Science.gov

Sample records for 2-oxo acid dehydrogenase

  1. The regulation of branched-chain 2-oxo acid dehydrogenase of liver, kidney and heart by phosphorylation.

    PubMed Central

    Hughes, W A; Halestrap, A P

    1981-01-01

    1. Incubation of mitochondria from heart, liver and kidney with [32P]phosphate allowed 32P incorporation into two intramitochondrial proteins, the decarboxylase alpha-subunit of the pyruvate dehydrogenase complex (mol.wt 42000) and a protein of mol.wt. 48000. 2. This latter protein incorporated 32P more slowly than did pyruvate dehydrogenase, was not precipitated by antibody to pyruvate dehydrogenase and showed behaviour distinct from that of pyruvate dehydrogenase towards high-speed centrifugation and pyruvate dehydrogenase phosphate phosphatase. 3. 32P incorporation into the protein was greatly diminished by the presence of 0.1 mM-4-methyl-2-oxopentanoate, but enhanced by pyruvate (1 mM), hypo-osmotic treatment of mitochondria and, under some conditions, by uncoupler. 4. The activity of branched-chain 2-oxo acid dehydrogenase was assayed in parallel experiments. Under appropriate conditions the enzyme was inhibited when 32P incorporation was increased and activated when incorporation was decreased. The data suggest that the 48000-mol.wt. phosphorylated protein is identical with the decarboxylase subunit of branched-chain 2-oxo acid dehydrogenase and that this enzyme may be controlled by a phosphorylation-dephosphorylation cycle akin to that for pyruvate dehydrogenase. 5. Strict correlation between activity and 32P incorporation was not observed, and a scheme for the regulation of the enzyme is proposed to account for these discrepancies. PMID:7316988

  2. Structural bases for the specific interactions between the E2 and E3 components of the Thermus thermophilus 2-oxo acid dehydrogenase complexes.

    PubMed

    Nakai, Tadashi; Kuramitsu, Seiki; Kamiya, Nobuo

    2008-06-01

    Pyruvate dehydrogenase (PDH), branched-chain 2-oxo acid dehydrogenase (BCDH) and 2-oxoglutarate dehydrogenase (OGDH) are multienzyme complexes that play crucial roles in several common metabolic pathways. These enzymes belong to a family of 2-oxo acid dehydrogenase complexes that contain multiple copies of three different components (E1, E2 and E3). For the Thermus thermophilus enzymes, depending on its substrate specificity (pyruvate, branched-chain 2-oxo acid or 2-oxoglutarate), each complex has distinctive E1 (E1p, E1b or E1o) and E2 (E2p, E2b or E2o) components and one of the two possible E3 components (E3b and E3o). (The suffixes, p, b and o identify their respective enzymes, PDH, BCDH and OGDH.) Our biochemical characterization demonstrates that only three specific E3*E2 complexes can form (E3b*E2p, E3b*E2b and E3o*E2o). X-ray analyses of complexes formed between the E3 components and the peripheral subunit-binding domains (PSBDs), derived from the corresponding E2-binding partners, reveal that E3b interacts with E2p and E2b in essentially the same manner as observed for Geobacillus stearothermophilus E3*E2p, whereas E3o interacts with E2o in a novel fashion. The buried intermolecular surfaces of the E3b*PSBDp/b and E3o*PSBDo complexes differ in size, shape and charge distribution and thus, these differences presumably confer the binding specificities for the complexes. PMID:18316329

  3. Effect of diet and starvation on the activity state of branched-chain 2-oxo-acid dehydrogenase complex in rat liver and heart.

    PubMed

    Solomon, M; Cook, K G; Yeaman, S J

    1987-12-10

    In rats fed a high-protein diet, the branched-chain 2-oxo-acid dehydrogenase complex in liver was essentially fully active and its activity state was unaffected by subsequent starvation for 48 h. Feeding with a low-protein diet led to a decrease in the activity state which was essentially reversed by 48 h of starvation. In heart, the enzyme was primarily inactive (activity state 18%) in rats fed a high-protein diet, with both low-protein diet and starvation leading to a further decrease in the activity state. PMID:3676350

  4. Limited proteolysis and sequence analysis of the 2-oxo acid dehydrogenase complexes from Escherichia coli. Cleavage sites and domains in the dihydrolipoamide acyltransferase components.

    PubMed Central

    Packman, L C; Perham, R N

    1987-01-01

    The structures of the dihydrolipoamide acyltransferase (E2) components of the 2-oxo acid dehydrogenase complexes from Escherichia coli were investigated by limited proteolysis. Trypsin and Staphylococcus aureus V8 proteinase were used to excise the three lipoyl domains from the E2p component of the pyruvate dehydrogenase complex and the single lipoyl domain from the E2o component of the 2-oxoglutarate dehydrogenase complex. The principal sites of action of these enzymes on each E2 chain were determined by sequence analysis of the isolated lipoyl fragments and of the truncated E2p and E2o chains. Each of the numerous cleavage sites (12 in E2p, six in E2o) fell within similar segments of the E2 chains, namely stretches of polypeptide rich in alanine, proline and/or charged amino acids. These regions are clearly accessible to proteinases of Mr 24,000-28,000 and, on the basis of n.m.r. spectroscopy, some of them have previously been implicated in facilitating domain movements by virtue of their conformational flexibility. The limited proteolysis data suggest that E2p and E2o possess closer architectural similarities than would be predicted from inspection of their amino acid sequences. As a result of this work, an error was detected in the sequence of E2o inferred from the previously published sequence of the encoding gene, sucB. The relevant peptides from E2o were purified and sequenced by direct means; an amended sequence is presented. Images Fig. 1. Fig. 2. PMID:3297046

  5. Chronic alcoholism in rats induces a compensatory response, preserving brain thiamine diphosphate, but the brain 2-oxo acid dehydrogenases are inactivated despite unchanged coenzyme levels.

    PubMed

    Parkhomenko, Yulia M; Kudryavtsev, Pavel A; Pylypchuk, Svetlana Yu; Chekhivska, Lilia I; Stepanenko, Svetlana P; Sergiichuk, Andrej A; Bunik, Victoria I

    2011-06-01

    Thiamine-dependent changes in alcoholic brain were studied using a rat model. Brain thiamine and its mono- and diphosphates were not reduced after 20 weeks of alcohol exposure. However, alcoholism increased both synaptosomal thiamine uptake and thiamine diphosphate synthesis in brain, pointing to mechanisms preserving thiamine diphosphate in the alcoholic brain. In spite of the unchanged level of the coenzyme thiamine diphosphate, activities of the mitochondrial 2-oxoglutarate and pyruvate dehydrogenase complexes decreased in alcoholic brain. The inactivation of pyruvate dehydrogenase complex was caused by its increased phosphorylation. The inactivation of 2-oxoglutarate dehydrogenase complex (OGDHC) correlated with a decrease in free thiols resulting from an elevation of reactive oxygen species. Abstinence from alcohol following exposure to alcohol reactivated OGDHC along with restoration of the free thiol content. However, restoration of enzyme activity occurred before normalization of reactive oxygen species levels. Hence, the redox status of cellular thiols mediates the action of oxidative stress on OGDHC in alcoholic brain. As a result, upon chronic alcohol consumption, physiological mechanisms to counteract the thiamine deficiency and silence pyruvate dehydrogenase are activated in rat brain, whereas OGDHC is inactivated due to impaired antioxidant ability.

  6. Substrate Specificity of Thiamine Pyrophosphate-Dependent 2-Oxo-Acid Decarboxylases in Saccharomyces cerevisiae

    PubMed Central

    Romagnoli, Gabriele; Luttik, Marijke A. H.; Kötter, Peter; Pronk, Jack T.

    2012-01-01

    Fusel alcohols are precursors and contributors to flavor and aroma compounds in fermented beverages, and some are under investigation as biofuels. The decarboxylation of 2-oxo acids is a key step in the Ehrlich pathway for fusel alcohol production. In Saccharomyces cerevisiae, five genes share sequence similarity with genes encoding thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases (2ODCs). PDC1, PDC5, and PDC6 encode differentially regulated pyruvate decarboxylase isoenzymes; ARO10 encodes a 2-oxo-acid decarboxylase with broad substrate specificity, and THI3 has not yet been shown to encode an active decarboxylase. Despite the importance of fusel alcohol production in S. cerevisiae, the substrate specificities of these five 2ODCs have not been systematically compared. When the five 2ODCs were individually overexpressed in a pdc1Δ pdc5Δ pdc6Δ aro10Δ thi3Δ strain, only Pdc1, Pdc5, and Pdc6 catalyzed the decarboxylation of the linear-chain 2-oxo acids pyruvate, 2-oxo-butanoate, and 2-oxo-pentanoate in cell extracts. The presence of a Pdc isoenzyme was also required for the production of n-propanol and n-butanol in cultures grown on threonine and norvaline, respectively, as nitrogen sources. These results demonstrate the importance of pyruvate decarboxylases in the natural production of n-propanol and n-butanol by S. cerevisiae. No decarboxylation activity was found for Thi3 with any of the substrates tested. Only Aro10 and Pdc5 catalyzed the decarboxylation of the aromatic substrate phenylpyruvate, with Aro10 showing superior kinetic properties. Aro10, Pdc1, Pdc5, and Pdc6 exhibited activity with all branched-chain and sulfur-containing 2-oxo acids tested but with markedly different decarboxylation kinetics. The high affinity of Aro10 identified it as a key contributor to the production of branched-chain and sulfur-containing fusel alcohols. PMID:22904058

  7. High-performance liquid chromatographic method for profiling 2-oxo acids in urine and its application in evaluating vitamin status in rats.

    PubMed

    Shibata, Katsumi; Nakata, Chifumi; Fukuwatari, Tsutomu

    2016-01-01

    B-group vitamins are involved in the catabolism of 2-oxo acids. To identify the functional biomarkers of B-group vitamins, we developed a high-performance liquid chromatographic method for profiling 2-oxo acids in urine and applied this method to urine samples from rats deficient in vitamins B1 and B6 and pantothenic acid. 2-Oxo acids were reacted with 1,2-diamino-4,5-methylenebenzene to produce fluorescent derivatives, which were then separated using a TSKgel ODS-80Ts column with 30 mmol/L of KH2PO4 (pH 3.0):acetonitrile (7:3) at a flow rate of 1.0 mL/min. Vitamin B1 deficiency increased urinary levels of all 2-oxo acids, while vitamin B6 deficiency only increased levels of sum of 2-oxaloacetic acid and pyruvic acid, and pantothenic acid deficiency only increased levels of 2-oxoisovaleric acid. Profiles of 2-oxo acids in urine samples might be a non-invasive way of clarifying the functional biomarker of B-group vitamins.

  8. Pantothenic acid deficiency may increase the urinary excretion of 2-oxo acids and nicotinamide catabolites in rats.

    PubMed

    Shibata, Katsumi; Inomoto, Kasumi; Nakata, Chifumi; Fukuwatari, Tsutomu

    2013-01-01

    Pantothenic acid (PaA) is involved in the metabolism of amino acids as well as fatty acid. We investigated the systemic metabolism of amino acids in PaA-deficient rats. For this purpose, urine samples were collected and 2-oxo acids and L-tryptophan (L-Trp) and its metabolites including nicotinamide were measured. Group 1 was freely fed a conventional chemically-defined complete diet and used as an ad lib-fed control, which group was used for showing reference values. Group 2 was freely fed the complete diet without PaA (PaA-free diet) and used as a PaA-deficient group. Group 3 was fed the complete diet, but the daily food amount was equal to the amount of the PaA-deficient group and used as a pair-fed control group. All rats were orally administered 100 mg of L-Trp/kg body weight at 09:00 on day 34 of the experiment and the following 24-h urine samples were collected. The urinary excretion of the sum of pyruvic acid and oxaloacetic acid was higher in rats fed the PaA-free diets than in the rats fed pair-fed the complete diet. PaA deficiency elicited the increased urinary excretion of anthranilic acid and kynurenic acid, while the urinary excretion of xanthurenic acid decreased. The urinary excretion of L-Trp itself, 3-hydroxyanthranilic acid, and quinolinic acid revealed no differences between the rats fed the PaA-free and pair-fed the complete diets. PaA deficiency elicited the increased excretion of N(1)-methylnicotinamide, N(1)-methyl-2-pyridone-5-carboxamide, and N(1)-methyl-4-pyridone-3-carboxamide. These findings suggest that PaA deficiency disturbs the amino acid catabolism.

  9. Structure and hydrolysis of p-(2-oxo-1-pyrrolidinyl)- benzenesulfonic acid

    SciTech Connect

    Kukalenko, S.S.; Frolov, S.I.; Lim, I.K.; Putsykina, E.B.; Vasil'ev, A.F.

    1987-11-20

    With the aid of vibrational and PMR spectra of p-(2-oso-1-pyrrolidinyl)benzenesulfonic acid it was shown that in the solid state it exists as an O-protonated dipolar ion in which the protonated amide cation and sulfonate ion are intermolecularly linked by a very strong hydrogen bond. In concentrated hydrochloric acid the dipolar ion is an intermediate link in the chain of processes in the hydrolysis of the amide bond of the lactam ring.

  10. 40 CFR 721.10019 - Benzoic acid, 2-chloro-5-nitro-, 1,1-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester. 721.10019 Section 721.10019 Protection of Environment...-, 1,1-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester. (a) Chemical substance and significant new uses...-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester (PMN P-01-563; CAS No. 174489-76-0) is subject to...

  11. 40 CFR 721.10019 - Benzoic acid, 2-chloro-5-nitro-, 1,1-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester. 721.10019 Section 721.10019 Protection of Environment...-, 1,1-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester. (a) Chemical substance and significant new uses...-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester (PMN P-01-563; CAS No. 174489-76-0) is subject to...

  12. Introduction of 4(S)-oxazolidineacetic acid, 2-oxo (D-Oxac) motif in a polypeptide chain: synthesis and conformational analysis.

    PubMed

    Luppi, Gianluigi; Villa, Marzia; Tomasini, Claudia

    2003-01-21

    A four step synthesis of 4(S)-oxazolidineacetic acid, 2-oxo benzyl ester (D-Oxac-OBn) from L-Asp-OH in 45% overall yield is reported. The formation of by-products is completely avoided, by microwave irradiation and by the use of caesium carbonate as base. Moreover the synthesis and IR and 1H NMR conformational analysis of the tetramers Boc-L-Val-D-Oxac-L-Ala-OBn and Boc-L-Val-D-Oxac-Aib-L-Ala-OBn in solution is reported.

  13. Synthesis and Structure–Activity Relationships of N-(2-Oxo-3-oxetanyl)amides as N-Acylethanolamine-hydrolyzing Acid Amidase Inhibitors

    PubMed Central

    Solorzano, Carlos; Antonietti, Francesca; Duranti, Andrea; Tontini, Andrea; Rivara, Silvia; Lodola, Alessio; Vacondio, Federica; Tarzia, Giorgio; Piomelli, Daniele; Mor, Marco

    2010-01-01

    The fatty acid ethanolamides (FAEs) are a family of bioactive lipid mediators that include the endogenous agonist of peroxisome proliferator-activated receptor-α, palmitoylethanolamide (PEA). FAEs are hydrolyzed intracellularly by either fatty acid amide hydrolase or N-acylethanolamine-hydrolyzing acid amidase (NAAA). Selective inhibition of NAAA by (S)-N-(2-oxo-3-oxetanyl)-3-phenylpropionamide [(S)-OOPP, 7a] prevents PEA degradation in mouse leukocytes and attenuates responses to proinflammatory stimuli. Starting from the structure of 7a a series of β-lactones was prepared and tested on recombinant rat NAAA to explore structure-activity relationships (SARs) for this class of inhibitors and improve their in vitro potency. Following the hypothesis that these compounds inhibit NAAA by acylation of the catalytic cysteine, we identified several requirements for recognition at the active site and obtained new potent inhibitors. In particular, (S)-N-(2-oxo-3-oxetanyl)biphenyl-4-carboxamide (7h) was more potent than 7a at inhibiting recombinant rat NAAA activity (7a, IC50 = 420 nM; 7h, IC50 = 115 nM) in vitro and at reducing carrageenan-induced leukocyte infiltration in vivo. PMID:20604568

  14. Creation of a thermostable NADP⁺-dependent D-amino acid dehydrogenase from Ureibacillus thermosphaericus strain A1 meso-diaminopimelate dehydrogenase by site-directed mutagenesis.

    PubMed

    Akita, Hironaga; Doi, Katsumi; Kawarabayasi, Yutaka; Ohshima, Toshihisa

    2012-09-01

    A thermostable, NADP(+)-dependent D: -amino acid dehydrogenase (DAADH) was created from the meso-diaminopimelate dehydrogenase of Ureibacillus thermosphaericus strain A1 by introducing five point mutations into amino acid residues located in the active site. The recombinant protein, expressed in Escherichia coli, was purified to homogeneity using a two-step separation procedure and then characterized. In the presence of NADP(+), the protein catalyzed the oxidative deamination of several D: -amino acids, including D: -cyclohexylalanine, D: -isoleucine and D: -2-aminooctanoate, but not meso-diaminopimelate, confirming the creation of a NADP(+)-dependent DAADH. For the reverse reaction, the corresponding 2-oxo acids were aminated in the presence of NADPH and ammonia. In addition, the D: -amino acid dehydrogenase showed no loss of activity at 65 °C, indicating the mutant enzyme was more thermostable than its parental meso-diaminopimelate dehydrogenase.

  15. Metabolism of lysergic acid diethylamide (LSD) to 2-oxo-3-hydroxy LSD (O-H-LSD) in human liver microsomes and cryopreserved human hepatocytes.

    PubMed

    Klette, K L; Anderson, C J; Poch, G K; Nimrod, A C; ElSohly, M A

    2000-10-01

    The metabolism of lysergic acid diethylamide (LSD) to 2-oxo-3-hydroxy lysergic acid diethylamide (O-H-LSD) was investigated in liver microsomes and cyropreserved hepatocytes from humans. Previous studies have demonstrated that O-H-LSD is present in human urine at concentrations 16-43 times greater than LSD, the parent compound. Additionally, these studies have determined that O-H-LSD is not generated during the specimen extraction and analytical processes or due to parent compound degradation in aqueous urine samples. However, these studies have not been conclusive in demonstrating that O-H-LSD is uniquely produced during in vivo metabolism. Phase I drug metabolism was investigated by incubating human liver microsomes and cryopreserved human hepatocytes with LSD. The reaction was quenched at various time points, and the aliquots were extracted using liquid partitioning and analyzed by liquid chromatography-mass spectrometry. O-H-LSD was positively identified in all human liver microsomal and human hepatocyte fractions incubated with LSD. In addition, O-H-LSD was not detected in any microsomal or hepatocyte fraction not treated with LSD nor in LSD specimens devoid of microsomes or hepatocytes. This study provides definitive evidence that O-H-LSD is produced as a metabolic product following incubation of human liver microsomes and hepatocytes with LSD.

  16. A sialic acid aldolase from Peptoclostridium difficile NAP08 with 4-hydroxy-2-oxo-pentanoate aldolase activity.

    PubMed

    Chen, Qijia; Han, Lei; Chen, Xi; Cui, Yunfeng; Feng, Jinhui; Wu, Qiaqing; Zhu, Dunming

    2016-10-01

    Sialic acid aldolases (E.C.4.1.3.3) catalyze the reversible aldol cleavage of N-acetyl-d-neuraminic acid (Neu5Ac) to from N-acetyl-d-mannosamine (ManNAc) and pyruvate. In this study, a sialic acid aldolase (PdNAL) from Peptoclostridium difficile NAP08 was expressed in Escherichia coli BL21 (DE3). This homotetrameric enzyme was purified with a specific activity of 18.34U/mg for the cleavage of Neu5Ac. The optimal pH and temperature for aldol addition reaction were 7.4 and 65°C, respectively. PdNAL was quite stable at neutral and alkaline pH (6.0-10.0) and maintained about 89% of the activity after incubation at pH 10.0 for 24h. After incubation at 70°C for 15min, almost no activity loss was observed. The high thermostability simplified the purification of this enzyme. Interestingly, substrate profiling showed that PdNAL not only accepted ManNAc but also short chain aliphatic aldehydes such as acetaldehyde, propionaldehyde and n-butyraldehyde as the substrates. This is the first example that a sialic acid aldolase is active toward aliphatic aldehyde acceptors with two or more carbons. The amino acid sequence analysis indicates that PdNAL belongs to the NAL subfamily rather than 4-hydroxy-2-oxopentanoate (HOPA) aldolase, but it is interesting that the enzyme possesses the activity of HOPA aldolase. PMID:27542750

  17. Oxidation of indole-3-acetic acid and oxindole-3-acetic acid to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glucopyranoside in Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Nonhebel, H. M.; Bandurski, R. S.

    1984-01-01

    Radiolabeled oxindole-3-acetic acid was metabolized by roots, shoots, and caryopses of dark grown Zea mays seedlings to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glycopyranoside with the simpler name of 7-hydroxyoxindole-3-acetic acid-glucoside. This compound was also formed from labeled indole-3-acetic acid supplied to intact seedlings and root segments. The glucoside of 7-hydroxyoxindole-3-acetic acid was also isolated as an endogenous compound in the caryopses and shoots of 4-day-old seedlings. It accumulates to a level of 4.8 nanomoles per plant in the kernel, more than 10 times the amount of oxindole-3-acetic acid. In the shoot it is present at levels comparable to that of oxindole-3-acetic acid and indole-3-acetic acid (62 picomoles per shoot). We conclude that 7-hydroxyoxindole-3-acetic acid-glucoside is a natural metabolite of indole-3-acetic acid in Z. mays seedlings. From the data presented in this paper and in previous work, we propose the following route as the principal catabolic pathway for indole-3-acetic acid in Zea seedlings: Indole-3-acetic acid --> Oxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid-glucoside.

  18. Detection of metabolites of lysergic acid diethylamide (LSD) in human urine specimens: 2-oxo-3-hydroxy-LSD, a prevalent metabolite of LSD.

    PubMed

    Poch, G K; Klette, K L; Hallare, D A; Manglicmot, M G; Czarny, R J; McWhorter, L K; Anderson, C J

    1999-03-01

    Seventy-four urine specimens previously found to contain lysergic acid diethylamide (LSD) by gas chromatography-mass spectrometry (GC-MS) were analyzed by a new procedure for the LSD metabolite 2-oxo-3-hydroxy-LSD (O-H-LSD) using a Finnigan LC-MS-MS system. This procedure proved to be less complex, shorter to perform and provides cleaner chromatographic characteristics than the method currently utilized by the Navy Drug Screening Laboratories for the extraction of LSD from urine by GC-MS. All of the specimens used in the study screened positive for LSD by radioimmunoassay (Roche Abuscreen). Analysis by GC-MS revealed detectable amounts of LSD in all of the specimens. In addition, isolysergic diethylamide (iso-LSD), a byproduct of LSD synthesis, was quantitated in 64 of the specimens. Utilizing the new LC-MS-MS method, low levels of N-desmethyl-LSD (nor-LSD), another identified LSD metabolite, were detected in some of the specimens. However, all 74 specimens contained O-H-LSD at significantly higher concentrations than LSD, iso-LSD, or nor-LSD alone. The O-H-LSD concentration ranged from 732 to 112 831 pg/ml (mean, 16340 pg/ml) by quantification with an internal standard. The ratio of O-H-LSD to LSD ranged from 1.1 to 778.1 (mean, 42.9). The presence of O-H-LSD at substantially higher concentrations than LSD suggests that the analysis for O-H-LSD as the target analyte by employing LC-MS-MS will provide a much longer window of detection for the use of LSD than the analysis of the parent compound, LSD.

  19. Active site directed irreversible inactivation of brewers' yeast pyruvate decarboxylase by the conjugated substrate analogue (E)-4-(4-chlorophenyl)-2-oxo-3-butenoic acid: development of a suicide substrate.

    PubMed

    Kuo, D J; Jordan, F

    1983-08-01

    (E)-4-(4-Chlorophenyl)-2-oxo-3-butenoic acid (CPB) was found to irreversibly inactivate brewers' yeast pyruvate decarboxylase (PDC, EC 4.1.1.1) in a biphasic, sigmoidal manner, as is found for the kinetic behavior of substrate. An expression was derived for two-site irreversible inhibition of allosteric enzymes, and the kinetic behavior of CPB fit the expression for two-site binding. The calculated Ki's of 0.7 mM and 0.3 mM for CPB were assigned to the catalytic site and the regulatory site, respectively. The presence of pyruvic acid at high concentrations protected PDC from inactivation, whereas low concentrations of pyruvic acid accelerated inactivation by CPB. Pyruvamide, a known allosteric activator of PDC, was found to enhance inactivation by CPB. The results can be explained if pyruvamide binds only to a regulatory site, but CPB and pyruvic acid compete for both the regulatory and the catalytic centers. [1-14C]CPB was found to lose 14CO2 concurrently with the inactivation of the enzyme. Therefore, CPB was being turned over by PDC, in addition to inactivating it. CPB can be labeled a suicide-type inactivator for PDC.

  20. 40 CFR 721.10019 - Benzoic acid, 2-chloro-5-nitro-, 1,1-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzoic acid, 2-chloro-5-nitro-, 1,1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10019 Benzoic acid, 2-chloro-5-nitro... subject to reporting. (1) The chemical substance identified as benzoic acid, 2-chloro-5-nitro-,...

  1. 40 CFR 721.10019 - Benzoic acid, 2-chloro-5-nitro-, 1,1-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzoic acid, 2-chloro-5-nitro-, 1,1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10019 Benzoic acid, 2-chloro-5-nitro... subject to reporting. (1) The chemical substance identified as benzoic acid, 2-chloro-5-nitro-,...

  2. 40 CFR 721.10019 - Benzoic acid, 2-chloro-5-nitro-, 1,1-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzoic acid, 2-chloro-5-nitro-, 1,1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10019 Benzoic acid, 2-chloro-5-nitro... subject to reporting. (1) The chemical substance identified as benzoic acid, 2-chloro-5-nitro-,...

  3. 40 CFR 721.10020 - Benzoic acid, 5-amino-2-chloro-, 1,1-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzoic acid, 5-amino-2-chloro-, 1,1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10020 Benzoic acid, 5-amino-2-chloro... subject to reporting. (1) The chemical substance identified as benzoic acid, 5-amino-2-chloro-,...

  4. 40 CFR 721.10020 - Benzoic acid, 5-amino-2-chloro-, 1,1-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzoic acid, 5-amino-2-chloro-, 1,1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10020 Benzoic acid, 5-amino-2-chloro... subject to reporting. (1) The chemical substance identified as benzoic acid, 5-amino-2-chloro-,...

  5. 40 CFR 721.10020 - Benzoic acid, 5-amino-2-chloro-, 1,1-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzoic acid, 5-amino-2-chloro-, 1,1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10020 Benzoic acid, 5-amino-2-chloro... subject to reporting. (1) The chemical substance identified as benzoic acid, 5-amino-2-chloro-,...

  6. 40 CFR 721.10020 - Benzoic acid, 5-amino-2-chloro-, 1,1-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzoic acid, 5-amino-2-chloro-, 1,1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10020 Benzoic acid, 5-amino-2-chloro... subject to reporting. (1) The chemical substance identified as benzoic acid, 5-amino-2-chloro-,...

  7. 40 CFR 721.10020 - Benzoic acid, 5-amino-2-chloro-, 1,1-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzoic acid, 5-amino-2-chloro-, 1,1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10020 Benzoic acid, 5-amino-2-chloro... subject to reporting. (1) The chemical substance identified as benzoic acid, 5-amino-2-chloro-,...

  8. Synthesis, spectroscopic, crystal structure and DNA binding of Ru(II) complexes with 2-hydroxy-benzoic acid [1-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-ethylidene]-hydrazide

    NASA Astrophysics Data System (ADS)

    Chitrapriya, Nataraj; Sathiya Kamatchi, Thangavel; Zeller, Matthias; Lee, Hyosun; Natarajan, Karuppannan

    2011-10-01

    Reactions of 2-hydroxy-benzoic acid [1-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-ethylidene]-hydrazide (H 2L) with [RuHCl(CO)(EPh 3) 3] (E = P or As) were carried out and the new complexes obtained were characterized by elemental analysis, electronic, IR, 1H NMR and 13C NMR spectroscopic techniques and single crystal X-ray diffraction studies. Complex ( 1) crystallizes in the monoclinic space group P2(1)/ c with unit cell dimensions a = 18.6236(17) Å, b = 12.8627(12) Å, c = 21.683(2) Å, α = 90.00, β = 114.626(2), γ = 90.00 V = 4721.8(8) Å, Z = 4. The crystal structure of the complex shows Ru(II) atom is six-coordinated, forming a slightly distorted octahedral geometry with two P atoms in axial positions, and three chelating donor atoms of the tridentate Schiff base ligand and one carbonyl group located in the equatorial plane. The molecular structure is stabilized by intramolecular O—H···N interactions. No intermolecular hydrogen bond was observed. The intramolecular hydrogen bond exists between the oxygen atom from salicylic acid moiety and nitrogen from the same moiety. A variety of solution studies were carried out for the determination of DNA binding mode of the complexes. The results suggest that both complexes bind to Herring sperm DNA via non intercalative mode.

  9. Synthesis, spectroscopic, crystal structure and DNA binding of Ru(II) complexes with 2-hydroxy-benzoic acid [1-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-ethylidene]-hydrazide.

    PubMed

    Chitrapriya, Nataraj; Kamatchi, Thangavel Sathiya; Zeller, Matthias; Lee, Hyosun; Natarajan, Karuppannan

    2011-10-15

    Reactions of 2-hydroxy-benzoic acid [1-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-ethylidene]-hydrazide (H(2)L) with [RuHCl(CO)(EPh(3))(3)] (E = P or As) were carried out and the new complexes obtained were characterized by elemental analysis, electronic, IR, (1)H NMR and (13)C NMR spectroscopic techniques and single crystal X-ray diffraction studies. Complex (1) crystallizes in the monoclinic space group P2(1)/c with unit cell dimensions a=18.6236(17) Å, b=12.8627(12) Å, c=21.683(2) Å, α=90.00, β=114.626(2), γ=90.00 V=4721.8(8) Å, Z=4. The crystal structure of the complex shows Ru(II) atom is six-coordinated, forming a slightly distorted octahedral geometry with two P atoms in axial positions, and three chelating donor atoms of the tridentate Schiff base ligand and one carbonyl group located in the equatorial plane. The molecular structure is stabilized by intramolecular O-H···N interactions. No intermolecular hydrogen bond was observed. The intramolecular hydrogen bond exists between the oxygen atom from salicylic acid moiety and nitrogen from the same moiety. A variety of solution studies were carried out for the determination of DNA binding mode of the complexes. The results suggest that both complexes bind to Herring sperm DNA via non intercalative mode. PMID:21763180

  10. Role of quinate dehydrogenase in quinic acid metabolism in conifers

    SciTech Connect

    Osipov, V.I.; Shein, I.V.

    1986-08-10

    Quinate dehydrogenase was isolated from young needles of the Siberian larch and partially purified by ammonium sulfate fractionation. It was found that in conifers, in contrast to other plants, quinate dehydrogenase is active both with NAD and with NADP. The values of K/sub m/ for quinate and NADP were 1.8 and 0.18 mM. The enzyme exhibits maximum activity at pH 9.0. It was assumed that NADP-dependent quinate dehydrogenase is responsible for quinic acid synthesis. The special features of the organization and regulation of the initial stages of the shikimate pathway in conifers are discussed.

  11. Synthesis and Biological Evaluation of 2-Oxo/Thioxoquinoxaline and 2-Oxo/Thioxoquinoxaline-Based Nucleoside Analogues.

    PubMed

    El-Sayed, Hassan A; Said, Said A; Moustafa, Ahmed H; Baraka, Mohamed M; Abdel-Kader, Rimaa T

    2016-01-01

    Several O- and S-quinoxaline glycosides have been prepared by glycosidation of 3-methyl-2-oxo(thioxo)-1,2-dihydroquinoxalines 1a,b with α-D-glucopyranosyl, α-D-galactopyranosyl, and α-D-lactosyl bromide in the presence of K2CO3 followed by deacetylation with Et3N/H2O. Furthermore, alkylation of 1a,b with 4-bromobutyl acetate, 2-acetoxyethoxymethyl bromide, and 3-chloropropanol afforded the corresponding O- and S-acycloquinoxaline nucleosides. Reaction of 1b with chloroacetic acid followed by condensation with sulfacetamide and sulfadiazine in the presence of Et3N/THF and ethyl chloroformate gave the corresponding sulfonamide derivatives 14 and 15, respectively. The structures of new compounds were confirmed by using IR, (1)H, (13)C NMR spectra and microanalysis. Some of these compounds were screened in vitro for antitumor and antifungal activities. PMID:26810144

  12. R-lipoic acid inhibits mammalian pyruvate dehydrogenase kinase.

    PubMed

    Korotchkina, Lioubov G; Sidhu, Sukhdeep; Patel, Mulchand S

    2004-10-01

    The four pyruvate dehydrogenase kinase (PDK) and two pyruvate dehydrogenase phosphatase (PDP) isoenzymes that are present in mammalian tissues regulate activity of the pyruvate dehydrogenase complex (PDC) by phosphorylation/dephosphorylation of its pyruvate dehydrogenase (E1) component. The effect of lipoic acids on the activity of PDKs and PDPs was investigated in purified proteins system. R-lipoic acid, S-lipoic acid and R-dihydrolipoic acid did not significantly affect activities of PDPs and at the same time inhibited PDKs to different extents (PDK1>PDK4 approximately PDK2>PDK3 for R-LA). Since lipoic acids inhibited PDKs activity both when reconstituted in PDC and in the presence of E1 alone, dissociation of PDK from the lipoyl domains of dihydrolipoamide acetyltransferase in the presence of lipoic acids is not a likely explanation for inhibition. The activity of PDK1 towards phosphorylation sites 1, 2 and 3 of E1 was decreased to the same extent in the presence of R-lipoic acid, thus excluding protection of the E1 active site by lipoic acid from phosphorylation. R-lipoic acid inhibited autophosphorylation of PDK2 indicating that it exerted its effect on PDKs directly. Inhibition of PDK1 by R-lipoic acid was not altered by ADP but was decreased in the presence of pyruvate which itself inhibits PDKs. An inhibitory effect of lipoic acid on PDKs would result in less phosphorylation of E1 and hence increased PDC activity. This finding provides a possible mechanism for a glucose (and lactate) lowering effect of R-lipoic acid in diabetic subjects. PMID:15512796

  13. Identification and molecular characterization of the aco genes encoding the Pelobacter carbinolicus acetoin dehydrogenase enzyme system.

    PubMed Central

    Oppermann, F B; Steinbüchel, A

    1994-01-01

    Use of oligonucleotide probes, which were deduced from the N-terminal sequences of the purified enzyme components, identified the structural genes for the alpha and beta subunits of E1 (acetoin:2,6-dichlorophenolindophenol oxidoreductase), E2 (dihydrolipoamide acetyltransferase), and E3 (dihydrolipoamide dehydrogenase) of the Pelobacter carbinolicus acetoin dehydrogenase enzyme system, which were designated acoA, acoB, acoC, and acoL, respectively. The nucleotide sequences of acoA (979 bp), acoB (1,014 bp), acoC (1,353 bp), and acoL (1,413 bp) as well as of acoS (933 bp), which encodes a protein with an M(r) of 34,421 exhibiting 64.7% amino acid identity to the Escherichia coli lipA gene product, were determined. These genes are clustered on a 6.1-kbp region. Heterologous expression of acoA, acoB, acoC, acoL, and acoS in E. coli was demonstrated. The amino acid sequences deduced from acoA, acoB, acoC, and acoL for E1 alpha (M(r), 34,854), E1 beta (M(r), 36,184), E2 (M(r), 47,281), and E3 (M(r), 49,394) exhibited striking similarities to the amino acid sequences of the components of the Alcaligenes eutrophus acetoin-cleaving system. Homologies of up to 48.7% amino acid identity to the primary structures of the enzyme components of various 2-oxo acid dehydrogenase complexes also were found. In addition, the respective genes of the 2-oxo acid dehydrogenase complexes and of the acetoin dehydrogenase enzyme system were organized very similarly, indicating a close relationship of the P. carbinolicus acetoin dehydrogenase enzyme system to 2-oxo acid dehydrogenase complexes. Images PMID:8110297

  14. Structure of 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae

    SciTech Connect

    Michalska, Karolina; Cuff, Marianne E.; Tesar, Christine; Feldmann, Brian; Joachimiak, Andrzej

    2011-08-01

    The crystal structure of 2-oxo-3-deoxygalactonate kinase from the De Ley–Doudoroff pathway of galactose metabolism has been determined at 2.1 Å resolution. In most organisms, efficient d-galactose utilization requires the highly conserved Leloir pathway that converts d-galactose to d-glucose 1-phosphate. However, in some bacterial and fungal species alternative routes of d-galactose assimilation have been identified. In the so-called De Ley–Doudoroff pathway, d-galactose is metabolized into pyruvate and d-glyceraldehyde 3-phosphate in five consecutive reactions carried out by specific enzymes. The penultimate step in this pathway involves the phosphorylation of 2-oxo-3-deoxygalactonate to 2-oxo-3-deoxygalactonate 6-phosphate catalyzed by 2-oxo-3-deoxygalactonate kinase, with ATP serving as a phosphoryl-group donor. Here, a crystal structure of 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae determined at 2.1 Å resolution is reported, the first structure of an enzyme from the De Ley–Doudoroff pathway. Structural comparison indicates that the enzyme belongs to the ASKHA (acetate and sugar kinases/hsc70/actin) family of phosphotransferases. The protein is composed of two α/β domains, each of which contains a core common to all family members. Additional elements introduced between conserved structural motifs define the unique features of 2-oxo-3-deoxygalactonate kinase and possibly determine the biological function of the protein.

  15. Making biochemistry count: life among the amino acid dehydrogenases.

    PubMed

    Engel, Paul C

    2011-04-01

    The guiding principle of the IAS Medal Lecture and of the research it covered was that searching mathematical analysis, depending on good measurements, must underpin sound biochemical conclusions. This was illustrated through various experiences with the amino acid dehydrogenases. Topics covered in the present article include: (i) the place of kinetic measurement in assessing the metabolic role of GDH (glutamate dehydrogenase); (ii) the discovery of complex regulatory behaviour in mammalian GDH, involving negative co-operativity in coenzyme binding; (iii) an X-ray structure solution for a bacterial GDH providing insight into catalysis; (iv) almost total positive co-operativity in glutamate binding to clostridial GDH; (v) unexpected outcomes with mutations at the catalytic aspartate site in GDH; (vi) reactive cysteine as a counting tool in the construction of hybrid oligomers to probe the basis of allosteric interaction; (vii) tryptophan-to-phenylalanine mutations in analysis of allosteric conformational change; (viii) site-directed mutagenesis to alter substrate specificity in GDH and PheDH (phenylalanine dehydrogenase); and (ix) varying strengths of binding of the 'wrong' enantiomer in engineered mutant enzymes and implications for resolution of racemates.

  16. Amino acid sequence homology among the 2-hydroxy acid dehydrogenases: mitochondrial and cytoplasmic malate dehydrogenases form a homologous system with lactate dehydrogenase.

    PubMed Central

    Birktoft, J J; Fernley, R T; Bradshaw, R A; Banaszak, L J

    1982-01-01

    The amino acid sequence of porcine heart mitochondrial malate dehydrogenase (mMDH; L-malate: NAD+ oxidoreductase, EC 1.1.1.37) has been compared with the sequences of six different lactate dehydrogenases (LDH; L-lactate: NAD+ oxidoreductase, EC 1.1.1.27) and with the "x-ray" sequence of cytoplasmic malate dehydrogenase (sMDH). The main points are that (i) all three enzymes are homologous; (ii) invariant residues in the catalytic center of these enzymes include a histidine and an internally located aspartate that function as a proton relay system; (iii) numerous residues important to coenzyme binding are conserved, including several glycines and charged residues; and (iv) amino acid side chains present in the subunit interface common to the MDHs and LDHs appear to be better conserved than those in the protein interior. It is concluded that LDH, sMDH, and mMDH are derived from a common ancestral gene and probably have similar catalytic mechanisms. PMID:6959107

  17. Structure of 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae

    PubMed Central

    Michalska, Karolina; Cuff, Marianne E.; Tesar, Christine; Feldmann, Brian; Joachimiak, Andrzej

    2011-01-01

    In most organisms, efficient d-galactose utilization requires the highly conserved Leloir pathway that converts d-galactose to d-glucose 1-phosphate. However, in some bacterial and fungal species alternative routes of d-galactose assimilation have been identified. In the so-called De Ley–Doudoroff pathway, d-galactose is metabolized into pyruvate and d-­glyceraldehyde 3-phosphate in five consecutive reactions carried out by specific enzymes. The penultimate step in this pathway involves the phosphorylation of 2-oxo-3-deoxygalactonate to 2-oxo-3-deoxygalactonate 6-phosphate catalyzed by 2-­oxo-3-deoxygalactonate kinase, with ATP serving as a phosphoryl-group donor. Here, a crystal structure of 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae determined at 2.1 Å resolution is reported, the first structure of an enzyme from the De Ley–Doudoroff pathway. Structural comparison indicates that the enzyme belongs to the ASKHA (acetate and sugar kinases/hsc70/actin) family of phosphotransferases. The protein is composed of two α/β domains, each of which contains a core common to all family members. Additional elements introduced between conserved structural motifs define the unique features of 2-oxo-3-deoxygalactonate kinase and possibly determine the biological function of the protein. PMID:21795809

  18. Involvement of snapdragon benzaldehyde dehydrogenase in benzoic acid biosynthesis.

    PubMed

    Long, Michael C; Nagegowda, Dinesh A; Kaminaga, Yasuhisa; Ho, Kwok Ki; Kish, Christine M; Schnepp, Jennifer; Sherman, Debra; Weiner, Henry; Rhodes, David; Dudareva, Natalia

    2009-07-01

    Benzoic acid (BA) is an important building block in a wide spectrum of compounds varying from primary metabolites to secondary products. Benzoic acid biosynthesis from L-phenylalanine requires shortening of the propyl side chain by two carbons, which can occur via a beta-oxidative pathway or a non-beta-oxidative pathway, with benzaldehyde as a key intermediate. The non-beta-oxidative route requires benzaldehyde dehydrogenase (BALDH) to convert benzaldehyde to BA. Using a functional genomic approach, we identified an Antirrhinum majus (snapdragon) BALDH, which exhibits 40% identity to bacterial BALDH. Transcript profiling, biochemical characterization of the purified recombinant protein, molecular homology modeling, in vivo stable isotope labeling, and transient expression in petunia flowers reveal that BALDH is capable of oxidizing benzaldehyde to BA in vivo. GFP localization and immunogold labeling studies show that this biochemical step occurs in the mitochondria, raising a question about the role of subcellular compartmentalization in BA biosynthesis.

  19. Regulation of human class I alcohol dehydrogenases by bile acids

    PubMed Central

    Langhi, Cédric; Pedraz-Cuesta, Elena; Haro, Diego; Marrero, Pedro F.; Rodríguez, Joan C.

    2013-01-01

    Class I alcohol dehydrogenases (ADH1s) are the rate-limiting enzymes for ethanol and vitamin A (retinol) metabolism in the liver. Because previous studies have shown that human ADH1 enzymes may participate in bile acid metabolism, we investigated whether the bile acid-activated nuclear receptor farnesoid X receptor (FXR) regulates ADH1 genes. In human hepatocytes, both the endogenous FXR ligand chenodeoxycholic acid and synthetic FXR-specific agonist GW4064 increased ADH1 mRNA, protein, and activity. Moreover, overexpression of a constitutively active form of FXR induced ADH1A and ADH1B expression, whereas silencing of FXR abolished the effects of FXR agonists on ADH1 expression and activity. Transient transfection studies and electrophoretic mobility shift assays revealed functional FXR response elements in the ADH1A and ADH1B proximal promoters, thus indicating that both genes are direct targets of FXR. These findings provide the first evidence for direct connection of bile acid signaling and alcohol metabolism. PMID:23772048

  20. Regulation of human class I alcohol dehydrogenases by bile acids.

    PubMed

    Langhi, Cédric; Pedraz-Cuesta, Elena; Haro, Diego; Marrero, Pedro F; Rodríguez, Joan C

    2013-09-01

    Class I alcohol dehydrogenases (ADH1s) are the rate-limiting enzymes for ethanol and vitamin A (retinol) metabolism in the liver. Because previous studies have shown that human ADH1 enzymes may participate in bile acid metabolism, we investigated whether the bile acid-activated nuclear receptor farnesoid X receptor (FXR) regulates ADH1 genes. In human hepatocytes, both the endogenous FXR ligand chenodeoxycholic acid and synthetic FXR-specific agonist GW4064 increased ADH1 mRNA, protein, and activity. Moreover, overexpression of a constitutively active form of FXR induced ADH1A and ADH1B expression, whereas silencing of FXR abolished the effects of FXR agonists on ADH1 expression and activity. Transient transfection studies and electrophoretic mobility shift assays revealed functional FXR response elements in the ADH1A and ADH1B proximal promoters, thus indicating that both genes are direct targets of FXR. These findings provide the first evidence for direct connection of bile acid signaling and alcohol metabolism.

  1. The quantitation of 2-oxo-3-hydroxy lysergic acid diethylamide (O-H-LSD) in human urine specimens, a metabolite of LSD: comparative analysis using liquid chromatography-selected ion monitoring mass spectrometry and liquid chromatography-ion trap mass spectrometry.

    PubMed

    Poch, G K; Klette, K L; Anderson, C

    2000-04-01

    This paper compares the potential forensic application of two sensitive and rapid procedures (liquid chromatography-mass spectrometry and liquid chromatography-ion trap mass spectrometry) for the detection and quantitation of 2-oxo-3-hydroxy lysergic acid diethylamide (O-H-LSD) a major LSD metabolite. O-H-LSD calibration curves for both procedures were linear over the concentration range 0-8,000 pg/mL with correlation coefficients (r2) greater than 0.99. The observed limit of detection (LOD) and limit of quantitation (LOQ) for O-H-LSD in both procedures was 400 pg/mL. Sixty-eight human urine specimens that had previously been found to contain LSD by gas chromatography-mass spectrometry were reanalyzed by both procedures for LSD and O-H-LSD. These specimens contained a mean concentration of O-H-LSD approximately 16 times higher than the LSD concentration. Because both LC methods produce similar results, either procedure can be readily adapted to O-H-LSD analysis for use in high-volume drug-testing laboratories. In addition, the possibility of significantly increasing the LSD detection time window by targeting this major LSD metabolite for analysis may influence other drug-free workplace programs to test for LSD.

  2. An orally active cathepsin K inhibitor, furan-2-carboxylic acid, 1-{1-[4-fluoro-2-(2-oxo-pyrrolidin-1-yl)-phenyl]-3-oxo-piperidin-4-ylcarbamoyl}-cyclohexyl)-amide (OST-4077), inhibits osteoclast activity in vitro and bone loss in ovariectomized rats.

    PubMed

    Kim, M K; Kim, H D; Park, J H; Lim, J I; Yang, J S; Kwak, W Y; Sung, S Y; Kim, H J; Kim, S H; Lee, C H; Shim, J Y; Bae, M H; Shin, Y A; Huh, Y; Han, T D; Chong, W; Choi, H; Ahn, B N; Yang, S O; Son, M H

    2006-08-01

    Human cathepsin K, a cysteine proteinase of the papain family, has been recognized as a potential drug target for the treatment of osteoporosis. The predominant expression of cathepsin K in osteoclasts has rendered the enzyme into a major target for the development of novel antiresorptive drugs. Now, we report the pharmacological properties of OST-4077 [furan-2-carboxylic acid (1-{1-[4-fluoro-2-(2-oxo-pyrrolidin-1-yl)-phenyl]-3-oxo-piperidin-4-ylcarbamoyl}-cyclohexyl)-amide] as a novel selective cathepsin K inhibitor. Human and rat cathepsin K were inhibited in vitro by OST-4077 with the IC50 values of 11 and 427 nM, respectively. OST-4077 suppressed bone resorption induced by rabbit osteoclasts (IC50, 37 nM) but did not affect bone mineralization or cellular alkaline phosphatase activity in MC3T3-E1 cells. Parathyroid hormone-induced bone resorption was inhibited in a dose-dependent manner in thyroparathyroidectomized rats gavaged with a single dose of OST-4077 (ED50, 69 mg/kg). When given orally twice daily for 4 weeks to 3-month-old ovariectomized (OVX) rats, OST-4077 dose-dependently prevented bone loss, as monitored by bone densitometry, ash content, and urinary excretion of deoxypyridinoline. No change in serum osteocalcin in the OVX rats by OST-4077 suggested that bone formation might not be affected by the agent. In summary, OST-4077 selectively inhibited bone resorbing activities of osteoclasts and prevented bone loss induced by estrogen deficiency but did not affect bone formation. OST-4077, an orally active selective human cathepsin K inhibitor, may have the therapeutic potential for the treatment of diseases characterized by excessive bone loss including osteoporosis.

  3. Structural, spectral, thermal and biological studies on (Z)-N-benzoyl-N‧-(2-oxo-2-(phenylamino)acetyl)carbamohydrazonothioic acid (H2PABT) and its Cd(II), Hg(II), Zn(II) and U(VI)O22+ complexes

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; Ahmed, Sara F.; El-Gammal, O. A.; Abu El-Reash, G. M.

    2015-07-01

    A new metal complexes formed by the reaction of (Z)-N-benzoyl-N‧-(2-oxo-2-(phenylamino)acetyl)carbamohydrazonothioic acid (H2PABT) and Cd(II), Hg(II), Zn(II) and U(VI)O22+ ions. The isolated complexes were prepared and characterized by conventional techniques. The IR data revealed that the ligand behaves as mononegative tridentate in Zn(II) and U(VI)O22+ complexes also, binegative tetradentate on Cd(II) and Hg(II) complexes. On the basis of magnetic and electronic spectral data an octahedral geometry for the U(VI)O22+ complex, a tetrahedral structure for the Cd(II), Zn(II) and Hg(II) complexes have been proposed. The IR spectrum of ligand which determined experimentally is compared with those obtained theoretically from DFT calculations. Also, the bond lengths, bond angles, HOMO, LUMO and dipole moments have been calculated. The calculated HOMO-LUMO energy gap reveals that charge transfer occurs within the ligand molecules. The calculated values of binding energies indicates the stability of complexes is higher that of ligand. Also, the kinetic and thermodynamic parameters for the different thermal degradation steps of the complexes were determined by Coats-Redfern and Horowitz-Metzger methods. Moreover, the ligand and its complexes were screened against Bacillus subtilis as Gram positive bacteria and Escherichia coli Gram negative bacteria using the inhibitory zone diameter. Also the antitumor activities of the ligand and its complexes have been evaluated against liver (HePG2) and breast (MCF-7) cancer cells. Out of all the synthesized compounds, [Hg2(PABT)Cl2(H2O)2] and [(UO2)(HPABT)(OAc)(H2O)] complexes showed high antibacterial activity with 55.5% while H2PABT showed the best cytotoxic effect on liver and breast cancer cells with IC50 2.10 and 5.91 of cytotoxicity respectively.

  4. In vivo regulation of alcohol dehydrogenase and lactate dehydrogenase in Rhizopus oryzae to improve L-lactic acid fermentation.

    PubMed

    Thitiprasert, Sitanan; Sooksai, Sarintip; Thongchul, Nuttha

    2011-08-01

    Rhizopus oryzae is becoming more important due to its ability to produce an optically pure L: -lactic acid. However, fermentation by Rhizopus usually suffers from low yield because of production of ethanol as a byproduct. Limiting ethanol production in living immobilized R. oryzae by inhibition of alcohol dehydrogenase (ADH) was observed in shake flask fermentation. The effects of ADH inhibitors added into the medium on the regulation of ADH and lactate dehydrogenase (LDH) as well as the production of cell biomass, lactic acid, and ethanol were elucidated. 1,2-diazole and 2,2,2-trifluroethanol were found to be the effective inhibitors used in this study. The highest lactic acid yield of 0.47 g/g glucose was obtained when 0.01 mM 2,2,2-trifluoroethanol was present during the production phase of the pregrown R. oryzae. This represents about 38% increase in yield as compared with that from the simple glucose fermentation. Fungal metabolism was suppressed when iodoacetic acid, N-ethylmaleimide, 4,4'-dithiodipyridine, or 4-hydroxymercury benzoic acid were present. Dramatic increase in ADH and LDH activities but slight change in product yields might be explained by the inhibitors controlling enzyme activities at the pyruvate branch point. This showed that in living R. oryzae, the inhibitors regulated the flux through the related pathways. PMID:21416338

  5. In vivo regulation of alcohol dehydrogenase and lactate dehydrogenase in Rhizopus oryzae to improve L-lactic acid fermentation.

    PubMed

    Thitiprasert, Sitanan; Sooksai, Sarintip; Thongchul, Nuttha

    2011-08-01

    Rhizopus oryzae is becoming more important due to its ability to produce an optically pure L: -lactic acid. However, fermentation by Rhizopus usually suffers from low yield because of production of ethanol as a byproduct. Limiting ethanol production in living immobilized R. oryzae by inhibition of alcohol dehydrogenase (ADH) was observed in shake flask fermentation. The effects of ADH inhibitors added into the medium on the regulation of ADH and lactate dehydrogenase (LDH) as well as the production of cell biomass, lactic acid, and ethanol were elucidated. 1,2-diazole and 2,2,2-trifluroethanol were found to be the effective inhibitors used in this study. The highest lactic acid yield of 0.47 g/g glucose was obtained when 0.01 mM 2,2,2-trifluoroethanol was present during the production phase of the pregrown R. oryzae. This represents about 38% increase in yield as compared with that from the simple glucose fermentation. Fungal metabolism was suppressed when iodoacetic acid, N-ethylmaleimide, 4,4'-dithiodipyridine, or 4-hydroxymercury benzoic acid were present. Dramatic increase in ADH and LDH activities but slight change in product yields might be explained by the inhibitors controlling enzyme activities at the pyruvate branch point. This showed that in living R. oryzae, the inhibitors regulated the flux through the related pathways.

  6. Rv0132c of Mycobacterium tuberculosis Encodes a Coenzyme F420-Dependent Hydroxymycolic Acid Dehydrogenase

    PubMed Central

    Purwantini, Endang; Mukhopadhyay, Biswarup

    2013-01-01

    The ability of Mycobacterium tuberculosis to manipulate and evade human immune system is in part due to its extraordinarily complex cell wall. One of the key components of this cell wall is a family of lipids called mycolic acids. Oxygenation of mycolic acids generating methoxy- and ketomycolic acids enhances the pathogenic attributes of M. tuberculosis. Thus, the respective enzymes are of interest in the research on mycobacteria. The generation of methoxy- and ketomycolic acids proceeds through intermediary formation of hydroxymycolic acids. While the methyl transferase that generates methoxymycolic acids from hydroxymycolic acids is known, hydroxymycolic acids dehydrogenase that oxidizes hydroxymycolic acids to ketomycolic acids has been elusive. We found that hydroxymycolic acid dehydrogenase is encoded by the rv0132c gene and the enzyme utilizes F420, a deazaflavin coenzyme, as electron carrier, and accordingly we called it F420-dependent hydroxymycolic acid dehydrogenase. This is the first report on the involvement of F420 in the synthesis of a mycobacterial cell envelope. Also, F420-dependent hydroxymycolic acid dehydrogenase was inhibited by PA-824, and therefore, it is a previously unknown target for this new tuberculosis drug. PMID:24349169

  7. Use of immobilized glutamate dehydrogenase to synthesize /sup 13/N-labeled L-amino acids

    SciTech Connect

    Cooper, A.J.L.; Gelbard, A.S.

    1981-02-01

    By utilizing glutamate dehydrogenase immobilized onto CNBr-activated Sepharose it is possible to synthesize six L-/sup 13/N-amino acids in high radiochemical yield (5-140 mCi) and in high (> 99%) radiochemical purity. These /sup 13/N-amino acid solutions are potentially suitable for whole body and organ imaging in large animals and man.

  8. Retinoic acid response element in the human alcohol dehydrogenase gene ADH3: implications for regulation of retinoic acid synthesis.

    PubMed Central

    Duester, G; Shean, M L; McBride, M S; Stewart, M J

    1991-01-01

    Retinoic acid regulation of one member of the human class I alcohol dehydrogenase (ADH) gene family was demonstrated, suggesting that the retinol dehydrogenase function of ADH may play a regulatory role in the biosynthetic pathway for retinoic acid. Promoter activity of human ADH3, but not ADH1 or ADH2, was shown to be activated by retinoic acid in transient transfection assays of Hep3B human hepatoma cells. Deletion mapping experiments identified a region in the ADH3 promoter located between -328 and -272 bp which confers retinoic acid activation. This region was also demonstrated to confer retinoic acid responsiveness on the ADH1 and ADH2 genes in heterologous promoter fusions. Within a 34-bp stretch, the ADH3 retinoic acid response element (RARE) contains two TGACC motifs and one TGAAC motif, both of which exist in RAREs controlling other genes. A block mutation of the TGACC sequence located at -289 to -285 bp eliminated the retinoic acid response. As assayed by gel shift DNA binding studies, the RARE region (-328 to -272 bp) of ADH3 bound the human retinoic acid receptor beta (RAR beta) and was competed for by DNA containing a RARE present in the gene encoding RAR beta. Since ADH catalyzes the conversion of retinol to retinal, which can be further converted to retinoic acid by aldehyde dehydrogenase, these results suggest that retinoic acid activation of ADH3 constitutes a positive feedback loop regulating retinoic acid synthesis. Images PMID:1996113

  9. Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignin is a significant recalcitrant in the conversion of plant biomass to bioethanol. Cinnamyl alcohol dehydrogenase (CAD) and caffeic acid O-methyltransferase (COMT) catalyze key steps in the pathway of lignin monomer biosynthesis. Brown midrib mutants in Zea mays and Sorghum bicolor with impaired...

  10. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids.

    PubMed

    Mourtzakis, Marina; Saltin, Bengt; Graham, Terry; Pilegaard, Henriette

    2006-06-01

    During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline in pyruvate production could affect tricarboxycylic acid cycle flux as well as gluconeogenesis. To enhance our understanding of these interactions, we studied the time course of changes in substrate utilization in six men who cycled at 44+/-1% peak oxygen consumption (mean+/-SE) until exhaustion (exhaustion at 3 h 23 min+/-11 min). Femoral arterial and venous blood, blood flow measurements, and muscle samples were obtained hourly during exercise and recovery (3 h). Carbohydrate oxidation peaked at 30 min of exercise and subsequently decreased for the remainder of the exercise bout (P<0.05). PDH activity peaked at 2 h of exercise, whereas pyruvate production peaked at 1 h of exercise and was reduced (approximately 30%) thereafter, suggesting that pyruvate availability primarily accounted for reduced carbohydrate oxidation. Increased free fatty acid uptake (P<0.05) was also associated with decreasing PDH activity (P<0.05) and increased PDH kinase 4 mRNA (P<0.05) during exercise and recovery. At 1 h of exercise, pyruvate production was greatest and was closely linked to glutamate, which was the predominant amino acid taken up during exercise and recovery. Alanine and glutamine were also associated with pyruvate metabolism, and they comprised approximately 68% of total amino-acid release during exercise and recovery. Thus reduced pyruvate production was primarily associated with reduced carbohydrate oxidation, whereas the greatest production of pyruvate was related to glutamate, glutamine, and alanine metabolism in early exercise. PMID:16424076

  11. Improved Production of Propionic Acid in Propionibacterium jensenii via Combinational Overexpression of Glycerol Dehydrogenase and Malate Dehydrogenase from Klebsiella pneumoniae

    PubMed Central

    Liu, Long; Zhuge, Xin; Shin, Hyun-dong; Chen, Rachel R.; Li, Jianghua

    2015-01-01

    Microbial production of propionic acid (PA), an important chemical building block used as a preservative and chemical intermediate, has gained increasing attention for its environmental friendliness over traditional petrochemical processes. In previous studies, we constructed a shuttle vector as a useful tool for engineering Propionibacterium jensenii, a potential candidate for efficient PA synthesis. In this study, we identified the key metabolites for PA synthesis in P. jensenii by examining the influence of metabolic intermediate addition on PA synthesis with glycerol as a carbon source under anaerobic conditions. We also further improved PA production via the overexpression of the identified corresponding enzymes, namely, glycerol dehydrogenase (GDH), malate dehydrogenase (MDH), and fumarate hydratase (FUM). Compared to those in wild-type P. jensenii, the activities of these enzymes in the engineered strains were 2.91- ± 0.17- to 8.12- ± 0.37-fold higher. The transcription levels of the corresponding enzymes in the engineered strains were 2.85- ± 0.19- to 8.07- ± 0.63-fold higher than those in the wild type. The coexpression of GDH and MDH increased the PA titer from 26.95 ± 1.21 g/liter in wild-type P. jensenii to 39.43 ± 1.90 g/liter in the engineered strains. This study identified the key metabolic nodes limiting PA overproduction in P. jensenii and further improved PA titers via the coexpression of GDH and MDH, making the engineered P. jensenii strain a potential industrial producer of PA. PMID:25595755

  12. Structural and Mechanistic Studies on Klebsiella pneumoniae 2-Oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline Decarboxylase

    SciTech Connect

    French, Jarrod B.; Ealick, Steven E.

    2010-11-12

    The stereospecific oxidative degradation of uric acid to (S)-allantoin was recently shown to proceed via three enzymatic steps. The final conversion is a decarboxylation of the unstable intermediate 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and is catalyzed by OHCU decarboxylase. Here we present the structures of Klebsiella pneumoniae OHCU decarboxylase in unliganded form and with bound allantoin. These structures provide evidence that ligand binding organizes the active site residues for catalysis. Modeling of the substrate and intermediates provides additional support for this hypothesis. In addition we characterize the steady state kinetics of this enzyme and report the first OHCU decarboxylase inhibitor, allopurinol, a structural isomer of hypoxanthine. This molecule is a competitive inhibitor of K. pneumoniae OHCU decarboxylase with a K{sub i} of 30 {+-} 2 {micro}m. Circular dichroism measurements confirm structural observations that this inhibitor disrupts the necessary organization of the active site. Our structural and biochemical studies also provide further insights into the mechanism of catalysis of OHCU decarboxylation.

  13. Preferential affinity of /sup 3/H-2-oxo-quazepam for type I benzodiazepine recognition sites in the human brain

    SciTech Connect

    Corda, M.G.; Giorgi, O.; Longoni, B.; Ongini, E.; Montaldo, S.; Biggio, G.

    1988-01-01

    The hypnotic drug quazepam and its active metabolite 2-oxo-quazepam (2-oxo-quaz) are two benzodiazepines (BZ) containing a trifluoroethyl moiety on the ring nitrogen at position 1, characterized by their preferential affinity for Type I BZ recognition sites. In the present study we characterized the binding of /sup 3/H-2-oxo-quaz in discrete areas of the human brain. Saturation analysis demonstrated specific and saturable binding of /sup 3/H-2-oxo-quaz to membrane preparations from human cerebellum. Hill plot analysis of displacement curves of /sup 3/H-flunitrazepam binding by 2-oxo-quaz yielded Hill coefficients of approximately 1 in the cerebellum and significantly less than 1 in the cerebral cortex, hippocampus, caudate nucleus, thalamus and pons. Self and cross displacement curves for /sup 3/H-FNT and /sup 3/H-2-oxo-quaz binding in these brain areas indicated that 2-oxo-quaz binds with different affinities to two populations of binding sites. High affinity binding sites were more abundant in the cerebellum, cerebral cortex, hippocampus and thalamus, whereas low affinity sites were predominant in the caudate nucleus and pons. Competition studies of /sup 3/H-2-oxo-quaz and /sup 3/H-FNT using unlabelled ligands indicated that compounds which preferentially bind to Type I sites are more potent at displacing /sup 3/H-2-oxo-quaz than /sup 3/H-FNT from cerebral cortex membrane preparations. 26 references, 2 figures, 3 tables.

  14. [Effects of two UDP-glucose dehydrogenases on hyaluronic acid biotransformation].

    PubMed

    GuoI, Donghui; Han, Jian; Liu, Weifeng; Fu, Zhenzhou; Zhu, Qizhong; Tao, Yong

    2014-11-01

    We amplified genes encoding UDP-glucose dehydrogenase, ecohasB from Escherichia coli and spyhasB from Streptococcus pyogenes. Both ecohasB and spyhasB were inserted into T7 expression vector pRX2 to construct recombinant plasmids pRXEB and pRXSB, and to express in E. coli BL21(DE3). After nickel column purification of UDP-glucose dehydrogenases, the enzymes were characterized. The optimum reaction condition of spyHasB was at 30 °C and pH 10. The specific activity reached 12.2 U/mg under optimum condition. The optimum reaction condition of ecoHasB was at 30 °C and pH 9. Its specific activity reached 5.55 U/mg under optimum condition. The pmuhasA gene encoding hyaluronic acid synthase was amplified from Pasteurella multocida and ligated with ecohasB and spyhasB to construct the coexpression vectors pBPAEB and pBPASB, respectively. The co-expression vectors were transformed into E. coli BW25113. Hyaluronic acid (HA) was produced by biotransformation and the conditions were optimized. When recombinant strains were used to produce hyaluronic acid, the higher the activity of UDP-glucose dehydrogenase was, the better its stability was, and the higher the HA production could reach. Under the optimal conditions, the yields of HA produced by pBPAEB/BW25113 and pBPASB/BW25113 in shake flasks were 1.52 and 1.70 g/L, respectively, and the production increased more than 2-3 folds as previously reported. PMID:25985520

  15. Dye-linked D-amino acid dehydrogenases: biochemical characteristics and applications in biotechnology.

    PubMed

    Satomura, Takenori; Sakuraba, Haruhiko; Suye, Shin-Ichiro; Ohshima, Toshihisa

    2015-11-01

    Dye-linked D-amino acid dehydrogenases (Dye-DADHs) catalyze the dehydrogenation of free D-amino acids in the presence of an artificial electron acceptor. Although Dye-DADHs functioning in catabolism of L-alanine and as primary enzymes in electron transport chains are widely distributed in mesophilic Gram-negative bacteria, biochemical and biotechnological information on these enzymes remains scanty. This is in large part due to their instability after isolation. On the other hand, in the last decade, several novel types of Dye-DADH have been found in thermophilic bacteria and hyperthermophilic archaea, where they contribute not only to L-alanine catabolism but also to the catabolism of other amino acids, including D-arginine and L-hydroxyproline. In this minireview, we summarize recent developments in our understanding of the biochemical characteristics of Dye-DADHs and their specific application to electrochemical biosensors. PMID:26362681

  16. Dye-linked D-amino acid dehydrogenases: biochemical characteristics and applications in biotechnology.

    PubMed

    Satomura, Takenori; Sakuraba, Haruhiko; Suye, Shin-Ichiro; Ohshima, Toshihisa

    2015-11-01

    Dye-linked D-amino acid dehydrogenases (Dye-DADHs) catalyze the dehydrogenation of free D-amino acids in the presence of an artificial electron acceptor. Although Dye-DADHs functioning in catabolism of L-alanine and as primary enzymes in electron transport chains are widely distributed in mesophilic Gram-negative bacteria, biochemical and biotechnological information on these enzymes remains scanty. This is in large part due to their instability after isolation. On the other hand, in the last decade, several novel types of Dye-DADH have been found in thermophilic bacteria and hyperthermophilic archaea, where they contribute not only to L-alanine catabolism but also to the catabolism of other amino acids, including D-arginine and L-hydroxyproline. In this minireview, we summarize recent developments in our understanding of the biochemical characteristics of Dye-DADHs and their specific application to electrochemical biosensors.

  17. Chlorsulfuron modifies biosynthesis of acyl Acid substituents of sucrose esters secreted by tobacco trichomes.

    PubMed

    Kandra, L; Wagner, G J

    1990-11-01

    Sucrose esters and duvatrienediol diterpenes are principal constituents formed in and secreted outside head cells of trichomes occurring on surfaces of Nicotiana tabacum. Using trichome-bearing epidermal peels prepared from midveins of N. tabacum cv T.I. 1068 leaves, we found that chlorsulfuron reduced and modified radiolabeling of sucrose ester acyl acids derived from branched-chain amino acid metabolism. The herbicide did not effect formation and exudation of diterpenes which are products of isoprenoid metabolism. Treatment with 1.0 micromolar chlorsulfuron affected 8.5- and 6.3-fold reductions in radiolabeling of methylvaleryl and methylbutyryl groups of sucrose esters, respectively, and concomitant increases of 9- and 9.8-fold in radiolabeling of straight chain valeryl and butyryl groups, respectively. These results and others indicate that inhibition of acetolactate synthase causes an accumulation of 2-oxo-butyric acid that is utilized by enzymes common to Leu biosynthesis to form 2-oxo-valeric acid. Coenzyme A (CoA) activation of this keto acid gives rise to butyryl CoA, which is utilized to form butyryl containing sucrose esters. Alternatively, reutilization of 2-oxo-valeric acid by the same enzymes followed by CoA activation leads to valeryl containing sucrose esters. We propose that in trichome secretory cells synthase, isomerase and dehydrogenase enzymes which catalyze Leu synthesis/degredation in most tissues, convert iso-branched, anteiso-branched and straight-chain keto acids in the formation of sucrose ester acyl groups. PMID:16667871

  18. Chlorsulfuron Modifies Biosynthesis of Acyl Acid Substituents of Sucrose Esters Secreted by Tobacco Trichomes

    PubMed Central

    Kandra, Lili; Wagner, George J.

    1990-01-01

    Sucrose esters and duvatrienediol diterpenes are principal constituents formed in and secreted outside head cells of trichomes occurring on surfaces of Nicotiana tabacum. Using trichome-bearing epidermal peels prepared from midveins of N. tabacum cv T.I. 1068 leaves, we found that chlorsulfuron reduced and modified radiolabeling of sucrose ester acyl acids derived from branched-chain amino acid metabolism. The herbicide did not effect formation and exudation of diterpenes which are products of isoprenoid metabolism. Treatment with 1.0 micromolar chlorsulfuron affected 8.5- and 6.3-fold reductions in radiolabeling of methylvaleryl and methylbutyryl groups of sucrose esters, respectively, and concomitant increases of 9- and 9.8-fold in radiolabeling of straight chain valeryl and butyryl groups, respectively. These results and others indicate that inhibition of acetolactate synthase causes an accumulation of 2-oxo-butyric acid that is utilized by enzymes common to Leu biosynthesis to form 2-oxo-valeric acid. Coenzyme A (CoA) activation of this keto acid gives rise to butyryl CoA, which is utilized to form butyryl containing sucrose esters. Alternatively, reutilization of 2-oxo-valeric acid by the same enzymes followed by CoA activation leads to valeryl containing sucrose esters. We propose that in trichome secretory cells synthase, isomerase and dehydrogenase enzymes which catalyze Leu synthesis/degredation in most tissues, convert iso-branched, anteiso-branched and straight-chain keto acids in the formation of sucrose ester acyl groups. PMID:16667871

  19. Regulation of hepatic branched-chain alpha-keto acid dehydrogenase complex in rats fed a high-fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Branched-chain alpha-keto acid dehydrogenase complex (BCKDC) regulates branched-chain amino acid (BCAA) metabolism at the level of branched chain alpha-ketoacid (BCKA) catabolism. It has been demonstrated that the activity of hepatic BCKDC is markedly decreased in type 2 diabetic animal...

  20. 15-oxoeicosatetraenoic acid is a 15-hydroxyprostaglandin dehydrogenase-derived electrophilic mediator of inflammatory signaling pathways

    PubMed Central

    Snyder, Nathaniel W.; Golin-Bisello, Franca; Gao, Yang; Blair, Ian A.; Freeman, Bruce A.; Wendell, Stacy Gelhaus

    2014-01-01

    Bioactive lipids govern cellular homeostasis and pathogenic inflammatory processes. Current dogma holds that bioactive lipids, such as prostaglandins and lipoxins, are inactivated by 15-hydroxyprostaglandin dehydrogenase (15PGDH). In contrast, the present results reveal that catabolic “inactivation” of hydroxylated polyunsaturated fatty acids (PUFAs) yields electrophilic α,β-unsaturated ketone derivatives. These endogenously produced species are chemically reactive signaling mediators that induce tissue protective events. Electrophilic fatty acids diversify the proteome through post-translational alkylation of nucleophilic cysteines in key transcriptional regulatory proteins and enzymes that govern cellular metabolic and inflammatory homeostasis. 15PGDH regulates these processes as it is responsible for the formation of numerous electrophilic fatty acids including the arachidonic acid metabolite, 15-oxoeicosatetraenoic acid (15-oxoETE). Herein, the role of 15-oxoETE in regulating signaling responses is reported. In cell cultures, 15-oxoETE activates Nrf2-regulated antioxidant responses (AR) and inhibits NF-κB-mediated pro-inflammatory responses via IKKβ inhibition. Inhibition of glutathione S-transferases using ethacrynic acid incrementally increased the signaling capacity of 15-oxoETE by decreasing 15-oxoETE-GSH adduct formation. This work demonstrates that 15PGDH plays a role in the regulation of cell and tissue homeostasis via the production of electrophilic fatty acid signaling mediators. PMID:25450232

  1. Comparative studies of Acyl-CoA dehydrogenases for monomethyl branched chain substrates in amino acid metabolism.

    PubMed

    Liu, Xiaojun; Wu, Long; Deng, Guisheng; Chen, Gong; Li, Nan; Chu, Xiusheng; Li, Ding

    2013-04-01

    Short/branched chain acyl-CoA dehydrogenase (SBCAD), isovaleryl-CoA dehydrogenase (IVD), and isobutyryl-CoA dehydrogenase (IBD) are involved in metabolism of isoleucine, leucine, and valine, respectively. These three enzymes all belong to acyl-CoA dehydrogenase (ACD) family, and catalyze the dehydrogenation of monomethyl branched-chain fatty acid (mmBCFA) thioester derivatives. In the present work, the catalytic properties of rat SBCAD, IVD, and IBD, including their substrate specificity, isomerase activity, and enzyme inhibition, were comparatively studied. Our results indicated that SBCAD has its catalytic properties relatively similar to those of straight-chain acyl-CoA dehydrogenases in terms of their isomerase activity and enzyme inhibition, while IVD and IBD are different. IVD has relatively broader substrate specificity than those of the other two enzymes in accommodating various substrate analogs. The present study increased our understanding for the metabolism of monomethyl branched-chain fatty acids (mmBCFAs) and branched-chain amino acids (BCAAs), which should also be useful for selective control of a particular reaction through the design of specific inhibitors. PMID:23474214

  2. Acyl-CoA dehydrogenase drives heat adaptation by sequestering fatty acids

    PubMed Central

    Ma, Dengke K.; Li, Zhijie; Lu, Alice Y.; Sun, Fang; Chen, Sidi; Rothe, Michael; Menzel, Ralph; Sun, Fei; Horvitz, H. Robert

    2015-01-01

    Summary Cells adapt to temperature shifts by adjusting levels of lipid desaturation and membrane fluidity. This fundamental process occurs in nearly all forms of life, but its mechanism in eukaryotes is unknown. We discovered that the evolutionarily conserved C. elegans gene acdh-11 (acyl-CoA-dehydrogenase, ACDH) facilitates heat adaptation by regulating the lipid desaturase FAT-7. Human ACDH deficiency causes the most common inherited disorders of fatty acid oxidation, with syndromes that are exacerbated by hyperthermia. Heat up-regulates acdh-11 expression to decrease fat-7 expression. We solved the high-resolution crystal structure of ACDH-11 and established the molecular basis of its selective and high-affinity binding to C11/C12-chain fatty acids. ACDH-11 sequesters C11/C12-chain fatty acids and prevents these fatty acids from activating nuclear hormone receptors and driving fat-7 expression. Thus, the ACDH-11 pathway drives heat adaptation by linking temperature shifts to regulation of lipid desaturase levels and membrane fluidity via an unprecedented mode of fatty acid signaling. PMID:25981666

  3. Expression of Lactate Dehydrogenase in Aspergillus niger for L-Lactic Acid Production

    PubMed Central

    Dave, Khyati K.; Punekar, Narayan S.

    2015-01-01

    Different engineered organisms have been used to produce L-lactate. Poor yields of lactate at low pH and expensive downstream processing remain as bottlenecks. Aspergillus niger is a prolific citrate producer and a remarkably acid tolerant fungus. Neither a functional lactate dehydrogenase (LDH) from nor lactate production by A. niger is reported. Its genome was also investigated for the presence of a functional ldh. The endogenous A. niger citrate synthase promoter relevant to A. niger acidogenic metabolism was employed to drive constitutive expression of mouse lactate dehydrogenase (mldhA). An appraisal of different branches of the A. niger pyruvate node guided the choice of mldhA for heterologous expression. A high copy number transformant C12 strain, displaying highest LDH specific activity, was analyzed under different growth conditions. The C12 strain produced 7.7 g/l of extracellular L-lactate from 60 g/l of glucose, in non-neutralizing minimal media. Significantly, lactate and citrate accumulated under two different growth conditions. Already an established acidogenic platform, A. niger now promises to be a valuable host for lactate production. PMID:26683313

  4. Expression of Lactate Dehydrogenase in Aspergillus niger for L-Lactic Acid Production.

    PubMed

    Dave, Khyati K; Punekar, Narayan S

    2015-01-01

    Different engineered organisms have been used to produce L-lactate. Poor yields of lactate at low pH and expensive downstream processing remain as bottlenecks. Aspergillus niger is a prolific citrate producer and a remarkably acid tolerant fungus. Neither a functional lactate dehydrogenase (LDH) from nor lactate production by A. niger is reported. Its genome was also investigated for the presence of a functional ldh. The endogenous A. niger citrate synthase promoter relevant to A. niger acidogenic metabolism was employed to drive constitutive expression of mouse lactate dehydrogenase (mldhA). An appraisal of different branches of the A. niger pyruvate node guided the choice of mldhA for heterologous expression. A high copy number transformant C12 strain, displaying highest LDH specific activity, was analyzed under different growth conditions. The C12 strain produced 7.7 g/l of extracellular L-lactate from 60 g/l of glucose, in non-neutralizing minimal media. Significantly, lactate and citrate accumulated under two different growth conditions. Already an established acidogenic platform, A. niger now promises to be a valuable host for lactate production.

  5. Effects of low molecular-weight organic acids and dehydrogenase activity in rhizosphere sediments of mangrove plants on phytoremediation of polycyclic aromatic hydrocarbons.

    PubMed

    Wang, Yuanyuan; Fang, Ling; Lin, Li; Luan, Tiangang; Tam, Nora F Y

    2014-03-01

    This work evaluated the roles of the low-molecular-weight organic acids (LMWOAs) from root exudates and the dehydrogenase activity in the rhizosphere sediments of three mangrove plant species on the removal of mixed PAHs. The results showed that the concentrations of LMWOAs and dehydrogenase activity changed species-specifically with the levels of PAH contamination. In all plant species, the concentration of citric acid was the highest, followed by succinic acid. For these acids, succinic acid was positively related to the removal of all the PAHs except Chr. Positive correlations were also found between the removal percentages of 4-and 5-ring PAHs and all LMWOAs, except citric acid. LMWOAs enhanced dehydrogenase activity, which positively related to PAH removal percentages. These findings suggested that LMWOAs and dehydrogenase activity promoted the removal of PAHs. Among three mangrove plants, Bruguiera gymnorrhiza, the plant with the highest root biomass, dehydrogenase activity and concentrations of LMWOAs, was most efficient in removing PAHs. PMID:24287262

  6. Effects of low molecular-weight organic acids and dehydrogenase activity in rhizosphere sediments of mangrove plants on phytoremediation of polycyclic aromatic hydrocarbons.

    PubMed

    Wang, Yuanyuan; Fang, Ling; Lin, Li; Luan, Tiangang; Tam, Nora F Y

    2014-03-01

    This work evaluated the roles of the low-molecular-weight organic acids (LMWOAs) from root exudates and the dehydrogenase activity in the rhizosphere sediments of three mangrove plant species on the removal of mixed PAHs. The results showed that the concentrations of LMWOAs and dehydrogenase activity changed species-specifically with the levels of PAH contamination. In all plant species, the concentration of citric acid was the highest, followed by succinic acid. For these acids, succinic acid was positively related to the removal of all the PAHs except Chr. Positive correlations were also found between the removal percentages of 4-and 5-ring PAHs and all LMWOAs, except citric acid. LMWOAs enhanced dehydrogenase activity, which positively related to PAH removal percentages. These findings suggested that LMWOAs and dehydrogenase activity promoted the removal of PAHs. Among three mangrove plants, Bruguiera gymnorrhiza, the plant with the highest root biomass, dehydrogenase activity and concentrations of LMWOAs, was most efficient in removing PAHs.

  7. An amino acid substitution in the pyruvate dehydrogenase E1{alpha} gene, affecting mitochondrial import of the precursor protein

    SciTech Connect

    Takakubo, F.; Thorburn, D.R.; Dahl, H.H.M.

    1995-10-01

    A mutation in the mitochondrial targeting sequence was characterized in a male patient with X chromosome-linked pyruvate dehydrogenase E1{alpha} deficiency. The mutation was a base substitution of G by C at nucleotide 134 in the mitochondrial targeting sequence of the PDHA1 gene, resulting in an arginine-to-proline substitution at codon 10 (R10P). Pyruvate dehydrogenase activity in cultured skin fibroblasts was 28% of the control value, and immunoblot analysis revealed a decreased level of pyruvate dehydrogenase E1{alpha}immunoreactivity. Chimeric constructs in which the normal and mutant pyruvate dehydrogenase E1{alpha} targeting sequences were attached to the mitochondrial matrix protein ornithine transcarbamylase were synthesized in a cell free translation system, and mitochondrial import of normal and mutant proteins was compared in vitro. The results show that ornithine transcarbamylase targeted by the mutant pyruvate dehydrogenase E1{alpha} sequence was translocated into the mitochondrial matrix at a reduced rate, suggesting that defective import is responsible for the reduced pyruvate dehydrogenase level in mitochondria. The mutation was also present in an affected brother and the mildly affected mother. The clinical presentations of this X chromosome-linked disorder in affected family members are discussed. To our knowledge, this is the first report of an amino acid substitution in a mitochondrial targeting sequence resulting in a human genetic disease. 58 refs., 5 figs., 1 tab.

