypoxia, glucose and lactate metabolism, inflammation, angiogenesis and extracellular matrix interactions for the metastatic spread of head and neck squamous cell carcinoma. Using a high-throughput qRT-PCR, we performed an unsupervised clustering analysis based on the expression of 42 genes for 61 patients. Usual prognostic factors and clustering analysis results were related to metastasis free survival. With a median follow-up of 48months, 19 patients died from a metastatic evolution of their head and neck squamous cell carcinoma and one from a local recurrence. The unsupervised clustering analysis distinguished two groups of genes that were related to metastatic evolution. A capsular rupture (p=0.005) and the "cluster CXCL12 low" (p=0.002) were found to be independent prognostic factors for metastasis free survival. Using a Linear Predictive Score methodology, we established a 9-gene model (VHL, PTGER4, HK1, SLC16A4, DLL4, CXCL12, CXCR4, PTGER3 and CA9) that was capable of classifying the samples into the 2 clusters with 90% accuracy. In this cohort, our clustering analysis underlined the independent prognostic value of the expression of a panel of genes involved in hypoxia and tumor environment. It allowed us to define a 9-gene model which can be applied routinely to classify newly diagnosed head and neck squamous cell carcinoma. If confirmed by an independent prospective study, this approach may help future clinical management of these aggressive tumors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Adrenocorticotropic Hormone and PI3K/Akt Inhibition Reduce eNOS Phosphorylation and Increase Cortisol Biosynthesis in Long-Term Hypoxic Ovine Fetal Adrenal Cortical Cells.

    PubMed

    Newby, Elizabeth A; Kaushal, Kanchan M; Myers, Dean A; Ducsay, Charles A

    2015-08-01

    This study was designed to determine the role of the MEK/ERK1/2 and PI3K/Akt pathways in cortisol production and endothelial nitric oxide synthase (eNOS) phosphorylation (peNOS) in the ovine fetal adrenal in response to long-term hypoxia (LTH). Pregnant ewes were maintained at high altitude (3820 m) for the last 100 days of gestation (dGa). At 138 to 142 dGa, fetal adrenal cortical cells (FACs) were collected from LTH and age-matched normoxic fetuses. Cortisol production and peNOS were measured in response to pretreatment with the MEK/ERK1/2 pathway inhibitor UO126 (UO) and adrenocorticotropic hormone (ACTH) stimulation. UO126 reduced ACTH-stimulated cortisol in both normoxic and LTH FACs. UO126 alone or in combination with ACTH reduced peNOS in the normoxic group, while ACTH alone or ACTH + UO inhibited peNOS in LTH FACs. Additionally, cortisol was measured in response to pretreatment with UO and treatment with 22R-hydroxycholesterol (22R-OHC) or water-soluble cholesterol (WSC) with and without ACTH stimulation. UO126 had no effect on 22R-OHC-treated cells, but reduced cortisol in cells treated with WSC and/or ACTH. Cortisol and peNOS were also measured in response to pretreatment with PI3K/Akt pathway inhibitor Wortmannin (WT) and ACTH stimulation. Wortmannin further increased cortisol under ACTH-stimulated conditions and, like ACTH, reduced peNOS in LTH but not normoxic FACs. Together, these data suggest that in LTH FACs MEK/ERK1/2 does not regulate peNOS but that UO acts downstream from eNOS, possibly at cholesterol transport, to affect cortisol production in LTH FACs, while the PI3K/Akt pathway, along with ACTH, regulates peNOS and plays a role in the fetal adaptation to LTH in FACs.

  16. First Autologous Cell Therapy of Cerebral Palsy Caused by Hypoxic-Ischemic Brain Damage in a Child after Cardiac Arrest—Individual Treatment with Cord Blood

    PubMed Central

    Jensen, A.; Hamelmann, E.

