Bogen, K T
2007-01-30
As reflected in the 2005 USEPA Guidelines for Cancer Risk Assessment, some chemical carcinogens may have a site-specific mode of action (MOA) that is dual, involving mutation in addition to cell-killing induced hyperplasia. Although genotoxicity may contribute to increased risk at all doses, the Guidelines imply that for dual MOA (DMOA) carcinogens, judgment be used to compare and assess results obtained using separate ''linear'' (genotoxic) vs. ''nonlinear'' (nongenotoxic) approaches to low-level risk extrapolation. However, the Guidelines allow the latter approach to be used only when evidence is sufficient to parameterize a biologically based model that reliably extrapolates risk to low levels of concern. The Guidelines thus effectively prevent MOA uncertainty from being characterized and addressed when data are insufficient to parameterize such a model, but otherwise clearly support a DMOA. A bounding factor approach--similar to that used in reference dose procedures for classic toxicity endpoints--can address MOA uncertainty in a way that avoids explicit modeling of low-dose risk as a function of administered or internal dose. Even when a ''nonlinear'' toxicokinetic model cannot be fully validated, implications of DMOA uncertainty on low-dose risk may be bounded with reasonable confidence when target tumor types happen to be extremely rare. This concept was illustrated for the rodent carcinogen naphthalene. Bioassay data, supplemental toxicokinetic data, and related physiologically based pharmacokinetic and 2-stage stochastic carcinogenesis modeling results all clearly indicate that naphthalene is a DMOA carcinogen. Plausibility bounds on rat-tumor-type specific DMOA-related uncertainty were obtained using a 2-stage model adapted to reflect the empirical link between genotoxic and cytotoxic effects of the most potent identified genotoxic naphthalene metabolites, 1,2- and 1,4-naphthoquinone. Resulting bounds each provided the basis for a corresponding
Bogen, K T
2007-05-11
A relatively simple, quantitative approach is proposed to address a specific, important gap in the appr approach recommended by the USEPA Guidelines for Cancer Risk Assessment to oach address uncertainty in carcinogenic mode of action of certain chemicals when risk is extrapolated from bioassay data. These Guidelines recognize that some chemical carcinogens may have a site-specific mode of action (MOA) that is dual, involving mutation in addition to cell-killing induced hyperplasia. Although genotoxicity may contribute to increased risk at all doses, the Guidelines imply that for dual MOA (DMOA) carcinogens, judgment be used to compare and assess results obtained using separate 'linear' (genotoxic) vs. 'nonlinear' (nongenotoxic) approaches to low low-level risk extrapolation. However, the Guidelines allow the latter approach to be used only when evidence is sufficient t to parameterize a biologically based model that reliably o extrapolates risk to low levels of concern. The Guidelines thus effectively prevent MOA uncertainty from being characterized and addressed when data are insufficient to parameterize such a model, but otherwise clearly support a DMOA. A bounding factor approach - similar to that used in reference dose procedures for classic toxicity endpoints - can address MOA uncertainty in a way that avoids explicit modeling of low low-dose risk as a function of administere administered or internal dose. Even when a 'nonlinear' toxicokinetic model cannot be fully validated, implications of DMOA uncertainty on low low-dose risk may be bounded with reasonable confidence when target tumor types happen to be extremely rare. This concept was i illustrated llustrated for a likely DMOA rodent carcinogen naphthalene, specifically to the issue of risk extrapolation from bioassay data on naphthalene naphthalene-induced nasal tumors in rats. Bioassay data, supplemental toxicokinetic data, and related physiologically based p pharmacokinetic and 2 harmacokinetic 2-stage
Stochastic dynamics of cancer initiation
NASA Astrophysics Data System (ADS)
Foo, Jasmine; Leder, Kevin; Michor, Franziska
2011-02-01
Most human cancer types result from the accumulation of multiple genetic and epigenetic alterations in a single cell. Once the first change (or changes) have arisen, tumorigenesis is initiated and the subsequent emergence of additional alterations drives progression to more aggressive and ultimately invasive phenotypes. Elucidation of the dynamics of cancer initiation is of importance for an understanding of tumor evolution and cancer incidence data. In this paper, we develop a novel mathematical framework to study the processes of cancer initiation. Cells at risk of accumulating oncogenic mutations are organized into small compartments of cells and proliferate according to a stochastic process. During each cell division, an (epi)genetic alteration may arise which leads to a random fitness change, drawn from a probability distribution. Cancer is initiated when a cell gains a fitness sufficiently high to escape from the homeostatic mechanisms of the cell compartment. To investigate cancer initiation during a human lifetime, a 'race' between this fitness process and the aging process of the patient is considered; the latter is modeled as a second stochastic Markov process in an aging dimension. This model allows us to investigate the dynamics of cancer initiation and its dependence on the mutational fitness distribution. Our framework also provides a methodology to assess the effects of different life expectancy distributions on lifetime cancer incidence. We apply this methodology to colorectal tumorigenesis while considering life expectancy data of the US population to inform the dynamics of the aging process. We study how the probability of cancer initiation prior to death, the time until cancer initiation, and the mutational profile of the cancer-initiating cell depends on the shape of the mutational fitness distribution and life expectancy of the population.
A stochastic model for immunotherapy of cancer
Baar, Martina; Coquille, Loren; Mayer, Hannah; Hölzel, Michael; Rogava, Meri; Tüting, Thomas; Bovier, Anton
2016-01-01
We propose an extension of a standard stochastic individual-based model in population dynamics which broadens the range of biological applications. Our primary motivation is modelling of immunotherapy of malignant tumours. In this context the different actors, T-cells, cytokines or cancer cells, are modelled as single particles (individuals) in the stochastic system. The main expansions of the model are distinguishing cancer cells by phenotype and genotype, including environment-dependent phenotypic plasticity that does not affect the genotype, taking into account the effects of therapy and introducing a competition term which lowers the reproduction rate of an individual in addition to the usual term that increases its death rate. We illustrate the new setup by using it to model various phenomena arising in immunotherapy. Our aim is twofold: on the one hand, we show that the interplay of genetic mutations and phenotypic switches on different timescales as well as the occurrence of metastability phenomena raise new mathematical challenges. On the other hand, we argue why understanding purely stochastic events (which cannot be obtained with deterministic models) may help to understand the resistance of tumours to therapeutic approaches and may have non-trivial consequences on tumour treatment protocols. This is supported through numerical simulations. PMID:27063839
Gompertzian stochastic model with delay effect to cervical cancer growth
Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti; Bahar, Arifah
2015-02-03
In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits.
Gompertzian stochastic model with delay effect to cervical cancer growth
NASA Astrophysics Data System (ADS)
Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti; Bahar, Arifah
2015-02-01
In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits.
Second Cancers After Fractionated Radiotherapy: Stochastic Population Dynamics Effects
NASA Technical Reports Server (NTRS)
Sachs, Rainer K.; Shuryak, Igor; Brenner, David; Fakir, Hatim; Hahnfeldt, Philip
2007-01-01
When ionizing radiation is used in cancer therapy it can induce second cancers in nearby organs. Mainly due to longer patient survival times, these second cancers have become of increasing concern. Estimating the risk of solid second cancers involves modeling: because of long latency times, available data is usually for older, obsolescent treatment regimens. Moreover, modeling second cancers gives unique insights into human carcinogenesis, since the therapy involves administering well characterized doses of a well studied carcinogen, followed by long-term monitoring. In addition to putative radiation initiation that produces pre-malignant cells, inactivation (i.e. cell killing), and subsequent cell repopulation by proliferation can be important at the doses relevant to second cancer situations. A recent initiation/inactivation/proliferation (IIP) model characterized quantitatively the observed occurrence of second breast and lung cancers, using a deterministic cell population dynamics approach. To analyze ifradiation-initiated pre-malignant clones become extinct before full repopulation can occur, we here give a stochastic version of this I I model. Combining Monte Carlo simulations with standard solutions for time-inhomogeneous birth-death equations, we show that repeated cycles of inactivation and repopulation, as occur during fractionated radiation therapy, can lead to distributions of pre-malignant cells per patient with variance >> mean, even when pre-malignant clones are Poisson-distributed. Thus fewer patients would be affected, but with a higher probability, than a deterministic model, tracking average pre-malignant cell numbers, would predict. Our results are applied to data on breast cancers after radiotherapy for Hodgkin disease. The stochastic IIP analysis, unlike the deterministic one, indicates: a) initiated, pre-malignant cells can have a growth advantage during repopulation, not just during the longer tumor latency period that follows; b) weekend
Kerns, Sarah L.; Stock, Richard; Stone, Nelson; Buckstein, Michael; Shao, Yongzhao; Campbell, Christopher; Rath, Lynda; De Ruysscher, Dirk; Lammering, Guido; Hixson, Rosetta; Cesaretti, Jamie; Terk, Mitchell; Ostrer, Harry; Rosenstein, Barry S.
2013-01-01
Purpose: To identify single nucleotide polymorphisms (SNPs) associated with development of erectile dysfunction (ED) among prostate cancer patients treated with radiation therapy. Methods and Materials: A 2-stage genome-wide association study was performed. Patients were split randomly into a stage I discovery cohort (132 cases, 103 controls) and a stage II replication cohort (128 cases, 102 controls). The discovery cohort was genotyped using Affymetrix 6.0 genome-wide arrays. The 940 top ranking SNPs selected from the discovery cohort were genotyped in the replication cohort using Illumina iSelect custom SNP arrays. Results: Twelve SNPs identified in the discovery cohort and validated in the replication cohort were associated with development of ED following radiation therapy (Fisher combined P values 2.1 Multiplication-Sign 10{sup -5} to 6.2 Multiplication-Sign 10{sup -4}). Notably, these 12 SNPs lie in or near genes involved in erectile function or other normal cellular functions (adhesion and signaling) rather than DNA damage repair. In a multivariable model including nongenetic risk factors, the odds ratios for these SNPs ranged from 1.6 to 5.6 in the pooled cohort. There was a striking relationship between the cumulative number of SNP risk alleles an individual possessed and ED status (Sommers' D P value = 1.7 Multiplication-Sign 10{sup -29}). A 1-allele increase in cumulative SNP score increased the odds for developing ED by a factor of 2.2 (P value = 2.1 Multiplication-Sign 10{sup -19}). The cumulative SNP score model had a sensitivity of 84% and specificity of 75% for prediction of developing ED at the radiation therapy planning stage. Conclusions: This genome-wide association study identified a set of SNPs that are associated with development of ED following radiation therapy. These candidate genetic predictors warrant more definitive validation in an independent cohort.
Stochastic Effects in Computational Biology of Space Radiation Cancer Risk
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Pluth, Janis; Harper, Jane; O'Neill, Peter
2007-01-01
Estimating risk from space radiation poses important questions on the radiobiology of protons and heavy ions. We are considering systems biology models to study radiation induced repair foci (RIRF) at low doses, in which less than one-track on average transverses the cell, and the subsequent DNA damage processing and signal transduction events. Computational approaches for describing protein regulatory networks coupled to DNA and oxidative damage sites include systems of differential equations, stochastic equations, and Monte-Carlo simulations. We review recent developments in the mathematical description of protein regulatory networks and possible approaches to radiation effects simulation. These include robustness, which states that regulatory networks maintain their functions against external and internal perturbations due to compensating properties of redundancy and molecular feedback controls, and modularity, which leads to general theorems for considering molecules that interact through a regulatory mechanism without exchange of matter leading to a block diagonal reduction of the connecting pathways. Identifying rate-limiting steps, robustness, and modularity in pathways perturbed by radiation damage are shown to be valid techniques for reducing large molecular systems to realistic computer simulations. Other techniques studied are the use of steady-state analysis, and the introduction of composite molecules or rate-constants to represent small collections of reactants. Applications of these techniques to describe spatial and temporal distributions of RIRF and cell populations following low dose irradiation are described.
Moderate stem-cell telomere shortening rate postpones cancer onset in a stochastic model
NASA Astrophysics Data System (ADS)
Holbek, Simon; Bendtsen, Kristian Moss; Juul, Jeppe
2013-10-01
Mammalian cells are restricted from proliferating indefinitely. Telomeres at the end of each chromosome are shortened at cell division and when they reach a critical length, the cell will enter permanent cell cycle arrest—a state known as senescence. This mechanism is thought to be tumor suppressing, as it helps prevent precancerous cells from dividing uncontrollably. Stem cells express the enzyme telomerase, which elongates the telomeres, thereby postponing senescence. However, unlike germ cells and most types of cancer cells, stem cells only express telomerase at levels insufficient to fully maintain the length of their telomeres, leading to a slow decline in proliferation potential. It is not yet fully understood how this decline influences the risk of cancer and the longevity of the organism. We here develop a stochastic model to explore the role of telomere dynamics in relation to both senescence and cancer. The model describes the accumulation of cancerous mutations in a multicellular organism and creates a coherent theoretical framework for interpreting the results of several recent experiments on telomerase regulation. We demonstrate that the longest average cancer-free lifespan before cancer onset is obtained when stem cells start with relatively long telomeres that are shortened at a steady rate at cell division. Furthermore, the risk of cancer early in life can be reduced by having a short initial telomere length. Finally, our model suggests that evolution will favor a shorter than optimal average cancer-free lifespan in order to postpone cancer onset until late in life.
Stochastic Tunneling of Two Mutations in a Population of Cancer Cells
Haeno, Hiroshi; Maruvka, Yosef E.
2013-01-01
Cancer initiation, progression, and the emergence of drug resistance are driven by specific genetic and/or epigenetic alterations such as point mutations, structural alterations, DNA methylation and histone modification changes. These alterations may confer advantageous, deleterious or neutral effects to mutated cells. Previous studies showed that cells harboring two particular alterations may arise in a fixed-size population even in the absence of an intermediate state in which cells harboring only the first alteration take over the population; this phenomenon is called stochastic tunneling. Here, we investigated a stochastic Moran model in which two alterations emerge in a cell population of fixed size. We developed a novel approach to comprehensively describe the evolutionary dynamics of stochastic tunneling of two mutations. We considered the scenarios of large mutation rates and various fitness values and validated the accuracy of the mathematical predictions with exact stochastic computer simulations. Our theory is applicable to situations in which two alterations are accumulated in a fixed-size population of binary dividing cells. PMID:23840359
NASA Astrophysics Data System (ADS)
Warren, Patrick B.
2009-09-01
A recently proposed model for skin cell proliferation [E. Clayton , Nature (London) 446, 185 (2007)] is extended to incorporate mitotic autoregulation, and hence homeostasis as a fixed point of the dynamics. Unlimited cell proliferation in such a model can be viewed as a model for carcinogenesis. One way in which this can arise is homeostatic metastability, in which the cell populations escape from the homeostatic basin of attraction by a large but rare stochastic fluctuation. Such an event can be viewed as the final step in a multistage model of carcinogenesis. Homeostatic metastability offers a possible explanation for the peculiar epidemiology of lung cancer in ex-smokers.
NASA Astrophysics Data System (ADS)
Zamani Dahaj, Seyed Alireza; Kumar, Niraj; Sundaram, Bala; Celli, Jonathan; Kulkarni, Rahul
The phenotypic heterogeneity of cancer cells is critical to their survival under stress. A significant contribution to heterogeneity of cancer calls derives from the epithelial-mesenchymal transition (EMT), a conserved cellular program that is crucial for embryonic development. Several studies have investigated the role of EMT in growth of early stage tumors into invasive malignancies. Also, EMT has been closely associated with the acquisition of chemoresistance properties in cancer cells. Motivated by these studies, we analyze multi-phenotype stochastic models of the evolution of cancers cell populations under stress. We derive analytical results for time-dependent probability distributions that provide insights into the competing rates underlying phenotypic switching (e.g. during EMT) and the corresponding survival of cancer cells. Experimentally, we evaluate these model-based predictions by imaging human pancreatic cancer cell lines grown with and without cytotoxic agents and measure growth kinetics, survival, morphological changes and (terminal evaluation of) biomarkers with associated epithelial and mesenchymal phenotypes. The results derived suggest approaches for distinguishing between adaptation and selection scenarios for survival in the presence of external stresses.
Zhu, Peican; Aliabadi, Hamidreza Montazeri; Uludağ, Hasan; Han, Jie
2016-03-18
The investigation of vulnerable components in a signaling pathway can contribute to development of drug therapy addressing aberrations in that pathway. Here, an original signaling pathway is derived from the published literature on breast cancer models. New stochastic logical models are then developed to analyze the vulnerability of the components in multiple signalling sub-pathways involved in this signaling cascade. The computational results are consistent with the experimental results, where the selected proteins were silenced using specific siRNAs and the viability of the cells were analyzed 72 hours after silencing. The genes elF4E and NFkB are found to have nearly no effect on the relative cell viability and the genes JAK2, Stat3, S6K, JUN, FOS, Myc, and Mcl1 are effective candidates to influence the relative cell growth. The vulnerabilities of some targets such as Myc and S6K are found to vary significantly depending on the weights of the sub-pathways; this will be indicative of the chosen target to require customization for therapy. When these targets are utilized, the response of breast cancers from different patients will be highly variable because of the known heterogeneities in signaling pathways among the patients. The targets whose vulnerabilities are invariably high might be more universally acceptable targets.
Zhu, Peican; Aliabadi, Hamidreza Montazeri; Uludağ, Hasan; Han, Jie
2016-01-01
The investigation of vulnerable components in a signaling pathway can contribute to development of drug therapy addressing aberrations in that pathway. Here, an original signaling pathway is derived from the published literature on breast cancer models. New stochastic logical models are then developed to analyze the vulnerability of the components in multiple signalling sub-pathways involved in this signaling cascade. The computational results are consistent with the experimental results, where the selected proteins were silenced using specific siRNAs and the viability of the cells were analyzed 72 hours after silencing. The genes elF4E and NFkB are found to have nearly no effect on the relative cell viability and the genes JAK2, Stat3, S6K, JUN, FOS, Myc, and Mcl1 are effective candidates to influence the relative cell growth. The vulnerabilities of some targets such as Myc and S6K are found to vary significantly depending on the weights of the sub-pathways; this will be indicative of the chosen target to require customization for therapy. When these targets are utilized, the response of breast cancers from different patients will be highly variable because of the known heterogeneities in signaling pathways among the patients. The targets whose vulnerabilities are invariably high might be more universally acceptable targets. PMID:26988076
A stochastic Markov chain model to describe lung cancer growth and metastasis.
Newton, Paul K; Mason, Jeremy; Bethel, Kelly; Bazhenova, Lyudmila A; Nieva, Jorge; Kuhn, Peter
2012-01-01
A stochastic Markov chain model for metastatic progression is developed for primary lung cancer based on a network construction of metastatic sites with dynamics modeled as an ensemble of random walkers on the network. We calculate a transition matrix, with entries (transition probabilities) interpreted as random variables, and use it to construct a circular bi-directional network of primary and metastatic locations based on postmortem tissue analysis of 3827 autopsies on untreated patients documenting all primary tumor locations and metastatic sites from this population. The resulting 50 potential metastatic sites are connected by directed edges with distributed weightings, where the site connections and weightings are obtained by calculating the entries of an ensemble of transition matrices so that the steady-state distribution obtained from the long-time limit of the Markov chain dynamical system corresponds to the ensemble metastatic distribution obtained from the autopsy data set. We condition our search for a transition matrix on an initial distribution of metastatic tumors obtained from the data set. Through an iterative numerical search procedure, we adjust the entries of a sequence of approximations until a transition matrix with the correct steady-state is found (up to a numerical threshold). Since this constrained linear optimization problem is underdetermined, we characterize the statistical variance of the ensemble of transition matrices calculated using the means and variances of their singular value distributions as a diagnostic tool. We interpret the ensemble averaged transition probabilities as (approximately) normally distributed random variables. The model allows us to simulate and quantify disease progression pathways and timescales of progression from the lung position to other sites and we highlight several key findings based on the model.
A stochastic Markov chain model to describe lung cancer growth and metastasis.
Newton, Paul K; Mason, Jeremy; Bethel, Kelly; Bazhenova, Lyudmila A; Nieva, Jorge; Kuhn, Peter
2012-01-01
A stochastic Markov chain model for metastatic progression is developed for primary lung cancer based on a network construction of metastatic sites with dynamics modeled as an ensemble of random walkers on the network. We calculate a transition matrix, with entries (transition probabilities) interpreted as random variables, and use it to construct a circular bi-directional network of primary and metastatic locations based on postmortem tissue analysis of 3827 autopsies on untreated patients documenting all primary tumor locations and metastatic sites from this population. The resulting 50 potential metastatic sites are connected by directed edges with distributed weightings, where the site connections and weightings are obtained by calculating the entries of an ensemble of transition matrices so that the steady-state distribution obtained from the long-time limit of the Markov chain dynamical system corresponds to the ensemble metastatic distribution obtained from the autopsy data set. We condition our search for a transition matrix on an initial distribution of metastatic tumors obtained from the data set. Through an iterative numerical search procedure, we adjust the entries of a sequence of approximations until a transition matrix with the correct steady-state is found (up to a numerical threshold). Since this constrained linear optimization problem is underdetermined, we characterize the statistical variance of the ensemble of transition matrices calculated using the means and variances of their singular value distributions as a diagnostic tool. We interpret the ensemble averaged transition probabilities as (approximately) normally distributed random variables. The model allows us to simulate and quantify disease progression pathways and timescales of progression from the lung position to other sites and we highlight several key findings based on the model. PMID:22558094
Hermann, Philipp; Mrkvička, Tomáš; Mattfeldt, Torsten; Minárová, Mária; Helisová, Kateřina; Nicolis, Orietta; Wartner, Fabian; Stehlík, Milan
2015-08-15
Fractals are models of natural processes with many applications in medicine. The recent studies in medicine show that fractals can be applied for cancer detection and the description of pathological architecture of tumors. This fact is not surprising, as due to the irregular structure, cancerous cells can be interpreted as fractals. Inspired by Sierpinski carpet, we introduce a flexible parametric model of random carpets. Randomization is introduced by usage of binomial random variables. We provide an algorithm for estimation of parameters of the model and illustrate theoretical and practical issues in generation of Sierpinski gaskets and Hausdorff measure calculations. Stochastic geometry models can also serve as models for binary cancer images. Recently, a Boolean model was applied on the 200 images of mammary cancer tissue and 200 images of mastopathic tissue. Here, we describe the Quermass-interaction process, which can handle much more variations in the cancer data, and we apply it to the images. It was found out that mastopathic tissue deviates significantly stronger from Quermass-interaction process, which describes interactions among particles, than mammary cancer tissue does. The Quermass-interaction process serves as a model describing the tissue, which structure is broken to a certain level. However, random fractal model fits well for mastopathic tissue. We provide a novel discrimination method between mastopathic and mammary cancer tissue on the basis of complex wavelet-based self-similarity measure with classification rates more than 80%. Such similarity measure relates to Hurst exponent and fractional Brownian motions. The R package FractalParameterEstimation is developed and introduced in the paper.
Stochastic Tunneling and Metastable States During the Somatic Evolution of Cancer
Ashcroft, Peter; Michor, Franziska; Galla, Tobias
2015-01-01
Tumors initiate when a population of proliferating cells accumulates a certain number and type of genetic and/or epigenetic alterations. The population dynamics of such sequential acquisition of (epi)genetic alterations has been the topic of much investigation. The phenomenon of stochastic tunneling, where an intermediate mutant in a sequence does not reach fixation in a population before generating a double mutant, has been studied using a variety of computational and mathematical methods. However, the field still lacks a comprehensive analytical description since theoretical predictions of fixation times are available only for cases in which the second mutant is advantageous. Here, we study stochastic tunneling in a Moran model. Analyzing the deterministic dynamics of large populations we systematically identify the parameter regimes captured by existing approaches. Our analysis also reveals fitness landscapes and mutation rates for which finite populations are found in long-lived metastable states. These are landscapes in which the final mutant is not the most advantageous in the sequence, and resulting metastable states are a consequence of a mutation–selection balance. The escape from these states is driven by intrinsic noise, and their location affects the probability of tunneling. Existing methods no longer apply. In these regimes it is the escape from the metastable states that is the key bottleneck; fixation is no longer limited by the emergence of a successful mutant lineage. We used the so-called Wentzel–Kramers–Brillouin method to compute fixation times in these parameter regimes, successfully validated by stochastic simulations. Our work fills a gap left by previous approaches and provides a more comprehensive description of the acquisition of multiple mutations in populations of somatic cells. PMID:25624316
A stochastic model for tumor geometry evolution during radiation therapy in cervical cancer
Liu, Yifang; Lee, Chi-Guhn; Chan, Timothy C. Y.; Cho, Young-Bin; Islam, Mohammad K.
2014-02-15
Purpose: To develop mathematical models to predict the evolution of tumor geometry in cervical cancer undergoing radiation therapy. Methods: The authors develop two mathematical models to estimate tumor geometry change: a Markov model and an isomorphic shrinkage model. The Markov model describes tumor evolution by investigating the change in state (either tumor or nontumor) of voxels on the tumor surface. It assumes that the evolution follows a Markov process. Transition probabilities are obtained using maximum likelihood estimation and depend on the states of neighboring voxels. The isomorphic shrinkage model describes tumor shrinkage or growth in terms of layers of voxels on the tumor surface, instead of modeling individual voxels. The two proposed models were applied to data from 29 cervical cancer patients treated at Princess Margaret Cancer Centre and then compared to a constant volume approach. Model performance was measured using sensitivity and specificity. Results: The Markov model outperformed both the isomorphic shrinkage and constant volume models in terms of the trade-off between sensitivity (target coverage) and specificity (normal tissue sparing). Generally, the Markov model achieved a few percentage points in improvement in either sensitivity or specificity compared to the other models. The isomorphic shrinkage model was comparable to the Markov approach under certain parameter settings. Convex tumor shapes were easier to predict. Conclusions: By modeling tumor geometry change at the voxel level using a probabilistic model, improvements in target coverage and normal tissue sparing are possible. Our Markov model is flexible and has tunable parameters to adjust model performance to meet a range of criteria. Such a model may support the development of an adaptive paradigm for radiation therapy of cervical cancer.
Winkler-Heil, R; Hussain, M; Hofmann, W
2015-05-01
Laboratory rats are frequently used in inhalation studies as a surrogate for human exposures. The objective of the present study was therefore to develop a stochastic dosimetry model for inhaled radon progeny in the rat lung, to predict bronchial dose distributions and to compare them with corresponding dose distributions in the human lung. The most significant difference between human and rat lungs is the branching structure of the bronchial tree, which is relatively symmetric in the human lung, but monopodial in the rat lung. Radon progeny aerosol characteristics used in the present study encompass conditions typical for PNNL and COGEMA rat inhalation studies, as well as uranium miners and human indoor exposure conditions. It is shown here that depending on exposure conditions and modeling assumptions, average bronchial doses in the rat lung ranged from 5.4 to 7.3 mGy WLM(-1). If plotted as a function of airway generation, bronchial dose distributions exhibit a significant maximum in large bronchial airways. If, however, plotted as a function of airway diameter, then bronchial doses are much more uniformly distributed throughout the bronchial tree. Comparisons between human and rat exposures indicate that rat bronchial doses are slightly higher than human bronchial doses by about a factor of 1.3, while lung doses, averaged over the bronchial (BB), bronchiolar (bb) and alveolar-interstitial (AI) regions, are higher by about a factor of about 1.6. This supports the current view that the rat lung is indeed an appropriate surrogate for the human lung in case of radon-induced lung cancers. Furthermore, airway diameter seems to be a more appropriate morphometric parameter than airway generations to relate bronchial doses to bronchial carcinomas.
Solan, Eilon; Vieille, Nicolas
2015-01-01
In 1953, Lloyd Shapley contributed his paper “Stochastic games” to PNAS. In this paper, he defined the model of stochastic games, which were the first general dynamic model of a game to be defined, and proved that it admits a stationary equilibrium. In this Perspective, we summarize the historical context and the impact of Shapley’s contribution. PMID:26556883
NASA Astrophysics Data System (ADS)
Gammaitoni, Luca; Hänggi, Peter; Jung, Peter; Marchesoni, Fabio
1998-01-01
Over the last two decades, stochastic resonance has continuously attracted considerable attention. The term is given to a phenomenon that is manifest in nonlinear systems whereby generally feeble input information (such as a weak signal) can be be amplified and optimized by the assistance of noise. The effect requires three basic ingredients: (i) an energetic activation barrier or, more generally, a form of threshold; (ii) a weak coherent input (such as a periodic signal); (iii) a source of noise that is inherent in the system, or that adds to the coherent input. Given these features, the response of the system undergoes resonance-like behavior as a function of the noise level; hence the name stochastic resonance. The underlying mechanism is fairly simple and robust. As a consequence, stochastic resonance has been observed in a large variety of systems, including bistable ring lasers, semiconductor devices, chemical reactions, and mechanoreceptor cells in the tail fan of a crayfish. In this paper, the authors report, interpret, and extend much of the current understanding of the theory and physics of stochastic resonance. They introduce the readers to the basic features of stochastic resonance and its recent history. Definitions of the characteristic quantities that are important to quantify stochastic resonance, together with the most important tools necessary to actually compute those quantities, are presented. The essence of classical stochastic resonance theory is presented, and important applications of stochastic resonance in nonlinear optics, solid state devices, and neurophysiology are described and put into context with stochastic resonance theory. More elaborate and recent developments of stochastic resonance theory are discussed, ranging from fundamental quantum properties-being important at low temperatures-over spatiotemporal aspects in spatially distributed systems, to realizations in chaotic maps. In conclusion the authors summarize the achievements
Spina, Serena; Giorno, Virginia; Román-Román, Patricia; Torres-Ruiz, Francisco
2014-11-01
A model of cancer growth based on the Gompertz stochastic process with jumps is proposed to analyze the effect of a therapeutic program that provides intermittent suppression of cancer cells. In this context, a jump represents an application of the therapy that shifts the cancer mass to a return state and it produces an increase in the growth rate of the cancer cells. For the resulting process, consisting in a combination of different Gompertz processes characterized by different growth parameters, the first passage time problem is considered. A strategy to select the inter-jump intervals is given so that the first passage time of the process through a constant boundary is as large as possible and the cancer size remains under this control threshold during the treatment. A computational analysis is performed for different choices of involved parameters. Finally, an estimation of parameters based on the maximum likelihood method is provided and some simulations are performed to illustrate the validity of the proposed procedure.
The National Center for Environmental Assessment (NCEA) has conducted and supported research addressing uncertainties in 2-stage clonal growth models for cancer as applied to formaldehyde. In this report, we summarized publications resulting from this research effort, discussed t...
2–stage stochastic Runge–Kutta for stochastic delay differential equations
Rosli, Norhayati; Jusoh Awang, Rahimah; Bahar, Arifah; Yeak, S. H.
2015-05-15
This paper proposes a newly developed one-step derivative-free method, that is 2-stage stochastic Runge-Kutta (SRK2) to approximate the solution of stochastic delay differential equations (SDDEs) with a constant time lag, r > 0. General formulation of stochastic Runge-Kutta for SDDEs is introduced and Stratonovich Taylor series expansion for numerical solution of SRK2 is presented. Local truncation error of SRK2 is measured by comparing the Stratonovich Taylor expansion of the exact solution with the computed solution. Numerical experiment is performed to assure the validity of the method in simulating the strong solution of SDDEs.
Evaluation of 2-Stage Injection Technique in Children
Sandeep, Valasingam; Kumar, Manikya; Jyostna, P.; Duggi, Vijay
2016-01-01
Effective pain control during local anesthetic injection is the cornerstone of behavior guidance in pediatric dentistry. The aim of this study was to evaluate the practical efficacy of a 2-stage injection technique in reducing injection pain in children. This was a split-mouth, randomized controlled crossover trial. One hundred cooperative children aged 7 to 13 years in need of bilateral local anesthetic injections (inferior alveolar nerve block, posterior superior alveolar nerve block, or maxillary and mandibular buccal infiltrations) for restorative, endodontic, and extraction treatments were recruited for the study. Children were randomly allocated to receive either the 2-stage injection technique or conventional technique at the first appointment. The other technique was used at the successive visit after 1 week. Subjective and objective evaluation of pain was done using the Wong–Baker FACES Pain Rating Scale (FPS) and Sound Eye Motor (SEM) scale, respectively. The comparison of pain scores was done by Wilcoxon sign-rank test. Both FPS and SEM scores were significantly lower when the 2-stage injection technique of local anesthetic nerve block/infiltration was used compared with the conventional technique. The 2-stage injection technique is a simple and effective means of reducing injection pain in children. PMID:26866405
Evaluation of 2-Stage Injection Technique in Children.
Sandeep, Valasingam; Kumar, Manikya; Jyostna, P; Duggi, Vijay
2016-01-01
Effective pain control during local anesthetic injection is the cornerstone of behavior guidance in pediatric dentistry. The aim of this study was to evaluate the practical efficacy of a 2-stage injection technique in reducing injection pain in children. This was a split-mouth, randomized controlled crossover trial. One hundred cooperative children aged 7 to 13 years in need of bilateral local anesthetic injections (inferior alveolar nerve block, posterior superior alveolar nerve block, or maxillary and mandibular buccal infiltrations) for restorative, endodontic, and extraction treatments were recruited for the study. Children were randomly allocated to receive either the 2-stage injection technique or conventional technique at the first appointment. The other technique was used at the successive visit after 1 week. Subjective and objective evaluation of pain was done using the Wong-Baker FACES Pain Rating Scale (FPS) and Sound Eye Motor (SEM) scale, respectively. The comparison of pain scores was done by Wilcoxon sign-rank test. Both FPS and SEM scores were significantly lower when the 2-stage injection technique of local anesthetic nerve block/infiltration was used compared with the conventional technique. The 2-stage injection technique is a simple and effective means of reducing injection pain in children. PMID:26866405
Kossenko, M M; Hoffman, D A; Thomas, T L
2000-07-01
The Mayak Industrial Association, located in the South Ural Mountains, began operation in 1948 and was the first Russian site for the production and separation of plutonium. During the early days of operation, technological failures resulted in the release of large amounts of radioactive waste into the Techa River. Residents who lived in villages on the banks of the Techa and Iset Rivers were exposed to varying levels of radioactivity. The objective of this study is to assess stochastic (carcinogenic) effects in populations exposed to offsite releases of radioactive materials from the Mayak nuclear facility in Russia. Subjects of the present study are those individuals who lived during the period January 1950 through December 1960 in any of the exposed villages along the Techa River in Chelyabinsk Oblast. Death certificates and cancer incidence data have been routinely collected in the past from a five-rayon catchment area of Chelyabinsk Oblast. The registry of exposed residents along the Techa River assembled and maintained by the Urals Research Center for Radiation Medicine for the past 40 y is the basis for identifying study subjects for this project. Specific study objectives are to evaluate the incidence of cancer among current and former residents of Chelyabinsk Oblast who are in the exposed Techa River cohort; integrate results from the dose-reconstruction study to estimate doses for risk assessment; and develop a structure for maintaining continued follow-up of the cohort for cancer incidence. In the earlier part of our collaborative effort, the focus has been to enhance the cancer morbidity registry by updating it with cancer cases diagnosed through 1997, to conduct a series of validation procedures to ensure completeness and accuracy of the registry, and to reduce the numbers of subjects lost to follow-up. A feasibility study to determine cancer morbidity in migrants from the catchment area has been proposed. Our preliminary analyses of cancer morbidity
Kossenko, M M; Hoffman, D A; Thomas, T L
2000-07-01
The Mayak Industrial Association, located in the South Ural Mountains, began operation in 1948 and was the first Russian site for the production and separation of plutonium. During the early days of operation, technological failures resulted in the release of large amounts of radioactive waste into the Techa River. Residents who lived in villages on the banks of the Techa and Iset Rivers were exposed to varying levels of radioactivity. The objective of this study is to assess stochastic (carcinogenic) effects in populations exposed to offsite releases of radioactive materials from the Mayak nuclear facility in Russia. Subjects of the present study are those individuals who lived during the period January 1950 through December 1960 in any of the exposed villages along the Techa River in Chelyabinsk Oblast. Death certificates and cancer incidence data have been routinely collected in the past from a five-rayon catchment area of Chelyabinsk Oblast. The registry of exposed residents along the Techa River assembled and maintained by the Urals Research Center for Radiation Medicine for the past 40 y is the basis for identifying study subjects for this project. Specific study objectives are to evaluate the incidence of cancer among current and former residents of Chelyabinsk Oblast who are in the exposed Techa River cohort; integrate results from the dose-reconstruction study to estimate doses for risk assessment; and develop a structure for maintaining continued follow-up of the cohort for cancer incidence. In the earlier part of our collaborative effort, the focus has been to enhance the cancer morbidity registry by updating it with cancer cases diagnosed through 1997, to conduct a series of validation procedures to ensure completeness and accuracy of the registry, and to reduce the numbers of subjects lost to follow-up. A feasibility study to determine cancer morbidity in migrants from the catchment area has been proposed. Our preliminary analyses of cancer morbidity
NASA Astrophysics Data System (ADS)
Eichhorn, Ralf; Aurell, Erik
2014-04-01
'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response
Oroji, Amin; Omar, Mohd; Yarahmadian, Shantia
2016-10-21
In this paper, a new mathematical model is proposed for studying the population dynamics of breast cancer cells treated by radiotherapy by using a system of stochastic differential equations. The novelty of the model is essentially in capturing the concept of the cell cycle in the modeling to be able to evaluate the tumor lifespan. According to the cell cycle, each cell belongs to one of three subpopulations G, S, or M, representing gap, synthesis and mitosis subpopulations. Cells in the M subpopulation are highly radio-sensitive, whereas cells in the S subpopulation are highly radio-resistant. Therefore, in the process of radiotherapy, cell death rates of different subpopulations are not equal. In addition, since flow cytometry is unable to detect apoptotic cells accurately, the small changes in cell death rate in each subpopulation during treatment are considered. Subsequently, the proposed model is calibrated using experimental data from previous experiments involving the MCF-7 breast cancer cell line. Consequently, the proposed model is able to predict tumor lifespan based on the number of initial carcinoma cells. The results show the effectiveness of the radiation under the condition of stability, which describes the decreasing trend of the tumor cells population. PMID:27457094
2012-01-01
Background Reaction-diffusion based models have been widely used in the literature for modeling the growth of solid tumors. Many of the current models treat both diffusion/consumption of nutrients and cell proliferation. The majority of these models use classical transport/mass conservation equations for describing the distribution of molecular species in tumor spheroids, and the Fick's law for describing the flux of uncharged molecules (i.e oxygen, glucose). Commonly, the equations for the cell movement and proliferation are first order differential equations describing the rate of change of the velocity of the cells with respect to the spatial coordinates as a function of the nutrient's gradient. Several modifications of these equations have been developed in the last decade to explicitly indicate that the tumor includes cells, interstitial fluids and extracellular matrix: these variants provided a model of tumor as a multiphase material with these as the different phases. Most of the current reaction-diffusion tumor models are deterministic and do not model the diffusion as a local state-dependent process in a non-homogeneous medium at the micro- and meso-scale of the intra- and inter-cellular processes, respectively. Furthermore, a stochastic reaction-diffusion model in which diffusive transport of the molecular species of nutrients and chemotherapy drugs as well as the interactions of the tumor cells with these species is a novel approach. The application of this approach to he scase of non-small cell lung cancer treated with gemcitabine is also novel. Methods We present a stochastic reaction-diffusion model of non-small cell lung cancer growth in the specification formalism of the tool Redi, we recently developed for simulating reaction-diffusion systems. We also describe how a spatial gradient of nutrients and oncological drugs affects the tumor progression. Our model is based on a generalization of the Fick's first diffusion law that allows to model
Direct vs 2-stage approaches to structured motif finding
2012-01-01
Background The notion of DNA motif is a mathematical abstraction used to model regions of the DNA (known as Transcription Factor Binding Sites, or TFBSs) that are bound by a given Transcription Factor to regulate gene expression or repression. In turn, DNA structured motifs are a mathematical counterpart that models sets of TFBSs that work in concert in the gene regulations processes of higher eukaryotic organisms. Typically, a structured motif is composed of an ordered set of isolated (or simple) motifs, separated by a variable, but somewhat constrained number of “irrelevant” base-pairs. Discovering structured motifs in a set of DNA sequences is a computationally hard problem that has been addressed by a number of authors using either a direct approach, or via the preliminary identification and successive combination of simple motifs. Results We describe a computational tool, named SISMA, for the de-novo discovery of structured motifs in a set of DNA sequences. SISMA is an exact, enumerative algorithm, meaning that it finds all the motifs conforming to the specifications. It does so in two stages: first it discovers all the possible component simple motifs, then combines them in a way that respects the given constraints. We developed SISMA mainly with the aim of understanding the potential benefits of such a 2-stage approach w.r.t. direct methods. In fact, no 2-stage software was available for the general problem of structured motif discovery, but only a few tools that solved restricted versions of the problem. We evaluated SISMA against other published tools on a comprehensive benchmark made of both synthetic and real biological datasets. In a significant number of cases, SISMA outperformed the competitors, exhibiting a good performance also in most of the cases in which it was inferior. Conclusions A reflection on the results obtained lead us to conclude that a 2-stage approach can be implemented with many advantages over direct approaches. Some of these
Blaskiewicz, M.
2011-01-01
Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.
Rood, A S; McGavran, P D; Aanenson, J W; Till, J E
2001-08-01
Carbon tetrachloride is a degreasing agent that was used at the Rocky Flats Plant (RFP) in Colorado to clean product components and equipment. The chemical is considered a volatile organic compound and a probable human carcinogen. During the time the plant operated (1953-1989), most of the carbon tetrachloride was released to the atmosphere through building exhaust ducts. A smaller amount was released to the air via evaporation from open-air burn pits and ground-surface discharge points. Airborne releases from the plant were conservatively estimated to be equivalent to the amount of carbon tetrachloride consumed annually by the plant, which was estimated to be between 3.6 and 180 Mg per year. This assumption was supported by calculations that showed that most of the carbon tetrachloride discharged to the ground surface would subsequently be released to the atmosphere. Atmospheric transport of carbon tetrachloride from the plant to the surrounding community was estimated using a Gaussian Puff dispersion model (RATCHET). Time-integrated concentrations were estimated for nine hypothetical but realistic exposure scenarios that considered variation in lifestyle, location, age, and gender. Uncertainty distributions were developed for cancer slope factors and atmospheric dispersion factors. These uncertainties were propagated through to the final risk estimate using Monte Carlo techniques. The geometric mean risk estimates varied from 5.2 x 10(-6) for a hypothetical rancher or laborer working near the RFP to 3.4 x 10(-9) for an infant scenario. The distribution of incremental lifetime cancer incidence risk for the hypothetical rancher was between 1.3 x 10(-6) (5% value) and 2.1 x 10(-5) (95% value). These estimates are similar to or exceed estimated cancer risks posed by releases of radionuclides from the site. PMID:11726020
Brennan,J.M.; Blaskiewicz, M. M.; Severino, F.
2009-05-04
After the success of longitudinal stochastic cooling of bunched heavy ion beam in RHIC, transverse stochastic cooling in the vertical plane of Yellow ring was installed and is being commissioned with proton beam. This report presents the status of the effort and gives an estimate, based on simulation, of the RHIC luminosity with stochastic cooling in all planes.
Stochastic differential equations
Sobczyk, K. )
1990-01-01
This book provides a unified treatment of both regular (or random) and Ito stochastic differential equations. It focuses on solution methods, including some developed only recently. Applications are discussed, in particular an insight is given into both the mathematical structure, and the most efficient solution methods (analytical as well as numerical). Starting from basic notions and results of the theory of stochastic processes and stochastic calculus (including Ito's stochastic integral), many principal mathematical problems and results related to stochastic differential equations are expounded here for the first time. Applications treated include those relating to road vehicles, earthquake excitations and offshore structures.
Fluctuations as stochastic deformation
NASA Astrophysics Data System (ADS)
Kazinski, P. O.
2008-04-01
A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.
Fluctuations as stochastic deformation.
Kazinski, P O
2008-04-01
A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.
Stochastic Convection Parameterizations
NASA Technical Reports Server (NTRS)
Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios
2012-01-01
computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts
A Stochastic Employment Problem
ERIC Educational Resources Information Center
Wu, Teng
2013-01-01
The Stochastic Employment Problem(SEP) is a variation of the Stochastic Assignment Problem which analyzes the scenario that one assigns balls into boxes. Balls arrive sequentially with each one having a binary vector X = (X[subscript 1], X[subscript 2],...,X[subscript n]) attached, with the interpretation being that if X[subscript i] = 1 the ball…
Spring, William Joseph
2009-04-13
We consider quantum analogues of n-parameter stochastic processes, associated integrals and martingale properties extending classical results obtained in [1, 2, 3], and quantum results in [4, 5, 6, 7, 8, 9, 10].
Dynamics of Double Stochastic Operators
NASA Astrophysics Data System (ADS)
Saburov, Mansoor
2016-03-01
A double stochastic operator is a generalization of a double stochastic matrix. In this paper, we study the dynamics of double stochastic operators. We give a criterion for a regularity of a double stochastic operator in terms of absences of its periodic points. We provide some examples to insure that, in general, a trajectory of a double stochastic operator may converge to any interior point of the simplex.
Stochastic and Deterministic Models of Cellular p53 Regulation
Leenders, Gerald B.; Tuszynski, Jack A.
2013-01-01
The protein p53 is a key regulator of cellular response to a wide variety of stressors. In cancer cells inhibitory regulators of p53 such as MDM2 and MDMX proteins are often overexpressed. We apply in silico techniques to better understand the role and interactions of these proteins in a cell cycle process. Furthermore we investigate the role of stochasticity in determining system behavior. We have found that stochasticity is able to affect system behavior profoundly. We also derive a general result for the way in which initially synchronized oscillating stochastic systems will fall out of synchronization with each other. PMID:23565502
On stochastic diffusion equations and stochastic Burgers' equations
NASA Astrophysics Data System (ADS)
Truman, A.; Zhao, H. Z.
1996-01-01
In this paper we construct a strong solution for the stochastic Hamilton Jacobi equation by using stochastic classical mechanics before the caustics. We thereby obtain the viscosity solution for a certain class of inviscid stochastic Burgers' equations. This viscosity solution is not continuous beyond the caustics of the corresponding Hamilton Jacobi equation. The Hopf-Cole transformation is used to identify the stochastic heat equation and the viscous stochastic Burgers' equation. The exact solutions for the above two equations are given in terms of the stochastic Hamilton Jacobi function under a no-caustic condition. We construct the heat kernel for the stochastic heat equation for zero potentials in hyperbolic space and for harmonic oscillator potentials in Euclidean space thereby obtaining the stochastic Mehler formula.
Stochastically driven genetic circuits
NASA Astrophysics Data System (ADS)
Tsimring, L. S.; Volfson, D.; Hasty, J.
2006-06-01
Transcriptional regulation in small genetic circuits exhibits large stochastic fluctuations. Recent experiments have shown that a significant fraction of these fluctuations is caused by extrinsic factors. In this paper we review several theoretical and computational approaches to modeling of small genetic circuits driven by extrinsic stochastic processes. We propose a simplified approach to this problem, which can be used in the case when extrinsic fluctuations dominate the stochastic dynamics of the circuit (as appears to be the case in eukaryots). This approach is applied to a model of a single nonregulated gene that is driven by a certain gating process that affects the rate of transcription, and to a simplified version of the galactose utilization circuit in yeast.
NASA Astrophysics Data System (ADS)
Venturi, Daniele
2005-11-01
Stochastic bifurcations and stability of natural convective flows in 2d and 3d enclosures are investigated by the multi-element generalized polynomial chaos (ME-gPC) method (Xiu and Karniadakis, SISC, vol. 24, 2002). The Boussinesq approximation for the variation of physical properties is assumed. The stability analysis is first carried out in a deterministic sense, to determine steady state solutions and primary and secondary bifurcations. Stochastic simulations are then conducted around discontinuities and transitional regimes. It is found that these highly non-linear phenomena can be efficiently captured by the ME-gPC method. Finally, the main findings of the stochastic analysis and their implications for heat transfer will be discussed.
Stochastic cooling at Fermilab
Marriner, J.
1986-08-01
The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system.
Stochastic optical active rheology
NASA Astrophysics Data System (ADS)
Lee, Hyungsuk; Shin, Yongdae; Kim, Sun Taek; Reinherz, Ellis L.; Lang, Matthew J.
2012-07-01
We demonstrate a stochastic based method for performing active rheology using optical tweezers. By monitoring the displacement of an embedded particle in response to stochastic optical forces, a rapid estimate of the frequency dependent shear moduli of a sample is achieved in the range of 10-1-103 Hz. We utilize the method to probe linear viscoelastic properties of hydrogels at varied cross-linker concentrations. Combined with fluorescence imaging, our method demonstrates non-linear changes of bond strength between T cell receptors and an antigenic peptide due to force-induced cell activation.
Stochastic Feedforward Control Technique
NASA Technical Reports Server (NTRS)
Halyo, Nesim
1990-01-01
Class of commanded trajectories modeled as stochastic process. Advanced Transport Operating Systems (ATOPS) research and development program conducted by NASA Langley Research Center aimed at developing capabilities for increases in capacities of airports, safe and accurate flight in adverse weather conditions including shear, winds, avoidance of wake vortexes, and reduced consumption of fuel. Advances in techniques for design of modern controls and increased capabilities of digital flight computers coupled with accurate guidance information from Microwave Landing System (MLS). Stochastic feedforward control technique developed within context of ATOPS program.
NASA Astrophysics Data System (ADS)
Pierret, Frédéric
2016-02-01
We derived the equations of Celestial Mechanics governing the variation of the orbital elements under a stochastic perturbation, thereby generalizing the classical Gauss equations. Explicit formulas are given for the semimajor axis, the eccentricity, the inclination, the longitude of the ascending node, the pericenter angle, and the mean anomaly, which are expressed in term of the angular momentum vector H per unit of mass and the energy E per unit of mass. Together, these formulas are called the stochastic Gauss equations, and they are illustrated numerically on an example from satellite dynamics.
Structures and stochastic methods
Cakmak, A.S.
1987-01-01
Studies and research on structures and stochastic methods in the soil dynamics and earthquake engineering filed are covered in this book. The first section is on structures and includes studies on bridges, loaded tanks, sliding structures and wood-framed houses. The second section covers dams, retaining walls and slopes. The third section on underground structures covers pipelines, water supply, fire loss, buried lifeline, and underground transmission lines. The final section is on stochastic methods and includes applications in earthquake response spectra, lifeline aqueduct systems, and various other areas.
STOCHASTIC COOLING FOR BUNCHED BEAMS.
BLASKIEWICZ, M.
2005-05-16
Problems associated with bunched beam stochastic cooling are reviewed. A longitudinal stochastic cooling system for RHIC is under construction and has been partially commissioned. The state of the system and future plans are discussed.
Stochastic entrainment of a stochastic oscillator.
Wang, Guanyu; Peskin, Charles S
2015-01-01
In this work, we consider a stochastic oscillator described by a discrete-state continuous-time Markov chain, in which the states are arranged in a circle, and there is a constant probability per unit time of jumping from one state to the next in a specified direction around the circle. At each of a sequence of equally spaced times, the oscillator has a specified probability of being reset to a particular state. The focus of this work is the entrainment of the oscillator by this periodic but stochastic stimulus. We consider a distinguished limit, in which (i) the number of states of the oscillator approaches infinity, as does the probability per unit time of jumping from one state to the next, so that the natural mean period of the oscillator remains constant, (ii) the resetting probability approaches zero, and (iii) the period of the resetting signal approaches a multiple, by a ratio of small integers, of the natural mean period of the oscillator. In this distinguished limit, we use analytic and numerical methods to study the extent to which entrainment occurs.
Stochastic Models of Human Growth.
ERIC Educational Resources Information Center
Goodrich, Robert L.