  8. Amplification of the IMP dehydrogenase gene in Chinese hamster cells resistant to mycophenolic acid.

    PubMed Central

    Collart, F R; Huberman, E

    1987-01-01

    The regulation of IMP dehydrogenase (IMPDH) was analyzed in Chinese hamster V79 cell variants that exhibit different degrees of resistance to the cytotoxic effect of mycophenolic acid, a specific inhibitor of IMPDH. Western blot (immunoblot) analysis with an IMPDH antiserum revealed a 14- to 27-fold increase in the amount of enzyme in the mycophenolic acid-resistant cells. The antiserum was also used to screen for a phage containing the IMPDH cDNA sequence from a lambda gt11 expression library. Northern blot (RNA blot) analyses of total cellular and poly(A)+ RNA showed that an IMPDH cDNA probe hybridized to a 2.2-kilobase transcript, the amount of which was associated with increased resistance. Southern blotting with the probe indicated an amplification of the IMPDH gene in the mycophenolic acid-resistant cells. Our findings suggest that the acquired mycophenolic acid resistance of the V79 cell variants is associated with increases in the amount and activity of IMPDH and the number of IMPDH gene copies. Images PMID:2890098

  9. Selective affinity of the benzodiazepines quazepam and 2-oxo-quazepam for BZ1 binding site and demonstration of H-2-oxo-quazepam as a BZ1 selective radioligand

    SciTech Connect

    Billard, W.; Crosby, G.; Iorio, L.; Chipkin, R.; Barnett, A.

    1988-01-01

    Quazepam and 2-oxo-quazepam are novel benzodiazepines containing a trifluoroethyl substituent on the ring nitrogen at position number1. Detailed competition binding experiments (25 to 30 concs.) at 4/sup 0/C were undertaken with these compounds versus /sup 3/H-flunitrazepam using synaptic membranes from rat cortex or cerebellum. Unlike other benzodiazepines, both quazepam and 2-oxo-quazepam distinguished two populations of /sup 3/H-flunitrazepam binding sites in rat cortex which were present in roughly equal proportions and for which the compounds displayed a greater than 20-fold difference in affinity. In cerebellum, no such discrimination of sites was noted for 2-oxo-quazepam, but quazepam did distinguish a small, low affinity population of sites. /sup 3/H-2-oxo-quazepam was prepared and used in competition studies to substantiate the conclusion that these compounds discriminate two populations of benzodiazepine sites in rat cortex. This new radioligand was shown to specifically label BZ binding sites with high affinity in a saturable manner. The competition experiments were then conducted using /sup 3/H-2-oxo-quazepam at a radioligand concentration sufficiently low to ensure that only the higher affinity binding sites which 2-oxo-quazepam discriminates would be occupied. 15 references, 3 figures, 4 tables.

  10. Overproduction of bioactive retinoic acid in cells expressing disease-associated mutants of retinol dehydrogenase 12.

    PubMed

    Lee, Seung-Ah; Belyaeva, Olga V; Popov, Ivan K; Kedishvili, Natalia Y

    2007-12-01

    Retinol dehydrogenase 12 (RDH12) is an NADP(+)-dependent oxidoreductase that in vitro catalyzes the reduction of all-trans-retinaldehyde to all-trans-retinol or the oxidation of retinol to retinaldehyde depending on substrate and cofactor availability. Recent studies have linked the mutations in RDH12 to severe early-onset autosomal recessive retinal dystrophy. The biochemical basis of photoreceptor cell death caused by mutations in RDH12 is not clear because the physiological role of RDH12 is not yet fully understood. Here we demonstrate that, although bi-directional in vitro, in living cells, RDH12 acts exclusively as a retinaldehyde reductase, shifting the retinoid homeostasis toward the increased levels of retinol and decreased levels of bioactive retinoic acid. The retinaldehyde reductase activity of RDH12 protects the cells from retinaldehyde-induced cell death, especially at high retinaldehyde concentrations, and this protective effect correlates with the lower levels of retinoic acid in RDH12-expressing cells. Disease-associated mutants of RDH12, T49M and I51N, exhibit significant residual activity in vitro, but are unable to control retinoic acid levels in the cells because of their dramatically reduced affinity for NADPH and much lower protein expression levels. These results suggest that RDH12 acts as a regulator of retinoic acid biosynthesis and protects photoreceptors against overproduction of retinoic acid from all-trans-retinaldehyde, which diffuses into the inner segments of photoreceptors from illuminated rhodopsin. These results provide a novel insight into the mechanism of retinal degeneration associated with mutations in RDH12 and are consistent with the observation that RDH12-null mice are highly susceptible to light-induced retinal apoptosis in cone and rod photoreceptors.

  11. Crystal structure of human aldehyde dehydrogenase 1A3 complexed with NAD+ and retinoic acid

    PubMed Central

    Moretti, Andrea; Li, Jianfeng; Donini, Stefano; Sobol, Robert W.; Rizzi, Menico; Garavaglia, Silvia

    2016-01-01

    The aldehyde dehydrogenase family 1 member A3 (ALDH1A3) catalyzes the oxidation of retinal to the pleiotropic factor retinoic acid using NAD+. The level of ALDHs enzymatic activity has been used as a cancer stem cell marker and seems to correlate with tumour aggressiveness. Elevated ALDH1A3 expression in mesenchymal glioma stem cells highlights the potential of this isozyme as a prognosis marker and drug target. Here we report the first crystal structure of human ALDH1A3 complexed with NAD+ and the product all-trans retinoic acid (REA). The tetrameric ALDH1A3 folds into a three domain-based architecture highly conserved along the ALDHs family. The structural analysis revealed two different and coupled conformations for NAD+ and REA that we propose to represent two snapshots along the catalytic cycle. Indeed, the isoprenic moiety of REA points either toward the active site cysteine, or moves away adopting the product release conformation. Although ALDH1A3 shares high sequence identity with other members of the ALDH1A family, our structural analysis revealed few peculiar residues in the 1A3 isozyme active site. Our data provide information into the ALDH1As catalytic process and can be used for the structure-based design of selective inhibitors of potential medical interest. PMID:27759097

  12. Glutamate 190 is a general acid catalyst in the 6-phosphogluconate-dehydrogenase-catalyzed reaction.

    PubMed

    Karsten, W E; Chooback, L; Cook, P F

    1998-11-10

    Site-directed mutagenesis was used to change E190 of sheep liver 6-phosphogluconate dehydrogenase to A, D, H, K, Q, and R to probe its possible role as a general acid catalyst. Each of the mutant proteins was characterized with respect to the pH dependence of kinetic parameters. Mutations that eliminate a titrable group at position 190, result in pH-rate profiles with no observable pK on the basic side of the V/K6PG profile. Mutations that change the pK of the group at position 190 result in the expected pK perturbations in the V/K6PG profile. Kinetic parameters obtained at the pH optimum in the pH-rate profiles are consistent with a rate-limiting tautomerization of the 1,2-enediol of ribulose 5-phosphate consistent with the proposed role of E190. Data are also consistent with some participation of E190 in an isomerization required to form the active Michaelis complex.

  13. Abscisic acid effects on activity and expression of barley (Hordeum vulgare) plastidial glucose-6-phosphate dehydrogenase

    PubMed Central

    Cardi, Manuela; Chibani, Kamel; Cafasso, Donata; Rouhier, Nicolas; Jacquot, Jean-Pierre; Esposito, Sergio

    2011-01-01

    Total glucose-6-phosphate dehydrogenase (G6PDH) activity, protein abundance, and transcript levels of G6PDH isoforms were measured in response to exogenous abscisic acid (ABA) supply to barley (Hordeum vulgare cv Nure) hydroponic culture. Total G6PDH activity increased by 50% in roots treated for 12 h with exogenous 0.1 mM ABA. In roots, a considerable increase (35%) in plastidial P2-G6PDH transcript levels was observed during the first 3 h of ABA treatment. Similar protein variations were observed in immunoblotting analyses. In leaves, a 2-fold increase in total G6PDH activity was observed after ABA treatment, probably related to an increase in the mRNA level (increased by 50%) and amount of protein (increased by 85%) of P2-G6PDH. Together these results suggest that the plastidial P2-isoform plays an important role in ABA-treated barley plants. PMID:21464159

  14. Dehydrogenases, Acid and Alkaline Phosphatases, and Esterases for Chemotaxonomy of Selected Meloidogyne, Ditylenchus, Heterodera and Aphelenchus spp.

    PubMed Central

    Dickson, D. W.; Huisingh, D.; Sasser, J. N.

    1971-01-01

    Various taxonomically useful profiles of four dehydrogenases (lactate, malate, glucose-6-phosphate, and a-glycerophosphate) and three hydrolases (acid and alkaline phosphatase and esterase) were detected in whole nematode homogenates of Meloidogyne javanica, M. hapla, M. incognita, M. arenaria, Ditylenchus dipsaci, D. triformis, Heterodera glycines, and Aphelenchus avenae. The enzyme profiles were stable in populations cultured on several different hosts. A tentative enzymically-determined phylogeny of Meloidogyne is given. PMID:19322334

  15. Nicotinamide adenine dinucleotide-dependent and nicotinamide adenine dinucleotide-independent lactate dehydrogenases in homofermentative and heterofermentative lactic acid bacteria.

    PubMed

    Doelle, H W

    1971-12-01

    Three homofermentative (Lactobacillus plantarum B38, L. plantarum B33, Pediococcus pentosaceus B30) and three heterofermentative (Leuconostoc mesenteroides 39, L. oenos B70, Lactobacillus brevis) lactic acid bacteria were examined for the presence or absence of nicotinamide adenine dinucleotide (NAD)-dependent and NAD-independent d- and l-lactate dehydrogenases. Two of the six strains investigated, P. pentosaceus and L. oenos, did not exhibit an NAD-independent enzyme activity capable of reducing dichlorophenol indophenol. The pH optima of the lactic dehydrogenases were determined. The NAD-dependent enzymes from homofermentative strains exhibited optima at pH 7.8 to 8.8, whereas values from 9.0 to 10.0 were noted for these enzymes from heterofermentative organisms. The optima for the NAD-independent enzymes were between 5.8 and 6.6. The apparent Michaelis-Menten constants determined for both NAD and the substrates demonstrated the existence of a greater affinity for d- than l-lactic acid. A comparison of the specific NAD-dependent and NAD-independent lactate dehydrogenase activities revealed a direct correlation of the d/l ratios of these activities with the type of lactic acid produced during the growth of the organism.

  16. Activity of soil dehydrogenases, urease, and acid and alkaline phosphatases in soil polluted with petroleum.

    PubMed

    Wyszkowska, Jadwiga; Wyszkowski, Mirosław

    2010-01-01

    This study was undertaken to (1) determine the effects of petroleum pollution on changes in the biochemical properties of soil and (2) demonstrate whether the application of compost, bentonite, and calcium oxide is likely to restore biological balance. Petroleum soil pollution at a dose ranging from 2.5 to 10 cm(3)/kg disturbed the biochemical balance as evidenced by inhibition of the activities of soil dehydrogenases (SDH), urease (URE), and acid phosphatase (ACP). The greatest change was noted in the activity of SDH, whereas the least change occurred in URE. Petroleum significantly increased the activity of soil alkaline phosphatase (ALP) in soil used for spring rape, whereas in soil used for oat harvest there was decreased ALP activity. The application of compost, bentonite, and calcium oxide to soil proved effective in mitigating the adverse effects of petroleum on the activities of soil enzymes. Soil enrichment with compost, bentonite, and calcium oxide was found to stimulate the activities of URE and ALP and inhibit the activity of ACP. The influence of bentonite and calcium oxide was greater than that of compost. Calcium oxide and, to a lesser extent, compost were found to increase the activity of SDH, whereas bentonite exerted the opposite effect, especially in the case of the main crop, spring rape. The activities of SDH, URE, and ACP were higher in soil used for rape than that for oats. In contrast the activity of ALP was higher in soil used for oats. Data thus indicate that compost and especially bentonite and calcium oxide exerted a positive effect on activities of some enzymes in soil polluted with petroleum. Application of neutralizing additives to soil restored soil biological balance by counteracting the negative influence of petroleum on activities of URE and ALP. PMID:20706945

  17. Regulation of the activity of lactate dehydrogenases from four lactic acid bacteria.

    PubMed

    Feldman-Salit, Anna; Hering, Silvio; Messiha, Hanan L; Veith, Nadine; Cojocaru, Vlad; Sieg, Antje; Westerhoff, Hans V; Kreikemeyer, Bernd; Wade, Rebecca C; Fiedler, Tomas

    2013-07-19

    Despite high similarity in sequence and catalytic properties, the l-lactate dehydrogenases (LDHs) in lactic acid bacteria (LAB) display differences in their regulation that may arise from their adaptation to different habitats. We combined experimental and computational approaches to investigate the effects of fructose 1,6-bisphosphate (FBP), phosphate (Pi), and ionic strength (NaCl concentration) on six LDHs from four LABs studied at pH 6 and pH 7. We found that 1) the extent of activation by FBP (Kact) differs. Lactobacillus plantarum LDH is not regulated by FBP, but the other LDHs are activated with increasing sensitivity in the following order: Enterococcus faecalis LDH2 ≤ Lactococcus lactis LDH2 < E. faecalis LDH1 < L. lactis LDH1 ≤ Streptococcus pyogenes LDH. This trend reflects the electrostatic properties in the allosteric binding site of the LDH enzymes. 2) For L. plantarum, S. pyogenes, and E. faecalis, the effects of Pi are distinguishable from the effect of changing ionic strength by adding NaCl. 3) Addition of Pi inhibits E. faecalis LDH2, whereas in the absence of FBP, Pi is an activator of S. pyogenes LDH, E. faecalis LDH1, and L. lactis LDH1 and LDH2 at pH 6. These effects can be interpreted by considering the computed binding affinities of Pi to the catalytic and allosteric binding sites of the enzymes modeled in protonation states corresponding to pH 6 and pH 7. Overall, the results show a subtle interplay among the effects of Pi, FBP, and pH that results in different regulatory effects on the LDHs of different LABs.

  18. Methemoglobin reduction mediated by D-amino acid dehydrogenase in Propsilocerus akamusi (Tokunaga) larvae.

    PubMed

    Kobori, Hiroki; Tanigawa, Minoru; Maeda, Shintaro; Hori, Hiroshi; Yubisui, Toshitsugu; Nagata, Yoko

    2015-06-01

    A methemoglobin (metHb) reduction system is required for aerobic respiration. In humans, Fe(III)-heme-bearing metHb (the oxidized form of hemoglobin), which cannot bind oxygen, is converted to Fe(II)-heme-bearing oxyhemoglobin (oxyHb, the reduced form), which can bind oxygen, in a system comprising NADH, NADH-cytochrome b5 reductase, and cytochrome b5. However, the mechanism of metHb reduction in organisms that inhabit oxygen-deficient environments is unknown. In the coelomic fluid of the larvae of Propsilocerus akamusi, which inhabit a microaerobic environment, we found that metHb was reduced by D-alanine. We purified an FAD-containing enzyme, D-amino acid dehydrogenase (DAD), and component V hemoglobin from the larvae. Using the purified components and spectrophotometric analyses, we showed a novel function of DAD: DAD-mediation of P. akamusi component V metHb reduction with using D-alanine as an electron donor. P. akamusi larvae possess this D-alanine-DAD metHb reduction system in addition to a previously discovered NADH-NADH-cytochrome b5 reductase system. This is the first report of the presence of DAD in a multicellular organism. The molecular mass of DAD was estimated to be 45 kDa. The optimal pH and temperature of the enzyme were 7.4 and 20 °C, respectively, and the optimal substrate was D-alanine. The enzyme activity was inhibited by benzoate and sulfhydryl-binding reagents. PMID:25896287

  19. Microwave-assisted synthesis, structural elucidation and biological assessment of 2-(2-acetamidophenyl)-2-oxo-N phenyl acetamide and N-(2-(2-oxo-2(phenylamino)acetyl)phenyl)propionamide derivatives

    NASA Astrophysics Data System (ADS)

    Ghazzali, Mohamed; El-Faham, Ayman; Abdel-Megeed, Ahmed; Al-Farhan, Khalid

    2012-04-01

    A facile solid-state synthesis of 2-(2-acetamidophenyl)-2-oxo-N phenyl acetamide and N-(2-(2-oxo-2(phenylamino)acetyl)phenyl)propionamide six derivatives has been achieved by microwave promoted condensation of N-acylisatin or N-propionylisatin with various aniline derivatives. The six products were characterized by IR and NMR (H1 and C13). Only two of them, The N-[2-(4-Bromo-phenylaminooxalyl)-phenyl]-propionamide and 2-(2-Acetylamino-phenyl)-2-oxo-N-p-tolyl-acetamide molecular structures were verified by X-ray single-crystal diffraction. The Br⋯Br intermolecular interaction in the crystal structure of N-[2-(4-Bromo-phenylaminooxalyl)-phenyl]-propionamide was evaluated by DFT/B3LYP calculation. The antimicrobial activity was evaluated against eight bacterial strains and two fungal species. The N-[2-(4-Bromo-phenylaminooxalyl)-phenyl]-propionamide and 2-(2-Acetylamino-phenyl)-2-oxo-N-p-tolyl-acetamide exhibit selective high inhibitory effects against Aspergillus niger and Staphylococcus aureus, respectively.

  20. Acid-base catalysis in the chemical mechanism of inosine monophosphate dehydrogenase.

    PubMed

    Markham, G D; Bock, C L; Schalk-Hihi, C

    1999-04-01

    Inosine-5'-monophosphate dehydrogenase (IMPDH) catalyzes the K+-dependent reaction IMP + NAD + H2O --> XMP + NADH + H+ which is the rate-limiting step in guanine nucleotide biosynthesis. The catalytic mechanism of the human type-II IMPDH isozyme has been studied by measurement of the pH dependencies of the normal reaction, of the hydrolysis of 2-chloro-IMP (which yields XMP and Cl- in the absence of NAD), and of inactivation by the affinity label 6-chloro-purine-ribotide (6-Cl-PRT). The pH dependence of the IMPDH reaction shows bell-shaped profiles for kcat and the kcat/Km values for both IMP and NAD, illustrating the involvement of both acidic and basic groups in catalysis. Half-maximal kcat values occur at pH values of 7.2 and 9.8; similar pK values of 6.9 and 9.4 are seen in the kcat/Km profile for NAD. The kcat/Km profile for IMP, which binds first in the predominantly ordered kinetic mechanism, shows pK values of 8.1 and 7.3 for acidic and basic groups, respectively. None of the kinetic pK values correspond to ionizations of the free substrates and thus reflect ionization of the enzyme or enzyme-substrate complexes. The rate of inactivation by 6-Cl-PRT, which modifies the active site sulfhydryl of cysteine-331, increases with pH; the pK of 7.5 reflects the ionization of the sulfhydryl in the E.6-Cl-PRT complex. The pKs of the acids observed in the IMPDH reaction likely also reflect ionization of the cysteine-331 sulfhydryl which adds to C-2 of IMP prior to NAD reduction. The kcat and kcat/Km values for hydrolysis of 2-Cl-IMP show a pK value of 9.9 for a basic group, similar to that seen in the overall reaction, but do not exhibit the ionization of an acidic group. Surprisingly, the rates of 2-Cl-IMP hydrolysis and of inactivation by 6-Cl-PRT are not stimulated by K+, in contrast to the >100-fold K+ activation of the IMPDH reaction. Apparently the enigmatic role of K+ lies in the NAD(H)-dependent segment of the IMPDH reaction. To evaluate the importance of

  1. Characterization of the major dehydrogenase related to d-lactic acid synthesis in Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293.

    PubMed

    Li, Ling; Eom, Hyun-Ju; Park, Jung-Mi; Seo, Eunyoung; Ahn, Ji Eun; Kim, Tae-Jip; Kim, Jeong Hwan; Han, Nam Soo

    2012-10-10

    Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 is a lactic acid bacterium that converts pyruvate mainly to d-(-)-lactic acid by using d-(-)-lactate dehydrogenase (ldhD). The aim of this study was to identify the gene responsible for d-lactic acid formation in this organism and to characterize the enzyme to facilitate the production of optically pure d-lactic acid. A genomic analysis of L. mesenteroides ATCC 8293 revealed that 7 genes encode lactate-related dehydrogenase. According to transcriptomic, proteomic, and phylogenetic analyses, LEUM_1756 was the major gene responsible for the production of d-lactic acid. The LEUM_1756 gene, of 996bp and encoding 332 amino acids (36.5kDa), was cloned and overexpressed in Escherichia coli BL21(DE3) Star from an inducible pET-21a(+) vector. The enzyme was purified by Ni-NTA column chromatography and showed a specific activity of 4450U/mg, significantly higher than those of other previously reported ldhDs. The gel permeation chromatography analysis showed that the purified enzyme exists as tetramers in solution and this was the first report among lactic acid bacteria. The pH and temperature optima were pH 8.0 and 30°C, respectively, for the pyruvate reduction reaction, and pH 11.0 and 20°C, respectively, for the lactate oxidation reaction. The K(m) kinetic parameters for pyruvate and lactate were 0.58mM and 260mM, respectively. In addition, the k(cat) values for pyruvate and lactate were 2900s(-1) and 2280s(-1), respectively. The enzyme was not inhibited by Ca(2+), Co(2+), Cu(2+), Mg(2+), Mn(2+), Na(+), or urea, but was inhibited by 1mM Zn(2+) and 1mM SDS.

  2. Pistacia lentiscus Oleoresin: Virtual Screening and Identification of Masticadienonic and Isomasticadienonic Acids as Inhibitors of 11β-Hydroxysteroid Dehydrogenase 1.

    PubMed

    Vuorinen, Anna; Seibert, Julia; Papageorgiou, Vassilios P; Rollinger, Judith M; Odermatt, Alex; Schuster, Daniela; Assimopoulou, Andreana N

    2015-04-01

    In traditional medicine, the oleoresinous gum of Pistacia lentiscus var. chia, so-called mastic gum, has been used to treat multiple conditions such as coughs, sore throats, eczema, dyslipidemia, and diabetes. Mastic gum is rich in triterpenes, which have been postulated to exert antidiabetic effects and improve lipid metabolism. In fact, there is evidence of oleanonic acid, a constituent of mastic gum, acting as a peroxisome proliferator-activated receptor γ agonist, and mastic gum being antidiabetic in mice in vivo. Despite these findings, the exact antidiabetic mechanism of mastic gum remains unknown. Glucocorticoids play a key role in regulating glucose and fatty acid metabolism, and inhibition of 11β-hydroxysteroid dehydrogenase 1 that converts inactive cortisone to active cortisol has been proposed as a promising approach to combat metabolic disturbances including diabetes. In this study, a pharmacophore-based virtual screening was applied to filter a natural product database for possible 11β-hydroxysteroid dehydrogenase 1 inhibitors. The hit list analysis was especially focused on the triterpenoids present in Pistacia species. Multiple triterpenoids, such as masticadienonic acid and isomasticadienonic acid, main constituents of mastic gum, were identified. Indeed, masticadienonic acid and isomasticadienonic acid selectively inhibited 11β-hydroxysteroid dehydrogenase 1 over 11β-hydroxysteroid dehydrogenase 2 at low micromolar concentrations. These findings suggest that inhibition of 11β-hydroxysteroid dehydrogenase 1 contributes to the antidiabetic activity of mastic gum.

  3. Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase complex.

    PubMed

    Chinopoulos, Christos

    2013-08-01

    The citric acid cycle forms a major metabolic hub and as such it is involved in many disease states involving energetic imbalance. In spite of the fact that it is being branded as a "cycle", during hypoxia, when the electron transport chain does not oxidize reducing equivalents, segments of this metabolic pathway remain operational but exhibit opposing directionalities. This serves the purpose of harnessing high-energy phosphates through matrix substrate-level phosphorylation in the absence of oxidative phosphorylation. In this Mini-Review, these segments are appraised, pointing to the critical importance of the α-ketoglutarate dehydrogenase complex dictating their directionalities.

  4. Metabolic fate of unsaturated glucuronic/iduronic acids from glycosaminoglycans: molecular identification and structure determination of streptococcal isomerase and dehydrogenase.

    PubMed

    Maruyama, Yukie; Oiki, Sayoko; Takase, Ryuichi; Mikami, Bunzo; Murata, Kousaku; Hashimoto, Wataru

    2015-03-01

    Glycosaminoglycans in mammalian extracellular matrices are degraded to their constituents, unsaturated uronic (glucuronic/iduronic) acids and amino sugars, through successive reactions of bacterial polysaccharide lyase and unsaturated glucuronyl hydrolase. Genes coding for glycosaminoglycan-acting lyase, unsaturated glucuronyl hydrolase, and the phosphotransferase system are assembled into a cluster in the genome of pathogenic bacteria, such as streptococci and clostridia. Here, we studied the streptococcal metabolic pathway of unsaturated uronic acids and the structure/function relationship of its relevant isomerase and dehydrogenase. Two proteins (gbs1892 and gbs1891) of Streptococcus agalactiae strain NEM316 were overexpressed in Escherichia coli, purified, and characterized. 4-Deoxy-l-threo-5-hexosulose-uronate (Dhu) nonenzymatically generated from unsaturated uronic acids was converted to 2-keto-3-deoxy-d-gluconate via 3-deoxy-d-glycero-2,5-hexodiulosonate through successive reactions of gbs1892 isomerase (DhuI) and gbs1891 NADH-dependent reductase/dehydrogenase (DhuD). DhuI and DhuD enzymatically corresponded to 4-deoxy-l-threo-5-hexosulose-uronate ketol-isomerase (KduI) and 2-keto-3-deoxy-d-gluconate dehydrogenase (KduD), respectively, involved in pectin metabolism, although no or low sequence identity was observed between DhuI and KduI or between DhuD and KduD, respectively. Genes for DhuI and DhuD were found to be included in the streptococcal genetic cluster, whereas KduI and KduD are encoded in clostridia. Tertiary and quaternary structures of DhuI and DhuD were determined by x-ray crystallography. Distinct from KduI β-barrels, DhuI adopts an α/β/α-barrel structure as a basic scaffold similar to that of ribose 5-phosphate isomerase. The structure of DhuD is unable to accommodate the substrate/cofactor, suggesting that conformational changes are essential to trigger enzyme catalysis. This is the first report on the bacterial metabolism of

  5. Creation of a Broad-Range and Highly Stereoselective d-Amino Acid Dehydrogenase for the One-Step Synthesis of d-Amino Acids

    PubMed Central

    Vedha-Peters, Kavitha; Gunawardana, Manjula; Rozzell, J. David; Novick, Scott J.

    2008-01-01

    Using both rational and random mutagenesis, we have created the first known broad substrate range, nicotinamide cofactor dependent, and highly stereoselective d-amino acid dehydrogenase. This new enzyme is capable of producing d-amino acids via the reductive amination of the corresponding 2-keto acid with ammonia. This biocatalyst was the result of three rounds of mutagenesis and screening performed on the enzyme meso-diaminopimelate d-dehydrogenase. The first round targeted the active site of the wild-type enzyme and produced mutants that were no longer strictly dependent on the native substrate. The second and third rounds produced mutants that had an increased substrate range including straight- and branched-aliphatic amino acids and aromatic amino acids. The very high selectivity towards the d-enantiomer (95 to > 99% e.e) was shown to be preserved even after the addition of the five mutations found in the three rounds of mutagenesis and screening. This new enzyme could complement and improve upon current methods for d-amino acid synthesis. PMID:16910688

  6. Two shikimate dehydrogenases, VvSDH3 and VvSDH4, are involved in gallic acid biosynthesis in grapevine.

    PubMed

    Bontpart, Thibaut; Marlin, Thérèse; Vialet, Sandrine; Guiraud, Jean-Luc; Pinasseau, Lucie; Meudec, Emmanuelle; Sommerer, Nicolas; Cheynier, Véronique; Terrier, Nancy

    2016-05-01

    In plants, the shikimate pathway provides aromatic amino acids that are used to generate numerous secondary metabolites, including phenolic compounds. In this pathway, shikimate dehydrogenases (SDH) 'classically' catalyse the reversible dehydrogenation of 3-dehydroshikimate to shikimate. The capacity of SDH to produce gallic acid from shikimate pathway metabolites has not been studied in depth. In grapevine berries, gallic acid mainly accumulates as galloylated flavan-3-ols. The four grapevine SDH proteins have been produced in Escherichia coli In vitro, VvSDH1 exhibited the highest 'classical' SDH activity. Two genes, VvSDH3 and VvSDH4, mainly expressed in immature berry tissues in which galloylated flavan-3-ols are accumulated, encoded enzymes with lower 'classical' activity but were able to produce gallic acid in vitro The over-expression of VvSDH3 in hairy-roots increased the content of aromatic amino acids and hydroxycinnamates, but had little or no effect on molecules more distant from the shikimate pathway (stilbenoids and flavan-3-ols). In parallel, the contents of gallic acid, β-glucogallin, and galloylated flavan-3-ols were increased, attesting to the influence of this gene on gallic acid metabolism. Phylogenetic analysis from dicotyledon SDHs opens the way for the examination of genes from other plants which accumulate gallic acid-based metabolites. PMID:27241494

  7. Two shikimate dehydrogenases, VvSDH3 and VvSDH4, are involved in gallic acid biosynthesis in grapevine.

    PubMed

    Bontpart, Thibaut; Marlin, Thérèse; Vialet, Sandrine; Guiraud, Jean-Luc; Pinasseau, Lucie; Meudec, Emmanuelle; Sommerer, Nicolas; Cheynier, Véronique; Terrier, Nancy

    2016-05-01

    In plants, the shikimate pathway provides aromatic amino acids that are used to generate numerous secondary metabolites, including phenolic compounds. In this pathway, shikimate dehydrogenases (SDH) 'classically' catalyse the reversible dehydrogenation of 3-dehydroshikimate to shikimate. The capacity of SDH to produce gallic acid from shikimate pathway metabolites has not been studied in depth. In grapevine berries, gallic acid mainly accumulates as galloylated flavan-3-ols. The four grapevine SDH proteins have been produced in Escherichia coli In vitro, VvSDH1 exhibited the highest 'classical' SDH activity. Two genes, VvSDH3 and VvSDH4, mainly expressed in immature berry tissues in which galloylated flavan-3-ols are accumulated, encoded enzymes with lower 'classical' activity but were able to produce gallic acid in vitro The over-expression of VvSDH3 in hairy-roots increased the content of aromatic amino acids and hydroxycinnamates, but had little or no effect on molecules more distant from the shikimate pathway (stilbenoids and flavan-3-ols). In parallel, the contents of gallic acid, β-glucogallin, and galloylated flavan-3-ols were increased, attesting to the influence of this gene on gallic acid metabolism. Phylogenetic analysis from dicotyledon SDHs opens the way for the examination of genes from other plants which accumulate gallic acid-based metabolites.

  8. Two shikimate dehydrogenases, VvSDH3 and VvSDH4, are involved in gallic acid biosynthesis in grapevine

    PubMed Central

    Bontpart, Thibaut; Marlin, Thérèse; Vialet, Sandrine; Guiraud, Jean-Luc; Pinasseau, Lucie; Meudec, Emmanuelle; Sommerer, Nicolas; Cheynier, Véronique; Terrier, Nancy

    2016-01-01

    In plants, the shikimate pathway provides aromatic amino acids that are used to generate numerous secondary metabolites, including phenolic compounds. In this pathway, shikimate dehydrogenases (SDH) ‘classically’ catalyse the reversible dehydrogenation of 3-dehydroshikimate to shikimate. The capacity of SDH to produce gallic acid from shikimate pathway metabolites has not been studied in depth. In grapevine berries, gallic acid mainly accumulates as galloylated flavan-3-ols. The four grapevine SDH proteins have been produced in Escherichia coli. In vitro, VvSDH1 exhibited the highest ‘classical’ SDH activity. Two genes, VvSDH3 and VvSDH4, mainly expressed in immature berry tissues in which galloylated flavan-3-ols are accumulated, encoded enzymes with lower ‘classical’ activity but were able to produce gallic acid in vitro. The over-expression of VvSDH3 in hairy-roots increased the content of aromatic amino acids and hydroxycinnamates, but had little or no effect on molecules more distant from the shikimate pathway (stilbenoids and flavan-3-ols). In parallel, the contents of gallic acid, β-glucogallin, and galloylated flavan-3-ols were increased, attesting to the influence of this gene on gallic acid metabolism. Phylogenetic analysis from dicotyledon SDHs opens the way for the examination of genes from other plants which accumulate gallic acid-based metabolites. PMID:27241494

  9. L-Malate dehydrogenase activity in the reductive arm of the incomplete citric acid cycle of Nitrosomonas europaea.

    PubMed

    Deutch, Charles E

    2013-11-01

    The autotrophic nitrifying bacterium Nitrosomonas europaea does not synthesize 2-oxoglutarate (α-ketoglutarate) dehydrogenase under aerobic conditions and so has an incomplete citric acid cycle. L-malate (S-malate) dehydrogenase (MDH) from N. europaea was predicted to show similarity to the NADP(+)-dependent enzymes from chloroplasts and was separated from the NAD(+)-dependent proteins from most other bacteria or mitochondria. MDH activity in a soluble fraction from N. europaea ATCC 19718 was measured spectrophotometrically and exhibited simple Michaelis-Menten kinetics. In the reductive direction, activity with NADH increased from pH 6.0 to 8.5 but activity with NADPH was consistently lower and decreased with pH. At pH 7.0, the K m for oxaloacetate was 20 μM; the K m for NADH was 22 μM but that for NADPH was at least 10 times higher. In the oxidative direction, activity with NAD(+) increased with pH but there was very little activity with NADP(+). At pH 7.0, the K m for L-malate was 5 mM and the K m for NAD(+) was 24 μM. The reductive activity was quite insensitive to inhibition by L-malate but the oxidative activity was very sensitive to oxaloacetate. MDH activity was not strongly activated or inhibited by glycolytic or citric acid cycle metabolites, adenine nucleotides, NaCl concentrations, or most metal ions, but increased with temperature up to about 55 °C. The reductive activity was consistently 10-20 times higher than the oxidative activity. These results indicate that the L-malate dehydrogenase in N. europaea is similar to other NAD(+)-dependent MDHs (EC 1.1.1.37) but physiologically adapted for its role in a reductive biosynthetic sequence.

  10. Uric acid substantially enhances the free radical-induced inactivation of alcohol dehydrogenase.

    PubMed

    Kittridge, K J; Willson, R L

    1984-05-01

    Lactate dehydrogenase (LDH) and yeast alcohol dehydrogenase ( YADH ) are inactivated when attacked by hydroxy free radicals (OH). Organic molecules with a high rate constant of reaction with OH such as ascorbate or urate can compete with the enzymes for these strongly oxidising radicals. However, although 10(-3)M ascorbate can substantially protect both LDH and YADH from OH attack, in the presence of 10(-3)M urate only LDH is protected. In the case of YADH an even greater degree of inactivation than with OH occurs. The extent of inactivation is considerably reduced when oxygen is absent, in agreement with a urate peroxy radical perhaps being partly responsible for the increased inactivation of the enzyme.

  11. 7alpha- and 12alpha-Hydroxysteroid dehydrogenases from Acinetobacter calcoaceticus lwoffii: a new integrated chemo-enzymatic route to ursodeoxycholic acid.

    PubMed

    Giovannini, Pier Paolo; Grandini, Alessandro; Perrone, Daniela; Pedrini, Paola; Fantin, Giancarlo; Fogagnolo, Marco

    2008-12-22

    We report the very efficient biotransformation of cholic acid to 7-keto- and 7,12-diketocholic acids with Acinetobacter calcoaceticus lwoffii. The enzymes responsible of the biotransformation (i.e. 7alpha- and 12alpha-hydroxysteroid dehydrogenases) are partially purified and employed in a new chemo-enzymatic synthesis of ursodeoxycholic acid starting from cholic acid. The first step is the 12alpha-HSDH-mediated total oxidation of sodium cholate followed by the Wolf-Kishner reduction of the carbonyl group to chenodeoxycholic acid. This acid is then quantitatively oxidized with 7alpha-HSDH to 7-ketochenodeoxycholic acid, that was chemically reduced to ursodeoxycholic acid (70% overall yield).

  12. Nuclear magnetic resonance and molecular modeling study on mycophenolic acid: implications for binding to inosine monophosphate dehydrogenase.

    PubMed

    Makara, G M; Keserû, G M; Kajtár-Peredy, M; Anderson, W K

    1996-03-15

    The conformation of the sodium salt of mycophenolic acid (MPA), a potent inhibitor of inosine monophosphate dehydrogenase (IMPD), derived from 1D DIFNOE and 2D ROESY experiments in water and molecular dynamics (MD) is described. The hexenoic acid side chain conformation consistent with the NMR data was similar to that seen in the X-ray structure of MPA. The solution conformation was applied in a molecular modeling study in order to explore the potential features of enzyme binding. Our results, based on striking similarities in molecular volume and electrostatic isopotential between MPA and cofactor NAD+, lead to the suggestion that MPA is capable of binding to the nicotinamide site of IMPD and mimicking the NAD+ inverse regulation of the enzyme. In addition, our proposed model is in good agreement with the observed high affinity of the dinucleotide analogues thiazole- and selenazole-4-carboxamide adenine dinucleotide to IMPD.

  13. Dye-linked D-amino acid dehydrogenase from the thermophilic bacterium Rhodothermus marinus JCM9785: characteristics and role in trans-4-hydroxy-L-proline catabolism.

    PubMed

    Satomura, Takenori; Ishikura, Masaru; Koyanagi, Takashi; Sakuraba, Haruhiko; Ohshima, Toshihisa; Suye, Shin-ichiro

    2015-05-01

    A gene from the thermophilic Gram-negative bacterium Rhodothermus marinus JCM9785, encoding a dye-linked D-amino acid dehydrogenase homologue, was overexpressed in Escherichia coli, and its product was purified and characterized. The expressed enzyme was a highly thermostable dye-linked D-amino acid dehydrogenase that retained more than 80% of its activity after incubation for 10 min at up to 70 °C. When enzyme-catalyzed dehydrogenation of several D-amino acids was carried out using 2,6-dichloroindophenol as the electron acceptor, D-phenylalanine was the most preferable substrate among the D-amino acids tested. Immediately upstream of the dye-linked D-amino acid dehydrogenase gene (dadh) was a gene encoding a 4-hydroxyproline 2-epimerase homologue (hypE). That gene was successfully expressed in E. coli, and the gene product exhibited strong 4-hydroxyproline 2-epimerase activity. Reverse transcription PCR and quantitative real-time PCR showed that the six genes containing the dadh and hypE genes were arranged in an operon and were required for catabolism of trans-4-hydroxy-L-proline in R. marinus. This is the first description of a dye-linked D-amino acid dehydrogenase (Dye-DADH) with broad substrate specificity involved in trans-4-hydroxy-L-proline catabolism. PMID:25472442

  14. Palladium alpha-lipoic acid complex formulation enhances activities of Krebs cycle dehydrogenases and respiratory complexes I-IV in the heart of aged rats.

    PubMed

    Sudheesh, N P; Ajith, T A; Janardhanan, K K; Krishnan, C V

    2009-08-01

    Age-related decline in the capacity to withstand stress, such as ischemia and reperfusion, results in congestive heart failure. Though the mechanisms underlying cardiac decay are not clear, age dependent somatic damages to mitochondrial DNA (mtDNA), loss of mitochondrial function, and a resultant increase in oxidative stress in heart muscle cells may be responsible for the increased risk for cardiovascular diseases. The effect of a safe nutritional supplement, POLY-MVA, containing the active ingredient palladium alpha-lipoic acid complex, was evaluated on the activities of the Krebs cycle enzymes such as isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase as well as mitochondrial complexes I, II, III, and IV in heart mitochondria of aged male albino rats of Wistar strain. Administration of 0.05 ml/kg of POLY-MVA (which is equivalent to 0.38 mg complexed alpha-lipoic acid/kg, p.o), once daily for 30 days, was significantly (p<0.05) effective to enhance the Krebs cycle dehydrogenases, and mitochondrial electron transport chain complexes. The unique electronic and redox properties of palladium alpha-lipoic acid complex appear to be a key to this physiological effectiveness. The results strongly suggest that this formulation might be effective to protect the aging associated risk of cardiovascular and neurodegenerative diseases.

  15. The Impact of the Branched-Chain Ketoacid Dehydrogenase Complex on Amino Acid Homeostasis in Arabidopsis1[OPEN

    PubMed Central

    Peng, Cheng; Uygun, Sahra; Shiu, Shin-Han; Last, Robert L.

    2015-01-01

    The branched-chain amino acids (BCAAs) Leu, Ile, and Val are among nine essential amino acids that must be obtained from the diet of humans and other animals, and can be nutritionally limiting in plant foods. Despite genetic evidence of its importance in regulating seed amino acid levels, the full BCAA catabolic network is not completely understood in plants, and limited information is available regarding its regulation. In this study, transcript coexpression analyses revealed positive correlations among BCAA catabolism genes in stress, development, diurnal/circadian, and light data sets. A core subset of BCAA catabolism genes, including those encoding putative branched-chain ketoacid dehydrogenase subunits, is highly expressed during the night in plants on a diel cycle and in prolonged darkness. Mutants defective in these subunits accumulate higher levels of BCAAs in mature seeds, providing genetic evidence for their function in BCAA catabolism. In addition, prolonged dark treatment caused the mutants to undergo senescence early and overaccumulate leaf BCAAs. These results extend the previous evidence that BCAAs can be catabolized and serve as respiratory substrates at multiple steps. Moreover, comparison of amino acid profiles between mature seeds and dark-treated leaves revealed differences in amino acid accumulation when BCAA catabolism is perturbed. Together, these results demonstrate the consequences of blocking BCAA catabolism during both normal growth conditions and under energy-limited conditions. PMID:25986129

  16. Inhibition of Pyruvate Dehydrogenase Kinase 2 Protects Against Hepatic Steatosis Through Modulation of Tricarboxylic Acid Cycle Anaplerosis and Ketogenesis.

    PubMed

    Go, Younghoon; Jeong, Ji Yun; Jeoung, Nam Ho; Jeon, Jae-Han; Park, Bo-Yoon; Kang, Hyeon-Ji; Ha, Chae-Myeong; Choi, Young-Keun; Lee, Sun Joo; Ham, Hye Jin; Kim, Byung-Gyu; Park, Keun-Gyu; Park, So Young; Lee, Chul-Ho; Choi, Cheol Soo; Park, Tae-Sik; Lee, W N Paul; Harris, Robert A; Lee, In-Kyu

    2016-10-01

    Hepatic steatosis is associated with increased insulin resistance and tricarboxylic acid (TCA) cycle flux, but decreased ketogenesis and pyruvate dehydrogenase complex (PDC) flux. This study examined whether hepatic PDC activation by inhibition of pyruvate dehydrogenase kinase 2 (PDK2) ameliorates these metabolic abnormalities. Wild-type mice fed a high-fat diet exhibited hepatic steatosis, insulin resistance, and increased levels of pyruvate, TCA cycle intermediates, and malonyl-CoA but reduced ketogenesis and PDC activity due to PDK2 induction. Hepatic PDC activation by PDK2 inhibition attenuated hepatic steatosis, improved hepatic insulin sensitivity, reduced hepatic glucose production, increased capacity for β-oxidation and ketogenesis, and decreased the capacity for lipogenesis. These results were attributed to altered enzymatic capacities and a reduction in TCA anaplerosis that limited the availability of oxaloacetate for the TCA cycle, which promoted ketogenesis. The current study reports that increasing hepatic PDC activity by inhibition of PDK2 ameliorates hepatic steatosis and insulin sensitivity by regulating TCA cycle anaplerosis and ketogenesis. The findings suggest PDK2 is a potential therapeutic target for nonalcoholic fatty liver disease.

  17. Cloning, Baeyer-Villiger Biooxidations, and Structures of the Camphor Pathway 2-Oxo-Δ3-4,5,5-Trimethylcyclopentenylacetyl-Coenzyme A Monooxygenase of Pseudomonas putida ATCC 17453

    PubMed Central

    Leisch, Hannes; Shi, Rong; Grosse, Stephan; Morley, Krista; Bergeron, Hélène; Cygler, Miroslaw; Iwaki, Hiroaki; Hasegawa, Yoshie

    2012-01-01

    A dimeric Baeyer-Villiger monooxygenase (BVMO) catalyzing the lactonization of 2-oxo-Δ3-4,5,5-trimethylcyclopentenylacetyl-coenzyme A (CoA), a key intermediate in the metabolism of camphor by Pseudomonas putida ATCC 17453, had been initially characterized in 1983 by Ougham and coworkers (H. J. Ougham, D. G. Taylor, and P. W. Trudgill, J. Bacteriol. 153:140–152, 1983). Here we cloned and overexpressed the 2-oxo-Δ3-4,5,5-trimethylcyclopentenylacetyl-CoA monooxygenase (OTEMO) in Escherichia coli and determined its three-dimensional structure with bound flavin adenine dinucleotide (FAD) at a 1.95-Å resolution as well as with bound FAD and NADP+ at a 2.0-Å resolution. OTEMO represents the first homodimeric type 1 BVMO structure bound to FAD/NADP+. A comparison of several crystal forms of OTEMO bound to FAD and NADP+ revealed a conformational plasticity of several loop regions, some of which have been implicated in contributing to the substrate specificity profile of structurally related BVMOs. Substrate specificity studies confirmed that the 2-oxo-Δ3-4,5,5-trimethylcyclopentenylacetic acid coenzyme A ester is preferred over the free acid. However, the catalytic efficiency (kcat/Km) favors 2-n-hexyl cyclopentanone (4.3 × 105 M−1 s−1) as a substrate, although its affinity (Km = 32 μM) was lower than that of the CoA-activated substrate (Km = 18 μM). In whole-cell biotransformation experiments, OTEMO showed a unique enantiocomplementarity to the action of the prototypical cyclohexanone monooxygenase (CHMO) and appeared to be particularly useful for the oxidation of 4-substituted cyclohexanones. Overall, this work extends our understanding of the molecular structure and mechanistic complexity of the type 1 family of BVMOs and expands the catalytic repertoire of one of its original members. PMID:22267661

  18. Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats

    PubMed Central

    2016-01-01

    We investigated the effects of teneligliptin on uric acid metabolism in male Wistar rats and 3T3-L1 adipocytes. The rats were fed with a normal chow diet (NCD) or a 60% high-fat diet (HFD) with or without teneligliptin for 4 weeks. The plasma uric acid level was not significantly different between the control and teneligliptin groups under the NCD condition. However, the plasma uric acid level was significantly decreased in the HFD-fed teneligliptin treated rats compared to the HFD-fed control rats. The expression levels of xanthine dehydrogenase (Xdh) mRNA in liver and epididymal adipose tissue of NCD-fed rats were not altered by teneligliptin treatment. On the other hand, Xdh expression was reduced significantly in the epididymal adipose tissue of the HFD-fed teneligliptin treated rats compared with that of HFD-fed control rats, whereas Xdh expression in liver did not change significantly in either group. Furthermore, teneligliptin significantly decreased Xdh expression in 3T3-L1 adipocytes. DPP-4 treatment significantly increased Xdh expression in 3T3-L1 adipocytes. With DPP-4 pretreatment, teneligliptin significantly decreased Xdh mRNA expression compared to the DPP-4-treated 3T3-L1 adipocytes. In conclusion, our studies suggest that teneligliptin reduces uric acid levels by suppressing Xdh expression in epididymal adipose tissue of obese subjects.

  19. Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats

    PubMed Central

    2016-01-01

    We investigated the effects of teneligliptin on uric acid metabolism in male Wistar rats and 3T3-L1 adipocytes. The rats were fed with a normal chow diet (NCD) or a 60% high-fat diet (HFD) with or without teneligliptin for 4 weeks. The plasma uric acid level was not significantly different between the control and teneligliptin groups under the NCD condition. However, the plasma uric acid level was significantly decreased in the HFD-fed teneligliptin treated rats compared to the HFD-fed control rats. The expression levels of xanthine dehydrogenase (Xdh) mRNA in liver and epididymal adipose tissue of NCD-fed rats were not altered by teneligliptin treatment. On the other hand, Xdh expression was reduced significantly in the epididymal adipose tissue of the HFD-fed teneligliptin treated rats compared with that of HFD-fed control rats, whereas Xdh expression in liver did not change significantly in either group. Furthermore, teneligliptin significantly decreased Xdh expression in 3T3-L1 adipocytes. DPP-4 treatment significantly increased Xdh expression in 3T3-L1 adipocytes. With DPP-4 pretreatment, teneligliptin significantly decreased Xdh mRNA expression compared to the DPP-4-treated 3T3-L1 adipocytes. In conclusion, our studies suggest that teneligliptin reduces uric acid levels by suppressing Xdh expression in epididymal adipose tissue of obese subjects. PMID:27652270

  20. Semi-Rational Design of Geobacillus stearothermophilus L-Lactate Dehydrogenase to Access Various Chiral α-Hydroxy Acids.

    PubMed

    Aslan, Aşkın Sevinç; Birmingham, William R; Karagüler, Nevin Gül; Turner, Nicholas J; Binay, Barış

    2016-06-01

    Chiral α-hydroxy acids (AHAs) are rapidly becoming important synthetic building blocks, in particular for the production of pharmaceuticals and other fine chemicals. Chiral compounds of a variety of functionalities are now often derived using enzymes, and L-lactate dehydrogenase from the thermophilic organism Geobacillus stearothermophilus (bsLDH) has the potential to be employed for the industrial synthesis of chiral α-hydroxy acids. Despite the thorough characterization of this enzyme, generation of variants with high activity on non-natural substrates has remained difficult and therefore limits the use of bsLDH in industry. Here, we present the engineering of bsLDH using semi-rational design as a method of focusing screening in a small and smart library for novel biocatalysts. In this study, six mutant libraries were designed in an effort to expand the substrate range of bsLDH. The eight variants identified as having enhanced activity toward the selected α-keto acids belonged to the same library, which targeted two positions simultaneously. These new variants now may be useful biocatalysts for chiral synthesis of α-hydroxy acids.

  1. Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats.

    PubMed

    Moriya, Chihiro; Satoh, Hiroaki

    2016-01-01

    We investigated the effects of teneligliptin on uric acid metabolism in male Wistar rats and 3T3-L1 adipocytes. The rats were fed with a normal chow diet (NCD) or a 60% high-fat diet (HFD) with or without teneligliptin for 4 weeks. The plasma uric acid level was not significantly different between the control and teneligliptin groups under the NCD condition. However, the plasma uric acid level was significantly decreased in the HFD-fed teneligliptin treated rats compared to the HFD-fed control rats. The expression levels of xanthine dehydrogenase (Xdh) mRNA in liver and epididymal adipose tissue of NCD-fed rats were not altered by teneligliptin treatment. On the other hand, Xdh expression was reduced significantly in the epididymal adipose tissue of the HFD-fed teneligliptin treated rats compared with that of HFD-fed control rats, whereas Xdh expression in liver did not change significantly in either group. Furthermore, teneligliptin significantly decreased Xdh expression in 3T3-L1 adipocytes. DPP-4 treatment significantly increased Xdh expression in 3T3-L1 adipocytes. With DPP-4 pretreatment, teneligliptin significantly decreased Xdh mRNA expression compared to the DPP-4-treated 3T3-L1 adipocytes. In conclusion, our studies suggest that teneligliptin reduces uric acid levels by suppressing Xdh expression in epididymal adipose tissue of obese subjects. PMID:27652270

  2. Semi-Rational Design of Geobacillus stearothermophilus L-Lactate Dehydrogenase to Access Various Chiral α-Hydroxy Acids.

    PubMed

    Aslan, Aşkın Sevinç; Birmingham, William R; Karagüler, Nevin Gül; Turner, Nicholas J; Binay, Barış

    2016-06-01

    Chiral α-hydroxy acids (AHAs) are rapidly becoming important synthetic building blocks, in particular for the production of pharmaceuticals and other fine chemicals. Chiral compounds of a variety of functionalities are now often derived using enzymes, and L-lactate dehydrogenase from the thermophilic organism Geobacillus stearothermophilus (bsLDH) has the potential to be employed for the industrial synthesis of chiral α-hydroxy acids. Despite the thorough characterization of this enzyme, generation of variants with high activity on non-natural substrates has remained difficult and therefore limits the use of bsLDH in industry. Here, we present the engineering of bsLDH using semi-rational design as a method of focusing screening in a small and smart library for novel biocatalysts. In this study, six mutant libraries were designed in an effort to expand the substrate range of bsLDH. The eight variants identified as having enhanced activity toward the selected α-keto acids belonged to the same library, which targeted two positions simultaneously. These new variants now may be useful biocatalysts for chiral synthesis of α-hydroxy acids. PMID:26852025

  3. A new high phenyl lactic acid-yielding Lactobacillus plantarum IMAU10124 and a comparative analysis of lactate dehydrogenase gene.

    PubMed

    Zhang, Xiqing; Zhang, Shuli; Shi, Yan; Shen, Fadi; Wang, Haikuan

    2014-07-01

    Phenyl lactic acid (PLA) has been widely reported as a new natural antimicrobial compound. In this study, 120 Lactobacillus plantarum strains were demonstrated to produce PLA using high-performance liquid chromatography. Lactobacillus plantarum IMAU10124 was screened with a PLA yield of 0.229 g L(-1) . Compared with all previous reports, this is the highest PLA-producing lactic acid bacteria (LAB) when grown in MRS broth without any optimizing conditions. When 3.0 g L(-1) phenyl pyruvic acid (PPA) was added to the medium as substrate, PLA production reached 2.90 g L(-1) , with the highest 96.05% conversion rate. A lowest PLA-yielding L. plantarum IMAU40105 (0.043 g L(-1) ) was also screened. It was shown that the conversion from PPA to PLA by lactic dehydrogenase (LDH) is the key factor in the improvement of PLA production by LAB. Comparing the LDH gene of two strains, four amino acid mutation sites were found in this study in the LDH of L. plantarum IMAU10124.

  4. Complete amino acid sequence and characterization of the reaction mechanism of a glucosamine-induced novel alcohol dehydrogenase from Agrobacterium radiobacter (tumefaciens).

    PubMed

    Iwamoto, Ryoko; Kubota, Humie; Hosoki, Tomoko; Ikehara, Kenji; Tanaka, Mieko

    2002-02-15

    A glucosamine-induced novel alcohol dehydrogenase has been isolated from Agrobacterium radiobacter (tumefaciens) and its fundamental properties have been characterized. The enzyme catalyzes NAD-dependent dehydrogenation of aliphatic alcohols and amino alcohols. In this work, the complete amino acid sequence of the alcohol dehydrogenase was determined by PCR method using genomic DNA of A. radiobacter as template. The enzyme comprises 336 amino acids and has a molecular mass of 36 kDa. The primary structure of the enzyme demonstrates a high homology to structures of alcohol dehydrogenases from Shinorhizobium meliloti (83% identity, 90% positive) and Pseudomonas aeruginosa (65% identity, 76% positive). The two Zn(2+) ion binding sites, both the active site and another site that contributed to stabilization of the enzyme, are conserved in those enzymes. Sequences analysis of the NAD-dependent dehydrogenase family using a hypothetical phylogenetic tree indicates that these three enzymes form a new group distinct from other members of the Zn-containing long-chain alcohol dehydrogenase family. The physicochemical properties of alcohol dehydrogenase from A. radiobacter were characterized as follows. (1) Stereospecificity of the hydride transfer from ethanol to NADH was categorized as pro-R type by NMR spectra of NADH formed in the enzymatic reaction using ethanol-D(6) was used as substrate. (2) Optimal pH for all alcohols with no amino group examined was pH 8.5 (of the C(2)-C(6) alcohols, n-amyl alcohol demonstrated the highest activity). Conversely, glucosaminitol was optimally dehydrogenated at pH 10.0. (3) The rate-determining step of the dehydrogenase for ethanol is deprotonation of the enzyme-NAD-Zn-OHCH(2)CH(3) complex to enzyme-NAD-Zn-O(-)CH(2)CH(3) complex and that for glucosaminitol is H(2)O addition to enzyme-Zn-NADH complex. PMID:11831851

  5. Complete amino acid sequence and characterization of the reaction mechanism of a glucosamine-induced novel alcohol dehydrogenase from Agrobacterium radiobacter (tumefaciens).

    PubMed

    Iwamoto, Ryoko; Kubota, Humie; Hosoki, Tomoko; Ikehara, Kenji; Tanaka, Mieko

    2002-02-15

    A glucosamine-induced novel alcohol dehydrogenase has been isolated from Agrobacterium radiobacter (tumefaciens) and its fundamental properties have been characterized. The enzyme catalyzes NAD-dependent dehydrogenation of aliphatic alcohols and amino alcohols. In this work, the complete amino acid sequence of the alcohol dehydrogenase was determined by PCR method using genomic DNA of A. radiobacter as template. The enzyme comprises 336 amino acids and has a molecular mass of 36 kDa. The primary structure of the enzyme demonstrates a high homology to structures of alcohol dehydrogenases from Shinorhizobium meliloti (83% identity, 90% positive) and Pseudomonas aeruginosa (65% identity, 76% positive). The two Zn(2+) ion binding sites, both the active site and another site that contributed to stabilization of the enzyme, are conserved in those enzymes. Sequences analysis of the NAD-dependent dehydrogenase family using a hypothetical phylogenetic tree indicates that these three enzymes form a new group distinct from other members of the Zn-containing long-chain alcohol dehydrogenase family. The physicochemical properties of alcohol dehydrogenase from A. radiobacter were characterized as follows. (1) Stereospecificity of the hydride transfer from ethanol to NADH was categorized as pro-R type by NMR spectra of NADH formed in the enzymatic reaction using ethanol-D(6) was used as substrate. (2) Optimal pH for all alcohols with no amino group examined was pH 8.5 (of the C(2)-C(6) alcohols, n-amyl alcohol demonstrated the highest activity). Conversely, glucosaminitol was optimally dehydrogenated at pH 10.0. (3) The rate-determining step of the dehydrogenase for ethanol is deprotonation of the enzyme-NAD-Zn-OHCH(2)CH(3) complex to enzyme-NAD-Zn-O(-)CH(2)CH(3) complex and that for glucosaminitol is H(2)O addition to enzyme-Zn-NADH complex.

  6. A newborn lethal defect due to inactivation of retinaldehyde dehydrogenase type 3 is prevented by maternal retinoic acid treatment

    PubMed Central

    Dupé, Valérie; Matt, Nicolas; Garnier, Jean-Marie; Chambon, Pierre; Mark, Manuel; Ghyselinck, Norbert B.

    2003-01-01

    The retinoic acid (RA) signal, produced locally from vitamin A by retinaldehyde dehydrogenase (Raldh) and transduced by the nuclear receptors for retinoids (RA receptor and 9-cis-RA receptor), is indispensable for ontogenesis and homeostasis of numerous tissues. We demonstrate that Raldh3 knockout in mouse suppresses RA synthesis and causes malformations restricted to ocular and nasal regions, which are similar to those observed in vitamin A-deficient fetuses and/or in retinoid receptor mutants. Raldh3 knockout notably causes choanal atresia (CA), which is responsible for respiratory distress and death of Raldh3-null mutants at birth. CA is due to persistence of nasal fins, whose rupture normally allows the communication between nasal and oral cavities. This malformation, which is similar to isolated congenital CA in humans and may result from impaired RA-controlled down-regulation of Fgf8 expression in nasal fins, can be prevented by a simple maternal treatment with RA. PMID:14623956

  7. A role for AMPK in the inhibition of glucose-6-phosphate dehydrogenase by polyunsaturated fatty acids

    SciTech Connect

    Kohan, Alison B.; Talukdar, Indrani; Walsh, Callee M.; Salati, Lisa M.

    2009-10-09

    Both polyunsaturated fatty acids and AMPK promote energy partitioning away from energy consuming processes, such as fatty acid synthesis, towards energy generating processes, such as {beta}-oxidation. In this report, we demonstrate that arachidonic acid activates AMPK in primary rat hepatocytes, and that this effect is p38 MAPK-dependent. Activation of AMPK mimics the inhibition by arachidonic acid of the insulin-mediated induction of G6PD. Similar to intracellular signaling by arachidonic acid, AMPK decreases insulin signal transduction, increasing Ser{sup 307} phosphorylation of IRS-1 and a subsequent decrease in AKT phosphorylation. Overexpression of dominant-negative AMPK abolishes the effect of arachidonic acid on G6PD expression. These data suggest a role for AMPK in the inhibition of G6PD by polyunsaturated fatty acids.

  8. A unique enzyme of acetic acid bacteria, PQQ-dependent alcohol dehydrogenase, is also present in Frateuria aurantia.

    PubMed

    Trček, Janja; Matsushita, Kazunobu

    2013-08-01

    A membrane-bound, pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenase (ADH) was purified from Frateuria aurantia LMG 1558(T). Although F. aurantia belongs to a group of γ-Proteobacteria, the characteristics of its PQQ-ADH were similar to the enzyme characteristics of the typical high-acetic acid-resistant bacterium Gluconacetobacter europaeus from the group of α-Proteobacteria. The PQQ-dependent ADH was solubilized from the membranes and purified after anionic, cationic, and affinity chromatography with specific activity of 117 U/mg. The purified enzyme was estimated to be composed of two subunits of ca. 72 and 45 kDa, as judged by SDS-polyacrylamide gel electrophoresis. The purified enzyme had maximum activity at pH 4.5 and showed the highest substrate specificity to ethanol, isoamyl alcohol, 1-butanol, and 1-propanol. The deduced sequences of cloned genes adhA and adhB encoding subunits I and II of PQQ-ADH showed 80 % amino acid (AA) identity to AdhA and 68 % AA identity to AdhB of Ga. europaeus V3 (LMG 18494). Because of the high similarity between genes encoding subunits I and II of PQQ-ADH and its homologous genes found in a distantly related taxonomic group of acetic acid bacteria, the results suggest the possibility of horizontal gene transfer between these two groups of genera.

  9. Function of Several Critical Amino Acids in Human Pyruvate Dehydrogenase Revealed by Its Structure

    NASA Technical Reports Server (NTRS)

    Korotchkina, Lioubov G.; Ciszak, E.; Patel, M.

    2004-01-01

    Pyruvate dehydrogenase (E1), an alpha 2 beta 2 tetramer, catalyzes the oxidative decarboxylation of pyruvate and reductive acetylation of lipoyl moieties of the dihydrolipoamide acetyltransferase. The roles of beta W135, alpha P188, alpha M181, alpha H15 and alpha R349 of E1 determined by kinetic analysis were reassessed by analyzing the three-dimensional structure of human E1. The residues identified above are found to play a structural role rather than being directly involved in catalysis: beta W135 is the center residue in the hydrophobic interaction between beta and beta' subunits; alpha P188 and alpha M181 are critical for the conformation of the TPP-binding motif and interaction between alpha and beta subunits; alpha H15, is necessary for the organization of the N-terminus of alpha and alpha'; subunits and alpha R349 supports the interaction of the C-terminus of the alpha subunits with the beta subunits. Analysis of several critical E1 residues confirms the importance of residues distant from the active site for subunit interactions and enzyme function.

  10. Correlation of loss of activity of human aldehyde dehydrogenase with reaction of bromoacetophenone with glutamic acid-268 and cysteine-302 residues. Partial-sites reactivity of aldehyde dehydrogenase.

    PubMed Central

    Abriola, D P; MacKerell, A D; Pietruszko, R

    1990-01-01

    Bromoacetophenone (2-bromo-1-phenylethanone) has been characterized as an affinity reagent for human aldehyde dehydrogenase (EC 1.2.1.3) [MacKerell, MacWright & Pietruszko (1986) Biochemistry 25, 5182-5189], and has been shown to react specifically with the Glu-268 residue [Abriola, Fields, Stein, MacKerell & Pietruszko (1987) Biochemistry 26, 5679-5684] with an apparent inactivation stoichiometry of two molecules of bromoacetophenone per molecule of enzyme. The specificity of bromoacetophenone for reaction with Glu-268, however, is not absolute, owing to the extreme reactivity of this reagent. When bromo[14C]acetophenone was used to label the human cytoplasmic E1 isoenzyme radioactively and tryptic fragmentation was carried out, peptides besides that containing Glu-268 were found to have reacted with reagent. These peptides were purified by h.p.l.c. and analysed by sequencing and scintillation counting to quantify radioactive label in the material from each cycle of sequencing. Reaction of bromoacetophenone with the aldehyde dehydrogenase molecule during enzyme activity loss occurs with two residues, Glu-268 and Cys-302. The activity loss, however, appears to be proportional to incorporation of label at Glu-268. The large part of incorporation of label at Cys-302 occurs after the activity loss is essentially complete. With both Glu-268 and Cys-302, however, the incorporation of label stops after one molecule of bromoacetophenone has reacted with each residue. Reaction with other residues continues after activity loss is complete. PMID:1968743

  11. Importance of serum sialic acid and lactate dehydrogenase in diagnosis and treatment monitoring of cervical cancer patients.

    PubMed

    Patel, P S; Rawal, G N; Balar, D B

    1993-09-01

    In an attempt to establish a blood-based biochemical index for diagnosis of cervical cancer and treatment monitoring of patients suffering from the disease, serum levels of total sialic acid (TSA), lipid-bound sialic acid (LSA), and lactate dehydrogenase were estimated by highly specific spectrophotometric methods. Serum concentrations of the markers in 108 untreated cervical cancer patients were compared with the levels of the biomarkers in 125 healthy, age-matched female individuals (controls). The alterations in serum levels of the markers after radiotherapy in cervical cancer patients were also observed. The levels of all markers were significantly higher (P < 0.001) in untreated cervical cancer patients compared to the controls. TSA was found to be the most sensitive (90.74%) marker for diagnosis of cervical cancer. Combined use of the markers revealed maximum (100%) sensitivity. In comparison between early (stage I+II) and advanced (stage III+IV) malignant disease, the markers showed insignificant changes. TSA and LSA values in patients who did not respond to radiotherapy were significantly higher (P < 0.05 and P < 0.001, respectively) than those of the responders. The results suggest that combined evaluation of the markers is helpful for diagnosis as well as for treatment monitoring of cervical carcinoma patients.

  12. Brain pyruvate and 2-oxoglutarate dehydrogenase complexes are mitochondrial targets of the CoA ester of the Refsum disease marker phytanic acid.

    PubMed

    Bunik, Victoria I; Raddatz, Günter; Wanders, Ronald J A; Reiser, Georg

    2006-06-12

    Pyruvate and 2-oxoglutarate dehydrogenase complexes are strongly inhibited by phytanoyl-CoA (IC(50) approximately 10(-6)-10(-7) M). Palmitoyl-CoA is 10-fold less potent. Phytanic or palmitic acids have no inhibitory effect up to 0.3 mM. At the substrate saturation, the acyl-CoA's affect the first and second enzymatic components of the 2-oxoglutarate dehydrogenase complex, while the third component is inhibited only at a low saturation with its substrate dihydrolipoamide. Thus, key regulatory branch points of mitochondrial metabolism are targets of a cellular derivative of phytanic acid. Decreased activity of the complexes might therefore contribute to neurological symptoms upon accumulation of phytanic acid in Refsum disease.

  13. Biosynthesis of Germacrene A Carboxylic Acid in Chicory Roots. Demonstration of a Cytochrome P450 (+)-Germacrene A Hydroxylase and NADP+-Dependent Sesquiterpenoid Dehydrogenase(s) Involved in Sesquiterpene Lactone Biosynthesis

    PubMed Central

    de Kraker, Jan-Willem; Franssen, Maurice C. R.; Dalm, Marcella C. F.; de Groot, Aede; Bouwmeester, Harro J.

    2001-01-01

    Sprouts of chicory (Cichorium intybus), a vegetable grown in the dark, have a slightly bitter taste associated with the presence of guaianolides, eudesmanolides, and germacranolides. The committed step in the biosynthesis of these compounds is catalyzed by a (+)-germacrene A synthase. Formation of the lactone ring is the postulated next step in biosynthesis of the germacrene-derived sesquiterpene lactones. The present study confirms this hypothesis by isolation of enzyme activities from chicory roots that introduce a carboxylic acid function in the germacrene A isopropenyl side chain, which is necessary for lactone ring formation. (+)-Germacrene A is hydroxylated to germacra-1(10),4,11(13)-trien-12-ol by a cytochrome P450 enzyme, and is subsequently oxidized to germacra-1(10),4,11(13)-trien-12-oic acid by NADP+-dependent dehydrogenase(s). Both oxidized germacrenes were detected as their Cope-rearrangement products elema-1,3,11(13)-trien-12-ol and elema-1,3,11(13)-trien-12-oic acid, respectively. The cyclization products of germacra-1(10),4,11(13)-trien-12-ol, i.e. costol, were also observed. The (+)-germacrene A hydroxylase is inhibited by carbon monoxide (blue-light reversible), has an optimum pH at 8.0, and hydroxylates β-elemene with a modest degree of enantioselectivity. PMID:11299372

  14. Amino acid changes within antenna helix are responsible for different regulatory preferences of human glutamate dehydrogenase isozymes.

    PubMed

    Choi, Myung-Min; Kim, Eun-A; Yang, Seung-Ju; Choi, Soo Young; Cho, Sung-Woo; Huh, Jae-Wan

    2007-07-01

    Human glutamate dehydrogenase (hGDH) exists in hGDH1 (housekeeping isozyme) and in hGDH2 (nerve-specific isozyme), which differ markedly in their allosteric regulation. Because they differ in only 16 of their 505 amino acids, the regulatory preferences must arise from amino acid residues that are not common between hGDH1 and hGDH2. To our knowledge none of the mutagenesis studies on the hGDH isozymes to date have identified the amino acid residues fully responsible for the different regulatory preferences between hGDH1 and hGDH2. In this study we constructed hGDH1(hGDH2(390-448))hGDH1 (amino acid segment 390-448 of hGDH1 replaced by the corresponding hGDH2 segment) and hGDH2(hGDH1(390-448))hGDH2 (amino acid segment 390-448 of hGDH2 replaced by the corresponding hGDH1 segment) by swapping the corresponding amino acid segments in hGDH1 and hGDH2. The chimeric enzymes by reciprocal swapping resulted in double mutations in amino acid sequences at 415 and 443 residues that are not common between hGDH1 and hGDH2 and are located in the C-terminal 48-residue "antenna" helix, which is thought to be part of the regulatory domain of mammalian GDHs. Functional analyses revealed that the doubly mutated chimeric enzymes almost completely acquired most of the different regulatory preferences between hGDH1 and hGDH2 for electrophoretic mobility, heat-stability, ADP activation, palmitoyl-CoA inhibition, and l-leucine activation, except for GTP inhibition. Our results indicate that substitutions of the residues in the antenna region may be important evolutionary changes that led to the adaptation of hGDH2 to the unique metabolic needs of the nerve tissue.

  15. Radiosynthesis and preliminary PET evaluation of (18)F-labeled 2-(1-(3-fluorophenyl)-2-oxo-5-(pyrimidin-2-yl)-1,2-dihydropyridin-3-yl)benzonitrile for imaging AMPA receptors.

    PubMed

    Yuan, Gengyang; Jones, Graham B; Vasdev, Neil; Liang, Steven H

    2016-10-01

    To prompt the development of (18)F-labeled positron emission tomography (PET) tracers for the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, we have prepared (18)F-labeled 2-(1-(3-fluorophenyl)-2-oxo-5-(pyrimidin-2-yl)-1,2-dihydropyridin-3-yl)benzonitrile ([(18)F]8). The radiosynthesis was achieved by a one-pot two-step method that utilized a spirocyclic hypervalent iodine(III) mediated radiofluorination to prepare the (18)F-labeled 1-bromo-3-fluorobenzene ([(18)F]15) intermediate with K(18)F. A subsequent copper(I) iodide mediated coupling reaction was carried out with 2-(2-oxo-5-(pyrimidin-2-yl)-1,2-dihydropyridin-3-yl)benzonitrile (10) to [(18)F]8 in 10±2% uncorrected radiochemical yield relative to starting (18)F-fluoride with >99% radiochemical purity and 29.6±7.4Gbq/μmol specific activity at the time of injection. PET imaging studies with the title radiotracer in normal mice demonstrated good brain uptake (peak standardized uptake value (SUV)=2.3±0.1) and warrants further in vivo validation. PMID:27546294

  16. Crystal structure of the salt bis-(tri-ethano-lamine-κ(3) N,O,O')cobalt(II) bis-[2-(2-oxo-2,3-di-hydro-1,3-benzo-thia-zol-3-yl)acetate].

    PubMed

    Ashurov, Jamshid M; Obidova, Nodira J; Abdireymov, Hudaybergen B; Ibragimov, Bakhtiyar T

    2016-03-01

    The reaction of 2-(2-oxo-2,3-di-hydro-1,3-benzo-thia-zol-3-yl)acetic acid (NBTA) and tri-ethano-lamine (TEA) with Co(NO3)2 results in the formation of the title complex, [Co(C6H15NO3)2](C9H6NO3S)2, which is formed as a result of the association of bis-(tri-ethano-lamine)-cobalt(II) and 2-(2-oxo-2,3-di-hydro-1,3-benzo-thia-zol-3-yl)acetate units. It crystallizes in the monoclinic centrosymmetric space group P21/c, with the Co(II) ion situated on an inversion centre. In the complex cation, the Co(II) ion is octa-hedrally coordinated by two N,O,O'-tridentate TEA mol-ecules with a facial distribution and the N atoms in a trans arrangement. Two ethanol groups of each TEA mol-ecule form two five-membered chelate rings around the Co(II) ion, while the third ethanol group does not coordinate to the metal. The free and coordinating hy-droxy groups of the TEA mol-ecules are involved in hydrogen bonding with the O atoms of NBTA anions, forming an infinite two-dimensional network extending parallel to the bc plane.

  17. Radiosynthesis and preliminary PET evaluation of (18)F-labeled 2-(1-(3-fluorophenyl)-2-oxo-5-(pyrimidin-2-yl)-1,2-dihydropyridin-3-yl)benzonitrile for imaging AMPA receptors.

    PubMed

    Yuan, Gengyang; Jones, Graham B; Vasdev, Neil; Liang, Steven H

    2016-10-01

    To prompt the development of (18)F-labeled positron emission tomography (PET) tracers for the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, we have prepared (18)F-labeled 2-(1-(3-fluorophenyl)-2-oxo-5-(pyrimidin-2-yl)-1,2-dihydropyridin-3-yl)benzonitrile ([(18)F]8). The radiosynthesis was achieved by a one-pot two-step method that utilized a spirocyclic hypervalent iodine(III) mediated radiofluorination to prepare the (18)F-labeled 1-bromo-3-fluorobenzene ([(18)F]15) intermediate with K(18)F. A subsequent copper(I) iodide mediated coupling reaction was carried out with 2-(2-oxo-5-(pyrimidin-2-yl)-1,2-dihydropyridin-3-yl)benzonitrile (10) to [(18)F]8 in 10±2% uncorrected radiochemical yield relative to starting (18)F-fluoride with >99% radiochemical purity and 29.6±7.4Gbq/μmol specific activity at the time of injection. PET imaging studies with the title radiotracer in normal mice demonstrated good brain uptake (peak standardized uptake value (SUV)=2.3±0.1) and warrants further in vivo validation.

  18. Structure and Function of Plasmodium falciparum malate dehydrogenase: Role of Critical Amino Acids in C-substrate Binding Procket

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Malaria parasite thrives on anaerobic fermentation of glucose for energy. Earlier studies from our lab have demonstrated that a cytosolic malate dehydrogenase (PfMDH) with striking similarity to lactate dehydrogenase (PfLDH) might complement PfLDH function in Plasmodium falciparum. The N-terminal g...

  19. Protein engineering of alcohol dehydrogenase--1. Effects of two amino acid changes in the active site of yeast ADH-1.

    PubMed

    Murali, C; Creaser, E H

    1986-01-01

    One of the promises held out by protein engineering is the ability to alter predictably the properties of an enzyme to enable it to find new substrates or catalyse existing substrates more efficiently, such manipulations being of interest both enzymologically and, potentially, industrially. It has been postulated that in yeast alcohol dehydrogenase (YADH-1) certain amino acids such as Trp 93 and Thr 48 constrict the active site due to their bulky side chains and thus impede catalysis of molecules larger than ethanol. To study effects of enlarging the active site we have made two changes into YADH-1, replacing Trp 93 with Phe and Thr 48 with Ser. Kinetic experiments showed that this enzyme had marked increases in reaction velocity for the n-alcohols propanol, butanol, pentanol, hexanol, heptanol, octanol and cinnamyl alcohol compared to the parent, agreeing with the prediction that expanding the active site should facilitate the oxidation of larger alcohols. The substrate affinities were slightly reduced in the altered enzyme, possibly due to its having reduced hydrophobicity at Phe 93.

  20. Detection of glyceraldehyde 3-phosphate dehydrogenase messenger RNA using a peptide nucleic acid probe in paraffin-embedded archival specimens.

    PubMed

    Hiroyasu, Makoto; Akatsuka, Shinya; Shirase, Tomoyuki; Toda, Yoshinobu; Hiai, Hiroshi; Toyokuni, Shinya

    2004-04-01

    Although the human genome project has been completed, the functions of many genes remain undetermined. In situ hybridization (ISH) is a key method for identifying cells in which a given messenger RNA is transcribed. Paraffin-embedded specimens remain precious materials for research, but preservation of high-quality RNA in these specimens is not expected unless ample caution was taken during fixation. Peptide nucleic acid (PNA) is a recently developed hybrid molecule with genetic information that has high stability and high affinity to the complementary DNA or RNA. We applied a PNA probe to mRNA ISH of liver specimens obtained by autopsy and embedded in paraffin 28-48 years ago. An 18-mer PNA probe for glyceraldehyde 3-phosphate dehydrogenase was used. Staining was then analyzed in association with morphology by hematoxylin and eosin staining, and with the time between death of the patient and tissue fixation. Notably, specimens fixed with formalin and embedded in paraffin 48 years ago yielded excellent results if the time before fixation was short enough (<8 h). There was a significant inverse correlation between the intensity of ISH staining and the time before fixation. Oligonucleotide PNA probe, albeit at high cost, would increase the value of paraffin-embedded specimens in storage for use in human medical research.

  1. Isocitrate dehydrogenase 1 mutations prime the all-trans retinoic acid myeloid differentiation pathway in acute myeloid leukemia

    PubMed Central

    Boutzen, Héléna; Saland, Estelle; Larrue, Clément; de Toni, Fabienne; Gales, Lara; Castelli, Florence A.; Cathebas, Mathilde; Zaghdoudi, Sonia; Stuani, Lucille; Kaoma, Tony; Riscal, Romain; Yang, Guangli; Hirsch, Pierre; David, Marion; De Mas-Mansat, Véronique; Delabesse, Eric; Vallar, Laurent; Delhommeau, François; Jouanin, Isabelle; Ouerfelli, Ouathek; Le Cam, Laurent; Linares, Laetitia K.; Junot, Christophe; Portais, Jean-Charles; Vergez, François; Récher, Christian

    2016-01-01

    Acute myeloid leukemia (AML) is characterized by the accumulation of malignant blasts with impaired differentiation programs caused by recurrent mutations, such as the isocitrate dehydrogenase (IDH) mutations found in 15% of AML patients. These mutations result in the production of the oncometabolite (R)-2-hydroxyglutarate (2-HG), leading to a hypermethylation phenotype that dysregulates hematopoietic differentiation. In this study, we identified mutant R132H IDH1-specific gene signatures regulated by key transcription factors, particularly CEBPα, involved in myeloid differentiation and retinoid responsiveness. We show that treatment with all-trans retinoic acid (ATRA) at clinically achievable doses markedly enhanced terminal granulocytic differentiation in AML cell lines, primary patient samples, and a xenograft mouse model carrying mutant IDH1. Moreover, treatment with a cell-permeable form of 2-HG sensitized wild-type IDH1 AML cells to ATRA-induced myeloid differentiation, whereas inhibition of 2-HG production significantly reduced ATRA effects in mutant IDH1 cells. ATRA treatment specifically decreased cell viability and induced apoptosis of mutant IDH1 blasts in vitro. ATRA also reduced tumor burden of mutant IDH1 AML cells xenografted in NOD–Scid–IL2rγnull mice and markedly increased overall survival, revealing a potent antileukemic effect of ATRA in the presence of IDH1 mutation. This therapeutic strategy holds promise for this AML patient subgroup in future clinical studies. PMID:26951332

  2. Inhibition of snowshoe hare succinate dehydrogenase activity as a mechanism of deterrence for papyriferic acid in birch.

    PubMed

    Forbey, Jennifer Sorensen; Pu, Xinzhu; Xu, Dong; Kielland, Knut; Bryant, John

    2011-12-01

    The plant secondary metabolite papyriferic acid (PA) deters browsing by snowshoe hares (Lepus americanus) on the juvenile developmental stage of the Alaska paper birch (Betula neoalaskana). However, the physiological mechanism that reduces browsing remains unknown. We used pharmacological assays and molecular modeling to test the hypothesis that inhibition of succinate dehydrogenase (SDH) is a mode of action (MOA) of toxicity of PA in snowshoe hares. We tested this hypothesis by measuring the effect of PA on the activity of SDH in liver mitochondria isolated from wild hares. In addition, we used molecular modeling to determine the specific binding site of PA on SDH. We found that PA inhibits SDH from hares by an uncompetitive mechanism in a dose-dependent manner. Molecular modeling suggests that inhibition of SDH is a result of binding of PA at the ubiquinone binding sites in complex II. Our results provide a MOA for toxicity that may be responsible for the concentration-dependent anti-feedant effects of PA. We propose that snowshoe hares reduce the dose-dependent toxic consequences of PA by relying on efflux transporters and metabolizing enzymes that lower systemic exposure to dietary PA.

  3. Microsomal aldehyde dehydrogenase is localized to the endoplasmic reticulum via its carboxyl-terminal 35 amino acids

    PubMed Central

    1994-01-01

    Rat microsomal aldehyde dehydrogenase (msALDH) has no amino-terminal signal sequence, but instead it has a characteristic hydrophobic domain at the carboxyl terminus (Miyauchi, K., R. Masaki, S. Taketani, A. Yamamoto, A. Akayama, and Y. Tashiro. 1991. J. Biol. Chem. 266:19536- 19542). This membrane-bound enzyme is a useful model protein for studying posttranslational localization to its final destination. When expressed from cDNA in COS-1 cells, wild-type msALDH is localized exclusively in the well-developed ER. The removal of the hydrophobic domain results in the cytosolic localization of truncated proteins, thus suggesting that the portion is responsible for membrane anchoring. The last 35 amino acids of msALDH, including the hydrophobic domain, are sufficient for targeting of E. coli beta-galactosidase to the ER membrane. Further studies using chloramphenicol acetyltransferase fusion proteins suggest that two hydrophilic sequences on either side of the hydrophobic domain play an important role in ER targeting. PMID:8089174

  4. Aldehyde dehydrogenase enzyme ALDH3H1 from Arabidopsis thaliana: Identification of amino acid residues critical for cofactor specificity.