    2013-01-01

    Each year, thousands of children incur brain damage that results in lifelong sequelae. Therefore, based on experimental evidence, we explored the therapeutic potential of human cord blood, known to contain stem cells, to examine the functional neuroregeneration in a child with cerebral palsy after cardiac arrest. The boy, whose cord blood was stored at birth, was 2.5 years old and normally developed when global ischemic brain damage occurred resulting in a persistent vegetative state. Nine weeks later, he received autologous cord blood (91.7 mL, cryopreserved, 5.75 × 10e8 mononuclear cells) intravenously. Active rehabilitation (physio- and ergotherapy) was provided daily, follow-up at 2, 5, 12, 24, 30, and 40 months. At 2-months follow-up the boy's motor control improved, spastic paresis was largely reduced, and eyesight was recovered, as did the electroencephalogram. He smiled when played with, was able to sit and to speak simple words. At 40 months, independent eating, walking in gait trainer, crawling, and moving from prone position to free sitting were possible, and there was significantly improved receptive and expressive speech competence (four-word sentences, 200 words). This remarkable functional neuroregeneration is difficult to explain by intense active rehabilitation alone and suggests that autologous cord blood transplantation may be an additional and causative treatment of pediatric cerebral palsy after brain damage. PMID:23762741

  17. First autologous cell therapy of cerebral palsy caused by hypoxic-ischemic brain damage in a child after cardiac arrest-individual treatment with cord blood.

    PubMed

    Jensen, A; Hamelmann, E

    2013-01-01

    Each year, thousands of children incur brain damage that results in lifelong sequelae. Therefore, based on experimental evidence, we explored the therapeutic potential of human cord blood, known to contain stem cells, to examine the functional neuroregeneration in a child with cerebral palsy after cardiac arrest. The boy, whose cord blood was stored at birth, was 2.5 years old and normally developed when global ischemic brain damage occurred resulting in a persistent vegetative state. Nine weeks later, he received autologous cord blood (91.7 mL, cryopreserved, 5.75 × 10e8 mononuclear cells) intravenously. Active rehabilitation (physio- and ergotherapy) was provided daily, follow-up at 2, 5, 12, 24, 30, and 40 months. At 2-months follow-up the boy's motor control improved, spastic paresis was largely reduced, and eyesight was recovered, as did the electroencephalogram. He smiled when played with, was able to sit and to speak simple words. At 40 months, independent eating, walking in gait trainer, crawling, and moving from prone position to free sitting were possible, and there was significantly improved receptive and expressive speech competence (four-word sentences, 200 words). This remarkable functional neuroregeneration is difficult to explain by intense active rehabilitation alone and suggests that autologous cord blood transplantation may be an additional and causative treatment of pediatric cerebral palsy after brain damage.

  18. Effect of Hypoxic Stress–Activated Polo-like Kinase 3 on Corneal Epithelial Wound Healing

    PubMed Central

    Lu, Jiawei; Wang, Ling; Dai, Wei

    2010-01-01

    Purpose. Hypoxia/reoxygenation conditions can generate oxidative stresses resulting in the suppression of cell proliferation and the delay of corneal epithelial wound healing. The purpose of this study was to investigate the cellular mechanism involving the role of the stress-responsive Polo-like kinase 3 (Plk3) in hypoxic stress–induced delay of corneal epithelial wound healing. Methods. Plk3 activities were determined by immunochemistry and immunocomplex kinase assay approaches. Corneal epithelial wound healing was evaluated by a whole-eye organ culture model and by scratch-induced wound closure assay. Corneal epithelial layer was removed by using a corneal rust-ring-remover in wild-type and Plk3−/− mice. Wound healing was analyzed using a confocal imaging system. Cell growth was measured by MTT assays. Results. The effect of hypoxic stress on early stages of corneal epithelial wound healing was compared with other oxidative stresses, including UV, CoCl2, and H2O2 treatments. Hypoxic stress–induced delay of corneal epithelial wound healing was further evaluated in human corneal epithelial cells and in the corneas of wild-type and Plk3 knockout (Plk3−/−) mice. Hypoxic stress–induced Plk3 activation resulted in growth attenuation and delay of wound healing. Further evidence demonstrated that the increase in Plk3 activity in constitutively active Plk3-expressed cells significantly enhanced stress-induced delay of wound healing. In contrast, hypoxic stress–induced delay of wound healing was markedly diminished in the corneas of Plk3 deficient Plk3−/− mice. Conclusions. These results provide for the first time important evidence that Plk3 plays a significant role in hypoxic stress–induced attenuation of cell growth and delay of corneal epithelial wound healing. PMID:20505196