Stochastic difference equations of the Box-Jenkins form provide an adequate family of models on which to base the stochastic theory of human growth processes, but conventional time series identification methods do not apply to available data sets. A method to identify structure and parameters of stochastic difference equation models of human…
ERIC Educational Resources Information Center
Wolff, Hans
This paper deals with a stochastic process for the approximation of the root of a regression equation. This process was first suggested by Robbins and Monro. The main result here is a necessary and sufficient condition on the iteration coefficients for convergence of the process (convergence with probability one and convergence in the quadratic…
Focus on stochastic thermodynamics
NASA Astrophysics Data System (ADS)
Van den Broeck, Christian; Sasa, Shin-ichi; Seifert, Udo
2016-02-01
We introduce the thirty papers collected in this ‘focus on’ issue. The contributions explore conceptual issues within and around stochastic thermodynamics, use this framework for the theoretical modeling and experimental investigation of specific systems, and provide further perspectives on and for this active field.
NASA Astrophysics Data System (ADS)
Skorokhod, A. V.
1982-12-01
CONTENTSIntroduction § 1. The finite-dimensional case § 2. Stochastic semigroups in the L2-strong theory § 3. Homogeneous strongly continuous semigroups with the group of the first moments § 4. Stochastic equations of diffusion type with constant coefficients § 5. Continuous homogeneous stochastic semigroups in the presence of two moments References
Adaptive stochastic cellular automata: Applications
NASA Astrophysics Data System (ADS)
Qian, S.; Lee, Y. C.; Jones, R. D.; Barnes, C. W.; Flake, G. W.; O'Rourke, M. K.; Lee, K.; Chen, H. H.; Sun, G. Z.; Zhang, Y. Q.; Chen, D.; Giles, C. L.
1990-09-01
The stochastic learning cellular automata model has been applied to the problem of controlling unstable systems. Two example unstable systems studied are controlled by an adaptive stochastic cellular automata algorithm with an adaptive critic. The reinforcement learning algorithm and the architecture of the stochastic CA controller are presented. Learning to balance a single pole is discussed in detail. Balancing an inverted double pendulum highlights the power of the stochastic CA approach. The stochastic CA model is compared to conventional adaptive control and artificial neural network approaches.
Stochastic computing with biomolecular automata
NASA Astrophysics Data System (ADS)
Adar, Rivka; Benenson, Yaakov; Linshiz, Gregory; Rosner, Amit; Tishby, Naftali; Shapiro, Ehud
2004-07-01
Stochastic computing has a broad range of applications, yet electronic computers realize its basic step, stochastic choice between alternative computation paths, in a cumbersome way. Biomolecular computers use a different computational paradigm and hence afford novel designs. We constructed a stochastic molecular automaton in which stochastic choice is realized by means of competition between alternative biochemical pathways, and choice probabilities are programmed by the relative molar concentrations of the software molecules coding for the alternatives. Programmable and autonomous stochastic molecular automata have been shown to perform direct analysis of disease-related molecular indicators in vitro and may have the potential to provide in situ medical diagnosis and cure.
Stochastic response surface methodology: A study in the human health area
Oliveira, Teresa A. Oliveira, Amílcar; Leal, Conceição
2015-03-10
In this paper we review Stochastic Response Surface Methodology as a tool for modeling uncertainty in the context of Risk Analysis. An application in the survival analysis in the breast cancer context is implemented with R software.
Beamlets from stochastic acceleration.
Perri, Silvia; Carbone, Vincenzo
2008-09-01
We investigate the dynamics of a realization of the stochastic Fermi acceleration mechanism. The model consists of test particles moving between two oscillating magnetic clouds and differs from the usual Fermi-Ulam model in two ways. (i) Particles can penetrate inside clouds before being reflected. (ii) Particles can radiate a fraction of their energy during the process. Since the Fermi mechanism is at work, particles are stochastically accelerated, even in the presence of the radiated energy. Furthermore, due to a kind of resonance between particles and oscillating clouds, the probability density function of particles is strongly modified, thus generating beams of accelerated particles rather than a translation of the whole distribution function to higher energy. This simple mechanism could account for the presence of beamlets in some space plasma physics situations.
Stochastic ice stream dynamics
NASA Astrophysics Data System (ADS)
Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca
2016-08-01
Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.
BLASKIEWICZ,M.BRENNAN,J.M.CAMERON,P.WEI,J.
2003-05-12
Emittance growth due to Intra-Beam Scattering significantly reduces the heavy ion luminosity lifetime in RHIC. Stochastic cooling of the stored beam could improve things considerably by counteracting IBS and preventing particles from escaping the rf bucket [1]. High frequency bunched-beam stochastic cooling is especially challenging but observations of Schottky signals in the 4-8 GHz band indicate that conditions are favorable in RHIC [2]. We report here on measurements of the longitudinal beam transfer function carried out with a pickup kicker pair on loan from FNAL TEVATRON. Results imply that for ions a coasting beam description is applicable and we outline some general features of a viable momentum cooling system for RHIC.
Stochastic ice stream dynamics.
Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca
2016-08-01
Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution. PMID:27457960
Dorogovtsev, Andrei A
2010-06-29
For sets in a Hilbert space the concept of quadratic entropy is introduced. It is shown that this entropy is finite for the range of a stochastic flow of Brownian particles on R. This implies, in particular, the fact that the total time of the free travel in the Arratia flow of all particles that started from a bounded interval is finite. Bibliography: 10 titles.
Ultimate open pit stochastic optimization
NASA Astrophysics Data System (ADS)
Marcotte, Denis; Caron, Josiane
2013-02-01
Classical open pit optimization (maximum closure problem) is made on block estimates, without directly considering the block grades uncertainty. We propose an alternative approach of stochastic optimization. The stochastic optimization is taken as the optimal pit computed on the block expected profits, rather than expected grades, computed from a series of conditional simulations. The stochastic optimization generates, by construction, larger ore and waste tonnages than the classical optimization. Contrary to the classical approach, the stochastic optimization is conditionally unbiased for the realized profit given the predicted profit. A series of simulated deposits with different variograms are used to compare the stochastic approach, the classical approach and the simulated approach that maximizes expected profit among simulated designs. Profits obtained with the stochastic optimization are generally larger than the classical or simulated pit. The main factor controlling the relative gain of stochastic optimization compared to classical approach and simulated pit is shown to be the information level as measured by the boreholes spacing/range ratio. The relative gains of the stochastic approach over the classical approach increase with the treatment costs but decrease with mining costs. The relative gains of the stochastic approach over the simulated pit approach increase both with the treatment and mining costs. At early stages of an open pit project, when uncertainty is large, the stochastic optimization approach appears preferable to the classical approach or the simulated pit approach for fair comparison of the values of alternative projects and for the initial design and planning of the open pit.
Dimensional accuracy of 2-stage putty-wash impressions: influence of impression trays and viscosity.
Balkenhol, Markus; Ferger, Paul; Wöstmann, Bernd
2007-01-01
The aim of this in vitro study was to evaluate the influence of the impression tray and viscosity of the wash material on the dimensional accuracy of impressions taken using a 2-stage putty-wash technique. Identically shaped metal stock trays (MeTs) and disposable plastic stock trays (DiTs) were used for taking impressions (n = 10) of a mandibular cast (4 abutments) with 2 different impression materials. Dies were poured and the relative diameter deviation was calculated after measurement. Zero viscosity of the materials was determined. Dimensional accuracy was significantly affected when DiTs were used. Lower-viscosity wash materials led to more precise impressions.
Boelter, Fred W; Xia, Yulin; Dell, Linda
2015-05-01
Sanding joint compounds is a dusty activity and exposures are not well characterized. Until the mid 1970s, asbestos-containing joint compounds were used by some people such that sanding could emit dust and asbestos fibers. We estimated the distribution of 8-h TWA concentrations and cumulative exposures to respirable dusts and chrysotile asbestos fibers for four worker groups: (1) drywall specialists, (2) generalists, (3) tradespersons who are bystanders to drywall finishing, and (4) do-it-yourselfers (DIYers). Data collected through a survey of experienced contractors, direct field observations, and literature were used to develop prototypical exposure scenarios for each worker group. To these exposure scenarios, we applied a previously developed semi-empirical mathematical model that predicts area as well as personal breathing zone respirable dust concentrations. An empirical factor was used to estimate chrysotile fiber concentrations from respirable dust concentrations. On a task basis, we found mean 8-h TWA concentrations of respirable dust and chrysotile fibers are numerically highest for specialists, followed by generalists, DIYers, and bystander tradespersons; these concentrations are estimated to be in excess of the respective current but not historical Threshold Limit Values. Due to differences in frequency of activities, annual cumulative exposures are highest for specialists, followed by generalists, bystander tradespersons, and DIYers. Cumulative exposure estimates for chrysotile fibers from drywall finishing are expected to result in few, if any, mesothelioma or excess lung cancer deaths according to recently published risk assessments. Given the dustiness of drywall finishing, we recommend diligence in the use of readily available source controls.
An efficient 2-stage fractional charge pump based on frequency regulation
NASA Astrophysics Data System (ADS)
Saiz-Vela, A.; Miribel-Catala, P.; Puig-Vidal, M.; Samitier, J.
2005-06-01
An efficient 2-stage charge pump based on two-phase voltage doublers is proposed in this paper. Pulse skipping frequency regulators have been used to obtain a high efficiency over a wide range of loads. Since this charge pump has been designed for battery-powered portable devices, a power-up control system that combines a linear and a switched charging sequence has been included in each stage in order to avoid great current spikes at the beginning of the start-up process that could damage or shorten the battery life. The result is a power efficient 2-stage charge pump capable to generate a maximum regulated output voltage up to 10V from a 2.7V-3.3V battery source and deliver a maximum power of 100mW. If it is desired, the regulated output voltage can be downscaled to a required lower regulated voltage through a simple programming method using external resistors plus internal digital circuitry. This circuit has been designed using a 0.7μI2T technology from AMI semiconductor.
Aerodynamic characteristics of the National Launch System (NLS) 1 1/2 stage launch vehicle
NASA Technical Reports Server (NTRS)
Springer, A. M.; Pokora, D. C.
1994-01-01
The National Aeronautics and Space Administration (NASA) is studying ways of assuring more reliable and cost effective means to space. One launch system studied was the NLS which included the l l/2 stage vehicle. This document encompasses the aerodynamic characteristics of the 1 l/2 stage vehicle. To support the detailed configuration definition two wind tunnel tests were conducted in the NASA Marshall Space Flight Center's 14x14-Inch Trisonic Wind Tunnel during 1992. The tests were a static stability and a pressure test, each utilizing 0.004 scale models. The static stability test resulted in the forces and moments acting on the vehicle. The aerodynamics for the reference configuration with and without feedlines and an evaluation of three proposed engine shroud configurations were also determined. The pressure test resulted in pressure distributions over the reference vehicle with and without feedlines including the reference engine shrouds. These pressure distributions were integrated and balanced to the static stability coefficients resulting in distributed aerodynamic loads on the vehicle. The wind tunnel tests covered a Mach range of 0.60 to 4.96. These ascent flight aerodynamic characteristics provide the basis for trajectory and performance analysis, loads determination, and guidance and control evaluation.
... your life Being exposed to chemicals that can cause cancer Being at risk for skin cancer Depending on ... than nonsmokers. Other forms of tobacco can also cause cancer, such as cigars, chewing tobacco and snuff. If ...
NASA Astrophysics Data System (ADS)
Eliazar, Iddo I.; Shlesinger, Michael F.
2012-01-01
We introduce and explore a Stochastic Flow Cascade (SFC) model: A general statistical model for the unidirectional flow through a tandem array of heterogeneous filters. Examples include the flow of: (i) liquid through heterogeneous porous layers; (ii) shocks through tandem shot noise systems; (iii) signals through tandem communication filters. The SFC model combines together the Langevin equation, convolution filters and moving averages, and Poissonian randomizations. A comprehensive analysis of the SFC model is carried out, yielding closed-form results. Lévy laws are shown to universally emerge from the SFC model, and characterize both heavy tailed retention times (Noah effect) and long-ranged correlations (Joseph effect).
Stochastic thermodynamics of resetting
NASA Astrophysics Data System (ADS)
Fuchs, Jaco; Goldt, Sebastian; Seifert, Udo
2016-03-01
Stochastic dynamics with random resetting leads to a non-equilibrium steady state. Here, we consider the thermodynamics of resetting by deriving the first and second law for resetting processes far from equilibrium. We identify the contributions to the entropy production of the system which arise due to resetting and show that they correspond to the rate with which information is either erased or created. Using Landauer's principle, we derive a bound on the amount of work that is required to maintain a resetting process. We discuss different regimes of resetting, including a Maxwell demon scenario where heat is extracted from a bath at constant temperature.
Stochastic ontogenetic growth model
NASA Astrophysics Data System (ADS)
West, B. J.; West, D.
2012-02-01
An ontogenetic growth model (OGM) for a thermodynamically closed system is generalized to satisfy both the first and second law of thermodynamics. The hypothesized stochastic ontogenetic growth model (SOGM) is shown to entail the interspecies allometry relation by explicitly averaging the basal metabolic rate and the total body mass over the steady-state probability density for the total body mass (TBM). This is the first derivation of the interspecies metabolic allometric relation from a dynamical model and the asymptotic steady-state distribution of the TBM is fit to data and shown to be inverse power law.
Stochastic blind motion deblurring.
Xiao, Lei; Gregson, James; Heide, Felix; Heidrich, Wolfgang
2015-10-01
Blind motion deblurring from a single image is a highly under-constrained problem with many degenerate solutions. A good approximation of the intrinsic image can, therefore, only be obtained with the help of prior information in the form of (often nonconvex) regularization terms for both the intrinsic image and the kernel. While the best choice of image priors is still a topic of ongoing investigation, this research is made more complicated by the fact that historically each new prior requires the development of a custom optimization method. In this paper, we develop a stochastic optimization method for blind deconvolution. Since this stochastic solver does not require the explicit computation of the gradient of the objective function and uses only efficient local evaluation of the objective, new priors can be implemented and tested very quickly. We demonstrate that this framework, in combination with different image priors produces results with Peak Signal-to-Noise Ratio (PSNR) values that match or exceed the results obtained by much more complex state-of-the-art blind motion deblurring algorithms. PMID:25974941
Variance decomposition in stochastic simulators
NASA Astrophysics Data System (ADS)
Le Maître, O. P.; Knio, O. M.; Moraes, A.
2015-06-01
This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.
Variance decomposition in stochastic simulators.
Le Maître, O P; Knio, O M; Moraes, A
2015-06-28
This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.
Richard V. Field, Jr.; Emery, John M.; Grigoriu, Mircea Dan
2015-05-19
The stochastic collocation (SC) and stochastic Galerkin (SG) methods are two well-established and successful approaches for solving general stochastic problems. A recently developed method based on stochastic reduced order models (SROMs) can also be used. Herein we provide a comparison of the three methods for some numerical examples; our evaluation only holds for the examples considered in the paper. The purpose of the comparisons is not to criticize the SC or SG methods, which have proven very useful for a broad range of applications, nor is it to provide overall ratings of these methods as compared to the SROM method.more » Furthermore, our objectives are to present the SROM method as an alternative approach to solving stochastic problems and provide information on the computational effort required by the implementation of each method, while simultaneously assessing their performance for a collection of specific problems.« less
Variance decomposition in stochastic simulators
Le Maître, O. P.; Knio, O. M.; Moraes, A.
2015-06-28
This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.
Stochastic simulation of transport phenomena
Wedgewood, L.E.; Geurts, K.R.
1995-10-01
In this paper, four examples are given to demonstrate how stochastic simulations can be used as a method to obtain numerical solutions to transport problems. The problems considered are two-dimensional heat conduction, mass diffusion with reaction, the start-up of Poiseuille flow, and Couette flow of a suspension of Hookean dumbbells. The first three examples are standard problems with well-known analytic solutions which can be used to verify the results of the stochastic simulation. The fourth example combines a Brownian dynamics simulation for Hookean dumbbells, a crude model of a dilute polymer suspension, and a stochastic simulation for the suspending, Newtonian fluid. These examples illustrate appropriate methods for handling source/sink terms and initial and boundary conditions. The stochastic simulation results compare well with the analytic solutions and other numerical solutions. The goal of this paper is to demonstrate the wide applicability of stochastic simulation as a numerical method for transport problems.
Richard V. Field, Jr.; Emery, John M.; Grigoriu, Mircea Dan
2015-05-19
The stochastic collocation (SC) and stochastic Galerkin (SG) methods are two well-established and successful approaches for solving general stochastic problems. A recently developed method based on stochastic reduced order models (SROMs) can also be used. Herein we provide a comparison of the three methods for some numerical examples; our evaluation only holds for the examples considered in the paper. The purpose of the comparisons is not to criticize the SC or SG methods, which have proven very useful for a broad range of applications, nor is it to provide overall ratings of these methods as compared to the SROM method. Furthermore, our objectives are to present the SROM method as an alternative approach to solving stochastic problems and provide information on the computational effort required by the implementation of each method, while simultaneously assessing their performance for a collection of specific problems.
Rubinstein, Larry; Litwin, Samuel; Yothers, Greg
2012-01-01
Background Most phase II clinical trials utilize a single primary endpoint to determine the promise of a regimen for future study. However, many disorders manifest themselves in complex ways. For example, migraine headaches can cause pain, auras, photophobia, and emesis. Investigators may believe a drug is effective at reducing migraine pain and the severity of emesis during an attack. Nevertheless, they could still be interested in proceeding with development of the drug if it is effective against only one of these symptoms. Such a study would be a candidate for a clinical trial with co-primary endpoints. Purpose The purpose of the article is to provide a method for designing a 2-stage clinical trial with dichotomous co-primary endpoints of efficacy that has the ability to detect activity on either response measure with high probability when the drug is active on one or both measures, while at the same time rejecting the drug with high probability when there is little activity on both dimensions. The design enables early closure for futility and is flexible with regard to attained accrual. Methods The design is proposed in the context of cancer clinical trials where tumor response is used to assess a drug's ability to kill tumor cells and progression-free survival (PFS) status after a certain period is used to evaluate the drug's ability to stabilize tumor growth. Both endpoints are assumed to be distributed as binomial random variables, and uninteresting probabilities of success are determined from historical controls. Given the necessity of accrual flexibility, exhaustive searching algorithms to find optimum designs do not seem feasible at this time. Instead, critical values are determined for realized sample sizes using specific procedures. Then accrual windows are found to achieve a design's desired level of significance, probability of early termination (PET), and power. Results The design is illustrated with a clinical trial that examined bevacizumab in
Stochastic models of gene expression and post-transcriptional regulation
NASA Astrophysics Data System (ADS)
Pendar, Hodjat; Kulkarni, Rahul; Jia, Tao
2011-10-01
The intrinsic stochasticity of gene expression can give rise to phenotypic heterogeneity in a population of genetically identical cells. Correspondingly, there is considerable interest in understanding how different molecular mechanisms impact the 'noise' in gene expression. Of particular interest are post-transcriptional regulatory mechanisms involving genes called small RNAs, which control important processes such as development and cancer. We propose and analyze general stochastic models of gene expression and derive exact analytical expressions quantifying the noise in protein distributions [1]. Focusing on specific regulatory mechanisms, we analyze a general model for post-transcriptional regulation of stochastic gene expression [2]. The results obtained provide new insights into the role of post-transcriptional regulation in controlling the noise in gene expression. [4pt] [1] T. Jia and R. V. Kulkarni, Phys. Rev. Lett.,106, 058102 (2011) [0pt] [2] T. Jia and R. V. Kulkarni, Phys. Rev. Lett., 105, 018101 (2010)
Stochastic reconstruction of sandstones
Manwart; Torquato; Hilfer
2000-07-01
A simulated annealing algorithm is employed to generate a stochastic model for a Berea sandstone and a Fontainebleau sandstone, with each a prescribed two-point probability function, lineal-path function, and "pore size" distribution function, respectively. We find that the temperature decrease of the annealing has to be rather quick to yield isotropic and percolating configurations. A comparison of simple morphological quantities indicates good agreement between the reconstructions and the original sandstones. Also, the mean survival time of a random walker in the pore space is reproduced with good accuracy. However, a more detailed investigation by means of local porosity theory shows that there may be significant differences of the geometrical connectivity between the reconstructed and the experimental samples.
Stochastic patch exploitation model
Rita, H.; Ranta, E.
1998-01-01
A solitary animal is foraging in a patch consisting of discrete prey items. We develop a stochastic model for the accumulation of gain as a function of elapsed time in the patch. The model is based on the waiting times between subsequent encounters with the prey items. The novelty of the model is in that it renders possible–via parameterization of the waiting time distributions: the incorporation of different foraging situations and patch structures into the gain process. The flexibility of the model is demonstrated with different foraging scenarios. Dependence of gain expectation and variance of the parameters of the waiting times is studied under these conditions. The model allows us to comment upon some of the basic concepts in contemporary foraging theory.
NASA Technical Reports Server (NTRS)
Whitney, W. J.; Behning, F. P.; Moffitt, T. P.; Hotz, G. M.
1980-01-01
The stage group performance of a 4 1/2 stage turbine with an average stage loading factor of 4.66 and high specific work output was determined in cold air at design equivalent speed. The four stage turbine configuration produced design equivalent work output with an efficiency of 0.856; a barely discernible difference from the 0.855 obtained for the complete 4 1/2 stage turbine in a previous investigation. The turbine was designed and the procedure embodied the following design features: (1) controlled vortex flow, (2) tailored radial work distribution, and (3) control of the location of the boundary-layer transition point on the airfoil suction surface. The efficiency forecast for the 4 1/2 stage turbine was 0.886, and the value predicted using a reference method was 0.862. The stage group performance results were used to determine the individual stage efficiencies for the condition at which design 4 1/2 stage work output was obtained. The efficiencies of stages one and four were about 0.020 lower than the predicted value, that of stage two was 0.014 lower, and that of stage three was about equal to the predicted value. Thus all the stages operated reasonably close to their expected performance levels, and the overall (4 1/2 stage) performance was not degraded by any particularly inefficient component.
A stochastic multi-symplectic scheme for stochastic Maxwell equations with additive noise
Hong, Jialin; Zhang, Liying
2014-07-01
In this paper we investigate a stochastic multi-symplectic method for stochastic Maxwell equations with additive noise. Based on the stochastic version of variational principle, we find a way to obtain the stochastic multi-symplectic structure of three-dimensional (3-D) stochastic Maxwell equations with additive noise. We propose a stochastic multi-symplectic scheme and show that it preserves the stochastic multi-symplectic conservation law and the local and global stochastic energy dissipative properties, which the equations themselves possess. Numerical experiments are performed to verify the numerical behaviors of the stochastic multi-symplectic scheme.
Unsteady Aero Computation of a 1 1/2 Stage Large Scale Rotating Turbine
NASA Technical Reports Server (NTRS)
To, Wai-Ming
2012-01-01
This report is the documentation of the work performed for the Subsonic Rotary Wing Project under the NASA s Fundamental Aeronautics Program. It was funded through Task Number NNC10E420T under GESS-2 Contract NNC06BA07B in the period of 10/1/2010 to 8/31/2011. The objective of the task is to provide support for the development of variable speed power turbine technology through application of computational fluid dynamics analyses. This includes work elements in mesh generation, multistage URANS simulations, and post-processing of the simulation results for comparison with the experimental data. The unsteady CFD calculations were performed with the TURBO code running in multistage single passage (phase lag) mode. Meshes for the blade rows were generated with the NASA developed TCGRID code. The CFD performance is assessed and improvements are recommended for future research in this area. For that, the United Technologies Research Center's 1 1/2 stage Large Scale Rotating Turbine was selected to be the candidate engine configuration for this computational effort because of the completeness and availability of the data.
Technical note: a 2-stage cecal cannulation technique in standing horses.
Beard, W L; Slough, T L; Gunkel, C D
2011-08-01
Cecal cannulation is necessary for sampling of intestinal contents for a variety of nutritional or digestive physiology studies. This report describes a 2-stage technique for permanent cecal cannulation in standing horses. For the first procedure, a right flank laparotomy is performed and a small pouch of the cecal base exteriorized and sutured to the body wall. The second procedure is performed approximately 1 wk later. During the second procedure, the exposed cecal pouch is removed and the cannula inserted. Ten horses were cannulated using this technique. After the first procedure, 1 horse developed a cecal impaction unresponsive to medical therapy and ruptured its cecum, whereas 2 other horses developed mild transient colic that responded to medical management. Insertion of the cecal cannula after creation of the stoma in the second procedure resulted in transient colic in 4 of 9 horses, but they responded to analgesic therapy in less than 24 h in all instances. The time to complete healing of the cannula site was approximately 30 d. The technique described in this report decreases the risk of peritonitis due to intestinal leakage and is technically easier to perform than previously described techniques.
A 2-stage strategy updating rule promotes cooperation in the prisoner's dilemma game
NASA Astrophysics Data System (ADS)
Fang, Xiang-Sheng; Zhu, Ping; Liu, Run-Ran; Liu, En-Yu; Wei, Gui-Yi
2012-10-01
In this study, we propose a spatial prisoner's dilemma game model with a 2-stage strategy updating rule, and focus on the cooperation behavior of the system. In the first stage, i.e., the pre-learning stage, a focal player decides whether to update his strategy according to the pre-learning factor β and the payoff difference between himself and the average of his neighbors. If the player makes up his mind to update, he enters into the second stage, i.e., the learning stage, and adopts a strategy of a randomly selected neighbor according to the standard Fermi updating rule. The simulation results show that the cooperation level has a non-trivial dependence on the pre-learning factor. Generally, the cooperation frequency decreases as the pre-learning factor increases; but a high cooperation level can be obtained in the intermediate region of -3 < β < -1. We then give some explanations via studying the co-action of pre-learning and learning. Our results may sharpen the understanding of the influence of the strategy updating rule on evolutionary games.
Cancer begins in your cells, which are the building blocks of your body. Normally, your body forms ... be benign or malignant. Benign tumors aren't cancer while malignant ones are. Cells from malignant tumors ...
Stochastic roots of growth phenomena
NASA Astrophysics Data System (ADS)
De Lauro, E.; De Martino, S.; De Siena, S.; Giorno, V.
2014-05-01
We show that the Gompertz equation describes the evolution in time of the median of a geometric stochastic process. Therefore, we induce that the process itself generates the growth. This result allows us further to exploit a stochastic variational principle to take account of self-regulation of growth through feedback of relative density variations. The conceptually well defined framework so introduced shows its usefulness by suggesting a form of control of growth by exploiting external actions.
Stochastic superparameterization in quasigeostrophic turbulence
Grooms, Ian; Majda, Andrew J.
2014-08-15
In this article we expand and develop the authors' recent proposed methodology for efficient stochastic superparameterization algorithms for geophysical turbulence. Geophysical turbulence is characterized by significant intermittent cascades of energy from the unresolved to the resolved scales resulting in complex patterns of waves, jets, and vortices. Conventional superparameterization simulates large scale dynamics on a coarse grid in a physical domain, and couples these dynamics to high-resolution simulations on periodic domains embedded in the coarse grid. Stochastic superparameterization replaces the nonlinear, deterministic eddy equations on periodic embedded domains by quasilinear stochastic approximations on formally infinite embedded domains. The result is a seamless algorithm which never uses a small scale grid and is far cheaper than conventional SP, but with significant success in difficult test problems. Various design choices in the algorithm are investigated in detail here, including decoupling the timescale of evolution on the embedded domains from the length of the time step used on the coarse grid, and sensitivity to certain assumed properties of the eddies (e.g. the shape of the assumed eddy energy spectrum). We present four closures based on stochastic superparameterization which elucidate the properties of the underlying framework: a ‘null hypothesis’ stochastic closure that uncouples the eddies from the mean, a stochastic closure with nonlinearly coupled eddies and mean, a nonlinear deterministic closure, and a stochastic closure based on energy conservation. The different algorithms are compared and contrasted on a stringent test suite for quasigeostrophic turbulence involving two-layer dynamics on a β-plane forced by an imposed background shear. The success of the algorithms developed here suggests that they may be fruitfully applied to more realistic situations. They are expected to be particularly useful in providing accurate and
Stochastic Evolution of Halo Spin
NASA Astrophysics Data System (ADS)
Kim, Juhan
2015-08-01
We will introduce an excursion set model for the evolution of halo spin from cosmological N-body simulations. A stochastic differential equation is derived from the definition of halo spin and the distribution of angular momentum changes are measured from simulations. The log-normal distribution of halo spin is found to be a natural consequence of the stochastic differential equation and the resulting spin distribution is found be a function of local environments, halo mass, and redshift.
Stochastic superparameterization in quasigeostrophic turbulence
NASA Astrophysics Data System (ADS)
Grooms, Ian; Majda, Andrew J.
2014-08-01
In this article we expand and develop the authors' recent proposed methodology for efficient stochastic superparameterization algorithms for geophysical turbulence. Geophysical turbulence is characterized by significant intermittent cascades of energy from the unresolved to the resolved scales resulting in complex patterns of waves, jets, and vortices. Conventional superparameterization simulates large scale dynamics on a coarse grid in a physical domain, and couples these dynamics to high-resolution simulations on periodic domains embedded in the coarse grid. Stochastic superparameterization replaces the nonlinear, deterministic eddy equations on periodic embedded domains by quasilinear stochastic approximations on formally infinite embedded domains. The result is a seamless algorithm which never uses a small scale grid and is far cheaper than conventional SP, but with significant success in difficult test problems. Various design choices in the algorithm are investigated in detail here, including decoupling the timescale of evolution on the embedded domains from the length of the time step used on the coarse grid, and sensitivity to certain assumed properties of the eddies (e.g. the shape of the assumed eddy energy spectrum). We present four closures based on stochastic superparameterization which elucidate the properties of the underlying framework: a ‘null hypothesis' stochastic closure that uncouples the eddies from the mean, a stochastic closure with nonlinearly coupled eddies and mean, a nonlinear deterministic closure, and a stochastic closure based on energy conservation. The different algorithms are compared and contrasted on a stringent test suite for quasigeostrophic turbulence involving two-layer dynamics on a β-plane forced by an imposed background shear. The success of the algorithms developed here suggests that they may be fruitfully applied to more realistic situations. They are expected to be particularly useful in providing accurate and
NASA Astrophysics Data System (ADS)
Hosaka, Tadaaki; Ohira, Toru; Lucian, Christian; Milton, John
2005-03-01
Time-delayed feedback control becomes problematic in situations in which the time constant of the system is fast compared to the feedback reaction time. In particular, when perturbations are unpredictable, traditional feedback or feed-forward control schemes can be insufficient. Nonethless a human can balance a stick at their fingertip in the presence of fluctuations that occur on time scales shorter than their neural reaction times. Here we study a simple model of a repulsive delayed random walk and demonstrate that the interplay between noise and delay can transiently stabilize an unstable fixed-point. This observation leads to the concept of ``delayed stochastic control,'' i.e. stabilization of tasks, such as stick balancing at the fingertip, by optimally tuning the noise level with respect to the feedback delay time. References:(1)J.L.Cabrera and J.G.Milton, PRL 89 158702 (2002);(2) T. Ohira and J.G.Milton, PRE 52 3277 (1995);(3)T.Hosaka, T.Ohira, C.Lucian, J.L.Cabrera, and J.G.Milton, Prog. Theor. Phys. (to appear).
Turbulence and Stochastic Processes
NASA Astrophysics Data System (ADS)
Celani, Antonio; Mazzino, Andrea; Pumir, Alain
sec:08-1In 1931 the monograph Analytical Methods in Probability Theory appeared, in which A.N. Kolmogorov laid the foundations for the modern theory of Markov processes [1]. According to Gnedenko: "In the history of probability theory it is difficult to find other works that changed the established points of view and basic trends in research work in such a decisive way". Ten years later, his article on fully developed turbulence provided the framework within which most, if not all, of the subsequent theoretical investigations have been conducted [2] (see e.g. the review by Biferale et al. in this volume [3]. Remarkably, the greatest advances made in the last few years towards a thorough understanding of turbulence developed from the successful marriage between the theory of stochastic processes and the phenomenology of turbulent transport of scalar fields. In this article we will summarize these recent developments which expose the direct link between the intermittency of transported fields and the statistical properties of particle trajectories advected by the turbulent flow (see also [4], and, for a more thorough review, [5]. We also discuss the perspectives of the Lagrangian approach beyond passive scalars, especially for the modeling of hydrodynamic turbulence.
Amin, Anwar Tawfik; Gabr, Adel; Abbas, Hamza
2015-03-01
Laparoscopy assisted distal gastrectomy (LADG) was first reported in 1994. Since then, it has gradually gained maturity. This procedure is less invasive than conventional open gastrectomy, and the oncologic outcomes are comparable. Recently, single-incision laparoscopic surgery (SILS) has been developed, which seems to be less invasive than conventional laparoscopic surgery. However, SILS technique is characterized by a limited working area, crowding and crossing of instruments which make it difficult to be applied for oncologic gastrectomy. In a trial to overcome SILS difficulties, the authors report their initial clinical experience of LADG with D1 lymphadenectomy using a novel 3-ports technique. Twenty-one patients have been enrolled for 3-ports laparoscopic gastrectomy. The patient's demographic and perioperative data have been collected prospectively. The mean operative time in the first ten cases was 170 min and for the last eleven cases was 140 min (P = 0.01). The mean estimated blood loss was 65 ml. There was no use for additional ports or conversion to open surgery. There were no intra-operative major complications. The mean time for hospital stay was 9 days. One case of pneumonia and one death were the postoperative complications. The mean number of retrieved lymph nodes was 21 and all the cases had free surgical margin. Three-ports LADG with D1 lymphadenectomy could be a safe and oncologically feasible procedure; however, a prospective randomized controlled trial comparing three ports LADG with conventional multi-ports LADG is required. It is a step towards three-port total laparoscopic distal gastrectomy. PMID:25663585
Online stochastic optimization of radiotherapy patient scheduling.
Legrain, Antoine; Fortin, Marie-Andrée; Lahrichi, Nadia; Rousseau, Louis-Martin
2015-06-01
The effective management of a cancer treatment facility for radiation therapy depends mainly on optimizing the use of the linear accelerators. In this project, we schedule patients on these machines taking into account their priority for treatment, the maximum waiting time before the first treatment, and the treatment duration. We collaborate with the Centre Intégré de Cancérologie de Laval to determine the best scheduling policy. Furthermore, we integrate the uncertainty related to the arrival of patients at the center. We develop a hybrid method combining stochastic optimization and online optimization to better meet the needs of central planning. We use information on the future arrivals of patients to provide an accurate picture of the expected utilization of resources. Results based on real data show that our method outperforms the policies typically used in treatment centers.
de la Peña-López, Roberto; Remolina-Bonilla, Yuly Andrea
2016-09-01
Cancer is a group of diseases which represents a significant public health problem in Mexico and worldwide. In Mexico neoplasms are the second leading cause of death. An increased morbidity and mortality are expected in the next decades. Several preventable risk factors for cancer development have been identified, the most relevant including tobacco use, which accounts for 30% of the cancer cases; and obesity, associated to another 30%. These factors, in turn, are related to sedentarism, alcohol abuse and imbalanced diets. Some agents are well knokn to cause cancer such as ionizing radiation, viruses such as the papilloma virus (HPV) and hepatitis virus (B and C), and more recently environmental pollution exposure and red meat consumption have been pointed out as carcinogens by the International Agency for Research in Cancer (IARC). The scientific evidence currently available is insufficient to consider milk either as a risk factor or protective factor against different types of cancer. PMID:27603890
A Stochastic Collocation Algorithm for Uncertainty Analysis
NASA Technical Reports Server (NTRS)
Mathelin, Lionel; Hussaini, M. Yousuff; Zang, Thomas A. (Technical Monitor)
2003-01-01
This report describes a stochastic collocation method to adequately handle a physically intrinsic uncertainty in the variables of a numerical simulation. For instance, while the standard Galerkin approach to Polynomial Chaos requires multi-dimensional summations over the stochastic basis functions, the stochastic collocation method enables to collapse those summations to a one-dimensional summation only. This report furnishes the essential algorithmic details of the new stochastic collocation method and provides as a numerical example the solution of the Riemann problem with the stochastic collocation method used for the discretization of the stochastic parameters.
Enhanced algorithms for stochastic programming
Krishna, A.S.
1993-09-01
In this dissertation, we present some of the recent advances made in solving two-stage stochastic linear programming problems of large size and complexity. Decomposition and sampling are two fundamental components of techniques to solve stochastic optimization problems. We describe improvements to the current techniques in both these areas. We studied different ways of using importance sampling techniques in the context of Stochastic programming, by varying the choice of approximation functions used in this method. We have concluded that approximating the recourse function by a computationally inexpensive piecewise-linear function is highly efficient. This reduced the problem from finding the mean of a computationally expensive functions to finding that of a computationally inexpensive function. Then we implemented various variance reduction techniques to estimate the mean of a piecewise-linear function. This method achieved similar variance reductions in orders of magnitude less time than, when we directly applied variance-reduction techniques directly on the given problem. In solving a stochastic linear program, the expected value problem is usually solved before a stochastic solution and also to speed-up the algorithm by making use of the information obtained from the solution of the expected value problem. We have devised a new decomposition scheme to improve the convergence of this algorithm.
Stochastic models: theory and simulation.
Field, Richard V., Jr.
2008-03-01
Many problems in applied science and engineering involve physical phenomena that behave randomly in time and/or space. Examples are diverse and include turbulent flow over an aircraft wing, Earth climatology, material microstructure, and the financial markets. Mathematical models for these random phenomena are referred to as stochastic processes and/or random fields, and Monte Carlo simulation is the only general-purpose tool for solving problems of this type. The use of Monte Carlo simulation requires methods and algorithms to generate samples of the appropriate stochastic model; these samples then become inputs and/or boundary conditions to established deterministic simulation codes. While numerous algorithms and tools currently exist to generate samples of simple random variables and vectors, no cohesive simulation tool yet exists for generating samples of stochastic processes and/or random fields. There are two objectives of this report. First, we provide some theoretical background on stochastic processes and random fields that can be used to model phenomena that are random in space and/or time. Second, we provide simple algorithms that can be used to generate independent samples of general stochastic models. The theory and simulation of random variables and vectors is also reviewed for completeness.
Nonlinear optimization for stochastic simulations.
Johnson, Michael M.; Yoshimura, Ann S.; Hough, Patricia Diane; Ammerlahn, Heidi R.
2003-12-01
This report describes research targeting development of stochastic optimization algorithms and their application to mission-critical optimization problems in which uncertainty arises. The first section of this report covers the enhancement of the Trust Region Parallel Direct Search (TRPDS) algorithm to address stochastic responses and the incorporation of the algorithm into the OPT++ optimization library. The second section describes the Weapons of Mass Destruction Decision Analysis Center (WMD-DAC) suite of systems analysis tools and motivates the use of stochastic optimization techniques in such non-deterministic simulations. The third section details a batch programming interface designed to facilitate criteria-based or algorithm-driven execution of system-of-system simulations. The fourth section outlines the use of the enhanced OPT++ library and batch execution mechanism to perform systems analysis and technology trade-off studies in the WMD detection and response problem domain.
Stochastic determination of matrix determinants.
Dorn, Sebastian; Ensslin, Torsten A
2015-07-01
Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations-matrices-acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination.
Mechanical autonomous stochastic heat engines
NASA Astrophysics Data System (ADS)
Serra-Garcia, Marc; Foehr, Andre; Moleron, Miguel; Lydon, Joseph; Chong, Christopher; Daraio, Chiara; . Team
Stochastic heat engines extract work from the Brownian motion of a set of particles out of equilibrium. So far, experimental demonstrations of stochastic heat engines have required extreme operating conditions or nonautonomous external control systems. In this talk, we will present a simple, purely classical, autonomous stochastic heat engine that uses the well-known tension induced nonlinearity in a string. Our engine operates between two heat baths out of equilibrium, and transfers energy from the hot bath to a work reservoir. This energy transfer occurs even if the work reservoir is at a higher temperature than the hot reservoir. The talk will cover a theoretical investigation and experimental results on a macroscopic setup subject to external noise excitations. This system presents an opportunity for the study of non equilibrium thermodynamics and is an interesting candidate for innovative energy conversion devices.
Principal axes for stochastic dynamics
NASA Astrophysics Data System (ADS)
Vasconcelos, V. V.; Raischel, F.; Haase, M.; Peinke, J.; Wächter, M.; Lind, P. G.; Kleinhans, D.
2011-09-01
We introduce a general procedure for directly ascertaining how many independent stochastic sources exist in a complex system modeled through a set of coupled Langevin equations of arbitrary dimension. The procedure is based on the computation of the eigenvalues and the corresponding eigenvectors of local diffusion matrices. We demonstrate our algorithm by applying it to two examples of systems showing Hopf bifurcation. We argue that computing the eigenvectors associated to the eigenvalues of the diffusion matrix at local mesh points in the phase space enables one to define vector fields of stochastic eigendirections. In particular, the eigenvector associated to the lowest eigenvalue defines the path of minimum stochastic forcing in phase space, and a transform to a new coordinate system aligned with the eigenvectors can increase the predictability of the system.
Stochastic Simulation of Turing Patterns
NASA Astrophysics Data System (ADS)
Fu, Zheng-Ping; Xu, Xin-Hang; Wang, Hong-Li; Ouyang, Qi
2008-04-01
We investigate the effects of intrinsic noise on Turing pattern formation near the onset of bifurcation from the homogeneous state to Turing pattern in the reaction-diffusion Brusselator. By performing stochastic simulations of the master equation and using Gillespie's algorithm, we check the spatiotemporal behaviour influenced by internal noises. We demonstrate that the patterns of occurrence frequency for the reaction and diffusion processes are also spatially ordered and temporally stable. Turing patterns are found to be robust against intrinsic fluctuations. Stochastic simulations also reveal that under the influence of intrinsic noises, the onset of Turing instability is advanced in comparison to that predicted deterministically.
QB1 - Stochastic Gene Regulation
Munsky, Brian
2012-07-23
Summaries of this presentation are: (1) Stochastic fluctuations or 'noise' is present in the cell - Random motion and competition between reactants, Low copy, quantization of reactants, Upstream processes; (2) Fluctuations may be very important - Cell-to-cell variability, Cell fate decisions (switches), Signal amplification or damping, stochastic resonances; and (3) Some tools are available to mode these - Kinetic Monte Carlo simulations (SSA and variants), Moment approximation methods, Finite State Projection. We will see how modeling these reactions can tell us more about the underlying processes of gene regulation.
Stochastic Optimization of Complex Systems
Birge, John R.
2014-03-20
This project focused on methodologies for the solution of stochastic optimization problems based on relaxation and penalty methods, Monte Carlo simulation, parallel processing, and inverse optimization. The main results of the project were the development of a convergent method for the solution of models that include expectation constraints as in equilibrium models, improvement of Monte Carlo convergence through the use of a new method of sample batch optimization, the development of new parallel processing methods for stochastic unit commitment models, and the development of improved methods in combination with parallel processing for incorporating automatic differentiation methods into optimization.
Partial ASL extensions for stochastic programming.
Gay, David
2010-03-31
partially completed extensions for stochastic programming to the AMPL/solver interface library (ASL).modeling and experimenting with stochastic recourse problems. This software is not primarily for military applications
Theory, technology, and technique of stochastic cooling
Marriner, J.
1993-10-01
The theory and technological implementation of stochastic cooling is described. Theoretical and technological limitations are discussed. Data from existing stochastic cooling systems are shown to illustrate some useful techniques.
The Hamiltonian Mechanics of Stochastic Acceleration
Burby, J. W.
2013-07-17
We show how to nd the physical Langevin equation describing the trajectories of particles un- dergoing collisionless stochastic acceleration. These stochastic di erential equations retain not only one-, but two-particle statistics, and inherit the Hamiltonian nature of the underlying microscopic equations. This opens the door to using stochastic variational integrators to perform simulations of stochastic interactions such as Fermi acceleration. We illustrate the theory by applying it to two example problems.
Transport in a stochastic magnetic field
White, R.B.; Wu, Yanlin . Plasma Physics Lab.); Rax, J.M. . Dept. de Recherches sur la Fusion Controlee)
1992-01-01
Collisional heat transport in a stochastic magnetic field configuration is investigated. Well above stochastic threshold, a numerical solution of a Chirikov-Taylor model shows a short-time nonlocal regime, but at large time the Rechester-Rosenbluth effective diffusion is confirmed. Near stochastic threshold, subdiffusive behavior is observed for short mean free paths. The nature of this subdiffusive behavior is understood in terms of the spectrum of islands in the stochastic sea.
Transport in a stochastic magnetic field
White, R.B.; Wu, Yanlin; Rax, J.M.
1992-09-01
Collisional heat transport in a stochastic magnetic field configuration is investigated. Well above stochastic threshold, a numerical solution of a Chirikov-Taylor model shows a short-time nonlocal regime, but at large time the Rechester-Rosenbluth effective diffusion is confirmed. Near stochastic threshold, subdiffusive behavior is observed for short mean free paths. The nature of this subdiffusive behavior is understood in terms of the spectrum of islands in the stochastic sea.
NASA Technical Reports Server (NTRS)
Whitney, W. J.
1977-01-01
The stage work distribution among the three stages was very close to the design value. The specific work output-mass flow characteristics of the three stages were closely matched. The efficiency of the 3 1/2 stage turbine at design specific work output and design speed was within 0.008 of the estimated value, and this agreement was felt to demonstrate the adequacy of the prediction method in the high stage loading factor regime.
... weight Minimizing your exposure to radiation and toxic chemicals Not smoking or chewing tobacco Reducing sun exposure, especially if you burn easily Cancer screenings, such as mammography and breast ...
Stochastic architecture for Hopfield neural nets
NASA Technical Reports Server (NTRS)
Pavel, Sandy
1992-01-01
An expandable stochastic digital architecture for recurrent (Hopfield like) neural networks is proposed. The main features and basic principles of stochastic processing are presented. The stochastic digital architecture is based on a chip with n full interconnected neurons with a pipeline, bit processing structure. For large applications, a flexible way to interconnect many such chips is provided.
Stochastic-field cavitation model
NASA Astrophysics Data System (ADS)
Dumond, J.; Magagnato, F.; Class, A.
2013-07-01
Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian "particles" or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.
Stochastic-field cavitation model
Dumond, J.; Magagnato, F.; Class, A.
2013-07-15
Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian “particles” or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.
Stochastic resonance on a circle
Wiesenfeld, K. ); Pierson, D.; Pantazelou, E.; Dames, C.; Moss, F. )
1994-04-04
We describe a new realization of stochastic resonance, applicable to a broad class of systems, based on an underlying excitable dynamics with deterministic reinjection. A simple but general theory of such single-trigger'' systems is compared with analog simulations of the Fitzhugh-Nagumo model, as well as experimental data obtained from stimulated sensory neurons in the crayfish.
Universality in Stochastic Exponential Growth
NASA Astrophysics Data System (ADS)
Iyer-Biswas, Srividya; Crooks, Gavin E.; Scherer, Norbert F.; Dinner, Aaron R.
2014-07-01
Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.
Algorithmic advances in stochastic programming
Morton, D.P.
1993-07-01
Practical planning problems with deterministic forecasts of inherently uncertain parameters often yield unsatisfactory solutions. Stochastic programming formulations allow uncertain parameters to be modeled as random variables with known distributions, but the size of the resulting mathematical programs can be formidable. Decomposition-based algorithms take advantage of special structure and provide an attractive approach to such problems. We consider two classes of decomposition-based stochastic programming algorithms. The first type of algorithm addresses problems with a ``manageable`` number of scenarios. The second class incorporates Monte Carlo sampling within a decomposition algorithm. We develop and empirically study an enhanced Benders decomposition algorithm for solving multistage stochastic linear programs within a prespecified tolerance. The enhancements include warm start basis selection, preliminary cut generation, the multicut procedure, and decision tree traversing strategies. Computational results are presented for a collection of ``real-world`` multistage stochastic hydroelectric scheduling problems. Recently, there has been an increased focus on decomposition-based algorithms that use sampling within the optimization framework. These approaches hold much promise for solving stochastic programs with many scenarios. A critical component of such algorithms is a stopping criterion to ensure the quality of the solution. With this as motivation, we develop a stopping rule theory for algorithms in which bounds on the optimal objective function value are estimated by sampling. Rules are provided for selecting sample sizes and terminating the algorithm under which asymptotic validity of confidence interval statements for the quality of the proposed solution can be verified. Issues associated with the application of this theory to two sampling-based algorithms are considered, and preliminary empirical coverage results are presented.
NASA Astrophysics Data System (ADS)
Zhang, Ming
2015-10-01
A theory of 2-stage acceleration of Galactic cosmic rays in supernova remnants is proposed. The first stage is accomplished by the supernova shock front, where a power-law spectrum is established up to a certain cutoff energy. It is followed by stochastic acceleration with compressible waves/turbulence in the downstream medium. With a broad \\propto {k}-2 spectrum for the compressible plasma fluctuations, the rate of stochastic acceleration is constant over a wide range of particle momentum. In this case, the stochastic acceleration process extends the power-law spectrum cutoff energy of Galactic cosmic rays to the knee without changing the spectral slope. This situation happens as long as the rate of stochastic acceleration is faster than 1/5 of the adiabatic cooling rate. A steeper spectrum of compressible plasma fluctuations that concentrate their power in long wavelengths will accelerate cosmic rays to the knee with a small bump before its cutoff in the comic-ray energy spectrum. This theory does not require a strong amplification of the magnetic field in the upstream interstellar medium in order to accelerate cosmic rays to the knee energy.
Stochastic models of population extinction.
Ovaskainen, Otso; Meerson, Baruch
2010-11-01
Theoretical ecologists have long sought to understand how the persistence of populations depends on biotic and abiotic factors. Classical work showed that demographic stochasticity causes the mean time to extinction to increase exponentially with population size, whereas variation in environmental conditions can lead to a power-law scaling. Recent work has focused especially on the influence of the autocorrelation structure ('color') of environmental noise. In theoretical physics, there is a burst of research activity in analyzing large fluctuations in stochastic population dynamics. This research provides powerful tools for determining extinction times and characterizing the pathway to extinction. It yields, therefore, sharp insights into extinction processes and has great potential for further applications in theoretical biology.
Stochastic Aspects of Cardiac Arrhythmias
NASA Astrophysics Data System (ADS)
Lerma, Claudia; Krogh-Madsen, Trine; Guevara, Michael; Glass, Leon
2007-07-01
Abnormal cardiac rhythms (cardiac arrhythmias) often display complex changes over time that can have a random or haphazard appearance. Mathematically, these changes can on occasion be identified with bifurcations in difference or differential equation models of the arrhythmias. One source for the variability of these rhythms is the fluctuating environment. However, in the neighborhood of bifurcation points, the fluctuations induced by the stochastic opening and closing of individual ion channels in the cell membrane, which results in membrane noise, may lead to randomness in the observed dynamics. To illustrate this, we consider the effects of stochastic properties of ion channels on the resetting of pacemaker oscillations and on the generation of early afterdepolarizations. The comparison of the statistical properties of long records showing arrhythmias with the predictions from theoretical models should help in the identification of different mechanisms underlying cardiac arrhythmias.
Stochastic kinetic mean field model
NASA Astrophysics Data System (ADS)
Erdélyi, Zoltán; Pasichnyy, Mykola; Bezpalchuk, Volodymyr; Tomán, János J.; Gajdics, Bence; Gusak, Andriy M.
2016-07-01
This paper introduces a new model for calculating the change in time of three-dimensional atomic configurations. The model is based on the kinetic mean field (KMF) approach, however we have transformed that model into a stochastic approach by introducing dynamic Langevin noise. The result is a stochastic kinetic mean field model (SKMF) which produces results similar to the lattice kinetic Monte Carlo (KMC). SKMF is, however, far more cost-effective and easier to implement the algorithm (open source program code is provided on http://skmf.eu website). We will show that the result of one SKMF run may correspond to the average of several KMC runs. The number of KMC runs is inversely proportional to the amplitude square of the noise in SKMF. This makes SKMF an ideal tool also for statistical purposes.
Wavelet entropy of stochastic processes
NASA Astrophysics Data System (ADS)
Zunino, L.; Pérez, D. G.; Garavaglia, M.; Rosso, O. A.