    PubMed

    Stiti, Naim; Podgórska, Karolina; Bartels, Dorothea

    2014-03-01

    The cofactor-binding site of the NAD(+)-dependent Arabidopsis thaliana aldehyde dehydrogenase ALDH3H1 was analyzed to understand structural features determining cofactor-specificity. Homology modeling and mutant analysis elucidated important amino acid residues. Glu149 occupies a central position in the cofactor-binding cleft, and its carboxylate group coordinates the 2'- and 3'-hydroxyl groups of the adenosyl ribose ring of NAD(+) and repels the 2'-phosphate moiety of NADP(+). If Glu149 is mutated to Gln, Asp, Asn or Thr the binding of NAD(+) is altered and rendered the enzyme capable of using NADP(+). This change is attributed to a weaker steric hindrance and elimination of the electrostatic repulsion force of the 2'-phosphate of NADP(+). Simultaneous mutations of Glu149 and Ile200, which is situated opposite of the cofactor binding cleft, improved the enzyme efficiency with NADP(+). The double mutant ALDH3H1Glu149Thr/Ile200Val showed a good catalysis with NADP(+). Subsequently a triple mutation was generated by replacing Val178 by Arg in order to create a "closed" cofactor binding site. The cofactor specificity was shifted even further in favor of NADP(+), as the mutant ALDH3H1E149T/V178R/I200V uses NADP(+) with almost 7-fold higher catalytic efficiency compared to NAD(+). Our experiments suggest that residues occupying positions equivalent to 149, 178 and 200 constitute a group of amino acids in the ALDH3H1 protein determining cofactor affinity.

  5. Mechanism for enhanced 5-aminolevulinic acid fluorescence in isocitrate dehydrogenase 1 mutant malignant gliomas

    PubMed Central

    Kim, Ji Young; Kim, Sung Kwon; Kim, Seung-Ki; Park, Sung-Hye; Kim, Hyeonjin; Lee, Se-Hoon; Choi, Seung Hong; Park, Sunghyouk; Park, Chul-Kee

    2015-01-01

    Fluorescence-guided surgery using 5-aminolevulinic acid (5-ALA) has become the main treatment modality in malignant gliomas. However unlike glioblastomas, there are inconsistent result about fluorescence status in WHO grade III gliomas. Here, we show that mutational status of IDH1 is linked to 5-ALA fluorescence. Using genetically engineered malignant glioma cells harboring wild type (U87MG-IDH1WT) or mutant (U87MG-IDH1R132H) IDH1, we demonstrated a lag in 5-ALA metabolism and accumulation of protoporphyrin IX (PpIX) in U87MG-IDH1R132H cells. Next, we used liquid chromatography–mass spectrometry (LC-MS) to screen for tricarboxylic acid (TCA) cycle-related metabolite changes caused by 5-ALA exposure. We observed low baseline levels of NADPH, an essential cofactor for the rate-limiting step of heme degradation, in U87MG-IDH1R132H cells. High levels of NADPH are required to metabolize excessive 5-ALA, giving a plausible reason for the temporarily enhanced 5-ALA fluorescence in mutant IDH1 cells. This hypothesis was supported by the results of metabolic screening in human malignant glioma samples. In conclusion, we have discovered a relationship between enhanced 5-ALA fluorescence and IDH1 mutations in WHO grade III gliomas. Low levels of NADPH in tumors with mutated IDH1 is responsible for the enhanced fluorescence. PMID:26008980

  6. The effect of central chemical sympathectomy on the oxygen uptake; anaerobic glycolysis and lactic acid dehydrogenase activity in the retina of white rats.

    PubMed

    Pojda, S M; Brus, R

    1976-01-01

    Male Wistar rats were injected intraventricularly with two doses of 250 mcg of 6-hydroxydopamine (6-OHDA) in two consecutive days. Two weeks later the oxygen uptake, anaerobic glycolysis and lactic acid dehydrogenase (LDH) activity in the retina were determined. The decrease of oxygen uptake (-28%), anaerobic glycolysis (-31%) and LDH activity (-12%) in rats treated with 6-OHDA in comparison to control animals was found. The possible role of the adrenergic system in regulation of the metabolism of the retina is discussed.

  7. Metabolic bypass of the tricarboxylic acid cycle during lipid mobilization in germinating oilseeds. Regulation Of nad+-dependent isocitrate dehydrogenase versus fumarase

    PubMed

    Falk; Behal; Xiang; Oliver

    1998-06-01

    Biosynthesis of sucrose from triacylglycerol requires the bypass of the CO2-evolving reactions of the tricarboxylic acid (TCA) cycle. The regulation of the TCA cycle bypass during lipid mobilization was examined. Lipid mobilization in Brassica napus was initiated shortly after imbibition of the seed and proceeded until 2 d postimbibition, as measured by in vivo [1-14C]acetate feeding to whole seedlings. The activity of NAD+-isocitrate dehydrogenase (a decarboxylative enzyme) was not detected until 2 d postimbibition. RNA-blot analysis of B. napus seedlings demonstrated that the mRNA for NAD+-isocitrate dehydrogenase was present in dry seeds and that its level increased through the 4 d of the experiment. This suggested that NAD+-isocitrate dehydrogenase activity was regulated by posttranscriptional mechanisms during early seedling development but was controlled by mRNA level after the 2nd or 3rd d. The activity of fumarase (a component of the nonbypassed section of the TCA cycle) was low but detectable in B. napus seedlings at 12 h postimbibition, coincident with germination, and increased for the next 4 d. RNA-blot analysis suggested that fumarase activity was regulated primarily by the level of its mRNA during germination and early seedling development. It is concluded that posttranscriptional regulation of NAD+-isocitrate dehydrogenase activity is one mechanism of restricting carbon flux through the decarboxylative section of the TCA cycle during lipid mobilization in germinating oilseeds.

  8. Acid-induced folding of yeast alcohol dehydrogenase under low pH conditions.

    PubMed

    Le, W P; Yan, S X; Zhang, Y X; Zhou, H M

    1996-04-01

    Under conditions of low pH, the conformational states of holo-YADH and apo-YADH were examined by protein intrinsic fluorescence, ANS fluorescence, and far-UV CD measurements. The results obtained show that a low ionic strength, with the addition of HCl, the holo- and apo- YADH denatured gradually to reach the ultimate unfolded conformation in the vicinity of pH 2.0 and 2.5, respectively. With the decrease of pH from 7.0 to 2.0, the fluorescence emission decreased markedly, with its emission maximum red-shifting from 335 to 355 nm, indicating complete exposure of the buried tryptophan residues to the solvent. The far-UV CD spectra show the loss of the arrayed secondary structure, though the acid-denatured enzyme still maintained a partially arrayed secondary structure. A further decrease in pH by increasing the concentration of HClO4 induced a cooperative folding of the denatured enzyme to a compact conformation with the properties of a molten globule, described previously by Goto et al. [Proc. Natl. Acad. Sci. USA 87, 573-577 (1990)]. More extensive studies showed that although apo-YADH and holo-YADH exhibited similar behavior, the folding cooperative ability of apo-YADH was lower than that of the holo-enzyme. From the above results, it is suggested that the zinc ion plays an important role in the proper folding of YADH and in stabilizing its native conformation.

  9. Purification and catalytic properties of L-valine dehydrogenase from Streptomyces cinnamonensis.

    PubMed Central

    Priestley, N D; Robinson, J A

    1989-01-01

    NAD+-dependent L-valine dehydrogenase was purified 180-fold from Streptomyces cinnamonensis, and to homogeneity, as judged by gel electrophoresis. The enzyme has an Mr of 88,000, and appears to be composed of subunits of Mr 41,200. The enzyme catalyses the oxidative deamination of L-valine, L-leucine, L-2-aminobutyric acid, L-norvaline and L-isoleucine, as well as the reductive amination of their 2-oxo analogues. The enzyme requires NAD+ as the only cofactor, which cannot be replaced by NADP+. The enzyme activity is significantly decreased by thiol-reactive reagents, although purine and pyrimidine bases, and nucleotides, do not affect activity. Initial-velocity and product-inhibition studies show that the reductive amination proceeds through a sequential ordered ternary-binary mechanism; NADH binds to the enzyme first, followed by 2-oxoisovalerate and NH3, and valine is released first, followed by NAD+. The Michaelis constants are as follows; L-valine, 1.3 mM; NAD+, 0.18 mM; NADH, 74 microM; 2-oxoisovalerate, 0.81 mM; and NH3, 55 mM. The pro-S hydrogen at C-4' of NADH is transferred to the substrate; the enzyme is B-stereospecific. It is proposed that the enzyme catalyses the first step of valine catabolism in this organism. Images Fig. 1. PMID:2803248

  10. Supplementation of medium with diammonium hydrogen phosphate enhanced the D-lactate dehydrogenase levels leading to increased D-lactic acid productivity.

    PubMed

    Singhvi, Mamata; Jadhav, Akanksha; Gokhale, Digambar

    2013-10-01

    The production of D-lactic acid by Lactobacillus lactis RM2-24 was investigated using modified media to increase the efficiency of the fermentation process. The results indicated that the addition of 5 g/l peptone and 1 g/l (NH4)2HPO4 enhanced D-lactic acid production by 32%, as compared to that obtained from non supplemented media, with a productivity of 3.0 g/l/h. Lactate dehydrogenase (LDH) expression profile in these different media was studied which resulted in appearance of additional LDH isoform produced by cells when they were grown in HSYE supplemented with (NH4)2HPO4. The additional LDH appears to be L-LDH contributing to production of L-lactic acid in the fermented broth. This is totally new information in the lactic acid fermentation and could be very useful to industries engaged in D-lactic acid production. PMID:23932744

  11. Supplementation of medium with diammonium hydrogen phosphate enhanced the D-lactate dehydrogenase levels leading to increased D-lactic acid productivity.

    PubMed

    Singhvi, Mamata; Jadhav, Akanksha; Gokhale, Digambar

    2013-10-01

    The production of D-lactic acid by Lactobacillus lactis RM2-24 was investigated using modified media to increase the efficiency of the fermentation process. The results indicated that the addition of 5 g/l peptone and 1 g/l (NH4)2HPO4 enhanced D-lactic acid production by 32%, as compared to that obtained from non supplemented media, with a productivity of 3.0 g/l/h. Lactate dehydrogenase (LDH) expression profile in these different media was studied which resulted in appearance of additional LDH isoform produced by cells when they were grown in HSYE supplemented with (NH4)2HPO4. The additional LDH appears to be L-LDH contributing to production of L-lactic acid in the fermented broth. This is totally new information in the lactic acid fermentation and could be very useful to industries engaged in D-lactic acid production.

  12. Mycophenolic acid inhibits inosine 5'-monophosphate dehydrogenase and suppresses production of pro-inflammatory cytokines, nitric oxide, and LDH in macrophages.

    PubMed

    Jonsson, Charlotte A; Carlsten, Hans

    2002-01-01

    Mycophenolic acid (MPA) inhibits reversibly inosine 5(')-monophosphate dehydrogenase, an enzyme involved in the de novo synthesis of guanine nucleotides. Previously, mycophenolate mofetil (MMF), the pro-drug of MPA, was shown to exert beneficial effects on the systemic lupus erythematosus (SLE)-like disease in MRLlpr/lpr mice. In this study MPA's immunomodulating effects in vitro on the murine macrophage cell line IC-21 were investigated. The cells were exposed to MPA together with lipopolysaccharide and IFN-gamma. Cytokine, NO(2)(-), and lactate dehydrogenase levels in supernatants and cell lysates were analysed as well as the proliferation of IC-21 cells. MPA exposure reduced the total levels of all molecules investigated and suppressed the proliferation. All MPA-induced effects were reversed by the addition of guanosine to the cultures. Since macrophages play a role in lupus nephritis, our results indicate that modulation of macrophages may be involved in the ameliorating effects of MMF in SLE. PMID:12381354

  13. Characterization of Yersinia enterocolitica, Y. intermedia, Y. aldovae, Y. frederiksenii, Y. kristensenii and Y. pseudotuberculosis by electrophoretic polymorphism of acid phosphatase, esterases, and glutamate and malate dehydrogenases.

    PubMed

    Goullet, P; Picard, B

    1988-02-01

    Acid phosphatase, esterases, and glutamate and malate dehydrogenases of 192 strains of Yersinia enterocolitica, Y. intermedia, Y. aldovae, Y. frederiksenii, Y. kristensenii and Y. pseudotuberculosis were analysed by horizontal polyacrylamide agarose gel electrophoresis and by isoelectrofocusing in thin-layer polyacrylamide gels. The six species were clearly separated from each other by their distinct enzyme electrophoretic polymorphism. For Y. enterocolitica, the strains of biotype 5 were differentiated from the other biotypes by the mobility of glutamate dehydrogenase. For Y. frederiksenii, six zymotypes were delineated by pI and by the mobility of the enzymes. Variation in number or mobility of esterases within each species could represent a marker for epidemiological and ecological analyses. A linear relationship was obtained between the mean genetic diversity coefficient of enzymes and the mean percentage DNA-DNA relatedness of Y. intermedia, Y. aldovae, Y. enterocolitica and Y. frederiksenii.

  14. Additive effects of clofibric acid and pyruvate dehydrogenase kinase isoenzyme 4 (PDK4) deficiency on hepatic steatosis in mice fed a high-saturated fat diet

    PubMed Central

    Hwang, Byounghoon; Wu, Pengfei; Harris, Robert A.

    2012-01-01

    SUMMARY Although improving glucose metabolism by inhibition of pyruvate dehydrogenase kinase 4 (PDK4) might prove beneficial in the treatment of type 2 diabetes or diet-induced obesity, it might induce detrimental effects by inhibiting fatty acid oxidation. PPARα agonists are often used to treat dyslipidemia in patients, especially in type 2 diabetes. Combinational treatment with a PDK4 inhibitor and PPARα agonists may prove beneficial. However, PPARα agonists may be less effective in the presence of a PDK4 inhibitor because PPARα agonists induce PDK4 expression. In the present study, the effects of clofibric acid, a PPARα agonist, on blood and liver lipids were determined in wild type and PDK4 knockout mice fed a high fat diet. As expected, treatment of wild type mice with clofibric acid resulted in less body weight gain, smaller epididymal fat pads, greater insulin sensitivity, and lower levels of serum and liver triacylglycerol. Surprisingly, rather than decreasing the effectiveness of clofibric acid, PDK4 deficiency enhanced the beneficial effects of clofibric acid on hepatic steatosis, lowered blood glucose levels, and did not prevent the positive effects of clofibric acid on serum triacylglycerols and free fatty acids. The metabolic effects of clofibric acid are therefore independent of the induction of PDK4 expression. The additive beneficial effects on hepatic steatosis may be due to induction of increased capacity for fatty acid oxidation and partial uncoupling of oxidative phosphorylation by clofibric acid and a reduction in the capacity for fatty acid synthesis by PDK4 deficiency. PMID:22429297

  15. Major Role of NAD-Dependent Lactate Dehydrogenases in the Production of l-Lactic Acid with High Optical Purity by the Thermophile Bacillus coagulans

    PubMed Central

    Wang, Limin; Cai, Yumeng; Zhu, Lingfeng; Guo, Honglian

    2014-01-01

    Bacillus coagulans 2-6 is an excellent producer of optically pure l-lactic acid. However, little is known about the mechanism of synthesis of the highly optically pure l-lactic acid produced by this strain. Three enzymes responsible for lactic acid production—NAD-dependent l-lactate dehydrogenase (l-nLDH; encoded by ldhL), NAD-dependent d-lactate dehydrogenase (d-nLDH; encoded by ldhD), and glycolate oxidase (GOX)—were systematically investigated in order to study the relationship between these enzymes and the optical purity of lactic acid. Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (a d-lactic acid producer) and Lactobacillus plantarum subsp. plantarum DSM 20174 (a dl-lactic acid producer) were also examined in this study as comparative strains, in addition to B. coagulans. The specific activities of key enzymes for lactic acid production in the three strains were characterized in vivo and in vitro, and the levels of transcription of the ldhL, ldhD, and GOX genes during fermentation were also analyzed. The catalytic activities of l-nLDH and d-nLDH were different in l-, d-, and dl-lactic acid producers. Only l-nLDH activity was detected in B. coagulans 2-6 under native conditions, and the level of transcription of ldhL in B. coagulans 2-6 was much higher than that of ldhD or the GOX gene at all growth phases. However, for the two Lactobacillus strains used in this study, ldhD transcription levels were higher than those of ldhL. The high catalytic efficiency of l-nLDH toward pyruvate and the high transcription ratios of ldhL to ldhD and ldhL to the GOX gene provide the key explanations for the high optical purity of l-lactic acid produced by B. coagulans 2-6. PMID:25217009

  16. Major Role of NAD-Dependent Lactate Dehydrogenases in the Production of l-Lactic Acid with High Optical Purity by the Thermophile Bacillus coagulans.

    PubMed

    Wang, Limin; Cai, Yumeng; Zhu, Lingfeng; Guo, Honglian; Yu, Bo

    2014-12-01

    Bacillus coagulans 2-6 is an excellent producer of optically pure l-lactic acid. However, little is known about the mechanism of synthesis of the highly optically pure l-lactic acid produced by this strain. Three enzymes responsible for lactic acid production-NAD-dependent l-lactate dehydrogenase (l-nLDH; encoded by ldhL), NAD-dependent d-lactate dehydrogenase (d-nLDH; encoded by ldhD), and glycolate oxidase (GOX)-were systematically investigated in order to study the relationship between these enzymes and the optical purity of lactic acid. Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (a d-lactic acid producer) and Lactobacillus plantarum subsp. plantarum DSM 20174 (a dl-lactic acid producer) were also examined in this study as comparative strains, in addition to B. coagulans. The specific activities of key enzymes for lactic acid production in the three strains were characterized in vivo and in vitro, and the levels of transcription of the ldhL, ldhD, and GOX genes during fermentation were also analyzed. The catalytic activities of l-nLDH and d-nLDH were different in l-, d-, and dl-lactic acid producers. Only l-nLDH activity was detected in B. coagulans 2-6 under native conditions, and the level of transcription of ldhL in B. coagulans 2-6 was much higher than that of ldhD or the GOX gene at all growth phases. However, for the two Lactobacillus strains used in this study, ldhD transcription levels were higher than those of ldhL. The high catalytic efficiency of l-nLDH toward pyruvate and the high transcription ratios of ldhL to ldhD and ldhL to the GOX gene provide the key explanations for the high optical purity of l-lactic acid produced by B. coagulans 2-6.

  17. Simultaneous determination of LSD and 2-oxo-3-hydroxy LSD in hair and urine by LC-MS/MS and its application to forensic cases.

    PubMed

    Jang, Moonhee; Kim, Jihyun; Han, Inhoi; Yang, Wonkyung

    2015-11-10

    Lysergic acid diethylamide (LSD) is administered in low dosages, which makes its detection in biological matrices a major challenge in forensic toxicology. In this study, two sensitive and reliable methods based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) were established and validated for the simultaneous determination of LSD and its metabolite, 2-oxo-3-hydroxy-LSD (O-H-LSD), in hair and urine. Target analytes in hair were extracted using methanol at 38°C for 15h and analyzed by LC-MS/MS. For urine sample preparation, liquid-liquid extraction was performed. Limits of detection (LODs) in hair were 0.25pg/mg for LSD and 0.5pg/mg for O-H-LSD. In urine, LODs were 0.01 and 0.025ng/ml for LSD and O-H-LSD, respectively. Method validation results showed good linearity and acceptable precision and accuracy. The developed methods were applied to authentic specimens from two legal cases of LSD ingestion, and allowed identification and quantification of LSD and O-H-LSD in the specimens. In the two cases, LSD concentrations in hair were 1.27 and 0.95pg/mg; O-H-LSD was detected in one case, but its concentration was below the limit of quantification. In urine samples collected from the two suspects 8 and 3h after ingestion, LSD concentrations were 0.48 and 2.70ng/ml, respectively, while O-H-LSD concentrations were 4.19 and 25.2ng/ml, respectively. These methods can be used for documenting LSD intake in clinical and forensic settings. PMID:26188861

  18. Simultaneous determination of LSD and 2-oxo-3-hydroxy LSD in hair and urine by LC-MS/MS and its application to forensic cases.

    PubMed

    Jang, Moonhee; Kim, Jihyun; Han, Inhoi; Yang, Wonkyung

    2015-11-10

    Lysergic acid diethylamide (LSD) is administered in low dosages, which makes its detection in biological matrices a major challenge in forensic toxicology. In this study, two sensitive and reliable methods based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) were established and validated for the simultaneous determination of LSD and its metabolite, 2-oxo-3-hydroxy-LSD (O-H-LSD), in hair and urine. Target analytes in hair were extracted using methanol at 38°C for 15h and analyzed by LC-MS/MS. For urine sample preparation, liquid-liquid extraction was performed. Limits of detection (LODs) in hair were 0.25pg/mg for LSD and 0.5pg/mg for O-H-LSD. In urine, LODs were 0.01 and 0.025ng/ml for LSD and O-H-LSD, respectively. Method validation results showed good linearity and acceptable precision and accuracy. The developed methods were applied to authentic specimens from two legal cases of LSD ingestion, and allowed identification and quantification of LSD and O-H-LSD in the specimens. In the two cases, LSD concentrations in hair were 1.27 and 0.95pg/mg; O-H-LSD was detected in one case, but its concentration was below the limit of quantification. In urine samples collected from the two suspects 8 and 3h after ingestion, LSD concentrations were 0.48 and 2.70ng/ml, respectively, while O-H-LSD concentrations were 4.19 and 25.2ng/ml, respectively. These methods can be used for documenting LSD intake in clinical and forensic settings.

  19. Stimulation of rat liver branched-chain alpha-keto acid dehydrogenase activity by low doses of bezafibrate.

    PubMed

    Knapik-Czajka, Malgorzata

    2013-04-01

    Multienzyme branched-chain alpha-ketoacid dehydrogenase complex (BCKDH) catalyzes the regulatory step of oxidative catabolism of indispensable branched-chain amino acids (BCAA). The activity of the BCKDH complex is regulated by a reversible phosphorylation, end-product inhibition and by changes in the gene expression of BCKDH component enzymes. It has been shown previously that a high dose of bezafibrate (an agent added to rat chow at final concentration of 0.5%) changes mRNA levels of BCKDH-related enzymes and increases dephosphorylation of the complex leading to stimulation of liver BCKDH activity and the enhanced BCAA catabolism. The aim of the present study was to determine an in vivo effect of low, clinically relevant doses of bezafibrate on BCKDH activity in rat liver. Bezafibrate was administrated for 14 days by gastric gavage to Wistar male rats (fed low-protein chow; 8% protein) at one of the following daily doses of 5, 10 and 20mg/kgb.wt. The control group was given the vehicle (0.3% methylcellulose) only. The actual BCKDH and total BCKDH activities were assayed spectrophotometrically before and after incubation with a broad-specificity phosphatase, respectively. The mRNA levels of the selected genes (BCKDH catalytic subunits and regulatory enzymes) were quantified by means of semi-quantitative RT-PCR. Current catalytic activity of BCKDH (described as BCKDH activity state - the proportion of the BCKDH complex in its active dephosphorylated form) increased by 2.1 ± 0.2, 2.3 ± 0.2 and 2.7 ± 0.2 fold (p<0.01). Changes in BCKDH activity did not correspond with changes in mRNA levels of the complex catalytic subunits. Moreover, mRNA levels of regulatory enzymes remained unaltered. Initially bezafibrate caused a transient insignificant reduction in body weight, but it had no effect on the final body weight. The highest dose of bezafibrate induced hepatomegaly. In conclusion, these data indicate that under conditions of dietary protein restriction low

  20. Overexpression of the NADP+-specific isocitrate dehydrogenase gene (icdA) in citric acid-producing Aspergillus niger WU-2223L.

    PubMed

    Kobayashi, Keiichi; Hattori, Takasumi; Hayashi, Rie; Kirimura, Kohtaro

    2014-01-01

    In the tricarboxylic acid (TCA) cycle, NADP(+)-specific isocitrate dehydrogenase (NADP(+)-ICDH) catalyzes oxidative decarboxylation of isocitric acid to form α-ketoglutaric acid with NADP(+) as a cofactor. We constructed an NADP(+)-ICDH gene (icdA)-overexpressing strain (OPI-1) using Aspergillus niger WU-2223L as a host and examined the effects of increase in NADP(+)-ICDH activity on citric acid production. Under citric acid-producing conditions with glucose as the carbon source, the amounts of citric acid produced and glucose consumed by OPI-1 for the 12-d cultivation period decreased by 18.7 and 10.5%, respectively, compared with those by WU-2223L. These results indicate that the amount of citric acid produced by A. niger can be altered with the NADP(+)-ICDH activity. Therefore, NADP(+)-ICDH is an important regulator of citric acid production in the TCA cycle of A. niger. Thus, we propose that the icdA gene is a potentially valuable tool for modulating citric acid production by metabolic engineering.

  1. JWH-018 ω-OH, a shared hydroxy metabolite of the two synthetic cannabinoids JWH-018 and AM-2201, undergoes oxidation by alcohol dehydrogenase and aldehyde dehydrogenase enzymes in vitro forming the carboxylic acid metabolite.

    PubMed

    Holm, Niels Bjerre; Noble, Carolina; Linnet, Kristian

    2016-09-30

    Synthetic cannabinoids are new psychoactive substances (NPS) acting as agonists at the cannabinoid receptors. The aminoalkylindole-type synthetic cannabinoid naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) was among the first to appear on the illicit drug market and its metabolism has been extensively investigated. The N-pentyl side chain is a major site of human cytochrome P450 (CYP)-mediated oxidative metabolism, and the ω-carboxylic acid metabolite appears to be a major in vivo human urinary metabolite. This metabolite is, however, not formed to any significant extent in human liver microsomal (HLM) incubations raising the possibility that the discrepancy is due to involvement of cytosolic enzymes. Here we demonstrate in incubations with human liver cytosol (HLC), that JWH-018 ω-OH, but not the JWH-018 parent compound, is a substrate for nicotinamide adenine dinucleotide (NAD(+))-dependent alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. The sole end-product identified in HLC was the JWH-018 ω-COOH metabolite, while trapping tests with methoxyamine proved the presence of the aldehyde intermediate. ADH/ALDH and UDP-glucuronosyl-transferases (UGT) enzymes may therefore both act on the JWH-018 ω-OH substrate. Finally, we note that for [1-(5-fluoropentyl)indol-3-yl]-naphthalen-1-yl-methanone (AM-2201), the ω-fluorinated analog of JWH-018, a high amount of JWH-018 ω-OH was formed in HLM incubated without NADPH, suggesting that the oxidative defluorination is efficiently catalyzed by non-CYP enzyme(s). The pathway presented here may therefore be especially important for N-(5-fluoropentyl) substituted synthetic cannabinoids, because the oxidative defluorination can occur even if the CYP-mediated metabolism preferentially takes place on other parts of the molecule than the N-alkyl side chain. Controlled clinical studies in humans are ultimately required to demonstrate the in vivo importance of the oxidation pathway presented here

  2. JWH-018 ω-OH, a shared hydroxy metabolite of the two synthetic cannabinoids JWH-018 and AM-2201, undergoes oxidation by alcohol dehydrogenase and aldehyde dehydrogenase enzymes in vitro forming the carboxylic acid metabolite.

    PubMed

    Holm, Niels Bjerre; Noble, Carolina; Linnet, Kristian

    2016-09-30

    Synthetic cannabinoids are new psychoactive substances (NPS) acting as agonists at the cannabinoid receptors. The aminoalkylindole-type synthetic cannabinoid naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) was among the first to appear on the illicit drug market and its metabolism has been extensively investigated. The N-pentyl side chain is a major site of human cytochrome P450 (CYP)-mediated oxidative metabolism, and the ω-carboxylic acid metabolite appears to be a major in vivo human urinary metabolite. This metabolite is, however, not formed to any significant extent in human liver microsomal (HLM) incubations raising the possibility that the discrepancy is due to involvement of cytosolic enzymes. Here we demonstrate in incubations with human liver cytosol (HLC), that JWH-018 ω-OH, but not the JWH-018 parent compound, is a substrate for nicotinamide adenine dinucleotide (NAD(+))-dependent alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. The sole end-product identified in HLC was the JWH-018 ω-COOH metabolite, while trapping tests with methoxyamine proved the presence of the aldehyde intermediate. ADH/ALDH and UDP-glucuronosyl-transferases (UGT) enzymes may therefore both act on the JWH-018 ω-OH substrate. Finally, we note that for [1-(5-fluoropentyl)indol-3-yl]-naphthalen-1-yl-methanone (AM-2201), the ω-fluorinated analog of JWH-018, a high amount of JWH-018 ω-OH was formed in HLM incubated without NADPH, suggesting that the oxidative defluorination is efficiently catalyzed by non-CYP enzyme(s). The pathway presented here may therefore be especially important for N-(5-fluoropentyl) substituted synthetic cannabinoids, because the oxidative defluorination can occur even if the CYP-mediated metabolism preferentially takes place on other parts of the molecule than the N-alkyl side chain. Controlled clinical studies in humans are ultimately required to demonstrate the in vivo importance of the oxidation pathway presented here.

  3. Identification of D-amino acid dehydrogenase as an upstream regulator of the autoinduction of a putative acyltransferase in Corynebacterium glutamicum.

    PubMed

    Lee, Jung-Hoon; Kim, Yong-Jae; Shin, Hee-Sung; Lee, Heung-Shick; Jin, Shouguang; Ha, Un-Hwan

    2016-06-01

    Expression of a putative acyltransferase encoded by NCgl- 0350 of Corynebacterium glutamicum is induced by cell-free culture fluids obtained from stationary-phase growth of both C. glutamicum and Pseudomonas aeruginosa, providing evidence for interspecies communication. Here, we further confirmed that such communication occurs by showing that acyltransferase expression is induced by culture fluid obtained from diverse Gram-negative and -positive bacterial strains, including Escherichia coli, Salmonella Typhimurium, Bacillus subtilis, Staphylococcus aureus, Mycobacterium sp. strain JC1, and Mycobacterium smegmatis. A homologous acyltransferase encoded by PA5238 of P. aeruginosa was also induced by fluids obtained from P. aeruginosa as well as other bacterial strains, as observed for NCgl0350 of C. glutamicum. Because C. glutamicum is difficult to study using molecular approaches, the homologous gene PA5238 of P. aeruginosa was used to identify PA5309 as an upstream regulator of expression. A homologous D-amino acid dehydrogenase encoded by NCgl- 2909 of C. glutamicum was cloned based on amino acid similarity to PA5309, and its role in the regulation of NCgl0350 expression was confirmed. Moreover, NCgl2909 played positive roles in growth of C. glutamicum. Thus, we identified a D-amino acid dehydrogenase as an upstream regulator of the autoinduction of a putative acyltransferase in C. glutamicum. PMID:27225460

  4. Pyruvate dehydrogenase alpha 1 as a target of omega-3 polyunsaturated fatty acids in human prostate cancer through a global phosphoproteomic analysis.

    PubMed

    Zhao, Heng; Pflug, Beth R; Lai, Xianyin; Wang, Mu

    2016-09-01

    Prostate cancer is one of the leading cancers in men. Taking dietary supplements, such as fish oil (FO), which is rich in n-3 polyunsaturated fatty acids (PUFAs), has been employed as a strategy to lower prostate cancer risk and control disease progression. In this study, we investigated the global phosphoproteomic changes induced by FO using a combination of phosphoprotein-enrichment strategy and high-resolution tandem mass spectrometry. We found that FO induces many more phosphorylation changes than oleic acid when they both are compared to control group. Quantitative comparison between untreated group and FO- or oleic acid-treated groups uncovered a number of important protein phosphorylation changes induced by n-3PUFAs. This phosphoproteomic discovery study and the follow-up Western Blot validation study elucidate that phosphorylation levels of the two regulatory serine residues in pyruvate dehydrogenase alpha 1 (PDHA1), serine-232 and serine-300, are significantly decreased upon FO treatment. As expected, increased pyruvate dehydrogenase activity was also observed. This study suggests that FO-induced phosphorylation changes in PDHA1 is more likely related to the glucose metabolism pathway, and n-3 PUFAs may have a role in controlling the balance between lipid and glucose oxidation. PMID:27357730

  5. Rationally re-designed mutation of NAD-independent l-lactate dehydrogenase: high optical resolution of racemic mandelic acid by the engineered Escherichia coli

    PubMed Central

    2012-01-01

    Background NAD-independent l-lactate dehydrogenase (l-iLDH) from Pseudomonas stutzeri SDM can potentially be used for the kinetic resolution of small aliphatic 2-hydroxycarboxylic acids. However, this enzyme showed rather low activity towards aromatic 2-hydroxycarboxylic acids. Results Val-108 of l-iLDH was changed to Ala by rationally site-directed mutagenesis. The l-iLDH mutant exhibited much higher activity than wide-type l-iLDH towards l-mandelate, an aromatic 2-hydroxycarboxylic acid. Using the engineered Escherichia coli expressing the mutant l-iLDH as a biocatalyst, 40 g·L-1 of dl-mandelic acid was converted to 20.1 g·L-1 of d-mandelic acid (enantiomeric purity higher than 99.5%) and 19.3 g·L-1 of benzoylformic acid. Conclusions A new biocatalyst with high catalytic efficiency toward an unnatural substrate was constructed by rationally re-design mutagenesis. Two building block intermediates (optically pure d-mandelic acid and benzoylformic acid) were efficiently produced by the one-pot biotransformation system. PMID:23176608

  6. 2,2'-OXO-1, 1 '-azobenzene A microbially transformed allelochemical from 2,3-Benzoxazolinone: I.

    PubMed

    Nair, M G; Whitenack, C J; Putnam, A R

    1990-02-01

    2,2'-Oxo-1,1 '-azobenzene (AZOB), a compound with strong herbicidal activity, was isolated and characterized from a soil supplemented with 2,3-benzoxazolinone (BOA). A parallel experiment with 6-methoxy-2,3-benzoxazolinone (MBOA) yielded AZOB as well as its mono-(MAZOB) and dimethoxy-(DIMAZOB) derivatives. These compounds were produced only in the presence of soil microorganisms, via possible intermediates, I and II, which may dimerize or react with the parent molecule to form the final products. In the case of MBOA, it was shown that demethoxylation precedes the oxidation step. Although BOA and 2,4-dihydroxy-1,4(2H)-benzoxazin-3-one (DIBOA) were leached out of rye residues, there were no detectable amounts of the biotransformation products in the soil. When BOA was mixed with soil and rye residue, either under field conditions or in vitro, AZOB was detected. Levels of free BOA in the soil were greatly reduced by incubation with rye residue. AZOB was more toxic to curly cress (Lepidium sativum L.) and barnyardgrass (Echinochloa crusgatti L.) than either DIBOA or BOA.

  7. (S)-3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase (FadB’) from fatty acid degradation operon of Ralstonia eutropha H16

    PubMed Central

    2014-01-01

    In this study (S)-3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase (H16_A0461/FadB’, gene ID: 4247876) from one of two active fatty acid degradation operons of Ralstonia eutropha H16 has been heterologously expressed in Escherichia coli, purified as protein possessing a His-Tag and initially characterized. FadB’ is an enzyme with two catalytic domains exhibiting a single monomeric structure and possessing a molecular weight of 86 kDa. The C-terminal part of the enzyme harbors enoyl-CoA hydratase activity and is able to convert trans-crotonyl-CoA to 3-hydroxybutyryl-CoA. The N-terminal part of FadB’ comprises an NAD+ binding site and is responsible for 3-hydroxyacyl-CoA dehydrogenase activity converting (S)-3-hydroxybutyryl-CoA to acetoacetyl-CoA. Enoyl-CoA hydratase activity was detected spectrophotometrically with trans-crotonyl-CoA. (S)-3-Hydroxyacyl-CoA dehydrogenase activity was measured in both directions with acetoacetyl-CoA and 3-hydroxybutyryl-CoA. FadB’ was found to be strictly stereospecific to (S)-3-hydroxybutyryl-CoA and to prefer NAD+. The Km value for acetoacetyl-CoA was 48 μM and Vmax 149 μmol mg−1 min−1. NADP(H) was utilized at a rate of less than 10% in comparison to activity with NAD(H). FadB’ exhibited optimal activity at pH 6–7 and the activity decreased at alkaline and acidic pH values. Acetyl-CoA, propionyl-CoA and CoA were found to have an inhibitory effect on FadB’. This study is a first report on biochemical properties of purified (S)-stereospecific 3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase with the inverted domain order from R. eutropha H16. In addition to fundamental information about FadB’ and fatty acid metabolism, FadB’ might be also interesting for biotechnological applications. PMID:25401070

  8. The two active sites in human branched-chain alpha-keto acid dehydrogenase operate independently without an obligatory alternating-site mechanism.

    PubMed

    Li, Jun; Machius, Mischa; Chuang, Jacinta L; Wynn, R Max; Chuang, David T

    2007-04-20

    A long standing controversy is whether an alternating activesite mechanism occurs during catalysis in thiamine diphosphate (ThDP)-dependent enzymes. We address this question by investigating the ThDP-dependent decarboxylase/dehydrogenase (E1b) component of the mitochondrial branched-chain alpha-keto acid dehydrogenase complex (BCKDC). Our crystal structure reveals that conformations of the two active sites in the human E1b heterotetramer harboring the reaction intermediate are identical. Acidic residues in the core of the E1b heterotetramer, which align with the proton-wire residues proposed to participate in active-site communication in the related pyruvate dehydrogenase from Bacillus stearothermophilus, are mutated. Enzyme kinetic data show that, except in a few cases because of protein misfolding, these alterations are largely without effect on overall activity of BCKDC, ruling out the requirement of a proton-relay mechanism in E1b. BCKDC overall activity is nullified at 50% phosphorylation of E1b, but it is restored to nearly half of the pre-phosphorylation level after dissociation and reconstitution of BCKDC with the same phosphorylated E1b. The results suggest that the abolition of overall activity likely results from the specific geometry of the half-phosphorylated E1b in the BCKDC assembly and not due to a disruption of the alternating active-site mechanism. Finally, we show that a mutant E1b containing only one functional active site exhibits half of the wild-type BCKDC activity, which directly argues against the obligatory communication between active sites. The above results provide evidence that the two active sites in the E1b heterotetramer operate independently during the ThDP-dependent decarboxylation reaction. PMID:17329260

  9. Yeast peroxisomal multifunctional enzyme: (3R)-hydroxyacyl-CoA dehydrogenase domains A and B are required for optimal growth on oleic acid.

    PubMed

    Qin, Y M; Marttila, M S; Haapalainen, A M; Siivari, K M; Glumoff, T; Hiltunen, J K

    1999-10-01

    The yeast peroxisomal (3R)-hydroxyacyl-CoA dehydrogenase/2-enoyl-CoA hydratase 2 (multifunctional enzyme type 2; MFE-2) has two N-terminal domains belonging to the short chain alcohol dehydrogenase/reductase superfamily. To investigate the physiological roles of these domains, here called A and B, Saccharomyces cerevisiae fox-2 cells (devoid of Sc MFE-2) were taken as a model system. Gly(16) and Gly(329) of the S. cerevisiae A and B domains, corresponding to Gly(16), which is mutated in the human MFE-2 deficiency, were mutated to serine and cloned into the yeast expression plasmid pYE352. In oleic acid medium, fox-2 cells transformed with pYE352:: ScMFE-2(aDelta) and pYE352::ScMFE-2(bDelta) grew slower than cells transformed with pYE352::ScMFE-2, whereas cells transformed with pYE352::ScMFE-2(aDeltabDelta) failed to grow. Candida tropicalis MFE-2 with a deleted hydratase 2 domain (Ct MFE- 2(h2Delta)) and mutational variants of the A and B domains (Ct MFE- 2(h2DeltaaDelta), Ct MFE- 2(h2DeltabDelta), and Ct MFE- 2(h2DeltaaDeltabDelta)) were overexpressed and characterized. All proteins were dimers with similar secondary structure elements. Both wild type domains were enzymatically active, with the B domain showing the highest activity with short chain and the A domain with medium and long chain (3R)-hydroxyacyl-CoA substrates. The data show that the dehydrogenase domains of yeast MFE-2 have different substrate specificities required to allow the yeast to propagate optimally on fatty acids as the carbon source.

  10. Homo-D-lactic acid fermentation from arabinose by redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-lactate dehydrogenase gene-deficient Lactobacillus plantarum.

    PubMed

    Okano, Kenji; Yoshida, Shogo; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2009-08-01

    Optically pure d-lactic acid fermentation from arabinose was achieved by using the Lactobacillus plantarum NCIMB 8826 strain whose l-lactate dehydrogenase gene was deficient and whose phosphoketolase gene was substituted with a heterologous transketolase gene. After 27 h of fermentation, 38.6 g/liter of d-lactic acid was produced from 50 g/liter of arabinose.

  11. Additivity of the Stabilization Effect of Single Amino Acid Substitutions in Triple Mutants of Recombinant Formate Dehydrogenase from the Soybean Glycine max.

    PubMed

    Alekseeva, A A; Kargov, I S; Kleimenov, S Yu; Savin, S S; Tishkov, V I

    2015-01-01

    Recently, we demonstrated that the amino acid substitutions Ala267Met and Ala267Met/Ile272Val (Alekseeva et al., Biochemistry, 2012), Phe290Asp, Phe290Asn and Phe290Ser (Alekseeva et al., Prot. Eng. Des. Select, 2012) in recombinant formate dehydrogenase from soya Glycine max (SoyFDH) lead to a significant (up to 30-100 times) increase in the thermal stability of the enzyme. The substitutions Phe290Asp, Phe290Asn and Phe290Ser were introduced into double mutant SoyFDH Ala267Met/Ile272Val by site-directed mutagenesis. Combinations of three substitutions did not lead to a noticeable change in the catalytic properties of the mutant enzymes. The stability of the resultant triple mutants was studied through thermal inactivation kinetics and differential scanning calorimetry. The thermal stability of the new mutant SoyFDHs was shown to be much higher than that of their precursors. The stability of the best mutant SoyFDH Ala267Met/Ile272Val/Phe290Asp turned out to be comparable to that of the most stable wild-type formate dehydrogenases from other sources. The results obtained with both methods indicate a great synergistic contribution of individual amino acid substitutions to the common stabilization effect.

  12. Conversion of L-sorbosone to L-ascorbic acid by a NADP-dependent dehydrogenase in bean and spinach leaf. [Phaseolus vulgaris L. ; Spinacia oleracea L

    SciTech Connect

    Loewus, M.W.; Bedgar, D.L.; Saito, Kazumi; Loewus, F.A. )

    1990-11-01

    An NADP-dependent dehydrogenase catalyzing the conversion of L-sorbosone to L-ascorbic acid has been isolated from Phaseolus vulgaris L. and Spinacia oleracea L. and partially purified. It is stable at {minus}20{degree}C for up to 8 months. Molecular masses, as determined by gel filtration, were 21 and 29 kilodaltons for bean and spinach enzymes, respectively. K{sub m} for sorbosone were 12 {plus minus} 2 and 18 {plus minus} 2 millimolar and for NADP{sup +}, 0.14 {plus minus} 0.05 and 1.2 {plus minus} 0.5 millimolar, for bean and spinach, respectively. Lycorine, a purported inhibitor of L-ascorbic acid biosynthesis, had no effect on the reaction.

  13. The lysine-ketoglutarate reductase-saccharopine dehydrogenase is involved in the osmo-induced synthesis of pipecolic acid in rapeseed leaf tissues.

    PubMed

    Moulin, M; Deleu, C; Larher, F; Bouchereau, A

    2006-01-01

    Higher plant responses to abiotic stresses are associated with physiological and biochemical changes triggering a number of metabolic adjustments. We focused on L-lysine catabolism, and have previously demonstrated that degradation of this amino acid is osmo-regulated at the level of lysine-ketoglutarate reductase (LKR, EC 1.5.1.8) and saccharopine dehydrogenase (SDH, EC 1.5.1.9) in Brassica napus. LKR and SDH activities are enhanced by decreasing osmotic potential and decrease when the upshock osmotic treatment is followed by a downshock osmotic one. Moreover we have shown that the B. napus LKR/SDH gene is up-regulated in osmotically-stressed tissues. The LKR/SDH activity produces alpha-aminoadipate semialdehyde which could be further converted into alpha-aminoadipate and acetyl CoA. Alternatively alpha-aminoadipate could behave as a precursor for pipecolic acid. Pipecolic acid is described as an osmoprotectant in bacteria and is co-accumulated with proline in halophytic plants. We suggest that osmo-induction of the LKR/SDH activity could be partly responsible for pipecolic acid accumulation. This proposal has been assessed in this study through pipecolic acid amounts determination in rape leaf discs subjected to various upshift and downshift osmotic treatments. Changes in pipecolic acid level actually behave as those observed for LKR and SDH activities, since it increases or decreases in rape leaf discs treated under hyper- or hypo-osmotic conditions, respectively. In addition we show that pipecolic acid level is positively correlated with the external osmotic potential as well as with the duration of the applied treatment. On the other hand pipecolic acid level is related to the availability of L-lysine and not to that of D-lysine. Collectively the results obtained demonstrate that lysine catabolism through LKR/SDH activity is involved in osmo-induced synthesis of pipecolic acid.

  14. Specific inhibition by synthetic analogs of pyruvate reveals that the pyruvate dehydrogenase reaction is essential for metabolism and viability of glioblastoma cells

    PubMed Central

    Bunik, Victoria I.; Artiukhov, Artem; Kazantsev, Alexey; Goncalves, Renata; Daloso, Danilo; Oppermann, Henry; Kulakovskaya, Elena; Lukashev, Nikolay; Fernie, Alisdair; Brand, Martin; Gaunitz, Frank

    2015-01-01

    The pyruvate dehydrogenase complex (PDHC) and its phosphorylation are considered essential for oncotransformation, but it is unclear whether cancer cells require PDHC to be functional or silenced. We used specific inhibition of PDHC by synthetic structural analogs of pyruvate to resolve this question. With isolated and intramitochondrial PDHC, acetyl phosphinate (AcPH, KiAcPH = 0.1 μM) was a much more potent competitive inhibitor than the methyl ester of acetyl phosphonate (AcPMe, KiAcPMe = 40 μM). When preincubated with the complex, AcPH also irreversibly inactivated PDHC. Pyruvate prevented, but did not reverse the inactivation. The pyruvate analogs did not significantly inhibit other 2-oxo acid dehydrogenases. Different cell lines were exposed to the inhibitors and a membrane-permeable precursor of AcPMe, dimethyl acetyl phosphonate, which did not inhibit isolated PDHC. Using an ATP-based assay, dependence of cellular viability on the concentration of the pyruvate analogs was followed. The highest toxicity of the membrane-permeable precursor suggested that the cellular action of charged AcPH and AcPMe requires monocarboxylate transporters. The relevant cell-specific transcripts extracted from Gene Expression Omnibus database indicated that cell lines with higher expression of monocarboxylate transporters and PDHC components were more sensitive to the PDHC inhibitors. Prior to a detectable antiproliferative action, AcPH significantly changed metabolic profiles of the investigated glioblastoma cell lines. We conclude that catalytic transformation of pyruvate by pyruvate dehydrogenase is essential for the metabolism and viability of glioblastoma cell lines, although metabolic heterogeneity causes different cellular sensitivities and/or abilities to cope with PDHC inhibition. PMID:26503465

  15. Three-dimensional solution structure of the E3-binding domain of the dihydrolipoamide succinyltransferase core from the 2-oxoglutarate dehydrogenase multienzyme complex of Escherichia coli.

    PubMed

    Robien, M A; Clore, G M; Omichinski, J G; Perham, R N; Appella, E; Sakaguchi, K; Gronenborn, A M

    1992-04-01

    The three-dimensional solution structure of a 51-residue synthetic peptide comprising the dihydrolipoamide dehydrogenase (E3)-binding domain of the dihydrolipoamide succinyltransferase (E2) core of the 2-oxoglutarate dehydrogenase multienzyme complex of Escherichia coli has been determined by nuclear magnetic resonance spectroscopy and hybrid distance geometry-dynamical simulated annealing calculations. The structure is based on 630 approximate interproton distance and 101 torsion angle (phi, psi, chi 1) restraints. A total of 56 simulated annealing structures were calculated, and the atomic rms distribution about the mean coordinate positions for residues 12-48 of the synthetic peptide is 1.24 A for the backbone atoms, 1.68 A for all atoms, and 1.33 A for all atoms excluding the six side chains which are disordered at chi 1 and the seven which are disordered at chi 2; when the irregular partially disordered loop from residues 31 to 39 is excluded, the rms distribution drops to 0.77 A for the backbone atoms, 1.55 A for all atoms, and 0.89 A for ordered side chains. Although proton resonance assignments for the N-terminal 11 residues and the C-terminal 3 residues were obtained, these two segments of the polypeptide are disordered in solution as evidenced by the absence of nonsequential nuclear Overhauser effects. The solution structure of the E3-binding domain consists of two parallel helices (residues 14-23 and 40-48), a short extended strand (24-26), a five-residue helical-like turn, and an irregular (and more disordered) loop (residues 31-39). This report presents the first structure of an E3-binding domain from a 2-oxo acid dehydrogenase complex.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1554728

  16. Evidence for messenger ribonucleic acid of an ammonium-inducible glutamate dehydrogenase and synthesis, covalent modification, and degradation of enzyme subunits in uninduced Chlorella sorokiniana cells.

    PubMed Central

    Turner, K J; Bascomb, N F; Lynch, J J; Molin, W T; Thurston, C F; Schmidt, R R

    1981-01-01

    The cells of Chlorella sorokiniana cultured in nitrate medium contain no detectable catalytic activity of an ammonium-inducible nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase (NADP-GDH). However, several lines of experimental evidence indicated that the NADP-GDH messenger ribonucleic acid was present at high levels and was being translated in uninduced cells. First, binding studies with 125I-labeled anti-NADP-GDH immunoglobulin G and total polysomes isolated from uninduced and induced cells showed that NADP-GDH subunits were being synthesized on polysomes from both types of cells. Second, when polyadenylic acid-containing ribonucleic acid was extracted from polysomes from uninduced and induced cells and placed into a messenger ribonucleic acid-dependent in vitro translation system, NADP-GDH subunits were synthesized from the ribonucleic acid from both sources. Third, when ammonia was added to uninduced cells, NADP-GDH antigen accumulated without an apparent induction lag. Fourth, by use of a specific immunoprecipitation procedure coupled to pulse-chase studies with [35S]sulfate, it was shown that the NADP-GDH subunits are rapidly synthesized, covalently modified, and then degraded in uninduced cells. PMID:7217012

  17. Glutaric acid and its metabolites cause apoptosis in immature oligodendrocytes: a novel mechanism of white matter degeneration in glutaryl-CoA dehydrogenase deficiency.

    PubMed

    Gerstner, Bettina; Gratopp, Alexander; Marcinkowski, Monika; Sifringer, Marco; Obladen, Michael; Bührer, Christoph

    2005-06-01

    Glutaryl-CoA dehydrogenase deficiency is an inherited metabolic disease characterized by elevated concentrations of glutaric acid (GA) and its metabolites glutaconic acid (GC) and 3-hydroxy-glutaric acid (3-OH-GA). Its hallmarks are striatal and cortical degeneration, which have been linked to excitotoxic neuronal cell death. However, magnetic resonance imaging studies have also revealed widespread white matter disease. Correspondingly, we decided to investigate the effects of GA, GC, and 3-OH-GA on the rat immature oligodendroglia cell line, OLN-93. For comparison, we also exposed the neuroblastoma line SH-SY5Y and the microglia line BV-2 to GA, GC, and 3-OH-GA. Cell viability was measured by metabolism of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium. Flow cytometry was used to assess apoptosis via annexin-V, anti-active caspase-3 antibody, and propidium iodide staining. GA, GC, and 3-OH-GA reduced OLN-93 oligodendroglia cell viability in a dose-dependent manner. Toxicity of GA, GC, and 3-OH-GA was abrogated by preincubation with the pan-caspase inhibitor z-VAD-fmk. Apoptosis but not necrosis was detected at various stages (early: annexin-V; effector: caspase-3) after 24-48 h of incubation with GA, GC, or 3-OH-GA in OLN-93 but not in neuroblastoma or microglia cells. OLN-93 lacked expression of N-methyl-d-aspartate receptors, making classical glutamatergic excitotoxicity an unlikely explanation for the selective toxicity of GA, GC, and 3-OH-GA for OLN-93 cells. GA, GC, and 3-OH-GA directly initiate the apoptotic cascade in oligodendroglia cells. This mechanism may contribute to the white matter damage observed in glutaryl-CoA dehydrogenase deficiency.

  18. Characterization of a group of pyrroloquinoline quinone-dependent dehydrogenases that are involved in the conversion of L-sorbose to 2-Keto-L-gulonic acid in Ketogulonicigenium vulgare WSH-001.

    PubMed

    Gao, Lili; Du, Guocheng; Zhou, Jingwen; Chen, Jian; Liu, Jie

    2013-01-01

    Ketogulonicigenium vulgare WSH-001 is an industrial strain used for vitamin C production. Based on genome sequencing and pathway analysis of the bacterium, some of its potential pyrroloquinoline quinone (PQQ)-dependent dehydrogenases were predicted, including KVU_pmdA_0245, KVU_2142, KVU_2159, KVU_1366, KVU_0203, KVU_0095, and KVU_pmdB_0115. BLAST and function domain searches showed that enzymes encoded by these genes may act as putative PQQ-dependent L-sorbose dehydrogenases (SDH) or L-sorbosone dehydrogenases (SNDH). To validate whether these dehydrogenases are PQQ-dependent or not, these seven putative dehyrogenases were overexpressed in Escherichia coli BL21 (DE3) and purified for characterization. Biochemical and kinetic characterization of the purified proteins have led to the identification of seven enzymes that possess the ability to oxidize L-sorbose or L-sorbosone to varying degrees. In addition, the dehydrogenation of sorbose in K. vulgare is validated to be PQQ dependent, identification of these PQQ-dependent dehydrogenases expanded the PQQ-dependent dehydrogenase family. Besides, the optimal combination of enzymes that could more efficiently catalyze the conversion of sorbose to gulonic acid was proposed. These are important in supporting the development of metabolic engineering strategies and engineering of efficient strains for one-step production of vitamin C in the future.

  19. Characterization of a group of pyrroloquinoline quinone-dependent dehydrogenases that are involved in the conversion of L-sorbose to 2-Keto-L-gulonic acid in Ketogulonicigenium vulgare WSH-001.

    PubMed

    Gao, Lili; Du, Guocheng; Zhou, Jingwen; Chen, Jian; Liu, Jie

    2013-01-01

    Ketogulonicigenium vulgare WSH-001 is an industrial strain used for vitamin C production. Based on genome sequencing and pathway analysis of the bacterium, some of its potential pyrroloquinoline quinone (PQQ)-dependent dehydrogenases were predicted, including KVU_pmdA_0245, KVU_2142, KVU_2159, KVU_1366, KVU_0203, KVU_0095, and KVU_pmdB_0115. BLAST and function domain searches showed that enzymes encoded by these genes may act as putative PQQ-dependent L-sorbose dehydrogenases (SDH) or L-sorbosone dehydrogenases (SNDH). To validate whether these dehydrogenases are PQQ-dependent or not, these seven putative dehyrogenases were overexpressed in Escherichia coli BL21 (DE3) and purified for characterization. Biochemical and kinetic characterization of the purified proteins have led to the identification of seven enzymes that possess the ability to oxidize L-sorbose or L-sorbosone to varying degrees. In addition, the dehydrogenation of sorbose in K. vulgare is validated to be PQQ dependent, identification of these PQQ-dependent dehydrogenases expanded the PQQ-dependent dehydrogenase family. Besides, the optimal combination of enzymes that could more efficiently catalyze the conversion of sorbose to gulonic acid was proposed. These are important in supporting the development of metabolic engineering strategies and engineering of efficient strains for one-step production of vitamin C in the future. PMID:23970495

  20. A salicylic acid-based analogue discovered from virtual screening as a potent inhibitor of human 20alpha-hydroxysteroid dehydrogenase.

    PubMed

    Dhagat, Urmi; Carbone, Vincenzo; Chung, Roland P-T; Matsunaga, Toshihiro; Endo, Satoshi; Hara, Akira; El-Kabbani, Ossama

    2007-11-01

    20alpha-hydroxysteroid dehydrogenase (AKR1C1) plays a key role in the metabolism of progesterone and other steroid hormones, thereby regulating their action at the pre-receptor level. AKR1C1 is implicated in neurological and psychiatric conditions such as catamenial epilepsy and depressive disorders. Increased activity of AKR1C1 is associated with termination of pregnancy and the development of breast cancer, endometriosis and endometrial cancer. Inhibition of the undesired activity of AKR1C1 will help reduce risks of premature birth, neurological disorders and the development of cancer. In order to identify potential leads for new inhibitors of AKR1C1 we adopted a virtual screening-based approach using the automated DOCK program. Approximately 250,000 compounds from the NCI database were screened for potential ligands based on their chemical complementarity and steric fit within the active site of AKR1C1. Kinetic analysis revealed 3,5-diiodosalicylic acid, an analogue of salicylic acid, as a potent competitive inhibitor with respect to the substrate 5beta-pregnane-3alpha,20alpha-diol with a K(i) of 9 nM. Aspirin, which is a well known salicylic acid-based drug, was also found to inhibit AKR1C1 activity. This is the first report to show aspirin (IC(50)=21 microM) and its metabolite salicylic acid (IC(50)=7.8 microM) as inhibitors of AKR1C1.

  1. Identification of a novel operon in Lactococcus lactis encoding three enzymes for lactic acid synthesis: phosphofructokinase, pyruvate kinase, and lactate dehydrogenase.

    PubMed Central

    Llanos, R M; Harris, C J; Hillier, A J; Davidson, B E

    1993-01-01

    The discovery of a novel multicistronic operon that encodes phosphofructokinase, pyruvate kinase, and lactate dehydrogenase in the lactic acid bacterium Lactococcus lactis is reported. The three genes in the operon, designated pfk, pyk, and ldh, contain 340, 502, and 325 codons, respectively. The intergenic distances are 87 bp between pfk and pyk and 117 bp between pyk and ldh. Plasmids containing pfk and pyk conferred phosphofructokinase and pyruvate kinase activity, respectively, on their host. The identity of ldh was established previously by the same approach (R. M. Llanos, A. J. Hillier, and B. E. Davidson, J. Bacteriol. 174:6956-6964, 1992). Each of the genes is preceded by a potential ribosome binding site. The operon is expressed in a 4.1-kb transcript. The 5' end of the transcript was determined to be a G nucleotide positioned 81 bp upstream from the pfk start codon. The pattern of codon usage within the operon is highly biased, with 11 unused amino acid codons. This degree of bias suggests that the operon is highly expressed. The three proteins encoded on the operon are key enzymes in the Embden-Meyerhoff pathway, the central pathway of energy production and lactic acid synthesis in L. lactis. For this reason, we have called the operon the las (lactic acid synthesis) operon. Images PMID:8478320

  2. Pressure adaptation of 3-isopropylmalate dehydrogenase from an extremely piezophilic bacterium is attributed to a single amino acid substitution.

    PubMed

    Hamajima, Yuki; Nagae, Takayuki; Watanabe, Nobuhisa; Ohmae, Eiji; Kato-Yamada, Yasuyuki; Kato, Chiaki

    2016-03-01

    3-Isopropylmalate dehydrogenase (IPMDH) from the extreme piezophile Shewanella benthica (SbIPMDH) is more pressure-tolerant than that from the atmospheric pressure-adapted Shewanella oneidensis (SoIPMDH). To understand the molecular mechanisms of this pressure tolerance, we analyzed mutated enzymes. The results indicate that only a single mutation at position 266, corresponding to Ala (SbIPMDH) and Ser (SoIPMDH), essentially affects activity under higher-pressure conditions. Structural analyses of SoIPMDH suggests that penetration of three water molecules into the cleft around Ser266 under high-pressure conditions could reduce the activity of the wild-type enzyme; however, no water molecule is observed in the Ala266 mutant. PMID:26847201

  3. Production of gamma-aminobutyric acid from glucose by introduction of synthetic scaffolds between isocitrate dehydrogenase, glutamate synthase and glutamate decarboxylase in recombinant Escherichia coli.

    PubMed

    Pham, Van Dung; Lee, Seung Hwan; Park, Si Jae; Hong, Soon Ho

    2015-08-10

    Escherichia coli were engineered for the direct production of gamma-aminobutyric acid from glucose by introduction of synthetic protein scaffold. In this study, three enzymes consisting GABA pathway (isocitrate dehydrogenase, glutamate synthase and glutamate decarboxylase) were connected via synthetic protein scaffold. By introduction of scaffold, 0.92g/L of GABA was produced from 10g/L of glucose while no GABA was produced in wild type E. coli. The optimum pH and temperature for GABA production were 4.5 and 30°C, respectively. When competing metabolic network was inactivated by knockout mutation, maximum GABA concentration of 1.3g/L was obtained from 10g/L glucose. The recombinant E. coli strain which produces GABA directly from glucose was successfully constructed by introduction of protein scaffold.

  4. Biosynthesis of ascorbic acid in kidney bean. L-galactono-gamma-lactone dehydrogenase is an intrinsic protein located at the mitochondrial inner membrane

    PubMed

    Siendones; Gonzalez-Reyes; Santos-Ocana; Navas; C rdoba F

    1999-07-01

    Hypocotyls of kidney beans (Phaseolus vulgaris L.) accumulated ascorbate after preincubation with a number of possible precursors, mainly L-galactono-gamma-lactone (L-GL) and L-gulono-gamma-lactone. The increase in the intracellular ascorbate concentration was parallel to the high stimulation of the L-GL dehydrogenase (L-GLD) activity measured in vitro using L-GL as a substrate and cytochrome c as an electron acceptor. Cell fractionation using a continuous linear Percoll gradient demonstrated that L-GLD is associated with mitochondria; therefore, pure mitochondria were isolated and subjected to detergent treatment to separate soluble from membrane-linked proteins. L-GLD activity was mainly associated with the detergent phase, suggesting that a membrane-intrinsic protein is responsible for the ascorbic acid biosynthetic activity. Subfractionation of mitochondria demonstrated that L-GLD is located at the inner membrane. PMID:10398727

  5. Higher thermostability of l-lactate dehydrogenases is a key factor in decreasing the optical purity of d-lactic acid produced from Lactobacillus coryniformis.

    PubMed

    Gu, Sol-A; Jun, Chanha; Joo, Jeong Chan; Kim, Seil; Lee, Seung Hwan; Kim, Yong Hwan

    2014-05-10

    Lactobacillus coryniformis is known to produce d-lactic acid as a dominant fermentation product at a cultivation temperature of approximately 30°C. However, the considerable production of l-lactic acid is observed when the fermentation temperature is greater than 40°C. Because optically pure lactates are synthesized from pyruvate by the catalysis of chiral-specific d- or l-lactate dehydrogenase, the higher thermostability of l-LDHs is assumed to be one of the key factors decreasing the optical purity of d-lactic acid produced from L. coryniformis at high temperature. To verify this hypothesis, two types of d-ldh genes and six types of l-ldh genes based on the genomic information of L. coryniformis were synthesized and expressed in Escherichia coli. Among the LDHs tested, five LDHs showed activity and were used to construct polyclonal antibodies. d-LDH1, l-LDH2, and l-LDH3 were found to be expressed in L. coryniformis by Western blotting analysis. The half-life values (t1/2) of the LDHs at 40°C were estimated to be 10.50, 41.76, and 2311min, and the T50(10) values were 39.50, 39.90, and 58.60°C, respectively. In addition, the Tm values were 36.0, 41.0, and 62.4°C, respectively, which indicates that l-LDH has greater thermostability than d-LDH. The higher thermostability of l-LDHs compared with that of d-LDH1 may be a major reason why the enantiopurity of d-lactic acid is decreased at high fermentation temperatures. The key enzymes characterized will suggest a direction for the design of genetically modified lactic acid bacteria to produce optically pure d-lactic acid.

  6. Isocitrate dehydrogenases and oxoglutarate dehydrogenase activities of baker's yeast grown in a variety of hypoxic conditions.

    PubMed

    Machado, A; Nuñez de Castro, I; Mayor, F

    1975-02-28

    The activities of isocitrate dehydrogenase (NAD), isocitrate dehydrogenase (NADP) and oxoglutarate dehydrogenase have been investigated in Saccharomyces cerevisiae grown in a variety of aerobic and hypoxic conditions, the latter including oxygen deprivation, high glucose concentration, addition of inhibitors of mitochondrial protein synthesis, respiratory inhibition by azide, and impaired respiration mutants. All hypoxic conditions led to a marked decrease of oxoglutarate dehydrogenase and significant decreases of the two isocitrate dehydrogenases. According to its kinetic properties, the NAD-isocitrate dehydrogenase will not be operative in hypoxia "in vivo". From these and other related facts it is concluded that hypoxic conditions in yeast generally lead to a splitting of the tricarboxylic acid cycle and that glutamate synthesis in these conditions takes place through the coupling of the NADP-linked isocitrate and glutamate dehydrogenases.

  7. 2-ketogluconic acid secretion by incorporation of Pseudomonas putida KT 2440 gluconate dehydrogenase (gad) operon in Enterobacter asburiae PSI3 improves mineral phosphate solubilization.

    PubMed

    Kumar, Chanchal; Yadav, Kavita; Archana, G; Naresh Kumar, G

    2013-09-01

    Enterobacter asburiae PSI3 is known to efficiently solubilize rock phosphate by secretion of approximately 50 mM gluconic acid in Tris-buffered medium in the presence of 75 mM glucose and in a mixture of seven aldosugars each at 15 mM concentration, mimicking alkaline vertisol soils. Efficacy of this bacterium in the rhizosphere requires P release in the presence of low amount of sugars. To achieve this, E. asburiae PSI3 has been manipulated to express gluconate dehydrogenase (gad) operon of Pseudomonas putida KT 2440 to produce 2-ketogluconic acid. E. asburiae PSI3 harboring gad operon had 438 U of GAD activity, secreted 11.63 mM 2-ketogluconic and 21.65 mM gluconic acids in Tris-rock phosphate-buffered medium containing 45 mM glucose. E. asburiae PSI3 gad transformant solubilized 0.84 mM P from rock phosphate in TRP-buffered liquid medium. In the presence of a mixture of seven sugars each at 12 mM, the transformant brought about a drop in pH to 4.1 and released 0.53 mM P. PMID:23666029

  8. Pathways of Amino Acid Degradation in Nilaparvata lugens (Stål) with Special Reference to Lysine-Ketoglutarate Reductase/Saccharopine Dehydrogenase (LKR/SDH)

    PubMed Central

    Wan, Pin-Jun; Yuan, San-Yue; Tang, Yao-Hua; Li, Kai-Long; Yang, Lu; Fu, Qiang; Li, Guo-Qing

    2015-01-01

    Nilaparvata lugens harbors yeast-like symbionts (YLSs). In present paper, a genome-wide analysis found 115 genes from Ni. lugens and 90 genes from YLSs that were involved in the metabolic degradation of 20 proteinogenic amino acids. These 205 genes encoded for 77 enzymes. Accordingly, the degradation pathways for the 20 amino acids were manually constructed. It is postulated that Ni. lugens can independently degrade fourteen amino acids (threonine, alanine, glycine, serine, aspartate, asparagine, phenylalanine, tyrosine, glutamate, glutamine, proline, histidine, leucine and lysine). Ni. lugens and YLSs enzymes may work collaboratively to break down tryptophan, cysteine, arginine, isoleucine, methionine and valine. We cloned a lysine-ketoglutarate reductase/saccharopine dehydrogenase gene (Nllkr/sdh) that encoded a bifunctional enzyme catalyzing the first two steps of lysine catabolism. Nllkr/sdh is widely expressed in the first through fifth instar nymphs and adults, and is highly expressed in the fat body, ovary and gut in adults. Ingestion of dsNllkr/sdh by nymphs successfully knocked down the target gene, and caused nymphal/adult mortality, shortened nymphal development stage and reduced adult fresh weight. Moreover, Nllkr/sdh knockdown resulted in three defects: wings were shortened and thickened; cuticles were stretched and thinned; and old nymphal cuticles remained on the tips of legs and abdomen and were not completely shed. These data indicate that impaired lysine degradation negatively affects the survival and development of Ni. lugens. PMID:26000452

  9. De novo fatty acid biosynthesis and elongation in very long-chain acyl-CoA dehydrogenase-deficient mice supplemented with odd or even medium-chain fatty acids.

    PubMed

    Tucci, Sara; Behringer, Sidney; Spiekerkoetter, Ute

    2015-11-01

    An even medium-chain triglyceride (MCT)-based diet is the mainstay of treatment in very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD). Previous studies with magnetic resonance spectroscopy have shown an impact of MCT on the average fatty acid chain length in abdominal fat. We therefore assume that medium-chain fatty acids (MCFAs) are elongated and accumulate in tissue as long-chain fatty acids. In this study, we explored the hepatic effects of long-term supplementation with MCT or triheptanoin, an odd-chain C7-based triglyceride, in wild-type and VLCAD-deficient (VLCAD(-/-) ) mice after 1 year of supplementation as compared with a control diet. The de novo biosynthesis and elongation of fatty acids, and peroxisomal β-oxidation, were quantified by RT-PCR. This was followed by a comprehensive analysis of hepatic and cardiac fatty acid profiles by GC-MS. Long-term application of even and odd MCFAs strongly induced de novo biosynthesis and elongation of fatty acids in both wild-type and VLCAD(-/-) mice, leading to an alteration of the hepatic fatty acid profiles. We detected de novo-synthesized and elongated fatty acids, such as heptadecenoic acid (C17:1n9), eicosanoic acid (C20:1n9), erucic acid (C22:1n9), and mead acid (C20:3n9), that were otherwise completely absent in mice under control conditions. In parallel, the content of monounsaturated fatty acids was massively increased. Furthermore, we observed strong upregulation of peroxisomal β-oxidation in VLCAD(-/-) mice, especially when they were fed an MCT diet. Our data raise the question of whether long-term MCFA supplementation represents the most efficient treatment in the long term. Studies on the hepatic toxicity of triheptanoin are still ongoing.

  10. De novo fatty acid biosynthesis and elongation in very long-chain acyl-CoA dehydrogenase-deficient mice supplemented with odd or even medium-chain fatty acids.

    PubMed

    Tucci, Sara; Behringer, Sidney; Spiekerkoetter, Ute

    2015-11-01

    An even medium-chain triglyceride (MCT)-based diet is the mainstay of treatment in very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD). Previous studies with magnetic resonance spectroscopy have shown an impact of MCT on the average fatty acid chain length in abdominal fat. We therefore assume that medium-chain fatty acids (MCFAs) are elongated and accumulate in tissue as long-chain fatty acids. In this study, we explored the hepatic effects of long-term supplementation with MCT or triheptanoin, an odd-chain C7-based triglyceride, in wild-type and VLCAD-deficient (VLCAD(-/-) ) mice after 1 year of supplementation as compared with a control diet. The de novo biosynthesis and elongation of fatty acids, and peroxisomal β-oxidation, were quantified by RT-PCR. This was followed by a comprehensive analysis of hepatic and cardiac fatty acid profiles by GC-MS. Long-term application of even and odd MCFAs strongly induced de novo biosynthesis and elongation of fatty acids in both wild-type and VLCAD(-/-) mice, leading to an alteration of the hepatic fatty acid profiles. We detected de novo-synthesized and elongated fatty acids, such as heptadecenoic acid (C17:1n9), eicosanoic acid (C20:1n9), erucic acid (C22:1n9), and mead acid (C20:3n9), that were otherwise completely absent in mice under control conditions. In parallel, the content of monounsaturated fatty acids was massively increased. Furthermore, we observed strong upregulation of peroxisomal β-oxidation in VLCAD(-/-) mice, especially when they were fed an MCT diet. Our data raise the question of whether long-term MCFA supplementation represents the most efficient treatment in the long term. Studies on the hepatic toxicity of triheptanoin are still ongoing. PMID:26284828

  11. Improved production of homo-D-lactic acid via xylose fermentation by introduction of xylose assimilation genes and redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-Lactate dehydrogenase gene-deficient Lactobacillus plantarum.

    PubMed

    Okano, Kenji; Yoshida, Shogo; Yamada, Ryosuke; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2009-12-01

    The production of optically pure d-lactic acid via xylose fermentation was achieved by using a Lactobacillus plantarum NCIMB 8826 strain whose l-lactate dehydrogenase gene was deficient and whose phosphoketolase genes were replaced with a heterologous transketolase gene. After 60 h of fermentation, 41.2 g/liter of d-lactic acid was produced from 50 g/liter of xylose.

  12. A tightly bound quinone functions in the ubiquinone reaction sites of quinoprotein alcohol dehydrogenase of an acetic acid bacterium, Gluconobacter suboxydans.

    PubMed

    Matsushita, Kazunobu; Kobayashi, Yoshiki; Mizuguchi, Mitsuhiro; Toyama, Hirohide; Adachi, Osao; Sakamoto, Kimitoshi; Miyoshi, Hideto

    2008-10-01

    Quinoprotein alcohol dehydrogenase (ADH) of acetic acid bacteria is a membrane-bound enzyme that functions as the primary dehydrogenase in the ethanol oxidase respiratory chain. It consists of three subunits and has a pyrroloquinoline quinone (PQQ) in the active site and four heme c moieties as electron transfer mediators. Of these, three heme c sites and a further site have been found to be involved in ubiquinone (Q) reduction and ubiquinol (QH2) oxidation respectively (Matsushita et al., Biochim. Biophys. Acta, 1409, 154-164 (1999)). In this study, it was found that ADH solubilized and purified with dodecyl maltoside, but not with Triton X-100, had a tightly bound Q, and thus two different ADHs, one having the tightly bound Q (Q-bound ADH) and Q-free ADH, could be obtained. The Q-binding sites of both the ADHs were characterized using specific inhibitors, a substituted phenol PC16 (a Q analog inhibitor) and antimycin A. Based on the inhibition kinetics of Q2 reductase and ubiquinol-2 (Q2H2) oxidase activities, it was suggested that there are one and two PC16-binding sites in Q-bound ADH and Q-free ADH respectively. On the other hand, with antimycin A, only one binding site was found for Q2 reductase and Q2H2 oxidase activities, irrespective of the presence of bound Q. These results suggest that ADH has a high-affinity Q binding site (QH) besides low-affinity Q reduction and QH2 oxidation sites, and that the bound Q in the QH site is involved in the electron transfer between heme c moieties and bulk Q or QH2 in the low-affinity sites.

  13. SdhE-dependent formation of a functional Acetobacter pasteurianus succinate dehydrogenase in Gluconobacter oxydans--a first step toward a complete tricarboxylic acid cycle.

    PubMed

    Kiefler, Ines; Bringer, Stephanie; Bott, Michael

    2015-11-01

    The obligatory aerobic α-proteobacterium Gluconobacter oxydans 621H possesses an unusual metabolism in which the majority of the carbohydrate substrates are incompletely oxidized in the periplasm and only a small fraction is metabolized in the cytoplasm. The cytoplasmic oxidation capabilities are limited due to an incomplete tricarboxylic acid (TCA) cycle caused by the lack of succinate dehydrogenase (Sdh) and succinyl-CoA synthetase. As a first step to test the consequences of a functional TCA cycle for growth, metabolism, and bioenergetics of G. oxydans, we attempted to establish a heterologous Sdh in this species. Expression of Acetobacter pasteurianus sdhCDAB in G. oxydans did not yield an active succinate dehydrogenase. Co-expression of a putative sdhE gene from A. pasteurianus, which was assumed to encode an assembly factor for covalent attachment of flavin adenine dinucleotide (FAD) to SdhA, stimulated Sdh activity up to 400-fold to 4.0 ± 0.4 U (mg membrane protein)(‒1). The succinate/oxygen reductase activity of membranes was 0.68 ± 0.04 U (mg membrane protein)(‒1), indicating the formation of functional Sdh complex capable of transferring electrons from succinate to ubiquinone. A. pasteurianus SdhE could be functionally replaced by SdhE from the γ-proteobacterium Serratia sp. According to these results, the accessory protein SdhE was necessary and sufficient for heterologous synthesis of an active A. pasteurianus Sdh in G. oxydans. Studies with the Sdh-positive G. oxydans strain provided evidence for a limited functionality of the TCA cycle despite the absence of succinyl-CoA synthetase.

  14. Two D-2-hydroxy-acid dehydrogenases in Arabidopsis thaliana with catalytic capacities to participate in the last reactions of the methylglyoxal and beta-oxidation pathways.

    PubMed

    Engqvist, Martin; Drincovich, María F; Flügge, Ulf-Ingo; Maurino, Verónica G

    2009-09-11

    The Arabidopsis thaliana locus At5g06580 encodes an ortholog to Saccharomyces cerevisiae d-lactate dehydrogenase (AtD-LDH). The recombinant protein is a homodimer of 59-kDa subunits with one FAD per monomer. A substrate screen indicated that AtD-LDH catalyzes the oxidation of d- and l-lactate, d-2-hydroxybutyrate, glycerate, and glycolate using cytochrome c as an electron acceptor. AtD-LDH shows a clear preference for d-lactate, with a catalytic efficiency 200- and 2000-fold higher than that for l-lactate and glycolate, respectively, and a K(m) value for d-lactate of approximately 160 microm. Knock-out mutants showed impaired growth in the presence of d-lactate or methylglyoxal. Collectively, the data indicated that the protein is a d-LDH that participates in planta in the methylglyoxal pathway. Web-based bioinformatic tools revealed the existence of a paralogous protein encoded by locus At4g36400. The recombinant protein is a homodimer of 61-kDa subunits with one FAD per monomer. A substrate screening revealed highly specific d-2-hydroxyglutarate (d-2HG) conversion in the presence of an organic cofactor with a K(m) value of approximately 580 microm. Thus, the enzyme was characterized as a d-2HG dehydrogenase (AtD-2HGDH). Analysis of knock-out mutants demonstrated that AtD-2HGDH is responsible for the total d-2HGDH activity present in A. thaliana. Gene coexpression analysis indicated that AtD-2HGDH is in the same network as several genes involved in beta-oxidation and degradation of branched-chain amino acids and chlorophyll. It is proposed that AtD-2HGDH participates in the catabolism of d-2HG most probably during the mobilization of alternative substrates from proteolysis and/or lipid degradation.

  15. 2,2'-oxo-1,1'-azobenzene: microbial transformation of rye (Secale cereale L.) allelochemical in field soils byAcinetobacter calcoaceticus: III.

    PubMed

    Chase, W R; Nair, M G; Putnam, A R; Mishra, S K

    1991-08-01

    Acinetobacter calcoaceticus, a gram-negative bacterium isolated from field soil, was found to be responsible for the biotransformation of 2(3H)-benzoxazolinone (BOA) to 2,2'-oxo-1,1'-azobenzene (AZOB). Experiments were conducted to evaluate the transformation of BOA to AZOB by this microbe in sterile and nonsterile soil. Transformation studies with soils inoculated withA. calcoaceticus indicated that the production of AZOB increased linearly with the concentration of BOA in sterile soil and showed a quadratic trend in nonsterile soils. This also indicated that all soil types studied for the transformation experiments might containA. calcoaceticus capable of the conversion of benzoxazolinones.

  16. 1,3-Bis[2-(2-oxo-1,3-oxazolidin-3-yl)eth­yl]-1H-benzimidazol-2(3H)-one

    PubMed Central

    Ouzidan, Younes; Kandri Rodi, Youssef; Fronczek, Frank R.; Venkatraman, Ramaiyer; El Ammari, Lahcen; Essassi, El Mokhtar

    2011-01-01

    The mol­ecular structure of the title compound, C17H20N4O5, contains a central fused-ring system, comprised of six- and five-membered rings. This unit is linked by C2 chains to two 2-oxo-1,3-oxazolidine five-membered rings. The central fused-ring system is essentially planar, with a maximum deviation of 0.008 (1) Å from the mean plane. Both oxazolidine five-membered rings are also nearly planar, with maximum deviations of 0.090 (1) and 0.141 (1) Å. PMID:21523041

  17. Development and validation of a rapid turboflow LC-MS/MS method for the quantification of LSD and 2-oxo-3-hydroxy LSD in serum and urine samples of emergency toxicological cases.

    PubMed

    Dolder, Patrick C; Liechti, Matthias E; Rentsch, Katharina M

    2015-02-01

    Lysergic acid diethylamide (LSD) is a widely used recreational drug. The aim of the present study is to develop a quantitative turboflow LC-MS/MS method that can be used for rapid quantification of LSD and its main metabolite 2-oxo-3-hydroxy LSD (O-H-LSD) in serum and urine in emergency toxicological cases without time-consuming extraction steps. The method was developed on an ion-trap LC-MS/MS instrument coupled to a turbulent-flow extraction system. The validation data showed no significant matrix effects and no ion suppression has been observed in serum and urine. Mean intraday accuracy and precision for LSD were 101 and 6.84%, in urine samples and 97.40 and 5.89% in serum, respectively. For O-H-LSD, the respective values were 97.50 and 4.99% in urine and 107 and 4.70% in serum. Mean interday accuracy and precision for LSD were 100 and 8.26% in urine and 101 and 6.56% in serum, respectively. For O-H-LSD, the respective values were 101 and 8.11% in urine and 99.8 and 8.35% in serum, respectively. The lower limit of quantification for LSD was determined to be 0.1 ng/ml. LSD concentrations in serum were expected to be up to 8 ng/ml. 2-Oxo-3-hydroxy LSD concentrations in urine up to 250 ng/ml. The new method was accurate and precise in the range of expected serum and urine concentrations in patients with a suspected LSD intoxication. Until now, the method has been applied in five cases with suspected LSD intoxication where the intake of the drug has been verified four times with LSD concentrations in serum in the range of 1.80-14.70 ng/ml and once with a LSD concentration of 1.25 ng/ml in urine. In serum of two patients, the O-H-LSD concentration was determined to be 0.99 and 0.45 ng/ml. In the urine of a third patient, the O-H-LSD concentration was 9.70 ng/ml. PMID:25542574

  18. Development and validation of a rapid turboflow LC-MS/MS method for the quantification of LSD and 2-oxo-3-hydroxy LSD in serum and urine samples of emergency toxicological cases.