  19. Sirtuin 6 protects the heart from hypoxic damage

    SciTech Connect

    Maksin-Matveev, Anna; Kanfi, Yariv; Hochhauser, Edith; Isak, Ahuva; Cohen, Haim Y.; Shainberg, Asher

    2015-01-01

    Sirtuin 6 (SIRT6) is a protein associated with prolonged life expectancy. We investigated whether life extension is associated with cardioprotection against hypoxia. The proposed study is to develop approaches to reduce hypoxic damage through the use of the sirtuin pathway and to elucidate the mechanism involved. For that purpose we subjected cardiomyocytes from transgenic mice (TG) with over-expression of SIRT6, to hypoxic stress in cell cultures. We hypothesized that cardiomyocytes from transgenic mice subjected to prolonged hypoxia may release survival factors or fewer damage markers to protect them from hypoxic stress compared with wild type (WT) mice. Lactate dehydrogenase (LDH) and creatine kinase (CK) released to the medium and propidium iodide (PI) binding, were markedly decreased following hypoxia in TG cardiomyocytes. The protective mechanism of SIRT6 over-expression includes the activation of pAMPKα pathway, the increased protein level of B-cell lymphoma 2 (Bcl2), the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), the decrease of reactive oxygen species (ROS) and the reduction in the protein level of phospho-protein kinase B (pAkt) during hypoxia. Together, all these processes impede the necrosis/apoptosis pathways leading to the improved survival of cardiomyocytes following hypoxia, which might explain life extension. - Highlights: • Sirtuin 6 is a protein associated with prolonged life expectancy. • Over-expression of sirtuin 6 protects cardiocytes from hypoxia and oxidative stress. • Over-expression of sirtuin 6 activates the pAMPKα pathway and the Bcl2 expression. • Over-expression of sirtuin 6 decreases ROS formation and pAkt level during hypoxia. • These pathways protect cardiocytes from hypoxia and might explain lifespan extension.

  20. Hypoxic stress facilitates acute activation and chronic downregulation of fanconi anemia proteins.

    PubMed

    Scanlon, Susan E; Glazer, Peter M

    2014-07-01

    Hypoxia induces genomic instability through replication stress and dysregulation of vital DNA repair pathways. The Fanconi anemia (FA) proteins, FANCD2 and FANCI, are key members of a DNA repair pathway that responds to replicative stress, suggesting that they undergo regulation by hypoxic conditions. Here acute hypoxic stress activates the FA pathway via ubiquitination of FANCD2 and FANCI in an ATR-dependent manner. In addition, the presence of an intact FA pathway is required for preventing hypoxia-induced DNA damage measurable by the comet assay, limiting the accumulation of γH2AX (a marker of DNA damage or stalled replication), and protecting cells from hypoxia-induced apoptosis. Furthermore, prolonged hypoxia induces transcriptional repression of FANCD2 in a manner analogous to the hypoxic downregulation of BRCA1 and RAD51. Thus, hypoxia-induced FA pathway activation plays a key role in maintaining genome integrity and cell survival, while FA protein downregulation with prolonged hypoxia contributes to genomic instability. This work highlights the critical role of the FA pathway in response to hypoxic stress and identifies the pathway as a therapeutic target under hypoxic conditions. ©2014 American Association for Cancer Research.