2007-06-01
We compare two different definitions for the wavelet entropy associated to stochastic processes. The first one, the normalized total wavelet entropy (NTWS) family [S. Blanco, A. Figliola, R.Q. Quiroga, O.A. Rosso, E. Serrano, Time-frequency analysis of electroencephalogram series, III. Wavelet packets and information cost function, Phys. Rev. E 57 (1998) 932-940; O.A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schürmann, E. Başar, Wavelet entropy: a new tool for analysis of short duration brain electrical signals, J. Neurosci. Method 105 (2001) 65-75] and a second introduced by Tavares and Lucena [Physica A 357(1) (2005) 71-78]. In order to understand their advantages and disadvantages, exact results obtained for fractional Gaussian noise ( -1<α< 1) and fractional Brownian motion ( 1<α< 3) are assessed. We find out that the NTWS family performs better as a characterization method for these stochastic processes.
Stochastic scanning multiphoton multifocal microscopy.
Jureller, Justin E; Kim, Hee Y; Scherer, Norbert F
2006-04-17
Multiparticle tracking with scanning confocal and multiphoton fluorescence imaging is increasingly important for elucidating biological function, as in the transport of intracellular cargo-carrying vesicles. We demonstrate a simple rapid-sampling stochastic scanning multifocal multiphoton microscopy (SS-MMM) fluorescence imaging technique that enables multiparticle tracking without specialized hardware at rates 1,000 times greater than conventional single point raster scanning. Stochastic scanning of a diffractive optic generated 10x10 hexagonal array of foci with a white noise driven galvanometer yields a scan pattern that is random yet space-filling. SS-MMM creates a more uniformly sampled image with fewer spatio-temporal artifacts than obtained by conventional or multibeam raster scanning. SS-MMM is verified by simulation and experimentally demonstrated by tracking microsphere diffusion in solution. PMID:19516485
Stochastic background of atmospheric cascades
Wilk, G. ); Wlodarczyk, Z. )
1993-06-15
Fluctuations in the atmospheric cascades developing during the propagation of very high energy cosmic rays through the atmosphere are investigated using stochastic branching model of pure birth process with immigration. In particular, we show that the multiplicity distributions of secondaries emerging from gamma families are much narrower than those resulting from hadronic families. We argue that the strong intermittent like behaviour found recently in atmospheric families results from the fluctuations in the cascades themselves and are insensitive to the details of elementary interactions.
Mechanical Autonomous Stochastic Heat Engine.
Serra-Garcia, Marc; Foehr, André; Molerón, Miguel; Lydon, Joseph; Chong, Christopher; Daraio, Chiara
2016-07-01
Stochastic heat engines are devices that generate work from random thermal motion using a small number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a century and include the Maxwell demon and the Feynman ratchet. Only recently have they been demonstrated experimentally, using, e.g., thermal cycles implemented in optical traps. However, recent experimental demonstrations of classical stochastic heat engines are nonautonomous, since they require an external control system that prescribes a heating and cooling cycle and consume more energy than they produce. We present a heat engine consisting of three coupled mechanical resonators (two ribbons and a cantilever) subject to a stochastic drive. The engine uses geometric nonlinearities in the resonating ribbons to autonomously convert a random excitation into a low-entropy, nonpassive oscillation of the cantilever. The engine presents the anomalous heat transport property of negative thermal conductivity, consisting in the ability to passively transfer energy from a cold reservoir to a hot reservoir.
Mechanical Autonomous Stochastic Heat Engine
NASA Astrophysics Data System (ADS)
Serra-Garcia, Marc; Foehr, André; Molerón, Miguel; Lydon, Joseph; Chong, Christopher; Daraio, Chiara
2016-07-01
Stochastic heat engines are devices that generate work from random thermal motion using a small number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a century and include the Maxwell demon and the Feynman ratchet. Only recently have they been demonstrated experimentally, using, e.g., thermal cycles implemented in optical traps. However, recent experimental demonstrations of classical stochastic heat engines are nonautonomous, since they require an external control system that prescribes a heating and cooling cycle and consume more energy than they produce. We present a heat engine consisting of three coupled mechanical resonators (two ribbons and a cantilever) subject to a stochastic drive. The engine uses geometric nonlinearities in the resonating ribbons to autonomously convert a random excitation into a low-entropy, nonpassive oscillation of the cantilever. The engine presents the anomalous heat transport property of negative thermal conductivity, consisting in the ability to passively transfer energy from a cold reservoir to a hot reservoir.
Stochastic resonance in binocular rivalry.
Kim, Yee-Joon; Grabowecky, Marcia; Suzuki, Satoru
2006-02-01
When a different image is presented to each eye, visual awareness spontaneously alternates between the two images--a phenomenon called binocular rivalry. Because binocular rivalry is characterized by two marginally stable perceptual states and spontaneous, apparently stochastic, switching between them, it has been speculated that switches in perceptual awareness reflect a double-well-potential type computational architecture coupled with noise. To characterize this noise-mediated mechanism, we investigated whether stimulus input, neural adaptation, and inhibitory modulations (thought to underlie perceptual switches) interacted with noise in such a way that the system produced stochastic resonance. By subjecting binocular rivalry to weak periodic contrast modulations spanning a range of frequencies, we demonstrated quantitative evidence of stochastic resonance in binocular rivalry. Our behavioral results combined with computational simulations provided insights into the nature of the internal noise (its magnitude, locus, and calibration) that is relevant to perceptual switching, as well as provided novel dynamic constraints on computational models designed to capture the neural mechanisms underlying perceptual switching.
Mechanical Autonomous Stochastic Heat Engine.
Serra-Garcia, Marc; Foehr, André; Molerón, Miguel; Lydon, Joseph; Chong, Christopher; Daraio, Chiara
2016-07-01
Stochastic heat engines are devices that generate work from random thermal motion using a small number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a century and include the Maxwell demon and the Feynman ratchet. Only recently have they been demonstrated experimentally, using, e.g., thermal cycles implemented in optical traps. However, recent experimental demonstrations of classical stochastic heat engines are nonautonomous, since they require an external control system that prescribes a heating and cooling cycle and consume more energy than they produce. We present a heat engine consisting of three coupled mechanical resonators (two ribbons and a cantilever) subject to a stochastic drive. The engine uses geometric nonlinearities in the resonating ribbons to autonomously convert a random excitation into a low-entropy, nonpassive oscillation of the cantilever. The engine presents the anomalous heat transport property of negative thermal conductivity, consisting in the ability to passively transfer energy from a cold reservoir to a hot reservoir. PMID:27419553
AESS: Accelerated Exact Stochastic Simulation
NASA Astrophysics Data System (ADS)
Jenkins, David D.; Peterson, Gregory D.
2011-12-01
The Stochastic Simulation Algorithm (SSA) developed by Gillespie provides a powerful mechanism for exploring the behavior of chemical systems with small species populations or with important noise contributions. Gene circuit simulations for systems biology commonly employ the SSA method, as do ecological applications. This algorithm tends to be computationally expensive, so researchers seek an efficient implementation of SSA. In this program package, the Accelerated Exact Stochastic Simulation Algorithm (AESS) contains optimized implementations of Gillespie's SSA that improve the performance of individual simulation runs or ensembles of simulations used for sweeping parameters or to provide statistically significant results. Program summaryProgram title: AESS Catalogue identifier: AEJW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: University of Tennessee copyright agreement No. of lines in distributed program, including test data, etc.: 10 861 No. of bytes in distributed program, including test data, etc.: 394 631 Distribution format: tar.gz Programming language: C for processors, CUDA for NVIDIA GPUs Computer: Developed and tested on various x86 computers and NVIDIA C1060 Tesla and GTX 480 Fermi GPUs. The system targets x86 workstations, optionally with multicore processors or NVIDIA GPUs as accelerators. Operating system: Tested under Ubuntu Linux OS and CentOS 5.5 Linux OS Classification: 3, 16.12 Nature of problem: Simulation of chemical systems, particularly with low species populations, can be accurately performed using Gillespie's method of stochastic simulation. Numerous variations on the original stochastic simulation algorithm have been developed, including approaches that produce results with statistics that exactly match the chemical master equation (CME) as well as other approaches that approximate the CME. Solution
Eradication-resolution dynamics with stochastic flare-ups.
van den Berg, Hugo A; Duncombe, Zoe A
2010-06-01
In infectious disease as well as in cancer, the ultimate outcome of the curative response, mediated by the body itself or through drug treatment, is either successful eradication or a resurgence of the disease ("flare-up" or "relapse"), depending on random fluctuations that dominate the dynamics of the system when the number of diseased cells has become very low. The presence of a low-numbers bottle-neck in the dynamics, which is unavoidable if eradication is to take place at all, renders at least one phase of the dynamics essentially stochastic. However, the eradicating agents (e.g. immune cells, drug molecules) generally remain at high numbers during the critical bottle-neck phase, sufficiently so to warrant a deterministic treatment. This leads us to consider a hybrid stochastic-deterministic approach where the infected cells are treated stochastically whereas the eradicating agents are treated deterministically. Exploiting the fact that the number of eradicating agents typically decreases monotonically during the resolution phase of the response, we derive a set of coupled first-order differential equations that describe the probability of ultimate eradication as a function of the system's state, and we consider a number of biomedical applications. PMID:20226791
Stochastic Turing patterns on a network.
Asslani, Malbor; Di Patti, Francesca; Fanelli, Duccio
2012-10-01
The process of stochastic Turing instability on a scale-free network is discussed for a specific case study: the stochastic Brusselator model. The system is shown to spontaneously differentiate into activator-rich and activator-poor nodes outside the region of parameters classically deputed to the deterministic Turing instability. This phenomenon, as revealed by direct stochastic simulations, is explained analytically and eventually traced back to the finite-size corrections stemming from the inherent graininess of the scrutinized medium. PMID:23214650
Stochastic Turing patterns on a network
NASA Astrophysics Data System (ADS)
Asslani, Malbor; Di Patti, Francesca; Fanelli, Duccio
2012-10-01
The process of stochastic Turing instability on a scale-free network is discussed for a specific case study: the stochastic Brusselator model. The system is shown to spontaneously differentiate into activator-rich and activator-poor nodes outside the region of parameters classically deputed to the deterministic Turing instability. This phenomenon, as revealed by direct stochastic simulations, is explained analytically and eventually traced back to the finite-size corrections stemming from the inherent graininess of the scrutinized medium.
Ant colony optimization and stochastic gradient descent.
Meuleau, Nicolas; Dorigo, Marco
2002-01-01
In this article, we study the relationship between the two techniques known as ant colony optimization (ACO) and stochastic gradient descent. More precisely, we show that some empirical ACO algorithms approximate stochastic gradient descent in the space of pheromones, and we propose an implementation of stochastic gradient descent that belongs to the family of ACO algorithms. We then use this insight to explore the mutual contributions of the two techniques. PMID:12171633
Stochastic Vorticity and Associated Filtering Theory
Amirdjanova, A.; Kallianpur, G.
2002-12-19
The focus of this work is on a two-dimensional stochastic vorticity equation for an incompressible homogeneous viscous fluid. We consider a signed measure-valued stochastic partial differential equation for a vorticity process based on the Skorohod-Ito evolution of a system of N randomly moving point vortices. A nonlinear filtering problem associated with the evolution of the vorticity is considered and a corresponding Fujisaki-Kallianpur-Kunita stochastic differential equation for the optimal filter is derived.
NASA Technical Reports Server (NTRS)
Springer, A.
1994-01-01
An experimental investigation of plume-induced flow separation on the National Launch System (NLS) 1 1/2-stage launch vehicle was done. This investigation resulted from concerns raised about the flow separation that was encountered on the Saturn 5. A large similarity exists between configurations and nominal trajectories. The study involved the use of solid plume simulators to simulate the base pressure encountered by the vehicle due to engine exhaust plumes at predetermined critical Mach numbers based on Saturn 5 flight plume effects. The solid plume was varied in location, resulting in a parametric study of base pressure effects on flow separation. In addition to the parametric study of arbitrary plume locations, the base pressure resulting from the nominal trajectory was tested. This analysis was accomplished through two wind tunnel tests run at NASA Marshall Space Flight Center's 14 x 14-inch Trisonic Wind Tunnel during 1992. The two tests were a static stability and a pressure test each using a 0.004-scale NLS 1 1/2-stage model. This study verified that flow separation is present at Mach 2.74 and 3.48 for predicted flight base pressures at nominal or higher levels. The flow separation at the predicted base pressure is only minor and should not be of great concern. It is not of the magnitude of the flow separation that was experienced on the Saturn 5. If the base pressure exceeds these nominal conditions, the flow separation can drastically increase, and is of concern.
Attainability analysis in the stochastic sensitivity control
NASA Astrophysics Data System (ADS)
Bashkirtseva, Irina
2015-02-01
For nonlinear dynamic stochastic control system, we construct a feedback regulator that stabilises an equilibrium and synthesises a required dispersion of random states around this equilibrium. Our approach is based on the stochastic sensitivity functions technique. We focus on the investigation of attainability sets for 2-D systems. A detailed parametric description of the attainability domains for various types of control inputs for stochastic Brusselator is presented. It is shown that the new regulator provides a low level of stochastic sensitivity and can suppress oscillations of large amplitude.
Stochastic solution to quantum dynamics
NASA Technical Reports Server (NTRS)
John, Sarah; Wilson, John W.
1994-01-01
The quantum Liouville equation in the Wigner representation is solved numerically by using Monte Carlo methods. For incremental time steps, the propagation is implemented as a classical evolution in phase space modified by a quantum correction. The correction, which is a momentum jump function, is simulated in the quasi-classical approximation via a stochastic process. The technique, which is developed and validated in two- and three- dimensional momentum space, extends an earlier one-dimensional work. Also, by developing a new algorithm, the application to bound state motion in an anharmonic quartic potential shows better agreement with exact solutions in two-dimensional phase space.
Hamilton's principle in stochastic mechanics
NASA Astrophysics Data System (ADS)
Pavon, Michele
1995-12-01
In this paper we establish three variational principles that provide new foundations for Nelson's stochastic mechanics in the case of nonrelativistic particles without spin. The resulting variational picture is much richer and of a different nature with respect to the one previously considered in the literature. We first develop two stochastic variational principles whose Hamilton-Jacobi-like equations are precisely the two coupled partial differential equations that are obtained from the Schrödinger equation (Madelung equations). The two problems are zero-sum, noncooperative, stochastic differential games that are familiar in the control theory literature. They are solved here by means of a new, absolutely elementary method based on Lagrange functionals. For both games the saddle-point equilibrium solution is given by the Nelson's process and the optimal controls for the two competing players are precisely Nelson's current velocity v and osmotic velocity u, respectively. The first variational principle includes as special cases both the Guerra-Morato variational principle [Phys. Rev. D 27, 1774 (1983)] and Schrödinger original variational derivation of the time-independent equation. It also reduces to the classical least action principle when the intensity of the underlying noise tends to zero. It appears as a saddle-point action principle. In the second variational principle the action is simply the difference between the initial and final configurational entropy. It is therefore a saddle-point entropy production principle. From the variational principles it follows, in particular, that both v(x,t) and u(x,t) are gradients of appropriate principal functions. In the variational principles, the role of the background noise has the intuitive meaning of attempting to contrast the more classical mechanical features of the system by trying to maximize the action in the first principle and by trying to increase the entropy in the second. Combining the two variational
Stochastic thermodynamics of information processing
NASA Astrophysics Data System (ADS)
Cardoso Barato, Andre
2015-03-01
We consider two recent advancements on theoretical aspects of thermodynamics of information processing. First we show that the theory of stochastic thermodynamics can be generalized to include information reservoirs. These reservoirs can be seen as a sequence of bits which has its Shannon entropy changed due to the interaction with the system. Second we discuss bipartite systems, which provide a convenient description of Maxwell's demon. Analyzing a special class of bipartite systems we show that they can be used to study cellular information processing, allowing for the definition of an entropic rate that quantifies how much a cell learns about a fluctuating external environment and that is bounded by the thermodynamic entropy production.
Constrained Stochastic Extended Redundancy Analysis.
DeSarbo, Wayne S; Hwang, Heungsun; Stadler Blank, Ashley; Kappe, Eelco
2015-06-01
We devise a new statistical methodology called constrained stochastic extended redundancy analysis (CSERA) to examine the comparative impact of various conceptual factors, or drivers, as well as the specific predictor variables that contribute to each driver on designated dependent variable(s). The technical details of the proposed methodology, the maximum likelihood estimation algorithm, and model selection heuristics are discussed. A sports marketing consumer psychology application is provided in a Major League Baseball (MLB) context where the effects of six conceptual drivers of game attendance and their defining predictor variables are estimated. Results compare favorably to those obtained using traditional extended redundancy analysis (ERA). PMID:24327066
Constrained Stochastic Extended Redundancy Analysis.
DeSarbo, Wayne S; Hwang, Heungsun; Stadler Blank, Ashley; Kappe, Eelco
2015-06-01
We devise a new statistical methodology called constrained stochastic extended redundancy analysis (CSERA) to examine the comparative impact of various conceptual factors, or drivers, as well as the specific predictor variables that contribute to each driver on designated dependent variable(s). The technical details of the proposed methodology, the maximum likelihood estimation algorithm, and model selection heuristics are discussed. A sports marketing consumer psychology application is provided in a Major League Baseball (MLB) context where the effects of six conceptual drivers of game attendance and their defining predictor variables are estimated. Results compare favorably to those obtained using traditional extended redundancy analysis (ERA).
Stochastic dynamics on slow manifolds
NASA Astrophysics Data System (ADS)
Constable, George W. A.; McKane, Alan J.; Rogers, Tim
2013-07-01
The theory of slow manifolds is an important tool in the study of deterministic dynamical systems, giving a practical method by which to reduce the number of relevant degrees of freedom in a model, thereby often resulting in a considerable simplification. In this paper we demonstrate how the same basic methodology may also be applied to stochastic dynamical systems, by examining the behaviour of trajectories conditioned on the event that they do not depart the slow manifold. We apply the method to two models: one from ecology and one from epidemiology, achieving a reduction in model dimension and illustrating the high quality of the analytical approximations.
2-Stage Classification Modeling
1994-11-01
CIRCUIT2.4 is used to design optimum two-stage classification configurations and operating conditions for energy conservation. It permits simulation of five basic grinding-classification circuits, including one single-stage and four two-stage classification arrangements. Hydrocyclones, spiral classifiers, and sieve band screens can be simulated, and the user may choose the combination of devices for the flowsheet simulation. In addition, the user may select from four classification modeling methods to achieve the goals of a simulation project using themore » most familiar concepts. Circuit performance is modeled based on classification parameters or equipment operating conditions. A modular approach was taken in designing the program, which allows future addition of other models with relatively minor changes.« less
2-Stage Classification Modeling
Baltich, L. K.
1994-11-01
CIRCUIT2.4 is used to design optimum two-stage classification configurations and operating conditions for energy conservation. It permits simulation of five basic grinding-classification circuits, including one single-stage and four two-stage classification arrangements. Hydrocyclones, spiral classifiers, and sieve band screens can be simulated, and the user may choose the combination of devices for the flowsheet simulation. In addition, the user may select from four classification modeling methods to achieve the goals of a simulation project using the most familiar concepts. Circuit performance is modeled based on classification parameters or equipment operating conditions. A modular approach was taken in designing the program, which allows future addition of other models with relatively minor changes.
RHIC stochastic cooling motion control
Gassner, D.; DeSanto, L.; Olsen, R.H.; Fu, W.; Brennan, J.M.; Liaw, CJ; Bellavia, S.; Brodowski, J.
2011-03-28
Relativistic Heavy Ion Collider (RHIC) beams are subject to Intra-Beam Scattering (IBS) that causes an emittance growth in all three-phase space planes. The only way to increase integrated luminosity is to counteract IBS with cooling during RHIC stores. A stochastic cooling system for this purpose has been developed, it includes moveable pick-ups and kickers in the collider that require precise motion control mechanics, drives and controllers. Since these moving parts can limit the beam path aperture, accuracy and reliability is important. Servo, stepper, and DC motors are used to provide actuation solutions for position control. The choice of motion stage, drive motor type, and controls are based on needs defined by the variety of mechanical specifications, the unique performance requirements, and the special needs required for remote operations in an accelerator environment. In this report we will describe the remote motion control related beam line hardware, position transducers, rack electronics, and software developed for the RHIC stochastic cooling pick-ups and kickers.
Stochastic Methods for Aircraft Design
NASA Technical Reports Server (NTRS)
Pelz, Richard B.; Ogot, Madara
1998-01-01
The global stochastic optimization method, simulated annealing (SA), was adapted and applied to various problems in aircraft design. The research was aimed at overcoming the problem of finding an optimal design in a space with multiple minima and roughness ubiquitous to numerically generated nonlinear objective functions. SA was modified to reduce the number of objective function evaluations for an optimal design, historically the main criticism of stochastic methods. SA was applied to many CFD/MDO problems including: low sonic-boom bodies, minimum drag on supersonic fore-bodies, minimum drag on supersonic aeroelastic fore-bodies, minimum drag on HSCT aeroelastic wings, FLOPS preliminary design code, another preliminary aircraft design study with vortex lattice aerodynamics, HSR complete aircraft aerodynamics. In every case, SA provided a simple, robust and reliable optimization method which found optimal designs in order 100 objective function evaluations. Perhaps most importantly, from this academic/industrial project, technology has been successfully transferred; this method is the method of choice for optimization problems at Northrop Grumman.
Numerical tests of stochastic tomography
NASA Astrophysics Data System (ADS)
Ru-Shan, Wu; Xiao-Bi, Xie
1991-05-01
The method of stochastic tomography proposed by Wu is tested numerically. This method reconstructs the heterospectra (power spectra of heterogeneities) at all depths of a non-uniform random medium using measured joint transverse-angular coherence functions (JTACF) of transmission fluctuations on an array. The inversion method is based on a constrained least-squares inversion implemented via the singular value decomposition. The inversion is also applicable to reconstructions using transverse coherence functions (TCF) or angular coherence functions (ACF); these are merely special cases of JTACF. Through the analysis of sampling functions and singular values, and through numerical examples of reconstruction using theoretically generated coherence functions, we compare the resolution and robustness of reconstructions using TCF, ACF and JTACF. The JTACF can `focus' the coherence analysis at different depths and therefore has a better depth resolution than TCF and ACF. In addition, the JTACF contains much more information than the sum of TCF and ACF, and has much better noise resistance properties than TCF and ACF. Inversion of JTACF can give a reliable reconstruction of heterospectra at different depths even for data with 20% noise contamination. This demonstrates the feasibility of stochastic tomography using JTACF.
Stochastic Modeling of Laminar-Turbulent Transition
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Choudhari, Meelan
2002-01-01
Stochastic versions of stability equations are developed in order to develop integrated models of transition and turbulence and to understand the effects of uncertain initial conditions on disturbance growth. Stochastic forms of the resonant triad equations, a high Reynolds number asymptotic theory, and the parabolized stability equations are developed.
Attainability analysis in stochastic controlled systems
Ryashko, Lev
2015-03-10
A control problem for stochastically forced nonlinear continuous-time systems is considered. We propose a method for construction of the regulator that provides a preassigned probabilistic distribution of random states in stochastic equilibrium. Geometric criteria of the controllability are obtained. Constructive technique for the specification of attainability sets is suggested.
From Complex to Simple: Interdisciplinary Stochastic Models
ERIC Educational Resources Information Center
Mazilu, D. A.; Zamora, G.; Mazilu, I.
2012-01-01
We present two simple, one-dimensional, stochastic models that lead to a qualitative understanding of very complex systems from biology, nanoscience and social sciences. The first model explains the complicated dynamics of microtubules, stochastic cellular highways. Using the theory of random walks in one dimension, we find analytical expressions…
Variational principles for stochastic fluid dynamics
Holm, Darryl D.
2015-01-01
This paper derives stochastic partial differential equations (SPDEs) for fluid dynamics from a stochastic variational principle (SVP). The paper proceeds by taking variations in the SVP to derive stochastic Stratonovich fluid equations; writing their Itô representation; and then investigating the properties of these stochastic fluid models in comparison with each other, and with the corresponding deterministic fluid models. The circulation properties of the stochastic Stratonovich fluid equations are found to closely mimic those of the deterministic ideal fluid models. As with deterministic ideal flows, motion along the stochastic Stratonovich paths also preserves the helicity of the vortex field lines in incompressible stochastic flows. However, these Stratonovich properties are not apparent in the equivalent Itô representation, because they are disguised by the quadratic covariation drift term arising in the Stratonovich to Itô transformation. This term is a geometric generalization of the quadratic covariation drift term already found for scalar densities in Stratonovich's famous 1966 paper. The paper also derives motion equations for two examples of stochastic geophysical fluid dynamics; namely, the Euler–Boussinesq and quasi-geostropic approximations. PMID:27547083
Stochastic ion acceleration by beating electrostatic waves.
Jorns, B; Choueiri, E Y
2013-01-01
A study is presented of the stochasticity in the orbit of a single, magnetized ion produced by the particle's interaction with two beating electrostatic waves whose frequencies differ by the ion cyclotron frequency. A second-order Lie transform perturbation theory is employed in conjunction with a numerical analysis of the maximum Lyapunov exponent to determine the velocity conditions under which stochasticity occurs in this dynamical system. Upper and lower bounds in ion velocity are found for stochastic orbits with the lower bound approximately equal to the phase velocity of the slower wave. A threshold condition for the onset of stochasticity that is linear with respect to the wave amplitudes is also derived. It is shown that the onset of stochasticity occurs for beating electrostatic waves at lower total wave energy densities than for the case of a single electrostatic wave or two nonbeating electrostatic waves. PMID:23410446
On controllability of nonlinear stochastic systems
NASA Astrophysics Data System (ADS)
Sakthivel, R.; Kim, J.-H.; Mahmudov, N. I.
2006-12-01
In this paper, complete controllability for nonlinear stochastic systems is studied. First this paper addresses the problem of complete controllability of nonlinear stochastic systems with standard Brownian motion. Then this result is extended to establish complete controllability criterion for stochastic systems with fractional Brownian motion. A fixed point approach is employed for achieving the required result. The solutions are given by a variation of constants formula which allows us to study the complete controllability for nonlinear stochastic systems. In this paper, we prove the complete controllability of nonlinear stochastic system under the natural assumption that the associated linear control system is completely controllable. Finally, an illustrative example is provided to show the usefulness of the proposed technique.
Stochastic regularization operators on unstructured meshes
NASA Astrophysics Data System (ADS)
Jordi, Claudio; Doetsch, Joseph; Günther, Thomas; Schmelzbach, Cedric; Robertsson, Johan
2016-04-01
Most geophysical inverse problems require the solution of underdetermined systems of equations. In order to solve such inverse problems, appropriate regularization is required. Ideally, this regularization includes information on the expected model variability and spatial correlation. Based on geostatistical covariance functions, which can be adapted to the specific situation, stochastic regularization can be used to add auxiliary constraints to the given inverse problem. Stochastic regularization operators have been successfully applied to geophysical inverse problems formulated on regular grids. Here, we demonstrate the calculation of stochastic regularization operators for unstructured meshes. Unstructured meshes are advantageous with regards to incorporating arbitrary topography, undulating geological interfaces and complex acquisition geometries into the inversion. However, compared to regular grids, unstructured meshes have variable cell sizes, complicating the calculation of stochastic operators. The stochastic operators proposed here are based on a 2D exponential correlation function, allowing to predefine spatial correlation lengths. The regularization thus acts over an imposed correlation length rather than only taking into account neighbouring cells as in regular smoothing constraints. Correlation over a spatial length partly removes the effects of variable cell sizes of unstructured meshes on the regularization. Synthetic models having large-scale interfaces as well as small-scale stochastic variations are used to analyse the performance and behaviour of the stochastic regularization operators. The resulting inverted models obtained with stochastic regularization are compare against the results of standard regularization approaches (damping and smoothing). Besides using stochastic operators for regularization, we plan to incorporate the footprint of the stochastic operator in further applications such as the calculation of the cross-gradient functions
Stochastic inflation and nonlinear gravity
NASA Astrophysics Data System (ADS)
Salopek, D. S.; Bond, J. R.
1991-02-01
We show how nonlinear effects of the metric and scalar fields may be included in stochastic inflation. Our formalism can be applied to non-Gaussian fluctuation models for galaxy formation. Fluctuations with wavelengths larger than the horizon length are governed by a network of Langevin equations for the physical fields. Stochastic noise terms arise from quantum fluctuations that are assumed to become classical at horizon crossing and that then contribute to the background. Using Hamilton-Jacobi methods, we solve the Arnowitt-Deser-Misner constraint equations which allows us to separate the growing modes from the decaying ones in the drift phase following each stochastic impulse. We argue that the most reasonable choice of time hypersurfaces for the Langevin system during inflation is T=ln(Ha), where H and a are the local values of the Hubble parameter and the scale factor, since T is the natural time for evolving the short-wavelength scalar field fluctuations in an inhomogeneous background. We derive a Fokker-Planck equation which describes how the probability distribution of scalar field values at a given spatial point evolves in T. Analytic Green's-function solutions obtained for a single scalar field self-interacting through an exponential potential are used to demonstrate (1) if the initial condition of the Hubble parameter is chosen to be consistent with microwave-background limits, H(φ0)/mρ<~10-4, then the fluctuations obey Gaussian statistics to a high precision, independent of the time hypersurface choice and operator-ordering ambiguities in the Fokker-Planck equation, and (2) for scales much larger than our present observable patch of the Universe, the distribution is non-Gaussian, with a tail extending to large energy densities; although there are no observable manifestations, it does show eternal inflation. Lattice simulations of our Langevin network for the exponential potential demonstrate how spatial correlations are incorporated. An initially
Stochastic thermodynamics for active matter
NASA Astrophysics Data System (ADS)
Speck, Thomas
2016-05-01
The theoretical understanding of active matter, which is driven out of equilibrium by directed motion, is still fragmental and model oriented. Stochastic thermodynamics, on the other hand, is a comprehensive theoretical framework for driven systems that allows to define fluctuating work and heat. We apply these definitions to active matter, assuming that dissipation can be modelled by effective non-conservative forces. We show that, through the work, conjugate extensive and intensive observables can be defined even in non-equilibrium steady states lacking a free energy. As an illustration, we derive the expressions for the pressure and interfacial tension of active Brownian particles. The latter becomes negative despite the observed stable phase separation. We discuss this apparent contradiction, highlighting the role of fluctuations, and we offer a tentative explanation.
Thermodynamics of stochastic Turing machines.
Strasberg, Philipp; Cerrillo, Javier; Schaller, Gernot; Brandes, Tobias
2015-10-01
In analogy to Brownian computers we explicitly show how to construct stochastic models which mimic the behavior of a general-purpose computer (a Turing machine). Our models are discrete state systems obeying a Markovian master equation, which are logically reversible and have a well-defined and consistent thermodynamic interpretation. The resulting master equation, which describes a simple one-step process on an enormously large state space, allows us to thoroughly investigate the thermodynamics of computation for this situation. Especially in the stationary regime we can well approximate the master equation by a simple Fokker-Planck equation in one dimension. We then show that the entropy production rate at steady state can be made arbitrarily small, but the total (integrated) entropy production is finite and grows logarithmically with the number of computational steps. PMID:26565165
Stochastic dynamics of dengue epidemics
NASA Astrophysics Data System (ADS)
de Souza, David R.; Tomé, Tânia; Pinho, Suani T. R.; Barreto, Florisneide R.; de Oliveira, Mário J.
2013-01-01
We use a stochastic Markovian dynamics approach to describe the spreading of vector-transmitted diseases, such as dengue, and the threshold of the disease. The coexistence space is composed of two structures representing the human and mosquito populations. The human population follows a susceptible-infected-recovered (SIR) type dynamics and the mosquito population follows a susceptible-infected-susceptible (SIS) type dynamics. The human infection is caused by infected mosquitoes and vice versa, so that the SIS and SIR dynamics are interconnected. We develop a truncation scheme to solve the evolution equations from which we get the threshold of the disease and the reproductive ratio. The threshold of the disease is also obtained by performing numerical simulations. We found that for certain values of the infection rates the spreading of the disease is impossible, for any death rate of infected mosquitoes.
Stochastic sensing through covalent interactions
Bayley, Hagan; Shin, Seong-Ho; Luchian, Tudor; Cheley, Stephen
2013-03-26
A system and method for stochastic sensing in which the analyte covalently bonds to the sensor element or an adaptor element. If such bonding is irreversible, the bond may be broken by a chemical reagent. The sensor element may be a protein, such as the engineered P.sub.SH type or .alpha.HL protein pore. The analyte may be any reactive analyte, including chemical weapons, environmental toxins and pharmaceuticals. The analyte covalently bonds to the sensor element to produce a detectable signal. Possible signals include change in electrical current, change in force, and change in fluorescence. Detection of the signal allows identification of the analyte and determination of its concentration in a sample solution. Multiple analytes present in the same solution may be detected.
Stochastic low Reynolds number swimmers.
Golestanian, Ramin; Ajdari, Armand
2009-05-20
As technological advances allow us to fabricate smaller autonomous self-propelled devices, it is clear that at some point directed propulsion could not come from pre-specified deterministic periodic deformation of the swimmer's body and we need to develop strategies for extracting a net directed motion from a series of random transitions in the conformation space of the swimmer. We present a theoretical formulation for describing the 'stochastic motor' that drives the motion of low Reynolds number swimmers based on this concept, and use it to study the propulsion of a simple low Reynolds number swimmer, namely, the three-sphere swimmer model. When the detailed balanced is broken and the motor is driven out of equilibrium, it can propel the swimmer in the required direction. The formulation can be used to study optimal design strategies for molecular scale low Reynolds number swimmers.
Heuristic-biased stochastic sampling
Bresina, J.L.
1996-12-31
This paper presents a search technique for scheduling problems, called Heuristic-Biased Stochastic Sampling (HBSS). The underlying assumption behind the HBSS approach is that strictly adhering to a search heuristic often does not yield the best solution and, therefore, exploration off the heuristic path can prove fruitful. Within the HBSS approach, the balance between heuristic adherence and exploration can be controlled according to the confidence one has in the heuristic. By varying this balance, encoded as a bias function, the HBSS approach encompasses a family of search algorithms of which greedy search and completely random search are extreme members. We present empirical results from an application of HBSS to the realworld problem of observation scheduling. These results show that with the proper bias function, it can be easy to outperform greedy search.
Multiscale Stochastic Simulation and Modeling
James Glimm; Xiaolin Li
2006-01-10
Acceleration driven instabilities of fluid mixing layers include the classical cases of Rayleigh-Taylor instability, driven by a steady acceleration and Richtmyer-Meshkov instability, driven by an impulsive acceleration. Our program starts with high resolution methods of numerical simulation of two (or more) distinct fluids, continues with analytic analysis of these solutions, and the derivation of averaged equations. A striking achievement has been the systematic agreement we obtained between simulation and experiment by using a high resolution numerical method and improved physical modeling, with surface tension. Our study is accompanies by analysis using stochastic modeling and averaged equations for the multiphase problem. We have quantified the error and uncertainty using statistical modeling methods.
Stochastic inversion by ray continuation
Haas, A.; Viallix
1989-05-01
The conventional tomographic inversion consists in minimizing residuals between measured and modelled traveltimes. The process tends to be unstable and some additional constraints are required to stabilize it. The stochastic formulation generalizes the technique and sets it on firmer theoretical bases. The Stochastic Inversion by Ray Continuation (SIRC) is a probabilistic approach, which takes a priori geological information into account and uses probability distributions to characterize data correlations and errors. It makes it possible to tie uncertainties to the results. The estimated parameters are interval velocities and B-spline coefficients used to represent smoothed interfaces. Ray tracing is done by a continuation technique between source and receives. The ray coordinates are computed from one path to the next by solving a linear system derived from Fermat's principle. The main advantages are fast computations, accurate traveltimes and derivatives. The seismic traces are gathered in CMPs. For a particular CMP, several reflecting elements are characterized by their time gradient measured on the stacked section, and related to a mean emergence direction. The program capabilities are tested on a synthetic example as well as on a field example. The strategy consists in inverting the parameters for one layer, then for the next one down. An inversion step is divided in two parts. First the parameters for the layer concerned are inverted, while the parameters for the upper layers remain fixed. Then all the parameters are reinverted. The velocity-depth section computed by the program together with the corresponding errors can be used directly for the interpretation, as an initial model for depth migration or for the complete inversion program under development.
Multiple Stochastic Point Processes in Gene Expression
NASA Astrophysics Data System (ADS)
Murugan, Rajamanickam
2008-04-01
We generalize the idea of multiple-stochasticity in chemical reaction systems to gene expression. Using Chemical Langevin Equation approach we investigate how this multiple-stochasticity can influence the overall molecular number fluctuations. We show that the main sources of this multiple-stochasticity in gene expression could be the randomness in transcription and translation initiation times which in turn originates from the underlying bio-macromolecular recognition processes such as the site-specific DNA-protein interactions and therefore can be internally regulated by the supra-molecular structural factors such as the condensation/super-coiling of DNA. Our theory predicts that (1) in case of gene expression system, the variances ( φ) introduced by the randomness in transcription and translation initiation-times approximately scales with the degree of condensation ( s) of DNA or mRNA as φ ∝ s -6. From the theoretical analysis of the Fano factor as well as coefficient of variation associated with the protein number fluctuations we predict that (2) unlike the singly-stochastic case where the Fano factor has been shown to be a monotonous function of translation rate, in case of multiple-stochastic gene expression the Fano factor is a turn over function with a definite minimum. This in turn suggests that the multiple-stochastic processes can also be well tuned to behave like a singly-stochastic point processes by adjusting the rate parameters.
Solving stochastic epidemiological models using computer algebra
NASA Astrophysics Data System (ADS)
Hincapie, Doracelly; Ospina, Juan
2011-06-01
Mathematical modeling in Epidemiology is an important tool to understand the ways under which the diseases are transmitted and controlled. The mathematical modeling can be implemented via deterministic or stochastic models. Deterministic models are based on short systems of non-linear ordinary differential equations and the stochastic models are based on very large systems of linear differential equations. Deterministic models admit complete, rigorous and automatic analysis of stability both local and global from which is possible to derive the algebraic expressions for the basic reproductive number and the corresponding epidemic thresholds using computer algebra software. Stochastic models are more difficult to treat and the analysis of their properties requires complicated considerations in statistical mathematics. In this work we propose to use computer algebra software with the aim to solve epidemic stochastic models such as the SIR model and the carrier-borne model. Specifically we use Maple to solve these stochastic models in the case of small groups and we obtain results that do not appear in standard textbooks or in the books updated on stochastic models in epidemiology. From our results we derive expressions which coincide with those obtained in the classical texts using advanced procedures in mathematical statistics. Our algorithms can be extended for other stochastic models in epidemiology and this shows the power of computer algebra software not only for analysis of deterministic models but also for the analysis of stochastic models. We also perform numerical simulations with our algebraic results and we made estimations for the basic parameters as the basic reproductive rate and the stochastic threshold theorem. We claim that our algorithms and results are important tools to control the diseases in a globalized world.
Stochastic system identification in structural dynamics
Safak, Erdal
1988-01-01
Recently, new identification methods have been developed by using the concept of optimal-recursive filtering and stochastic approximation. These methods, known as stochastic identification, are based on the statistical properties of the signal and noise, and do not require the assumptions of current methods. The criterion for stochastic system identification is that the difference between the recorded output and the output from the identified system (i.e., the residual of the identification) should be equal to white noise. In this paper, first a brief review of the theory is given. Then, an application of the method is presented by using ambient vibration data from a nine-story building.
Immigration-extinction dynamics of stochastic populations
NASA Astrophysics Data System (ADS)
Meerson, Baruch; Ovaskainen, Otso
2013-07-01
How high should be the rate of immigration into a stochastic population in order to significantly reduce the probability of observing the population become extinct? Is there any relation between the population size distributions with and without immigration? Under what conditions can one justify the simple patch occupancy models, which ignore the population distribution and its dynamics in a patch, and treat a patch simply as either occupied or empty? We answer these questions by exactly solving a simple stochastic model obtained by adding a steady immigration to a variant of the Verhulst model: a prototypical model of an isolated stochastic population.
Connecting deterministic and stochastic metapopulation models.
Barbour, A D; McVinish, R; Pollett, P K
2015-12-01
In this paper, we study the relationship between certain stochastic and deterministic versions of Hanski's incidence function model and the spatially realistic Levins model. We show that the stochastic version can be well approximated in a certain sense by the deterministic version when the number of habitat patches is large, provided that the presence or absence of individuals in a given patch is influenced by a large number of other patches. Explicit bounds on the deviation between the stochastic and deterministic models are given. PMID:25735440
Stochastic deformation of a thermodynamic symplectic structure.
Kazinski, P O
2009-01-01
A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation is analogous to the deformation of an algebra of observables such as deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transformations and gauge fields is given. An application of the formalism to a description of systems with distributed parameters in a local thermodynamic equilibrium is considered.
Stochastic deformation of a thermodynamic symplectic structure
NASA Astrophysics Data System (ADS)
Kazinski, P. O.
2009-01-01
A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation is analogous to the deformation of an algebra of observables such as deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transformations and gauge fields is given. An application of the formalism to a description of systems with distributed parameters in a local thermodynamic equilibrium is considered.
Stochastic string models with continuous semimartingales
NASA Astrophysics Data System (ADS)
Bueno-Guerrero, Alberto; Moreno, Manuel; Navas, Javier F.
2015-09-01
This paper reformulates the stochastic string model of Santa-Clara and Sornette using stochastic calculus with continuous semimartingales. We present some new results, such as: (a) the dynamics of the short-term interest rate, (b) the PDE that must be satisfied by the bond price, and (c) an analytic expression for the price of a European bond call option. Additionally, we clarify some important features of the stochastic string model and show its relevance to price derivatives and the equivalence with an infinite dimensional HJM model to price European options.
Lobikin, Maria; Lobo, Daniel; Blackiston, Douglas J; Martyniuk, Christopher J; Tkachenko, Elizabeth; Levin, Michael
2015-10-01
Experimentally induced depolarization of resting membrane potential in "instructor cells" in Xenopus laevis embryos causes hyperpigmentation in an all-or-none fashion in some tadpoles due to excess proliferation and migration of melanocytes. We showed that this stochastic process involved serotonin signaling, adenosine 3',5'-monophosphate (cAMP), and the transcription factors cAMP response element-binding protein (CREB), Sox10, and Slug. Transcriptional microarray analysis of embryos taken at stage 15 (early neurula) and stage 45 (free-swimming tadpole) revealed changes in the abundance of 45 and 517 transcripts, respectively, between control embryos and embryos exposed to the instructor cell-depolarizing agent ivermectin. Bioinformatic analysis revealed that the human homologs of some of the differentially regulated genes were associated with cancer, consistent with the induced arborization and invasive behavior of converted melanocytes. We identified a physiological circuit that uses serotonergic signaling between instructor cells, melanotrope cells of the pituitary, and melanocytes to control the proliferation, cell shape, and migration properties of the pigment cell pool. To understand the stochasticity and properties of this multiscale signaling system, we applied a computational machine-learning method that iteratively explored network models to reverse-engineer a stochastic dynamic model that recapitulated the frequency of the all-or-none hyperpigmentation phenotype produced in response to various pharmacological and molecular genetic manipulations. This computational approach may provide insight into stochastic cellular decision-making that occurs during normal development and pathological conditions, such as cancer. PMID:26443706
Albuquerque, M G E; Concas, S; Bengtsson, S; Reis, M A M
2010-09-01
Polyhydroxyalkanoates (PHAs) are promising biodegradable polymers. The use of mixed microbial cultures (MMC) and low cost feedstocks have a positive impact on the cost-effectiveness of the process. It has typically been carried out in Sequencing Batch Reactors (SBR). In this study, a 2-stage CSTR system (under Feast and Famine conditions) was used to effectively select for PHA-storing organisms using fermented molasses as feedstock. The effect of influent substrate concentration (60-120 Cmmol VFA/L) and HRT ratio between the reactors (0.2-0.5h/h) on the system's selection efficiency was assessed. It was shown that Feast reactor residual substrate concentration impacted on the selective pressure for PHA storage (due to substrate-dependent kinetic limitation). Moreover, a residual substrate concentration coming from the Feast to the Famine reactor did not jeopardize the physiological adaptation required for enhanced PHA storage. The culture reached a maximum PHA content of 61%. This success opens new perspectives to the use of wastewater treatment infrastructure for PHA production, thus valorizing either excess sludge or wastewaters.
Time series modeling with pruned multi-layer perceptron and 2-stage damped least-squares method
NASA Astrophysics Data System (ADS)
Voyant, Cyril; Tamas, Wani; Paoli, Christophe; Balu, Aurélia; Muselli, Marc; Nivet, Marie-Laure; Notton, Gilles
2014-03-01
A Multi-Layer Perceptron (MLP) defines a family of artificial neural networks often used in TS modeling and forecasting. Because of its "black box" aspect, many researchers refuse to use it. Moreover, the optimization (often based on the exhaustive approach where "all" configurations are tested) and learning phases of this artificial intelligence tool (often based on the Levenberg-Marquardt algorithm; LMA) are weaknesses of this approach (exhaustively and local minima). These two tasks must be repeated depending on the knowledge of each new problem studied, making the process, long, laborious and not systematically robust. In this paper a pruning process is proposed. This method allows, during the training phase, to carry out an inputs selecting method activating (or not) inter-nodes connections in order to verify if forecasting is improved. We propose to use iteratively the popular damped least-squares method to activate inputs and neurons. A first pass is applied to 10% of the learning sample to determine weights significantly different from 0 and delete other. Then a classical batch process based on LMA is used with the new MLP. The validation is done using 25 measured meteorological TS and cross-comparing the prediction results of the classical LMA and the 2-stage LMA.
Project designs of alternative versions of the SL-86 2-Stage horizontal take-off space launcher
NASA Astrophysics Data System (ADS)
Fielding, J. P.
This paper describes studies of three versions of a 2-Stage to orbit horizontal take-off launcher. An initial design study was performed, which determined the basic shape of the aircraft together with weight, and aerodynamic information. This was given to the 31 Master students working on the project, who were given individual responsibility for the design and analysis of major parts of the aircraft. The orbiter was designed to use a carbon fiber structure, protected by a thermal protective system and should take a 4 1/2 ton payload into Low Earth Orbit, from a payload bay of sinmilar cross-section to the Shuttle. The booster vehicle has a cranked delta wing and a recess on the upper surface to accommodate the orbiter, which is launched at Mach 4 at 25 km altitude. The project showed that the concept was feasible but highlighted several problem areas, which were addressed by a subsequent MSc thesis. The main changes were the introduction of a canard foreplane and larger turbo-ramjets to the booster, which gave considerable improvements. The third version had more power, and separation at Mach 5.
Wagstaff, Marcus James Dermot; Rooke, Michael; Caplash, Yugesh
2016-01-01
Objectives: To share our experience of an extensive calvarial reconstruction in a severely burn-injured, elderly patient in a 2-stage procedure utilizing a novel biodegradable temporizing matrix (NovoSorb BTM), followed by autograft. Materials and Methods: A 66-year-old patient with 75% full-thickness burns, including 7% total body surface area head and neck, with calvarial exposure of approximately 350 cm2, complicated by acute renal failure and smoke inhalation injury. Exposed calvarium was burred down to diploe and biodegradable temporizing matrix was applied. Over the next 29 days, the biodegradable temporizing matrix integrated by vascular and tissue ingrowth from the diploe. Delamination and grafting occurred, however, at 43 days postimplantation of biodegradable temporizing matrix due to skin graft donor-site constraints. Results: Graft take was complete, yielding a robust and aesthetically pleasing early result (26 days post–graft application). Conclusions: Biodegradable temporizing matrix offers an additional resource for reconstructive surgeons faced with fragile patients and complex wounds. PMID:27222681
Stochastic pump effect and geometric phases in dissipative and stochastic systems
Sinitsyn, Nikolai
2008-01-01
The success of Berry phases in quantum mechanics stimulated the study of similar phenomena in other areas of physics, including the theory of living cell locomotion and motion of patterns in nonlinear media. More recently, geometric phases have been applied to systems operating in a strongly stochastic environment, such as molecular motors. We discuss such geometric effects in purely classical dissipative stochastic systems and their role in the theory of the stochastic pump effect (SPE).
Bootstrap performance profiles in stochastic algorithms assessment
Costa, Lino; Espírito Santo, Isabel A.C.P.; Oliveira, Pedro
2015-03-10
Optimization with stochastic algorithms has become a relevant research field. Due to its stochastic nature, its assessment is not straightforward and involves integrating accuracy and precision. Performance profiles for the mean do not show the trade-off between accuracy and precision, and parametric stochastic profiles require strong distributional assumptions and are limited to the mean performance for a large number of runs. In this work, bootstrap performance profiles are used to compare stochastic algorithms for different statistics. This technique allows the estimation of the sampling distribution of almost any statistic even with small samples. Multiple comparison profiles are presented for more than two algorithms. The advantages and drawbacks of each assessment methodology are discussed.
Perspective: Stochastic algorithms for chemical kinetics
NASA Astrophysics Data System (ADS)
Gillespie, Daniel T.; Hellander, Andreas; Petzold, Linda R.
2013-05-01
We outline our perspective on stochastic chemical kinetics, paying particular attention to numerical simulation algorithms. We first focus on dilute, well-mixed systems, whose description using ordinary differential equations has served as the basis for traditional chemical kinetics for the past 150 years. For such systems, we review the physical and mathematical rationale for a discrete-stochastic approach, and for the approximations that need to be made in order to regain the traditional continuous-deterministic description. We next take note of some of the more promising strategies for dealing stochastically with stiff systems, rare events, and sensitivity analysis. Finally, we review some recent efforts to adapt and extend the discrete-stochastic approach to systems that are not well-mixed. In that currently developing area, we focus mainly on the strategy of subdividing the system into well-mixed subvolumes, and then simulating diffusional transfers of reactant molecules between adjacent subvolumes together with chemical reactions inside the subvolumes.
Stochasticity in plant cellular growth and patterning
Meyer, Heather M.; Roeder, Adrienne H. K.
2014-01-01
Plants, along with other multicellular organisms, have evolved specialized regulatory mechanisms to achieve proper tissue growth and morphogenesis. During development, growing tissues generate specialized cell types and complex patterns necessary for establishing the function of the organ. Tissue growth is a tightly regulated process that yields highly reproducible outcomes. Nevertheless, the underlying cellular and molecular behaviors are often stochastic. Thus, how does stochasticity, together with strict genetic regulation, give rise to reproducible tissue development? This review draws examples from plants as well as other systems to explore stochasticity in plant cell division, growth, and patterning. We conclude that stochasticity is often needed to create small differences between identical cells, which are amplified and stabilized by genetic and mechanical feedback loops to begin cell differentiation. These first few differentiating cells initiate traditional patterning mechanisms to ensure regular development. PMID:25250034
Communication: Embedded fragment stochastic density functional theory
Neuhauser, Daniel; Baer, Roi; Rabani, Eran
2014-07-28
We develop a method in which the electronic densities of small fragments determined by Kohn-Sham density functional theory (DFT) are embedded using stochastic DFT to form the exact density of the full system. The new method preserves the scaling and the simplicity of the stochastic DFT but cures the slow convergence that occurs when weakly coupled subsystems are treated. It overcomes the spurious charge fluctuations that impair the applications of the original stochastic DFT approach. We demonstrate the new approach on a fullerene dimer and on clusters of water molecules and show that the density of states and the total energy can be accurately described with a relatively small number of stochastic orbitals.
Communication: Embedded fragment stochastic density functional theory
NASA Astrophysics Data System (ADS)
Neuhauser, Daniel; Baer, Roi; Rabani, Eran
2014-07-01
We develop a method in which the electronic densities of small fragments determined by Kohn-Sham density functional theory (DFT) are embedded using stochastic DFT to form the exact density of the full system. The new method preserves the scaling and the simplicity of the stochastic DFT but cures the slow convergence that occurs when weakly coupled subsystems are treated. It overcomes the spurious charge fluctuations that impair the applications of the original stochastic DFT approach. We demonstrate the new approach on a fullerene dimer and on clusters of water molecules and show that the density of states and the total energy can be accurately described with a relatively small number of stochastic orbitals.
Perspective: Stochastic algorithms for chemical kinetics.