    PubMed

    Dolder, Patrick C; Liechti, Matthias E; Rentsch, Katharina M

    2015-02-01

    Lysergic acid diethylamide (LSD) is a widely used recreational drug. The aim of the present study is to develop a quantitative turboflow LC-MS/MS method that can be used for rapid quantification of LSD and its main metabolite 2-oxo-3-hydroxy LSD (O-H-LSD) in serum and urine in emergency toxicological cases without time-consuming extraction steps. The method was developed on an ion-trap LC-MS/MS instrument coupled to a turbulent-flow extraction system. The validation data showed no significant matrix effects and no ion suppression has been observed in serum and urine. Mean intraday accuracy and precision for LSD were 101 and 6.84%, in urine samples and 97.40 and 5.89% in serum, respectively. For O-H-LSD, the respective values were 97.50 and 4.99% in urine and 107 and 4.70% in serum. Mean interday accuracy and precision for LSD were 100 and 8.26% in urine and 101 and 6.56% in serum, respectively. For O-H-LSD, the respective values were 101 and 8.11% in urine and 99.8 and 8.35% in serum, respectively. The lower limit of quantification for LSD was determined to be 0.1 ng/ml. LSD concentrations in serum were expected to be up to 8 ng/ml. 2-Oxo-3-hydroxy LSD concentrations in urine up to 250 ng/ml. The new method was accurate and precise in the range of expected serum and urine concentrations in patients with a suspected LSD intoxication. Until now, the method has been applied in five cases with suspected LSD intoxication where the intake of the drug has been verified four times with LSD concentrations in serum in the range of 1.80-14.70 ng/ml and once with a LSD concentration of 1.25 ng/ml in urine. In serum of two patients, the O-H-LSD concentration was determined to be 0.99 and 0.45 ng/ml. In the urine of a third patient, the O-H-LSD concentration was 9.70 ng/ml.

  19. Increased valinomycin production in mutants of Streptomyces sp. M10 defective in bafilomycin biosynthesis and branched-chain α-keto acid dehydrogenase complex expression.

    PubMed

    Lee, Dong Wan; Ng, Bee Gek; Kim, Beom Seok

    2015-11-01

    Streptomyces sp. M10 is a valinomycin-producing bacterial strain that shows potent bioactivity against Botrytis blight of cucumber plants. During studies to increase the yield of valinomycin (a cyclododecadepsipeptide) in strain M10, additional antifungal metabolites, including bafilomycin derivatives (macrolide antibiotics), were identified. To examine the effect of bafilomycin biosynthesis on valinomycin production, the bafilomycin biosynthetic gene cluster was cloned from the genome of strain M10, as were two branched-chain α-keto acid dehydrogenase (BCDH) gene clusters related to precursor supply for bafilomycin biosynthesis. A null mutant (M10bafm) of one bafilomycin biosynthetic gene (bafV) failed to produce bafilomycin, but resulted in a 1.2- to 1.5-fold increase in the amount of valinomycin produced. In another null mutant (M10bkdFm) of a gene encoding a subunit of the BCDH complex (bkdF), bafilomycin production was completely abolished and valinomycin production increased fourfold relative to that in the wild-type M10 strain. The higher valinomycin yield was likely the result of redistribution of the metabolic flux from bafilomycin to valinomycin biosynthesis, because the two antibiotics share a common precursor, 2-ketoisovaleric acid, a deamination product of valine. The results show that directing precursor flux toward active ingredient biosynthesis could be used as a prospective tool to increase the competence of biofungicides.

  20. Developmental Defects of Caenorhabditis elegans Lacking Branched-chain α-Ketoacid Dehydrogenase Are Mainly Caused by Monomethyl Branched-chain Fatty Acid Deficiency.

    PubMed

    Jia, Fan; Cui, Mingxue; Than, Minh T; Han, Min

    2016-02-01

    Branched-chain α-ketoacid dehydrogenase (BCKDH) catalyzes the critical step in the branched-chain amino acid (BCAA) catabolic pathway and has been the focus of extensive studies. Mutations in the complex disrupt many fundamental metabolic pathways and cause multiple human diseases including maple syrup urine disease (MSUD), autism, and other related neurological disorders. BCKDH may also be required for the synthesis of monomethyl branched-chain fatty acids (mmBCFAs) from BCAAs. The pathology of MSUD has been attributed mainly to BCAA accumulation, but the role of mmBCFA has not been evaluated. Here we show that disrupting BCKDH in Caenorhabditis elegans causes mmBCFA deficiency, in addition to BCAA accumulation. Worms with deficiency in BCKDH function manifest larval arrest and embryonic lethal phenotypes, and mmBCFA supplementation suppressed both without correcting BCAA levels. The majority of developmental defects caused by BCKDH deficiency may thus be attributed to lacking mmBCFAs in worms. Tissue-specific analysis shows that restoration of BCKDH function in multiple tissues can rescue the defects, but is especially effective in neurons. Taken together, we conclude that mmBCFA deficiency is largely responsible for the developmental defects in the worm and conceivably might also be a critical contributor to the pathology of human MSUD.

  1. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli.

    PubMed

    Bastian, Sabine; Liu, Xiang; Meyerowitz, Joseph T; Snow, Christopher D; Chen, Mike M Y; Arnold, Frances H

    2011-05-01

    2-methylpropan-1-ol (isobutanol) is a leading candidate biofuel for the replacement or supplementation of current fossil fuels. Recent work has demonstrated glucose to isobutanol conversion through a modified amino acid pathway in a recombinant organism. Although anaerobic conditions are required for an economically competitive process, only aerobic isobutanol production has been feasible due to an imbalance in cofactor utilization. Two of the pathway enzymes, ketol-acid reductoisomerase and alcohol dehydrogenase, require nicotinamide dinucleotide phosphate (NADPH); glycolysis, however, produces only nicotinamide dinucleotide (NADH). Here, we compare two solutions to this imbalance problem: (1) over-expression of pyridine nucleotide transhydrogenase PntAB and (2) construction of an NADH-dependent pathway, using engineered enzymes. We demonstrate that an NADH-dependent pathway enables anaerobic isobutanol production at 100% theoretical yield and at higher titer and productivity than both the NADPH-dependent pathway and transhydrogenase over-expressing strain. Our results show how engineering cofactor dependence can overcome a critical obstacle to next-generation biofuel commercialization.

  2. Developmental Defects of Caenorhabditis elegans Lacking Branched-chain α-Ketoacid Dehydrogenase Are Mainly Caused by Monomethyl Branched-chain Fatty Acid Deficiency.

    PubMed

    Jia, Fan; Cui, Mingxue; Than, Minh T; Han, Min

    2016-02-01

    Branched-chain α-ketoacid dehydrogenase (BCKDH) catalyzes the critical step in the branched-chain amino acid (BCAA) catabolic pathway and has been the focus of extensive studies. Mutations in the complex disrupt many fundamental metabolic pathways and cause multiple human diseases including maple syrup urine disease (MSUD), autism, and other related neurological disorders. BCKDH may also be required for the synthesis of monomethyl branched-chain fatty acids (mmBCFAs) from BCAAs. The pathology of MSUD has been attributed mainly to BCAA accumulation, but the role of mmBCFA has not been evaluated. Here we show that disrupting BCKDH in Caenorhabditis elegans causes mmBCFA deficiency, in addition to BCAA accumulation. Worms with deficiency in BCKDH function manifest larval arrest and embryonic lethal phenotypes, and mmBCFA supplementation suppressed both without correcting BCAA levels. The majority of developmental defects caused by BCKDH deficiency may thus be attributed to lacking mmBCFAs in worms. Tissue-specific analysis shows that restoration of BCKDH function in multiple tissues can rescue the defects, but is especially effective in neurons. Taken together, we conclude that mmBCFA deficiency is largely responsible for the developmental defects in the worm and conceivably might also be a critical contributor to the pathology of human MSUD. PMID:26683372

  3. LC-ESI-MS/MS on an ion trap for the determination of LSD, iso-LSD, nor-LSD and 2-oxo-3-hydroxy-LSD in blood, urine and vitreous humor.

    PubMed

    Favretto, Donata; Frison, Giampietro; Maietti, Sergio; Ferrara, Santo Davide

    2007-07-01

    A method has been developed for the simultaneous determination of lysergic acid diethylamide (LSD), its epimer iso-LSD, and its main metabolites nor-LSD and 2-oxo-3-hydroxy LSD in blood, urine, and, for the first time, vitreous humor samples. The method is based on liquid/liquid extraction and liquid chromatography-multiple mass spectrometry detection in an ion trap mass spectrometer, in positive ion electrospray ionization conditions. Five microliter of sample are injected and analysis time is 12 min. The method is specific, selective and sensitive, and achieves limits of quantification of 20 pg/ml for both LSD and nor-LSD in blood, urine, and vitreous humor. No significant interfering substance or ion suppression was identified for LSD, iso-LSD, and nor-LSD. The interassay reproducibilities for LSD at 20 pg/ml and 2 ng/ml in urine were 8.3 and 5.6%, respectively. Within-run precision using control samples at 20 pg/ml and 2 ng/ml was 6.9 and 3.9%. Mean recoveries of two concentrations spiked into drug free samples were in the range 60-107% in blood, 50-105% in urine, and 65-105% in vitreous humor. The method was successfully applied to the forensic determination of postmortem LSD levels in the biological fluids of a multi drug abuser; for the first time, LSD could be detected in vitreous humor.

  4. Molecular characterization of benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II of Acinetobacter calcoaceticus.

    PubMed Central

    Gillooly, D J; Robertson, A G; Fewson, C A

    1998-01-01

    The nucleotide sequences of xylB and xylC from Acinetobacter calcoaceticus, the genes encoding benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II, were determined. The complete nucleotide sequence indicates that these two genes form part of an operon and this was supported by heterologous expression and physiological studies. Benzaldehyde dehydrogenase II is a 51654 Da protein with 484 amino acids per subunit and it is typical of other prokaryotic and eukaryotic aldehyde dehydrogenases. Benzyl alcohol dehydrogenase has a subunit Mr of 38923 consisting of 370 amino acids, it stereospecifically transfers the proR hydride of NADH, and it is a member of the family of zinc-dependent long-chain alcohol dehydrogenases. The enzyme appears to be more similar to animal and higher-plant alcohol dehydrogenases than it is to most other microbial alcohol dehydrogenases. Residue His-51 of zinc-dependent alcohol dehydrogenases is thought to be necessary as a general base for catalysis in this category of alcohol dehydrogenases. However, this residue was found to be replaced in benzyl alcohol dehydrogenase from A. calcoaceticus by an isoleucine, and the introduction of a histidine residue in this position did not alter the kinetic coefficients, pH optimum or substrate specificity of the enzyme. Other workers have shown that His-51 is also absent from the TOL-plasmid-encoded benzyl alcohol dehydrogenase of Pseudomonas putida and so these two closely related enzymes presumably have a catalytic mechanism that differs from that of the archetypal zinc-dependent alcohol dehydrogenases. PMID:9494109

  5. Amino acid residues involved in the catalytic mechanism of NAD-dependent glutamate dehydrogenase from Halobacterium salinarum.

    PubMed

    Pérez-Pomares, F; Ferrer, J; Camacho, M; Pire, C; LLorca, F; Bonete, M J

    1999-02-01

    The pH dependence of kinetic parameters for a competitive inhibitor (glutarate) was determined in order to obtain information on the chemical mechanism for NAD-dependent glutamate dehydrogenase from Halobacterium salinarum. The maximum velocity is pH dependent, decreasing at low pHs giving a pK value of 7.19+/-0.13, while the V/K for l-glutamate at 30 degrees C decreases at low and high pHs, yielding pK values of 7.9+/-0.2 and 9.8+/-0.2, respectively. The glutarate pKis profile decreases at high pHs, yielding a pK of 9. 59+/-0.09 at 30 degrees C. The values of ionization heat calculated from the change in pK with temperature are: 1.19 x 10(4), 5.7 x 10(3), 7 x 10(3), 6.6 x 10(3) cal mol-1, for the residues involved. All these data suggest that the groups required for catalysis and/or binding are lysine, histidine and tyrosine. The enzyme shows a time-dependent loss in glutamate oxidation activity when incubated with diethyl pyrocarbonate (DEPC). Inactivation follows pseudo-first-order kinetics with a second-order rate constant of 53 M-1min-1. The pKa of the titratable group was pK1=6.6+/-0.6. Inactivation with ethyl acetimidate also shows pseudo-first-order kinetics as well as inactivation with TNM yielding second-order constants of 1.2 M-1min-1 and 2.8 M-1min-1, and pKas of 8.36 and 9.0, respectively. The proposed mechanism involves hydrogen binding of each of the two carboxylic groups to tyrosyl residues; histidine interacts with one of the N-hydrogens of the l-glutamate amino group. We also corroborate the presence of a conservative lysine that has a remarkable ability to coordinate a water molecule that would act as general base.

  6. Discovery of 4-aryl-2-oxo-2H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay.

    PubMed

    Kemnitzer, William; Jiang, Songchun; Zhang, Hong; Kasibhatla, Shailaja; Crogan-Grundy, Candace; Blais, Charles; Attardo, Giorgio; Denis, Real; Lamothe, Serge; Gourdeau, Henriette; Tseng, Ben; Drewe, John; Cai, Sui Xiong

    2008-10-15

    As a continuation of our efforts to discover and develop the apoptosis inducing 4-aryl-4H-chromenes as potential anticancer agents, we explored the removal of the chiral center at the 4-position and prepared a series of 4-aryl-2-oxo-2H-chromenes. It was found that, in general, removal of the chiral center and replacement of the 2-amino group with a 2-oxo group were tolerated and 4-aryl-2-oxo-2H-chromenes exhibited SAR similar to 4-aryl-2-amino-4H-chromenes. The 4-aryl-2-oxo-2H-chromenes with a N-methyl pyrrole fused at the 7,8-positions were highly active with compound 2a having an EC(50) value of 13 nM in T47D cells. It was found that an OMe group was preferred at the 7-position. 7-NMe(2), 7-NH(2), 7-Cl and 7,8 fused pyrido analogs all had low potency. These 4-aryl-2-oxo-2H-chromenes are a series of potent apoptosis inducers with potential advantage over the 4-aryl-2-amino-4H-chromenes series via elimination of the chiral center at the 4-position.

  7. Production of natural antimicrobial compound D-phenyllactic acid using Leuconostoc mesenteroides ATCC 8293 whole cells involving highly active D-lactate dehydrogenase.

    PubMed

    Li, L; Shin, S-Y; Lee, K W; Han, N S

    2014-10-01

    Phenyllactic acid (PLA) is an antimicrobial compound naturally synthesized in various fermented foods and its D-form of PLA is known to be more active than the L-isomer. In this study, Leuconostoc mesenteroides ATCC 8293 cells, elaborating D-lactate dehydrogenase (D-ldh) were used to produce D-PLA from phenylpyruvic acid (PPA). When cultured in the presence of PPA (≤50 mmol l(-1)), growing cells produced a maximum yield of 35 mmol l(-1) of D-PLA, and the yields were between 75·2 and 83·3%. Higher conversion yields were obtained at pH 6·0-7·0 when growing cells were used, while the optimum pH range was broader for resting cells. The time required for the complete conversion of PPA into PLA could be shortened to 3 h using resting cells. D-ldh, an enzyme encoded by the LEUM_1756 gene of Leuc. mesenteroides ATCC 8293, was found to be responsible for the conversion of PPA into PLA. The Km and kcat values of the enzyme for PPA were found to be 15·4 mmol l(-1) and 5645 s(-1), respectively. The conditions required for the efficient production of D-PLA were optimized for both growing and resting cells of Leuc. mesenteroides, with special emphasis on achieving high stereoselectivity and conversion yield. Significance and impact of the study: This is the first study on the production of D-phenyllactic acid, which is a natural antimicrobial compound, from phenylpyruvate using Leuconostoc mesenteroides cells. The strain, ATCC 8293, that was used in the study, possesses high stereoselectivity and delivers a high yield. Therefore, it might be a promising candidate for use in large-scale production facilities and in fermented foods.

  8. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a type of ...

  9. Combinational expression of sorbose/sorbosone dehydrogenases and cofactor pyrroloquinoline quinone increases 2-keto-L-gulonic acid production in Ketogulonigenium vulgare-Bacillus cereus consortium.

    PubMed

    Du, Jin; Bai, Wei; Song, Hao; Yuan, Ying-Jin

    2013-09-01

    The expression levels of sorbose/sorbosone dehydrogenase genes (sdh and sndh) and the synthesis genes (pqqABCDEN) of the adjoint cofactor pyrroloquinoline quinone (PQQ) were genetically manipulated in Ketogulonigenium vulgare to increase the production of 2-keto-l-gulonic acid (2-KLG), the precursor of vitamin C, in the consortium of K. vulgare and Bacillus cereus. We found that overexpression of sdh-sndh alone in K. vulgare could not significantly enhance the production of 2-KLG, revealing the cofactor PQQ was required for the biosynthesis of 2-KLG. Various expression levels of PQQ were achieved by differential expression of pqqA, pqqABCDE and pqqABCDEN, respectively. The combinatorial expression of sdh/sndh and pqqABCDEN in K. vulgare enabled a 20% increase in the production of 2-KLG (79.1±0.6gl(-1)) than that of the parental K. vulgare (65.9±0.4gl(-1)) in shaking flasks. Our results demonstrated the balanced co-expression of both the key enzymes and the related cofactors was an efficient strategy to increase chemicals' biosynthesis.

  10. Cloning of a Serratia marcescens DNA fragment that induces quinoprotein glucose dehydrogenase-mediated gluconic acid production in Escherichia coli in the presence of stationary phase Serratia marcescens.

    PubMed

    Krishnaraj, P U; Goldstein, A H

    2001-12-18

    Serratia marcescens ER2 was isolated from an endorhizosphere sample based on its high level of mineral phosphate solubilizing (MPS) activity. This phenotype was correlated with expression of the direct oxidation pathway. An ER2 plasmid library constructed in Escherichia coli strain DH5alpha was screened for MPS activity. A recombinant clone DH5alpha (pKG3791) was capable of gluconic acid (GA) production and tricalcium phosphate solubilization but only in the presence of stationary phase ER2 cells. GA production in DH5alpha (pKG3791) was apparently the result of the quinoprotein glucose dehydrogenase activity because AG121 (a Tn5 knockout of gcd) carrying pKG3791 did not produce GA under the same conditions. GA production by DH5alpha (pKG3791) was not observed when ER2 was replaced by another PQQ-producing strain bacterium. These data add to a growing body of evidence that E. coli contains some type of PQQ biosynthesis pathway distinct from those previously characterized in Gram-negative bacteria and that these genes may be induced under appropriate conditions.

  11. The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants.

    PubMed

    Wang, Qing-Jie; Sun, Hong; Dong, Qing-Long; Sun, Tian-Yu; Jin, Zhong-Xin; Hao, Yu-Jin; Yao, Yu-Xin

    2016-10-01

    In this study, we characterized the role of an apple cytosolic malate dehydrogenase gene (MdcyMDH) in the tolerance to salt and cold stresses and investigated its regulation mechanism in stress tolerance. The MdcyMDH transcript was induced by mild cold and salt treatments, and MdcyMDH-overexpressing apple plants possessed improved cold and salt tolerance compared to wild-type (WT) plants. A digital gene expression tag profiling analysis revealed that MdcyMDH overexpression largely altered some biological processes, including hormone signal transduction, photosynthesis, citrate cycle and oxidation-reduction. Further experiments verified that MdcyMDH overexpression modified the mitochondrial and chloroplast metabolisms and elevated the level of reducing power, primarily caused by increased ascorbate and glutathione, as well as the increased ratios of ascorbate/dehydroascorbate and glutathione/glutathione disulphide, under normal and especially stress conditions. Concurrently, the transgenic plants produced a high H2 O2 content, but a low O2·- production rate was observed compared to the WT plants. On the other hand, the transgenic plants accumulated more free and total salicylic acid (SA) than the WT plants under normal and stress conditions. Taken together, MdcyMDH conferred the transgenic apple plants a higher stress tolerance by producing more reductive redox states and increasing the SA level; MdcyMDH could serve as a target gene to genetically engineer salt- and cold-tolerant trees. PMID:26923485

  12. Oligosaccharide-based Surfactant/Citric Acid Buffer System Stabilizes Lactate Dehydrogenase during Freeze-drying and Storage without the Addition of Natural Sugar.

    PubMed

    Ogawa, Shigesaburo; Kawai, Ryuichiro; Koga, Maito; Asakura, Kouichi; Takahashi, Isao; Osanai, Shuichi

    2016-06-01

    Experiments were conducted to assess the maintenance effects of oligosaccharide-based surfactants on the enzymatic activity of a model protein, lactate dehydrogenase (LDH), during freeze-drying and room temperature storage using the citric acid buffer system. Oligosaccharide-based surfactants, which exhibit a high glass transition temperature (Tg), promoted the eminent retention of enzymatic activity during these protocols, whereas monosaccharide-based surfactants with a low Tg displayed poor performance at high concentration, albeit much better than that of Tween 80 at middle concentration. The increase in the alkyl chain length did not exert positive effects as observed for the maintenance effect during freeze-thawing, but an amphiphilic nature and a glass forming ability were crucial for the effective stabilization at a low excipient concentration during freeze-drying. Even a low oligosaccharide-based surfactant content (0.1 mg mL(-1)) could maintain LDH activity during freeze-drying, but a high surfactant content (1.0 mg mL(-1)) was required to prevent buffer precipitation and retain high LDH activity on storage. Regarding storage, glass formation restricted molecular mobility in the lyophilized matrix, and LDH activity was effectively retained. The present results describe a strategy based on the glass-forming ability of surfactant-type excipients that affords a natural sugar-free formulation or an alternative use for polysorbate-type surfactants.

  13. Metabolism of branched-chain amino acids and ammonia during exercise: clues from McArdle's disease.

    PubMed

    Wagenmakers, A J; Coakley, J H; Edwards, R H

    1990-05-01

    Patients with McArdle's disease (myophosphorylase deficiency) cannot use muscle glycogen as an energy source during exercise. They therefore are an ideal model to learn about the metabolic adaptations which develop during endurance exercise leading to glycogen depletion. This review summarizes the current knowledge of ammonia and amino acid metabolism in these patients and also adds several new data. During incremental exercise tests in patients with McArdle's disease, forearm venous plasma ammonia concentration rises to a value between 200 and 500 microM. Femoral arteriovenous difference studies show that muscle produces the ammonia. The leg release of both ammonia and glutamine (in mumol/min) has been estimated to be five- to tenfold larger in one of these patients than in healthy individuals exercising at comparable relative work load. Patients with McArdle's disease have a larger uptake of branched-chain amino acids (BCAA) by exercising leg muscles and show a more rapid activation of the muscle branched-chain 2-oxo acid dehydrogenase complex, a key enzyme in the degradation of the BCAA. In general, supplements of BCAA taken before the exercise test lead to a deterioration of exercise performance and a higher increase in heart rate and plasma ammonia during exercise, whereas supplements of branched-chain 2-oxo acids improve exercise performance and lead to a smaller increase in heart rate and plasma ammonia. At constant power output, patients with McArdle's disease show a rapid increase in heart rate and exertion perceived in the exercising muscles, which peak within 10 min after the start of exercise and then fall again ("second wind"). Peak heart rate and peak exertion coincide with a peak in plasma ammonia. Ammonia production during exercise in these patients is estimated to exceed the reported breakdown of ATP to IMP and therefore most likely originates from the metabolism of amino acids. Deamination of amino acids via the reactions of the purine nucleotide

  14. Amino acid residues interacting with both the bound quinone and coenzyme, pyrroloquinoline quinone, in Escherichia coli membrane-bound glucose dehydrogenase.

    PubMed

    Mustafa, Golam; Ishikawa, Yoshinori; Kobayashi, Kazuo; Migita, Catharina T; Elias, M D; Nakamura, Satsuki; Tagawa, Seiichi; Yamada, Mamoru

    2008-08-01

    The Escherichia coli membrane-bound glucose dehydrogenase (mGDH) as the primary component of the respiratory chain possesses a tightly bound ubiquinone (UQ) flanking pyrroloquinoline quinone (PQQ) as a coenzyme. Several mutants for Asp-354, Asp-466, and Lys-493, located close to PQQ, that were constructed by site-specific mutagenesis were characterized by enzymatic, pulse radiolysis, and EPR analyses. These mutants retained almost no dehydrogenase activity or ability of PQQ reduction. CD and high pressure liquid chromatography analyses revealed that K493A, D466N, and D466E mutants showed no significant difference in molecular structure from that of the wild-type mGDH but showed remarkably reduced content of bound UQ. A radiolytically generated hydrated electron (e(aq)(-)) reacted with the bound UQ of the wild enzyme and K493R mutant to form a UQ neutral semiquinone with an absorption maximum at 420 nm. Subsequently, intramolecular electron transfer from the bound UQ semiquinone to PQQ occurred. In K493R, the rate of UQ to PQQ electron transfer is about 4-fold slower than that of the wild enzyme. With D354N and D466N mutants, on the other hand, transient species with an absorption maximum at 440 nm, a characteristic of the formation of a UQ anion radical, appeared in the reaction of e(aq)(-), although the subsequent intramolecular electron transfer was hardly affected. This indicates that D354N and D466N are prevented from protonation of the UQ semiquinone radical. Moreover, EPR spectra showed that mutations on Asp-466 or Lys-493 residues changed the semiquinone state of bound UQ. Taken together, we reported here for the first time the existence of a semiquinone radical of bound UQ in purified mGDH and the difference in protonation of ubisemiquinone radical because of mutations in two different amino acid residues, located around PQQ. Furthermore, based on the present results and the spatial arrangement around PQQ, Asp-466 and Lys-493 are suggested to interact both

  15. Investigation of potential mechanisms regulating protein expression of hepatic pyruvate dehydrogenase kinase isoforms 2 and 4 by fatty acids and thyroid hormone.

    PubMed Central

    Holness, Mark J; Bulmer, Karen; Smith, Nicholas D; Sugden, Mary C

    2003-01-01

    Liver contains two pyruvate dehydrogenase kinases (PDKs), namely PDK2 and PDK4, which regulate glucose oxidation through inhibitory phosphorylation of the pyruvate dehydrogenase complex (PDC). Starvation increases hepatic PDK2 and PDK4 protein expression, the latter occurring, in part, via a mechanism involving peroxisome proliferator-activated receptor-alpha (PPARalpha). High-fat feeding and hyperthyroidism, which increase circulating lipid supply, enhance hepatic PDK2 protein expression, but these increases are insufficient to account for observed increases in hepatic PDK activity. Enhanced expression of PDK4, but not PDK2, occurs in part via a mechanism involving PPAR-alpha. Heterodimerization partners for retinoid X receptors (RXRs) include PPARalpha and thyroid-hormone receptors (TRs). We therefore investigated the responses of hepatic PDK protein expression to high-fat feeding and hyperthyroidism in relation to hepatic lipid delivery and disposal. High-fat feeding increased hepatic PDK2, but not PDK4, protein expression whereas hyperthyroidism increased both hepatic PDK2 and PDK4 protein expression. Both manipulations decreased the sensitivity of hepatic carnitine palmitoyltransferase I (CPT I) to suppression by malonyl-CoA, but only hyperthyrodism elevated plasma fatty acid and ketone-body concentrations and CPT I maximal activity. Administration of the selective PPAR-alpha activator WY14,643 significantly increased PDK4 protein to a similar extent in both control and high-fat-fed rats, but WY14,643 treatment and hyperthyroidism did not have additive effects on hepatic PDK4 protein expression. PPARalpha activation did not influence hepatic PDK2 protein expression in euthyroid rats, suggesting that up-regulation of PDK2 by hyperthyroidism does not involve PPARalpha, but attenuated the effect of hyperthyroidism to increase hepatic PDK2 expression. The results indicate that hepatic PDK4 up-regulation can be achieved by heterodimerization of either PPARalpha or

  16. Investigation of potential mechanisms regulating protein expression of hepatic pyruvate dehydrogenase kinase isoforms 2 and 4 by fatty acids and thyroid hormone.

    PubMed

    Holness, Mark J; Bulmer, Karen; Smith, Nicholas D; Sugden, Mary C

    2003-02-01

    Liver contains two pyruvate dehydrogenase kinases (PDKs), namely PDK2 and PDK4, which regulate glucose oxidation through inhibitory phosphorylation of the pyruvate dehydrogenase complex (PDC). Starvation increases hepatic PDK2 and PDK4 protein expression, the latter occurring, in part, via a mechanism involving peroxisome proliferator-activated receptor-alpha (PPARalpha). High-fat feeding and hyperthyroidism, which increase circulating lipid supply, enhance hepatic PDK2 protein expression, but these increases are insufficient to account for observed increases in hepatic PDK activity. Enhanced expression of PDK4, but not PDK2, occurs in part via a mechanism involving PPAR-alpha. Heterodimerization partners for retinoid X receptors (RXRs) include PPARalpha and thyroid-hormone receptors (TRs). We therefore investigated the responses of hepatic PDK protein expression to high-fat feeding and hyperthyroidism in relation to hepatic lipid delivery and disposal. High-fat feeding increased hepatic PDK2, but not PDK4, protein expression whereas hyperthyroidism increased both hepatic PDK2 and PDK4 protein expression. Both manipulations decreased the sensitivity of hepatic carnitine palmitoyltransferase I (CPT I) to suppression by malonyl-CoA, but only hyperthyrodism elevated plasma fatty acid and ketone-body concentrations and CPT I maximal activity. Administration of the selective PPAR-alpha activator WY14,643 significantly increased PDK4 protein to a similar extent in both control and high-fat-fed rats, but WY14,643 treatment and hyperthyroidism did not have additive effects on hepatic PDK4 protein expression. PPARalpha activation did not influence hepatic PDK2 protein expression in euthyroid rats, suggesting that up-regulation of PDK2 by hyperthyroidism does not involve PPARalpha, but attenuated the effect of hyperthyroidism to increase hepatic PDK2 expression. The results indicate that hepatic PDK4 up-regulation can be achieved by heterodimerization of either PPARalpha or

  17. A comparison of potato and vertebrate lactate dehydrogenases.

    PubMed Central

    Poerio, E; Davies, D D

    1980-01-01

    A 2000-fold purification of L(+)-lactate dehydrogenase from potatoes is reported. Five isoenzymes of lactate dehydrogenase can be detected in crude extracts of potato, and three of these are present in the purified preparation. The enzyme (mol.wt. 150 000), which is composed of four subunits (mol.wt. 37 500), is active with the same oxo acids and hydroxy acids that have been reported as substrates with the same oxo acids and hydroxy acids that have been reported as substrates for vertebrate lactate dehydrogenases. These similarities between potato and vertebrate lactate dehydrogenases contrast sharply with some other reports on potato lactate dehydrogenase. These discrepancies are discussed in relation to the proposition that vertebrate and potato lactate dehydrogenases share a common evolutionary origin. PMID:7236200

  18. A Spontaneous Missense Mutation in Branched Chain Keto Acid Dehydrogenase Kinase in the Rat Affects Both the Central and Peripheral Nervous Systems.

    PubMed

    Zigler, J Samuel; Hodgkinson, Colin A; Wright, Megan; Klise, Andrew; Sundin, Olof; Broman, Karl W; Hejtmancik, Fielding; Huang, Hao; Patek, Bonnie; Sergeev, Yuri; Hose, Stacey; Brayton, Cory; Xaiodong, Jiao; Vasquez, David; Maragakis, Nicholas; Mori, Susumu; Goldman, David; Hoke, Ahmet; Sinha, Debasish

    2016-01-01

    A novel mutation, causing a phenotype we named frogleg because its most obvious characteristic is a severe splaying of the hind limbs, arose spontaneously in a colony of Sprague-Dawley rats. Frogleg is a complex phenotype that includes abnormalities in hind limb function, reduced brain weight with dilated ventricles and infertility. Using micro-satellite markers spanning the entire rat genome, the mutation was mapped to a region of rat chromosome 1 between D1Rat131 and D1Rat287. Analysis of whole genome sequencing data within the linkage interval, identified a missense mutation in the branched-chain alpha-keto dehydrogenase kinase (Bckdk) gene. The protein encoded by Bckdk is an integral part of an enzyme complex located in the mitochondrial matrix of many tissues which regulates the levels of the branched-chain amino acids (BCAAs), leucine, isoleucine and valine. BCAAs are essential amino acids (not synthesized by the body), and circulating levels must be tightly regulated; levels that are too high or too low are both deleterious. BCKDK phosphorylates Ser293 of the E1α subunit of the BCKDH protein, which catalyzes the rate-limiting step in the catabolism of the BCAAs, inhibiting BCKDH and thereby, limiting breakdown of the BCAAs. In contrast, when Ser293 is not phosphorylated, BCKDH activity is unchecked and the levels of the BCAAs will decrease dramatically. The mutation is located within the kinase domain of Bckdk and is predicted to be damaging. Consistent with this, we show that in rats homozygous for the mutation, phosphorylation of BCKDH in the brain is markedly decreased relative to wild type or heterozygous littermates. Further, circulating levels of the BCAAs are reduced by 70-80% in animals homozygous for the mutation. The frogleg phenotype shares important characteristics with a previously described Bckdk knockout mouse and with human subjects with Bckdk mutations. In addition, we report novel data regarding peripheral neuropathy of the hind limbs

  19. Leucine-induced activation of translational initiation is partly regulated by the branched-chain {alpha}-keto acid dehydrogenase complex in C2C12 cells

    SciTech Connect

    Nakai, Naoya . E-mail: nakai@hss.osaka-u.ac.jp; Shimomura, Yoshiharu; Tamura, Tomohiro; Tamura, Noriko; Hamada, Koichiro; Kawano, Fuminori; Ohira, Yoshinobu

    2006-05-19

    Branched-chain amino acid leucine has been shown to activate the translational regulators through the mammalian target of rapamycin. However, the leucine's effects are self-limiting because leucine promotes its own disposal by an oxidative pathway. The irreversible and rate-limiting step in the leucine oxidation pathway is catalyzed by the branched-chain {alpha}-keto acid dehydrogenase (BCKDH) complex. The complex contains E1 ({alpha}2{beta}2), E2, and E3 subunits, and its activity is abolished by phosphorylation of the E1{alpha} subunit by BCKDH kinase. The relationship between the activity of BCKDH complex and leucine-mediated activation of the protein translation was investigated using the technique of RNA interference. The activity of BCKDH complex in C2C12 cell was modulated by transfection of small interfering RNA (siRNA) for BCKDH E2 subunit or BCKDH kinase. Transfection of siRNAs decreased the mRNA expression and protein amount of corresponding gene. Suppression of either E2 subunit or kinase produced opposite effects on the cell proliferation and the activation of translational regulators by leucine. Suppression of BCKDH kinase for 48 h resulted in decreasing cell proliferation. In contrast, E2 suppression led to increased amount of total cellular protein. The phosphorylation of p70 S6 kinase by leucine was increased in E2-siRNA transfected C2C12 cells, whereas the leucine's effect was diminished in kinase-siRNA transfected cells. These results suggest that the activation of the translational regulators by leucine was partly regulated by the activity of BCKDH complex.

  20. Structural and Functional Studies of WlbA: A Dehydrogenase Involved in the Biosynthesis of 2,3-Diacetamido-2,3-dideoxy-d-mannuronic Acid

    SciTech Connect

    Thoden, James B.; Holden, Hazel M.

    2010-09-08

    2,3-Diacetamido-2,3-dideoxy-D-mannuronic acid (ManNAc3NAcA) is an unusual dideoxy sugar first identified nearly 30 years ago in the lipopolysaccharide of Pseudomonas aeruginosa O:3a,d. It has since been observed in other organisms, including Bordetella pertussis, the causative agent of whooping cough. Five enzymes are required for the biosynthesis of UDP-ManNAc3NAcA starting from UDP-N-acetyl-D-glucosamine. Here we describe a structural study of WlbA, the NAD-dependent dehydrogenase that catalyzes the second step in the pathway, namely, the oxidation of the C-3{prime} hydroxyl group on the UDP-linked sugar to a keto moiety and the reduction of NAD{sup +} to NADH. This enzyme has been shown to use {alpha}-ketoglutarate as an oxidant to regenerate the oxidized dinucleotide. For this investigation, three different crystal structures were determined: the enzyme with bound NAD(H), the enzyme in a complex with NAD(H) and {alpha}-ketoglutarate, and the enzyme in a complex with NAD(H) and its substrate (UDP-N-acetyl-D-glucosaminuronic acid). The tetrameric enzyme assumes an unusual quaternary structure with the dinucleotides positioned quite closely to one another. Both {alpha}-ketoglutarate and the UDP-linked sugar bind in the WlbA active site with their carbon atoms (C-2 and C-3{prime}, respectively) abutting the re face of the cofactor. They are positioned {approx}3 {angstrom} from the nicotinamide C-4. The UDP-linked sugar substrate adopts a highly unusual curved conformation when bound in the WlbA active site cleft. Lys 101 and His 185 most likely play key roles in catalysis.

  1. A Spontaneous Missense Mutation in Branched Chain Keto Acid Dehydrogenase Kinase in the Rat Affects Both the Central and Peripheral Nervous Systems

    PubMed Central

    Zigler, J. Samuel; Hodgkinson, Colin A.; Wright, Megan; Klise, Andrew; Broman, Karl W.; Huang, Hao; Patek, Bonnie; Sergeev, Yuri; Hose, Stacey; Xaiodong, Jiao; Vasquez, David; Maragakis, Nicholas; Mori, Susumu; Goldman, David; Sinha, Debasish

    2016-01-01

    A novel mutation, causing a phenotype we named frogleg because its most obvious characteristic is a severe splaying of the hind limbs, arose spontaneously in a colony of Sprague-Dawley rats. Frogleg is a complex phenotype that includes abnormalities in hind limb function, reduced brain weight with dilated ventricles and infertility. Using micro-satellite markers spanning the entire rat genome, the mutation was mapped to a region of rat chromosome 1 between D1Rat131 and D1Rat287. Analysis of whole genome sequencing data within the linkage interval, identified a missense mutation in the branched-chain alpha-keto dehydrogenase kinase (Bckdk) gene. The protein encoded by Bckdk is an integral part of an enzyme complex located in the mitochondrial matrix of many tissues which regulates the levels of the branched-chain amino acids (BCAAs), leucine, isoleucine and valine. BCAAs are essential amino acids (not synthesized by the body), and circulating levels must be tightly regulated; levels that are too high or too low are both deleterious. BCKDK phosphorylates Ser293 of the E1α subunit of the BCKDH protein, which catalyzes the rate-limiting step in the catabolism of the BCAAs, inhibiting BCKDH and thereby, limiting breakdown of the BCAAs. In contrast, when Ser293 is not phosphorylated, BCKDH activity is unchecked and the levels of the BCAAs will decrease dramatically. The mutation is located within the kinase domain of Bckdk and is predicted to be damaging. Consistent with this, we show that in rats homozygous for the mutation, phosphorylation of BCKDH in the brain is markedly decreased relative to wild type or heterozygous littermates. Further, circulating levels of the BCAAs are reduced by 70–80% in animals homozygous for the mutation. The frogleg phenotype shares important characteristics with a previously described Bckdk knockout mouse and with human subjects with Bckdk mutations. In addition, we report novel data regarding peripheral neuropathy of the hind limbs

  2. A Spontaneous Missense Mutation in Branched Chain Keto Acid Dehydrogenase Kinase in the Rat Affects Both the Central and Peripheral Nervous Systems.

    PubMed

    Zigler, J Samuel; Hodgkinson, Colin A; Wright, Megan; Klise, Andrew; Sundin, Olof; Broman, Karl W; Hejtmancik, Fielding; Huang, Hao; Patek, Bonnie; Sergeev, Yuri; Hose, Stacey; Brayton, Cory; Xaiodong, Jiao; Vasquez, David; Maragakis, Nicholas; Mori, Susumu; Goldman, David; Hoke, Ahmet; Sinha, Debasish

    2016-01-01

    A novel mutation, causing a phenotype we named frogleg because its most obvious characteristic is a severe splaying of the hind limbs, arose spontaneously in a colony of Sprague-Dawley rats. Frogleg is a complex phenotype that includes abnormalities in hind limb function, reduced brain weight with dilated ventricles and infertility. Using micro-satellite markers spanning the entire rat genome, the mutation was mapped to a region of rat chromosome 1 between D1Rat131 and D1Rat287. Analysis of whole genome sequencing data within the linkage interval, identified a missense mutation in the branched-chain alpha-keto dehydrogenase kinase (Bckdk) gene. The protein encoded by Bckdk is an integral part of an enzyme complex located in the mitochondrial matrix of many tissues which regulates the levels of the branched-chain amino acids (BCAAs), leucine, isoleucine and valine. BCAAs are essential amino acids (not synthesized by the body), and circulating levels must be tightly regulated; levels that are too high or too low are both deleterious. BCKDK phosphorylates Ser293 of the E1α subunit of the BCKDH protein, which catalyzes the rate-limiting step in the catabolism of the BCAAs, inhibiting BCKDH and thereby, limiting breakdown of the BCAAs. In contrast, when Ser293 is not phosphorylated, BCKDH activity is unchecked and the levels of the BCAAs will decrease dramatically. The mutation is located within the kinase domain of Bckdk and is predicted to be damaging. Consistent with this, we show that in rats homozygous for the mutation, phosphorylation of BCKDH in the brain is markedly decreased relative to wild type or heterozygous littermates. Further, circulating levels of the BCAAs are reduced by 70-80% in animals homozygous for the mutation. The frogleg phenotype shares important characteristics with a previously described Bckdk knockout mouse and with human subjects with Bckdk mutations. In addition, we report novel data regarding peripheral neuropathy of the hind limbs.

  3. The catabolic function of the alpha-aminoadipic acid pathway in plants is associated with unidirectional activity of lysine-oxoglutarate reductase, but not saccharopine dehydrogenase.

    PubMed Central

    Zhu, X; Tang, G; Galili, G

    2000-01-01

    Whereas plants and animals use the alpha-aminoadipic acid pathway to catabolize lysine, yeast and fungi use the very same pathway to synthesize lysine. These two groups of organisms also possess structurally distinct forms of two enzymes in this pathway, namely lysine-oxoglutarate reductase (lysine-ketoglutarate reductase; LKR) and saccharopine dehydrogenase (SDH): in plants and animals these enzymes are linked on to a single bifunctional polypeptide, while in yeast and fungi they exist as separate entities. In addition, yeast LKR and SDH possess bi-directional activities, and their anabolic function is regulated by complex transcriptional and post-transcriptional controls, which apparently ascertain differential accumulation of intermediate metabolites; in plants, the regulation of the catabolic function of these two enzymes is not known. To elucidate the regulation of the catabolic function of plant bifunctional LKR/SDH enzymes, we have used yeast as an expression system to test whether a plant LKR/SDH also possesses bi-directional LKR and SDH activities, similar to the yeast enzymes. The Arabidopsis enzyme complemented a yeast SDH, but not LKR, null mutant. Identical results were obtained when deletion mutants encoding only the LKR or SDH domains of this bifunctional polypeptide were expressed individually in the yeast cells. Moreover, activity assays showed that the Arabidopsis LKR possessed catabolic, but not anabolic, activity, and its uni-directional activity stems from its structure rather than its linkage to SDH. Our results suggest that the uni-directional activity of LKR plays an important role in regulating the catabolic function of the alpha-amino adipic acid pathway in plants. PMID:10998364

  4. Convergent evolution of Trichomonas vaginalis lactate dehydrogenase from malate dehydrogenase

    PubMed Central

    Wu, Gang; Fiser, András; ter Kuile, Benno; Šali, Andrej; Müller, Miklós

    1999-01-01

    Lactate dehydrogenase (LDH) is present in the amitochondriate parasitic protist Trichomonas vaginalis and some but not all other trichomonad species. The derived amino acid sequence of T. vaginalis LDH (TvLDH) was found to be more closely related to the cytosolic malate dehydrogenase (MDH) of the same species than to any other LDH. A key difference between the two T. vaginalis sequences was that Arg91 of MDH, known to be important in coordinating the C-4 carboxyl of oxalacetate/malate, was replaced by Leu91 in LDH. The change Leu91Arg by site-directed mutagenesis converted TvLDH into an MDH. The reverse single amino acid change Arg91Leu in TvMDH, however, gave a product with no measurable LDH activity. Phylogenetic reconstructions indicate that TvLDH arose from an MDH relatively recently. PMID:10339579

  5. Alteration of substrate specificity of alanine dehydrogenase

    PubMed Central

    Fernandes, Puja; Aldeborgh, Hannah; Carlucci, Lauren; Walsh, Lauren; Wasserman, Jordan; Zhou, Edward; Lefurgy, Scott T.; Mundorff, Emily C.

    2015-01-01

    The l-alanine dehydrogenase (AlaDH) has a natural history that suggests it would not be a promising candidate for expansion of substrate specificity by protein engineering: it is the only amino acid dehydrogenase in its fold family, it has no sequence or structural similarity to any known amino acid dehydrogenase, and it has a strong preference for l-alanine over all other substrates. By contrast, engineering of the amino acid dehydrogenase superfamily members has produced catalysts with expanded substrate specificity; yet, this enzyme family already contains members that accept a broad range of substrates. To test whether the natural history of an enzyme is a predictor of its innate evolvability, directed evolution was carried out on AlaDH. A single mutation identified through molecular modeling, F94S, introduced into the AlaDH from Mycobacterium tuberculosis (MtAlaDH) completely alters its substrate specificity pattern, enabling activity toward a range of larger amino acids. Saturation mutagenesis libraries in this mutant background additionally identified a double mutant (F94S/Y117L) showing improved activity toward hydrophobic amino acids. The catalytic efficiencies achieved in AlaDH are comparable with those that resulted from similar efforts in the amino acid dehydrogenase superfamily and demonstrate the evolvability of MtAlaDH specificity toward other amino acid substrates. PMID:25538307

  6. Synthesis, characterization and spectroscopic behavior of novel 2-oxo-1,4-disubstituted-1,2,5,6-tetrahydrobenzo[h]quinoline-3-carbonitrile dyes

    NASA Astrophysics Data System (ADS)

    Khan, Salman A.; Asiri, Abdullah M.; Al-Thaqafy, Saad H.; Faidallah, Hassan M.; El-Daly, Samy A.

    2014-12-01

    Two synthetic pathways were adopted to synthesize the target 2-oxo-1,4-disubstituted-1,2,5,6-tetrahydro-benzo[h]quinoline-3-carbonitriles. Structure of the synthesized compounds has been characterized based on FT-IR, 1H NMR, 13C NMR and elemental analyses. UV-Vis and fluorescence spectroscopy measurements provided that all compounds are good absorbent and fluorescent. Fluorescence polarity study demonstrated that these compounds were sensitive to the polarity of the microenvironment provided by different solvents. In addition, spectroscopic and physicochemical parameters, including singlet absorption, extinction coefficient, Stokes shift, oscillator strength and dipole moment were investigated in order to explore the analytical potential of synthesized compounds.

  7. Synthesis, characterization and spectroscopic behavior of novel 2-oxo-1,4-disubstituted-1,2,5,6-tetrahydrobenzo[h]quinoline-3-carbonitrile dyes.

    PubMed

    Khan, Salman A; Asiri, Abdullah M; Al-Thaqafy, Saad H; Faidallah, Hassan M; El-Daly, Samy A

    2014-12-10

    Two synthetic pathways were adopted to synthesize the target 2-oxo-1,4-disubstituted-1,2,5,6-tetrahydro-benzo[h]quinoline-3-carbonitriles. Structure of the synthesized compounds has been characterized based on FT-IR, (1)H NMR, (13)C NMR and elemental analyses. UV-Vis and fluorescence spectroscopy measurements provided that all compounds are good absorbent and fluorescent. Fluorescence polarity study demonstrated that these compounds were sensitive to the polarity of the microenvironment provided by different solvents. In addition, spectroscopic and physicochemical parameters, including singlet absorption, extinction coefficient, Stokes shift, oscillator strength and dipole moment were investigated in order to explore the analytical potential of synthesized compounds. PMID:24934972

  8. 2-oxo-N-aryl-1,2,3,4-tetrahydroquinoline-6-sulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase

    PubMed Central

    Walsh, Martin J.; Brimacombe, Kyle R.; Veith, Henrike; Bougie, James M.; Daniel, Thomas; Leister, William; Cantley, Lewis C.; Israelsen, William J.; Vander Heiden, Matthew G.; Shen, Min; Auld, Douglas S.; Thomas, Craig J.; Boxer, Matthew B.

    2011-01-01

    Compared to normal differentiated cells, cancer cells have altered metabolic regulation to support biosynthesis and the expression of the M2 isozyme of pyruvate kinase (PKM2) plays an important role in this anabolic metabolism. While the M1 isoform is a highly active enzyme, the alternatively spliced M2 variant is considerably less active and expressed in tumors. While the exact mechanism by which decreased pyruvate kinase activity contributes to anabolic metabolism remains unclear, it is hypothesized that activation of PKM2 to levels seen with PKM1 may promote a metabolic program that is not conducive to cell proliferation. Here we report the third chemotype in a series of PKM2 activators based on the 2-oxo-N-aryl-1,2,3,4-tetrahydroquinoline-6-sulfonamide scaffold. The synthesis, structure activity relationships, selectivity and notable physiochemical properties are described. PMID:21958545

  9. Shikimate dehydrogenase from Pinu sylvestris L. needles

    SciTech Connect

    Osipov, V.I.; Shein, I.V.

    1986-07-10

    Shikimate dehydrogenase was isolated by extraction from pine needles and partially purified by fractionation with ammonium sulfate. In conifers, in contrast to other plants, all three isoenzymes of shikimate dehydrogenase exhibit activity not only with NADP/sup +/, but also with NAD/sup +/. The values of K/sub m/ for shikimate, when NADP/sup +/ and NAD/sup +/ are used as cofactors, are 0.22 and 1.13 mM, respectively. The enzyme is maximally active at pH 10 with both cofactors. It is suggested that NAD-dependent shikimate dehydrogenase catalyzes the initial reaction of the alternative pathway of the conversion of shikimic acid to hydroxybenzoic acid. The peculiarities of the organization and regulation of the initial reactions of the shikimate pathway in conifers and in plants with shikimate dehydrogenase absolutely specific for NADP are discussed.

  10. Multiple retinoid dehydrogenases in testes cytosol from alcohol dehydrogenase negative or positive deermice.

    PubMed

    Posch, K C; Napoli, J L

    1992-05-28

    Retinoic acid syntheses from retinol by cytosol from testes of alcohol dehydrogenase negative or positive deermice were similar in specific activity and in their insensitivity to 1 M ethanol or 100 mM 4-methylpyrazole. Anion-exchange followed by size-exclusion chromatography revealed multiple and similarly migrating peaks in each cytosol that had both retinol and retinal dehydrogenase activities. Thus, the effects of ethanol on testes cannot be caused by direct inhibition of cytosolic retinoic acid synthesis because retinoid dehydrogenases distinct from mouse class A2 alcohol dehydrogenases, which corresponds to human class I, occurred in testes and they were not inhibited by ethanol. These data also demonstrate the occurrence of multiple cytosolic retinoic acid synthesis activities and indicate that the two reactions of cytosolic retinoic acid synthesis, retinol and retinal dehydrogenation, may be catalyzed by enzymes that occur as complexes. PMID:1599517

  11. 3, 4-dihydroxyl-phenyl lactic acid restores NADH dehydrogenase 1 α subunit 10 to ameliorate cardiac reperfusion injury.

    PubMed

    Yang, Xiao-Yuan; He, Ke; Pan, Chun-Shui; Li, Quan; Liu, Yu-Ying; Yan, Li; Wei, Xiao-Hong; Hu, Bai-He; Chang, Xin; Mao, Xiao-Wei; Huang, Dan-Dan; Wang, Li-Jun; Hu, Shui-Wang; Jiang, Yong; Wang, Guo-Cheng; Fan, Jing-Yu; Fan, Tai-Ping; Han, Jing-Yan

    2015-01-01

    The present study aimed to detect the role of 3, 4-dihydroxyl-phenyl lactic acid (DLA) during ischemia/reperfusion (I/R) induced myocardial injury with emphasis on the underlying mechanism of DLA antioxidant. Male Spragu-Dawley (SD) rats were subjected to left descending artery occlusion followed by reperfusion. Treatment with DLA ameliorated myocardial structure and function disorder, blunted the impairment of Complex I activity and mitochondrial function after I/R. The results of 2-D fluorescence difference gel electrophoresis revealed that DLA prevented the decrease in NDUFA10 expression, one of the subunits of Complex I. To find the target of DLA, the binding affinity of Sirtuin 1 (SIRT1) to DLA and DLA derivatives with replaced two phenolic hydroxyls was detected using surface plasmon resonance and bilayer interferometry. The results showed that DLA could activate SIRT1 after I/R probably by binding to this protein, depending on phenolic hydroxyl. Moreover, the importance of SIRT1 to DLA effectiveness was confirmed through siRNA transfection in vitro. These results demonstrated that DLA was able to prevent I/R induced decrease in NDUFA10 expression, improve Complex I activity and mitochondrial function, eventually attenuate cardiac structure and function injury after I/R, which was possibly related to its ability of binding to and activating SIRT1. PMID:26030156

  12. Folic acid supplementation during pregnancy induces sex-specific changes in methylation and expression of placental 11β-hydroxysteroid dehydrogenase 2 in rats.

    PubMed

    Penailillo, Reyna; Guajardo, Angelica; Llanos, Miguel; Hirsch, Sandra; Ronco, Ana Maria

    2015-01-01

    In the placenta, 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) limits fetal glucocorticoid exposure and its inhibition has been associated to low birth weight. Its expression, encoded by the HSD11B2 gene is regulated by DNA methylation. We hypothesized that maternal diets supplemented with folic acid (FA) during pregnancy modify the expression of placental HSD11B2 through gene methylation. Wistar rats were fed with high (8 mg/kg) or normal low (1mg/kg, control) levels of FA during pregnancy. Concentrations of mRNA and protein in placentas were determined by qRT-PCR and Western blot respectively. Methylation in five CpG sites of the placental HSD11B2 promoter (-378 to -275) was analyzed by bacterial cloning and subsequent sequencing. In the FA-supplemented group, mRNA and protein levels of 11β-HSD2 decreased by 58% and increased by 89%, respectively, only in placentas attached to males. In controls, most CpG sites were not methylated except for the CpG2 site which was 80% methylated. CpG2 methylation level increased under the FA treatment; however, only in placentas attached to females was this increase significant (113%). This change was not related to HSD11B2 expression. Fetal weight of females from FA- supplemented mothers was 6% higher than females from control mothers. In conclusion, this is the first study reporting that FA over supplementation during pregnancy modifies the placental HSD11B2 gene expression and methylation in a sex-dependent manner, suggesting that maternal diets with high content of FA can induce early sex-specific responses, which may lead to long-term consequences for the offspring.

  13. An integrated bienzyme glucose oxidase-fructose dehydrogenase-tetrathiafulvalene-3-mercaptopropionic acid-gold electrode for the simultaneous determination of glucose and fructose.

    PubMed

    Campuzano, Susana; Loaiza, Oscar A; Pedrero, María; de Villena, F Javier Manuel; Pingarrón, José M

    2004-06-01

    A bienzyme biosensor for the simultaneous determination of glucose and fructose was developed by coimmobilising glucose oxidase (GOD), fructose dehydrogenase (FDH), and the mediator, tetrathiafulvalene (TTF), by cross-linking with glutaraldehyde atop a 3-mercaptopropionic acid (MPA) self-assembled monolayer (SAM) on a gold disk electrode (AuE). The performance of this bienzyme electrode under batch and flow injection (FI) conditions, as well as an amperometric detection in high-performance liquid chromatography (HPLC), are reported. The order of enzyme immobilisation atop the MPA-SAM affected the biosensor amperometric response in terms of sensitivity, with the immobilisation order GOD, FDH, TTF being selected. Similar analytical characteristics to those obtained with single GOD or FDH SAM-based biosensors for glucose and fructose were achieved with the bienzyme electrode, indicating that no noticeable changes in the biosensor responses to the analytes occurred as a consequence of the coimmobilisation of both enzymes on the same MPA-AuE. The suitability of the bienzyme biosensor for the analysis of real samples under flow injection conditions was tested by determining glucose in two certified serum samples. The simultaneous determination of glucose and fructose in the same sample cannot be performed without a separation step because at the detection potential used (+0.10 V), both sugars show amperometric response. Consequently, HPLC with amperometric detection at the TTF-FDH-GOD-MPA-AuE was accomplished. Glucose and fructose were simultaneously determined in honey, cola softdrink, and commercial apple juice, and the results were compared with those obtained by using other reference methods.

  14. Co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol using resting cells of recombinant Klebsiella pneumoniae J2B strain overexpressing aldehyde dehydrogenase.

    PubMed

    Kumar, Vinod; Sankaranarayanan, Mugesh; Jae, Kyeung-Eun; Durgapal, Meetu; Ashok, Somasundar; Ko, Yeounjoo; Sarkar, Ritam; Park, Sunghoon

    2012-10-01

    The co-production of 3-hydroxypropionic acid (3HP) and 1,3-propanediol (PDO) from glycerol was studied using the resting cells of a recombinant Klebsiella pneumoniae J2B strain that overexpresses an aldehyde dehydrogenase (KGSADH). Active biomass was produced in a mineral salt medium containing yeast extract and glycerol under a range of aeration conditions, and shifted to potassium phosphate buffer containing glycerol for bioconversion. The microaerobic or anaerobic conditions were favorable for both the production of active biomass and subsequent bioconversion. At the flask level, the recombinant strain (2.0 g CDW/L) grown under microaerobic conditions produced 43.2 mM 3HP and 59.0 mM PDO from glycerol (117 mM) in 30 min with a cumulative yield of 0.87 (mol/mol). The fed-batch bioconversion, which was performed in a 1.5-L bioreactor with 1.0 g CDW/L at a constant pH 7.0 under anaerobic conditions, resulted in 125.6 mM 3HP and 209.5 mM PDO in 12 h with a cumulative overall productivity, yield, and maximum specific production rate of 27.9 mmol/L/h, 0.71 (mol/mol), and 128.5 mmol/g CDW/h, respectively. Lactate, succinate and 2,3-butanediol were the major by-products, whereas the production of acetate and ethanol was marginal. This is the first report of the simultaneous production of 3HP and PDO from glycerol using a resting cell system.

  15. Amino acid substitutions in malate dehydrogenases of piezophilic bacteria isolated from intestinal contents of deep-sea fishes retrieved from the abyssal zone.

    PubMed

    Saito, Rie; Kato, Chiaki; Nakayama, Akihiko

    2006-02-01

    To examine the occurrence in other deep-sea bacteria of two amino acid substitutions (Ala-180 and His-229) in malate dehydrogenase (MDH) found previously in the deep-sea piezophilic Moritella sp. strain 2D2, we cloned and sequenced MDH genes of deep-sea piezophilic Moritella and Shewanella strains isolated from intestinal contents of deep-sea fishes, as well as other Moritella species from deep-sea water and sediments: M. marina, M. japonica, and M. yayanosii. The piezophilic Moritella strains had a Val residue or an Ala residue at position 180 and all the Moritella strains except for one had a His residue at position 229. However, four piezophilic-strain-specific substitutions at positions 103, 111, 229, and 283 were found to be completely conserved in the MDH of the intestinal Moritella strains of deep-sea fishes, indicating the substitutions may be habitat-specific. The piezophilic Shewanella strains had a Val residue and a Gln residue at positions 180 and 229, respectively. However, the MDHs of the Shewanella strains had five piezophilic-strain-specific substitutions at positions 61, 65, 107, 161, and 202. Therefore, the enzymatic strategies for responding to deep-sea high pressure environments of the MDHs between the genera Moritella and Shewanella are potentially different. Moreover, homology modeling shows these substitutions found in the MDHs of both genera except for position 229 in the subunit interface are located on the exposed region of the MDH molecules, indicating the substitutions may be related to the hydration state of the molecules. PMID:16598154

  16. Retinoic Acid and GM-CSF Coordinately Induce Retinal Dehydrogenase 2 (RALDH2) Expression through Cooperation between the RAR/RXR Complex and Sp1 in Dendritic Cells

    PubMed Central

    Ohoka, Yoshiharu; Yokota-Nakatsuma, Aya; Maeda, Naoko; Takeuchi, Hajime; Iwata, Makoto

    2014-01-01

    Retinoic acid (RA)-producing dendritic cells (DCs) play critical roles in gut immunity. Retinal dehydrogenase 2 (RALDH2) encoded by Aldh1a2 is a key enzyme for generating RA in DCs. Granulocyte–macrophage colony-stimulating factor (GM-CSF) potently induces RALDH2 expression in DCs in an RA-dependent manner, and RA alone weakly induces the expression. However, how GM-CSF and RA induce RALDH2 expression remains unclear. Here, we show that GM-CSF-induced activation of the transcription factor Sp1 and RA-dependent signaling via the RA receptor (RAR)/retinoid X receptor (RXR) complex contribute to Aldh1a2 expression. The RAR antagonist LE540 and the Sp1 inhibitor mithramycin A inhibited GM-CSF-induced Aldh1a2 expression in fms-related tyrosine kinase 3 ligand-generated bone marrow-derived DCs (BM-DCs). ERK and p38 MAPK inhibitors suppressed GM-CSF-induced nuclear translocation of Sp1 and Aldh1a2 expression. Sp1 and the RARα/RXRα complex bound to GC-rich Sp1-binding sites and an RA response element (RARE) half-site, respectively, near the TATA box in the mouse Aldh1a2 promoter. The DNA sequences around these sites were highly conserved among different species. In the presence of RA, ectopic expression of RARα/RXRα and Sp1 synergistically enhanced Aldh1a2 promoter-reporter activity. GM-CSF did not significantly induce Aldh1a2 expression in plasmacytoid DCs, peritoneal macrophages, or T cells, and the Aldh1a2 promoter in these cells was mostly unmethylated. These results suggest that GM-CSF/RA-induced RALDH2 expression in DCs requires cooperative binding of Sp1 and the RAR/RXR complex to the Aldh1a2 promoter, and can be regulated by a DNA methylation-independent mechanism. PMID:24788806

  17. Human liver alcohol dehydrogenase: amino acid substitution in the beta 2 beta 2 Oriental isozyme explains functional properties, establishes an active site structure, and parallels mutational exchanges in the yeast enzyme.

    PubMed Central

    Jörnvall, H; Hempel, J; Vallee, B L; Bosron, W F; Li, T K

    1984-01-01

    The homodimeric Oriental beta 2 beta 2 isozyme of human liver alcohol dehydrogenase, corresponding to an allelic variant at the ADH2 gene locus, was studied in order to define the amino acid exchange in relation to the beta 1 beta 1 isozyme, the predominant allelic form among Caucasians. Sequence analysis reveals that the amino acid substitution occurs at position 7 of the largest CNBr fragment, corresponding to position 47 of the whole protein chain. Here, the beta 2 form has a histidine residue, while, in common with other characterized mammalian liver alcohol dehydrogenases, the beta 1 form has an arginine residue. This exchange does not affect the adjacent cysteine-46 residue, which is a protein ligand to the active-site zinc atom, thus clarifying previously inconsistent results. The histidine/arginine-47 mutational replacement corresponds to a position that binds the pyrophosphate group of the coenzyme NAD(H); this explains the functional differences between the beta 1 beta 1 and beta 2 beta 2 isozymes, including both a lower pH optimum and higher turnover number of beta 2 beta 2, which is likely to be the mutant form. The exchange demonstrates the existence of parallel but separate mutations in the evolution of alcohol dehydrogenases because these mammalian enzymes differ at exactly the same position by the same type of substitution as is found between a mutant and the wild-type constitutive forms of the corresponding yeast enzyme. PMID:6374651

  18. Increased expression of hepatic pyruvate dehydrogenase kinases 2 and 4 in young and middle-aged Otsuka Long-Evans Tokushima Fatty rats: induction by elevated levels of free fatty acids.

    PubMed

    Bajotto, Gustavo; Murakami, Taro; Nagasaki, Masaru; Qin, Bolin; Matsuo, Yoshiyuki; Maeda, Ken; Ohashi, Masayo; Oshida, Yoshiharu; Sato, Yuzo; Shimomura, Yoshiharu

    2006-03-01

    The activity of the pyruvate dehydrogenase complex (PDC) is regulated by covalent modification of its E1 component, which is catalyzed by specific pyruvate dehydrogenase kinases (PDKs) and phosphatases. In the liver, PDK2 and PDK4 are the most abundant PDK isoforms, which are responsible for inactivation of PDC when glucose availability is scarce in the body. In the present study, regulatory mechanisms of hepatic PDC were examined before and after the onset of type 2 diabetes mellitus in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, using Long-Evans Tokushima Otsuka (LETO) rats as controls. Plasma glucose and insulin concentrations were at normal levels in rats aged 8 weeks, but were significantly higher in OLETF than in LETO rats aged 25 weeks, indicating insulin resistance in OLETF rats. Plasma free fatty acids (FFAs) were 1.6-fold concentrated, and the liver PDC activity was significantly lower in OLETF than in LETO rats at both ages, suggesting suppression of pyruvate oxidative decarboxylation in OLETF rats before and after the onset of diabetes. Pyruvate dehydrogenase kinase activity and abundance of PDK2 and PDK4 proteins, as well as mRNAs, were greater in OLETF rats at both ages. These results suggest that persistently elevated levels of circulating free fatty acid in normal and diabetic OLETF rats play an important role in stimulating PDK2 and PDK4 expression in liver. PMID:16483874

  19. Synthesis, Biological Evaluation, and Molecular Docking of 8-imino-2-oxo-2H,8H-pyrano[2,3-f]chromene Analogs: New Dual AChE Inhibitors as Potential Drugs for the Treatment of Alzheimer's Disease.

    PubMed

    Shaik, Jeelan Basha; Palaka, Bhagath Kumar; Penumala, Mohan; Eadlapalli, Siddhartha; Darla Mark, Manidhar; Ampasala, Dinakara Rao; Vadde, Ramakrishna; Amooru Gangaiah, Damu

    2016-07-01

    Alzheimer's disease onset and progression are associated with the dysregulation of multiple and complex physiological processes, and a successful therapeutic approach should therefore address more than one target. In line with this modern paradigm, a series of 8-imino-2-oxo-2H,8H-pyrano[2,3-f]chromene analogs (4a-q) were synthesized and evaluated for their multitarget-directed activity on acetylcholinesterase, butyrylcholinesterase (BuChE), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical, and amyloid-β peptide (Aβ) specific targets for Alzheimer's disease therapy. Most of the synthesized compounds showed remarkable acetylcholinesterase inhibitory activities in low nm concentrations and good ABTS radical scavenging activity, however, no evidence of BuChE inhibitory activity. Among them, 3-bromobenzylamide derivative 4m exhibited the best acetylcholinesterase inhibitory activity with IC50 value of 13 ± 1.4 nm which is 51-fold superior to galantamine, a reference drug. Kinetic and molecular docking studies indicated 4m as mixed-type inhibitor, binding simultaneously to catalytic active and peripheral anionic sites of acetylcholinesterase. Five compounds 4e, 4f, 4g, 4j, and 4k have shown 1.4- to 2.5-fold of higher antioxidant activities than trolox. Interestingly, the most active compound 4m demonstrated dosage-dependent acceleration of Aβ1-42 aggregation, which may reduce toxicity of oligomers. Overall, these results lead to discovery of fused tricyclic coumarins as promising dual binding site inhibitors of acetylcholinesterase and afford multifunctional compounds with potential impact for further pharmacological development in Alzheimer's therapy. PMID:26833890

  20. Safety, efficacy and physiological actions of a lysine-free, arginine-rich formula to treat glutaryl-CoA dehydrogenase deficiency: focus on cerebral amino acid influx.

    PubMed

    Strauss, Kevin A; Brumbaugh, Joan; Duffy, Alana; Wardley, Bridget; Robinson, Donna; Hendrickson, Christine; Tortorelli, Silvia; Moser, Ann B; Puffenberger, Erik G; Rider, Nicholas L; Morton, D Holmes

    2011-01-01

    Striatal degeneration from glutaryl-CoA dehydrogenase deficiency (glutaric aciduria type 1, GA1) is associated with cerebral formation and entrapment of glutaryl-CoA and its derivatives that depend on cerebral lysine influx. In 2006 we designed a lysine-free study formula enriched with arginine to selectively block lysine transport across cerebral endothelia and thereby limit glutaryl-CoA production by brain. Between 2006 and present, we treated twelve consecutive children with study formula (LYSx group) while holding all other treatment practices constant. Clinical and biochemical outcomes were compared to 25 GA1 patients (PROx group) treated between 1995 and 2005 with natural protein restriction (dietary lysine/arginine ratio of 1.7±0.3 mg:mg). We used published kinetic parameters of the y+and LAT1 blood-brain barrier transporters to model the influx of amino acids into the brain. Arginine fortification to achieve a mean dietary lysine/arginine ratio of 0.7±0.2 mg:mg was neuroprotective. All 12 LYSx patients are physically and neurologically healthy after 28 aggregate patient-years of follow up (current ages 28±21 months) and there were no adverse events related to formula use. This represents a 36% reduction of neurological risk (95% confidence interval 14-52%, p=0.018) that we can directly attribute to altered amino acid intake. During the first year of life, 20% lower lysine intake and two-fold higher arginine intake by LYSx patients were associated with 50% lower plasma lysine, 3-fold lower plasma lysine/arginine concentration ratio, 42% lower mean calculated cerebral lysine influx, 54% higher calculated cerebral arginine influx, 15-26% higher calculated cerebral influx of several anaplerotic precursors (isoleucine, threonine, methionine, and leucine), 50% less 3-hydroxyglutarate excretion, and a 3-fold lower hospitalization rate (0.8 versus 2.3 hospitalizations per patient per year). The relationship between arginine fortification and plasma lysine

  1. Detection of 11 beta-hydroxysteroid dehydrogenase type 1, the glucocorticoid and mineralocorticoid receptor in various adipose tissue depots of dairy cows supplemented with conjugated linoleic acids.

    PubMed

    Friedauer, K; Dänicke, S; Schulz, K; Sauerwein, H; Häussler, S

    2015-10-01

    Early lactating cows mobilize adipose tissue (AT) to provide energy for milk yield and maintenance and are susceptible to metabolic disorders and impaired immune response. Conjugated linoleic acids (CLA), mainly the trans-10, cis-12 isomer, reduce milk fat synthesis and may attenuate negative energy balance. Circulating glucocorticoids (GC) are increased during parturition in dairy cows and mediate differentiating and anti-inflammatory effects via glucocorticoid (GR) and mineralocorticoid receptors (MR) in the presence of the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1). Activated GC are the main ligands for both receptors in AT; therefore, we hypothesized that tissue-specific GC metabolism is effected by varying amounts of GR, MR and 11βHSD1 and/or their localization within AT depots. Furthermore, the lipolytic and antilipogenic effects of CLA might influence the GC/GR/MR system in AT. Therefore, we aimed to localize GR and MR as well as the expression pattern and activity of 11βHSD1 in different AT depots during early lactation in dairy cows and to identify potential effects of CLA. Primiparous German Holstein cows were divided into a control (CON) and a CLA group. From day 1 post-partum (p.p.) until sample collection, the CLA group was fed with 100 g/d CLA (contains 10 g each of the cis-9, trans-11 and the trans-10, cis-12-CLA isomers). CON cows (n = 5 each) were slaughtered on day 1, 42 and 105 p.p., while CLA cows (n = 5 each) were slaughtered on day 42 and 105 p.p. Subcutaneous fat from tailhead, withers and sternum, and visceral fat from omental, mesenteric and retroperitoneal depots were sampled. The localization of GR and 11βHSD1 in mature adipocytes - being already differentiated - indicates that GC promote other effects via GR than differentiation. Moreover, MR were observed in the stromal vascular cell fraction and positively related to the pre-adipocyte marker Pref-1. However, only marginal CLA effects were observed in this study.

  2. Detection of 11 beta-hydroxysteroid dehydrogenase type 1, the glucocorticoid and mineralocorticoid receptor in various adipose tissue depots of dairy cows supplemented with conjugated linoleic acids.

    PubMed

    Friedauer, K; Dänicke, S; Schulz, K; Sauerwein, H; Häussler, S

    2015-10-01

    Early lactating cows mobilize adipose tissue (AT) to provide energy for milk yield and maintenance and are susceptible to metabolic disorders and impaired immune response. Conjugated linoleic acids (CLA), mainly the trans-10, cis-12 isomer, reduce milk fat synthesis and may attenuate negative energy balance. Circulating glucocorticoids (GC) are increased during parturition in dairy cows and mediate differentiating and anti-inflammatory effects via glucocorticoid (GR) and mineralocorticoid receptors (MR) in the presence of the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1). Activated GC are the main ligands for both receptors in AT; therefore, we hypothesized that tissue-specific GC metabolism is effected by varying amounts of GR, MR and 11βHSD1 and/or their localization within AT depots. Furthermore, the lipolytic and antilipogenic effects of CLA might influence the GC/GR/MR system in AT. Therefore, we aimed to localize GR and MR as well as the expression pattern and activity of 11βHSD1 in different AT depots during early lactation in dairy cows and to identify potential effects of CLA. Primiparous German Holstein cows were divided into a control (CON) and a CLA group. From day 1 post-partum (p.p.) until sample collection, the CLA group was fed with 100 g/d CLA (contains 10 g each of the cis-9, trans-11 and the trans-10, cis-12-CLA isomers). CON cows (n = 5 each) were slaughtered on day 1, 42 and 105 p.p., while CLA cows (n = 5 each) were slaughtered on day 42 and 105 p.p. Subcutaneous fat from tailhead, withers and sternum, and visceral fat from omental, mesenteric and retroperitoneal depots were sampled. The localization of GR and 11βHSD1 in mature adipocytes - being already differentiated - indicates that GC promote other effects via GR than differentiation. Moreover, MR were observed in the stromal vascular cell fraction and positively related to the pre-adipocyte marker Pref-1. However, only marginal CLA effects were observed in this study. PMID

  3. Crystal structures of 4-methyl-2-oxo-2H-chromene-7,8-diyl di­acetate and 4-methyl-2-oxo-2H-chromene-7,8-diyl bis­(pent-4-ynoate)

    PubMed Central

    Akinyemi, Akintunde; Thomas, Courtney; Marsh, Willis; Butcher, Ray J.; Jasinski, Jerry P.; Maynard-Smith, Lystranne A.

    2016-01-01

    In the structures of the two title coumarin derivatives, C14H12O6, (1), and C20H16O6, (2), one with acetate and the other with pent-4-ynoate substituents, both the coumarin rings are almost planar. In (1), both acetate substituents are significantly rotated out of the coumarin plane to minimize steric repulsions. One acetate substituent is disordered over two equivalent conformations, with occupancies of 0.755 (17) and 0.245 (17). In (2), there are two pent-4-ynoate substituents, the C C group of one being disordered over two positions with occupancies of 0.55 (2) and 0.45 (2). One of the pent-4-ynoate substituents is in an extended conformation, while the other is in a bent conformation. In this derivative, the planar part of both pent-4-ynoate substituents deviate from the coumarin plane. The packing of (1) is dominated by π–π stacking involving the coumarin rings and weak C—H⋯O contacts link the parallel stacks in the [101] direction. In contrast, in (2) the packing is dominated by R 2 2(24) hydrogen bonds, involving the acidic sp H atom and the oxo O atom, which link the mol­ecules into centrosymmetric dimers. The bent conformation of one of the pent-4-ynoate substituents prevents the coumarin rings from engaging in π–π stacking. PMID:27308023

  4. One-Pot Three-Component Synthesis of Novel Diethyl((2-oxo-1,2-dihydroquinolin-3-yl)(arylamino)methyl)phosphonate as Potential Anticancer Agents.

    PubMed

    Fang, Yi-Lin; Wu, Zhi-Lin; Xiao, Meng-Wu; Tang, Yu-Ting; Li, Kang-Ming; Ye, Jiao; Xiang, Jian-Nan; Hu, Ai-Xi

    2016-01-01

    With the aim of discovering new anticancer agents, we have designed and synthesized novel α-aminophosphonate derivatives containing a 2-oxoquinoline structure using a convenient one-pot three-component method. The newly synthesized compounds were evaluated for antitumor activities against the A549 (human lung adenocarcinoma cell), HeLa (human cervical carcinoma cell), MCF-7 (human breast cancer cell), and U2OS (human osteosarcoma cell) cancer cell lines in vitro, employing a standard 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The results of pharmacological screening indicated that many compounds exhibited moderate to high levels of antitumor activities against the tested cancer cell lines and that most compounds showed more potent inhibitory activities comparable to 5-fluorouracil (5-FU) which was used as a positive control. The mechanism of representative compound 4u (diethyl((2-oxo-1,2-dihydroquinolin-3-yl)(phenyl-amino)methyl)phosphonate) indicated that the compound mainly arrested HeLa cells in S and G2 stages and was accompanied by apoptosis in HeLa cells. This action was confirmed by acridine orange/ethidium bromide staining, Hoechst 33342 staining, and flow cytometry. PMID:27136538

  5. 2,2'-OXO-1,1'-azobenzene: Selective toxicity of rye (Secale cereale L.) allelochemicals to weed and crop species: II.

    PubMed

    Chase, W R; Nair, M G; Putnam, A R

    1991-01-01

    Three allelochemicals from rye or its breakdown products were evaluated for activity on garden cress (Lepidum sativum L.), barnyardgrass [Echinochloa crus-galli (L.) Beauv.], cucumber (Cucumis sativus L.), and snap bean (Phaseolus vulgaris L.). 2,4-Dihydroxy-1,4(2H)-benzoxazin-3-one (DIBOA), 2(3H)-benzoxazolinone (BOA), and 2,2'-oxo-1,1'-azobenzene (AZOB) were all applied singly at 50, 100, and 200 ppm and in two- and three-way combinations each at 50 and 100 ppm. AZOB at 100 and 200 ppm produced 38-49% more inhibition than DIBOA, while combinations of BOA/ DIBOA, which contained AZOB at 100 ppm had 54-90% more inhibition when compared to DIBOA/BOA combinations. All combinations were slightly antagonistic to barnyardgrass, while several combinations caused a synergistic response to garden cress germination and growth. Cucumbers and snap beans exhibited both types of responses, depending on the allelochemical combination and application rate. The plant-produced benzoxazinones were more inhibitory to crops than weeds. Therefore, improved herbicidal selectivity would be expected if there were rapid transformation of the benzoxazinones to the microbially produced AZOB.

  6. Inhibition of Chikungunya Virus Replication by 1-[(2-Methylbenzimidazol-1-yl) Methyl]-2-Oxo-Indolin-3-ylidene] Amino] Thiourea(MBZM-N-IBT)

    PubMed Central

    Mishra, Priyadarsee; Kumar, Abhishek; Mamidi, Prabhudutta; Kumar, Sameer; Basantray, Itishree; Saswat, Tanuja; Das, Indrani; Nayak, Tapas Kumar; Chattopadhyay, Subhasis; Subudhi, Bharat Bhusan; Chattopadhyay, Soma

    2016-01-01

    Chikungunya virus (CHIKV) infection is one of the most challenging human Arboviral infections with global significance and without any specific antiviral. In this investigation, 1-[(2-methylbenzimidazol-1-yl) methyl]-2-oxo-indolin-3-ylidene] amino] thiourea (MBZM-N-IBT) was synthesised as a molecular hybrid of 2-methyl benzimidazole and isatin-β-thiosemicarbazone and its anti-CHIKV property was evaluated. The release of infectious virus particles was calculated by plaque assay, expression profile of viral RNA was estimated by RT-PCR and viral protein profiles were assessed by Western blot and FACS analyses. The safety index of MBZM-N-IBT was found to be >21. The CHIKV infectious viral particle formation was abrogated around 76.02% by MBZM-N-IBT during infection in mammalian system and the viral RNA synthesis was reduced by 65.53% and 23.71% for nsP2 and E1 respectively. Surprisingly, the viral protein levels were reduced by 97% for both nsP2 and E2. In the time-of-addition experiment it abrogated viral infection at early as well as late phase of viral life cycle, which indicates about multiple mechanisms for its anti-CHIKV action. In silico analysis justified development of MBZM-N-IBT with good affinities for potential target proteins of CHIKV and related virus. With predictions of good drug-likeness property, it shows potential of a drug candidate which needs further experimental validation. PMID:26843462

  7. One-Pot Three-Component Synthesis of Novel Diethyl((2-oxo-1,2-dihydroquinolin-3-yl)(arylamino)methyl)phosphonate as Potential Anticancer Agents

    PubMed Central

    Fang, Yi-Lin; Wu, Zhi-Lin; Xiao, Meng-Wu; Tang, Yu-Ting; Li, Kang-Ming; Ye, Jiao; Xiang, Jian-Nan; Hu, Ai-Xi

    2016-01-01

    With the aim of discovering new anticancer agents, we have designed and synthesized novel α-aminophosphonate derivatives containing a 2-oxoquinoline structure using a convenient one-pot three-component method. The newly synthesized compounds were evaluated for antitumor activities against the A549 (human lung adenocarcinoma cell), HeLa (human cervical carcinoma cell), MCF-7 (human breast cancer cell), and U2OS (human osteosarcoma cell) cancer cell lines in vitro, employing a standard 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The results of pharmacological screening indicated that many compounds exhibited moderate to high levels of antitumor activities against the tested cancer cell lines and that most compounds showed more potent inhibitory activities comparable to 5-fluorouracil (5-FU) which was used as a positive control. The mechanism of representative compound 4u (diethyl((2-oxo-1,2-dihydroquinolin-3-yl)(phenyl-amino)methyl)phosphonate) indicated that the compound mainly arrested HeLa cells in S and G2 stages and was accompanied by apoptosis in HeLa cells. This action was confirmed by acridine orange/ethidium bromide staining, Hoechst 33342 staining, and flow cytometry. PMID:27136538

  8. One-Pot Three-Component Synthesis of Novel Diethyl((2-oxo-1,2-dihydroquinolin-3-yl)(arylamino)methyl)phosphonate as Potential Anticancer Agents.

    PubMed

    Fang, Yi-Lin; Wu, Zhi-Lin; Xiao, Meng-Wu; Tang, Yu-Ting; Li, Kang-Ming; Ye, Jiao; Xiang, Jian-Nan; Hu, Ai-Xi

    2016-01-01

    With the aim of discovering new anticancer agents, we have designed and synthesized novel α-aminophosphonate derivatives containing a 2-oxoquinoline structure using a convenient one-pot three-component method. The newly synthesized compounds were evaluated for antitumor activities against the A549 (human lung adenocarcinoma cell), HeLa (human cervical carcinoma cell), MCF-7 (human breast cancer cell), and U2OS (human osteosarcoma cell) cancer cell lines in vitro, employing a standard 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The results of pharmacological screening indicated that many compounds exhibited moderate to high levels of antitumor activities against the tested cancer cell lines and that most compounds showed more potent inhibitory activities comparable to 5-fluorouracil (5-FU) which was used as a positive control. The mechanism of representative compound 4u (diethyl((2-oxo-1,2-dihydroquinolin-3-yl)(phenyl-amino)methyl)phosphonate) indicated that the compound mainly arrested HeLa cells in S and G2 stages and was accompanied by apoptosis in HeLa cells. This action was confirmed by acridine orange/ethidium bromide staining, Hoechst 33342 staining, and flow cytometry.