  1. Study of Tissue-level Hypoxic Response in Microfluidic Environment.

    PubMed

    Morshed, Adnan; Dutta, Prashanta

    2017-09-16

    Availability of essential species like oxygen is critical in shaping the dynamics of tumor growth. When the intracellular oxygen level falls below normal, it initiates major cascades in cellular dynamics leading to tumor cell survival. In a cellular block with cells growing away from the blood vessel, the scenario can be aggravated for the cells further inside the block. In this study, the dynamics of intracellular species inside a colony of tumor cells are investigated by varying the cell block thickness and cell types in a microfluidic cell culture device. The oxygen transport across the cell block is modeled through diffusion, while ascorbate transport from the extracellular medium is addressed by a concentration dependent uptake model. The extracellular and intracellular descriptions were coupled through the consumption and traffic of species . Our model shows that the onset of hypoxia is possible in HeLa cell within minutes depending on the cell location, although the nutrient supply inside the channel is maintained in normoxic levels. This eventually leads to total oxygen deprivation inside the cell block in the extreme case, representing the development of a necrotic core. The numerical model reveals that species concentration and hypoxic response are different for HeLa and HelaS3 cells. Results also indicate that the long-term hypoxic response from a microfluidic cellular block stays within 5% of the values of a tissue with the basal layer. The hybrid model can be very useful in designing microfluidic experiments to satisfactorily predict the tissue level response in cancer research.

  2. Phosphorylation of the pyruvate dehydrogenase complex precedes HIF-1-mediated effects and pyruvate dehydrogenase kinase 1 upregulation during the first hours of hypoxic treatment in hepatocellular carcinoma cells

    PubMed Central

    Zimmer, Andreas David; Walbrecq, Geoffroy; Kozar, Ines; Behrmann, Iris; Haan, Claude

    2016-01-01

    The pyruvate dehydrogenase complex (PDC) is an important gatekeeper enzyme connecting glycolysis to the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). Thereby, it has a strong impact on the glycolytic flux as well as the metabolic phenotype of a cell. PDC activity is regulated via reversible phosphorylation of three serine residues on the pyruvate dehydrogenase (PDH) E1α subunit. Phosphorylation of any of these residues by the PDH kinases (PDKs) leads to a strong decrease in PDC activity. Under hypoxia, the inactivation of the PDC has been described to be dependent on the hypoxia-inducible factor 1 (HIF-1)-induced PDK1 protein upregulation. In this study, we show in two hepatocellular carcinoma cell lines (HepG2 and JHH-4) that, during the adaptation to hypoxia, PDH is already phosphorylated at time points preceding HIF-1-mediated transcriptional events and PDK1 protein upregulation. Using siRNAs and small molecule inhibitor approaches, we show that this inactivation of PDC is independent of HIF-1α expression but that the PDKs need to be expressed and active. Furthermore, we show that reactive oxygen species might be important for the induction of this PDH phosphorylation since it correlates with the appearance of an altered redox state in the mitochondria and is also inducible by H2O2 treatment under normoxic conditions. Overall, these results show that neither HIF-1 expression nor PDK1 upregulation is necessary for the phosphorylation of PDH during the first hours of the adaptation to hypoxia. PMID:27800515

  3. Initiation of premature senescence by Bcl-2 in hypoxic condition.

    PubMed

    Wang, Wei; Wang, Desheng; Li, Hong

    2014-01-01

    Senescence, a state of cell cycle arrest, has been regarded as an intrinsic barrier to malignance. Although being repressed in most immortal tumors, the genetic program of senescence can be reactivated by critical regulators, including the apoptosis regulator Bcl-2. We showed here that hypoxic condition resulted in an irreversible senescence-like phenotype with increased expression of Bcl-2 in mouse melanoma B16 cells. In CoCl2-simulating hypoxic condition, characteristic morphological alterations and increased activity of senescence-associated β-galactosidase (SA-β-gal) can be detected with high level of Bcl-2, which was confirmed by western blot and co-staining of SA-β-gal and Bcl-2 by immunocytochemistry. Accordingly, Bcl-2 silence by specific siRNA ahead of hypoxia treatment interrupted the senescent development. Moreover Bcl-2 overexpression led to early onset of senescence. We propose that Bcl-2 is required to initiate and maintain the senescent phenotype. In addition, p53 and p16 were not involved in hypoxia-induced senescence according to the expression levels during senescent process. These results suggest that when encountering harmful stress (hypoxia), melanoma cells overexpress Bcl-2 and turn to senescence, a permanent cell-cycle arrest, for prolonged survival.