Gillespie, Daniel T; Hellander, Andreas; Petzold, Linda R
2013-05-01
We outline our perspective on stochastic chemical kinetics, paying particular attention to numerical simulation algorithms. We first focus on dilute, well-mixed systems, whose description using ordinary differential equations has served as the basis for traditional chemical kinetics for the past 150 years. For such systems, we review the physical and mathematical rationale for a discrete-stochastic approach, and for the approximations that need to be made in order to regain the traditional continuous-deterministic description. We next take note of some of the more promising strategies for dealing stochastically with stiff systems, rare events, and sensitivity analysis. Finally, we review some recent efforts to adapt and extend the discrete-stochastic approach to systems that are not well-mixed. In that currently developing area, we focus mainly on the strategy of subdividing the system into well-mixed subvolumes, and then simulating diffusional transfers of reactant molecules between adjacent subvolumes together with chemical reactions inside the subvolumes.
Stochastic differential equation model to Prendiville processes
Granita; Bahar, Arifah
2015-10-22
The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution.
Stochastic description of quantum Brownian dynamics
NASA Astrophysics Data System (ADS)
Yan, Yun-An; Shao, Jiushu
2016-08-01
Classical Brownian motion has well been investigated since the pioneering work of Einstein, which inspired mathematicians to lay the theoretical foundation of stochastic processes. A stochastic formulation for quantum dynamics of dissipative systems described by the system-plus-bath model has been developed and found many applications in chemical dynamics, spectroscopy, quantum transport, and other fields. This article provides a tutorial review of the stochastic formulation for quantum dissipative dynamics. The key idea is to decouple the interaction between the system and the bath by virtue of the Hubbard-Stratonovich transformation or Itô calculus so that the system and the bath are not directly entangled during evolution, rather they are correlated due to the complex white noises introduced. The influence of the bath on the system is thereby defined by an induced stochastic field, which leads to the stochastic Liouville equation for the system. The exact reduced density matrix can be calculated as the stochastic average in the presence of bath-induced fields. In general, the plain implementation of the stochastic formulation is only useful for short-time dynamics, but not efficient for long-time dynamics as the statistical errors go very fast. For linear and other specific systems, the stochastic Liouville equation is a good starting point to derive the master equation. For general systems with decomposable bath-induced processes, the hierarchical approach in the form of a set of deterministic equations of motion is derived based on the stochastic formulation and provides an effective means for simulating the dissipative dynamics. A combination of the stochastic simulation and the hierarchical approach is suggested to solve the zero-temperature dynamics of the spin-boson model. This scheme correctly describes the coherent-incoherent transition (Toulouse limit) at moderate dissipation and predicts a rate dynamics in the overdamped regime. Challenging problems
Stochastic resonance in the brusselator model
Osipov; Ponizovskaya
2000-04-01
Using the Brusselator model, we show that in a simple dynamical system small noise can be converted into stochastic spikewise oscillations of huge amplitude (bursting noises) in the vicinity of a Hopf bifurcation. Small periodic signals with amplitude several times less than the noise intensity transform these stochastic oscillations into quasiperiodic large-amplitude spikewise oscillations or small-amplitude quasiharmonic oscillations, depending on the signal form. PMID:11088262
Structural model uncertainty in stochastic simulation
McKay, M.D.; Morrison, J.D.
1997-09-01
Prediction uncertainty in stochastic simulation models can be described by a hierarchy of components: stochastic variability at the lowest level, input and parameter uncertainty at a higher level, and structural model uncertainty at the top. It is argued that a usual paradigm for analysis of input uncertainty is not suitable for application to structural model uncertainty. An approach more likely to produce an acceptable methodology for analyzing structural model uncertainty is one that uses characteristics specific to the particular family of models.
Desynchronization of stochastically synchronized chemical oscillators
Snari, Razan; Tinsley, Mark R. E-mail: kshowalt@wvu.edu; Faramarzi, Sadegh; Showalter, Kenneth E-mail: kshowalt@wvu.edu; Wilson, Dan; Moehlis, Jeff; Netoff, Theoden Ivan
2015-12-15
Experimental and theoretical studies are presented on the design of perturbations that enhance desynchronization in populations of oscillators that are synchronized by periodic entrainment. A phase reduction approach is used to determine optimal perturbation timing based upon experimentally measured phase response curves. The effectiveness of the perturbation waveforms is tested experimentally in populations of periodically and stochastically synchronized chemical oscillators. The relevance of the approach to therapeutic methods for disrupting phase coherence in groups of stochastically synchronized neuronal oscillators is discussed.
A discussion of bunched beam stochastic cooling
Neuffer, David; /Fermilab
2005-08-01
The analysis of Herr and Mohl[1] is used as a basis for a discussion of bunched beam cooling in the Fermilab recycler and the Tevatron. Differences between the two cooling regimes are discussed. Criteria discussed in that paper imply the failure of stochastic cooling in the Tevatron while permitting the success of stochastic cooling in the Recycler. These ''predictions'' are in agreement with observations.
Stochastic differential games with inside information
NASA Astrophysics Data System (ADS)
Draouil, Olfa; Øksendal, Bernt
2016-08-01
We study stochastic differential games of jump diffusions, where the players have access to inside information. Our approach is based on anticipative stochastic calculus, white noise, Hida-Malliavin calculus, forward integrals and the Donsker delta functional. We obtain a characterization of Nash equilibria of such games in terms of the corresponding Hamiltonians. This is used to study applications to insider games in finance, specifically optimal insider consumption and optimal insider portfolio under model uncertainty.
Behavioral Stochastic Resonance within the Human Brain
NASA Astrophysics Data System (ADS)
Kitajo, Keiichi; Nozaki, Daichi; Ward, Lawrence M.; Yamamoto, Yoshiharu
2003-05-01
We provide the first evidence that stochastic resonance within the human brain can enhance behavioral responses to weak sensory inputs. We asked subjects to adjust handgrip force to a slowly changing, subthreshold gray level signal presented to their right eye. Behavioral responses were optimized by presenting randomly changing gray levels separately to the left eye. The results indicate that observed behavioral stochastic resonance was mediated by neural activity within the human brain where the information from both eyes converges.
Complexity and synchronization in stochastic chaotic systems
NASA Astrophysics Data System (ADS)
Son Dang, Thai; Palit, Sanjay Kumar; Mukherjee, Sayan; Hoang, Thang Manh; Banerjee, Santo
2016-02-01
We investigate the complexity of a hyperchaotic dynamical system perturbed by noise and various nonlinear speech and music signals. The complexity is measured by the weighted recurrence entropy of the hyperchaotic and stochastic systems. The synchronization phenomenon between two stochastic systems with complex coupling is also investigated. These criteria are tested on chaotic and perturbed systems by mean conditional recurrence and normalized synchronization error. Numerical results including surface plots, normalized synchronization errors, complexity variations etc show the effectiveness of the proposed analysis.
Modular and Stochastic Approaches to Molecular Pathway Models of ATM, TGF beta, and WNT Signaling
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; O'Neill, Peter; Ponomarev, Artem; Carra, Claudio; Whalen, Mary; Pluth, Janice M.
2009-01-01
Deterministic pathway models that describe the biochemical interactions of a group of related proteins, their complexes, activation through kinase, etc. are often the basis for many systems biology models. Low dose radiation effects present a unique set of challenges to these models including the importance of stochastic effects due to the nature of radiation tracks and small number of molecules activated, and the search for infrequent events that contribute to cancer risks. We have been studying models of the ATM, TGF -Smad and WNT signaling pathways with the goal of applying pathway models to the investigation of low dose radiation cancer risks. Modeling challenges include introduction of stochastic models of radiation tracks, their relationships to more than one substrate species that perturb pathways, and the identification of a representative set of enzymes that act on the dominant substrates. Because several pathways are activated concurrently by radiation the development of modular pathway approach is of interest.
Stochastic learning via optimizing the variational inequalities.
Tao, Qing; Gao, Qian-Kun; Chu, De-Jun; Wu, Gao-Wei
2014-10-01
A wide variety of learning problems can be posed in the framework of convex optimization. Many efficient algorithms have been developed based on solving the induced optimization problems. However, there exists a gap between the theoretically unbeatable convergence rate and the practically efficient learning speed. In this paper, we use the variational inequality (VI) convergence to describe the learning speed. To this end, we avoid the hard concept of regret in online learning and directly discuss the stochastic learning algorithms. We first cast the regularized learning problem as a VI. Then, we present a stochastic version of alternating direction method of multipliers (ADMMs) to solve the induced VI. We define a new VI-criterion to measure the convergence of stochastic algorithms. While the rate of convergence for any iterative algorithms to solve nonsmooth convex optimization problems cannot be better than O(1/√t), the proposed stochastic ADMM (SADMM) is proved to have an O(1/t) VI-convergence rate for the l1-regularized hinge loss problems without strong convexity and smoothness. The derived VI-convergence results also support the viewpoint that the standard online analysis is too loose to analyze the stochastic setting properly. The experiments demonstrate that SADMM has almost the same performance as the state-of-the-art stochastic learning algorithms but its O(1/t) VI-convergence rate is capable of tightly characterizing the real learning speed.
Stochastic resonance during a polymer translocation process
NASA Astrophysics Data System (ADS)
Mondal, Debasish; Muthukumar, M.
2016-04-01
We have studied the occurrence of stochastic resonance when a flexible polymer chain undergoes a single-file translocation through a nano-pore separating two spherical cavities, under a time-periodic external driving force. The translocation of the chain is controlled by a free energy barrier determined by chain length, pore length, pore-polymer interaction, and confinement inside the donor and receiver cavities. The external driving force is characterized by a frequency and amplitude. By combining the Fokker-Planck formalism for polymer translocation and a two-state model for stochastic resonance, we have derived analytical formulas for criteria for emergence of stochastic resonance during polymer translocation. We show that no stochastic resonance is possible if the free energy barrier for polymer translocation is purely entropic in nature. The polymer chain exhibits stochastic resonance only in the presence of an energy threshold in terms of polymer-pore interactions. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly.
Automated Flight Routing Using Stochastic Dynamic Programming
NASA Technical Reports Server (NTRS)
Ng, Hok K.; Morando, Alex; Grabbe, Shon
2010-01-01
Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather.
A 2-stage phase II design with direct assignment option in stage II for initial marker validation.
An, Ming-Wen; Mandrekar, Sumithra J; Sargent, Daniel J
2012-08-15
Biomarkers are critical to targeted therapies, as they may identify patients more likely to benefit from a treatment. Several prospective designs for biomarker-directed therapy have been previously proposed, differing primarily in the study population, randomization scheme, or both. Recognizing the need for randomization, yet acknowledging the possibility of promising but inconclusive results after a stage I cohort of randomized patients, we propose a 2-stage phase II design on marker-positive patients that allows for direct assignment in a stage II cohort. In stage I, marker-positive patients are equally randomized to receive experimental treatment or control. Stage II has the option to adopt "direct assignment" whereby all patients receive experimental treatment. Through simulation, we studied the power and type I error rate of our design compared with a balanced randomized two-stage design, and conducted sensitivity analyses to study the effect of timing of stage I analysis, population shift effects, and unbalanced randomization. Our proposed design has minimal loss in power (<1.8%) and increased type I error rate (<2.1%) compared with a balanced randomized design. The maximum increase in type I error rate in the presence of a population shift was between 3.1% and 5%, and the loss in power across possible timings of stage I analysis was less than 1.2%. Our proposed design has desirable statistical properties with potential appeal in practice. The direct assignment option, if adopted, provides for an "extended confirmation phase" as an alternative to stopping the trial early for evidence of efficacy in stage I.
NASA Astrophysics Data System (ADS)
Jia, Wei; Liu, Huoxing
2014-06-01
The pressing demand for future advanced gas turbine requires to identify the losses in a turbine and to understand the physical mechanisms producing them. In low pressure turbines with shrouded blades, a large portion of these losses is generated by tip shroud leakage flow and associated interaction. For this reason, shroud leakage losses are generally grouped into the losses of leakage flow itself and the losses caused by the interaction between leakage flow and mainstream. In order to evaluate the influence of shroud leakage flow and related losses on turbine performance, computational investigations for a 2-stage low pressure turbine is presented and discussed in this paper. Three dimensional steady multistage calculations using mixing plane approach were performed including detailed tip shroud geometry. Results showed that turbines with shrouded blades have an obvious advantage over unshrouded ones in terms of aerodynamic performance. A loss mechanism breakdown analysis demonstrated that the leakage loss is the main contributor in the first stage while mixing loss dominates in the second stage. Due to the blade-to-blade pressure gradient, both inlet and exit cavity present non-uniform leakage injection and extraction. The flow in the exit cavity is filled with cavity vortex, leakage jet attached to the cavity wall and recirculation zone induced by main flow ingestion. Furthermore, radial gap and exit cavity size of tip shroud have a major effect on the yaw angle near the tip region in the main flow. Therefore, a full calculation of shroud leakage flow is necessary in turbine performance analysis and the shroud geometric features need to be considered during turbine design process.
Stochastic modelling of animal movement
Smouse, Peter E.; Focardi, Stefano; Moorcroft, Paul R.; Kie, John G.; Forester, James D.; Morales, Juan M.
2010-01-01
Modern animal movement modelling derives from two traditions. Lagrangian models, based on random walk behaviour, are useful for multi-step trajectories of single animals. Continuous Eulerian models describe expected behaviour, averaged over stochastic realizations, and are usefully applied to ensembles of individuals. We illustrate three modern research arenas. (i) Models of home-range formation describe the process of an animal ‘settling down’, accomplished by including one or more focal points that attract the animal's movements. (ii) Memory-based models are used to predict how accumulated experience translates into biased movement choices, employing reinforced random walk behaviour, with previous visitation increasing or decreasing the probability of repetition. (iii) Lévy movement involves a step-length distribution that is over-dispersed, relative to standard probability distributions, and adaptive in exploring new environments or searching for rare targets. Each of these modelling arenas implies more detail in the movement pattern than general models of movement can accommodate, but realistic empiric evaluation of their predictions requires dense locational data, both in time and space, only available with modern GPS telemetry. PMID:20566497
Multidimensional stochastic approximation Monte Carlo.
Zablotskiy, Sergey V; Ivanov, Victor A; Paul, Wolfgang
2016-06-01
Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g(E), of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g(E_{1},E_{2}). We show when and why care has to be exercised when obtaining the microcanonical density of states g(E_{1}+E_{2}) from g(E_{1},E_{2}). PMID:27415383
Lower hybrid wavepacket stochasticity revisited
Fuchs, V.; Krlín, L.; Pánek, R.; Preinhaelter, J.; Seidl, J.; Urban, J.
2014-02-12
Analysis is presented in support of the explanation in Ref. [1] for the observation of relativistic electrons during Lower Hybrid (LH) operation in EC pre-heated plasma at the WEGA stellarator [1,2]. LH power from the WEGA TE11 circular waveguide, 9 cm diameter, un-phased, 2.45 GHz antenna, is radiated into a B≅0.5 T, Ðœ„n{sub e}≅5×10{sup 17} 1/m{sup 3} plasma at T{sub e}≅10 eV bulk temperature with an EC generated 50 keV component [1]. The fast electrons cycle around flux or drift surfaces with few collisions, sufficient for randomizing phases but insufficient for slowing fast electrons down, and thus repeatedly interact with the rf field close to the antenna mouth, gaining energy in the process. Our antenna calculations reveal a standing electric field pattern at the antenna mouth, with which we formulate the electron dynamics via a relativistic Hamiltonian. A simple approximation of the equations of motion leads to a relativistic generalization of the area-preserving Fermi-Ulam (F-U) map [3], allowing phase-space global stochasticity analysis. At typical WEGA plasma and antenna conditions, the F-U map predicts an LH driven current of about 230 A, at about 225 W of dissipated power, in good agreement with the measurements and analysis reported in [1].
Multidimensional stochastic approximation Monte Carlo
NASA Astrophysics Data System (ADS)
Zablotskiy, Sergey V.; Ivanov, Victor A.; Paul, Wolfgang
2016-06-01
Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g (E ) , of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g (E1,E2) . We show when and why care has to be exercised when obtaining the microcanonical density of states g (E1+E2) from g (E1,E2) .
Stochastic models of intracellular transport
NASA Astrophysics Data System (ADS)
Bressloff, Paul C.; Newby, Jay M.
2013-01-01
The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures.
Stochastic phase-change neurons
NASA Astrophysics Data System (ADS)
Tuma, Tomas; Pantazi, Angeliki; Le Gallo, Manuel; Sebastian, Abu; Eleftheriou, Evangelos
2016-08-01
Artificial neuromorphic systems based on populations of spiking neurons are an indispensable tool in understanding the human brain and in constructing neuromimetic computational systems. To reach areal and power efficiencies comparable to those seen in biological systems, electroionics-based and phase-change-based memristive devices have been explored as nanoscale counterparts of synapses. However, progress on scalable realizations of neurons has so far been limited. Here, we show that chalcogenide-based phase-change materials can be used to create an artificial neuron in which the membrane potential is represented by the phase configuration of the nanoscale phase-change device. By exploiting the physics of reversible amorphous-to-crystal phase transitions, we show that the temporal integration of postsynaptic potentials can be achieved on a nanosecond timescale. Moreover, we show that this is inherently stochastic because of the melt-quench-induced reconfiguration of the atomic structure occurring when the neuron is reset. We demonstrate the use of these phase-change neurons, and their populations, in the detection of temporal correlations in parallel data streams and in sub-Nyquist representation of high-bandwidth signals.
Postmodern string theory: Stochastic formulation
NASA Astrophysics Data System (ADS)
Aurilia, A.; Spallucci, E.; Vanzetta, I.
1994-11-01
In this paper we study the dynamics of a statistical ensemble of strings, building on a recently proposed gauge theory of the string geodesic field. We show that this stochastic approach is equivalent to the Carathéodory formulation of the Nambu-Goto action, supplemented by an averaging procedure over the family of classical string world sheets which are solutions of the equation of motion. In this new framework, the string geodesic field is reinterpreted as the Gibbs current density associated with the string statistical ensemble. Next, we show that the classical field equations derived from the string gauge action can be obtained as the semiclassical limit of the string functional wave equation. For closed strings, the wave equation itself is completely analogous to the Wheeler-DeWitt equation used in quantum cosmology. Thus, in the string case, the wave function has support on the space of all possible spatial loop configurations. Finally, we show that the string distribution induces a multiphase, or cellular structure on the spacetime manifold characterized by domains with a purely Riemannian geometry separated by domain walls over which there exists a predominantly Weyl geometry.
X. Frank Xu
2010-03-30
Multiscale modeling of stochastic systems, or uncertainty quantization of multiscale modeling is becoming an emerging research frontier, with rapidly growing engineering applications in nanotechnology, biotechnology, advanced materials, and geo-systems, etc. While tremendous efforts have been devoted to either stochastic methods or multiscale methods, little combined work had been done on integration of multiscale and stochastic methods, and there was no method formally available to tackle multiscale problems involving uncertainties. By developing an innovative Multiscale Stochastic Finite Element Method (MSFEM), this research has made a ground-breaking contribution to the emerging field of Multiscale Stochastic Modeling (MSM) (Fig 1). The theory of MSFEM basically decomposes a boundary value problem of random microstructure into a slow scale deterministic problem and a fast scale stochastic one. The slow scale problem corresponds to common engineering modeling practices where fine-scale microstructure is approximated by certain effective constitutive constants, which can be solved by using standard numerical solvers. The fast scale problem evaluates fluctuations of local quantities due to random microstructure, which is important for scale-coupling systems and particularly those involving failure mechanisms. The Green-function-based fast-scale solver developed in this research overcomes the curse-of-dimensionality commonly met in conventional approaches, by proposing a random field-based orthogonal expansion approach. The MSFEM formulated in this project paves the way to deliver the first computational tool/software on uncertainty quantification of multiscale systems. The applications of MSFEM on engineering problems will directly enhance our modeling capability on materials science (composite materials, nanostructures), geophysics (porous media, earthquake), biological systems (biological tissues, bones, protein folding). Continuous development of MSFEM will
Stochastic Microlensing: Mathematical Theory and Applications
NASA Astrophysics Data System (ADS)
Teguia, Alberto Mokak
Stochastic microlensing is a central tool in probing dark matter on galactic scales. From first principles, we initiate the development of a mathematical theory of stochastic microlensing. We first construct a natural probability space for stochastic microlensing and characterize the general behaviour of the random time delay functions' random critical sets. Next we study stochastic microlensing in two distinct random microlensing scenarios: The uniform stars' distribution with constant mass spectrum and the spatial stars' distribution with general mass spectrum. For each scenario, we determine exact and asymptotic (in the large number of point masses limit) stochastic properties of the random time delay functions and associated random lensing maps and random shear tensors, including their moments and asymptotic density functions. We use these results to study certain random observables, such as random fixed lensed images, random bending angles, and random magnifications. These results are relevant to the theory of random fields and provide a platform for further generalizations as well as analytical limits for checking astrophysical studies of stochastic microlensing. Continuing our development of a mathematical theory of stochastic microlensing, we study the stochastic version of the Image Counting Problem, first considered in the non-random setting by Einstein and generalized by Petters. In particular, we employ the Kac-Rice formula and Morse theory to deduce general formulas for the expected total number of images and the expected number of saddle images for a general random lensing scenario. We further generalize these results by considering random sources defined on a countable compact covering of the light source plane. This is done to introduce the notion of global expected number of positive parity images due to a general lensing map. Applying the result to the uniform stars' distribution random microlensing scenario, we calculate the asymptotic global
Random musings on stochastics (Lorenz Lecture)
NASA Astrophysics Data System (ADS)
Koutsoyiannis, D.
2014-12-01
In 1960 Lorenz identified the chaotic nature of atmospheric dynamics, thus highlighting the importance of the discovery of chaos by Poincare, 70 years earlier, in the motion of three bodies. Chaos in the macroscopic world offered a natural way to explain unpredictability, that is, randomness. Concurrently with Poincare's discovery, Boltzmann introduced statistical physics, while soon after Borel and Lebesgue laid the foundation of measure theory, later (in 1930s) used by Kolmogorov as the formal foundation of probability theory. Subsequently, Kolmogorov and Khinchin introduced the concepts of stochastic processes and stationarity, and advanced the concept of ergodicity. All these areas are now collectively described by the term "stochastics", which includes probability theory, stochastic processes and statistics. As paradoxical as it may seem, stochastics offers the tools to deal with chaos, even if it results from deterministic dynamics. As chaos entails uncertainty, it is more informative and effective to replace the study of exact system trajectories with that of probability densities. Also, as the exact laws of complex systems can hardly be deduced by synthesis of the detailed interactions of system components, these laws should inevitably be inferred by induction, based on observational data and using statistics. The arithmetic of stochastics is quite different from that of regular numbers. Accordingly, it needs the development of intuition and interpretations which differ from those built upon deterministic considerations. Using stochastic tools in a deterministic context may result in mistaken conclusions. In an attempt to contribute to a more correct interpretation and use of stochastic concepts in typical tasks of nonlinear systems, several examples are studied, which aim (a) to clarify the difference in the meaning of linearity in deterministic and stochastic context; (b) to contribute to a more attentive use of stochastic concepts (entropy, statistical
Trace distance in stochastic dephasing with initial correlation
Ban, Masashi; Kitajima, Sachiko; Shibata, Fumiaki
2011-10-15
The time evolution of the trace distance between quantum states of a qubit which is placed under the influence of stochastic dephasing is investigated within the framework of the stochastic Liouville equation. When stochastic dephasing is subject to the homogeneous Gauss-Markov process, the trace distance is exactly calculated in the presence of the initial correlation between the qubit and the stochastic process, where the stochastic process is inevitably a nonstationary process. It is found that even the initial correlation with the classical environment can make the trace distance greater than the initial value if stochastic dephasing causes the slow modulation of the qubit.
A stochastic model for annual reproductive success.
Kendall, Bruce E; Wittmann, Marion E
2010-04-01
Demographic stochasticity can have large effects on the dynamics of small populations as well as on the persistence of rare genotypes and lineages. Survival is sensibly modeled as a binomial process, but annual reproductive success (ARS) is more complex and general models for demographic stochasticity do not exist. Here we introduce a stochastic model framework for ARS and illustrate some of its properties. We model a sequence of stochastic events: nest completion, the number of eggs or neonates produced, nest predation, and the survival of individual offspring to independence. We also allow multiple nesting attempts within a breeding season. Most of these components can be described by Bernoulli or binomial processes; the exception is the distribution of offspring number. Using clutch and litter size distributions from 53 vertebrate species, we demonstrate that among-individual variability in offspring number can usually be described by the generalized Poisson distribution. Our model framework allows the demographic variance to be calculated from underlying biological processes and can easily be linked to models of environmental stochasticity or selection because of its parametric structure. In addition, it reveals that the distributions of ARS are often multimodal and skewed, with implications for extinction risk and evolution in small populations. PMID:20163244
Stochastic resonance in models of neuronal ensembles
Chialvo, D.R. Longtin, A.; Mueller-Gerkin, J.
1997-02-01
Two recently suggested mechanisms for the neuronal encoding of sensory information involving the effect of stochastic resonance with aperiodic time-varying inputs are considered. It is shown, using theoretical arguments and numerical simulations, that the nonmonotonic behavior with increasing noise of the correlation measures used for the so-called aperiodic stochastic resonance (ASR) scenario does not rely on the cooperative effect typical of stochastic resonance in bistable and excitable systems. Rather, ASR with slowly varying signals is more properly interpreted as linearization by noise. Consequently, the broadening of the {open_quotes}resonance curve{close_quotes} in the multineuron {ital stochastic resonance without tuning} scenario can also be explained by this linearization. Computation of the input-output correlation as a function of both signal frequency and noise for the model system further reveals conditions where noise-induced firing with aperiodic inputs will benefit from stochastic resonance rather than linearization by noise. Thus, our study clarifies the tuning requirements for the optimal transduction of subthreshold aperiodic signals. It also shows that a single deterministic neuron can perform as well as a network when biased into a suprathreshold regime. Finally, we show that the inclusion of a refractory period in the spike-detection scheme produces a better correlation between instantaneous firing rate and input signal. {copyright} {ital 1997} {ital The American Physical Society}
Stochastic volatility models and Kelvin waves
NASA Astrophysics Data System (ADS)
Lipton, Alex; Sepp, Artur
2008-08-01
We use stochastic volatility models to describe the evolution of an asset price, its instantaneous volatility and its realized volatility. In particular, we concentrate on the Stein and Stein model (SSM) (1991) for the stochastic asset volatility and the Heston model (HM) (1993) for the stochastic asset variance. By construction, the volatility is not sign definite in SSM and is non-negative in HM. It is well known that both models produce closed-form expressions for the prices of vanilla option via the Lewis-Lipton formula. However, the numerical pricing of exotic options by means of the finite difference and Monte Carlo methods is much more complex for HM than for SSM. Until now, this complexity was considered to be an acceptable price to pay for ensuring that the asset volatility is non-negative. We argue that having negative stochastic volatility is a psychological rather than financial or mathematical problem, and advocate using SSM rather than HM in most applications. We extend SSM by adding volatility jumps and obtain a closed-form expression for the density of the asset price and its realized volatility. We also show that the current method of choice for solving pricing problems with stochastic volatility (via the affine ansatz for the Fourier-transformed density function) can be traced back to the Kelvin method designed in the 19th century for studying wave motion problems arising in fluid dynamics.
A stochastic approach to open quantum systems.
Biele, R; D'Agosta, R
2012-07-11
Stochastic methods are ubiquitous to a variety of fields, ranging from physics to economics and mathematics. In many cases, in the investigation of natural processes, stochasticity arises every time one considers the dynamics of a system in contact with a somewhat bigger system, an environment with which it is considered in thermal equilibrium. Any small fluctuation of the environment has some random effect on the system. In physics, stochastic methods have been applied to the investigation of phase transitions, thermal and electrical noise, thermal relaxation, quantum information, Brownian motion and so on. In this review, we will focus on the so-called stochastic Schrödinger equation. This is useful as a starting point to investigate the dynamics of open quantum systems capable of exchanging energy and momentum with an external environment. We discuss in some detail the general derivation of a stochastic Schrödinger equation and some of its recent applications to spin thermal transport, thermal relaxation, and Bose-Einstein condensation. We thoroughly discuss the advantages of this formalism with respect to the more common approach in terms of the reduced density matrix. The applications discussed here constitute only a few examples of a much wider range of applicability.
On methods for studying stochastic disease dynamics.
Keeling, M J; Ross, J V
2008-02-01
Models that deal with the individual level of populations have shown the importance of stochasticity in ecology, epidemiology and evolution. An increasingly common approach to studying these models is through stochastic (event-driven) simulation. One striking disadvantage of this approach is the need for a large number of replicates to determine the range of expected behaviour. Here, for a class of stochastic models called Markov processes, we present results that overcome this difficulty and provide valuable insights, but which have been largely ignored by applied researchers. For these models, the so-called Kolmogorov forward equation (also called the ensemble or master equation) allows one to simultaneously consider the probability of each possible state occurring. Irrespective of the complexities and nonlinearities of population dynamics, this equation is linear and has a natural matrix formulation that provides many analytical insights into the behaviour of stochastic populations and allows rapid evaluation of process dynamics. Here, using epidemiological models as a template, these ensemble equations are explored and results are compared with traditional stochastic simulations. In addition, we describe further advantages of the matrix formulation of dynamics, providing simple exact methods for evaluating expected eradication (extinction) times of diseases, for comparing expected total costs of possible control programmes and for estimation of disease parameters. PMID:17638650
Discrete analysis of stochastic NMR.II
NASA Astrophysics Data System (ADS)
Wong, S. T. S.; Rods, M. S.; Newmark, R. D.; Budinger, T. F.
Stochastic NMR is an efficient technique for high-field in vivo imaging and spectroscopic studies where the peak RF power required may be prohibitively high for conventional pulsed NMR techniques. A stochastic NMR experiment excites the spin system with a sequence of RF pulses where the flip angles or the phases of the pulses are samples of a discrete stochastic process. In a previous paper the stochastic experiment was analyzed and analytic expressions for the input-output cross-correlations, average signal power, and signal spectral density were obtained for a general stochastic RF excitation. In this paper specific cases of excitation with random phase, fixed flip angle, and excitation with two random components in quadrature are analyzed. The input-output cross-correlation for these two types of excitations is shown to be Lorentzian. Line broadening is the only spectral distortion as the RF excitation power is increased. The systematic noise power is inversely proportional to the number of data points N used in the spectral reconstruction. The use of a complete maximum length sequence (MLS) may improve the signal-to-systematic-noise ratio by 20 dB relative to random binary excitation, but peculiar features in the higher-order autocorrelations of MLS cause noise-like distortion in the reconstructed spectra when the excitation power is high. The amount of noise-like distortion depends on the choice of the MLS generator.
Vaginal cancer; Cancer - vagina; Tumor - vaginal ... Most vaginal cancers occur when another cancer, such as cervical or endometrial cancer , spreads. This is called secondary vaginal cancer. Cancer ...
Algorithm refinement for stochastic partial differential equations.
Alexander, F. J.; Garcia, Alejandro L.,; Tartakovsky, D. M.
2001-01-01
A hybrid particle/continuum algorithm is formulated for Fickian diffusion in the fluctuating hydrodynamic limit. The particles are taken as independent random walkers; the fluctuating diffusion equation is solved by finite differences with deterministic and white-noise fluxes. At the interface between the particle and continuum computations the coupling is by flux matching, giving exact mass conservation. This methodology is an extension of Adaptive Mesh and Algorithm Refinement to stochastic partial differential equations. A variety of numerical experiments were performed for both steady and time-dependent scenarios. In all cases the mean and variance of density are captured correctly by the stochastic hybrid algorithm. For a non-stochastic version (i.e., using only deterministic continuum fluxes) the mean density is correct, but the variance is reduced except within the particle region, far from the interface. Extensions of the methodology to fluid mechanics applications are discussed.
Stochastic Turing patterns in the Brusselator model.
Biancalani, Tommaso; Fanelli, Duccio; Di Patti, Francesca
2010-04-01
A stochastic version of the Brusselator model is proposed and studied via the system size expansion. The mean-field equations are derived and shown to yield to organized Turing patterns within a specific parameters region. When determining the Turing condition for instability, we pay particular attention to the role of cross-diffusive terms, often neglected in the heuristic derivation of reaction-diffusion schemes. Stochastic fluctuations are shown to give rise to spatially ordered solutions, sharing the same quantitative characteristic of the mean-field based Turing scenario, in term of excited wavelengths. Interestingly, the region of parameter yielding to the stochastic self-organization is wider than that determined via the conventional Turing approach, suggesting that the condition for spatial order to appear can be less stringent than customarily believed. PMID:20481815
Stochastic Turing patterns in the Brusselator model
NASA Astrophysics Data System (ADS)
Biancalani, Tommaso; Fanelli, Duccio; di Patti, Francesca
2010-04-01
A stochastic version of the Brusselator model is proposed and studied via the system size expansion. The mean-field equations are derived and shown to yield to organized Turing patterns within a specific parameters region. When determining the Turing condition for instability, we pay particular attention to the role of cross-diffusive terms, often neglected in the heuristic derivation of reaction-diffusion schemes. Stochastic fluctuations are shown to give rise to spatially ordered solutions, sharing the same quantitative characteristic of the mean-field based Turing scenario, in term of excited wavelengths. Interestingly, the region of parameter yielding to the stochastic self-organization is wider than that determined via the conventional Turing approach, suggesting that the condition for spatial order to appear can be less stringent than customarily believed.
Vaccine enhanced extinction in stochastic epidemic models
NASA Astrophysics Data System (ADS)
Billings, Lora; Mier-Y-Teran, Luis; Schwartz, Ira
2012-02-01
We address the problem of developing new and improved stochastic control methods that enhance extinction in disease models. In finite populations, extinction occurs when fluctuations owing to random transitions act as an effective force that drives one or more components or species to vanish. Using large deviation theory, we identify the location of the optimal path to extinction in epidemic models with stochastic vaccine controls. These models not only capture internal noise from random transitions, but also external fluctuations, such as stochastic vaccination scheduling. We quantify the effectiveness of the randomly applied vaccine over all possible distributions by using the location of the optimal path, and we identify the most efficient control algorithms. We also discuss how mean extinction times scale with epidemiological and social parameters.
Stochastic approach to equilibrium and nonequilibrium thermodynamics
NASA Astrophysics Data System (ADS)
Tomé, Tânia; de Oliveira, Mário J.
2015-04-01
We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.
Computational stochastic model of ions implantation
Zmievskaya, Galina I. Bondareva, Anna L.; Levchenko, Tatiana V.; Maino, Giuseppe
2015-03-10
Implantation flux ions into crystal leads to phase transition /PT/ 1-st kind. Damaging lattice is associated with processes clustering vacancies and gaseous bubbles as well their brownian motion. System of stochastic differential equations /SDEs/ Ito for evolution stochastic dynamical variables corresponds to the superposition Wiener processes. The kinetic equations in partial derivatives /KE/, Kolmogorov-Feller and Einstein-Smolukhovskii, were formulated for nucleation into lattice of weakly soluble gases. According theory, coefficients of stochastic and kinetic equations uniquely related. Radiation stimulated phase transition are characterized by kinetic distribution functions /DFs/ of implanted clusters versus their sizes and depth of gas penetration into lattice. Macroscopic parameters of kinetics such as the porosity and stress calculated in thin layers metal/dielectric due to Xe{sup ++} irradiation are attracted as example. Predictions of porosity, important for validation accumulation stresses in surfaces, can be applied at restoring of objects the cultural heritage.
Fokker-Planck response of stochastic satellites
NASA Technical Reports Server (NTRS)
Huang, T. C.; Das, A.
1982-01-01
The present investigation is concerned with the effects of stochastic geometry and random environmental torques on the pointing accuracy of spinning and three-axis stabilized satellites. The study of pointing accuracies requires a knowledge of the rates of error growth over and above any criteria for the asymptotic stability of the satellites. For this reason the investigation is oriented toward the determination of the statistical properties of the responses of the satellites. The geometries of the satellites are considered stochastic so as to have a phenomenological model of the motions of the flexible structural elements of the satellites. A widely used method of solving stochastic equations is the Fokker-Planck approach where the equations are assumed to define a Markoff process and the transition probability densities of the responses are computed directly as a function of time. The Fokker-Planck formulation is used to analyze the response vector of a rigid satellite.
Stochastic approach to equilibrium and nonequilibrium thermodynamics.
Tomé, Tânia; de Oliveira, Mário J
2015-04-01
We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions. PMID:25974471
Structural factoring approach for analyzing stochastic networks
NASA Technical Reports Server (NTRS)
Hayhurst, Kelly J.; Shier, Douglas R.
1991-01-01
The problem of finding the distribution of the shortest path length through a stochastic network is investigated. A general algorithm for determining the exact distribution of the shortest path length is developed based on the concept of conditional factoring, in which a directed, stochastic network is decomposed into an equivalent set of smaller, generally less complex subnetworks. Several network constructs are identified and exploited to reduce significantly the computational effort required to solve a network problem relative to complete enumeration. This algorithm can be applied to two important classes of stochastic path problems: determining the critical path distribution for acyclic networks and the exact two-terminal reliability for probabilistic networks. Computational experience with the algorithm was encouraging and allowed the exact solution of networks that have been previously analyzed only by approximation techniques.
Regeneration of stochastic processes: an inverse method
NASA Astrophysics Data System (ADS)
Ghasemi, F.; Peinke, J.; Sahimi, M.; Rahimi Tabar, M. R.
2005-10-01
We propose a novel inverse method that utilizes a set of data to construct a simple equation that governs the stochastic process for which the data have been measured, hence enabling us to reconstruct the stochastic process. As an example, we analyze the stochasticity in the beat-to-beat fluctuations in the heart rates of healthy subjects as well as those with congestive heart failure. The inverse method provides a novel technique for distinguishing the two classes of subjects in terms of a drift and a diffusion coefficients which behave completely differently for the two classes of subjects, hence potentially providing a novel diagnostic tool for distinguishing healthy subjects from those with congestive heart failure, even at the early stages of the disease development.
Modeling stochasticity in biochemical reaction networks
NASA Astrophysics Data System (ADS)
Constantino, P. H.; Vlysidis, M.; Smadbeck, P.; Kaznessis, Y. N.
2016-03-01
Small biomolecular systems are inherently stochastic. Indeed, fluctuations of molecular species are substantial in living organisms and may result in significant variation in cellular phenotypes. The chemical master equation (CME) is the most detailed mathematical model that can describe stochastic behaviors. However, because of its complexity the CME has been solved for only few, very small reaction networks. As a result, the contribution of CME-based approaches to biology has been very limited. In this review we discuss the approach of solving CME by a set of differential equations of probability moments, called moment equations. We present different approaches to produce and to solve these equations, emphasizing the use of factorial moments and the zero information entropy closure scheme. We also provide information on the stability analysis of stochastic systems. Finally, we speculate on the utility of CME-based modeling formalisms, especially in the context of synthetic biology efforts.
Least squares estimation in stochastic biochemical networks.
Rempala, Grzegorz A
2012-08-01
The paper presents results on the asymptotic properties of the least-squares estimates (LSEs) of the reaction constants in mass-action, stochastic, biochemical network models. LSEs are assumed to be based on the longitudinal data from partially observed trajectories of a stochastic dynamical system, modeled as a continuous-time, pure jump Markov process. Under certain regularity conditions on such a process, it is shown that the vector of LSEs is jointly consistent and asymptotically normal, with the asymptotic covariance structure given in terms of a system of ordinary differential equations (ODE). The derived asymptotic properties hold true as the biochemical network size (the total species number) increases, in which case the stochastic dynamical system converges to the deterministic mass-action ODE. An example is provided, based on synthetic as well as RT-PCR data from the retro-transcription network of the LINE1 gene.
Stochastic approach to equilibrium and nonequilibrium thermodynamics.
Tomé, Tânia; de Oliveira, Mário J
2015-04-01
We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.
An algorithm for multivariate weak stochastic dominance
Mosler, K.
1994-12-31
The talk addresses the computational problem of comparing two given probability distributions in n-space with respect to several stochastic orderings. The orderings investigated are weak first degree stochastic dominance, weak second degree stochastic dominance, and their dual ordering relations. For each of the four dominance relations we present conditions which are necessary and sufficient for dominance of F over G when F and G have finite support in n-space. An algorithm is proposed which operates efficiently on the join-semilattice generated by their joint support. If F and G are empirical distribution functions, and {anti F} and {anti G}denote the underlying probability laws, significance tests can be performed on {anti F} = {anti G} against the alternative that {anti F} {ne} {anti G} and {anti F} dominates {anti G} in one of the four orderings. Other applications are found in decision theory, applied probability, operations research, and economics.
Measuring synchronization of stochastic oscillators in biology
NASA Astrophysics Data System (ADS)
Deng, Z.; Arsenault, S.; Mao, L.; Arnold, J.
2016-09-01
A fundamental problem in physics is measuring and modeling the synchronization of coupled stochastic oscillators. The problem is relatively recent in biology, where it has become possible to measure stochastic oscillators in single cells. A variety of synchronization measures have been proposed to describe a field of coupled stochastic oscillators. We introduce a synchronization measure new to this problem (but old to Genetics) called the intraclass correlation (ICC). The ICC is simple to interpret and has a statistical framework for inference. We illustrate ICC behaviour in the Kuramoto phase-locking model and on a field of over 25,000 oscillators in single cells measured every half-hour over a ten day interval.
Maximal stochastic transport in the Lorenz equations
NASA Astrophysics Data System (ADS)
Agarwal, Sahil; Wettlaufer, John
2015-11-01
We calculate the stochastic upper bounds for the Lorenz equations using an extension of the background method. In analogy with Rayleigh-Benard convection the upper bounds are for heat transport versus Rayleigh number. As might be expected the stochastic upper bounds are larger than the deterministic counterpart of Souza and Doering (2015), but their variation with noise amplitude exhibits surprising behavior. Below the transition to chaotic dynamics the upper bounds increase monotonically with noise amplitude. However, in the chaotic regime this monotonicity is lost; at a particular Rayleigh number the bound may increase or decrease with noise amplitude. The origin of this behavior is the coupling between the noise and unstable periodic orbits. This is confirmed by examining the close returns plots of the full solutions to the stochastic equations. Finally, we note that these solutions demonstrate that the effect of noise is equivalent to the effect of chaos.
Stochastic Differential Equation of Earthquakes Series
NASA Astrophysics Data System (ADS)
Mariani, Maria C.; Tweneboah, Osei K.; Gonzalez-Huizar, Hector; Serpa, Laura
2016-07-01
This work is devoted to modeling earthquake time series. We propose a stochastic differential equation based on the superposition of independent Ornstein-Uhlenbeck processes driven by a Γ (α, β ) process. Superposition of independent Γ (α, β ) Ornstein-Uhlenbeck processes offer analytic flexibility and provides a class of continuous time processes capable of exhibiting long memory behavior. The stochastic differential equation is applied to the study of earthquakes by fitting the superposed Γ (α, β ) Ornstein-Uhlenbeck model to earthquake sequences in South America containing very large events (Mw ≥ 8). We obtained very good fit of the observed magnitudes of the earthquakes with the stochastic differential equations, which supports the use of this methodology for the study of earthquakes sequence.
Scattering theory of stochastic electromagnetic light waves.
Wang, Tao; Zhao, Daomu
2010-07-15
We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.
On the stochasticity of Halley like comets
NASA Astrophysics Data System (ADS)
Froeschle, Claude; Gonczi, Robert
The degree of stochasticity of Halleylike comets was investigated for three different versions of the restricted three-body problem. As the main tool for this study, the Lyapunov characteristic numbers (LCNs) were used, which give an indication of the speed by which nearby orbits diverge and, thus, the degree of unpredictability of such orbits. Many runs were performed with a duration of 100,000 years for different models. Surfaces of sections for orbits with different inclinations and different models are presented. The results are compared with those of Chirikov and Vecheslavov (1986) and Petrovsky and Broucke (1987). It is shown that LCNs are very useful indicators of stochasticity.
Stochastic resonance in an intracellular genetic perceptron
NASA Astrophysics Data System (ADS)
Bates, Russell; Blyuss, Oleg; Zaikin, Alexey
2014-03-01
Intracellular genetic networks are more intelligent than was first assumed due to their ability to learn. One of the manifestations of this intelligence is the ability to learn associations of two stimuli within gene-regulating circuitry: Hebbian-type learning within the cellular life. However, gene expression is an intrinsically noisy process; hence, we investigate the effect of intrinsic and extrinsic noise on this kind of intracellular intelligence. We report a stochastic resonance in an intracellular associative genetic perceptron, a noise-induced phenomenon, which manifests itself in noise-induced increase of response in efficiency after the learning event under the conditions of optimal stochasticity.
On orthogonality preserving quadratic stochastic operators
NASA Astrophysics Data System (ADS)
Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd
2015-05-01
A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too.
Stochasticity in cell biology: Modeling across levels
NASA Astrophysics Data System (ADS)
Pedraza, Juan Manuel
2009-03-01
Effective modeling of biological processes requires focusing on a particular level of description, and this requires summarizing de details of lower levels into effective variables and properly accounting for the constrains that other levels impose. In the context of stochasticity in gene expression, I will show how the details of the stochastic process can be characterized by a few effective parameters, which facilitates modeling but complicates interpretation of current experiments. I will show how the resulting noise can provide advantageous or deleterious phenotypic fluctuation and how noise control in the copy number control system of plasmids can change the selective pressures. This system illustrates the direct connection between molecular dynamics and evolutionary dynamics.
Stochastic time-optimal control problems
NASA Technical Reports Server (NTRS)
Zhang, W.; Elliot, D.
1988-01-01
Two types of stochastic time-optimal controls in a one-dimensional setting are considered. Multidimensional problems, in the case of complete state information available and the system modeled by stochastic differential equations, are studied under the formulation of minimizing the expected transient-response time. The necessary condition of optimality is the satisfaction for the value function of a parabolic partial differential equation with boundary conditions. The sufficient condition of optimality is also provided, based on Dynkin's formula. Finally, three examples are given.
On orthogonality preserving quadratic stochastic operators
Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd
2015-05-15
A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too.
Binomial moment equations for stochastic reaction systems.
Barzel, Baruch; Biham, Ofer
2011-04-15
A highly efficient formulation of moment equations for stochastic reaction networks is introduced. It is based on a set of binomial moments that capture the combinatorics of the reaction processes. The resulting set of equations can be easily truncated to include moments up to any desired order. The number of equations is dramatically reduced compared to the master equation. This formulation enables the simulation of complex reaction networks, involving a large number of reactive species much beyond the feasibility limit of any existing method. It provides an equation-based paradigm to the analysis of stochastic networks, complementing the commonly used Monte Carlo simulations. PMID:21568538
Operation of Distributed Generation Under Stochastic Prices
Siddiqui, Afzal S.; Marnay, Chris
2005-11-30
We model the operating decisions of a commercial enterprisethatneeds to satisfy its periodic electricity demand with either on-sitedistributed generation (DG) or purchases from the wholesale market. Whilethe former option involves electricity generation at relatively high andpossibly stochastic costs from a set of capacity-constrained DGtechnologies, the latter implies unlimited open-market transactions atstochastic prices. A stochastic dynamic programme (SDP) is used to solvethe resulting optimisation problem. By solving the SDP with and withoutthe availability of DG units, the implied option values of the DG unitsare obtained.
Stochastic stability and instability of model ecosystems
NASA Technical Reports Server (NTRS)
Ladde, G. S.; Siljak, D. D.
1975-01-01
In this work, we initiate a stability study of multispecies communities in stochastic environment by using Ito's differential equations as community models. By applying the direct method of Liapunov, we obtain sufficient conditions for stability and instability in the mean of the equilibrium populations. The conditions are expressed in terms of the dominant diagonal property of community matrices, which is a suitable mechanism for resolving the central problem of 'complexity vs stability' in model ecosystems. As a by-product of this analysis we exhibit important structural properties of the stochastic density-dependent models, and establish tolerance of community stability to a broad class of nonlinear time-varying perturbations.
Existence Theory for Stochastic Power Law Fluids
NASA Astrophysics Data System (ADS)
Breit, Dominic
2015-06-01
We consider the equations of motion for an incompressible non-Newtonian fluid in a bounded Lipschitz domain during the time interval (0, T) together with a stochastic perturbation driven by a Brownian motion W. The balance of momentum reads as where v is the velocity, the pressure and f an external volume force. We assume the common power law model and show the existence of martingale weak solution provided . Our approach is based on the -truncation and a harmonic pressure decomposition which are adapted to the stochastic setting.
Pricing foreign equity option with stochastic volatility
NASA Astrophysics Data System (ADS)
Sun, Qi; Xu, Weidong
2015-11-01
In this paper we propose a general foreign equity option pricing framework that unifies the vast foreign equity option pricing literature and incorporates the stochastic volatility into foreign equity option pricing. Under our framework, the time-changed Lévy processes are used to model the underlying assets price of foreign equity option and the closed form pricing formula is obtained through the use of characteristic function methodology. Numerical tests indicate that stochastic volatility has a dramatic effect on the foreign equity option prices.
Recent applications of the stochastic variational method.
Varga, K.
1998-10-20
The stochastic variational method has proved to be useful in various fields of physics, including atomic, molecular, solid state, nuclear and subnuclear physics. This paper only reviewed a small part of the applications. Other contributions to this volume will show its usefulness in studies related to the structure of the baryons. Its main application is in nuclear physics, which has not been covered here but the interested reader can find examples in the references. We would like to extend its applicability to larger systems and for more complicated interactions. Such developments are under way. This paper overviews the most recent developments and applications of the stochastic variational method for different physical systems.
Minimum uncertainty and squeezing in diffusion processes and stochastic quantization
NASA Technical Reports Server (NTRS)
Demartino, S.; Desiena, S.; Illuminati, Fabrizo; Vitiello, Giuseppe
1994-01-01
We show that uncertainty relations, as well as minimum uncertainty coherent and squeezed states, are structural properties for diffusion processes. Through Nelson stochastic quantization we derive the stochastic image of the quantum mechanical coherent and squeezed states.
Doubly stochastic Poisson processes in artificial neural learning.
Card, H C
1998-01-01
This paper investigates neuron activation statistics in artificial neural networks employing stochastic arithmetic. It is shown that a doubly stochastic Poisson process is an appropriate model for the signals in these circuits.
Propagation of ultra-short solitons in stochastic Maxwell's equations
Kurt, Levent; Schäfer, Tobias
2014-01-15
We study the propagation of ultra-short short solitons in a cubic nonlinear medium modeled by nonlinear Maxwell's equations with stochastic variations of media. We consider three cases: variations of (a) the dispersion, (b) the phase velocity, (c) the nonlinear coefficient. Using a modified multi-scale expansion for stochastic systems, we derive new stochastic generalizations of the short pulse equation that approximate the solutions of stochastic nonlinear Maxwell's equations. Numerical simulations show that soliton solutions of the short pulse equation propagate stably in stochastic nonlinear Maxwell's equations and that the generalized stochastic short pulse equations approximate the solutions to the stochastic Maxwell's equations over the distances under consideration. This holds for both a pathwise comparison of the stochastic equations as well as for a comparison of the resulting probability densities.
Absolute Value Boundedness, Operator Decomposition, and Stochastic Media and Equations
NASA Technical Reports Server (NTRS)
Adomian, G.; Miao, C. C.
1973-01-01
The research accomplished during this period is reported. Published abstracts and technical reports are listed. Articles presented include: boundedness of absolute values of generalized Fourier coefficients, propagation in stochastic media, and stationary conditions for stochastic differential equations.
A Note on the Stochastic Nature of Feynman Quantum Paths
NASA Astrophysics Data System (ADS)
L. Botelho, Luiz C.
2016-06-01
We propose a Fresnel stochastic white noise framework to analyze the stochastic nature of the Feynman paths entering on the Feynman Path Integral expression for the Feynman Propagator of a particle quantum mechanically moving under a time-independent potential.
On strongly GA-convex functions and stochastic processes
Bekar, Nurgül Okur; Akdemir, Hande Günay; İşcan, İmdat
2014-08-20
In this study, we introduce strongly GA-convex functions and stochastic processes. We provide related well-known Kuhn type results and Hermite-Hadamard type inequality for strongly GA-convex functions and stochastic processes.