  9. Phosphorylation site on yeast pyruvate dehydrogenase complex

    SciTech Connect

    Uhlinger, D.J.

    1986-01-01

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the /sup 32/P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation.

  10. Molybdopterin cofactor from Methanobacterium formicicum formate dehydrogenase.

    PubMed Central

    May, H D; Schauer, N L; Ferry, J G

    1986-01-01

    The molybdopterin cofactor from the formate dehydrogenase of Methanobacterium formicicum was studied. The cofactor was released by guanidine denaturation of homogeneous enzyme, which also released greater than 80% of the molybdenum present in the enzyme. The anoxically isolated cofactor was nonfluorescent, but after exposure to air it fluoresced with spectra similar to those of described molybdopterin cofactors. Aerobic release from acid-denatured formate dehydrogenase in the presence of I2 and potassium iodide produced a mixture of fluorescent products. Alkaline permanganate oxidation of the mixture yielded pterin-6-carboxylic acid as the only detectable fluorescent product. The results showed that the cofactor from formate dehydrogenase contained a pterin nucleus with a 6-alkyl side chain of unknown structure. Covalently bound phosphate was also present. The isolated cofactor was unable to complement the cofactor-deficient nitrate reductase of the Neurospora crassa nit-1 mutant. PMID:3700335

  11. Partial Similarities Between Yeast and Liver Alcohol Dehydrogenases

    PubMed Central

    Jörnvall, Hans

    1973-01-01

    The primary structure of about half of the protein chain of yeast alcohol dehydrogenase has been determined and compared with the amino-acid sequences of other dehydrogenases. The enzyme is found to be distantly related to horse-liver alcohol dehydrogenase, although these two proteins have different quaternary structures and subunit sizes. Some regions show no significant similarities, but long segments within the N-terminal parts of the molecules are homologous, suggesting a common and important function for these segments. Ancestral connections between some different dehydrogenases can be concluded and the degree of evolutionary changes may be estimated. PMID:4599620

  12. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae.

    PubMed

    Kumar, Vidya Prasanna; Thomas, Leonard M; Bobyk, Kostyantyn D; Andi, Babak; Cook, Paul F; West, Ann H

    2012-01-31

    Saccharopine dehydrogenase (SDH) catalyzes the final reaction in the α-aminoadipate pathway, the conversion of l-saccharopine to l-lysine (Lys) and α-ketoglutarate (α-kg) using NAD⁺ as an oxidant. The enzyme utilizes a general acid-base mechanism to conduct its reaction with a base proposed to accept a proton from the secondary amine of saccharopine in the oxidation step and a group proposed to activate water to hydrolyze the resulting imine. Crystal structures of an open apo form and a closed form of the enzyme with saccharopine and NADH bound have been determined at 2.0 and 2.2 Å resolution, respectively. In the ternary complex, a significant movement of domain I relative to domain II that closes the active site cleft between the two domains and brings H96 and K77 into the proximity of the substrate binding site is observed. The hydride transfer distance is 3.6 Å, and the side chains of H96 and K77 are properly positioned to act as acid-base catalysts. Preparation of the K77M and H96Q single-mutant and K77M/H96Q double-mutant enzymes provides data consistent with their role as the general acid-base catalysts in the SDH reaction. The side chain of K77 initially accepts a proton from the ε-amine of the substrate Lys and eventually donates it to the imino nitrogen as it is reduced to a secondary amine in the hydride transfer step, and H96 protonates the carbonyl oxygen as the carbinolamine is formed. The K77M, H976Q, and K77M/H96Q mutant enzymes give 145-, 28-, and 700-fold decreases in V/E(t) and >10³-fold increases in V₂/K(Lys)E(t) and V₂/K(α-kg)E(t) (the double mutation gives >10⁵-fold decreases in the second-order rate constants). In addition, the K77M mutant enzyme exhibits a primary deuterium kinetic isotope effect of 2.0 and an inverse solvent deuterium isotope effect of 0.77 on V₂/K(Lys). A value of 2.0 was also observed for (D)(V₂/K(Lys))(D₂O) when the primary deuterium kinetic isotope effect was repeated in D₂O, consistent with a

  13. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae.

    PubMed

    Kumar, Vidya Prasanna; Thomas, Leonard M; Bobyk, Kostyantyn D; Andi, Babak; Cook, Paul F; West, Ann H

    2012-01-31

    Saccharopine dehydrogenase (SDH) catalyzes the final reaction in the α-aminoadipate pathway, the conversion of l-saccharopine to l-lysine (Lys) and α-ketoglutarate (α-kg) using NAD⁺ as an oxidant. The enzyme utilizes a general acid-base mechanism to conduct its reaction with a base proposed to accept a proton from the secondary amine of saccharopine in the oxidation step and a group proposed to activate water to hydrolyze the resulting imine. Crystal structures of an open apo form and a closed form of the enzyme with saccharopine and NADH bound have been determined at 2.0 and 2.2 Å resolution, respectively. In the ternary complex, a significant movement of domain I relative to domain II that closes the active site cleft between the two domains and brings H96 and K77 into the proximity of the substrate binding site is observed. The hydride transfer distance is 3.6 Å, and the side chains of H96 and K77 are properly positioned to act as acid-base catalysts. Preparation of the K77M and H96Q single-mutant and K77M/H96Q double-mutant enzymes provides data consistent with their role as the general acid-base catalysts in the SDH reaction. The side chain of K77 initially accepts a proton from the ε-amine of the substrate Lys and eventually donates it to the imino nitrogen as it is reduced to a secondary amine in the hydride transfer step, and H96 protonates the carbonyl oxygen as the carbinolamine is formed. The K77M, H976Q, and K77M/H96Q mutant enzymes give 145-, 28-, and 700-fold decreases in V/E(t) and >10³-fold increases in V₂/K(Lys)E(t) and V₂/K(α-kg)E(t) (the double mutation gives >10⁵-fold decreases in the second-order rate constants). In addition, the K77M mutant enzyme exhibits a primary deuterium kinetic isotope effect of 2.0 and an inverse solvent deuterium isotope effect of 0.77 on V₂/K(Lys). A value of 2.0 was also observed for (D)(V₂/K(Lys))(D₂O) when the primary deuterium kinetic isotope effect was repeated in D₂O, consistent with a

  14. Dual effects of aliphatic carboxylic acids on cresolase and catecholase reactions of mushroom tyrosinase.

    PubMed

    Gheibi, N; Saboury, A A; Haghbeen, K; Rajaei, F; Pahlevan, A A

    2009-10-01

    Catecholase and cresolase activities of mushroom tyrosinase (MT) were studied in presence of some n-alkyl carboxylic acid derivatives. Catecholase activity of MT achieved its optimal activity in presence of 1.0, 1.25, 2.0, 2.2 and 3.2 mM of pyruvic acid, acrylic acid, propanoic acid, 2-oxo-butanoic acid, and 2-oxo-octanoic acid, respectively. Contrarily, the cresolase activity of MT was inhibited by all type of the above acids. Propanoic acid caused an uncompetitive mode of inhibition (K(i)=0.14 mM), however, the pyruvic, acrylic, 2-oxo-butanoic and 2-oxo-octanoic acids showed a competitive manner of inhibition with the inhibition constants (K(i)) of 0.36, 0.6, 3.6 and 4.5 mM, respectively. So, it seems that, there is a physical difference in the docking of mono- and o-diphenols to the tyrosinase active site. This difference could be an essential determinant for the course of the catalytic cycle. Monophenols are proposed to bind only the oxyform of the tyrosinase. It is likely that the binding of acids occurs through their carboxylate group with one copper ion of the binuclear site. Thus, they could completely block the cresolase reaction, by preventing monophenol binding to the enzyme. From an allosteric point of view, n-alkyl acids may be involved in activation of MT catecholase reactions.

  15. Plant Formate Dehydrogenase

    SciTech Connect

    John Markwell

    2005-01-10

    The research in this study identified formate dehydrogenase, an enzyme that plays a metabolic role on the periphery of one-carbon metabolism, has an unusual localization in Arabidopsis thaliana and that the enzyme has an unusual kinetic plasticity. These properties make it possible that this enzyme could be engineered to attempt to engineer plants with an improved photosynthetic efficiency. We have produced transgenic Arabidopsis and tobacco plants with increased expression of the formate dehydrogenase enzyme to initiate further studies.

  16. Short communication inhibitory activity of 4-[(1,2-dihydro-2-oxo-3H-indol-3-ylidene)amino]-N-(4,6-dimethylpyrimidin-2-yl) benzenesulphonamide and its derivatives against orthopoxvirus replication in vitro.

    PubMed

    Selvam, Periyasamy; Murugesh, Narayanan; Chandramohan, Markandavel; Keith, Kathy A; Kern, Earl R

    2006-01-01

    4-[(1,2-Dihydro-2-oxo-3H-indol-3-ylidene)amino]-N-(4,6-dimethylpyrimidin-2-yl) benzenesulphonamide and its derivatives were tested in vitro for antiviral activity against vaccinia and cowpox virus replication in human foreskin fibroblast (HFF) cells, and their activity was compared with cidofovir (CDV). Among the tested compounds, 4-[(5-methyl-1,2-dihydro-2-oxo-3-H-indol-3-ylidene)amino]-N-(4,6-dimethylpyrimidin-2-yl)benzene-sulphonamide was the most active against vaccinia virus, with a 50% effective concentration (EC50) value of 18 microM and 4-[(N-acetyl-1,2-dihydro-2-oxo-3-H-indol-3-ylidene)amino]-N-(4,6-dimethylpyrimidin-2-yl) benzenesulphonamide was the most active against cowpox virus (EC50=33 microM). Cidofovir was found to have an EC50 of 20 microM and 32 microM against vaccinia and cowpox virus, respectively. Most of the tested compounds were non-cytotoxic (>300 microM) in HFF cells as determined by a neutral red uptake assay. The substitution of a halogen atom at the 5-position of isatin abolished the antiviral activity.

  17. Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and alpha-amylase-secreting Lactobacillus plantarum strain.

    PubMed

    Okano, Kenji; Zhang, Qiao; Shinkawa, Satoru; Yoshida, Shogo; Tanaka, Tsutomu; Fukuda, Hideki; Kondo, Akihiko

    2009-01-01

    In order to achieve direct and efficient fermentation of optically pure D-lactic acid from raw corn starch, we constructed L-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum and introduced a plasmid encoding Streptococcus bovis 148 alpha-amylase (AmyA). The resulting strain produced only D-lactic acid from glucose and successfully expressed amyA. With the aid of secreting AmyA, direct D-lactic acid fermentation from raw corn starch was accomplished. After 48 h of fermentation, 73.2 g/liter of lactic acid was produced with a high yield (0.85 g per g of consumed sugar) and an optical purity of 99.6%. Moreover, a strain replacing the ldhL1 gene with an amyA-secreting expression cassette was constructed. Using this strain, direct D-lactic acid fermentation from raw corn starch was accomplished in the absence of selective pressure by antibiotics. This is the first report of direct D-lactic acid fermentation from raw starch.

  18. Synthesis, spectroscopic characterization and thermal behavior of metal complexes formed with N'-(1-(4-hydroxyphenyl) ethylidene)-2-oxo-2-(phenylamino) acetohydrazide (H 3OPAH)

    NASA Astrophysics Data System (ADS)

    Ahmed, Sara F.; El-Gammal, Ola A.; El-Reash, Gaber Abu

    2011-12-01

    Complexes of Co(II), Ni(II), Cu(II), Mn(II), Cd(II), Zn(II), Hg(II) and U(IV)O 22+ with N'-(1-(4-hydroxyphenyl) ethylidene)-2-oxo-2-(phenylamino) acetohydrazide (H 3OPAH) are reported and have been characterized by various spectroscopic techniques like IR, UV-visible, 1H NMR and ESR as well as magnetic and thermal (TG and DTA) measurements. It is found that the ligand behaves as a neutral bidentate, monoanionic tridentate or tetradentate and dianionic tetradentate. An octahedral geometry for [Mn(H 3OPAH) 2Cl 2], [Co 2(H 2OPAH) 2Cl 2(H 2O) 4] and [(UO 2) 2(HOPAH)(OAc) 2(H 2O) 2] complexes, a square planar geometry for [Cu 2(H 2OPAH)Cl 3(H 2O)]H 2O complex, a tetrahedral structure for [Cd(H 3OPAH)Cl 2], [Zn(H 3OPAH)(OAc) 2] and [Hg(H 3OPAH)Cl 2]H 2O complexes. The binuclear [Ni 2(HOPAH)Cl 2(H 2O) 2]H 2O complex contains a mixed geometry of both tetrahedral and square planar structures. The protonation constants of ligand and stepwise stability constants of its complexes at 298, 308 and 318 K as well as the thermodynamic parameters are being calculated. The bond lengths, bond angles, HOMO, LUMO and dipole moments have been calculated to confirm the geometry of the ligand and the investigated complexes. Also, thermal properties and decomposition kinetics of all compounds are investigated. The interpretation, mathematical analysis and evaluation of kinetic parameters ( Ea, A, Δ H, Δ S and Δ G) of all thermal decomposition stages have been evaluated using Coats-Redfern and Horowitz-Metzger methods.

  19. A novel glutamate dehydrogenase from bovine brain: purification and characterization.

    PubMed

    Lee, J; Kim, S W; Cho, S W

    1995-08-01

    A soluble form of novel glutamate dehydrogenase has been purified from bovine brain. The preparation was homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and composed of six identical subunits having a subunit size of 57,500 Da. The biochemical properties of glutamate dehydrogenase such as N-terminal amino acids sequences, kinetic parameters, amino acids analysis, and optimum pH were examined in both reductive amination of alpha-ketoglutarate and oxidative deamination of glutamate. N-terminal amino acid sequences of the bovine brain enzyme showed the significant differences in the first 5 amino acids compared to other glutamate dehydrogenases from various sources. These results indicate that glutamate dehydrogenase isolated from bovine brain is a novel polypeptide.

  20. Xanthine dehydrogenase and 2-furoyl-coenzyme A dehydrogenase from Pseudomonas putida Fu1: two molybdenum-containing dehydrogenases of novel structural composition.

    PubMed Central

    Koenig, K; Andreesen, J R

    1990-01-01

    The constitutive xanthine dehydrogenase and the inducible 2-furoyl-coenzyme A (CoA) dehydrogenase could be labeled with [185W]tungstate. This labeling was used as a reporter to purify both labile proteins. The radioactivity cochromatographed predominantly with the residual enzymatic activity of both enzymes during the first purification steps. Both radioactive proteins were separated and purified to homogeneity. Antibodies raised against the larger protein also exhibited cross-reactivity toward the second smaller protein and removed xanthine dehydrogenase and 2-furoyl-CoA dehydrogenase activity up to 80 and 60% from the supernatant of cell extracts, respectively. With use of cell extract, Western immunoblots showed only two bands which correlated exactly with the activity stains for both enzymes after native polyacrylamide gel electrophoresis. Molybdate was absolutely required for incorporation of 185W, formation of cross-reacting material, and enzymatic activity. The latter parameters showed a perfect correlation. This evidence proves that the radioactive proteins were actually xanthine dehydrogenase and 2-furoyl-CoA dehydrogenase. The apparent molecular weight of the native xanthine dehydrogenase was about 300,000, and that of 2-furoyl-CoA dehydrogenase was 150,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of both enzymes revealed two protein bands corresponding to molecular weights of 55,000 and 25,000. The xanthine dehydrogenase contained at least 1.6 mol of molybdenum, 0.9 ml of cytochrome b, 5.8 mol of iron, and 2.4 mol of labile sulfur per mol of enzyme. The composition of the 2-furoyl-CoA dehydrogenase seemed to be similar, although the stoichiometry was not determined. The oxidation of furfuryl alcohol to furfural and further to 2-furoic acid by Pseudomonas putida Fu1 was catalyzed by two different dehydrogenases. Images PMID:2170335

  1. X-ray Mapping in Heterocyclic Design: XIV. Tricyclic Heterocycles Based on 2-Oxo-1,2,5,6,7,8-Hexahydroquinoline-3-Carbonitrile

    SciTech Connect

    Mazina, O.S.; Rybakov, V.B.; Chernyshev, V.V.; Babaev, E.V.; Aslanov, L.A.

    2004-11-01

    The structures of four compounds are studied using single-crystal X-ray diffraction: 1-[2-(4-chlorophenyl)-2-oxoethyl]-2-oxo-1,2,5,6,7,8-hexahydroquinoline -3-carbonitrile [a = 4.908(4) A, b = 11.644(10) A, c = 13.587(2) A, {beta} = 94.31(5) deg., Z = 2, space group P2{sub 1}]; 2-[2-(4-chlorophenyl)-2-oxoethoxy]-5,6,7,8-tetrahydroquinoline -3-carbonitrile [a = 7.6142(8) A, b = 14.778(2) A, c = 14.132(2) A, {beta} = 100.38(1) deg., Z = 4, space group P2{sub 1}/c]; 4-(aminocarbonyl)-2-(chlorophenyl)-6,7,8,9-tetrahydro[1.3]oxazolo[3,2-a] quinolin-3-ium perchlorate [a = 5.589(7) A, b = 24.724(15) A, c = 13.727(5) A, {beta} = 97.66(9) deg., Z = 4, space group P2{sub 1}/n]; and (3-amino-5,6,7,8-tetrahydrofuro[2,3-b]quinolin-2-yl)-(4-chlorophenyl) methanone [a = 7.150(2) A, b = 7.4288(10) A, c = 15.314(3) A, {alpha} = 98.030(10) deg., {beta} = 99.21(2) deg., {gamma} = 105.34(2) deg., Z = 2, space group P1-bar]. The structures are solved by direct methods and refined by the full-matrix least-squares procedure in the anisotropic approximation to R = 0.0728, 0.0439, 0.1228, and 0.0541, respectively. The structure of 1-(4-chlorophenyl)-4-piperidin-1-yl-8,9-dihydro-7H-pyrrolo[3.2.1-ij] quinoline-5-carboxamide [a = 23.9895(9) A, b = 5.1557(3) A, c = 17.0959(9) A, {beta} = 106.43 deg., Z = 4, space group P{sub 1}/c] is investigated by X-ray powder diffraction. This structure is solved using the grid search procedure and refined by the Rietveld method to R{sub wp} = 0.0773, R{sub exp} = 0.0540, R{sub p} = 0.0585, R{sub b} = 0.1107, and {chi}{sup 2} = 1.78.

  2. Butachlor impact on protein, free amino acid and glutamine contents, and on activity levels of aminotransferases, glutamate dehydrogenase and glutamine synthetase in the fresh water snail, Pila globosa (Swainson).

    PubMed

    Rajyalakshmi, T; Srinivas, T; Swamy, K V; Mohan, P M

    1996-08-01

    Biochemical changes followed in the freshwater snail Pila globosa (Swainson) during exposure to sublethal concentrations of the herbicide butachlor (26.6 ppm) in the ambient medium, at 3,6,12,24 and 48 h intervals, were marked by a significant decrease in total and soluble proteins, and an increase in free amino acids in foot and hepatopancreas up to 12 h before gradually recovering. Aminotransferase activities and glutamine content decreased during the early periods of exposure, while glutamate dehydrogenase activity increased. After an initial elevation, glutamate synthetase activity decreased at later intervals. Maximum effect of butachlor on the enzymes was seen after 12 h exposure. The extent of increase or decrease in different parameters examined varied between the two tissues studied. These changes are discussed in relation to the toxic stress of butachlor.

  3. Sorbitol dehydrogenase. Full-length cDNA sequencing reveals a mRNA coding for a protein containing an additional 42 amino acids at the N-terminal end.

    PubMed

    Wen, Y; Bekhor, I

    1993-10-01

    A cDNA clone encoding rat sorbitol dehydrogenase (SDH) was isolated from a rat testis lambda ZAP II cDNA library. The full-length cDNA insert contained 2277 base pairs (bp), starting 182 bp upstream from an ATG codon where translation to the active enzyme SDH is presumed to be initiated. A second ATG codon, however, was found 126 bp upstream, aligned in the same reading frame as that of the active enzyme. Therefore, the coding sequence for SDH can be translated into an additional 42-amino-acid polypeptide linked to the N-terminal amino acid of the enzyme, generating a pre-sorbitol dehydrogenase. The sequence data indicate that the nucleotide environment around this ATG codon is more favorable towards it being the actual open reading frame (ORF) for a pre-SDH than the ATG codon preceding the nucleotide sequence for SDH. Since no known SDH starts with the additional 42 amino acids, it may be that post-translational removal of this polypeptide accompanies the release of the active enzyme. Next, the 3' untranslated region of the cDNA contained a non-coding 1021 bp downstream from the TAA stop codon. The latter sequence included three putative poly(A) signals: one at nucleotides 1362-1367, the second at nucleotides 1465-1470, and the third at nucleotides 2212-2217 [17 bp away from the poly(A) tail]. In addition to the above findings we also report a variance in one of the amino acids in the SDH cDNA sequence. This variance occurs at position 957-960, where threonine is coded for instead of aspartic acid; in the rat testis SDH cDNA, we find the sequence is ACG instead of GAC, as was reported for the rat liver SDH cDNA. Northern-blot hybridization analysis showed that SDH mRNA is a doublet, one band of 4 kb and the other of 2.3-2.4 kb, in both the rat liver and the rat lens, further confirming that the isolated SDH cDNA constituted a full-length cDNA.

  4. Genetics Home Reference: 3-hydroxyacyl-CoA dehydrogenase deficiency

    MedlinePlus

    ... step that metabolizes groups of fats called medium-chain fatty acids and short-chain fatty acids. Mutations in the HADH gene lead ... a shortage of 3-hydroxyacyl-CoA dehydrogenase. Medium-chain and short-chain fatty acids cannot be metabolized ...

  5. Cloning and sequencing of the gene encoding the 72-kilodalton dehydrogenase subunit of alcohol dehydrogenase from Acetobacter aceti.

    PubMed

    Inoue, T; Sunagawa, M; Mori, A; Imai, C; Fukuda, M; Takagi, M; Yano, K

    1989-06-01

    A genomic library of Acetobacter aceti DNA was constructed by using a broad-host-range cosmid vector. Complementation of a spontaneous alcohol dehydrogenase-deficient mutant resulted in the isolation of a plasmid designated pAA701. Subcloning and deletion analysis of pAA701 limited the region that complemented the deficiency in alcohol dehydrogenase activity of the mutant. The nucleotide sequence of this region was determined and showed that this region contained the full structural gene for the 72-kilodalton dehydrogenase subunit of the alcohol dehydrogenase enzyme complex. The predicted amino acid sequence of the gene showed homology with sequences of methanol dehydrogenase structural genes of Paracoccus denitrificans and Methylobacterium organophilum.

  6. Formate dehydrogenase from Pseudomonas oxalaticus.

    PubMed

    Müller, U; Willnow, P; Ruschig, U; Höpner, T

    1978-02-01

    Formate dehydrogenase (EC 1.2.1.2) from Pseudomonas oxalaticus has been isolated and characterized. The enzyme (molecular weight 315000) is a complex flavoprotein containing 2 FMN, 18--25 non-heme iron atoms and 15--20 acid-labile sulphides. In the last step of the purification, a sucrose gradient centrifugation, a second catalytically active species has been found apparently originating from a dissociation of the enzyme into two equal subunits. The enzyme is specific toward its natural substrate formate. It transfers electrons to NAD+, oxygen, ferricyanide, and a lot of nonphysiological acceptors (dyes). In addition electrons are transferred from NADH to these acceptors. The (reversible) removal of FMN requires a reduction step. Reincorporation has been followed by the reappearance of the reactivity against formate and by fluorescence titration. The deflavo enzyme also binds FAD and riboflavin. The resulting enzyme species show characteristic catalytic abilities. Activity against formate is peculiar to the FMN species. PMID:631130

  7. Decarboxylative 1,4-Addition of α-Oxocarboxylic Acids with Michael Acceptors Enabled by Photoredox Catalysis.

    PubMed

    Wang, Guang-Zu; Shang, Rui; Cheng, Wan-Min; Fu, Yao

    2015-10-01

    Enabled by iridium photoredox catalysis, 2-oxo-2-(hetero)arylacetic acids were decarboxylatively added to various Michael acceptors including α,β-unsaturated ester, ketone, amide, aldehyde, nitrile, and sulfone at room temperature. The reaction presents a new type of acyl Michael addition using stable and easily accessible carboxylic acid to formally generate acyl anion through photoredox-catalyzed radical decarboxylation. PMID:26366608

  8. Isolation of a cDNA coding for L-galactono-gamma-lactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants. Purification, characterization, cDNA cloning, and expression in yeast.

    PubMed

    Ostergaard, J; Persiau, G; Davey, M W; Bauw, G; Van Montagu, M

    1997-11-28

    L-Galactono-gamma-lactone dehydrogenase (EC 1.3.2.3; GLDase), an enzyme that catalyzes the final step in the biosynthesis of L-ascorbic acid was purified 1693-fold from a mitochondrial extract of cauliflower (Brassica oleracea, var. botrytis) to apparent homogeneity with an overall yield of 1.1%. The purification procedure consisted of anion exchange, hydrophobic interaction, gel filtration, and fast protein liquid chromatography. The enzyme had a molecular mass of 56 kDa estimated by gel filtration chromatography and SDS-polyacrylamide gel electrophoresis and showed a pH optimum for activity between pH 8.0 and 8.5, with an apparent Km of 3.3 mM for L-galactono-gamma-lactone. Based on partial peptide sequence information, polymerase chain reaction fragments were isolated and used to screen a cauliflower cDNA library from which a cDNA encoding GLDase was isolated. The deduced mature GLDase contained 509 amino acid residues with a predicted molecular mass of 57,837 Da. Expression of the cDNA in yeast produced a biologically active protein displaying GLDase activity. Furthermore, we identified a substrate for the enzyme in cauliflower extract, which co-eluted with L-galactono-gamma-lactone by high-performance liquid chromatography, suggesting that this compound is a naturally occurring precursor of L-ascorbic acid biosynthesis in vivo.

  9. Salicylic acid binding of mitochondrial alpha-ketoglutarate dehydrogenase E2 affects mitochondrial oxidative phosphorylation and electron transport chain components and plays a role in basal defense against tobacco mosaic virus in tomato.

    PubMed

    Liao, Yangwenke; Tian, Miaoying; Zhang, Huan; Li, Xin; Wang, Yu; Xia, Xiaojian; Zhou, Jie; Zhou, Yanhong; Yu, Jingquan; Shi, Kai; Klessig, Daniel F

    2015-02-01

    Salicylic acid (SA) plays a critical role in plant defense against pathogen invasion. SA-induced viral defense in plants is distinct from the pathways mediating bacterial and fungal defense and involves a specific pathway mediated by mitochondria; however, the underlying mechanisms remain largely unknown. The SA-binding activity of the recombinant tomato (Solanum lycopersicum) alpha-ketoglutarate dehydrogenase (Slα-kGDH) E2 subunit of the tricarboxylic acid (TCA) cycle was characterized. The biological role of this binding in plant defenses against tobacco mosaic virus (TMV) was further investigated via Slα-kGDH E2 silencing and transient overexpression in plants. Slα-kGDH E2 was found to bind SA in two independent assays. SA treatment, as well as Slα-kGDH E2 silencing, increased resistance to TMV. SA did not further enhance TMV defense in Slα-kGDH E2-silenced tomato plants but did reduce TMV susceptibility in Nicotiana benthamiana plants transiently overexpressing Slα-kGDH E2. Furthermore, Slα-kGDH E2-silencing-induced TMV resistance was fully blocked by bongkrekic acid application and alternative oxidase 1a silencing. These results indicated that binding by Slα-kGDH E2 of SA acts upstream of and affects the mitochondrial electron transport chain, which plays an important role in basal defense against TMV. The findings of this study help to elucidate the mechanisms of SA-induced viral defense.

  10. Discovery of N-(4-(2-Amino-3-chloropyridin-4-yloxy)-3-fluorophenyl)-4-ethoxy-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide (BMS-777607), a Selective and Orally Efficacious Inhibitor of the Met Kinase Superfamily

    SciTech Connect

    Schroeder, Gretchen M.; An, Yongmi; Cai, Zhen-Wei; Chen, Xiao-Tao; Clark, Cheryl; Cornelius, Lyndon A.M.; Dai, Jun; Gullo-Brown, Johnni; Gupta, Ashok; Henley, Benjamin; Hunt, John T.; Jeyaseelan, Robert; Kamath, Amrita; Kim, Kyoung; Lippy, Jonathan; Lombardo, Louis J.; Manne, Veeraswamy; Oppenheimer, Simone; Sack, John S.; Schmidt, Robert J.; Shen, Guoxiang; Stefanski, Kevin; Tokarski, John S.; Trainor, George L.; Wautlet, Barri S.; Wei, Donna; Williams, David K.; Zhang, Yingru; Zhang, Yueping; Fargnoli, Joseph; Borzilleri, Robert M.

    2009-12-01

    Substituted N-(4-(2-aminopyridin-4-yloxy)-3-fluoro-phenyl)-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamides were identified as potent and selective Met kinase inhibitors. Substitution of the pyridine 3-position gave improved enzyme potency, while substitution of the pyridone 4-position led to improved aqueous solubility and kinase selectivity. Analogue 10 demonstrated complete tumor stasis in a Met-dependent GTL-16 human gastric carcinoma xenograft model following oral administration. Because of its excellent in vivo efficacy and favorable pharmacokinetic and preclinical safety profiles, 10 has been advanced into phase I clinical trials.

  11. 9-O-acetylated sialic acids differentiating normal haematopoietic precursors from leukemic stem cells with high aldehyde dehydrogenase activity in children with acute lymphoblastic leukaemia.

    PubMed

    Chowdhury, Suchandra; Chandra, Sarmila; Mandal, Chitra

    2014-10-01

    Childhood acute lymphoblastic leukaemia (ALL) originates from mutations in haematopoietic progenitor cells (HPCs). For high-risk patients, treated with intensified post-remission chemotherapy, haematopoietic stem cell (HSC) transplantation is considered. Autologous HSC transplantation needs improvisation till date. Previous studies established enhanced disease-associated expression of 9-O-acetylated sialoglycoproteins (Neu5,9Ac2-GPs) on lymphoblasts of these patients at diagnosis, followed by its decrease with clinical remission and reappearance with relapse. Based on this differential expression of Neu5,9Ac2-GPs, identification of a normal HPC population was targeted from patients at diagnosis. This study identifies two distinct haematopoietic progenitor populations from bone marrow of diagnostic ALL patients, exploring the differential expression of Neu5,9Ac2-GPs with stem cell (CD34, CD90, CD117, CD133), haematopoietic (CD45), lineage-commitment (CD38) antigens and cytosolic aldehyde dehydrogenase (ALDH). Normal haematopoietic progenitor cells (ALDH(+)SSC(lo)CD45(hi)Neu5,9Ac2 -GPs(lo)CD34(+)CD38(-)CD90(+)CD117(+)CD133(+)) differentiated into morphologically different, lineage-specific colonies, being crucial for autologous HSC transplantation while leukemic stem cells (ALDH(+)SSC(lo)CD45(lo)Neu5,9Ac2 -GPs(hi)CD34(+)CD38(+)CD90(-)CD117(-)CD133(-)) lacking this ability can be potential targets for minimal residual disease detection and drug-targeted immunotherapy.

  12. Identification of 9α-Hydroxy-17-Oxo-1,2,3,4,10,19-Hexanorandrostan-5-Oic Acid in Steroid Degradation by Comamonas testosteroni TA441 and Its Conversion to the Corresponding 6-En-5-Oyl Coenzyme A (CoA) Involving Open Reading Frame 28 (ORF28)- and ORF30-Encoded Acyl-CoA Dehydrogenases

    PubMed Central

    Hayashi, Toshiaki; Koshino, Hiroyuki; Malon, Michal; Hirota, Hiroshi; Kudo, Toshiaki

    2014-01-01

    Comamonas testosteroni TA441 degrades steroids via aromatization and meta-cleavage of the A ring, followed by hydrolysis, and produces 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid as an intermediate compound. Herein, we identify a new intermediate compound, 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid. Open reading frame 28 (ORF28)- and ORF30-encoded acyl coenzyme A (acyl-CoA) dehydrogenase was shown to convert the CoA ester of 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid to the CoA ester of 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrost-6-en-5-oic acid. A homology search of the deduced amino acid sequences suggested that the ORF30-encoded protein is a member of the acyl-CoA dehydrogenase_fadE6_17_26 family, whereas the deduced amino acid sequence of ORF28 showed no significant similarity to specific acyl-CoA dehydrogenase family proteins. Possible steroid degradation gene clusters similar to the cluster of TA441 appear in bacterial genome analysis data. In these clusters, ORFs similar to ORFs 28 and 30 are often found side by side and ordered in the same manner as ORFs 28 and 30. PMID:25092028

  13. Succinate Dehydrogenase Loss in Familial Paraganglioma: Biochemistry, Genetics, and Epigenetics

    PubMed Central

    Her, Yeng F.; Maher, L. James

    2015-01-01

    It is counterintuitive that metabolic defects reducing ATP production can cause, rather than protect from, cancer. Yet this is precisely the case for familial paraganglioma, a form of neuroendocrine malignancy caused by loss of succinate dehydrogenase in the tricarboxylic acid cycle. Here we review biochemical, genetic, and epigenetic considerations in succinate dehydrogenase loss and present leading models and mysteries associated with this fascinating and important tumor. PMID:26294907

  14. Glutamates 78 and 122 in the active site of saccharopine dehydrogenase contribute to reactant binding and modulate the basicity of the acid-base catalysts.

    PubMed

    Ekanayake, Devi K; Andi, Babak; Bobyk, Kostyantyn D; West, Ann H; Cook, Paul F

    2010-07-01

    Saccharopine dehydrogenase catalyzes the NAD-dependent oxidative deamination of saccharopine to give l-lysine and alpha-ketoglutarate. There are a number of conserved hydrophilic, ionizable residues in the active site, all of which must be important to the overall reaction. In an attempt to determine the contribution to binding and rate enhancement of each of the residues in the active site, mutations at each residue are being made, and double mutants are being made to estimate the interrelationship between residues. Here, we report the effects of mutations of active site glutamate residues, Glu(78) and Glu(122), on reactant binding and catalysis. Site-directed mutagenesis was used to generate E78Q, E122Q, E78Q/E122Q, E78A, E122A, and E78A/E122A mutant enzymes. Mutation of these residues increases the positive charge of the active site and is expected to affect the pK(a) values of the catalytic groups. Each mutant enzyme was completely characterized with respect to its kinetic and chemical mechanism. The kinetic mechanism remains the same as that of wild type enzymes for all of the mutant enzymes, with the exception of E78A, which exhibits binding of alpha-ketoglutarate to E and E.NADH. Large changes in V/K(Lys), but not V, suggest that Glu(78) and Glu(122) contribute binding energy for lysine. Shifts of more than a pH unit to higher and lower pH of the pK(a) values observed in the V/K(Lys) pH-rate profile of the mutant enzymes suggests that the presence of Glu(78) and Glu(122) modulates the basicity of the catalytic groups.

  15. Production of optically pure L-lactic acid from lignocellulosic hydrolysate by using a newly isolated and D-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain.

    PubMed

    Kuo, Yang-Cheng; Yuan, Shuo-Fu; Wang, Chun-An; Huang, Yin-Jung; Guo, Gia-Luen; Hwang, Wen-Song

    2015-12-01

    The use of lignocellulosic feedstock for lactic acid production with a difficulty is that the release of inhibitory compounds during the pretreatment process which inhibit the growth of microorganism. Thus we report a novel lactic acid bacterium, Lactobacillus paracasei 7 BL, that has a high tolerance to inhibitors and produced optically pure l-lactic acid after the interruption of ldhD gene. The strain 7 BL fermented glucose efficiently and showed high titer of l-lactic acid (215 g/l) by fed-batch strategy. In addition, 99 g/l of l-lactic acid with high yield (0.96 g/g) and productivity (2.25-3.23 g/l/h) was obtained by using non-detoxified wood hydrolysate. Rice straw hydrolysate without detoxification was also tested and yielded a productivity rate as high as 5.27 g/l/h. Therefore, L. paracasei 7 BL represents a potential method of l-lactic acid production from lignocellulosic biomass and has attractive application for industries. PMID:26433790

  16. Analysis of Loss-of-Function Mutants in Aspartate Kinase and Homoserine Dehydrogenase Genes Points to Complexity in the Regulation of Aspartate-Derived Amino Acid Contents1[OPEN

    PubMed Central

    Clark, Teresa J.; Lu, Yan

    2015-01-01

    Biosynthesis of aspartate (Asp)-derived amino acids lysine (Lys), methionine (Met), threonine (Thr), and isoleucine involves monofunctional Asp kinases (AKs) and dual-functional Asp kinase-homoserine dehydrogenases (AK-HSDHs). Four-week-old loss-of-function Arabidopsis (Arabidopsis thaliana) mutants in the AK-HSDH2 gene had increased amounts of Asp and Asp-derived amino acids, especially Thr, in leaves. To explore mechanisms behind this phenotype, we obtained single mutants for other AK and AK-HSDH genes, generated double mutants from ak-hsdh2 and ak mutants, and performed free and protein-bound amino acid profiling, transcript abundance, and activity assays. The increases of Asp, Lys, and Met in ak-hsdh2 were also observed in ak1-1, ak2-1, ak3-1, and ak-hsdh1-1. However, the Thr increase in ak-hsdh2 was observed in ak-hsdh1-1 but not in ak1-1, ak2-1, or ak3-1. Activity assays showed that AK2 and AK-HSDH1 are the major contributors to overall AK and HSDH activities, respectively. Pairwise correlation analysis revealed positive correlations between the amount of AK transcripts and Lys-sensitive AK activity and between the amount of AK-HSDH transcripts and both Thr-sensitive AK activity and total HSDH activity. In addition, the ratio of total AK activity to total HSDH activity negatively correlates with the ratio of Lys to the total amount of Met, Thr, and isoleucine. These data led to the hypothesis that the balance between Lys-sensitive AKs and Thr-sensitive AK-HSDHs is important for maintaining the amounts and ratios of Asp-derived amino acids. PMID:26063505

  17. Short Chain Dehydrogenase/Reductase Rdhe2 Is a Novel Retinol Dehydrogenase Essential for Frog Embryonic Development*

    PubMed Central

    Belyaeva, Olga V.; Lee, Seung-Ah; Adams, Mark K.; Chang, Chenbei; Kedishvili, Natalia Y.

    2012-01-01

    The enzymes responsible for the rate-limiting step in retinoic acid biosynthesis, the oxidation of retinol to retinaldehyde, during embryogenesis and in adulthood have not been fully defined. Here, we report that a novel member of the short chain dehydrogenase/reductase superfamily, frog sdr16c5, acts as a highly active retinol dehydrogenase (rdhe2) that promotes retinoic acid biosynthesis when expressed in mammalian cells. In vivo assays of rdhe2 function show that overexpression of rdhe2 in frog embryos leads to posteriorization and induction of defects resembling those caused by retinoic acid toxicity. Conversely, antisense morpholino-mediated knockdown of endogenous rdhe2 results in phenotypes consistent with retinoic acid deficiency, such as defects in anterior neural tube closure, microcephaly with small eye formation, disruption of somitogenesis, and curved body axis with bent tail. Higher doses of morpholino induce embryonic lethality. Analyses of retinoic acid levels using either endogenous retinoic acid-sensitive gene hoxd4 or retinoic acid reporter cell line both show that the levels of retinoic acid are significantly decreased in rdhe2 morphants. Taken together, these results provide strong evidence that Xenopus rdhe2 functions as a retinol dehydrogenase essential for frog embryonic development in vivo. Importantly, the retinol oxidizing activity of frog rdhe2 is conserved in its mouse homologs, suggesting that rdhe2-related enzymes may represent the previously unrecognized physiologically relevant retinol dehydrogenases that contribute to retinoic acid biosynthesis in higher vertebrates. PMID:22291023

  18. Pyruvate Dehydrogenase Complex from Chloroplasts of Pisum sativum L 1

    PubMed Central

    Williams, Michael; Randall, Douglas D.

    1979-01-01

    Pyruvate dehydrogenase complex is associated with intact chloroplasts and mitochondria of 9-day-old Pisum sativum L. seedlings. The ratio of the mitochondrial complex to the chloroplast complex activities is about 3 to 1. Maximal rates observed for chloroplast pyruvate dehydrogenase complex activity ranged from 6 to 9 micromoles of NADH produced per milligram of chlorophyll per hour. Osmotic rupture of pea chloroplasts released 88% of the complex activity, indicating that chloroplast pyruvate dehydrogenase complex is a stromal complex. The pH optimum for chloroplast pyruvate dehydrogenase complex was between 7.8 and 8.2, whereas the mitochondrial pyruvate dehydrogenase complex had a pH optimum between 7.3 and 7.7. Chloroplast pyruvate dehydrogenase complex activity was specific for pyruvate, dependent upon coenzyme A and NAD and partially dependent upon Mg2+ and thiamine pyrophosphate. Chloroplast-associated pyruvate dehydrogenase complex provides a direct link between pyruvate metabolism and chloroplast fatty acid biosynthesis by providing the substrate, acetyl-CoA, necessary for membrane development in young plants. Images PMID:16661100

  19. Pyruvate dehydrogenase complex from higher plant mitochondria and proplastids.

    PubMed

    Reid, E E; Thompson, P; Lyttle, C R; Dennis, D T

    1977-05-01

    The pyruvate dehydrogenase complex from pea (Pisum sativum L.) mitochondria was purified 23-fold by high speed centrifugation and glycerol gradient fractionation. The complex had a s(20,w) of 47.5S but this is a minimal value since the complex is unstable. The complex is specific for NAD(+) and pyruvate; NADP(+) and other keto acids give no reaction. Mg(2+), thiamine pyrophosphate, and cysteine are also required for maximal activity. The pH optimum for the complex was between 6.5 and 7.5.Continuous sucrose density gradients were used to separate castor bean (Ricinus communis L.) endosperm proplastids from mitochondria. Pyruvate dehydrogenase complex activity was found to be coincident with the proplastid peak on all of the gradients. Some separation of proplastids and mitochondria could be achieved by differential centrifugation and the ratios of the activities of the pyruvate dehydrogenase complex to succinic dehydrogenase and acetyl-CoA carboxylase to succinic dehydrogenase were consistent with both the pyruvate dehydrogenase complex and acetyl-CoA carboxylase being present in the proplastid. The proplastid fraction has to be treated with a detergent, Triton X-100, before maximal activity of the pyruvate dehydrogenase complex activity is expressed, indicating that it is bound in the organelle. The complex had a sharp pH optimum of 7.5. The complex required added Mg(2+), cysteine, and thiamine pyrophosphate for maximal activity but thiamine pyrophosphate was inhibitory at higher concentrations.

  20. Cyanobacterial NADPH dehydrogenase complexes

    SciTech Connect

    Ogawa, Teruo; Mi, Hualing

    2007-07-01

    Cyanobacteria possess functionally distinct multiple NADPH dehydrogenase (NDH-1) complexes that are essential to CO2 uptake, photosystem-1 cyclic electron transport and respiration. The unique nature of cyanobacterial NDH-1 complexes is the presence of subunits involved in CO2 uptake. Other than CO2 uptake, chloroplastic NDH-1 complex has similar role as cyanobacterial NDH-1 complexes in photosystem-1 cyclic electron transport and respiration (chlororespiration). In this mini-review we focus on the structure and function of cyanobacterial NDH-1 complexes and their phylogeny. The function of chloroplastic NDH-1 complex and characteristics of plants defective in NDH-1 are also described forcomparison.

  1. Determination of the crystal structure of EntA, a 2,3-dihydro-2,3-dihydroxybenzoic acid dehydrogenase from Escherichia coli.

    PubMed

    Sundlov, Jesse A; Garringer, Julie A; Carney, Jill M; Reger, Albert S; Drake, Eric J; Duax, William L; Gulick, Andrew M

    2006-07-01

    The Escherichia coli enterobactin synthetic cluster is composed of six proteins, EntA-EntF, that form the enterobactin molecule from three serine molecules and three molecules of 2,3-dihydroxybenzoic acid (DHB). EntC, EntB and EntA catalyze the three-step synthesis of DHB from chorismate. EntA is a member of the short-chain oxidoreductase (SCOR) family of proteins and catalyzes the final step in DHB synthesis, the NAD+-dependent oxidation of 2,3-dihydro-2,3-dihydroxybenzoic acid to DHB. The structure of EntA has been determined by multi-wavelength anomalous dispersion methods. Here, the 2.0 A crystal structure of EntA in the unliganded form is presented. Analysis of the structure in light of recent structural and bioinformatic analysis of other members of the SCOR family provides insight into the residues involved in cofactor and substrate binding.

  2. [Characterization of aldehyde dehydrogenase gene fragment from mung bean Vigna radiata using the polymerase chain reaction].

    PubMed

    Ponomarev, A G; Bubiakina, V V; Tatarinova, T D; Zelenin, S M

    1998-01-01

    Two degenerate oligonucleotide sequence primers and polymerase chain reactions on total DNA have been utilized to clone on 651--bp gene fragment coding the central part of amino acid sequence of an earlier unknown aldehyde dehydrogenase (ALDH) from mung bean. The deduced partial amino acid sequence for this aldehyde dehydrogenase shows about 65% sequence identity to ALDHs of Vibrio cholerae Rhodococcus sp., Alcaligenes eutrophus and about 45% sequence identity to mammalian ALDHs 1 and 2, ALDHs of Aspergillus niger and A, nidulans, the betain aldehyde dehydrogenase from spinach. Alignment of the mung bean aldehyde dehydrogenase partial amino acid sequence with the sequence of 16 NAD(P)(+)-dependent aldehyde dehydrogenases has demonstrated that all strictly conserved amino acid residues and all three conservative regions are identical. PMID:9778740

  3. Subunit structure of the dihydrolipoyl transacylase component of branched-chain. cap alpha. -keto acid dehydrogenase complex from bovine liver: mapping of the lipoyl-bearing domain by limited proteolysis

    SciTech Connect

    Not Available

    1986-01-05

    To characterize the lipoyl-bearing domain of the dihydrolipoyl transacylase (E/sub 2/) component, purified branched-chain ..cap alpha..-keto acid dehydrogenase complex from bovine liver was reductively acylated with (U-/sup 14/C)..cap alpha..-ketoisovalerate in the presence of thiamin pyrophosphate and N-ethylmaleimide. Digestion of the modified complex with increasing concentrations of trypsin sequentially cleaved the E/sub 2/ polypeptide chain (M/sub r/ = 52,000) into five radiolabeled lipoyl-containing fragments, L/sub 1/-L/sub 5/. In addition, a lipoate-free inner E/sub 2/ core consisting of fragment A and fragment B was produced. Fragment A contains the active site for transacylation reaction and fragment B is the subunit-binding domain. Fragment L/sub 5/ and fragment B were stable and resistant to further tryptic digestion. Mouse antiserium against E/sub 2/ reacted only with fragments L/sub 1/, L/sub 2/, and L/sub 3/, and did not bind fragments L/sub 4/, L/sub 5/, A, and B as judged by immunoblotting analysis. The anti-E/sub 2/ serum-strongly inhibited the overall reaction catalyzed by the complex, but was without effect on the transacylation activity of E/sub 2/. Measurement of incorporation of (1-/sup 14/C)isobutyryl groups into the E/sub 2/ subunit indicated the presence of 1 lipoyl residue/E/sub 2/ chain.

  4. Influence of long-term hyper-gravity on the reactivity of succinic acid dehydrogenase and NADPH-diaphorase in the central nervous system of fish: a histochemical study

    NASA Astrophysics Data System (ADS)

    Anken, R. H.; Rahmann, H.

    In the course of a densitometric evaluation, the histochemically demonstrated reactivity of succinic acid dehydrogenase (SDH) and of NADPH-diaphorase (NADPHD) was determined in different brain nuclei of two teleost fish (cichlid fish Oreochromis mossambicus, swordtail fish Xiphophorus helleri), which had been kept under 3g hyper-gravity for 8 days. SDH was chosen since it is a rate limiting enzyme of the Krebs cycle and therefore it is regarded as a marker for metabolic and neuronal activity. NADPHD reactivity reflects the activity of nitric oxide synthase. Nitric oxide (NO) is a gaseous intercellular messenger that has been suggested to play a major role in several different in vivo models of neuronal plasticity including learning. Within particular vestibulum-connected brain centers, significant effects of hyper-gravity were obtained, e.g., in the magnocellular nucleus, a primary vestibular relay ganglion of the brain stem octavolateralis area, in the superior rectus subdivision of the oculomotoric nucleus and within cerebellar eurydendroid cells, which in teleosts possibly resemble the deep cerebellar nucleus of higher vertebrates. Non-vestibulum related nuclei did not respond to hypergravity in a significant way. The effect of hyper-gravity found was much less distinct in adult animals as compared to the circumstances seen in larval fish (Anken et al., Adv. Space Res. 17, 1996), possibly due to a development correlated loss of neuronal plasticity.

  5. Genetics Home Reference: pyruvate dehydrogenase deficiency

    MedlinePlus

    ... control the activity of the complex: pyruvate dehydrogenase phosphatase turns on (activates) the complex, while pyruvate dehydrogenase ... binding protein (the PDHX gene), and pyruvate dehydrogenase phosphatase (the PDP1 gene) have been identified in people ...

  6. The regioselective synthesis of spirooxindolo pyrrolidines and pyrrolizidines via three-component reactions of acrylamides and aroylacrylic acids with isatins and α-amino acids

    PubMed Central

    Pavlovskaya, Tatyana L; Yaremenko, Fedor G; Shishkina, Svetlana V; Shishkin, Oleg V; Musatov, Vladimir I; Karpenko, Alexander S

    2014-01-01

    Summary The regioselective three-component condensation of azomethine ylides derived from isatins and α-amino acids with acrylamides or aroylacrylic acids as dipolarophiles has been realized through a one-pot 1,3-dipolar cycloaddition protocol. Decarboxylation of 2'-aroyl-2-oxo-1,1',2,2',5',6',7',7a'-octahydrospiro[indole-3,3'-pyrrolizine]-1'-carboxylic acids is accompanied by cyclative rearrangement with formation of dihydropyrrolizinyl indolones. PMID:24454564

  7. Design, synthesis, and biological evaluation of 2-oxo-3,4-dihydropyrimido[4,5-d]pyrimidinyl derivatives as new irreversible epidermal growth factor receptor inhibitors with improved pharmacokinetic properties.

    PubMed

    Xu, Shilin; Xu, Tianfeng; Zhang, Lianwen; Zhang, Zhang; Luo, Jinfeng; Liu, Yingxue; Lu, Xiaoyun; Tu, Zhengchao; Ren, Xiaomei; Ding, Ke

    2013-11-14

    Structural optimization of a series of 2-oxo-3,4-dihydropyrimido[4,5-d]pyrimidinyl compounds, potential new irreversible EGFR inhibitors, was performed to improve pharmacokinetic properties of the compounds. This led to compound 2v with improved aqueous solubility and good pharmacokinetic properties which at the nanomolar level potently inhibits gefitinib-resistant EGFR(L858R/T790M) kinase and displays strong antiproliferative activity against H1975 nonsmall cell lung cancer cells. The new inhibitor also shows promising antitumor efficacy in a murine EGFR(L858R/T790M)-driven H1975 xenograft model without effect on body weight. These studies provide new lead compounds for further development of drugs for treatment of gefitinib-resistant nonsmall cell lung cancer patients.

  8. Uptake and metabolism of L-2-oxo-(35S)thiazolidine-4-carboxylate by rat cells is slower than that of L-(35S)cysteine or L-(35S)methionine

    SciTech Connect

    Coloso, R.M.; Hirschberger, L.L.; Stipanuk, M.H. )

    1991-09-01

    The uptake and metabolism of L-2-oxo-(35S)thiazolidine-4-carboxylate (OTC) was compared with that of L-(35S)cysteine and L-(35S)methionine in studies with freshly isolated rat hepatocytes, renal cortical tubules and enterocytes. All three 35S-labeled substrates were metabolized to glutathione, inorganic sulfur and taurine by hepatocytes and to inorganic sulfur by renal tubules and enterocytes. The rate of metabolite production from OTC was always less than 30% of that from cysteine or methionine. The transport rate for uptake of (35S)OTC by hepatocytes was less than that observed for uptake of (35S)cysteine or (35S)methionine. The capacity of rat hepatocytes, renal cortical tubules and enterocytes to take up and metabolize OTC is substantially lower than that for uptake and metabolism of cysteine or its normal intracellular precursor, methionine.

  9. Synthesis, crystal structure, DNA and protein binding studies of novel binuclear Pd(II) complex of 6-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde-4(N,N)-dimethylthiosemicarbazone.

    PubMed

    Eswaran, Ramachandran; Bertani, Roberta; Sgarbossa, Paolo; Karuppannan, Natarajan; Nattamai S P, Bhuvanesh

    2016-02-01

    A novel binuclear palladium(II) complex [(AsPh3)2ClPd(L)PdCl] (LPd2) has been synthesized by reacting 2-oxo-1,2-dihydroquinoline-3-carbaldehyde-4(N,N)-dimethylthiosemicarbazone (HL) with [PdCl2(AsPh3)2], and the molecular structure was confirmed by single crystal X-ray diffraction studies. The DNA interactions of the free ligand and of the complex have been evaluated by absorption and ethidium bromide (EB) competitive studies which revealed that the complex could interact with calf thymus DNA (CT-DNA) through intercalation. In addition, the interactions with bovine serum albumin (BSA) were also studied showing that the new binuclear palladium complex had a strong binding affinity with BSA.

  10. Synthesis, crystal structure, DNA and protein binding studies of novel binuclear Pd(II) complex of 6-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde-4(N,N)-dimethylthiosemicarbazone.

    PubMed

    Eswaran, Ramachandran; Bertani, Roberta; Sgarbossa, Paolo; Karuppannan, Natarajan; Nattamai S P, Bhuvanesh

    2016-02-01

    A novel binuclear palladium(II) complex [(AsPh3)2ClPd(L)PdCl] (LPd2) has been synthesized by reacting 2-oxo-1,2-dihydroquinoline-3-carbaldehyde-4(N,N)-dimethylthiosemicarbazone (HL) with [PdCl2(AsPh3)2], and the molecular structure was confirmed by single crystal X-ray diffraction studies. The DNA interactions of the free ligand and of the complex have been evaluated by absorption and ethidium bromide (EB) competitive studies which revealed that the complex could interact with calf thymus DNA (CT-DNA) through intercalation. In addition, the interactions with bovine serum albumin (BSA) were also studied showing that the new binuclear palladium complex had a strong binding affinity with BSA. PMID:26606287

  11. Structure of 1H-2-oxo-2,3-dihydroimidazo[1,2- a]pyridinium perchlorate studied by X-ray diffraction, DFT calculations and by FTIR and NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kowalczyk, I.; Bartoszak-Adamska, E.; Jaskólski, M.; Dega-Szafran, Z.; Szafran, M.

    2010-07-01

    2-Aminopyridine betaine (1-carboxymethyl-2-aminopyridinium inner salt) forms crystalline complexes with HCl, HBr and HClO 4. These complexes on heating in ethanol cyclize to 1H-2-oxo-2,3-dihydroimidazo[1,2- a]pyridinium chloride ( 1Ax), bromide ( 2Ax) and perchlorate ( 3Ax), respectively. Infrared spectra of the 1H-2-oxo-2,3-dihydroimidazo[1,2- a]pyridinium complexes indicate that the length of the N(1)-H···X - hydrogen bond depends on the counter-ions and increases in the order: Cl - < Br - < ClO 4-. In the crystal structure of 3Ax determined by X-ray diffraction, the ClO 4- anion is disordered and the N(1)-H···OClO 3- distance cannot be determined accurately. Three types of cyclic molecules were optimized by the B3LYP/6-31G(d,p) level of theory: type A with N(1)-H⋯X -, type B with N(1)⋯H-X hydrogen bonds and type C with electrostatic interactions between the positively charged nitrogen atom N +(4) and the counter anion (X - = Cl -, Br - or ClO 4-). Correlations between the experimental 1H and 13C NMR chemical shifts ( δexp) and the GIAO/B3LYP/6-31G(d,p) calculated magnetic isotropic shielding tensors ( σcalc) for 3Ao and 3Co,δexp = a + bσcalc, are reported. Tentative assignments of the experimental anharmonic solid state vibrational frequencies of the perchlorate complex, 3Ax, based on the B3LYP/6-31G(d,p) calculated harmonic frequencies, are presented.

  12. Relationships within the aldehyde dehydrogenase extended family.

    PubMed

    Perozich, J; Nicholas, H; Wang, B C; Lindahl, R; Hempel, J

    1999-01-01

    One hundred-forty-five full-length aldehyde dehydrogenase-related sequences were aligned to determine relationships within the aldehyde dehydrogenase (ALDH) extended family. The alignment reveals only four invariant residues: two glycines, a phenylalanine involved in NAD binding, and a glutamic acid that coordinates the nicotinamide ribose in certain E-NAD binary complex crystal structures, but which may also serve as a general base for the catalytic reaction. The cysteine that provides the catalytic thiol and its closest neighbor in space, an asparagine residue, are conserved in all ALDHs with demonstrated dehydrogenase activity. Sixteen residues are conserved in at least 95% of the sequences; 12 of these cluster into seven sequence motifs conserved in almost all ALDHs. These motifs cluster around the active site of the enzyme. Phylogenetic analysis of these ALDHs indicates at least 13 ALDH families, most of which have previously been identified but not grouped separately by alignment. ALDHs cluster into two main trunks of the phylogenetic tree. The largest, the "Class 3" trunk, contains mostly substrate-specific ALDH families, as well as the class 3 ALDH family itself. The other trunk, the "Class 1/2" trunk, contains mostly variable substrate ALDH families, including the class 1 and 2 ALDH families. Divergence of the substrate-specific ALDHs occurred earlier than the division between ALDHs with broad substrate specificities. A site on the World Wide Web has also been devoted to this alignment project.

  13. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci.

    PubMed

    Peralta, Guillermo Hugo; Bergamini, Carina Viviana; Hynes, Erica Rut

    2016-01-01

    Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor. PMID:27266631

  14. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci.

    PubMed

    Peralta, Guillermo Hugo; Bergamini, Carina Viviana; Hynes, Erica Rut

    2016-01-01

    Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor.

  15. Isolation, sequence, and characterization of the Cercospora nicotianae phytoene dehydrogenase gene.

    PubMed Central

    Ehrenshaft, M; Daub, M E

    1994-01-01

    We have cloned and sequenced the Cercospora nicotianae gene for the carotenoid biosynthetic enzyme phytoene dehydrogenase. Analysis of the derived amino acid sequence revealed it has greater than 50% identity with its counterpart in Neurospora crassa and approximately 30% identity with prokaryotic phytoene dehydrogenases and is related, but more distantly, to phytoene dehydrogenases from plants and cyanobacteria. Our analysis confirms that phytoene dehydrogenase proteins fall into two groups: those from plants and cyanobacteria and those from eukaryotic and noncyanobacter prokaryotic microbes. Southern analysis indicated that the C. nicotianae phytoene dehydrogenase gene is present in a single copy. Extraction of beta-carotene, the sole carotenoid accumulated by C. nicotianae, showed that both light- and dark-grown cultures synthesize carotenoids, but higher levels accumulate in the light. Northern (RNA) analysis of poly(A)+ RNA, however, showed no differential accumulation of phytoene dehydrogenase mRNA between light- and dark-grown fungal cultures. Images PMID:8085820

  16. Isolation, sequence, and characterization of the Cercospora nicotianae phytoene dehydrogenase gene.

    PubMed

    Ehrenshaft, M; Daub, M E

    1994-08-01

    We have cloned and sequenced the Cercospora nicotianae gene for the carotenoid biosynthetic enzyme phytoene dehydrogenase. Analysis of the derived amino acid sequence revealed it has greater than 50% identity with its counterpart in Neurospora crassa and approximately 30% identity with prokaryotic phytoene dehydrogenases and is related, but more distantly, to phytoene dehydrogenases from plants and cyanobacteria. Our analysis confirms that phytoene dehydrogenase proteins fall into two groups: those from plants and cyanobacteria and those from eukaryotic and noncyanobacter prokaryotic microbes. Southern analysis indicated that the C. nicotianae phytoene dehydrogenase gene is present in a single copy. Extraction of beta-carotene, the sole carotenoid accumulated by C. nicotianae, showed that both light- and dark-grown cultures synthesize carotenoids, but higher levels accumulate in the light. Northern (RNA) analysis of poly(A)+ RNA, however, showed no differential accumulation of phytoene dehydrogenase mRNA between light- and dark-grown fungal cultures.

  17. Crystal structure of the salt bis­(tri­ethano­lamine-κ4 N,O,O′,O′′)cadmium bis[2-(2-oxo-2,3-di­hydro-1,3-benzo­thia­zol-3-yl)acetate

    PubMed Central

    Ashurov, Jamshid Mengnorovich

    2016-01-01

    The reaction of 2-(2-oxo-2,3-di­hydro-1,3-benzo­thia­zol-3-yl)acetic acid (NBTA) and tri­ethano­lamine (TEA) with Cd(CH3OO)2 resulted in the formation of the title salt, [Cd(C6H15NO3)2](C9H6NO3S)2. In its crystal structure, the complex cation [Cd(TEA)2]2+ and two independent NBTA− units with essentially similar geometries and conformations are present. In the complex cation, each TEA mol­ecule behaves as an N,O,O′,O′′-tetra­dentate ligand, giving rise to an eight-coordinate CdII ion with a bicapped trigonal–prismatic configuration. All ethanol groups of each TEA mol­ecule form three five-membered chelate rings around the CdII ion. The Cd—O and Cd—N distances are in the ranges 2.392 (2)–2.478 (2) and 2.465 (2)–2.475 (3) Å, respectively. O—H⋯O hydrogen bonds between the TEA hy­droxy groups and carboxyl­ate O atoms connect cationic and anionic moieties into chains parallel to [110]. Each NBTA− anion is additionally linked to a symmetry-related anion through π–π stacking inter­actions between the benzene and thia­zoline rings [minimum centroid-to-centroid separation = 3.604 (2) Å]. Together with additional C—H⋯O inter­actions, these establish a double-layer polymeric network parallel to (001). PMID:27375881

  18. Alcohol Dehydrogenase from Methylobacterium organophilum

    PubMed Central

    Wolf, H. J.; Hanson, R. S.

    1978-01-01

    The alcohol dehydrogenase from Methylobacterium organophilum, a facultative methane-oxidizing bacterium, has been purified to homogeneity as indicated by sodium dodecyl sulfate-gel electrophoresis. It has several properties in common with the alcohol dehydrogenases from other methylotrophic bacteria. The active enzyme is a dimeric protein, both subunits having molecular weights of about 62,000. The enzyme exhibits broad substrate specificity for primary alcohols and catalyzes the two-step oxidation of methanol to formate. The apparent Michaelis constants of the enzyme are 2.9 × 10−5 M for methanol and 8.2 × 10−5 M for formaldehyde. Activity of the purified enzyme is dependent on phenazine methosulfate. Certain characteristics of this enzyme distinguish it from the other alcohol dehydrogenases of other methylotrophic bacteria. Ammonia is not required for, but stimulates the activity of newly purified enzyme. An absolute dependence on ammonia develops after storage of the purified enzyme. Activity is not inhibited by phosphate. The fluorescence spectrum of the enzyme indicates that it and the cofactor associated with it may be chemically different from the alcohol dehydrogenases from other methylotrophic bacteria. The alcohol dehydrogenases of Hyphomicrobium WC-65, Pseudomonas methanica, Methylosinus trichosporium, and several facultative methylotrophs are serologically related to the enzyme purified in this study. The enzymes of Rhodopseudomonas acidophila and of organisms of the Methylococcus group did not cross-react with the antiserum prepared against the alcohol dehydrogenase of M. organophilum. Images PMID:80974

  19. Pyruvate dehydrogenase complex from germinating castor bean endosperm.

    PubMed

    Rapp, B J; Randall, D D

    1980-02-01

    Subcellular organelles from castor bean (Ricinus communis) endosperm were isolated on discontinuous sucrose gradients from germinating seeds which were 1 to 7 days postimbibition. Marker enzyme activities of the organelles were measured (fumarase, catalase, and triose phosphate isomerase) and the homogeneity of the organelle fractions was examined by electron microscopy. Pyruvate dehydrogenase complex activity was measured only in the mitochondrial fraction and attempts to activate or release the enzyme from the proplastid were not successful. A pathway is proposed for the most efficient use of endosperm carbon for de novo fatty acid biosynthesis that does not require the presence of the pyruvate dehydrogenase complex in the proplastid to provide acetyl-coenzymeA.

  20. Stringency of substrate specificity of Escherichia coli malate dehydrogenase.

    SciTech Connect

    Boernke, W. E.; Millard, C. S.; Stevens, P. W.; Kakar, S. N.; Stevens, F. J.; Donnelly, M. I.; Nebraska Wesleyan Univ.

    1995-09-10

    malate dehydrogenase. However, when expressed in a strain of E. coli unable to ferment glucose, the mutant enzyme restored growth and produced lactic acid as the sole fermentation product.

  1. Michael hydratase alcohol dehydrogenase or just alcohol dehydrogenase?

    PubMed Central

    2014-01-01

    The Michael hydratase – alcohol dehydrogenase (MhyADH) from Alicycliphilus denitrificans was previously identified as a bi-functional enzyme performing a hydration of α,β-unsaturated ketones and subsequent oxidation of the formed alcohols. The investigations of the bi-functionality were based on a spectrophotometric assay and an activity staining in a native gel of the dehydrogenase. New insights in the recently discovered organocatalytic Michael addition of water led to the conclusion that the previously performed experiments to identify MhyADH as a bi-functional enzyme and their results need to be reconsidered and the reliability of the methodology used needs to be critically evaluated. PMID:24949265

  2. Deregulation of mitochondrial functions provoked by long-chain fatty acid accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial permeability transition deficiencies in rat heart--mitochondrial permeability transition pore opening as a potential contributing pathomechanism of cardiac alterations in these disorders.

    PubMed

    Cecatto, Cristiane; Hickmann, Fernanda H; Rodrigues, Marília D N; Amaral, Alexandre U; Wajner, Moacir

    2015-12-01

    Mitochondrial trifunctional protein and long-chain 3-hydroxyacyl-CoA dehydrogenase deficiencies are fatty acid oxidation disorders biochemically characterized by tissue accumulation of long-chain fatty acids and derivatives, including the monocarboxylic long-chain 3-hydroxy fatty acids (LCHFAs) 3-hydroxytetradecanoic acid (3HTA) and 3-hydroxypalmitic acid (3HPA). Patients commonly present severe cardiomyopathy for which the pathogenesis is still poorly established. We investigated the effects of 3HTA and 3HPA, the major metabolites accumulating in these disorders, on important parameters of mitochondrial homeostasis in Ca(2+) -loaded heart mitochondria. 3HTA and 3HPA significantly decreased mitochondrial membrane potential, the matrix NAD(P)H pool and Ca(2+) retention capacity, and also induced mitochondrial swelling. These fatty acids also provoked a marked decrease of ATP production reflecting severe energy dysfunction. Furthermore, 3HTA-induced mitochondrial alterations were completely prevented by the classical mitochondrial permeability transition (mPT) inhibitors cyclosporin A and ADP, as well as by ruthenium red, a Ca(2+) uptake blocker, indicating that LCHFAs induced Ca(2+)-dependent mPT pore opening. Milder effects only achieved at higher doses of LCHFAs were observed in brain mitochondria, implying a higher vulnerability of heart to these fatty acids. By contrast, 3HTA and docosanoic acids did not change mitochondrial homeostasis, indicating selective effects for monocarboxylic LCHFAs. The present data indicate that the major LCHFAs accumulating in mitochondrial trifunctional protein and long-chain 3-hydroxyacyl-CoA dehydrogenase deficiencies induce mPT pore opening, compromising Ca(2+) homeostasis and oxidative phosphorylation more intensely in the heart. It is proposed that these pathomechanisms may contribute at least in part to the severe cardiac alterations characteristic of patients affected by these diseases.

  3. Mutants of Escherichia coli deficient in the fermentative lactate dehydrogenase

    SciTech Connect

    Mat-Jan, F.; Alam, K.Y.; Clark, D.P. )

    1989-01-01

    Mutants of Escherichia coli deficient in the fermentative NAD-linked lactate dehydrogenase (ldh) have been isolated. These mutants showed no growth defects under anaerobic conditions unless present together with a defect in pyruvate formate lyase (pfl). Double mutants (pfl ldh) were unable to grow anaerobically on glucose or other sugars even when supplemented with acetate, whereas pfl mutants can do so. The ldh mutation was found to map at 30.5 min on the E. coli chromosome. The ldh mutant FMJ39 showed no detectable lactate dehydrogenase activity and produced no lactic acid from glucose under anaerobic conditions as estimated by in vivo nuclear magnetic resonance measurements. We also found that in wild-type strains the fermentative lactate dehydrogenase was conjointly induced by anaerobic conditions and an acidic pH. Despite previous findings that phosphate concentrations affect the proportion of lactic acid produced during fermentation, we were unable to find any intrinsic effect of phosphate on lactate dehydrogenase activity, apart from the buffering effect of this ion.

  4. Dehydrogenase activity of forest soils depends on the assay used

    NASA Astrophysics Data System (ADS)

    Januszek, Kazimierz; Długa, Joanna; Socha, Jarosław

    2015-01-01

    Dehydrogenases are exclusively intracellular enzymes, which play an important role in the initial stages of oxidation of soil organic matter. One of the most frequently used methods to estimate dehydrogenase activity in soil is based on the use of triphenyltetrazolium chloride as an artificial electron acceptor. The purpose of this study was to compare the activity of dehydrogenases of forest soils with varied physicochemical properties using different triphenyltetrazolium chloride assays. The determination was carried out using the original procedure by Casida et al., a modification of the procedure which involves the use of Ca(OH)2 instead of CaCO3, the Thalmann method, and the assay by Casida et al. without addition of buffer or any salt. Soil dehydrogenase activity depended on the assay used. Dehydrogenase determined by the Casida et al. method without addition of buffer or any salt correlated with the pH values of soils. The autoclaved strongly acidic samples of control soils showed high concentrations of triphenylformazan, probably due to chemical reduction of triphenyltetrazolium chloride. There is, therefore, a need for a sterilization method other than autoclaving, ie a process that results in significant changes in soil properties, thus helping to increase the chemical reduction of triphenyltetrazolium chloride.

  5. O-Ethyl S-{(S)-1-oxo-1-[(R)-2-oxo-4-phenyl-oxazolidin-3-yl]propan-2-yl} carbonodi-thio-ate.

    PubMed

    García-Merinos, J Pablo; López-Ruiz, Heraclio; López, Yliana; Rojas-Lima, Susana

    2014-05-01

    In the title compound, C15H17NO4S2, synthesized by addition of O-ethylxanthic acid potassium salt to a diastereomeric mixture of (4R)-3-(2-chloro-propano-yl)-4-phenyl-oxazolidin-2-one, the oxazolidinone ring has a twist conformation on the C-C bond. The phenyl ring is inclined to the mean plane of the oxazolidinone ring by 76.4 (3)°. In the chain the methine H atom is involved in a C-H⋯S and a C-H⋯O intra-molecular inter-action. In the crystal, mol-ecules are linked by C-H⋯π inter-actions, forming chains along [001]. The S configuration at the C atom to which the xanthate group is attached was determined by comparison to the known R configuration of the C atom to which the phenyl group is attached.

  6. Synthesis, spectroscopic characterization and thermal behavior of metal complexes formed with ( Z)-2-oxo-2-(2-(2-oxoindolin-3-ylidene)hydrazinyl)- N-phenylacetamide (H 2OI)

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; Rakha, T. H.; El Ayaan, Usama; Abu El Reash, G. M.

    2012-01-01

    Complexes of Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and U(IV)O 2 with ( Z)-2-oxo-2-(2-(2-oxoindolin-3-ylidene)hydrazinyl)- N-phenylacetamide (H 2OI) are reported and have been characterized by various spectroscopic techniques like (IR, UV-Vis, ESR 1H and 13C NMR) as well as magnetic and thermal (TG and DTA) measurements. It is found that the ligand behaves as a neutral tridentate, neutral tetradentate, monoanionic tridentate, monoanionic tridentate and dianionic tridentate. An octahedral geometry for all complexes except [Cu 2(H 2OI)(OAc) 4](H 2O) 2 and [Cu(HOI)Cl](H 2O) 2 which have a square planar geometry. Furthermore, kinetic parameters were determined for each thermal degradation stage of some studied complexes using Coats-Redfern and Horowitz-Metzger methods. The bond lengths, bond angles, HOMO, LUMO and dipole moments have been calculated to confirm the geometry of the ligand and the investigated complexes.

  7. Structural, spectral, thermal and biological studies on 2-oxo-N‧-((4-oxo-4H-chromen-3-yl)methylene)-2-(phenylamino)acetohydrazide (H2L) and its metal complexes

    NASA Astrophysics Data System (ADS)

    El-Gammal, Ola A.; El-Reash, Gaber Abu; Ahmed, Sara F.

    2012-01-01

    A new series of metal complexes formed by the reaction of 2-oxo-N'-((4-oxo-4H-chromen-3-yl)methylene)-2-(phenylamino)acetohydrazide(H 2L) and Cu(II), Co(II), Ni(II), Cd(II), Zn(II), Hg(II) and U(VI) O22+ ions. The isolated complexes have been characterized by elemental analyses, spectral (IR, UV-visible and 1H NMR) as well as magnetic and thermal measurements. The data revealed that the ligand acts as neutral ON or ONO as well as mononegative ONO. On the basis of magnetic and electronic spectral data an octahedral geometry for the Co(II), Cu(II) and U(VI)O 2 complexes, a tetrahedral structure for the Ni(II), Cd(II), Zn(II) and Hg(II) complexes have been proposed. The bond length, bond angle, HOMO, LUMO, dipole moment and charges on the atoms have been calculated to confirm the geometry of the ligand and the investigated complexes. Also, kinetic parameters were determined for each thermal degradation stage of some complexes using Coats-Redfern and Horowitz-Metzger methods. Moreover, the ligand and its complexes were screened against Bacillus thuringiensis ( Bt) as Gram positive bacteria and Pseudomonas aeuroginosa ( Pa) Gram negative bacteria using the inhibitory zone diameter.

  8. Design, synthesis, and characterization of (1-(4-aryl)- 1H-1,2,3-triazol-4-yl)methyl, substituted phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates against Mycobacterium tuberculosis

    PubMed Central

    Venugopala, Katharigatta N; Dharma Rao, G B; Bhandary, Subhrajyoti; Pillay, Melendhran; Chopra, Deepak; Aldhubiab, Bandar E; Attimarad, Mahesh; Alwassil, Osama Ibrahim; Harsha, Sree; Mlisana, Koleka

    2016-01-01

    The novel (1-(4-aryl)-1H-1,2,3-triazol-4-yl)methyl, substituted phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives were synthesized by the click reaction of the dihydropyrimidinones, bearing a terminal alkynyl group, with various substituted aryl azides at room temperature using a catalytic amount of Cu(OAc)2 and sodium ascorbate in a 1:2 ratio of acetone and water as a solvent. The newly synthesized compounds were characterized by a number of spectroscopic techniques, such as infrared, liquid chromatography-mass spectrometry, 1H, and 13C nuclear magnetic resonance along with single crystal X-ray diffraction. The current procedure for the synthesis of 1,2,3-triazole hybrids with dihydropyrimidinones is appropriate for the synthesis of a library of analogs 7a-l and the method accessible here is operationally simple and has excellent yields. The title compounds 7a-l were evaluated for their in vitro antitubercular activity against H37RV and multidrug-resistant strains of Mycobacterium tuberculosis by resazurin microplate assay plate method and it was found that compound 7d was promising against H37RV and multidrug-resistant strains of M. tuberculosis at 10 and 15 μg/mL, respectively.

  9. Inhibition of mild steel corrosion by 1,4,6-trimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile and synergistic effect of halide ion in 0.5 M H2SO4

    NASA Astrophysics Data System (ADS)

    Mourya, Punita; Singh, Praveen; Rastogi, R. B.; Singh, M. M.

    2016-09-01

    The effect of iodide ions on inhibitive performance of 1,4,6-trimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (TODPCN) on mild steel (MS) corrosion in 0.5 M H2SO4 was studied using gravimetric and electrochemical measurements. TODPCN inhibits the corrosion of MS to the extent of 62.3% at its lowest concentration (0.5 mM) and its inhibition efficiency (η) further increases on increasing concentration at 298 K. The adsorption of TODPCN on MS was found to follow the Langmuir adsorption isotherm. The value of η increased on the addition of 2.0 mM KI. The value of synergism parameter being more than unity indicates that the enhanced η value in the presence of iodide ions is only due to synergism. Thus, a cooperative mechanism of inhibition exists between the iodide anion and TODPCN cations. The increase in surface coverage in the presence of KI indicates that iodide ions enhance the adsorption of TODPCN. The surface morphology of corroded/inhibited MS was studied by atomic force microscopy. X-ray photoelectron spectroscopy of inhibited MS surface was carried out to determine the composition of the adsorbed film. Some quantum chemical parameters and the Mulliken charge densities for TODPCN calculated by density functional theory provided further insight into the mechanism of inhibition.

  10. Design, synthesis, and characterization of (1-(4-aryl)- 1H-1,2,3-triazol-4-yl)methyl, substituted phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates against Mycobacterium tuberculosis

    PubMed Central

    Venugopala, Katharigatta N; Dharma Rao, G B; Bhandary, Subhrajyoti; Pillay, Melendhran; Chopra, Deepak; Aldhubiab, Bandar E; Attimarad, Mahesh; Alwassil, Osama Ibrahim; Harsha, Sree; Mlisana, Koleka

    2016-01-01

    The novel (1-(4-aryl)-1H-1,2,3-triazol-4-yl)methyl, substituted phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives were synthesized by the click reaction of the dihydropyrimidinones, bearing a terminal alkynyl group, with various substituted aryl azides at room temperature using a catalytic amount of Cu(OAc)2 and sodium ascorbate in a 1:2 ratio of acetone and water as a solvent. The newly synthesized compounds were characterized by a number of spectroscopic techniques, such as infrared, liquid chromatography-mass spectrometry, 1H, and 13C nuclear magnetic resonance along with single crystal X-ray diffraction. The current procedure for the synthesis of 1,2,3-triazole hybrids with dihydropyrimidinones is appropriate for the synthesis of a library of analogs 7a-l and the method accessible here is operationally simple and has excellent yields. The title compounds 7a-l were evaluated for their in vitro antitubercular activity against H37RV and multidrug-resistant strains of Mycobacterium tuberculosis by resazurin microplate assay plate method and it was found that compound 7d was promising against H37RV and multidrug-resistant strains of M. tuberculosis at 10 and 15 μg/mL, respectively. PMID:27601885

  11. Comparative ligational, optical band gap and biological studies on Cr(III) and Fe(III) complexes of hydrazones derived from 2-hydrazinyl-2-oxo-N-phenylacetamide with both vanillin and O-vanillin

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; Abu El-Reash, G. M.; Attia, M. I.; El-Tabai, M. N.

    2015-09-01

    The Cr(III) and Fe(III) complexes of hydrazones derived from the condensation of 2-hydrazinyl-2-oxo-N-phenylacetamide with both vanillin and o-vanillin synthesized and characterized by different conventional physicochemical techniques. The kinetic and thermodynamic parameters for the different decomposition steps were calculated using Coats-Redfern and Horowitz-Metzger equations. The bond lengths, bond angles, HOMO, LUMO, dipole moment and binding energy calculated by DFT calculations. The optical band gap (Eg) values equal 3.28, 3.03, 3.58 and 3.57 eV for [Cr(HL1)Cl2(H2O)2](0.75H2O), [Cr(HL2)Cl2(H2O)](H2O), [Fe(HL1)Cl2(H2O)2](0.5H2O) and [Fe(HL2)2Cl(H2O)](3H2O) complexes, respectively. The antibacterial activities tested against Bacillus subtilis and Escherichia coli bacteria.

  12. Design, synthesis, and characterization of (1-(4-aryl)- 1H-1,2,3-triazol-4-yl)methyl, substituted phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates against Mycobacterium tuberculosis.

    PubMed

    Venugopala, Katharigatta N; Dharma Rao, G B; Bhandary, Subhrajyoti; Pillay, Melendhran; Chopra, Deepak; Aldhubiab, Bandar E; Attimarad, Mahesh; Alwassil, Osama Ibrahim; Harsha, Sree; Mlisana, Koleka

    2016-01-01

    The novel (1-(4-aryl)-1H-1,2,3-triazol-4-yl)methyl, substituted phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives were synthesized by the click reaction of the dihydropyrimidinones, bearing a terminal alkynyl group, with various substituted aryl azides at room temperature using a catalytic amount of Cu(OAc)2 and sodium ascorbate in a 1:2 ratio of acetone and water as a solvent. The newly synthesized compounds were characterized by a number of spectroscopic techniques, such as infrared, liquid chromatography-mass spectrometry, (1)H, and (13)C nuclear magnetic resonance along with single crystal X-ray diffraction. The current procedure for the synthesis of 1,2,3-triazole hybrids with dihydropyrimidinones is appropriate for the synthesis of a library of analogs 7a-l and the method accessible here is operationally simple and has excellent yields. The title compounds 7a-l were evaluated for their in vitro antitubercular activity against H37RV and multidrug-resistant strains of Mycobacterium tuberculosis by resazurin microplate assay plate method and it was found that compound 7d was promising against H37RV and multidrug-resistant strains of M. tuberculosis at 10 and 15 μg/mL, respectively. PMID:27601885

  13. Structural, vibrational, electronic, NMR, NLO and reactivity analyses of (3Z)-3-(2-oxo-2-phenylethylidene)-1,3-dihydro-2H-indol-2-one (OPEDI) by ab initio HF and DFT calculations.

    PubMed

    Sridevi, C; Velraj, G

    2013-04-15

    This study represents the vibrational, electronic, NMR, NLO, reactivity and structural aspects of (3Z)-3-(2-oxo-2-phenylethylidene)-1,3-dihydro-2H-indol-2-one (OPEDI). A detailed interpretation of the FT-IR, FT-Raman, UV and NMR spectra were reported. Theoretical calculations were performed by ab initio HF and density functional theory (DFT)/B3LYP method using 6-311++G(d,p) basis sets. The most preferred Z isomer (cis-configuration) was confirmed through PES scan studies. The vibrational wavenumbers and potential energy distribution (PED) of various normal modes were calculated. The lower frontier orbital energy gap and high dipole moment of OPEDI illustrates the high reactivity. The stability and charge delocalization of the molecule was studied by natural bond orbital (NBO) analysis. OPEDI exhibited good nonlinear optical activity and was 13 times greater than that of urea. Molecular electrostatic potential (MEP) was carried out for predicting the reactive sites. The NMR results indicated that the observed chemical shifts depend not only on the structure of the molecule being studied, but also on the solvent used.