  4. In vivo profiling of hypoxic gene expression in gliomas using the hypoxia marker EF5 and laser-capture microdissection

    PubMed Central

    Marotta, Diane; Karar, Jayashree; Jenkins, W. Timothy; Kumanova, Monika; Jenkins, Kevin W.; Tobias, John W.; Baldwin, Donald; Hatzigeorgiou, Artemis; Alexiou, Panagiotis; Evans, Sydney M.; Alarcon, Rodolfo; Maity, Amit; Koch, Cameron; Koumenis, Constantinos

    2010-01-01

    Hypoxia is a key determinant of tumor aggressiveness, yet little is known regarding hypoxic global gene regulation in vivo. We have employed the hypoxia marker EF5 coupled with laser capture microdissection to isolate RNA from viable hypoxic and normoxic regions of 9L experimental gliomas. Through microarray analysis, we have identified several mRNAs (including the HIF targets Vegf, Glut-1 and Hsp27) with increased levels under hypoxia compared to normoxia both in vitro and in vivo. However, we also found striking differences between the global in vitro and in vivo hypoxic mRNA profiles. Intriguingly, the mRNA levels of a substantial number of immunomodulatory and DNA repair proteins including CXCL9, CD3D and RAD51 were found to be downregulated in hypoxic areas in vivo, consistent with a pro-tumorigenic role of hypoxia in solid tumors. Immunohistochemical staining verified increased HSP27 and decreased RAD51 protein levels in hypoxic vs. normoxic tumor regions. Moreover, CD8+ T cells which are recruited to tumors upon stimulation by CXCL9 and CXCL10, were largely excluded from viable hypoxic areas in vivo. This is the first study to analyze the influence of hypoxia on mRNA levels in vivo and can be readily adapted to obtain a comprehensive picture of hypoxic regulation of gene expression and its influence on biological functions in solid tumors. PMID:21266355

  5. Hypoxic regulation of VEGF, HIF-1(alpha) in coronary collaterals development.

    PubMed

    Sung, Ki Chul; Kim, Kyung Soo; Lee, Sang

    2005-12-01

    The interindividual variability for the development of collaterals in coronary artery disease is dependent on the hypoxic induction level of VEGF. To determine whether the hypoxic induction of VEGF is controlled by the transcription of HIF-1 (alpha), the VEGF and HIF-1 (alpha) m-RNA levels were correlated to hypoxia in monocytes harvested from patients with coronary artery disease. The collateral scoring system used was modified from the TIMI system. The mononuclear cell layer of the patients' blood was cultured in hypoxia (1% O2, 5% CO2, 94%N2) and normoxia (5% CO2, 95% room air) for 17 hours. The VEGF and HIF-1 (alpha) mRNA levels were measured using a RT-PCR technique. We calculated the fold inductionsof VEGF, HIF-1 (alpha) mRNA with hypoxia by dividing the hypoxic and the normoxic values. We found significantly higher hypoxic inductions of VEGF m-RNA in patients with collaterals compared to patients with no collaterals. However, there was no differencein the hypoxic inductions of HIF-1 (alpha) between the two groups (VEGF m-RNA mean fold inductions 3.71 +/- 3.30 versus 1.65 +/- 0.62, p=0.012, HIF-1(alpha) mRNA 1.42 +/- 0.58 versus 1.20 +/- 0.39, p=0.165). We concluded that the interindividual variability in the hypoxic inductions of VEGF m-RNA in monocytes in patients is not controlled by the transcriptional levels of HIF-1 (alpha) with hypoxia. These findings suggest that a mechanism such as the post-transcriptional modification of HIF-1(alpha) is involved in the hypoxic inductions of VEGF.