Cao Yang . E-mail: ycao@cs.ucsb.edu; Gillespie, Dan . E-mail: GillespieDT@mailaps.org; Petzold, Linda . E-mail: petzold@engineering.ucsb.edu
2005-07-01
In this paper, we introduce a multiscale stochastic simulation algorithm (MSSA) which makes use of Gillespie's stochastic simulation algorithm (SSA) together with a new stochastic formulation of the partial equilibrium assumption (PEA). This method is much more efficient than SSA alone. It works even with a very small population of fast species. Implementation details are discussed, and an application to the modeling of the heat shock response of E. Coli is presented which demonstrates the excellent efficiency and accuracy obtained with the new method.
Fingering in Stochastic Growth Models
Aristotelous, Andreas C.; Durrett, Richard
2015-01-01
Motivated by the widespread use of hybrid-discrete cellular automata in modeling cancer, two simple growth models are studied on the two dimensional lattice that incorporate a nutrient, assumed to be oxygen. In the first model the oxygen concentration u(x, t) is computed based on the geometry of the growing blob, while in the second one u(x, t) satisfies a reaction-diffusion equation. A threshold θ value exists such that cells give birth at rate β(u(x, t) − θ)+ and die at rate δ(θ − u(x, t)+. In the first model, a phase transition was found between growth as a solid blob and “fingering” at a threshold θc = 0.5, while in the second case fingering always occurs, i.e., θc = 0. PMID:26430353
Exact semiclassical wave equation for stochastic quantum optics
NASA Astrophysics Data System (ADS)
Diósi, Lajos
1996-02-01
Semiclassical (stochastic) wave equations are proposed for the coupled dynamics of atomic quantum states and semiclassical radiation field. All relevant predictions of standard unitary quantum dynamics are exactly reproducible in the framework of the stochastic wave equation model. We stress in such a way that the concept of stochastic wave equations is not to be restricted to the widely used Markovian approximation.
Teaching Tip: When a Matrix and Its Inverse Are Stochastic
ERIC Educational Resources Information Center
Ding, J.; Rhee, N. H.
2013-01-01
A stochastic matrix is a square matrix with nonnegative entries and row sums 1. The simplest example is a permutation matrix, whose rows permute the rows of an identity matrix. A permutation matrix and its inverse are both stochastic. We prove the converse, that is, if a matrix and its inverse are both stochastic, then it is a permutation matrix.
Stochastic functionals and fluctuation theorem for multikangaroo processes.
Van den Broeck, C; Toral, R
2014-06-01
We introduce multikangaroo Markov processes and provide a general procedure for evaluating a certain type of stochastic functional. We calculate analytically the large deviation properties. We apply our results to zero-crossing statistics and to stochastic thermodynamics, including the derivation of the fluctuation theorem and the large deviation properties for the stochastic entropy production in a typical solid state device. PMID:25019742
Cardaliaguet, P.; Rainer, C.
2013-08-01
We introduce a new notion of pathwise strategies for stochastic differential games. This allows us to give a correct meaning to some statement asserted in Cardaliaguet and Rainer (Appl. Math. Optim. 59: 1-36, 2009)
Stochastic models of intracellular calcium signals
NASA Astrophysics Data System (ADS)
Rüdiger, Sten
2014-01-01
Cellular signaling operates in a noisy environment shaped by low molecular concentrations and cellular heterogeneity. For calcium release through intracellular channels-one of the most important cellular signaling mechanisms-feedback by liberated calcium endows fluctuations with critical functions in signal generation and formation. In this review it is first described, under which general conditions the environment makes stochasticity relevant, and which conditions allow approximating or deterministic equations. This analysis provides a framework, in which one can deduce an efficient hybrid description combining stochastic and deterministic evolution laws. Within the hybrid approach, Markov chains model gating of channels, while the concentrations of calcium and calcium binding molecules (buffers) are described by reaction-diffusion equations. The article further focuses on the spatial representation of subcellular calcium domains related to intracellular calcium channels. It presents analysis for single channels and clusters of channels and reviews the effects of buffers on the calcium release. For clustered channels, we discuss the application and validity of coarse-graining as well as approaches based on continuous gating variables (Fokker-Planck and chemical Langevin equations). Comparison with recent experiments substantiates the stochastic and spatial approach, identifies minimal requirements for a realistic modeling, and facilitates an understanding of collective channel behavior. At the end of the review, implications of stochastic and local modeling for the generation and properties of cell-wide release and the integration of calcium dynamics into cellular signaling models are discussed.
Investigation of the stochastic properties of wind
NASA Astrophysics Data System (ADS)
Dimitriadis, Panayiotis; Koutsoyiannis, Demetris; Papanicolaou, Panos
2016-04-01
Understanding atmospheric motion in the form of wind is essential to many fields in hydroclimatics. The wind is considered one of the most important processes in hydrometeorology since, along with temperature, it generates and drives climate dynamics. Currently, the interest has increased due to its involvement to renewable energy resources through wind power production and forecasting. However, there seems to be a puzzle about which stochastic model best describes the wind process. In this analysis, we attempt to explain the reason around this confusion regarding the stochastic properties of the wind process using statistical as well as hydrometeorological reasoning, starting from the microscale of turbulence and extending the analysis to the macroscale of climatic processes. Particularly, some models seem to exhibit good agreement with data mostly due to instrumental errors. Moreover, we show that extending the theory of turbulence to the atmospheric motion can reveal stochastic properties that are not only accompanied with physical interference but also exhibit excellent agreement with wind measurements. Finally, we apply the theoretical analysis to multiple stations around the globe and we derive conclusions on the variation of stochastic parameters of wind regarding dominant climatic conditions.
Stochastic Simulation Tool for Aerospace Structural Analysis
NASA Technical Reports Server (NTRS)
Knight, Norman F.; Moore, David F.
2006-01-01
Stochastic simulation refers to incorporating the effects of design tolerances and uncertainties into the design analysis model and then determining their influence on the design. A high-level evaluation of one such stochastic simulation tool, the MSC.Robust Design tool by MSC.Software Corporation, has been conducted. This stochastic simulation tool provides structural analysts with a tool to interrogate their structural design based on their mathematical description of the design problem using finite element analysis methods. This tool leverages the analyst's prior investment in finite element model development of a particular design. The original finite element model is treated as the baseline structural analysis model for the stochastic simulations that are to be performed. A Monte Carlo approach is used by MSC.Robust Design to determine the effects of scatter in design input variables on response output parameters. The tool was not designed to provide a probabilistic assessment, but to assist engineers in understanding cause and effect. It is driven by a graphical-user interface and retains the engineer-in-the-loop strategy for design evaluation and improvement. The application problem for the evaluation is chosen to be a two-dimensional shell finite element model of a Space Shuttle wing leading-edge panel under re-entry aerodynamic loading. MSC.Robust Design adds value to the analysis effort by rapidly being able to identify design input variables whose variability causes the most influence in response output parameters.
Stochastic models for turbulent reacting flows
Kerstein, A.
1993-12-01
The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.
Stochastic game dynamics under demographic fluctuations.
Huang, Weini; Hauert, Christoph; Traulsen, Arne
2015-07-21
Frequency-dependent selection and demographic fluctuations play important roles in evolutionary and ecological processes. Under frequency-dependent selection, the average fitness of the population may increase or decrease based on interactions between individuals within the population. This should be reflected in fluctuations of the population size even in constant environments. Here, we propose a stochastic model that naturally combines these two evolutionary ingredients by assuming frequency-dependent competition between different types in an individual-based model. In contrast to previous game theoretic models, the carrying capacity of the population, and thus the population size, is determined by pairwise competition of individuals mediated by evolutionary games and demographic stochasticity. In the limit of infinite population size, the averaged stochastic dynamics is captured by deterministic competitive Lotka-Volterra equations. In small populations, demographic stochasticity may instead lead to the extinction of the entire population. Because the population size is driven by fitness in evolutionary games, a population of cooperators is less prone to go extinct than a population of defectors, whereas in the usual systems of fixed size the population would thrive regardless of its average payoff. PMID:26150518
Stochastic noise in atomic force microscopy.
Labuda, Aleksander; Lysy, Martin; Paul, William; Miyahara, Yoichi; Grütter, Peter; Bennewitz, Roland; Sutton, Mark
2012-09-01
Having reached the quantum and thermodynamic limits of detection, atomic force microscopy (AFM) experiments are routinely being performed at the fundamental limit of signal to noise. A critical understanding of the statistical properties of noise leads to more accurate interpretation of data, optimization of experimental protocols, advancements in instrumentation, and new measurement techniques. Furthermore, accurate simulation of cantilever dynamics requires knowledge of stochastic behavior of the system, as stochastic noise may exceed the deterministic signals of interest, and even dominate the outcome of an experiment. In this article, the power spectral density (PSD), used to quantify stationary stochastic processes, is introduced in the context of a thorough noise analysis of the light source used to detect cantilever deflections. The statistical properties of PSDs are then outlined for various stationary, nonstationary, and deterministic noise sources in the context of AFM experiments. Following these developments, a method for integrating PSDs to provide an accurate standard deviation of linear measurements is described. Lastly, a method for simulating stochastic Gaussian noise from any arbitrary power spectral density is presented. The result demonstrates that mechanical vibrations of the AFM can cause a logarithmic velocity dependence of friction and induce multiple slip events in the atomic stick-slip process, as well as predicts an artifactual temperature dependence of friction measured by AFM. PMID:23030863
Magnetohydrodynamic stability of stochastically driven accretion flows.
Nath, Sujit Kumar; Mukhopadhyay, Banibrata; Chattopadhyay, Amit K
2013-07-01
We investigate the evolution of magnetohydrodynamic (or hydromagnetic as coined by Chandrasekhar) perturbations in the presence of stochastic noise in rotating shear flows. The particular emphasis is the flows whose angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows, however, are Rayleigh stable but must be turbulent in order to explain astrophysical observed data and, hence, reveal a mismatch between the linear theory and observations and experiments. The mismatch seems to have been resolved, at least in certain regimes, in the presence of a weak magnetic field, revealing magnetorotational instability. The present work explores the effects of stochastic noise on such magnetohydrodynamic flows, in order to resolve the above mismatch generically for the hot flows. We essentially concentrate on a small section of such a flow which is nothing but a plane shear flow supplemented by the Coriolis effect, mimicking a small section of an astrophysical accretion disk around a compact object. It is found that such stochastically driven flows exhibit large temporal and spatial autocorrelations and cross-correlations of perturbation and, hence, large energy dissipations of perturbation, which generate instability. Interestingly, autocorrelations and cross-correlations appear independent of background angular velocity profiles, which are Rayleigh stable, indicating their universality. This work initiates our attempt to understand the evolution of three-dimensional hydromagnetic perturbations in rotating shear flows in the presence of stochastic noise.
STOCHASTIC INTEGRATION FOR TEMPERED FRACTIONAL BROWNIAN MOTION.
Meerschaert, Mark M; Sabzikar, Farzad
2014-07-01
Tempered fractional Brownian motion is obtained when the power law kernel in the moving average representation of a fractional Brownian motion is multiplied by an exponential tempering factor. This paper develops the theory of stochastic integrals for tempered fractional Brownian motion. Along the way, we develop some basic results on tempered fractional calculus.
Stochastic thermodynamics for linear kinetic equations
NASA Astrophysics Data System (ADS)
Van den Broeck, C.; Toral, R.
2015-07-01
Stochastic thermodynamics is formulated for variables that are odd under time reversal. The invariance under spatial rotation of the collision rates due to the isotropy of the heat bath is shown to be a crucial ingredient. An alternative detailed fluctuation theorem is derived, expressed solely in terms of forward statistics. It is illustrated for a linear kinetic equation with kangaroo rates.
STOCHASTIC INTEGRATION FOR TEMPERED FRACTIONAL BROWNIAN MOTION.
Meerschaert, Mark M; Sabzikar, Farzad
2014-07-01
Tempered fractional Brownian motion is obtained when the power law kernel in the moving average representation of a fractional Brownian motion is multiplied by an exponential tempering factor. This paper develops the theory of stochastic integrals for tempered fractional Brownian motion. Along the way, we develop some basic results on tempered fractional calculus. PMID:24872598
Stochastic genetic networks with solvable structures
Lipan, Ovidiu
2014-12-10
We describe a set of basic stochastic biocircuits for which the Master Equation is completely solvable. Beside linear circuits, which are known to be solvable, we show that tree-like circuits with polynomial transition functions are also completely solvable. We associate a simple but unambiguous graphical representation to such circuits. The graphical representation shows the signal propagation through these simple circuits.
Perspective: Stochastic algorithms for chemical kinetics
Gillespie, Daniel T.; Hellander, Andreas; Petzold, Linda R.
2013-01-01
We outline our perspective on stochastic chemical kinetics, paying particular attention to numerical simulation algorithms. We first focus on dilute, well-mixed systems, whose description using ordinary differential equations has served as the basis for traditional chemical kinetics for the past 150 years. For such systems, we review the physical and mathematical rationale for a discrete-stochastic approach, and for the approximations that need to be made in order to regain the traditional continuous-deterministic description. We next take note of some of the more promising strategies for dealing stochastically with stiff systems, rare events, and sensitivity analysis. Finally, we review some recent efforts to adapt and extend the discrete-stochastic approach to systems that are not well-mixed. In that currently developing area, we focus mainly on the strategy of subdividing the system into well-mixed subvolumes, and then simulating diffusional transfers of reactant molecules between adjacent subvolumes together with chemical reactions inside the subvolumes. PMID:23656106
Stochastic Differential Games with Asymmetric Information
Cardaliaguet, Pierre Rainer, Catherine
2009-02-15
We investigate a two-player zero-sum stochastic differential game in which the players have an asymmetric information on the random payoff. We prove that the game has a value and characterize this value in terms of dual viscosity solutions of some second order Hamilton-Jacobi equation.
Stochastic genetic networks with solvable structures
NASA Astrophysics Data System (ADS)
Lipan, Ovidiu
2014-12-01
We describe a set of basic stochastic biocircuits for which the Master Equation is completely solvable. Beside linear circuits, which are known to be solvable, we show that tree-like circuits with polynomial transition functions are also completely solvable. We associate a simple but unambiguous graphical representation to such circuits. The graphical representation shows the signal propagation through these simple circuits.
STOCHASTIC SOLUTIONS FOR FRACTIONAL WAVE EQUATIONS
MEERSCHAERT, MARK M.; SCHILLING, RENÉ L.; SIKORSKII, ALLA
2014-01-01
A fractional wave equation replaces the second time derivative by a Caputo derivative of order between one and two. In this paper, we show that the fractional wave equation governs a stochastic model for wave propagation, with deterministic time replaced by the inverse of a stable subordinator whose index is one half the order of the fractional time derivative. PMID:26146456
Stochastic processes, estimation theory and image enhancement
NASA Technical Reports Server (NTRS)
Assefi, T.
1978-01-01
An introductory account of stochastic processes, estimation theory, and image enhancement is presented. The book is primarily intended for first-year graduate students and practicing engineers and scientists whose work requires an acquaintance with the theory. Fundamental concepts of probability were reviewed that are required to support the main topics. The appendices discuss the remaining mathematical background.
Stochastic dominance and medical decision making.
Leshno, Moshe; Levy, Haim
2004-08-01
Stochastic Dominance (SD) criteria are decision making tools which allow us to choose among various strategies with only partial information on the decision makers' preferences. The notion of Stochastic Dominance has been extensively employed and developed in the area of economics, finance, agriculture, statistics, marketing and operation research since the late 1960s. For example, it may tell us which of two medical treatments with uncertain outcomes is preferred in the absence of full information on the patients' preferences. This paper presents a short review of the SD paradigm and demonstrates how the SD criteria may be employed in medical decision making, using the case of small abdominal aortic aneurysms as an illustration. Thus, for instance by assuming risk aversion one can employ second-degree stochastic dominance to divide the set of all possible treatments into the efficient set, from which the decision makers should always choose, and the inefficient (inferior) set. By employing Prospect Stochastic Dominance (PSD) a similar division can be conducted corresponding to all S-shaped utility functions.
Covariance control of discrete stochastic bilinear systems
NASA Technical Reports Server (NTRS)
Skelton, R. E.; Kherat, S. M.; Yaz, E.
1991-01-01
The covariances that certain bilinear stochastic discrete time systems may possess are characterized. An explicit parameterization of all controllers that assign such covariances is given. The state feedback assignability and robustness of the system are discussed from a deterministic point of view. This work extends the theory of covariance control for continuous time bilinear systems to a discrete time setting.
Maximal stochastic transport in the Lorenz equations
NASA Astrophysics Data System (ADS)
Agarwal, Sahil; Wettlaufer, J. S.
2016-01-01
We calculate the stochastic upper bounds for the Lorenz equations using an extension of the background method. In analogy with Rayleigh-Bénard convection the upper bounds are for heat transport versus Rayleigh number. As might be expected, the stochastic upper bounds are larger than the deterministic counterpart of Souza and Doering [1], but their variation with noise amplitude exhibits interesting behavior. Below the transition to chaotic dynamics the upper bounds increase monotonically with noise amplitude. However, in the chaotic regime this monotonicity depends on the number of realizations in the ensemble; at a particular Rayleigh number the bound may increase or decrease with noise amplitude. The origin of this behavior is the coupling between the noise and unstable periodic orbits, the degree of which depends on the degree to which the ensemble represents the ergodic set. This is confirmed by examining the close returns plots of the full solutions to the stochastic equations and the numerical convergence of the noise correlations. The numerical convergence of both the ensemble and time averages of the noise correlations is sufficiently slow that it is the limiting aspect of the realization of these bounds. Finally, we note that the full solutions of the stochastic equations demonstrate that the effect of noise is equivalent to the effect of chaos.
Stochastic motif extraction using hidden Markov model
Fujiwara, Yukiko; Asogawa, Minoru; Konagaya, Akihiko
1994-12-31
In this paper, we study the application of an HMM (hidden Markov model) to the problem of representing protein sequences by a stochastic motif. A stochastic protein motif represents the small segments of protein sequences that have a certain function or structure. The stochastic motif, represented by an HMM, has conditional probabilities to deal with the stochastic nature of the motif. This HMM directive reflects the characteristics of the motif, such as a protein periodical structure or grouping. In order to obtain the optimal HMM, we developed the {open_quotes}iterative duplication method{close_quotes} for HMM topology learning. It starts from a small fully-connected network and iterates the network generation and parameter optimization until it achieves sufficient discrimination accuracy. Using this method, we obtained an HMM for a leucine zipper motif. Compared to the accuracy of a symbolic pattern representation with accuracy of 14.8 percent, an HMM achieved 79.3 percent in prediction. Additionally, the method can obtain an HMM for various types of zinc finger motifs, and it might separate the mixed data. We demonstrated that this approach is applicable to the validation of the protein databases; a constructed HMM b as indicated that one protein sequence annotated as {open_quotes}lencine-zipper like sequence{close_quotes} in the database is quite different from other leucine-zipper sequences in terms of likelihood, and we found this discrimination is plausible.
Stochastic dominance and medical decision making.
Leshno, Moshe; Levy, Haim
2004-08-01
Stochastic Dominance (SD) criteria are decision making tools which allow us to choose among various strategies with only partial information on the decision makers' preferences. The notion of Stochastic Dominance has been extensively employed and developed in the area of economics, finance, agriculture, statistics, marketing and operation research since the late 1960s. For example, it may tell us which of two medical treatments with uncertain outcomes is preferred in the absence of full information on the patients' preferences. This paper presents a short review of the SD paradigm and demonstrates how the SD criteria may be employed in medical decision making, using the case of small abdominal aortic aneurysms as an illustration. Thus, for instance by assuming risk aversion one can employ second-degree stochastic dominance to divide the set of all possible treatments into the efficient set, from which the decision makers should always choose, and the inefficient (inferior) set. By employing Prospect Stochastic Dominance (PSD) a similar division can be conducted corresponding to all S-shaped utility functions. PMID:15648563
Test data sets for calibration of stochastic and fractional stochastic volatility models.
Pospíšil, Jan; Sobotka, Tomáš
2016-09-01
Data for calibration and out-of-sample error testing of option pricing models are provided alongside data obtained from optimization procedures in "On calibration of stochastic and fractional stochastic volatility models" [1]. Firstly we describe testing data sets, further calibration data obtained from combined optimizers is visually depicted - interactive 3d bar plots are provided. The data is suitable for a further comparison of other optimization routines and also to benchmark different pricing models.
2014-01-01
Background Biochemical systems with relatively low numbers of components must be simulated stochastically in order to capture their inherent noise. Although there has recently been considerable work on discrete stochastic solvers, there is still a need for numerical methods that are both fast and accurate. The Bulirsch-Stoer method is an established method for solving ordinary differential equations that possesses both of these qualities. Results In this paper, we present the Stochastic Bulirsch-Stoer method, a new numerical method for simulating discrete chemical reaction systems, inspired by its deterministic counterpart. It is able to achieve an excellent efficiency due to the fact that it is based on an approach with high deterministic order, allowing for larger stepsizes and leading to fast simulations. We compare it to the Euler τ-leap, as well as two more recent τ-leap methods, on a number of example problems, and find that as well as being very accurate, our method is the most robust, in terms of efficiency, of all the methods considered in this paper. The problems it is most suited for are those with increased populations that would be too slow to simulate using Gillespie’s stochastic simulation algorithm. For such problems, it is likely to achieve higher weak order in the moments. Conclusions The Stochastic Bulirsch-Stoer method is a novel stochastic solver that can be used for fast and accurate simulations. Crucially, compared to other similar methods, it better retains its high accuracy when the timesteps are increased. Thus the Stochastic Bulirsch-Stoer method is both computationally efficient and robust. These are key properties for any stochastic numerical method, as they must typically run many thousands of simulations. PMID:24939084
A Stochastic Maximum Principle for a Stochastic Differential Game of a Mean-Field Type
Hosking, John Joseph Absalom
2012-12-15
We construct a stochastic maximum principle (SMP) which provides necessary conditions for the existence of Nash equilibria in a certain form of N-agent stochastic differential game (SDG) of a mean-field type. The information structure considered for the SDG is of a possible asymmetric and partial type. To prove our SMP we take an approach based on spike-variations and adjoint representation techniques, analogous to that of S. Peng (SIAM J. Control Optim. 28(4):966-979, 1990) in the optimal stochastic control context. In our proof we apply adjoint representation procedures at three points. The first-order adjoint processes are defined as solutions to certain mean-field backward stochastic differential equations, and second-order adjoint processes of a first type are defined as solutions to certain backward stochastic differential equations. Second-order adjoint processes of a second type are defined as solutions of certain backward stochastic equations of a type that we introduce in this paper, and which we term conditional mean-field backward stochastic differential equations. From the resulting representations, we show that the terms relating to these second-order adjoint processes of the second type are of an order such that they do not appear in our final SMP equations. A comparable situation exists in an article by R. Buckdahn, B. Djehiche, and J. Li (Appl. Math. Optim. 64(2):197-216, 2011) that constructs a SMP for a mean-field type optimal stochastic control problem; however, the approach we take of using these second-order adjoint processes of a second type to deal with the type of terms that we refer to as the second form of quadratic-type terms represents an alternative to a development, to our setting, of the approach used in their article for their analogous type of term.
NASA Technical Reports Server (NTRS)
Sadunas, J. A.; French, E. P.; Sexton, H.
1973-01-01
A 1/25 scale model S-2 stage base region thermal environment test is presented. Analytical results are included which reflect the effect of engine operating conditions, model scale, turbo-pump exhaust gas injection on base region thermal environment. Comparisons are made between full scale flight data, model test data, and analytical results. The report is prepared in two volumes. The description of analytical predictions and comparisons with flight data are presented. Tabulation of the test data is provided.
Stochastic partial differential equations in turbulence related problems
NASA Technical Reports Server (NTRS)
Chow, P.-L.
1978-01-01
The theory of stochastic partial differential equations (PDEs) and problems relating to turbulence are discussed by employing the theories of Brownian motion and diffusion in infinite dimensions, functional differential equations, and functional integration. Relevant results in probablistic analysis, especially Gaussian measures in function spaces and the theory of stochastic PDEs of Ito type, are taken into account. Linear stochastic PDEs are analyzed through linearized Navier-Stokes equations with a random forcing. Stochastic equations for waves in random media as well as model equations in turbulent transport theory are considered. Markovian models in fully developed turbulence are discussed from a stochastic equation viewpoint.
Extinction risk depends strongly on factors contributing to stochasticity.
Melbourne, Brett A; Hastings, Alan
2008-07-01
Extinction risk in natural populations depends on stochastic factors that affect individuals, and is estimated by incorporating such factors into stochastic models. Stochasticity can be divided into four categories, which include the probabilistic nature of birth and death at the level of individuals (demographic stochasticity), variation in population-level birth and death rates among times or locations (environmental stochasticity), the sex of individuals and variation in vital rates among individuals within a population (demographic heterogeneity). Mechanistic stochastic models that include all of these factors have not previously been developed to examine their combined effects on extinction risk. Here we derive a family of stochastic Ricker models using different combinations of all these stochastic factors, and show that extinction risk depends strongly on the combination of factors that contribute to stochasticity. Furthermore, we show that only with the full stochastic model can the relative importance of environmental and demographic variability, and therefore extinction risk, be correctly determined. Using the full model, we find that demographic sources of stochasticity are the prominent cause of variability in a laboratory population of Tribolium castaneum (red flour beetle), whereas using only the standard simpler models would lead to the erroneous conclusion that environmental variability dominates. Our results demonstrate that current estimates of extinction risk for natural populations could be greatly underestimated because variability has been mistakenly attributed to the environment rather than the demographic factors described here that entail much higher extinction risk for the same variability level.
Quantum stochastic calculus associated with quadratic quantum noises
NASA Astrophysics Data System (ADS)
Ji, Un Cig; Sinha, Kalyan B.
2016-02-01
We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie †-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Itô formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculus extends the Hudson-Parthasarathy quantum stochastic calculus.
An applied mathematics perspective on stochastic modelling for climate.
Majda, Andrew J; Franzke, Christian; Khouider, Boualem
2008-07-28
Systematic strategies from applied mathematics for stochastic modelling in climate are reviewed here. One of the topics discussed is the stochastic modelling of mid-latitude low-frequency variability through a few teleconnection patterns, including the central role and physical mechanisms responsible for multiplicative noise. A new low-dimensional stochastic model is developed here, which mimics key features of atmospheric general circulation models, to test the fidelity of stochastic mode reduction procedures. The second topic discussed here is the systematic design of stochastic lattice models to capture irregular and highly intermittent features that are not resolved by a deterministic parametrization. A recent applied mathematics design principle for stochastic column modelling with intermittency is illustrated in an idealized setting for deep tropical convection; the practical effect of this stochastic model in both slowing down convectively coupled waves and increasing their fluctuations is presented here. PMID:18445572
Active motion assisted by correlated stochastic torques.
Weber, Christian; Radtke, Paul K; Schimansky-Geier, Lutz; Hänggi, Peter
2011-07-01
The stochastic dynamics of an active particle undergoing a constant speed and additionally driven by an overall fluctuating torque is investigated. The random torque forces are expressed by a stochastic differential equation for the angular dynamics of the particle determining the orientation of motion. In addition to a constant torque, the particle is supplemented by random torques, which are modeled as an Ornstein-Uhlenbeck process with given correlation time τ(c). These nonvanishing correlations cause a persistence of the particles' trajectories and a change of the effective spatial diffusion coefficient. We discuss the mean square displacement as a function of the correlation time and the noise intensity and detect a nonmonotonic dependence of the effective diffusion coefficient with respect to both correlation time and noise strength. A maximal diffusion behavior is obtained if the correlated angular noise straightens the curved trajectories, interrupted by small pirouettes, whereby the correlated noise amplifies a straightening of the curved trajectories caused by the constant torque.
Conditional reversibility in nonequilibrium stochastic systems.
Bonança, Marcus V S; Jarzynski, Christopher
2016-02-01
For discrete-state stochastic systems obeying Markovian dynamics, we establish the counterpart of the conditional reversibility theorem obtained by Gallavotti for deterministic systems [Ann. de l'Institut Henri Poincaré (A) 70, 429 (1999)]. Our result states that stochastic trajectories conditioned on opposite values of entropy production are related by time reversal, in the long-time limit. In other words, the probability of observing a particular sequence of events, given a long trajectory with a specified entropy production rate σ, is the same as the probability of observing the time-reversed sequence of events, given a trajectory conditioned on the opposite entropy production, -σ, where both trajectories are sampled from the same underlying Markov process. To obtain our result, we use an equivalence between conditioned ("microcanonical") and biased ("canonical") ensembles of nonequilibrium trajectories. We provide an example to illustrate our findings. PMID:26986282
A stochastic model of eye lens growth.
Šikić, Hrvoje; Shi, Yanrong; Lubura, Snježana; Bassnett, Steven
2015-07-01
The size and shape of the ocular lens must be controlled with precision if light is to be focused sharply on the retina. The lifelong growth of the lens depends on the production of cells in the anterior epithelium. At the lens equator, epithelial cells differentiate into fiber cells, which are added to the surface of the existing fiber cell mass, increasing its volume and area. We developed a stochastic model relating the rates of cell proliferation and death in various regions of the lens epithelium to deposition of fiber cells and radial lens growth. Epithelial population dynamics were modeled as a branching process with emigration and immigration between proliferative zones. Numerical simulations were in agreement with empirical measurements and demonstrated that, operating within the strict confines of lens geometry, a stochastic growth engine can produce the smooth and precise growth necessary for lens function. PMID:25816743
Stochastic robustness of linear control systems
NASA Technical Reports Server (NTRS)
Stengel, Robert F.; Ryan, Laura E.
1990-01-01
A simple numerical procedure for estimating the stochastic robustness of a linear, time-invariant system is described. Monte Carlo evaluation of the system's eigenvalues allows the probability of instability and the related stochastic root locus to be estimated. This definition of robustness is an alternative to existing deterministic definitions that address both structured and unstructured parameter variations directly. This analysis approach treats not only Gaussian parameter uncertainties but non-Gaussian cases, including uncertain-but-bounded variations. Trivial extensions of the procedure admit alternate discriminants to be considered. Thus, the probabilities that stipulated degrees of instability will be exceeded or that closed-loop roots will leave desirable regions also can be estimated. Results are particularly amenable to graphical presentation.
Binary classification by stochastic neural nets.
Nadas, A
1995-01-01
We classify points in R(d) (feature vector space) by functions related to feedforward artificial neural networks. These functions, dubbed "stochastic neural nets", arise in a natural way from probabilistic as well as from statistical considerations. The probabilistic idea is to define a classifying bit locally by using the sign of a hidden state-dependent noisy linear function of the feature vector as a new (d+1)th coordinate of the vector. This (d+1)-dimensional distribution is approximated by a mixture distribution. The statistical idea is that the approximating mixtures, and hence the a posteriori class probability functions (stochastic neural nets) defined by them, can be conveniently trained either by maximum likelihood or by a Bayes criterion through the use of an appropriate expectation-maximization algorithm.
COSMIC DUST AGGREGATION WITH STOCHASTIC CHARGING
Matthews, Lorin S.; Hyde, Truell W.; Shotorban, Babak
2013-10-20
The coagulation of cosmic dust grains is a fundamental process which takes place in astrophysical environments, such as presolar nebulae and circumstellar and protoplanetary disks. Cosmic dust grains can become charged through interaction with their plasma environment or other processes, and the resultant electrostatic force between dust grains can strongly affect their coagulation rate. Since ions and electrons are collected on the surface of the dust grain at random time intervals, the electrical charge of a dust grain experiences stochastic fluctuations. In this study, a set of stochastic differential equations is developed to model these fluctuations over the surface of an irregularly shaped aggregate. Then, employing the data produced, the influence of the charge fluctuations on the coagulation process and the physical characteristics of the aggregates formed is examined. It is shown that dust with small charges (due to the small size of the dust grains or a tenuous plasma environment) is affected most strongly.
Aquifer Structure Identification Using Stochastic Inversion
Harp, Dylan R; Dai, Zhenxue; Wolfsberg, Andrew V; Vrugt, Jasper A
2008-01-01
This study presents a stochastic inverse method for aquifer structure identification using sparse geophysical and hydraulic response data. The method is based on updating structure parameters from a transition probability model to iteratively modify the aquifer structure and parameter zonation. The method is extended to the adaptive parameterization of facies hydraulic parameters by including these parameters as optimization variables. The stochastic nature of the statistical structure parameters leads to nonconvex objective functions. A multi-method genetically adaptive evolutionary approach (AMALGAM-SO) was selected to perform the inversion given its search capabilities. Results are obtained as a probabilistic assessment of facies distribution based on indicator cokriging simulation of the optimized structural parameters. The method is illustrated by estimating the structure and facies hydraulic parameters of a synthetic example with a transient hydraulic response.
Stochasticity effects in quantum radiation reaction.
Neitz, N; Di Piazza, A
2013-08-01
When an ultrarelativistic electron beam collides with a sufficiently intense laser pulse, radiation-reaction effects can strongly alter the beam dynamics. In the realm of classical electrodynamics, radiation reaction has a beneficial effect on the electron beam as it tends to reduce its energy spread. Here we show that when quantum effects become important, radiation reaction induces the opposite effect; i.e., the energy distribution of the electron beam spreads out after interacting with the laser pulse. We identify the physical origin of this opposite tendency in the intrinsic stochasticity of photon emission, which becomes substantial in the quantum regime. Our numerical simulations indicate that the predicted effects of the stochasticity can be measured already with presently available lasers and electron accelerators.
Intelligent controllers as hierarchical stochastic automata.
Lima, P U; Saridis, G N
1999-01-01
This paper introduces a design methodology for intelligent controllers, based on a hierarchical linguistic model of command translation by tasks-primitive tasks-primitive actions, and on a two-stage hierarchical learning stochastic automaton that models the translation interfaces of a three-level hierarchical intelligent controller. The methodology relies on the designer's a priori knowledge on how to implement by primitive actions the different primitive tasks which define the intelligent controller. A cost function applicable to any primitive task is introduced and used to learn on-line the optimal choices from the corresponding predesigned sets of primitive actions. The same concept applies to the optimal tasks for each command, whose choice is based on conflict sets of stochastic grammar productions. Optional designs can be compared using this performance measure. A particular design evolves towards the command translation (by tasks-primitive tasks-primitive actions) that minimizes the cost function.
Conditional reversibility in nonequilibrium stochastic systems.
Bonança, Marcus V S; Jarzynski, Christopher
2016-02-01
For discrete-state stochastic systems obeying Markovian dynamics, we establish the counterpart of the conditional reversibility theorem obtained by Gallavotti for deterministic systems [Ann. de l'Institut Henri Poincaré (A) 70, 429 (1999)]. Our result states that stochastic trajectories conditioned on opposite values of entropy production are related by time reversal, in the long-time limit. In other words, the probability of observing a particular sequence of events, given a long trajectory with a specified entropy production rate σ, is the same as the probability of observing the time-reversed sequence of events, given a trajectory conditioned on the opposite entropy production, -σ, where both trajectories are sampled from the same underlying Markov process. To obtain our result, we use an equivalence between conditioned ("microcanonical") and biased ("canonical") ensembles of nonequilibrium trajectories. We provide an example to illustrate our findings.
Introduction. Stochastic physics and climate modelling.
Palmer, T N; Williams, P D
2008-07-28
Finite computing resources limit the spatial resolution of state-of-the-art global climate simulations to hundreds of kilometres. In neither the atmosphere nor the ocean are small-scale processes such as convection, clouds and ocean eddies properly represented. Climate simulations are known to depend, sometimes quite strongly, on the resulting bulk-formula representation of unresolved processes. Stochastic physics schemes within weather and climate models have the potential to represent the dynamical effects of unresolved scales in ways which conventional bulk-formula representations are incapable of so doing. The application of stochastic physics to climate modelling is a rapidly advancing, important and innovative topic. The latest research findings are gathered together in the Theme Issue for which this paper serves as the introduction.
Analog simulation of stochastic satellite response
NASA Technical Reports Server (NTRS)
Huang, T. C.; Das, A.
1984-01-01
A numerical study was performed on the effects of stochastic geometry and random environmental torques on the pointing accuracy of spinning and three-axis stabilized satellites. The Euler equations for the motions of satellites yielded the stochastic principal moments and a Fokker-Planck analog simulation was employed to model the response vector of a rigid satellite. White noise inputs were obtained from a random number generator. Attention was given to both fast and slow spin satellites. Responses grew with time in all cases. The growth was initially exponential and eventually reached stable values. In comparison with other theoretical techniques, the Fokker-Planck model detailed the most responses and showed that spin-stabilization is preferable for satellites with low inertial noise levels.
Controlling statistical moments of stochastic dynamical networks
NASA Astrophysics Data System (ADS)
Bielievtsov, Dmytro; Ladenbauer, Josef; Obermayer, Klaus
2016-07-01
We consider a general class of stochastic networks and ask which network nodes need to be controlled, and how, to stabilize and switch between desired metastable (target) states in terms of the first and second statistical moments of the system. We first show that it is sufficient to directly interfere with a subset of nodes which can be identified using information about the graph of the network only. Then we develop a suitable method for feedback control which acts on that subset of nodes and preserves the covariance structure of the desired target state. Finally, we demonstrate our theoretical results using a stochastic Hopfield network and a global brain model. Our results are applicable to a variety of (model) networks and further our understanding of the relationship between network structure and collective dynamics for the benefit of effective control.
Controlling statistical moments of stochastic dynamical networks.
Bielievtsov, Dmytro; Ladenbauer, Josef; Obermayer, Klaus
2016-07-01
We consider a general class of stochastic networks and ask which network nodes need to be controlled, and how, to stabilize and switch between desired metastable (target) states in terms of the first and second statistical moments of the system. We first show that it is sufficient to directly interfere with a subset of nodes which can be identified using information about the graph of the network only. Then we develop a suitable method for feedback control which acts on that subset of nodes and preserves the covariance structure of the desired target state. Finally, we demonstrate our theoretical results using a stochastic Hopfield network and a global brain model. Our results are applicable to a variety of (model) networks and further our understanding of the relationship between network structure and collective dynamics for the benefit of effective control. PMID:27575147
Stochastic cooling of a high energy collider
Blaskiewicz, M.; Brennan, J.M.; Lee, R.C.; Mernick, K.
2011-09-04
Gold beams in RHIC revolve more than a billion times over the course of a data acquisition session or store. During operations with these heavy ions the event rates in the detectors decay as the beams diffuse. A primary cause for this beam diffusion is small angle Coloumb scattering of the particles within the bunches. This intra-beam scattering (IBS) is particularly problematic at high energy because the negative mass effect removes the possibility of even approximate thermal equilibrium. Stochastic cooling can combat IBS. A theory of bunched beam cooling was developed in the early eighties and stochastic cooling systems for the SPS and the Tevatron were explored. Cooling for heavy ions in RHIC was also considered.
Stochastic model for protein flexibility analysis
NASA Astrophysics Data System (ADS)
Xia, Kelin; Wei, Guo-Wei
2013-12-01
Protein flexibility is an intrinsic property and plays a fundamental role in protein functions. Computational analysis of protein flexibility is crucial to protein function prediction, macromolecular flexible docking, and rational drug design. Most current approaches for protein flexibility analysis are based on Hamiltonian mechanics. We introduce a stochastic model to study protein flexibility. The essential idea is to analyze the free induction decay of a perturbed protein structural probability, which satisfies the master equation. The transition probability matrix is constructed by using probability density estimators including monotonically decreasing radial basis functions. We show that the proposed stochastic model gives rise to some of the best predictions of Debye-Waller factors or B factors for three sets of protein data introduced in the literature.
Stochasticity in the yeast mating pathway
NASA Astrophysics Data System (ADS)
Wang, Hong-Li; Fu, Zheng-Ping; Xu, Xin-Hang; Ouyang, Qi
2009-05-01
We report stochastic simulations of the yeast mating signal transduction pathway. The effects of intrinsic and external noise, the influence of cell-to-cell difference in the pathway capacity, and noise propagation in the pathway have been examined. The stochastic temporal behaviour of the pathway is found to be robust to the influence of inherent fluctuations, and intrinsic noise propagates in the pathway in a uniform pattern when the yeasts are treated with pheromones of different stimulus strengths and of varied fluctuations. In agreement with recent experimental findings, extrinsic noise is found to play a more prominent role than intrinsic noise in the variability of proteins. The occurrence frequency for the reactions in the pathway are also examined and a more compact network is obtained by dropping most of the reactions of least occurrence.
From stochastic resonance to brain waves
NASA Astrophysics Data System (ADS)
Balázsi, G.; Kish, L. B.
2000-01-01
Biological neurons are good examples of a threshold device - this is why neural systems are in the focus when looking for realization of Stochastic Resonance (SR) and spatio-temporal stochastic resonance (STSR) phenomena. In this Letter a simple integrate-and fire model is used to demonstrate the possibility of STSR in a chain of neurons. The theoretical and computational models so far suggest that SR and STSR could occur in neural systems. However, how significant is the role played by these phenomena and what implications might they have on neurobiology is still a question. Because the direct biological proof of SR and STSR seems to be a tough issue one might look at indirect ways to decide whether the internal noise plays any constructive role in the nervous system. A loop of neurons is shown to have interesting features (frequency selection) which might supply a clue for answering the previous question.
Conditional reversibility in nonequilibrium stochastic systems
NASA Astrophysics Data System (ADS)
Bonança, Marcus V. S.; Jarzynski, Christopher
2016-02-01
For discrete-state stochastic systems obeying Markovian dynamics, we establish the counterpart of the conditional reversibility theorem obtained by Gallavotti for deterministic systems [Ann. de l'Institut Henri Poincaré (A) 70, 429 (1999)]. Our result states that stochastic trajectories conditioned on opposite values of entropy production are related by time reversal, in the long-time limit. In other words, the probability of observing a particular sequence of events, given a long trajectory with a specified entropy production rate σ , is the same as the probability of observing the time-reversed sequence of events, given a trajectory conditioned on the opposite entropy production, -σ , where both trajectories are sampled from the same underlying Markov process. To obtain our result, we use an equivalence between conditioned ("microcanonical") and biased ("canonical") ensembles of nonequilibrium trajectories. We provide an example to illustrate our findings.
Stochastic discrete model of karstic networks
NASA Astrophysics Data System (ADS)
Jaquet, O.; Siegel, P.; Klubertanz, G.; Benabderrhamane, H.
Karst aquifers are characterised by an extreme spatial heterogeneity that strongly influences their hydraulic behaviour and the transport of pollutants. These aquifers are particularly vulnerable to contamination because of their highly permeable networks of conduits. A stochastic model is proposed for the simulation of the geometry of karstic networks at a regional scale. The model integrates the relevant physical processes governing the formation of karstic networks. The discrete simulation of karstic networks is performed with a modified lattice-gas cellular automaton for a representative description of the karstic aquifer geometry. Consequently, more reliable modelling results can be obtained for the management and the protection of karst aquifers. The stochastic model was applied jointly with groundwater modelling techniques to a regional karst aquifer in France for the purpose of resolving surface pollution issues.
STOCHASTIC COOLING STUDIES IN RHIC, II.
BLASKIEWICZ,M.BRENNAN,J.M.WEI,J.
2004-07-05
Intra-beam scattering (IBS) is unavoidable for highly charged heavy ions and causes emittance growth during the store for collision physics. A longitudinal bunched beam stochastic cooling system will confine the bunch within the RF bucket increasing the useful luminosity. We describe a series of measurements in RHIC that have been used to verify our understanding of the relevant physics and the cooling system architecture that is being prototyped.
Stochastic behavior of nanoscale dielectric wall buckling
NASA Astrophysics Data System (ADS)
Friedman, Lawrence H.; Levin, Igor; Cook, Robert F.
2016-03-01
The random buckling patterns of nanoscale dielectric walls are analyzed using a nonlinear multi-scale stochastic method that combines experimental measurements with simulations. The dielectric walls, approximately 200 nm tall and 20 nm wide, consist of compliant, low dielectric constant (low-k) fins capped with stiff, compressively stressed TiN lines that provide the driving force for buckling. The deflections of the buckled lines exhibit sinusoidal pseudoperiodicity with amplitude fluctuation and phase decorrelation arising from stochastic variations in wall geometry, properties, and stress state at length scales shorter than the characteristic deflection wavelength of about 1000 nm. The buckling patterns are analyzed and modeled at two length scales: a longer scale (up to 5000 nm) that treats randomness as a longer-scale measurable quantity, and a shorter-scale (down to 20 nm) that treats buckling as a deterministic phenomenon. Statistical simulation is used to join the two length scales. Through this approach, the buckling model is validated and material properties and stress states are inferred. In particular, the stress state of TiN lines in three different systems is determined, along with the elastic moduli of low-k fins and the amplitudes of the small-scale random fluctuations in wall properties—all in the as-processed state. The important case of stochastic effects giving rise to buckling in a deterministically sub-critical buckling state is demonstrated. The nonlinear multiscale stochastic analysis provides guidance for design of low-k structures with acceptable buckling behavior and serves as a template for how randomness that is common to nanoscale phenomena might be measured and analyzed in other contexts.
Optimization Testbed Cometboards Extended into Stochastic Domain
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Pai, Shantaram S.; Coroneos, Rula M.; Patnaik, Surya N.
2010-01-01
COMparative Evaluation Testbed of Optimization and Analysis Routines for the Design of Structures (CometBoards) is a multidisciplinary design optimization software. It was originally developed for deterministic calculation. It has now been extended into the stochastic domain for structural design problems. For deterministic problems, CometBoards is introduced through its subproblem solution strategy as well as the approximation concept in optimization. In the stochastic domain, a design is formulated as a function of the risk or reliability. Optimum solution including the weight of a structure, is also obtained as a function of reliability. Weight versus reliability traced out an inverted-S-shaped graph. The center of the graph corresponded to 50 percent probability of success, or one failure in two samples. A heavy design with weight approaching infinity could be produced for a near-zero rate of failure that corresponded to unity for reliability. Weight can be reduced to a small value for the most failure-prone design with a compromised reliability approaching zero. The stochastic design optimization (SDO) capability for an industrial problem was obtained by combining three codes: MSC/Nastran code was the deterministic analysis tool, fast probabilistic integrator, or the FPI module of the NESSUS software, was the probabilistic calculator, and CometBoards became the optimizer. The SDO capability requires a finite element structural model, a material model, a load model, and a design model. The stochastic optimization concept is illustrated considering an academic example and a real-life airframe component made of metallic and composite materials.
Stochastic modelling of bacterial lag phase.
Baranyi, József
2002-03-01
In order to study the lag distribution of the individual cells in a bacterial population, a stochastic birth model is used in this study. An integral formula is applied to transform the assumed lag distribution into a growth function describing the transition between lag and exponential phase of the cell population. By means of this formula, it is pointed out that traditional viable count curves are not suitable to identify the distribution of individual cells' lag time.
Modeling heart rate variability by stochastic feedback
NASA Technical Reports Server (NTRS)
Amaral, L. A.; Goldberger, A. L.; Stanley, H. E.
1999-01-01
We consider the question of how the cardiac rhythm spontaneously self-regulates and propose a new mechanism as a possible answer. We model the neuroautonomic regulation of the heart rate as a stochastic feedback system and find that the model successfully accounts for key characteristics of cardiac variability, including the 1/f power spectrum, the functional form and scaling of the distribution of variations of the interbeat intervals, and the correlations in the Fourier phases which indicate nonlinear dynamics.
Stochastic Radiative transfer and real cloudiness
Evans, F.
1995-09-01
Plane-parallel radiative transfer modeling of clouds in GCMs is thought to be an inadequate representation of the effects of real cloudiness. A promising new approach for studying the effects of cloud horizontal inhomogeneity is stochastic radiative transfer, which computes the radiative effects of ensembles of cloud structures described by probability distributions. This approach is appropriate because cloud information is inherently statistical, and it is the mean radiative effect of complex 3D cloud structure that is desired. 2 refs., 1 fig.
Stochastic Games with Average Payoff Criterion
Ghosh, M. K.; Bagchi, A.
1998-11-15
We study two-person stochastic games on a Polish state and compact action spaces and with average payoff criterion under a certain ergodicity condition. For the zero-sum game we establish the existence of a value and stationary optimal strategies for both players. For the nonzero-sum case the existence of Nash equilibrium in stationary strategies is established under certain separability conditions.
Continous-time stochastic Markov games
Nowak, A.
1994-12-31
We consider zero-sum game in which the players control a continuous-time stochastic jump process. The state space is assumed to be a Borel set. Sufficient conditions for the existence of optimal strategies for the players are to be presented. In the undiscounted case we will consider conditions which are related to geometric ergodicity. Some possible extentions to non-zero-sum games will be mentioned.
Stochastic differential equations and turbulent dispersion
NASA Technical Reports Server (NTRS)
Durbin, P. A.
1983-01-01
Aspects of the theory of continuous stochastic processes that seem to contribute to an understanding of turbulent dispersion are introduced and the theory and philosophy of modelling turbulent transport is emphasized. Examples of eddy diffusion examined include shear dispersion, the surface layer, and channel flow. Modeling dispersion with finite-time scale is considered including the Langevin model for homogeneous turbulence, dispersion in nonhomogeneous turbulence, and the asymptotic behavior of the Langevin model for nonhomogeneous turbulence.
Planning with Continuous Resources in Stochastic Domains
NASA Technical Reports Server (NTRS)
Mausam, Mausau; Benazera, Emmanuel; Brafman, Roneu; Hansen, Eric
2005-01-01
We consider the problem of optimal planning in stochastic domains with metric resource constraints. Our goal is to generate a policy whose expected sum of rewards is maximized for a given initial state. We consider a general formulation motivated by our application domain--planetary exploration--in which the choice of an action at each step may depend on the current resource levels. We adapt the forward search algorithm AO* to handle our continuous state space efficiently.
Stochastic behavior of nanoscale dielectric wall buckling
Friedman, Lawrence H.; Levin, Igor; Cook, Robert F.
2016-01-01
The random buckling patterns of nanoscale dielectric walls are analyzed using a nonlinear multi-scale stochastic method that combines experimental measurements with simulations. The dielectric walls, approximately 200 nm tall and 20 nm wide, consist of compliant, low dielectric constant (low-k) fins capped with stiff, compressively stressed TiN lines that provide the driving force for buckling. The deflections of the buckled lines exhibit sinusoidal pseudoperiodicity with amplitude fluctuation and phase decorrelation arising from stochastic variations in wall geometry, properties, and stress state at length scales shorter than the characteristic deflection wavelength of about 1000 nm. The buckling patterns are analyzed and modeled at two length scales: a longer scale (up to 5000 nm) that treats randomness as a longer-scale measurable quantity, and a shorter-scale (down to 20 nm) that treats buckling as a deterministic phenomenon. Statistical simulation is used to join the two length scales. Through this approach, the buckling model is validated and material properties and stress states are inferred. In particular, the stress state of TiN lines in three different systems is determined, along with the elastic moduli of low-k fins and the amplitudes of the small-scale random fluctuations in wall properties—all in the as-processed state. The important case of stochastic effects giving rise to buckling in a deterministically sub-critical buckling state is demonstrated. The nonlinear multiscale stochastic analysis provides guidance for design of low-k structures with acceptable buckling behavior and serves as a template for how randomness that is common to nanoscale phenomena might be measured and analyzed in other contexts. PMID:27330220
Stationary conditions for stochastic differential equations
NASA Technical Reports Server (NTRS)
Adomian, G.; Walker, W. W.
1972-01-01
This is a preliminary study of possible necessary and sufficient conditions to insure stationarity in the solution process for a stochastic differential equation. It indirectly sheds some light on ergodicity properties and shows that the spectral density is generally inadequate as a statistical measure of the solution. Further work is proceeding on a more general theory which gives necessary and sufficient conditions in a form useful for applications.
A stochastic model for kinesin bidirectional stepping
Yao, Xiaojun; Zheng, Yujun
2014-02-28
In this paper, a hand-over-hand stochastic model for the dynamics of the conventional kinesin is constructed. In the model, both forward and backward motions are taken into consideration. First passage time distributions, average velocities, dwell times, and forward/backward step ratios are investigated based on the model. A good agreement between the results of the model and experimental data is achieved under a variety of external loads.