  14. Genetics Home Reference: lactate dehydrogenase deficiency

    MedlinePlus

    ... dehydrogenase-B pieces (subunits) of the lactate dehydrogenase enzyme. This enzyme is found throughout the body and is important ... cells. There are five different forms of this enzyme, each made up of four protein subunits. Various ...

  15. NADP+-Preferring D-Lactate Dehydrogenase from Sporolactobacillus inulinus.

    PubMed

    Zhu, Lingfeng; Xu, Xiaoling; Wang, Limin; Dong, Hui; Yu, Bo; Ma, Yanhe

    2015-09-01

    Hydroxy acid dehydrogenases, including l- and d-lactate dehydrogenases (L-LDH and D-LDH), are responsible for the stereospecific conversion of 2-keto acids to 2-hydroxyacids and extensively used in a wide range of biotechnological applications. A common feature of LDHs is their high specificity for NAD(+) as a cofactor. An LDH that could effectively use NADPH as a coenzyme could be an alternative enzymatic system for regeneration of the oxidized, phosphorylated cofactor. In this study, a d-lactate dehydrogenase from a Sporolactobacillus inulinus strain was found to use both NADH and NADPH with high efficiencies and with a preference for NADPH as its coenzyme, which is different from the coenzyme utilization of all previously reported LDHs. The biochemical properties of the D-LDH enzyme were determined by X-ray crystal structural characterization and in vivo and in vitro enzymatic activity analyses. The residue Asn(174) was demonstrated to be critical for NADPH utilization. Characterization of the biochemical properties of this enzyme will contribute to understanding of the catalytic mechanism and provide referential information for shifting the coenzyme utilization specificity of 2-hydroxyacid dehydrogenases.

  16. Regulation of human dihydrodiol dehydrogenase by Michael acceptor xenobiotics.

    PubMed

    Ciaccio, P J; Jaiswal, A K; Tew, K D

    1994-06-01

    A human oxidoreductase (H-37) that is overexpressed in ethacrynic acid-resistant HT29 colon cells (Ciaccio, P. J., Stuart, J.E., and Tew, K.D. (1993) Mol. Pharmacol. 43, 845-853) has been identified as a dihydrodiol dehydrogenase. Translated protein from a dihydrodiol dehydrogenase cDNA isolated from a library prepared from ethacrynic acid-resistant HT29 cell poly(A+) RNA was recognized by anti-H-37 IgG and was identical in molecular weight with H-37. The isolated cDNA was identical in both nucleotide and amino acid sequences with the recently cloned liver dihydrodiol dehydrogenase (Stolz, A., Hammond, L., Lou, H., Takikawa, H., Ronk, M., and Shively, J.E. (1993) J. Biol. Chem. 268, 10448-10457). Using this cDNA as probe, we have examined its induction by Michael acceptors. The steady state dihydrodiol dehydrogenase mRNA level in the ethacrynic acid-resistant line was increased 30-fold relative to that of wild-type cells. Twenty-four hour treatment of wild-type cells with ethacrynic acid or dimethyl maleate increased mRNA 10-fold and 5-fold, respectively. These changes are accompanied by both increased protein expression and increased NADP-dependent 1-acenaphthenol oxidative activity in cell cytosol. In gel shift assays, compared to wild type controls, increased binding of NAD(P)H quinone oxidoreductase human antioxidant response element (hARE) DNA to redox labile protein complexes present in treated and resistant cell nuclear extract was observed. Ethacrynic acid induced CAT activity 2-fold in Hepa1 cells stably transfected with NAD(P)H quinone oxidoreductase hARE-tk-CAT chimeric gene construct. Thus, dihydrodiol dehydrogenase protein is inducible by de novo synthesis from mRNA by structurally related monofunctional inducer Michael acceptors. Altered in vitro binding of nuclear protein to the hARE is indirect evidence for the involvement of an element similar to hARE in the regulation of dihydrodiol dehydrogenase by these agents. PMID:7515059

  17. Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe

    SciTech Connect

    Bulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C.

    2013-09-18

    Lysine biosynthesis in fungi, euglena, and certain archaebacteria occurs through the {alpha}-aminoadipate pathway. Enzymes in the first steps of this pathway have been proposed as potential targets for the development of antifungal therapies, as they are absent in animals but are conserved in several pathogenic fungi species, including Candida, Cryptococcus, and Aspergillus. One potential antifungal target in the {alpha}-aminoadipate pathway is the third enzyme in the pathway, homoisocitrate dehydrogenase (HICDH), which catalyzes the divalent metal-dependent conversion of homoisocitrate to 2-oxoadipate (2-OA) using nicotinamide adenine dinucleotide (NAD{sup +}) as a cofactor. HICDH belogns to a family of {beta}-hydroxyacid oxidative decarboxylases that includes malate dehydrogenase, tartrate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase (ICDH), and 3-isopropylmalte dehydrogenase (IPMDH). ICDH and IPMDH are well-characterized enzymes that catalyze the decarboxylation of isocitrate to yield 2-oxoglutarate (2-OG) in the citric acid cycle and the conversion of 3-isopropylmalate to 2-oxoisovalerate in the leucine biosynthetic pathway, respectively. Recent structural and biochemical studies of HICDH reveal that this enzyme shares sequence, structural, and mechanistic homology with ICDH and IPMDH. To date, the only published structures of HICDH are from the archaebacteria Thermus thermophilus (TtHICDH). Fungal HICDHs diverge from TtHICDH in several aspects, including their thermal stability, oligomerization state, and substrate specificity, thus warranting further characterization. To gain insights into these differences, they determined crystal structures of a fungal Schizosaccharomyces pombe HICDH (SpHICDH) as an apoenzyme and as a binary complex with additive tripeptide glycyl-glycyl-glycine (GGG) to 1.55 {angstrom} and 1.85 {angstrom} resolution, respectively. Finally, a comparison of the SpHICDH and TtHICDH structures reveal differences in

  18. Mitochondrial aldehyde dehydrogenase and cardiac diseases

    PubMed Central

    Chen, Che-Hong; Sun, Lihan; Mochly-Rosen, Daria

    2010-01-01

    Numerous conditions promote oxidative stress, leading to the build-up of reactive aldehydes that cause cell damage and contribute to cardiac diseases. Aldehyde dehydrogenases (ALDHs) are important enzymes that eliminate toxic aldehydes by catalysing their oxidation to non-reactive acids. The review will discuss evidence indicating a role for a specific ALDH enzyme, the mitochondrial ALDH2, in combating oxidative stress by reducing the cellular ‘aldehydic load’. Epidemiological studies in humans carrying an inactive ALDH2, genetic models in mice with altered ALDH2 levels, and small molecule activators of ALDH2 all highlight the role of ALDH2 in cardioprotection and suggest a promising new direction in cardiovascular research and the development of new treatments for cardiovascular diseases. PMID:20558439

  19. Untangling the glutamate dehydrogenase allosteric nightmare.

    PubMed

    Smith, Thomas J; Stanley, Charles A

    2008-11-01

    Glutamate dehydrogenase (GDH) is found in all living organisms, but only animal GDH is regulated by a large repertoire of metabolites. More than 50 years of research to better understand the mechanism and role of this allosteric network has been frustrated by its sheer complexity. However, recent studies have begun to tease out how and why this complex behavior evolved. Much of GDH regulation probably occurs by controlling a complex ballet of motion necessary for catalytic turnover and has evolved concomitantly with a long antenna-like feature of the structure of the enzyme. Ciliates, the 'missing link' in GDH evolution, might have created the antenna to accommodate changing organelle functions and was refined in humans to, at least in part, link amino acid catabolism with insulin secretion.

  20. Fast internal dynamics in alcohol dehydrogenase.

    PubMed

    Monkenbusch, M; Stadler, A; Biehl, R; Ollivier, J; Zamponi, M; Richter, D

    2015-08-21

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D2O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains. PMID:26298156

  1. Fast internal dynamics in alcohol dehydrogenase

    SciTech Connect

    Monkenbusch, M.; Stadler, A. Biehl, R.; Richter, D.; Ollivier, J.; Zamponi, M.

    2015-08-21

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D{sub 2}O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.

  2. Sorbitol dehydrogenase is a zinc enzyme.

    PubMed Central

    Jeffery, J; Chesters, J; Mills, C; Sadler, P J; Jörnvall, H

    1984-01-01

    Evidence is given that tetrameric sorbitol dehydrogenase from sheep liver contains one zinc atom per subunit, most probably located at the active site, and no other specifically bound zinc or iron atom. In alcohol dehydrogenases that are structurally related to sorbitol dehydrogenase, more than one zinc atom per subunit can complicate investigations of zinc atom function. Therefore, sorbitol dehydrogenase will be particularly valuable for defining the precise roles of zinc in alcohol and polyol dehydrogenases, and for establishing correlations of structure and function with other important zinc-containing proteins. PMID:6370679

  3. Anti-influenza virus activities of 4-[(1,2-dihydro-2-oxo-3H-indol-3-ylidene)amino]-N-(4,6-dimethyl-2-pyrimidin-2-yl)benzenesulphonamide and its derivatives.

    PubMed

    Selvam, Periyasamy; Murugesh, Narayanan; Chandramohan, Markandavel; Sidwell, Robert W; Wandersee, Miles K; Smee, Donald F

    2006-01-01

    4-[(1,2-Dihydro-2-oxo-3H-indol-3-ylidene)amino]-N-(4,6-dimethyl-2-pyrimidinyl)-benzenesulphonamide (SPIII-5H) and related compounds were tested for antiviral activity against influenza A (H1N1, H3N2, and H5N1) and B viruses in Madin Darby canine kidney (MDCK) cell culture. Among the compounds tested, SPIII-5H and four derivatives (5-chloro [SPill-5Cl], 5-bromo [SPIII-5Br], 5-methyl [SPIII-5Me] and N-acetyl [SPIII-NA]) showed similar antiviral potencies, with only the 5-fluoro (SPIII-5F) derivative being ineffective. Fifty percent effective concentration (EC50) values were determined in cytopathic effect (CPE) inhibition assays quantified by neutral red dye uptake. By this method, the active compounds were inhibitory to the H1N1 strain of influenza A at 2.7-5.2 microg/ml, to the H3N2 strain of influenza A at 13.8-26.0 microg/ml, to the H5N1 strain of influenza A at 3.1-6.3 microg/ml and to influenza B at 7.7-11.5 microg/ml. Confirmatory virus yield reduction studies against influenza A (H1N1) virus demonstrated antiviral activity (90% inhibition) at concentrations of 2-10 microg/ml. No cytotoxic effects were evident in actively growing uninfected cells or stationary monolayers at 100 microg/ml. Potencies of the compounds were similar to those of ribavirin, but much less than those of oseltamivir carboxylate against the various viruses. Time-of-addition studies indicated the compounds inhibited an early step in the virus replication cycle, probably virus adsorption/penetration, and no virucidal activity was evident. The basic molecule is amenable to diverse chemical modifications, which may improve water solubility and antiviral potency.

  4. N'-((2-(6-bromo-2-oxo-2H-chromen-3-yl)-1H-indol-3-yl)methylene)benzohydrazide as a probable Bcl-2/Bcl-xL inhibitor with apoptotic and anti-metastatic potential.

    PubMed

    Kamath, Pooja R; Sunil, Dhanya; Ajees, A Abdul; Pai, K S R; Biswas, Shubankar

    2016-09-14

    A wide number of marketed drugs and drug candidates in cancer clinical development contain halogen substituents. The aim of the present study was to synthesize a series of halogen incorporated indole-coumarin hybrid schiff bases - N'-((2-(2-oxo-2H-chromen-3-yl)-1H-indol-3-yl)methylene)benzohydrazides and to investigate their apoptotic and anti-migratory potential in human breast adenocarcinoma cells as well as to examine their Bcl-2 and Bcl-xL protein binding ability via in silico docking. Hybrid 5g with a bromine atom in position-7 of coumarin ring displayed significant dose dependent cytotoxic activity with high selectivity to MCF-7 cells in MTT assay. Cell cycle progression analysis of 5g treated cells using flow cytometer exhibited a cell cycle arrest in the S phase and accumulation of cells in the subG1 phase. The apoptotic mode of cell death induced by 5g was further confirmed by Annexin-V staining assay. The wound healing assay revealed a profound impairment in the migration of MCF-7 cells presumably due to down-regulation of Bcl-2 and Bcl-xL proteins induced by 5g as observed in immunoblotting analysis. SAR studies of these hybrid molecules based on cell viability and docking were also probed. The most active pharmacophore 5g was found to bind favourably to Bcl-2 and Bcl-xL in docking simulation analysis suggesting it to be a probable small molecule Bcl-2/Bcl-xL inhibitor and a potential lead for breast cancer chemotherapy with apoptotic and anti-metastatic properties. PMID:27187865

  5. N'-((2-(6-bromo-2-oxo-2H-chromen-3-yl)-1H-indol-3-yl)methylene)benzohydrazide as a probable Bcl-2/Bcl-xL inhibitor with apoptotic and anti-metastatic potential.

    PubMed

    Kamath, Pooja R; Sunil, Dhanya; Ajees, A Abdul; Pai, K S R; Biswas, Shubankar

    2016-09-14

    A wide number of marketed drugs and drug candidates in cancer clinical development contain halogen substituents. The aim of the present study was to synthesize a series of halogen incorporated indole-coumarin hybrid schiff bases - N'-((2-(2-oxo-2H-chromen-3-yl)-1H-indol-3-yl)methylene)benzohydrazides and to investigate their apoptotic and anti-migratory potential in human breast adenocarcinoma cells as well as to examine their Bcl-2 and Bcl-xL protein binding ability via in silico docking. Hybrid 5g with a bromine atom in position-7 of coumarin ring displayed significant dose dependent cytotoxic activity with high selectivity to MCF-7 cells in MTT assay. Cell cycle progression analysis of 5g treated cells using flow cytometer exhibited a cell cycle arrest in the S phase and accumulation of cells in the subG1 phase. The apoptotic mode of cell death induced by 5g was further confirmed by Annexin-V staining assay. The wound healing assay revealed a profound impairment in the migration of MCF-7 cells presumably due to down-regulation of Bcl-2 and Bcl-xL proteins induced by 5g as observed in immunoblotting analysis. SAR studies of these hybrid molecules based on cell viability and docking were also probed. The most active pharmacophore 5g was found to bind favourably to Bcl-2 and Bcl-xL in docking simulation analysis suggesting it to be a probable small molecule Bcl-2/Bcl-xL inhibitor and a potential lead for breast cancer chemotherapy with apoptotic and anti-metastatic properties.

  6. Glutamate dehydrogenases: the why and how of coenzyme specificity.

    PubMed

    Engel, Paul C

    2014-01-01

    NAD(+) and NADP(+), chemically similar and with almost identical standard oxidation-reduction potentials, nevertheless have distinct roles, NAD(+) serving catabolism and ATP generation whereas NADPH is the biosynthetic reductant. Separating these roles requires strict specificity for one or the other coenzyme for most dehydrogenases. In many organisms this holds also for glutamate dehydrogenases (GDH), NAD(+)-dependent for glutamate oxidation, NADP(+)-dependent for fixing ammonia. In higher animals, however, GDH has dual specificity. It has been suggested that GDH in mitochondria reacts only with NADP(H), the NAD(+) reaction being an in vitro artefact. However, contrary evidence suggests mitochondrial GDH not only reacts with NAD(+) but maintains equilibrium using the same pool as accessed by β-hydroxybutyrate dehydrogenase. Another complication is the presence of an energy-linked dehydrogenase driving NADP(+) reduction by NADH, maintaining the coenzyme pools at different oxidation-reduction potentials. Its coexistence with GDH makes possible a futile cycle, control of which is not yet properly explained. Structural studies show NAD(+)-dependent, NADP(+)-dependent and dual-specificity GDHs are closely related and a few site-directed mutations can reverse specificity. Specificity for NAD(+) or for NADP(+) has probably emerged repeatedly during evolution, using different structural solutions on different occasions. In various GDHs the P7 position in the coenzyme-binding domain plays a key role. However, whereas in other dehydrogenases an acidic P7 residue usually hydrogen bonds to the 2'- and 3'-hydroxyls, dictating NAD(+) specificity, among GDHs, depending on detailed conformation of surrounding residues, an acidic P7 may permit binding of NAD(+) only, NADP(+) only, or in higher animals both.

  7. The maximum activities of hexokinase, phosphorylase, phosphofructokinase, glycerol phosphate dehydrogenases, lactate dehydrogenase, octopine dehydrogenase, phosphoenolpyruvate carboxykinase, nucleoside diphosphatekinase, glutamate-oxaloacetate transaminase and arginine kinase in relation to carbohydrate utilization in muscles from marine invertebrates.

    PubMed Central

    Zammit, V A; Newsholme, E A

    1976-01-01

    Comparison of the activities of hexokinase, phosphorylase and phosphofructokinase in muscles from marine invertebrates indicates that they can be divided into three groups. First, the activities of the three enzymes are low in coelenterate muscles, catch muscles of molluscs and muscles of echinoderms; this indicates a low rate of carbohydrate (and energy) utilization by these muscles. Secondly, high activities of phosphorylase and phosphofructokinase relative to those of hexokinase are found in, for example, lobster abdominal and scallop snap muscles; this indicates that these muscles depend largely on anaerobic degradation of glycogen for energy production. Thirdly, high activities of hexokinase are found in the radular muscles of prosobranch molluscs and the fin muscles of squids; this indicates a high capacity for glucose utilization, which is consistent with the high activities of enzymes of the tricarboxylic acid cycle in these muscles [Alp, Newsholme & Zammit (1976) Biochem. J. 154, 689-700]. 2. The activities of lactate dehydrogenase, octopine dehydrogenase, phosphoenolpyruvate carboxykinase, cytosolic and mitochondrial glycerol 3-phosphate dehydrogenase and glutamate-oxaloacetate transaminase were measured in order to provide a qualitative indication of the importance of different processes for oxidation of glycolytically formed NADH. The muscles are divided into four groups: those that have a high activity of lactate dehydrogenase relative to the activities of phosphofructokinase (e.g. crustacean muscles); those that have high activities of octopine dehydrogenase but low activities of lactate dehydrogenase (e.g. scallop snap muscle); those that have moderate activities of both lactate dehydrogenase and octopine dehydrogenase (radular muscles of prosobranchs), and those that have low activities of both lactate dehydrogenase and octopine dehydrogenase, but which possess activities of phosphoenolpyruvate carboxykinase (oyster adductor muscles). It is

  8. Ribitol dehydrogenase from Klebsiella aerogenes. Purification and subunit structure

    PubMed Central

    Taylor, Susan S.; Rigby, Peter W. J.; Hartley, Brian S.

    1974-01-01

    Ribitol dehydrogenase has been purified to homogeneity from several strains of Klebsiella aerogenes. One strain yields 3–6g of pure enzyme from 1kg of cells. The enzyme is a tetramer of four subunits, mol.wt. 27000. Preliminary studies of the activity of the enzyme are reported. Peptide `maps' together with the amino acid composition indicate that the subunits are identical. ImagesPLATE 2PLATE 1 PMID:4618776

  9. A novel 3-sulfinopropionyl coenzyme A (3SP-CoA) desulfinase from Advenella mimigardefordensis strain DPN7T acting as a key enzyme during catabolism of 3,3'-dithiodipropionic acid is a member of the acyl-CoA dehydrogenase superfamily.

    PubMed

    Schürmann, Marc; Deters, Anika; Wübbeler, Jan Hendrik; Steinbüchel, Alexander

    2013-04-01

    3-Sulfinopropionyl coenzyme A (3SP-CoA) desulfinase (AcdDPN7) is a new desulfinase that catalyzes the sulfur abstraction from 3SP-CoA in the betaproteobacterium Advenella mimigardefordensis strain DPN7(T). During investigation of a Tn5::mob-induced mutant defective in growth on 3,3'-dithiodipropionate (DTDP) and also 3-sulfinopropionate (3SP), the transposon insertion was mapped to an open reading frame with the highest homology to an acyl-CoA dehydrogenase (Acd) from Burkholderia phenoliruptrix strain BR3459a (83% identical and 91% similar amino acids). An A. mimigardefordensis Δacd mutant was generated and verified the observed phenotype of the Tn5::mob-induced mutant. For enzymatic studies, AcdDPN7 was heterologously expressed in Escherichia coli BL21(DE3)/pLysS by using pET23a::acdDPN7. The purified protein is yellow and contains a noncovalently bound flavin adenine dinucleotide (FAD) cofactor, as verified by high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS) analyses. Size-exclusion chromatography revealed a native molecular mass of about 173 kDa, indicating a homotetrameric structure (theoretically 179 kDa), which is in accordance with other members of the acyl-CoA dehydrogenase superfamily. In vitro assays unequivocally demonstrated that the purified enzyme converted 3SP-CoA into propionyl-CoA and sulfite (SO3(2-)). Kinetic studies of AcdDPN7 revealed a Vmax of 4.19 μmol min(-1) mg(-1), an apparent Km of 0.013 mM, and a kcat/Km of 240.8 s(-1) mM(-1) for 3SP-CoA. However, AcdDPN7 is unable to perform a dehydrogenation, which is the usual reaction catalyzed by members of the acyl-CoA dehydrogenase superfamily. Comparison to other known desulfinases showed a comparably high catalytic efficiency of AcdDPN7 and indicated a novel reaction mechanism. Hence, AcdDPN7 encodes a new desulfinase based on an acyl-CoA dehydrogenase (EC 1.3.8.x) scaffold. Concomitantly, we identified the gene product that is responsible for the

  10. A Novel 3-Sulfinopropionyl Coenzyme A (3SP-CoA) Desulfinase from Advenella mimigardefordensis Strain DPN7T Acting as a Key Enzyme during Catabolism of 3,3′-Dithiodipropionic Acid Is a Member of the Acyl-CoA Dehydrogenase Superfamily

    PubMed Central

    Schürmann, Marc; Deters, Anika; Wübbeler, Jan Hendrik

    2013-01-01

    3-Sulfinopropionyl coenzyme A (3SP-CoA) desulfinase (AcdDPN7) is a new desulfinase that catalyzes the sulfur abstraction from 3SP-CoA in the betaproteobacterium Advenella mimigardefordensis strain DPN7T. During investigation of a Tn5::mob-induced mutant defective in growth on 3,3′-dithiodipropionate (DTDP) and also 3-sulfinopropionate (3SP), the transposon insertion was mapped to an open reading frame with the highest homology to an acyl-CoA dehydrogenase (Acd) from Burkholderia phenoliruptrix strain BR3459a (83% identical and 91% similar amino acids). An A. mimigardefordensis Δacd mutant was generated and verified the observed phenotype of the Tn5::mob-induced mutant. For enzymatic studies, AcdDPN7 was heterologously expressed in Escherichia coli BL21(DE3)/pLysS by using pET23a::acdDPN7. The purified protein is yellow and contains a noncovalently bound flavin adenine dinucleotide (FAD) cofactor, as verified by high-performance liquid chromatography–electrospray ionization mass spectrometry (HPLC-ESI-MS) analyses. Size-exclusion chromatography revealed a native molecular mass of about 173 kDa, indicating a homotetrameric structure (theoretically 179 kDa), which is in accordance with other members of the acyl-CoA dehydrogenase superfamily. In vitro assays unequivocally demonstrated that the purified enzyme converted 3SP-CoA into propionyl-CoA and sulfite (SO32−). Kinetic studies of AcdDPN7 revealed a Vmax of 4.19 μmol min−1 mg−1, an apparent Km of 0.013 mM, and a kcat/Km of 240.8 s−1 mM−1 for 3SP-CoA. However, AcdDPN7 is unable to perform a dehydrogenation, which is the usual reaction catalyzed by members of the acyl-CoA dehydrogenase superfamily. Comparison to other known desulfinases showed a comparably high catalytic efficiency of AcdDPN7 and indicated a novel reaction mechanism. Hence, AcdDPN7 encodes a new desulfinase based on an acyl-CoA dehydrogenase (EC 1.3.8.x) scaffold. Concomitantly, we identified the gene product that is responsible for

  11. SAXS fingerprints of aldehyde dehydrogenase oligomers

    PubMed Central

    Tanner, John J.

    2015-01-01

    Enzymes of the aldehyde dehydrogenase (ALDH) superfamily catalyze the nicotinamide adenine dinucleotide-dependent oxidation of aldehydes to carboxylic acids. ALDHs are important in detoxification of aldehydes, amino acid metabolism, embryogenesis and development, neurotransmission, oxidative stress, and cancer. Mutations in genes encoding ALDHs cause metabolic disorders, including alcohol flush reaction (ALDH2), Sjögren–Larsson syndrome (ALDH3A2), hyperprolinemia type II (ALDH4A1), γ-hydroxybutyric aciduria (ALDH5A1), methylmalonic aciduria (ALDH6A1), pyridoxine dependent epilepsy (ALDH7A1), and hyperammonemia (ALDH18A1). We previously reported crystal structures and small-angle X-ray scattering (SAXS) analyses of ALDHs exhibiting dimeric, tetrameric, and hexameric oligomeric states (Luo et al., Biochemistry 54 (2015) 5513–5522; Luo et al., J. Mol. Biol. 425 (2013) 3106–3120). Herein I provide the SAXS curves, radii of gyration, and distance distribution functions for the three types of ALDH oligomer. The SAXS curves and associated analysis provide diagnostic fingerprints that allow rapid identification of the type of ALDH oligomer that is present in solution. The data sets provided here serve as a benchmark for characterizing oligomerization of ALDHs. PMID:26693506

  12. Targeting isocitrate dehydrogenase (IDH) in cancer.

    PubMed

    Fujii, Takeo; Khawaja, Muhammad Rizwan; DiNardo, Courtney D; Atkins, Johnique T; Janku, Filip

    2016-05-01

    Isocitrate dehydrogenase (IDH) is an essential enzyme for cellular respiration in the tricarboxylic acid (TCA) cycle. Recurrent mutations in IDH1 or IDH2 are prevalent in several cancers including glioma, acute myeloid leukemia (AML), cholangiocarcinoma and chondrosarcoma. The mutated IDH1 and IDH2 proteins have a gain-of-function, neomorphic activity, catalyzing the reduction of α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG) by NADPH. Cancer-associated IDH mutations block normal cellular differentiation and promote tumorigenesis via the abnormal production of the oncometabolite 2-HG. High levels of 2-HG have been shown to inhibit α-KG dependent dioxygenases, including histone and deoxyribonucleic acid (DNA) demethylases, which play a key role in regulating the epigenetic state of cells. Current targeted inhibitors of IDH1 (AG120, IDH305), IDH2 (AG221), and pan-IDH1/2 (AG881) selectively inhibit mutant IDH protein and induce cell differentiation in in vitro and in vivo models. Preliminary results from phase I clinical trials with IDH inhibitors in patients with advanced hematologic malignancies have demonstrated an objective response rate ranging from 31% to 40% with durable responses (>1 year) observed. Furthermore, the IDH inhibitors have demonstrated early signals of activity in solid tumors with IDH mutations, including cholangiocarcinomas and low grade gliomas. PMID:27355333

  13. SAXS fingerprints of aldehyde dehydrogenase oligomers.

    PubMed

    Tanner, John J

    2015-12-01

    Enzymes of the aldehyde dehydrogenase (ALDH) superfamily catalyze the nicotinamide adenine dinucleotide-dependent oxidation of aldehydes to carboxylic acids. ALDHs are important in detoxification of aldehydes, amino acid metabolism, embryogenesis and development, neurotransmission, oxidative stress, and cancer. Mutations in genes encoding ALDHs cause metabolic disorders, including alcohol flush reaction (ALDH2), Sjögren-Larsson syndrome (ALDH3A2), hyperprolinemia type II (ALDH4A1), γ-hydroxybutyric aciduria (ALDH5A1), methylmalonic aciduria (ALDH6A1), pyridoxine dependent epilepsy (ALDH7A1), and hyperammonemia (ALDH18A1). We previously reported crystal structures and small-angle X-ray scattering (SAXS) analyses of ALDHs exhibiting dimeric, tetrameric, and hexameric oligomeric states (Luo et al., Biochemistry 54 (2015) 5513-5522; Luo et al., J. Mol. Biol. 425 (2013) 3106-3120). Herein I provide the SAXS curves, radii of gyration, and distance distribution functions for the three types of ALDH oligomer. The SAXS curves and associated analysis provide diagnostic fingerprints that allow rapid identification of the type of ALDH oligomer that is present in solution. The data sets provided here serve as a benchmark for characterizing oligomerization of ALDHs. PMID:26693506

  14. Synthesis of brequinar analogue inhibitors of malaria parasite dihydroorotate dehydrogenase.

    PubMed

    Boa, Andrew N; Canavan, Shane P; Hirst, Paul R; Ramsey, Christopher; Stead, Andrew M W; McConkey, Glenn A

    2005-03-15

    A series of 2-phenyl quinoline-4-carboxylic acid derivatives related to brequinar, an inhibitor of human dihydroorotate dehydrogenase (DHODH), has been prepared and evaluated as inhibitors of DHODH from the malaria parasite Plasmodium falciparum. Brequinar was essentially inactive against PfDHODH (IC(50) 880 microM) whereas several members of the series inhibited PfDHODH. Unexpectedly, replacement of the carboxylic acid required for brequinar to inhibit hDHODH was not essential in the diisopropylamides that inhibited PfDHODH.

  15. Fermentation and alternative respiration compensate for NADH dehydrogenase deficiency in a prokaryotic model of DJ-1-associated Parkinsonism.

    PubMed

    Messaoudi, Nadia; Gautier, Valérie; Dairou, Julien; Mihoub, Mouhad; Lelandais, Gaëlle; Bouloc, Philippe; Landoulsi, Ahmed; Richarme, Gilbert

    2015-11-01

    YajL is the closest prokaryotic homologue of Parkinson's disease-associated DJ-1, a protein of undefined function involved in the oxidative stress response. We reported recently that YajL and DJ-1 protect cells against oxidative stress-induced protein aggregation by acting as covalent chaperones for the thiol proteome, including the NuoG subunit of NADH dehydrogenase 1, and that NADH dehydrogenase 1 activity is negligible in the yajL mutant. We report here that this mutant compensates for low NADH dehydrogenase activity by utilizing NADH-independent alternative dehydrogenases, including pyruvate oxidase PoxB and d-amino acid dehydrogenase DadA, and mixed acid aerobic fermentations characterized by acetate, lactate, succinate and ethanol excretion. The yajL mutant has a low adenylate energy charge favouring glycolytic flux, and a high NADH/NAD ratio favouring fermentations over pyruvate dehydrogenase and the Krebs cycle. DNA array analysis showed upregulation of genes involved in glycolytic and pentose phosphate pathways and alternative respiratory pathways. Moreover, the yajL mutant preferentially catabolized pyruvate-forming amino acids over Krebs cycle-related amino acids, and thus the yajL mutant utilizes pyruvate-centred respiro-fermentative metabolism to compensate for the NADH dehydrogenase 1 defect and constitutes an interesting model for studying eukaryotic respiratory complex I deficiencies, especially those associated with Alzheimer's and Parkinson's diseases.

  16. Biochemical and Structural Studies of Uncharacterized Protein PA0743 from Pseudomonas aeruginosa Revealed NAD+-dependent l-Serine Dehydrogenase*

    PubMed Central

    Tchigvintsev, Anatoli; Singer, Alexander; Brown, Greg; Flick, Robert; Evdokimova, Elena; Tan, Kemin; Gonzalez, Claudio F.; Savchenko, Alexei; Yakunin, Alexander F.

    2012-01-01

    The β-hydroxyacid dehydrogenases form a large family of ubiquitous enzymes that catalyze oxidation of various β-hydroxy acid substrates to corresponding semialdehydes. Several known enzymes include β-hydroxyisobutyrate dehydrogenase, 6-phosphogluconate dehydrogenase, 2-(hydroxymethyl)glutarate dehydrogenase, and phenylserine dehydrogenase, but the vast majority of β-hydroxyacid dehydrogenases remain uncharacterized. Here, we demonstrate that the predicted β-hydroxyisobutyrate dehydrogenase PA0743 from Pseudomonas aeruginosa catalyzes an NAD+-dependent oxidation of l-serine and methyl-l-serine but exhibits low activity against β-hydroxyisobutyrate. Two crystal structures of PA0743 were solved at 2.2–2.3-Å resolution and revealed an N-terminal Rossmann fold domain connected by a long α-helix to the C-terminal all-α domain. The PA0743 apostructure showed the presence of additional density modeled as HEPES bound in the interdomain cleft close to the predicted catalytic Lys-171, revealing the molecular details of the PA0743 substrate-binding site. The structure of the PA0743-NAD+ complex demonstrated that the opposite side of the enzyme active site accommodates the cofactor, which is also bound near Lys-171. Site-directed mutagenesis of PA0743 emphasized the critical role of four amino acid residues in catalysis including the primary catalytic residue Lys-171. Our results provide further insight into the molecular mechanisms of substrate selectivity and activity of β-hydroxyacid dehydrogenases. PMID:22128181

  17. Isolation and Characterization of Anaerobic Ethylbenzene Dehydrogenase, a Novel Mo-Fe-S Enzyme

    PubMed Central

    Johnson, Hope A.; Pelletier, Dale A.; Spormann, Alfred M.

    2001-01-01

    The first step in anaerobic ethylbenzene mineralization in denitrifying Azoarcus sp. strain EB1 is the oxidation of ethylbenzene to (S)-(−)-1-phenylethanol. Ethylbenzene dehydrogenase, which catalyzes this reaction, is a unique enzyme in that it mediates the stereoselective hydroxylation of an aromatic hydrocarbon in the absence of molecular oxygen. We purified ethylbenzene dehydrogenase to apparent homogeneity and showed that the enzyme is a heterotrimer (αβγ) with subunit masses of 100 kDa (α), 35 kDa (β), and 25 kDa (γ). Purified ethylbenzene dehydrogenase contains approximately 0.5 mol of molybdenum, 16 mol of iron, and 15 mol of acid-labile sulfur per mol of holoenzyme, as well as a molydopterin cofactor. In addition to ethylbenzene, purified ethylbenzene dehydrogenase was found to oxidize 4-fluoro-ethylbenzene and the nonaromatic hydrocarbons 3-methyl-2-pentene and ethylidenecyclohexane. Sequencing of the encoding genes revealed that ebdA encodes the α subunit, a 974-amino-acid polypeptide containing a molybdopterin-binding domain. The ebdB gene encodes the β subunit, a 352-amino-acid polypeptide with several 4Fe-4S binding domains. The ebdC gene encodes the γ subunit, a 214-amino-acid polypeptide that is a potential membrane anchor subunit. Sequence analysis and biochemical data suggest that ethylbenzene dehydrogenase is a novel member of the dimethyl sulfoxide reductase family of molybdopterin-containing enzymes. PMID:11443088

  18. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose.

    PubMed

    Wang, Qingzhao; Ingram, Lonnie O; Shanmugam, K T

    2011-11-22

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(-)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L(-1) of optically pure D(-)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min(-1) (mg protein)(-1). By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(-) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates. PMID:22065761

  19. [The PQQ-dehydrogenases. A novel example of bacterial quinoproteins].

    PubMed

    Flores-Encarnación, Marcos; Sánchez-Cuevas, Mariano; Ortiz-Gutiérrez, Felipe

    2004-01-01

    The word "quinoprotein" describes four groups of different enzymes which have cofactors containing o-quinones. Pyrrolo-quinoline quinone (PQQ) is not covalently attached. PQQ is the cofactor of several quinoprotein bacterial dehydrogenases including glucose dehydrogenase (G-DH), alcohol dehydrogenase (A-DH) and aldehyde dehydrogenase (AL-DH). These dehydrogenases are located in the periplasm of Gram-negative bacteria. This report summarises the structural properties of quinoprotein dehydrogenases, such as the biological functions and biotechnological aspects more important.

  20. 2-Oxoglutarate dehydrogenase and pyruvate dehydrogenase activities in plant mitochondria: interaction via a common coenzyme a pool.

    PubMed

    Dry, I B; Wiskich, J T

    1987-08-15

    2-Oxoglutarate (2-OG)-dependent O2 uptake by washed or purified turnip (Brassica rapa L.) and pea (Pisum sativum L. cv. Massey Gem) leaf mitochondria, in the presence of malonate, was inhibited between 65 and 90% by micromolar levels of pyruvate. The inhibition was not observed in the absence of malonate and was reversed by alpha-cyano-4-hydroxycinnamic acid. The inhibition was also reversed by oxaloacetate or by malate, but not by any other tricarboxylic acid cycle intermediates. The stimulation of O2 uptake by oxaloacetate was half maximal at 8-9 microM and was transient, indicating its action was not mediated through the complete metabolic removal of pyruvate. Pyruvate had not effect on 2-OG oxidation under conditions in which pyruvate dehydrogenase was not active, indicating that pyruvate metabolism, rather than pyruvate itself, was responsible for producing the inhibition of 2-OG oxidation. Similar results were obtained with detergent-treated mitochondrial extracts with the exception that the inhibition of 2-OG oxidation by pyruvate could also be reversed by coenzyme A. The results suggest that pyruvate inhibits 2-oxoglutarate oxidation, in intact plant mitochondria, by sequestering intramitochondrial CoA as acetyl-CoA and, in the absence of citrate synthase activity, reduces the amount of free coenzyme A available for 2-oxoglutarate dehydrogenase. These results indicate that pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase share a common CoA pool within plant mitochondria and that the turnover of the acyl-CoA product of one enzyme will dramatically influence the activity of the other.

  1. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase isoenzymes (a group of enzymes with similar biological activity) in serum. Measurements of...

  2. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase isoenzymes (a group of enzymes with similar biological activity) in serum. Measurements of...

  3. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase isoenzymes (a group of enzymes with similar biological activity) in serum. Measurements of...

  4. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase isoenzymes (a group of enzymes with similar biological activity) in serum. Measurements of...

  5. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase isoenzymes (a group of enzymes with similar biological activity) in serum. Measurements of...

  6. Opine dehydrogenases in marine invertebrates.

    PubMed

    Harcet, Matija; Perina, Drago; Pleše, Bruna

    2013-10-01

    It is well known today that opine production anaerobic pathways are analogs to the classical glycolytic pathway (lactate production pathway). These pathways, catalyzed by a group of enzymes called opine dehydrogenases (OpDHs), ensure continuous flux of glycolysis and a constant supply of ATP by maintaining the NADH/NAD(+) ratio during exercise and hypoxia, thus regulating the cytosolic redox balance in glycolysis under anoxia. OpDHs are distributed in a wide range of marine invertebrate phyla, including sponges (Porifera). Phylogenetic analyses supported with enzymatic assays strongly indicate that sponge OpDHs constitute an enzyme class unrelated to other OpDHs. Therefore, OpDHs in marine invertebrates are divided into two groups, a mollusk/annelid type and a sponge type, which belongs to the OCD/mu-crystallin family.

  7. Comparative functional analysis of human medium-chain dehydrogenases, short-chain dehydrogenases/reductases and aldo-keto reductases with retinoids

    PubMed Central

    Gallego, Oriol; Belyaeva, Olga V.; Porté, Sergio; Ruiz, F. Xavier; Stetsenko, Anton V.; Shabrova, Elena V.; Kostereva, Natalia V.; Farrés, Jaume; Parés, Xavier; Kedishvili, Natalia Y.

    2006-01-01

    Retinoic acid biosynthesis in vertebrates occurs in two consecutive steps: the oxidation of retinol to retinaldehyde followed by the oxidation of retinaldehyde to retinoic acid. Enzymes of the MDR (medium-chain dehydrogenase/reductase), SDR (short-chain dehydrogenase/reductase) and AKR (aldo-keto reductase) superfamilies have been reported to catalyse the conversion between retinol and retinaldehyde. Estimation of the relative contribution of enzymes of each type was difficult since kinetics were performed with different methodologies, but SDRs would supposedly play a major role because of their low Km values, and because they were found to be active with retinol bound to CRBPI (cellular retinol binding protein type I). In the present study we employed detergent-free assays and HPLC-based methodology to characterize side-by-side the retinoid-converting activities of human MDR [ADH (alcohol dehydrogenase) 1B2 and ADH4), SDR (RoDH (retinol dehydrogenase)-4 and RDH11] and AKR (AKR1B1 and AKR1B10) enzymes. Our results demonstrate that none of the enzymes, including the SDR members, are active with CRBPI-bound retinoids, which questions the previously suggested role of CRBPI as a retinol supplier in the retinoic acid synthesis pathway. The members of all three superfamilies exhibit similar and low Km values for retinoids (0.12–1.1 μM), whilst they strongly differ in their kcat values, which range from 0.35 min−1 for AKR1B1 to 302 min−1 for ADH4. ADHs appear to be more effective retinol dehydrogenases than SDRs because of their higher kcat values, whereas RDH11 and AKR1B10 are efficient retinaldehyde reductases. Cell culture studies support a role for RoDH-4 as a retinol dehydrogenase and for AKR1B1 as a retinaldehyde reductase in vivo. PMID:16787387

  8. Fusion of phospholipid vesicles induced by muscle glyceraldehyde-3-phosphate dehydrogenase in the absence of calcium.

    PubMed

    Morero, R D; Viñals, A L; Bloj, B; Farías, R N

    1985-04-01

    Ca2+-induced fusion of phospholipid vesicles (phosphatidylcholine/phosphatidic acid, 9:1 mol/mol) prepared by ethanolic injection was followed by five different procedures: resonance energy transfer, light scattering, electron microscopy, intermixing of aqueous content, and gel filtration through Sepharose 4-B. The five methods gave concordant results, showing that vesicles containing only 10% phosphatidic acid can be induced to fuse by millimolar concentrations of Ca2+. When the fusing capability of several soluble proteins was assayed, it was found that concanavalin A, bovine serum albumin, ribonuclease, and protease were inactive. On the other hand, lysozyme, L-lactic dehydrogenase, and muscle and yeast glyceraldehyde-3-phosphate dehydrogenase were capable of inducing vesicle fusion. Glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle, the most extensively studied protein, proved to be very effective: 0.1 microM was enough to induce complete intermixing of bilayer phospholipid vesicles. Under conditions used in this work, fusion was accompanied by leakage of internal contents. The fusing capability of glyceraldehyde-3-phosphate dehydrogenase was not affected by 5 mM ethylenediaminetetraacetic acid. The Ca2+ concentration in the medium, as determined by atomic absorption spectroscopy, was 5 ppm. Heat-denatured enzyme was incapable of inducing fusion. We conclude that glyceraldehyde-3-phosphate dehydrogenase is a soluble protein inherently endowed with the capability of fusing phospholipid vesicles.

  9. Aerobic biodegradation of 2,2'-dithiodibenzoic acid produced from dibenzothiophene metabolites.

    PubMed

    Young, Rozlyn F; Cheng, Stephanie M; Fedorak, Phillip M

    2006-01-01

    Dibenzothiophene is a sulfur heterocycle found in crude oils and coal. The biodegradation of dibenzothiophene through the Kodama pathway by Pseudomonas sp. strain BT1d leads to the formation of three disulfides: 2-oxo-2-(2-thiophenyl)ethanoic acid disulfide, 2-oxo-2-(2-thiophenyl)ethanoic acid-2-benzoic acid disulfide, and 2,2'-dithiodibenzoic acid. When provided as the carbon and sulfur source in liquid medium, 2,2'-dithiodibenzoic acid was degraded by soil enrichment cultures. Two bacterial isolates, designated strains RM1 and RM6, degraded 2,2'-dithiodibenzoic acid when combined in the medium. Isolate RM6 was found to have an absolute requirement for vitamin B12, and it degraded 2,2'-dithiodibenzoic acid in pure culture when the medium was supplemented with this vitamin. Isolate RM6 also degraded 2,2'-dithiodibenzoic acid in medium containing sterilized supernatants from cultures of isolate RM1 grown on glucose or benzoate. Isolate RM6 was identified as a member of the genus Variovorax using the Biolog system and 16S rRNA gene analysis. Although the mechanism of disulfide metabolism could not be determined, benzoic acid was detected as a transient metabolite of 2,2'-dithiodibenzoic acid biodegradation by Variovorax sp. strain RM6. In pure culture, this isolate mineralized 2,2'-dithiodibenzoic acid, releasing 59% of the carbon as carbon dioxide and 88% of the sulfur as sulfate. PMID:16391083

  10. Aerobic biodegradation of 2,2'-dithiodibenzoic acid produced from dibenzothiophene metabolites

    SciTech Connect

    Young, R.F.; Cheng, S.M.; Fedorak, P.M.

    2006-01-15

    Dibenzothiophene is a sulfur heterocycle found in crude oils and coal. The biodegradation of dibenzothiophene through the Kodama pathway by Pseudomonas sp. strain BT1d leads to the formation of three disulfides: 2-oxo-2-(2-thiophenyl)ethanoic acid disulfide, 2-oxo-2-(2-thiophenyl)ethanoic acid-2-benzoic acid disulfide, and 2,2'-dithiodibenzoic acid. When provided as the carbon and sulfur source in liquid medium, 2,2'-dithiodibenzoic acid was degraded by soil enrichment cultures. Two bacterial isolates, designated strains RM1 and RM6, degraded 2,2'-dithiodibenzoic acid when combined in the medium. Isolate RM6 was found to have an absolute requirement for vitamin B{sub 12}, and it degraded 2,2'-dithiodibenzoic acid in pure culture when the medium was supplemented with this vitamin. Isolate RM6 also degraded 2,2'-dithiodibenzoic acid in medium containing sterilized supernatants from cultures of isolate RM1 grown on glucose or benzoate. Isolate RM6 was identified as a member of the genus Variovorax using the Biolog system and 16S rRNA gene analysis. Although the mechanism of disulfide metabolism could not be determined, benzoic acid was detected as a transient metabolite of 2,2'-dithiodibenzoic acid biodegradation by Variovorax sp. strain RM6. In pure culture, this isolate mineralized 2,2'-dithiodibenzoic acid, releasing 59% of the carbon as carbon dioxide and 88% of the sulfur as sulfate.

  11. Cloning, purification and crystallization of Thermus thermophilus proline dehydrogenase

    SciTech Connect

    White, Tommi A.; Tanner, John J.

    2005-08-01

    Cloning, purification and crystallization of T. thermophilus proline dehydrogenase is reported. The detergent n-octyl β-d-glucopyranoside was used to reduce polydispersity, which enabled crystallization. Nature recycles l-proline by converting it to l-glutamate. This four-electron oxidation process is catalyzed by the two enzymes: proline dehydrogenase (PRODH) and Δ{sup 1}-pyrroline-5-carboxylate dehydrogenase. This note reports the cloning, purification and crystallization of Thermus thermophilus PRODH, which is the prototype of a newly discovered superfamily of bacterial monofunctional PRODHs. The results presented here include production of a monodisperse protein solution through use of the detergent n-octyl β-d-glucopyranoside and the growth of native crystals that diffracted to 2.3 Å resolution at Advanced Light Source beamline 4.2.2. The space group is P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 82.2, b = 89.6, c = 94.3 Å. The asymmetric unit is predicted to contain two protein molecules and 46% solvent. Molecular-replacement trials using a fragment of the PRODH domain of the multifunctional Escherichia coli PutA protein as the search model (24% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of T. thermophilus PRODH will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative.

  12. Functional Analysis of a Mosquito Short Chain Dehydrogenase Cluster

    PubMed Central

    Mayoral, Jaime G.; Leonard, Kate T.; Defelipe, Lucas A.; Turjansksi, Adrian G.; Nouzova, Marcela; Noriegal, Fernando G.

    2013-01-01

    The short chain dehydrogenases (SDR) constitute one the oldest and largest families of enzymes with over 46,000 members in sequence databases. About 25% of all known dehydrogenases belong to the SDR family. SDR enzymes have critical roles in lipid, amino acid, carbohydrate, hormone and xenobiotic metabolism as well as in redox sensor mechanisms. This family is present in archaea, bacteria, and eukaryota, emphasizing their versatility and fundamental importance for metabolic processes. We identified a cluster of eight SDRs in the mosquito Aedes aegypti (AaSDRs). Members of the cluster differ in tissue specificity and developmental expression. Heterologous expression produced recombinant proteins that had diverse substrate specificities, but distinct from the conventional insect alcohol (ethanol) dehydrogenases. They are all NADP+-dependent and they have S-enantioselectivity and preference for secondary alcohols with 8–15 carbons. Homology modeling was used to build the structure of AaSDR1 and two additional cluster members. The computational study helped explain the selectivity towards the (10S)-isomers as well as the reduced activity of AaSDR4 and AaSDR9 for longer isoprenoid substrates. Similar clusters of SDRs are present in other species of insects, suggesting similar selection mechanisms causing duplication and diversification of this family of enzymes. PMID:23238893

  13. Clostridium difficile testing algorithms using glutamate dehydrogenase antigen and C. difficile toxin enzyme immunoassays with C. difficile nucleic acid amplification testing increase diagnostic yield in a tertiary pediatric population.

    PubMed

    Ota, Kaede V; McGowan, Karin L

    2012-04-01

    We evaluated the performance of the rapid C. diff Quik Chek Complete's glutamate dehydrogenase antigen (GDH) and toxin A/B (CDT) tests in two algorithmic approaches for a tertiary pediatric population: algorithm 1 entailed initial testing with GDH/CDT followed by loop-mediated isothermal amplification (LAMP), and algorithm 2 entailed GDH/CDT followed by cytotoxicity neutralization assay (CCNA) for adjudication of discrepant GDH-positive/CDT-negative results. A true positive (TP) was defined as positivity by CCNA or positivity by LAMP plus another test (GDH, CDT, or the Premier C. difficile toxin A and B enzyme immunoassay [P-EIA]). A total of 141 specimens from 141 patients yielded 27 TPs and 19% prevalence. Sensitivity, specificity, positive predictive value, and negative predictive value were 56%, 100%, 100%, and 90% for P-EIA and 81%, 100%, 100%, and 96% for both algorithm 1 and algorithm 2. In summary, GDH-based algorithms detected C. difficile infections with superior sensitivity compared to P-EIA. The algorithms allowed immediate reporting of half of all TPs, but LAMP or CCNA was required to confirm the presence or absence of toxigenic C. difficile in GDH-positive/CDT-negative specimens.

  14. Hydroxysteroid dehydrogenases (HSDs) in bacteria: a bioinformatic perspective.

    PubMed

    Kisiela, Michael; Skarka, Adam; Ebert, Bettina; Maser, Edmund

    2012-03-01

    Steroidal compounds including cholesterol, bile acids and steroid hormones play a central role in various physiological processes such as cell signaling, growth, reproduction, and energy homeostasis. Hydroxysteroid dehydrogenases (HSDs), which belong to the superfamily of short-chain dehydrogenases/reductases (SDR) or aldo-keto reductases (AKR), are important enzymes involved in the steroid hormone metabolism. HSDs function as an enzymatic switch that controls the access of receptor-active steroids to nuclear hormone receptors and thereby mediate a fine-tuning of the steroid response. The aim of this study was the identification of classified functional HSDs and the bioinformatic annotation of these proteins in all complete sequenced bacterial genomes followed by a phylogenetic analysis. For the bioinformatic annotation we constructed specific hidden Markov models in an iterative approach to provide a reliable identification for the specific catalytic groups of HSDs. Here, we show a detailed phylogenetic analysis of 3α-, 7α-, 12α-HSDs and two further functional related enzymes (3-ketosteroid-Δ(1)-dehydrogenase, 3-ketosteroid-Δ(4)(5α)-dehydrogenase) from the superfamily of SDRs. For some bacteria that have been previously reported to posses a specific HSD activity, we could annotate the corresponding HSD protein. The dominating phyla that were identified to express HSDs were that of Actinobacteria, Proteobacteria, and Firmicutes. Moreover, some evolutionarily more ancient microorganisms (e.g., Cyanobacteria and Euryachaeota) were found as well. A large number of HSD-expressing bacteria constitute the normal human gastro-intestinal flora. Another group of bacteria were originally isolated from natural habitats like seawater, soil, marine and permafrost sediments. These bacteria include polycyclic aromatic hydrocarbons-degrading species such as Pseudomonas, Burkholderia and Rhodococcus. In conclusion, HSDs are found in a wide variety of microorganisms including

  15. Structural Basis for "Flip-Flop" Action of Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Korotchkina, Lioubov; Dominiak, Paulina; Sidhu, Sukhdeep; Patel, Mulchand

    2003-01-01

    The derivative of vitamin B1, thiamin pyrophosphate is a cofactor of pyruvate dehydrogenase, a component enzyme of the mitochondrial pyruvate dehydrogenase multienzyme complex that plays a major role in directing energy metabolism in the cell. This cofactor is used to cleave the C(sup alpha)-C(=O) bond of pyruvate followed by reductive acetyl transfer to lipoyl-dihydrolipoamide acetyltransferase. In alpha(sub 2)beta(sub 2)-tetrameric human pyruvate dehydrogenase, there are two cofactor binding sites, each of them being a center of independently conducted, although highly coordinated enzymatic reactions. The dynamic nonequivalence of two, otherwise chemically equivalent, catalytic sites can now be understood based on the recently determined crystal structure of the holo-form of human pyruvate dehydrogenase at 1.95A resolution. The structure of pyruvate dehydrogenase was determined using a combination of MAD phasing and molecular replacement followed by rounds of torsion-angles molecular-dynamics simulated-annealing refinement. The final pyruvate dehydrogenase structure included coordinates for all protein amino acids two cofactor molecules, two magnesium and two potassium ions, and 742 water molecules. The structure was refined to R = 0.202 and R(sub free) = 0.244. Our structural analysis of the enzyme folding and domain assembly identified a simple mechanism of this protein motion required for the conduct of catalytic action.

  16. Characterization of interactions of dihydrolipoamide dehydrogenase with its binding protein in the human pyruvate dehydrogenase complex

    SciTech Connect

    Park, Yun-Hee; Patel, Mulchand S.

    2010-05-07

    Unlike pyruvate dehydrogenase complexes (PDCs) from prokaryotes, PDCs from higher eukaryotes have an additional structural component, E3-binding protein (BP), for binding of dihydrolipoamide dehydrogenase (E3) in the complex. Based on the 3D structure of the subcomplex of human (h) E3 with the di-domain (L3S1) of hBP, the amino acid residues (H348, D413, Y438, and R447) of hE3 for binding to hBP were substituted singly by alanine or other residues. These substitutions did not have large effects on hE3 activity when measured in its free form. However, when these hE3 mutants were reconstituted in the complex, the PDC activity was significantly reduced to 9% for Y438A, 20% for Y438H, and 18% for D413A. The binding of hE3 mutants with L3S1 determined by isothermal titration calorimetry revealed that the binding affinities of the Y438A, Y438H, and D413A mutants to L3S1 were severely reduced (1019-, 607-, and 402-fold, respectively). Unlike wild-type hE3 the binding of the Y438A mutant to L3S1 was accompanied by an unfavorable enthalpy change and a large positive entropy change. These results indicate that hE3-Y438 and hE3-D413 play important roles in binding of hE3 to hBP.

  17. In vitro hydrogen production by glucose dehydrogenase and hydrogenase

    SciTech Connect

    Woodward, J.; Mattingly, S.M.; Danson, M.

    1996-07-01

    A new in vitro enzymatic pathway for the generation of molecular hydrogen from glucose has been demonstrated. The reaction is based on the oxidation of glucose by Thermoplasma acidophilum glucose dehydrogenase with the concomitant oxidation of NADPH by Pyrococcus furiosus hydrogenase. Stoichiometric yields of hydrogen were produced from glucose with the continuous recycling of cofactor. This simple system may provide a method for the biological production of hydrogen from renewable sources. In addition, the other product of this reaction, gluconic acid, is a high-value chemical commodity. 23 refs., 5 figs.

  18. In vitro hydrogen production by glucose dehydrogenase and hydrogenase

    SciTech Connect

    Woodward, J.

    1996-10-01

    A new in vitro enzymatic pathway for the generation of molecular hydrogen from glucose has been demonstrated. The reaction is based upon the oxidation of glucose by Thermoplasma acidophilum glucose dehydrogenase with the concomitant oxidation of NADPH by Pyrococcus furiosus hydrogenase. Stoichiometric yields of hydrogen were produced from glucose with continuous cofactor recycle. This simple system may provide a method for the biological production of hydrogen from renewable sources. In addition, the other product of this reaction, gluconic acid, is a high-value commodity chemical.

  19. Effects of Biota orientalis extract and its flavonoid constituents, quercetin and rutin on serum uric acid levels in oxonate-induced mice and xanthine dehydrogenase and xanthine oxidase activities in mouse liver.

    PubMed

    Zhu, Ji Xiao; Wang, Ying; Kong, Ling Dong; Yang, Cheng; Zhang, Xin

    2004-07-01

    The hypouricemic actions of Biota orientalis (BO) extract and its flavonoid constituents quercetin and rutin, were in vivo examined using oxonate-induced hyperuricemic mice. Quercetin and rutin, when administered three times orally to the oxonate-induced hyperuricemic mice, were able to elicit dose-dependent hypouricemic effects. The effects of quercetin and rutin were more potent than that of Biota orientalis extract at the same dose of 100 mg/kg. At doses of 50 mg/kg of quercetin or above, or at doses of 100 mg/kg of rutin or above, the serum urate levels of the oxonate-pretreated mice were not different from normal mice. In addition, Biota orientalis extract, quercetin and rutin, when tested in vivo on mouse liver homogenates, elicited significant inhibitory actions on the xanthine dehydrogenase/xanthine oxidase (XDH/XO) activities. The effects of quercetin and rutin resulted less potent than that of allopurinol. However, intraperitoneal administration at the same scheme did not produce any observable hypouricemic effect. These hypouricemic effects are partly due to the inhibition of XDH/XO activities in mouse liver. The pharmacological profile of the flavonoids is partly different from that of allopurinol. Such hypouricemic action and inhibition of the enzyme activity of quercetin and rutin may be responsible for a part of the beneficial effects of Biota orientalis extract on hyperuricemia and gout. The effects of quercetin and rutin on serum urate levels in hyperuricemic mice induced by oxonate and the inhibition of enzyme activities in mouse liver are discussed in relation to their absorption and metabolism, and their potential application to treat gout and hyperuricemia.

  20. Often Ignored Facts about the Control of the 2-Oxoglutarate Dehydrogenase Complex

    ERIC Educational Resources Information Center

    Strumilo, Slawomir

    2005-01-01

    Information about the control of the activity of the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme in the citric acid cycle, is not well covered in the biochemical education literature, especially as it concerns the allosteric regulation of OGDHC by adenine nucleotide and ortophosphate. From experimental work published during the last…

  1. Inhibition of some respiration and dehydrogenase enzyme systems in Escherichia coli NCTC 5933 by phenoxyethanol.

    PubMed

    Gilbert, P; Beveridge, E G; Crone, P B

    1977-01-01

    Low concentrations (less than 0.2% w/v) of phenoxyethanol stimulated both the rate of respiration and total oxygen uptakes of Escherichia coli NCTC 5933 suspensions with glucose and other substrates, whilst higher concentrations (0.2--0.6% w/v) although still below those showing significant bactericidal activity, produced progressive levels of inhibition. The degree of respiratory inhibition varied with different substrates in the order malate less than succinate less than pyruvate less than or equal to glucose less than lactate, and suggested appreciable inhibition at a point after malate in the tricarboxylic acid cycle. This suggestion was supported by the use of tetrazolium salts as alternative electron acceptors, and by cytochrome difference spectra, which together implicated malate dehydrogenase as the most likely site of action. Isolated dehydrogenase enzymes of the tricarboxylic acid cycle in cell-free preparations were unaffected by high concentrations of phenoxyethanol (0.8% w/v) with the exception of malate dehydrogenase which was inhibited in extracts to extents similar to those of malate oxidation by intact bacteria. Lineweaver-Burke plots for malate dehydrogenase activity in the presence of phenoxyethanol suggested a competitive inhibition of the oxaloacetic acid-limited reaction and a non-competitive inhibition of the NADH-limited reaction. Accordingly, Ki values were found to be low when the rate of reaction was limited by oxaloacetic acid concentration yet relatively high when NADH was rate limiting.

  2. Yeast Alcohol Dehydrogenase Structure and Catalysis

    PubMed Central

    2015-01-01

    Yeast (Saccharomyces cerevisiae) alcohol dehydrogenase I (ADH1) is the constitutive enzyme that reduces acetaldehyde to ethanol during the fermentation of glucose. ADH1 is a homotetramer of subunits with 347 amino acid residues. A structure for ADH1 was determined by X-ray crystallography at 2.4 Å resolution. The asymmetric unit contains four different subunits, arranged as similar dimers named AB and CD. The unit cell contains two different tetramers made up of “back-to-back” dimers, AB:AB and CD:CD. The A and C subunits in each dimer are structurally similar, with a closed conformation, bound coenzyme, and the oxygen of 2,2,2-trifluoroethanol ligated to the catalytic zinc in the classical tetrahedral coordination with Cys-43, Cys-153, and His-66. In contrast, the B and D subunits have an open conformation with no bound coenzyme, and the catalytic zinc has an alternative, inverted coordination with Cys-43, Cys-153, His-66, and the carboxylate of Glu-67. The asymmetry in the dimeric subunits of the tetramer provides two structures that appear to be relevant for the catalytic mechanism. The alternative coordination of the zinc may represent an intermediate in the mechanism of displacement of the zinc-bound water with alcohol or aldehyde substrates. Substitution of Glu-67 with Gln-67 decreases the catalytic efficiency by 100-fold. Previous studies of structural modeling, evolutionary relationships, substrate specificity, chemical modification, and site-directed mutagenesis are interpreted more fully with the three-dimensional structure. PMID:25157460

  3. Structural Studies of Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Korotchkina, Lioubov G.; Dominiak, Paulina; Sidhu, Sukhdeep; Patel, Mulchand S.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Human pyruvate dehydrogenase (E1) catalyzes the irreversible decarboxylation of pyruvate in the presence of Mg(2+) and thiamin pyrophosphate (TPP) followed by the rate-limiting reductive acetylation of the lipoyl moiety linked to dihydrolipoamide acetyltransferase. The three-dimensional structure of human E1 is elucidated using the methods of macromolecular X-ray crystallography. The structure is an alpha, alpha', beta and beta' tetramer with the protein units being in the tetrahedral arrangement. Each 361-residue alpha-subunit and 329-residue beta-subunit is composed of a beta-sheet core surrounded by alpha-helical domains. Each subunit is in extensive contact with all the three subunits involving TPP and magnesium cofactors, and potassium ions. The two binding sites for TPP are at the alpha-beta' and alpha'-beta interfaces, each involving a magnesium ion and Phe6l, His63, Tyr89, and Met200 from the alpha-subunit (or alpha'-subunit), and Met81 Phe85, His128 from the beta-subunit (or beta'-subunit). K+ ions are nestled between two beta-sheets and the end of an alpha-helix in each beta-subunit, where they are coordinated by four carbonyl oxygen groups from Ile12, Ala160, Asp163, and Asnl65, and a water molecule. The catalytic C2 carbon of thiazolium ring in this structure forms a 3.2 A contact with a water molecule involved in a series of H-bonds with other water molecules, and indirectly with amino acids including those involved in the catalysis and regulation of the enzyme.

  4. The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility.

    PubMed

    Zhang, Shuai; Hulver, Matthew W; McMillan, Ryan P; Cline, Mark A; Gilbert, Elizabeth R

    2014-01-01

    Metabolic flexibility is the capacity of a system to adjust fuel (primarily glucose and fatty acids) oxidation based on nutrient availability. The ability to alter substrate oxidation in response to nutritional state depends on the genetically influenced balance between oxidation and storage capacities. Competition between fatty acids and glucose for oxidation occurs at the level of the pyruvate dehydrogenase complex (PDC). The PDC is normally active in most tissues in the fed state, and suppressing PDC activity by pyruvate dehydrogenase (PDH) kinase (PDK) is crucial to maintain energy homeostasis under some extreme nutritional conditions in mammals. Conversely, inappropriate suppression of PDC activity might promote the development of metabolic diseases. This review summarizes PDKs' pivotal role in control of metabolic flexibility under various nutrient conditions and in different tissues, with emphasis on the best characterized PDK4. Understanding the regulation of PDC and PDKs and their roles in energy homeostasis could be beneficial to alleviate metabolic inflexibility and to provide possible therapies for metabolic diseases, including type 2 diabetes (T2D). PMID:24520982

  5. Human mutations in glucose 6-phosphate dehydrogenase reflect evolutionary history.

    PubMed

    Notaro, R; Afolayan, A; Luzzatto, L

    2000-03-01

    Glucose 6-phosphate dehydrogenase (G6PD) is a cytosolic enzyme encoded by a housekeeping X-linked gene whose main function is to produce NADPH, a key electron donor in the defense against oxidizing agents and in reductive biosynthetic reactions. Inherited G6PD deficiency is associated with either episodic hemolytic anemia (triggered by fava beans or other agents) or life-long hemolytic anemia. We show here that an evolutionary analysis is a key to understanding the biology of a housekeeping gene. From the alignment of the amino acid (aa) sequence of 52 glucose 6-phosphate dehydrogenase (G6PD) species from 42 different organisms, we found a striking correlation between the aa replacements that cause G6PD deficiency in humans and the sequence conservation of G6PD: two-thirds of such replacements are in highly and moderately conserved (50-99%) aa; relatively few are in fully conserved aa (where they might be lethal) or in poorly conserved aa, where presumably they simply would not cause G6PD deficiency. This is consistent with the notion that all human mutants have residual enzyme activity and that null mutations are lethal at some stage of development. Comparing the distribution of mutations in a human housekeeping gene with evolutionary conservation is a useful tool for pinpointing amino acid residues important for the stability or the function of the corresponding protein. In view of the current explosive increase in full genome sequencing projects, this tool will become rapidly available for numerous other genes.

  6. Monoterpene metabolism. Cloning, expression, and characterization of (-)-isopiperitenol/(-)-carveol dehydrogenase of peppermint and spearmint.

    PubMed

    Ringer, Kerry L; Davis, Edward M; Croteau, Rodney

    2005-03-01

    The essential oils of peppermint (Mentha x piperita) and spearmint (Mentha spicata) are distinguished by the oxygenation position on the p-menthane ring of the constitutive monoterpenes that is conferred by two regiospecific cytochrome P450 limonene-3- and limonene-6-hydroxylases. Following hydroxylation of limonene, an apparently similar dehydrogenase oxidizes (-)-trans-isopiperitenol to (-)-isopiperitenone in peppermint and (-)-trans-carveol to (-)-carvone in spearmint. Random sequencing of a peppermint oil gland secretory cell cDNA library revealed a large number of clones that specified redox-type enzymes, including dehydrogenases. Full-length dehydrogenase clones were screened by functional expression in Escherichia coli using a recently developed in situ assay. A single full-length acquisition encoding (-)-trans-isopiperitenol dehydrogenase (ISPD) was isolated. The (-)-ISPD cDNA has an open reading frame of 795 bp that encodes a 265-residue enzyme with a calculated molecular mass of 27,191. Nondegenerate primers were designed based on the (-)-trans-ISPD cDNA sequence and employed to screen a spearmint oil gland secretory cell cDNA library from which a 5'-truncated cDNA encoding the spearmint homolog, (-)-trans-carveol-dehydrogenase, was isolated. Reverse transcription-PCR amplification and RACE were used to acquire the remaining 5'-sequence from RNA isolated from oil gland secretory cells of spearmint leaf. The full-length spearmint dehydrogenase shares >99% amino acid identity with its peppermint homolog and both dehydrogenases are capable of utilizing (-)-trans-isopiperitenol and (-)-trans-carveol. These isopiperitenol/carveol dehydrogenases are members of the short-chain dehydrogenase/reductase superfamily and are related to other plant short-chain dehydrogenases/reductases involved in secondary metabolism (lignan biosynthesis), stress responses, and phytosteroid biosynthesis, but they are quite dissimilar (approximately 13% identity) to the monoterpene

  7. Monoterpene metabolism. Cloning, expression, and characterization of (-)-isopiperitenol/(-)-carveol dehydrogenase of peppermint and spearmint.

    PubMed

    Ringer, Kerry L; Davis, Edward M; Croteau, Rodney

    2005-03-01

    The essential oils of peppermint (Mentha x piperita) and spearmint (Mentha spicata) are distinguished by the oxygenation position on the p-menthane ring of the constitutive monoterpenes that is conferred by two regiospecific cytochrome P450 limonene-3- and limonene-6-hydroxylases. Following hydroxylation of limonene, an apparently similar dehydrogenase oxidizes (-)-trans-isopiperitenol to (-)-isopiperitenone in peppermint and (-)-trans-carveol to (-)-carvone in spearmint. Random sequencing of a peppermint oil gland secretory cell cDNA library revealed a large number of clones that specified redox-type enzymes, including dehydrogenases. Full-length dehydrogenase clones were screened by functional expression in Escherichia coli using a recently developed in situ assay. A single full-length acquisition encoding (-)-trans-isopiperitenol dehydrogenase (ISPD) was isolated. The (-)-ISPD cDNA has an open reading frame of 795 bp that encodes a 265-residue enzyme with a calculated molecular mass of 27,191. Nondegenerate primers were designed based on the (-)-trans-ISPD cDNA sequence and employed to screen a spearmint oil gland secretory cell cDNA library from which a 5'-truncated cDNA encoding the spearmint homolog, (-)-trans-carveol-dehydrogenase, was isolated. Reverse transcription-PCR amplification and RACE were used to acquire the remaining 5'-sequence from RNA isolated from oil gland secretory cells of spearmint leaf. The full-length spearmint dehydrogenase shares >99% amino acid identity with its peppermint homolog and both dehydrogenases are capable of utilizing (-)-trans-isopiperitenol and (-)-trans-carveol. These isopiperitenol/carveol dehydrogenases are members of the short-chain dehydrogenase/reductase superfamily and are related to other plant short-chain dehydrogenases/reductases involved in secondary metabolism (lignan biosynthesis), stress responses, and phytosteroid biosynthesis, but they are quite dissimilar (approximately 13% identity) to the monoterpene

  8. Synthesis of 3,3-disubstituted oxindoles by one-pot integrated Brønsted base-catalyzed trichloroacetimidation of 3-hydroxyoxindoles and Brønsted acid-catalyzed nucleophilic substitution reaction.

    PubMed

    Piemontesi, Cyril; Wang, Qian; Zhu, Jieping

    2013-03-01

    Treatment of 3-hydroxyoxindoles with trichloroacetonitrile (1.3 equiv.) and a catalytic amount of DBU (0.1 equiv.) followed by addition of nucleophiles (1.5 equiv.) and diphenylphosphoric acid (0.2 equiv.) afforded the 3,3-disubstituted oxindoles in good to excellent yields. DFT computations supported the notion that the reaction went through the 1-alkyl-2-oxo-2H-indol-1-ium intermediate.

  9. The first step in polyethylene glycol degradation by sphingomonads proceeds via a flavoprotein alcohol dehydrogenase containing flavin adenine dinucleotide.

    PubMed

    Sugimoto, M; Tanabe, M; Hataya, M; Enokibara, S; Duine, J A; Kawai, F

    2001-11-01

    Several Sphingomonas spp. utilize polyethylene glycols (PEGs) as a sole carbon and energy source, oxidative PEG degradation being initiated by a dye-linked dehydrogenase (PEG-DH) that oxidizes the terminal alcohol groups of the polymer chain. Purification and characterization of PEG-DH from Sphingomonas terrae revealed that the enzyme is membrane bound. The gene encoding this enzyme (pegA) was cloned, sequenced, and expressed in Escherichia coli. The purified recombinant enzyme was vulnerable to aggregation and inactivation, but this could be prevented by addition of detergent. It is as a homodimeric protein with a subunit molecular mass of 58.8 kDa, each subunit containing 1 noncovalently bound flavin adenine dinucleotide but not Fe or Zn. PEG-DH recognizes a broad variety of primary aliphatic and aromatic alcohols as substrates. Comparison with known sequences revealed that PEG-DH belongs to the group of glucose-methanol-choline (GMC) flavoprotein oxidoreductases and that it is a novel type of flavoprotein alcohol dehydrogenase related (percent identical amino acids) to other, so far uncharacterized bacterial, membrane-bound, dye-linked dehydrogenases: alcohol dehydrogenase from Pseudomonas oleovorans (46%); choline dehydrogenase from E. coli (40%); L-sorbose dehydrogenase from Gluconobacter oxydans (38%); and 4-nitrobenzyl alcohol dehydrogenase from a Pseudomonas species (35%). PMID:11673442

  10. Histamine dehydrogenase from Rhizobium sp.: gene cloning, expression in Escherichia coli, characterization and application to histamine determination.

    PubMed

    Bakke, Mikio; Sato, Tsuneo; Ichikawa, Keiichi; Nishimura, Ikuko

    2005-09-29

    The gene encoding histamine dehydrogenase in Rhizobium sp. 4--9 has been cloned and overexpressed in Escherichia coli. The coding region of the gene was 2,079 bp and encoded a protein of 693 amino acids with a calculated molecular mass of 76,732 Da. This histamine dehydrogenase was related to histamine dehydrogenase from Nocardioides simplex (54.5% identical), trimethylamine dehydrogenase from Methylophilus methylotrophus (39.3% identical) and dimethylamine dehydrogenase from Hyphomicrobium X (38.1% identical), which have a covalent 6-S-cysteinyl flavin mononucleotide and a [4Fe--4S] cluster as redox cofactors. Sequence alignment and a UV-visible absorption spectrum supported the presence of these cofactors in this histamine dehydrogenase. The investigation of the enzymatic properties suggested that this enzyme exhibited the most excellent substrate specificity toward histamine among all amine oxidases or dehydrogenases found to date. The recombinant enzyme was able to be used for the colorimetric determination of histamine, which gave a linear calibration curve and identical data with conventional methods. PMID:15964650

  11. Functional Replacement of the Escherichia coli d-(−)-Lactate Dehydrogenase Gene (ldhA) with the l-(+)-Lactate Dehydrogenase Gene (ldhL) from Pediococcus acidilactici†

    PubMed Central

    Zhou, Shengde; Shanmugam, K. T.; Ingram, L. O.

    2003-01-01

    The microbial production of l-(+)-lactic acid is rapidly expanding to allow increased production of polylactic acid (PLA), a renewable, biodegradable plastic. The physical properties of PLA can be tailored for specific applications by controlling the ratio of l-(+) and d-(−) isomers. For most uses of PLA, the l-(+) isomer is more abundant. As an approach to reduce costs associated with biocatalysis (complex nutrients, antibiotics, aeration, product purification, and waste disposal), a recombinant derivative of Escherichia coli W3110 was developed that contains five chromosomal deletions (focA-pflB frdBC adhE ackA ldhA). This strain was constructed from a d-(−)-lactic acid-producing strain, SZ63 (focA-pflB frdBC adhE ackA), by replacing part of the chromosomal ldhA coding region with Pediococcus acidilactici ldhL encoding an l-lactate dehydrogenase. Although the initial strain (SZ79) grew and fermented poorly, a mutant (SZ85) was readily isolated by selecting for improved growth. SZ85 exhibited a 30-fold increase in l-lactate dehydrogenase activity in comparison to SZ79, functionally replacing the native d-lactate dehydrogenase activity. Sequencing revealed mutations in the upstream, coding, and terminator regions of ldhL in SZ85, which are presumed to be responsible for increased l-lactate dehydrogenase activity. SZ85 produced l-lactic acid in M9 mineral salts medium containing glucose or xylose with a yield of 93 to 95%, a purity of 98% (based on total fermentation products), and an optical purity greater than 99%. Unlike other recombinant biocatalysts for l-lactic acid, SZ85 remained prototrophic and is devoid of plasmids and antibiotic resistance genes. PMID:12676706

  12. Benzene toxicity: emphasis on cytosolic dihydrodiol dehydrogenases

    SciTech Connect

    Bolcsak, L.E.

    1982-01-01

    Blood dyscrasias such as leukopenia and anemia have been clearly identified as consequences of chronic benzene exposure. The metabolites, phenol, catechol, and hydroquinone produced inhibition of /sup 59/Fe uptake in mice which followed the same time course as that produced by benzene. The inhibitor of benzene oxidation, 3-amino-1,2,4-triazole, mitigated the inhibitory effects of benzene and phenol only. These data support the contention that benzene toxicity is mediated by a metabolite and suggest that the toxicity of phenol is a consequence of its metabolism to hydroquinone and that the route of metabolism to catechol may also contribute to the production of toxic metabolite(s). The properties of mouse liver cytosolic dihydrodiol dehydrogenases were examined. These enzymes catalyze the NADP/sup +/-dependent oxidation of trans-1,2-dihydro-1,2-dihydroxybenzene (BDD) to catechol, a possible toxic metabolite of benzene produced via this metabolic route. Four distinct dihydrodiol dehydrogenases (DD1, DD2, DD3, and DD4) were purified to apparent homogeneity as judged by SDS polyacrylamide gel electrophoresis and isoelectric focusing. DD1 appeared to be identical to the major ketone reductase and 17..beta..-hydroxysteroid dehydrogenase activity in the liver. DD2 exhibited aldehyde reductase activity. DD3 and DD4 oxidized 17..beta..-hydroxysteroids, but no carbonyl reductase activity was detected. These relationships between BDD dehydrogenases and carbonyl reductase and/or 17..beta..-hydroxysteroid dehydrogenase activities were supported by several lines of evidence.

  13. Over-Expression, Purification and Crystallization of Human Dihydrolipoamide Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Hong, Y. S.; Ciszak, Ewa; Patel, Mulchand

    2000-01-01

    Dehydrolipoamide dehydrogenase (E3; dihydrolipoan-tide:NAD+ oxidoreductase, EC 1.8.1.4) is a common catalytic component found in pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and branched-chain cc-keto acid dehydrogenase complex. E3 is also a component (referred to as L protein) of the glycine cleavage system in bacterial metabolism (2). Active E3 forms a homodimer with four distinctive subdomain structures (FAD binding, NAD+ binding, central and interface domains) with non-covalently but tightly bound FAD in the holoenzyme. Deduced amino acids from cloned full-length human E3 gene showed a total of 509 amino acids with a leader sequence (N-terminal 35 amino acids) that is excised (mature form) during transportation of expressed E3 into mitochondria membrane. So far, three-dimensional structure of human E3 has not been reported. Our effort to achieve the elucidation of the X-ray crystal structure of human E3 will be presented. Recombinant pPROEX-1 expression vector (from GIBCO BRL Life Technologies) having the human E3 gene without leader sequence was constructed by Polymerase Chain Reaction (PCR) and subsequent ligation, and cloned in E.coli XL1-Blue by transformation. Since pPROEX-1 vector has an internal His-tag (six histidine peptide) located at the upstream region of a multicloning site, one-step affinity purification of E3 using nickelnitriloacetic acid (Ni-NTA) agarose resin, which has a strong affinity to His-tag, was feasible. Also a seven-amino-acid spacer peptide and a recombinant tobacco etch virus protease recognition site (seven amino acids peptide) found between His-tag and first amino acid of expressed E3 facilitated the cleavage of His-tag from E3 after the affinity purification. By IPTG induction, ca. 15 mg of human E3 (mature form) was obtained from 1L LB culture with overnight incubation at 25C. Over 98% of purity of E3 from one-step Ni-NTA agarose affinity purification was confirmed by SDS-PAGE analysis. For

  14. Purification and characterization of aldehyde dehydrogenase from rat liver mitochondria.

    PubMed

    Senior, D J; Tsai, C S

    1988-04-01

    Nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide phosphate-dependent dehydrogenase activities from rat liver mitochondria have been copurified to homogeneity using combined DEAE, Sepharose, and affinity chromatographic procedures. The enzyme has a native molecular weight of 240,000 and subunit molecular weight of 60,000. The enzyme is tetrameric consisting of four identical subunits as revealed by electrophoresis and terminal analyses. A partial summary of physical properties is provided. The amino acid composition by acid hydrolysis is reported. Specific activities for various NAD(P)+ analogs and alkanal substrates were compared. The action of the effectors chloral hydrate, disulfiram, diethylstilbestrol, and Mg2+ and K+ ions were also investigated. PMID:3355167

  15. Molecular basis of maple syrup urine disease: Novel mutations at the E1[alpha] locus that impair E1([alpha][sub 2][beta][sub 2]) assembly or decrease steady-state E1[alpha] mRNA levels of branched-chain [alpha]-keto acid dehydrogenase complex

    SciTech Connect

    Chuang, J.L.; Fisher, C.R.; Chuang, D.T.; Cox, R.P. )

    1994-08-01

    The authors report the occurrence of three novel mutations in the E1[alpha] (BCKDHA) locus of the branched-chain [alpha]-keto acid dehydrogenase (BCKAD) complex that cause maple syrup urine disease (MSUD). An 8-bp deletion in exon 7 is present in one allele of a compound-heterozygous patient (GM-649). A single C nucleotide insertion in exon 2 occurs in one allele of an intermediate-MSUD patient (Lo). The second allele of patient Lo carries an A-to-G transition in exon 9 of the E1[alpha] gene. This missense mutation changes Tyr-368 to Cys (Y368C) in the E1[alpha] subunit. Both the 8-bp deletion and the single C insertion generate a downstream nonsense codon. Both mutations appear to be associated with a low abundance of the mutant E1[alpha] mRNA, as determined by allele-specific oligonucleotide probing. Transfection studies strongly suggest that the Y368C substitution in the E1[alpha] subunit impairs its proper assembly with the normal E1[beta]. Unassembled as well as misassembled E1[alpha] and E1[beta] subunits are degraded in the cell. 32 refs., 8 figs.

  16. Design and synthesis of potent inhibitors of the malaria parasite dihydroorotate dehydrogenase.

    PubMed

    Heikkilä, Timo; Ramsey, Christopher; Davies, Matthew; Galtier, Christophe; Stead, Andrew M W; Johnson, A Peter; Fishwick, Colin W G; Boa, Andrew N; McConkey, Glenn A

    2007-01-25

    Pyrimidine biosynthesis presents an attractive drug target in malaria parasites due to the absence of a pyrimidine salvage pathway. A set of compounds designed to inhibit the Plasmodium falciparum pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (PfDHODH) was synthesized. PfDHODH-specific inhibitors with low nanomolar binding affinities were identified that bind in the N-terminal hydrophobic channel of dihydroorotate dehydrogenase, the presumed site of ubiquinone binding during oxidation of dihydroorotate to orotate. These compounds also prevented growth of cultured parasites at low micromolar concentrations. Models that suggest the mode of inhibitor binding is based on shape complementarity, matching hydrophobic regions of inhibitor and enzyme, and interaction of inhibitors with amino acid residues F188, H185, and R265 are supported by mutagenesis data. These results further highlight PfDHODH as a promising new target for chemotherapeutic intervention in prevention of malaria and provide better understanding of the factors that determine specificity over human dihydroorotate dehydrogenase.