  6. Synthesis and Evaluation of a CBZ-AAN-Dox Prodrug and its in vitro Effects on SiHa Cervical Cancer Cells Under Hypoxic Conditions.

    PubMed

    Chen, Hongyuan; Liu, Xiao; Clayman, Eric S; Shao, Fangyuan; Xiao, Manshan; Tian, Xuyan; Fu, Wuyu; Zhang, Caiyun; Ruan, Bibo; Zhou, Pengjun; Liu, Zhong; Wang, Yifei; Rui, Wen

    2015-10-01

    Although doxorubicin (Dox) is widely used in clinical treatment for solid tumors, it causes many side-effects such as heart and kidney damage, bone marrow suppression, and drug resistance. Legumain is a lysosomal protease that is elevated and associated with an invasive and metastatic phenotype in a number of solid tumors. In this study, we designed and synthesized a Dox prodrug, N-benzyloxycarbonyl-Ala-Ala-Asn-Doxorubicin (CBZ-AAN-Dox), with 94% purity. Single substrate kinetic assays demonstrated hLegumain-specific enzymatic cleavage and activation of the prodrug in vitro, and this enzymatic cleavage of the prodrug substrate was more sensitive in acidic conditions, releasing more than 70% of Dox after 24 h. Treatment of tumor cells with our prodrug demonstrated a much higher IC50 value, significantly enhanced uptake of the prodrug, and considerably less cellular toxicity compared to Dox treatment alone. Our study presents a novel prodrug, CBZ-AAN-Dox, to potentially increase both the safety and efficacy of clinical treatment of tumors by exploiting the tumor's innate expression of legumain.

  7. Palmitoylation of Gαq determines its association with the thromboxane receptor in hypoxic pulmonary hypertension.

    PubMed

    Sikarwar, Anuraq S; Hinton, Martha; Santhosh, K Thomas; Chelikani, Prashen; Dakshinamurti, Shyamala

    2014-01-01

    Pulmonary arterial vasoconstriction is a hallmark of persistent pulmonary hypertension of the newborn (PPHN). We reported increased calcium responses to thromboxane and selectively increased thromboxane prostanoid (TP) association with Gαq in hypoxic pulmonary artery. Palmitoylation of Gαq is important for efficient receptor-Gαq-phospholipase-C interactions. TPα receptor is not itself amenable to palmitoylation. We studied the role of Gαq palmitoylation in constriction of hypoxic pulmonary artery using pharmacological palmitoylation inhibition, the effects of hypoxia on palmitoylation, and the effects of site-specific cysteine substitution mutations of Gαq on Gαq membrane targeting, TPα association, and calcium dose-response curve to a TP agonist. PPHN pulmonary artery and HEK293T cells expressing TPα were exposed to irreversible palmitoylation inhibitor 2-bromopalmitate before challenge with TP agonist U46619. Palmitate uptake was studied in hypoxic and normoxic myocytes. Wild-type Gαq and Gαq cysteine-to-alanine mutants C9A, C10A, and C9A/C10A were transiently coexpressed in HEK293T cells stably expressing TPα. We examined membrane localization of Gαq, TP receptor-Gαq association by coimmunoprecipitation, and Ca(2+) responses to U46619 in hypoxic and normoxic cells. Gαq palmitoylation is essential for the Ca(2+) response to TPα stimulation. Inhibition of palmitoylation reduces contractile force to thromboxane in PPHN but not in control pulmonary artery. Hypoxia increases palmitoylation of Gαq; the hypoxic. but not the normoxic, response to thromboxane is palmitoylation sensitive. Palmitoylation of one N-terminal cysteine is required for physical association of Gαq with the TPα receptor. Palmitoylation of both cysteines is required for Gαq membrane localization and Ca(2+) mobilization. Depalmitoylation of any one Gαq cysteine reduces the hypoxic response to thromboxane challenge to equal that of normoxic cells.

  8. Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1.

    PubMed

    Xue, Mei; Chen, Wei; Xiang, An; Wang, Rui