Kane model parameters and stochastic spin current
NASA Astrophysics Data System (ADS)
Chowdhury, Debashree
2015-11-01
The spin current and spin conductivity is computed through thermally driven stochastic process. By evaluating the Kramers equation and with the help of k → . p → method we have studied the spin Hall scenario. Due to the thermal assistance, the Kane model parameters get modified, which consequently modulate the spin orbit coupling (SOC). This modified SOC causes the spin current to change in a finite amount.
Discrete Deterministic and Stochastic Petri Nets
NASA Technical Reports Server (NTRS)
Zijal, Robert; Ciardo, Gianfranco
1996-01-01
Petri nets augmented with timing specifications gained a wide acceptance in the area of performance and reliability evaluation of complex systems exhibiting concurrency, synchronization, and conflicts. The state space of time-extended Petri nets is mapped onto its basic underlying stochastic process, which can be shown to be Markovian under the assumption of exponentially distributed firing times. The integration of exponentially and non-exponentially distributed timing is still one of the major problems for the analysis and was first attacked for continuous time Petri nets at the cost of structural or analytical restrictions. We propose a discrete deterministic and stochastic Petri net (DDSPN) formalism with no imposed structural or analytical restrictions where transitions can fire either in zero time or according to arbitrary firing times that can be represented as the time to absorption in a finite absorbing discrete time Markov chain (DTMC). Exponentially distributed firing times are then approximated arbitrarily well by geometric distributions. Deterministic firing times are a special case of the geometric distribution. The underlying stochastic process of a DDSPN is then also a DTMC, from which the transient and stationary solution can be obtained by standard techniques. A comprehensive algorithm and some state space reduction techniques for the analysis of DDSPNs are presented comprising the automatic detection of conflicts and confusions, which removes a major obstacle for the analysis of discrete time models.
Improved sensorimotor performance via stochastic resonance.
Mendez-Balbuena, Ignacio; Manjarrez, Elias; Schulte-Mönting, Jürgen; Huethe, Frank; Tapia, Jesus A; Hepp-Reymond, Marie-Claude; Kristeva, Rumyana
2012-09-01
Several studies about noise-enhanced balance control in humans support the hypothesis that stochastic resonance can enhance the detection and transmission in sensorimotor system during a motor task. The purpose of the present study was to extend these findings in a simpler and controlled task. We explored whether a particular level of a mechanical Gaussian noise (0-15 Hz) applied on the index finger can improve the performance during compensation for a static force generated by a manipulandum. The finger position was displayed on a monitor as a small white point in the center of a gray circle. We considered a good performance when the subjects exhibited a low deviation from the center of this circle and when the performance had less variation over time. Several levels of mechanical noise were applied on the manipulandum. We compared the performance between zero noise (ZN), optimal noise (ON), and high noise (HN). In all subjects (8 of 8) the data disclosed an inverted U-like graph between the inverse of the mean variation in position and the input noise level. In other words, the mean variation was significantly smaller during ON than during ZN or HN. The findings suggest that the application of a tactile-proprioceptive noise can improve the stability in sensorimotor performance via stochastic resonance. Possible explanations for this improvement in motor precision are an increase of the peripheral receptors sensitivity and of the internal stochastic resonance, causing a better sensorimotor integration and an increase in corticomuscular synchronization.
The Stochastic Edge in Adaptive Evolution
Brunet, Éric; Rouzine, Igor M.; Wilke, Claus O.
2008-01-01
In a recent article, Desai and Fisher proposed that the speed of adaptation in an asexual population is determined by the dynamics of the stochastic edge of the population, that is, by the emergence and subsequent establishment of rare mutants that exceed the fitness of all sequences currently present in the population. Desai and Fisher perform an elaborate stochastic calculation of the mean time τ until a new class of mutants has been established and interpret 1/τ as the speed of adaptation. As they note, however, their calculations are valid only for moderate speeds. This limitation arises from their method to determine τ: Desai and Fisher back extrapolate the value of τ from the best-fit class's exponential growth at infinite time. This approach is not valid when the population adapts rapidly, because in this case the best-fit class grows nonexponentially during the relevant time interval. Here, we substantially extend Desai and Fisher's analysis of the stochastic edge. We show that we can apply Desai and Fisher's method to high speeds by either exponentially back extrapolating from finite time or using a nonexponential back extrapolation. Our results are compatible with predictions made using a different analytical approach (Rouzine et al.) and agree well with numerical simulations. PMID:18493075
Modeling of pharmacokinetic systems using stochastic deconvolution.
Kakhi, Maziar; Chittenden, Jason
2013-12-01
In environments where complete mechanistic knowledge of the system dynamics is not available, a synergy of first-principle concepts, stochastic methods and statistical approaches can provide an efficient, accurate, and insightful strategy for model development. In this work, a system of ordinary differential equations describing system pharmacokinetics (PK) was coupled to a Wiener process for tracking the absorption rate coefficient, and was embedded in a nonlinear mixed effects population PK formalism. The procedure is referred to as "stochastic deconvolution" and it is proposed as a diagnostic tool to inform on a mapping function between the fraction of the drug absorbed and the fraction of the drug dissolved when applying one-stage methods to in vitro-in vivo correlation modeling. The goal of this work was to show that stochastic deconvolution can infer an a priori specified absorption profile given dense observational (simulated) data. The results demonstrate that the mathematical model is able to accurately reproduce the simulated data in scenarios where solution strategies for linear, time-invariant systems would assuredly fail. To this end, PK systems that are representative of Michaelis-Menten kinetics and enterohepatic circulation were investigated. Furthermore, the solution times are manageable using a modest computer hardware platform.
Transient absolute robustness in stochastic biochemical networks.
Enciso, German A
2016-08-01
Absolute robustness allows biochemical networks to sustain a consistent steady-state output in the face of protein concentration variability from cell to cell. This property is structural and can be determined from the topology of the network alone regardless of rate parameters. An important question regarding these systems is the effect of discrete biochemical noise in the dynamical behaviour. In this paper, a variable freezing technique is developed to show that under mild hypotheses the corresponding stochastic system has a transiently robust behaviour. Specifically, after finite time the distribution of the output approximates a Poisson distribution, centred around the deterministic mean. The approximation becomes increasingly accurate, and it holds for increasingly long finite times, as the total protein concentrations grow to infinity. In particular, the stochastic system retains a transient, absolutely robust behaviour corresponding to the deterministic case. This result contrasts with the long-term dynamics of the stochastic system, which eventually must undergo an extinction event that eliminates robustness and is completely different from the deterministic dynamics. The transiently robust behaviour may be sufficient to carry out many forms of robust signal transduction and cellular decision-making in cellular organisms. PMID:27581485
Recursive stochastic effects in valley hybrid inflation
NASA Astrophysics Data System (ADS)
Levasseur, Laurence Perreault; Vennin, Vincent; Brandenberger, Robert
2013-10-01
Hybrid inflation is a two-field model where inflation ends because of a tachyonic instability, the duration of which is determined by stochastic effects and has important observational implications. Making use of the recursive approach to the stochastic formalism presented in [L. P. Levasseur, preceding article, Phys. Rev. D 88, 083537 (2013)], these effects are consistently computed. Through an analysis of backreaction, this method is shown to converge in the valley but points toward an (expected) instability in the waterfall. It is further shown that the quasistationarity of the auxiliary field distribution breaks down in the case of a short-lived waterfall. We find that the typical dispersion of the waterfall field at the critical point is then diminished, thus increasing the duration of the waterfall phase and jeopardizing the possibility of a short transition. Finally, we find that stochastic effects worsen the blue tilt of the curvature perturbations by an O(1) factor when compared with the usual slow-roll contribution.
Stochastic self-assembly of incommensurate clusters
NASA Astrophysics Data System (ADS)
D'Orsogna, M. R.; Lakatos, G.; Chou, T.
2012-02-01
Nucleation and molecular aggregation are important processes in numerous physical and biological systems. In many applications, these processes often take place in confined spaces, involving a finite number of particles. Analogous to treatments of stochastic chemical reactions, we examine the classic problem of homogeneous nucleation and self-assembly by deriving and analyzing a fully discrete stochastic master equation. We enumerate the highest probability steady states, and derive exact analytical formulae for quenched and equilibrium mean cluster size distributions. Upon comparison with results obtained from the associated mass-action Becker-Döring equations, we find striking differences between the two corresponding equilibrium mean cluster concentrations. These differences depend primarily on the divisibility of the total available mass by the maximum allowed cluster size, and the remainder. When such mass "incommensurability" arises, a single remainder particle can "emulsify" the system by significantly broadening the equilibrium mean cluster size distribution. This discreteness-induced broadening effect is periodic in the total mass of the system but arises even when the system size is asymptotically large, provided the ratio of the total mass to the maximum cluster size is finite. Ironically, classic mass-action equations are fairly accurate in the coarsening regime, before equilibrium is reached, despite the presence of large stochastic fluctuations found via kinetic Monte-Carlo simulations. Our findings define a new scaling regime in which results from classic mass-action theories are qualitatively inaccurate, even in the limit of large total system size.
Ayati, Moosa; Alwan, Mohamad; Liu Xinzhi; Khaloozadeh, Hamid
2011-11-30
State observation (estimation) is a very important issue in system analysis and control. This paper develops a new observer called Stochastic Adaptive Impulsive Observer (SAIO) for the state estimation of impulsive systems. The proposed observer is applicable to linear and nonlinear stochastic impulsive systems. In addition, the effect of parametric uncertainty is considered and unknown parameters of the system are estimated by suitable adaptation laws. Impulsive system theory, particularly stochastic Lyapunov-like function, is used to analyze the stability and convergence of the state estimations. The main advantages of the proposed observer are: 1) it gives continuous estimation from discrete time measurements of the system output, and 2) it is useful for state estimation when continuous measurements are impossible or expensive. Simulation results show the effectiveness of the proposed observer and we believe that it has many applications in control and estimation theories.
Cancer Evolution and the Limits of Predictability in Precision Cancer Medicine
Lipinski, Kamil A.; Barber, Louise J.; Davies, Matthew N.; Ashenden, Matthew; Sottoriva, Andrea; Gerlinger, Marco
2016-01-01
The ability to predict the future behavior of an individual cancer is crucial for precision cancer medicine. The discovery of extensive intratumor heterogeneity and ongoing clonal adaptation in human tumors substantiated the notion of cancer as an evolutionary process. Random events are inherent in evolution and tumor spatial structures hinder the efficacy of selection, which is the only deterministic evolutionary force. This review outlines how the interaction of these stochastic and deterministic processes, which have been extensively studied in evolutionary biology, limits cancer predictability and develops evolutionary strategies to improve predictions. Understanding and advancing the cancer predictability horizon is crucial to improve precision medicine outcomes. PMID:26949746
Planning under uncertainty solving large-scale stochastic linear programs
Infanger, G. . Dept. of Operations Research Technische Univ., Vienna . Inst. fuer Energiewirtschaft)
1992-12-01
For many practical problems, solutions obtained from deterministic models are unsatisfactory because they fail to hedge against certain contingencies that may occur in the future. Stochastic models address this shortcoming, but up to recently seemed to be intractable due to their size. Recent advances both in solution algorithms and in computer technology now allow us to solve important and general classes of practical stochastic problems. We show how large-scale stochastic linear programs can be efficiently solved by combining classical decomposition and Monte Carlo (importance) sampling techniques. We discuss the methodology for solving two-stage stochastic linear programs with recourse, present numerical results of large problems with numerous stochastic parameters, show how to efficiently implement the methodology on a parallel multi-computer and derive the theory for solving a general class of multi-stage problems with dependency of the stochastic parameters within a stage and between different stages.
Time-Ordered Product Expansions for Computational Stochastic Systems Biology
Mjolsness, Eric
2013-01-01
The time-ordered product framework of quantum field theory can also be used to understand salient phenomena in stochastic biochemical networks. It is used here to derive Gillespie’s Stochastic Simulation Algorithm (SSA) for chemical reaction networks; consequently, the SSA can be interpreted in terms of Feynman diagrams. It is also used here to derive other, more general simulation and parameter-learning algorithms including simulation algorithms for networks of stochastic reaction-like processes operating on parameterized objects, and also hybrid stochastic reaction/differential equation models in which systems of ordinary differ-ential equations evolve the parameters of objects that can also undergo stochastic reactions. Thus, the time-ordered product expansion (TOPE) can be used systematically to derive simulation and parameter-fitting algorithms for stochastic systems. PMID:23735739
Problems of Mathematical Finance by Stochastic Control Methods
NASA Astrophysics Data System (ADS)
Stettner, Łukasz
The purpose of this paper is to present main ideas of mathematics of finance using the stochastic control methods. There is an interplay between stochastic control and mathematics of finance. On the one hand stochastic control is a powerful tool to study financial problems. On the other hand financial applications have stimulated development in several research subareas of stochastic control in the last two decades. We start with pricing of financial derivatives and modeling of asset prices, studying the conditions for the absence of arbitrage. Then we consider pricing of defaultable contingent claims. Investments in bonds lead us to the term structure modeling problems. Special attention is devoted to historical static portfolio analysis called Markowitz theory. We also briefly sketch dynamic portfolio problems using viscosity solutions to Hamilton-Jacobi-Bellman equation, martingale-convex analysis method or stochastic maximum principle together with backward stochastic differential equation. Finally, long time portfolio analysis for both risk neutral and risk sensitive functionals is introduced.
Method to describe stochastic dynamics using an optimal coordinate.
Krivov, Sergei V
2013-12-01
A general method to describe the stochastic dynamics of Markov processes is suggested. The method aims to solve three related problems: the determination of an optimal coordinate for the description of stochastic dynamics; the reconstruction of time from an ensemble of stochastic trajectories; and the decomposition of stationary stochastic dynamics into eigenmodes which do not decay exponentially with time. The problems are solved by introducing additive eigenvectors which are transformed by a stochastic matrix in a simple way - every component is translated by a constant distance. Such solutions have peculiar properties. For example, an optimal coordinate for stochastic dynamics with detailed balance is a multivalued function. An optimal coordinate for a random walk on a line corresponds to the conventional eigenvector of the one-dimensional Dirac equation. The equation for the optimal coordinate in a slowly varying potential reduces to the Hamilton-Jacobi equation for the action function. PMID:24483410
Stochastic effects in a seasonally forced epidemic model
NASA Astrophysics Data System (ADS)
Rozhnova, G.; Nunes, A.
2010-10-01
The interplay of seasonality, the system’s nonlinearities and intrinsic stochasticity, is studied for a seasonally forced susceptible-exposed-infective-recovered stochastic model. The model is explored in the parameter region that corresponds to childhood infectious diseases such as measles. The power spectrum of the stochastic fluctuations around the attractors of the deterministic system that describes the model in the thermodynamic limit is computed analytically and validated by stochastic simulations for large system sizes. Size effects are studied through additional simulations. Other effects such as switching between coexisting attractors induced by stochasticity often mentioned in the literature as playing an important role in the dynamics of childhood infectious diseases are also investigated. The main conclusion is that stochastic amplification, rather than these effects, is the key ingredient to understand the observed incidence patterns.
Frank, T D
2002-07-01
Using the method of steps, we describe stochastic processes with delays in terms of Markov diffusion processes. Thus, multivariate Langevin equations and Fokker-Planck equations are derived for stochastic delay differential equations. Natural, periodic, and reflective boundary conditions are discussed. Both Ito and Stratonovich calculus are used. In particular, our Fokker-Planck approach recovers the generalized delay Fokker-Planck equation proposed by Guillouzic et al. The results obtained are applied to a model for population growth: the Gompertz model with delay and multiplicative white noise.
Stochastic simulation of radium-223 dichloride therapy at the sub-cellular level.
Gholami, Y; Zhu, X; Fulton, R; Meikle, S; El-Fakhri, G; Kuncic, Z
2015-08-01
Radium-223 dichloride ((223)Ra) is an alpha particle emitter and a natural bone-seeking radionuclide that is currently used for treating osteoblastic bone metastases associated with prostate cancer. The stochastic nature of alpha emission, hits and energy deposition poses some challenges for estimating radiation damage. In this paper we investigate the distribution of hits to cells by multiple alpha particles corresponding to a typical clinically delivered dose using a Monte Carlo model to simulate the stochastic effects. The number of hits and dose deposition were recorded in the cytoplasm and nucleus of each cell. Alpha particle tracks were also visualized. We found that the stochastic variation in dose deposited in cell nuclei ([Formula: see text]40%) can be attributed in part to the variation in LET with pathlength. We also found that [Formula: see text]18% of cell nuclei receive less than one sigma below the average dose per cell ([Formula: see text]15.4 Gy). One possible implication of this is that the efficacy of cell kill in alpha particle therapy need not rely solely on ionization clustering on DNA but possibly also on indirect DNA damage through the production of free radicals and ensuing intracellular signaling.
Stochastic simulation of radium-223 dichloride therapy at the sub-cellular level
NASA Astrophysics Data System (ADS)
Gholami, Y.; Zhu, X.; Fulton, R.; Meikle, S.; El-Fakhri, G.; Kuncic, Z.
2015-08-01
Radium-223 dichloride (223Ra) is an alpha particle emitter and a natural bone-seeking radionuclide that is currently used for treating osteoblastic bone metastases associated with prostate cancer. The stochastic nature of alpha emission, hits and energy deposition poses some challenges for estimating radiation damage. In this paper we investigate the distribution of hits to cells by multiple alpha particles corresponding to a typical clinically delivered dose using a Monte Carlo model to simulate the stochastic effects. The number of hits and dose deposition were recorded in the cytoplasm and nucleus of each cell. Alpha particle tracks were also visualized. We found that the stochastic variation in dose deposited in cell nuclei (≃ 40%) can be attributed in part to the variation in LET with pathlength. We also found that ≃ 18% of cell nuclei receive less than one sigma below the average dose per cell (≃ 15.4 Gy). One possible implication of this is that the efficacy of cell kill in alpha particle therapy need not rely solely on ionization clustering on DNA but possibly also on indirect DNA damage through the production of free radicals and ensuing intracellular signaling.
Stochastic Threshold Microdose Model for Cell Killing by Insoluble Metallic Nanomaterial Particles
Scott, Bobby R.
2010-01-01
This paper introduces a novel microdosimetric model for metallic nanomaterial-particles (MENAP)-induced cytotoxicity. The focus is on the engineered insoluble MENAP which represent a significant breakthrough in the design and development of new products for consumers, industry, and medicine. Increased production is rapidly occurring and may cause currently unrecognized health effects (e.g., nervous system dysfunction, heart disease, cancer); thus, dose-response models for MENAP-induced biological effects are needed to facilitate health risk assessment. The stochastic threshold microdose (STM) model presented introduces novel stochastic microdose metrics for use in constructing dose-response relationships for the frequency of specific cellular (e.g., cell killing, mutations, neoplastic transformation) or subcellular (e.g., mitochondria dysfunction) effects. A key metric is the exposure-time-dependent, specific burden (MENAP count) for a given critical target (e.g., mitochondria, nucleus). Exceeding a stochastic threshold specific burden triggers cell death. For critical targets in the cytoplasm, the autophagic mode of death is triggered. For the nuclear target, the apoptotic mode of death is triggered. Overall cell survival is evaluated for the indicated competing modes of death when both apply. The STM model can be applied to cytotoxicity data using Bayesian methods implemented via Markov chain Monte Carlo. PMID:21191483
Suboptimal stochastic controller for an n-body spacecraft
NASA Technical Reports Server (NTRS)
Larson, V.
1973-01-01
The problem is studied of determining a stochastic optimal controller for an n-body spacecraft. The approach used in obtaining the stochastic controller involves the application, interpretation, and combination of advanced dynamical principles and the theoretical aspects of modern control theory. The stochastic controller obtained for a complicated model of a spacecraft uses sensor angular measurements associated with the base body to obtain smoothed estimates of the entire state vector, can be easily implemented, and enables system performance to be significantly improved.
Incompressible Limit for Compressible Fluids with Stochastic Forcing
NASA Astrophysics Data System (ADS)
Breit, Dominic; Feireisl, Eduard; Hofmanová, Martina
2016-11-01
We study the asymptotic behavior of the isentropic Navier-Stokes system driven by a multiplicative stochastic forcing in the compressible regime, where the Mach number approaches zero. Our approach is based on the recently developed concept of a weak martingale solution to the primitive system, uniform bounds derived from a stochastic analogue of the modulated energy inequality, and careful analysis of acoustic waves. A stochastic incompressible Navier-Stokes system is identified as the limit problem.
Stochastic Impulse Control of Non-Markovian Processes
Djehiche, Boualem; Hamadene, Said Hdhiri, Ibtissam
2010-02-15
We consider a class of stochastic impulse control problems of general stochastic processes i.e. not necessarily Markovian. Under fairly general conditions we establish existence of an optimal impulse control. We also prove existence of combined optimal stochastic and impulse control of a fairly general class of diffusions with random coefficients. Unlike, in the Markovian framework, we cannot apply quasi-variational inequalities techniques. We rather derive the main results using techniques involving reflected BSDEs and the Snell envelope.
Laboratory evidence for stochastic plasma-wave growth.
Austin, D R; Hole, M J; Robinson, P A; Cairns, Iver H; Dallaqua, R
2007-11-16
The first laboratory confirmation of stochastic growth theory is reported. Floating potential fluctuations are measured in a vacuum arc centrifuge using a Langmuir probe. Statistical analysis of the energy density reveals a lognormal distribution over roughly 2 orders of magnitude, with a high-field nonlinear cutoff whose spatial dependence is consistent with the predicted eigenmode profile. These results are consistent with stochastic growth and nonlinear saturation of a spatially extended eigenmode, the first evidence for stochastic growth of an extended structure.
Laboratory Evidence for Stochastic Plasma-Wave Growth
NASA Astrophysics Data System (ADS)
Austin, D. R.; Hole, M. J.; Robinson, P. A.; Cairns, Iver H.; Dallaqua, R.
2007-11-01
The first laboratory confirmation of stochastic growth theory is reported. Floating potential fluctuations are measured in a vacuum arc centrifuge using a Langmuir probe. Statistical analysis of the energy density reveals a lognormal distribution over roughly 2 orders of magnitude, with a high-field nonlinear cutoff whose spatial dependence is consistent with the predicted eigenmode profile. These results are consistent with stochastic growth and nonlinear saturation of a spatially extended eigenmode, the first evidence for stochastic growth of an extended structure.
A stochastic model of AIDS and condom use
NASA Astrophysics Data System (ADS)
Dalal, Nirav; Greenhalgh, David; Mao, Xuerong
2007-01-01
In this paper we introduce stochasticity into a model of AIDS and condom use via the technique of parameter perturbation which is standard in stochastic population modelling. We show that the model established in this paper possesses non-negative solutions as desired in any population dynamics. We also carry out a detailed analysis on asymptotic stability both in probability one and in pth moment. Our results reveal that a certain type of stochastic perturbation may help to stabilise the underlying system.
Solving the Langevin equation with stochastic algebraically correlated noise
NASA Astrophysics Data System (ADS)
Płoszajczak, M.; Srokowski, T.
1997-05-01
The long time tail in the velocity and force autocorrelation function has been found recently in molecular dynamics simulations of peripheral collisions of ions. Simulation of those slowly decaying correlations in the stochastic transport theory requires the development of new methods of generating stochastic force of arbitrarily long correlation times. In this paper we propose a Markovian process, the multidimensional kangaroo process, which permits the description of various algebraically correlated stochastic processes.
A stochastic method for computing hadronic matrix elements
Alexandrou, Constantia; Constantinou, Martha; Dinter, Simon; Drach, Vincent; Jansen, Karl; Hadjiyiannakou, Kyriakos; Renner, Dru B.
2014-01-24
In this study, we present a stochastic method for the calculation of baryon 3-point functions which is an alternative to the typically used sequential method offering more versatility. We analyze the scaling of the error of the stochastically evaluated 3-point function with the lattice volume and find a favorable signal to noise ratio suggesting that the stochastic method can be extended to large volumes providing an efficient approach to compute hadronic matrix elements and form factors.
Symmetries of stochastic differential equations: A geometric approach
NASA Astrophysics Data System (ADS)
De Vecchi, Francesco C.; Morando, Paola; Ugolini, Stefania
2016-06-01
A new notion of stochastic transformation is proposed and applied to the study of both weak and strong symmetries of stochastic differential equations (SDEs). The correspondence between an algebra of weak symmetries for a given SDE and an algebra of strong symmetries for a modified SDE is proved under suitable regularity assumptions. This general approach is applied to a stochastic version of a two dimensional symmetric ordinary differential equation and to the case of two dimensional Brownian motion.
Asymptotic stability of second-order neutral stochastic differential equations
NASA Astrophysics Data System (ADS)
Sakthivel, R.; Ren, Yong; Kim, Hyunsoo
2010-05-01
In this paper, we study the existence and asymptotic stability in pth moment of mild solutions to second-order nonlinear neutral stochastic differential equations. Further, this result is extended to establish stability criterion for stochastic equations with impulsive effects. With the help of fixed point strategy, stochastic analysis technique, and semigroup theory, a set of novel sufficient conditions are derived for achieving the required result. Finally, an example is provided to illustrate the obtained result.
Vaccination Control in a Stochastic SVIR Epidemic Model
Witbooi, Peter J.; Muller, Grant E.; Van Schalkwyk, Garth J.
2015-01-01
For a stochastic differential equation SVIR epidemic model with vaccination, we prove almost sure exponential stability of the disease-free equilibrium for ℛ0 < 1, where ℛ0 denotes the basic reproduction number of the underlying deterministic model. We study an optimal control problem for the stochastic model as well as for the underlying deterministic model. In order to solve the stochastic problem numerically, we use an approximation based on the solution of the deterministic model. PMID:26089961
Magnetic stochasticity in gyrokinetic simulations of plasma microturbulence
Nevins, W M; Wang, E; Candy, J
2010-02-12
Analysis of the magnetic field structure from electromagnetic simulations of tokamak ion temperature gradient turbulence demonstrates that the magnetic field can be stochastic even at very low plasma pressure. The degree of magnetic stochasticity is quantified by evaluating the magnetic diffusion coefficient. We find that the magnetic stochasticity fails to produce a dramatic increase in the electron heat conductivity because the magnetic diffusion coefficient remains small.
Laboratory Evidence for Stochastic Plasma-Wave Growth
Austin, D. R.; Hole, M. J.; Robinson, P. A.; Cairns, Iver H.; Dallaqua, R.
2007-11-16
The first laboratory confirmation of stochastic growth theory is reported. Floating potential fluctuations are measured in a vacuum arc centrifuge using a Langmuir probe. Statistical analysis of the energy density reveals a lognormal distribution over roughly 2 orders of magnitude, with a high-field nonlinear cutoff whose spatial dependence is consistent with the predicted eigenmode profile. These results are consistent with stochastic growth and nonlinear saturation of a spatially extended eigenmode, the first evidence for stochastic growth of an extended structure.
Numerical studies of the stochastic Korteweg-de Vries equation
Lin Guang; Grinberg, Leopold; Karniadakis, George Em . E-mail: gk@dam.brown.edu
2006-04-10
We present numerical solutions of the stochastic Korteweg-de Vries equation for three cases corresponding to additive time-dependent noise, multiplicative space-dependent noise and a combination of the two. We employ polynomial chaos for discretization in random space, and discontinuous Galerkin and finite difference for discretization in physical space. The accuracy of the stochastic solutions is investigated by comparing the first two moments against analytical and Monte Carlo simulation results. Of particular interest is the interplay of spatial discretization error with the stochastic approximation error, which is examined for different orders of spatial and stochastic approximation.
The Sharma-Parthasarathy stochastic two-body problem
NASA Astrophysics Data System (ADS)
Cresson, J.; Pierret, F.; Puig, B.
2015-03-01
We study the Sharma-Parthasarathy stochastic two-body problem introduced by Sharma and Parthasarathy in ["Dynamics of a stochastically perturbed two-body problem," Proc. R. Soc. A 463, 979-1003 (2007)]. In particular, we focus on the preservation of some fundamental features of the classical two-body problem like the Hamiltonian structure and first integrals in the stochastic case. Numerical simulations are performed which illustrate the dynamical behaviour of the osculating elements as the semi-major axis, the eccentricity, and the pericenter. We also derive a stochastic version of Gauss's equations in the planar case.
A heterogeneous stochastic FEM framework for elliptic PDEs
Hou, Thomas Y. Liu, Pengfei
2015-01-15
We introduce a new concept of sparsity for the stochastic elliptic operator −div(a(x,ω)∇(⋅)), which reflects the compactness of its inverse operator in the stochastic direction and allows for spatially heterogeneous stochastic structure. This new concept of sparsity motivates a heterogeneous stochastic finite element method (HSFEM) framework for linear elliptic equations, which discretizes the equations using the heterogeneous coupling of spatial basis with local stochastic basis to exploit the local stochastic structure of the solution space. We also provide a sampling method to construct the local stochastic basis for this framework using the randomized range finding techniques. The resulting HSFEM involves two stages and suits the multi-query setting: in the offline stage, the local stochastic structure of the solution space is identified; in the online stage, the equation can be efficiently solved for multiple forcing functions. An online error estimation and correction procedure through Monte Carlo sampling is given. Numerical results for several problems with high dimensional stochastic input are presented to demonstrate the efficiency of the HSFEM in the online stage.
The Sharma-Parthasarathy stochastic two-body problem
Cresson, J.
2015-03-15
We study the Sharma-Parthasarathy stochastic two-body problem introduced by Sharma and Parthasarathy in [“Dynamics of a stochastically perturbed two-body problem,” Proc. R. Soc. A 463, 979-1003 (2007)]. In particular, we focus on the preservation of some fundamental features of the classical two-body problem like the Hamiltonian structure and first integrals in the stochastic case. Numerical simulations are performed which illustrate the dynamical behaviour of the osculating elements as the semi-major axis, the eccentricity, and the pericenter. We also derive a stochastic version of Gauss’s equations in the planar case.
Large Deviations for Stochastic Evolution Equations with Small Multiplicative Noise
Liu Wei
2010-02-15
The Freidlin-Wentzell large deviation principle is established for the distributions of stochastic evolution equations with general monotone drift and small multiplicative noise. As examples, the main results are applied to derive the large deviation principle for different types of SPDE such as stochastic reaction-diffusion equations, stochastic porous media equations and fast diffusion equations, and the stochastic p-Laplace equation in Hilbert space. The weak convergence approach is employed in the proof to establish the Laplace principle, which is equivalent to the large deviation principle in our framework.
Analysis of stochastically forced quasi-periodic attractors
Ryashko, Lev
2015-11-30
A problem of the analysis of stochastically forced quasi-periodic auto-oscillations of nonlinear dynamic systems is considered. A stationary distribution of random trajectories in the neighborhood of the corresponding deterministic attractor (torus) is studied. A parametric description of quadratic approximation of the quasipotential based on the stochastic sensitivity functions (SSF) technique is given. Using this technique, we analyse a dispersion of stochastic flows near the torus. For the case of two-torus in three-dimensional space, the stochastic sensitivity function is constructed.
... Eye Cancer - Overview Request Permissions Print to PDF Eye Cancer - Overview Approved by the Cancer.Net Editorial Board , ... Cancer Research and Advocacy Survivorship Blog About Us Eye Cancer Guide Cancer.Net Guide Eye Cancer Overview Statistics ...
Resources - cancer ... The following organizations are good resources for information on cancer : American Cancer Society -- www.cancer.org Cancer Care -- www.cancercare.org National Cancer Institute -- www.cancer.gov
Competition enhances stochasticity in biochemical reactions
NASA Astrophysics Data System (ADS)
Firman, Taylor; Ghosh, Kingshuk
2013-09-01
We study stochastic dynamics of two competing complexation reactions (i) A + B↔AB and (ii) A + C↔AC. Such reactions are common in biology where different reactants compete for common resources - examples range from binding enzyme kinetics to gene expression. On the other hand, stochasticity is inherent in biological systems due to small copy numbers. We investigate the complex interplay between competition and stochasticity, using coupled complexation reactions as the model system. Within the master equation formalism, we compute the exact distribution of the number of complexes to analyze equilibrium fluctuations of several observables. Our study reveals that the presence of competition offered by one reaction (say A + C↔AC) can significantly enhance the fluctuation in the other (A + B↔AB). We provide detailed quantitative estimates of this enhanced fluctuation for different combinations of rate constants and numbers of reactant molecules that are typical in biology. We notice that fluctuations can be significant even when two of the reactant molecules (say B and C) are infinite in number, maintaining a fixed stoichiometry, while the other reactant (A) is finite. This is purely due to the coupling mediated via resource sharing and is in stark contrast to the single reaction scenario, where large numbers of one of the components ensure zero fluctuation. Our detailed analysis further highlights regions where numerical estimates of mass action solutions can differ from the actual averages. These observations indicate that averages can be a poor representation of the system, hence analysis that is purely based on averages such as mass action laws can be potentially misleading in such noisy biological systems. We believe that the exhaustive study presented here will provide qualitative and quantitative insights into the role of noise and its enhancement in the presence of competition that will be relevant in many biological settings.
Bayesian Estimation and Inference Using Stochastic Electronics
Thakur, Chetan Singh; Afshar, Saeed; Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan; van Schaik, André
2016-01-01
In this paper, we present the implementation of two types of Bayesian inference problems to demonstrate the potential of building probabilistic algorithms in hardware using single set of building blocks with the ability to perform these computations in real time. The first implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker), demonstrates a simple problem where an observer uses an underlying Hidden Markov Model (HMM) to track a target in one dimension. In this implementation, sensors make noisy observations of the target position at discrete time steps. The tracker learns the transition model for target movement, and the observation model for the noisy sensors, and uses these to estimate the target position by solving the Bayesian recursive equation online. We show the tracking performance of the system and demonstrate how it can learn the observation model, the transition model, and the external distractor (noise) probability interfering with the observations. In the second implementation, referred to as the Bayesian INference in DAG (BIND), we show how inference can be performed in a Directed Acyclic Graph (DAG) using stochastic circuits. We show how these building blocks can be easily implemented using simple digital logic gates. An advantage of the stochastic electronic implementation is that it is robust to certain types of noise, which may become an issue in integrated circuit (IC) technology with feature sizes in the order of tens of nanometers due to their low noise margin, the effect of high-energy cosmic rays and the low supply voltage. In our framework, the flipping of random individual bits would not affect the system performance because information is encoded in a bit stream. PMID:27047326
Global dynamics of a stochastic neuronal oscillator
NASA Astrophysics Data System (ADS)
Yamanobe, Takanobu
2013-11-01
Nonlinear oscillators have been used to model neurons that fire periodically in the absence of input. These oscillators, which are called neuronal oscillators, share some common response structures with other biological oscillations such as cardiac cells. In this study, we analyze the dependence of the global dynamics of an impulse-driven stochastic neuronal oscillator on the relaxation rate to the limit cycle, the strength of the intrinsic noise, and the impulsive input parameters. To do this, we use a Markov operator that both reflects the density evolution of the oscillator and is an extension of the phase transition curve, which describes the phase shift due to a single isolated impulse. Previously, we derived the Markov operator for the finite relaxation rate that describes the dynamics of the entire phase plane. Here, we construct a Markov operator for the infinite relaxation rate that describes the stochastic dynamics restricted to the limit cycle. In both cases, the response of the stochastic neuronal oscillator to time-varying impulses is described by a product of Markov operators. Furthermore, we calculate the number of spikes between two consecutive impulses to relate the dynamics of the oscillator to the number of spikes per unit time and the interspike interval density. Specifically, we analyze the dynamics of the number of spikes per unit time based on the properties of the Markov operators. Each Markov operator can be decomposed into stationary and transient components based on the properties of the eigenvalues and eigenfunctions. This allows us to evaluate the difference in the number of spikes per unit time between the stationary and transient responses of the oscillator, which we show to be based on the dependence of the oscillator on past activity. Our analysis shows how the duration of the past neuronal activity depends on the relaxation rate, the noise strength, and the impulsive input parameters.
Bayesian Estimation and Inference Using Stochastic Electronics.
Thakur, Chetan Singh; Afshar, Saeed; Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan; van Schaik, André
2016-01-01
In this paper, we present the implementation of two types of Bayesian inference problems to demonstrate the potential of building probabilistic algorithms in hardware using single set of building blocks with the ability to perform these computations in real time. The first implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker), demonstrates a simple problem where an observer uses an underlying Hidden Markov Model (HMM) to track a target in one dimension. In this implementation, sensors make noisy observations of the target position at discrete time steps. The tracker learns the transition model for target movement, and the observation model for the noisy sensors, and uses these to estimate the target position by solving the Bayesian recursive equation online. We show the tracking performance of the system and demonstrate how it can learn the observation model, the transition model, and the external distractor (noise) probability interfering with the observations. In the second implementation, referred to as the Bayesian INference in DAG (BIND), we show how inference can be performed in a Directed Acyclic Graph (DAG) using stochastic circuits. We show how these building blocks can be easily implemented using simple digital logic gates. An advantage of the stochastic electronic implementation is that it is robust to certain types of noise, which may become an issue in integrated circuit (IC) technology with feature sizes in the order of tens of nanometers due to their low noise margin, the effect of high-energy cosmic rays and the low supply voltage. In our framework, the flipping of random individual bits would not affect the system performance because information is encoded in a bit stream.
Stochastic analysis of virus transport in aquifers
Campbell, Rehmann L.L.; Welty, C.; Harvey, R.W.
1999-01-01
A large-scale model of virus transport in aquifers is derived using spectral perturbation analysis. The effects of spatial variability in aquifer hydraulic conductivity and virus transport (attachment, detachment, and inactivation) parameters on large-scale virus transport are evaluated. A stochastic mean model of virus transport is developed by linking a simple system of local-scale free-virus transport and attached-virus conservation equations from the current literature with a random-field representation of aquifer and virus transport properties. The resultant mean equations for free and attached viruses are found to differ considerably from the local-scale equations on which they are based and include effects such as a free-virus effective velocity that is a function of aquifer heterogeneity as well as virus transport parameters. Stochastic mean free-virus breakthrough curves are compared with local model output in order to observe the effects of spatial variability on mean one-dimensional virus transport in three-dimensionally heterogeneous porous media. Significant findings from this theoretical analysis include the following: (1) Stochastic model breakthrough occurs earlier than local model breakthrough, and this effect is most pronounced for the least conductive aquifers studied. (2) A high degree of aquifer heterogeneity can lead to virus breakthrough actually preceding that of a conservative tracer. (3) As the mean hydraulic conductivity is increased, the mean model shows less sensitivity to the variance of the natural-logarithm hydraulic conductivity and mean virus diameter. (4) Incorporation of a heterogeneous colloid filtration term results in higher predicted concentrations than a simple first-order adsorption term for a given mean attachment rate. (5) Incorporation of aquifer heterogeneity leads to a greater range of virus diameters for which significant breakthrough occurs. (6) The mean model is more sensitive to the inactivation rate of viruses
Hybrid stochastic simplifications for multiscale gene networks
Crudu, Alina; Debussche, Arnaud; Radulescu, Ovidiu
2009-01-01
Background Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. Results We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion [1-3] which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Conclusion Hybrid simplifications can be used for onion-like (multi-layered) approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach. PMID:19735554
Bayesian Estimation and Inference Using Stochastic Electronics.
Thakur, Chetan Singh; Afshar, Saeed; Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan; van Schaik, André
2016-01-01
In this paper, we present the implementation of two types of Bayesian inference problems to demonstrate the potential of building probabilistic algorithms in hardware using single set of building blocks with the ability to perform these computations in real time. The first implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker), demonstrates a simple problem where an observer uses an underlying Hidden Markov Model (HMM) to track a target in one dimension. In this implementation, sensors make noisy observations of the target position at discrete time steps. The tracker learns the transition model for target movement, and the observation model for the noisy sensors, and uses these to estimate the target position by solving the Bayesian recursive equation online. We show the tracking performance of the system and demonstrate how it can learn the observation model, the transition model, and the external distractor (noise) probability interfering with the observations. In the second implementation, referred to as the Bayesian INference in DAG (BIND), we show how inference can be performed in a Directed Acyclic Graph (DAG) using stochastic circuits. We show how these building blocks can be easily implemented using simple digital logic gates. An advantage of the stochastic electronic implementation is that it is robust to certain types of noise, which may become an issue in integrated circuit (IC) technology with feature sizes in the order of tens of nanometers due to their low noise margin, the effect of high-energy cosmic rays and the low supply voltage. In our framework, the flipping of random individual bits would not affect the system performance because information is encoded in a bit stream. PMID:27047326
Stochastic multiscale modeling of polycrystalline materials
NASA Astrophysics Data System (ADS)
Wen, Bin
Mechanical properties of engineering materials are sensitive to the underlying random microstructure. Quantification of mechanical property variability induced by microstructure variation is essential for the prediction of extreme properties and microstructure-sensitive design of materials. Recent advances in high throughput characterization of polycrystalline microstructures have resulted in huge data sets of microstructural descriptors and image snapshots. To utilize these large scale experimental data for computing the resulting variability of macroscopic properties, appropriate mathematical representation of microstructures is needed. By exploring the space containing all admissible microstructures that are statistically similar to the available data, one can estimate the distribution/envelope of possible properties by employing efficient stochastic simulation methodologies along with robust physics-based deterministic simulators. The focus of this thesis is on the construction of low-dimensional representations of random microstructures and the development of efficient physics-based simulators for polycrystalline materials. By adopting appropriate stochastic methods, such as Monte Carlo and Adaptive Sparse Grid Collocation methods, the variability of microstructure-sensitive properties of polycrystalline materials is investigated. The primary outcomes of this thesis include: (1) Development of data-driven reduced-order representations of microstructure variations to construct the admissible space of random polycrystalline microstructures. (2) Development of accurate and efficient physics-based simulators for the estimation of material properties based on mesoscale microstructures. (3) Investigating property variability of polycrystalline materials using efficient stochastic simulation methods in combination with the above two developments. The uncertainty quantification framework developed in this work integrates information science and materials science, and
Stochastic line motion and stochastic flux conservation for nonideal hydromagnetic models
Eyink, Gregory L.
2009-08-15
We prove that smooth solutions of nonideal (viscous and resistive) incompressible magnetohydrodynamic (MHD) equations satisfy a stochastic law of flux conservation. This property implies that the magnetic flux through a surface is equal to the average of the magnetic fluxes through an ensemble of surfaces advected backward in time by the plasma velocity perturbed with a random white noise. Our result is an analog of the well-known Alfven theorem of ideal MHD and is valid for any value of the magnetic Prandtl number. A second stochastic conservation law is shown to hold at unit Prandtl number, a random version of the generalized Kelvin theorem derived by Bekenstein and Oron for ideal MHD. These stochastic conservation laws are not only shown to be consequences of the nonideal MHD equations but are proved in fact to be equivalent to those equations. We derive similar results for two more refined hydromagnetic models, Hall MHD and the two-fluid plasma model, still assuming incompressible velocities and isotropic transport coefficients. Finally, we use these results to discuss briefly the infinite-Reynolds-number limit of hydromagnetic turbulence and to support the conjecture that flux conservation remains stochastic in that limit.
Evolving neural networks for detecting breast cancer.
Fogel, D B; Wasson, E C; Boughton, E M
1995-09-01
Artificial neural networks are applied to the problem of detecting breast cancer from histologic data. Evolutionary programming is used to train the networks. This stochastic optimization method reduces the chance of becoming trapped in locally optimal weight sets. Preliminary results indicate that very parsimonious neural nets can outperform other methods reported in the literature on the same data. The results are statistically significant.
Stochastic resonance in mammalian neuronal networks
Gluckman, B.J.; So, P.; Netoff, T.I.; Spano, M.L.; Schiff, S.J. |
1998-09-01
We present stochastic resonance observed in the dynamics of neuronal networks from mammalian brain. Both sinusoidal signals and random noise were superimposed into an applied electric field. As the amplitude of the noise component was increased, an optimization (increase then decrease) in the signal-to-noise ratio of the network response to the sinusoidal signal was observed. The relationship between the measures used to characterize the dynamics is discussed. Finally, a computational model of these neuronal networks that includes the neuronal interactions with the electric field is presented to illustrate the physics behind the essential features of the experiment. {copyright} {ital 1998 American Institute of Physics.}
Stochastic rotation dynamics for nematic liquid crystals
Lee, Kuang-Wu Mazza, Marco G.
2015-04-28
We introduce a new mesoscopic model for nematic liquid crystals (LCs). We extend the particle-based stochastic rotation dynamics method, which reproduces the Navier-Stokes equation, to anisotropic fluids by including a simplified Ericksen-Leslie formulation of nematodynamics. We verify the applicability of this hybrid model by studying the equilibrium isotropic-nematic phase transition and nonequilibrium problems, such as the dynamics of topological defects and the rheology of sheared LCs. Our simulation results show that this hybrid model captures many essential aspects of LC physics at the mesoscopic scale, while preserving microscopic thermal fluctuations.
Roulette-wheel selection via stochastic acceptance
NASA Astrophysics Data System (ADS)
Lipowski, Adam; Lipowska, Dorota
2012-03-01
Roulette-wheel selection is a frequently used method in genetic and evolutionary algorithms or in modeling of complex networks. Existing routines select one of N individuals using search algorithms of O(N) or O(logN) complexity. We present a simple roulette-wheel selection algorithm, which typically has O(1) complexity and is based on stochastic acceptance instead of searching. We also discuss a hybrid version, which might be suitable for highly heterogeneous weight distributions, found, for example, in some models of complex networks. With minor modifications, the algorithm might also be used for sampling with fitness cut-off at a certain value or for sampling without replacement.
Stochastic synchronization of neural activity waves.
Kilpatrick, Zachary P
2015-04-01
We demonstrate that waves in distinct layers of a neuronal network can become phase locked by common spatiotemporal noise. This phenomenon is studied for stationary bumps, traveling waves, and breathers. A weak noise expansion is used to derive an effective equation for the position of the wave in each layer, yielding a stochastic differential equation with multiplicative noise. Stability of the synchronous state is characterized by a Lyapunov exponent, which we can compute analytically from the reduced system. Our results extend previous work on limit-cycle oscillators, showing common noise can synchronize waves in a broad class of models.
Stochastic Gompertz model of tumour cell growth.
Lo, C F
2007-09-21
In this communication, based upon the deterministic Gompertz law of cell growth, a stochastic model in tumour growth is proposed. This model takes account of both cell fission and mortality too. The corresponding density function of the size of the tumour cells obeys a functional Fokker--Planck equation which can be solved analytically. It is found that the density function exhibits an interesting "multi-peak" structure generated by cell fission as time evolves. Within this framework the action of therapy is also examined by simply incorporating a therapy term into the deterministic cell growth term.
Stochastic Modelling of Gompertzian Tumor Growth
NASA Astrophysics Data System (ADS)
O'Rourke, S. F. C.; Behera, A.
2009-08-01
We study the effect of correlated noise in the Gompertzian tumor growth model for non-zero correlation time. The steady state probability distributions and average population of tumor cells are analyzed within the Fokker-Planck formalism to investigate the importance of additive and multiplicative noise. We find that the correlation strength and correlation time have opposite effects on the steady state probability distributions. It is observed that the non-bistable Gompertzian model, driven by correlated noise exhibits a stochastic resonance and phase transition. This behaviour of the Gompertz model is unaffected with the change of correlation time and occurs as a result of multiplicative noise.
A stochastic model of human gait dynamics
NASA Astrophysics Data System (ADS)
Ashkenazy, Yosef; M. Hausdorff, Jeffrey; Ch. Ivanov, Plamen; Eugene Stanley, H.
2002-12-01
We present a stochastic model of gait rhythm dynamics, based on transitions between different “neural centers”, that reproduces distinctive statistical properties of normal human walking. By tuning one model parameter, the transition (hopping) range, the model can describe alterations in gait dynamics from childhood to adulthood-including a decrease in the correlation and volatility exponents with maturation. The model also generates time series with multifractal spectra whose broadness depends only on this parameter. Moreover, we find that the volatility exponent increases monotonically as a function of the width of the multifractal spectrum, suggesting the possibility of a change in multifractality with maturation.
ON NONSTATIONARY STOCHASTIC MODELS FOR EARTHQUAKES.
Safak, Erdal; Boore, David M.
1986-01-01
A seismological stochastic model for earthquake ground-motion description is presented. Seismological models are based on the physical properties of the source and the medium and have significant advantages over the widely used empirical models. The model discussed here provides a convenient form for estimating structural response by using random vibration theory. A commonly used random process for ground acceleration, filtered white-noise multiplied by an envelope function, introduces some errors in response calculations for structures whose periods are longer than the faulting duration. An alternate random process, filtered shot-noise process, eliminates these errors.
Hidden Markov models for stochastic thermodynamics
NASA Astrophysics Data System (ADS)
Bechhoefer, John
2015-07-01
The formalism of state estimation and hidden Markov models can simplify and clarify the discussion of stochastic thermodynamics in the presence of feedback and measurement errors. After reviewing the basic formalism, we use it to shed light on a recent discussion of phase transitions in the optimized response of an information engine, for which measurement noise serves as a control parameter. The HMM formalism also shows that the value of additional information displays a maximum at intermediate signal-to-noise ratios. Finally, we discuss how systems open to information flow can apparently violate causality; the HMM formalism can quantify the performance gains due to such violations.
Two stochastic models useful in petroleum exploration
NASA Technical Reports Server (NTRS)
Kaufman, G. M.; Bradley, P. G.
1972-01-01
A model of the petroleum exploration process that tests empirically the hypothesis that at an early stage in the exploration of a basin, the process behaves like sampling without replacement is proposed along with a model of the spatial distribution of petroleum reserviors that conforms to observed facts. In developing the model of discovery, the following topics are discussed: probabilitistic proportionality, likelihood function, and maximum likelihood estimation. In addition, the spatial model is described, which is defined as a stochastic process generating values of a sequence or random variables in a way that simulates the frequency distribution of areal extent, the geographic location, and shape of oil deposits
Quantum stochastic thermodynamic on harmonic networks
NASA Astrophysics Data System (ADS)
Deffner, Sebastian
2016-01-01
Fluctuation theorems are symmetry relations for the probability to observe an amount of entropy production in a finite-time process. In a recent paper Pigeon et al (2016 New. J. Phys. 18 013009) derived fluctuation theorems for harmonic networks by means of the large deviation theory. Their novel approach is illustrated with various examples of experimentally relevant systems. As a main result, however, Pigeon et al provide new insight how to consistently formulate quantum stochastic thermodynamics, and provide new and robust tools for the study of the thermodynamics of quantum harmonic networks.
Stochastic monotony signature and biomedical applications.
Demongeot, Jacques; Galli Carminati, Giuliana; Carminati, Federico; Rachdi, Mustapha
2015-12-01
We introduce a new concept, the stochastic monotony signature of a function, made of the sequence of the signs that indicate if the function is increasing or constant (sign +), or decreasing (sign -). If the function results from the averaging of successive observations with errors, the monotony sign is a random binary variable, whose density is studied under two hypotheses for the distribution of errors: uniform and Gaussian. Then, we describe a simple statistical test allowing the comparison between the monotony signatures of two functions (e.g., one observed and the other as reference) and we apply the test to four biomedical examples, coming from genetics, psychology, gerontology, and morphogenesis. PMID:26563556
Stochastic Euler-Poincaré reduction
Arnaudon, Marc; Chen, Xin; Cruzeiro, Ana Bela
2014-08-15
We prove a Euler-Poincaré reduction theorem for stochastic processes taking values on a Lie group, which is a generalization of the reduction argument for the deterministic case [J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Texts in Applied Mathematics (Springer, 2003)]. We also show examples of its application to SO(3) and to the group of diffeomorphisms, which includes the Navier-Stokes equation on a bounded domain and the Camassa-Holm equation.
A guide to differences between stochastic point-source and stochastic finite-fault simulations
Atkinson, G.M.; Assatourians, K.; Boore, D.M.; Campbell, K.; Motazedian, D.