  17. Medium-chain and short-chain dehydrogenases/reductases in retinoid metabolism

    PubMed Central

    Parés, X.; Farrés, J.; Kedishvili, N.; Duester, G.

    2009-01-01

    Retinoic acid (RA), the most active retinoid, is synthesized in two steps from retinol. The first step, oxidation of retinol to retinaldehyde, is catalyzed by cytosolic alcohol dehydrogenases (ADHs) of the medium-chain dehydrogenase/reductase (MDR) superfamily and microsomal retinol dehydrogenases (RDHs) of the short-chain dehydrogenase/reductase (SDR) superfamily. The second step, oxidation of retinaldehyde to RA, is catalyzed by several aldehyde dehydrogenases. ADH1 and ADH2 are the major MDR enzymes in liver retinol detoxification, while ADH3 (less active) and ADH4 (most active) participate in RA generation in tissues. Several NAD+- and NADP+-dependent SDRs are retinoid active. Their in vivo contribution has been demonstrated in the visual cycle (RDH5, RDH12), adult retinoid homeostasis (RDH1) and embryogenesis (RDH10). Km values for most retinoid-active ADHs and RDHs are close to 1 μM or lower, suggesting that they participate physiologically in retinol/retinaldehyde interconversion. Probably none of these enzymes uses retinoids bound to cellular retinol-binding protein, but only free retinoids. The large number of enzymes involved in the two directions of this step, also including aldoketo reductases, suggests that retinaldehyde levels are strictly regulated. PMID:19011747

  18. Biochemical Characterization of Putative Adenylate Dimethylallyltransferase and Cytokinin Dehydrogenase from Nostoc sp. PCC 7120.

    PubMed

    Frébortová, Jitka; Greplová, Marta; Seidl, Michael F; Heyl, Alexander; Frébort, Ivo

    2015-01-01

    Cytokinins, a class of phytohormones, are adenine derivatives common to many different organisms. In plants, these play a crucial role as regulators of plant development and the reaction to abiotic and biotic stress. Key enzymes in the cytokinin synthesis and degradation in modern land plants are the isopentyl transferases and the cytokinin dehydrogenases, respectively. Their encoding genes have been probably introduced into the plant lineage during the primary endosymbiosis. To shed light on the evolution of these proteins, the genes homologous to plant adenylate isopentenyl transferase and cytokinin dehydrogenase were amplified from the genomic DNA of cyanobacterium Nostoc sp. PCC 7120 and expressed in Escherichia coli. The putative isopentenyl transferase was shown to be functional in a biochemical assay. In contrast, no enzymatic activity was detected for the putative cytokinin dehydrogenase, even though the principal domains necessary for its function are present. Several mutant variants, in which conserved amino acids in land plant cytokinin dehydrogenases had been restored, were inactive. A combination of experimental data with phylogenetic analysis indicates that adenylate-type isopentenyl transferases might have evolved several times independently. While the Nostoc genome contains a gene coding for protein with characteristics of cytokinin dehydrogenase, the organism is not able to break down cytokinins in the way shown for land plants. PMID:26376297

  19. Photochemical behavior of 2-azidopurine tri-O-acetylribonucleoside in aqueous solution: unprecedented transformation into 1-(5'-O-acetyl-β-D-ribofuranosyl)-5-[(2-oxo-1,3,5-oxadiazocan-4-ylidene)amino]-1H-imidazole-4-carbaldehyde.

    PubMed

    Komodziński, Krzysztof; Gdaniec, Zofia; Skalski, Bohdan

    2015-01-01

    The photochemical behavior of 2-azidopurine 2',3',5'-tri-O-acetylribonucleoside has been investigated in aqueous solution under aerobic and anaerobic conditions. The two major processes under anaerobic irradiation of 2-azidopurine 2',3',5'-tri-O-acetylribonucleoside involve unprecedented transformation into 1-(5'-O-acetyl-β-D-ribofuranosyl)-5-[(2-oxo-1,3,5-oxadiazocan-4-ylidene)amino]-1H-imidazole-4-carbaldehyde and photoreduction to respective 2-aminopurine derivative, whereas under aerobic conditions these two processes occur to a much lesser extent and photooxidation to respective 2-nitropurine derivative dominates. The structures of photoproducts formed were confirmed by NMR and high-resolution electrospray ionization mass spectral data.

  20. Affinity chromatography of bacterial lactate dehydrogenases.

    PubMed Central

    Kelly, N; Delaney, M; O'Carra, P

    1978-01-01

    The affinity system used was the immobilized oxamate derivative previously used to purify mammalian lactate dehydrogenases. The bacterial dehydrogenases specific for the L-stereoisomer of lactate behaved in the same way as the mammalian enzymes, binding strongly in the presence of NADH. The D-lactate-specific enzymes, however, did not show any biospecific affinity for this gel. The L-specific enzymes could be purified to homogeneity in one affinity-chromatographic step. The D-specific enzymes could be efficiently separated from the L-specific ones and could then be further purified on an immobilized NAD derivative. The mechanism of activation of the lactate dehydrogenase from Streptococcus faecalis by fructose 1,6-bisphosphate was investigated by using the immobilized oxamate gel. PMID:666726

  1. Affinity chromatography of bacterial lactate dehydrogenases.

    PubMed

    Kelly, N; Delaney, M; O'Carra, P

    1978-06-01

    The affinity system used was the immobilized oxamate derivative previously used to purify mammalian lactate dehydrogenases. The bacterial dehydrogenases specific for the L-stereoisomer of lactate behaved in the same way as the mammalian enzymes, binding strongly in the presence of NADH. The D-lactate-specific enzymes, however, did not show any biospecific affinity for this gel. The L-specific enzymes could be purified to homogeneity in one affinity-chromatographic step. The D-specific enzymes could be efficiently separated from the L-specific ones and could then be further purified on an immobilized NAD derivative. The mechanism of activation of the lactate dehydrogenase from Streptococcus faecalis by fructose 1,6-bisphosphate was investigated by using the immobilized oxamate gel. PMID:666726

  2. NAD + -dependent Formate Dehydrogenase from Plants

    PubMed Central

    Alekseeva, A.A.; Savin, S.S.; Tishkov, V.I.

    2011-01-01

    NAD+-dependent formate dehydrogenase (FDH, EC 1.2.1.2) widely occurs in nature. FDH consists of two identical subunits and contains neither prosthetic groups nor metal ions. This type of FDH was found in different microorganisms (including pathogenic ones), such as bacteria, yeasts, fungi, and plants. As opposed to microbiological FDHs functioning in cytoplasm, plant FDHs localize in mitochondria. Formate dehydrogenase activity was first discovered as early as in 1921 in plant; however, until the past decade FDHs from plants had been considerably less studied than the enzymes from microorganisms. This review summarizes the recent results on studying the physiological role, properties, structure, and protein engineering of plant formate dehydrogenases. PMID:22649703

  3. Characterization of testis-specific isoenzyme of human pyruvate dehydrogenase.

    PubMed

    Korotchkina, Lioubov G; Sidhu, Sukhdeep; Patel, Mulchand S

    2006-04-01

    Pyruvate dehydrogenase (PDH), the first component of the human pyruvate dehydrogenase complex, has two isoenzymes, somatic cell-specific PDH1 and testis-specific PDH2 with 87% sequence identity in the alpha subunit of alpha(2) beta(2) PDH. The presence of functional testis-specific PDH2 is important for sperm cells generating nearly all their energy from carbohydrates via pyruvate oxidation. Kinetic and regulatory properties of recombinant human PDH2 and PDH1 were compared in this study. Site-specific phosphorylation/dephosphorylation of the three phosphorylation sites by four PDH kinases (PDK1-4) and two PDH phosphatases (PDP1-2) were investigated by substituting serines with alanine or glutamate in PDHs. PDH2 was found to be very similar to PDH1 as follows: (i) in specific activities and kinetic parameters as determined by the pyruvate dehydrogenase complex assay; (ii) in thermostability at 37 degrees C; (iii) in the mechanism of inactivation by phosphorylation of three sites; and (iv) in the phosphorylation of sites 1 and 2 by PDK3. In contrast, the differences for PDH2 were indicated as follows: (i) by a 2.4-fold increase in binding affinity for the PDH-binding domain of dihydrolipoamide acetyltransferase as measured by surface plasmon resonance; (ii) by possible involvement of Ser-264 (site 1) of PDH2 in catalysis as evident by its kinetic behavior; and (iii) by the lower activities of PDK1, PDK2, and PDK4 as well as PDP1 and PDP2 toward PDH2. These differences between PDH2 and PDH1 are less than expected from substitution of 47 amino acids in each PDH2 alpha subunit. The multiple substitutions may have compensated for any drastic alterations in PDH2 structure thereby preserving its kinetic and regulatory characteristics largely similar to that of PDH1. PMID:16436377

  4. A new role for α-ketoglutarate dehydrogenase complex: regulating metabolism through post-translational modification of other enzymes.

    PubMed

    McKenna, Mary C; Rae, Caroline D

    2015-07-01

    This Editorial highlights a study by Gibson et al. published in this issue of JNeurochem, in which the authors reveal a novel role for the α-ketoglutarate dehydrogenase complex (KGDHC) in post-translational modification of proteins. KGDHC may catalyze post-translational modification of itself as well as several other proteins by succinylation of lysine residues. The authors' report of an enzyme responsible for succinylation of key mitochondrial enzymes represents a major step toward our understanding of the complex functional metabolome. TCA, tricarboxylic acid; KG, α-ketoglutarate; KGDHC, α-ketoglutarate dehydrogenase complex; FUM, fumarase; MDH, malate dehydrogenase; ME, malic enzyme; GDH, glutamate dehydrogenase; AAT, aspartate aminotransferase; GS, glutamine synthetase; PAG, phosphate-activated glutaminase; SIRT3, silent information regulator 3; SIRT5, silent information regulator 5. PMID:26052752

  5. Removal of CO dehydrogenase from Pseudomonas carboxydovorans cytoplasmic membranes, rebinding of CO dehydrogenase to depleted membranes, and restoration of respiratory activities.

    PubMed Central

    Jacobitz, S; Meyer, O

    1989-01-01

    In Pseudomonas carboxydovorans, CO dehydrogenase and hydrogenase were found in association with the cytoplasmic membrane in a weakly bound and a tightly bound pool. The pools could be experimentally distinguished on the basis of resistance to removal by washes in low-ionic-strength buffer. The tightly bound pool of the enzymes could be differentially solubilized under conditions leaving the electron transport system intact and with the nondenaturing zwitterionic detergent 3-(3-cholamidopropyl) dimethylammonio 1-propane-sulfonic acid (CHAPS) and the nonionic detergent dodecyl beta-D-maltoside. In vitro reconstitution of depleted membranes with the corresponding supernatants containing CO dehydrogenase led to binding of the enzyme and to reactivation of respiratory activities with CO. The reconstitution reaction required cations with effectiveness which increased with increasing ionic charge: monovalent (Li+), divalent (Mg2+, Mn2+), or trivalent (Cr3+, La3+). Reconstitution of depleted membranes with CO dehydrogenase was specific for CO-grown bacteria. Cytoplasmic membranes from H2- or heterotrophically grown Pseudomonas carboxydovorans had no affinity for CO dehydrogenase at all, indicating the absence of the physiological electron acceptor of the enzyme, which presumably is cytochrome b561, or another membrane anchor. PMID:2808305

  6. A Novel 3-Hydroxysteroid Dehydrogenase That Regulates Reproductive Development and Longevity

    PubMed Central

    Wollam, Joshua; Magner, Daniel B.; Magomedova, Lilia; Rass, Elisabeth; Shen, Yidong; Rottiers, Veerle; Habermann, Bianca; Cummins, Carolyn L.; Antebi, Adam

    2012-01-01

    Endogenous small molecule metabolites that regulate animal longevity are emerging as a novel means to influence health and life span. In C. elegans, bile acid-like steroids called the dafachronic acids (DAs) regulate developmental timing and longevity through the conserved nuclear hormone receptor DAF-12, a homolog of mammalian sterol-regulated receptors LXR and FXR. Using metabolic genetics, mass spectrometry, and biochemical approaches, we identify new activities in DA biosynthesis and characterize an evolutionarily conserved short chain dehydrogenase, DHS-16, as a novel 3-hydroxysteroid dehydrogenase. Through regulation of DA production, DHS-16 controls DAF-12 activity governing longevity in response to signals from the gonad. Our elucidation of C. elegans bile acid biosynthetic pathways reveals the possibility of novel ligands as well as striking biochemical conservation to other animals, which could illuminate new targets for manipulating longevity in metazoans. PMID:22505847

  7. Yeast surface display of dehydrogenases in microbial fuel-cells.

    PubMed

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems.

  8. Yeast surface display of dehydrogenases in microbial fuel-cells.

    PubMed

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems. PMID:27459246

  9. 21 CFR 866.5560 - Lactic dehydrogenase immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... immunological test system is a device that consists of the reagents used to measure by immunochemical techniques the activity of the lactic dehydrogenase enzyme in serum. Increased levels of lactic dehydrogenase...

  10. Purification, characterization, and cDNA cloning of opine dehydrogenases from the polychaete rockworm Marphysa sanguinea.

    PubMed

    Endo, Noriyuki; Kan-no, Nobuhiro; Nagahisa, Eizoh

    2007-06-01

    Alanopine dehydrogenase (AlDH) and three isoforms of strombine/alanopine dehydrogenase (St/AlDH) were purified from muscle tissue of the polychaete rockworm Marphysa sanguinea. The four enzymes, which can be distinguished by the isoelectric point, are monomeric 42 kDa proteins, possess similar pH-activity profiles, and display specificity for pyruvate and NAD(H). The three isoforms of St/AlDH show equivalent Km and Vmax for glycine and L-alanine and for D-strombine and meso-alanopine. Free amino acid levels in the muscle and D-strombine accumulation in vivo during muscle activity suggest that St/AlDHs function physiologically as StDH. AlDH shows specificity for L-alanine and meso-alanopine, but not for glycine or D-strombine. The amino acid sequences of AlDH and one of the St/AlDH isoforms were determined by a combination of amino acid sequence analysis and cDNA cloning. St/AlDH cDNA consisted of 1586 bp nucleotides that encode a 399-residue protein (43,346.70 Da), and AlDH cDNA consisted of 1587 bp nucleotides that encode a 399-residue protein (43,886.68 Da). The two amino acid sequences deduced from the cDNA displayed 67% amino acid identity, with greatest similarity to that of tauropine dehydrogenase from the polychaete Arabella iricolor. PMID:17350870

  11. Engineering of pyranose dehydrogenase for increased oxygen reactivity.

    PubMed

    Krondorfer, Iris; Lipp, Katharina; Brugger, Dagmar; Staudigl, Petra; Sygmund, Christoph; Haltrich, Dietmar; Peterbauer, Clemens K

    2014-01-01

    Pyranose dehydrogenase (PDH), a member of the GMC family of flavoproteins, shows a very broad sugar substrate specificity but is limited to a narrow range of electron acceptors and reacts extremely slowly with dioxygen as acceptor. The use of substituted quinones or (organo)metals as electron acceptors is undesirable for many production processes, especially of food ingredients. To improve the oxygen reactivity, site-saturation mutagenesis libraries of twelve amino acids around the active site of Agaricus meleagris PDH were expressed in Saccharomyces cerevisiae. We established high-throughput screening assays for oxygen reactivity and standard dehydrogenase activity using an indirect Amplex Red/horseradish peroxidase and a DCIP/D-glucose based approach. The low number of active clones confirmed the catalytic role of H512 and H556. Only one position was found to display increased oxygen reactivity. Histidine 103, carrying the covalently linked FAD cofactor in the wild-type, was substituted by tyrosine, phenylalanine, tryptophan and methionine. Variant H103Y was produced in Pichia pastoris and characterized and revealed a five-fold increase of the oxygen reactivity. PMID:24614932

  12. Isolation of a Histoplasma capsulatum cDNA that complements a mitochondrial NAD(+)-isocitrate dehydrogenase subunit I-deficient mutant of Saccharomyces cerevisiae.

    PubMed

    Johnson, C H; McEwen, J E

    1999-06-30

    A cDNA library was prepared from Histoplasma capsulatum strain G-217B yeast cells and an apparently full-length cDNA for a subunit of the citric acid cycle enzyme NAD(+)-isocitrate dehydrogenase was identified by sequence analysis. Its predicted amino acid sequence is more similar to the IDH1 regulatory subunit of S. cerevisiae NAD(+)-isocitrate dehydrogenase than to the IDH2 catalytic subunit. After expression in S. cerevisiae from an S. cerevisiae promoter, it was shown to functionally complement an S. cerevisiae idh1 mutant, but not an idh2 mutant, for growth on acetate as a carbon source and for production of NAD(+)-isocitrate dehydrogenase enzyme activity. These results confirm that the H. capsulatum cDNA encodes a homologue of subunit I of the S. cerevisiae mitochondrial isocitrate dehydrogenase isozyme that functions in the citric acid cycle.

  13. Characterization of uronate dehydrogenases catalysing the initial step in an oxidative pathway

    PubMed Central

    Pick, André; Schmid, Jochen; Sieber, Volker

    2015-01-01

    Uronate dehydrogenases catalyse the oxidation of uronic acids to aldaric acids, which represent ‘top value-added chemicals’ that have the potential to substitute petroleum-derived chemicals. The identification and annotation of three uronate dehydrogenases derived from Fulvimarina pelagi HTCC2506, Streptomyces viridochromogenes DSM 40736 and Oceanicola granulosus DSM 15982 via sequence analysis is described. Characterization and comparison with two known uronate dehydrogenases in regard to substrate spectrum, catalytic activity and pH as well as temperature dependence was performed. The catalytic efficiency was investigated in two different buffer systems; potassium phosphate and Tris-HCl. In addition to the typical and well available substrates glucuronate and galacturonate also mannuronate as part of many structural polysaccharides were tested. The uronate dehydrogenase of Agrobacterium tumefaciens and Pseudomonas syringae showed catalytic dependency on the buffer system resulting in an increased Km especially for glucuronate in potassium phosphate compared with Tris-HCl buffer. Enzyme stability at 37°C of the different Udhs was in the order: P. syringae < S. viridochromogens < A. tumefaciens < F. pelagi < O. granulosus. All enzymes showed activity within a broad pH range from 7.0 to 9.5, only O. granulosus had a very narrow range around 7.0. PMID:25884328

  14. Effects of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity.

    PubMed

    Li, Sha; Gan, Li-Qin; Li, Shu-Ke; Zheng, Jie-Cong; Xu, Dong-Ping; Li, Hua-Bin

    2014-01-01

    Various alcoholic beverages containing different concentrations of ethanol are widely consumed, and excessive alcohol consumption may result in serious health problems. The consumption of alcoholic beverages is often accompanied by non-alcoholic beverages, such as herbal infusions, tea and carbonated beverages to relieve drunk symptoms. The aim of this study was to supply new information on the effects of these beverages on alcohol metabolism for nutritionists and the general public, in order to reduce problems associated with excessive alcohol consumption. The effects of 57 kinds of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity were evaluated. Generally, the effects of these beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity are very different. The results suggested that some beverages should not be drank after excessive alcohol consumption, and several beverages may be potential dietary supplements for the prevention and treatment of problems related to excessive alcohol consumption.

  15. The physiological role of liver alcohol dehydrogenase.

    PubMed

    Krebs, H A; Perkins, J R

    1970-07-01

    1. Yeast alcohol dehydrogenase was used to determine ethanol in the portal and hepatic veins and in the contents of the alimentary canal of rats given a diet free from ethanol. Measurable amounts of a substance behaving like ethanol were found. Its rate of interaction with yeast alcohol dehydrogenase and its volatility indicate that the substance measured was in fact ethanol. 2. The mean alcohol concentration in the portal blood of normal rats was 0.045mm. In the hepatic vein, inferior vena cava and aorta it was about 15 times lower. 3. The contents of all sections of the alimentary canal contained measurable amounts of ethanol. The highest values (average 3.7mm) were found in the stomach. 4. Infusion of pyrazole (an inhibitor of alcohol dehydrogenase) raised the alcohol concentration in the portal vein 10-fold and almost removed the difference between portal and hepatic venous blood. 5. Addition of antibiotics to the food diminished the ethanol concentration of the portal blood to less than one-quarter and that of the stomach contents to less than one-fortieth. 6. The concentration of alcohol in the alimentary canal and in the portal blood of germ-free rats was much decreased, to less than one-tenth in the alimentary canal and to one-third in the portal blood, but detectable quantities remained. These are likely to arise from acetaldehyde formed by the normal pathways of degradation of threonine, deoxyribose phosphate and beta-alanine. 7. The results indicate that significant amounts of alcohol are normally formed in the gastro-intestinal tract. The alcohol is absorbed into the circulation and almost quantitatively removed by the liver. Thus the function, or a major function, of liver alcohol dehydrogenase is the detoxication of ethanol normally present. 8. The alcohol concentration in the stomach of alloxan-diabetic rats was increased about 8-fold. 9. The activity of liver alcohol dehydrogenase is generally lower in carnivores than in herbivores and omnivores

  16. 21 CFR 866.5560 - Lactic dehydrogenase immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5560 Lactic dehydrogenase immunological test system. (a) Identification. A lactic dehydrogenase... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lactic dehydrogenase immunological test...

  17. Properties of formate dehydrogenase in Methanobacterium formicicum.

    PubMed Central

    Schauer, N L; Ferry, J G

    1982-01-01

    Soluble formate dehydrogenase from Methanobacterium formicicum was purified 71-fold with a yield of 35%. Purification was performed anaerobically in the presence of 10 mM sodium azide which stabilized the enzyme. The purified enzyme reduced, with formate, 50 mumol of methyl viologen per min per mg of protein and 8.2 mumol of coenzyme F420 per min per mg of protein. The apparent Km for 7,8-didemethyl-8-hydroxy-5-deazariboflavin, a hydrolytic derivative of coenzyme F420, was 10-fold greater (63 microM) than for coenzyme F420 (6 microM). The purified enzyme also reduced flavin mononucleotide (Km = 13 microM) and flavin adenine dinucleotide (Km = 25 microM) with formate, but did not reduce NAD+ or NADP+. The reduction of NADP+ with formate required formate dehydrogenase, coenzyme F420, and coenzyme F420:NADP+ oxidoreductase. The formate dehydrogenase had an optimal pH of 7.9 when assayed with the physiological electron acceptor coenzyme F420. The optimal reaction rate occurred at 55 degrees C. The molecular weight was 288,000 as determined by gel filtration. The purified formate dehydrogenase was strongly inhibited by cyanide (Ki = 6 microM), azide (Ki = 39 microM), alpha,alpha-dipyridyl, and 1,10-phenanthroline. Denaturation of the purified formate dehydrogenase with sodium dodecyl sulfate under aerobic conditions revealed a fluorescent compound. Maximal excitation occurred at 385 nm, with minor peaks at 277 and 302 nm. Maximal fluorescence emission occurred at 455 nm. Images PMID:7061389

  18. Characterization of xylitol dehydrogenase from Debaryomyces hansenii

    SciTech Connect

    Girio, F.M.; Amaral-Collaco, M.T.; Pelica, F.

    1996-01-01

    The xylitol dehydrogenase (EC 1.1.1.9) from xylose-grown cells of Debaryomyces hansenii was partially purified in two chromatographic steps, and characterization studies were carried out in order to investigate the role of the xylitol dehydrogenase-catalyzed step in the regulation of D-xylose metabolism. The enzyme was most active at pH 9.0-9.5, and exhibited a broad polyol specificity. The Michaelis constants for xylitol and NAD{sup +} were 16.5 and 0.55 mM, respectively. Ca{sup 2+}, Mg{sup 2+}, and Mn{sup 2+} did not affect the enzyme activity. Conversely, Zn{sup 2+}, Cd{sup 2+}, and Co{sup 2+} strongly inhibited the enzyme activity. It was concluded that NAD{sup +}-xylitol dehydrogenase from D. hansenii has similarities with other xylose-fermenting yeasts in respect to optimal pH, substrate specificity, and K{sub m} value for xylitol, and therefore should be named L-iditol:NAD{sup +}-5-oxidoreductase (EC 1.1.1.14). The reason D. hansenii is a good xylitol producer is not because of its value of K for xylitol, which is low enough to assure its fast oxidation by NAD{sup +}-xylitol dehydrogenase. However, a higher K{sub m} value of xylitol dehydrogenase for NAD{sup +} compared to the K{sub m} values of other xylose-fermenting yeasts may be responsible for the higher xylitol yields. 22 refs., 4 figs., 2 tabs.

  19. The structure of retinal dehydrogenase type II at 2.7 A resolution: implications for retinal specificity.

    PubMed

    Lamb, A L; Newcomer, M E

    1999-05-11

    Retinoic acid, a hormonally active form of vitamin A, is produced in vivo in a two step process: retinol is oxidized to retinal and retinal is oxidized to retinoic acid. Retinal dehydrogenase type II (RalDH2) catalyzes this last step in the production of retinoic acid in the early embryo, possibly producing this putative morphogen to initiate pattern formation. The enzyme is also found in the adult animal, where it is expressed in the testis, lung, and brain among other tissues. The crystal structure of retinal dehydrogenase type II cocrystallized with nicotinamide adenine dinucleotide (NAD) has been determined at 2.7 A resolution. The structure was solved by molecular replacement using the crystal structure of a mitochondrial aldehyde dehydrogenase (ALDH2) as a model. Unlike what has been described for the structures of two aldehyde dehydrogenases involved in the metabolism of acetaldehyde, the substrate access channel is not a preformed cavity into which acetaldehyde can readily diffuse. Retinal dehydrogenase appears to utilize a disordered loop in the substrate access channel to discriminate between retinaldehyde and short-chain aldehydes.

  20. [Differences in the light-activation of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase and of ribulose-5-phosphate kinase between plants containing the Calvin and those containing the C4-dicarboxylic acid pathway of photosynthetic carbon reduction].

    PubMed

    Steiger, E; Ziegler, I; Ziegler, H

    1971-06-01

    1. Preceding experiments had shown that irradiance of intact leaves or of isolated chloroplasts causes a reversible increase in the activity of NADP-GPD (Ziegler and Ziegler, 1965) as well as of ribulose-5-phosphate kinase (Latzko and Gibbs, 1969). Examination of several species which carry out the Calvin type of photosynthetic CO2 fixation (Vicia faba, Spinacia oleracea, Nicotiana tabacum, Avena sativa) now revealed that the dark level of NADP-GPD activity ranges between 300-400 μmol NADPH/mg chlorophyll·h; irradiance causes an activation to an turnover rate of 900-1600 μmol NADPH/mg chlorophyll·h. 2. The dark-level of ribulose-5-phosphate kinase in these Calvin type plants corresponds to about 400 \\gmmol PO4---/mg chlorophyll\\sdh. It rises to 900\\2-1300 \\gmmol PO4---/mg chlorophyll\\sdh after irradiance. 3. In all species examined which carry out the C4-dicarboxylic acid type of CO2 fixation (Zea mays, Cyperus rotundus, Portulacca oleracea, Saccharum officinarum) the dark-level of NADP-GPD as well as of ribulose-5-phosphate kinase is already as high as the light-level of Calvin type plants. In these species irradiance either activates both enzymes only to a small extent (Saccharum officinarum, Portulacea oleracea) or it activates only one of the two enzymes to an exceptional high activity (NADP-GPD in Zea mays, ribulose-5-phosphate kinase in Cyperus rotundus), while the activity of the other one remains nearly constant. 4. The dark-level of NADP-GPD in young Zea mays (2 leaves expanded) is as high as in adult plants; moreover its further activation by light corresponds to that in adult plants. In contrast, the dark-activity of ribulose-5-phosphate kinase in young Zea mays corresponds to the lower level found in Calvin type plants and is activated by irradiance in the same manner as it is in the latter plants. 5. The activity of ribose-5-phosphate isomerase is not influenced by light.

  1. Protein-mediated assembly of succinate dehydrogenase and its cofactors.

    PubMed

    Van Vranken, Jonathan G; Na, Un; Winge, Dennis R; Rutter, Jared

    2015-01-01

    Succinate dehydrogenase (or complex II; SDH) is a heterotetrameric protein complex that links the tribarboxylic acid cycle with the electron transport chain. SDH is composed of four nuclear-encoded subunits that must translocate independently to the mitochondria and assemble into a mature protein complex embedded in the inner mitochondrial membrane. Recently, it has become clear that failure to assemble functional SDH complexes can result in cancer and neurodegenerative syndromes. The effort to thoroughly elucidate the SDH assembly pathway has resulted in the discovery of four subunit-specific assembly factors that aid in the maturation of individual subunits and support the assembly of the intact complex. This review will focus on these assembly factors and assess the contribution of each factor to the assembly of SDH. Finally, we propose a model of the SDH assembly pathway that incorporates all extant data.

  2. [Sorbitol-6-Phosphate Dehydrogenase Gene Polymorhism in Malus Mill. (Rosaceae)].

    PubMed

    Boris, K V; Kudryavtsev, A M; Kochieva, E Z

    2015-11-01

    The sorbitol-6-phosphate dehydrogenase gene (S6PDH) sequences of six representatives of the genus Malus, which belong to five different taxonomic sections, were examined for the first time. The exon-intron structure and polymorphism of the nucleotide and amino acid sequences of these genes was characterized. The intraspecific polymorphism of the S6PDH gene was assessed for the first time in 40 Russian and foreign apple (Malus domestica) cultivars. It was demonstrated that the interspecific polymorphism level of the S6PDH coding sequences in the studied. representatives of the genus Malus was 4%, and the intraspecific polymorphism level of M. domestica cultivars was very low, constituting 0.96%. PMID:26845854

  3. Engineered PQQ-Glucose Dehydrogenase as a Universal Biosensor Platform.

    PubMed

    Guo, Zhong; Murphy, Lindy; Stein, Viktor; Johnston, Wayne A; Alcala-Perez, Siro; Alexandrov, Kirill

    2016-08-17

    Biosensors with direct electron output hold promise for nearly seamless integration with portable electronic devices. However, so far, they have been based on naturally occurring enzymes that significantly limit the spectrum of detectable analytes. Here, we present a novel biosensor architecture based on analyte-driven intermolecular recombination and activity reconstitution of a re-engineered component of glucometers: PQQ-glucose dehydrogenase. We demonstrate that this sensor architecture can be rapidly adopted for the detection of immunosuppressant drugs, α-amylase protein, or protease activity of thrombin and Factor Xa. The biosensors could be stored in dried form without appreciable loss of activity. We further show that ligand-induced activity of the developed biosensors could be directly monitored by chronoamperometry, enabling construction of disposable sensory electrodes. We expect that this architecture could be expanded to the detection of other biochemical activities, post-translational modifications, nucleic acids, and inorganic molecules.

  4. Fabricating polystyrene fiber-dehydrogenase assemble as a functional biocatalyst.

    PubMed

    An, Hongjie; Jin, Bo; Dai, Sheng

    2015-01-01

    Immobilization of the enzymes on nano-structured materials is a promising approach to enhance enzyme stabilization, activation and reusability. This study aimed to develop polystyrene fiber-enzyme assembles to catalyze model formaldehyde to methanol dehydrogenation reaction, which is an essential step for bioconversion of CO2 to a renewable bioenergy. We fabricated and modified electrospun polystyrene fibers, which showed high capability to immobilize dehydrogenase for the fiber-enzyme assembles. Results from evaluation of biochemical activities of the fiber-enzyme assemble showed that nitriation with the nitric/sulfuric acid ratio (v/v, 10:1) and silanization treatment delivered desirable enzyme activity and long-term storage stability, showing great promising toward future large-scale applications. PMID:25435501

  5. The role of Pyruvate Dehydrogenase Complex in cardiovascular diseases.

    PubMed

    Sun, Wanqing; Liu, Quan; Leng, Jiyan; Zheng, Yang; Li, Ji

    2015-01-15

    The regulation of mammalian myocardial carbohydrate metabolism is complex; many factors such as arterial substrate and hormone levels, coronary flow, inotropic state and the nutritional status of the tissue play a role in regulating mammalian myocardial carbohydrate metabolism. The Pyruvate Dehydrogenase Complex (PDHc), a mitochondrial matrix multienzyme complex, plays an important role in energy homeostasis in the heart by providing the link between glycolysis and the tricarboxylic acid (TCA) cycle. In TCA cycle, PDHc catalyzes the conversion of pyruvate into acetyl-CoA. This review determines that there is altered cardiac glucose in various pathophysiological states consequently causing PDC to be altered. This review further summarizes evidence for the metabolism mechanism of the heart under normal and pathological conditions including ischemia, diabetes, hypertrophy and heart failure.

  6. [Sorbitol-6-Phosphate Dehydrogenase Gene Polymorhism in Malus Mill. (Rosaceae)].

    PubMed

    Boris, K V; Kudryavtsev, A M; Kochieva, E Z

    2015-11-01

    The sorbitol-6-phosphate dehydrogenase gene (S6PDH) sequences of six representatives of the genus Malus, which belong to five different taxonomic sections, were examined for the first time. The exon-intron structure and polymorphism of the nucleotide and amino acid sequences of these genes was characterized. The intraspecific polymorphism of the S6PDH gene was assessed for the first time in 40 Russian and foreign apple (Malus domestica) cultivars. It was demonstrated that the interspecific polymorphism level of the S6PDH coding sequences in the studied. representatives of the genus Malus was 4%, and the intraspecific polymorphism level of M. domestica cultivars was very low, constituting 0.96%.

  7. Engineered PQQ-Glucose Dehydrogenase as a Universal Biosensor Platform.

    PubMed

    Guo, Zhong; Murphy, Lindy; Stein, Viktor; Johnston, Wayne A; Alcala-Perez, Siro; Alexandrov, Kirill

    2016-08-17

    Biosensors with direct electron output hold promise for nearly seamless integration with portable electronic devices. However, so far, they have been based on naturally occurring enzymes that significantly limit the spectrum of detectable analytes. Here, we present a novel biosensor architecture based on analyte-driven intermolecular recombination and activity reconstitution of a re-engineered component of glucometers: PQQ-glucose dehydrogenase. We demonstrate that this sensor architecture can be rapidly adopted for the detection of immunosuppressant drugs, α-amylase protein, or protease activity of thrombin and Factor Xa. The biosensors could be stored in dried form without appreciable loss of activity. We further show that ligand-induced activity of the developed biosensors could be directly monitored by chronoamperometry, enabling construction of disposable sensory electrodes. We expect that this architecture could be expanded to the detection of other biochemical activities, post-translational modifications, nucleic acids, and inorganic molecules. PMID:27463000

  8. Benzaldehyde dehydrogenase from chitosan-treated Sorbus aucuparia cell cultures.

    PubMed

    Gaid, Mariam M; Sircar, Debabrata; Beuerle, Till; Mitra, Adinpunya; Beerhues, Ludger

    2009-09-01

    Cell cultures of Sorbus aucuparia respond to the addition of chitosan with the accumulation of the biphenyl phytoalexin aucuparin. The carbon skeleton of this inducible defense compound is formed by biphenyl synthase (BIS) from benzoyl-CoA and three molecules of malonyl-CoA. The formation of benzoyl-CoA proceeds via benzaldehyde as an intermediate. Benzaldehyde dehydrogenase (BD), which converts benzaldehyde into benzoic acid, was detected in cell-free extracts from S. aucuparia cell cultures. BD and BIS were induced by chitosan treatment. The preferred substrate for BD was benzaldehyde (K(m)=49 microM). Cinnamaldehyde and various hydroxybenzaldehydes were relatively poor substrates. BD activity was strictly dependent on the presence of NAD(+) as a cofactor (K(m)=67 microM).

  9. Physiological Regulation of Isocitrate Dehydrogenase and the Role of 2-Oxoglutarate in Prochlorococcus sp. Strain PCC 9511

    PubMed Central

    Diez, Jesús; Gómez-Baena, Guadalupe; Rangel-Zúñiga, Oriol Alberto; García-Fernández, José Manuel

    2014-01-01

    The enzyme isocitrate dehydrogenase (ICDH; EC 1.1.1.42) catalyzes the oxidative decarboxylation of isocitrate, to produce 2-oxoglutarate. The incompleteness of the tricarboxylic acids cycle in marine cyanobacteria confers a special importance to isocitrate dehydrogenase in the C/N balance, since 2-oxoglutarate can only be metabolized through the glutamine synthetase/glutamate synthase pathway. The physiological regulation of isocitrate dehydrogenase was studied in cultures of Prochlorococcus sp. strain PCC 9511, by measuring enzyme activity and concentration using the NADPH production assay and Western blotting, respectively. The enzyme activity showed little changes under nitrogen or phosphorus starvation, or upon addition of the inhibitors DCMU, DBMIB and MSX. Azaserine, an inhibitor of glutamate synthase, induced clear increases in the isocitrate dehydrogenase activity and icd gene expression after 24 h, and also in the 2-oxoglutarate concentration. Iron starvation had the most significant effect, inducing a complete loss of isocitrate dehydrogenase activity, possibly mediated by a process of oxidative inactivation, while its concentration was unaffected. Our results suggest that isocitrate dehydrogenase responds to changes in the intracellular concentration of 2-oxoglutarate and to the redox status of the cells in Prochlorococcus. PMID:25061751

  10. 1-Heteroaryl-3-phenoxypropan-2-ones as inhibitors of cytosolic phospholipase A₂α and fatty acid amide hydrolase: Effect of the replacement of the ether oxygen with sulfur and nitrogen moieties on enzyme inhibition and metabolic stability.

    PubMed

    Sundermann, Tom; Fabian, Jörg; Hanekamp, Walburga; Lehr, Matthias

    2015-05-15

    Cytosolic phospholipase A2α (cPLA2α) and fatty acid amide hydrolase (FAAH) are enzymes, which have emerged as attractive targets for the development of analgesic and anti-inflammatory drugs. We recently reported that certain 3-phenoxy-substituted 1-heteroarylpropan-2-ones are inhibitors of cPLA2α and/or FAAH. Starting from 1-[2-oxo-3-(4-phenoxyphenoxy)propyl]indole-5-carboxylic acid (3) and 1-(1H-benzotriazol-1-yl)-3-(4-phenoxyphenoxy)propan-2-one (4), the effect of the replacement of the oxygen in position 3 of the propan-2-one scaffold by sulfur and nitrogen containing moieties on inhibition of cPLA2α and fatty acid amide hydrolase as well as on metabolic stability in rat liver S9 fractions was investigated. As a result of these structure-activity relationship studies it was found that the ether oxygen is of great importance for enzyme inhibitory potency. Replacement by sulfur led to an about 100-fold decrease of enzyme inhibition, nitrogen and substituted nitrogen atoms at this position even resulted in inactivity of the compounds. The effect of the structural variations performed on metabolic stability of the important ketone pharmacophore was partly different in the two series of compounds. While introduction of SO and SO2 significantly increased stability of the ketone against reduction in case of the indole-5-carboxylic acid 3, it had no effect in case of the benzotriazole 4. Further analysis of the metabolism of 3 and 4 in rat liver S9 fractions revealed that the major metabolite of 3 was the alcohol 53 formed by reduction of the keto group. In contrast, in case of 4 beside keto reduction an excessive hydroxylation of the terminal phenoxy group occurred leading to the dihydroxy compound 50. Experiments with enzyme inhibitors showed that the phenylhydroxylation of 4 was catalyzed by tranylcypromine sensitive cytochrome P450 isoforms, while the reduction of the ketone function of 3 and 4 was mainly caused by cytosolic short chain dehydrogenases

  11. Mechanism of hyperinsulinism in short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency involves activation of glutamate dehydrogenase.

    PubMed

    Li, Changhong; Chen, Pan; Palladino, Andrew; Narayan, Srinivas; Russell, Laurie K; Sayed, Samir; Xiong, Guoxiang; Chen, Jie; Stokes, David; Butt, Yasmeen M; Jones, Patricia M; Collins, Heather W; Cohen, Noam A; Cohen, Akiva S; Nissim, Itzhak; Smith, Thomas J; Strauss, Arnold W; Matschinsky, Franz M; Bennett, Michael J; Stanley, Charles A

    2010-10-01

    The mechanism of insulin dysregulation in children with hyperinsulinism associated with inactivating mutations of short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD) was examined in mice with a knock-out of the hadh gene (hadh(-/-)). The hadh(-/-) mice had reduced levels of plasma glucose and elevated plasma insulin levels, similar to children with SCHAD deficiency. hadh(-/-) mice were hypersensitive to oral amino acid with decrease of glucose level and elevation of insulin. Hypersensitivity to oral amino acid in hadh(-/-) mice can be explained by abnormal insulin responses to a physiological mixture of amino acids and increased sensitivity to leucine stimulation in isolated perifused islets. Measurement of cytosolic calcium showed normal basal levels and abnormal responses to amino acids in hadh(-/-) islets. Leucine, glutamine, and alanine are responsible for amino acid hypersensitivity in islets. hadh(-/-) islets have lower intracellular glutamate and aspartate levels, and this decrease can be prevented by high glucose. hadh(-/-) islets also have increased [U-(14)C]glutamine oxidation. In contrast, hadh(-/-) mice have similar glucose tolerance and insulin sensitivity compared with controls. Perifused hadh(-/-) islets showed no differences from controls in response to glucose-stimulated insulin secretion, even with addition of either a medium-chain fatty acid (octanoate) or a long-chain fatty acid (palmitate). Pull-down experiments with SCHAD, anti-SCHAD, or anti-GDH antibodies showed protein-protein interactions between SCHAD and GDH. GDH enzyme kinetics of hadh(-/-) islets showed an increase in GDH affinity for its substrate, α-ketoglutarate. These studies indicate that SCHAD deficiency causes hyperinsulinism by activation of GDH via loss of inhibitory regulation of GDH by SCHAD.

  12. Pro-haloacetate Nanoparticles for Efficient Cancer Therapy via Pyruvate Dehydrogenase Kinase Modulation.

    PubMed

    Misra, Santosh K; Ye, Mao; Ostadhossein, Fatemeh; Pan, Dipanjan

    2016-01-01

    Anticancer agents based on haloacetic acids are developed for inhibition of pyruvate dehydrogenase kinase (PDK), an enzyme responsible for reversing the suppression of mitochondria-dependent apoptosis. Through molecular docking studies mono- and dihaloacetates are identified as potent PDK2 binders and matched their efficiency with dichloroacetic acid. In silico screening directed their conversion to phospholipid prodrugs, which were subsequently self-assembled to pro-haloacetate nanoparticles. Following a thorough physico-chemical characterization, the functional activity of these novel agents was established in wide ranges of human cancer cell lines in vitro and in vivo in rodents. Results indicated that the newly explored PDK modulators can act as efficient agent for cancer regression. A Pyruvate dehydrogenase (PDH) assay mechanistically confirmed that these agents trigger their activity through the mitochondria-dependent apoptosis. PMID:27323896

  13. Pro-haloacetate Nanoparticles for Efficient Cancer Therapy via Pyruvate Dehydrogenase Kinase Modulation

    NASA Astrophysics Data System (ADS)

    Misra, Santosh K.; Ye, Mao; Ostadhossein, Fatemeh; Pan, Dipanjan

    2016-06-01

    Anticancer agents based on haloacetic acids are developed for inhibition of pyruvate dehydrogenase kinase (PDK), an enzyme responsible for reversing the suppression of mitochondria-dependent apoptosis. Through molecular docking studies mono- and dihaloacetates are identified as potent PDK2 binders and matched their efficiency with dichloroacetic acid. In silico screening directed their conversion to phospholipid prodrugs, which were subsequently self-assembled to pro-haloacetate nanoparticles. Following a thorough physico-chemical characterization, the functional activity of these novel agents was established in wide ranges of human cancer cell lines in vitro and in vivo in rodents. Results indicated that the newly explored PDK modulators can act as efficient agent for cancer regression. A Pyruvate dehydrogenase (PDH) assay mechanistically confirmed that these agents trigger their activity through the mitochondria-dependent apoptosis.

  14. Pro-haloacetate Nanoparticles for Efficient Cancer Therapy via Pyruvate Dehydrogenase Kinase Modulation

    PubMed Central

    Misra, Santosh K.; Ye, Mao; Ostadhossein, Fatemeh; Pan, Dipanjan

    2016-01-01

    Anticancer agents based on haloacetic acids are developed for inhibition of pyruvate dehydrogenase kinase (PDK), an enzyme responsible for reversing the suppression of mitochondria-dependent apoptosis. Through molecular docking studies mono- and dihaloacetates are identified as potent PDK2 binders and matched their efficiency with dichloroacetic acid. In silico screening directed their conversion to phospholipid prodrugs, which were subsequently self-assembled to pro-haloacetate nanoparticles. Following a thorough physico-chemical characterization, the functional activity of these novel agents was established in wide ranges of human cancer cell lines in vitro and in vivo in rodents. Results indicated that the newly explored PDK modulators can act as efficient agent for cancer regression. A Pyruvate dehydrogenase (PDH) assay mechanistically confirmed that these agents trigger their activity through the mitochondria-dependent apoptosis. PMID:27323896

  15. Peafowl lactate dehydrogenase: problem of isoenzyme identification.

    PubMed

    Rose, R G; Wilson, A C

    1966-09-16

    Peafowl, like other vertebrates, contain multiple forms of lactate dehydrogenase. The electrophoretic properties of the peafowl isoenzymes are unusual in that the isoenzyme from heart tissue can be either more or less anodic than that of muscle, depending on the pH. This finding focuses attention on the problem of isoenzyme identification. It is suggested that isoenzymes be identified on the basis of properties that are chemically and biologically more significant than electrophoretic mobility.

  16. Peafowl lactate dehydrogenase: problem of isoenzyme identification.

    PubMed

    Rose, R G; Wilson, A C

    1966-09-16

    Peafowl, like other vertebrates, contain multiple forms of lactate dehydrogenase. The electrophoretic properties of the peafowl isoenzymes are unusual in that the isoenzyme from heart tissue can be either more or less anodic than that of muscle, depending on the pH. This finding focuses attention on the problem of isoenzyme identification. It is suggested that isoenzymes be identified on the basis of properties that are chemically and biologically more significant than electrophoretic mobility. PMID:5917779

  17. Cloning of the rat pyruvate dehydrogenase kinase 4 gene promoter: activation of pyruvate dehydrogenase kinase 4 by the peroxisome proliferator-activated receptor gamma coactivator.

    PubMed

    Ma, Ke; Zhang, Yi; Elam, Marshall B; Cook, George A; Park, Edwards A

    2005-08-19

    The pyruvate dehydrogenase complex catalyzes the conversion of pyruvate to acetyl-CoA in mitochondria and is a key regulatory enzyme in the metabolism of glucose to acetyl-CoA. Phosphorylation of pyruvate dehydrogenase by the pyruvate dehydrogenase kinases (PDK) inhibits pyruvate dehydrogenase complex activity. There are four PDK isoforms, and expression of PDK4 and PDK2 genes is elevated in starvation and diabetes, allowing glucose to be conserved while fatty acid oxidation is increased. In these studies we have investigated the transcriptional mechanisms by which the expression of the PDK4 gene is increased. The peroxisome proliferator-activated receptor gamma coactivator (PGC-1alpha) stimulates the expression of genes involved in hepatic gluconeogenesis and mitochondrial fatty acid oxidation. We have found that PGC-1alpha will induce the expression of both the PDK2 and PDK4 genes in primary rat hepatocytes and ventricular myocytes. We cloned the promoter for the rat PDK4 gene. Hepatic nuclear factor 4 (HNF4), which activates many genes in the liver, will induce PDK4 expression. Although HNF4 and PGC-1alpha interact to stimulate several genes encoding gluconeogenic enzymes, the induction of PDK4 does not involve interactions of PGC-1alpha with HNF4. Using the chromatin immunoprecipitation assay, we have demonstrated that HNF4 and PGC-1alpha are associated with the PDK4 gene in vivo. Our data suggest that by inducing PDK genes PGC-1alpha will direct pyruvate away from metabolism into acetyl-CoA and toward the formation of oxaloacetate and into the gluconeogenic pathway. PMID:15967803

  18. An Open-label Phase 2 Study of UX007 (Triheptanoin) in Subjects With Long-Chain Fatty Acid Oxidation Disorders (LC-FAOD)

    ClinicalTrials.gov

    2015-12-15

    Long-chain Fatty Acid Oxidation Disorders (LC-FAOD); Carnitine Palmitoyltransferase (CPT II) Deficiency; Very Long Chain Acyl-CoA Dehydrogenase (VLCAD) Deficiency; Longchain 3-hydroxy-acyl-CoA Dehydrogenase (LCHAD) Deficiency; Trifunctional Protein (TFP) Deficiency

  19. Succinate dehydrogenase-deficient gastrointestinal stromal tumors

    PubMed Central

    Wang, Ya-Mei; Gu, Meng-Li; Ji, Feng

    2015-01-01

    Most gastrointestinal stromal tumors (GISTs) are characterized by KIT or platelet-derived growth factor alpha (PDGFRA) activating mutations. However, there are still 10%-15% of GISTs lacking KIT and PDGFRA mutations, called wild-type GISTs (WT GISTs). Among these so-called WT GISTs, a small subset is associated with succinate dehydrogenase (SDH) deficiency, known as SDH-deficient GISTs. In addition, GISTs that occur in Carney triad and Carney-Stratakis syndrome represent specific examples of SDH-deficient GISTs. SDH-deficient GISTs locate exclusively in the stomach, showing predilection for children and young adults with female preponderance. The tumor generally pursues an indolent course and exhibits primary resistance to imatinib therapy in most cases. Loss of succinate dehydrogenase subunit B expression and overexpression of insulin-like growth factor 1 receptor (IGF1R) are common features of SDH-deficient GISTs. In WT GISTs without succinate dehydrogenase activity, upregulation of hypoxia-inducible factor 1α may lead to increased growth signaling through IGF1R and vascular endothelial growth factor receptor (VEGFR). As a result, IGF1R and VEGFR are promising to be the novel therapeutic targets of GISTs. This review will update the current knowledge on characteristics of SDH-deficient GISTs and further discuss the possible mechanisms of tumorigenesis and clinical management of SDH-deficient GISTs. PMID:25741136

  20. Prenatal presentation of pyruvate dehydrogenase complex deficiency.

    PubMed

    Natarajan, Niranjana; Tully, Hannah M; Chapman, Teresa

    2016-08-01

    We present the case of a female infant referred for prenatal MR evaluation of ventriculomegaly, which had been attributed by the referring obstetrician to aqueductal stenosis. Fetal MR confirmed ventriculomegaly but also demonstrated cerebral volume loss and white matter abnormalities. After birth, the infant developed persistent lactic acidosis. A diagnosis of pyruvate dehydrogenase complex deficiency was made on the basis of metabolic and molecular genetic studies. Ventriculomegaly is a common referral reason for fetal MR, yet there are few published reports of the radiographic findings that accompany inborn errors of metabolism, one potentially under-recognized cause of enlarged ventricles. This case contributes to this small body of literature on the imaging features of pyruvate dehydrogenase complex deficiency by describing pre- and postnatal MR findings and key clinical details. Our report emphasizes the necessity of considering pyruvate dehydrogenase complex deficiency and other metabolic disorders as potential etiologies for fetal ventriculomegaly since prompt diagnosis may allow for early initiation of treatment and improve outcome. PMID:27026023

  1. Dihydrodiol dehydrogenase and polycyclic aromatic hydrocarbon metabolism

    SciTech Connect

    Smithgall, T.E.

    1986-01-01

    Carcinogenic activation of polycyclic aromatic hydrocarbons by microsomal monoxygenases proceeds through trans-dihydrodiol metabolites to diol-epoxide ultimate carcinogens. This thesis directly investigated the role of dihydrodiol dehydrogenase, a cytosolic NAD(P)-linked oxidoreductase, in the detoxification of polycyclic aromatic trans-dihydrodiols. A wide variety of non-K-region trans-dihydrodiols were synthesized and shown to be substrates for the homogeneous rat liver dehydrogenase, including several potent proximate carcinogens derived from 7,12-dimethylbenz(a)anthracene, 5-methylchrysene, and benzo(a)pyrene. Since microsomal activation of polycyclic aromatic hydrocarbons is highly stereospecific, the stereochemical course of enzymatic trans-dihydrodiol oxidation was monitored using circular dichroism spectropolarimetry. The major product formed from the dehydrogenase-catalyzed oxidation of the trans-1,2-dihydrodiol of naphthalene was characterized using UV, IR, NMR, and mass spectroscopy, and appears to be 4-hydroxy-1,2-naphthoquinone. Mass spectral analysis suggests that an analogous hydroxylated o-quinone is formed as the major product of benzo(a)pyrene-7,8-dihydrodiol oxidation. Enzymatic oxidation of trans-dihydrodiols was shown to be potently inhibited by all of the major classes of the nonsteroidal antiinflammatory drugs. Enhancement of trans-dihydrodiol proximate carcinogen oxidation may protect against possible adverse effects of the aspirin-like drugs, and help maintain the balance between activation and detoxification of polycyclic aromatic hydrocarbons.

  2. Analysis of the oxocarboxylic acid fraction in serum and urine as O-methyloximes by thermionic specific detection.

    PubMed

    Liebich, H M; Pickert, A; Wöll, J

    1981-11-01

    After O-methyloximation of the carbonyl functions, the organic acids in serum and urine are extracted by anion-exchange chromatography, transformed into the methyl esters and pre-fractionated by thin-layer chromatography. In one of the four fractions and on the basis of the nitrogen in the O-methyloxime esters, the profiles of the oxocarboxylic acids are analyzed by gas chromatography with thermionic specific detection. The method has good specificity for the oxocarboxylic acids and is suitable for comparative studies. During diabetic or fasting ketoacidosis the serum concentrations of 3-oxobutyric acid and of the amino acid metabolites 2-oxobutyric, 2-oxoisovaleric and especially 2-oxo-3-methylvaleric and 2-oxoisocaproic acid are increased. In urine mainly 3-oxobutyric acid and only small amounts of the 2-oxocarboxylic acids are excreted.

  3. Assay method for monitoring the inhibitory effects of antimetabolites on the activity of inosinate dehydrogenase in intact human CEM lymphocytes.

    PubMed Central

    Balzarini, J; De Clercq, E

    1992-01-01

    A rapid and convenient method has been developed to monitor the inhibition of inosinate (IMP) dehydrogenase by antimetabolites in intact human CEM lymphocytes. This method is based on the determination of 3H release from [2,8-3H]hypoxanthine ([2,8-3H]Hx) or [2,8-3H]inosine ([2,8-3H]Ino). The validity of this procedure was assessed by evaluating IMP dehydrogenase inhibition in intact CEM cells by the well-known IMP dehydrogenase inhibitors ribavirin, mycophenolic acid and tiazofurin. As reference materials, several compounds that are targeted at other enzymes in de novo purine nucleotide anabolism (i.e. hadacidine, acivicin) or catabolism (i.e. 8-aminoguanosine, allopurinol) were evaluated. There was a strong correlation between the inhibitory effects of the IMP dehydrogenase inhibitors (ribavirin, mycophenolic acid, tiazofurin) on 3H release from [2,8-3H]Hx and [2,8-3H]Ino in intact CEM cells and their ability to decrease intracellular GTP pool levels. The other compounds (hadacidine, acivicin, 8-aminoguanosine, allopurinol) had no marked effect on 3H release from [2,8-3H]Hx. Using this method, we demonstrated that the novel ribavirin analogue, 5-ethynyl-1-beta-D-ribofuranosylimidazole-4-carboxamide, is a potent inhibitor of IMP dehydrogenase in intact cells. PMID:1359876

  4. Membrane-Associated NAD-Dependent Isocitrate Dehydrogenase in Potato Mitochondria 1

    PubMed Central

    Laties, George G.

    1983-01-01

    The oxidation isotherms for citrate and isocitrate by potato (Solanum tuberosum var. Russet Burbank) mitochondria in the presence of NAD differ markedly. Citrate oxidation shows positively cooperative kinetics with a sigmoid isotherm, whereas isocitrate oxidation shows Michaelis-Menten kinetics at concentrations up to 3 millimolar, and cooperative kinetics thereafter up to 30 millimolar. In the absence of exogenous NAD, the isocitrate isotherm is sigmoid throughout. The dual isotherm for isocitrate oxidation in the presence of exogenous NAD reflects the operation of two forms of isocitrate dehydrogenase, one in the matrix and one associated with the inner mitochondrial membrane. Whereas in intact mitochondria the activity of the membrane-bound enzyme is insensitive to rotenone, and to butylmalonate, an inhibitor of organic acid transport, isocitrate oxidation by the soluble matrix enzyme is inhibited by both. The membrane-bound isocitrate dehydrogenase does not operate through the NADH dehydrogenase on the outer face of the inner mitochondrial membrane, and is thus considered to face inward. The regulatory potential of isocitrate dehydrogenase in potato mitochondria may be realized by the apportionment of the enzyme between its soluble and bound forms. PMID:16663145

  5. Cloning and Polymorphisms of Yak Lactate Dehydrogenase b Gene

    PubMed Central

    Wang, Guosheng; Zhao, Xingbo; Zhong, Juming; Cao, Meng; He, Qinghua; Liu, Zhengxin; Lin, Yaqiu; Xu, Yaou; Zheng, Yucai

    2013-01-01

    The main objective of this work was to study the unique polymorphisms of the lactate dehydrogenase-1 (LDH1) gene in yak (Bos grunniens). Native polyacrylamide gel electrophoresis revealed three phenotypes of LDH1 (a tetramer of H subunit) in yak heart and longissimus muscle extracts. The corresponding gene, ldhb, encoding H subunits of three LDH1 phenotypes was obtained by RT-PCR. A total of six nucleotide differences were detected in yak ldhb compared with that of cattle, of which five mutations cause amino acid substitutions. Sequence analysis shows that the G896A and C689A, mutations of ldhb gene, result in alterations of differently charged amino acids, and create the three phenotypes (F, M, and S) of yak LDH1. Molecular modeling of the H subunit of LDH indicates that the substituted amino acids are not located within NAD+ or substrate binding sites. PCR-RFLP examination of G896A mutation demonstrated that most LDH1-F samples are actually heterozygote at this site. These results help to elucidate the molecular basis and genetic characteristic of the three unique LDH1 phenotypes in yak. PMID:23739677

  6. Rapid inhibition of pyruvate dehydrogenase: an initiating event in high dietary fat-induced loss of metabolic flexibility in the heart.

    PubMed

    Crewe, Clair; Kinter, Michael; Szweda, Luke I

    2013-01-01

    Cardiac function depends on the ability to switch between fatty acid and glucose oxidation for energy production in response to changes in substrate availability and energetic stress. In obese and diabetic individuals, increased reliance on fatty acids and reduced metabolic flexibility are thought to contribute to the development of cardiovascular disease. Mechanisms by which cardiac mitochondria contribute to diet-induced metabolic inflexibility were investigated. Mice were fed a high fat or low fat diet for 1 d, 1 wk, and 20 wk. Cardiac mitochondria isolated from mice fed a high fat diet displayed a diminished ability to utilize the glycolytically derived substrate pyruvate. This response was rapid, occurring within the first day on the diet, and persisted for up to 20 wk. A selective increase in the expression of pyruvate dehydrogenase kinase 4 and inhibition of pyruvate dehydrogenase are responsible for the rapid suppression of pyruvate utilization. An important consequence is that pyruvate dehydrogenase is sensitized to inhibition when mitochondria respire in the presence of fatty acids. Additionally, increased expression of pyruvate dehydrogenase kinase 4 preceded any observed diet-induced reductions in the levels of glucose transporter type 4 and glycolytic enzymes and, as judged by Akt phosphorylation, insulin signaling. Importantly, diminished insulin signaling evident at 1 wk on the high fat diet did not occur in pyruvate dehydrogenase kinase 4 knockout mice. Dietary intervention leads to a rapid decline in pyruvate dehydrogenase kinase 4 levels and recovery of pyruvate dehydrogenase activity indicating an additional form of regulation. Finally, an overnight fast elicits a metabolic response similar to that induced by high dietary fat obscuring diet-induced metabolic changes. Thus, our data indicate that diet-induced inhibition of pyruvate dehydrogenase may be an initiating event in decreased oxidation of glucose and increased reliance of the heart on

  7. Equine acquired multiple acyl-CoA dehydrogenase deficiency (MADD) in 14 horses associated with ingestion of Maple leaves (Acer pseudoplatanus) covered with European tar spot (Rhytisma acerinum).

    PubMed

    van der Kolk, J H; Wijnberg, I D; Westermann, C M; Dorland, L; de Sain-van der Velden, M G M; Kranenburg, L C; Duran, M; Dijkstra, J A; van der Lugt, J J; Wanders, R J A; Gruys, E

    2010-01-01

    This case-series describes fourteen horses suspected of equine acquired multiple acyl-CoA dehydrogenase deficiency (MADD) also known as atypical myopathy of which seven cases were confirmed biochemically with all horses having had access to leaves of the Maple tree (Acer pseudoplatanus) covered with European tar spot (Rhytisma acerinum). Assessment of organic acids, glycine conjugates, and acylcarnitines in urine was regarded as gold standard in the biochemical diagnosis of equine acquired multiple acyl-CoA dehydrogenase deficiency.

  8. Fluorescence lifetime analysis and effect of magnesium ions on binding of NADH to human aldehyde dehydrogenase 1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aldehyde dehydrogenase 1 (ALDH1) catalyzes oxidation of toxic aldehydes to carboxylic acids. Physiologic levels of Mg2+ ions influence ALDH1 activity in part by increasing NADH binding affinity to the enzyme thus reducing activity. By using time-resolved fluorescence spectroscopy, we have resolved t...

  9. Cellobionic acid inhibition of cellobiohydrolase I and cellobiose dehydrogenase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    End-product inhibition by cellobiose and glucose is a rate-limiting factor in cellulose hydrolysis by cellulases. While cellobiose and glucose inhibition have been extensively investigated, cellobionate inhibition has been minimally studied despite the discovery that accessory proteins such as cello...

  10. STRUCTURE AND KINETICS OF MONOFUNCTIONAL PROLINE DEHYDROGENASE FROM THERMUS THERMOPHILUS

    PubMed Central

    White, Tommi A.; Krishnan, Navasona; Becker, Donald F.; Tanner, John J.

    2009-01-01

    Proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate dehydrogenase (P5CDH) catalyze the two-step oxidation of proline to glutamate. They are distinct monofunctional enzymes in all eukaryotes and some bacteria, but are fused into bifunctional enzymes known as Proline utilization A (PutA) in other bacteria. Here we report the first structure and biochemical data for a monofunctional PRODH. The 2.0 Å resolution structure of Thermus thermophilus PRODH reveals a distorted (βα)8 barrel catalytic core domain and a hydrophobic α-helical domain located above the carboxyl terminal ends of the strands of the barrel. Although the catalytic core is similar to that of the PutA PRODH domain, the FAD conformation of T. thermophilus PRODH is remarkably different and likely reflects unique requirements for membrane association and communication with P5CDH. Also, the FAD of T. thermophilus PRODH is highly solvent exposed compared to PutA due to a 4-Å shift of helix 8. Structure-based sequence analysis of the PutA/PRODH family led us to identify 9 conserved motifs involved in cofactor and substrate recognition. Biochemical studies show that the midpoint potential of the FAD is −75 mV and the kinetic parameters for proline are Km=27 mM and kcat=13 s−1. 3,4-dehydro-L-proline was found to be an efficient substrate and L-tetrahydro-2-furoic acid is a competitive inhibitor (KI=1.0 mM). Finally, we demonstrate that T. thermophilus PRODH reacts with O2 producing superoxide. This is significant because superoxide production underlies the role of human PRODH in p53-mediated apoptosis, implying commonalities between eukaryotic and bacterial monofunctional PRODHs. PMID:17344208

  11. Ethyl 6-methyl-2-oxo-4-[4-(1H-tetra­zol-5-yl)phen­yl]-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate–di­methyl­formamide–water (2/1/1)

    PubMed Central

    Ouyang, Hua-Yong; Chang, Yi-Qi; Zhao, Lu

    2014-01-01

    The asymmetric unit of the title compound, 2C15H16N6O3·C3H7NO·H2O, contains two independent ethyl 6-methyl-2-oxo-4-[4-(1H-tetra­zol-5-yl)phen­yl]-1,2,3,4-tetra­hydro­pyrim­id­ine-5-carboxyl­ate mol­ecules, in which the dihedral angles between the tetra­zole and benzene rings are 20.54 (12) and 12.13 (12)°. An intra­molecular C—H⋯O hydrogen bond occurs in each mol­ecule. In the crystal, N—H⋯O, N—H⋯N, O—H⋯O and O—H⋯N hydrogen bonds, as well as weak C—H⋯O and C—H⋯N hydrogen bonds, link the mol­ecules into a three-dimensional supra­molecular architecture. π–π stacking is also observed between parallel tetra­zole rings of adjacent mol­ecules, the centroid–centroid distance being 3.482 (6) Å. PMID:24526960

  12. catena-Poly[[[(pyridine-κN)copper(II)]-μ-3-{1-[(2-amino-eth-yl)imino]-eth-yl}-6-methyl-2-oxo-2H-pyran-4-olato-κN,N,O:O] perchlorate].

    PubMed

    Ourari, Ali; Derafa, Wassila; Bouacida, Sofiane; Aggoun, Djouhra

    2011-12-01

    In the title compound, {[Cu(C(10)H(13)N(2)O(3))(C(5)H(5)N)]ClO(4)}(n), the Cu(II) atom has an N(3)O(2) coordination sphere. The complex contains two different ligands, viz. a pyridine mol-ecule and a Schiff base mol-ecule, resulting from the condensation of ethyl-enodiamine with dehydro-acetic acid. The Cu(II) atom exhibits a square-pyramidal geometry: three of the four donors of the pyramid base belong to the Schiff base ligand (an N atom from the amine group, a second N atom from the imine group and the O atom of the pyran-one residue) and the fourth donor is the pyridine N atom. The coordination around the metal ion is completed by a longer axial bond to the pyran-one O atom of an adjacent Schiff base, so forming a one-dimensional polymer. The complex has a +1 charge that is compensated by a perchlorate ion. The crystal packing, which can be described as alternating chains of cations and tetra-hedral perchlorate anions along the a axis, is stabilized by inter-molecular N-H⋯O, C-H⋯O and C-H⋯N hydrogen-bonding interactions. PMID:22199528

  13. O-Ethyl S-{(S)-1-oxo-1-[(R)-2-oxo-4-phenyl­oxazolidin-3-yl]propan-2-yl} carbonodi­thio­ate

    PubMed Central

    García-Merinos, J. Pablo; López-Ruiz, Heraclio; López, Yliana; Rojas-Lima, Susana

    2014-01-01

    In the title compound, C15H17NO4S2, synthesized by addition of O-ethylxanthic acid potassium salt to a diastereomeric mixture of (4R)-3-(2-chloro­propano­yl)-4-phenyl­oxazolidin-2-one, the oxazolidinone ring has a twist conformation on the C—C bond. The phenyl ring is inclined to the mean plane of the oxazolidinone ring by 76.4 (3)°. In the chain the methine H atom is involved in a C—H⋯S and a C—H⋯O intra­molecular inter­action. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming chains along [001]. The S configuration at the C atom to which the xanthate group is attached was determined by comparison to the known R configuration of the C atom to which the phenyl group is attached. PMID:24860384

  14. Diverging regulation of pyruvate dehydrogenase kinase isoform gene expression in cultured human muscle cells.

    PubMed

    Abbot, Emily L; McCormack, James G; Reynet, Christine; Hassall, David G; Buchan, Kevin W; Yeaman, Stephen J

    2005-06-01

    The pyruvate dehydrogenase complex occupies a central and strategic position in muscle intermediary metabolism and is primarily regulated by phosphorylation/dephosphorylation. The identification of multiple isoforms of pyruvate dehydrogenase kinase (PDK1-4) and pyruvate dehydrogenase phosphatase (PDP1-2) has raised intriguing new possibilities for chronic pyruvate dehydrogenase complex control. Experiments to date suggest that PDK4 is the major isoenzyme responsible for changes in pyruvate dehydrogenase complex activity in response to various different metabolic conditions. Using a cultured human skeletal muscle cell model system, we found that expression of both PDK2 and PDK4 mRNA is upregulated in response to glucose deprivation and fatty acid supplementation, the effects of which are reversed by insulin treatment. In addition, insulin directly downregulates PDK2 and PDK4 mRNA transcript abundance via a phosphatidylinositol 3-kinase-dependent pathway, which may involve glycogen synthase kinase-3 but does not utilize the mammalian target of rapamycin or mitogen-activated protein kinase signalling pathways. In order to further elucidate the regulation of PDK, the role of the peroxisome proliferators-activated receptors (PPAR) was investigated using highly potent subtype selective agonists. PPARalpha and PPARdelta agonists were found to specifically upregulate PDK4 mRNA expression, whereas PPARgamma activation selectively decreased PDK2 mRNA transcript abundance. PDP1 mRNA expression was unaffected by all conditions analysed. These results suggest that in human muscle, hormonal and nutritional conditions may control PDK2 and PDK4 mRNA expression via a common signalling mechanism. In addition, PPARs appear to independently regulate specific PDK isoform transcipt levels, which are likely to impart important metabolic mediation of fuel utilization by the muscle. PMID:15955060

  15. Determination of Dehydrogenase Activities Involved in D-Glucose Oxidation in Gluconobacter and Acetobacter Strains

    PubMed Central

    Sainz, Florencia; Jesús Torija, María; Matsutani, Minenosuke; Kataoka, Naoya; Yakushi, Toshiharu; Matsushita, Kazunobu; Mas, Albert

    2016-01-01

    Acetic acid bacteria (AAB) are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane-bound dehydrogenases. In the present study, the enzyme activity of the membrane-bound dehydrogenases [membrane-bound PQQ-glucose dehydrogenase (mGDH), D-gluconate dehydrogenase (GADH) and membrane-bound glycerol dehydrogenase (GLDH)] involved in the oxidation of D-glucose and D-gluconic acid (GA) was determined in six strains of three different species of AAB (three natural and three type strains). Moreover, the effect of these activities on the production of related metabolites [GA, 2-keto-D-gluconic acid (2KGA) and 5-keto-D-gluconic acid (5KGA)] was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the Acetobacter malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h), which coincided with D-glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of Gluconobacter oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24 h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition. Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter

  16. Determination of Dehydrogenase Activities Involved in D-Glucose Oxidation in Gluconobacter and Acetobacter Strains.

    PubMed

    Sainz, Florencia; Jesús Torija, María; Matsutani, Minenosuke; Kataoka, Naoya; Yakushi, Toshiharu; Matsushita, Kazunobu; Mas, Albert

    2016-01-01

    Acetic acid bacteria (AAB) are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane-bound dehydrogenases. In the present study, the enzyme activity of the membrane-bound dehydrogenases [membrane-bound PQQ-glucose dehydrogenase (mGDH), D-gluconate dehydrogenase (GADH) and membrane-bound glycerol dehydrogenase (GLDH)] involved in the oxidation of D-glucose and D-gluconic acid (GA) was determined in six strains of three different species of AAB (three natural and three type strains). Moreover, the effect of these activities on the production of related metabolites [GA, 2-keto-D-gluconic acid (2KGA) and 5-keto-D-gluconic acid (5KGA)] was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the Acetobacter malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h), which coincided with D-glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of Gluconobacter oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24 h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition. Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter

  17. Determination of Dehydrogenase Activities Involved in D-Glucose Oxidation in Gluconobacter and Acetobacter Strains.

    PubMed

    Sainz, Florencia; Jesús Torija, María; Matsutani, Minenosuke; Kataoka, Naoya; Yakushi, Toshiharu; Matsushita, Kazunobu; Mas, Albert

    2016-01-01

    Acetic acid bacteria (AAB) are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane-bound dehydrogenases. In the present study, the enzyme activity of the membrane-bound dehydrogenases [membrane-bound PQQ-glucose dehydrogenase (mGDH), D-gluconate dehydrogenase (GADH) and membrane-bound glycerol dehydrogenase (GLDH)] involved in the oxidation of D-glucose and D-gluconic acid (GA) was determined in six strains of three different species of AAB (three natural and three type strains). Moreover, the effect of these activities on the production of related metabolites [GA, 2-keto-D-gluconic acid (2KGA) and 5-keto-D-gluconic acid (5KGA)] was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the Acetobacter malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h), which coincided with D-glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of Gluconobacter oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24 h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition. Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter

  18. Determination of Dehydrogenase Activities Involved in D-Glucose Oxidation in Gluconobacter and Acetobacter Strains

    PubMed Central

    Sainz, Florencia; Jesús Torija, María; Matsutani, Minenosuke; Kataoka, Naoya; Yakushi, Toshiharu; Matsushita, Kazunobu; Mas, Albert

    2016-01-01

    Acetic acid bacteria (AAB) are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane-bound dehydrogenases. In the present study, the enzyme activity of the membrane-bound dehydrogenases [membrane-bound PQQ-glucose dehydrogenase (mGDH), D-gluconate dehydrogenase (GADH) and membrane-bound glycerol dehydrogenase (GLDH)] involved in the oxidation of D-glucose and D-gluconic acid (GA) was determined in six strains of three different species of AAB (three natural and three type strains). Moreover, the effect of these activities on the production of related metabolites [GA, 2-keto-D-gluconic acid (2KGA) and 5-keto-D-gluconic acid (5KGA)] was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the Acetobacter malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h), which coincided with D-glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of Gluconobacter oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24 h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition. Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter

  19. 21 CFR 862.1500 - Malic dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... plasma. Malic dehydrogenase measurements are used in the diagnosis and treatment of muscle and liver diseases, myocardial infarctions, cancer, and blood disorders such as myelogenous (produced in the...

  20. 21 CFR 862.1500 - Malic dehydrogenase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... plasma. Malic dehydrogenase measurements are used in the diagnosis and treatment of muscle and liver diseases, myocardial infarctions, cancer, and blood disorders such as myelogenous (produced in the...

  1. 21 CFR 862.1500 - Malic dehydrogenase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... plasma. Malic dehydrogenase measurements are used in the diagnosis and treatment of muscle and liver diseases, myocardial infarctions, cancer, and blood disorders such as myelogenous (produced in the...

  2. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and plasma. Isocitric dehydrogenase measurements are used in the diagnosis and treatment of liver disease such as viral hepatitis, cirrhosis, or acute inflammation of the biliary tract; pulmonary...

  3. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and plasma. Isocitric dehydrogenase measurements are used in the diagnosis and treatment of liver disease such as viral hepatitis, cirrhosis, or acute inflammation of the biliary tract; pulmonary...

  4. Detailed kinetics and regulation of mammalian 2-oxoglutarate dehydrogenase

    PubMed Central

    2011-01-01

    Background Mitochondrial 2-oxoglutarate (α-ketoglutarate) dehydrogenase complex (OGDHC), a key regulatory point of tricarboxylic acid (TCA) cycle, plays vital roles in multiple pathways of energy metabolism and biosynthesis. The catalytic mechanism and allosteric regulation of this large enzyme complex are not fully understood. Here computer simulation is used to test possible catalytic mechanisms and mechanisms of allosteric regulation of the enzyme by nucleotides (ATP, ADP), pH, and metal ion cofactors (Ca2+ and Mg2+). Results A model was developed based on an ordered ter-ter enzyme kinetic mechanism combined with con-formational changes that involve rotation of one lipoic acid between three catalytic sites inside the enzyme complex. The model was parameterized using a large number of kinetic data sets on the activity of OGDHC, and validated by comparison of model predictions to independent data. Conclusions The developed model suggests a hybrid rapid-equilibrium ping-pong random mechanism for the kinetics of OGDHC, consistent with previously reported mechanisms, and accurately describes the experimentally observed regulatory effects of cofactors on the OGDHC activity. This analysis provides a single consistent theoretical explanation for a number of apparently contradictory results on the roles of phosphorylation potential, NAD (H) oxidation-reduction state ratio, as well as the regulatory effects of metal ions on ODGHC function. PMID:21943256

  5. Isolation of a GPD gene from Debaryomyces hansenii encoding a glycerol 3-phosphate dehydrogenase (NAD+).

    PubMed

    Thomé, Patricia E

    2004-01-30

    A gene homologous to GPD1, coding for glycerol-3-phosphate dehydrogenase (sn-glycerol 3-phosphate: NAD(+) oxidoreductase, EC 1.1.1.8), has been isolated from the halophilic yeast Debaryomyces hansenii by complementation of a Saccharomyces cerevisiae gpd1 Delta mutant. DNA sequencing of the complementing genomic clone indicated the existence of an open reading frame encoding a protein with 369 amino acids. Comparative analysis of the deduced amino acid sequence showed high similarity to homologous genes described for other eukaryotic GPD enzymes. The sequence has been submitted to the GenBank database under Accession No. AY333427.

  6. OsHSD1, a hydroxysteroid dehydrogenase, is involved in cuticle formation and lipid homeostasis in rice.

    PubMed

    Zhang, Zhe; Cheng, Zhi-Jun; Gan, Lu; Zhang, Huan; Wu, Fu-Qing; Lin, Qi-Bing; Wang, Jiu-Lin; Wang, Jie; Guo, Xiu-Ping; Zhang, Xin; Zhao, Zhi-Chao; Lei, Cai-Lin; Zhu, Shan-Shan; Wang, Chun-Ming; Wan, Jian-Min

    2016-08-01

    Cuticular wax, a hydrophobic layer on the surface of all aerial plant organs, has essential roles in plant growth and survival under various environments. Here we report a wax-deficient rice mutant oshsd1 with reduced epicuticular wax crystals and thicker cuticle membrane. Quantification of the wax components and fatty acids showed elevated levels of very-long-chain fatty acids (VLCFAs) and accumulation of soluble fatty acids in the leaves of the oshsd1 mutant. We determined the causative gene OsHSD1, a member of the short-chain dehydrogenase reductase family, through map-based cloning. It was ubiquitously expressed and responded to cold stress and exogenous treatments with NaCl or brassinosteroid analogs. Transient expression of OsHSD1-tagged green fluorescent protein revealed that OsHSD1 localized to both oil bodies and endoplasmic reticulum (ER). Dehydrogenase activity assays demonstrated that OsHSD1 was an NAD(+)/NADP(+)-dependent sterol dehydrogenase. Furthermore, OsHSD1 mutation resulted in faster protein degradation, but had no effect on the dehydrogenase activity. Together, our data indicated that OsHSD1 plays a specialized role in cuticle formation and lipid homeostasis, probably by mediating sterol signaling. This work provides new insights into oil-body associated proteins involved in wax and lipid metabolism. PMID:27297988

  7. [Effects of Light Near-Infrared Radiation on Rats Assessed by Succinate Dehydrogenase Activity in Lymphocytes on Blood Smears].

    PubMed

    Khunderyakova, N V; Zakharchenko, A V; Zakharchenko, M V; Muller, H; Fedotcheva, I; Kondrashova, M N

    2015-01-01

    Biological effects of light near infrared radiation (850 nm), with modulation acoustic frequency of 101 Hz, was studied. The study was conducted on rats, the effect was recorded by succinate dehydrogenase activity in lymphocytes on the blood smear after administration of the activating dose of adrenaline, which simulates the state of the organism in the early stages of the pathogenic effects (stress). A pronounced regulating effect of infrared radiation on the activity of succinate dehydrogenase in animals activated by adrenaline was shown. Infrared radiation has a normalizing effect reducing the degree of inhibition or activation of the enzyme induced by adrenaline and had no effect on the control animals. Thus, by modulating the activity of succinate dehydrogenase infrared radiation regulates energy production in the mitochondria supported by the most powerful oxidation substrate--succinic acid, which is especially pronounced under stress. PMID:26841503

  8. [Effects of Light Near-Infrared Radiation on Rats Assessed by Succinate Dehydrogenase Activity in Lymphocytes on Blood Smears].

    PubMed

    Khunderyakova, N V; Zakharchenko, A V; Zakharchenko, M V; Muller, H; Fedotcheva, I; Kondrashova, M N

    2015-01-01

    Biological effects of light near infrared radiation (850 nm), with modulation acoustic frequency of 101 Hz, was studied. The study was conducted on rats, the effect was recorded by succinate dehydrogenase activity in lymphocytes on the blood smear after administration of the activating dose of adrenaline, which simulates the state of the organism in the early stages of the pathogenic effects (stress). A pronounced regulating effect of infrared radiation on the activity of succinate dehydrogenase in animals activated by adrenaline was shown. Infrared radiation has a normalizing effect reducing the degree of inhibition or activation of the enzyme induced by adrenaline and had no effect on the control animals. Thus, by modulating the activity of succinate dehydrogenase infrared radiation regulates energy production in the mitochondria supported by the most powerful oxidation substrate--succinic acid, which is especially pronounced under stress.

  9. Murine branched chain alpha-ketoacid dehydrogenase kinase; cDNA cloning, tissue distribution, and temporal expression during embryonic development.

    PubMed

    Doering, C B; Coursey, C; Spangler, W; Danner, D J

    1998-06-01

    These studies were designed to demonstrate the structural and functional similarity of murine branched chain alpha-ketoacid dehydrogenase and its regulation by the complex-specific kinase. Nucleotide sequence and deduced amino acid sequence for the kinase cDNA demonstrate a highly conserved coding sequence between mouse and human. Tissue-specific expression in adult mice parallels that reported in other mammals. Kinase expression in female liver is influenced by circadian rhythm. Of special interest is the fluctuating expression of this kinase during embryonic development against the continuing increase in the catalytic subunits of this mitochondrial complex during development. The need for regulation of the branched chain alpha-ketoacid dehydrogenase complex by kinase expression during embryogenesis is not understood. However, the similarity of murine branched chain alpha-ketoacid dehydrogenase and its kinase to the human enzyme supports the use of this animal as a model for the human system. PMID:9611264

  10. Dehydrogenation of 3-phenoxybenzyl alcohol in isolated perfused rabbit skin, skin homogenate and purified dehydrogenases.