2009-01-01
Why do stochastic point-source and finite-fault simulation models not agree on the predicted ground motions for moderate earthquakes at large distances? This question was posed by Ken Campbell, who attempted to reproduce the Atkinson and Boore (2006) ground-motion prediction equations for eastern North America using the stochastic point-source program SMSIM (Boore, 2005) in place of the finite-source stochastic program EXSIM (Motazedian and Atkinson, 2005) that was used by Atkinson and Boore (2006) in their model. His comparisons suggested that a higher stress drop is needed in the context of SMSIM to produce an average match, at larger distances, with the model predictions of Atkinson and Boore (2006) based on EXSIM; this is so even for moderate magnitudes, which should be well-represented by a point-source model. Why? The answer to this question is rooted in significant differences between point-source and finite-source stochastic simulation methodologies, specifically as implemented in SMSIM (Boore, 2005) and EXSIM (Motazedian and Atkinson, 2005) to date. Point-source and finite-fault methodologies differ in general in several important ways: (1) the geometry of the source; (2) the definition and application of duration; and (3) the normalization of finite-source subsource summations. Furthermore, the specific implementation of the methods may differ in their details. The purpose of this article is to provide a brief overview of these differences, their origins, and implications. This sets the stage for a more detailed companion article, "Comparing Stochastic Point-Source and Finite-Source Ground-Motion Simulations: SMSIM and EXSIM," in which Boore (2009) provides modifications and improvements in the implementations of both programs that narrow the gap and result in closer agreement. These issues are important because both SMSIM and EXSIM have been widely used in the development of ground-motion prediction equations and in modeling the parameters that control
The Stochastic Dynamics of Filopodial Growth
NASA Astrophysics Data System (ADS)
Papoian, Garegin A.; Lan, Yueheng; Zhuravlev, Pavel
2008-03-01
A filopodium is a cytoplasmic projection, exquisitely built and regulated, which extends from the leading edge of the migrating cell, exploring the cell's neighborhood. Commonly, filopodia grow and retract after their initiation, exhibiting rich dynamical behaviors. We model the growth of a filopodium based on a stochastic description which incorporates mechanical, physical and biochemical components. Our model provides a full stochastic treatment of the actin monomer diffusion and polymerization of each individual actin filament under stress of the fluctuating membrane. We have investigated the length distribution of individual filaments in a growing filopodium and studied how it depends on various physical parameters. The distribution of filament lengths turned out to be narrow, which we explained by the negative feedback created by the membrane load and monomeric G-actin gradient. We also discovered that filopodial growth is strongly diminished upon increasing retrograde flow, suggesting that regulating the retrograde flow rate would be a highly efficient way to control filopodial extension dynamics. The filopodial length increases as the membrane fluctuations decrease, which we attributed to the unequal loading of the mem- brane force among individual filaments, which, in turn, results in larger average polymerization rates. We also observed significant diffusional noise of G-actin monomers, which leads to smaller G-actin flux along the filopodial tube compared with the prediction using the diffusion equation.
A hierarchical exact accelerated stochastic simulation algorithm
Orendorff, David; Mjolsness, Eric
2012-01-01
A new algorithm, “HiER-leap” (hierarchical exact reaction-leaping), is derived which improves on the computational properties of the ER-leap algorithm for exact accelerated simulation of stochastic chemical kinetics. Unlike ER-leap, HiER-leap utilizes a hierarchical or divide-and-conquer organization of reaction channels into tightly coupled “blocks” and is thereby able to speed up systems with many reaction channels. Like ER-leap, HiER-leap is based on the use of upper and lower bounds on the reaction propensities to define a rejection sampling algorithm with inexpensive early rejection and acceptance steps. But in HiER-leap, large portions of intra-block sampling may be done in parallel. An accept/reject step is used to synchronize across blocks. This method scales well when many reaction channels are present and has desirable asymptotic properties. The algorithm is exact, parallelizable and achieves a significant speedup over the stochastic simulation algorithm and ER-leap on certain problems. This algorithm offers a potentially important step towards efficient in silico modeling of entire organisms. PMID:23231214
Stochastic multiple-valued gene networks.
Zhu, Peican; Han, Jie
2014-02-01
Among various approaches to modeling gene regulatory networks (GRNs), Boolean networks (BNs) and its probabilistic extension, probabilistic Boolean networks (PBNs), have been studied to gain insights into the dynamics of GRNs. To further exploit the simplicity of logical models, a multiple-valued network employs gene states that are not limited to binary values, thus providing a finer granularity in the modeling of GRNs. In this paper, stochastic multiple-valued networks (SMNs) are proposed for modeling the effects of noise and gene perturbation in a GRN. An SMN enables an accurate and efficient simulation of a probabilistic multiple-valued network (as an extension of a PBN). In a k-level SMN of n genes, it requires a complexity of O(nLk(n)) to compute the state transition matrix, where L is a factor related to the minimum sequence length in the SMN for achieving a desired accuracy. The use of randomly permuted stochastic sequences further increases computational efficiency and allows for a tunable tradeoff between accuracy and efficiency. The analysis of a p53-Mdm2 network and a WNT5A network shows that the proposed SMN approach is efficient in evaluating the network dynamics and steady state distribution of gene networks under random gene perturbation.
Single-particle stochastic heat engine.
Rana, Shubhashis; Pal, P S; Saha, Arnab; Jayannavar, A M
2014-10-01
We have performed an extensive analysis of a single-particle stochastic heat engine constructed by manipulating a Brownian particle in a time-dependent harmonic potential. The cycle consists of two isothermal steps at different temperatures and two adiabatic steps similar to that of a Carnot engine. The engine shows qualitative differences in inertial and overdamped regimes. All the thermodynamic quantities, including efficiency, exhibit strong fluctuations in a time periodic steady state. The fluctuations of stochastic efficiency dominate over the mean values even in the quasistatic regime. Interestingly, our system acts as an engine provided the temperature difference between the two reservoirs is greater than a finite critical value which in turn depends on the cycle time and other system parameters. This is supported by our analytical results carried out in the quasistatic regime. Our system works more reliably as an engine for large cycle times. By studying various model systems, we observe that the operational characteristics are model dependent. Our results clearly rule out any universal relation between efficiency at maximum power and temperature of the baths. We have also verified fluctuation relations for heat engines in time periodic steady state.
Collective stochastic coherence in recurrent neuronal networks
NASA Astrophysics Data System (ADS)
Sancristóbal, Belén; Rebollo, Beatriz; Boada, Pol; Sanchez-Vives, Maria V.; Garcia-Ojalvo, Jordi
2016-09-01
Recurrent networks of dynamic elements frequently exhibit emergent collective oscillations, which can show substantial regularity even when the individual elements are considerably noisy. How noise-induced dynamics at the local level coexists with regular oscillations at the global level is still unclear. Here we show that a combination of stochastic recurrence-based initiation with deterministic refractoriness in an excitable network can reconcile these two features, leading to maximum collective coherence for an intermediate noise level. We report this behaviour in the slow oscillation regime exhibited by a cerebral cortex network under dynamical conditions resembling slow-wave sleep and anaesthesia. Computational analysis of a biologically realistic network model reveals that an intermediate level of background noise leads to quasi-regular dynamics. We verify this prediction experimentally in cortical slices subject to varying amounts of extracellular potassium, which modulates neuronal excitability and thus synaptic noise. The model also predicts that this effectively regular state should exhibit noise-induced memory of the spatial propagation profile of the collective oscillations, which is also verified experimentally. Taken together, these results allow us to construe the high regularity observed experimentally in the brain as an instance of collective stochastic coherence.
Optimal Control via Self-Generated Stochasticity
NASA Technical Reports Server (NTRS)
Zak, Michail
2011-01-01
The problem of global maxima of functionals has been examined. Mathematical roots of local maxima are the same as those for a much simpler problem of finding global maximum of a multi-dimensional function. The second problem is instability even if an optimal trajectory is found, there is no guarantee that it is stable. As a result, a fundamentally new approach is introduced to optimal control based upon two new ideas. The first idea is to represent the functional to be maximized as a limit of a probability density governed by the appropriately selected Liouville equation. Then, the corresponding ordinary differential equations (ODEs) become stochastic, and that sample of the solution that has the largest value will have the highest probability to appear in ODE simulation. The main advantages of the stochastic approach are that it is not sensitive to local maxima, the function to be maximized must be only integrable but not necessarily differentiable, and global equality and inequality constraints do not cause any significant obstacles. The second idea is to remove possible instability of the optimal solution by equipping the control system with a self-stabilizing device. The applications of the proposed methodology will optimize the performance of NASA spacecraft, as well as robot performance.
Crossing resonance of stochastically interacting wave fields
Ignatchenko, V. A. Polukhin, D. S.
2013-02-15
The dynamic susceptibilities (Green's functions) of the system of two interacting wave fields of different physical natures with a stochastically inhomogeneous coupling parameter between them with zero mean value have been examined. The well-known self-consistent approximation taking into account all diagrams with noncrossing correlation/interaction lines has been generalized to the case of stochastically interacting wave fields. The analysis has been performed for spin and elastic waves. The results obtained taking into account the processes of multiple scattering of waves from inhomogeneities are significantly different from those obtained for this situation earlier in the Bourret approximation [R.C. Bourret, Nuovo Cimento 26, 1 (1962)]. Instead of frequencies degeneracy removal in the wave spectrum and the splitting of resonance peaks of dynamic susceptibilities, a wide single-mode resonance peak should be observed at the crossing point of the unperturbed dispersion curves. The fine structure appears at vertices of these wide peaks in the form of a narrow resonance on the Green's-function curve of one field and a narrow antiresonance on the vertex of the Green's-function curve of the other field.
Large Deviations for Nonlocal Stochastic Neural Fields
2014-01-01
We study the effect of additive noise on integro-differential neural field equations. In particular, we analyze an Amari-type model driven by a Q-Wiener process, and focus on noise-induced transitions and escape. We argue that proving a sharp Kramers’ law for neural fields poses substantial difficulties, but that one may transfer techniques from stochastic partial differential equations to establish a large deviation principle (LDP). Then we demonstrate that an efficient finite-dimensional approximation of the stochastic neural field equation can be achieved using a Galerkin method and that the resulting finite-dimensional rate function for the LDP can have a multiscale structure in certain cases. These results form the starting point for an efficient practical computation of the LDP. Our approach also provides the technical basis for further rigorous study of noise-induced transitions in neural fields based on Galerkin approximations. Mathematics Subject Classification (2000): 60F10, 60H15, 65M60, 92C20. PMID:24742297
Many body theory of stochastic gene expression
NASA Astrophysics Data System (ADS)
Walczak, Aleksandra M.
The regulation of expression states of genes in cells is a stochastic process. The relatively small numbers of protein molecules of a given type present in the cell and the nonlinear nature of chemical reactions result in behaviours, which are hard to anticipate without an appropriate mathematical development. In this dissertation, I develop theoretical approaches based on methods of statistical physics and many-body theory, in which protein and operator state dynamics are treated stochastically and on an equal footing. This development allows me to study the general principles of how noise arising on different levels of the regulatory system affects the complex collective characteristics of systems observed experimentally. I discuss simple models and approximations, which allow for, at least some, analytical progress in these problems. These have allowed us to understand how the operator state fluctuations may influence the steady state properties and lifetimes of attractors of simple gene systems. I show, that for fast binding and unbinding from the DNA, the operator state may be taken to be in equilibrium for highly cooperative binding, when predicting steady state properties as is traditionally done. Nevertheless, if proteins are produced in bursts, the DNA binding state fluctuations must be taken into account explicitly. Furthermore, even when the steady state probability distributions are weakly influenced by the operator state fluctuations, the escape rate in biologically relevant regimes strongly depends on transcription factor-DNA binding rates.
Stochastic population dynamics under resource constraints
NASA Astrophysics Data System (ADS)
Gavane, Ajinkya S.; Nigam, Rahul
2016-06-01
This paper investigates the population growth of a certain species in which every generation reproduces thrice over a period of predefined time, under certain constraints of resources needed for survival of population. We study the survival period of a species by randomizing the reproduction probabilities within a window at same predefined ages and the resources are being produced by the working force of the population at a variable rate. This randomness in the reproduction rate makes the population growth stochastic in nature and one cannot predict the exact form of evolution. Hence we study the growth by running simulations for such a population and taking an ensemble averaged over 500 to 5000 such simulations as per the need. While the population reproduces in a stochastic manner, we have implemented a constraint on the amount of resources available for the population. This is important to make the simulations more realistic. The rate of resource production then is tuned to find the rate which suits the survival of the species. We also compute the mean life time of the species corresponding to different resource production rate. Study for these outcomes in the parameter space defined by the reproduction probabilities and rate of resource production is carried out.
Phylogenetic Stochastic Mapping Without Matrix Exponentiation
Irvahn, Jan; Minin, Vladimir N.
2014-01-01
Abstract Phylogenetic stochastic mapping is a method for reconstructing the history of trait changes on a phylogenetic tree relating species/organism carrying the trait. State-of-the-art methods assume that the trait evolves according to a continuous-time Markov chain (CTMC) and works well for small state spaces. The computations slow down considerably for larger state spaces (e.g., space of codons), because current methodology relies on exponentiating CTMC infinitesimal rate matrices—an operation whose computational complexity grows as the size of the CTMC state space cubed. In this work, we introduce a new approach, based on a CTMC technique called uniformization, which does not use matrix exponentiation for phylogenetic stochastic mapping. Our method is based on a new Markov chain Monte Carlo (MCMC) algorithm that targets the distribution of trait histories conditional on the trait data observed at the tips of the tree. The computational complexity of our MCMC method grows as the size of the CTMC state space squared. Moreover, in contrast to competing matrix exponentiation methods, if the rate matrix is sparse, we can leverage this sparsity and increase the computational efficiency of our algorithm further. Using simulated data, we illustrate advantages of our MCMC algorithm and investigate how large the state space needs to be for our method to outperform matrix exponentiation approaches. We show that even on the moderately large state space of codons our MCMC method can be significantly faster than currently used matrix exponentiation methods. PMID:24918812
Stochastic model for tumor growth with immunization
NASA Astrophysics Data System (ADS)
Bose, Thomas; Trimper, Steffen
2009-05-01
We analyze a stochastic model for tumor cell growth with both multiplicative and additive colored noises as well as nonzero cross correlations in between. Whereas the death rate within the logistic model is altered by a deterministic term characterizing immunization, the birth rate is assumed to be stochastically changed due to biological motivated growth processes leading to a multiplicative internal noise. Moreover, the system is subjected to an external additive noise which mimics the influence of the environment of the tumor. The stationary probability distribution Ps is derived depending on the finite correlation time, the immunization rate, and the strength of the cross correlation. Ps offers a maximum which becomes more pronounced for increasing immunization rate. The mean-first-passage time is also calculated in order to find out under which conditions the tumor can suffer extinction. Its characteristics are again controlled by the degree of immunization and the strength of the cross correlation. The behavior observed can be interpreted in terms of a biological model of tumor evolution.
Onset of oscillatory instabilities under stochastic modulation
Drolet, F.; Vinals, J.; Vinals, J.
1997-09-01
We study the effect of external stochastic modulation on a system with O(2) symmetry that exhibits a Hopf or oscillatory instability in the absence of modulation. The study includes a random component in both the control parameter of the bifurcation and in the modulation amplitude. Stability boundaries are computed by either solving the stationary Fokker-Planck equation on the center manifold of the underlying deterministic system whenever possible, or by direct numerical solution otherwise. If the modulation amplitude has a stochastic component, the primary bifurcation is always to standing waves at a value of the control parameter that depends on the intensity of the fluctuations. More precisely, and to contrast our results with the case of a deterministic periodic forcing, the onset of instability in the standing-wave regime is shifted from its deterministic location, and the region of primary bifurcation to traveling waves disappears, yielding instead standing waves at negative values of the control parameter. {copyright} {ital 1997} {ital The American Physical Society}
Stochastic model for heart-rate fluctuations
NASA Astrophysics Data System (ADS)
Kuusela, Tom; Shepherd, Tony; Hietarinta, Jarmo
2003-06-01
A normal human heart rate shows complex fluctuations in time, which is natural, because the heart rate is controlled by a large number of different feedback control loops. These unpredictable fluctuations have been shown to display fractal dynamics, long-term correlations, and 1/f noise. These characterizations are statistical and they have been widely studied and used, but much less is known about the detailed time evolution (dynamics) of the heart-rate control mechanism. Here we show that a simple one-dimensional Langevin-type stochastic difference equation can accurately model the heart-rate fluctuations in a time scale from minutes to hours. The model consists of a deterministic nonlinear part and a stochastic part typical to Gaussian noise, and both parts can be directly determined from the measured heart-rate data. Studies of 27 healthy subjects reveal that in most cases, the deterministic part has a form typically seen in bistable systems: there are two stable fixed points and one unstable one.
Efficient stochastic superparameterization for geophysical turbulence
Grooms, Ian; Majda, Andrew J.
2013-01-01
Efficient computation of geophysical turbulence, such as occurs in the atmosphere and ocean, is a formidable challenge for the following reasons: the complex combination of waves, jets, and vortices; significant energetic backscatter from unresolved small scales to resolved large scales; a lack of dynamical scale separation between large and small scales; and small-scale instabilities, conditional on the large scales, which do not saturate. Nevertheless, efficient methods are needed to allow large ensemble simulations of sufficient size to provide meaningful quantifications of uncertainty in future predictions and past reanalyses through data assimilation and filtering. Here, a class of efficient stochastic superparameterization algorithms is introduced. In contrast to conventional superparameterization, the method here (i) does not require the simulation of nonlinear eddy dynamics on periodic embedded domains, (ii) includes a better representation of unresolved small-scale instabilities, and (iii) allows efficient representation of a much wider range of unresolved scales. The simplest algorithm implemented here radically improves efficiency by representing small-scale eddies at and below the limit of computational resolution by a suitable one-dimensional stochastic model of random-direction plane waves. In contrast to heterogeneous multiscale methods, the methods developed here do not require strong scale separation or conditional equilibration of local statistics. The simplest algorithm introduced here shows excellent performance on a difficult test suite of prototype problems for geophysical turbulence with waves, jets, and vortices, with a speedup of several orders of magnitude compared with direct simulation. PMID:23487800
Stochastic basins of attraction for metastable states
NASA Astrophysics Data System (ADS)
Serdukova, Larissa; Zheng, Yayun; Duan, Jinqiao; Kurths, Jürgen
2016-07-01
Basin of attraction of a stable equilibrium point is an effective concept for stability analysis in deterministic systems; however, it does not contain information on the external perturbations that may affect it. Here we introduce the concept of stochastic basin of attraction (SBA) by incorporating a suitable probabilistic notion of basin. We define criteria for the size of the SBA based on the escape probability, which is one of the deterministic quantities that carry dynamical information and can be used to quantify dynamical behavior of the corresponding stochastic basin of attraction. SBA is an efficient tool to describe the metastable phenomena complementing the known exit time, escape probability, or relaxation time. Moreover, the geometric structure of SBA gives additional insight into the system's dynamical behavior, which is important for theoretical and practical reasons. This concept can be used not only in models with small noise intensity but also with noise whose amplitude is proportional or in general is a function of an order parameter. As an application of our main results, we analyze a three potential well system perturbed by two types of noise: Brownian motion and non-Gaussian α-stable Lévy motion. Our main conclusions are that the thermal fluctuations stabilize the metastable system with an asymmetric three-well potential but have the opposite effect for a symmetric one. For Lévy noise with larger jumps and lower jump frequencies ( α = 0.5 ) metastability is enhanced for both symmetric and asymmetric potentials.
Stochastic Computations in Cortical Microcircuit Models
Maass, Wolfgang
2013-01-01
Experimental data from neuroscience suggest that a substantial amount of knowledge is stored in the brain in the form of probability distributions over network states and trajectories of network states. We provide a theoretical foundation for this hypothesis by showing that even very detailed models for cortical microcircuits, with data-based diverse nonlinear neurons and synapses, have a stationary distribution of network states and trajectories of network states to which they converge exponentially fast from any initial state. We demonstrate that this convergence holds in spite of the non-reversibility of the stochastic dynamics of cortical microcircuits. We further show that, in the presence of background network oscillations, separate stationary distributions emerge for different phases of the oscillation, in accordance with experimentally reported phase-specific codes. We complement these theoretical results by computer simulations that investigate resulting computation times for typical probabilistic inference tasks on these internally stored distributions, such as marginalization or marginal maximum-a-posteriori estimation. Furthermore, we show that the inherent stochastic dynamics of generic cortical microcircuits enables them to quickly generate approximate solutions to difficult constraint satisfaction problems, where stored knowledge and current inputs jointly constrain possible solutions. This provides a powerful new computing paradigm for networks of spiking neurons, that also throws new light on how networks of neurons in the brain could carry out complex computational tasks such as prediction, imagination, memory recall and problem solving. PMID:24244126
Infinite-degree-corrected stochastic block model.
Herlau, Tue; Schmidt, Mikkel N; Mørup, Morten
2014-09-01
In stochastic block models, which are among the most prominent statistical models for cluster analysis of complex networks, clusters are defined as groups of nodes with statistically similar link probabilities within and between groups. A recent extension by Karrer and Newman [Karrer and Newman, Phys. Rev. E 83, 016107 (2011)] incorporates a node degree correction to model degree heterogeneity within each group. Although this demonstrably leads to better performance on several networks, it is not obvious whether modeling node degree is always appropriate or necessary. We formulate the degree corrected stochastic block model as a nonparametric Bayesian model, incorporating a parameter to control the amount of degree correction that can then be inferred from data. Additionally, our formulation yields principled ways of inferring the number of groups as well as predicting missing links in the network that can be used to quantify the model's predictive performance. On synthetic data we demonstrate that including the degree correction yields better performance on both recovering the true group structure and predicting missing links when degree heterogeneity is present, whereas performance is on par for data with no degree heterogeneity within clusters. On seven real networks (with no ground truth group structure available) we show that predictive performance is about equal whether or not degree correction is included; however, for some networks significantly fewer clusters are discovered when correcting for degree, indicating that the data can be more compactly explained by clusters of heterogenous degree nodes. PMID:25314493
Environmental stochasticity controls soil erosion variability
Kim, Jongho; Ivanov, Valeriy Y.; Fatichi, Simone
2016-01-01
Understanding soil erosion by water is essential for a range of research areas but the predictive skill of prognostic models has been repeatedly questioned because of scale limitations of empirical data and the high variability of soil loss across space and time scales. Improved understanding of the underlying processes and their interactions are needed to infer scaling properties of soil loss and better inform predictive methods. This study uses data from multiple environments to highlight temporal-scale dependency of soil loss: erosion variability decreases at larger scales but the reduction rate varies with environment. The reduction of variability of the geomorphic response is attributed to a ‘compensation effect’: temporal alternation of events that exhibit either source-limited or transport-limited regimes. The rate of reduction is related to environment stochasticity and a novel index is derived to reflect the level of variability of intra- and inter-event hydrometeorologic conditions. A higher stochasticity index implies a larger reduction of soil loss variability (enhanced predictability at the aggregated temporal scales) with respect to the mean hydrologic forcing, offering a promising indicator for estimating the degree of uncertainty of erosion assessments. PMID:26925542
Optimality of collective choices: a stochastic approach.
Nicolis, S C; Detrain, C; Demolin, D; Deneubourg, J L
2003-09-01
Amplifying communication is a characteristic of group-living animals. This study is concerned with food recruitment by chemical means, known to be associated with foraging in most ant colonies but also with defence or nest moving. A stochastic approach of collective choices made by ants faced with different sources is developed to account for the fluctuations inherent to the recruitment process. It has been established that ants are able to optimize their foraging by selecting the most rewarding source. Our results not only confirm that selection is the result of a trail modulation according to food quality but also show the existence of an optimal quantity of laid pheromone for which the selection of a source is at the maximum, whatever the difference between the two sources might be. In terms of colony size, large colonies more easily focus their activity on one source. Moreover, the selection of the rich source is more efficient if many individuals lay small quantities of pheromone, instead of a small group of individuals laying a higher trail amount. These properties due to the stochasticity of the recruitment process can be extended to other social phenomena in which competition between different sources of information occurs. PMID:12909251
Patchwork sampling of stochastic differential equations.
Kürsten, Rüdiger; Behn, Ulrich
2016-03-01
We propose a method to sample stationary properties of solutions of stochastic differential equations, which is accurate and efficient if there are rarely visited regions or rare transitions between distinct regions of the state space. The method is based on a complete, nonoverlapping partition of the state space into patches on which the stochastic process is ergodic. On each of these patches we run simulations of the process strictly truncated to the corresponding patch, which allows effective simulations also in rarely visited regions. The correct weight for each patch is obtained by counting the attempted transitions between all different patches. The results are patchworked to cover the whole state space. We extend the concept of truncated Markov chains which is originally formulated for processes which obey detailed balance to processes not fulfilling detailed balance. The method is illustrated by three examples, describing the one-dimensional diffusion of an overdamped particle in a double-well potential, a system of many globally coupled overdamped particles in double-well potentials subject to additive Gaussian white noise, and the overdamped motion of a particle on the circle in a periodic potential subject to a deterministic drift and additive noise. In an appendix we explain how other well-known Markov chain Monte Carlo algorithms can be related to truncated Markov chains. PMID:27078484
Stochastic particle acceleration and statistical closures
Dimits, A.M.; Krommes, J.A.
1985-10-01
In a recent paper, Maasjost and Elsasser (ME) concluded, from the results of numerical experiments and heuristic arguments, that the Bourret and the direct-interaction approximation (DIA) are ''of no use in connection with the stochastic acceleration problem'' because (1) their predictions were equivalent to that of the simpler Fokker-Planck (FP) theory, and (2) either all or none of the closures were in good agreement with the data. Here some analytically tractable cases are studied and used to test the accuracy of these closures. The cause of the discrepancy (2) is found to be the highly non-Gaussian nature of the force used by ME, a point not stressed by them. For the case where the force is a position-independent Ornstein-Uhlenbeck (i.e., Gaussian) process, an effective Kubo number K can be defined. For K << 1 an FP description is adequate, and conclusion (1) of ME follows; however, for K greater than or equal to 1 the DIA behaves much better qualitatively than the other two closures. For the non-Gaussian stochastic force used by ME, all common approximations fail, in agreement with (2).
A Stochastic Skeleton Model for the MJO
NASA Astrophysics Data System (ADS)
thual, S.; Majda, A.; Stechmann, S.
2013-12-01
The Madden-Julian oscillation (MJO) is the dominant mode of variability in the tropical atmosphere on intraseasonal timescales and planetary spatial scales. In recent work by two of the authors, a minimal dynamical model has been proposed that recovers robustly the most fundamental MJO features of (I) a slow eastward speed of roughly 5 ms-1, (II) a peculiar dispersion relation with dω/dk≈ 0, and (III) a horizontal quadrupole vortex structure. This model, the skeleton model, depicts the MJO as a neutrally-stable atmospheric wave that involves a simple multiscale interaction between planetary dry dynamics, planetary lower-tropospheric moisture, and the planetary envelope of synoptic-scale activity. Here, we show that the skeleton model can further account for (IV) the intermittent generation of MJO events and (V) the organization of MJO events into wave trains with growth and demise, as seen in nature. We achieve this goal by developing a simple stochastic parametrization for the unresolved details of synoptic-scale activity, that is coupled to otherwise deterministic processes in the skeleton model. In particular, the intermittent initiation, propagation and shut down of MJO wave trains in the skeleton model occur through these stochastic effects. This includes examples with a background warm-pool where some initial MJO-like disturbances propagate through the western region but stall at the peak of background convection/heating corresponding to the maritime continent in nature.
Correlation functions in conformal invariant stochastic processes
NASA Astrophysics Data System (ADS)
Alcaraz, Francisco C.; Rittenberg, Vladimir
2015-11-01
We consider the problem of correlation functions in the stationary states of one-dimensional stochastic models having conformal invariance. If one considers the space dependence of the correlators, the novel aspect is that although one considers systems with periodic boundary conditions, the observables are described by boundary operators. From our experience with equilibrium problems one would have expected bulk operators. Boundary operators have correlators having critical exponents being half of those of bulk operators. If one studies the space-time dependence of the two-point function, one has to consider one boundary and one bulk operators. The Raise and Peel model has conformal invariance as can be shown in the spin 1/2 basis of the Hamiltonian which gives the time evolution of the system. This is an XXZ quantum chain with twisted boundary condition and local interactions. This Hamiltonian is integrable and the spectrum is known in the finite-size scaling limit. In the stochastic base in which the process is defined, the Hamiltonian is not local anymore. The mapping into an SOS model, helps to define new local operators. As a byproduct some new properties of the SOS model are conjectured. The predictions of conformal invariance are discussed in the new framework and compared with Monte Carlo simulations.
Stochastic YORP On Real Asteroid Shapes
NASA Astrophysics Data System (ADS)
McMahon, Jay W.
2015-05-01
Since its theoretical foundation and subsequent observational verification, the YORP effect has been understood to be a fundamental process that controls the evolution of small asteroids in the inner solar system. In particular, the coupling of the YORP and Yarkovsky effects are hypothesized to be largely responsible for the transport of asteroids from the main belt to the inner solar system populations. Furthermore, the YORP effect is thought to lead to rotational fission of small asteroids, which leads to the creation of multiple asteroid systems, contact binary asteroids, and asteroid pairs. However recent studies have called into question the ability of YORP to produce these results. In particular, the high sensitivity of the YORP coefficients to variations in the shape of an asteroid, combined with the possibility of a changing shape due to YORP accelerated spin rates can combine to create a stochastic YORP coefficient which can arrest or change the evolution of a small asteroid's spin state. In this talk, initial results are presented from new simulations which comprehensively model the stochastic YORP process. Shape change is governed by the surface slopes on radar based asteroid shape models, where the highest slope regions change first. The investigation of the modification of YORP coefficients and subsequent spin state evolution as a result of this dynamically influenced shape change is presented and discussed.
Stochastic basins of attraction for metastable states.
Serdukova, Larissa; Zheng, Yayun; Duan, Jinqiao; Kurths, Jürgen
2016-07-01
Basin of attraction of a stable equilibrium point is an effective concept for stability analysis in deterministic systems; however, it does not contain information on the external perturbations that may affect it. Here we introduce the concept of stochastic basin of attraction (SBA) by incorporating a suitable probabilistic notion of basin. We define criteria for the size of the SBA based on the escape probability, which is one of the deterministic quantities that carry dynamical information and can be used to quantify dynamical behavior of the corresponding stochastic basin of attraction. SBA is an efficient tool to describe the metastable phenomena complementing the known exit time, escape probability, or relaxation time. Moreover, the geometric structure of SBA gives additional insight into the system's dynamical behavior, which is important for theoretical and practical reasons. This concept can be used not only in models with small noise intensity but also with noise whose amplitude is proportional or in general is a function of an order parameter. As an application of our main results, we analyze a three potential well system perturbed by two types of noise: Brownian motion and non-Gaussian α-stable Lévy motion. Our main conclusions are that the thermal fluctuations stabilize the metastable system with an asymmetric three-well potential but have the opposite effect for a symmetric one. For Lévy noise with larger jumps and lower jump frequencies ( α=0.5) metastability is enhanced for both symmetric and asymmetric potentials. PMID:27475077
Stochastic Event-Driven Molecular Dynamics
Donev, Aleksandar Garcia, Alejandro L.; Alder, Berni J.
2008-02-01
A novel Stochastic Event-Driven Molecular Dynamics (SEDMD) algorithm is developed for the simulation of polymer chains suspended in a solvent. SEDMD combines event-driven molecular dynamics (EDMD) with the Direct Simulation Monte Carlo (DSMC) method. The polymers are represented as chains of hard-spheres tethered by square wells and interact with the solvent particles with hard-core potentials. The algorithm uses EDMD for the simulation of the polymer chain and the interactions between the chain beads and the surrounding solvent particles. The interactions between the solvent particles themselves are not treated deterministically as in EDMD, rather, the momentum and energy exchange in the solvent is determined stochastically using DSMC. The coupling between the solvent and the solute is consistently represented at the particle level retaining hydrodynamic interactions and thermodynamic fluctuations. However, unlike full MD simulations of both the solvent and the solute, in SEDMD the spatial structure of the solvent is ignored. The SEDMD algorithm is described in detail and applied to the study of the dynamics of a polymer chain tethered to a hard-wall subjected to uniform shear. SEDMD closely reproduces results obtained using traditional EDMD simulations with two orders of magnitude greater efficiency. Results question the existence of periodic (cycling) motion of the polymer chain.
Stochastic properties of strongly coupled plasmas.
Morozov, I V; Norman, G E; Valuev, A A
2001-03-01
Stochastic properties of equilibrium strongly coupled plasmas are investigated by a molecular dynamics method. The Krylov-Kolmogorov entropy K and the dynamical memory time t(m) are calculated both for electrons and ions with mass ratios 10-10(5). Two values of K entropy for ions are discovered corresponding to electron and ion time scales. The dependence of the K entropy on the number of particles, the nonideality parameter, and the form of the interaction potential is investigated. The problem of the accuracy of molecular dynamics simulations is discussed. A universal relation between Kt(m) and the fluctuation of the total energy of the system is obtained. The relation does not depend on the numerical integration scheme, temperature, density, and the interparticle interaction potential, so that it may be applied to arbitrary dynamic systems. Transition from dynamic to stochastic correlation is treated for both electron and ion velocity autocorrelation functions, for Langmuir and ion-sound plasma wave dynamic structure factors. We point to quantum uncertainty as a physical reason which limits dynamic (Newton) correlation for times greater than t(m). PMID:11308773
A simple way of introducing stochastic differential equations
NASA Astrophysics Data System (ADS)
Basharov, A. M.
2016-05-01
The notion of the Ito increment and the stochastic differential equation of the non-Wiener type were introduced using the simple “natural” property of counting process. The properties of the stochastic differential and integral were demonstrated and clarified in a simple and original way.
Stochasticity and the m = 1 mode in tokamaks. [Sawtooth oscillations
Izzo, R.; Monticello, D.A.; Stodiek, W.; Park, W.
1986-05-01
It has recently been proposed that stochasticity resulting from toroidal coupling could lead to a saturation of the m = 1 internal mode in tokamaks. We present results from the nonlinear evolution of the m = 1 mode with toroidal coupling that show that stochasticity is not enough to cause saturation of the m = 1 mode.
Stochastic perturbation of the two-body problem
NASA Astrophysics Data System (ADS)
Cresson, J.; Pierret, F.; Puig, B.
2013-11-01
We study the impact of a stochastic perturbation on the classical two-body problem in particular concerning the preservation of first integrals and the Hamiltonian structure. Numerical simulations are performed which illustrate the dynamical behavior of the osculating elements as the semi-major axis, the eccentricity and the pericenter. We also derive a stochastic version of Gauss's equations in the planar case.
Spontaneous Stochasticity and Anomalous Dissipation for Burgers Equation
NASA Astrophysics Data System (ADS)
Eyink, Gregory L.; Drivas, Theodore D.
2015-01-01
We develop a Lagrangian approach to conservation-law anomalies in weak solutions of inviscid Burgers equation, motivated by previous work on the Kraichnan model of turbulent scalar advection. We show that the entropy solutions of Burgers possess Markov stochastic processes of (generalized) Lagrangian trajectories backward in time for which the Burgers velocity is a backward martingale. This property is shown to guarantee dissipativity of conservation-law anomalies for general convex functions of the velocity. The backward stochastic Burgers flows with these properties are not unique, however. We construct infinitely many such stochastic flows, both by a geometric construction and by the zero-noise limit of the Constantin-Iyer stochastic representation of viscous Burgers solutions. The latter proof yields the spontaneous stochasticity of Lagrangian trajectories backward in time for Burgers, at unit Prandtl number. It is conjectured that existence of a backward stochastic flow with the velocity as martingale is an admissibility condition which selects the unique entropy solution for Burgers. We also study linear transport of passive densities and scalars by inviscid Burgers flows. We show that shock solutions of Burgers exhibit spontaneous stochasticity backward in time for all finite Prandtl numbers, implying conservation-law anomalies for linear transport. We discuss the relation of our results for Burgers with incompressible Navier-Stokes turbulence, especially Lagrangian admissibility conditions for Euler solutions and the relation between turbulent cascade directions and time-asymmetry of Lagrangian stochasticity.
Semilinear Kolmogorov Equations and Applications to Stochastic Optimal Control
Masiero, Federica
2005-03-15
Semilinear parabolic differential equations are solved in a mild sense in an infinite-dimensional Hilbert space. Applications to stochastic optimal control problems are studied by solving the associated Hamilton-Jacobi-Bellman equation. These results are applied to some controlled stochastic partial differential equations.
Two Different Approaches to Nonzero-Sum Stochastic Differential Games
Rainer, Catherine
2007-06-15
We make the link between two approaches to Nash equilibria for nonzero-sum stochastic differential games: the first one using backward stochastic differential equations and the second one using strategies with delay. We prove that, when both exist, the two notions of Nash equilibria coincide.
Stochastic Schroedinger equations with general complex Gaussian noises
Bassi, Angelo
2003-06-01
Within the framework of non-Markovian stochastic Schroedinger equations, we generalize the results of [W. T. Strunz, Phys. Lett. A 224, 25 (1996)] to the case of general complex Gaussian noises; we analyze the two important cases of purely real and purely imaginary stochastic processes.
Geometric quadratic stochastic operator on countable infinite set
Ganikhodjaev, Nasir; Hamzah, Nur Zatul Akmar
2015-02-03
In this paper we construct the family of Geometric quadratic stochastic operators defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. Such operators can be reinterpreted in terms of of evolutionary operator of free population. We show that Geometric quadratic stochastic operators are regular transformations.
Stochastic fuzzy differential equations of a nonincreasing type
NASA Astrophysics Data System (ADS)
Malinowski, Marek T.
2016-04-01
Stochastic fuzzy differential equations constitute an apparatus in modeling dynamic systems operating in fuzzy environment and governed by stochastic noises. In this paper we introduce a new kind of such the equations. Namely, the stochastic fuzzy differential of nonincreasing type are considered. The fuzzy stochastic processes which are solutions to these equations have trajectories with nonincreasing fuzziness in their values. In our previous papers, as a first natural extension of crisp stochastic differential equations, stochastic fuzzy differential equations of nondecreasing type were studied. In this paper we show that under suitable conditions each of the equations has a unique solution which possesses property of continuous dependence on data of the equation. To prove existence of the solutions we use sequences of successive approximate solutions. An estimation of an error of the approximate solution is established as well. Some examples of equations are solved and their solutions are simulated to illustrate the theory of stochastic fuzzy differential equations. All the achieved results apply to stochastic set-valued differential equations.
Digital simulation and modeling of nonlinear stochastic systems
Richardson, J M; Rowland, J R
1981-04-01
Digitally generated solutions of nonlinear stochastic systems are not unique but depend critically on the numerical integration algorithm used. Some theoretical and practical implications of this dependence are examined. The Ito-Stratonovich controversy concerning the solution of nonlinear stochastic systems is shown to be more than a theoretical debate on maintaining Markov properties as opposed to utilizing the computational rules of ordinary calculus. The theoretical arguments give rise to practical considerations in the formation and solution of discrete models from continuous stochastic systems. Well-known numerical integration algorithms are shown not only to provide different solutions for the same stochastic system but also to correspond to different stochastic integral definitions. These correspondences are proved by considering first and second moments of solutions that result from different integration algorithms and then comparing the moments to those arising from various stochastic integral definitions. This algorithm-dependence of solutions is in sharp contrast to the deterministic and linear stochastic cases in which unique solutions are determined by any convergent numerical algorithm. Consequences of the relationship between stochastic system solutions and simulation procedures are presented for a nonlinear filtering example. Monte Carlo simulations and statistical tests are applied to the example to illustrate the determining role which computational procedures play in generating solutions.
Stochastic mapping of the Michaelis-Menten mechanism
NASA Astrophysics Data System (ADS)
Dóka, Éva; Lente, Gábor
2012-02-01
The Michaelis-Menten mechanism is an extremely important tool for understanding enzyme-catalyzed transformation of substrates into final products. In this work, a computationally viable, full stochastic description of the Michaelis-Menten kinetic scheme is introduced based on a stochastic equivalent of the steady-state assumption. The full solution derived is free of restrictions on amounts of substance or parameter values and is used to create stochastic maps of the Michaelis-Menten mechanism, which show the regions in the parameter space of the scheme where the use of the stochastic kinetic approach is inevitable. The stochastic aspects of recently published examples of single-enzyme kinetic studies are analyzed using these maps.
Improving the detection sensitivity of chromatography by stochastic resonance.
Zhang, Wei; Guo, Jianru; Xiang, Bingren; Fan, Hongyan; Xu, Fengguo
2014-05-01
Improving the detection sensitivity of analytical instruments has been a challenging task for chemometricians since undetectability has been almost unavoidable in trace analysis, even under optimized experimental conditions and with the use of modern instruments. Various chemometrics methods have been developed which attempt to address this detection problem but with limited success (e.g., fast Fourier transform and wavelet transform). However, the application of stochastic resonance (SR) creates an entirely new and effective methodology. Stochastic resonance is a phenomenon which is manifested in non-linear systems where a weak signal can be amplified and optimized with the assistance of noise. In this review, we summarize the use of basic SR, optimization of parameters and its modifications, including periodic modulation stochastic resonance (PSRA), linear modulation stochastic resonance (LSRA), single-well potential stochastic resonance (SSR) and the Duffing oscillator algorithm (DOA) for amplifying sub-threshold small signals. We also review the advantages and the disadvantages of various SR procedures. PMID:24622614
Stochastic receding horizon control: application to an octopedal robot
NASA Astrophysics Data System (ADS)
Shah, Shridhar K.; Tanner, Herbert G.
2013-06-01
Miniature autonomous systems are being developed under ARL's Micro Autonomous Systems and Technology (MAST). These systems can only be fitted with a small-size processor, and their motion behavior is inherently uncertain due to manufacturing and platform-ground interactions. One way to capture this uncertainty is through a stochastic model. This paper deals with stochastic motion control design and implementation for MAST- specific eight-legged miniature crawling robots, which have been kinematically modeled as systems exhibiting the behavior of a Dubin's car with stochastic noise. The control design takes the form of stochastic receding horizon control, and is implemented on a Gumstix Overo Fire COM with 720 MHz processor and 512 MB RAM, weighing 5.5 g. The experimental results show the effectiveness of this control law for miniature autonomous systems perturbed by stochastic noise.
Empirical insights into the stochasticity of small RNA sequencing.
Qin, Li-Xuan; Tuschl, Thomas; Singer, Samuel
2016-01-01
The choice of stochasticity distribution for modeling the noise distribution is a fundamental assumption for the analysis of sequencing data and consequently is critical for the accurate assessment of biological heterogeneity and differential expression. The stochasticity of RNA sequencing has been assumed to follow Poisson distributions. We collected microRNA sequencing data and observed that its stochasticity is better approximated by gamma distributions, likely because of the stochastic nature of exponential PCR amplification. We validated our findings with two independent datasets, one for microRNA sequencing and another for RNA sequencing. Motivated by the gamma distributed stochasticity, we provided a simple method for the analysis of RNA sequencing data and showed its superiority to three existing methods for differential expression analysis using three data examples of technical replicate data and biological replicate data. PMID:27052356
Empirical insights into the stochasticity of small RNA sequencing
NASA Astrophysics Data System (ADS)
Qin, Li-Xuan; Tuschl, Thomas; Singer, Samuel
2016-04-01
The choice of stochasticity distribution for modeling the noise distribution is a fundamental assumption for the analysis of sequencing data and consequently is critical for the accurate assessment of biological heterogeneity and differential expression. The stochasticity of RNA sequencing has been assumed to follow Poisson distributions. We collected microRNA sequencing data and observed that its stochasticity is better approximated by gamma distributions, likely because of the stochastic nature of exponential PCR amplification. We validated our findings with two independent datasets, one for microRNA sequencing and another for RNA sequencing. Motivated by the gamma distributed stochasticity, we provided a simple method for the analysis of RNA sequencing data and showed its superiority to three existing methods for differential expression analysis using three data examples of technical replicate data and biological replicate data.
Entropic stochastic resonance of a self-propelled Janus particle
NASA Astrophysics Data System (ADS)
Liu, Zhenzhen; Du, Luchun; Guo, Wei; Mei, Dong-Cheng
2016-10-01
Entropic stochastic resonance is investigated when a self-propelled Janus particle moves in a double-cavity container. Numerical simulation results indicate the entropic stochastic resonance can survive even if there is no symmetry breaking in any direction. This is the essential distinction between the property of a self-propelled Janus particle and that of a passive Brownian particle, for the symmetry breaking is necessary for the entropic stochastic resonance of a passive Brownian particle. With the rotational noise intensity growing at small fixed noise intensity of translational motion, the signal power amplification increases monotonically towards saturation which also can be regarded as a kind of stochastic resonance effect. Besides, the increase in the natural frequency of the periodic driving depresses the degree of the stochastic resonance, whereas the rise in its amplitude enhances and then suppresses the behavior.
Terminator Detection by Support Vector Machine Utilizing aStochastic Context-Free Grammar
Francis-Lyon, Patricia; Cristianini, Nello; Holbrook, Stephen
2006-12-30
A 2-stage detector was designed to find rho-independent transcription terminators in the Escherichia coli genome. The detector includes a Stochastic Context Free Grammar (SCFG) component and a Support Vector Machine (SVM) component. To find terminators, the SCFG searches the intergenic regions of nucleotide sequence for local matches to a terminator grammar that was designed and trained utilizing examples of known terminators. The grammar selects sequences that are the best candidates for terminators and assigns them a prefix, stem-loop, suffix structure using the Cocke-Younger-Kasaami (CYK) algorithm, modified to incorporate energy affects of base pairing. The parameters from this inferred structure are passed to the SVM classifier, which distinguishes terminators from non-terminators that score high according to the terminator grammar. The SVM was trained with negative examples drawn from intergenic sequences that include both featureless and RNA gene regions (which were assigned prefix, stem-loop, suffix structure by the SCFG), so that it successfully distinguishes terminators from either of these. The classifier was found to be 96.4% successful during testing.
Chen, Bor-Sen; Tsai, Kun-Wei; Li, Cheng-Wei
2015-01-01
Molecular biologists have long recognized carcinogenesis as an evolutionary process that involves natural selection. Cancer is driven by the somatic evolution of cell lineages. In this study, the evolution of somatic cancer cell lineages during carcinogenesis was modeled as an equilibrium point (ie, phenotype of attractor) shifting, the process of a nonlinear stochastic evolutionary biological network. This process is subject to intrinsic random fluctuations because of somatic genetic and epigenetic variations, as well as extrinsic disturbances because of carcinogens and stressors. In order to maintain the normal function (ie, phenotype) of an evolutionary biological network subjected to random intrinsic fluctuations and extrinsic disturbances, a network robustness scheme that incorporates natural selection needs to be developed. This can be accomplished by selecting certain genetic and epigenetic variations to modify the network structure to attenuate intrinsic fluctuations efficiently and to resist extrinsic disturbances in order to maintain the phenotype of the evolutionary biological network at an equilibrium point (attractor). However, during carcinogenesis, the remaining (or neutral) genetic and epigenetic variations accumulate, and the extrinsic disturbances become too large to maintain the normal phenotype at the desired equilibrium point for the nonlinear evolutionary biological network. Thus, the network is shifted to a cancer phenotype at a new equilibrium point that begins a new evolutionary process. In this study, the natural selection scheme of an evolutionary biological network of carcinogenesis was derived from a robust negative feedback scheme based on the nonlinear stochastic Nash game strategy. The evolvability and phenotypic robustness criteria of the evolutionary cancer network were also estimated by solving a Hamilton-Jacobi inequality - constrained optimization problem. The simulation revealed that the phenotypic shift of the lung cancer
Chen, Bor-Sen; Tsai, Kun-Wei; Li, Cheng-Wei
2015-01-01
Molecular biologists have long recognized carcinogenesis as an evolutionary process that involves natural selection. Cancer is driven by the somatic evolution of cell lineages. In this study, the evolution of somatic cancer cell lineages during carcinogenesis was modeled as an equilibrium point (ie, phenotype of attractor) shifting, the process of a nonlinear stochastic evolutionary biological network. This process is subject to intrinsic random fluctuations because of somatic genetic and epigenetic variations, as well as extrinsic disturbances because of carcinogens and stressors. In order to maintain the normal function (ie, phenotype) of an evolutionary biological network subjected to random intrinsic fluctuations and extrinsic disturbances, a network robustness scheme that incorporates natural selection needs to be developed. This can be accomplished by selecting certain genetic and epigenetic variations to modify the network structure to attenuate intrinsic fluctuations efficiently and to resist extrinsic disturbances in order to maintain the phenotype of the evolutionary biological network at an equilibrium point (attractor). However, during carcinogenesis, the remaining (or neutral) genetic and epigenetic variations accumulate, and the extrinsic disturbances become too large to maintain the normal phenotype at the desired equilibrium point for the nonlinear evolutionary biological network. Thus, the network is shifted to a cancer phenotype at a new equilibrium point that begins a new evolutionary process. In this study, the natural selection scheme of an evolutionary biological network of carcinogenesis was derived from a robust negative feedback scheme based on the nonlinear stochastic Nash game strategy. The evolvability and phenotypic robustness criteria of the evolutionary cancer network were also estimated by solving a Hamilton–Jacobi inequality – constrained optimization problem. The simulation revealed that the phenotypic shift of the lung cancer
Stochastic simulation of pulverized coal (PC) processes
Salazar, J.; Diwekar, U.; Zitney, S.
2010-01-01
An increasing population and electricity demand in the U.S. require capacity expansion of power systems. The National Energy Technology Laboratory (NETL), U.S. Department of Energy (DOE), has invested considerable efforts on research and development to improve the design and simulation of these power plants. Incorporation of novel process synthesis techniques and realistic simulation methodologies yield optimal flowsheet configurations and accurate estimation of their performance parameters. To provide a better estimation of such performance indicators, simulation models should predict the process behavior based on not only deterministic values of well-known input parameters but also uncertain variables associated with simulation assumptions. In this work, the stochastic simulation of a load-following pulverized coal (PC) power plant takes into account the variation of three input variables, namely, atmospheric air temperature, atmospheric air humidity, and generation load. These uncertain variables are characterized with probability density functions (pdfs) obtained from available atmospheric and electrical energy generation data. The stochastic simulation is carried out by obtaining a sample of values from the pdfs that generates a set of scenarios under which the model is run. An efficient sampling technique [Hammersley sequence sampling (HSS)] guarantees a set of scenarios uniformly distributed throughout the uncertain variable range. Then, each model run generates results on performance parameters as cycle efficiency, carbon emissions, sulfur emissions, and water consumption that are statistically analyzed after all runs are completed. Among these parameters, water consumption is of importance because an increasing demand has been observed mostly in arid regions of the country and, therefore, constrains the operability of the processes. This water consumption is significantly affected by atmospheric uncertainties. The original deterministic process model
The stochastic dance of early HIV infection
NASA Astrophysics Data System (ADS)
Merrill, Stephen J.
2005-12-01
The stochastic nature of early HIV infection is described in a series of models, each of which captures aspects of the dance of HIV during the early stages of infection. It is to this highly variable target that the immune response must respond. The adaptability of the various components of the immune response is an important aspect of the system's operation, as the nature of the pathogens that the response will be required to respond to and the order in which those responses must be made cannot be known beforehand. As HIV infection has direct influence over cells responsible for the immune response, the dance predicts that the immune response will be also in a variable state of readiness and capability for this task of adaptation. The description of the stochastic dance of HIV here will use the tools of stochastic models, and for the most part, simulation. The justification for this approach is that the early stages and the development of HIV diversity require that the model to be able to describe both individual sample path and patient-to-patient variability. In addition, as early viral dynamics are best described using branching processes, the explosive growth of these models both predicts high variability and rapid response of HIV to changes in system parameters.In this paper, a basic viral growth model based on a time dependent continuous-time branching process is used to describe the growth of HIV infected cells in the macrophage and lymphocyte populations. Immigration from the reservoir population is added to the basic model to describe the incubation time distribution. This distribution is deduced directly from the modeling assumptions and the model of viral growth. A system of two branching processes, one in the infected macrophage population and one in the infected lymphocyte population is used to provide a description of the relationship between the development of HIV diversity as it relates to tropism (host cell preference). The role of the immune
Heydari, M.H.; Hooshmandasl, M.R.; Cattani, C.; Maalek Ghaini, F.M.
2015-02-15
Because of the nonlinearity, closed-form solutions of many important stochastic functional equations are virtually impossible to obtain. Thus, numerical solutions are a viable alternative. In this paper, a new computational method based on the generalized hat basis functions together with their stochastic operational matrix of Itô-integration is proposed for solving nonlinear stochastic Itô integral equations in large intervals. In the proposed method, a new technique for computing nonlinear terms in such problems is presented. The main advantage of the proposed method is that it transforms problems under consideration into nonlinear systems of algebraic equations which can be simply solved. Error analysis of the proposed method is investigated and also the efficiency of this method is shown on some concrete examples. The obtained results reveal that the proposed method is very accurate and efficient. As two useful applications, the proposed method is applied to obtain approximate solutions of the stochastic population growth models and stochastic pendulum problem.
Lin, Guang; Tartakovsky, Alexandre M.
2010-04-01
In this study, we solve the three-dimensional stochastic Darcy's equation and stochastic advection-diffusion-dispersion equation using a probabilistic collocation method (PCM) on sparse grids. Karhunen-Lo\\`{e}ve (KL) decomposition is employed to represent the three-dimensional log hydraulic conductivity $Y=\\ln K_s$. The numerical examples which demonstrate the convergence of PCM are presented. It appears that the faster convergence rate in the variance can be obtained by using the Jacobi-chaos representing the truncated Gaussian distributions than using the Hermite-chaos for the Gaussian distribution. The effect of dispersion coefficient on the mean and standard deviation of the hydraulic head and solute concentration is investigated. Additionally, we also study how the statistical properties of the hydraulic head and solute concentration vary while using different types of random distributions and different standard deviations of random hydraulic conductivity.
... Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ... Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ...
Colorectal cancer; Cancer - colon; Rectal cancer; Cancer - rectum; Adenocarcinoma - colon; Colon - adenocarcinoma ... In the United States, colorectal cancer is one of the leading causes of deaths due to cancer. Early diagnosis can often lead to a complete cure. Almost ...
Stochastic damage evolution in textile laminates
NASA Technical Reports Server (NTRS)
Dzenis, Yuris A.; Bogdanovich, Alexander E.; Pastore, Christopher M.
1993-01-01
A probabilistic model utilizing random material characteristics to predict damage evolution in textile laminates is presented. Model is based on a division of each ply into two sublaminas consisting of cells. The probability of cell failure is calculated using stochastic function theory and maximal strain failure criterion. Three modes of failure, i.e. fiber breakage, matrix failure in transverse direction, as well as matrix or interface shear cracking, are taken into account. Computed failure probabilities are utilized in reducing cell stiffness based on the mesovolume concept. A numerical algorithm is developed predicting the damage evolution and deformation history of textile laminates. Effect of scatter of fiber orientation on cell properties is discussed. Weave influence on damage accumulation is illustrated with the help of an example of a Kevlar/epoxy laminate.
Stochastic Model of Supercoiling-Dependent Transcription.
Brackley, C A; Johnson, J; Bentivoglio, A; Corless, S; Gilbert, N; Gonnella, G; Marenduzzo, D
2016-07-01
We propose a stochastic model for gene transcription coupled to DNA supercoiling, where we incorporate the experimental observation that polymerases create supercoiling as they unwind the DNA helix and that these enzymes bind more favorably to regions where the genome is unwound. Within this model, we show that when the transcriptionally induced flux of supercoiling increases, there is a sharp crossover from a regime where torsional stresses relax quickly and gene transcription is random, to one where gene expression is highly correlated and tightly regulated by supercoiling. In the latter regime, the model displays transcriptional bursts, waves of supercoiling, and up regulation of divergent or bidirectional genes. It also predicts that topological enzymes which relax twist and writhe should provide a pathway to down regulate transcription. PMID:27419594
Stochastic Inversion of 2D Magnetotelluric Data
Chen, Jinsong
2010-07-01
The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows
Focus on stochastic flows and climate statistics
NASA Astrophysics Data System (ADS)
Marston, JB; Williams, Paul D.
2016-09-01
The atmosphere and ocean are examples of dynamical systems that evolve in accordance with the laws of physics. Therefore, climate science is a branch of physics that is just as valid and important as the more traditional branches, which include particle physics, condensed-matter physics, and statistical mechanics. This ‘focus on’ collection of New Journal of Physics brings together original research articles from leading groups that advance our understanding of the physics of climate. Areas of climate science that can particularly benefit from input by physicists are emphasised. The collection brings together articles on stochastic models, turbulence, quasi-linear approximations, climate statistics, statistical mechanics of atmospheres and oceans, jet formation, and reduced-form climate models. The hope is that the issue will encourage more physicists to think about the climate problem.
Supercomputer optimizations for stochastic optimal control applications
NASA Technical Reports Server (NTRS)
Chung, Siu-Leung; Hanson, Floyd B.; Xu, Huihuang
1991-01-01
Supercomputer optimizations for a computational method of solving stochastic, multibody, dynamic programming problems are presented. The computational method is valid for a general class of optimal control problems that are nonlinear, multibody dynamical systems, perturbed by general Markov noise in continuous time, i.e., nonsmooth Gaussian as well as jump Poisson random white noise. Optimization techniques for vector multiprocessors or vectorizing supercomputers include advanced data structures, loop restructuring, loop collapsing, blocking, and compiler directives. These advanced computing techniques and superconducting hardware help alleviate Bellman's curse of dimensionality in dynamic programming computations, by permitting the solution of large multibody problems. Possible applications include lumped flight dynamics models for uncertain environments, such as large scale and background random aerospace fluctuations.
Stochastic resonance for nonlinear sensors with saturation.
Rousseau, David; Rojas Varela, Julio; Chapeau-Blondeau, François
2003-02-01
We analyze the transmission of a noisy signal by sensor devices which are linear for small inputs and saturate at large inputs. Large information-carrying signals are thus distorted in their transmission. We demonstrate conditions where addition of noise to such large input signals can reduce the distortion that they undergo in the transmission. This is established for periodic, as well as aperiodic, and random information-carrying signals. Various measures characterizing the transmission, such as signal-to-noise ratio, input-output cross correlation, and mutual information, are shown improvable by addition of noise. These results constitute another instance of the nonlinear phenomenon of stochastic resonance where addition of noise enhances the signal. PMID:12636648
Stochastic resonance for nonlinear sensors with saturation
NASA Astrophysics Data System (ADS)
Rousseau, David; Rojas Varela, Julio; Chapeau-Blondeau, François
2003-02-01
We analyze the transmission of a noisy signal by sensor devices which are linear for small inputs and saturate at large inputs. Large information-carrying signals are thus distorted in their transmission. We demonstrate conditions where addition of noise to such large input signals can reduce the distortion that they undergo in the transmission. This is established for periodic, as well as aperiodic, and random information-carrying signals. Various measures characterizing the transmission, such as signal-to-noise ratio, input-output cross correlation, and mutual information, are shown improvable by addition of noise. These results constitute another instance of the nonlinear phenomenon of stochastic resonance where addition of noise enhances the signal.
Stochastic Inversion of 2D Magnetotelluric Data
2010-07-01
The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less
Hybrid Differential Dynamic Programming with Stochastic Search
NASA Technical Reports Server (NTRS)
Aziz, Jonathan; Parker, Jeffrey; Englander, Jacob
2016-01-01
Differential dynamic programming (DDP) has been demonstrated as a viable approach to low-thrust trajectory optimization, namely with the recent success of NASAs Dawn mission. The Dawn trajectory was designed with the DDP-based Static Dynamic Optimal Control algorithm used in the Mystic software. Another recently developed method, Hybrid Differential Dynamic Programming (HDDP) is a variant of the standard DDP formulation that leverages both first-order and second-order state transition matrices in addition to nonlinear programming (NLP) techniques. Areas of improvement over standard DDP include constraint handling, convergence properties, continuous dynamics, and multi-phase capability. DDP is a gradient based method and will converge to a solution nearby an initial guess. In this study, monotonic basin hopping (MBH) is employed as a stochastic search method to overcome this limitation, by augmenting the HDDP algorithm for a wider search of the solution space.
Stochastic Stability in Internet Router Congestion Games
NASA Astrophysics Data System (ADS)
Chung, Christine; Pyrga, Evangelia
Congestion control at bottleneck routers on the internet is a long standing problem. Many policies have been proposed for effective ways to drop packets from the queues of these routers so that network endpoints will be inclined to share router capacity fairly and minimize the overflow of packets trying to enter the queues. We study just how effective some of these queuing policies are when each network endpoint is a self-interested player with no information about the other players’ actions or preferences. By employing the adaptive learning model of evolutionary game theory, we study policies such as Droptail, RED, and the greedy-flow-punishing policy proposed by Gao et al. [10] to find the stochastically stable states: the states of the system that will be reached in the long run.
Coronal heating by stochastic magnetic pumping
NASA Technical Reports Server (NTRS)
Sturrock, P. A.; Uchida, Y.
1980-01-01
Recent observational data cast serious doubt on the widely held view that the Sun's corona is heated by traveling waves (acoustic or magnetohydrodynamic). It is proposed that the energy responsible for heating the corona is derived from the free energy of the coronal magnetic field derived from motion of the 'feet' of magnetic field lines in the photosphere. Stochastic motion of the feet of magnetic field lines leads, on the average, to a linear increase of magnetic free energy with time. This rate of energy input is calculated for a simple model of a single thin flux tube. The model appears to agree well with observational data if the magnetic flux originates in small regions of high magnetic field strength. On combining this energy input with estimates of energy loss by radiation and of energy redistribution by thermal conduction, we obtain scaling laws for density and temperature in terms of length and coronal magnetic field strength.
Stochastic approach to flat direction during inflation
Kawasaki, Masahiro; Takesako, Tomohiro E-mail: takesako@icrr.u-tokyo.ac.jp
2012-08-01
We revisit the time evolution of a flat and non-flat direction system during inflation. In order to take into account quantum noises in the analysis, we base on stochastic formalism and solve coupled Langevin equations numerically. We focus on a class of models in which tree-level Hubble-induced mass is not generated. Although the non-flat directions can block the growth of the flat direction's variance in principle, the blocking effects are suppressed by the effective masses of the non-flat directions. We find that the fate of the flat direction during inflation is determined by one-loop radiative corrections and non-renormalizable terms as usually considered, if we remove the zero-point fluctuation from the noise terms.
A stochastic lattice model for locust outbreak
NASA Astrophysics Data System (ADS)
Kizaki, Shinya; Katori, Makoto
The locust is a kind of grasshoppers. Gregarious locusts form swarms and can migrate over large distances and they spread and damage a large area (locust outbreak). When the density is low, each of locusts behaves as an individual insect (solitary phase). As locusts become crowded, they become to act as a part of a group (gregarious phase) as a result of interactions among them. Modeling of this phenomenon is a challenging problem of statistical physics. We introduce a stochastic cellular automaton model of locust population-dynamics on lattices. Change of environmental conditions by seasonal migration is a key factor in gregarisation of locusts and we take it into account by changing the lattice size periodically. We study this model by computer simulations and discuss the locust outbreak as a cooperative phenomena.
Stochastic bifurcations in a prototypical thermoacoustic system.
Gopalakrishnan, E A; Tony, J; Sreelekha, E; Sujith, R I
2016-08-01
We study the influence of noise in a prototypical thermoacoustic system, which represents a nonlinear self-excited bistable oscillator. We analyze the time series of unsteady pressure obtained from a horizontal Rijke tube and a mathematical model to identify the effect of noise. We report the occurrence of stochastic bifurcations in a thermoacoustic system by tracking the changes in the stationary amplitude distribution. We observe a complete suppression of a bistable zone in the presence of high intensity noise. We find that the complete suppression of the bistable zone corresponds to the nonexistence of phenomenological (P) bifurcations. This is a study in thermoacoustics to identify the parameter regimes pertinent to P bifurcation using the stationary amplitude distribution obtained by solving the Fokker-Planck equation.
Stochastic bifurcations in a prototypical thermoacoustic system
NASA Astrophysics Data System (ADS)
Gopalakrishnan, E. A.; Tony, J.; Sreelekha, E.; Sujith, R. I.
2016-08-01
We study the influence of noise in a prototypical thermoacoustic system, which represents a nonlinear self-excited bistable oscillator. We analyze the time series of unsteady pressure obtained from a horizontal Rijke tube and a mathematical model to identify the effect of noise. We report the occurrence of stochastic bifurcations in a thermoacoustic system by tracking the changes in the stationary amplitude distribution. We observe a complete suppression of a bistable zone in the presence of high intensity noise. We find that the complete suppression of the bistable zone corresponds to the nonexistence of phenomenological (P) bifurcations. This is a study in thermoacoustics to identify the parameter regimes pertinent to P bifurcation using the stationary amplitude distribution obtained by solving the Fokker-Planck equation.
Hybrid Differential Dynamic Programming with Stochastic Search
NASA Technical Reports Server (NTRS)
Aziz, Jonathan; Parker, Jeffrey; Englander, Jacob A.
2016-01-01
Differential dynamic programming (DDP) has been demonstrated as a viable approach to low-thrust trajectory optimization, namely with the recent success of NASA's Dawn mission. The Dawn trajectory was designed with the DDP-based Static/Dynamic Optimal Control algorithm used in the Mystic software.1 Another recently developed method, Hybrid Differential Dynamic Programming (HDDP),2, 3 is a variant of the standard DDP formulation that leverages both first-order and second-order state transition matrices in addition to nonlinear programming (NLP) techniques. Areas of improvement over standard DDP include constraint handling, convergence properties, continuous dynamics, and multi-phase capability. DDP is a gradient based method and will converge to a solution nearby an initial guess. In this study, monotonic basin hopping (MBH) is employed as a stochastic search method to overcome this limitation, by augmenting the HDDP algorithm for a wider search of the solution space.
Stochastic competitive learning in complex networks.
Silva, Thiago Christiano; Zhao, Liang
2012-03-01
Competitive learning is an important machine learning approach which is widely employed in artificial neural networks. In this paper, we present a rigorous definition of a new type of competitive learning scheme realized on large-scale networks. The model consists of several particles walking within the network and competing with each other to occupy as many nodes as possible, while attempting to reject intruder particles. The particle's walking rule is composed of a stochastic combination of random and preferential movements. The model has been applied to solve community detection and data clustering problems. Computer simulations reveal that the proposed technique presents high precision of community and cluster detections, as well as low computational complexity. Moreover, we have developed an efficient method for estimating the most likely number of clusters by using an evaluator index that monitors the information generated by the competition process itself. We hope this paper will provide an alternative way to the study of competitive learning..
Stochastic search with Poisson and deterministic resetting
NASA Astrophysics Data System (ADS)
Bhat, Uttam; De Bacco, Caterina; Redner, S.
2016-08-01
We investigate a stochastic search process in one, two, and three dimensions in which N diffusing searchers that all start at x 0 seek a target at the origin. Each of the searchers is also reset to its starting point, either with rate r, or deterministically, with a reset time T. In one dimension and for a small number of searchers, the search time and the search cost are minimized at a non-zero optimal reset rate (or time), while for sufficiently large N, resetting always hinders the search. In general, a single searcher leads to the minimum search cost in one, two, and three dimensions. When the resetting is deterministic, several unexpected feature arise for N searchers, including the search time being independent of T for 1/T\\to 0 and the search cost being independent of N over a suitable range of N. Moreover, deterministic resetting typically leads to a lower search cost than in Poisson resetting.
Stochastic Model of Supercoiling-Dependent Transcription
NASA Astrophysics Data System (ADS)
Brackley, C. A.; Johnson, J.; Bentivoglio, A.; Corless, S.; Gilbert, N.; Gonnella, G.; Marenduzzo, D.
2016-07-01
We propose a stochastic model for gene transcription coupled to DNA supercoiling, where we incorporate the experimental observation that polymerases create supercoiling as they unwind the DNA helix and that these enzymes bind more favorably to regions where the genome is unwound. Within this model, we show that when the transcriptionally induced flux of supercoiling increases, there is a sharp crossover from a regime where torsional stresses relax quickly and gene transcription is random, to one where gene expression is highly correlated and tightly regulated by supercoiling. In the latter regime, the model displays transcriptional bursts, waves of supercoiling, and up regulation of divergent or bidirectional genes. It also predicts that topological enzymes which relax twist and writhe should provide a pathway to down regulate transcription.
A stochastic bioburden model for spacecraft sterilization.
NASA Technical Reports Server (NTRS)
Roark, A. L.
1972-01-01
Development of a stochastic model of the probability distribution for the random variable representing the number of microorganisms on a surface as a function of time. The first basic principle associated with bioburden estimation is that viable particles are removed from surfaces. The second notion important to the analysis is that microorganisms in environments and on surfaces occur in clumps. The last basic principle relating to bioburden modeling is that viable particles are deposited on a surface. The bioburden on a spacecraft is determined by the amount and kind of control exercised on the spacecraft assembly location, the shedding characteristics of the individuals in the vicinity of the spacecraft, its orientation, the geographical location in which the assembly takes place, and the steps in the assembly procedure. The model presented has many of the features which are desirable for its use in the spacecraft sterilization programs currently being planned by NASA.
A Stochastic Tikhonov Theorem in Infinite Dimensions
Buckdahn, Rainer Guatteri, Giuseppina
2006-03-15
The present paper studies the problem of singular perturbation in the infinite-dimensional framework and gives a Hilbert-space-valued stochastic version of the Tikhonov theorem. We consider a nonlinear system of Hilbert-space-valued equations for a 'slow' and a 'fast' variable; the system is strongly coupled and driven by linear unbounded operators generating a C{sub 0}-semigroup and independent cylindrical Brownian motions. Under well-established assumptions to guarantee the existence and uniqueness of mild solutions, we deduce the required stability of the system from a dissipativity condition on the drift of the fast variable. We avoid differentiability assumptions on the coefficients which would be unnatural in the infinite-dimensional framework.
Stochastic dynamics for idiotypic immune networks
NASA Astrophysics Data System (ADS)
Barra, Adriano; Agliari, Elena
2010-12-01
In this work we introduce and analyze the stochastic dynamics obeyed by a model of an immune network recently introduced by the authors. We develop Fokker-Planck equations for the single lymphocyte behavior and coarse grained Langevin schemes for the averaged clone behavior. After showing agreement with real systems (as a short path Jerne cascade), we suggest, both with analytical and numerical arguments, explanations for the generation of (metastable) memory cells, improvement of the secondary response (both in the quality and quantity) and bell shaped modulation against infections as a natural behavior. The whole emerges from the model without being postulated a-priori as it often occurs in second generation immune networks: so the aim of the work is to present some out-of-equilibrium features of this model and to highlight mechanisms which can replace a-priori assumptions in view of further detailed analysis in theoretical systemic immunology.
Stochastic annealing simulation of cascades in metals
Heinisch, H.L.
1996-04-01
The stochastic annealing simulation code ALSOME is used to investigate quantitatively the differential production of mobile vacancy and SIA defects as a function of temperature for isolated 25 KeV cascades in copper generated by MD simulations. The ALSOME code and cascade annealing simulations are described. The annealing simulations indicate that the above Stage V, where the cascade vacancy clusters are unstable,m nearly 80% of the post-quench vacancies escape the cascade volume, while about half of the post-quench SIAs remain in clusters. The results are sensitive to the relative fractions of SIAs that occur in small, highly mobile clusters and large stable clusters, respectively, which may be dependent on the cascade energy.
Edgeworth expansions of stochastic trading time
NASA Astrophysics Data System (ADS)
Decamps, Marc; De Schepper, Ann
2010-08-01
Under most local and stochastic volatility models the underlying forward is assumed to be a positive function of a time-changed Brownian motion. It relates nicely the implied volatility smile to the so-called activity rate in the market. Following Young and DeWitt-Morette (1986) [8], we propose to apply the Duru-Kleinert process-cum-time transformation in path integral to formulate the transition density of the forward. The method leads to asymptotic expansions of the transition density around a Gaussian kernel corresponding to the average activity in the market conditional on the forward value. The approximation is numerically illustrated for pricing vanilla options under the CEV model and the popular normal SABR model. The asymptotics can also be used for Monte Carlo simulations or backward integration schemes.
Mortality, Redundancy, and Diversity in Stochastic Search
NASA Astrophysics Data System (ADS)
Meerson, Baruch; Redner, S.
2015-05-01
We investigate a stochastic search process in one dimension under the competing roles of mortality, redundancy, and diversity of the searchers. This picture represents a toy model for the fertilization of an oocyte by sperm. A population of N independent and mortal diffusing searchers all start at x =L and attempt to reach the target at x =0 . When mortality is irrelevant, the search time scales as τD/ln N for ln N ≫1 , where τD˜L2/D is the diffusive time scale. Conversely, when the mortality rate μ of the searchers is sufficiently large, the search time scales as √{τD/μ }, independent of N . When searchers have distinct and high mortalities, a subpopulation with a nontrivial optimal diffusivity is most likely to reach the target. We also discuss the effect of chemotaxis on the search time and its fluctuations.
Stochastic models for surface diffusion of molecules
Shea, Patrick Kreuzer, Hans Jürgen
2014-07-28
We derive a stochastic model for the surface diffusion of molecules, starting from the classical equations of motion for an N-atom molecule on a surface. The equation of motion becomes a generalized Langevin equation for the center of mass of the molecule, with a non-Markovian friction kernel. In the Markov approximation, a standard Langevin equation is recovered, and the effect of the molecular vibrations on the diffusion is seen to lead to an increase in the friction for center of mass motion. This effective friction has a simple form that depends on the curvature of the lowest energy diffusion path in the 3N-dimensional coordinate space. We also find that so long as the intramolecular forces are sufficiently strong, memory effects are usually not significant and the Markov approximation can be employed, resulting in a simple one-dimensional model that can account for the effect of the dynamics of the molecular vibrations on the diffusive motion.
Discrete-time Markovian stochastic Petri nets
NASA Technical Reports Server (NTRS)
Ciardo, Gianfranco
1995-01-01
We revisit and extend the original definition of discrete-time stochastic Petri nets, by allowing the firing times to have a 'defective discrete phase distribution'. We show that this formalism still corresponds to an underlying discrete-time Markov chain. The structure of the state for this process describes both the marking of the Petri net and the phase of the firing time for each transition, resulting in a large state space. We then modify the well-known power method to perform a transient analysis even when the state space is infinite, subject to the condition that only a finite number of states can be reached in a finite amount of time. Since the memory requirements might still be excessive, we suggest a bounding technique based on truncation.
Improving Sensorimotor Function Using Stochastic Vestibular Stimulation
NASA Technical Reports Server (NTRS)
Galvan, R. C.; Clark, T. K.; Merfeld, D. M.; Bloomberg, J. J.; Mulavara, A. P.; Oman, C. M.
2014-01-01
Astronauts experience sensorimotor changes during spaceflight, particularly during G-transition phases. Post flight sensorimotor changes may include postural and gait instability, spatial disorientation, and visual performance decrements, all of which can degrade operational capabilities of the astronauts and endanger the crew. Crewmember safety would be improved if these detrimental effects of spaceflight could be mitigated by a sensorimotor countermeasure and even further if adaptation to baseline could be facilitated. The goal of this research is to investigate the potential use of stochastic vestibular stimulation (SVS) as a technology to improve sensorimotor function. We hypothesize that low levels of SVS will improve sensorimotor performance through stochastic resonance (SR). The SR phenomenon occurs when the response of a nonlinear system to a weak input signal is optimized by the application of a particular nonzero level of noise. Two studies have been initiated to investigate the beneficial effects and potential practical usage of SVS. In both studies, electrical vestibular stimulation is applied via electrodes on the mastoid processes using a constant current stimulator. The first study aims to determine the repeatability of the effect of vestibular stimulation on sensorimotor performance and perception in order to better understand the practical use of SVS. The beneficial effect of low levels of SVS on balance performance has been shown in the past. This research uses the same balance task repeated multiple times within a day and across days to study the repeatability of the stimulation effects. The balance test consists of 50 sec trials in which the subject stands with his or her feet together, arms crossed, and eyes closed on compliant foam. Varying levels of SVS, ranging from 0-700 micro A, are applied across different trials. The subject-specific optimal SVS level is that which results in the best balance performance as measured by inertial
Wolbachia spread dynamics in stochastic environments.
Hu, Linchao; Huang, Mugen; Tang, Moxun; Yu, Jianshe; Zheng, Bo
2015-12-01
Dengue fever is a mosquito-borne viral disease with 100 million people infected annually. A novel strategy for dengue control uses the bacterium Wolbachia to invade dengue vector Aedes mosquitoes. As the impact of environmental heterogeneity on Wolbachia spread dynamics in natural areas has been rarely quantified, we develop a model of differential equations for which the environmental conditions switch randomly between two regimes. We find some striking phenomena that random regime transitions could drive Wolbachia to extinction from certain initial states confirmed Wolbachia fixation in homogeneous environments, and mosquito releasing facilitates Wolbachia invasion more effectively when the regimes transit frequently. By superimposing the phase spaces of the ODE systems defined in each regime, we identify the threshold curves below which Wolbachia invades the whole population, which extends the theory of threshold infection frequency to stochastic environments.
Mapping stochastic processes onto complex networks
NASA Astrophysics Data System (ADS)
Shirazi, A. H.; Reza Jafari, G.; Davoudi, J.; Peinke, J.; Reza Rahimi Tabar, M.; Sahimi, Muhammad
2009-07-01
We introduce a method by which stochastic processes are mapped onto complex networks. As examples, we construct the networks for such time series as those for free-jet and low-temperature helium turbulence, the German stock market index (the DAX), and white noise. The networks are further studied by contrasting their geometrical properties, such as the mean length, diameter, clustering, and average number of connections per node. By comparing the network properties of the original time series investigated with those for the shuffled and surrogate series, we are able to quantify the effect of the long-range correlations and the fatness of the probability distribution functions of the series on the networks constructed. Most importantly, we demonstrate that the time series can be reconstructed with high precision by means of a simple random walk on their corresponding networks.
Network-based stochastic semisupervised learning.
Silva, Thiago Christiano; Zhao, Liang
2012-03-01
Semisupervised learning is a machine learning approach that is able to employ both labeled and unlabeled samples in the training process. In this paper, we propose a semisupervised data classification model based on a combined random-preferential walk of particles in a network (graph) constructed from the input dataset. The particles of the same class cooperate among themselves, while the particles of different classes compete with each other to propagate class labels to the whole network. A rigorous model definition is provided via a nonlinear stochastic dynamical system and a mathematical analysis of its behavior is carried out. A numerical validation presented in this paper confirms the theoretical predictions. An interesting feature brought by the competitive-cooperative mechanism is that the proposed model can achieve good classification rates while exhibiting low computational complexity order in comparison to other network-based semisupervised algorithms. Computer simulations conducted on synthetic and real-world datasets reveal the effectiveness of the model.
Physical and stochastic models of earthquake clustering
NASA Astrophysics Data System (ADS)
Console, Rodolfo; Murru, Maura; Catalli, Flaminia
2006-04-01
The phenomenon of earthquake clustering, i.e., the increase of occurrence probability for seismic events close in space and time to other previous earthquakes, has been modeled both by statistical and physical processes. From a statistical viewpoint the so-called epidemic model (ETAS) introduced by Ogata in 1988 and its variations have become fairly well known in the seismological community. Tests on real seismicity and comparison with a plain time-independent Poissonian model through likelihood-based methods have reliably proved their validity. On the other hand, in the last decade many papers have been published on the so-called Coulomb stress change principle, based on the theory of elasticity, showing qualitatively that an increase of the Coulomb stress in a given area is usually associated with an increase of seismic activity. More specifically, the rate-and-state theory developed by Dieterich in the '90s has been able to give a physical justification to the phenomenon known as Omori law. According to this law, a mainshock is followed by a series of aftershocks whose frequency decreases in time as an inverse power law. In this study we give an outline of the above-mentioned stochastic and physical models, and build up an approach by which these models can be merged in a single algorithm and statistically tested. The application to the seismicity of Japan from 1970 to 2003 shows that the new model incorporating the physical concept of the rate-and-state theory performs not worse than the purely stochastic model with two free parameters only. The numerical results obtained in these applications are related to physical characters of the model as the stress change produced by an earthquake close to its edges and to the A and σ parameters of the rate-and-state constitutive law.
From cusps to cores: a stochastic model
NASA Astrophysics Data System (ADS)
El-Zant, Amr A.; Freundlich, Jonathan; Combes, Françoise
2016-09-01
The cold dark matter model of structure formation faces apparent problems on galactic scales. Several threads point to excessive halo concentration, including central densities that rise too steeply with decreasing radius. Yet, random fluctuations in the gaseous component can `heat' the centres of haloes, decreasing their densities. We present a theoretical model deriving this effect from first principles: stochastic variations in the gas density are converted into potential fluctuations that act on the dark matter; the associated force correlation function is calculated and the corresponding stochastic equation solved. Assuming a power-law spectrum of fluctuations with maximal and minimal cutoff scales, we derive the velocity dispersion imparted to the halo particles and the relevant relaxation time. We further perform numerical simulations, with fluctuations realized as a Gaussian random field, which confirm the formation of a core within a time-scale comparable to that derived analytically. Non-radial collective modes enhance the energy transport process that erases the cusp, though the parametrizations of the analytical model persist. In our model, the dominant contribution to the dynamical coupling driving the cusp-core transformation comes from the largest scale fluctuations. Yet, the efficiency of the transformation is independent of the value of the largest scale and depends weakly (linearly) on the power-law exponent; it effectively depends on two parameters: the gas mass fraction and the normalization of the power spectrum. This suggests that cusp-core transformations observed in hydrodynamic simulations of galaxy formation may be understood and parametrized in simple terms, the physical and numerical complexities of the various implementations notwithstanding.
Can quasigeostrophic turbulence be modeled stochastically?
DelSole, T.
1996-06-01
Numerically generated data of quasigeostrophic turbulence in an equilibrated shear flow are analyzed to determine the extent to which they can be modeled by a Markov model. The time lagged covariances are collected into a matrix, C{sub {tau}}, and are substituted into the fluctuation-dissipation relation for a first-order Markov model with white noise forcing, C{sub {tau}}C{sub o}{sup {minus}1} = exp(A{tau}), to determine whether the relation is satisfied for a single dynamic operator A. The dynamic operator obtained by inverting the relation was found to depend on time lag. In particular, for small time lags ({tau} < 1 day), the eigenvectors and imaginary eigenvalues were independent of time lag, while the damping rates increased linearly with time lag. It is shown analytically that precisely this discrepancy occurs when the relation is applied to data generated by a red noise Markov model using a time lag that is small compared to the decorrelation time of the noise. Although a fourth-order Markov model with white noise can more accurately reproduce the covariances, the result of inverting the fluctuation-dissipation relation for such a model implies that the spectrum of the noise involves a superposition of stochastic processes of different spectral characteristics, in which case the effective dissipation and stochastic excitation cannot be completely solved by inverting such generalized fluctuation-dissipation relations. Projecting the data onto the dominant EOFs can distort the dynamic operator and introduce discrepancies even when the underlying data rigorously satisfies the fluctuation-dissipation relation. Despite this confounding factor, the consistency of the results at each order suggests that the effective dissipation is composed of low-order cross-stream gradients of streamfunction and that the excitation is correlated in the cross-stream direction within only a few Rossby radii. 23 rfs., 22 figs., 1 tab.
Approximation methods for stochastic petri nets
NASA Technical Reports Server (NTRS)
Jungnitz, Hauke Joerg
1992-01-01
Stochastic Marked Graphs are a concurrent decision free formalism provided with a powerful synchronization mechanism generalizing conventional Fork Join Queueing Networks. In some particular cases the analysis of the throughput can be done analytically. Otherwise the analysis suffers from the classical state explosion problem. Embedded in the divide and conquer paradigm, approximation techniques are introduced for the analysis of stochastic marked graphs and Macroplace/Macrotransition-nets (MPMT-nets), a new subclass introduced herein. MPMT-nets are a subclass of Petri nets that allow limited choice, concurrency and sharing of resources. The modeling power of MPMT is much larger than that of marked graphs, e.g., MPMT-nets can model manufacturing flow lines with unreliable machines and dataflow graphs where choice and synchronization occur. The basic idea leads to the notion of a cut to split the original net system into two subnets. The cuts lead to two aggregated net systems where one of the subnets is reduced to a single transition. A further reduction leads to a basic skeleton. The generalization of the idea leads to multiple cuts, where single cuts can be applied recursively leading to a hierarchical decomposition. Based on the decomposition, a response time approximation technique for the performance analysis is introduced. Also, delay equivalence, which has previously been introduced in the context of marked graphs by Woodside et al., Marie's method and flow equivalent aggregation are applied to the aggregated net systems. The experimental results show that response time approximation converges quickly and shows reasonable accuracy in most cases. The convergence of Marie's method and flow equivalent aggregation are applied to the aggregated net systems. The experimental results show that response time approximation converges quickly and shows reasonable accuracy in most cases. The convergence of Marie's is slower, but the accuracy is generally better. Delay
Stochastic microhertz gravitational radiation from stellar convection
Bennett, M. F.; Melatos, A.
2014-09-01
High Reynolds-number turbulence driven by stellar convection in main-sequence stars generates stochastic gravitational radiation. We calculate the wave-strain power spectral density as a function of the zero-age main-sequence mass for an individual star and for an isotropic, universal stellar population described by the Salpeter initial mass function and redshift-dependent Hopkins-Beacom star formation rate. The spectrum is a broken power law, which peaks near the turnover frequency of the largest turbulent eddies. The signal from the Sun dominates the universal background. For the Sun, the far-zone power spectral density peaks at S(f {sub peak}) = 5.2 × 10{sup –52} Hz{sup –1} at frequency f {sub peak} = 2.3 × 10{sup –7} Hz. However, at low observing frequencies f < 3 × 10{sup –4} Hz, the Earth lies inside the Sun's near zone and the signal is amplified to S {sub near}(f {sub peak}) = 4.1 × 10{sup –27} Hz{sup –1} because the wave strain scales more steeply with distance (∝d {sup –5}) in the near zone than in the far zone (∝d {sup –1}). Hence the Solar signal may prove relevant for pulsar timing arrays. Other individual sources and the universal background fall well below the projected sensitivities of the Laser Interferometer Space Antenna and next-generation pulsar timing arrays. Stellar convection sets a fundamental noise floor for more sensitive stochastic gravitational-wave experiments in the more distant future.
FAST MAGNETIC RECONNECTION AND SPONTANEOUS STOCHASTICITY
Eyink, Gregory L.; Lazarian, A.; Vishniac, E. T.
2011-12-10
Magnetic field lines in astrophysical plasmas are expected to be frozen-in at scales larger than the ion gyroradius. The rapid reconnection of magnetic-flux structures with dimensions vastly larger than the gyroradius requires a breakdown in the standard Alfven flux-freezing law. We attribute this breakdown to ubiquitous MHD plasma turbulence with power-law scaling ranges of velocity and magnetic energy spectra. Lagrangian particle trajectories in such environments become 'spontaneously stochastic', so that infinitely many magnetic field lines are advected to each point and must be averaged to obtain the resultant magnetic field. The relative distance between initial magnetic field lines which arrive at the same final point depends upon the properties of two-particle turbulent dispersion. We develop predictions based on the phenomenological Goldreich and Sridhar theory of strong MHD turbulence and on weak MHD turbulence theory. We recover the predictions of the Lazarian and Vishniac theory for the reconnection rate of large-scale magnetic structures. Lazarian and Vishniac also invoked 'spontaneous stochasticity', but of the field lines rather than of the Lagrangian trajectories. More recent theories of fast magnetic reconnection appeal to microscopic plasma processes that lead to additional terms in the generalized Ohm's law, such as the collisionless Hall term. We estimate quantitatively the effect of such processes on the inertial-range turbulence dynamics and find them to be negligible in most astrophysical environments. For example, the predictions of the Lazarian and Vishniac theory are unchanged in Hall MHD turbulence with an extended inertial range, whenever the ion skin depth {delta}{sub i} is much smaller than the turbulent integral length or injection-scale L{sub i} .
A stochastic T cell response criterion
Currie, James; Castro, Mario; Lythe, Grant; Palmer, Ed; Molina-París, Carmen
2012-01-01
The adaptive immune system relies on different cell types to provide fast and coordinated responses, characterized by recognition of pathogenic challenge, extensive cellular proliferation and differentiation, as well as death. T cells are a subset of the adaptive immune cellular pool that recognize immunogenic peptides expressed on the surface of antigen-presenting cells by means of specialized receptors on their membrane. T cell receptor binding to ligand determines T cell responses at different times and locations during the life of a T cell. Current experimental evidence provides support to the following: (i) sufficiently long receptor–ligand engagements are required to initiate the T cell signalling cascade that results in productive signal transduction and (ii) counting devices are at work in T cells to allow signal accumulation, decoding and translation into biological responses. In the light of these results, we explore, with mathematical models, the timescales associated with T cell responses. We consider two different criteria: a stochastic one (the mean time it takes to have had N receptor–ligand complexes bound for at least a dwell time, τ, each) and one based on equilibrium (the time to reach a threshold number N of receptor–ligand complexes). We have applied mathematical models to previous experiments in the context of thymic negative selection and to recent two-dimensional experiments. Our results indicate that the stochastic criterion provides support to the thymic affinity threshold hypothesis, whereas the equilibrium one does not, and agrees with the ligand hierarchy experimentally established for thymic negative selection. PMID:22745227
Stochastic Modeling of Radioactive Material Releases
Andrus, Jason; Pope, Chad
2015-09-01
Nonreactor nuclear facilities operated under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculates the radiation dose associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA was developed using the MATLAB coding framework. The software application has a graphical user input. SODA can be installed on both Windows and Mac computers and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC, rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The work was
A Stochastic Skeleton Model for the MJO
NASA Astrophysics Data System (ADS)
Stechmann, S. N.; Thual, S.; Majda, A.
2014-12-01
The Madden-Julian oscillation (MJO) is the dominant mode of variability in the tropical atmosphere on intraseasonal time scales and planetary spatial scales. Despite the primary importance of the MJO and the decades of research progress since its original discovery, a generally accepted theory for its essential mechanisms has remained elusive. In recent work by two of the authors, a minimal dynamical model has been proposed that recovers robustly the most fundamental MJO features of (i) a slow eastward speed of roughly 5 m/s, (ii) a peculiar dispersion relation with dω/dk≈0, and (iii) a horizontal quadrupole vortex structure. This model, the skeleton model, depicts the MJO as a neutrally stable atmospheric wave that involves a simple multiscale interaction between planetary dry dynamics, planetary lower-tropospheric moisture, and the planetary envelope of synoptic-scale activity. In this article, it is shown that the skeleton model can further account for (iv) the intermittent generation of MJO events and (v) the organization of MJO events into wave trains with growth and demise, as seen in nature. The goal is achieved by developing a simple stochastic parameterization for the unresolved details of synoptic-scale activity, which is coupled to otherwise deterministic processes in the skeleton model. In particular, the intermittent initiation, propagation, and shut down of MJO wave trains in the skeleton model occur through these stochastic effects. This includes examples with a background warm pool where some initial MJO-like disturbances propagate through the western region but stall at the peak of background convection/heating corresponding to the Maritime Continent in nature. Also shown are examples with an idealized seasonal cycle, namely a background warm pool state of heating/moistening displacing meridionally during the year. This seasonally varying case considers both equatorial and off-equatorial components of the envelope of synoptic scale convective
Stochastic inverse problems: Models and metrics
Sabbagh, Elias H.; Sabbagh, Harold A.; Murphy, R. Kim; Aldrin, John C.; Annis, Charles; Knopp, Jeremy S.
2015-03-31
In past work, we introduced model-based inverse methods, and applied them to problems in which the anomaly could be reasonably modeled by simple canonical shapes, such as rectangular solids. In these cases the parameters to be inverted would be length, width and height, as well as the occasional probe lift-off or rotation. We are now developing a formulation that allows more flexibility in modeling complex flaws. The idea consists of expanding the flaw in a sequence of basis functions, and then solving for the expansion coefficients of this sequence, which are modeled as independent random variables, uniformly distributed over their range of values. There are a number of applications of such modeling: 1. Connected cracks and multiple half-moons, which we have noted in a POD set. Ideally we would like to distinguish connected cracks from one long shallow crack. 2. Cracks of irregular profile and shape which have appeared in cold work holes during bolt-hole eddy-current inspection. One side of such cracks is much deeper than other. 3. L or C shaped crack profiles at the surface, examples of which have been seen in bolt-hole cracks. By formulating problems in a stochastic sense, we are able to leverage the stochastic global optimization algorithms in NLSE, which is resident in VIC-3D®, to answer questions of global minimization and to compute confidence bounds using the sensitivity coefficient that we get from NLSE. We will also address the issue of surrogate functions which are used during the inversion process, and how they contribute to the quality of the estimation of the bounds.
Multivariate moment closure techniques for stochastic kinetic models
Lakatos, Eszter Ale, Angelique; Kirk, Paul D. W.; Stumpf, Michael P. H.
2015-09-07
Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporally evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.
Predicting stochastic gene expression dynamics in single cells.
Mettetal, Jerome T; Muzzey, Dale; Pedraza, Juan M; Ozbudak, Ertugrul M; van Oudenaarden, Alexander
2006-05-01
Fluctuations in protein numbers (noise) due to inherent stochastic effects in single cells can have large effects on the dynamic behavior of gene regulatory networks. Although deterministic models can predict the average network behavior, they fail to incorporate the stochasticity characteristic of gene expression, thereby limiting their relevance when single cell behaviors deviate from the population average. Recently, stochastic models have been used to predict distributions of steady-state protein levels within a population but not to predict the dynamic, presteady-state distributions. In the present work, we experimentally examine a system whose dynamics are heavily influenced by stochastic effects. We measure population distributions of protein numbers as a function of time in the Escherichia coli lactose uptake network (lac operon). We then introduce a dynamic stochastic model and show that prediction of dynamic distributions requires only a few noise parameters in addition to the rates that characterize a deterministic model. Whereas the deterministic model cannot fully capture the observed behavior, our stochastic model correctly predicts the experimental dynamics without any fit parameters. Our results provide a proof of principle for the possibility of faithfully predicting dynamic population distributions from deterministic models supplemented by a stochastic component that captures the major noise sources. PMID:16648266
A data-integrated method for analyzing stochastic biochemical networks
NASA Astrophysics Data System (ADS)
Chevalier, Michael W.; El-Samad, Hana
2011-12-01
Variability and fluctuations among genetically identical cells under uniform experimental conditions stem from the stochastic nature of biochemical reactions. Understanding network function for endogenous biological systems or designing robust synthetic genetic circuits requires accounting for and analyzing this variability. Stochasticity in biological networks is usually represented using a continuous-time discrete-state Markov formalism, where the chemical master equation (CME) and its kinetic Monte Carlo equivalent, the stochastic simulation algorithm (SSA), are used. These two representations are computationally intractable for many realistic biological problems. Fitting parameters in the context of these stochastic models is particularly challenging and has not been accomplished for any but very simple systems. In this work, we propose that moment equations derived from the CME, when treated appropriately in terms of higher order moment contributions, represent a computationally efficient framework for estimating the kinetic rate constants of stochastic network models and subsequent analysis of their dynamics. To do so, we present a practical data-derived moment closure method for these equations. In contrast to previous work, this method does not rely on any assumptions about the shape of the stochastic distributions or a functional relationship among their moments. We use this method to analyze a stochastic model of a biological oscillator and demonstrate its accuracy through excellent agreement with CME/SSA calculations. By coupling this moment-closure method with a parameter search procedure, we further demonstrate how a model's kinetic parameters can be iteratively determined in order to fit measured distribution data.
Multivariate moment closure techniques for stochastic kinetic models
NASA Astrophysics Data System (ADS)
Lakatos, Eszter; Ale, Angelique; Kirk, Paul D. W.; Stumpf, Michael P. H.
2015-09-01
Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporally evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.
A data-integrated method for analyzing stochastic biochemical networks.
Chevalier, Michael W; El-Samad, Hana
2011-12-01
Variability and fluctuations among genetically identical cells under uniform experimental conditions stem from the stochastic nature of biochemical reactions. Understanding network function for endogenous biological systems or designing robust synthetic genetic circuits requires accounting for and analyzing this variability. Stochasticity in biological networks is usually represented using a continuous-time discrete-state Markov formalism, where the chemical master equation (CME) and its kinetic Monte Carlo equivalent, the stochastic simulation algorithm (SSA), are used. These two representations are computationally intractable for many realistic biological problems. Fitting parameters in the context of these stochastic models is particularly challenging and has not been accomplished for any but very simple systems. In this work, we propose that moment equations derived from the CME, when treated appropriately in terms of higher order moment contributions, represent a computationally efficient framework for estimating the kinetic rate constants of stochastic network models and subsequent analysis of their dynamics. To do so, we present a practical data-derived moment closure method for these equations. In contrast to previous work, this method does not rely on any assumptions about the shape of the stochastic distributions or a functional relationship among their moments. We use this method to analyze a stochastic model of a biological oscillator and demonstrate its accuracy through excellent agreement with CME/SSA calculations. By coupling this moment-closure method with a parameter search procedure, we further demonstrate how a model's kinetic parameters can be iteratively determined in order to fit measured distribution data.
... Cancer - perineum; Cancer - vulvar; Genital warts - vulvar cancer; HPV - vulvar cancer ... is rare. Risk factors include: Human papilloma virus (HPV, or genital warts ) infection in women under age ...
Stochastic Dynamics of Interacting Haematopoietic Stem Cell Niche Lineages
Székely, Tamás; Burrage, Kevin; Mangel, Marc; Bonsall, Michael B.
2014-01-01
Since we still know very little about stem cells in their natural environment, it is useful to explore their dynamics through modelling and simulation, as well as experimentally. Most models of stem cell systems are based on deterministic differential equations that ignore the natural heterogeneity of stem cell populations. This is not appropriate at the level of individual cells and niches, when randomness is more likely to affect dynamics. In this paper, we introduce a fast stochastic method for simulating a metapopulation of stem cell niche lineages, that is, many sub-populations that together form a heterogeneous metapopulation, over time. By selecting the common limiting timestep, our method ensures that the entire metapopulation is simulated synchronously. This is important, as it allows us to introduce interactions between separate niche lineages, which would otherwise be impossible. We expand our method to enable the coupling of many lineages into niche groups, where differentiated cells are pooled within each niche group. Using this method, we explore the dynamics of the haematopoietic system from a demand control system perspective. We find that coupling together niche lineages allows the organism to regulate blood cell numbers as closely as possible to the homeostatic optimum. Furthermore, coupled lineages respond better than uncoupled ones to random perturbations, here the loss of some myeloid cells. This could imply that it is advantageous for an organism to connect together its niche lineages into groups. Our results suggest that a potential fruitful empirical direction will be to understand how stem cell descendants communicate with the niche and how cancer may arise as a result of a failure of such communication. PMID:25188267
A theoretical stochastic control framework for adapting radiotherapy to hypoxia
NASA Astrophysics Data System (ADS)
Saberian, Fatemeh; Ghate, Archis; Kim, Minsun
2016-10-01
Hypoxia, that is, insufficient oxygen partial pressure, is a known cause of reduced radiosensitivity in solid tumors, and especially in head-and-neck tumors. It is thus believed to adversely affect the outcome of fractionated radiotherapy. Oxygen partial pressure varies spatially and temporally over the treatment course and exhibits inter-patient and intra-tumor variation. Emerging advances in non-invasive functional imaging offer the future possibility of adapting radiotherapy plans to this uncertain spatiotemporal evolution of hypoxia over the treatment course. We study the potential benefits of such adaptive planning via a theoretical stochastic control framework using computer-simulated evolution of hypoxia on computer-generated test cases in head-and-neck cancer. The exact solution of the resulting control problem is computationally intractable. We develop an approximation algorithm, called certainty equivalent control, that calls for the solution of a sequence of convex programs over the treatment course; dose-volume constraints are handled using a simple constraint generation method. These convex programs are solved using an interior point algorithm with a logarithmic barrier via Newton’s method and backtracking line search. Convexity of various formulations in this paper is guaranteed by a sufficient condition on radiobiological tumor-response parameters. This condition is expected to hold for head-and-neck tumors and for other similarly responding tumors where the linear dose-response parameter is larger than the quadratic dose-response parameter. We perform numerical experiments on four test cases by using a first-order vector autoregressive process with exponential and rational-quadratic covariance functions from the spatiotemporal statistics literature to simulate the evolution of hypoxia. Our results suggest that dynamic planning could lead to a considerable improvement in the number of tumor cells remaining at the end of the treatment course
Evolutionary dynamics of imatinib-treated leukemic cells by stochastic approach
NASA Astrophysics Data System (ADS)
Pizzolato, Nicola; Valenti, Davide; Adorno, Dominique; Spagnolo, Bernardo
2009-09-01
The evolutionary dynamics of a system of cancerous cells in a model of chronic myeloid leukemia (CML) is investigated by a statistical approach. Cancer progression is explored by applying a Monte Carlo method to simulate the stochastic behavior of cell reproduction and death in a population of blood cells which can experience genetic mutations. In CML front line therapy is represented by the tyrosine kinase inhibitor imatinib which strongly affects the reproduction of leukemic cells only. In this work, we analyze the effects of a targeted therapy on the evolutionary dynamics of normal, first-mutant and cancerous cell populations. Several scenarios of the evolutionary dynamics of imatinib-treated leukemic cells are described as a consequence of the efficacy of the different modelled therapies. We show how the patient response to the therapy changes when a high value of the mutation rate from healthy to cancerous cells is present. Our results are in agreement with clinical observations. Unfortunately, development of resistance to imatinib is observed in a fraction of patients, whose blood cells are characterized by an increasing number of genetic alterations. We find that the occurrence of resistance to the therapy can be related to a progressive increase of deleterious mutations.
Stochastic growth logistic model with aftereffect for batch fermentation process
Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md
2014-06-19
In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.
Stochastic waves in a Brusselator model with nonlocal interaction.
Biancalani, Tommaso; Galla, Tobias; McKane, Alan J
2011-08-01
We show that intrinsic noise can induce spatiotemporal phenomena such as Turing patterns and traveling waves in a Brusselator model with nonlocal interaction terms. In order to predict and to characterize these stochastic waves we analyze the nonlocal model using a system-size expansion. The resulting theory is used to calculate the power spectra of the stochastic waves analytically and the outcome is tested successfully against simulations. We discuss the possibility that nonlocal models in other areas, such as epidemic spread or social dynamics, may contain similar stochastically induced patterns. PMID:21929075
Stochastic waves in a Brusselator model with nonlocal interaction
NASA Astrophysics Data System (ADS)
Biancalani, Tommaso; Galla, Tobias; McKane, Alan J.
2011-08-01
We show that intrinsic noise can induce spatiotemporal phenomena such as Turing patterns and traveling waves in a Brusselator model with nonlocal interaction terms. In order to predict and to characterize these stochastic waves we analyze the nonlocal model using a system-size expansion. The resulting theory is used to calculate the power spectra of the stochastic waves analytically and the outcome is tested successfully against simulations. We discuss the possibility that nonlocal models in other areas, such as epidemic spread or social dynamics, may contain similar stochastically induced patterns.
A suboptimal stochastic controller for an N-body spacecraft
NASA Technical Reports Server (NTRS)
Larson, V.
1973-01-01
Considerable attention, in the open literature, is being focused on the problem of developing a suitable set of deterministic dynamical equations for a complex spacecraft. This paper considers the problem of determining a stochastic optimal controller for an n-body spacecraft. The approach used in obtaining the stochastic controller involves the application, interpretation, and combination of advanced dynamical principles and the theoretical aspects of modern control theory. The stochastic controller obtained herein for a complicated model of a spacecraft uses sensor angular measurements associated with the base body to obtain smoothed estimates of the entire state vector. It can be easily implemented, and it enables system performance to be significantly improved.
Summing over trajectories of stochastic dynamics with multiplicative noise
Tang, Ying Ao, Ping; Yuan, Ruoshi
2014-07-28
We demonstrate that previous path integral formulations for the general stochastic interpretation generate incomplete results exemplified by the geometric Brownian motion. We thus develop a novel path integral formulation for the overdamped Langevin equation with multiplicative noise. The present path integral leads to the corresponding Fokker-Planck equation, and naturally generates a normalized transition probability in examples. Our result solves the inconsistency of the previous path integral formulations for the general stochastic interpretation, and can have wide applications in chemical and physical stochastic processes.