    PubMed

    Bast, G E; Kampffmeyer, H G

    1998-01-01

    The formation of 3-phenoxybenzoic acid from 3-phenoxybenzyl alcohol was determined in (a) rabbit ears, single-pass perfused with a protein-free buffer, pH 7.4; (b) the microsomal fraction and its supernatant from homogenized rabbit skin; and (c) purified alcohol dehydrogenase from horse liver and baker's yeast. The inhibition of product formation in (a) was about 60% by various 4-methylpyrazole concentrations, but metyrapone had no effect. Following ultracentrifugation, only the supernatant of homogenized skin showed product formation (apparent Vmay: 32 pmol/min per cm2 skin; apparent Km: 64 microM). 3-Phenoxybenzyl alcohol and ethanol dehydrogenation was similar by alcohol dehydrogenase from horse liver (apparent Km: 0.7 vs. 0.4 mM; apparent Vmax: 0.3 vs. 0.2 U/ microg protein). In baker's yeast, the apparent Km of 3-phenoxybenzoic acid formation was several times larger than that for ethanol dehydrogenation. The KI of 4-methylpyrazole for alcohol dehydrogenase from horse liver was 0.6 (3-phenoxybenzyl alcohol) vs. 0.04 microM (ethanol). The KI for ethanol in baker's yeast was 470 microM. In conclusion dehydrogenation is an important metabolic pathway in the skin for xenobiotics with an aliphatic alcohol at a side chain. PMID:9885409

  11. Characterization of Cellobiose Dehydrogenase from a Biotechnologically Important Cerrena unicolor Strain.

    PubMed

    Sulej, Justyna; Janusz, Grzegorz; Osińska-Jaroszuk, Monika; Rachubik, Patrycja; Mazur, Andrzej; Komaniecka, Iwona; Choma, Adam; Rogalski, Jerzy

    2015-07-01

    Cellobiose dehydrogenase (CDH), a secreted flavocytochrome produced by a number of wood-degrading fungi, was detected in the culture supernatant of a biotechnologically important strain of Cerrena unicolor grown in a modified cellulose-based liquid medium. The enzyme was purified as two active fractions: CuCDH-FAD (flavin domain) (1.51-fold) with recovery of 8.35 % and CuCDH (flavo-heme enzyme) (21.21-fold) with recovery of 73.41 %. As CDH from other wood-rotting fungi, the intact form of cellobiose dehydrogenase of C. unicolor is a monomeric protein containing one flavin and one heme b with molecular mass 97 kDa and pI = 4.55. The enzyme is glycosylated (8.2 %) mainly with mannose and glucosamine residues. Moreover, the cellobiose dehydrogenase gene cdh1 and its corresponding cDNA from the fungus C. unicolor were isolated, cloned, and characterized. The 2316-bp full-length cDNA of cdh1 encoded a mature CDH protein containing 771 amino acids preceded by a signal peptide consisting of 18 amino acids. Moreover, both active fractions were characterized in terms of kinetics, temperature and pH optima, and antioxidant properties.

  12. Catalytic and Molecular Properties of the Quinohemoprotein Tetrahydrofurfuryl Alcohol Dehydrogenase from Ralstonia eutropha Strain Bo

    PubMed Central

    Zarnt, Grit; Schräder, Thomas; Andreesen, Jan R.

    2001-01-01

    The quinohemoprotein tetrahydrofurfuryl alcohol dehydrogenase (THFA-DH) from Ralstonia eutropha strain Bo was investigated for its catalytic properties. The apparent kcat/Km and Ki values for several substrates were determined using ferricyanide as an artificial electron acceptor. The highest catalytic efficiency was obtained with n-pentanol exhibiting a kcat/Km value of 788 × 104 M−1 s−1. The enzyme showed substrate inhibition kinetics for most of the alcohols and aldehydes investigated. A stereoselective oxidation of chiral alcohols with a varying enantiomeric preference was observed. Initial rate studies using ethanol and acetaldehyde as substrates revealed that a ping-pong mechanism can be assumed for in vitro catalysis of THFA-DH. The gene encoding THFA-DH from R. eutropha strain Bo (tfaA) has been cloned and sequenced. The derived amino acid sequence showed an identity of up to 67% to the sequence of various quinoprotein and quinohemoprotein dehydrogenases. A comparison of the deduced sequence with the N-terminal amino acid sequence previously determined by Edman degradation analysis suggested the presence of a signal sequence of 27 residues. The primary structure of TfaA indicated that the protein has a tertiary structure quite similar to those of other quinoprotein dehydrogenases. PMID:11222593

  13. Galactosyl-mimodye ligands for Pseudomonas fluorescens beta-galactose dehydrogenase.

    PubMed

    Mazitsos, C F; Rigden, D J; Tsoungas, P G; Clonis, Y D

    2002-11-01

    Protein molecular modelling and ligand docking were employed for the design of anthraquinone galactosyl-biomimetic dye ligands (galactosyl-mimodyes) for the target enzyme galactose dehydrogenase (GaDH). Using appropriate modelling methodology, a GaDH model was build based on a glucose-fructose oxidoreductase (GFO) protein template. Subsequent computational analysis predicted chimaeric mimodye-ligands comprising a NAD-pseudomimetic moiety (anthraquinone diaminobenzosulfonic acid) and a galactosyl-mimetic moiety (2-amino-2-deoxygalactose or shikimic acid) bearing an aliphatic 'linker' molecule. In addition, the designed mimodye ligands had an appropriate in length and chemical nature 'spacer' molecule via which they can be attached onto a chromatographic support without steric clashes upon interaction with GaDH. Following their synthesis, purification and analysis, the ligands were immobilized to agarose. The respective affinity adsorbents, compared to other conventional adsorbents, were shown to be superior affinity chromatography materials for the target enzyme, Pseudomonas fluorescensbeta-galactose dehydrogenase. In addition, these mimodye affinity adsorbents displayed good selectivity, binding low amounts of enzymes other than GaDH. Further immobilized dye-ligands, comprising different linker and/or spacer molecules, or not having a biomimetic moiety, had inferior chromatographic behavior. Therefore, these new mimodyes suggested by computational analysis, are candidates for application in affinity labeling and structural studies as well as for purification of galactose dehydrogenase.

  14. Virulence of Mycobacterium tuberculosis depends on lipoamide dehydrogenase, a member of three multi-enzyme complexes

    PubMed Central

    Venugopal, Aditya; Bryk, Ruslana; Shi, Shuangping; Rhee, Kyu; Rath, Poonam; Schnappinger, Dirk; Ehrt, Sabine; Nathan, Carl

    2011-01-01

    SUMMARY Mycobacterium tuberculosis (Mtb) adapts to persist in a nutritionally limited macrophage compartment. Lipoamide dehydrogenase (Lpd), the third enzyme (E3) in Mtb’s pyruvate dehydrogenase complex (PDH), also serves as E1 of peroxynitrite reductase/peroxidase (PNR/P), which helps Mtb resist host reactive nitrogen intermediates. In contrast to Mtb lacking dihydrolipoamide acyltransferase (DlaT), the E2 of PDH and PNR/P, Lpd-deficient Mtb is severely attenuated in wild type and immunodeficient mice. This suggests that Lpd has a function that DlaT does not share. When DlaT is absent, Mtb upregulates an Lpd-dependent branched chain keto-acid dehydrogenase (BCKADH) encoded by pdhA, pdhB, pdhC and lpdC. Without Lpd, Mtb cannot metabolize branched chain amino acids and potentially toxic branched chain intermediates accumulate. Mtb deficient in both DlaT and PdhC phenocopies Lpd-deficient Mtb. Thus, Mtb critically requires BCKADH along with PDH and PNR/P for pathogenesis. These findings position Lpd as a potential target for anti-infectives against Mtb. PMID:21238944

  15. Microbiologically produced carboxylic acids used as building blocks in organic synthesis.

    PubMed

    Aurich, Andreas; Specht, Robert; Müller, Roland A; Stottmeister, Ulrich; Yovkova, Venelina; Otto, Christina; Holz, Martina; Barth, Gerold; Heretsch, Philipp; Thomas, Franziska A; Sicker, Dieter; Giannis, Athanassios

    2012-01-01

    Oxo- and hydroxy-carboxylic acids are of special interest in organic synthesis. However, their introduction by chemical reactions tends to be troublesome especially with regard to stereoselectivity. We describe herein the biotechnological preparation of selected oxo- and hydroxycarboxylic acids under "green" conditions and their use as promising new building blocks. Thereby, our biotechnological goal was the development of process fundamentals regarding the variable use of renewable raw materials, the development of a multi purpose bioreactor and application of a pilot plant with standard equipment for organic acid production to minimize the technological effort. Furthermore the development of new product isolation procedures, with the aim of direct product recovery, capture of products or single step operation, was necessary. The application of robust and approved microorganisms, also genetically modified, capable of using a wide range of substrates as well as producing a large spectrum of products, was of special importance. Microbiologically produced acids, like 2-oxo-glutaric acid and 2-oxo-D-gluconic acid, are useful educts for the chemical synthesis of hydrophilic triazines, spiro-connected heterocycles, benzotriazines, and pyranoic amino acids. The chiral intermediate of the tricarboxylic acid cycle, (2R,3S)-isocitric acid, is another promising compound. For the first time our process provides large quantities of enantiopure trimethyl (2R,3S)-isocitrate which was used in subsequent chemical transformations to provide new chiral entities for further usage in total synthesis and pharmaceutical research.Oxo- and hydroxy-carboxylic acids are of special interest in organic synthesis. However, their introduction by chemical reactions tends to be troublesome especially with regard to stereoselectivity. We describe herein the biotechnological preparation of selected oxo- and hydroxycarboxylic acids under "green" conditions and their use as promising new building

  16. Biochemical and molecular characterization of the NAD(+)-dependent isocitrate dehydrogenase from the chemolithotroph Acidithiobacillus thiooxidans.

    PubMed

    Inoue, Hiroyuki; Tamura, Takashi; Ehara, Nagisa; Nishito, Akira; Nakayama, Yumi; Maekawa, Makiko; Imada, Katsumi; Tanaka, Hidehiko; Inagaki, Kenji

    2002-08-27

    An isocitrate dehydrogenase (ICDH) with an unique coenzyme specificity from Acidithiobacillus thiooxidans was purified and characterized, and its gene was cloned. The native enzyme was homodimeric with a subunit of M(r) 45000 and showed a 78-fold preference for NAD(+) over NADP(+). The cloned ICDH gene (icd) was expressed in an icd-deficient strain of Escherichia coli EB106; the activity was found in the cell extract. The gene encodes a 429-amino acid polypeptide and is located between open reading frames encoding a putative aconitase gene (upstream of icd) and a putative succinyl-CoA synthase beta-subunit gene (downstream of icd). A. thiooxidans ICDH showed high sequence similarity to bacterial NADP(+)-dependent ICDH rather than eukaryotic NAD(+)-dependent ICDH, but the NAD(+)-preference of the enzyme was suggested due to residues conserved in the coenzyme binding site of the NAD(+)-dependent decarboxylating dehydrogenase.

  17. Aldehyde dehydrogenases: From eye crystallins to metabolic disease and cancer stem cells

    PubMed Central

    Vasiliou, Vasilis; Thompson, David C.; Smith, Clay; Fujita, Mayumi; Chen, Ying

    2014-01-01

    The aldehyde dehydrogenase (ALDH) superfamily is composed of nicotinamide adenine dinucleotide (phosphate) (NAD(P)+)-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. To date, 24 ALDH gene families have been identified in the eukaryotic genome. In addition to aldehyde metabolizing capacity, ALDHs have additional catalytic (e.g. esterase and reductase) and non-catalytic activities. The latter include functioning as structural elements in the eye (crystallins) and as binding molecules to endobiotics and xenobiotics. Mutations in human ALDH genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases. Most recently ALDH polymorphisms have been associated with gout and osteoporosis. Aldehyde dehydrogenase enzymes also play important roles in embryogenesis and development, neurotransmission, oxidative stress and cancer. This article serves as a comprehensive review of the current state of knowledge regarding the ALDH superfamily and the contribution of ALDHs to various physiological and pathophysiological processes. PMID:23159885

  18. Regulation of pyruvate dehydrogenase kinase expression by the farnesoid X receptor

    SciTech Connect

    Savkur, Rajesh S.; Bramlett, Kelli S.; Michael, Laura F.; Burris, Thomas P. . E-mail: burris_thomas_p@lilly.com

    2005-04-01

    The pyruvate dehydrogenase complex (PDC) functions as an important junction in intermediary metabolism by influencing the utilization of fat versus carbohydrate as a source of fuel. Activation of PDC is achieved by phosphatases, whereas, inactivation is catalyzed by pyruvate dehydrogenase kinases (PDKs). The expression of PDK4 is highly regulated by the glucocorticoid and peroxisome proliferator-activated receptors. We demonstrate that the farnesoid X receptor (FXR; NR1H4), which regulates a variety of genes involved in lipoprotein metabolism, also regulates the expression of PDK4. Treatment of rat hepatoma cells as well as human primary hepatocytes with FXR agonists stimulates the expression of PDK4 to levels comparable to those obtained with glucocorticoids. In addition, treatment of mice with an FXR agonist significantly increased hepatic PDK4 expression, while concomitantly decreasing plasma triglyceride levels. Thus, activation of FXR may suppress glycolysis and enhance oxidation of fatty acids via inactivation of the PDC by increasing PDK4 expression.

  19. Phosphorylation-dephosphorylation of yeast pyruvate dehydrogenase

    SciTech Connect

    Uhlinger, D.J.; Reed, L.J.

    1986-05-01

    Pyruvate dehydrogenase complex (PDC) was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). No pyruvate dehydrogenase (PDH) kinase activity was detected at any stage of the purification. However, the purified PDC was phosphorylated and inactivated by purified PDH kinase from bovine kidney mitochondria, Mg/sup 2 +/, and (..gamma..-/sup 32/P)ATP. The protein-bound radioactivity was localized in the PDH ..cap alpha.. subunit. The phosphorylated, inactivated PDC was dephosphorylated and reactivated with purified bovine PDH phosphatase, Mg/sup 2 +/, and Ca/sup 2 +/. From a tryptic digest of phosphorylated yeast PDC a radioactive peptide was isolated by anion and reverse phase HPLC. The sequence of this tetradecapeptide is Tyr-Gly-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Thr-Thr-Tyr-Arg. This sequence is very similar to the sequence of a tryptic phosphopeptide derived from the ..cap alpha.. subunit of bovine kidney and heart PDH: Tyr-His-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Val-Ser-Tyr-Arg.

  20. Transcriptional regulation of pyruvate dehydrogenase kinase.

    PubMed

    Jeong, Ji Yun; Jeoung, Nam Ho; Park, Keun-Gyu; Lee, In-Kyu

    2012-10-01

    The pyruvate dehydrogenase complex (PDC) activity is crucial to maintains blood glucose and ATP levels, which largely depends on the phosphorylation status by pyruvate dehydrogenase kinase (PDK) isoenzymes. Although it has been reported that PDC is phosphorylated and inactivated by PDK2 and PDK4 in metabolically active tissues including liver, skeletal muscle, heart, and kidney during starvation and diabetes, the precise mechanisms by which expression of PDK2 and PDK4 are transcriptionally regulated still remains unclear. Insulin represses the expression of PDK2 and PDK4 via phosphorylation of FOXO through PI3K/Akt signaling pathway. Several nuclear hormone receptors activated due to fasting or increased fat supply, including peroxisome proliferator-activated receptors, glucocorticoid receptors, estrogen-related receptors, and thyroid hormone receptors, also participate in the up-regulation of PDK2 and PDK4; however, the endogenous ligands that bind those nuclear receptors have not been identified. It has been recently suggested that growth hormone, adiponectin, epinephrine, and rosiglitazone also control the expression of PDK4 in tissue-specific manners. In this review, we discuss several factors involved in the expressional regulation of PDK2 and PDK4, and introduce current studies aimed at providing a better understanding of the molecular mechanisms that underlie the development of metabolic diseases such as diabetes. PMID:23130316

  1. α-Ketoglutarate Dehydrogenase and Glutamate Dehydrogenase Work in Tandem To Modulate the Antioxidant α-Ketoglutarate during Oxidative Stress in Pseudomonas fluorescens▿

    PubMed Central

    Mailloux, Ryan J.; Singh, Ranji; Brewer, Guy; Auger, Christopher; Lemire, Joseph; Appanna, Vasu D.

    2009-01-01

    α-Ketoglutarate (KG) is a crucial metabolite in all living organisms, as it participates in a variety of biochemical processes. We have previously shown that this keto acid is an antioxidant and plays a key role in the detoxification of reactive oxygen species (ROS). In an effort to further confirm this intriguing phenomenon, Pseudomonas fluorescens was exposed to menadione-containing media, with various amino acids as the sources of nitrogen. Here, we demonstrate that KG dehydrogenase (KGDH) and NAD-dependent glutamate dehydrogenase (GDH) work in tandem to modulate KG homeostasis. While KGDH was sharply decreased in cells challenged with menadione, GDH was markedly increased in cultures containing arginine (Arg), glutamate (Glu), and proline (Pro). When ammonium (NH4) was utilized as the nitrogen source, both KGDH and GDH levels were diminished. These enzymatic profiles were reversed when control cells were incubated in menadione media. 13C nuclear magnetic resonance and high-performance liquid chromatography studies revealed how KG was utilized to eliminate ROS with the concomitant formation of succinate. The accumulation of KG in the menadione-treated cells was dependent on the redox status of the lipoic acid residue in KGDH. Indeed, the treatment of cellular extracts from the menadione-exposed cells with dithiothreitol, a reducing agent, partially restored the activity of KGDH. Taken together, these data reveal that KG is pivotal to the antioxidative defense strategy of P. fluorescens and also point to the ROS-sensing role for KGDH. PMID:19376872

  2. Novel dehydrogenase catalyzes oxidative hydrolysis of carbon-nitrogen double bonds for hydrazone degradation.

    PubMed

    Itoh, Hideomi; Suzuta, Tetsuya; Hoshino, Takayuki; Takaya, Naoki

    2008-02-29

    Hydrazines and their derivatives are versatile artificial and natural compounds that are metabolized by elusive biological systems. Here we identified microorganisms that assimilate hydrazones and isolated the yeast, Candida palmioleophila MK883. When cultured with adipic acid bis(ethylidene hydrazide) as the sole source of carbon, C. palmioleophila MK883 degraded hydrazones and accumulated adipic acid dihydrazide. Cytosolic NAD+- or NADP+-dependent hydrazone dehydrogenase (Hdh) activity was detectable under these conditions. The production of Hdh was inducible by adipic acid bis(ethylidene hydrazide) and the hydrazone, varelic acid ethylidene hydrazide, under the control of carbon catabolite repression. Purified Hdh oxidized and hydrated the C=N double bond of acetaldehyde hydrazones by reducing NAD+ or NADP+ to produce relevant hydrazides and acetate, the latter of which the yeast assimilated. The deduced amino acid sequence revealed that Hdh belongs to the aldehyde dehydrogenase (Aldh) superfamily. Kinetic and mutagenesis studies showed that Hdh formed a ternary complex with the substrates and that conserved Cys is essential for the activity. The mechanism of Hdh is similar to that of Aldh, except that it catalyzed oxidative hydrolysis of hydrazones that requires adding a water molecule to the reaction catalyzed by conventional Aldh. Surprisingly, both Hdh and Aldh from baker's yeast (Ald4p) catalyzed the Hdh reaction as well as aldehyde oxidation. Our findings are unique in that we discovered a biological mechanism for hydrazone utilization and a novel function of proteins in the Aldh family that act on C=N compounds. PMID:18096698

  3. Evolution of glutamate dehydrogenase regulation of insulin homeostasis is an example of molecular exaptation.

    PubMed

    Allen, Aron; Kwagh, Jae; Fang, Jie; Stanley, Charles A; Smith, Thomas J

    2004-11-16

    Glutamate dehydrogenase (GDH) is found in all organisms and catalyzes the oxidative deamination of glutamate to 2-oxoglutarate. While this enzyme does not exhibit allosteric regulation in plants, bacteria, or fungi, its activity is tightly controlled by a number of compounds in mammals. We have previously shown that this regulation plays an important role in insulin homeostasis in humans and evolved concomitantly with a 48-residue "antenna" structure. As shown here, the antenna and some of the allosteric regulation first appears in the Ciliates. This primitive regulation is mediated by fatty acids and likely reflects the gradual movement of fatty acid oxidation from the peroxisomes to the mitochondria as the Ciliates evolved away from plants, fungi, and other protists. Mutagenesis studies where the antenna is deleted support this contention by demonstrating that the antenna is essential for fatty acid regulation. When the antenna from the Ciliates is spliced onto human GDH, it was found to fully communicate all aspects of mammalian regulation. Therefore, we propose that glutamate dehydrogenase regulation of insulin secretion is a example of exaptation at the molecular level where the antenna and associated fatty acid regulation was created to accommodate the changes in organelle function in the Ciliates and then later used to link amino acid catabolism and/or regulation of intracellular glutamate/glutamine levels in the pancreatic beta cells with insulin homeostasis in mammals.

  4. Improvement of the soy formate dehydrogenase properties by rational design.

    PubMed

    Kargov, I S; Kleimenov, S Y; Savin, S S; Tishkov, V I; Alekseeva, A A

    2015-06-01

    Previous experiments on substitution of the residue Phe290 to Asp, Asn and Ser in NAD(+)-dependent formate dehydrogenase from soya Glycine max (SoyFDH) showed important role of the residue in enzyme thermal stability and catalytic properties (Alekseeva et al. Prot. Eng. Des. Sel., 2012a; 25: :781-88). In this work, we continued site-directed mutagenesis experiments of the Phe290 and the residue was changed to Ala, Thr, Tyr, Glu and Gln. All amino acid changes resulted in increase of catalytic constant from 2.9 to 3.5-4.7 s(-1). The substitution Phe290Ala led to KM (NAD+) decrease from 13.3 to 8.6 μM, and substitutions Phe290Tyr and Phe290Glu resulted in decrease and increase of KM (HCOO-) from 1.5 to 0.9 and -2.9 mM, respectively. The highest improvement of catalytic properties was observed for SoyFDH Phe290Ala which showed 2-fold higher catalytic efficiency with both substrates. Stability of mutants was examined by study of thermal inactivation kinetics and differential scanning calorimetry (DSC). All five amino acids provided increase of thermal stability of mutant SoyFDH in comparison with wild-type enzyme. Mutant SoyFDH Phe290Glu showed the highest improvement-the stabilization effect was 43 at 56°C. The DSC data agree with results of thermal inactivation kinetics. Substitutions Phe290Tyr, Phe290Thr, Phe290Gln and Phe290Glu provided Tm value increase 0.6°-6.6°. SoyFDH Phe290Glu and previously prepared SoyFDH Phe290Asp show similar thermal stability as enzymes from Candida boidinii and Mycobacterium vaccae N10 and have higher catalytic efficiency with NAD(+) compared with all described FDHs. Therefore, these mutants are very perspective enzymes for coenzyme regeneration in processes of chiral synthesis with dehydrogenases.

  5. NADP-dehydrogenases from pepper fruits: effect of maturation.

    PubMed

    Mateos, Rosa M; Bonilla-Valverde, Daniel; del Río, Luis A; Palma, José M; Corpas, Francisco J

    2009-02-01

    NADPH is an important molecule in the redox balance of the cell. Pepper fruits are the second worldwide consumable vegetables and exhibit different phenotypes after maturation. In this paper, two pepper cultivars were studied: Vergasa whose fruits shift from green to red after maturation, and Biela that shifts to yellow. Using fresh fruits from the same plants of the two cultivars at distinct maturation stages, the activity and gene expression of the main NADPH-generating dehydrogenases was studied. The activity analysis of the main NADP-dehydrogenases, glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), NADP-isocitrate dehydrogenase (NADP-ICDH) and NADP-malic enzyme (NADP-ME), showed that, except for the G6PDH, all the activities were enhanced (54-100%) in the mature pepper fruits from both cultivars (red or yellow) with respect to green pepper fruits. The content of NADPH and NADP in the mature fruits of both cultivars showed a noteworthy increase with respect to green fruits. For the transcript analysis, a partial cDNA of each NADP-dehydrogenase was obtained, and the NADP-ME was the only NADP-dehydrogenase that showed a significant induction. The increase in the content of NADPH in mature fruits because of the enhanced activity of NADP-dehydrogenases suggests that these NADPH-generating enzymes could be involved in the maturation of pepper fruits.

  6. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Sorbitol dehydrogenase test system. 862.1670 Section 862.1670 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1670 Sorbitol dehydrogenase...

  7. Conformations of Diphosphopyridine Coenzymes upon Binding to Dehydrogenases

    PubMed Central

    Lee, Chi-Yu; Eichner, Ronald D.; Kaplan, Nathan O.

    1973-01-01

    The binding of oxidized as well as reduced coenzyme to some dehydrogenases has been studied under different concentration ratios and temperatures by nuclear magnetic resonance spectroscopy. A significant difference in the spectral behavior between DPN+ and DPNH upon binding is interpreted in terms of fast and slow on-off rates relative to the nuclear magnetic resonance time scale in the binding of these two coenzymes. Significant downfield shifts of DPN+ were observed upon binding, comparable in magnitude to those expected upon opening (destacking) of the coenzymes in the case of chicken-muscle and lobster-tail lactate dehydrogenase (EC 1.1.1.27) and yeast alchol dehydrogenase (EC 1.1.1.1.). A preliminary survey of several other dehydrogenases is consistent with these findings. In the case of 3-phosphoglyceraldehyde dehydrogenase, there is a possibility that the coenzyme exists in the folded form. PMID:4351183

  8. 3-(2-Oxo-2-phenylethylidene)-2,3,6,7-tetrahydro-1H-pyrazino[2,1-a]isoquinolin-4(11bH)-one (compound 1), a novel potent Nrf2/ARE inducer, protects against DSS-induced colitis via inhibiting NLRP3 inflammasome.

    PubMed

    Wang, Yajing; Wang, Hong; Qian, Chen; Tang, Jingjing; Zhou, Wei; Liu, Xiuting; You, Qidong; Hu, Rong

    2016-02-01

    NLRP3 inflammasome is a key component of the inflammatory process and its dysregulation contributes to IBD for its ability to induce IL-1β release. Previously, we reported that a novel small molecular activator of Nrf2, 3-(2-oxo-2-phenylethylidene)-2,3,6,7-tetrahydro-1H-pyrazino-[2,1-a]isoquinolin-4(11bH)-one (compound 1) can prevent the development of colorectal adenomas in AOM-DSS models. Here we further investigated the anti-inflammatory effect of compound 1 in DSS-induced colitis in C57BL/6 and NLRP3(-/-) mice, and revealed the possible modulation by compound 1 of NLRP3 inflammasome-mediated IL-1β release from macrophages. In C57BL/6 mice, oral administration of compound 1 significantly attenuated DSS-induced colonic pathological damage, remarkably inhibited inflammatory cells infiltration and decreased myeloperoxidase (MPO) and IL-1β secretion in colons. In contrast, mice deficient for NLRP3 were less sensitive to DSS-induced acute colitis, and compound 1 treatment exerted no protective effect on DSS-induced intestinal inflammation in NLRP3(-/-) mice. The protective effect of compound 1 may be attributed to its inhibition of NLRP3 inflammasome and Nrf2 activation in colons. Furthermore, compound 1, as a small molecular activator of Nrf2, significantly inhibited NLRP3 inflammasome activation in both THP-1 derived macrophages and bone-marrow derived macrophages, as indicated by reduced expression of NLRP3 and cleaved caspase-1, and lowered IL-1β secretion. Finally, compound 1-induced NLRP3 inflammasome inhibition is through blocking NLRP3 priming step and dependent on Nrf2 activation. Taken together, our findings demonstrate that compound 1 might be a potential agent for the treatment of IBD by targeting Nrf2 and NLRP3 inflammasome.

  9. GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE-S, A SPERM-SPECIFIC GLYCOLYTIC ENZYME, IS REQUIRED FOR SPERM MOTILITY AND MALE FERTILITY

    EPA Science Inventory

    While glycolysis is highly conserved, it is remarkable that several novel isozymes in this central metabolic pathway are found in mammalian sperm. Glyceraldehyde 3-phosphate dehydrogenase-S (GAPDS) is the product of a mouse gene expressed only during spermatogenesis and, like it...

  10. The binding of an aminoazo dye carcinogen to a specific methionine residue in rat liver alcohol dehydrogenase in vivo.

    PubMed

    Coles, B; Beale, D; Miller, D; Lay, J; Kadlubar, F; Aitken, A; Ketterer, B

    1987-01-01

    On the administration of 3'-methyl-N,N-dimethyl-4-aminoazobenzene to rats pure aminoazo dye-bound alcohol dehydrogenase accounting for 45% of the total soluble protein bound aminoazo dye is isolated from the liver soluble supernatant. Tryptic digestion of that purified aminoazo dye-bound enzyme yields an aminoazo dye-bound nonapeptide which has a sequence identical to amino acids 301-309 in the known sequence of alcohol dehydrogenase (H. Jornvall and O. Markovic, Eur. J. Biochem., 29 (1972) 167-174) with the exception of methionine 306 which is replaced by an aminoazo dye modified amino acid. The nature of the aminoazo dye adduct was determined by studying the structure of the related tetrapeptide obtained by Pronase B digestion and shown by proton NMR spectroscopy and fast atom bombardment mass spectroscopy to have the structure 3-(Val. Asn. Pro. Homocystein-S-yl)-4-methylamino-3'-methylazobenzene. This carcinogen-protein adduct is assumed to arise from attack of the ultimate carcinogenic metabolite, N-sulphonyloxy-4-methylamino-3'-methylazobenzene (FF. Kadlubar, J.A. Miller and E.C. Miller, Cancer Res., 36 (1976) 2350-2359) at the sulphur of methionine 306 followed by spontaneous S-demethylation. This highly specific reaction of carcinogen with alcohol dehydrogenase lowers its Vmax and increases its Km with cyclohexanone thereby reducing its catalytic efficiency for this substrate. This highly specific reaction of the carcinogen with alcohol dehydrogenase may be regarded as a major detoxication reaction.

  11. Interactions between heparinoids and alcohol dehydrogenase.

    PubMed

    Paulíková, H; Valusová, E; Antalík, M

    1997-07-01

    The interaction between polysulfated polysaecharides (low-molecular-weight heparin LMWH, dextran sulfate DS and pentosan sulfate PS) and yeast alcohol dehydrogenase (YADH) was investigated. The fluorescence and UV spectra of YADH after adding the tested polysaccharides have confirmed the interaction between the enzyme and these compounds. Kinetic studies have shown that LMWH, DS and PS are inhibitors of YADH (mixed type with respect to NAD). The most potent inhibitor is PS (ID50=37.5 ng/ml, Ki=0.6 muM). The inhibition effect depends on the ionic strength (the inhibition decreased by about 50% in the presence of 100 mM Na2SO4) and pH value (the inhibition decreased at pH>7). The results indicate that the inhibition effect of these polyanions is caused by their electrostatic interactions with the NAD-binding region of YADH.

  12. The Aldehyde Dehydrogenase Gene Superfamily Resource Center

    PubMed Central

    2009-01-01

    The website http://www.aldh.org is a publicly available database for nomenclature and functional and molecular sequence information for members of the aldehyde dehydrogenase (ALDH) gene superfamily for animals, plants, fungi and bacteria. The site has organised gene-specific records. It provides synopses of ALDH gene records, marries trivial terms to correct nomenclature and links global accession identifiers with source data. Server-side alignment software characterises the integrity of each sequence relative to the latest genomic assembly and provides identifier-specific detail reports, including a graphical presentation of the transcript's exon - intron structure, its size, coding sequence, genomic strand and locus. Also included are a summary of substrates, inhibitors and enzyme kinetics. The site provides reference lists and is designed to facilitate data mining by interested investigators. PMID:20038501

  13. NADH electrochemical sensor coupled with dehydrogenase enzymes

    SciTech Connect

    Yamanaka, Hideko; Mascini, Marco )

    1992-06-01

    A graphite electrode assembled in a flow cell has shown to be a good detector for NADH. Current is linearly dependent on concentration in the range 10{sup {minus}7}-10{sup {minus}3} M without any mediator at the potential applied of 300 mV vs Ag/AgCl. Lactate and alcohol dehydrogenases were immobilized near to the electrode surface or in a reactor to obtain an NADH-based biosensor for lactate or ethanol. With lactate the authors succeeded to obtain a response only if the reactor was used and for alcohol a current proportional to the concentration was obtained either if the enzyme was immobilized in a membrane and placed near the electrode surface or when the enzyme was immobilized in a reactor form. By FIA procedures fast responses and recoveries were obtained, but with a short linear range.

  14. Crystal structure of Arabidopsis thaliana cytokinin dehydrogenase

    SciTech Connect

    Bae, Euiyoung; Bingman, Craig A.; Bitto, Eduard; Aceti, David J.; Phillips, Jr., George N.

    2008-08-13

    Since first discovered in Zea mays, cytokinin dehydrogenase (CKX) genes have been identified in many plants including rice and Arabidopsis thaliana, which possesses CKX homologues (AtCKX1-AtCKX7). So far, the three-dimensional structure of only Z. mays CKX (ZmCKX1) has been determined. The crystal structures of ZmCKX1 have been solved in the native state and in complex with reaction products and a slowly reacting substrate. The structures revealed four glycosylated asparagine residues and a histidine residue covalently linked to FAD. Combined with the structural information, recent biochemical analyses of ZmCKX1 concluded that the final products of the reaction, adenine and a side chain aldehyde, are formed by nonenzymatic hydrolytic cleavage of cytokinin imine products resulting directly from CKX catalysis. Here, we report the crystal structure of AtCKX7 (gene locus At5g21482.1, UniProt code Q9FUJ1).

  15. Betaine aldehyde dehydrogenase isozymes of spinach

    SciTech Connect

    Hanson, A.D.; Weretilnyk, E.A.; Weigel, P.

    1986-04-01

    Betaine is synthesized in spinach chloroplasts via the pathway Choline ..-->.. Betaine Aldehyde ..-->.. Betaine; the second step is catalyzed by betaine aldehyde dehydrogenase (BADH). The subcellular distribution of BADH was determined in leaf protoplast lysates; BADH isozymes were separated by 6-9% native PAGE. The chloroplast stromal fraction contains a single BADH isozyme (number1) that accounts for > 80% of the total protoplast activity; the extrachloroplastic fraction has a minor isozyme (number2) which migrates more slowly than number1. Both isozymes appear specific for betaine aldehyde, are more active with NAD than NADP, and show a ca. 3-fold activity increase in salinized leaves. The phenotype of a natural variant of isozyme number1 suggests that the enzyme is a dimer.

  16. Structure-Function Relationships in Lactate Dehydrogenase

    PubMed Central

    Adams, Margaret J.; Buehner, Manfred; Chandrasekhar, K.; Ford, Geoffrey C.; Hackert, Marvin L.; Liljas, Anders; Rossmann, Michael G.; Smiley, Ira E.; Allison, William S.; Everse, Johannes; Kaplan, Nathan O.; Taylor, Susan S.

    1973-01-01

    The binding of coenzyme and substrate are considered in relation to the known primary and tertiary structure of lactate dehydrogenase (EC 1.1.1.27). The adenine binds in a hydrophobic crevice, and the two coenzyme phosphates are oriented by interactions with the protein. The positively charged guanidinium group of arginine 101 then folds over the negatively charged phosphates, collapsing the loop region over the active center and positioning the unreactive B side of the nicotinamide in a hydrophobic protein environment. Collapse of the loop also introduces various charged groups into the vicinity of the substrate binding site. The substrate is situated between histidine 195 and the C4 position on the nicotinamide ring, and is partially oriented by interactions between its carboxyl group and arginine 171. The spatial arrangements of these groups may provide the specificity for the L-isomer of lactate. PMID:4146647

  17. Molybdenum and tungsten-dependent formate dehydrogenases.

    PubMed

    Maia, Luisa B; Moura, José J G; Moura, Isabel

    2015-03-01

    The prokaryotic formate metabolism is considerably diversified. Prokaryotes use formate in the C1 metabolism, but also evolved to exploit the low reduction potential of formate to derive energy, by coupling its oxidation to the reduction of numerous electron acceptors. To fulfil these varied physiological roles, different types of formate dehydrogenase (FDH) enzymes have evolved to catalyse the reversible 2-electron oxidation of formate to carbon dioxide. This review will highlight our present knowledge about the diverse physiological roles of FDH in prokaryotes, their modular structural organisation and active site structures and the mechanistic strategies followed to accomplish the formate oxidation. In addition, the ability of FDH to catalyse the reverse reaction of carbon dioxide reduction, a potentially relevant reaction for carbon dioxide sequestration, will also be addressed.

  18. Identification of 3-sulfinopropionyl coenzyme A (CoA) desulfinases within the Acyl-CoA dehydrogenase superfamily.

    PubMed

    Schürmann, Marc; Demming, Rebecca Michaela; Krewing, Marco; Rose, Judith; Wübbeler, Jan Hendrik; Steinbüchel, Alexander

    2014-02-01

    In a previous study, the essential role of 3-sulfinopropionyl coenzyme A (3SP-CoA) desulfinase acyl-CoA dehydrogenase (Acd) in Advenella mimigardefordensis strain DPN7(T) (AcdDPN7) during degradation of 3,3'-dithiodipropionic acid (DTDP) was elucidated. DTDP is a sulfur-containing precursor substrate for biosynthesis of polythioesters (PTEs). AcdDPN7 showed high amino acid sequence similarity to acyl-CoA dehydrogenases but was unable to catalyze a dehydrogenation reaction. Hence, it was investigated in the present study whether 3SP-CoA desulfinase activity is an uncommon or a widespread property within the acyl-CoA dehydrogenase superfamily. Therefore, proteins of the acyl-CoA dehydrogenase superfamily from Advenella kashmirensis WT001, Bacillus cereus DSM31, Cupriavidus necator N-1, Escherichia coli BL21, Pseudomonas putida KT2440, Burkholderia xenovorans LB400, Ralstonia eutropha H16, Variovorax paradoxus B4, Variovorax paradoxus S110, and Variovorax paradoxus TBEA6 were expressed in E. coli strains. All purified acyl-CoA dehydrogenases appeared as homotetramers, as revealed by size exclusion chromatography. AcdS110, AcdB4, AcdH16, and AcdKT2440 were able to dehydrogenate isobutyryl-CoA. AcdKT2440 additionally dehydrogenated butyryl-CoA and valeryl-CoA, whereas AcdDSM31 dehydrogenated only butyryl-CoA and valeryl-CoA. No dehydrogenation reactions were observed with propionyl-CoA, isovaleryl-CoA, succinyl-CoA, and glutaryl-CoA for any of the investigated acyl-CoA dehydrogenases. Only AcdTBEA6, AcdN-1, and AcdLB400 desulfinated 3SP-CoA and were thus identified as 3SP-CoA desulfinases within the acyl-CoA dehydrogenase family, although none of these three Acds dehydrogenated any of the tested acyl-CoA thioesters. No appropriate substrates were identified for AcdBL21 and AcdWT001. Spectrophotometric assays provided apparent Km and Vmax values for active substrates and indicated the applicability of phylogenetic analyses to predict the substrate range of

  19. Genetics Home Reference: phosphoglycerate dehydrogenase deficiency

    MedlinePlus

    ... in the production of the protein building block ( amino acid ) serine. Specifically, the enzyme converts a substance called ... Resources MedlinePlus (5 links) Encyclopedia: Microcephaly Health Topic: Amino Acid Metabolism Disorders Health Topic: Developmental Disabilities Health Topic: ...

  20. Genetics Home Reference: dihydrolipoamide dehydrogenase deficiency

    MedlinePlus

    ... in the breakdown of three protein building blocks (amino acids) commonly found in protein-rich foods: leucine, isoleucine, and valine. Breakdown of these amino acids produces molecules that can be used for energy. ...

  1. Purification and Characterization of a Novel NAD(P)+-Farnesol Dehydrogenase from Polygonum minus Leaves.

    PubMed

    Ahmad-Sohdi, Nor-Ain-Shahajar; Seman-Kamarulzaman, Ahmad-Faris; Mohamed-Hussein, Zeti-Azura; Hassan, Maizom

    2015-01-01

    Juvenile hormones have attracted attention as safe and selective targets for the design and development of environmentally friendly and biorational insecticides. In the juvenile hormone III biosynthetic pathway, the enzyme farnesol dehydrogenase catalyzes the oxidation of farnesol to farnesal. In this study, farnesol dehydrogenase was extracted from Polygonum minus leaves and purified 204-fold to apparent homogeneity by ion-exchange chromatography using DEAE-Toyopearl, SP-Toyopearl, and Super-Q Toyopearl, followed by three successive purifications by gel filtration chromatography on a TSK-gel GS3000SW. The enzyme is a heterodimer comprised of subunits with molecular masses of 65 kDa and 70 kDa. The optimum temperature and pH were 35°C and pH 9.5, respectively. Activity was inhibited by sulfhydryl reagents, metal-chelating agents and heavy metal ions. The enzyme utilized both NAD+ and NADP+ as coenzymes with Km values of 0.74 mM and 40 mM, respectively. Trans, trans-farnesol was the preferred substrate for the P. minus farnesol dehydrogenase. Geometrical isomers of trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol were also oxidized by the enzyme with lower activity. The Km values for trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol appeared to be 0.17 mM, 0.33 mM and 0.42 mM, respectively. The amino acid sequences of 4 tryptic peptides of the enzyme were analyzed by MALDI-TOF/TOF-MS spectrometry, and showed no significant similarity to those of previously reported farnesol dehydrogenases. These results suggest that the purified enzyme is a novel NAD(P)+-dependent farnesol dehydrogenase. The purification and characterization established in the current study will serve as a basis to provide new information for recombinant production of the enzyme. Therefore, recombinant farnesol dehydrogenase may provide a useful molecular tool in manipulating juvenile hormone biosynthesis to generate transgenic plants for pest control. PMID:26600471

  2. Purification and Characterization of a Novel NAD(P)+-Farnesol Dehydrogenase from Polygonum minus Leaves

    PubMed Central

    Seman-Kamarulzaman, Ahmad-Faris; Mohamed-Hussein, Zeti-Azura

    2015-01-01

    Juvenile hormones have attracted attention as safe and selective targets for the design and development of environmentally friendly and biorational insecticides. In the juvenile hormone III biosynthetic pathway, the enzyme farnesol dehydrogenase catalyzes the oxidation of farnesol to farnesal. In this study, farnesol dehydrogenase was extracted from Polygonum minus leaves and purified 204-fold to apparent homogeneity by ion-exchange chromatography using DEAE-Toyopearl, SP-Toyopearl, and Super-Q Toyopearl, followed by three successive purifications by gel filtration chromatography on a TSK-gel GS3000SW. The enzyme is a heterodimer comprised of subunits with molecular masses of 65 kDa and 70 kDa. The optimum temperature and pH were 35°C and pH 9.5, respectively. Activity was inhibited by sulfhydryl reagents, metal-chelating agents and heavy metal ions. The enzyme utilized both NAD+ and NADP+ as coenzymes with Km values of 0.74 mM and 40 mM, respectively. Trans, trans-farnesol was the preferred substrate for the P. minus farnesol dehydrogenase. Geometrical isomers of trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol were also oxidized by the enzyme with lower activity. The Km values for trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol appeared to be 0.17 mM, 0.33 mM and 0.42 mM, respectively. The amino acid sequences of 4 tryptic peptides of the enzyme were analyzed by MALDI-TOF/TOF-MS spectrometry, and showed no significant similarity to those of previously reported farnesol dehydrogenases. These results suggest that the purified enzyme is a novel NAD(P)+-dependent farnesol dehydrogenase. The purification and characterization established in the current study will serve as a basis to provide new information for recombinant production of the enzyme. Therefore, recombinant farnesol dehydrogenase may provide a useful molecular tool in manipulating juvenile hormone biosynthesis to generate transgenic plants for pest control. PMID:26600471

  3. Glutamate dehydrogenase: structure, allosteric regulation, and role in insulin homeostasis.

    PubMed

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J

    2014-01-01

    Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine and inhibitors include GTP, palmitoyl CoA, and ATP. Spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds blocked the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.

  4. The structure and allosteric regulation of mammalian glutamate dehydrogenase.

    PubMed

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J

    2012-03-15

    Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of l-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine, while the most important inhibitors include GTP, palmitoyl CoA, and ATP. Recently, spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds were found to block the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.

  5. RECIPIENT PRETRANSPLANT INOSINE MONOPHOSPHATE DEHYDROGENASE ACTIVITY IN NONMYELOABLATIVE HCT

    PubMed Central

    Bemer, Meagan J.; Risler, Linda J.; Phillips, Brian R.; Wang, Joanne; Storer, Barry E.; Sandmaier, Brenda M.; Duan, Haichuan; Raccor, Brianne S.; Boeckh, Michael J.; McCune, Jeannine S.

    2014-01-01

    Mycophenolic acid, the active metabolite of mycophenolate mofetil (MMF), inhibits inosine monophosphate dehydrogenase (IMPDH) activity. IMPDH is the rate-limiting enzyme involved in de novo synthesis of guanosine nucleotides and catalyzes the oxidation of inosine 5’- monophosphate (IMP) to xanthosine 5’-monophosphate (XMP). We developed a highly sensitive liquid chromatography–mass spectrometry method to quantitate XMP concentrations in peripheral blood mononuclear cells (PMNC) isolated from the recipient pretransplant and used this method to determine IMPDH activity in 86 nonmyeloablative allogeneic hematopoietic cell transplantation (HCT) patients. The incubation procedure and analytical method yielded acceptable within-sample and within-individual variability. Considerable between-individual variability was observed (12.2-fold). Low recipient pretransplant IMPDH activity was associated with increased day +28 donor T-cell chimerism, more acute graft-versus-host disease (GVHD), lower neutrophil nadirs, and more cytomegalovirus reactivation, but not with chronic GVHD, relapse, non-relapse mortality, or overall mortality. We conclude that quantitation of the recipient’s pretransplant IMPDH activity in PMNC lysate could provide a useful biomarker to evaluate a recipient’s sensitivity to MMF, but confirmatory studies are needed. Further trials should be conducted to confirm our findings and to optimize postgrafting immunosuppression in nonmyeloablative HCT recipients. PMID:24923537

  6. Phosphorylation of the pyruvate dehydrogenase complex isolated from Ascaris suum

    SciTech Connect

    Thissen, J.; Komuniecki, R.

    1987-05-01

    The pyruvate dehydrogenase complex (PDC) from body wall muscle of the porcine nematode, Ascaris suum, plays a pivotal role in anaerobic mitochondrial metabolism. As in mammalian mitochondria, PDC activity is inhibited by the phosphorylation of the ..cap alpha..PDH subunit, catalyzed by an associated PDH/sub a/ kinase. However, in contrast to PDC's isolated from all other eukaryotic sources, phosphorylation decreases the mobility of the ..cap alpha..PDH subunit on SDS-PAGE and permits the separation of the phosphorylated and nonphosphorylated ..cap alpha..PDH's. Phosphorylation and the inactivation of the Ascaris PDC correspond directly, and the additional phosphorylation that occurs after complete inactivation in mammalian PDC's is not observed. The purified ascarid PDC incorporates 10 nmoles /sup 32/P/mg P. Autoradiography of the radiolabeled PDC separated by SDS-PAGE yields a band which corresponds to the phosphorylated ..cap alpha..PDH and a second, faint band which is present only during the first three minutes of PDC inactivation, intermediate between the phosphorylated and nonphosphorylated ..cap alpha..PDH subunit. Tryptic digests of the /sup 32/P-PDC yields one major phosphopeptide, when separated by HPLC, and its amino acid sequence currently is being determined.

  7. Metabolic engineering of lactate dehydrogenase rescues mice from acidosis.

    PubMed

    Acharya, Abhinav P; Rafi, Mohammad; Woods, Elliot C; Gardner, Austin B; Murthy, Niren

    2014-06-05

    Acidosis causes millions of deaths each year and strategies for normalizing the blood pH in acidosis patients are greatly needed. The lactate dehydrogenase (LDH) pathway has great potential for treating acidosis due to its ability to convert protons and pyruvate into lactate and thereby raise blood pH, but has been challenging to develop into a therapy because there are no pharmaceutical-based approaches for engineering metabolic pathways in vivo. In this report we demonstrate that the metabolic flux of the LDH pathway can be engineered with the compound 5-amino-2-hydroxymethylphenyl boronic acid (ABA), which binds lactate and accelerates the consumption of protons by converting pyruvate to lactate and increasing the NAD(+)/NADH ratio. We demonstrate here that ABA can rescue mice from metformin induced acidosis, by binding lactate, and increasing the blood pH from 6.7 to 7.2 and the blood NAD(+)/NADH ratio by 5 fold. ABA is the first class of molecule that can metabolically engineer the LDH pathway and has the potential to have a significant impact on medicine, given the large number of patients that suffer from acidosis.

  8. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci.

    PubMed

    Pavlova, Sylvia I; Jin, Ling; Gasparovich, Stephen R; Tao, Lin

    2013-07-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci.

  9. Sirtuin 3 (SIRT3) Protein Regulates Long-chain Acyl-CoA Dehydrogenase by Deacetylating Conserved Lysines Near the Active Site

    PubMed Central

    Bharathi, Sivakama S.; Zhang, Yuxun; Mohsen, Al-Walid; Uppala, Radha; Balasubramani, Manimalha; Schreiber, Emanuel; Uechi, Guy; Beck, Megan E.; Rardin, Matthew J.; Vockley, Jerry; Verdin, Eric; Gibson, Bradford W.; Hirschey, Matthew D.; Goetzman, Eric S.

    2013-01-01

    Long-chain acyl-CoA dehydrogenase (LCAD) is a key mitochondrial fatty acid oxidation enzyme. We previously demonstrated increased LCAD lysine acetylation in SIRT3 knockout mice concomitant with reduced LCAD activity and reduced fatty acid oxidation. To study the effects of acetylation on LCAD and determine sirtuin 3 (SIRT3) target sites, we chemically acetylated recombinant LCAD. Acetylation impeded substrate binding and reduced catalytic efficiency. Deacetylation with recombinant SIRT3 partially restored activity. Residues Lys-318 and Lys-322 were identified as SIRT3-targeted lysines. Arginine substitutions at Lys-318 and Lys-322 prevented the acetylation-induced activity loss. Lys-318 and Lys-322 flank residues Arg-317 and Phe-320, which are conserved among all acyl-CoA dehydrogenases and coordinate the enzyme-bound FAD cofactor in the active site. We propose that acetylation at Lys-318/Lys-322 causes a conformational change which reduces hydride transfer from substrate to FAD. Medium-chain acyl-CoA dehydrogenase and acyl-CoA dehydrogenase 9, two related enzymes with lysines at positions equivalent to Lys-318/Lys-322, were also efficiently deacetylated by SIRT3 following chemical acetylation. These results suggest that acetylation/deacetylation at Lys-318/Lys-322 is a mode of regulating fatty acid oxidation. The same mechanism may regulate other acyl-CoA dehydrogenases. PMID:24121500

  10. Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site.

    PubMed

    Bharathi, Sivakama S; Zhang, Yuxun; Mohsen, Al-Walid; Uppala, Radha; Balasubramani, Manimalha; Schreiber, Emanuel; Uechi, Guy; Beck, Megan E; Rardin, Matthew J; Vockley, Jerry; Verdin, Eric; Gibson, Bradford W; Hirschey, Matthew D; Goetzman, Eric S

    2013-11-22

    Long-chain acyl-CoA dehydrogenase (LCAD) is a key mitochondrial fatty acid oxidation enzyme. We previously demonstrated increased LCAD lysine acetylation in SIRT3 knockout mice concomitant with reduced LCAD activity and reduced fatty acid oxidation. To study the effects of acetylation on LCAD and determine sirtuin 3 (SIRT3) target sites, we chemically acetylated recombinant LCAD. Acetylation impeded substrate binding and reduced catalytic efficiency. Deacetylation with recombinant SIRT3 partially restored activity. Residues Lys-318 and Lys-322 were identified as SIRT3-targeted lysines. Arginine substitutions at Lys-318 and Lys-322 prevented the acetylation-induced activity loss. Lys-318 and Lys-322 flank residues Arg-317 and Phe-320, which are conserved among all acyl-CoA dehydrogenases and coordinate the enzyme-bound FAD cofactor in the active site. We propose that acetylation at Lys-318/Lys-322 causes a conformational change which reduces hydride transfer from substrate to FAD. Medium-chain acyl-CoA dehydrogenase and acyl-CoA dehydrogenase 9, two related enzymes with lysines at positions equivalent to Lys-318/Lys-322, were also efficiently deacetylated by SIRT3 following chemical acetylation. These results suggest that acetylation/deacetylation at Lys-318/Lys-322 is a mode of regulating fatty acid oxidation. The same mechanism may regulate other acyl-CoA dehydrogenases. PMID:24121500

  11. D(--)-lactic acid and d(--)-lactate dehydrohgenase in octopus spermatozoa.

    PubMed

    Mann, T; Martin, A W; Thiersch, J B; Lutwak-Mann, C; Brooks, D E; Jones, R

    1974-08-01

    The spermatozoa of Octopus dofleini martini produce anaerobically D(-)-lactic acid and possess a very active D(-)-lactate dehydrogenase. In this respect, while resembling certain microorganisms, they differ strikingly from mammalian spermatozoa which produce L(+)-lactic acid and contain L(+)-lactate dehydrogenase. PMID:4366789

  12. Human liver alcohol dehydrogenase. 1. The primary structure of the beta 1 beta 1 isoenzyme.

    PubMed

    Hempel, J; Bühler, R; Kaiser, R; Holmquist, B; de Zalenski, C; von Wartburg, J P; Vallee, B; Jörnvall, H

    1984-12-17

    Determination of the amino acid sequence of the beta 1 subunit from the class I (pyrazole-sensitive) human liver alcohol dehydrogenase isoenzyme beta 1 beta 1 revealed a 373-residue structure differing at 48 positions (including a gap) from that of the subunit of the well studied horse liver alcohol dehydrogenase EE isoenzyme. The structure deduced is compatible with known differences in composition, ultraviolet absorbance, electrophoretic mobility and catalytic properties between the horse and human enzymes. All zinc-liganding residues of the horse E subunit are strictly conserved in the human beta 1 subunit, despite an earlier report of a mutation involving Cys-46. This residue therefore remains conserved in all known alcohol dehydrogenase structures. However, the total cysteine content of the beta 1 structure is raised from 14 in the subunit of the horse enzyme to 15 by a Tyr----Cys exchange. Most exchanges are on the surface of the molecule and of a well conserved nature. Substitutions close to the catalytic centre are of interest to explain the altered substrate specificity and different catalytic activity of the beta 1 homodimer. Functionally, a Ser----Thr exchange at position 48 appears to be of special importance, since Thr-48 in beta 1 instead of Ser-48 in the horse enzyme can restrict available space. Four other substitutions also line the active-site pocket, and appear to constitute partly compensated exchanges. PMID:6391920

  13. A bifunctional enzyme from Rhodococcus erythropolis exhibiting secondary alcohol dehydrogenase-catalase activities.

    PubMed

    Martinez-Rojas, Enriqueta; Kurt, Tutku; Schmidt, Udo; Meyer, Vera; Garbe, Leif-Alexander

    2014-11-01

    Alcohol dehydrogenases have long been recognized as potential biocatalyst for production of chiral fine and bulk chemicals. They are relevant for industry in enantiospecific production of chiral compounds. In this study, we identified and purified a nicotinamide adenine dinucleotide (NAD)-dependent secondary alcohol dehydrogenase (SdcA) from Rhodococcus erythropolis oxidizing γ-lactols into γ-lactones. SdcA showed broad substrate specificity on γ-lactols; secondary aliphatic alcohols with 8 and 10 carbon atoms were also substrates and oxidized with (2S)-stereospecificity. The enzyme exhibited moderate stability with a half-life of 5 h at 40 °C and 20 days at 4 °C. Mass spectrometric identification revealed high sequence coverage of SdcA amino acid sequence to a highly conserved catalase from R. erythropolis. The corresponding encoding gene was isolated from genomic DNA and subsequently overexpressed in Escherichia coli BL21 DE3 cells. In addition, the recombinant SdcA was purified and characterized in order to confirm that the secondary alcohol dehydrogenase and catalase activity correspond to the same enzyme.

  14. Biochemical and structural characterization of Cryptosporidium parvum Lactate dehydrogenase.

    PubMed

    Cook, William J; Senkovich, Olga; Hernandez, Agustin; Speed, Haley; Chattopadhyay, Debasish

    2015-03-01

    The protozoan parasite Cryptosporidium parvum causes waterborne diseases worldwide. There is no effective therapy for C. parvum infection. The parasite depends mainly on glycolysis for energy production. Lactate dehydrogenase is a major regulator of glycolysis. This paper describes the biochemical characterization of C. parvum lactate dehydrogenase and high resolution crystal structures of the apo-enzyme and four ternary complexes. The ternary complexes capture the enzyme bound to NAD/NADH or its 3-acetylpyridine analog in the cofactor binding pocket, while the substrate binding site is occupied by one of the following ligands: lactate, pyruvate or oxamate. The results reveal distinctive features of the parasitic enzyme. For example, C. parvum lactate dehydrogenase prefers the acetylpyridine analog of NADH as a cofactor. Moreover, it is slightly less sensitive to gossypol inhibition compared with mammalian lactate dehydrogenases and not inhibited by excess pyruvate. The active site loop and the antigenic loop in C. parvum lactate dehydrogenase are considerably different from those in the human counterpart. Structural features and enzymatic properties of C. parvum lactate dehydrogenase are similar to enzymes from related parasites. Structural comparison with malate dehydrogenase supports a common ancestry for the two genes.

  15. Biochemical and structural characterization of Cryptosporidium parvum Lactate dehydrogenase.

    PubMed

    Cook, William J; Senkovich, Olga; Hernandez, Agustin; Speed, Haley; Chattopadhyay, Debasish

    2015-03-01

    The protozoan parasite Cryptosporidium parvum causes waterborne diseases worldwide. There is no effective therapy for C. parvum infection. The parasite depends mainly on glycolysis for energy production. Lactate dehydrogenase is a major regulator of glycolysis. This paper describes the biochemical characterization of C. parvum lactate dehydrogenase and high resolution crystal structures of the apo-enzyme and four ternary complexes. The ternary complexes capture the enzyme bound to NAD/NADH or its 3-acetylpyridine analog in the cofactor binding pocket, while the substrate binding site is occupied by one of the following ligands: lactate, pyruvate or oxamate. The results reveal distinctive features of the parasitic enzyme. For example, C. parvum lactate dehydrogenase prefers the acetylpyridine analog of NADH as a cofactor. Moreover, it is slightly less sensitive to gossypol inhibition compared with mammalian lactate dehydrogenases and not inhibited by excess pyruvate. The active site loop and the antigenic loop in C. parvum lactate dehydrogenase are considerably different from those in the human counterpart. Structural features and enzymatic properties of C. parvum lactate dehydrogenase are similar to enzymes from related parasites. Structural comparison with malate dehydrogenase supports a common ancestry for the two genes. PMID:25542170

  16. L(+)-Mandelate dehydrogenase from Rhodotorula graminis: purification, partial characterization and identification as a flavocytochrome b.

    PubMed

    Yasin, M; Fewson, C A

    1993-07-15

    L(+)-Mandelate dehydrogenase was purified to homogeneity from the yeast Rhodotorula graminis KGX 39 by a combination of (NH4)2SO4 fractionation, ion-exchange and hydrophobic-interaction chromatography and gel filtration. The amino-acid composition and the N-terminal sequence of the enzyme were determined. Comprehensive details of the sequence determinations have been deposited as Supplementary Publication SUP 50172 (4 pages) at the British Library Document Supply Centre, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1993) 289, 9. The enzyme is a tetramer as judged by comparison of its subunit M(r) value of 59,100 and native M(r) of 239,900, estimated by SDS/PAGE and gel filtration respectively. There is one molecule of haem and approx. one molecule of non-covalently bound FMN per subunit. 2,6-Dichloroindophenol, cytochrome c and ferricyanide can all serve as electron acceptors. L(+)-Mandelate dehydrogenase is stereospecific for its substrate. D(-)-Mandelate and L(+)-hexahydromandelate are competitive inhibitors. The enzyme has maximum activity at pH 7.9 and it has a pI value of 4.4. HgCl2 and 4-chloromercuribenzoate are potent inhibitors, but there is no evidence that the enzyme is subject to feedback inhibition by potential metabolic effectors. The evidence suggests that L(+)-mandelate dehydrogenase from R. graminis is a flavocytochrome b which is very similar to, and probably (at least so far as the haem domain is concerned) homologous with, certain well-characterized yeast L(+)-lactate dehydrogenases, and that the chief difference between them is their mutually exclusive substrate specificities.

  17. A pH-dependent kinetic model of dihydrolipoamide dehydrogenase from multiple organisms.

    PubMed

    Moxley, Michael A; Beard, Daniel A; Bazil, Jason N

    2014-12-16

    Dihydrolipoamide dehydrogenase is a flavoenzyme that reversibly catalyzes the oxidation of reduced lipoyl substrates with the reduction of NAD(+) to NADH. In vivo, the dihydrolipoamide dehydrogenase component (E3) is associated with the pyruvate, α-ketoglutarate, and glycine dehydrogenase complexes. The pyruvate dehydrogenase (PDH) complex connects the glycolytic flux to the tricarboxylic acid cycle and is central to the regulation of primary metabolism. Regulation of PDH via regulation of the E3 component by the NAD(+)/NADH ratio represents one of the important physiological control mechanisms of PDH activity. Furthermore, previous experiments with the isolated E3 component have demonstrated the importance of pH in dictating NAD(+)/NADH ratio effects on enzymatic activity. Here, we show that a three-state mechanism that represents the major redox states of the enzyme and includes a detailed representation of the active-site chemistry constrained by both equilibrium and thermodynamic loop constraints can be used to model regulatory NAD(+)/NADH ratio and pH effects demonstrated in progress-curve and initial-velocity data sets from rat, human, Escherichia coli, and spinach enzymes. Global fitting of the model provides stable predictions to the steady-state distributions of enzyme redox states as a function of lipoamide/dihydrolipoamide, NAD(+)/NADH, and pH. These distributions were calculated using physiological NAD(+)/NADH ratios representative of the diverse organismal sources of E3 analyzed in this study. This mechanistically detailed, thermodynamically constrained, pH-dependent model of E3 provides a stable platform on which to accurately model multicomponent enzyme complexes that implement E3 from a variety of organisms.

  18. A pH-Dependent Kinetic Model of Dihydrolipoamide Dehydrogenase from Multiple Organisms

    PubMed Central

    Moxley, Michael A.; Beard, Daniel A.; Bazil, Jason N.

    2014-01-01

    Dihydrolipoamide dehydrogenase is a flavoenzyme that reversibly catalyzes the oxidation of reduced lipoyl substrates with the reduction of NAD+ to NADH. In vivo, the dihydrolipoamide dehydrogenase component (E3) is associated with the pyruvate, α-ketoglutarate, and glycine dehydrogenase complexes. The pyruvate dehydrogenase (PDH) complex connects the glycolytic flux to the tricarboxylic acid cycle and is central to the regulation of primary metabolism. Regulation of PDH via regulation of the E3 component by the NAD+/NADH ratio represents one of the important physiological control mechanisms of PDH activity. Furthermore, previous experiments with the isolated E3 component have demonstrated the importance of pH in dictating NAD+/NADH ratio effects on enzymatic activity. Here, we show that a three-state mechanism that represents the major redox states of the enzyme and includes a detailed representation of the active-site chemistry constrained by both equilibrium and thermodynamic loop constraints can be used to model regulatory NAD+/NADH ratio and pH effects demonstrated in progress-curve and initial-velocity data sets from rat, human, Escherichia coli, and spinach enzymes. Global fitting of the model provides stable predictions to the steady-state distributions of enzyme redox states as a function of lipoamide/dihydrolipoamide, NAD+/NADH, and pH. These distributions were calculated using physiological NAD+/NADH ratios representative of the diverse organismal sources of E3 analyzed in this study. This mechanistically detailed, thermodynamically constrained, pH-dependent model of E3 provides a stable platform on which to accurately model multicomponent enzyme complexes that implement E3 from a variety of organisms. PMID:25517164

  19. Evolutionary origins of retinoid active short-chain dehydrogenases/reductases of SDR16C family

    PubMed Central

    Belyaeva, Olga V.; Chang, Chenbei; Berlett, Michael C; Kedishvili, Natalia Y.

    2014-01-01

    Vertebrate enzymes that belong to the 16C family of short-chain dehydrogenases/reductases (SDR16C) were shown to play an essential role in the control of retinoic acid (RA) levels during development. To trace the evolution of enzymatic function of SDR16C family, and to examine the origins of the pathway for RA biosynthesis from vitamin A, we identified putative SDR16C enzymes through the extensive search of available genome sequencing data in a subset of species representing major metazoan phyla. The phylogenetic analysis revealed that enzymes from protostome, non-chordate deuterostome and invertebrate chordate species are found in three clades of SDR16C family containing retinoid active enzymes, which are retinol dehydrogenase 10 (RDH10), retinol dehydrogenases E2 (RDHE2) and RDHE2-similar, and dehydrogenase reductase (SDR family) member 3 (DHRS3). For the initial functional analysis, we cloned RDH10- and RDHE2-related enzymes from the early developmental stages of a non-chordate deuterostome, green sea urchin Lytechinus variegatus, and an invertebrate chordate, sea squirt Ciona intestinalis. In situ hybridization revealed that these proteins are expressed in a pattern relevant to development, while assays performed on proteins expressed in mammalian cell culture showed that they possess retinol-oxidizing activity as their vertebrate homologs. The existence of invertebrate homologs of DHRS3 was inferred from the analysis of phylogeny and cofactor-binding residues characteristic of preference for NADP(H). The presence of invertebrate homologs in the DHRS3 group of SDR16C is interesting in light of the complex mutually activating interaction, which we have recently described for human RDH10 and DHRS3 enzymes. Further functional analysis of these homologs will establish whether this interaction evolved to control retinoid homeostasis only in vertebrates, or is also conserved in pre-vertebrates. PMID:25451586

  20. Biospecific affinity chromatographic purification of octopine dehydrogenase from molluscs.

    PubMed

    Mulcahy, P; Griffin, T; O'Carra, P

    1997-02-01

    The development of a biospecific affinity chromatographic method for the purification of octopine dehydrogenase from molluscs is described. The method utilizes immobilized NAD+ derivatives in conjunction with soluble specific substrates to promote binding. Using this method, octopine dehydrogenase has been purified to electrophoretic homogeneity in a single chromatographic step from three different marine invertebrate sources [the queen scallop, Chlamys opercularis (adductor muscle), the great scallop, Pecten maximus (adductor muscle), and the squid Loligo vulgaris (mantle muscle)]. However, the system is not applicable to the purification of octopine dehydrogenase from some other marine invertebrate sources investigated (the mussel Mytilus edulis and the topshell Monodonta lineata). PMID:9116492

  1. An L-glucitol oxidizing dehydrogenase from Bradyrhizobium japonicum USDA 110 for production of D-sorbose with enzymatic or electrochemical cofactor regeneration.

    PubMed

    Gauer, Sabrina; Wang, Zhijie; Otten, Harm; Etienne, Mathieu; Bjerrum, Morten Jannik; Lo Leggio, Leila; Walcarius, Alain; Giffhorn, Friedrich; Kohring, Gert-Wieland

    2014-04-01

    A gene in Bradyrhizobium japonicum USDA 110, annotated as a ribitol dehydrogenase (RDH), had 87 % sequence identity (97 % positives) to the N-terminal 31 amino acids of an L-glucitol dehydrogenase from Stenotrophomonas maltophilia DSMZ 14322. The 729-bp long RDH gene coded for a protein consisting of 242 amino acids with a molecular mass of 26.1 kDa. The heterologously expressed protein not only exhibited the main enantio selective activity with D-glucitol oxidation to D-fructose but also converted L-glucitol to D-sorbose with enzymatic cofactor regeneration and a yield of 90 %. The temperature stability and the apparent K m value for L-glucitol oxidation let the enzyme appear as a promising subject for further improvement by enzyme evolution. We propose to rename the enzyme from the annotated RDH gene (locus tag bll6662) from B. japonicum USDA as a D-sorbitol dehydrogenase (EC 1.1.1.14).

  2. Origins of the high catalytic activity of human alcohol dehydrogenase 4 studied with horse liver A317C alcohol dehydrogenase.

    PubMed

    Herdendorf, Timothy J; Plapp, Bryce V

    2011-05-30

    The turnover numbers and other kinetic constants for human alcohol dehydrogenase (ADH) 4 ("stomach" isoenzyme) are substantially larger (10-100-fold) than those for human class I and horse liver alcohol dehydrogenases. Comparison of the primary amino acid sequences (69% identity) and tertiary structures of these enzymes led to the suggestion that residue 317, which makes a hydrogen bond with the nicotinamide amide nitrogen of the coenzyme, may account for these differences. Ala-317 in the class I enzymes is substituted with Cys in human ADH4, and locally different conformations of the peptide backbones could affect coenzyme binding. This hypothesis was tested by making the A317C substitution in horse liver ADH1E and comparisons to the wild-type ADH1E. The steady-state kinetic constants for the oxidation of benzyl alcohol and the reduction of benzaldehyde catalyzed by the A317C enzyme were very similar (up to about 2-fold differences) to those for the wild-type enzyme. Transient kinetics showed that the rate constants for binding of NAD(+) and NADH were also similar. Transient reaction data were fitted to the full Ordered Bi Bi mechanism and showed that the rate constants for hydride transfer decreased by about 2.8-fold with the A317C substitution. The structure of A317C ADH1E complexed with NAD(+) and 2,3,4,5,6-pentafluorobenzyl alcohol at 1.2 Å resolution is essentially identical to the structure of the wild-type enzyme, except near residue 317 where the additional sulfhydryl group displaces a water molecule that is present in the wild-type enzyme. ADH is adaptable and can tolerate internal substitutions, but the protein dynamics apparently are affected, as reflected in rates of hydride transfer. The A317C substitution is not solely responsible for the larger kinetic constants in human ADH4; thus, the differences in catalytic activity must arise from one or more of the other hundred substitutions in the enzyme.

  3. Very long-chain acyl CoA dehydrogenase deficiency which was accepted as infanticide.

    PubMed

    Eminoglu, Tuba F; Tumer, Leyla; Okur, Ilyas; Ezgu, Fatih S; Biberoglu, Gursel; Hasanoglu, Alev

    2011-07-15

    Very-long-chain acyl-coenzyme A (CoA) dehydrogenase deficiency (VLCADD) (OMIM #201475) is an autosomal recessive disorder of fatty acid oxidation. Major phenotypic expressions are hypoketotic hypoglycemia, hepatomegaly, cardiomyopathy, myopathy, rhabdomyolysis, elevated creatinine kinase, and lipid infiltration of liver and muscle. At the same time, it is a rare cause of Sudden Infant Death Syndrome (SIDS) or unexplained death in the neonatal period [1-4]. We report a patient with VLCADD whose parents were investigated for infanticide because her three previous siblings had suddenly died after normal deliveries.

  4. Metabolic control of cell division in α-proteobacteria by a NAD-dependent glutamate dehydrogenase.

    PubMed

    Beaufay, François; De Bolle, Xavier; Hallez, Régis

    2016-01-01

    Prior to initiate energy-consuming processes, such as DNA replication or cell division, cells need to evaluate their metabolic status. We have recently identified and characterized a new connection between metabolism and cell division in the α-proteobacterium Caulobacter crescentus. We showed that an NAD-dependent glutamate dehydrogenase (GdhZ) coordinates growth with cell division according to its enzymatic activity. Here we report the conserved role of GdhZ in controlling cell division in another α-proteobacterium, the facultative intracellular pathogen Brucella abortus. We also discuss the importance of amino acids as a main carbon source for α-proteobacteria.

  5. Synthesis of arabinitol 1-phosphate and its use for characterization of arabinitol-phosphate dehydrogenase.

    PubMed

    Soroka, Nikolai V; Kulminskaya, Anna A; Eneyskaya, Elena V; Shabalin, Konstantin A; Uffimtcev, Andrei V; Povelainen, Mira; Miasnikov, Andrei N; Neustroev, Kirill N

    2005-03-21

    D-arabinitol 1-phosphate (Ara-ol1-P), a substrate for D-arabinitol-phosphate dehydrogenase (APDH), was chemically synthesized from D-arabinonic acid in five steps (O-acetylation, chlorination, reduction, phosphorylation, and de-O-acetylation). Ara-ol1-P was used as a substrate for the characterization of APDH from Bacillus halodurans. APDH converts Ara-ol1-P to xylulose 5-phosphate in the oxidative reaction; both NAD(+) and NADP(+) were accepted as co-factors. Kinetic parameters for the oxidative and reductive reactions are consistent with a ternary complex mechanism.

  6. Crystal structure and thermodynamic properties of d-lactate dehydrogenase from Lactobacillus jensenii.

    PubMed

    Kim, Sangwoo; Gu, Sol-A; Kim, Yong Hwan; Kim, Kyung-Jin

    2014-07-01

    The thermostable d-lactate dehydrogenase from Lactobacillus jensenii (Ljd-LDH) is a key enzyme in the production of the d-form of lactic acid from pyruvate concomitant with the oxidation of NADH to NAD(+). The polymers of d-lactic acid are used as biodegradable bioplastics. The crystal structures of Ljd-LDH and in complex with NAD(+) were determined at 2.13 and 2.60Å resolutions, respectively. The Ljd-LDH monomer consists of the N-terminal substrate-binding domain and the C-terminal NAD-binding domain. The Ljd-LDH forms a homodimeric structure, and the C-terminal NAD-binding domain mostly enables the dimerization of the enzyme. The NAD cofactor is bound to the GxGxxG NAD-binding motif located between the two domains. Structural comparisons of Ljd-LDH with other d-LDHs reveal that Ljd-LDH has unique amino acid residues at the linker region, which indicates that the open-close dynamics of Ljd-LDH might be different from that of other d-LDHs. Moreover, thermostability experiments showed that the T50(10) value of Ljd-LDH (54.5°C) was much higher than the commercially available d-lactate dehydrogenase (42.7°C). In addition, Ljd-LDH has at least a 7°C higher denaturation temperature compared to commercially available d-LDHs. PMID:24794195

  7. Production and characterization of L-fucose dehydrogenase from newly isolated Acinetobacter sp. strain SA-134.

    PubMed

    Ohshiro, Takashi; Morita, Noriyuki

    2014-01-01

    Microorganisms producing L-fucose dehydrogenase were screened from soil samples, and one of the isolated bacterial strains SA-134 was identified as Acinetobacter sp. by 16S rDNA gene analysis. The strain grew well utilizing L-fucose as a sole source of carbon, but all other monosaccharides tested such as D-glucose and D-arabinose did not support the growth of the strain in the absence of L-fucose. D-Arabinose inhibited the growth even in the culture medium containing L-fucose. Although the strain grew on some organic acids and amino acids such as citric acid and L-alanine as sole sources of carbon, the enzyme was produced only in the presence of L-fucose. The fucose dehydrogenase was purified to apparently homogeneity from the strain, and the native enzyme was a monomer of 25 kD. L-Fucose and D-arabinose were good substrates for the enzyme, but L-galactose was a poor substrate. The enzyme acted on both NAD(+) and NADP(+) in the similar manner.

  8. Sequence and structural aspects of the functional diversification of plant alcohol dehydrogenases.

    PubMed

    Thompson, Claudia E; Salzano, Francisco M; de Souza, Osmar Norberto; Freitas, Loreta B

    2007-07-01

    The glycolytic proteins in plants are coded by small multigene families, which provide an interesting contrast to the high copy number of gene families studied to date. The alcohol dehydrogenase (Adh) genes encode glycolytic enzymes that have been characterized in some plant families. Although the amino acid sequences of zinc-containing long-chain ADHs are highly conserved, the metabolic function of this enzyme is variable. They also have different patterns of expression and are submitted to differences in nonsynonymous substitution rates between gene copies. It is possible that the Adh copies have been retained as a consequence of adaptative amino acid replacements which have conferred subtle changes in function. Phylogenetic analysis indicates that there have been a number of separate duplication events within angiosperms, and that genes labeled Adh1, Adh2 and Adh3 in different groups may not be homologous. Nonsynonymous/synonymous ratios yielded no signs of positive selection. However, the coefficients of functional divergence (theta) estimated between the Adh1 and Adh2 gene groups indicate statistically significant site-specific shift of evolutionary rates between them, as well as between those of different botanical families, suggesting that altered functional constraints may have taken place at some amino acid residues after their diversification. The theoretical three-dimensional structure of the alcohol dehydrogenase from Arabis blepharophylla was constructed and verified to be stereochemically valid.

  9. ALDEHYDE DEHYDROGENASES EXPRESSION DURING POSTNATAL DEVELOPMENT: LIVER VS. LUNG

    EPA Science Inventory

    Aldehydes are highly reactive molecules present in the environment, and can be produced during biotransformation of xenobiotics. Although the lung can be a major target for aldehyde toxicity, development of aldehyde dehydrogenases (ALDHs), which detoxify aldehydes, in lung has be...

  10. 21 CFR 862.1380 - Hydroxybutyric dehydrogenase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... dehydrogenase (HBD) in plasma or serum. HBD measurements are used in the diagnosis and treatment of myocardial infarction, renal damage (such as rejection of transplants), certain hematological diseases (such as...

  11. 21 CFR 862.1380 - Hydroxybutyric dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... dehydrogenase (HBD) in plasma or serum. HBD measurements are used in the diagnosis and treatment of myocardial infarction, renal damage (such as rejection of transplants), certain hematological diseases (such as...

  12. 21 CFR 862.1380 - Hydroxybutyric dehydrogenase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... dehydrogenase (HBD) in plasma or serum. HBD measurements are used in the diagnosis and treatment of myocardial infarction, renal damage (such as rejection of transplants), certain hematological diseases (such as...

  13. 21 CFR 862.1380 - Hydroxybutyric dehydrogenase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... dehydrogenase (HBD) in plasma or serum. HBD measurements are used in the diagnosis and treatment of myocardial infarction, renal damage (such as rejection of transplants), certain hematological diseases (such as...

  14. 21 CFR 862.1380 - Hydroxybutyric dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dehydrogenase (HBD) in plasma or serum. HBD measurements are used in the diagnosis and treatment of myocardial infarction, renal damage (such as rejection of transplants), certain hematological diseases (such as...

  15. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... dehydrogenase measurements are used in the diagnosis and treatment of liver diseases such as acute viral hepatitis, cirrhosis, and metastatic carcinoma of the liver, cardiac diseases such as myocardial...

  16. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dehydrogenase measurements are used in the diagnosis and treatment of liver diseases such as acute viral hepatitis, cirrhosis, and metastatic carcinoma of the liver, cardiac diseases such as myocardial...

  17. Genetics Home Reference: 3-beta-hydroxysteroid dehydrogenase deficiency

    MedlinePlus

    ... not by hormone test. Clin Endocrinol (Oxf). 2003 Mar;58(3):323-31. Citation on PubMed Pang S, ... dehydrogenase deficiency. Endocrinol Metab Clin North Am. 2001 Mar;30(1):81-99, vi-vii. Review. Citation ...

  18. Mammalian class IV alcohol dehydrogenase (stomach alcohol dehydrogenase): structure, origin, and correlation with enzymology.

    PubMed Central

    Parés, X; Cederlund, E; Moreno, A; Hjelmqvist, L; Farrés, J; Jörnvall, H

    1994-01-01

    The structure of a mammalian class IV alcohol dehydrogenase has been determined by peptide analysis of the protein isolated from rat stomach. The structure indicates that the enzyme constitutes a separate alcohol dehydrogenase class, in agreement with the distinct enzymatic properties; the class IV enzyme is somewhat closer to class I (the "classical" liver alcohol dehydrogenase; approximately 68% residue identities) than to the other classes (II, III, and V; approximately 60% residue identities), suggesting that class IV might have originated through duplication of an early vertebrate class I gene. The activity of the class IV protein toward ethanol is even higher than that of the classical liver enzyme. Both Km and kcat values are high, the latter being the highest of any class characterized so far. Structurally, these properties are correlated with replacements at the active site, affecting both substrate and coenzyme binding. In particular, Ala-294 (instead of valine) results in increased space in the middle section of the substrate cleft, Gly-47 (instead of a basic residue) results in decreased charge interactions with the coenzyme pyrophosphate, and Tyr-363 (instead of a basic residue) may also affect coenzyme binding. In combination, these exchanges are compatible with a promotion of the off dissociation and an increased turnover rate. In contrast, residues at the inner part of the substrate cleft are bulky, accounting for low activity toward secondary alcohols and cyclohexanol. Exchanges at positions 259-261 involve minor shifts in glycine residues at a reverse turn in the coenzyme-binding fold. Clearly, class IV is distinct in structure, ethanol turnover, stomach expression, and possible emergence from class I. PMID:8127901

  19. Elusive transition state of alcohol dehydrogenase unveiled

    PubMed Central

    Roston, Daniel; Kohen, Amnon

    2010-01-01

    For several decades the hydride transfer catalyzed by alcohol dehydrogenase has been difficult to understand. Here we add to the large corpus of anomalous and paradoxical data collected for this reaction by measuring a normal (> 1) 2° kinetic isotope effect (KIE) for the reduction of benzaldehyde. Because the relevant equilibrium effect is inverse (< 1), this KIE eludes the traditional interpretation of 2° KIEs. It does, however, enable the development of a comprehensive model for the “tunneling ready state” (TRS) of the reaction that fits into the general scheme of Marcus-like models of hydrogen tunneling. The TRS is the ensemble of states along the intricate reorganization coordinate, where H tunneling between the donor and acceptor occurs (the crossing point in Marcus theory). It is comparable to the effective transition state implied by ensemble-averaged variational transition state theory. Properties of the TRS are approximated as an average of the individual properties of the donor and acceptor states. The model is consistent with experimental findings that previously appeared contradictory; specifically, it resolves the long-standing ambiguity regarding the location of the TRS (aldehyde-like vs. alcohol-like). The new picture of the TRS for this reaction identifies the principal components of the collective reaction coordinate and the average structure of the saddle point along that coordinate. PMID:20457944

  20. Optimization of adsorptive immobilization of alcohol dehydrogenases.

    PubMed

    Trivedi, Archana; Heinemann, Matthias; Spiess, Antje C; Daussmann, Thomas; Büchs, Jochen

    2005-04-01

    In this work, a systematic examination of various parameters of adsorptive immobilization of alcohol dehydrogenases (ADHs) on solid support is performed and the impact of these parameters on immobilization efficiency is studied. Depending on the source of the enzymes, these parameters differently influence the immobilization efficiency, expressed in terms of residual activity and protein loading. Residual activity of 79% was achieved with ADH from bakers' yeast (YADH) after optimizing the immobilization parameters. A step-wise drying process has been found to be more effective than one-step drying. A hypothesis of deactivation through bubble nucleation during drying of the enzyme/glass bead suspension at low drying pressure (<45 kPa) is experimentally verified. In the case of ADH from Lactobacillus brevis (LBADH), >300% residual activity was found after drying. Hyperactivation of the enzyme is probably caused by structural changes in the enzyme molecule during the drying process. ADH from Thermoanaerobacter species (ADH T) is found to be stable under drying conditions (>15 kPa) in contrast to LBADH and YADH.